1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 82 struct lpfc_cqe *); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_eqe *eqe, uint32_t qidx); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 90 struct lpfc_sli_ring *pring, 91 struct lpfc_iocbq *cmdiocb); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100 /** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113 void 114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115 { 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122 } 123 #else 124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125 #endif 126 127 /** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139 static int 140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141 { 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = q->qe[q->host_index].wqe; 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->entry_repost)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173 #ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177 #else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181 #endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221 } 222 223 /** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. This routine returns the number of entries that were consumed by 232 * the HBA. 233 **/ 234 static uint32_t 235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 236 { 237 uint32_t released = 0; 238 239 /* sanity check on queue memory */ 240 if (unlikely(!q)) 241 return 0; 242 243 if (q->hba_index == index) 244 return 0; 245 do { 246 q->hba_index = ((q->hba_index + 1) % q->entry_count); 247 released++; 248 } while (q->hba_index != index); 249 return released; 250 } 251 252 /** 253 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 254 * @q: The Mailbox Queue to operate on. 255 * @wqe: The Mailbox Queue Entry to put on the Work queue. 256 * 257 * This routine will copy the contents of @mqe to the next available entry on 258 * the @q. This function will then ring the Work Queue Doorbell to signal the 259 * HBA to start processing the Work Queue Entry. This function returns 0 if 260 * successful. If no entries are available on @q then this function will return 261 * -ENOMEM. 262 * The caller is expected to hold the hbalock when calling this routine. 263 **/ 264 static uint32_t 265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 266 { 267 struct lpfc_mqe *temp_mqe; 268 struct lpfc_register doorbell; 269 270 /* sanity check on queue memory */ 271 if (unlikely(!q)) 272 return -ENOMEM; 273 temp_mqe = q->qe[q->host_index].mqe; 274 275 /* If the host has not yet processed the next entry then we are done */ 276 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 277 return -ENOMEM; 278 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 279 /* Save off the mailbox pointer for completion */ 280 q->phba->mbox = (MAILBOX_t *)temp_mqe; 281 282 /* Update the host index before invoking device */ 283 q->host_index = ((q->host_index + 1) % q->entry_count); 284 285 /* Ring Doorbell */ 286 doorbell.word0 = 0; 287 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 288 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 289 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 290 return 0; 291 } 292 293 /** 294 * lpfc_sli4_mq_release - Updates internal hba index for MQ 295 * @q: The Mailbox Queue to operate on. 296 * 297 * This routine will update the HBA index of a queue to reflect consumption of 298 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 299 * an entry the host calls this function to update the queue's internal 300 * pointers. This routine returns the number of entries that were consumed by 301 * the HBA. 302 **/ 303 static uint32_t 304 lpfc_sli4_mq_release(struct lpfc_queue *q) 305 { 306 /* sanity check on queue memory */ 307 if (unlikely(!q)) 308 return 0; 309 310 /* Clear the mailbox pointer for completion */ 311 q->phba->mbox = NULL; 312 q->hba_index = ((q->hba_index + 1) % q->entry_count); 313 return 1; 314 } 315 316 /** 317 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 318 * @q: The Event Queue to get the first valid EQE from 319 * 320 * This routine will get the first valid Event Queue Entry from @q, update 321 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 322 * the Queue (no more work to do), or the Queue is full of EQEs that have been 323 * processed, but not popped back to the HBA then this routine will return NULL. 324 **/ 325 static struct lpfc_eqe * 326 lpfc_sli4_eq_get(struct lpfc_queue *q) 327 { 328 struct lpfc_hba *phba; 329 struct lpfc_eqe *eqe; 330 uint32_t idx; 331 332 /* sanity check on queue memory */ 333 if (unlikely(!q)) 334 return NULL; 335 phba = q->phba; 336 eqe = q->qe[q->hba_index].eqe; 337 338 /* If the next EQE is not valid then we are done */ 339 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 340 return NULL; 341 /* If the host has not yet processed the next entry then we are done */ 342 idx = ((q->hba_index + 1) % q->entry_count); 343 if (idx == q->host_index) 344 return NULL; 345 346 q->hba_index = idx; 347 /* if the index wrapped around, toggle the valid bit */ 348 if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index) 349 q->qe_valid = (q->qe_valid) ? 0 : 1; 350 351 352 /* 353 * insert barrier for instruction interlock : data from the hardware 354 * must have the valid bit checked before it can be copied and acted 355 * upon. Speculative instructions were allowing a bcopy at the start 356 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 357 * after our return, to copy data before the valid bit check above 358 * was done. As such, some of the copied data was stale. The barrier 359 * ensures the check is before any data is copied. 360 */ 361 mb(); 362 return eqe; 363 } 364 365 /** 366 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 367 * @q: The Event Queue to disable interrupts 368 * 369 **/ 370 inline void 371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 372 { 373 struct lpfc_register doorbell; 374 375 doorbell.word0 = 0; 376 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 377 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 378 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 379 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 380 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 382 } 383 384 /** 385 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 386 * @q: The Event Queue to disable interrupts 387 * 388 **/ 389 inline void 390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 391 { 392 struct lpfc_register doorbell; 393 394 doorbell.word0 = 0; 395 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 396 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 397 } 398 399 /** 400 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 401 * @q: The Event Queue that the host has completed processing for. 402 * @arm: Indicates whether the host wants to arms this CQ. 403 * 404 * This routine will mark all Event Queue Entries on @q, from the last 405 * known completed entry to the last entry that was processed, as completed 406 * by clearing the valid bit for each completion queue entry. Then it will 407 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 408 * The internal host index in the @q will be updated by this routine to indicate 409 * that the host has finished processing the entries. The @arm parameter 410 * indicates that the queue should be rearmed when ringing the doorbell. 411 * 412 * This function will return the number of EQEs that were popped. 413 **/ 414 uint32_t 415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 416 { 417 uint32_t released = 0; 418 struct lpfc_hba *phba; 419 struct lpfc_eqe *temp_eqe; 420 struct lpfc_register doorbell; 421 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 phba = q->phba; 426 427 /* while there are valid entries */ 428 while (q->hba_index != q->host_index) { 429 if (!phba->sli4_hba.pc_sli4_params.eqav) { 430 temp_eqe = q->qe[q->host_index].eqe; 431 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 432 } 433 released++; 434 q->host_index = ((q->host_index + 1) % q->entry_count); 435 } 436 if (unlikely(released == 0 && !arm)) 437 return 0; 438 439 /* ring doorbell for number popped */ 440 doorbell.word0 = 0; 441 if (arm) { 442 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 443 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 444 } 445 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 446 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 447 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 448 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 449 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 450 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 451 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 452 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 453 readl(q->phba->sli4_hba.EQDBregaddr); 454 return released; 455 } 456 457 /** 458 * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ 459 * @q: The Event Queue that the host has completed processing for. 460 * @arm: Indicates whether the host wants to arms this CQ. 461 * 462 * This routine will mark all Event Queue Entries on @q, from the last 463 * known completed entry to the last entry that was processed, as completed 464 * by clearing the valid bit for each completion queue entry. Then it will 465 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 466 * The internal host index in the @q will be updated by this routine to indicate 467 * that the host has finished processing the entries. The @arm parameter 468 * indicates that the queue should be rearmed when ringing the doorbell. 469 * 470 * This function will return the number of EQEs that were popped. 471 **/ 472 uint32_t 473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm) 474 { 475 uint32_t released = 0; 476 struct lpfc_hba *phba; 477 struct lpfc_eqe *temp_eqe; 478 struct lpfc_register doorbell; 479 480 /* sanity check on queue memory */ 481 if (unlikely(!q)) 482 return 0; 483 phba = q->phba; 484 485 /* while there are valid entries */ 486 while (q->hba_index != q->host_index) { 487 if (!phba->sli4_hba.pc_sli4_params.eqav) { 488 temp_eqe = q->qe[q->host_index].eqe; 489 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 490 } 491 released++; 492 q->host_index = ((q->host_index + 1) % q->entry_count); 493 } 494 if (unlikely(released == 0 && !arm)) 495 return 0; 496 497 /* ring doorbell for number popped */ 498 doorbell.word0 = 0; 499 if (arm) 500 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 501 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released); 502 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 503 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 504 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 505 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 506 readl(q->phba->sli4_hba.EQDBregaddr); 507 return released; 508 } 509 510 /** 511 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 512 * @q: The Completion Queue to get the first valid CQE from 513 * 514 * This routine will get the first valid Completion Queue Entry from @q, update 515 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 516 * the Queue (no more work to do), or the Queue is full of CQEs that have been 517 * processed, but not popped back to the HBA then this routine will return NULL. 518 **/ 519 static struct lpfc_cqe * 520 lpfc_sli4_cq_get(struct lpfc_queue *q) 521 { 522 struct lpfc_hba *phba; 523 struct lpfc_cqe *cqe; 524 uint32_t idx; 525 526 /* sanity check on queue memory */ 527 if (unlikely(!q)) 528 return NULL; 529 phba = q->phba; 530 cqe = q->qe[q->hba_index].cqe; 531 532 /* If the next CQE is not valid then we are done */ 533 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 534 return NULL; 535 /* If the host has not yet processed the next entry then we are done */ 536 idx = ((q->hba_index + 1) % q->entry_count); 537 if (idx == q->host_index) 538 return NULL; 539 540 q->hba_index = idx; 541 /* if the index wrapped around, toggle the valid bit */ 542 if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index) 543 q->qe_valid = (q->qe_valid) ? 0 : 1; 544 545 /* 546 * insert barrier for instruction interlock : data from the hardware 547 * must have the valid bit checked before it can be copied and acted 548 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 549 * instructions allowing action on content before valid bit checked, 550 * add barrier here as well. May not be needed as "content" is a 551 * single 32-bit entity here (vs multi word structure for cq's). 552 */ 553 mb(); 554 return cqe; 555 } 556 557 /** 558 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 559 * @q: The Completion Queue that the host has completed processing for. 560 * @arm: Indicates whether the host wants to arms this CQ. 561 * 562 * This routine will mark all Completion queue entries on @q, from the last 563 * known completed entry to the last entry that was processed, as completed 564 * by clearing the valid bit for each completion queue entry. Then it will 565 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 566 * The internal host index in the @q will be updated by this routine to indicate 567 * that the host has finished processing the entries. The @arm parameter 568 * indicates that the queue should be rearmed when ringing the doorbell. 569 * 570 * This function will return the number of CQEs that were released. 571 **/ 572 uint32_t 573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 574 { 575 uint32_t released = 0; 576 struct lpfc_hba *phba; 577 struct lpfc_cqe *temp_qe; 578 struct lpfc_register doorbell; 579 580 /* sanity check on queue memory */ 581 if (unlikely(!q)) 582 return 0; 583 phba = q->phba; 584 585 /* while there are valid entries */ 586 while (q->hba_index != q->host_index) { 587 if (!phba->sli4_hba.pc_sli4_params.cqav) { 588 temp_qe = q->qe[q->host_index].cqe; 589 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 590 } 591 released++; 592 q->host_index = ((q->host_index + 1) % q->entry_count); 593 } 594 if (unlikely(released == 0 && !arm)) 595 return 0; 596 597 /* ring doorbell for number popped */ 598 doorbell.word0 = 0; 599 if (arm) 600 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 601 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 602 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 603 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 604 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 605 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 606 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 607 return released; 608 } 609 610 /** 611 * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ 612 * @q: The Completion Queue that the host has completed processing for. 613 * @arm: Indicates whether the host wants to arms this CQ. 614 * 615 * This routine will mark all Completion queue entries on @q, from the last 616 * known completed entry to the last entry that was processed, as completed 617 * by clearing the valid bit for each completion queue entry. Then it will 618 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 619 * The internal host index in the @q will be updated by this routine to indicate 620 * that the host has finished processing the entries. The @arm parameter 621 * indicates that the queue should be rearmed when ringing the doorbell. 622 * 623 * This function will return the number of CQEs that were released. 624 **/ 625 uint32_t 626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm) 627 { 628 uint32_t released = 0; 629 struct lpfc_hba *phba; 630 struct lpfc_cqe *temp_qe; 631 struct lpfc_register doorbell; 632 633 /* sanity check on queue memory */ 634 if (unlikely(!q)) 635 return 0; 636 phba = q->phba; 637 638 /* while there are valid entries */ 639 while (q->hba_index != q->host_index) { 640 if (!phba->sli4_hba.pc_sli4_params.cqav) { 641 temp_qe = q->qe[q->host_index].cqe; 642 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 643 } 644 released++; 645 q->host_index = ((q->host_index + 1) % q->entry_count); 646 } 647 if (unlikely(released == 0 && !arm)) 648 return 0; 649 650 /* ring doorbell for number popped */ 651 doorbell.word0 = 0; 652 if (arm) 653 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 654 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released); 655 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 656 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 657 return released; 658 } 659 660 /** 661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 662 * @q: The Header Receive Queue to operate on. 663 * @wqe: The Receive Queue Entry to put on the Receive queue. 664 * 665 * This routine will copy the contents of @wqe to the next available entry on 666 * the @q. This function will then ring the Receive Queue Doorbell to signal the 667 * HBA to start processing the Receive Queue Entry. This function returns the 668 * index that the rqe was copied to if successful. If no entries are available 669 * on @q then this function will return -ENOMEM. 670 * The caller is expected to hold the hbalock when calling this routine. 671 **/ 672 int 673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 674 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 675 { 676 struct lpfc_rqe *temp_hrqe; 677 struct lpfc_rqe *temp_drqe; 678 struct lpfc_register doorbell; 679 int hq_put_index; 680 int dq_put_index; 681 682 /* sanity check on queue memory */ 683 if (unlikely(!hq) || unlikely(!dq)) 684 return -ENOMEM; 685 hq_put_index = hq->host_index; 686 dq_put_index = dq->host_index; 687 temp_hrqe = hq->qe[hq_put_index].rqe; 688 temp_drqe = dq->qe[dq_put_index].rqe; 689 690 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 691 return -EINVAL; 692 if (hq_put_index != dq_put_index) 693 return -EINVAL; 694 /* If the host has not yet processed the next entry then we are done */ 695 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 696 return -EBUSY; 697 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 698 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 699 700 /* Update the host index to point to the next slot */ 701 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 702 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 703 hq->RQ_buf_posted++; 704 705 /* Ring The Header Receive Queue Doorbell */ 706 if (!(hq->host_index % hq->entry_repost)) { 707 doorbell.word0 = 0; 708 if (hq->db_format == LPFC_DB_RING_FORMAT) { 709 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 710 hq->entry_repost); 711 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 712 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 713 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 714 hq->entry_repost); 715 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 716 hq->host_index); 717 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 718 } else { 719 return -EINVAL; 720 } 721 writel(doorbell.word0, hq->db_regaddr); 722 } 723 return hq_put_index; 724 } 725 726 /** 727 * lpfc_sli4_rq_release - Updates internal hba index for RQ 728 * @q: The Header Receive Queue to operate on. 729 * 730 * This routine will update the HBA index of a queue to reflect consumption of 731 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 732 * consumed an entry the host calls this function to update the queue's 733 * internal pointers. This routine returns the number of entries that were 734 * consumed by the HBA. 735 **/ 736 static uint32_t 737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 738 { 739 /* sanity check on queue memory */ 740 if (unlikely(!hq) || unlikely(!dq)) 741 return 0; 742 743 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 744 return 0; 745 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 746 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 747 return 1; 748 } 749 750 /** 751 * lpfc_cmd_iocb - Get next command iocb entry in the ring 752 * @phba: Pointer to HBA context object. 753 * @pring: Pointer to driver SLI ring object. 754 * 755 * This function returns pointer to next command iocb entry 756 * in the command ring. The caller must hold hbalock to prevent 757 * other threads consume the next command iocb. 758 * SLI-2/SLI-3 provide different sized iocbs. 759 **/ 760 static inline IOCB_t * 761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 762 { 763 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 764 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 765 } 766 767 /** 768 * lpfc_resp_iocb - Get next response iocb entry in the ring 769 * @phba: Pointer to HBA context object. 770 * @pring: Pointer to driver SLI ring object. 771 * 772 * This function returns pointer to next response iocb entry 773 * in the response ring. The caller must hold hbalock to make sure 774 * that no other thread consume the next response iocb. 775 * SLI-2/SLI-3 provide different sized iocbs. 776 **/ 777 static inline IOCB_t * 778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 779 { 780 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 781 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 782 } 783 784 /** 785 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 786 * @phba: Pointer to HBA context object. 787 * 788 * This function is called with hbalock held. This function 789 * allocates a new driver iocb object from the iocb pool. If the 790 * allocation is successful, it returns pointer to the newly 791 * allocated iocb object else it returns NULL. 792 **/ 793 struct lpfc_iocbq * 794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 795 { 796 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 797 struct lpfc_iocbq * iocbq = NULL; 798 799 lockdep_assert_held(&phba->hbalock); 800 801 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 802 if (iocbq) 803 phba->iocb_cnt++; 804 if (phba->iocb_cnt > phba->iocb_max) 805 phba->iocb_max = phba->iocb_cnt; 806 return iocbq; 807 } 808 809 /** 810 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 811 * @phba: Pointer to HBA context object. 812 * @xritag: XRI value. 813 * 814 * This function clears the sglq pointer from the array of acive 815 * sglq's. The xritag that is passed in is used to index into the 816 * array. Before the xritag can be used it needs to be adjusted 817 * by subtracting the xribase. 818 * 819 * Returns sglq ponter = success, NULL = Failure. 820 **/ 821 struct lpfc_sglq * 822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 823 { 824 struct lpfc_sglq *sglq; 825 826 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 827 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 828 return sglq; 829 } 830 831 /** 832 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 833 * @phba: Pointer to HBA context object. 834 * @xritag: XRI value. 835 * 836 * This function returns the sglq pointer from the array of acive 837 * sglq's. The xritag that is passed in is used to index into the 838 * array. Before the xritag can be used it needs to be adjusted 839 * by subtracting the xribase. 840 * 841 * Returns sglq ponter = success, NULL = Failure. 842 **/ 843 struct lpfc_sglq * 844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 845 { 846 struct lpfc_sglq *sglq; 847 848 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 849 return sglq; 850 } 851 852 /** 853 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 854 * @phba: Pointer to HBA context object. 855 * @xritag: xri used in this exchange. 856 * @rrq: The RRQ to be cleared. 857 * 858 **/ 859 void 860 lpfc_clr_rrq_active(struct lpfc_hba *phba, 861 uint16_t xritag, 862 struct lpfc_node_rrq *rrq) 863 { 864 struct lpfc_nodelist *ndlp = NULL; 865 866 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 867 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 868 869 /* The target DID could have been swapped (cable swap) 870 * we should use the ndlp from the findnode if it is 871 * available. 872 */ 873 if ((!ndlp) && rrq->ndlp) 874 ndlp = rrq->ndlp; 875 876 if (!ndlp) 877 goto out; 878 879 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 880 rrq->send_rrq = 0; 881 rrq->xritag = 0; 882 rrq->rrq_stop_time = 0; 883 } 884 out: 885 mempool_free(rrq, phba->rrq_pool); 886 } 887 888 /** 889 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 890 * @phba: Pointer to HBA context object. 891 * 892 * This function is called with hbalock held. This function 893 * Checks if stop_time (ratov from setting rrq active) has 894 * been reached, if it has and the send_rrq flag is set then 895 * it will call lpfc_send_rrq. If the send_rrq flag is not set 896 * then it will just call the routine to clear the rrq and 897 * free the rrq resource. 898 * The timer is set to the next rrq that is going to expire before 899 * leaving the routine. 900 * 901 **/ 902 void 903 lpfc_handle_rrq_active(struct lpfc_hba *phba) 904 { 905 struct lpfc_node_rrq *rrq; 906 struct lpfc_node_rrq *nextrrq; 907 unsigned long next_time; 908 unsigned long iflags; 909 LIST_HEAD(send_rrq); 910 911 spin_lock_irqsave(&phba->hbalock, iflags); 912 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 913 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 914 list_for_each_entry_safe(rrq, nextrrq, 915 &phba->active_rrq_list, list) { 916 if (time_after(jiffies, rrq->rrq_stop_time)) 917 list_move(&rrq->list, &send_rrq); 918 else if (time_before(rrq->rrq_stop_time, next_time)) 919 next_time = rrq->rrq_stop_time; 920 } 921 spin_unlock_irqrestore(&phba->hbalock, iflags); 922 if ((!list_empty(&phba->active_rrq_list)) && 923 (!(phba->pport->load_flag & FC_UNLOADING))) 924 mod_timer(&phba->rrq_tmr, next_time); 925 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 926 list_del(&rrq->list); 927 if (!rrq->send_rrq) 928 /* this call will free the rrq */ 929 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 930 else if (lpfc_send_rrq(phba, rrq)) { 931 /* if we send the rrq then the completion handler 932 * will clear the bit in the xribitmap. 933 */ 934 lpfc_clr_rrq_active(phba, rrq->xritag, 935 rrq); 936 } 937 } 938 } 939 940 /** 941 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 942 * @vport: Pointer to vport context object. 943 * @xri: The xri used in the exchange. 944 * @did: The targets DID for this exchange. 945 * 946 * returns NULL = rrq not found in the phba->active_rrq_list. 947 * rrq = rrq for this xri and target. 948 **/ 949 struct lpfc_node_rrq * 950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 951 { 952 struct lpfc_hba *phba = vport->phba; 953 struct lpfc_node_rrq *rrq; 954 struct lpfc_node_rrq *nextrrq; 955 unsigned long iflags; 956 957 if (phba->sli_rev != LPFC_SLI_REV4) 958 return NULL; 959 spin_lock_irqsave(&phba->hbalock, iflags); 960 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 961 if (rrq->vport == vport && rrq->xritag == xri && 962 rrq->nlp_DID == did){ 963 list_del(&rrq->list); 964 spin_unlock_irqrestore(&phba->hbalock, iflags); 965 return rrq; 966 } 967 } 968 spin_unlock_irqrestore(&phba->hbalock, iflags); 969 return NULL; 970 } 971 972 /** 973 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 974 * @vport: Pointer to vport context object. 975 * @ndlp: Pointer to the lpfc_node_list structure. 976 * If ndlp is NULL Remove all active RRQs for this vport from the 977 * phba->active_rrq_list and clear the rrq. 978 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 979 **/ 980 void 981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 982 983 { 984 struct lpfc_hba *phba = vport->phba; 985 struct lpfc_node_rrq *rrq; 986 struct lpfc_node_rrq *nextrrq; 987 unsigned long iflags; 988 LIST_HEAD(rrq_list); 989 990 if (phba->sli_rev != LPFC_SLI_REV4) 991 return; 992 if (!ndlp) { 993 lpfc_sli4_vport_delete_els_xri_aborted(vport); 994 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 995 } 996 spin_lock_irqsave(&phba->hbalock, iflags); 997 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 998 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 999 list_move(&rrq->list, &rrq_list); 1000 spin_unlock_irqrestore(&phba->hbalock, iflags); 1001 1002 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1003 list_del(&rrq->list); 1004 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1005 } 1006 } 1007 1008 /** 1009 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1010 * @phba: Pointer to HBA context object. 1011 * @ndlp: Targets nodelist pointer for this exchange. 1012 * @xritag the xri in the bitmap to test. 1013 * 1014 * This function is called with hbalock held. This function 1015 * returns 0 = rrq not active for this xri 1016 * 1 = rrq is valid for this xri. 1017 **/ 1018 int 1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1020 uint16_t xritag) 1021 { 1022 lockdep_assert_held(&phba->hbalock); 1023 if (!ndlp) 1024 return 0; 1025 if (!ndlp->active_rrqs_xri_bitmap) 1026 return 0; 1027 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1028 return 1; 1029 else 1030 return 0; 1031 } 1032 1033 /** 1034 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1035 * @phba: Pointer to HBA context object. 1036 * @ndlp: nodelist pointer for this target. 1037 * @xritag: xri used in this exchange. 1038 * @rxid: Remote Exchange ID. 1039 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1040 * 1041 * This function takes the hbalock. 1042 * The active bit is always set in the active rrq xri_bitmap even 1043 * if there is no slot avaiable for the other rrq information. 1044 * 1045 * returns 0 rrq actived for this xri 1046 * < 0 No memory or invalid ndlp. 1047 **/ 1048 int 1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1050 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1051 { 1052 unsigned long iflags; 1053 struct lpfc_node_rrq *rrq; 1054 int empty; 1055 1056 if (!ndlp) 1057 return -EINVAL; 1058 1059 if (!phba->cfg_enable_rrq) 1060 return -EINVAL; 1061 1062 spin_lock_irqsave(&phba->hbalock, iflags); 1063 if (phba->pport->load_flag & FC_UNLOADING) { 1064 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1065 goto out; 1066 } 1067 1068 /* 1069 * set the active bit even if there is no mem available. 1070 */ 1071 if (NLP_CHK_FREE_REQ(ndlp)) 1072 goto out; 1073 1074 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1075 goto out; 1076 1077 if (!ndlp->active_rrqs_xri_bitmap) 1078 goto out; 1079 1080 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1081 goto out; 1082 1083 spin_unlock_irqrestore(&phba->hbalock, iflags); 1084 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1085 if (!rrq) { 1086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1087 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1088 " DID:0x%x Send:%d\n", 1089 xritag, rxid, ndlp->nlp_DID, send_rrq); 1090 return -EINVAL; 1091 } 1092 if (phba->cfg_enable_rrq == 1) 1093 rrq->send_rrq = send_rrq; 1094 else 1095 rrq->send_rrq = 0; 1096 rrq->xritag = xritag; 1097 rrq->rrq_stop_time = jiffies + 1098 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1099 rrq->ndlp = ndlp; 1100 rrq->nlp_DID = ndlp->nlp_DID; 1101 rrq->vport = ndlp->vport; 1102 rrq->rxid = rxid; 1103 spin_lock_irqsave(&phba->hbalock, iflags); 1104 empty = list_empty(&phba->active_rrq_list); 1105 list_add_tail(&rrq->list, &phba->active_rrq_list); 1106 phba->hba_flag |= HBA_RRQ_ACTIVE; 1107 if (empty) 1108 lpfc_worker_wake_up(phba); 1109 spin_unlock_irqrestore(&phba->hbalock, iflags); 1110 return 0; 1111 out: 1112 spin_unlock_irqrestore(&phba->hbalock, iflags); 1113 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1114 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1115 " DID:0x%x Send:%d\n", 1116 xritag, rxid, ndlp->nlp_DID, send_rrq); 1117 return -EINVAL; 1118 } 1119 1120 /** 1121 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1122 * @phba: Pointer to HBA context object. 1123 * @piocb: Pointer to the iocbq. 1124 * 1125 * This function is called with the ring lock held. This function 1126 * gets a new driver sglq object from the sglq list. If the 1127 * list is not empty then it is successful, it returns pointer to the newly 1128 * allocated sglq object else it returns NULL. 1129 **/ 1130 static struct lpfc_sglq * 1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1132 { 1133 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1134 struct lpfc_sglq *sglq = NULL; 1135 struct lpfc_sglq *start_sglq = NULL; 1136 struct lpfc_scsi_buf *lpfc_cmd; 1137 struct lpfc_nodelist *ndlp; 1138 int found = 0; 1139 1140 lockdep_assert_held(&phba->hbalock); 1141 1142 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1143 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 1144 ndlp = lpfc_cmd->rdata->pnode; 1145 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1146 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1147 ndlp = piocbq->context_un.ndlp; 1148 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1149 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1150 ndlp = NULL; 1151 else 1152 ndlp = piocbq->context_un.ndlp; 1153 } else { 1154 ndlp = piocbq->context1; 1155 } 1156 1157 spin_lock(&phba->sli4_hba.sgl_list_lock); 1158 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1159 start_sglq = sglq; 1160 while (!found) { 1161 if (!sglq) 1162 break; 1163 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1164 test_bit(sglq->sli4_lxritag, 1165 ndlp->active_rrqs_xri_bitmap)) { 1166 /* This xri has an rrq outstanding for this DID. 1167 * put it back in the list and get another xri. 1168 */ 1169 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1170 sglq = NULL; 1171 list_remove_head(lpfc_els_sgl_list, sglq, 1172 struct lpfc_sglq, list); 1173 if (sglq == start_sglq) { 1174 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1175 sglq = NULL; 1176 break; 1177 } else 1178 continue; 1179 } 1180 sglq->ndlp = ndlp; 1181 found = 1; 1182 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1183 sglq->state = SGL_ALLOCATED; 1184 } 1185 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1186 return sglq; 1187 } 1188 1189 /** 1190 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1191 * @phba: Pointer to HBA context object. 1192 * @piocb: Pointer to the iocbq. 1193 * 1194 * This function is called with the sgl_list lock held. This function 1195 * gets a new driver sglq object from the sglq list. If the 1196 * list is not empty then it is successful, it returns pointer to the newly 1197 * allocated sglq object else it returns NULL. 1198 **/ 1199 struct lpfc_sglq * 1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1201 { 1202 struct list_head *lpfc_nvmet_sgl_list; 1203 struct lpfc_sglq *sglq = NULL; 1204 1205 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1206 1207 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1208 1209 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1210 if (!sglq) 1211 return NULL; 1212 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1213 sglq->state = SGL_ALLOCATED; 1214 return sglq; 1215 } 1216 1217 /** 1218 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1219 * @phba: Pointer to HBA context object. 1220 * 1221 * This function is called with no lock held. This function 1222 * allocates a new driver iocb object from the iocb pool. If the 1223 * allocation is successful, it returns pointer to the newly 1224 * allocated iocb object else it returns NULL. 1225 **/ 1226 struct lpfc_iocbq * 1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1228 { 1229 struct lpfc_iocbq * iocbq = NULL; 1230 unsigned long iflags; 1231 1232 spin_lock_irqsave(&phba->hbalock, iflags); 1233 iocbq = __lpfc_sli_get_iocbq(phba); 1234 spin_unlock_irqrestore(&phba->hbalock, iflags); 1235 return iocbq; 1236 } 1237 1238 /** 1239 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1240 * @phba: Pointer to HBA context object. 1241 * @iocbq: Pointer to driver iocb object. 1242 * 1243 * This function is called with hbalock held to release driver 1244 * iocb object to the iocb pool. The iotag in the iocb object 1245 * does not change for each use of the iocb object. This function 1246 * clears all other fields of the iocb object when it is freed. 1247 * The sqlq structure that holds the xritag and phys and virtual 1248 * mappings for the scatter gather list is retrieved from the 1249 * active array of sglq. The get of the sglq pointer also clears 1250 * the entry in the array. If the status of the IO indiactes that 1251 * this IO was aborted then the sglq entry it put on the 1252 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1253 * IO has good status or fails for any other reason then the sglq 1254 * entry is added to the free list (lpfc_els_sgl_list). 1255 **/ 1256 static void 1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1258 { 1259 struct lpfc_sglq *sglq; 1260 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1261 unsigned long iflag = 0; 1262 struct lpfc_sli_ring *pring; 1263 1264 lockdep_assert_held(&phba->hbalock); 1265 1266 if (iocbq->sli4_xritag == NO_XRI) 1267 sglq = NULL; 1268 else 1269 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1270 1271 1272 if (sglq) { 1273 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1274 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1275 iflag); 1276 sglq->state = SGL_FREED; 1277 sglq->ndlp = NULL; 1278 list_add_tail(&sglq->list, 1279 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1280 spin_unlock_irqrestore( 1281 &phba->sli4_hba.sgl_list_lock, iflag); 1282 goto out; 1283 } 1284 1285 pring = phba->sli4_hba.els_wq->pring; 1286 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1287 (sglq->state != SGL_XRI_ABORTED)) { 1288 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1289 iflag); 1290 list_add(&sglq->list, 1291 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1292 spin_unlock_irqrestore( 1293 &phba->sli4_hba.sgl_list_lock, iflag); 1294 } else { 1295 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1296 iflag); 1297 sglq->state = SGL_FREED; 1298 sglq->ndlp = NULL; 1299 list_add_tail(&sglq->list, 1300 &phba->sli4_hba.lpfc_els_sgl_list); 1301 spin_unlock_irqrestore( 1302 &phba->sli4_hba.sgl_list_lock, iflag); 1303 1304 /* Check if TXQ queue needs to be serviced */ 1305 if (!list_empty(&pring->txq)) 1306 lpfc_worker_wake_up(phba); 1307 } 1308 } 1309 1310 out: 1311 /* 1312 * Clean all volatile data fields, preserve iotag and node struct. 1313 */ 1314 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1315 iocbq->sli4_lxritag = NO_XRI; 1316 iocbq->sli4_xritag = NO_XRI; 1317 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1318 LPFC_IO_NVME_LS); 1319 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1320 } 1321 1322 1323 /** 1324 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1325 * @phba: Pointer to HBA context object. 1326 * @iocbq: Pointer to driver iocb object. 1327 * 1328 * This function is called with hbalock held to release driver 1329 * iocb object to the iocb pool. The iotag in the iocb object 1330 * does not change for each use of the iocb object. This function 1331 * clears all other fields of the iocb object when it is freed. 1332 **/ 1333 static void 1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1335 { 1336 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1337 1338 lockdep_assert_held(&phba->hbalock); 1339 1340 /* 1341 * Clean all volatile data fields, preserve iotag and node struct. 1342 */ 1343 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1344 iocbq->sli4_xritag = NO_XRI; 1345 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1346 } 1347 1348 /** 1349 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1350 * @phba: Pointer to HBA context object. 1351 * @iocbq: Pointer to driver iocb object. 1352 * 1353 * This function is called with hbalock held to release driver 1354 * iocb object to the iocb pool. The iotag in the iocb object 1355 * does not change for each use of the iocb object. This function 1356 * clears all other fields of the iocb object when it is freed. 1357 **/ 1358 static void 1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1360 { 1361 lockdep_assert_held(&phba->hbalock); 1362 1363 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1364 phba->iocb_cnt--; 1365 } 1366 1367 /** 1368 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1369 * @phba: Pointer to HBA context object. 1370 * @iocbq: Pointer to driver iocb object. 1371 * 1372 * This function is called with no lock held to release the iocb to 1373 * iocb pool. 1374 **/ 1375 void 1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1377 { 1378 unsigned long iflags; 1379 1380 /* 1381 * Clean all volatile data fields, preserve iotag and node struct. 1382 */ 1383 spin_lock_irqsave(&phba->hbalock, iflags); 1384 __lpfc_sli_release_iocbq(phba, iocbq); 1385 spin_unlock_irqrestore(&phba->hbalock, iflags); 1386 } 1387 1388 /** 1389 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1390 * @phba: Pointer to HBA context object. 1391 * @iocblist: List of IOCBs. 1392 * @ulpstatus: ULP status in IOCB command field. 1393 * @ulpWord4: ULP word-4 in IOCB command field. 1394 * 1395 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1396 * on the list by invoking the complete callback function associated with the 1397 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1398 * fields. 1399 **/ 1400 void 1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1402 uint32_t ulpstatus, uint32_t ulpWord4) 1403 { 1404 struct lpfc_iocbq *piocb; 1405 1406 while (!list_empty(iocblist)) { 1407 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1408 if (!piocb->iocb_cmpl) 1409 lpfc_sli_release_iocbq(phba, piocb); 1410 else { 1411 piocb->iocb.ulpStatus = ulpstatus; 1412 piocb->iocb.un.ulpWord[4] = ulpWord4; 1413 (piocb->iocb_cmpl) (phba, piocb, piocb); 1414 } 1415 } 1416 return; 1417 } 1418 1419 /** 1420 * lpfc_sli_iocb_cmd_type - Get the iocb type 1421 * @iocb_cmnd: iocb command code. 1422 * 1423 * This function is called by ring event handler function to get the iocb type. 1424 * This function translates the iocb command to an iocb command type used to 1425 * decide the final disposition of each completed IOCB. 1426 * The function returns 1427 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1428 * LPFC_SOL_IOCB if it is a solicited iocb completion 1429 * LPFC_ABORT_IOCB if it is an abort iocb 1430 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1431 * 1432 * The caller is not required to hold any lock. 1433 **/ 1434 static lpfc_iocb_type 1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1436 { 1437 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1438 1439 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1440 return 0; 1441 1442 switch (iocb_cmnd) { 1443 case CMD_XMIT_SEQUENCE_CR: 1444 case CMD_XMIT_SEQUENCE_CX: 1445 case CMD_XMIT_BCAST_CN: 1446 case CMD_XMIT_BCAST_CX: 1447 case CMD_ELS_REQUEST_CR: 1448 case CMD_ELS_REQUEST_CX: 1449 case CMD_CREATE_XRI_CR: 1450 case CMD_CREATE_XRI_CX: 1451 case CMD_GET_RPI_CN: 1452 case CMD_XMIT_ELS_RSP_CX: 1453 case CMD_GET_RPI_CR: 1454 case CMD_FCP_IWRITE_CR: 1455 case CMD_FCP_IWRITE_CX: 1456 case CMD_FCP_IREAD_CR: 1457 case CMD_FCP_IREAD_CX: 1458 case CMD_FCP_ICMND_CR: 1459 case CMD_FCP_ICMND_CX: 1460 case CMD_FCP_TSEND_CX: 1461 case CMD_FCP_TRSP_CX: 1462 case CMD_FCP_TRECEIVE_CX: 1463 case CMD_FCP_AUTO_TRSP_CX: 1464 case CMD_ADAPTER_MSG: 1465 case CMD_ADAPTER_DUMP: 1466 case CMD_XMIT_SEQUENCE64_CR: 1467 case CMD_XMIT_SEQUENCE64_CX: 1468 case CMD_XMIT_BCAST64_CN: 1469 case CMD_XMIT_BCAST64_CX: 1470 case CMD_ELS_REQUEST64_CR: 1471 case CMD_ELS_REQUEST64_CX: 1472 case CMD_FCP_IWRITE64_CR: 1473 case CMD_FCP_IWRITE64_CX: 1474 case CMD_FCP_IREAD64_CR: 1475 case CMD_FCP_IREAD64_CX: 1476 case CMD_FCP_ICMND64_CR: 1477 case CMD_FCP_ICMND64_CX: 1478 case CMD_FCP_TSEND64_CX: 1479 case CMD_FCP_TRSP64_CX: 1480 case CMD_FCP_TRECEIVE64_CX: 1481 case CMD_GEN_REQUEST64_CR: 1482 case CMD_GEN_REQUEST64_CX: 1483 case CMD_XMIT_ELS_RSP64_CX: 1484 case DSSCMD_IWRITE64_CR: 1485 case DSSCMD_IWRITE64_CX: 1486 case DSSCMD_IREAD64_CR: 1487 case DSSCMD_IREAD64_CX: 1488 type = LPFC_SOL_IOCB; 1489 break; 1490 case CMD_ABORT_XRI_CN: 1491 case CMD_ABORT_XRI_CX: 1492 case CMD_CLOSE_XRI_CN: 1493 case CMD_CLOSE_XRI_CX: 1494 case CMD_XRI_ABORTED_CX: 1495 case CMD_ABORT_MXRI64_CN: 1496 case CMD_XMIT_BLS_RSP64_CX: 1497 type = LPFC_ABORT_IOCB; 1498 break; 1499 case CMD_RCV_SEQUENCE_CX: 1500 case CMD_RCV_ELS_REQ_CX: 1501 case CMD_RCV_SEQUENCE64_CX: 1502 case CMD_RCV_ELS_REQ64_CX: 1503 case CMD_ASYNC_STATUS: 1504 case CMD_IOCB_RCV_SEQ64_CX: 1505 case CMD_IOCB_RCV_ELS64_CX: 1506 case CMD_IOCB_RCV_CONT64_CX: 1507 case CMD_IOCB_RET_XRI64_CX: 1508 type = LPFC_UNSOL_IOCB; 1509 break; 1510 case CMD_IOCB_XMIT_MSEQ64_CR: 1511 case CMD_IOCB_XMIT_MSEQ64_CX: 1512 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1513 case CMD_IOCB_RCV_ELS_LIST64_CX: 1514 case CMD_IOCB_CLOSE_EXTENDED_CN: 1515 case CMD_IOCB_ABORT_EXTENDED_CN: 1516 case CMD_IOCB_RET_HBQE64_CN: 1517 case CMD_IOCB_FCP_IBIDIR64_CR: 1518 case CMD_IOCB_FCP_IBIDIR64_CX: 1519 case CMD_IOCB_FCP_ITASKMGT64_CX: 1520 case CMD_IOCB_LOGENTRY_CN: 1521 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1522 printk("%s - Unhandled SLI-3 Command x%x\n", 1523 __func__, iocb_cmnd); 1524 type = LPFC_UNKNOWN_IOCB; 1525 break; 1526 default: 1527 type = LPFC_UNKNOWN_IOCB; 1528 break; 1529 } 1530 1531 return type; 1532 } 1533 1534 /** 1535 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1536 * @phba: Pointer to HBA context object. 1537 * 1538 * This function is called from SLI initialization code 1539 * to configure every ring of the HBA's SLI interface. The 1540 * caller is not required to hold any lock. This function issues 1541 * a config_ring mailbox command for each ring. 1542 * This function returns zero if successful else returns a negative 1543 * error code. 1544 **/ 1545 static int 1546 lpfc_sli_ring_map(struct lpfc_hba *phba) 1547 { 1548 struct lpfc_sli *psli = &phba->sli; 1549 LPFC_MBOXQ_t *pmb; 1550 MAILBOX_t *pmbox; 1551 int i, rc, ret = 0; 1552 1553 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1554 if (!pmb) 1555 return -ENOMEM; 1556 pmbox = &pmb->u.mb; 1557 phba->link_state = LPFC_INIT_MBX_CMDS; 1558 for (i = 0; i < psli->num_rings; i++) { 1559 lpfc_config_ring(phba, i, pmb); 1560 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1561 if (rc != MBX_SUCCESS) { 1562 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1563 "0446 Adapter failed to init (%d), " 1564 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1565 "ring %d\n", 1566 rc, pmbox->mbxCommand, 1567 pmbox->mbxStatus, i); 1568 phba->link_state = LPFC_HBA_ERROR; 1569 ret = -ENXIO; 1570 break; 1571 } 1572 } 1573 mempool_free(pmb, phba->mbox_mem_pool); 1574 return ret; 1575 } 1576 1577 /** 1578 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1579 * @phba: Pointer to HBA context object. 1580 * @pring: Pointer to driver SLI ring object. 1581 * @piocb: Pointer to the driver iocb object. 1582 * 1583 * This function is called with hbalock held. The function adds the 1584 * new iocb to txcmplq of the given ring. This function always returns 1585 * 0. If this function is called for ELS ring, this function checks if 1586 * there is a vport associated with the ELS command. This function also 1587 * starts els_tmofunc timer if this is an ELS command. 1588 **/ 1589 static int 1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1591 struct lpfc_iocbq *piocb) 1592 { 1593 lockdep_assert_held(&phba->hbalock); 1594 1595 BUG_ON(!piocb); 1596 1597 list_add_tail(&piocb->list, &pring->txcmplq); 1598 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1599 1600 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1601 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1602 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1603 BUG_ON(!piocb->vport); 1604 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1605 mod_timer(&piocb->vport->els_tmofunc, 1606 jiffies + 1607 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1608 } 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * lpfc_sli_ringtx_get - Get first element of the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to get next 1619 * iocb in txq of the given ring. If there is any iocb in 1620 * the txq, the function returns first iocb in the list after 1621 * removing the iocb from the list, else it returns NULL. 1622 **/ 1623 struct lpfc_iocbq * 1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1625 { 1626 struct lpfc_iocbq *cmd_iocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1631 return cmd_iocb; 1632 } 1633 1634 /** 1635 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1636 * @phba: Pointer to HBA context object. 1637 * @pring: Pointer to driver SLI ring object. 1638 * 1639 * This function is called with hbalock held and the caller must post the 1640 * iocb without releasing the lock. If the caller releases the lock, 1641 * iocb slot returned by the function is not guaranteed to be available. 1642 * The function returns pointer to the next available iocb slot if there 1643 * is available slot in the ring, else it returns NULL. 1644 * If the get index of the ring is ahead of the put index, the function 1645 * will post an error attention event to the worker thread to take the 1646 * HBA to offline state. 1647 **/ 1648 static IOCB_t * 1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1650 { 1651 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1652 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1653 1654 lockdep_assert_held(&phba->hbalock); 1655 1656 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1657 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1658 pring->sli.sli3.next_cmdidx = 0; 1659 1660 if (unlikely(pring->sli.sli3.local_getidx == 1661 pring->sli.sli3.next_cmdidx)) { 1662 1663 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1664 1665 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1666 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1667 "0315 Ring %d issue: portCmdGet %d " 1668 "is bigger than cmd ring %d\n", 1669 pring->ringno, 1670 pring->sli.sli3.local_getidx, 1671 max_cmd_idx); 1672 1673 phba->link_state = LPFC_HBA_ERROR; 1674 /* 1675 * All error attention handlers are posted to 1676 * worker thread 1677 */ 1678 phba->work_ha |= HA_ERATT; 1679 phba->work_hs = HS_FFER3; 1680 1681 lpfc_worker_wake_up(phba); 1682 1683 return NULL; 1684 } 1685 1686 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1687 return NULL; 1688 } 1689 1690 return lpfc_cmd_iocb(phba, pring); 1691 } 1692 1693 /** 1694 * lpfc_sli_next_iotag - Get an iotag for the iocb 1695 * @phba: Pointer to HBA context object. 1696 * @iocbq: Pointer to driver iocb object. 1697 * 1698 * This function gets an iotag for the iocb. If there is no unused iotag and 1699 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1700 * array and assigns a new iotag. 1701 * The function returns the allocated iotag if successful, else returns zero. 1702 * Zero is not a valid iotag. 1703 * The caller is not required to hold any lock. 1704 **/ 1705 uint16_t 1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1707 { 1708 struct lpfc_iocbq **new_arr; 1709 struct lpfc_iocbq **old_arr; 1710 size_t new_len; 1711 struct lpfc_sli *psli = &phba->sli; 1712 uint16_t iotag; 1713 1714 spin_lock_irq(&phba->hbalock); 1715 iotag = psli->last_iotag; 1716 if(++iotag < psli->iocbq_lookup_len) { 1717 psli->last_iotag = iotag; 1718 psli->iocbq_lookup[iotag] = iocbq; 1719 spin_unlock_irq(&phba->hbalock); 1720 iocbq->iotag = iotag; 1721 return iotag; 1722 } else if (psli->iocbq_lookup_len < (0xffff 1723 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1724 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1725 spin_unlock_irq(&phba->hbalock); 1726 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1727 GFP_KERNEL); 1728 if (new_arr) { 1729 spin_lock_irq(&phba->hbalock); 1730 old_arr = psli->iocbq_lookup; 1731 if (new_len <= psli->iocbq_lookup_len) { 1732 /* highly unprobable case */ 1733 kfree(new_arr); 1734 iotag = psli->last_iotag; 1735 if(++iotag < psli->iocbq_lookup_len) { 1736 psli->last_iotag = iotag; 1737 psli->iocbq_lookup[iotag] = iocbq; 1738 spin_unlock_irq(&phba->hbalock); 1739 iocbq->iotag = iotag; 1740 return iotag; 1741 } 1742 spin_unlock_irq(&phba->hbalock); 1743 return 0; 1744 } 1745 if (psli->iocbq_lookup) 1746 memcpy(new_arr, old_arr, 1747 ((psli->last_iotag + 1) * 1748 sizeof (struct lpfc_iocbq *))); 1749 psli->iocbq_lookup = new_arr; 1750 psli->iocbq_lookup_len = new_len; 1751 psli->last_iotag = iotag; 1752 psli->iocbq_lookup[iotag] = iocbq; 1753 spin_unlock_irq(&phba->hbalock); 1754 iocbq->iotag = iotag; 1755 kfree(old_arr); 1756 return iotag; 1757 } 1758 } else 1759 spin_unlock_irq(&phba->hbalock); 1760 1761 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1762 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1763 psli->last_iotag); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1770 * @phba: Pointer to HBA context object. 1771 * @pring: Pointer to driver SLI ring object. 1772 * @iocb: Pointer to iocb slot in the ring. 1773 * @nextiocb: Pointer to driver iocb object which need to be 1774 * posted to firmware. 1775 * 1776 * This function is called with hbalock held to post a new iocb to 1777 * the firmware. This function copies the new iocb to ring iocb slot and 1778 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1779 * a completion call back for this iocb else the function will free the 1780 * iocb object. 1781 **/ 1782 static void 1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1784 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1785 { 1786 lockdep_assert_held(&phba->hbalock); 1787 /* 1788 * Set up an iotag 1789 */ 1790 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1791 1792 1793 if (pring->ringno == LPFC_ELS_RING) { 1794 lpfc_debugfs_slow_ring_trc(phba, 1795 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1796 *(((uint32_t *) &nextiocb->iocb) + 4), 1797 *(((uint32_t *) &nextiocb->iocb) + 6), 1798 *(((uint32_t *) &nextiocb->iocb) + 7)); 1799 } 1800 1801 /* 1802 * Issue iocb command to adapter 1803 */ 1804 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1805 wmb(); 1806 pring->stats.iocb_cmd++; 1807 1808 /* 1809 * If there is no completion routine to call, we can release the 1810 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1811 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1812 */ 1813 if (nextiocb->iocb_cmpl) 1814 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1815 else 1816 __lpfc_sli_release_iocbq(phba, nextiocb); 1817 1818 /* 1819 * Let the HBA know what IOCB slot will be the next one the 1820 * driver will put a command into. 1821 */ 1822 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1823 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1824 } 1825 1826 /** 1827 * lpfc_sli_update_full_ring - Update the chip attention register 1828 * @phba: Pointer to HBA context object. 1829 * @pring: Pointer to driver SLI ring object. 1830 * 1831 * The caller is not required to hold any lock for calling this function. 1832 * This function updates the chip attention bits for the ring to inform firmware 1833 * that there are pending work to be done for this ring and requests an 1834 * interrupt when there is space available in the ring. This function is 1835 * called when the driver is unable to post more iocbs to the ring due 1836 * to unavailability of space in the ring. 1837 **/ 1838 static void 1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1840 { 1841 int ringno = pring->ringno; 1842 1843 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1844 1845 wmb(); 1846 1847 /* 1848 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1849 * The HBA will tell us when an IOCB entry is available. 1850 */ 1851 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1852 readl(phba->CAregaddr); /* flush */ 1853 1854 pring->stats.iocb_cmd_full++; 1855 } 1856 1857 /** 1858 * lpfc_sli_update_ring - Update chip attention register 1859 * @phba: Pointer to HBA context object. 1860 * @pring: Pointer to driver SLI ring object. 1861 * 1862 * This function updates the chip attention register bit for the 1863 * given ring to inform HBA that there is more work to be done 1864 * in this ring. The caller is not required to hold any lock. 1865 **/ 1866 static void 1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1868 { 1869 int ringno = pring->ringno; 1870 1871 /* 1872 * Tell the HBA that there is work to do in this ring. 1873 */ 1874 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1875 wmb(); 1876 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1877 readl(phba->CAregaddr); /* flush */ 1878 } 1879 } 1880 1881 /** 1882 * lpfc_sli_resume_iocb - Process iocbs in the txq 1883 * @phba: Pointer to HBA context object. 1884 * @pring: Pointer to driver SLI ring object. 1885 * 1886 * This function is called with hbalock held to post pending iocbs 1887 * in the txq to the firmware. This function is called when driver 1888 * detects space available in the ring. 1889 **/ 1890 static void 1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1892 { 1893 IOCB_t *iocb; 1894 struct lpfc_iocbq *nextiocb; 1895 1896 lockdep_assert_held(&phba->hbalock); 1897 1898 /* 1899 * Check to see if: 1900 * (a) there is anything on the txq to send 1901 * (b) link is up 1902 * (c) link attention events can be processed (fcp ring only) 1903 * (d) IOCB processing is not blocked by the outstanding mbox command. 1904 */ 1905 1906 if (lpfc_is_link_up(phba) && 1907 (!list_empty(&pring->txq)) && 1908 (pring->ringno != LPFC_FCP_RING || 1909 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1910 1911 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1912 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1913 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1914 1915 if (iocb) 1916 lpfc_sli_update_ring(phba, pring); 1917 else 1918 lpfc_sli_update_full_ring(phba, pring); 1919 } 1920 1921 return; 1922 } 1923 1924 /** 1925 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1926 * @phba: Pointer to HBA context object. 1927 * @hbqno: HBQ number. 1928 * 1929 * This function is called with hbalock held to get the next 1930 * available slot for the given HBQ. If there is free slot 1931 * available for the HBQ it will return pointer to the next available 1932 * HBQ entry else it will return NULL. 1933 **/ 1934 static struct lpfc_hbq_entry * 1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1936 { 1937 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1938 1939 lockdep_assert_held(&phba->hbalock); 1940 1941 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1942 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1943 hbqp->next_hbqPutIdx = 0; 1944 1945 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1946 uint32_t raw_index = phba->hbq_get[hbqno]; 1947 uint32_t getidx = le32_to_cpu(raw_index); 1948 1949 hbqp->local_hbqGetIdx = getidx; 1950 1951 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1952 lpfc_printf_log(phba, KERN_ERR, 1953 LOG_SLI | LOG_VPORT, 1954 "1802 HBQ %d: local_hbqGetIdx " 1955 "%u is > than hbqp->entry_count %u\n", 1956 hbqno, hbqp->local_hbqGetIdx, 1957 hbqp->entry_count); 1958 1959 phba->link_state = LPFC_HBA_ERROR; 1960 return NULL; 1961 } 1962 1963 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1964 return NULL; 1965 } 1966 1967 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1968 hbqp->hbqPutIdx; 1969 } 1970 1971 /** 1972 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1973 * @phba: Pointer to HBA context object. 1974 * 1975 * This function is called with no lock held to free all the 1976 * hbq buffers while uninitializing the SLI interface. It also 1977 * frees the HBQ buffers returned by the firmware but not yet 1978 * processed by the upper layers. 1979 **/ 1980 void 1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1982 { 1983 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1984 struct hbq_dmabuf *hbq_buf; 1985 unsigned long flags; 1986 int i, hbq_count; 1987 1988 hbq_count = lpfc_sli_hbq_count(); 1989 /* Return all memory used by all HBQs */ 1990 spin_lock_irqsave(&phba->hbalock, flags); 1991 for (i = 0; i < hbq_count; ++i) { 1992 list_for_each_entry_safe(dmabuf, next_dmabuf, 1993 &phba->hbqs[i].hbq_buffer_list, list) { 1994 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1995 list_del(&hbq_buf->dbuf.list); 1996 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1997 } 1998 phba->hbqs[i].buffer_count = 0; 1999 } 2000 2001 /* Mark the HBQs not in use */ 2002 phba->hbq_in_use = 0; 2003 spin_unlock_irqrestore(&phba->hbalock, flags); 2004 } 2005 2006 /** 2007 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2008 * @phba: Pointer to HBA context object. 2009 * @hbqno: HBQ number. 2010 * @hbq_buf: Pointer to HBQ buffer. 2011 * 2012 * This function is called with the hbalock held to post a 2013 * hbq buffer to the firmware. If the function finds an empty 2014 * slot in the HBQ, it will post the buffer. The function will return 2015 * pointer to the hbq entry if it successfully post the buffer 2016 * else it will return NULL. 2017 **/ 2018 static int 2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2020 struct hbq_dmabuf *hbq_buf) 2021 { 2022 lockdep_assert_held(&phba->hbalock); 2023 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2024 } 2025 2026 /** 2027 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2028 * @phba: Pointer to HBA context object. 2029 * @hbqno: HBQ number. 2030 * @hbq_buf: Pointer to HBQ buffer. 2031 * 2032 * This function is called with the hbalock held to post a hbq buffer to the 2033 * firmware. If the function finds an empty slot in the HBQ, it will post the 2034 * buffer and place it on the hbq_buffer_list. The function will return zero if 2035 * it successfully post the buffer else it will return an error. 2036 **/ 2037 static int 2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2039 struct hbq_dmabuf *hbq_buf) 2040 { 2041 struct lpfc_hbq_entry *hbqe; 2042 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2043 2044 lockdep_assert_held(&phba->hbalock); 2045 /* Get next HBQ entry slot to use */ 2046 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2047 if (hbqe) { 2048 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2049 2050 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2051 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2052 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2053 hbqe->bde.tus.f.bdeFlags = 0; 2054 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2055 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2056 /* Sync SLIM */ 2057 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2058 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2059 /* flush */ 2060 readl(phba->hbq_put + hbqno); 2061 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2062 return 0; 2063 } else 2064 return -ENOMEM; 2065 } 2066 2067 /** 2068 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2069 * @phba: Pointer to HBA context object. 2070 * @hbqno: HBQ number. 2071 * @hbq_buf: Pointer to HBQ buffer. 2072 * 2073 * This function is called with the hbalock held to post an RQE to the SLI4 2074 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2075 * the hbq_buffer_list and return zero, otherwise it will return an error. 2076 **/ 2077 static int 2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2079 struct hbq_dmabuf *hbq_buf) 2080 { 2081 int rc; 2082 struct lpfc_rqe hrqe; 2083 struct lpfc_rqe drqe; 2084 struct lpfc_queue *hrq; 2085 struct lpfc_queue *drq; 2086 2087 if (hbqno != LPFC_ELS_HBQ) 2088 return 1; 2089 hrq = phba->sli4_hba.hdr_rq; 2090 drq = phba->sli4_hba.dat_rq; 2091 2092 lockdep_assert_held(&phba->hbalock); 2093 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2094 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2095 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2096 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2097 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2098 if (rc < 0) 2099 return rc; 2100 hbq_buf->tag = (rc | (hbqno << 16)); 2101 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2102 return 0; 2103 } 2104 2105 /* HBQ for ELS and CT traffic. */ 2106 static struct lpfc_hbq_init lpfc_els_hbq = { 2107 .rn = 1, 2108 .entry_count = 256, 2109 .mask_count = 0, 2110 .profile = 0, 2111 .ring_mask = (1 << LPFC_ELS_RING), 2112 .buffer_count = 0, 2113 .init_count = 40, 2114 .add_count = 40, 2115 }; 2116 2117 /* Array of HBQs */ 2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2119 &lpfc_els_hbq, 2120 }; 2121 2122 /** 2123 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2124 * @phba: Pointer to HBA context object. 2125 * @hbqno: HBQ number. 2126 * @count: Number of HBQ buffers to be posted. 2127 * 2128 * This function is called with no lock held to post more hbq buffers to the 2129 * given HBQ. The function returns the number of HBQ buffers successfully 2130 * posted. 2131 **/ 2132 static int 2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2134 { 2135 uint32_t i, posted = 0; 2136 unsigned long flags; 2137 struct hbq_dmabuf *hbq_buffer; 2138 LIST_HEAD(hbq_buf_list); 2139 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2140 return 0; 2141 2142 if ((phba->hbqs[hbqno].buffer_count + count) > 2143 lpfc_hbq_defs[hbqno]->entry_count) 2144 count = lpfc_hbq_defs[hbqno]->entry_count - 2145 phba->hbqs[hbqno].buffer_count; 2146 if (!count) 2147 return 0; 2148 /* Allocate HBQ entries */ 2149 for (i = 0; i < count; i++) { 2150 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2151 if (!hbq_buffer) 2152 break; 2153 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2154 } 2155 /* Check whether HBQ is still in use */ 2156 spin_lock_irqsave(&phba->hbalock, flags); 2157 if (!phba->hbq_in_use) 2158 goto err; 2159 while (!list_empty(&hbq_buf_list)) { 2160 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2161 dbuf.list); 2162 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2163 (hbqno << 16)); 2164 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2165 phba->hbqs[hbqno].buffer_count++; 2166 posted++; 2167 } else 2168 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2169 } 2170 spin_unlock_irqrestore(&phba->hbalock, flags); 2171 return posted; 2172 err: 2173 spin_unlock_irqrestore(&phba->hbalock, flags); 2174 while (!list_empty(&hbq_buf_list)) { 2175 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2176 dbuf.list); 2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2178 } 2179 return 0; 2180 } 2181 2182 /** 2183 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2184 * @phba: Pointer to HBA context object. 2185 * @qno: HBQ number. 2186 * 2187 * This function posts more buffers to the HBQ. This function 2188 * is called with no lock held. The function returns the number of HBQ entries 2189 * successfully allocated. 2190 **/ 2191 int 2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2193 { 2194 if (phba->sli_rev == LPFC_SLI_REV4) 2195 return 0; 2196 else 2197 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2198 lpfc_hbq_defs[qno]->add_count); 2199 } 2200 2201 /** 2202 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2203 * @phba: Pointer to HBA context object. 2204 * @qno: HBQ queue number. 2205 * 2206 * This function is called from SLI initialization code path with 2207 * no lock held to post initial HBQ buffers to firmware. The 2208 * function returns the number of HBQ entries successfully allocated. 2209 **/ 2210 static int 2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2212 { 2213 if (phba->sli_rev == LPFC_SLI_REV4) 2214 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2215 lpfc_hbq_defs[qno]->entry_count); 2216 else 2217 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2218 lpfc_hbq_defs[qno]->init_count); 2219 } 2220 2221 /** 2222 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2223 * @phba: Pointer to HBA context object. 2224 * @hbqno: HBQ number. 2225 * 2226 * This function removes the first hbq buffer on an hbq list and returns a 2227 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2228 **/ 2229 static struct hbq_dmabuf * 2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2231 { 2232 struct lpfc_dmabuf *d_buf; 2233 2234 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2235 if (!d_buf) 2236 return NULL; 2237 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2238 } 2239 2240 /** 2241 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2242 * @phba: Pointer to HBA context object. 2243 * @hbqno: HBQ number. 2244 * 2245 * This function removes the first RQ buffer on an RQ buffer list and returns a 2246 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2247 **/ 2248 static struct rqb_dmabuf * 2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2250 { 2251 struct lpfc_dmabuf *h_buf; 2252 struct lpfc_rqb *rqbp; 2253 2254 rqbp = hrq->rqbp; 2255 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2256 struct lpfc_dmabuf, list); 2257 if (!h_buf) 2258 return NULL; 2259 rqbp->buffer_count--; 2260 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2261 } 2262 2263 /** 2264 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2265 * @phba: Pointer to HBA context object. 2266 * @tag: Tag of the hbq buffer. 2267 * 2268 * This function searches for the hbq buffer associated with the given tag in 2269 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2270 * otherwise it returns NULL. 2271 **/ 2272 static struct hbq_dmabuf * 2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2274 { 2275 struct lpfc_dmabuf *d_buf; 2276 struct hbq_dmabuf *hbq_buf; 2277 uint32_t hbqno; 2278 2279 hbqno = tag >> 16; 2280 if (hbqno >= LPFC_MAX_HBQS) 2281 return NULL; 2282 2283 spin_lock_irq(&phba->hbalock); 2284 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2285 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2286 if (hbq_buf->tag == tag) { 2287 spin_unlock_irq(&phba->hbalock); 2288 return hbq_buf; 2289 } 2290 } 2291 spin_unlock_irq(&phba->hbalock); 2292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2293 "1803 Bad hbq tag. Data: x%x x%x\n", 2294 tag, phba->hbqs[tag >> 16].buffer_count); 2295 return NULL; 2296 } 2297 2298 /** 2299 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2300 * @phba: Pointer to HBA context object. 2301 * @hbq_buffer: Pointer to HBQ buffer. 2302 * 2303 * This function is called with hbalock. This function gives back 2304 * the hbq buffer to firmware. If the HBQ does not have space to 2305 * post the buffer, it will free the buffer. 2306 **/ 2307 void 2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2309 { 2310 uint32_t hbqno; 2311 2312 if (hbq_buffer) { 2313 hbqno = hbq_buffer->tag >> 16; 2314 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2315 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2316 } 2317 } 2318 2319 /** 2320 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2321 * @mbxCommand: mailbox command code. 2322 * 2323 * This function is called by the mailbox event handler function to verify 2324 * that the completed mailbox command is a legitimate mailbox command. If the 2325 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2326 * and the mailbox event handler will take the HBA offline. 2327 **/ 2328 static int 2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2330 { 2331 uint8_t ret; 2332 2333 switch (mbxCommand) { 2334 case MBX_LOAD_SM: 2335 case MBX_READ_NV: 2336 case MBX_WRITE_NV: 2337 case MBX_WRITE_VPARMS: 2338 case MBX_RUN_BIU_DIAG: 2339 case MBX_INIT_LINK: 2340 case MBX_DOWN_LINK: 2341 case MBX_CONFIG_LINK: 2342 case MBX_CONFIG_RING: 2343 case MBX_RESET_RING: 2344 case MBX_READ_CONFIG: 2345 case MBX_READ_RCONFIG: 2346 case MBX_READ_SPARM: 2347 case MBX_READ_STATUS: 2348 case MBX_READ_RPI: 2349 case MBX_READ_XRI: 2350 case MBX_READ_REV: 2351 case MBX_READ_LNK_STAT: 2352 case MBX_REG_LOGIN: 2353 case MBX_UNREG_LOGIN: 2354 case MBX_CLEAR_LA: 2355 case MBX_DUMP_MEMORY: 2356 case MBX_DUMP_CONTEXT: 2357 case MBX_RUN_DIAGS: 2358 case MBX_RESTART: 2359 case MBX_UPDATE_CFG: 2360 case MBX_DOWN_LOAD: 2361 case MBX_DEL_LD_ENTRY: 2362 case MBX_RUN_PROGRAM: 2363 case MBX_SET_MASK: 2364 case MBX_SET_VARIABLE: 2365 case MBX_UNREG_D_ID: 2366 case MBX_KILL_BOARD: 2367 case MBX_CONFIG_FARP: 2368 case MBX_BEACON: 2369 case MBX_LOAD_AREA: 2370 case MBX_RUN_BIU_DIAG64: 2371 case MBX_CONFIG_PORT: 2372 case MBX_READ_SPARM64: 2373 case MBX_READ_RPI64: 2374 case MBX_REG_LOGIN64: 2375 case MBX_READ_TOPOLOGY: 2376 case MBX_WRITE_WWN: 2377 case MBX_SET_DEBUG: 2378 case MBX_LOAD_EXP_ROM: 2379 case MBX_ASYNCEVT_ENABLE: 2380 case MBX_REG_VPI: 2381 case MBX_UNREG_VPI: 2382 case MBX_HEARTBEAT: 2383 case MBX_PORT_CAPABILITIES: 2384 case MBX_PORT_IOV_CONTROL: 2385 case MBX_SLI4_CONFIG: 2386 case MBX_SLI4_REQ_FTRS: 2387 case MBX_REG_FCFI: 2388 case MBX_UNREG_FCFI: 2389 case MBX_REG_VFI: 2390 case MBX_UNREG_VFI: 2391 case MBX_INIT_VPI: 2392 case MBX_INIT_VFI: 2393 case MBX_RESUME_RPI: 2394 case MBX_READ_EVENT_LOG_STATUS: 2395 case MBX_READ_EVENT_LOG: 2396 case MBX_SECURITY_MGMT: 2397 case MBX_AUTH_PORT: 2398 case MBX_ACCESS_VDATA: 2399 ret = mbxCommand; 2400 break; 2401 default: 2402 ret = MBX_SHUTDOWN; 2403 break; 2404 } 2405 return ret; 2406 } 2407 2408 /** 2409 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2410 * @phba: Pointer to HBA context object. 2411 * @pmboxq: Pointer to mailbox command. 2412 * 2413 * This is completion handler function for mailbox commands issued from 2414 * lpfc_sli_issue_mbox_wait function. This function is called by the 2415 * mailbox event handler function with no lock held. This function 2416 * will wake up thread waiting on the wait queue pointed by context1 2417 * of the mailbox. 2418 **/ 2419 void 2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2421 { 2422 unsigned long drvr_flag; 2423 struct completion *pmbox_done; 2424 2425 /* 2426 * If pmbox_done is empty, the driver thread gave up waiting and 2427 * continued running. 2428 */ 2429 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2430 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2431 pmbox_done = (struct completion *)pmboxq->context3; 2432 if (pmbox_done) 2433 complete(pmbox_done); 2434 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2435 return; 2436 } 2437 2438 2439 /** 2440 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2441 * @phba: Pointer to HBA context object. 2442 * @pmb: Pointer to mailbox object. 2443 * 2444 * This function is the default mailbox completion handler. It 2445 * frees the memory resources associated with the completed mailbox 2446 * command. If the completed command is a REG_LOGIN mailbox command, 2447 * this function will issue a UREG_LOGIN to re-claim the RPI. 2448 **/ 2449 void 2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2451 { 2452 struct lpfc_vport *vport = pmb->vport; 2453 struct lpfc_dmabuf *mp; 2454 struct lpfc_nodelist *ndlp; 2455 struct Scsi_Host *shost; 2456 uint16_t rpi, vpi; 2457 int rc; 2458 2459 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2460 2461 if (mp) { 2462 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2463 kfree(mp); 2464 } 2465 2466 /* 2467 * If a REG_LOGIN succeeded after node is destroyed or node 2468 * is in re-discovery driver need to cleanup the RPI. 2469 */ 2470 if (!(phba->pport->load_flag & FC_UNLOADING) && 2471 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2472 !pmb->u.mb.mbxStatus) { 2473 rpi = pmb->u.mb.un.varWords[0]; 2474 vpi = pmb->u.mb.un.varRegLogin.vpi; 2475 lpfc_unreg_login(phba, vpi, rpi, pmb); 2476 pmb->vport = vport; 2477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2478 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2479 if (rc != MBX_NOT_FINISHED) 2480 return; 2481 } 2482 2483 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2484 !(phba->pport->load_flag & FC_UNLOADING) && 2485 !pmb->u.mb.mbxStatus) { 2486 shost = lpfc_shost_from_vport(vport); 2487 spin_lock_irq(shost->host_lock); 2488 vport->vpi_state |= LPFC_VPI_REGISTERED; 2489 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2490 spin_unlock_irq(shost->host_lock); 2491 } 2492 2493 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2494 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2495 lpfc_nlp_put(ndlp); 2496 pmb->ctx_buf = NULL; 2497 pmb->ctx_ndlp = NULL; 2498 } 2499 2500 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2501 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2502 2503 /* Check to see if there are any deferred events to process */ 2504 if (ndlp) { 2505 lpfc_printf_vlog( 2506 vport, 2507 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2508 "1438 UNREG cmpl deferred mbox x%x " 2509 "on NPort x%x Data: x%x x%x %p\n", 2510 ndlp->nlp_rpi, ndlp->nlp_DID, 2511 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2512 2513 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2514 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2515 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2516 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2517 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2518 } else { 2519 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2520 } 2521 } 2522 pmb->ctx_ndlp = NULL; 2523 } 2524 2525 /* Check security permission status on INIT_LINK mailbox command */ 2526 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2527 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2528 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2529 "2860 SLI authentication is required " 2530 "for INIT_LINK but has not done yet\n"); 2531 2532 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2533 lpfc_sli4_mbox_cmd_free(phba, pmb); 2534 else 2535 mempool_free(pmb, phba->mbox_mem_pool); 2536 } 2537 /** 2538 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2539 * @phba: Pointer to HBA context object. 2540 * @pmb: Pointer to mailbox object. 2541 * 2542 * This function is the unreg rpi mailbox completion handler. It 2543 * frees the memory resources associated with the completed mailbox 2544 * command. An additional refrenece is put on the ndlp to prevent 2545 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2546 * the unreg mailbox command completes, this routine puts the 2547 * reference back. 2548 * 2549 **/ 2550 void 2551 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2552 { 2553 struct lpfc_vport *vport = pmb->vport; 2554 struct lpfc_nodelist *ndlp; 2555 2556 ndlp = pmb->ctx_ndlp; 2557 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2558 if (phba->sli_rev == LPFC_SLI_REV4 && 2559 (bf_get(lpfc_sli_intf_if_type, 2560 &phba->sli4_hba.sli_intf) >= 2561 LPFC_SLI_INTF_IF_TYPE_2)) { 2562 if (ndlp) { 2563 lpfc_printf_vlog( 2564 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2565 "0010 UNREG_LOGIN vpi:%x " 2566 "rpi:%x DID:%x defer x%x flg x%x " 2567 "map:%x %p\n", 2568 vport->vpi, ndlp->nlp_rpi, 2569 ndlp->nlp_DID, ndlp->nlp_defer_did, 2570 ndlp->nlp_flag, 2571 ndlp->nlp_usg_map, ndlp); 2572 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2573 lpfc_nlp_put(ndlp); 2574 2575 /* Check to see if there are any deferred 2576 * events to process 2577 */ 2578 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2579 (ndlp->nlp_defer_did != 2580 NLP_EVT_NOTHING_PENDING)) { 2581 lpfc_printf_vlog( 2582 vport, KERN_INFO, LOG_DISCOVERY, 2583 "4111 UNREG cmpl deferred " 2584 "clr x%x on " 2585 "NPort x%x Data: x%x %p\n", 2586 ndlp->nlp_rpi, ndlp->nlp_DID, 2587 ndlp->nlp_defer_did, ndlp); 2588 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2589 ndlp->nlp_defer_did = 2590 NLP_EVT_NOTHING_PENDING; 2591 lpfc_issue_els_plogi( 2592 vport, ndlp->nlp_DID, 0); 2593 } else { 2594 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2595 } 2596 } 2597 } 2598 } 2599 2600 mempool_free(pmb, phba->mbox_mem_pool); 2601 } 2602 2603 /** 2604 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2605 * @phba: Pointer to HBA context object. 2606 * 2607 * This function is called with no lock held. This function processes all 2608 * the completed mailbox commands and gives it to upper layers. The interrupt 2609 * service routine processes mailbox completion interrupt and adds completed 2610 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2611 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2612 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2613 * function returns the mailbox commands to the upper layer by calling the 2614 * completion handler function of each mailbox. 2615 **/ 2616 int 2617 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2618 { 2619 MAILBOX_t *pmbox; 2620 LPFC_MBOXQ_t *pmb; 2621 int rc; 2622 LIST_HEAD(cmplq); 2623 2624 phba->sli.slistat.mbox_event++; 2625 2626 /* Get all completed mailboxe buffers into the cmplq */ 2627 spin_lock_irq(&phba->hbalock); 2628 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2629 spin_unlock_irq(&phba->hbalock); 2630 2631 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2632 do { 2633 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2634 if (pmb == NULL) 2635 break; 2636 2637 pmbox = &pmb->u.mb; 2638 2639 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2640 if (pmb->vport) { 2641 lpfc_debugfs_disc_trc(pmb->vport, 2642 LPFC_DISC_TRC_MBOX_VPORT, 2643 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2644 (uint32_t)pmbox->mbxCommand, 2645 pmbox->un.varWords[0], 2646 pmbox->un.varWords[1]); 2647 } 2648 else { 2649 lpfc_debugfs_disc_trc(phba->pport, 2650 LPFC_DISC_TRC_MBOX, 2651 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2652 (uint32_t)pmbox->mbxCommand, 2653 pmbox->un.varWords[0], 2654 pmbox->un.varWords[1]); 2655 } 2656 } 2657 2658 /* 2659 * It is a fatal error if unknown mbox command completion. 2660 */ 2661 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2662 MBX_SHUTDOWN) { 2663 /* Unknown mailbox command compl */ 2664 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2665 "(%d):0323 Unknown Mailbox command " 2666 "x%x (x%x/x%x) Cmpl\n", 2667 pmb->vport ? pmb->vport->vpi : 0, 2668 pmbox->mbxCommand, 2669 lpfc_sli_config_mbox_subsys_get(phba, 2670 pmb), 2671 lpfc_sli_config_mbox_opcode_get(phba, 2672 pmb)); 2673 phba->link_state = LPFC_HBA_ERROR; 2674 phba->work_hs = HS_FFER3; 2675 lpfc_handle_eratt(phba); 2676 continue; 2677 } 2678 2679 if (pmbox->mbxStatus) { 2680 phba->sli.slistat.mbox_stat_err++; 2681 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2682 /* Mbox cmd cmpl error - RETRYing */ 2683 lpfc_printf_log(phba, KERN_INFO, 2684 LOG_MBOX | LOG_SLI, 2685 "(%d):0305 Mbox cmd cmpl " 2686 "error - RETRYing Data: x%x " 2687 "(x%x/x%x) x%x x%x x%x\n", 2688 pmb->vport ? pmb->vport->vpi : 0, 2689 pmbox->mbxCommand, 2690 lpfc_sli_config_mbox_subsys_get(phba, 2691 pmb), 2692 lpfc_sli_config_mbox_opcode_get(phba, 2693 pmb), 2694 pmbox->mbxStatus, 2695 pmbox->un.varWords[0], 2696 pmb->vport->port_state); 2697 pmbox->mbxStatus = 0; 2698 pmbox->mbxOwner = OWN_HOST; 2699 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2700 if (rc != MBX_NOT_FINISHED) 2701 continue; 2702 } 2703 } 2704 2705 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2706 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2707 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2708 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2709 "x%x x%x x%x\n", 2710 pmb->vport ? pmb->vport->vpi : 0, 2711 pmbox->mbxCommand, 2712 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2713 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2714 pmb->mbox_cmpl, 2715 *((uint32_t *) pmbox), 2716 pmbox->un.varWords[0], 2717 pmbox->un.varWords[1], 2718 pmbox->un.varWords[2], 2719 pmbox->un.varWords[3], 2720 pmbox->un.varWords[4], 2721 pmbox->un.varWords[5], 2722 pmbox->un.varWords[6], 2723 pmbox->un.varWords[7], 2724 pmbox->un.varWords[8], 2725 pmbox->un.varWords[9], 2726 pmbox->un.varWords[10]); 2727 2728 if (pmb->mbox_cmpl) 2729 pmb->mbox_cmpl(phba,pmb); 2730 } while (1); 2731 return 0; 2732 } 2733 2734 /** 2735 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2736 * @phba: Pointer to HBA context object. 2737 * @pring: Pointer to driver SLI ring object. 2738 * @tag: buffer tag. 2739 * 2740 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2741 * is set in the tag the buffer is posted for a particular exchange, 2742 * the function will return the buffer without replacing the buffer. 2743 * If the buffer is for unsolicited ELS or CT traffic, this function 2744 * returns the buffer and also posts another buffer to the firmware. 2745 **/ 2746 static struct lpfc_dmabuf * 2747 lpfc_sli_get_buff(struct lpfc_hba *phba, 2748 struct lpfc_sli_ring *pring, 2749 uint32_t tag) 2750 { 2751 struct hbq_dmabuf *hbq_entry; 2752 2753 if (tag & QUE_BUFTAG_BIT) 2754 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2755 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2756 if (!hbq_entry) 2757 return NULL; 2758 return &hbq_entry->dbuf; 2759 } 2760 2761 /** 2762 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2763 * @phba: Pointer to HBA context object. 2764 * @pring: Pointer to driver SLI ring object. 2765 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2766 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2767 * @fch_type: the type for the first frame of the sequence. 2768 * 2769 * This function is called with no lock held. This function uses the r_ctl and 2770 * type of the received sequence to find the correct callback function to call 2771 * to process the sequence. 2772 **/ 2773 static int 2774 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2775 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2776 uint32_t fch_type) 2777 { 2778 int i; 2779 2780 switch (fch_type) { 2781 case FC_TYPE_NVME: 2782 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2783 return 1; 2784 default: 2785 break; 2786 } 2787 2788 /* unSolicited Responses */ 2789 if (pring->prt[0].profile) { 2790 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2791 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2792 saveq); 2793 return 1; 2794 } 2795 /* We must search, based on rctl / type 2796 for the right routine */ 2797 for (i = 0; i < pring->num_mask; i++) { 2798 if ((pring->prt[i].rctl == fch_r_ctl) && 2799 (pring->prt[i].type == fch_type)) { 2800 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2801 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2802 (phba, pring, saveq); 2803 return 1; 2804 } 2805 } 2806 return 0; 2807 } 2808 2809 /** 2810 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2811 * @phba: Pointer to HBA context object. 2812 * @pring: Pointer to driver SLI ring object. 2813 * @saveq: Pointer to the unsolicited iocb. 2814 * 2815 * This function is called with no lock held by the ring event handler 2816 * when there is an unsolicited iocb posted to the response ring by the 2817 * firmware. This function gets the buffer associated with the iocbs 2818 * and calls the event handler for the ring. This function handles both 2819 * qring buffers and hbq buffers. 2820 * When the function returns 1 the caller can free the iocb object otherwise 2821 * upper layer functions will free the iocb objects. 2822 **/ 2823 static int 2824 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2825 struct lpfc_iocbq *saveq) 2826 { 2827 IOCB_t * irsp; 2828 WORD5 * w5p; 2829 uint32_t Rctl, Type; 2830 struct lpfc_iocbq *iocbq; 2831 struct lpfc_dmabuf *dmzbuf; 2832 2833 irsp = &(saveq->iocb); 2834 2835 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2836 if (pring->lpfc_sli_rcv_async_status) 2837 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2838 else 2839 lpfc_printf_log(phba, 2840 KERN_WARNING, 2841 LOG_SLI, 2842 "0316 Ring %d handler: unexpected " 2843 "ASYNC_STATUS iocb received evt_code " 2844 "0x%x\n", 2845 pring->ringno, 2846 irsp->un.asyncstat.evt_code); 2847 return 1; 2848 } 2849 2850 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2851 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2852 if (irsp->ulpBdeCount > 0) { 2853 dmzbuf = lpfc_sli_get_buff(phba, pring, 2854 irsp->un.ulpWord[3]); 2855 lpfc_in_buf_free(phba, dmzbuf); 2856 } 2857 2858 if (irsp->ulpBdeCount > 1) { 2859 dmzbuf = lpfc_sli_get_buff(phba, pring, 2860 irsp->unsli3.sli3Words[3]); 2861 lpfc_in_buf_free(phba, dmzbuf); 2862 } 2863 2864 if (irsp->ulpBdeCount > 2) { 2865 dmzbuf = lpfc_sli_get_buff(phba, pring, 2866 irsp->unsli3.sli3Words[7]); 2867 lpfc_in_buf_free(phba, dmzbuf); 2868 } 2869 2870 return 1; 2871 } 2872 2873 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2874 if (irsp->ulpBdeCount != 0) { 2875 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2876 irsp->un.ulpWord[3]); 2877 if (!saveq->context2) 2878 lpfc_printf_log(phba, 2879 KERN_ERR, 2880 LOG_SLI, 2881 "0341 Ring %d Cannot find buffer for " 2882 "an unsolicited iocb. tag 0x%x\n", 2883 pring->ringno, 2884 irsp->un.ulpWord[3]); 2885 } 2886 if (irsp->ulpBdeCount == 2) { 2887 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2888 irsp->unsli3.sli3Words[7]); 2889 if (!saveq->context3) 2890 lpfc_printf_log(phba, 2891 KERN_ERR, 2892 LOG_SLI, 2893 "0342 Ring %d Cannot find buffer for an" 2894 " unsolicited iocb. tag 0x%x\n", 2895 pring->ringno, 2896 irsp->unsli3.sli3Words[7]); 2897 } 2898 list_for_each_entry(iocbq, &saveq->list, list) { 2899 irsp = &(iocbq->iocb); 2900 if (irsp->ulpBdeCount != 0) { 2901 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2902 irsp->un.ulpWord[3]); 2903 if (!iocbq->context2) 2904 lpfc_printf_log(phba, 2905 KERN_ERR, 2906 LOG_SLI, 2907 "0343 Ring %d Cannot find " 2908 "buffer for an unsolicited iocb" 2909 ". tag 0x%x\n", pring->ringno, 2910 irsp->un.ulpWord[3]); 2911 } 2912 if (irsp->ulpBdeCount == 2) { 2913 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2914 irsp->unsli3.sli3Words[7]); 2915 if (!iocbq->context3) 2916 lpfc_printf_log(phba, 2917 KERN_ERR, 2918 LOG_SLI, 2919 "0344 Ring %d Cannot find " 2920 "buffer for an unsolicited " 2921 "iocb. tag 0x%x\n", 2922 pring->ringno, 2923 irsp->unsli3.sli3Words[7]); 2924 } 2925 } 2926 } 2927 if (irsp->ulpBdeCount != 0 && 2928 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2929 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2930 int found = 0; 2931 2932 /* search continue save q for same XRI */ 2933 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2934 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2935 saveq->iocb.unsli3.rcvsli3.ox_id) { 2936 list_add_tail(&saveq->list, &iocbq->list); 2937 found = 1; 2938 break; 2939 } 2940 } 2941 if (!found) 2942 list_add_tail(&saveq->clist, 2943 &pring->iocb_continue_saveq); 2944 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2945 list_del_init(&iocbq->clist); 2946 saveq = iocbq; 2947 irsp = &(saveq->iocb); 2948 } else 2949 return 0; 2950 } 2951 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2952 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2953 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2954 Rctl = FC_RCTL_ELS_REQ; 2955 Type = FC_TYPE_ELS; 2956 } else { 2957 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2958 Rctl = w5p->hcsw.Rctl; 2959 Type = w5p->hcsw.Type; 2960 2961 /* Firmware Workaround */ 2962 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2963 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2964 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2965 Rctl = FC_RCTL_ELS_REQ; 2966 Type = FC_TYPE_ELS; 2967 w5p->hcsw.Rctl = Rctl; 2968 w5p->hcsw.Type = Type; 2969 } 2970 } 2971 2972 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2974 "0313 Ring %d handler: unexpected Rctl x%x " 2975 "Type x%x received\n", 2976 pring->ringno, Rctl, Type); 2977 2978 return 1; 2979 } 2980 2981 /** 2982 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2983 * @phba: Pointer to HBA context object. 2984 * @pring: Pointer to driver SLI ring object. 2985 * @prspiocb: Pointer to response iocb object. 2986 * 2987 * This function looks up the iocb_lookup table to get the command iocb 2988 * corresponding to the given response iocb using the iotag of the 2989 * response iocb. This function is called with the hbalock held 2990 * for sli3 devices or the ring_lock for sli4 devices. 2991 * This function returns the command iocb object if it finds the command 2992 * iocb else returns NULL. 2993 **/ 2994 static struct lpfc_iocbq * 2995 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2996 struct lpfc_sli_ring *pring, 2997 struct lpfc_iocbq *prspiocb) 2998 { 2999 struct lpfc_iocbq *cmd_iocb = NULL; 3000 uint16_t iotag; 3001 lockdep_assert_held(&phba->hbalock); 3002 3003 iotag = prspiocb->iocb.ulpIoTag; 3004 3005 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3006 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3007 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3008 /* remove from txcmpl queue list */ 3009 list_del_init(&cmd_iocb->list); 3010 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3011 return cmd_iocb; 3012 } 3013 } 3014 3015 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3016 "0317 iotag x%x is out of " 3017 "range: max iotag x%x wd0 x%x\n", 3018 iotag, phba->sli.last_iotag, 3019 *(((uint32_t *) &prspiocb->iocb) + 7)); 3020 return NULL; 3021 } 3022 3023 /** 3024 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3025 * @phba: Pointer to HBA context object. 3026 * @pring: Pointer to driver SLI ring object. 3027 * @iotag: IOCB tag. 3028 * 3029 * This function looks up the iocb_lookup table to get the command iocb 3030 * corresponding to the given iotag. This function is called with the 3031 * hbalock held. 3032 * This function returns the command iocb object if it finds the command 3033 * iocb else returns NULL. 3034 **/ 3035 static struct lpfc_iocbq * 3036 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3037 struct lpfc_sli_ring *pring, uint16_t iotag) 3038 { 3039 struct lpfc_iocbq *cmd_iocb = NULL; 3040 3041 lockdep_assert_held(&phba->hbalock); 3042 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3043 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3044 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3045 /* remove from txcmpl queue list */ 3046 list_del_init(&cmd_iocb->list); 3047 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3048 return cmd_iocb; 3049 } 3050 } 3051 3052 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3053 "0372 iotag x%x lookup error: max iotag (x%x) " 3054 "iocb_flag x%x\n", 3055 iotag, phba->sli.last_iotag, 3056 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3057 return NULL; 3058 } 3059 3060 /** 3061 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3062 * @phba: Pointer to HBA context object. 3063 * @pring: Pointer to driver SLI ring object. 3064 * @saveq: Pointer to the response iocb to be processed. 3065 * 3066 * This function is called by the ring event handler for non-fcp 3067 * rings when there is a new response iocb in the response ring. 3068 * The caller is not required to hold any locks. This function 3069 * gets the command iocb associated with the response iocb and 3070 * calls the completion handler for the command iocb. If there 3071 * is no completion handler, the function will free the resources 3072 * associated with command iocb. If the response iocb is for 3073 * an already aborted command iocb, the status of the completion 3074 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3075 * This function always returns 1. 3076 **/ 3077 static int 3078 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3079 struct lpfc_iocbq *saveq) 3080 { 3081 struct lpfc_iocbq *cmdiocbp; 3082 int rc = 1; 3083 unsigned long iflag; 3084 3085 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 3086 if (phba->sli_rev == LPFC_SLI_REV4) 3087 spin_lock_irqsave(&pring->ring_lock, iflag); 3088 else 3089 spin_lock_irqsave(&phba->hbalock, iflag); 3090 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3091 if (phba->sli_rev == LPFC_SLI_REV4) 3092 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3093 else 3094 spin_unlock_irqrestore(&phba->hbalock, iflag); 3095 3096 if (cmdiocbp) { 3097 if (cmdiocbp->iocb_cmpl) { 3098 /* 3099 * If an ELS command failed send an event to mgmt 3100 * application. 3101 */ 3102 if (saveq->iocb.ulpStatus && 3103 (pring->ringno == LPFC_ELS_RING) && 3104 (cmdiocbp->iocb.ulpCommand == 3105 CMD_ELS_REQUEST64_CR)) 3106 lpfc_send_els_failure_event(phba, 3107 cmdiocbp, saveq); 3108 3109 /* 3110 * Post all ELS completions to the worker thread. 3111 * All other are passed to the completion callback. 3112 */ 3113 if (pring->ringno == LPFC_ELS_RING) { 3114 if ((phba->sli_rev < LPFC_SLI_REV4) && 3115 (cmdiocbp->iocb_flag & 3116 LPFC_DRIVER_ABORTED)) { 3117 spin_lock_irqsave(&phba->hbalock, 3118 iflag); 3119 cmdiocbp->iocb_flag &= 3120 ~LPFC_DRIVER_ABORTED; 3121 spin_unlock_irqrestore(&phba->hbalock, 3122 iflag); 3123 saveq->iocb.ulpStatus = 3124 IOSTAT_LOCAL_REJECT; 3125 saveq->iocb.un.ulpWord[4] = 3126 IOERR_SLI_ABORTED; 3127 3128 /* Firmware could still be in progress 3129 * of DMAing payload, so don't free data 3130 * buffer till after a hbeat. 3131 */ 3132 spin_lock_irqsave(&phba->hbalock, 3133 iflag); 3134 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3135 spin_unlock_irqrestore(&phba->hbalock, 3136 iflag); 3137 } 3138 if (phba->sli_rev == LPFC_SLI_REV4) { 3139 if (saveq->iocb_flag & 3140 LPFC_EXCHANGE_BUSY) { 3141 /* Set cmdiocb flag for the 3142 * exchange busy so sgl (xri) 3143 * will not be released until 3144 * the abort xri is received 3145 * from hba. 3146 */ 3147 spin_lock_irqsave( 3148 &phba->hbalock, iflag); 3149 cmdiocbp->iocb_flag |= 3150 LPFC_EXCHANGE_BUSY; 3151 spin_unlock_irqrestore( 3152 &phba->hbalock, iflag); 3153 } 3154 if (cmdiocbp->iocb_flag & 3155 LPFC_DRIVER_ABORTED) { 3156 /* 3157 * Clear LPFC_DRIVER_ABORTED 3158 * bit in case it was driver 3159 * initiated abort. 3160 */ 3161 spin_lock_irqsave( 3162 &phba->hbalock, iflag); 3163 cmdiocbp->iocb_flag &= 3164 ~LPFC_DRIVER_ABORTED; 3165 spin_unlock_irqrestore( 3166 &phba->hbalock, iflag); 3167 cmdiocbp->iocb.ulpStatus = 3168 IOSTAT_LOCAL_REJECT; 3169 cmdiocbp->iocb.un.ulpWord[4] = 3170 IOERR_ABORT_REQUESTED; 3171 /* 3172 * For SLI4, irsiocb contains 3173 * NO_XRI in sli_xritag, it 3174 * shall not affect releasing 3175 * sgl (xri) process. 3176 */ 3177 saveq->iocb.ulpStatus = 3178 IOSTAT_LOCAL_REJECT; 3179 saveq->iocb.un.ulpWord[4] = 3180 IOERR_SLI_ABORTED; 3181 spin_lock_irqsave( 3182 &phba->hbalock, iflag); 3183 saveq->iocb_flag |= 3184 LPFC_DELAY_MEM_FREE; 3185 spin_unlock_irqrestore( 3186 &phba->hbalock, iflag); 3187 } 3188 } 3189 } 3190 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3191 } else 3192 lpfc_sli_release_iocbq(phba, cmdiocbp); 3193 } else { 3194 /* 3195 * Unknown initiating command based on the response iotag. 3196 * This could be the case on the ELS ring because of 3197 * lpfc_els_abort(). 3198 */ 3199 if (pring->ringno != LPFC_ELS_RING) { 3200 /* 3201 * Ring <ringno> handler: unexpected completion IoTag 3202 * <IoTag> 3203 */ 3204 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3205 "0322 Ring %d handler: " 3206 "unexpected completion IoTag x%x " 3207 "Data: x%x x%x x%x x%x\n", 3208 pring->ringno, 3209 saveq->iocb.ulpIoTag, 3210 saveq->iocb.ulpStatus, 3211 saveq->iocb.un.ulpWord[4], 3212 saveq->iocb.ulpCommand, 3213 saveq->iocb.ulpContext); 3214 } 3215 } 3216 3217 return rc; 3218 } 3219 3220 /** 3221 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3222 * @phba: Pointer to HBA context object. 3223 * @pring: Pointer to driver SLI ring object. 3224 * 3225 * This function is called from the iocb ring event handlers when 3226 * put pointer is ahead of the get pointer for a ring. This function signal 3227 * an error attention condition to the worker thread and the worker 3228 * thread will transition the HBA to offline state. 3229 **/ 3230 static void 3231 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3232 { 3233 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3234 /* 3235 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3236 * rsp ring <portRspMax> 3237 */ 3238 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3239 "0312 Ring %d handler: portRspPut %d " 3240 "is bigger than rsp ring %d\n", 3241 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3242 pring->sli.sli3.numRiocb); 3243 3244 phba->link_state = LPFC_HBA_ERROR; 3245 3246 /* 3247 * All error attention handlers are posted to 3248 * worker thread 3249 */ 3250 phba->work_ha |= HA_ERATT; 3251 phba->work_hs = HS_FFER3; 3252 3253 lpfc_worker_wake_up(phba); 3254 3255 return; 3256 } 3257 3258 /** 3259 * lpfc_poll_eratt - Error attention polling timer timeout handler 3260 * @ptr: Pointer to address of HBA context object. 3261 * 3262 * This function is invoked by the Error Attention polling timer when the 3263 * timer times out. It will check the SLI Error Attention register for 3264 * possible attention events. If so, it will post an Error Attention event 3265 * and wake up worker thread to process it. Otherwise, it will set up the 3266 * Error Attention polling timer for the next poll. 3267 **/ 3268 void lpfc_poll_eratt(struct timer_list *t) 3269 { 3270 struct lpfc_hba *phba; 3271 uint32_t eratt = 0; 3272 uint64_t sli_intr, cnt; 3273 3274 phba = from_timer(phba, t, eratt_poll); 3275 3276 /* Here we will also keep track of interrupts per sec of the hba */ 3277 sli_intr = phba->sli.slistat.sli_intr; 3278 3279 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3280 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3281 sli_intr); 3282 else 3283 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3284 3285 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3286 do_div(cnt, phba->eratt_poll_interval); 3287 phba->sli.slistat.sli_ips = cnt; 3288 3289 phba->sli.slistat.sli_prev_intr = sli_intr; 3290 3291 /* Check chip HA register for error event */ 3292 eratt = lpfc_sli_check_eratt(phba); 3293 3294 if (eratt) 3295 /* Tell the worker thread there is work to do */ 3296 lpfc_worker_wake_up(phba); 3297 else 3298 /* Restart the timer for next eratt poll */ 3299 mod_timer(&phba->eratt_poll, 3300 jiffies + 3301 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3302 return; 3303 } 3304 3305 3306 /** 3307 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3308 * @phba: Pointer to HBA context object. 3309 * @pring: Pointer to driver SLI ring object. 3310 * @mask: Host attention register mask for this ring. 3311 * 3312 * This function is called from the interrupt context when there is a ring 3313 * event for the fcp ring. The caller does not hold any lock. 3314 * The function processes each response iocb in the response ring until it 3315 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3316 * LE bit set. The function will call the completion handler of the command iocb 3317 * if the response iocb indicates a completion for a command iocb or it is 3318 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3319 * function if this is an unsolicited iocb. 3320 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3321 * to check it explicitly. 3322 */ 3323 int 3324 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3325 struct lpfc_sli_ring *pring, uint32_t mask) 3326 { 3327 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3328 IOCB_t *irsp = NULL; 3329 IOCB_t *entry = NULL; 3330 struct lpfc_iocbq *cmdiocbq = NULL; 3331 struct lpfc_iocbq rspiocbq; 3332 uint32_t status; 3333 uint32_t portRspPut, portRspMax; 3334 int rc = 1; 3335 lpfc_iocb_type type; 3336 unsigned long iflag; 3337 uint32_t rsp_cmpl = 0; 3338 3339 spin_lock_irqsave(&phba->hbalock, iflag); 3340 pring->stats.iocb_event++; 3341 3342 /* 3343 * The next available response entry should never exceed the maximum 3344 * entries. If it does, treat it as an adapter hardware error. 3345 */ 3346 portRspMax = pring->sli.sli3.numRiocb; 3347 portRspPut = le32_to_cpu(pgp->rspPutInx); 3348 if (unlikely(portRspPut >= portRspMax)) { 3349 lpfc_sli_rsp_pointers_error(phba, pring); 3350 spin_unlock_irqrestore(&phba->hbalock, iflag); 3351 return 1; 3352 } 3353 if (phba->fcp_ring_in_use) { 3354 spin_unlock_irqrestore(&phba->hbalock, iflag); 3355 return 1; 3356 } else 3357 phba->fcp_ring_in_use = 1; 3358 3359 rmb(); 3360 while (pring->sli.sli3.rspidx != portRspPut) { 3361 /* 3362 * Fetch an entry off the ring and copy it into a local data 3363 * structure. The copy involves a byte-swap since the 3364 * network byte order and pci byte orders are different. 3365 */ 3366 entry = lpfc_resp_iocb(phba, pring); 3367 phba->last_completion_time = jiffies; 3368 3369 if (++pring->sli.sli3.rspidx >= portRspMax) 3370 pring->sli.sli3.rspidx = 0; 3371 3372 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3373 (uint32_t *) &rspiocbq.iocb, 3374 phba->iocb_rsp_size); 3375 INIT_LIST_HEAD(&(rspiocbq.list)); 3376 irsp = &rspiocbq.iocb; 3377 3378 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3379 pring->stats.iocb_rsp++; 3380 rsp_cmpl++; 3381 3382 if (unlikely(irsp->ulpStatus)) { 3383 /* 3384 * If resource errors reported from HBA, reduce 3385 * queuedepths of the SCSI device. 3386 */ 3387 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3388 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3389 IOERR_NO_RESOURCES)) { 3390 spin_unlock_irqrestore(&phba->hbalock, iflag); 3391 phba->lpfc_rampdown_queue_depth(phba); 3392 spin_lock_irqsave(&phba->hbalock, iflag); 3393 } 3394 3395 /* Rsp ring <ringno> error: IOCB */ 3396 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3397 "0336 Rsp Ring %d error: IOCB Data: " 3398 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3399 pring->ringno, 3400 irsp->un.ulpWord[0], 3401 irsp->un.ulpWord[1], 3402 irsp->un.ulpWord[2], 3403 irsp->un.ulpWord[3], 3404 irsp->un.ulpWord[4], 3405 irsp->un.ulpWord[5], 3406 *(uint32_t *)&irsp->un1, 3407 *((uint32_t *)&irsp->un1 + 1)); 3408 } 3409 3410 switch (type) { 3411 case LPFC_ABORT_IOCB: 3412 case LPFC_SOL_IOCB: 3413 /* 3414 * Idle exchange closed via ABTS from port. No iocb 3415 * resources need to be recovered. 3416 */ 3417 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3418 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3419 "0333 IOCB cmd 0x%x" 3420 " processed. Skipping" 3421 " completion\n", 3422 irsp->ulpCommand); 3423 break; 3424 } 3425 3426 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3427 &rspiocbq); 3428 if (unlikely(!cmdiocbq)) 3429 break; 3430 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3431 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3432 if (cmdiocbq->iocb_cmpl) { 3433 spin_unlock_irqrestore(&phba->hbalock, iflag); 3434 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3435 &rspiocbq); 3436 spin_lock_irqsave(&phba->hbalock, iflag); 3437 } 3438 break; 3439 case LPFC_UNSOL_IOCB: 3440 spin_unlock_irqrestore(&phba->hbalock, iflag); 3441 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3442 spin_lock_irqsave(&phba->hbalock, iflag); 3443 break; 3444 default: 3445 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3446 char adaptermsg[LPFC_MAX_ADPTMSG]; 3447 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3448 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3449 MAX_MSG_DATA); 3450 dev_warn(&((phba->pcidev)->dev), 3451 "lpfc%d: %s\n", 3452 phba->brd_no, adaptermsg); 3453 } else { 3454 /* Unknown IOCB command */ 3455 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3456 "0334 Unknown IOCB command " 3457 "Data: x%x, x%x x%x x%x x%x\n", 3458 type, irsp->ulpCommand, 3459 irsp->ulpStatus, 3460 irsp->ulpIoTag, 3461 irsp->ulpContext); 3462 } 3463 break; 3464 } 3465 3466 /* 3467 * The response IOCB has been processed. Update the ring 3468 * pointer in SLIM. If the port response put pointer has not 3469 * been updated, sync the pgp->rspPutInx and fetch the new port 3470 * response put pointer. 3471 */ 3472 writel(pring->sli.sli3.rspidx, 3473 &phba->host_gp[pring->ringno].rspGetInx); 3474 3475 if (pring->sli.sli3.rspidx == portRspPut) 3476 portRspPut = le32_to_cpu(pgp->rspPutInx); 3477 } 3478 3479 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3480 pring->stats.iocb_rsp_full++; 3481 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3482 writel(status, phba->CAregaddr); 3483 readl(phba->CAregaddr); 3484 } 3485 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3486 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3487 pring->stats.iocb_cmd_empty++; 3488 3489 /* Force update of the local copy of cmdGetInx */ 3490 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3491 lpfc_sli_resume_iocb(phba, pring); 3492 3493 if ((pring->lpfc_sli_cmd_available)) 3494 (pring->lpfc_sli_cmd_available) (phba, pring); 3495 3496 } 3497 3498 phba->fcp_ring_in_use = 0; 3499 spin_unlock_irqrestore(&phba->hbalock, iflag); 3500 return rc; 3501 } 3502 3503 /** 3504 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3505 * @phba: Pointer to HBA context object. 3506 * @pring: Pointer to driver SLI ring object. 3507 * @rspiocbp: Pointer to driver response IOCB object. 3508 * 3509 * This function is called from the worker thread when there is a slow-path 3510 * response IOCB to process. This function chains all the response iocbs until 3511 * seeing the iocb with the LE bit set. The function will call 3512 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3513 * completion of a command iocb. The function will call the 3514 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3515 * The function frees the resources or calls the completion handler if this 3516 * iocb is an abort completion. The function returns NULL when the response 3517 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3518 * this function shall chain the iocb on to the iocb_continueq and return the 3519 * response iocb passed in. 3520 **/ 3521 static struct lpfc_iocbq * 3522 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3523 struct lpfc_iocbq *rspiocbp) 3524 { 3525 struct lpfc_iocbq *saveq; 3526 struct lpfc_iocbq *cmdiocbp; 3527 struct lpfc_iocbq *next_iocb; 3528 IOCB_t *irsp = NULL; 3529 uint32_t free_saveq; 3530 uint8_t iocb_cmd_type; 3531 lpfc_iocb_type type; 3532 unsigned long iflag; 3533 int rc; 3534 3535 spin_lock_irqsave(&phba->hbalock, iflag); 3536 /* First add the response iocb to the countinueq list */ 3537 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3538 pring->iocb_continueq_cnt++; 3539 3540 /* Now, determine whether the list is completed for processing */ 3541 irsp = &rspiocbp->iocb; 3542 if (irsp->ulpLe) { 3543 /* 3544 * By default, the driver expects to free all resources 3545 * associated with this iocb completion. 3546 */ 3547 free_saveq = 1; 3548 saveq = list_get_first(&pring->iocb_continueq, 3549 struct lpfc_iocbq, list); 3550 irsp = &(saveq->iocb); 3551 list_del_init(&pring->iocb_continueq); 3552 pring->iocb_continueq_cnt = 0; 3553 3554 pring->stats.iocb_rsp++; 3555 3556 /* 3557 * If resource errors reported from HBA, reduce 3558 * queuedepths of the SCSI device. 3559 */ 3560 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3561 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3562 IOERR_NO_RESOURCES)) { 3563 spin_unlock_irqrestore(&phba->hbalock, iflag); 3564 phba->lpfc_rampdown_queue_depth(phba); 3565 spin_lock_irqsave(&phba->hbalock, iflag); 3566 } 3567 3568 if (irsp->ulpStatus) { 3569 /* Rsp ring <ringno> error: IOCB */ 3570 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3571 "0328 Rsp Ring %d error: " 3572 "IOCB Data: " 3573 "x%x x%x x%x x%x " 3574 "x%x x%x x%x x%x " 3575 "x%x x%x x%x x%x " 3576 "x%x x%x x%x x%x\n", 3577 pring->ringno, 3578 irsp->un.ulpWord[0], 3579 irsp->un.ulpWord[1], 3580 irsp->un.ulpWord[2], 3581 irsp->un.ulpWord[3], 3582 irsp->un.ulpWord[4], 3583 irsp->un.ulpWord[5], 3584 *(((uint32_t *) irsp) + 6), 3585 *(((uint32_t *) irsp) + 7), 3586 *(((uint32_t *) irsp) + 8), 3587 *(((uint32_t *) irsp) + 9), 3588 *(((uint32_t *) irsp) + 10), 3589 *(((uint32_t *) irsp) + 11), 3590 *(((uint32_t *) irsp) + 12), 3591 *(((uint32_t *) irsp) + 13), 3592 *(((uint32_t *) irsp) + 14), 3593 *(((uint32_t *) irsp) + 15)); 3594 } 3595 3596 /* 3597 * Fetch the IOCB command type and call the correct completion 3598 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3599 * get freed back to the lpfc_iocb_list by the discovery 3600 * kernel thread. 3601 */ 3602 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3603 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3604 switch (type) { 3605 case LPFC_SOL_IOCB: 3606 spin_unlock_irqrestore(&phba->hbalock, iflag); 3607 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3608 spin_lock_irqsave(&phba->hbalock, iflag); 3609 break; 3610 3611 case LPFC_UNSOL_IOCB: 3612 spin_unlock_irqrestore(&phba->hbalock, iflag); 3613 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3614 spin_lock_irqsave(&phba->hbalock, iflag); 3615 if (!rc) 3616 free_saveq = 0; 3617 break; 3618 3619 case LPFC_ABORT_IOCB: 3620 cmdiocbp = NULL; 3621 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3622 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3623 saveq); 3624 if (cmdiocbp) { 3625 /* Call the specified completion routine */ 3626 if (cmdiocbp->iocb_cmpl) { 3627 spin_unlock_irqrestore(&phba->hbalock, 3628 iflag); 3629 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3630 saveq); 3631 spin_lock_irqsave(&phba->hbalock, 3632 iflag); 3633 } else 3634 __lpfc_sli_release_iocbq(phba, 3635 cmdiocbp); 3636 } 3637 break; 3638 3639 case LPFC_UNKNOWN_IOCB: 3640 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3641 char adaptermsg[LPFC_MAX_ADPTMSG]; 3642 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3643 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3644 MAX_MSG_DATA); 3645 dev_warn(&((phba->pcidev)->dev), 3646 "lpfc%d: %s\n", 3647 phba->brd_no, adaptermsg); 3648 } else { 3649 /* Unknown IOCB command */ 3650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3651 "0335 Unknown IOCB " 3652 "command Data: x%x " 3653 "x%x x%x x%x\n", 3654 irsp->ulpCommand, 3655 irsp->ulpStatus, 3656 irsp->ulpIoTag, 3657 irsp->ulpContext); 3658 } 3659 break; 3660 } 3661 3662 if (free_saveq) { 3663 list_for_each_entry_safe(rspiocbp, next_iocb, 3664 &saveq->list, list) { 3665 list_del_init(&rspiocbp->list); 3666 __lpfc_sli_release_iocbq(phba, rspiocbp); 3667 } 3668 __lpfc_sli_release_iocbq(phba, saveq); 3669 } 3670 rspiocbp = NULL; 3671 } 3672 spin_unlock_irqrestore(&phba->hbalock, iflag); 3673 return rspiocbp; 3674 } 3675 3676 /** 3677 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3678 * @phba: Pointer to HBA context object. 3679 * @pring: Pointer to driver SLI ring object. 3680 * @mask: Host attention register mask for this ring. 3681 * 3682 * This routine wraps the actual slow_ring event process routine from the 3683 * API jump table function pointer from the lpfc_hba struct. 3684 **/ 3685 void 3686 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint32_t mask) 3688 { 3689 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3690 } 3691 3692 /** 3693 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3694 * @phba: Pointer to HBA context object. 3695 * @pring: Pointer to driver SLI ring object. 3696 * @mask: Host attention register mask for this ring. 3697 * 3698 * This function is called from the worker thread when there is a ring event 3699 * for non-fcp rings. The caller does not hold any lock. The function will 3700 * remove each response iocb in the response ring and calls the handle 3701 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3702 **/ 3703 static void 3704 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3705 struct lpfc_sli_ring *pring, uint32_t mask) 3706 { 3707 struct lpfc_pgp *pgp; 3708 IOCB_t *entry; 3709 IOCB_t *irsp = NULL; 3710 struct lpfc_iocbq *rspiocbp = NULL; 3711 uint32_t portRspPut, portRspMax; 3712 unsigned long iflag; 3713 uint32_t status; 3714 3715 pgp = &phba->port_gp[pring->ringno]; 3716 spin_lock_irqsave(&phba->hbalock, iflag); 3717 pring->stats.iocb_event++; 3718 3719 /* 3720 * The next available response entry should never exceed the maximum 3721 * entries. If it does, treat it as an adapter hardware error. 3722 */ 3723 portRspMax = pring->sli.sli3.numRiocb; 3724 portRspPut = le32_to_cpu(pgp->rspPutInx); 3725 if (portRspPut >= portRspMax) { 3726 /* 3727 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3728 * rsp ring <portRspMax> 3729 */ 3730 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3731 "0303 Ring %d handler: portRspPut %d " 3732 "is bigger than rsp ring %d\n", 3733 pring->ringno, portRspPut, portRspMax); 3734 3735 phba->link_state = LPFC_HBA_ERROR; 3736 spin_unlock_irqrestore(&phba->hbalock, iflag); 3737 3738 phba->work_hs = HS_FFER3; 3739 lpfc_handle_eratt(phba); 3740 3741 return; 3742 } 3743 3744 rmb(); 3745 while (pring->sli.sli3.rspidx != portRspPut) { 3746 /* 3747 * Build a completion list and call the appropriate handler. 3748 * The process is to get the next available response iocb, get 3749 * a free iocb from the list, copy the response data into the 3750 * free iocb, insert to the continuation list, and update the 3751 * next response index to slim. This process makes response 3752 * iocb's in the ring available to DMA as fast as possible but 3753 * pays a penalty for a copy operation. Since the iocb is 3754 * only 32 bytes, this penalty is considered small relative to 3755 * the PCI reads for register values and a slim write. When 3756 * the ulpLe field is set, the entire Command has been 3757 * received. 3758 */ 3759 entry = lpfc_resp_iocb(phba, pring); 3760 3761 phba->last_completion_time = jiffies; 3762 rspiocbp = __lpfc_sli_get_iocbq(phba); 3763 if (rspiocbp == NULL) { 3764 printk(KERN_ERR "%s: out of buffers! Failing " 3765 "completion.\n", __func__); 3766 break; 3767 } 3768 3769 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3770 phba->iocb_rsp_size); 3771 irsp = &rspiocbp->iocb; 3772 3773 if (++pring->sli.sli3.rspidx >= portRspMax) 3774 pring->sli.sli3.rspidx = 0; 3775 3776 if (pring->ringno == LPFC_ELS_RING) { 3777 lpfc_debugfs_slow_ring_trc(phba, 3778 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3779 *(((uint32_t *) irsp) + 4), 3780 *(((uint32_t *) irsp) + 6), 3781 *(((uint32_t *) irsp) + 7)); 3782 } 3783 3784 writel(pring->sli.sli3.rspidx, 3785 &phba->host_gp[pring->ringno].rspGetInx); 3786 3787 spin_unlock_irqrestore(&phba->hbalock, iflag); 3788 /* Handle the response IOCB */ 3789 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3790 spin_lock_irqsave(&phba->hbalock, iflag); 3791 3792 /* 3793 * If the port response put pointer has not been updated, sync 3794 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3795 * response put pointer. 3796 */ 3797 if (pring->sli.sli3.rspidx == portRspPut) { 3798 portRspPut = le32_to_cpu(pgp->rspPutInx); 3799 } 3800 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3801 3802 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3803 /* At least one response entry has been freed */ 3804 pring->stats.iocb_rsp_full++; 3805 /* SET RxRE_RSP in Chip Att register */ 3806 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3807 writel(status, phba->CAregaddr); 3808 readl(phba->CAregaddr); /* flush */ 3809 } 3810 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3811 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3812 pring->stats.iocb_cmd_empty++; 3813 3814 /* Force update of the local copy of cmdGetInx */ 3815 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3816 lpfc_sli_resume_iocb(phba, pring); 3817 3818 if ((pring->lpfc_sli_cmd_available)) 3819 (pring->lpfc_sli_cmd_available) (phba, pring); 3820 3821 } 3822 3823 spin_unlock_irqrestore(&phba->hbalock, iflag); 3824 return; 3825 } 3826 3827 /** 3828 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3829 * @phba: Pointer to HBA context object. 3830 * @pring: Pointer to driver SLI ring object. 3831 * @mask: Host attention register mask for this ring. 3832 * 3833 * This function is called from the worker thread when there is a pending 3834 * ELS response iocb on the driver internal slow-path response iocb worker 3835 * queue. The caller does not hold any lock. The function will remove each 3836 * response iocb from the response worker queue and calls the handle 3837 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3838 **/ 3839 static void 3840 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3841 struct lpfc_sli_ring *pring, uint32_t mask) 3842 { 3843 struct lpfc_iocbq *irspiocbq; 3844 struct hbq_dmabuf *dmabuf; 3845 struct lpfc_cq_event *cq_event; 3846 unsigned long iflag; 3847 int count = 0; 3848 3849 spin_lock_irqsave(&phba->hbalock, iflag); 3850 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3851 spin_unlock_irqrestore(&phba->hbalock, iflag); 3852 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3853 /* Get the response iocb from the head of work queue */ 3854 spin_lock_irqsave(&phba->hbalock, iflag); 3855 list_remove_head(&phba->sli4_hba.sp_queue_event, 3856 cq_event, struct lpfc_cq_event, list); 3857 spin_unlock_irqrestore(&phba->hbalock, iflag); 3858 3859 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3860 case CQE_CODE_COMPL_WQE: 3861 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3862 cq_event); 3863 /* Translate ELS WCQE to response IOCBQ */ 3864 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3865 irspiocbq); 3866 if (irspiocbq) 3867 lpfc_sli_sp_handle_rspiocb(phba, pring, 3868 irspiocbq); 3869 count++; 3870 break; 3871 case CQE_CODE_RECEIVE: 3872 case CQE_CODE_RECEIVE_V1: 3873 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3874 cq_event); 3875 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3876 count++; 3877 break; 3878 default: 3879 break; 3880 } 3881 3882 /* Limit the number of events to 64 to avoid soft lockups */ 3883 if (count == 64) 3884 break; 3885 } 3886 } 3887 3888 /** 3889 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3890 * @phba: Pointer to HBA context object. 3891 * @pring: Pointer to driver SLI ring object. 3892 * 3893 * This function aborts all iocbs in the given ring and frees all the iocb 3894 * objects in txq. This function issues an abort iocb for all the iocb commands 3895 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3896 * the return of this function. The caller is not required to hold any locks. 3897 **/ 3898 void 3899 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3900 { 3901 LIST_HEAD(completions); 3902 struct lpfc_iocbq *iocb, *next_iocb; 3903 3904 if (pring->ringno == LPFC_ELS_RING) { 3905 lpfc_fabric_abort_hba(phba); 3906 } 3907 3908 /* Error everything on txq and txcmplq 3909 * First do the txq. 3910 */ 3911 if (phba->sli_rev >= LPFC_SLI_REV4) { 3912 spin_lock_irq(&pring->ring_lock); 3913 list_splice_init(&pring->txq, &completions); 3914 pring->txq_cnt = 0; 3915 spin_unlock_irq(&pring->ring_lock); 3916 3917 spin_lock_irq(&phba->hbalock); 3918 /* Next issue ABTS for everything on the txcmplq */ 3919 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3920 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3921 spin_unlock_irq(&phba->hbalock); 3922 } else { 3923 spin_lock_irq(&phba->hbalock); 3924 list_splice_init(&pring->txq, &completions); 3925 pring->txq_cnt = 0; 3926 3927 /* Next issue ABTS for everything on the txcmplq */ 3928 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3929 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3930 spin_unlock_irq(&phba->hbalock); 3931 } 3932 3933 /* Cancel all the IOCBs from the completions list */ 3934 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3935 IOERR_SLI_ABORTED); 3936 } 3937 3938 /** 3939 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3940 * @phba: Pointer to HBA context object. 3941 * @pring: Pointer to driver SLI ring object. 3942 * 3943 * This function aborts all iocbs in the given ring and frees all the iocb 3944 * objects in txq. This function issues an abort iocb for all the iocb commands 3945 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3946 * the return of this function. The caller is not required to hold any locks. 3947 **/ 3948 void 3949 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3950 { 3951 LIST_HEAD(completions); 3952 struct lpfc_iocbq *iocb, *next_iocb; 3953 3954 if (pring->ringno == LPFC_ELS_RING) 3955 lpfc_fabric_abort_hba(phba); 3956 3957 spin_lock_irq(&phba->hbalock); 3958 /* Next issue ABTS for everything on the txcmplq */ 3959 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3960 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3961 spin_unlock_irq(&phba->hbalock); 3962 } 3963 3964 3965 /** 3966 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3967 * @phba: Pointer to HBA context object. 3968 * @pring: Pointer to driver SLI ring object. 3969 * 3970 * This function aborts all iocbs in FCP rings and frees all the iocb 3971 * objects in txq. This function issues an abort iocb for all the iocb commands 3972 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3973 * the return of this function. The caller is not required to hold any locks. 3974 **/ 3975 void 3976 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3977 { 3978 struct lpfc_sli *psli = &phba->sli; 3979 struct lpfc_sli_ring *pring; 3980 uint32_t i; 3981 3982 /* Look on all the FCP Rings for the iotag */ 3983 if (phba->sli_rev >= LPFC_SLI_REV4) { 3984 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3985 pring = phba->sli4_hba.fcp_wq[i]->pring; 3986 lpfc_sli_abort_iocb_ring(phba, pring); 3987 } 3988 } else { 3989 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3990 lpfc_sli_abort_iocb_ring(phba, pring); 3991 } 3992 } 3993 3994 /** 3995 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3996 * @phba: Pointer to HBA context object. 3997 * 3998 * This function aborts all wqes in NVME rings. This function issues an 3999 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 4000 * the txcmplq is not guaranteed to complete before the return of this 4001 * function. The caller is not required to hold any locks. 4002 **/ 4003 void 4004 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 4005 { 4006 struct lpfc_sli_ring *pring; 4007 uint32_t i; 4008 4009 if (phba->sli_rev < LPFC_SLI_REV4) 4010 return; 4011 4012 /* Abort all IO on each NVME ring. */ 4013 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4014 pring = phba->sli4_hba.nvme_wq[i]->pring; 4015 lpfc_sli_abort_wqe_ring(phba, pring); 4016 } 4017 } 4018 4019 4020 /** 4021 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 4022 * @phba: Pointer to HBA context object. 4023 * 4024 * This function flushes all iocbs in the fcp ring and frees all the iocb 4025 * objects in txq and txcmplq. This function will not issue abort iocbs 4026 * for all the iocb commands in txcmplq, they will just be returned with 4027 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4028 * slot has been permanently disabled. 4029 **/ 4030 void 4031 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 4032 { 4033 LIST_HEAD(txq); 4034 LIST_HEAD(txcmplq); 4035 struct lpfc_sli *psli = &phba->sli; 4036 struct lpfc_sli_ring *pring; 4037 uint32_t i; 4038 struct lpfc_iocbq *piocb, *next_iocb; 4039 4040 spin_lock_irq(&phba->hbalock); 4041 /* Indicate the I/O queues are flushed */ 4042 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 4043 spin_unlock_irq(&phba->hbalock); 4044 4045 /* Look on all the FCP Rings for the iotag */ 4046 if (phba->sli_rev >= LPFC_SLI_REV4) { 4047 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 4048 pring = phba->sli4_hba.fcp_wq[i]->pring; 4049 4050 spin_lock_irq(&pring->ring_lock); 4051 /* Retrieve everything on txq */ 4052 list_splice_init(&pring->txq, &txq); 4053 list_for_each_entry_safe(piocb, next_iocb, 4054 &pring->txcmplq, list) 4055 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4056 /* Retrieve everything on the txcmplq */ 4057 list_splice_init(&pring->txcmplq, &txcmplq); 4058 pring->txq_cnt = 0; 4059 pring->txcmplq_cnt = 0; 4060 spin_unlock_irq(&pring->ring_lock); 4061 4062 /* Flush the txq */ 4063 lpfc_sli_cancel_iocbs(phba, &txq, 4064 IOSTAT_LOCAL_REJECT, 4065 IOERR_SLI_DOWN); 4066 /* Flush the txcmpq */ 4067 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4068 IOSTAT_LOCAL_REJECT, 4069 IOERR_SLI_DOWN); 4070 } 4071 } else { 4072 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4073 4074 spin_lock_irq(&phba->hbalock); 4075 /* Retrieve everything on txq */ 4076 list_splice_init(&pring->txq, &txq); 4077 list_for_each_entry_safe(piocb, next_iocb, 4078 &pring->txcmplq, list) 4079 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4080 /* Retrieve everything on the txcmplq */ 4081 list_splice_init(&pring->txcmplq, &txcmplq); 4082 pring->txq_cnt = 0; 4083 pring->txcmplq_cnt = 0; 4084 spin_unlock_irq(&phba->hbalock); 4085 4086 /* Flush the txq */ 4087 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4088 IOERR_SLI_DOWN); 4089 /* Flush the txcmpq */ 4090 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4091 IOERR_SLI_DOWN); 4092 } 4093 } 4094 4095 /** 4096 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 4097 * @phba: Pointer to HBA context object. 4098 * 4099 * This function flushes all wqes in the nvme rings and frees all resources 4100 * in the txcmplq. This function does not issue abort wqes for the IO 4101 * commands in txcmplq, they will just be returned with 4102 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4103 * slot has been permanently disabled. 4104 **/ 4105 void 4106 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 4107 { 4108 LIST_HEAD(txcmplq); 4109 struct lpfc_sli_ring *pring; 4110 uint32_t i; 4111 struct lpfc_iocbq *piocb, *next_iocb; 4112 4113 if (phba->sli_rev < LPFC_SLI_REV4) 4114 return; 4115 4116 /* Hint to other driver operations that a flush is in progress. */ 4117 spin_lock_irq(&phba->hbalock); 4118 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 4119 spin_unlock_irq(&phba->hbalock); 4120 4121 /* Cycle through all NVME rings and complete each IO with 4122 * a local driver reason code. This is a flush so no 4123 * abort exchange to FW. 4124 */ 4125 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4126 pring = phba->sli4_hba.nvme_wq[i]->pring; 4127 4128 spin_lock_irq(&pring->ring_lock); 4129 list_for_each_entry_safe(piocb, next_iocb, 4130 &pring->txcmplq, list) 4131 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4132 /* Retrieve everything on the txcmplq */ 4133 list_splice_init(&pring->txcmplq, &txcmplq); 4134 pring->txcmplq_cnt = 0; 4135 spin_unlock_irq(&pring->ring_lock); 4136 4137 /* Flush the txcmpq &&&PAE */ 4138 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4139 IOSTAT_LOCAL_REJECT, 4140 IOERR_SLI_DOWN); 4141 } 4142 } 4143 4144 /** 4145 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4146 * @phba: Pointer to HBA context object. 4147 * @mask: Bit mask to be checked. 4148 * 4149 * This function reads the host status register and compares 4150 * with the provided bit mask to check if HBA completed 4151 * the restart. This function will wait in a loop for the 4152 * HBA to complete restart. If the HBA does not restart within 4153 * 15 iterations, the function will reset the HBA again. The 4154 * function returns 1 when HBA fail to restart otherwise returns 4155 * zero. 4156 **/ 4157 static int 4158 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4159 { 4160 uint32_t status; 4161 int i = 0; 4162 int retval = 0; 4163 4164 /* Read the HBA Host Status Register */ 4165 if (lpfc_readl(phba->HSregaddr, &status)) 4166 return 1; 4167 4168 /* 4169 * Check status register every 100ms for 5 retries, then every 4170 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4171 * every 2.5 sec for 4. 4172 * Break our of the loop if errors occurred during init. 4173 */ 4174 while (((status & mask) != mask) && 4175 !(status & HS_FFERM) && 4176 i++ < 20) { 4177 4178 if (i <= 5) 4179 msleep(10); 4180 else if (i <= 10) 4181 msleep(500); 4182 else 4183 msleep(2500); 4184 4185 if (i == 15) { 4186 /* Do post */ 4187 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4188 lpfc_sli_brdrestart(phba); 4189 } 4190 /* Read the HBA Host Status Register */ 4191 if (lpfc_readl(phba->HSregaddr, &status)) { 4192 retval = 1; 4193 break; 4194 } 4195 } 4196 4197 /* Check to see if any errors occurred during init */ 4198 if ((status & HS_FFERM) || (i >= 20)) { 4199 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4200 "2751 Adapter failed to restart, " 4201 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4202 status, 4203 readl(phba->MBslimaddr + 0xa8), 4204 readl(phba->MBslimaddr + 0xac)); 4205 phba->link_state = LPFC_HBA_ERROR; 4206 retval = 1; 4207 } 4208 4209 return retval; 4210 } 4211 4212 /** 4213 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4214 * @phba: Pointer to HBA context object. 4215 * @mask: Bit mask to be checked. 4216 * 4217 * This function checks the host status register to check if HBA is 4218 * ready. This function will wait in a loop for the HBA to be ready 4219 * If the HBA is not ready , the function will will reset the HBA PCI 4220 * function again. The function returns 1 when HBA fail to be ready 4221 * otherwise returns zero. 4222 **/ 4223 static int 4224 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4225 { 4226 uint32_t status; 4227 int retval = 0; 4228 4229 /* Read the HBA Host Status Register */ 4230 status = lpfc_sli4_post_status_check(phba); 4231 4232 if (status) { 4233 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4234 lpfc_sli_brdrestart(phba); 4235 status = lpfc_sli4_post_status_check(phba); 4236 } 4237 4238 /* Check to see if any errors occurred during init */ 4239 if (status) { 4240 phba->link_state = LPFC_HBA_ERROR; 4241 retval = 1; 4242 } else 4243 phba->sli4_hba.intr_enable = 0; 4244 4245 return retval; 4246 } 4247 4248 /** 4249 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4250 * @phba: Pointer to HBA context object. 4251 * @mask: Bit mask to be checked. 4252 * 4253 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4254 * from the API jump table function pointer from the lpfc_hba struct. 4255 **/ 4256 int 4257 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4258 { 4259 return phba->lpfc_sli_brdready(phba, mask); 4260 } 4261 4262 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4263 4264 /** 4265 * lpfc_reset_barrier - Make HBA ready for HBA reset 4266 * @phba: Pointer to HBA context object. 4267 * 4268 * This function is called before resetting an HBA. This function is called 4269 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4270 **/ 4271 void lpfc_reset_barrier(struct lpfc_hba *phba) 4272 { 4273 uint32_t __iomem *resp_buf; 4274 uint32_t __iomem *mbox_buf; 4275 volatile uint32_t mbox; 4276 uint32_t hc_copy, ha_copy, resp_data; 4277 int i; 4278 uint8_t hdrtype; 4279 4280 lockdep_assert_held(&phba->hbalock); 4281 4282 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4283 if (hdrtype != 0x80 || 4284 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4285 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4286 return; 4287 4288 /* 4289 * Tell the other part of the chip to suspend temporarily all 4290 * its DMA activity. 4291 */ 4292 resp_buf = phba->MBslimaddr; 4293 4294 /* Disable the error attention */ 4295 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4296 return; 4297 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4298 readl(phba->HCregaddr); /* flush */ 4299 phba->link_flag |= LS_IGNORE_ERATT; 4300 4301 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4302 return; 4303 if (ha_copy & HA_ERATT) { 4304 /* Clear Chip error bit */ 4305 writel(HA_ERATT, phba->HAregaddr); 4306 phba->pport->stopped = 1; 4307 } 4308 4309 mbox = 0; 4310 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4311 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4312 4313 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4314 mbox_buf = phba->MBslimaddr; 4315 writel(mbox, mbox_buf); 4316 4317 for (i = 0; i < 50; i++) { 4318 if (lpfc_readl((resp_buf + 1), &resp_data)) 4319 return; 4320 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4321 mdelay(1); 4322 else 4323 break; 4324 } 4325 resp_data = 0; 4326 if (lpfc_readl((resp_buf + 1), &resp_data)) 4327 return; 4328 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4329 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4330 phba->pport->stopped) 4331 goto restore_hc; 4332 else 4333 goto clear_errat; 4334 } 4335 4336 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4337 resp_data = 0; 4338 for (i = 0; i < 500; i++) { 4339 if (lpfc_readl(resp_buf, &resp_data)) 4340 return; 4341 if (resp_data != mbox) 4342 mdelay(1); 4343 else 4344 break; 4345 } 4346 4347 clear_errat: 4348 4349 while (++i < 500) { 4350 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4351 return; 4352 if (!(ha_copy & HA_ERATT)) 4353 mdelay(1); 4354 else 4355 break; 4356 } 4357 4358 if (readl(phba->HAregaddr) & HA_ERATT) { 4359 writel(HA_ERATT, phba->HAregaddr); 4360 phba->pport->stopped = 1; 4361 } 4362 4363 restore_hc: 4364 phba->link_flag &= ~LS_IGNORE_ERATT; 4365 writel(hc_copy, phba->HCregaddr); 4366 readl(phba->HCregaddr); /* flush */ 4367 } 4368 4369 /** 4370 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4371 * @phba: Pointer to HBA context object. 4372 * 4373 * This function issues a kill_board mailbox command and waits for 4374 * the error attention interrupt. This function is called for stopping 4375 * the firmware processing. The caller is not required to hold any 4376 * locks. This function calls lpfc_hba_down_post function to free 4377 * any pending commands after the kill. The function will return 1 when it 4378 * fails to kill the board else will return 0. 4379 **/ 4380 int 4381 lpfc_sli_brdkill(struct lpfc_hba *phba) 4382 { 4383 struct lpfc_sli *psli; 4384 LPFC_MBOXQ_t *pmb; 4385 uint32_t status; 4386 uint32_t ha_copy; 4387 int retval; 4388 int i = 0; 4389 4390 psli = &phba->sli; 4391 4392 /* Kill HBA */ 4393 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4394 "0329 Kill HBA Data: x%x x%x\n", 4395 phba->pport->port_state, psli->sli_flag); 4396 4397 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4398 if (!pmb) 4399 return 1; 4400 4401 /* Disable the error attention */ 4402 spin_lock_irq(&phba->hbalock); 4403 if (lpfc_readl(phba->HCregaddr, &status)) { 4404 spin_unlock_irq(&phba->hbalock); 4405 mempool_free(pmb, phba->mbox_mem_pool); 4406 return 1; 4407 } 4408 status &= ~HC_ERINT_ENA; 4409 writel(status, phba->HCregaddr); 4410 readl(phba->HCregaddr); /* flush */ 4411 phba->link_flag |= LS_IGNORE_ERATT; 4412 spin_unlock_irq(&phba->hbalock); 4413 4414 lpfc_kill_board(phba, pmb); 4415 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4416 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4417 4418 if (retval != MBX_SUCCESS) { 4419 if (retval != MBX_BUSY) 4420 mempool_free(pmb, phba->mbox_mem_pool); 4421 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4422 "2752 KILL_BOARD command failed retval %d\n", 4423 retval); 4424 spin_lock_irq(&phba->hbalock); 4425 phba->link_flag &= ~LS_IGNORE_ERATT; 4426 spin_unlock_irq(&phba->hbalock); 4427 return 1; 4428 } 4429 4430 spin_lock_irq(&phba->hbalock); 4431 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4432 spin_unlock_irq(&phba->hbalock); 4433 4434 mempool_free(pmb, phba->mbox_mem_pool); 4435 4436 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4437 * attention every 100ms for 3 seconds. If we don't get ERATT after 4438 * 3 seconds we still set HBA_ERROR state because the status of the 4439 * board is now undefined. 4440 */ 4441 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4442 return 1; 4443 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4444 mdelay(100); 4445 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4446 return 1; 4447 } 4448 4449 del_timer_sync(&psli->mbox_tmo); 4450 if (ha_copy & HA_ERATT) { 4451 writel(HA_ERATT, phba->HAregaddr); 4452 phba->pport->stopped = 1; 4453 } 4454 spin_lock_irq(&phba->hbalock); 4455 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4456 psli->mbox_active = NULL; 4457 phba->link_flag &= ~LS_IGNORE_ERATT; 4458 spin_unlock_irq(&phba->hbalock); 4459 4460 lpfc_hba_down_post(phba); 4461 phba->link_state = LPFC_HBA_ERROR; 4462 4463 return ha_copy & HA_ERATT ? 0 : 1; 4464 } 4465 4466 /** 4467 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4468 * @phba: Pointer to HBA context object. 4469 * 4470 * This function resets the HBA by writing HC_INITFF to the control 4471 * register. After the HBA resets, this function resets all the iocb ring 4472 * indices. This function disables PCI layer parity checking during 4473 * the reset. 4474 * This function returns 0 always. 4475 * The caller is not required to hold any locks. 4476 **/ 4477 int 4478 lpfc_sli_brdreset(struct lpfc_hba *phba) 4479 { 4480 struct lpfc_sli *psli; 4481 struct lpfc_sli_ring *pring; 4482 uint16_t cfg_value; 4483 int i; 4484 4485 psli = &phba->sli; 4486 4487 /* Reset HBA */ 4488 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4489 "0325 Reset HBA Data: x%x x%x\n", 4490 (phba->pport) ? phba->pport->port_state : 0, 4491 psli->sli_flag); 4492 4493 /* perform board reset */ 4494 phba->fc_eventTag = 0; 4495 phba->link_events = 0; 4496 if (phba->pport) { 4497 phba->pport->fc_myDID = 0; 4498 phba->pport->fc_prevDID = 0; 4499 } 4500 4501 /* Turn off parity checking and serr during the physical reset */ 4502 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4503 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4504 (cfg_value & 4505 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4506 4507 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4508 4509 /* Now toggle INITFF bit in the Host Control Register */ 4510 writel(HC_INITFF, phba->HCregaddr); 4511 mdelay(1); 4512 readl(phba->HCregaddr); /* flush */ 4513 writel(0, phba->HCregaddr); 4514 readl(phba->HCregaddr); /* flush */ 4515 4516 /* Restore PCI cmd register */ 4517 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4518 4519 /* Initialize relevant SLI info */ 4520 for (i = 0; i < psli->num_rings; i++) { 4521 pring = &psli->sli3_ring[i]; 4522 pring->flag = 0; 4523 pring->sli.sli3.rspidx = 0; 4524 pring->sli.sli3.next_cmdidx = 0; 4525 pring->sli.sli3.local_getidx = 0; 4526 pring->sli.sli3.cmdidx = 0; 4527 pring->missbufcnt = 0; 4528 } 4529 4530 phba->link_state = LPFC_WARM_START; 4531 return 0; 4532 } 4533 4534 /** 4535 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4536 * @phba: Pointer to HBA context object. 4537 * 4538 * This function resets a SLI4 HBA. This function disables PCI layer parity 4539 * checking during resets the device. The caller is not required to hold 4540 * any locks. 4541 * 4542 * This function returns 0 always. 4543 **/ 4544 int 4545 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4546 { 4547 struct lpfc_sli *psli = &phba->sli; 4548 uint16_t cfg_value; 4549 int rc = 0; 4550 4551 /* Reset HBA */ 4552 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4553 "0295 Reset HBA Data: x%x x%x x%x\n", 4554 phba->pport->port_state, psli->sli_flag, 4555 phba->hba_flag); 4556 4557 /* perform board reset */ 4558 phba->fc_eventTag = 0; 4559 phba->link_events = 0; 4560 phba->pport->fc_myDID = 0; 4561 phba->pport->fc_prevDID = 0; 4562 4563 spin_lock_irq(&phba->hbalock); 4564 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4565 phba->fcf.fcf_flag = 0; 4566 spin_unlock_irq(&phba->hbalock); 4567 4568 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4569 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4570 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4571 return rc; 4572 } 4573 4574 /* Now physically reset the device */ 4575 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4576 "0389 Performing PCI function reset!\n"); 4577 4578 /* Turn off parity checking and serr during the physical reset */ 4579 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4580 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4581 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4582 4583 /* Perform FCoE PCI function reset before freeing queue memory */ 4584 rc = lpfc_pci_function_reset(phba); 4585 4586 /* Restore PCI cmd register */ 4587 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4588 4589 return rc; 4590 } 4591 4592 /** 4593 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4594 * @phba: Pointer to HBA context object. 4595 * 4596 * This function is called in the SLI initialization code path to 4597 * restart the HBA. The caller is not required to hold any lock. 4598 * This function writes MBX_RESTART mailbox command to the SLIM and 4599 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4600 * function to free any pending commands. The function enables 4601 * POST only during the first initialization. The function returns zero. 4602 * The function does not guarantee completion of MBX_RESTART mailbox 4603 * command before the return of this function. 4604 **/ 4605 static int 4606 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4607 { 4608 MAILBOX_t *mb; 4609 struct lpfc_sli *psli; 4610 volatile uint32_t word0; 4611 void __iomem *to_slim; 4612 uint32_t hba_aer_enabled; 4613 4614 spin_lock_irq(&phba->hbalock); 4615 4616 /* Take PCIe device Advanced Error Reporting (AER) state */ 4617 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4618 4619 psli = &phba->sli; 4620 4621 /* Restart HBA */ 4622 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4623 "0337 Restart HBA Data: x%x x%x\n", 4624 (phba->pport) ? phba->pport->port_state : 0, 4625 psli->sli_flag); 4626 4627 word0 = 0; 4628 mb = (MAILBOX_t *) &word0; 4629 mb->mbxCommand = MBX_RESTART; 4630 mb->mbxHc = 1; 4631 4632 lpfc_reset_barrier(phba); 4633 4634 to_slim = phba->MBslimaddr; 4635 writel(*(uint32_t *) mb, to_slim); 4636 readl(to_slim); /* flush */ 4637 4638 /* Only skip post after fc_ffinit is completed */ 4639 if (phba->pport && phba->pport->port_state) 4640 word0 = 1; /* This is really setting up word1 */ 4641 else 4642 word0 = 0; /* This is really setting up word1 */ 4643 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4644 writel(*(uint32_t *) mb, to_slim); 4645 readl(to_slim); /* flush */ 4646 4647 lpfc_sli_brdreset(phba); 4648 if (phba->pport) 4649 phba->pport->stopped = 0; 4650 phba->link_state = LPFC_INIT_START; 4651 phba->hba_flag = 0; 4652 spin_unlock_irq(&phba->hbalock); 4653 4654 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4655 psli->stats_start = ktime_get_seconds(); 4656 4657 /* Give the INITFF and Post time to settle. */ 4658 mdelay(100); 4659 4660 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4661 if (hba_aer_enabled) 4662 pci_disable_pcie_error_reporting(phba->pcidev); 4663 4664 lpfc_hba_down_post(phba); 4665 4666 return 0; 4667 } 4668 4669 /** 4670 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4671 * @phba: Pointer to HBA context object. 4672 * 4673 * This function is called in the SLI initialization code path to restart 4674 * a SLI4 HBA. The caller is not required to hold any lock. 4675 * At the end of the function, it calls lpfc_hba_down_post function to 4676 * free any pending commands. 4677 **/ 4678 static int 4679 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4680 { 4681 struct lpfc_sli *psli = &phba->sli; 4682 uint32_t hba_aer_enabled; 4683 int rc; 4684 4685 /* Restart HBA */ 4686 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4687 "0296 Restart HBA Data: x%x x%x\n", 4688 phba->pport->port_state, psli->sli_flag); 4689 4690 /* Take PCIe device Advanced Error Reporting (AER) state */ 4691 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4692 4693 rc = lpfc_sli4_brdreset(phba); 4694 if (rc) 4695 return rc; 4696 4697 spin_lock_irq(&phba->hbalock); 4698 phba->pport->stopped = 0; 4699 phba->link_state = LPFC_INIT_START; 4700 phba->hba_flag = 0; 4701 spin_unlock_irq(&phba->hbalock); 4702 4703 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4704 psli->stats_start = ktime_get_seconds(); 4705 4706 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4707 if (hba_aer_enabled) 4708 pci_disable_pcie_error_reporting(phba->pcidev); 4709 4710 lpfc_hba_down_post(phba); 4711 lpfc_sli4_queue_destroy(phba); 4712 4713 return rc; 4714 } 4715 4716 /** 4717 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4718 * @phba: Pointer to HBA context object. 4719 * 4720 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4721 * API jump table function pointer from the lpfc_hba struct. 4722 **/ 4723 int 4724 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4725 { 4726 return phba->lpfc_sli_brdrestart(phba); 4727 } 4728 4729 /** 4730 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4731 * @phba: Pointer to HBA context object. 4732 * 4733 * This function is called after a HBA restart to wait for successful 4734 * restart of the HBA. Successful restart of the HBA is indicated by 4735 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4736 * iteration, the function will restart the HBA again. The function returns 4737 * zero if HBA successfully restarted else returns negative error code. 4738 **/ 4739 int 4740 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4741 { 4742 uint32_t status, i = 0; 4743 4744 /* Read the HBA Host Status Register */ 4745 if (lpfc_readl(phba->HSregaddr, &status)) 4746 return -EIO; 4747 4748 /* Check status register to see what current state is */ 4749 i = 0; 4750 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4751 4752 /* Check every 10ms for 10 retries, then every 100ms for 90 4753 * retries, then every 1 sec for 50 retires for a total of 4754 * ~60 seconds before reset the board again and check every 4755 * 1 sec for 50 retries. The up to 60 seconds before the 4756 * board ready is required by the Falcon FIPS zeroization 4757 * complete, and any reset the board in between shall cause 4758 * restart of zeroization, further delay the board ready. 4759 */ 4760 if (i++ >= 200) { 4761 /* Adapter failed to init, timeout, status reg 4762 <status> */ 4763 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4764 "0436 Adapter failed to init, " 4765 "timeout, status reg x%x, " 4766 "FW Data: A8 x%x AC x%x\n", status, 4767 readl(phba->MBslimaddr + 0xa8), 4768 readl(phba->MBslimaddr + 0xac)); 4769 phba->link_state = LPFC_HBA_ERROR; 4770 return -ETIMEDOUT; 4771 } 4772 4773 /* Check to see if any errors occurred during init */ 4774 if (status & HS_FFERM) { 4775 /* ERROR: During chipset initialization */ 4776 /* Adapter failed to init, chipset, status reg 4777 <status> */ 4778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4779 "0437 Adapter failed to init, " 4780 "chipset, status reg x%x, " 4781 "FW Data: A8 x%x AC x%x\n", status, 4782 readl(phba->MBslimaddr + 0xa8), 4783 readl(phba->MBslimaddr + 0xac)); 4784 phba->link_state = LPFC_HBA_ERROR; 4785 return -EIO; 4786 } 4787 4788 if (i <= 10) 4789 msleep(10); 4790 else if (i <= 100) 4791 msleep(100); 4792 else 4793 msleep(1000); 4794 4795 if (i == 150) { 4796 /* Do post */ 4797 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4798 lpfc_sli_brdrestart(phba); 4799 } 4800 /* Read the HBA Host Status Register */ 4801 if (lpfc_readl(phba->HSregaddr, &status)) 4802 return -EIO; 4803 } 4804 4805 /* Check to see if any errors occurred during init */ 4806 if (status & HS_FFERM) { 4807 /* ERROR: During chipset initialization */ 4808 /* Adapter failed to init, chipset, status reg <status> */ 4809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4810 "0438 Adapter failed to init, chipset, " 4811 "status reg x%x, " 4812 "FW Data: A8 x%x AC x%x\n", status, 4813 readl(phba->MBslimaddr + 0xa8), 4814 readl(phba->MBslimaddr + 0xac)); 4815 phba->link_state = LPFC_HBA_ERROR; 4816 return -EIO; 4817 } 4818 4819 /* Clear all interrupt enable conditions */ 4820 writel(0, phba->HCregaddr); 4821 readl(phba->HCregaddr); /* flush */ 4822 4823 /* setup host attn register */ 4824 writel(0xffffffff, phba->HAregaddr); 4825 readl(phba->HAregaddr); /* flush */ 4826 return 0; 4827 } 4828 4829 /** 4830 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4831 * 4832 * This function calculates and returns the number of HBQs required to be 4833 * configured. 4834 **/ 4835 int 4836 lpfc_sli_hbq_count(void) 4837 { 4838 return ARRAY_SIZE(lpfc_hbq_defs); 4839 } 4840 4841 /** 4842 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4843 * 4844 * This function adds the number of hbq entries in every HBQ to get 4845 * the total number of hbq entries required for the HBA and returns 4846 * the total count. 4847 **/ 4848 static int 4849 lpfc_sli_hbq_entry_count(void) 4850 { 4851 int hbq_count = lpfc_sli_hbq_count(); 4852 int count = 0; 4853 int i; 4854 4855 for (i = 0; i < hbq_count; ++i) 4856 count += lpfc_hbq_defs[i]->entry_count; 4857 return count; 4858 } 4859 4860 /** 4861 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4862 * 4863 * This function calculates amount of memory required for all hbq entries 4864 * to be configured and returns the total memory required. 4865 **/ 4866 int 4867 lpfc_sli_hbq_size(void) 4868 { 4869 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4870 } 4871 4872 /** 4873 * lpfc_sli_hbq_setup - configure and initialize HBQs 4874 * @phba: Pointer to HBA context object. 4875 * 4876 * This function is called during the SLI initialization to configure 4877 * all the HBQs and post buffers to the HBQ. The caller is not 4878 * required to hold any locks. This function will return zero if successful 4879 * else it will return negative error code. 4880 **/ 4881 static int 4882 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4883 { 4884 int hbq_count = lpfc_sli_hbq_count(); 4885 LPFC_MBOXQ_t *pmb; 4886 MAILBOX_t *pmbox; 4887 uint32_t hbqno; 4888 uint32_t hbq_entry_index; 4889 4890 /* Get a Mailbox buffer to setup mailbox 4891 * commands for HBA initialization 4892 */ 4893 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4894 4895 if (!pmb) 4896 return -ENOMEM; 4897 4898 pmbox = &pmb->u.mb; 4899 4900 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4901 phba->link_state = LPFC_INIT_MBX_CMDS; 4902 phba->hbq_in_use = 1; 4903 4904 hbq_entry_index = 0; 4905 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4906 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4907 phba->hbqs[hbqno].hbqPutIdx = 0; 4908 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4909 phba->hbqs[hbqno].entry_count = 4910 lpfc_hbq_defs[hbqno]->entry_count; 4911 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4912 hbq_entry_index, pmb); 4913 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4914 4915 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4916 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4917 mbxStatus <status>, ring <num> */ 4918 4919 lpfc_printf_log(phba, KERN_ERR, 4920 LOG_SLI | LOG_VPORT, 4921 "1805 Adapter failed to init. " 4922 "Data: x%x x%x x%x\n", 4923 pmbox->mbxCommand, 4924 pmbox->mbxStatus, hbqno); 4925 4926 phba->link_state = LPFC_HBA_ERROR; 4927 mempool_free(pmb, phba->mbox_mem_pool); 4928 return -ENXIO; 4929 } 4930 } 4931 phba->hbq_count = hbq_count; 4932 4933 mempool_free(pmb, phba->mbox_mem_pool); 4934 4935 /* Initially populate or replenish the HBQs */ 4936 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4937 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4938 return 0; 4939 } 4940 4941 /** 4942 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4943 * @phba: Pointer to HBA context object. 4944 * 4945 * This function is called during the SLI initialization to configure 4946 * all the HBQs and post buffers to the HBQ. The caller is not 4947 * required to hold any locks. This function will return zero if successful 4948 * else it will return negative error code. 4949 **/ 4950 static int 4951 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4952 { 4953 phba->hbq_in_use = 1; 4954 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4955 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4956 phba->hbq_count = 1; 4957 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4958 /* Initially populate or replenish the HBQs */ 4959 return 0; 4960 } 4961 4962 /** 4963 * lpfc_sli_config_port - Issue config port mailbox command 4964 * @phba: Pointer to HBA context object. 4965 * @sli_mode: sli mode - 2/3 4966 * 4967 * This function is called by the sli initialization code path 4968 * to issue config_port mailbox command. This function restarts the 4969 * HBA firmware and issues a config_port mailbox command to configure 4970 * the SLI interface in the sli mode specified by sli_mode 4971 * variable. The caller is not required to hold any locks. 4972 * The function returns 0 if successful, else returns negative error 4973 * code. 4974 **/ 4975 int 4976 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4977 { 4978 LPFC_MBOXQ_t *pmb; 4979 uint32_t resetcount = 0, rc = 0, done = 0; 4980 4981 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4982 if (!pmb) { 4983 phba->link_state = LPFC_HBA_ERROR; 4984 return -ENOMEM; 4985 } 4986 4987 phba->sli_rev = sli_mode; 4988 while (resetcount < 2 && !done) { 4989 spin_lock_irq(&phba->hbalock); 4990 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4991 spin_unlock_irq(&phba->hbalock); 4992 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4993 lpfc_sli_brdrestart(phba); 4994 rc = lpfc_sli_chipset_init(phba); 4995 if (rc) 4996 break; 4997 4998 spin_lock_irq(&phba->hbalock); 4999 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5000 spin_unlock_irq(&phba->hbalock); 5001 resetcount++; 5002 5003 /* Call pre CONFIG_PORT mailbox command initialization. A 5004 * value of 0 means the call was successful. Any other 5005 * nonzero value is a failure, but if ERESTART is returned, 5006 * the driver may reset the HBA and try again. 5007 */ 5008 rc = lpfc_config_port_prep(phba); 5009 if (rc == -ERESTART) { 5010 phba->link_state = LPFC_LINK_UNKNOWN; 5011 continue; 5012 } else if (rc) 5013 break; 5014 5015 phba->link_state = LPFC_INIT_MBX_CMDS; 5016 lpfc_config_port(phba, pmb); 5017 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5018 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5019 LPFC_SLI3_HBQ_ENABLED | 5020 LPFC_SLI3_CRP_ENABLED | 5021 LPFC_SLI3_DSS_ENABLED); 5022 if (rc != MBX_SUCCESS) { 5023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5024 "0442 Adapter failed to init, mbxCmd x%x " 5025 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5026 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5027 spin_lock_irq(&phba->hbalock); 5028 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5029 spin_unlock_irq(&phba->hbalock); 5030 rc = -ENXIO; 5031 } else { 5032 /* Allow asynchronous mailbox command to go through */ 5033 spin_lock_irq(&phba->hbalock); 5034 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5035 spin_unlock_irq(&phba->hbalock); 5036 done = 1; 5037 5038 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5039 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5040 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5041 "3110 Port did not grant ASABT\n"); 5042 } 5043 } 5044 if (!done) { 5045 rc = -EINVAL; 5046 goto do_prep_failed; 5047 } 5048 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5049 if (!pmb->u.mb.un.varCfgPort.cMA) { 5050 rc = -ENXIO; 5051 goto do_prep_failed; 5052 } 5053 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5054 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5055 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5056 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5057 phba->max_vpi : phba->max_vports; 5058 5059 } else 5060 phba->max_vpi = 0; 5061 phba->fips_level = 0; 5062 phba->fips_spec_rev = 0; 5063 if (pmb->u.mb.un.varCfgPort.gdss) { 5064 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 5065 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 5066 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 5067 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5068 "2850 Security Crypto Active. FIPS x%d " 5069 "(Spec Rev: x%d)", 5070 phba->fips_level, phba->fips_spec_rev); 5071 } 5072 if (pmb->u.mb.un.varCfgPort.sec_err) { 5073 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5074 "2856 Config Port Security Crypto " 5075 "Error: x%x ", 5076 pmb->u.mb.un.varCfgPort.sec_err); 5077 } 5078 if (pmb->u.mb.un.varCfgPort.gerbm) 5079 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5080 if (pmb->u.mb.un.varCfgPort.gcrp) 5081 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5082 5083 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5084 phba->port_gp = phba->mbox->us.s3_pgp.port; 5085 5086 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5087 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5088 phba->cfg_enable_bg = 0; 5089 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5090 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5091 "0443 Adapter did not grant " 5092 "BlockGuard\n"); 5093 } 5094 } 5095 } else { 5096 phba->hbq_get = NULL; 5097 phba->port_gp = phba->mbox->us.s2.port; 5098 phba->max_vpi = 0; 5099 } 5100 do_prep_failed: 5101 mempool_free(pmb, phba->mbox_mem_pool); 5102 return rc; 5103 } 5104 5105 5106 /** 5107 * lpfc_sli_hba_setup - SLI initialization function 5108 * @phba: Pointer to HBA context object. 5109 * 5110 * This function is the main SLI initialization function. This function 5111 * is called by the HBA initialization code, HBA reset code and HBA 5112 * error attention handler code. Caller is not required to hold any 5113 * locks. This function issues config_port mailbox command to configure 5114 * the SLI, setup iocb rings and HBQ rings. In the end the function 5115 * calls the config_port_post function to issue init_link mailbox 5116 * command and to start the discovery. The function will return zero 5117 * if successful, else it will return negative error code. 5118 **/ 5119 int 5120 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5121 { 5122 uint32_t rc; 5123 int mode = 3, i; 5124 int longs; 5125 5126 switch (phba->cfg_sli_mode) { 5127 case 2: 5128 if (phba->cfg_enable_npiv) { 5129 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5130 "1824 NPIV enabled: Override sli_mode " 5131 "parameter (%d) to auto (0).\n", 5132 phba->cfg_sli_mode); 5133 break; 5134 } 5135 mode = 2; 5136 break; 5137 case 0: 5138 case 3: 5139 break; 5140 default: 5141 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5142 "1819 Unrecognized sli_mode parameter: %d.\n", 5143 phba->cfg_sli_mode); 5144 5145 break; 5146 } 5147 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5148 5149 rc = lpfc_sli_config_port(phba, mode); 5150 5151 if (rc && phba->cfg_sli_mode == 3) 5152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5153 "1820 Unable to select SLI-3. " 5154 "Not supported by adapter.\n"); 5155 if (rc && mode != 2) 5156 rc = lpfc_sli_config_port(phba, 2); 5157 else if (rc && mode == 2) 5158 rc = lpfc_sli_config_port(phba, 3); 5159 if (rc) 5160 goto lpfc_sli_hba_setup_error; 5161 5162 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5163 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5164 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5165 if (!rc) { 5166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5167 "2709 This device supports " 5168 "Advanced Error Reporting (AER)\n"); 5169 spin_lock_irq(&phba->hbalock); 5170 phba->hba_flag |= HBA_AER_ENABLED; 5171 spin_unlock_irq(&phba->hbalock); 5172 } else { 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "2708 This device does not support " 5175 "Advanced Error Reporting (AER): %d\n", 5176 rc); 5177 phba->cfg_aer_support = 0; 5178 } 5179 } 5180 5181 if (phba->sli_rev == 3) { 5182 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5183 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5184 } else { 5185 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5186 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5187 phba->sli3_options = 0; 5188 } 5189 5190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5191 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5192 phba->sli_rev, phba->max_vpi); 5193 rc = lpfc_sli_ring_map(phba); 5194 5195 if (rc) 5196 goto lpfc_sli_hba_setup_error; 5197 5198 /* Initialize VPIs. */ 5199 if (phba->sli_rev == LPFC_SLI_REV3) { 5200 /* 5201 * The VPI bitmask and physical ID array are allocated 5202 * and initialized once only - at driver load. A port 5203 * reset doesn't need to reinitialize this memory. 5204 */ 5205 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5206 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5207 phba->vpi_bmask = kcalloc(longs, 5208 sizeof(unsigned long), 5209 GFP_KERNEL); 5210 if (!phba->vpi_bmask) { 5211 rc = -ENOMEM; 5212 goto lpfc_sli_hba_setup_error; 5213 } 5214 5215 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5216 sizeof(uint16_t), 5217 GFP_KERNEL); 5218 if (!phba->vpi_ids) { 5219 kfree(phba->vpi_bmask); 5220 rc = -ENOMEM; 5221 goto lpfc_sli_hba_setup_error; 5222 } 5223 for (i = 0; i < phba->max_vpi; i++) 5224 phba->vpi_ids[i] = i; 5225 } 5226 } 5227 5228 /* Init HBQs */ 5229 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5230 rc = lpfc_sli_hbq_setup(phba); 5231 if (rc) 5232 goto lpfc_sli_hba_setup_error; 5233 } 5234 spin_lock_irq(&phba->hbalock); 5235 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5236 spin_unlock_irq(&phba->hbalock); 5237 5238 rc = lpfc_config_port_post(phba); 5239 if (rc) 5240 goto lpfc_sli_hba_setup_error; 5241 5242 return rc; 5243 5244 lpfc_sli_hba_setup_error: 5245 phba->link_state = LPFC_HBA_ERROR; 5246 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5247 "0445 Firmware initialization failed\n"); 5248 return rc; 5249 } 5250 5251 /** 5252 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5253 * @phba: Pointer to HBA context object. 5254 * @mboxq: mailbox pointer. 5255 * This function issue a dump mailbox command to read config region 5256 * 23 and parse the records in the region and populate driver 5257 * data structure. 5258 **/ 5259 static int 5260 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5261 { 5262 LPFC_MBOXQ_t *mboxq; 5263 struct lpfc_dmabuf *mp; 5264 struct lpfc_mqe *mqe; 5265 uint32_t data_length; 5266 int rc; 5267 5268 /* Program the default value of vlan_id and fc_map */ 5269 phba->valid_vlan = 0; 5270 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5271 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5272 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5273 5274 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5275 if (!mboxq) 5276 return -ENOMEM; 5277 5278 mqe = &mboxq->u.mqe; 5279 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5280 rc = -ENOMEM; 5281 goto out_free_mboxq; 5282 } 5283 5284 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5285 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5286 5287 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5288 "(%d):2571 Mailbox cmd x%x Status x%x " 5289 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5290 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5291 "CQ: x%x x%x x%x x%x\n", 5292 mboxq->vport ? mboxq->vport->vpi : 0, 5293 bf_get(lpfc_mqe_command, mqe), 5294 bf_get(lpfc_mqe_status, mqe), 5295 mqe->un.mb_words[0], mqe->un.mb_words[1], 5296 mqe->un.mb_words[2], mqe->un.mb_words[3], 5297 mqe->un.mb_words[4], mqe->un.mb_words[5], 5298 mqe->un.mb_words[6], mqe->un.mb_words[7], 5299 mqe->un.mb_words[8], mqe->un.mb_words[9], 5300 mqe->un.mb_words[10], mqe->un.mb_words[11], 5301 mqe->un.mb_words[12], mqe->un.mb_words[13], 5302 mqe->un.mb_words[14], mqe->un.mb_words[15], 5303 mqe->un.mb_words[16], mqe->un.mb_words[50], 5304 mboxq->mcqe.word0, 5305 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5306 mboxq->mcqe.trailer); 5307 5308 if (rc) { 5309 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5310 kfree(mp); 5311 rc = -EIO; 5312 goto out_free_mboxq; 5313 } 5314 data_length = mqe->un.mb_words[5]; 5315 if (data_length > DMP_RGN23_SIZE) { 5316 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5317 kfree(mp); 5318 rc = -EIO; 5319 goto out_free_mboxq; 5320 } 5321 5322 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5323 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5324 kfree(mp); 5325 rc = 0; 5326 5327 out_free_mboxq: 5328 mempool_free(mboxq, phba->mbox_mem_pool); 5329 return rc; 5330 } 5331 5332 /** 5333 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5334 * @phba: pointer to lpfc hba data structure. 5335 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5336 * @vpd: pointer to the memory to hold resulting port vpd data. 5337 * @vpd_size: On input, the number of bytes allocated to @vpd. 5338 * On output, the number of data bytes in @vpd. 5339 * 5340 * This routine executes a READ_REV SLI4 mailbox command. In 5341 * addition, this routine gets the port vpd data. 5342 * 5343 * Return codes 5344 * 0 - successful 5345 * -ENOMEM - could not allocated memory. 5346 **/ 5347 static int 5348 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5349 uint8_t *vpd, uint32_t *vpd_size) 5350 { 5351 int rc = 0; 5352 uint32_t dma_size; 5353 struct lpfc_dmabuf *dmabuf; 5354 struct lpfc_mqe *mqe; 5355 5356 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5357 if (!dmabuf) 5358 return -ENOMEM; 5359 5360 /* 5361 * Get a DMA buffer for the vpd data resulting from the READ_REV 5362 * mailbox command. 5363 */ 5364 dma_size = *vpd_size; 5365 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5366 &dmabuf->phys, GFP_KERNEL); 5367 if (!dmabuf->virt) { 5368 kfree(dmabuf); 5369 return -ENOMEM; 5370 } 5371 5372 /* 5373 * The SLI4 implementation of READ_REV conflicts at word1, 5374 * bits 31:16 and SLI4 adds vpd functionality not present 5375 * in SLI3. This code corrects the conflicts. 5376 */ 5377 lpfc_read_rev(phba, mboxq); 5378 mqe = &mboxq->u.mqe; 5379 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5380 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5381 mqe->un.read_rev.word1 &= 0x0000FFFF; 5382 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5383 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5384 5385 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5386 if (rc) { 5387 dma_free_coherent(&phba->pcidev->dev, dma_size, 5388 dmabuf->virt, dmabuf->phys); 5389 kfree(dmabuf); 5390 return -EIO; 5391 } 5392 5393 /* 5394 * The available vpd length cannot be bigger than the 5395 * DMA buffer passed to the port. Catch the less than 5396 * case and update the caller's size. 5397 */ 5398 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5399 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5400 5401 memcpy(vpd, dmabuf->virt, *vpd_size); 5402 5403 dma_free_coherent(&phba->pcidev->dev, dma_size, 5404 dmabuf->virt, dmabuf->phys); 5405 kfree(dmabuf); 5406 return 0; 5407 } 5408 5409 /** 5410 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5411 * @phba: pointer to lpfc hba data structure. 5412 * 5413 * This routine retrieves SLI4 device physical port name this PCI function 5414 * is attached to. 5415 * 5416 * Return codes 5417 * 0 - successful 5418 * otherwise - failed to retrieve physical port name 5419 **/ 5420 static int 5421 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5422 { 5423 LPFC_MBOXQ_t *mboxq; 5424 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5425 struct lpfc_controller_attribute *cntl_attr; 5426 struct lpfc_mbx_get_port_name *get_port_name; 5427 void *virtaddr = NULL; 5428 uint32_t alloclen, reqlen; 5429 uint32_t shdr_status, shdr_add_status; 5430 union lpfc_sli4_cfg_shdr *shdr; 5431 char cport_name = 0; 5432 int rc; 5433 5434 /* We assume nothing at this point */ 5435 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5436 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5437 5438 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5439 if (!mboxq) 5440 return -ENOMEM; 5441 /* obtain link type and link number via READ_CONFIG */ 5442 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5443 lpfc_sli4_read_config(phba); 5444 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5445 goto retrieve_ppname; 5446 5447 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5448 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5449 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5450 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5451 LPFC_SLI4_MBX_NEMBED); 5452 if (alloclen < reqlen) { 5453 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5454 "3084 Allocated DMA memory size (%d) is " 5455 "less than the requested DMA memory size " 5456 "(%d)\n", alloclen, reqlen); 5457 rc = -ENOMEM; 5458 goto out_free_mboxq; 5459 } 5460 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5461 virtaddr = mboxq->sge_array->addr[0]; 5462 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5463 shdr = &mbx_cntl_attr->cfg_shdr; 5464 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5465 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5466 if (shdr_status || shdr_add_status || rc) { 5467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5468 "3085 Mailbox x%x (x%x/x%x) failed, " 5469 "rc:x%x, status:x%x, add_status:x%x\n", 5470 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5471 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5472 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5473 rc, shdr_status, shdr_add_status); 5474 rc = -ENXIO; 5475 goto out_free_mboxq; 5476 } 5477 cntl_attr = &mbx_cntl_attr->cntl_attr; 5478 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5479 phba->sli4_hba.lnk_info.lnk_tp = 5480 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5481 phba->sli4_hba.lnk_info.lnk_no = 5482 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5484 "3086 lnk_type:%d, lnk_numb:%d\n", 5485 phba->sli4_hba.lnk_info.lnk_tp, 5486 phba->sli4_hba.lnk_info.lnk_no); 5487 5488 retrieve_ppname: 5489 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5490 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5491 sizeof(struct lpfc_mbx_get_port_name) - 5492 sizeof(struct lpfc_sli4_cfg_mhdr), 5493 LPFC_SLI4_MBX_EMBED); 5494 get_port_name = &mboxq->u.mqe.un.get_port_name; 5495 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5496 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5497 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5498 phba->sli4_hba.lnk_info.lnk_tp); 5499 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5500 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5501 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5502 if (shdr_status || shdr_add_status || rc) { 5503 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5504 "3087 Mailbox x%x (x%x/x%x) failed: " 5505 "rc:x%x, status:x%x, add_status:x%x\n", 5506 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5507 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5508 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5509 rc, shdr_status, shdr_add_status); 5510 rc = -ENXIO; 5511 goto out_free_mboxq; 5512 } 5513 switch (phba->sli4_hba.lnk_info.lnk_no) { 5514 case LPFC_LINK_NUMBER_0: 5515 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5516 &get_port_name->u.response); 5517 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5518 break; 5519 case LPFC_LINK_NUMBER_1: 5520 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5521 &get_port_name->u.response); 5522 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5523 break; 5524 case LPFC_LINK_NUMBER_2: 5525 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5526 &get_port_name->u.response); 5527 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5528 break; 5529 case LPFC_LINK_NUMBER_3: 5530 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5531 &get_port_name->u.response); 5532 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5533 break; 5534 default: 5535 break; 5536 } 5537 5538 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5539 phba->Port[0] = cport_name; 5540 phba->Port[1] = '\0'; 5541 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5542 "3091 SLI get port name: %s\n", phba->Port); 5543 } 5544 5545 out_free_mboxq: 5546 if (rc != MBX_TIMEOUT) { 5547 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5548 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5549 else 5550 mempool_free(mboxq, phba->mbox_mem_pool); 5551 } 5552 return rc; 5553 } 5554 5555 /** 5556 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5557 * @phba: pointer to lpfc hba data structure. 5558 * 5559 * This routine is called to explicitly arm the SLI4 device's completion and 5560 * event queues 5561 **/ 5562 static void 5563 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5564 { 5565 int qidx; 5566 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5567 5568 sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM); 5569 sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM); 5570 if (sli4_hba->nvmels_cq) 5571 sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq, 5572 LPFC_QUEUE_REARM); 5573 5574 if (sli4_hba->fcp_cq) 5575 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5576 sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx], 5577 LPFC_QUEUE_REARM); 5578 5579 if (sli4_hba->nvme_cq) 5580 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5581 sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx], 5582 LPFC_QUEUE_REARM); 5583 5584 if (phba->cfg_fof) 5585 sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM); 5586 5587 if (sli4_hba->hba_eq) 5588 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5589 sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx], 5590 LPFC_QUEUE_REARM); 5591 5592 if (phba->nvmet_support) { 5593 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5594 sli4_hba->sli4_cq_release( 5595 sli4_hba->nvmet_cqset[qidx], 5596 LPFC_QUEUE_REARM); 5597 } 5598 } 5599 5600 if (phba->cfg_fof) 5601 sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM); 5602 } 5603 5604 /** 5605 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5606 * @phba: Pointer to HBA context object. 5607 * @type: The resource extent type. 5608 * @extnt_count: buffer to hold port available extent count. 5609 * @extnt_size: buffer to hold element count per extent. 5610 * 5611 * This function calls the port and retrievs the number of available 5612 * extents and their size for a particular extent type. 5613 * 5614 * Returns: 0 if successful. Nonzero otherwise. 5615 **/ 5616 int 5617 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5618 uint16_t *extnt_count, uint16_t *extnt_size) 5619 { 5620 int rc = 0; 5621 uint32_t length; 5622 uint32_t mbox_tmo; 5623 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5624 LPFC_MBOXQ_t *mbox; 5625 5626 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5627 if (!mbox) 5628 return -ENOMEM; 5629 5630 /* Find out how many extents are available for this resource type */ 5631 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5632 sizeof(struct lpfc_sli4_cfg_mhdr)); 5633 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5634 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5635 length, LPFC_SLI4_MBX_EMBED); 5636 5637 /* Send an extents count of 0 - the GET doesn't use it. */ 5638 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5639 LPFC_SLI4_MBX_EMBED); 5640 if (unlikely(rc)) { 5641 rc = -EIO; 5642 goto err_exit; 5643 } 5644 5645 if (!phba->sli4_hba.intr_enable) 5646 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5647 else { 5648 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5649 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5650 } 5651 if (unlikely(rc)) { 5652 rc = -EIO; 5653 goto err_exit; 5654 } 5655 5656 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5657 if (bf_get(lpfc_mbox_hdr_status, 5658 &rsrc_info->header.cfg_shdr.response)) { 5659 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5660 "2930 Failed to get resource extents " 5661 "Status 0x%x Add'l Status 0x%x\n", 5662 bf_get(lpfc_mbox_hdr_status, 5663 &rsrc_info->header.cfg_shdr.response), 5664 bf_get(lpfc_mbox_hdr_add_status, 5665 &rsrc_info->header.cfg_shdr.response)); 5666 rc = -EIO; 5667 goto err_exit; 5668 } 5669 5670 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5671 &rsrc_info->u.rsp); 5672 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5673 &rsrc_info->u.rsp); 5674 5675 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5676 "3162 Retrieved extents type-%d from port: count:%d, " 5677 "size:%d\n", type, *extnt_count, *extnt_size); 5678 5679 err_exit: 5680 mempool_free(mbox, phba->mbox_mem_pool); 5681 return rc; 5682 } 5683 5684 /** 5685 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5686 * @phba: Pointer to HBA context object. 5687 * @type: The extent type to check. 5688 * 5689 * This function reads the current available extents from the port and checks 5690 * if the extent count or extent size has changed since the last access. 5691 * Callers use this routine post port reset to understand if there is a 5692 * extent reprovisioning requirement. 5693 * 5694 * Returns: 5695 * -Error: error indicates problem. 5696 * 1: Extent count or size has changed. 5697 * 0: No changes. 5698 **/ 5699 static int 5700 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5701 { 5702 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5703 uint16_t size_diff, rsrc_ext_size; 5704 int rc = 0; 5705 struct lpfc_rsrc_blks *rsrc_entry; 5706 struct list_head *rsrc_blk_list = NULL; 5707 5708 size_diff = 0; 5709 curr_ext_cnt = 0; 5710 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5711 &rsrc_ext_cnt, 5712 &rsrc_ext_size); 5713 if (unlikely(rc)) 5714 return -EIO; 5715 5716 switch (type) { 5717 case LPFC_RSC_TYPE_FCOE_RPI: 5718 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5719 break; 5720 case LPFC_RSC_TYPE_FCOE_VPI: 5721 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5722 break; 5723 case LPFC_RSC_TYPE_FCOE_XRI: 5724 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5725 break; 5726 case LPFC_RSC_TYPE_FCOE_VFI: 5727 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5728 break; 5729 default: 5730 break; 5731 } 5732 5733 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5734 curr_ext_cnt++; 5735 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5736 size_diff++; 5737 } 5738 5739 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5740 rc = 1; 5741 5742 return rc; 5743 } 5744 5745 /** 5746 * lpfc_sli4_cfg_post_extnts - 5747 * @phba: Pointer to HBA context object. 5748 * @extnt_cnt - number of available extents. 5749 * @type - the extent type (rpi, xri, vfi, vpi). 5750 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5751 * @mbox - pointer to the caller's allocated mailbox structure. 5752 * 5753 * This function executes the extents allocation request. It also 5754 * takes care of the amount of memory needed to allocate or get the 5755 * allocated extents. It is the caller's responsibility to evaluate 5756 * the response. 5757 * 5758 * Returns: 5759 * -Error: Error value describes the condition found. 5760 * 0: if successful 5761 **/ 5762 static int 5763 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5764 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5765 { 5766 int rc = 0; 5767 uint32_t req_len; 5768 uint32_t emb_len; 5769 uint32_t alloc_len, mbox_tmo; 5770 5771 /* Calculate the total requested length of the dma memory */ 5772 req_len = extnt_cnt * sizeof(uint16_t); 5773 5774 /* 5775 * Calculate the size of an embedded mailbox. The uint32_t 5776 * accounts for extents-specific word. 5777 */ 5778 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5779 sizeof(uint32_t); 5780 5781 /* 5782 * Presume the allocation and response will fit into an embedded 5783 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5784 */ 5785 *emb = LPFC_SLI4_MBX_EMBED; 5786 if (req_len > emb_len) { 5787 req_len = extnt_cnt * sizeof(uint16_t) + 5788 sizeof(union lpfc_sli4_cfg_shdr) + 5789 sizeof(uint32_t); 5790 *emb = LPFC_SLI4_MBX_NEMBED; 5791 } 5792 5793 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5794 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5795 req_len, *emb); 5796 if (alloc_len < req_len) { 5797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5798 "2982 Allocated DMA memory size (x%x) is " 5799 "less than the requested DMA memory " 5800 "size (x%x)\n", alloc_len, req_len); 5801 return -ENOMEM; 5802 } 5803 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5804 if (unlikely(rc)) 5805 return -EIO; 5806 5807 if (!phba->sli4_hba.intr_enable) 5808 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5809 else { 5810 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5811 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5812 } 5813 5814 if (unlikely(rc)) 5815 rc = -EIO; 5816 return rc; 5817 } 5818 5819 /** 5820 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5821 * @phba: Pointer to HBA context object. 5822 * @type: The resource extent type to allocate. 5823 * 5824 * This function allocates the number of elements for the specified 5825 * resource type. 5826 **/ 5827 static int 5828 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5829 { 5830 bool emb = false; 5831 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5832 uint16_t rsrc_id, rsrc_start, j, k; 5833 uint16_t *ids; 5834 int i, rc; 5835 unsigned long longs; 5836 unsigned long *bmask; 5837 struct lpfc_rsrc_blks *rsrc_blks; 5838 LPFC_MBOXQ_t *mbox; 5839 uint32_t length; 5840 struct lpfc_id_range *id_array = NULL; 5841 void *virtaddr = NULL; 5842 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5843 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5844 struct list_head *ext_blk_list; 5845 5846 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5847 &rsrc_cnt, 5848 &rsrc_size); 5849 if (unlikely(rc)) 5850 return -EIO; 5851 5852 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5853 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5854 "3009 No available Resource Extents " 5855 "for resource type 0x%x: Count: 0x%x, " 5856 "Size 0x%x\n", type, rsrc_cnt, 5857 rsrc_size); 5858 return -ENOMEM; 5859 } 5860 5861 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5862 "2903 Post resource extents type-0x%x: " 5863 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5864 5865 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5866 if (!mbox) 5867 return -ENOMEM; 5868 5869 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5870 if (unlikely(rc)) { 5871 rc = -EIO; 5872 goto err_exit; 5873 } 5874 5875 /* 5876 * Figure out where the response is located. Then get local pointers 5877 * to the response data. The port does not guarantee to respond to 5878 * all extents counts request so update the local variable with the 5879 * allocated count from the port. 5880 */ 5881 if (emb == LPFC_SLI4_MBX_EMBED) { 5882 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5883 id_array = &rsrc_ext->u.rsp.id[0]; 5884 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5885 } else { 5886 virtaddr = mbox->sge_array->addr[0]; 5887 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5888 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5889 id_array = &n_rsrc->id; 5890 } 5891 5892 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5893 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5894 5895 /* 5896 * Based on the resource size and count, correct the base and max 5897 * resource values. 5898 */ 5899 length = sizeof(struct lpfc_rsrc_blks); 5900 switch (type) { 5901 case LPFC_RSC_TYPE_FCOE_RPI: 5902 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5903 sizeof(unsigned long), 5904 GFP_KERNEL); 5905 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5906 rc = -ENOMEM; 5907 goto err_exit; 5908 } 5909 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5910 sizeof(uint16_t), 5911 GFP_KERNEL); 5912 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5913 kfree(phba->sli4_hba.rpi_bmask); 5914 rc = -ENOMEM; 5915 goto err_exit; 5916 } 5917 5918 /* 5919 * The next_rpi was initialized with the maximum available 5920 * count but the port may allocate a smaller number. Catch 5921 * that case and update the next_rpi. 5922 */ 5923 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5924 5925 /* Initialize local ptrs for common extent processing later. */ 5926 bmask = phba->sli4_hba.rpi_bmask; 5927 ids = phba->sli4_hba.rpi_ids; 5928 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5929 break; 5930 case LPFC_RSC_TYPE_FCOE_VPI: 5931 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5932 GFP_KERNEL); 5933 if (unlikely(!phba->vpi_bmask)) { 5934 rc = -ENOMEM; 5935 goto err_exit; 5936 } 5937 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5938 GFP_KERNEL); 5939 if (unlikely(!phba->vpi_ids)) { 5940 kfree(phba->vpi_bmask); 5941 rc = -ENOMEM; 5942 goto err_exit; 5943 } 5944 5945 /* Initialize local ptrs for common extent processing later. */ 5946 bmask = phba->vpi_bmask; 5947 ids = phba->vpi_ids; 5948 ext_blk_list = &phba->lpfc_vpi_blk_list; 5949 break; 5950 case LPFC_RSC_TYPE_FCOE_XRI: 5951 phba->sli4_hba.xri_bmask = kcalloc(longs, 5952 sizeof(unsigned long), 5953 GFP_KERNEL); 5954 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5955 rc = -ENOMEM; 5956 goto err_exit; 5957 } 5958 phba->sli4_hba.max_cfg_param.xri_used = 0; 5959 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5960 sizeof(uint16_t), 5961 GFP_KERNEL); 5962 if (unlikely(!phba->sli4_hba.xri_ids)) { 5963 kfree(phba->sli4_hba.xri_bmask); 5964 rc = -ENOMEM; 5965 goto err_exit; 5966 } 5967 5968 /* Initialize local ptrs for common extent processing later. */ 5969 bmask = phba->sli4_hba.xri_bmask; 5970 ids = phba->sli4_hba.xri_ids; 5971 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5972 break; 5973 case LPFC_RSC_TYPE_FCOE_VFI: 5974 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5975 sizeof(unsigned long), 5976 GFP_KERNEL); 5977 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5978 rc = -ENOMEM; 5979 goto err_exit; 5980 } 5981 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5982 sizeof(uint16_t), 5983 GFP_KERNEL); 5984 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5985 kfree(phba->sli4_hba.vfi_bmask); 5986 rc = -ENOMEM; 5987 goto err_exit; 5988 } 5989 5990 /* Initialize local ptrs for common extent processing later. */ 5991 bmask = phba->sli4_hba.vfi_bmask; 5992 ids = phba->sli4_hba.vfi_ids; 5993 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5994 break; 5995 default: 5996 /* Unsupported Opcode. Fail call. */ 5997 id_array = NULL; 5998 bmask = NULL; 5999 ids = NULL; 6000 ext_blk_list = NULL; 6001 goto err_exit; 6002 } 6003 6004 /* 6005 * Complete initializing the extent configuration with the 6006 * allocated ids assigned to this function. The bitmask serves 6007 * as an index into the array and manages the available ids. The 6008 * array just stores the ids communicated to the port via the wqes. 6009 */ 6010 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6011 if ((i % 2) == 0) 6012 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6013 &id_array[k]); 6014 else 6015 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6016 &id_array[k]); 6017 6018 rsrc_blks = kzalloc(length, GFP_KERNEL); 6019 if (unlikely(!rsrc_blks)) { 6020 rc = -ENOMEM; 6021 kfree(bmask); 6022 kfree(ids); 6023 goto err_exit; 6024 } 6025 rsrc_blks->rsrc_start = rsrc_id; 6026 rsrc_blks->rsrc_size = rsrc_size; 6027 list_add_tail(&rsrc_blks->list, ext_blk_list); 6028 rsrc_start = rsrc_id; 6029 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6030 phba->sli4_hba.scsi_xri_start = rsrc_start + 6031 lpfc_sli4_get_iocb_cnt(phba); 6032 phba->sli4_hba.nvme_xri_start = 6033 phba->sli4_hba.scsi_xri_start + 6034 phba->sli4_hba.scsi_xri_max; 6035 } 6036 6037 while (rsrc_id < (rsrc_start + rsrc_size)) { 6038 ids[j] = rsrc_id; 6039 rsrc_id++; 6040 j++; 6041 } 6042 /* Entire word processed. Get next word.*/ 6043 if ((i % 2) == 1) 6044 k++; 6045 } 6046 err_exit: 6047 lpfc_sli4_mbox_cmd_free(phba, mbox); 6048 return rc; 6049 } 6050 6051 6052 6053 /** 6054 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6055 * @phba: Pointer to HBA context object. 6056 * @type: the extent's type. 6057 * 6058 * This function deallocates all extents of a particular resource type. 6059 * SLI4 does not allow for deallocating a particular extent range. It 6060 * is the caller's responsibility to release all kernel memory resources. 6061 **/ 6062 static int 6063 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6064 { 6065 int rc; 6066 uint32_t length, mbox_tmo = 0; 6067 LPFC_MBOXQ_t *mbox; 6068 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6069 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6070 6071 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6072 if (!mbox) 6073 return -ENOMEM; 6074 6075 /* 6076 * This function sends an embedded mailbox because it only sends the 6077 * the resource type. All extents of this type are released by the 6078 * port. 6079 */ 6080 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6081 sizeof(struct lpfc_sli4_cfg_mhdr)); 6082 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6083 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6084 length, LPFC_SLI4_MBX_EMBED); 6085 6086 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6087 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6088 LPFC_SLI4_MBX_EMBED); 6089 if (unlikely(rc)) { 6090 rc = -EIO; 6091 goto out_free_mbox; 6092 } 6093 if (!phba->sli4_hba.intr_enable) 6094 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6095 else { 6096 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6097 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6098 } 6099 if (unlikely(rc)) { 6100 rc = -EIO; 6101 goto out_free_mbox; 6102 } 6103 6104 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6105 if (bf_get(lpfc_mbox_hdr_status, 6106 &dealloc_rsrc->header.cfg_shdr.response)) { 6107 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6108 "2919 Failed to release resource extents " 6109 "for type %d - Status 0x%x Add'l Status 0x%x. " 6110 "Resource memory not released.\n", 6111 type, 6112 bf_get(lpfc_mbox_hdr_status, 6113 &dealloc_rsrc->header.cfg_shdr.response), 6114 bf_get(lpfc_mbox_hdr_add_status, 6115 &dealloc_rsrc->header.cfg_shdr.response)); 6116 rc = -EIO; 6117 goto out_free_mbox; 6118 } 6119 6120 /* Release kernel memory resources for the specific type. */ 6121 switch (type) { 6122 case LPFC_RSC_TYPE_FCOE_VPI: 6123 kfree(phba->vpi_bmask); 6124 kfree(phba->vpi_ids); 6125 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6126 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6127 &phba->lpfc_vpi_blk_list, list) { 6128 list_del_init(&rsrc_blk->list); 6129 kfree(rsrc_blk); 6130 } 6131 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6132 break; 6133 case LPFC_RSC_TYPE_FCOE_XRI: 6134 kfree(phba->sli4_hba.xri_bmask); 6135 kfree(phba->sli4_hba.xri_ids); 6136 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6137 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6138 list_del_init(&rsrc_blk->list); 6139 kfree(rsrc_blk); 6140 } 6141 break; 6142 case LPFC_RSC_TYPE_FCOE_VFI: 6143 kfree(phba->sli4_hba.vfi_bmask); 6144 kfree(phba->sli4_hba.vfi_ids); 6145 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6146 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6147 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6148 list_del_init(&rsrc_blk->list); 6149 kfree(rsrc_blk); 6150 } 6151 break; 6152 case LPFC_RSC_TYPE_FCOE_RPI: 6153 /* RPI bitmask and physical id array are cleaned up earlier. */ 6154 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6155 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6156 list_del_init(&rsrc_blk->list); 6157 kfree(rsrc_blk); 6158 } 6159 break; 6160 default: 6161 break; 6162 } 6163 6164 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6165 6166 out_free_mbox: 6167 mempool_free(mbox, phba->mbox_mem_pool); 6168 return rc; 6169 } 6170 6171 static void 6172 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6173 uint32_t feature) 6174 { 6175 uint32_t len; 6176 6177 len = sizeof(struct lpfc_mbx_set_feature) - 6178 sizeof(struct lpfc_sli4_cfg_mhdr); 6179 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6180 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6181 LPFC_SLI4_MBX_EMBED); 6182 6183 switch (feature) { 6184 case LPFC_SET_UE_RECOVERY: 6185 bf_set(lpfc_mbx_set_feature_UER, 6186 &mbox->u.mqe.un.set_feature, 1); 6187 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6188 mbox->u.mqe.un.set_feature.param_len = 8; 6189 break; 6190 case LPFC_SET_MDS_DIAGS: 6191 bf_set(lpfc_mbx_set_feature_mds, 6192 &mbox->u.mqe.un.set_feature, 1); 6193 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6194 &mbox->u.mqe.un.set_feature, 1); 6195 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6196 mbox->u.mqe.un.set_feature.param_len = 8; 6197 break; 6198 } 6199 6200 return; 6201 } 6202 6203 /** 6204 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6205 * @phba: Pointer to HBA context object. 6206 * 6207 * Disable FW logging into host memory on the adapter. To 6208 * be done before reading logs from the host memory. 6209 **/ 6210 void 6211 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6212 { 6213 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6214 6215 ras_fwlog->ras_active = false; 6216 6217 /* Disable FW logging to host memory */ 6218 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6219 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6220 } 6221 6222 /** 6223 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6224 * @phba: Pointer to HBA context object. 6225 * 6226 * This function is called to free memory allocated for RAS FW logging 6227 * support in the driver. 6228 **/ 6229 void 6230 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6231 { 6232 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6233 struct lpfc_dmabuf *dmabuf, *next; 6234 6235 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6236 list_for_each_entry_safe(dmabuf, next, 6237 &ras_fwlog->fwlog_buff_list, 6238 list) { 6239 list_del(&dmabuf->list); 6240 dma_free_coherent(&phba->pcidev->dev, 6241 LPFC_RAS_MAX_ENTRY_SIZE, 6242 dmabuf->virt, dmabuf->phys); 6243 kfree(dmabuf); 6244 } 6245 } 6246 6247 if (ras_fwlog->lwpd.virt) { 6248 dma_free_coherent(&phba->pcidev->dev, 6249 sizeof(uint32_t) * 2, 6250 ras_fwlog->lwpd.virt, 6251 ras_fwlog->lwpd.phys); 6252 ras_fwlog->lwpd.virt = NULL; 6253 } 6254 6255 ras_fwlog->ras_active = false; 6256 } 6257 6258 /** 6259 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6260 * @phba: Pointer to HBA context object. 6261 * @fwlog_buff_count: Count of buffers to be created. 6262 * 6263 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6264 * to update FW log is posted to the adapter. 6265 * Buffer count is calculated based on module param ras_fwlog_buffsize 6266 * Size of each buffer posted to FW is 64K. 6267 **/ 6268 6269 static int 6270 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6271 uint32_t fwlog_buff_count) 6272 { 6273 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6274 struct lpfc_dmabuf *dmabuf; 6275 int rc = 0, i = 0; 6276 6277 /* Initialize List */ 6278 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6279 6280 /* Allocate memory for the LWPD */ 6281 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6282 sizeof(uint32_t) * 2, 6283 &ras_fwlog->lwpd.phys, 6284 GFP_KERNEL); 6285 if (!ras_fwlog->lwpd.virt) { 6286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6287 "6185 LWPD Memory Alloc Failed\n"); 6288 6289 return -ENOMEM; 6290 } 6291 6292 ras_fwlog->fw_buffcount = fwlog_buff_count; 6293 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6294 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6295 GFP_KERNEL); 6296 if (!dmabuf) { 6297 rc = -ENOMEM; 6298 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6299 "6186 Memory Alloc failed FW logging"); 6300 goto free_mem; 6301 } 6302 6303 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6304 LPFC_RAS_MAX_ENTRY_SIZE, 6305 &dmabuf->phys, GFP_KERNEL); 6306 if (!dmabuf->virt) { 6307 kfree(dmabuf); 6308 rc = -ENOMEM; 6309 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6310 "6187 DMA Alloc Failed FW logging"); 6311 goto free_mem; 6312 } 6313 dmabuf->buffer_tag = i; 6314 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6315 } 6316 6317 free_mem: 6318 if (rc) 6319 lpfc_sli4_ras_dma_free(phba); 6320 6321 return rc; 6322 } 6323 6324 /** 6325 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6326 * @phba: pointer to lpfc hba data structure. 6327 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6328 * 6329 * Completion handler for driver's RAS MBX command to the device. 6330 **/ 6331 static void 6332 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6333 { 6334 MAILBOX_t *mb; 6335 union lpfc_sli4_cfg_shdr *shdr; 6336 uint32_t shdr_status, shdr_add_status; 6337 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6338 6339 mb = &pmb->u.mb; 6340 6341 shdr = (union lpfc_sli4_cfg_shdr *) 6342 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6343 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6344 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6345 6346 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6347 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6348 "6188 FW LOG mailbox " 6349 "completed with status x%x add_status x%x," 6350 " mbx status x%x\n", 6351 shdr_status, shdr_add_status, mb->mbxStatus); 6352 6353 ras_fwlog->ras_hwsupport = false; 6354 goto disable_ras; 6355 } 6356 6357 ras_fwlog->ras_active = true; 6358 mempool_free(pmb, phba->mbox_mem_pool); 6359 6360 return; 6361 6362 disable_ras: 6363 /* Free RAS DMA memory */ 6364 lpfc_sli4_ras_dma_free(phba); 6365 mempool_free(pmb, phba->mbox_mem_pool); 6366 } 6367 6368 /** 6369 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6370 * @phba: pointer to lpfc hba data structure. 6371 * @fwlog_level: Logging verbosity level. 6372 * @fwlog_enable: Enable/Disable logging. 6373 * 6374 * Initialize memory and post mailbox command to enable FW logging in host 6375 * memory. 6376 **/ 6377 int 6378 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6379 uint32_t fwlog_level, 6380 uint32_t fwlog_enable) 6381 { 6382 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6383 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6384 struct lpfc_dmabuf *dmabuf; 6385 LPFC_MBOXQ_t *mbox; 6386 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6387 int rc = 0; 6388 6389 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6390 phba->cfg_ras_fwlog_buffsize); 6391 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6392 6393 /* 6394 * If re-enabling FW logging support use earlier allocated 6395 * DMA buffers while posting MBX command. 6396 **/ 6397 if (!ras_fwlog->lwpd.virt) { 6398 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6399 if (rc) { 6400 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6401 "6189 FW Log Memory Allocation Failed"); 6402 return rc; 6403 } 6404 } 6405 6406 /* Setup Mailbox command */ 6407 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6408 if (!mbox) { 6409 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6410 "6190 RAS MBX Alloc Failed"); 6411 rc = -ENOMEM; 6412 goto mem_free; 6413 } 6414 6415 ras_fwlog->fw_loglevel = fwlog_level; 6416 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6417 sizeof(struct lpfc_sli4_cfg_mhdr)); 6418 6419 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6420 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6421 len, LPFC_SLI4_MBX_EMBED); 6422 6423 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6424 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6425 fwlog_enable); 6426 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6427 ras_fwlog->fw_loglevel); 6428 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6429 ras_fwlog->fw_buffcount); 6430 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6431 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6432 6433 /* Update DMA buffer address */ 6434 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6435 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6436 6437 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6438 putPaddrLow(dmabuf->phys); 6439 6440 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6441 putPaddrHigh(dmabuf->phys); 6442 } 6443 6444 /* Update LPWD address */ 6445 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6446 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6447 6448 mbox->vport = phba->pport; 6449 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6450 6451 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6452 6453 if (rc == MBX_NOT_FINISHED) { 6454 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6455 "6191 FW-Log Mailbox failed. " 6456 "status %d mbxStatus : x%x", rc, 6457 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6458 mempool_free(mbox, phba->mbox_mem_pool); 6459 rc = -EIO; 6460 goto mem_free; 6461 } else 6462 rc = 0; 6463 mem_free: 6464 if (rc) 6465 lpfc_sli4_ras_dma_free(phba); 6466 6467 return rc; 6468 } 6469 6470 /** 6471 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6472 * @phba: Pointer to HBA context object. 6473 * 6474 * Check if RAS is supported on the adapter and initialize it. 6475 **/ 6476 void 6477 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6478 { 6479 /* Check RAS FW Log needs to be enabled or not */ 6480 if (lpfc_check_fwlog_support(phba)) 6481 return; 6482 6483 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6484 LPFC_RAS_ENABLE_LOGGING); 6485 } 6486 6487 /** 6488 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6489 * @phba: Pointer to HBA context object. 6490 * 6491 * This function allocates all SLI4 resource identifiers. 6492 **/ 6493 int 6494 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6495 { 6496 int i, rc, error = 0; 6497 uint16_t count, base; 6498 unsigned long longs; 6499 6500 if (!phba->sli4_hba.rpi_hdrs_in_use) 6501 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6502 if (phba->sli4_hba.extents_in_use) { 6503 /* 6504 * The port supports resource extents. The XRI, VPI, VFI, RPI 6505 * resource extent count must be read and allocated before 6506 * provisioning the resource id arrays. 6507 */ 6508 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6509 LPFC_IDX_RSRC_RDY) { 6510 /* 6511 * Extent-based resources are set - the driver could 6512 * be in a port reset. Figure out if any corrective 6513 * actions need to be taken. 6514 */ 6515 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6516 LPFC_RSC_TYPE_FCOE_VFI); 6517 if (rc != 0) 6518 error++; 6519 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6520 LPFC_RSC_TYPE_FCOE_VPI); 6521 if (rc != 0) 6522 error++; 6523 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6524 LPFC_RSC_TYPE_FCOE_XRI); 6525 if (rc != 0) 6526 error++; 6527 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6528 LPFC_RSC_TYPE_FCOE_RPI); 6529 if (rc != 0) 6530 error++; 6531 6532 /* 6533 * It's possible that the number of resources 6534 * provided to this port instance changed between 6535 * resets. Detect this condition and reallocate 6536 * resources. Otherwise, there is no action. 6537 */ 6538 if (error) { 6539 lpfc_printf_log(phba, KERN_INFO, 6540 LOG_MBOX | LOG_INIT, 6541 "2931 Detected extent resource " 6542 "change. Reallocating all " 6543 "extents.\n"); 6544 rc = lpfc_sli4_dealloc_extent(phba, 6545 LPFC_RSC_TYPE_FCOE_VFI); 6546 rc = lpfc_sli4_dealloc_extent(phba, 6547 LPFC_RSC_TYPE_FCOE_VPI); 6548 rc = lpfc_sli4_dealloc_extent(phba, 6549 LPFC_RSC_TYPE_FCOE_XRI); 6550 rc = lpfc_sli4_dealloc_extent(phba, 6551 LPFC_RSC_TYPE_FCOE_RPI); 6552 } else 6553 return 0; 6554 } 6555 6556 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6557 if (unlikely(rc)) 6558 goto err_exit; 6559 6560 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6561 if (unlikely(rc)) 6562 goto err_exit; 6563 6564 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6565 if (unlikely(rc)) 6566 goto err_exit; 6567 6568 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6569 if (unlikely(rc)) 6570 goto err_exit; 6571 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6572 LPFC_IDX_RSRC_RDY); 6573 return rc; 6574 } else { 6575 /* 6576 * The port does not support resource extents. The XRI, VPI, 6577 * VFI, RPI resource ids were determined from READ_CONFIG. 6578 * Just allocate the bitmasks and provision the resource id 6579 * arrays. If a port reset is active, the resources don't 6580 * need any action - just exit. 6581 */ 6582 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6583 LPFC_IDX_RSRC_RDY) { 6584 lpfc_sli4_dealloc_resource_identifiers(phba); 6585 lpfc_sli4_remove_rpis(phba); 6586 } 6587 /* RPIs. */ 6588 count = phba->sli4_hba.max_cfg_param.max_rpi; 6589 if (count <= 0) { 6590 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6591 "3279 Invalid provisioning of " 6592 "rpi:%d\n", count); 6593 rc = -EINVAL; 6594 goto err_exit; 6595 } 6596 base = phba->sli4_hba.max_cfg_param.rpi_base; 6597 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6598 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6599 sizeof(unsigned long), 6600 GFP_KERNEL); 6601 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6602 rc = -ENOMEM; 6603 goto err_exit; 6604 } 6605 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6606 GFP_KERNEL); 6607 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6608 rc = -ENOMEM; 6609 goto free_rpi_bmask; 6610 } 6611 6612 for (i = 0; i < count; i++) 6613 phba->sli4_hba.rpi_ids[i] = base + i; 6614 6615 /* VPIs. */ 6616 count = phba->sli4_hba.max_cfg_param.max_vpi; 6617 if (count <= 0) { 6618 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6619 "3280 Invalid provisioning of " 6620 "vpi:%d\n", count); 6621 rc = -EINVAL; 6622 goto free_rpi_ids; 6623 } 6624 base = phba->sli4_hba.max_cfg_param.vpi_base; 6625 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6626 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6627 GFP_KERNEL); 6628 if (unlikely(!phba->vpi_bmask)) { 6629 rc = -ENOMEM; 6630 goto free_rpi_ids; 6631 } 6632 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6633 GFP_KERNEL); 6634 if (unlikely(!phba->vpi_ids)) { 6635 rc = -ENOMEM; 6636 goto free_vpi_bmask; 6637 } 6638 6639 for (i = 0; i < count; i++) 6640 phba->vpi_ids[i] = base + i; 6641 6642 /* XRIs. */ 6643 count = phba->sli4_hba.max_cfg_param.max_xri; 6644 if (count <= 0) { 6645 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6646 "3281 Invalid provisioning of " 6647 "xri:%d\n", count); 6648 rc = -EINVAL; 6649 goto free_vpi_ids; 6650 } 6651 base = phba->sli4_hba.max_cfg_param.xri_base; 6652 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6653 phba->sli4_hba.xri_bmask = kcalloc(longs, 6654 sizeof(unsigned long), 6655 GFP_KERNEL); 6656 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6657 rc = -ENOMEM; 6658 goto free_vpi_ids; 6659 } 6660 phba->sli4_hba.max_cfg_param.xri_used = 0; 6661 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6662 GFP_KERNEL); 6663 if (unlikely(!phba->sli4_hba.xri_ids)) { 6664 rc = -ENOMEM; 6665 goto free_xri_bmask; 6666 } 6667 6668 for (i = 0; i < count; i++) 6669 phba->sli4_hba.xri_ids[i] = base + i; 6670 6671 /* VFIs. */ 6672 count = phba->sli4_hba.max_cfg_param.max_vfi; 6673 if (count <= 0) { 6674 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6675 "3282 Invalid provisioning of " 6676 "vfi:%d\n", count); 6677 rc = -EINVAL; 6678 goto free_xri_ids; 6679 } 6680 base = phba->sli4_hba.max_cfg_param.vfi_base; 6681 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6682 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6683 sizeof(unsigned long), 6684 GFP_KERNEL); 6685 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6686 rc = -ENOMEM; 6687 goto free_xri_ids; 6688 } 6689 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6690 GFP_KERNEL); 6691 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6692 rc = -ENOMEM; 6693 goto free_vfi_bmask; 6694 } 6695 6696 for (i = 0; i < count; i++) 6697 phba->sli4_hba.vfi_ids[i] = base + i; 6698 6699 /* 6700 * Mark all resources ready. An HBA reset doesn't need 6701 * to reset the initialization. 6702 */ 6703 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6704 LPFC_IDX_RSRC_RDY); 6705 return 0; 6706 } 6707 6708 free_vfi_bmask: 6709 kfree(phba->sli4_hba.vfi_bmask); 6710 phba->sli4_hba.vfi_bmask = NULL; 6711 free_xri_ids: 6712 kfree(phba->sli4_hba.xri_ids); 6713 phba->sli4_hba.xri_ids = NULL; 6714 free_xri_bmask: 6715 kfree(phba->sli4_hba.xri_bmask); 6716 phba->sli4_hba.xri_bmask = NULL; 6717 free_vpi_ids: 6718 kfree(phba->vpi_ids); 6719 phba->vpi_ids = NULL; 6720 free_vpi_bmask: 6721 kfree(phba->vpi_bmask); 6722 phba->vpi_bmask = NULL; 6723 free_rpi_ids: 6724 kfree(phba->sli4_hba.rpi_ids); 6725 phba->sli4_hba.rpi_ids = NULL; 6726 free_rpi_bmask: 6727 kfree(phba->sli4_hba.rpi_bmask); 6728 phba->sli4_hba.rpi_bmask = NULL; 6729 err_exit: 6730 return rc; 6731 } 6732 6733 /** 6734 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6735 * @phba: Pointer to HBA context object. 6736 * 6737 * This function allocates the number of elements for the specified 6738 * resource type. 6739 **/ 6740 int 6741 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6742 { 6743 if (phba->sli4_hba.extents_in_use) { 6744 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6745 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6746 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6747 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6748 } else { 6749 kfree(phba->vpi_bmask); 6750 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6751 kfree(phba->vpi_ids); 6752 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6753 kfree(phba->sli4_hba.xri_bmask); 6754 kfree(phba->sli4_hba.xri_ids); 6755 kfree(phba->sli4_hba.vfi_bmask); 6756 kfree(phba->sli4_hba.vfi_ids); 6757 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6758 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6759 } 6760 6761 return 0; 6762 } 6763 6764 /** 6765 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6766 * @phba: Pointer to HBA context object. 6767 * @type: The resource extent type. 6768 * @extnt_count: buffer to hold port extent count response 6769 * @extnt_size: buffer to hold port extent size response. 6770 * 6771 * This function calls the port to read the host allocated extents 6772 * for a particular type. 6773 **/ 6774 int 6775 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6776 uint16_t *extnt_cnt, uint16_t *extnt_size) 6777 { 6778 bool emb; 6779 int rc = 0; 6780 uint16_t curr_blks = 0; 6781 uint32_t req_len, emb_len; 6782 uint32_t alloc_len, mbox_tmo; 6783 struct list_head *blk_list_head; 6784 struct lpfc_rsrc_blks *rsrc_blk; 6785 LPFC_MBOXQ_t *mbox; 6786 void *virtaddr = NULL; 6787 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6788 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6789 union lpfc_sli4_cfg_shdr *shdr; 6790 6791 switch (type) { 6792 case LPFC_RSC_TYPE_FCOE_VPI: 6793 blk_list_head = &phba->lpfc_vpi_blk_list; 6794 break; 6795 case LPFC_RSC_TYPE_FCOE_XRI: 6796 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6797 break; 6798 case LPFC_RSC_TYPE_FCOE_VFI: 6799 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6800 break; 6801 case LPFC_RSC_TYPE_FCOE_RPI: 6802 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6803 break; 6804 default: 6805 return -EIO; 6806 } 6807 6808 /* Count the number of extents currently allocatd for this type. */ 6809 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6810 if (curr_blks == 0) { 6811 /* 6812 * The GET_ALLOCATED mailbox does not return the size, 6813 * just the count. The size should be just the size 6814 * stored in the current allocated block and all sizes 6815 * for an extent type are the same so set the return 6816 * value now. 6817 */ 6818 *extnt_size = rsrc_blk->rsrc_size; 6819 } 6820 curr_blks++; 6821 } 6822 6823 /* 6824 * Calculate the size of an embedded mailbox. The uint32_t 6825 * accounts for extents-specific word. 6826 */ 6827 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6828 sizeof(uint32_t); 6829 6830 /* 6831 * Presume the allocation and response will fit into an embedded 6832 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6833 */ 6834 emb = LPFC_SLI4_MBX_EMBED; 6835 req_len = emb_len; 6836 if (req_len > emb_len) { 6837 req_len = curr_blks * sizeof(uint16_t) + 6838 sizeof(union lpfc_sli4_cfg_shdr) + 6839 sizeof(uint32_t); 6840 emb = LPFC_SLI4_MBX_NEMBED; 6841 } 6842 6843 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6844 if (!mbox) 6845 return -ENOMEM; 6846 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6847 6848 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6849 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6850 req_len, emb); 6851 if (alloc_len < req_len) { 6852 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6853 "2983 Allocated DMA memory size (x%x) is " 6854 "less than the requested DMA memory " 6855 "size (x%x)\n", alloc_len, req_len); 6856 rc = -ENOMEM; 6857 goto err_exit; 6858 } 6859 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6860 if (unlikely(rc)) { 6861 rc = -EIO; 6862 goto err_exit; 6863 } 6864 6865 if (!phba->sli4_hba.intr_enable) 6866 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6867 else { 6868 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6869 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6870 } 6871 6872 if (unlikely(rc)) { 6873 rc = -EIO; 6874 goto err_exit; 6875 } 6876 6877 /* 6878 * Figure out where the response is located. Then get local pointers 6879 * to the response data. The port does not guarantee to respond to 6880 * all extents counts request so update the local variable with the 6881 * allocated count from the port. 6882 */ 6883 if (emb == LPFC_SLI4_MBX_EMBED) { 6884 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6885 shdr = &rsrc_ext->header.cfg_shdr; 6886 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6887 } else { 6888 virtaddr = mbox->sge_array->addr[0]; 6889 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6890 shdr = &n_rsrc->cfg_shdr; 6891 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6892 } 6893 6894 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6895 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6896 "2984 Failed to read allocated resources " 6897 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6898 type, 6899 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6900 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6901 rc = -EIO; 6902 goto err_exit; 6903 } 6904 err_exit: 6905 lpfc_sli4_mbox_cmd_free(phba, mbox); 6906 return rc; 6907 } 6908 6909 /** 6910 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6911 * @phba: pointer to lpfc hba data structure. 6912 * @pring: Pointer to driver SLI ring object. 6913 * @sgl_list: linked link of sgl buffers to post 6914 * @cnt: number of linked list buffers 6915 * 6916 * This routine walks the list of buffers that have been allocated and 6917 * repost them to the port by using SGL block post. This is needed after a 6918 * pci_function_reset/warm_start or start. It attempts to construct blocks 6919 * of buffer sgls which contains contiguous xris and uses the non-embedded 6920 * SGL block post mailbox commands to post them to the port. For single 6921 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6922 * mailbox command for posting. 6923 * 6924 * Returns: 0 = success, non-zero failure. 6925 **/ 6926 static int 6927 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6928 struct list_head *sgl_list, int cnt) 6929 { 6930 struct lpfc_sglq *sglq_entry = NULL; 6931 struct lpfc_sglq *sglq_entry_next = NULL; 6932 struct lpfc_sglq *sglq_entry_first = NULL; 6933 int status, total_cnt; 6934 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6935 int last_xritag = NO_XRI; 6936 LIST_HEAD(prep_sgl_list); 6937 LIST_HEAD(blck_sgl_list); 6938 LIST_HEAD(allc_sgl_list); 6939 LIST_HEAD(post_sgl_list); 6940 LIST_HEAD(free_sgl_list); 6941 6942 spin_lock_irq(&phba->hbalock); 6943 spin_lock(&phba->sli4_hba.sgl_list_lock); 6944 list_splice_init(sgl_list, &allc_sgl_list); 6945 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6946 spin_unlock_irq(&phba->hbalock); 6947 6948 total_cnt = cnt; 6949 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6950 &allc_sgl_list, list) { 6951 list_del_init(&sglq_entry->list); 6952 block_cnt++; 6953 if ((last_xritag != NO_XRI) && 6954 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6955 /* a hole in xri block, form a sgl posting block */ 6956 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6957 post_cnt = block_cnt - 1; 6958 /* prepare list for next posting block */ 6959 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6960 block_cnt = 1; 6961 } else { 6962 /* prepare list for next posting block */ 6963 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6964 /* enough sgls for non-embed sgl mbox command */ 6965 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6966 list_splice_init(&prep_sgl_list, 6967 &blck_sgl_list); 6968 post_cnt = block_cnt; 6969 block_cnt = 0; 6970 } 6971 } 6972 num_posted++; 6973 6974 /* keep track of last sgl's xritag */ 6975 last_xritag = sglq_entry->sli4_xritag; 6976 6977 /* end of repost sgl list condition for buffers */ 6978 if (num_posted == total_cnt) { 6979 if (post_cnt == 0) { 6980 list_splice_init(&prep_sgl_list, 6981 &blck_sgl_list); 6982 post_cnt = block_cnt; 6983 } else if (block_cnt == 1) { 6984 status = lpfc_sli4_post_sgl(phba, 6985 sglq_entry->phys, 0, 6986 sglq_entry->sli4_xritag); 6987 if (!status) { 6988 /* successful, put sgl to posted list */ 6989 list_add_tail(&sglq_entry->list, 6990 &post_sgl_list); 6991 } else { 6992 /* Failure, put sgl to free list */ 6993 lpfc_printf_log(phba, KERN_WARNING, 6994 LOG_SLI, 6995 "3159 Failed to post " 6996 "sgl, xritag:x%x\n", 6997 sglq_entry->sli4_xritag); 6998 list_add_tail(&sglq_entry->list, 6999 &free_sgl_list); 7000 total_cnt--; 7001 } 7002 } 7003 } 7004 7005 /* continue until a nembed page worth of sgls */ 7006 if (post_cnt == 0) 7007 continue; 7008 7009 /* post the buffer list sgls as a block */ 7010 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7011 post_cnt); 7012 7013 if (!status) { 7014 /* success, put sgl list to posted sgl list */ 7015 list_splice_init(&blck_sgl_list, &post_sgl_list); 7016 } else { 7017 /* Failure, put sgl list to free sgl list */ 7018 sglq_entry_first = list_first_entry(&blck_sgl_list, 7019 struct lpfc_sglq, 7020 list); 7021 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7022 "3160 Failed to post sgl-list, " 7023 "xritag:x%x-x%x\n", 7024 sglq_entry_first->sli4_xritag, 7025 (sglq_entry_first->sli4_xritag + 7026 post_cnt - 1)); 7027 list_splice_init(&blck_sgl_list, &free_sgl_list); 7028 total_cnt -= post_cnt; 7029 } 7030 7031 /* don't reset xirtag due to hole in xri block */ 7032 if (block_cnt == 0) 7033 last_xritag = NO_XRI; 7034 7035 /* reset sgl post count for next round of posting */ 7036 post_cnt = 0; 7037 } 7038 7039 /* free the sgls failed to post */ 7040 lpfc_free_sgl_list(phba, &free_sgl_list); 7041 7042 /* push sgls posted to the available list */ 7043 if (!list_empty(&post_sgl_list)) { 7044 spin_lock_irq(&phba->hbalock); 7045 spin_lock(&phba->sli4_hba.sgl_list_lock); 7046 list_splice_init(&post_sgl_list, sgl_list); 7047 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7048 spin_unlock_irq(&phba->hbalock); 7049 } else { 7050 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7051 "3161 Failure to post sgl to port.\n"); 7052 return -EIO; 7053 } 7054 7055 /* return the number of XRIs actually posted */ 7056 return total_cnt; 7057 } 7058 7059 void 7060 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7061 { 7062 uint32_t len; 7063 7064 len = sizeof(struct lpfc_mbx_set_host_data) - 7065 sizeof(struct lpfc_sli4_cfg_mhdr); 7066 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7067 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7068 LPFC_SLI4_MBX_EMBED); 7069 7070 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7071 mbox->u.mqe.un.set_host_data.param_len = 7072 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7073 snprintf(mbox->u.mqe.un.set_host_data.data, 7074 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7075 "Linux %s v"LPFC_DRIVER_VERSION, 7076 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7077 } 7078 7079 int 7080 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7081 struct lpfc_queue *drq, int count, int idx) 7082 { 7083 int rc, i; 7084 struct lpfc_rqe hrqe; 7085 struct lpfc_rqe drqe; 7086 struct lpfc_rqb *rqbp; 7087 unsigned long flags; 7088 struct rqb_dmabuf *rqb_buffer; 7089 LIST_HEAD(rqb_buf_list); 7090 7091 spin_lock_irqsave(&phba->hbalock, flags); 7092 rqbp = hrq->rqbp; 7093 for (i = 0; i < count; i++) { 7094 /* IF RQ is already full, don't bother */ 7095 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7096 break; 7097 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7098 if (!rqb_buffer) 7099 break; 7100 rqb_buffer->hrq = hrq; 7101 rqb_buffer->drq = drq; 7102 rqb_buffer->idx = idx; 7103 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7104 } 7105 while (!list_empty(&rqb_buf_list)) { 7106 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7107 hbuf.list); 7108 7109 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7110 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7111 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7112 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7113 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7114 if (rc < 0) { 7115 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7116 "6421 Cannot post to HRQ %d: %x %x %x " 7117 "DRQ %x %x\n", 7118 hrq->queue_id, 7119 hrq->host_index, 7120 hrq->hba_index, 7121 hrq->entry_count, 7122 drq->host_index, 7123 drq->hba_index); 7124 rqbp->rqb_free_buffer(phba, rqb_buffer); 7125 } else { 7126 list_add_tail(&rqb_buffer->hbuf.list, 7127 &rqbp->rqb_buffer_list); 7128 rqbp->buffer_count++; 7129 } 7130 } 7131 spin_unlock_irqrestore(&phba->hbalock, flags); 7132 return 1; 7133 } 7134 7135 /** 7136 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7137 * @phba: Pointer to HBA context object. 7138 * 7139 * This function is the main SLI4 device initialization PCI function. This 7140 * function is called by the HBA initialization code, HBA reset code and 7141 * HBA error attention handler code. Caller is not required to hold any 7142 * locks. 7143 **/ 7144 int 7145 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7146 { 7147 int rc, i, cnt; 7148 LPFC_MBOXQ_t *mboxq; 7149 struct lpfc_mqe *mqe; 7150 uint8_t *vpd; 7151 uint32_t vpd_size; 7152 uint32_t ftr_rsp = 0; 7153 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7154 struct lpfc_vport *vport = phba->pport; 7155 struct lpfc_dmabuf *mp; 7156 struct lpfc_rqb *rqbp; 7157 7158 /* Perform a PCI function reset to start from clean */ 7159 rc = lpfc_pci_function_reset(phba); 7160 if (unlikely(rc)) 7161 return -ENODEV; 7162 7163 /* Check the HBA Host Status Register for readyness */ 7164 rc = lpfc_sli4_post_status_check(phba); 7165 if (unlikely(rc)) 7166 return -ENODEV; 7167 else { 7168 spin_lock_irq(&phba->hbalock); 7169 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7170 spin_unlock_irq(&phba->hbalock); 7171 } 7172 7173 /* 7174 * Allocate a single mailbox container for initializing the 7175 * port. 7176 */ 7177 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7178 if (!mboxq) 7179 return -ENOMEM; 7180 7181 /* Issue READ_REV to collect vpd and FW information. */ 7182 vpd_size = SLI4_PAGE_SIZE; 7183 vpd = kzalloc(vpd_size, GFP_KERNEL); 7184 if (!vpd) { 7185 rc = -ENOMEM; 7186 goto out_free_mbox; 7187 } 7188 7189 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7190 if (unlikely(rc)) { 7191 kfree(vpd); 7192 goto out_free_mbox; 7193 } 7194 7195 mqe = &mboxq->u.mqe; 7196 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7197 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7198 phba->hba_flag |= HBA_FCOE_MODE; 7199 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7200 } else { 7201 phba->hba_flag &= ~HBA_FCOE_MODE; 7202 } 7203 7204 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7205 LPFC_DCBX_CEE_MODE) 7206 phba->hba_flag |= HBA_FIP_SUPPORT; 7207 else 7208 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7209 7210 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 7211 7212 if (phba->sli_rev != LPFC_SLI_REV4) { 7213 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7214 "0376 READ_REV Error. SLI Level %d " 7215 "FCoE enabled %d\n", 7216 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7217 rc = -EIO; 7218 kfree(vpd); 7219 goto out_free_mbox; 7220 } 7221 7222 /* 7223 * Continue initialization with default values even if driver failed 7224 * to read FCoE param config regions, only read parameters if the 7225 * board is FCoE 7226 */ 7227 if (phba->hba_flag & HBA_FCOE_MODE && 7228 lpfc_sli4_read_fcoe_params(phba)) 7229 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7230 "2570 Failed to read FCoE parameters\n"); 7231 7232 /* 7233 * Retrieve sli4 device physical port name, failure of doing it 7234 * is considered as non-fatal. 7235 */ 7236 rc = lpfc_sli4_retrieve_pport_name(phba); 7237 if (!rc) 7238 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7239 "3080 Successful retrieving SLI4 device " 7240 "physical port name: %s.\n", phba->Port); 7241 7242 /* 7243 * Evaluate the read rev and vpd data. Populate the driver 7244 * state with the results. If this routine fails, the failure 7245 * is not fatal as the driver will use generic values. 7246 */ 7247 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7248 if (unlikely(!rc)) { 7249 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7250 "0377 Error %d parsing vpd. " 7251 "Using defaults.\n", rc); 7252 rc = 0; 7253 } 7254 kfree(vpd); 7255 7256 /* Save information as VPD data */ 7257 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7258 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7259 7260 /* 7261 * This is because first G7 ASIC doesn't support the standard 7262 * 0x5a NVME cmd descriptor type/subtype 7263 */ 7264 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7265 LPFC_SLI_INTF_IF_TYPE_6) && 7266 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7267 (phba->vpd.rev.smRev == 0) && 7268 (phba->cfg_nvme_embed_cmd == 1)) 7269 phba->cfg_nvme_embed_cmd = 0; 7270 7271 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7272 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7273 &mqe->un.read_rev); 7274 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7275 &mqe->un.read_rev); 7276 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7277 &mqe->un.read_rev); 7278 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7279 &mqe->un.read_rev); 7280 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7281 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7282 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7283 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7284 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7285 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7286 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7287 "(%d):0380 READ_REV Status x%x " 7288 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7289 mboxq->vport ? mboxq->vport->vpi : 0, 7290 bf_get(lpfc_mqe_status, mqe), 7291 phba->vpd.rev.opFwName, 7292 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7293 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7294 7295 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 7296 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 7297 if (phba->pport->cfg_lun_queue_depth > rc) { 7298 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7299 "3362 LUN queue depth changed from %d to %d\n", 7300 phba->pport->cfg_lun_queue_depth, rc); 7301 phba->pport->cfg_lun_queue_depth = rc; 7302 } 7303 7304 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7305 LPFC_SLI_INTF_IF_TYPE_0) { 7306 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7307 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7308 if (rc == MBX_SUCCESS) { 7309 phba->hba_flag |= HBA_RECOVERABLE_UE; 7310 /* Set 1Sec interval to detect UE */ 7311 phba->eratt_poll_interval = 1; 7312 phba->sli4_hba.ue_to_sr = bf_get( 7313 lpfc_mbx_set_feature_UESR, 7314 &mboxq->u.mqe.un.set_feature); 7315 phba->sli4_hba.ue_to_rp = bf_get( 7316 lpfc_mbx_set_feature_UERP, 7317 &mboxq->u.mqe.un.set_feature); 7318 } 7319 } 7320 7321 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7322 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7323 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7324 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7325 if (rc != MBX_SUCCESS) 7326 phba->mds_diags_support = 0; 7327 } 7328 7329 /* 7330 * Discover the port's supported feature set and match it against the 7331 * hosts requests. 7332 */ 7333 lpfc_request_features(phba, mboxq); 7334 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7335 if (unlikely(rc)) { 7336 rc = -EIO; 7337 goto out_free_mbox; 7338 } 7339 7340 /* 7341 * The port must support FCP initiator mode as this is the 7342 * only mode running in the host. 7343 */ 7344 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7345 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7346 "0378 No support for fcpi mode.\n"); 7347 ftr_rsp++; 7348 } 7349 7350 /* Performance Hints are ONLY for FCoE */ 7351 if (phba->hba_flag & HBA_FCOE_MODE) { 7352 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7353 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7354 else 7355 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7356 } 7357 7358 /* 7359 * If the port cannot support the host's requested features 7360 * then turn off the global config parameters to disable the 7361 * feature in the driver. This is not a fatal error. 7362 */ 7363 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7364 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7365 phba->cfg_enable_bg = 0; 7366 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7367 ftr_rsp++; 7368 } 7369 } 7370 7371 if (phba->max_vpi && phba->cfg_enable_npiv && 7372 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7373 ftr_rsp++; 7374 7375 if (ftr_rsp) { 7376 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7377 "0379 Feature Mismatch Data: x%08x %08x " 7378 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7379 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7380 phba->cfg_enable_npiv, phba->max_vpi); 7381 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7382 phba->cfg_enable_bg = 0; 7383 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7384 phba->cfg_enable_npiv = 0; 7385 } 7386 7387 /* These SLI3 features are assumed in SLI4 */ 7388 spin_lock_irq(&phba->hbalock); 7389 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7390 spin_unlock_irq(&phba->hbalock); 7391 7392 /* 7393 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7394 * calls depends on these resources to complete port setup. 7395 */ 7396 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7397 if (rc) { 7398 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7399 "2920 Failed to alloc Resource IDs " 7400 "rc = x%x\n", rc); 7401 goto out_free_mbox; 7402 } 7403 7404 lpfc_set_host_data(phba, mboxq); 7405 7406 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7407 if (rc) { 7408 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7409 "2134 Failed to set host os driver version %x", 7410 rc); 7411 } 7412 7413 /* Read the port's service parameters. */ 7414 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7415 if (rc) { 7416 phba->link_state = LPFC_HBA_ERROR; 7417 rc = -ENOMEM; 7418 goto out_free_mbox; 7419 } 7420 7421 mboxq->vport = vport; 7422 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7423 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7424 if (rc == MBX_SUCCESS) { 7425 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7426 rc = 0; 7427 } 7428 7429 /* 7430 * This memory was allocated by the lpfc_read_sparam routine. Release 7431 * it to the mbuf pool. 7432 */ 7433 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7434 kfree(mp); 7435 mboxq->ctx_buf = NULL; 7436 if (unlikely(rc)) { 7437 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7438 "0382 READ_SPARAM command failed " 7439 "status %d, mbxStatus x%x\n", 7440 rc, bf_get(lpfc_mqe_status, mqe)); 7441 phba->link_state = LPFC_HBA_ERROR; 7442 rc = -EIO; 7443 goto out_free_mbox; 7444 } 7445 7446 lpfc_update_vport_wwn(vport); 7447 7448 /* Update the fc_host data structures with new wwn. */ 7449 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7450 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7451 7452 /* Create all the SLI4 queues */ 7453 rc = lpfc_sli4_queue_create(phba); 7454 if (rc) { 7455 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7456 "3089 Failed to allocate queues\n"); 7457 rc = -ENODEV; 7458 goto out_free_mbox; 7459 } 7460 /* Set up all the queues to the device */ 7461 rc = lpfc_sli4_queue_setup(phba); 7462 if (unlikely(rc)) { 7463 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7464 "0381 Error %d during queue setup.\n ", rc); 7465 goto out_stop_timers; 7466 } 7467 /* Initialize the driver internal SLI layer lists. */ 7468 lpfc_sli4_setup(phba); 7469 lpfc_sli4_queue_init(phba); 7470 7471 /* update host els xri-sgl sizes and mappings */ 7472 rc = lpfc_sli4_els_sgl_update(phba); 7473 if (unlikely(rc)) { 7474 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7475 "1400 Failed to update xri-sgl size and " 7476 "mapping: %d\n", rc); 7477 goto out_destroy_queue; 7478 } 7479 7480 /* register the els sgl pool to the port */ 7481 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7482 phba->sli4_hba.els_xri_cnt); 7483 if (unlikely(rc < 0)) { 7484 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7485 "0582 Error %d during els sgl post " 7486 "operation\n", rc); 7487 rc = -ENODEV; 7488 goto out_destroy_queue; 7489 } 7490 phba->sli4_hba.els_xri_cnt = rc; 7491 7492 if (phba->nvmet_support) { 7493 /* update host nvmet xri-sgl sizes and mappings */ 7494 rc = lpfc_sli4_nvmet_sgl_update(phba); 7495 if (unlikely(rc)) { 7496 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7497 "6308 Failed to update nvmet-sgl size " 7498 "and mapping: %d\n", rc); 7499 goto out_destroy_queue; 7500 } 7501 7502 /* register the nvmet sgl pool to the port */ 7503 rc = lpfc_sli4_repost_sgl_list( 7504 phba, 7505 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7506 phba->sli4_hba.nvmet_xri_cnt); 7507 if (unlikely(rc < 0)) { 7508 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7509 "3117 Error %d during nvmet " 7510 "sgl post\n", rc); 7511 rc = -ENODEV; 7512 goto out_destroy_queue; 7513 } 7514 phba->sli4_hba.nvmet_xri_cnt = rc; 7515 7516 cnt = phba->cfg_iocb_cnt * 1024; 7517 /* We need 1 iocbq for every SGL, for IO processing */ 7518 cnt += phba->sli4_hba.nvmet_xri_cnt; 7519 } else { 7520 /* update host scsi xri-sgl sizes and mappings */ 7521 rc = lpfc_sli4_scsi_sgl_update(phba); 7522 if (unlikely(rc)) { 7523 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7524 "6309 Failed to update scsi-sgl size " 7525 "and mapping: %d\n", rc); 7526 goto out_destroy_queue; 7527 } 7528 7529 /* update host nvme xri-sgl sizes and mappings */ 7530 rc = lpfc_sli4_nvme_sgl_update(phba); 7531 if (unlikely(rc)) { 7532 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7533 "6082 Failed to update nvme-sgl size " 7534 "and mapping: %d\n", rc); 7535 goto out_destroy_queue; 7536 } 7537 7538 cnt = phba->cfg_iocb_cnt * 1024; 7539 } 7540 7541 if (!phba->sli.iocbq_lookup) { 7542 /* Initialize and populate the iocb list per host */ 7543 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7544 "2821 initialize iocb list %d total %d\n", 7545 phba->cfg_iocb_cnt, cnt); 7546 rc = lpfc_init_iocb_list(phba, cnt); 7547 if (rc) { 7548 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7549 "1413 Failed to init iocb list.\n"); 7550 goto out_destroy_queue; 7551 } 7552 } 7553 7554 if (phba->nvmet_support) 7555 lpfc_nvmet_create_targetport(phba); 7556 7557 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7558 /* Post initial buffers to all RQs created */ 7559 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7560 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7561 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7562 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7563 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7564 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7565 rqbp->buffer_count = 0; 7566 7567 lpfc_post_rq_buffer( 7568 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7569 phba->sli4_hba.nvmet_mrq_data[i], 7570 phba->cfg_nvmet_mrq_post, i); 7571 } 7572 } 7573 7574 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 7575 /* register the allocated scsi sgl pool to the port */ 7576 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 7577 if (unlikely(rc)) { 7578 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7579 "0383 Error %d during scsi sgl post " 7580 "operation\n", rc); 7581 /* Some Scsi buffers were moved to abort scsi list */ 7582 /* A pci function reset will repost them */ 7583 rc = -ENODEV; 7584 goto out_destroy_queue; 7585 } 7586 } 7587 7588 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7589 (phba->nvmet_support == 0)) { 7590 7591 /* register the allocated nvme sgl pool to the port */ 7592 rc = lpfc_repost_nvme_sgl_list(phba); 7593 if (unlikely(rc)) { 7594 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7595 "6116 Error %d during nvme sgl post " 7596 "operation\n", rc); 7597 /* Some NVME buffers were moved to abort nvme list */ 7598 /* A pci function reset will repost them */ 7599 rc = -ENODEV; 7600 goto out_destroy_queue; 7601 } 7602 } 7603 7604 /* Post the rpi header region to the device. */ 7605 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7606 if (unlikely(rc)) { 7607 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7608 "0393 Error %d during rpi post operation\n", 7609 rc); 7610 rc = -ENODEV; 7611 goto out_destroy_queue; 7612 } 7613 lpfc_sli4_node_prep(phba); 7614 7615 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7616 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7617 /* 7618 * The FC Port needs to register FCFI (index 0) 7619 */ 7620 lpfc_reg_fcfi(phba, mboxq); 7621 mboxq->vport = phba->pport; 7622 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7623 if (rc != MBX_SUCCESS) 7624 goto out_unset_queue; 7625 rc = 0; 7626 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7627 &mboxq->u.mqe.un.reg_fcfi); 7628 } else { 7629 /* We are a NVME Target mode with MRQ > 1 */ 7630 7631 /* First register the FCFI */ 7632 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7633 mboxq->vport = phba->pport; 7634 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7635 if (rc != MBX_SUCCESS) 7636 goto out_unset_queue; 7637 rc = 0; 7638 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7639 &mboxq->u.mqe.un.reg_fcfi_mrq); 7640 7641 /* Next register the MRQs */ 7642 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7643 mboxq->vport = phba->pport; 7644 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7645 if (rc != MBX_SUCCESS) 7646 goto out_unset_queue; 7647 rc = 0; 7648 } 7649 /* Check if the port is configured to be disabled */ 7650 lpfc_sli_read_link_ste(phba); 7651 } 7652 7653 /* Arm the CQs and then EQs on device */ 7654 lpfc_sli4_arm_cqeq_intr(phba); 7655 7656 /* Indicate device interrupt mode */ 7657 phba->sli4_hba.intr_enable = 1; 7658 7659 /* Allow asynchronous mailbox command to go through */ 7660 spin_lock_irq(&phba->hbalock); 7661 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7662 spin_unlock_irq(&phba->hbalock); 7663 7664 /* Post receive buffers to the device */ 7665 lpfc_sli4_rb_setup(phba); 7666 7667 /* Reset HBA FCF states after HBA reset */ 7668 phba->fcf.fcf_flag = 0; 7669 phba->fcf.current_rec.flag = 0; 7670 7671 /* Start the ELS watchdog timer */ 7672 mod_timer(&vport->els_tmofunc, 7673 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7674 7675 /* Start heart beat timer */ 7676 mod_timer(&phba->hb_tmofunc, 7677 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7678 phba->hb_outstanding = 0; 7679 phba->last_completion_time = jiffies; 7680 7681 /* Start error attention (ERATT) polling timer */ 7682 mod_timer(&phba->eratt_poll, 7683 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7684 7685 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7686 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7687 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7688 if (!rc) { 7689 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7690 "2829 This device supports " 7691 "Advanced Error Reporting (AER)\n"); 7692 spin_lock_irq(&phba->hbalock); 7693 phba->hba_flag |= HBA_AER_ENABLED; 7694 spin_unlock_irq(&phba->hbalock); 7695 } else { 7696 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7697 "2830 This device does not support " 7698 "Advanced Error Reporting (AER)\n"); 7699 phba->cfg_aer_support = 0; 7700 } 7701 rc = 0; 7702 } 7703 7704 /* 7705 * The port is ready, set the host's link state to LINK_DOWN 7706 * in preparation for link interrupts. 7707 */ 7708 spin_lock_irq(&phba->hbalock); 7709 phba->link_state = LPFC_LINK_DOWN; 7710 7711 /* Check if physical ports are trunked */ 7712 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7713 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7714 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7715 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7716 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7717 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7718 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7719 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7720 spin_unlock_irq(&phba->hbalock); 7721 7722 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7723 (phba->hba_flag & LINK_DISABLED)) { 7724 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7725 "3103 Adapter Link is disabled.\n"); 7726 lpfc_down_link(phba, mboxq); 7727 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7728 if (rc != MBX_SUCCESS) { 7729 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7730 "3104 Adapter failed to issue " 7731 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7732 goto out_unset_queue; 7733 } 7734 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7735 /* don't perform init_link on SLI4 FC port loopback test */ 7736 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7737 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7738 if (rc) 7739 goto out_unset_queue; 7740 } 7741 } 7742 mempool_free(mboxq, phba->mbox_mem_pool); 7743 return rc; 7744 out_unset_queue: 7745 /* Unset all the queues set up in this routine when error out */ 7746 lpfc_sli4_queue_unset(phba); 7747 out_destroy_queue: 7748 lpfc_free_iocb_list(phba); 7749 lpfc_sli4_queue_destroy(phba); 7750 out_stop_timers: 7751 lpfc_stop_hba_timers(phba); 7752 out_free_mbox: 7753 mempool_free(mboxq, phba->mbox_mem_pool); 7754 return rc; 7755 } 7756 7757 /** 7758 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7759 * @ptr: context object - pointer to hba structure. 7760 * 7761 * This is the callback function for mailbox timer. The mailbox 7762 * timer is armed when a new mailbox command is issued and the timer 7763 * is deleted when the mailbox complete. The function is called by 7764 * the kernel timer code when a mailbox does not complete within 7765 * expected time. This function wakes up the worker thread to 7766 * process the mailbox timeout and returns. All the processing is 7767 * done by the worker thread function lpfc_mbox_timeout_handler. 7768 **/ 7769 void 7770 lpfc_mbox_timeout(struct timer_list *t) 7771 { 7772 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7773 unsigned long iflag; 7774 uint32_t tmo_posted; 7775 7776 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7777 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7778 if (!tmo_posted) 7779 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7780 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7781 7782 if (!tmo_posted) 7783 lpfc_worker_wake_up(phba); 7784 return; 7785 } 7786 7787 /** 7788 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7789 * are pending 7790 * @phba: Pointer to HBA context object. 7791 * 7792 * This function checks if any mailbox completions are present on the mailbox 7793 * completion queue. 7794 **/ 7795 static bool 7796 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7797 { 7798 7799 uint32_t idx; 7800 struct lpfc_queue *mcq; 7801 struct lpfc_mcqe *mcqe; 7802 bool pending_completions = false; 7803 uint8_t qe_valid; 7804 7805 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7806 return false; 7807 7808 /* Check for completions on mailbox completion queue */ 7809 7810 mcq = phba->sli4_hba.mbx_cq; 7811 idx = mcq->hba_index; 7812 qe_valid = mcq->qe_valid; 7813 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) { 7814 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7815 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7816 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7817 pending_completions = true; 7818 break; 7819 } 7820 idx = (idx + 1) % mcq->entry_count; 7821 if (mcq->hba_index == idx) 7822 break; 7823 7824 /* if the index wrapped around, toggle the valid bit */ 7825 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7826 qe_valid = (qe_valid) ? 0 : 1; 7827 } 7828 return pending_completions; 7829 7830 } 7831 7832 /** 7833 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7834 * that were missed. 7835 * @phba: Pointer to HBA context object. 7836 * 7837 * For sli4, it is possible to miss an interrupt. As such mbox completions 7838 * maybe missed causing erroneous mailbox timeouts to occur. This function 7839 * checks to see if mbox completions are on the mailbox completion queue 7840 * and will process all the completions associated with the eq for the 7841 * mailbox completion queue. 7842 **/ 7843 bool 7844 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7845 { 7846 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7847 uint32_t eqidx; 7848 struct lpfc_queue *fpeq = NULL; 7849 struct lpfc_eqe *eqe; 7850 bool mbox_pending; 7851 7852 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7853 return false; 7854 7855 /* Find the eq associated with the mcq */ 7856 7857 if (sli4_hba->hba_eq) 7858 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7859 if (sli4_hba->hba_eq[eqidx]->queue_id == 7860 sli4_hba->mbx_cq->assoc_qid) { 7861 fpeq = sli4_hba->hba_eq[eqidx]; 7862 break; 7863 } 7864 if (!fpeq) 7865 return false; 7866 7867 /* Turn off interrupts from this EQ */ 7868 7869 sli4_hba->sli4_eq_clr_intr(fpeq); 7870 7871 /* Check to see if a mbox completion is pending */ 7872 7873 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7874 7875 /* 7876 * If a mbox completion is pending, process all the events on EQ 7877 * associated with the mbox completion queue (this could include 7878 * mailbox commands, async events, els commands, receive queue data 7879 * and fcp commands) 7880 */ 7881 7882 if (mbox_pending) 7883 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7884 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7885 fpeq->EQ_processed++; 7886 } 7887 7888 /* Always clear and re-arm the EQ */ 7889 7890 sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7891 7892 return mbox_pending; 7893 7894 } 7895 7896 /** 7897 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7898 * @phba: Pointer to HBA context object. 7899 * 7900 * This function is called from worker thread when a mailbox command times out. 7901 * The caller is not required to hold any locks. This function will reset the 7902 * HBA and recover all the pending commands. 7903 **/ 7904 void 7905 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7906 { 7907 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7908 MAILBOX_t *mb = NULL; 7909 7910 struct lpfc_sli *psli = &phba->sli; 7911 7912 /* If the mailbox completed, process the completion and return */ 7913 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7914 return; 7915 7916 if (pmbox != NULL) 7917 mb = &pmbox->u.mb; 7918 /* Check the pmbox pointer first. There is a race condition 7919 * between the mbox timeout handler getting executed in the 7920 * worklist and the mailbox actually completing. When this 7921 * race condition occurs, the mbox_active will be NULL. 7922 */ 7923 spin_lock_irq(&phba->hbalock); 7924 if (pmbox == NULL) { 7925 lpfc_printf_log(phba, KERN_WARNING, 7926 LOG_MBOX | LOG_SLI, 7927 "0353 Active Mailbox cleared - mailbox timeout " 7928 "exiting\n"); 7929 spin_unlock_irq(&phba->hbalock); 7930 return; 7931 } 7932 7933 /* Mbox cmd <mbxCommand> timeout */ 7934 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7935 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7936 mb->mbxCommand, 7937 phba->pport->port_state, 7938 phba->sli.sli_flag, 7939 phba->sli.mbox_active); 7940 spin_unlock_irq(&phba->hbalock); 7941 7942 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7943 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7944 * it to fail all outstanding SCSI IO. 7945 */ 7946 spin_lock_irq(&phba->pport->work_port_lock); 7947 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7948 spin_unlock_irq(&phba->pport->work_port_lock); 7949 spin_lock_irq(&phba->hbalock); 7950 phba->link_state = LPFC_LINK_UNKNOWN; 7951 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7952 spin_unlock_irq(&phba->hbalock); 7953 7954 lpfc_sli_abort_fcp_rings(phba); 7955 7956 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7957 "0345 Resetting board due to mailbox timeout\n"); 7958 7959 /* Reset the HBA device */ 7960 lpfc_reset_hba(phba); 7961 } 7962 7963 /** 7964 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7965 * @phba: Pointer to HBA context object. 7966 * @pmbox: Pointer to mailbox object. 7967 * @flag: Flag indicating how the mailbox need to be processed. 7968 * 7969 * This function is called by discovery code and HBA management code 7970 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7971 * function gets the hbalock to protect the data structures. 7972 * The mailbox command can be submitted in polling mode, in which case 7973 * this function will wait in a polling loop for the completion of the 7974 * mailbox. 7975 * If the mailbox is submitted in no_wait mode (not polling) the 7976 * function will submit the command and returns immediately without waiting 7977 * for the mailbox completion. The no_wait is supported only when HBA 7978 * is in SLI2/SLI3 mode - interrupts are enabled. 7979 * The SLI interface allows only one mailbox pending at a time. If the 7980 * mailbox is issued in polling mode and there is already a mailbox 7981 * pending, then the function will return an error. If the mailbox is issued 7982 * in NO_WAIT mode and there is a mailbox pending already, the function 7983 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7984 * The sli layer owns the mailbox object until the completion of mailbox 7985 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7986 * return codes the caller owns the mailbox command after the return of 7987 * the function. 7988 **/ 7989 static int 7990 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7991 uint32_t flag) 7992 { 7993 MAILBOX_t *mbx; 7994 struct lpfc_sli *psli = &phba->sli; 7995 uint32_t status, evtctr; 7996 uint32_t ha_copy, hc_copy; 7997 int i; 7998 unsigned long timeout; 7999 unsigned long drvr_flag = 0; 8000 uint32_t word0, ldata; 8001 void __iomem *to_slim; 8002 int processing_queue = 0; 8003 8004 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8005 if (!pmbox) { 8006 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8007 /* processing mbox queue from intr_handler */ 8008 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8009 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8010 return MBX_SUCCESS; 8011 } 8012 processing_queue = 1; 8013 pmbox = lpfc_mbox_get(phba); 8014 if (!pmbox) { 8015 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8016 return MBX_SUCCESS; 8017 } 8018 } 8019 8020 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8021 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8022 if(!pmbox->vport) { 8023 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8024 lpfc_printf_log(phba, KERN_ERR, 8025 LOG_MBOX | LOG_VPORT, 8026 "1806 Mbox x%x failed. No vport\n", 8027 pmbox->u.mb.mbxCommand); 8028 dump_stack(); 8029 goto out_not_finished; 8030 } 8031 } 8032 8033 /* If the PCI channel is in offline state, do not post mbox. */ 8034 if (unlikely(pci_channel_offline(phba->pcidev))) { 8035 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8036 goto out_not_finished; 8037 } 8038 8039 /* If HBA has a deferred error attention, fail the iocb. */ 8040 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8041 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8042 goto out_not_finished; 8043 } 8044 8045 psli = &phba->sli; 8046 8047 mbx = &pmbox->u.mb; 8048 status = MBX_SUCCESS; 8049 8050 if (phba->link_state == LPFC_HBA_ERROR) { 8051 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8052 8053 /* Mbox command <mbxCommand> cannot issue */ 8054 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8055 "(%d):0311 Mailbox command x%x cannot " 8056 "issue Data: x%x x%x\n", 8057 pmbox->vport ? pmbox->vport->vpi : 0, 8058 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8059 goto out_not_finished; 8060 } 8061 8062 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8063 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8064 !(hc_copy & HC_MBINT_ENA)) { 8065 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8066 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8067 "(%d):2528 Mailbox command x%x cannot " 8068 "issue Data: x%x x%x\n", 8069 pmbox->vport ? pmbox->vport->vpi : 0, 8070 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8071 goto out_not_finished; 8072 } 8073 } 8074 8075 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8076 /* Polling for a mbox command when another one is already active 8077 * is not allowed in SLI. Also, the driver must have established 8078 * SLI2 mode to queue and process multiple mbox commands. 8079 */ 8080 8081 if (flag & MBX_POLL) { 8082 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8083 8084 /* Mbox command <mbxCommand> cannot issue */ 8085 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8086 "(%d):2529 Mailbox command x%x " 8087 "cannot issue Data: x%x x%x\n", 8088 pmbox->vport ? pmbox->vport->vpi : 0, 8089 pmbox->u.mb.mbxCommand, 8090 psli->sli_flag, flag); 8091 goto out_not_finished; 8092 } 8093 8094 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8095 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8096 /* Mbox command <mbxCommand> cannot issue */ 8097 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8098 "(%d):2530 Mailbox command x%x " 8099 "cannot issue Data: x%x x%x\n", 8100 pmbox->vport ? pmbox->vport->vpi : 0, 8101 pmbox->u.mb.mbxCommand, 8102 psli->sli_flag, flag); 8103 goto out_not_finished; 8104 } 8105 8106 /* Another mailbox command is still being processed, queue this 8107 * command to be processed later. 8108 */ 8109 lpfc_mbox_put(phba, pmbox); 8110 8111 /* Mbox cmd issue - BUSY */ 8112 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8113 "(%d):0308 Mbox cmd issue - BUSY Data: " 8114 "x%x x%x x%x x%x\n", 8115 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8116 mbx->mbxCommand, 8117 phba->pport ? phba->pport->port_state : 0xff, 8118 psli->sli_flag, flag); 8119 8120 psli->slistat.mbox_busy++; 8121 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8122 8123 if (pmbox->vport) { 8124 lpfc_debugfs_disc_trc(pmbox->vport, 8125 LPFC_DISC_TRC_MBOX_VPORT, 8126 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8127 (uint32_t)mbx->mbxCommand, 8128 mbx->un.varWords[0], mbx->un.varWords[1]); 8129 } 8130 else { 8131 lpfc_debugfs_disc_trc(phba->pport, 8132 LPFC_DISC_TRC_MBOX, 8133 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8134 (uint32_t)mbx->mbxCommand, 8135 mbx->un.varWords[0], mbx->un.varWords[1]); 8136 } 8137 8138 return MBX_BUSY; 8139 } 8140 8141 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8142 8143 /* If we are not polling, we MUST be in SLI2 mode */ 8144 if (flag != MBX_POLL) { 8145 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8146 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8147 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8148 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8149 /* Mbox command <mbxCommand> cannot issue */ 8150 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8151 "(%d):2531 Mailbox command x%x " 8152 "cannot issue Data: x%x x%x\n", 8153 pmbox->vport ? pmbox->vport->vpi : 0, 8154 pmbox->u.mb.mbxCommand, 8155 psli->sli_flag, flag); 8156 goto out_not_finished; 8157 } 8158 /* timeout active mbox command */ 8159 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8160 1000); 8161 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8162 } 8163 8164 /* Mailbox cmd <cmd> issue */ 8165 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8166 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8167 "x%x\n", 8168 pmbox->vport ? pmbox->vport->vpi : 0, 8169 mbx->mbxCommand, 8170 phba->pport ? phba->pport->port_state : 0xff, 8171 psli->sli_flag, flag); 8172 8173 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8174 if (pmbox->vport) { 8175 lpfc_debugfs_disc_trc(pmbox->vport, 8176 LPFC_DISC_TRC_MBOX_VPORT, 8177 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8178 (uint32_t)mbx->mbxCommand, 8179 mbx->un.varWords[0], mbx->un.varWords[1]); 8180 } 8181 else { 8182 lpfc_debugfs_disc_trc(phba->pport, 8183 LPFC_DISC_TRC_MBOX, 8184 "MBOX Send: cmd:x%x mb:x%x x%x", 8185 (uint32_t)mbx->mbxCommand, 8186 mbx->un.varWords[0], mbx->un.varWords[1]); 8187 } 8188 } 8189 8190 psli->slistat.mbox_cmd++; 8191 evtctr = psli->slistat.mbox_event; 8192 8193 /* next set own bit for the adapter and copy over command word */ 8194 mbx->mbxOwner = OWN_CHIP; 8195 8196 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8197 /* Populate mbox extension offset word. */ 8198 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8199 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8200 = (uint8_t *)phba->mbox_ext 8201 - (uint8_t *)phba->mbox; 8202 } 8203 8204 /* Copy the mailbox extension data */ 8205 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8206 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8207 (uint8_t *)phba->mbox_ext, 8208 pmbox->in_ext_byte_len); 8209 } 8210 /* Copy command data to host SLIM area */ 8211 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8212 } else { 8213 /* Populate mbox extension offset word. */ 8214 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8215 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8216 = MAILBOX_HBA_EXT_OFFSET; 8217 8218 /* Copy the mailbox extension data */ 8219 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8220 lpfc_memcpy_to_slim(phba->MBslimaddr + 8221 MAILBOX_HBA_EXT_OFFSET, 8222 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8223 8224 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8225 /* copy command data into host mbox for cmpl */ 8226 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8227 MAILBOX_CMD_SIZE); 8228 8229 /* First copy mbox command data to HBA SLIM, skip past first 8230 word */ 8231 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8232 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8233 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8234 8235 /* Next copy over first word, with mbxOwner set */ 8236 ldata = *((uint32_t *)mbx); 8237 to_slim = phba->MBslimaddr; 8238 writel(ldata, to_slim); 8239 readl(to_slim); /* flush */ 8240 8241 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8242 /* switch over to host mailbox */ 8243 psli->sli_flag |= LPFC_SLI_ACTIVE; 8244 } 8245 8246 wmb(); 8247 8248 switch (flag) { 8249 case MBX_NOWAIT: 8250 /* Set up reference to mailbox command */ 8251 psli->mbox_active = pmbox; 8252 /* Interrupt board to do it */ 8253 writel(CA_MBATT, phba->CAregaddr); 8254 readl(phba->CAregaddr); /* flush */ 8255 /* Don't wait for it to finish, just return */ 8256 break; 8257 8258 case MBX_POLL: 8259 /* Set up null reference to mailbox command */ 8260 psli->mbox_active = NULL; 8261 /* Interrupt board to do it */ 8262 writel(CA_MBATT, phba->CAregaddr); 8263 readl(phba->CAregaddr); /* flush */ 8264 8265 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8266 /* First read mbox status word */ 8267 word0 = *((uint32_t *)phba->mbox); 8268 word0 = le32_to_cpu(word0); 8269 } else { 8270 /* First read mbox status word */ 8271 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8272 spin_unlock_irqrestore(&phba->hbalock, 8273 drvr_flag); 8274 goto out_not_finished; 8275 } 8276 } 8277 8278 /* Read the HBA Host Attention Register */ 8279 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8280 spin_unlock_irqrestore(&phba->hbalock, 8281 drvr_flag); 8282 goto out_not_finished; 8283 } 8284 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8285 1000) + jiffies; 8286 i = 0; 8287 /* Wait for command to complete */ 8288 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8289 (!(ha_copy & HA_MBATT) && 8290 (phba->link_state > LPFC_WARM_START))) { 8291 if (time_after(jiffies, timeout)) { 8292 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8293 spin_unlock_irqrestore(&phba->hbalock, 8294 drvr_flag); 8295 goto out_not_finished; 8296 } 8297 8298 /* Check if we took a mbox interrupt while we were 8299 polling */ 8300 if (((word0 & OWN_CHIP) != OWN_CHIP) 8301 && (evtctr != psli->slistat.mbox_event)) 8302 break; 8303 8304 if (i++ > 10) { 8305 spin_unlock_irqrestore(&phba->hbalock, 8306 drvr_flag); 8307 msleep(1); 8308 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8309 } 8310 8311 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8312 /* First copy command data */ 8313 word0 = *((uint32_t *)phba->mbox); 8314 word0 = le32_to_cpu(word0); 8315 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8316 MAILBOX_t *slimmb; 8317 uint32_t slimword0; 8318 /* Check real SLIM for any errors */ 8319 slimword0 = readl(phba->MBslimaddr); 8320 slimmb = (MAILBOX_t *) & slimword0; 8321 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8322 && slimmb->mbxStatus) { 8323 psli->sli_flag &= 8324 ~LPFC_SLI_ACTIVE; 8325 word0 = slimword0; 8326 } 8327 } 8328 } else { 8329 /* First copy command data */ 8330 word0 = readl(phba->MBslimaddr); 8331 } 8332 /* Read the HBA Host Attention Register */ 8333 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8334 spin_unlock_irqrestore(&phba->hbalock, 8335 drvr_flag); 8336 goto out_not_finished; 8337 } 8338 } 8339 8340 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8341 /* copy results back to user */ 8342 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8343 MAILBOX_CMD_SIZE); 8344 /* Copy the mailbox extension data */ 8345 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8346 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8347 pmbox->ctx_buf, 8348 pmbox->out_ext_byte_len); 8349 } 8350 } else { 8351 /* First copy command data */ 8352 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8353 MAILBOX_CMD_SIZE); 8354 /* Copy the mailbox extension data */ 8355 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8356 lpfc_memcpy_from_slim( 8357 pmbox->ctx_buf, 8358 phba->MBslimaddr + 8359 MAILBOX_HBA_EXT_OFFSET, 8360 pmbox->out_ext_byte_len); 8361 } 8362 } 8363 8364 writel(HA_MBATT, phba->HAregaddr); 8365 readl(phba->HAregaddr); /* flush */ 8366 8367 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8368 status = mbx->mbxStatus; 8369 } 8370 8371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8372 return status; 8373 8374 out_not_finished: 8375 if (processing_queue) { 8376 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8377 lpfc_mbox_cmpl_put(phba, pmbox); 8378 } 8379 return MBX_NOT_FINISHED; 8380 } 8381 8382 /** 8383 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8384 * @phba: Pointer to HBA context object. 8385 * 8386 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8387 * the driver internal pending mailbox queue. It will then try to wait out the 8388 * possible outstanding mailbox command before return. 8389 * 8390 * Returns: 8391 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8392 * the outstanding mailbox command timed out. 8393 **/ 8394 static int 8395 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8396 { 8397 struct lpfc_sli *psli = &phba->sli; 8398 int rc = 0; 8399 unsigned long timeout = 0; 8400 8401 /* Mark the asynchronous mailbox command posting as blocked */ 8402 spin_lock_irq(&phba->hbalock); 8403 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8404 /* Determine how long we might wait for the active mailbox 8405 * command to be gracefully completed by firmware. 8406 */ 8407 if (phba->sli.mbox_active) 8408 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8409 phba->sli.mbox_active) * 8410 1000) + jiffies; 8411 spin_unlock_irq(&phba->hbalock); 8412 8413 /* Make sure the mailbox is really active */ 8414 if (timeout) 8415 lpfc_sli4_process_missed_mbox_completions(phba); 8416 8417 /* Wait for the outstnading mailbox command to complete */ 8418 while (phba->sli.mbox_active) { 8419 /* Check active mailbox complete status every 2ms */ 8420 msleep(2); 8421 if (time_after(jiffies, timeout)) { 8422 /* Timeout, marked the outstanding cmd not complete */ 8423 rc = 1; 8424 break; 8425 } 8426 } 8427 8428 /* Can not cleanly block async mailbox command, fails it */ 8429 if (rc) { 8430 spin_lock_irq(&phba->hbalock); 8431 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8432 spin_unlock_irq(&phba->hbalock); 8433 } 8434 return rc; 8435 } 8436 8437 /** 8438 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8439 * @phba: Pointer to HBA context object. 8440 * 8441 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8442 * commands from the driver internal pending mailbox queue. It makes sure 8443 * that there is no outstanding mailbox command before resuming posting 8444 * asynchronous mailbox commands. If, for any reason, there is outstanding 8445 * mailbox command, it will try to wait it out before resuming asynchronous 8446 * mailbox command posting. 8447 **/ 8448 static void 8449 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8450 { 8451 struct lpfc_sli *psli = &phba->sli; 8452 8453 spin_lock_irq(&phba->hbalock); 8454 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8455 /* Asynchronous mailbox posting is not blocked, do nothing */ 8456 spin_unlock_irq(&phba->hbalock); 8457 return; 8458 } 8459 8460 /* Outstanding synchronous mailbox command is guaranteed to be done, 8461 * successful or timeout, after timing-out the outstanding mailbox 8462 * command shall always be removed, so just unblock posting async 8463 * mailbox command and resume 8464 */ 8465 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8466 spin_unlock_irq(&phba->hbalock); 8467 8468 /* wake up worker thread to post asynchronlous mailbox command */ 8469 lpfc_worker_wake_up(phba); 8470 } 8471 8472 /** 8473 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8474 * @phba: Pointer to HBA context object. 8475 * @mboxq: Pointer to mailbox object. 8476 * 8477 * The function waits for the bootstrap mailbox register ready bit from 8478 * port for twice the regular mailbox command timeout value. 8479 * 8480 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8481 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8482 **/ 8483 static int 8484 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8485 { 8486 uint32_t db_ready; 8487 unsigned long timeout; 8488 struct lpfc_register bmbx_reg; 8489 8490 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8491 * 1000) + jiffies; 8492 8493 do { 8494 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8495 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8496 if (!db_ready) 8497 msleep(2); 8498 8499 if (time_after(jiffies, timeout)) 8500 return MBXERR_ERROR; 8501 } while (!db_ready); 8502 8503 return 0; 8504 } 8505 8506 /** 8507 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8508 * @phba: Pointer to HBA context object. 8509 * @mboxq: Pointer to mailbox object. 8510 * 8511 * The function posts a mailbox to the port. The mailbox is expected 8512 * to be comletely filled in and ready for the port to operate on it. 8513 * This routine executes a synchronous completion operation on the 8514 * mailbox by polling for its completion. 8515 * 8516 * The caller must not be holding any locks when calling this routine. 8517 * 8518 * Returns: 8519 * MBX_SUCCESS - mailbox posted successfully 8520 * Any of the MBX error values. 8521 **/ 8522 static int 8523 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8524 { 8525 int rc = MBX_SUCCESS; 8526 unsigned long iflag; 8527 uint32_t mcqe_status; 8528 uint32_t mbx_cmnd; 8529 struct lpfc_sli *psli = &phba->sli; 8530 struct lpfc_mqe *mb = &mboxq->u.mqe; 8531 struct lpfc_bmbx_create *mbox_rgn; 8532 struct dma_address *dma_address; 8533 8534 /* 8535 * Only one mailbox can be active to the bootstrap mailbox region 8536 * at a time and there is no queueing provided. 8537 */ 8538 spin_lock_irqsave(&phba->hbalock, iflag); 8539 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8540 spin_unlock_irqrestore(&phba->hbalock, iflag); 8541 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8542 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8543 "cannot issue Data: x%x x%x\n", 8544 mboxq->vport ? mboxq->vport->vpi : 0, 8545 mboxq->u.mb.mbxCommand, 8546 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8547 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8548 psli->sli_flag, MBX_POLL); 8549 return MBXERR_ERROR; 8550 } 8551 /* The server grabs the token and owns it until release */ 8552 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8553 phba->sli.mbox_active = mboxq; 8554 spin_unlock_irqrestore(&phba->hbalock, iflag); 8555 8556 /* wait for bootstrap mbox register for readyness */ 8557 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8558 if (rc) 8559 goto exit; 8560 8561 /* 8562 * Initialize the bootstrap memory region to avoid stale data areas 8563 * in the mailbox post. Then copy the caller's mailbox contents to 8564 * the bmbx mailbox region. 8565 */ 8566 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8567 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8568 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8569 sizeof(struct lpfc_mqe)); 8570 8571 /* Post the high mailbox dma address to the port and wait for ready. */ 8572 dma_address = &phba->sli4_hba.bmbx.dma_address; 8573 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8574 8575 /* wait for bootstrap mbox register for hi-address write done */ 8576 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8577 if (rc) 8578 goto exit; 8579 8580 /* Post the low mailbox dma address to the port. */ 8581 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8582 8583 /* wait for bootstrap mbox register for low address write done */ 8584 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8585 if (rc) 8586 goto exit; 8587 8588 /* 8589 * Read the CQ to ensure the mailbox has completed. 8590 * If so, update the mailbox status so that the upper layers 8591 * can complete the request normally. 8592 */ 8593 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8594 sizeof(struct lpfc_mqe)); 8595 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8596 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8597 sizeof(struct lpfc_mcqe)); 8598 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8599 /* 8600 * When the CQE status indicates a failure and the mailbox status 8601 * indicates success then copy the CQE status into the mailbox status 8602 * (and prefix it with x4000). 8603 */ 8604 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8605 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8606 bf_set(lpfc_mqe_status, mb, 8607 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8608 rc = MBXERR_ERROR; 8609 } else 8610 lpfc_sli4_swap_str(phba, mboxq); 8611 8612 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8613 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8614 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8615 " x%x x%x CQ: x%x x%x x%x x%x\n", 8616 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8617 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8618 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8619 bf_get(lpfc_mqe_status, mb), 8620 mb->un.mb_words[0], mb->un.mb_words[1], 8621 mb->un.mb_words[2], mb->un.mb_words[3], 8622 mb->un.mb_words[4], mb->un.mb_words[5], 8623 mb->un.mb_words[6], mb->un.mb_words[7], 8624 mb->un.mb_words[8], mb->un.mb_words[9], 8625 mb->un.mb_words[10], mb->un.mb_words[11], 8626 mb->un.mb_words[12], mboxq->mcqe.word0, 8627 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8628 mboxq->mcqe.trailer); 8629 exit: 8630 /* We are holding the token, no needed for lock when release */ 8631 spin_lock_irqsave(&phba->hbalock, iflag); 8632 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8633 phba->sli.mbox_active = NULL; 8634 spin_unlock_irqrestore(&phba->hbalock, iflag); 8635 return rc; 8636 } 8637 8638 /** 8639 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8640 * @phba: Pointer to HBA context object. 8641 * @pmbox: Pointer to mailbox object. 8642 * @flag: Flag indicating how the mailbox need to be processed. 8643 * 8644 * This function is called by discovery code and HBA management code to submit 8645 * a mailbox command to firmware with SLI-4 interface spec. 8646 * 8647 * Return codes the caller owns the mailbox command after the return of the 8648 * function. 8649 **/ 8650 static int 8651 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8652 uint32_t flag) 8653 { 8654 struct lpfc_sli *psli = &phba->sli; 8655 unsigned long iflags; 8656 int rc; 8657 8658 /* dump from issue mailbox command if setup */ 8659 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8660 8661 rc = lpfc_mbox_dev_check(phba); 8662 if (unlikely(rc)) { 8663 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8664 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8665 "cannot issue Data: x%x x%x\n", 8666 mboxq->vport ? mboxq->vport->vpi : 0, 8667 mboxq->u.mb.mbxCommand, 8668 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8669 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8670 psli->sli_flag, flag); 8671 goto out_not_finished; 8672 } 8673 8674 /* Detect polling mode and jump to a handler */ 8675 if (!phba->sli4_hba.intr_enable) { 8676 if (flag == MBX_POLL) 8677 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8678 else 8679 rc = -EIO; 8680 if (rc != MBX_SUCCESS) 8681 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8682 "(%d):2541 Mailbox command x%x " 8683 "(x%x/x%x) failure: " 8684 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8685 "Data: x%x x%x\n,", 8686 mboxq->vport ? mboxq->vport->vpi : 0, 8687 mboxq->u.mb.mbxCommand, 8688 lpfc_sli_config_mbox_subsys_get(phba, 8689 mboxq), 8690 lpfc_sli_config_mbox_opcode_get(phba, 8691 mboxq), 8692 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8693 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8694 bf_get(lpfc_mcqe_ext_status, 8695 &mboxq->mcqe), 8696 psli->sli_flag, flag); 8697 return rc; 8698 } else if (flag == MBX_POLL) { 8699 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8700 "(%d):2542 Try to issue mailbox command " 8701 "x%x (x%x/x%x) synchronously ahead of async " 8702 "mailbox command queue: x%x x%x\n", 8703 mboxq->vport ? mboxq->vport->vpi : 0, 8704 mboxq->u.mb.mbxCommand, 8705 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8706 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8707 psli->sli_flag, flag); 8708 /* Try to block the asynchronous mailbox posting */ 8709 rc = lpfc_sli4_async_mbox_block(phba); 8710 if (!rc) { 8711 /* Successfully blocked, now issue sync mbox cmd */ 8712 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8713 if (rc != MBX_SUCCESS) 8714 lpfc_printf_log(phba, KERN_WARNING, 8715 LOG_MBOX | LOG_SLI, 8716 "(%d):2597 Sync Mailbox command " 8717 "x%x (x%x/x%x) failure: " 8718 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8719 "Data: x%x x%x\n,", 8720 mboxq->vport ? mboxq->vport->vpi : 0, 8721 mboxq->u.mb.mbxCommand, 8722 lpfc_sli_config_mbox_subsys_get(phba, 8723 mboxq), 8724 lpfc_sli_config_mbox_opcode_get(phba, 8725 mboxq), 8726 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8727 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8728 bf_get(lpfc_mcqe_ext_status, 8729 &mboxq->mcqe), 8730 psli->sli_flag, flag); 8731 /* Unblock the async mailbox posting afterward */ 8732 lpfc_sli4_async_mbox_unblock(phba); 8733 } 8734 return rc; 8735 } 8736 8737 /* Now, interrupt mode asynchrous mailbox command */ 8738 rc = lpfc_mbox_cmd_check(phba, mboxq); 8739 if (rc) { 8740 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8741 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8742 "cannot issue Data: x%x x%x\n", 8743 mboxq->vport ? mboxq->vport->vpi : 0, 8744 mboxq->u.mb.mbxCommand, 8745 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8746 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8747 psli->sli_flag, flag); 8748 goto out_not_finished; 8749 } 8750 8751 /* Put the mailbox command to the driver internal FIFO */ 8752 psli->slistat.mbox_busy++; 8753 spin_lock_irqsave(&phba->hbalock, iflags); 8754 lpfc_mbox_put(phba, mboxq); 8755 spin_unlock_irqrestore(&phba->hbalock, iflags); 8756 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8757 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8758 "x%x (x%x/x%x) x%x x%x x%x\n", 8759 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8760 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8761 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8762 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8763 phba->pport->port_state, 8764 psli->sli_flag, MBX_NOWAIT); 8765 /* Wake up worker thread to transport mailbox command from head */ 8766 lpfc_worker_wake_up(phba); 8767 8768 return MBX_BUSY; 8769 8770 out_not_finished: 8771 return MBX_NOT_FINISHED; 8772 } 8773 8774 /** 8775 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8776 * @phba: Pointer to HBA context object. 8777 * 8778 * This function is called by worker thread to send a mailbox command to 8779 * SLI4 HBA firmware. 8780 * 8781 **/ 8782 int 8783 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8784 { 8785 struct lpfc_sli *psli = &phba->sli; 8786 LPFC_MBOXQ_t *mboxq; 8787 int rc = MBX_SUCCESS; 8788 unsigned long iflags; 8789 struct lpfc_mqe *mqe; 8790 uint32_t mbx_cmnd; 8791 8792 /* Check interrupt mode before post async mailbox command */ 8793 if (unlikely(!phba->sli4_hba.intr_enable)) 8794 return MBX_NOT_FINISHED; 8795 8796 /* Check for mailbox command service token */ 8797 spin_lock_irqsave(&phba->hbalock, iflags); 8798 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8799 spin_unlock_irqrestore(&phba->hbalock, iflags); 8800 return MBX_NOT_FINISHED; 8801 } 8802 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8803 spin_unlock_irqrestore(&phba->hbalock, iflags); 8804 return MBX_NOT_FINISHED; 8805 } 8806 if (unlikely(phba->sli.mbox_active)) { 8807 spin_unlock_irqrestore(&phba->hbalock, iflags); 8808 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8809 "0384 There is pending active mailbox cmd\n"); 8810 return MBX_NOT_FINISHED; 8811 } 8812 /* Take the mailbox command service token */ 8813 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8814 8815 /* Get the next mailbox command from head of queue */ 8816 mboxq = lpfc_mbox_get(phba); 8817 8818 /* If no more mailbox command waiting for post, we're done */ 8819 if (!mboxq) { 8820 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8821 spin_unlock_irqrestore(&phba->hbalock, iflags); 8822 return MBX_SUCCESS; 8823 } 8824 phba->sli.mbox_active = mboxq; 8825 spin_unlock_irqrestore(&phba->hbalock, iflags); 8826 8827 /* Check device readiness for posting mailbox command */ 8828 rc = lpfc_mbox_dev_check(phba); 8829 if (unlikely(rc)) 8830 /* Driver clean routine will clean up pending mailbox */ 8831 goto out_not_finished; 8832 8833 /* Prepare the mbox command to be posted */ 8834 mqe = &mboxq->u.mqe; 8835 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8836 8837 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8838 mod_timer(&psli->mbox_tmo, (jiffies + 8839 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8840 8841 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8842 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8843 "x%x x%x\n", 8844 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8845 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8846 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8847 phba->pport->port_state, psli->sli_flag); 8848 8849 if (mbx_cmnd != MBX_HEARTBEAT) { 8850 if (mboxq->vport) { 8851 lpfc_debugfs_disc_trc(mboxq->vport, 8852 LPFC_DISC_TRC_MBOX_VPORT, 8853 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8854 mbx_cmnd, mqe->un.mb_words[0], 8855 mqe->un.mb_words[1]); 8856 } else { 8857 lpfc_debugfs_disc_trc(phba->pport, 8858 LPFC_DISC_TRC_MBOX, 8859 "MBOX Send: cmd:x%x mb:x%x x%x", 8860 mbx_cmnd, mqe->un.mb_words[0], 8861 mqe->un.mb_words[1]); 8862 } 8863 } 8864 psli->slistat.mbox_cmd++; 8865 8866 /* Post the mailbox command to the port */ 8867 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8868 if (rc != MBX_SUCCESS) { 8869 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8870 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8871 "cannot issue Data: x%x x%x\n", 8872 mboxq->vport ? mboxq->vport->vpi : 0, 8873 mboxq->u.mb.mbxCommand, 8874 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8875 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8876 psli->sli_flag, MBX_NOWAIT); 8877 goto out_not_finished; 8878 } 8879 8880 return rc; 8881 8882 out_not_finished: 8883 spin_lock_irqsave(&phba->hbalock, iflags); 8884 if (phba->sli.mbox_active) { 8885 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8886 __lpfc_mbox_cmpl_put(phba, mboxq); 8887 /* Release the token */ 8888 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8889 phba->sli.mbox_active = NULL; 8890 } 8891 spin_unlock_irqrestore(&phba->hbalock, iflags); 8892 8893 return MBX_NOT_FINISHED; 8894 } 8895 8896 /** 8897 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8898 * @phba: Pointer to HBA context object. 8899 * @pmbox: Pointer to mailbox object. 8900 * @flag: Flag indicating how the mailbox need to be processed. 8901 * 8902 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8903 * the API jump table function pointer from the lpfc_hba struct. 8904 * 8905 * Return codes the caller owns the mailbox command after the return of the 8906 * function. 8907 **/ 8908 int 8909 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8910 { 8911 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8912 } 8913 8914 /** 8915 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8916 * @phba: The hba struct for which this call is being executed. 8917 * @dev_grp: The HBA PCI-Device group number. 8918 * 8919 * This routine sets up the mbox interface API function jump table in @phba 8920 * struct. 8921 * Returns: 0 - success, -ENODEV - failure. 8922 **/ 8923 int 8924 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8925 { 8926 8927 switch (dev_grp) { 8928 case LPFC_PCI_DEV_LP: 8929 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8930 phba->lpfc_sli_handle_slow_ring_event = 8931 lpfc_sli_handle_slow_ring_event_s3; 8932 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8933 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8934 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8935 break; 8936 case LPFC_PCI_DEV_OC: 8937 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8938 phba->lpfc_sli_handle_slow_ring_event = 8939 lpfc_sli_handle_slow_ring_event_s4; 8940 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8941 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8942 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8943 break; 8944 default: 8945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8946 "1420 Invalid HBA PCI-device group: 0x%x\n", 8947 dev_grp); 8948 return -ENODEV; 8949 break; 8950 } 8951 return 0; 8952 } 8953 8954 /** 8955 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8956 * @phba: Pointer to HBA context object. 8957 * @pring: Pointer to driver SLI ring object. 8958 * @piocb: Pointer to address of newly added command iocb. 8959 * 8960 * This function is called with hbalock held to add a command 8961 * iocb to the txq when SLI layer cannot submit the command iocb 8962 * to the ring. 8963 **/ 8964 void 8965 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8966 struct lpfc_iocbq *piocb) 8967 { 8968 lockdep_assert_held(&phba->hbalock); 8969 /* Insert the caller's iocb in the txq tail for later processing. */ 8970 list_add_tail(&piocb->list, &pring->txq); 8971 } 8972 8973 /** 8974 * lpfc_sli_next_iocb - Get the next iocb in the txq 8975 * @phba: Pointer to HBA context object. 8976 * @pring: Pointer to driver SLI ring object. 8977 * @piocb: Pointer to address of newly added command iocb. 8978 * 8979 * This function is called with hbalock held before a new 8980 * iocb is submitted to the firmware. This function checks 8981 * txq to flush the iocbs in txq to Firmware before 8982 * submitting new iocbs to the Firmware. 8983 * If there are iocbs in the txq which need to be submitted 8984 * to firmware, lpfc_sli_next_iocb returns the first element 8985 * of the txq after dequeuing it from txq. 8986 * If there is no iocb in the txq then the function will return 8987 * *piocb and *piocb is set to NULL. Caller needs to check 8988 * *piocb to find if there are more commands in the txq. 8989 **/ 8990 static struct lpfc_iocbq * 8991 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8992 struct lpfc_iocbq **piocb) 8993 { 8994 struct lpfc_iocbq * nextiocb; 8995 8996 lockdep_assert_held(&phba->hbalock); 8997 8998 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8999 if (!nextiocb) { 9000 nextiocb = *piocb; 9001 *piocb = NULL; 9002 } 9003 9004 return nextiocb; 9005 } 9006 9007 /** 9008 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9009 * @phba: Pointer to HBA context object. 9010 * @ring_number: SLI ring number to issue iocb on. 9011 * @piocb: Pointer to command iocb. 9012 * @flag: Flag indicating if this command can be put into txq. 9013 * 9014 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9015 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9016 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9017 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9018 * this function allows only iocbs for posting buffers. This function finds 9019 * next available slot in the command ring and posts the command to the 9020 * available slot and writes the port attention register to request HBA start 9021 * processing new iocb. If there is no slot available in the ring and 9022 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9023 * the function returns IOCB_BUSY. 9024 * 9025 * This function is called with hbalock held. The function will return success 9026 * after it successfully submit the iocb to firmware or after adding to the 9027 * txq. 9028 **/ 9029 static int 9030 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9031 struct lpfc_iocbq *piocb, uint32_t flag) 9032 { 9033 struct lpfc_iocbq *nextiocb; 9034 IOCB_t *iocb; 9035 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9036 9037 lockdep_assert_held(&phba->hbalock); 9038 9039 if (piocb->iocb_cmpl && (!piocb->vport) && 9040 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9041 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9042 lpfc_printf_log(phba, KERN_ERR, 9043 LOG_SLI | LOG_VPORT, 9044 "1807 IOCB x%x failed. No vport\n", 9045 piocb->iocb.ulpCommand); 9046 dump_stack(); 9047 return IOCB_ERROR; 9048 } 9049 9050 9051 /* If the PCI channel is in offline state, do not post iocbs. */ 9052 if (unlikely(pci_channel_offline(phba->pcidev))) 9053 return IOCB_ERROR; 9054 9055 /* If HBA has a deferred error attention, fail the iocb. */ 9056 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9057 return IOCB_ERROR; 9058 9059 /* 9060 * We should never get an IOCB if we are in a < LINK_DOWN state 9061 */ 9062 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9063 return IOCB_ERROR; 9064 9065 /* 9066 * Check to see if we are blocking IOCB processing because of a 9067 * outstanding event. 9068 */ 9069 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9070 goto iocb_busy; 9071 9072 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9073 /* 9074 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9075 * can be issued if the link is not up. 9076 */ 9077 switch (piocb->iocb.ulpCommand) { 9078 case CMD_GEN_REQUEST64_CR: 9079 case CMD_GEN_REQUEST64_CX: 9080 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9081 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9082 FC_RCTL_DD_UNSOL_CMD) || 9083 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9084 MENLO_TRANSPORT_TYPE)) 9085 9086 goto iocb_busy; 9087 break; 9088 case CMD_QUE_RING_BUF_CN: 9089 case CMD_QUE_RING_BUF64_CN: 9090 /* 9091 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9092 * completion, iocb_cmpl MUST be 0. 9093 */ 9094 if (piocb->iocb_cmpl) 9095 piocb->iocb_cmpl = NULL; 9096 /*FALLTHROUGH*/ 9097 case CMD_CREATE_XRI_CR: 9098 case CMD_CLOSE_XRI_CN: 9099 case CMD_CLOSE_XRI_CX: 9100 break; 9101 default: 9102 goto iocb_busy; 9103 } 9104 9105 /* 9106 * For FCP commands, we must be in a state where we can process link 9107 * attention events. 9108 */ 9109 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9110 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9111 goto iocb_busy; 9112 } 9113 9114 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9115 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9116 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9117 9118 if (iocb) 9119 lpfc_sli_update_ring(phba, pring); 9120 else 9121 lpfc_sli_update_full_ring(phba, pring); 9122 9123 if (!piocb) 9124 return IOCB_SUCCESS; 9125 9126 goto out_busy; 9127 9128 iocb_busy: 9129 pring->stats.iocb_cmd_delay++; 9130 9131 out_busy: 9132 9133 if (!(flag & SLI_IOCB_RET_IOCB)) { 9134 __lpfc_sli_ringtx_put(phba, pring, piocb); 9135 return IOCB_SUCCESS; 9136 } 9137 9138 return IOCB_BUSY; 9139 } 9140 9141 /** 9142 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9143 * @phba: Pointer to HBA context object. 9144 * @piocb: Pointer to command iocb. 9145 * @sglq: Pointer to the scatter gather queue object. 9146 * 9147 * This routine converts the bpl or bde that is in the IOCB 9148 * to a sgl list for the sli4 hardware. The physical address 9149 * of the bpl/bde is converted back to a virtual address. 9150 * If the IOCB contains a BPL then the list of BDE's is 9151 * converted to sli4_sge's. If the IOCB contains a single 9152 * BDE then it is converted to a single sli_sge. 9153 * The IOCB is still in cpu endianess so the contents of 9154 * the bpl can be used without byte swapping. 9155 * 9156 * Returns valid XRI = Success, NO_XRI = Failure. 9157 **/ 9158 static uint16_t 9159 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9160 struct lpfc_sglq *sglq) 9161 { 9162 uint16_t xritag = NO_XRI; 9163 struct ulp_bde64 *bpl = NULL; 9164 struct ulp_bde64 bde; 9165 struct sli4_sge *sgl = NULL; 9166 struct lpfc_dmabuf *dmabuf; 9167 IOCB_t *icmd; 9168 int numBdes = 0; 9169 int i = 0; 9170 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9171 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9172 9173 if (!piocbq || !sglq) 9174 return xritag; 9175 9176 sgl = (struct sli4_sge *)sglq->sgl; 9177 icmd = &piocbq->iocb; 9178 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9179 return sglq->sli4_xritag; 9180 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9181 numBdes = icmd->un.genreq64.bdl.bdeSize / 9182 sizeof(struct ulp_bde64); 9183 /* The addrHigh and addrLow fields within the IOCB 9184 * have not been byteswapped yet so there is no 9185 * need to swap them back. 9186 */ 9187 if (piocbq->context3) 9188 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9189 else 9190 return xritag; 9191 9192 bpl = (struct ulp_bde64 *)dmabuf->virt; 9193 if (!bpl) 9194 return xritag; 9195 9196 for (i = 0; i < numBdes; i++) { 9197 /* Should already be byte swapped. */ 9198 sgl->addr_hi = bpl->addrHigh; 9199 sgl->addr_lo = bpl->addrLow; 9200 9201 sgl->word2 = le32_to_cpu(sgl->word2); 9202 if ((i+1) == numBdes) 9203 bf_set(lpfc_sli4_sge_last, sgl, 1); 9204 else 9205 bf_set(lpfc_sli4_sge_last, sgl, 0); 9206 /* swap the size field back to the cpu so we 9207 * can assign it to the sgl. 9208 */ 9209 bde.tus.w = le32_to_cpu(bpl->tus.w); 9210 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9211 /* The offsets in the sgl need to be accumulated 9212 * separately for the request and reply lists. 9213 * The request is always first, the reply follows. 9214 */ 9215 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9216 /* add up the reply sg entries */ 9217 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9218 inbound++; 9219 /* first inbound? reset the offset */ 9220 if (inbound == 1) 9221 offset = 0; 9222 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9223 bf_set(lpfc_sli4_sge_type, sgl, 9224 LPFC_SGE_TYPE_DATA); 9225 offset += bde.tus.f.bdeSize; 9226 } 9227 sgl->word2 = cpu_to_le32(sgl->word2); 9228 bpl++; 9229 sgl++; 9230 } 9231 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9232 /* The addrHigh and addrLow fields of the BDE have not 9233 * been byteswapped yet so they need to be swapped 9234 * before putting them in the sgl. 9235 */ 9236 sgl->addr_hi = 9237 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9238 sgl->addr_lo = 9239 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9240 sgl->word2 = le32_to_cpu(sgl->word2); 9241 bf_set(lpfc_sli4_sge_last, sgl, 1); 9242 sgl->word2 = cpu_to_le32(sgl->word2); 9243 sgl->sge_len = 9244 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9245 } 9246 return sglq->sli4_xritag; 9247 } 9248 9249 /** 9250 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9251 * @phba: Pointer to HBA context object. 9252 * @piocb: Pointer to command iocb. 9253 * @wqe: Pointer to the work queue entry. 9254 * 9255 * This routine converts the iocb command to its Work Queue Entry 9256 * equivalent. The wqe pointer should not have any fields set when 9257 * this routine is called because it will memcpy over them. 9258 * This routine does not set the CQ_ID or the WQEC bits in the 9259 * wqe. 9260 * 9261 * Returns: 0 = Success, IOCB_ERROR = Failure. 9262 **/ 9263 static int 9264 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9265 union lpfc_wqe128 *wqe) 9266 { 9267 uint32_t xmit_len = 0, total_len = 0; 9268 uint8_t ct = 0; 9269 uint32_t fip; 9270 uint32_t abort_tag; 9271 uint8_t command_type = ELS_COMMAND_NON_FIP; 9272 uint8_t cmnd; 9273 uint16_t xritag; 9274 uint16_t abrt_iotag; 9275 struct lpfc_iocbq *abrtiocbq; 9276 struct ulp_bde64 *bpl = NULL; 9277 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9278 int numBdes, i; 9279 struct ulp_bde64 bde; 9280 struct lpfc_nodelist *ndlp; 9281 uint32_t *pcmd; 9282 uint32_t if_type; 9283 9284 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9285 /* The fcp commands will set command type */ 9286 if (iocbq->iocb_flag & LPFC_IO_FCP) 9287 command_type = FCP_COMMAND; 9288 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9289 command_type = ELS_COMMAND_FIP; 9290 else 9291 command_type = ELS_COMMAND_NON_FIP; 9292 9293 if (phba->fcp_embed_io) 9294 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9295 /* Some of the fields are in the right position already */ 9296 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9297 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 9298 /* The ct field has moved so reset */ 9299 wqe->generic.wqe_com.word7 = 0; 9300 wqe->generic.wqe_com.word10 = 0; 9301 } 9302 9303 abort_tag = (uint32_t) iocbq->iotag; 9304 xritag = iocbq->sli4_xritag; 9305 /* words0-2 bpl convert bde */ 9306 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9307 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9308 sizeof(struct ulp_bde64); 9309 bpl = (struct ulp_bde64 *) 9310 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9311 if (!bpl) 9312 return IOCB_ERROR; 9313 9314 /* Should already be byte swapped. */ 9315 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9316 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9317 /* swap the size field back to the cpu so we 9318 * can assign it to the sgl. 9319 */ 9320 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9321 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9322 total_len = 0; 9323 for (i = 0; i < numBdes; i++) { 9324 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9325 total_len += bde.tus.f.bdeSize; 9326 } 9327 } else 9328 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9329 9330 iocbq->iocb.ulpIoTag = iocbq->iotag; 9331 cmnd = iocbq->iocb.ulpCommand; 9332 9333 switch (iocbq->iocb.ulpCommand) { 9334 case CMD_ELS_REQUEST64_CR: 9335 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9336 ndlp = iocbq->context_un.ndlp; 9337 else 9338 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9339 if (!iocbq->iocb.ulpLe) { 9340 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9341 "2007 Only Limited Edition cmd Format" 9342 " supported 0x%x\n", 9343 iocbq->iocb.ulpCommand); 9344 return IOCB_ERROR; 9345 } 9346 9347 wqe->els_req.payload_len = xmit_len; 9348 /* Els_reguest64 has a TMO */ 9349 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9350 iocbq->iocb.ulpTimeout); 9351 /* Need a VF for word 4 set the vf bit*/ 9352 bf_set(els_req64_vf, &wqe->els_req, 0); 9353 /* And a VFID for word 12 */ 9354 bf_set(els_req64_vfid, &wqe->els_req, 0); 9355 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9356 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9357 iocbq->iocb.ulpContext); 9358 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9359 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9360 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9361 if (command_type == ELS_COMMAND_FIP) 9362 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9363 >> LPFC_FIP_ELS_ID_SHIFT); 9364 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9365 iocbq->context2)->virt); 9366 if_type = bf_get(lpfc_sli_intf_if_type, 9367 &phba->sli4_hba.sli_intf); 9368 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9369 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9370 *pcmd == ELS_CMD_SCR || 9371 *pcmd == ELS_CMD_FDISC || 9372 *pcmd == ELS_CMD_LOGO || 9373 *pcmd == ELS_CMD_PLOGI)) { 9374 bf_set(els_req64_sp, &wqe->els_req, 1); 9375 bf_set(els_req64_sid, &wqe->els_req, 9376 iocbq->vport->fc_myDID); 9377 if ((*pcmd == ELS_CMD_FLOGI) && 9378 !(phba->fc_topology == 9379 LPFC_TOPOLOGY_LOOP)) 9380 bf_set(els_req64_sid, &wqe->els_req, 0); 9381 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9382 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9383 phba->vpi_ids[iocbq->vport->vpi]); 9384 } else if (pcmd && iocbq->context1) { 9385 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9386 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9387 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9388 } 9389 } 9390 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9391 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9392 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9393 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9394 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9395 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9396 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9397 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9398 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9399 break; 9400 case CMD_XMIT_SEQUENCE64_CX: 9401 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9402 iocbq->iocb.un.ulpWord[3]); 9403 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9404 iocbq->iocb.unsli3.rcvsli3.ox_id); 9405 /* The entire sequence is transmitted for this IOCB */ 9406 xmit_len = total_len; 9407 cmnd = CMD_XMIT_SEQUENCE64_CR; 9408 if (phba->link_flag & LS_LOOPBACK_MODE) 9409 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9410 case CMD_XMIT_SEQUENCE64_CR: 9411 /* word3 iocb=io_tag32 wqe=reserved */ 9412 wqe->xmit_sequence.rsvd3 = 0; 9413 /* word4 relative_offset memcpy */ 9414 /* word5 r_ctl/df_ctl memcpy */ 9415 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9416 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9417 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9418 LPFC_WQE_IOD_WRITE); 9419 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9420 LPFC_WQE_LENLOC_WORD12); 9421 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9422 wqe->xmit_sequence.xmit_len = xmit_len; 9423 command_type = OTHER_COMMAND; 9424 break; 9425 case CMD_XMIT_BCAST64_CN: 9426 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9427 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9428 /* word4 iocb=rsvd wqe=rsvd */ 9429 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9430 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9431 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9432 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9433 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9434 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9435 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9436 LPFC_WQE_LENLOC_WORD3); 9437 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9438 break; 9439 case CMD_FCP_IWRITE64_CR: 9440 command_type = FCP_COMMAND_DATA_OUT; 9441 /* word3 iocb=iotag wqe=payload_offset_len */ 9442 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9443 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9444 xmit_len + sizeof(struct fcp_rsp)); 9445 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9446 0); 9447 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9448 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9449 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9450 iocbq->iocb.ulpFCP2Rcvy); 9451 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9452 /* Always open the exchange */ 9453 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9454 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9455 LPFC_WQE_LENLOC_WORD4); 9456 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9457 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9458 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9459 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9460 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9461 if (iocbq->priority) { 9462 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9463 (iocbq->priority << 1)); 9464 } else { 9465 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9466 (phba->cfg_XLanePriority << 1)); 9467 } 9468 } 9469 /* Note, word 10 is already initialized to 0 */ 9470 9471 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9472 if (phba->cfg_enable_pbde) 9473 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9474 else 9475 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9476 9477 if (phba->fcp_embed_io) { 9478 struct lpfc_scsi_buf *lpfc_cmd; 9479 struct sli4_sge *sgl; 9480 struct fcp_cmnd *fcp_cmnd; 9481 uint32_t *ptr; 9482 9483 /* 128 byte wqe support here */ 9484 9485 lpfc_cmd = iocbq->context1; 9486 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9487 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9488 9489 /* Word 0-2 - FCP_CMND */ 9490 wqe->generic.bde.tus.f.bdeFlags = 9491 BUFF_TYPE_BDE_IMMED; 9492 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9493 wqe->generic.bde.addrHigh = 0; 9494 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9495 9496 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9497 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9498 9499 /* Word 22-29 FCP CMND Payload */ 9500 ptr = &wqe->words[22]; 9501 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9502 } 9503 break; 9504 case CMD_FCP_IREAD64_CR: 9505 /* word3 iocb=iotag wqe=payload_offset_len */ 9506 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9507 bf_set(payload_offset_len, &wqe->fcp_iread, 9508 xmit_len + sizeof(struct fcp_rsp)); 9509 bf_set(cmd_buff_len, &wqe->fcp_iread, 9510 0); 9511 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9512 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9513 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9514 iocbq->iocb.ulpFCP2Rcvy); 9515 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9516 /* Always open the exchange */ 9517 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9518 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9519 LPFC_WQE_LENLOC_WORD4); 9520 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9521 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9522 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9523 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9524 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9525 if (iocbq->priority) { 9526 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9527 (iocbq->priority << 1)); 9528 } else { 9529 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9530 (phba->cfg_XLanePriority << 1)); 9531 } 9532 } 9533 /* Note, word 10 is already initialized to 0 */ 9534 9535 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9536 if (phba->cfg_enable_pbde) 9537 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9538 else 9539 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9540 9541 if (phba->fcp_embed_io) { 9542 struct lpfc_scsi_buf *lpfc_cmd; 9543 struct sli4_sge *sgl; 9544 struct fcp_cmnd *fcp_cmnd; 9545 uint32_t *ptr; 9546 9547 /* 128 byte wqe support here */ 9548 9549 lpfc_cmd = iocbq->context1; 9550 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9551 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9552 9553 /* Word 0-2 - FCP_CMND */ 9554 wqe->generic.bde.tus.f.bdeFlags = 9555 BUFF_TYPE_BDE_IMMED; 9556 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9557 wqe->generic.bde.addrHigh = 0; 9558 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9559 9560 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9561 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9562 9563 /* Word 22-29 FCP CMND Payload */ 9564 ptr = &wqe->words[22]; 9565 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9566 } 9567 break; 9568 case CMD_FCP_ICMND64_CR: 9569 /* word3 iocb=iotag wqe=payload_offset_len */ 9570 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9571 bf_set(payload_offset_len, &wqe->fcp_icmd, 9572 xmit_len + sizeof(struct fcp_rsp)); 9573 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9574 0); 9575 /* word3 iocb=IO_TAG wqe=reserved */ 9576 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9577 /* Always open the exchange */ 9578 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9579 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9580 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9581 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9582 LPFC_WQE_LENLOC_NONE); 9583 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9584 iocbq->iocb.ulpFCP2Rcvy); 9585 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9586 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9587 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9588 if (iocbq->priority) { 9589 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9590 (iocbq->priority << 1)); 9591 } else { 9592 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9593 (phba->cfg_XLanePriority << 1)); 9594 } 9595 } 9596 /* Note, word 10 is already initialized to 0 */ 9597 9598 if (phba->fcp_embed_io) { 9599 struct lpfc_scsi_buf *lpfc_cmd; 9600 struct sli4_sge *sgl; 9601 struct fcp_cmnd *fcp_cmnd; 9602 uint32_t *ptr; 9603 9604 /* 128 byte wqe support here */ 9605 9606 lpfc_cmd = iocbq->context1; 9607 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9608 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9609 9610 /* Word 0-2 - FCP_CMND */ 9611 wqe->generic.bde.tus.f.bdeFlags = 9612 BUFF_TYPE_BDE_IMMED; 9613 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9614 wqe->generic.bde.addrHigh = 0; 9615 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9616 9617 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9618 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9619 9620 /* Word 22-29 FCP CMND Payload */ 9621 ptr = &wqe->words[22]; 9622 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9623 } 9624 break; 9625 case CMD_GEN_REQUEST64_CR: 9626 /* For this command calculate the xmit length of the 9627 * request bde. 9628 */ 9629 xmit_len = 0; 9630 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9631 sizeof(struct ulp_bde64); 9632 for (i = 0; i < numBdes; i++) { 9633 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9634 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9635 break; 9636 xmit_len += bde.tus.f.bdeSize; 9637 } 9638 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9639 wqe->gen_req.request_payload_len = xmit_len; 9640 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9641 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9642 /* word6 context tag copied in memcpy */ 9643 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9644 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9645 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9646 "2015 Invalid CT %x command 0x%x\n", 9647 ct, iocbq->iocb.ulpCommand); 9648 return IOCB_ERROR; 9649 } 9650 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9651 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9652 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9653 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9654 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9655 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9656 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9657 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9658 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9659 command_type = OTHER_COMMAND; 9660 break; 9661 case CMD_XMIT_ELS_RSP64_CX: 9662 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9663 /* words0-2 BDE memcpy */ 9664 /* word3 iocb=iotag32 wqe=response_payload_len */ 9665 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9666 /* word4 */ 9667 wqe->xmit_els_rsp.word4 = 0; 9668 /* word5 iocb=rsvd wge=did */ 9669 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9670 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9671 9672 if_type = bf_get(lpfc_sli_intf_if_type, 9673 &phba->sli4_hba.sli_intf); 9674 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9675 if (iocbq->vport->fc_flag & FC_PT2PT) { 9676 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9677 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9678 iocbq->vport->fc_myDID); 9679 if (iocbq->vport->fc_myDID == Fabric_DID) { 9680 bf_set(wqe_els_did, 9681 &wqe->xmit_els_rsp.wqe_dest, 0); 9682 } 9683 } 9684 } 9685 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9686 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9687 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9688 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9689 iocbq->iocb.unsli3.rcvsli3.ox_id); 9690 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9691 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9692 phba->vpi_ids[iocbq->vport->vpi]); 9693 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9694 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9695 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9696 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9697 LPFC_WQE_LENLOC_WORD3); 9698 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9699 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9700 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9701 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9702 iocbq->context2)->virt); 9703 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9704 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9705 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9706 iocbq->vport->fc_myDID); 9707 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9708 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9709 phba->vpi_ids[phba->pport->vpi]); 9710 } 9711 command_type = OTHER_COMMAND; 9712 break; 9713 case CMD_CLOSE_XRI_CN: 9714 case CMD_ABORT_XRI_CN: 9715 case CMD_ABORT_XRI_CX: 9716 /* words 0-2 memcpy should be 0 rserved */ 9717 /* port will send abts */ 9718 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9719 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9720 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9721 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9722 } else 9723 fip = 0; 9724 9725 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9726 /* 9727 * The link is down, or the command was ELS_FIP 9728 * so the fw does not need to send abts 9729 * on the wire. 9730 */ 9731 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9732 else 9733 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9734 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9735 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9736 wqe->abort_cmd.rsrvd5 = 0; 9737 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9738 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9739 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9740 /* 9741 * The abort handler will send us CMD_ABORT_XRI_CN or 9742 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9743 */ 9744 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9745 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9746 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9747 LPFC_WQE_LENLOC_NONE); 9748 cmnd = CMD_ABORT_XRI_CX; 9749 command_type = OTHER_COMMAND; 9750 xritag = 0; 9751 break; 9752 case CMD_XMIT_BLS_RSP64_CX: 9753 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9754 /* As BLS ABTS RSP WQE is very different from other WQEs, 9755 * we re-construct this WQE here based on information in 9756 * iocbq from scratch. 9757 */ 9758 memset(wqe, 0, sizeof(union lpfc_wqe)); 9759 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9760 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9761 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9762 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9763 LPFC_ABTS_UNSOL_INT) { 9764 /* ABTS sent by initiator to CT exchange, the 9765 * RX_ID field will be filled with the newly 9766 * allocated responder XRI. 9767 */ 9768 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9769 iocbq->sli4_xritag); 9770 } else { 9771 /* ABTS sent by responder to CT exchange, the 9772 * RX_ID field will be filled with the responder 9773 * RX_ID from ABTS. 9774 */ 9775 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9776 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9777 } 9778 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9779 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9780 9781 /* Use CT=VPI */ 9782 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9783 ndlp->nlp_DID); 9784 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9785 iocbq->iocb.ulpContext); 9786 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9787 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9788 phba->vpi_ids[phba->pport->vpi]); 9789 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9790 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9791 LPFC_WQE_LENLOC_NONE); 9792 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9793 command_type = OTHER_COMMAND; 9794 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9795 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9796 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9797 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9798 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9799 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9800 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9801 } 9802 9803 break; 9804 case CMD_SEND_FRAME: 9805 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9806 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9807 return 0; 9808 case CMD_XRI_ABORTED_CX: 9809 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9810 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9811 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9812 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9813 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9814 default: 9815 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9816 "2014 Invalid command 0x%x\n", 9817 iocbq->iocb.ulpCommand); 9818 return IOCB_ERROR; 9819 break; 9820 } 9821 9822 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9823 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9824 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9825 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9826 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9827 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9828 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9829 LPFC_IO_DIF_INSERT); 9830 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9831 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9832 wqe->generic.wqe_com.abort_tag = abort_tag; 9833 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9834 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9835 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9836 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9837 return 0; 9838 } 9839 9840 /** 9841 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9842 * @phba: Pointer to HBA context object. 9843 * @ring_number: SLI ring number to issue iocb on. 9844 * @piocb: Pointer to command iocb. 9845 * @flag: Flag indicating if this command can be put into txq. 9846 * 9847 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9848 * an iocb command to an HBA with SLI-4 interface spec. 9849 * 9850 * This function is called with hbalock held. The function will return success 9851 * after it successfully submit the iocb to firmware or after adding to the 9852 * txq. 9853 **/ 9854 static int 9855 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9856 struct lpfc_iocbq *piocb, uint32_t flag) 9857 { 9858 struct lpfc_sglq *sglq; 9859 union lpfc_wqe128 wqe; 9860 struct lpfc_queue *wq; 9861 struct lpfc_sli_ring *pring; 9862 9863 /* Get the WQ */ 9864 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9865 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9866 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9867 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9868 else 9869 wq = phba->sli4_hba.oas_wq; 9870 } else { 9871 wq = phba->sli4_hba.els_wq; 9872 } 9873 9874 /* Get corresponding ring */ 9875 pring = wq->pring; 9876 9877 /* 9878 * The WQE can be either 64 or 128 bytes, 9879 */ 9880 9881 lockdep_assert_held(&phba->hbalock); 9882 9883 if (piocb->sli4_xritag == NO_XRI) { 9884 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9885 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9886 sglq = NULL; 9887 else { 9888 if (!list_empty(&pring->txq)) { 9889 if (!(flag & SLI_IOCB_RET_IOCB)) { 9890 __lpfc_sli_ringtx_put(phba, 9891 pring, piocb); 9892 return IOCB_SUCCESS; 9893 } else { 9894 return IOCB_BUSY; 9895 } 9896 } else { 9897 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9898 if (!sglq) { 9899 if (!(flag & SLI_IOCB_RET_IOCB)) { 9900 __lpfc_sli_ringtx_put(phba, 9901 pring, 9902 piocb); 9903 return IOCB_SUCCESS; 9904 } else 9905 return IOCB_BUSY; 9906 } 9907 } 9908 } 9909 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9910 /* These IO's already have an XRI and a mapped sgl. */ 9911 sglq = NULL; 9912 else { 9913 /* 9914 * This is a continuation of a commandi,(CX) so this 9915 * sglq is on the active list 9916 */ 9917 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9918 if (!sglq) 9919 return IOCB_ERROR; 9920 } 9921 9922 if (sglq) { 9923 piocb->sli4_lxritag = sglq->sli4_lxritag; 9924 piocb->sli4_xritag = sglq->sli4_xritag; 9925 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9926 return IOCB_ERROR; 9927 } 9928 9929 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 9930 return IOCB_ERROR; 9931 9932 if (lpfc_sli4_wq_put(wq, &wqe)) 9933 return IOCB_ERROR; 9934 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9935 9936 return 0; 9937 } 9938 9939 /** 9940 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9941 * 9942 * This routine wraps the actual lockless version for issusing IOCB function 9943 * pointer from the lpfc_hba struct. 9944 * 9945 * Return codes: 9946 * IOCB_ERROR - Error 9947 * IOCB_SUCCESS - Success 9948 * IOCB_BUSY - Busy 9949 **/ 9950 int 9951 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9952 struct lpfc_iocbq *piocb, uint32_t flag) 9953 { 9954 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9955 } 9956 9957 /** 9958 * lpfc_sli_api_table_setup - Set up sli api function jump table 9959 * @phba: The hba struct for which this call is being executed. 9960 * @dev_grp: The HBA PCI-Device group number. 9961 * 9962 * This routine sets up the SLI interface API function jump table in @phba 9963 * struct. 9964 * Returns: 0 - success, -ENODEV - failure. 9965 **/ 9966 int 9967 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9968 { 9969 9970 switch (dev_grp) { 9971 case LPFC_PCI_DEV_LP: 9972 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9973 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9974 break; 9975 case LPFC_PCI_DEV_OC: 9976 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9977 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9978 break; 9979 default: 9980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9981 "1419 Invalid HBA PCI-device group: 0x%x\n", 9982 dev_grp); 9983 return -ENODEV; 9984 break; 9985 } 9986 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9987 return 0; 9988 } 9989 9990 /** 9991 * lpfc_sli4_calc_ring - Calculates which ring to use 9992 * @phba: Pointer to HBA context object. 9993 * @piocb: Pointer to command iocb. 9994 * 9995 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9996 * hba_wqidx, thus we need to calculate the corresponding ring. 9997 * Since ABORTS must go on the same WQ of the command they are 9998 * aborting, we use command's hba_wqidx. 9999 */ 10000 struct lpfc_sli_ring * 10001 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10002 { 10003 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10004 if (!(phba->cfg_fof) || 10005 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 10006 if (unlikely(!phba->sli4_hba.fcp_wq)) 10007 return NULL; 10008 /* 10009 * for abort iocb hba_wqidx should already 10010 * be setup based on what work queue we used. 10011 */ 10012 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10013 piocb->hba_wqidx = 10014 lpfc_sli4_scmd_to_wqidx_distr(phba, 10015 piocb->context1); 10016 piocb->hba_wqidx = piocb->hba_wqidx % 10017 phba->cfg_fcp_io_channel; 10018 } 10019 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 10020 } else { 10021 if (unlikely(!phba->sli4_hba.oas_wq)) 10022 return NULL; 10023 piocb->hba_wqidx = 0; 10024 return phba->sli4_hba.oas_wq->pring; 10025 } 10026 } else { 10027 if (unlikely(!phba->sli4_hba.els_wq)) 10028 return NULL; 10029 piocb->hba_wqidx = 0; 10030 return phba->sli4_hba.els_wq->pring; 10031 } 10032 } 10033 10034 /** 10035 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10036 * @phba: Pointer to HBA context object. 10037 * @pring: Pointer to driver SLI ring object. 10038 * @piocb: Pointer to command iocb. 10039 * @flag: Flag indicating if this command can be put into txq. 10040 * 10041 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10042 * function. This function gets the hbalock and calls 10043 * __lpfc_sli_issue_iocb function and will return the error returned 10044 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10045 * functions which do not hold hbalock. 10046 **/ 10047 int 10048 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10049 struct lpfc_iocbq *piocb, uint32_t flag) 10050 { 10051 struct lpfc_hba_eq_hdl *hba_eq_hdl; 10052 struct lpfc_sli_ring *pring; 10053 struct lpfc_queue *fpeq; 10054 struct lpfc_eqe *eqe; 10055 unsigned long iflags; 10056 int rc, idx; 10057 10058 if (phba->sli_rev == LPFC_SLI_REV4) { 10059 pring = lpfc_sli4_calc_ring(phba, piocb); 10060 if (unlikely(pring == NULL)) 10061 return IOCB_ERROR; 10062 10063 spin_lock_irqsave(&pring->ring_lock, iflags); 10064 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10065 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10066 10067 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 10068 idx = piocb->hba_wqidx; 10069 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 10070 10071 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 10072 10073 /* Get associated EQ with this index */ 10074 fpeq = phba->sli4_hba.hba_eq[idx]; 10075 10076 /* Turn off interrupts from this EQ */ 10077 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 10078 10079 /* 10080 * Process all the events on FCP EQ 10081 */ 10082 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 10083 lpfc_sli4_hba_handle_eqe(phba, 10084 eqe, idx); 10085 fpeq->EQ_processed++; 10086 } 10087 10088 /* Always clear and re-arm the EQ */ 10089 phba->sli4_hba.sli4_eq_release(fpeq, 10090 LPFC_QUEUE_REARM); 10091 } 10092 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 10093 } 10094 } else { 10095 /* For now, SLI2/3 will still use hbalock */ 10096 spin_lock_irqsave(&phba->hbalock, iflags); 10097 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10098 spin_unlock_irqrestore(&phba->hbalock, iflags); 10099 } 10100 return rc; 10101 } 10102 10103 /** 10104 * lpfc_extra_ring_setup - Extra ring setup function 10105 * @phba: Pointer to HBA context object. 10106 * 10107 * This function is called while driver attaches with the 10108 * HBA to setup the extra ring. The extra ring is used 10109 * only when driver needs to support target mode functionality 10110 * or IP over FC functionalities. 10111 * 10112 * This function is called with no lock held. SLI3 only. 10113 **/ 10114 static int 10115 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10116 { 10117 struct lpfc_sli *psli; 10118 struct lpfc_sli_ring *pring; 10119 10120 psli = &phba->sli; 10121 10122 /* Adjust cmd/rsp ring iocb entries more evenly */ 10123 10124 /* Take some away from the FCP ring */ 10125 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10126 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10127 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10128 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10129 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10130 10131 /* and give them to the extra ring */ 10132 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10133 10134 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10135 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10136 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10137 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10138 10139 /* Setup default profile for this ring */ 10140 pring->iotag_max = 4096; 10141 pring->num_mask = 1; 10142 pring->prt[0].profile = 0; /* Mask 0 */ 10143 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10144 pring->prt[0].type = phba->cfg_multi_ring_type; 10145 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10146 return 0; 10147 } 10148 10149 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10150 * @phba: Pointer to HBA context object. 10151 * @iocbq: Pointer to iocb object. 10152 * 10153 * The async_event handler calls this routine when it receives 10154 * an ASYNC_STATUS_CN event from the port. The port generates 10155 * this event when an Abort Sequence request to an rport fails 10156 * twice in succession. The abort could be originated by the 10157 * driver or by the port. The ABTS could have been for an ELS 10158 * or FCP IO. The port only generates this event when an ABTS 10159 * fails to complete after one retry. 10160 */ 10161 static void 10162 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10163 struct lpfc_iocbq *iocbq) 10164 { 10165 struct lpfc_nodelist *ndlp = NULL; 10166 uint16_t rpi = 0, vpi = 0; 10167 struct lpfc_vport *vport = NULL; 10168 10169 /* The rpi in the ulpContext is vport-sensitive. */ 10170 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10171 rpi = iocbq->iocb.ulpContext; 10172 10173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10174 "3092 Port generated ABTS async event " 10175 "on vpi %d rpi %d status 0x%x\n", 10176 vpi, rpi, iocbq->iocb.ulpStatus); 10177 10178 vport = lpfc_find_vport_by_vpid(phba, vpi); 10179 if (!vport) 10180 goto err_exit; 10181 ndlp = lpfc_findnode_rpi(vport, rpi); 10182 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10183 goto err_exit; 10184 10185 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10186 lpfc_sli_abts_recover_port(vport, ndlp); 10187 return; 10188 10189 err_exit: 10190 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10191 "3095 Event Context not found, no " 10192 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10193 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10194 vpi, rpi); 10195 } 10196 10197 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10198 * @phba: pointer to HBA context object. 10199 * @ndlp: nodelist pointer for the impacted rport. 10200 * @axri: pointer to the wcqe containing the failed exchange. 10201 * 10202 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10203 * port. The port generates this event when an abort exchange request to an 10204 * rport fails twice in succession with no reply. The abort could be originated 10205 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10206 */ 10207 void 10208 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10209 struct lpfc_nodelist *ndlp, 10210 struct sli4_wcqe_xri_aborted *axri) 10211 { 10212 struct lpfc_vport *vport; 10213 uint32_t ext_status = 0; 10214 10215 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10216 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10217 "3115 Node Context not found, driver " 10218 "ignoring abts err event\n"); 10219 return; 10220 } 10221 10222 vport = ndlp->vport; 10223 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10224 "3116 Port generated FCP XRI ABORT event on " 10225 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10226 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10227 bf_get(lpfc_wcqe_xa_xri, axri), 10228 bf_get(lpfc_wcqe_xa_status, axri), 10229 axri->parameter); 10230 10231 /* 10232 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10233 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10234 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10235 */ 10236 ext_status = axri->parameter & IOERR_PARAM_MASK; 10237 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10238 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10239 lpfc_sli_abts_recover_port(vport, ndlp); 10240 } 10241 10242 /** 10243 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10244 * @phba: Pointer to HBA context object. 10245 * @pring: Pointer to driver SLI ring object. 10246 * @iocbq: Pointer to iocb object. 10247 * 10248 * This function is called by the slow ring event handler 10249 * function when there is an ASYNC event iocb in the ring. 10250 * This function is called with no lock held. 10251 * Currently this function handles only temperature related 10252 * ASYNC events. The function decodes the temperature sensor 10253 * event message and posts events for the management applications. 10254 **/ 10255 static void 10256 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10257 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10258 { 10259 IOCB_t *icmd; 10260 uint16_t evt_code; 10261 struct temp_event temp_event_data; 10262 struct Scsi_Host *shost; 10263 uint32_t *iocb_w; 10264 10265 icmd = &iocbq->iocb; 10266 evt_code = icmd->un.asyncstat.evt_code; 10267 10268 switch (evt_code) { 10269 case ASYNC_TEMP_WARN: 10270 case ASYNC_TEMP_SAFE: 10271 temp_event_data.data = (uint32_t) icmd->ulpContext; 10272 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10273 if (evt_code == ASYNC_TEMP_WARN) { 10274 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10275 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10276 "0347 Adapter is very hot, please take " 10277 "corrective action. temperature : %d Celsius\n", 10278 (uint32_t) icmd->ulpContext); 10279 } else { 10280 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10281 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10282 "0340 Adapter temperature is OK now. " 10283 "temperature : %d Celsius\n", 10284 (uint32_t) icmd->ulpContext); 10285 } 10286 10287 /* Send temperature change event to applications */ 10288 shost = lpfc_shost_from_vport(phba->pport); 10289 fc_host_post_vendor_event(shost, fc_get_event_number(), 10290 sizeof(temp_event_data), (char *) &temp_event_data, 10291 LPFC_NL_VENDOR_ID); 10292 break; 10293 case ASYNC_STATUS_CN: 10294 lpfc_sli_abts_err_handler(phba, iocbq); 10295 break; 10296 default: 10297 iocb_w = (uint32_t *) icmd; 10298 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10299 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10300 " evt_code 0x%x\n" 10301 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10302 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10303 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10304 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10305 pring->ringno, icmd->un.asyncstat.evt_code, 10306 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10307 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10308 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10309 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10310 10311 break; 10312 } 10313 } 10314 10315 10316 /** 10317 * lpfc_sli4_setup - SLI ring setup function 10318 * @phba: Pointer to HBA context object. 10319 * 10320 * lpfc_sli_setup sets up rings of the SLI interface with 10321 * number of iocbs per ring and iotags. This function is 10322 * called while driver attach to the HBA and before the 10323 * interrupts are enabled. So there is no need for locking. 10324 * 10325 * This function always returns 0. 10326 **/ 10327 int 10328 lpfc_sli4_setup(struct lpfc_hba *phba) 10329 { 10330 struct lpfc_sli_ring *pring; 10331 10332 pring = phba->sli4_hba.els_wq->pring; 10333 pring->num_mask = LPFC_MAX_RING_MASK; 10334 pring->prt[0].profile = 0; /* Mask 0 */ 10335 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10336 pring->prt[0].type = FC_TYPE_ELS; 10337 pring->prt[0].lpfc_sli_rcv_unsol_event = 10338 lpfc_els_unsol_event; 10339 pring->prt[1].profile = 0; /* Mask 1 */ 10340 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10341 pring->prt[1].type = FC_TYPE_ELS; 10342 pring->prt[1].lpfc_sli_rcv_unsol_event = 10343 lpfc_els_unsol_event; 10344 pring->prt[2].profile = 0; /* Mask 2 */ 10345 /* NameServer Inquiry */ 10346 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10347 /* NameServer */ 10348 pring->prt[2].type = FC_TYPE_CT; 10349 pring->prt[2].lpfc_sli_rcv_unsol_event = 10350 lpfc_ct_unsol_event; 10351 pring->prt[3].profile = 0; /* Mask 3 */ 10352 /* NameServer response */ 10353 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10354 /* NameServer */ 10355 pring->prt[3].type = FC_TYPE_CT; 10356 pring->prt[3].lpfc_sli_rcv_unsol_event = 10357 lpfc_ct_unsol_event; 10358 return 0; 10359 } 10360 10361 /** 10362 * lpfc_sli_setup - SLI ring setup function 10363 * @phba: Pointer to HBA context object. 10364 * 10365 * lpfc_sli_setup sets up rings of the SLI interface with 10366 * number of iocbs per ring and iotags. This function is 10367 * called while driver attach to the HBA and before the 10368 * interrupts are enabled. So there is no need for locking. 10369 * 10370 * This function always returns 0. SLI3 only. 10371 **/ 10372 int 10373 lpfc_sli_setup(struct lpfc_hba *phba) 10374 { 10375 int i, totiocbsize = 0; 10376 struct lpfc_sli *psli = &phba->sli; 10377 struct lpfc_sli_ring *pring; 10378 10379 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10380 psli->sli_flag = 0; 10381 10382 psli->iocbq_lookup = NULL; 10383 psli->iocbq_lookup_len = 0; 10384 psli->last_iotag = 0; 10385 10386 for (i = 0; i < psli->num_rings; i++) { 10387 pring = &psli->sli3_ring[i]; 10388 switch (i) { 10389 case LPFC_FCP_RING: /* ring 0 - FCP */ 10390 /* numCiocb and numRiocb are used in config_port */ 10391 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10392 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10393 pring->sli.sli3.numCiocb += 10394 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10395 pring->sli.sli3.numRiocb += 10396 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10397 pring->sli.sli3.numCiocb += 10398 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10399 pring->sli.sli3.numRiocb += 10400 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10401 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10402 SLI3_IOCB_CMD_SIZE : 10403 SLI2_IOCB_CMD_SIZE; 10404 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10405 SLI3_IOCB_RSP_SIZE : 10406 SLI2_IOCB_RSP_SIZE; 10407 pring->iotag_ctr = 0; 10408 pring->iotag_max = 10409 (phba->cfg_hba_queue_depth * 2); 10410 pring->fast_iotag = pring->iotag_max; 10411 pring->num_mask = 0; 10412 break; 10413 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10414 /* numCiocb and numRiocb are used in config_port */ 10415 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10416 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10417 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10418 SLI3_IOCB_CMD_SIZE : 10419 SLI2_IOCB_CMD_SIZE; 10420 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10421 SLI3_IOCB_RSP_SIZE : 10422 SLI2_IOCB_RSP_SIZE; 10423 pring->iotag_max = phba->cfg_hba_queue_depth; 10424 pring->num_mask = 0; 10425 break; 10426 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10427 /* numCiocb and numRiocb are used in config_port */ 10428 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10429 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10430 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10431 SLI3_IOCB_CMD_SIZE : 10432 SLI2_IOCB_CMD_SIZE; 10433 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10434 SLI3_IOCB_RSP_SIZE : 10435 SLI2_IOCB_RSP_SIZE; 10436 pring->fast_iotag = 0; 10437 pring->iotag_ctr = 0; 10438 pring->iotag_max = 4096; 10439 pring->lpfc_sli_rcv_async_status = 10440 lpfc_sli_async_event_handler; 10441 pring->num_mask = LPFC_MAX_RING_MASK; 10442 pring->prt[0].profile = 0; /* Mask 0 */ 10443 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10444 pring->prt[0].type = FC_TYPE_ELS; 10445 pring->prt[0].lpfc_sli_rcv_unsol_event = 10446 lpfc_els_unsol_event; 10447 pring->prt[1].profile = 0; /* Mask 1 */ 10448 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10449 pring->prt[1].type = FC_TYPE_ELS; 10450 pring->prt[1].lpfc_sli_rcv_unsol_event = 10451 lpfc_els_unsol_event; 10452 pring->prt[2].profile = 0; /* Mask 2 */ 10453 /* NameServer Inquiry */ 10454 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10455 /* NameServer */ 10456 pring->prt[2].type = FC_TYPE_CT; 10457 pring->prt[2].lpfc_sli_rcv_unsol_event = 10458 lpfc_ct_unsol_event; 10459 pring->prt[3].profile = 0; /* Mask 3 */ 10460 /* NameServer response */ 10461 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10462 /* NameServer */ 10463 pring->prt[3].type = FC_TYPE_CT; 10464 pring->prt[3].lpfc_sli_rcv_unsol_event = 10465 lpfc_ct_unsol_event; 10466 break; 10467 } 10468 totiocbsize += (pring->sli.sli3.numCiocb * 10469 pring->sli.sli3.sizeCiocb) + 10470 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10471 } 10472 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10473 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10474 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10475 "SLI2 SLIM Data: x%x x%lx\n", 10476 phba->brd_no, totiocbsize, 10477 (unsigned long) MAX_SLIM_IOCB_SIZE); 10478 } 10479 if (phba->cfg_multi_ring_support == 2) 10480 lpfc_extra_ring_setup(phba); 10481 10482 return 0; 10483 } 10484 10485 /** 10486 * lpfc_sli4_queue_init - Queue initialization function 10487 * @phba: Pointer to HBA context object. 10488 * 10489 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10490 * ring. This function also initializes ring indices of each ring. 10491 * This function is called during the initialization of the SLI 10492 * interface of an HBA. 10493 * This function is called with no lock held and always returns 10494 * 1. 10495 **/ 10496 void 10497 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10498 { 10499 struct lpfc_sli *psli; 10500 struct lpfc_sli_ring *pring; 10501 int i; 10502 10503 psli = &phba->sli; 10504 spin_lock_irq(&phba->hbalock); 10505 INIT_LIST_HEAD(&psli->mboxq); 10506 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10507 /* Initialize list headers for txq and txcmplq as double linked lists */ 10508 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 10509 pring = phba->sli4_hba.fcp_wq[i]->pring; 10510 pring->flag = 0; 10511 pring->ringno = LPFC_FCP_RING; 10512 INIT_LIST_HEAD(&pring->txq); 10513 INIT_LIST_HEAD(&pring->txcmplq); 10514 INIT_LIST_HEAD(&pring->iocb_continueq); 10515 spin_lock_init(&pring->ring_lock); 10516 } 10517 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 10518 pring = phba->sli4_hba.nvme_wq[i]->pring; 10519 pring->flag = 0; 10520 pring->ringno = LPFC_FCP_RING; 10521 INIT_LIST_HEAD(&pring->txq); 10522 INIT_LIST_HEAD(&pring->txcmplq); 10523 INIT_LIST_HEAD(&pring->iocb_continueq); 10524 spin_lock_init(&pring->ring_lock); 10525 } 10526 pring = phba->sli4_hba.els_wq->pring; 10527 pring->flag = 0; 10528 pring->ringno = LPFC_ELS_RING; 10529 INIT_LIST_HEAD(&pring->txq); 10530 INIT_LIST_HEAD(&pring->txcmplq); 10531 INIT_LIST_HEAD(&pring->iocb_continueq); 10532 spin_lock_init(&pring->ring_lock); 10533 10534 if (phba->cfg_nvme_io_channel) { 10535 pring = phba->sli4_hba.nvmels_wq->pring; 10536 pring->flag = 0; 10537 pring->ringno = LPFC_ELS_RING; 10538 INIT_LIST_HEAD(&pring->txq); 10539 INIT_LIST_HEAD(&pring->txcmplq); 10540 INIT_LIST_HEAD(&pring->iocb_continueq); 10541 spin_lock_init(&pring->ring_lock); 10542 } 10543 10544 if (phba->cfg_fof) { 10545 pring = phba->sli4_hba.oas_wq->pring; 10546 pring->flag = 0; 10547 pring->ringno = LPFC_FCP_RING; 10548 INIT_LIST_HEAD(&pring->txq); 10549 INIT_LIST_HEAD(&pring->txcmplq); 10550 INIT_LIST_HEAD(&pring->iocb_continueq); 10551 spin_lock_init(&pring->ring_lock); 10552 } 10553 10554 spin_unlock_irq(&phba->hbalock); 10555 } 10556 10557 /** 10558 * lpfc_sli_queue_init - Queue initialization function 10559 * @phba: Pointer to HBA context object. 10560 * 10561 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10562 * ring. This function also initializes ring indices of each ring. 10563 * This function is called during the initialization of the SLI 10564 * interface of an HBA. 10565 * This function is called with no lock held and always returns 10566 * 1. 10567 **/ 10568 void 10569 lpfc_sli_queue_init(struct lpfc_hba *phba) 10570 { 10571 struct lpfc_sli *psli; 10572 struct lpfc_sli_ring *pring; 10573 int i; 10574 10575 psli = &phba->sli; 10576 spin_lock_irq(&phba->hbalock); 10577 INIT_LIST_HEAD(&psli->mboxq); 10578 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10579 /* Initialize list headers for txq and txcmplq as double linked lists */ 10580 for (i = 0; i < psli->num_rings; i++) { 10581 pring = &psli->sli3_ring[i]; 10582 pring->ringno = i; 10583 pring->sli.sli3.next_cmdidx = 0; 10584 pring->sli.sli3.local_getidx = 0; 10585 pring->sli.sli3.cmdidx = 0; 10586 INIT_LIST_HEAD(&pring->iocb_continueq); 10587 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10588 INIT_LIST_HEAD(&pring->postbufq); 10589 pring->flag = 0; 10590 INIT_LIST_HEAD(&pring->txq); 10591 INIT_LIST_HEAD(&pring->txcmplq); 10592 spin_lock_init(&pring->ring_lock); 10593 } 10594 spin_unlock_irq(&phba->hbalock); 10595 } 10596 10597 /** 10598 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10599 * @phba: Pointer to HBA context object. 10600 * 10601 * This routine flushes the mailbox command subsystem. It will unconditionally 10602 * flush all the mailbox commands in the three possible stages in the mailbox 10603 * command sub-system: pending mailbox command queue; the outstanding mailbox 10604 * command; and completed mailbox command queue. It is caller's responsibility 10605 * to make sure that the driver is in the proper state to flush the mailbox 10606 * command sub-system. Namely, the posting of mailbox commands into the 10607 * pending mailbox command queue from the various clients must be stopped; 10608 * either the HBA is in a state that it will never works on the outstanding 10609 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10610 * mailbox command has been completed. 10611 **/ 10612 static void 10613 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10614 { 10615 LIST_HEAD(completions); 10616 struct lpfc_sli *psli = &phba->sli; 10617 LPFC_MBOXQ_t *pmb; 10618 unsigned long iflag; 10619 10620 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10621 local_bh_disable(); 10622 10623 /* Flush all the mailbox commands in the mbox system */ 10624 spin_lock_irqsave(&phba->hbalock, iflag); 10625 10626 /* The pending mailbox command queue */ 10627 list_splice_init(&phba->sli.mboxq, &completions); 10628 /* The outstanding active mailbox command */ 10629 if (psli->mbox_active) { 10630 list_add_tail(&psli->mbox_active->list, &completions); 10631 psli->mbox_active = NULL; 10632 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10633 } 10634 /* The completed mailbox command queue */ 10635 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10636 spin_unlock_irqrestore(&phba->hbalock, iflag); 10637 10638 /* Enable softirqs again, done with phba->hbalock */ 10639 local_bh_enable(); 10640 10641 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10642 while (!list_empty(&completions)) { 10643 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10644 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10645 if (pmb->mbox_cmpl) 10646 pmb->mbox_cmpl(phba, pmb); 10647 } 10648 } 10649 10650 /** 10651 * lpfc_sli_host_down - Vport cleanup function 10652 * @vport: Pointer to virtual port object. 10653 * 10654 * lpfc_sli_host_down is called to clean up the resources 10655 * associated with a vport before destroying virtual 10656 * port data structures. 10657 * This function does following operations: 10658 * - Free discovery resources associated with this virtual 10659 * port. 10660 * - Free iocbs associated with this virtual port in 10661 * the txq. 10662 * - Send abort for all iocb commands associated with this 10663 * vport in txcmplq. 10664 * 10665 * This function is called with no lock held and always returns 1. 10666 **/ 10667 int 10668 lpfc_sli_host_down(struct lpfc_vport *vport) 10669 { 10670 LIST_HEAD(completions); 10671 struct lpfc_hba *phba = vport->phba; 10672 struct lpfc_sli *psli = &phba->sli; 10673 struct lpfc_queue *qp = NULL; 10674 struct lpfc_sli_ring *pring; 10675 struct lpfc_iocbq *iocb, *next_iocb; 10676 int i; 10677 unsigned long flags = 0; 10678 uint16_t prev_pring_flag; 10679 10680 lpfc_cleanup_discovery_resources(vport); 10681 10682 spin_lock_irqsave(&phba->hbalock, flags); 10683 10684 /* 10685 * Error everything on the txq since these iocbs 10686 * have not been given to the FW yet. 10687 * Also issue ABTS for everything on the txcmplq 10688 */ 10689 if (phba->sli_rev != LPFC_SLI_REV4) { 10690 for (i = 0; i < psli->num_rings; i++) { 10691 pring = &psli->sli3_ring[i]; 10692 prev_pring_flag = pring->flag; 10693 /* Only slow rings */ 10694 if (pring->ringno == LPFC_ELS_RING) { 10695 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10696 /* Set the lpfc data pending flag */ 10697 set_bit(LPFC_DATA_READY, &phba->data_flags); 10698 } 10699 list_for_each_entry_safe(iocb, next_iocb, 10700 &pring->txq, list) { 10701 if (iocb->vport != vport) 10702 continue; 10703 list_move_tail(&iocb->list, &completions); 10704 } 10705 list_for_each_entry_safe(iocb, next_iocb, 10706 &pring->txcmplq, list) { 10707 if (iocb->vport != vport) 10708 continue; 10709 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10710 } 10711 pring->flag = prev_pring_flag; 10712 } 10713 } else { 10714 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10715 pring = qp->pring; 10716 if (!pring) 10717 continue; 10718 if (pring == phba->sli4_hba.els_wq->pring) { 10719 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10720 /* Set the lpfc data pending flag */ 10721 set_bit(LPFC_DATA_READY, &phba->data_flags); 10722 } 10723 prev_pring_flag = pring->flag; 10724 spin_lock_irq(&pring->ring_lock); 10725 list_for_each_entry_safe(iocb, next_iocb, 10726 &pring->txq, list) { 10727 if (iocb->vport != vport) 10728 continue; 10729 list_move_tail(&iocb->list, &completions); 10730 } 10731 spin_unlock_irq(&pring->ring_lock); 10732 list_for_each_entry_safe(iocb, next_iocb, 10733 &pring->txcmplq, list) { 10734 if (iocb->vport != vport) 10735 continue; 10736 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10737 } 10738 pring->flag = prev_pring_flag; 10739 } 10740 } 10741 spin_unlock_irqrestore(&phba->hbalock, flags); 10742 10743 /* Cancel all the IOCBs from the completions list */ 10744 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10745 IOERR_SLI_DOWN); 10746 return 1; 10747 } 10748 10749 /** 10750 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10751 * @phba: Pointer to HBA context object. 10752 * 10753 * This function cleans up all iocb, buffers, mailbox commands 10754 * while shutting down the HBA. This function is called with no 10755 * lock held and always returns 1. 10756 * This function does the following to cleanup driver resources: 10757 * - Free discovery resources for each virtual port 10758 * - Cleanup any pending fabric iocbs 10759 * - Iterate through the iocb txq and free each entry 10760 * in the list. 10761 * - Free up any buffer posted to the HBA 10762 * - Free mailbox commands in the mailbox queue. 10763 **/ 10764 int 10765 lpfc_sli_hba_down(struct lpfc_hba *phba) 10766 { 10767 LIST_HEAD(completions); 10768 struct lpfc_sli *psli = &phba->sli; 10769 struct lpfc_queue *qp = NULL; 10770 struct lpfc_sli_ring *pring; 10771 struct lpfc_dmabuf *buf_ptr; 10772 unsigned long flags = 0; 10773 int i; 10774 10775 /* Shutdown the mailbox command sub-system */ 10776 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10777 10778 lpfc_hba_down_prep(phba); 10779 10780 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10781 local_bh_disable(); 10782 10783 lpfc_fabric_abort_hba(phba); 10784 10785 spin_lock_irqsave(&phba->hbalock, flags); 10786 10787 /* 10788 * Error everything on the txq since these iocbs 10789 * have not been given to the FW yet. 10790 */ 10791 if (phba->sli_rev != LPFC_SLI_REV4) { 10792 for (i = 0; i < psli->num_rings; i++) { 10793 pring = &psli->sli3_ring[i]; 10794 /* Only slow rings */ 10795 if (pring->ringno == LPFC_ELS_RING) { 10796 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10797 /* Set the lpfc data pending flag */ 10798 set_bit(LPFC_DATA_READY, &phba->data_flags); 10799 } 10800 list_splice_init(&pring->txq, &completions); 10801 } 10802 } else { 10803 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10804 pring = qp->pring; 10805 if (!pring) 10806 continue; 10807 spin_lock_irq(&pring->ring_lock); 10808 list_splice_init(&pring->txq, &completions); 10809 spin_unlock_irq(&pring->ring_lock); 10810 if (pring == phba->sli4_hba.els_wq->pring) { 10811 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10812 /* Set the lpfc data pending flag */ 10813 set_bit(LPFC_DATA_READY, &phba->data_flags); 10814 } 10815 } 10816 } 10817 spin_unlock_irqrestore(&phba->hbalock, flags); 10818 10819 /* Cancel all the IOCBs from the completions list */ 10820 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10821 IOERR_SLI_DOWN); 10822 10823 spin_lock_irqsave(&phba->hbalock, flags); 10824 list_splice_init(&phba->elsbuf, &completions); 10825 phba->elsbuf_cnt = 0; 10826 phba->elsbuf_prev_cnt = 0; 10827 spin_unlock_irqrestore(&phba->hbalock, flags); 10828 10829 while (!list_empty(&completions)) { 10830 list_remove_head(&completions, buf_ptr, 10831 struct lpfc_dmabuf, list); 10832 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10833 kfree(buf_ptr); 10834 } 10835 10836 /* Enable softirqs again, done with phba->hbalock */ 10837 local_bh_enable(); 10838 10839 /* Return any active mbox cmds */ 10840 del_timer_sync(&psli->mbox_tmo); 10841 10842 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10843 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10844 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10845 10846 return 1; 10847 } 10848 10849 /** 10850 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10851 * @srcp: Source memory pointer. 10852 * @destp: Destination memory pointer. 10853 * @cnt: Number of words required to be copied. 10854 * 10855 * This function is used for copying data between driver memory 10856 * and the SLI memory. This function also changes the endianness 10857 * of each word if native endianness is different from SLI 10858 * endianness. This function can be called with or without 10859 * lock. 10860 **/ 10861 void 10862 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10863 { 10864 uint32_t *src = srcp; 10865 uint32_t *dest = destp; 10866 uint32_t ldata; 10867 int i; 10868 10869 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10870 ldata = *src; 10871 ldata = le32_to_cpu(ldata); 10872 *dest = ldata; 10873 src++; 10874 dest++; 10875 } 10876 } 10877 10878 10879 /** 10880 * lpfc_sli_bemem_bcopy - SLI memory copy function 10881 * @srcp: Source memory pointer. 10882 * @destp: Destination memory pointer. 10883 * @cnt: Number of words required to be copied. 10884 * 10885 * This function is used for copying data between a data structure 10886 * with big endian representation to local endianness. 10887 * This function can be called with or without lock. 10888 **/ 10889 void 10890 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10891 { 10892 uint32_t *src = srcp; 10893 uint32_t *dest = destp; 10894 uint32_t ldata; 10895 int i; 10896 10897 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10898 ldata = *src; 10899 ldata = be32_to_cpu(ldata); 10900 *dest = ldata; 10901 src++; 10902 dest++; 10903 } 10904 } 10905 10906 /** 10907 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10908 * @phba: Pointer to HBA context object. 10909 * @pring: Pointer to driver SLI ring object. 10910 * @mp: Pointer to driver buffer object. 10911 * 10912 * This function is called with no lock held. 10913 * It always return zero after adding the buffer to the postbufq 10914 * buffer list. 10915 **/ 10916 int 10917 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10918 struct lpfc_dmabuf *mp) 10919 { 10920 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10921 later */ 10922 spin_lock_irq(&phba->hbalock); 10923 list_add_tail(&mp->list, &pring->postbufq); 10924 pring->postbufq_cnt++; 10925 spin_unlock_irq(&phba->hbalock); 10926 return 0; 10927 } 10928 10929 /** 10930 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10931 * @phba: Pointer to HBA context object. 10932 * 10933 * When HBQ is enabled, buffers are searched based on tags. This function 10934 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10935 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10936 * does not conflict with tags of buffer posted for unsolicited events. 10937 * The function returns the allocated tag. The function is called with 10938 * no locks held. 10939 **/ 10940 uint32_t 10941 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10942 { 10943 spin_lock_irq(&phba->hbalock); 10944 phba->buffer_tag_count++; 10945 /* 10946 * Always set the QUE_BUFTAG_BIT to distiguish between 10947 * a tag assigned by HBQ. 10948 */ 10949 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10950 spin_unlock_irq(&phba->hbalock); 10951 return phba->buffer_tag_count; 10952 } 10953 10954 /** 10955 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10956 * @phba: Pointer to HBA context object. 10957 * @pring: Pointer to driver SLI ring object. 10958 * @tag: Buffer tag. 10959 * 10960 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10961 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10962 * iocb is posted to the response ring with the tag of the buffer. 10963 * This function searches the pring->postbufq list using the tag 10964 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10965 * iocb. If the buffer is found then lpfc_dmabuf object of the 10966 * buffer is returned to the caller else NULL is returned. 10967 * This function is called with no lock held. 10968 **/ 10969 struct lpfc_dmabuf * 10970 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10971 uint32_t tag) 10972 { 10973 struct lpfc_dmabuf *mp, *next_mp; 10974 struct list_head *slp = &pring->postbufq; 10975 10976 /* Search postbufq, from the beginning, looking for a match on tag */ 10977 spin_lock_irq(&phba->hbalock); 10978 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10979 if (mp->buffer_tag == tag) { 10980 list_del_init(&mp->list); 10981 pring->postbufq_cnt--; 10982 spin_unlock_irq(&phba->hbalock); 10983 return mp; 10984 } 10985 } 10986 10987 spin_unlock_irq(&phba->hbalock); 10988 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10989 "0402 Cannot find virtual addr for buffer tag on " 10990 "ring %d Data x%lx x%p x%p x%x\n", 10991 pring->ringno, (unsigned long) tag, 10992 slp->next, slp->prev, pring->postbufq_cnt); 10993 10994 return NULL; 10995 } 10996 10997 /** 10998 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10999 * @phba: Pointer to HBA context object. 11000 * @pring: Pointer to driver SLI ring object. 11001 * @phys: DMA address of the buffer. 11002 * 11003 * This function searches the buffer list using the dma_address 11004 * of unsolicited event to find the driver's lpfc_dmabuf object 11005 * corresponding to the dma_address. The function returns the 11006 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11007 * This function is called by the ct and els unsolicited event 11008 * handlers to get the buffer associated with the unsolicited 11009 * event. 11010 * 11011 * This function is called with no lock held. 11012 **/ 11013 struct lpfc_dmabuf * 11014 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11015 dma_addr_t phys) 11016 { 11017 struct lpfc_dmabuf *mp, *next_mp; 11018 struct list_head *slp = &pring->postbufq; 11019 11020 /* Search postbufq, from the beginning, looking for a match on phys */ 11021 spin_lock_irq(&phba->hbalock); 11022 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11023 if (mp->phys == phys) { 11024 list_del_init(&mp->list); 11025 pring->postbufq_cnt--; 11026 spin_unlock_irq(&phba->hbalock); 11027 return mp; 11028 } 11029 } 11030 11031 spin_unlock_irq(&phba->hbalock); 11032 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11033 "0410 Cannot find virtual addr for mapped buf on " 11034 "ring %d Data x%llx x%p x%p x%x\n", 11035 pring->ringno, (unsigned long long)phys, 11036 slp->next, slp->prev, pring->postbufq_cnt); 11037 return NULL; 11038 } 11039 11040 /** 11041 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11042 * @phba: Pointer to HBA context object. 11043 * @cmdiocb: Pointer to driver command iocb object. 11044 * @rspiocb: Pointer to driver response iocb object. 11045 * 11046 * This function is the completion handler for the abort iocbs for 11047 * ELS commands. This function is called from the ELS ring event 11048 * handler with no lock held. This function frees memory resources 11049 * associated with the abort iocb. 11050 **/ 11051 static void 11052 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11053 struct lpfc_iocbq *rspiocb) 11054 { 11055 IOCB_t *irsp = &rspiocb->iocb; 11056 uint16_t abort_iotag, abort_context; 11057 struct lpfc_iocbq *abort_iocb = NULL; 11058 11059 if (irsp->ulpStatus) { 11060 11061 /* 11062 * Assume that the port already completed and returned, or 11063 * will return the iocb. Just Log the message. 11064 */ 11065 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11066 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11067 11068 spin_lock_irq(&phba->hbalock); 11069 if (phba->sli_rev < LPFC_SLI_REV4) { 11070 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11071 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11072 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11073 spin_unlock_irq(&phba->hbalock); 11074 goto release_iocb; 11075 } 11076 if (abort_iotag != 0 && 11077 abort_iotag <= phba->sli.last_iotag) 11078 abort_iocb = 11079 phba->sli.iocbq_lookup[abort_iotag]; 11080 } else 11081 /* For sli4 the abort_tag is the XRI, 11082 * so the abort routine puts the iotag of the iocb 11083 * being aborted in the context field of the abort 11084 * IOCB. 11085 */ 11086 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11087 11088 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11089 "0327 Cannot abort els iocb %p " 11090 "with tag %x context %x, abort status %x, " 11091 "abort code %x\n", 11092 abort_iocb, abort_iotag, abort_context, 11093 irsp->ulpStatus, irsp->un.ulpWord[4]); 11094 11095 spin_unlock_irq(&phba->hbalock); 11096 } 11097 release_iocb: 11098 lpfc_sli_release_iocbq(phba, cmdiocb); 11099 return; 11100 } 11101 11102 /** 11103 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11104 * @phba: Pointer to HBA context object. 11105 * @cmdiocb: Pointer to driver command iocb object. 11106 * @rspiocb: Pointer to driver response iocb object. 11107 * 11108 * The function is called from SLI ring event handler with no 11109 * lock held. This function is the completion handler for ELS commands 11110 * which are aborted. The function frees memory resources used for 11111 * the aborted ELS commands. 11112 **/ 11113 static void 11114 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11115 struct lpfc_iocbq *rspiocb) 11116 { 11117 IOCB_t *irsp = &rspiocb->iocb; 11118 11119 /* ELS cmd tag <ulpIoTag> completes */ 11120 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11121 "0139 Ignoring ELS cmd tag x%x completion Data: " 11122 "x%x x%x x%x\n", 11123 irsp->ulpIoTag, irsp->ulpStatus, 11124 irsp->un.ulpWord[4], irsp->ulpTimeout); 11125 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11126 lpfc_ct_free_iocb(phba, cmdiocb); 11127 else 11128 lpfc_els_free_iocb(phba, cmdiocb); 11129 return; 11130 } 11131 11132 /** 11133 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11134 * @phba: Pointer to HBA context object. 11135 * @pring: Pointer to driver SLI ring object. 11136 * @cmdiocb: Pointer to driver command iocb object. 11137 * 11138 * This function issues an abort iocb for the provided command iocb down to 11139 * the port. Other than the case the outstanding command iocb is an abort 11140 * request, this function issues abort out unconditionally. This function is 11141 * called with hbalock held. The function returns 0 when it fails due to 11142 * memory allocation failure or when the command iocb is an abort request. 11143 **/ 11144 static int 11145 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11146 struct lpfc_iocbq *cmdiocb) 11147 { 11148 struct lpfc_vport *vport = cmdiocb->vport; 11149 struct lpfc_iocbq *abtsiocbp; 11150 IOCB_t *icmd = NULL; 11151 IOCB_t *iabt = NULL; 11152 int retval; 11153 unsigned long iflags; 11154 struct lpfc_nodelist *ndlp; 11155 11156 lockdep_assert_held(&phba->hbalock); 11157 11158 /* 11159 * There are certain command types we don't want to abort. And we 11160 * don't want to abort commands that are already in the process of 11161 * being aborted. 11162 */ 11163 icmd = &cmdiocb->iocb; 11164 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11165 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11166 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11167 return 0; 11168 11169 /* issue ABTS for this IOCB based on iotag */ 11170 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11171 if (abtsiocbp == NULL) 11172 return 0; 11173 11174 /* This signals the response to set the correct status 11175 * before calling the completion handler 11176 */ 11177 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11178 11179 iabt = &abtsiocbp->iocb; 11180 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11181 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11182 if (phba->sli_rev == LPFC_SLI_REV4) { 11183 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11184 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11185 } else { 11186 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11187 if (pring->ringno == LPFC_ELS_RING) { 11188 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11189 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11190 } 11191 } 11192 iabt->ulpLe = 1; 11193 iabt->ulpClass = icmd->ulpClass; 11194 11195 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11196 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11197 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11198 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11199 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11200 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11201 11202 if (phba->link_state >= LPFC_LINK_UP) 11203 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11204 else 11205 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11206 11207 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11208 abtsiocbp->vport = vport; 11209 11210 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11211 "0339 Abort xri x%x, original iotag x%x, " 11212 "abort cmd iotag x%x\n", 11213 iabt->un.acxri.abortIoTag, 11214 iabt->un.acxri.abortContextTag, 11215 abtsiocbp->iotag); 11216 11217 if (phba->sli_rev == LPFC_SLI_REV4) { 11218 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11219 if (unlikely(pring == NULL)) 11220 return 0; 11221 /* Note: both hbalock and ring_lock need to be set here */ 11222 spin_lock_irqsave(&pring->ring_lock, iflags); 11223 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11224 abtsiocbp, 0); 11225 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11226 } else { 11227 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11228 abtsiocbp, 0); 11229 } 11230 11231 if (retval) 11232 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11233 11234 /* 11235 * Caller to this routine should check for IOCB_ERROR 11236 * and handle it properly. This routine no longer removes 11237 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11238 */ 11239 return retval; 11240 } 11241 11242 /** 11243 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11244 * @phba: Pointer to HBA context object. 11245 * @pring: Pointer to driver SLI ring object. 11246 * @cmdiocb: Pointer to driver command iocb object. 11247 * 11248 * This function issues an abort iocb for the provided command iocb. In case 11249 * of unloading, the abort iocb will not be issued to commands on the ELS 11250 * ring. Instead, the callback function shall be changed to those commands 11251 * so that nothing happens when them finishes. This function is called with 11252 * hbalock held. The function returns 0 when the command iocb is an abort 11253 * request. 11254 **/ 11255 int 11256 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11257 struct lpfc_iocbq *cmdiocb) 11258 { 11259 struct lpfc_vport *vport = cmdiocb->vport; 11260 int retval = IOCB_ERROR; 11261 IOCB_t *icmd = NULL; 11262 11263 lockdep_assert_held(&phba->hbalock); 11264 11265 /* 11266 * There are certain command types we don't want to abort. And we 11267 * don't want to abort commands that are already in the process of 11268 * being aborted. 11269 */ 11270 icmd = &cmdiocb->iocb; 11271 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11272 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11273 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11274 return 0; 11275 11276 if (!pring) { 11277 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11278 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11279 else 11280 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11281 goto abort_iotag_exit; 11282 } 11283 11284 /* 11285 * If we're unloading, don't abort iocb on the ELS ring, but change 11286 * the callback so that nothing happens when it finishes. 11287 */ 11288 if ((vport->load_flag & FC_UNLOADING) && 11289 (pring->ringno == LPFC_ELS_RING)) { 11290 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11291 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11292 else 11293 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11294 goto abort_iotag_exit; 11295 } 11296 11297 /* Now, we try to issue the abort to the cmdiocb out */ 11298 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11299 11300 abort_iotag_exit: 11301 /* 11302 * Caller to this routine should check for IOCB_ERROR 11303 * and handle it properly. This routine no longer removes 11304 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11305 */ 11306 return retval; 11307 } 11308 11309 /** 11310 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 11311 * @phba: Pointer to HBA context object. 11312 * @pring: Pointer to driver SLI ring object. 11313 * @cmdiocb: Pointer to driver command iocb object. 11314 * 11315 * This function issues an abort iocb for the provided command iocb down to 11316 * the port. Other than the case the outstanding command iocb is an abort 11317 * request, this function issues abort out unconditionally. This function is 11318 * called with hbalock held. The function returns 0 when it fails due to 11319 * memory allocation failure or when the command iocb is an abort request. 11320 **/ 11321 static int 11322 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11323 struct lpfc_iocbq *cmdiocb) 11324 { 11325 struct lpfc_vport *vport = cmdiocb->vport; 11326 struct lpfc_iocbq *abtsiocbp; 11327 union lpfc_wqe128 *abts_wqe; 11328 int retval; 11329 11330 /* 11331 * There are certain command types we don't want to abort. And we 11332 * don't want to abort commands that are already in the process of 11333 * being aborted. 11334 */ 11335 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11336 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 11337 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11338 return 0; 11339 11340 /* issue ABTS for this io based on iotag */ 11341 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11342 if (abtsiocbp == NULL) 11343 return 0; 11344 11345 /* This signals the response to set the correct status 11346 * before calling the completion handler 11347 */ 11348 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11349 11350 /* Complete prepping the abort wqe and issue to the FW. */ 11351 abts_wqe = &abtsiocbp->wqe; 11352 11353 /* Clear any stale WQE contents */ 11354 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 11355 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 11356 11357 /* word 7 */ 11358 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 11359 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 11360 cmdiocb->iocb.ulpClass); 11361 11362 /* word 8 - tell the FW to abort the IO associated with this 11363 * outstanding exchange ID. 11364 */ 11365 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 11366 11367 /* word 9 - this is the iotag for the abts_wqe completion. */ 11368 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 11369 abtsiocbp->iotag); 11370 11371 /* word 10 */ 11372 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 11373 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 11374 11375 /* word 11 */ 11376 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11377 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 11378 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 11379 11380 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11381 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 11382 abtsiocbp->vport = vport; 11383 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 11384 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 11385 if (retval) { 11386 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11387 "6147 Failed abts issue_wqe with status x%x " 11388 "for oxid x%x\n", 11389 retval, cmdiocb->sli4_xritag); 11390 lpfc_sli_release_iocbq(phba, abtsiocbp); 11391 return retval; 11392 } 11393 11394 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11395 "6148 Drv Abort NVME Request Issued for " 11396 "ox_id x%x on reqtag x%x\n", 11397 cmdiocb->sli4_xritag, 11398 abtsiocbp->iotag); 11399 11400 return retval; 11401 } 11402 11403 /** 11404 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11405 * @phba: pointer to lpfc HBA data structure. 11406 * 11407 * This routine will abort all pending and outstanding iocbs to an HBA. 11408 **/ 11409 void 11410 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11411 { 11412 struct lpfc_sli *psli = &phba->sli; 11413 struct lpfc_sli_ring *pring; 11414 struct lpfc_queue *qp = NULL; 11415 int i; 11416 11417 if (phba->sli_rev != LPFC_SLI_REV4) { 11418 for (i = 0; i < psli->num_rings; i++) { 11419 pring = &psli->sli3_ring[i]; 11420 lpfc_sli_abort_iocb_ring(phba, pring); 11421 } 11422 return; 11423 } 11424 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11425 pring = qp->pring; 11426 if (!pring) 11427 continue; 11428 lpfc_sli_abort_iocb_ring(phba, pring); 11429 } 11430 } 11431 11432 /** 11433 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11434 * @iocbq: Pointer to driver iocb object. 11435 * @vport: Pointer to driver virtual port object. 11436 * @tgt_id: SCSI ID of the target. 11437 * @lun_id: LUN ID of the scsi device. 11438 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11439 * 11440 * This function acts as an iocb filter for functions which abort or count 11441 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11442 * 0 if the filtering criteria is met for the given iocb and will return 11443 * 1 if the filtering criteria is not met. 11444 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11445 * given iocb is for the SCSI device specified by vport, tgt_id and 11446 * lun_id parameter. 11447 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11448 * given iocb is for the SCSI target specified by vport and tgt_id 11449 * parameters. 11450 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11451 * given iocb is for the SCSI host associated with the given vport. 11452 * This function is called with no locks held. 11453 **/ 11454 static int 11455 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11456 uint16_t tgt_id, uint64_t lun_id, 11457 lpfc_ctx_cmd ctx_cmd) 11458 { 11459 struct lpfc_scsi_buf *lpfc_cmd; 11460 int rc = 1; 11461 11462 if (iocbq->vport != vport) 11463 return rc; 11464 11465 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11466 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11467 return rc; 11468 11469 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11470 11471 if (lpfc_cmd->pCmd == NULL) 11472 return rc; 11473 11474 switch (ctx_cmd) { 11475 case LPFC_CTX_LUN: 11476 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11477 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11478 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11479 rc = 0; 11480 break; 11481 case LPFC_CTX_TGT: 11482 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11483 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11484 rc = 0; 11485 break; 11486 case LPFC_CTX_HOST: 11487 rc = 0; 11488 break; 11489 default: 11490 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11491 __func__, ctx_cmd); 11492 break; 11493 } 11494 11495 return rc; 11496 } 11497 11498 /** 11499 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11500 * @vport: Pointer to virtual port. 11501 * @tgt_id: SCSI ID of the target. 11502 * @lun_id: LUN ID of the scsi device. 11503 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11504 * 11505 * This function returns number of FCP commands pending for the vport. 11506 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11507 * commands pending on the vport associated with SCSI device specified 11508 * by tgt_id and lun_id parameters. 11509 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11510 * commands pending on the vport associated with SCSI target specified 11511 * by tgt_id parameter. 11512 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11513 * commands pending on the vport. 11514 * This function returns the number of iocbs which satisfy the filter. 11515 * This function is called without any lock held. 11516 **/ 11517 int 11518 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11519 lpfc_ctx_cmd ctx_cmd) 11520 { 11521 struct lpfc_hba *phba = vport->phba; 11522 struct lpfc_iocbq *iocbq; 11523 int sum, i; 11524 11525 spin_lock_irq(&phba->hbalock); 11526 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11527 iocbq = phba->sli.iocbq_lookup[i]; 11528 11529 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11530 ctx_cmd) == 0) 11531 sum++; 11532 } 11533 spin_unlock_irq(&phba->hbalock); 11534 11535 return sum; 11536 } 11537 11538 /** 11539 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11540 * @phba: Pointer to HBA context object 11541 * @cmdiocb: Pointer to command iocb object. 11542 * @rspiocb: Pointer to response iocb object. 11543 * 11544 * This function is called when an aborted FCP iocb completes. This 11545 * function is called by the ring event handler with no lock held. 11546 * This function frees the iocb. 11547 **/ 11548 void 11549 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11550 struct lpfc_iocbq *rspiocb) 11551 { 11552 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11553 "3096 ABORT_XRI_CN completing on rpi x%x " 11554 "original iotag x%x, abort cmd iotag x%x " 11555 "status 0x%x, reason 0x%x\n", 11556 cmdiocb->iocb.un.acxri.abortContextTag, 11557 cmdiocb->iocb.un.acxri.abortIoTag, 11558 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11559 rspiocb->iocb.un.ulpWord[4]); 11560 lpfc_sli_release_iocbq(phba, cmdiocb); 11561 return; 11562 } 11563 11564 /** 11565 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11566 * @vport: Pointer to virtual port. 11567 * @pring: Pointer to driver SLI ring object. 11568 * @tgt_id: SCSI ID of the target. 11569 * @lun_id: LUN ID of the scsi device. 11570 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11571 * 11572 * This function sends an abort command for every SCSI command 11573 * associated with the given virtual port pending on the ring 11574 * filtered by lpfc_sli_validate_fcp_iocb function. 11575 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11576 * FCP iocbs associated with lun specified by tgt_id and lun_id 11577 * parameters 11578 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11579 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11580 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11581 * FCP iocbs associated with virtual port. 11582 * This function returns number of iocbs it failed to abort. 11583 * This function is called with no locks held. 11584 **/ 11585 int 11586 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11587 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11588 { 11589 struct lpfc_hba *phba = vport->phba; 11590 struct lpfc_iocbq *iocbq; 11591 struct lpfc_iocbq *abtsiocb; 11592 struct lpfc_sli_ring *pring_s4; 11593 IOCB_t *cmd = NULL; 11594 int errcnt = 0, ret_val = 0; 11595 int i; 11596 11597 /* all I/Os are in process of being flushed */ 11598 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) 11599 return errcnt; 11600 11601 for (i = 1; i <= phba->sli.last_iotag; i++) { 11602 iocbq = phba->sli.iocbq_lookup[i]; 11603 11604 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11605 abort_cmd) != 0) 11606 continue; 11607 11608 /* 11609 * If the iocbq is already being aborted, don't take a second 11610 * action, but do count it. 11611 */ 11612 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11613 continue; 11614 11615 /* issue ABTS for this IOCB based on iotag */ 11616 abtsiocb = lpfc_sli_get_iocbq(phba); 11617 if (abtsiocb == NULL) { 11618 errcnt++; 11619 continue; 11620 } 11621 11622 /* indicate the IO is being aborted by the driver. */ 11623 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11624 11625 cmd = &iocbq->iocb; 11626 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11627 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11628 if (phba->sli_rev == LPFC_SLI_REV4) 11629 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11630 else 11631 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11632 abtsiocb->iocb.ulpLe = 1; 11633 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11634 abtsiocb->vport = vport; 11635 11636 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11637 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11638 if (iocbq->iocb_flag & LPFC_IO_FCP) 11639 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11640 if (iocbq->iocb_flag & LPFC_IO_FOF) 11641 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11642 11643 if (lpfc_is_link_up(phba)) 11644 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11645 else 11646 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11647 11648 /* Setup callback routine and issue the command. */ 11649 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11650 if (phba->sli_rev == LPFC_SLI_REV4) { 11651 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11652 if (!pring_s4) 11653 continue; 11654 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11655 abtsiocb, 0); 11656 } else 11657 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11658 abtsiocb, 0); 11659 if (ret_val == IOCB_ERROR) { 11660 lpfc_sli_release_iocbq(phba, abtsiocb); 11661 errcnt++; 11662 continue; 11663 } 11664 } 11665 11666 return errcnt; 11667 } 11668 11669 /** 11670 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11671 * @vport: Pointer to virtual port. 11672 * @pring: Pointer to driver SLI ring object. 11673 * @tgt_id: SCSI ID of the target. 11674 * @lun_id: LUN ID of the scsi device. 11675 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11676 * 11677 * This function sends an abort command for every SCSI command 11678 * associated with the given virtual port pending on the ring 11679 * filtered by lpfc_sli_validate_fcp_iocb function. 11680 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11681 * FCP iocbs associated with lun specified by tgt_id and lun_id 11682 * parameters 11683 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11684 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11685 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11686 * FCP iocbs associated with virtual port. 11687 * This function returns number of iocbs it aborted . 11688 * This function is called with no locks held right after a taskmgmt 11689 * command is sent. 11690 **/ 11691 int 11692 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11693 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11694 { 11695 struct lpfc_hba *phba = vport->phba; 11696 struct lpfc_scsi_buf *lpfc_cmd; 11697 struct lpfc_iocbq *abtsiocbq; 11698 struct lpfc_nodelist *ndlp; 11699 struct lpfc_iocbq *iocbq; 11700 IOCB_t *icmd; 11701 int sum, i, ret_val; 11702 unsigned long iflags; 11703 struct lpfc_sli_ring *pring_s4; 11704 11705 spin_lock_irqsave(&phba->hbalock, iflags); 11706 11707 /* all I/Os are in process of being flushed */ 11708 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11709 spin_unlock_irqrestore(&phba->hbalock, iflags); 11710 return 0; 11711 } 11712 sum = 0; 11713 11714 for (i = 1; i <= phba->sli.last_iotag; i++) { 11715 iocbq = phba->sli.iocbq_lookup[i]; 11716 11717 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11718 cmd) != 0) 11719 continue; 11720 11721 /* 11722 * If the iocbq is already being aborted, don't take a second 11723 * action, but do count it. 11724 */ 11725 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11726 continue; 11727 11728 /* issue ABTS for this IOCB based on iotag */ 11729 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11730 if (abtsiocbq == NULL) 11731 continue; 11732 11733 icmd = &iocbq->iocb; 11734 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11735 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11736 if (phba->sli_rev == LPFC_SLI_REV4) 11737 abtsiocbq->iocb.un.acxri.abortIoTag = 11738 iocbq->sli4_xritag; 11739 else 11740 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11741 abtsiocbq->iocb.ulpLe = 1; 11742 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11743 abtsiocbq->vport = vport; 11744 11745 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11746 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11747 if (iocbq->iocb_flag & LPFC_IO_FCP) 11748 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11749 if (iocbq->iocb_flag & LPFC_IO_FOF) 11750 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11751 11752 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11753 ndlp = lpfc_cmd->rdata->pnode; 11754 11755 if (lpfc_is_link_up(phba) && 11756 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11757 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11758 else 11759 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11760 11761 /* Setup callback routine and issue the command. */ 11762 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11763 11764 /* 11765 * Indicate the IO is being aborted by the driver and set 11766 * the caller's flag into the aborted IO. 11767 */ 11768 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11769 11770 if (phba->sli_rev == LPFC_SLI_REV4) { 11771 pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq); 11772 if (!pring_s4) 11773 continue; 11774 /* Note: both hbalock and ring_lock must be set here */ 11775 spin_lock(&pring_s4->ring_lock); 11776 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11777 abtsiocbq, 0); 11778 spin_unlock(&pring_s4->ring_lock); 11779 } else { 11780 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11781 abtsiocbq, 0); 11782 } 11783 11784 11785 if (ret_val == IOCB_ERROR) 11786 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11787 else 11788 sum++; 11789 } 11790 spin_unlock_irqrestore(&phba->hbalock, iflags); 11791 return sum; 11792 } 11793 11794 /** 11795 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11796 * @phba: Pointer to HBA context object. 11797 * @cmdiocbq: Pointer to command iocb. 11798 * @rspiocbq: Pointer to response iocb. 11799 * 11800 * This function is the completion handler for iocbs issued using 11801 * lpfc_sli_issue_iocb_wait function. This function is called by the 11802 * ring event handler function without any lock held. This function 11803 * can be called from both worker thread context and interrupt 11804 * context. This function also can be called from other thread which 11805 * cleans up the SLI layer objects. 11806 * This function copy the contents of the response iocb to the 11807 * response iocb memory object provided by the caller of 11808 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11809 * sleeps for the iocb completion. 11810 **/ 11811 static void 11812 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11813 struct lpfc_iocbq *cmdiocbq, 11814 struct lpfc_iocbq *rspiocbq) 11815 { 11816 wait_queue_head_t *pdone_q; 11817 unsigned long iflags; 11818 struct lpfc_scsi_buf *lpfc_cmd; 11819 11820 spin_lock_irqsave(&phba->hbalock, iflags); 11821 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11822 11823 /* 11824 * A time out has occurred for the iocb. If a time out 11825 * completion handler has been supplied, call it. Otherwise, 11826 * just free the iocbq. 11827 */ 11828 11829 spin_unlock_irqrestore(&phba->hbalock, iflags); 11830 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11831 cmdiocbq->wait_iocb_cmpl = NULL; 11832 if (cmdiocbq->iocb_cmpl) 11833 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11834 else 11835 lpfc_sli_release_iocbq(phba, cmdiocbq); 11836 return; 11837 } 11838 11839 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11840 if (cmdiocbq->context2 && rspiocbq) 11841 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11842 &rspiocbq->iocb, sizeof(IOCB_t)); 11843 11844 /* Set the exchange busy flag for task management commands */ 11845 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11846 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11847 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11848 cur_iocbq); 11849 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11850 } 11851 11852 pdone_q = cmdiocbq->context_un.wait_queue; 11853 if (pdone_q) 11854 wake_up(pdone_q); 11855 spin_unlock_irqrestore(&phba->hbalock, iflags); 11856 return; 11857 } 11858 11859 /** 11860 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11861 * @phba: Pointer to HBA context object.. 11862 * @piocbq: Pointer to command iocb. 11863 * @flag: Flag to test. 11864 * 11865 * This routine grabs the hbalock and then test the iocb_flag to 11866 * see if the passed in flag is set. 11867 * Returns: 11868 * 1 if flag is set. 11869 * 0 if flag is not set. 11870 **/ 11871 static int 11872 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11873 struct lpfc_iocbq *piocbq, uint32_t flag) 11874 { 11875 unsigned long iflags; 11876 int ret; 11877 11878 spin_lock_irqsave(&phba->hbalock, iflags); 11879 ret = piocbq->iocb_flag & flag; 11880 spin_unlock_irqrestore(&phba->hbalock, iflags); 11881 return ret; 11882 11883 } 11884 11885 /** 11886 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11887 * @phba: Pointer to HBA context object.. 11888 * @pring: Pointer to sli ring. 11889 * @piocb: Pointer to command iocb. 11890 * @prspiocbq: Pointer to response iocb. 11891 * @timeout: Timeout in number of seconds. 11892 * 11893 * This function issues the iocb to firmware and waits for the 11894 * iocb to complete. The iocb_cmpl field of the shall be used 11895 * to handle iocbs which time out. If the field is NULL, the 11896 * function shall free the iocbq structure. If more clean up is 11897 * needed, the caller is expected to provide a completion function 11898 * that will provide the needed clean up. If the iocb command is 11899 * not completed within timeout seconds, the function will either 11900 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11901 * completion function set in the iocb_cmpl field and then return 11902 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11903 * resources if this function returns IOCB_TIMEDOUT. 11904 * The function waits for the iocb completion using an 11905 * non-interruptible wait. 11906 * This function will sleep while waiting for iocb completion. 11907 * So, this function should not be called from any context which 11908 * does not allow sleeping. Due to the same reason, this function 11909 * cannot be called with interrupt disabled. 11910 * This function assumes that the iocb completions occur while 11911 * this function sleep. So, this function cannot be called from 11912 * the thread which process iocb completion for this ring. 11913 * This function clears the iocb_flag of the iocb object before 11914 * issuing the iocb and the iocb completion handler sets this 11915 * flag and wakes this thread when the iocb completes. 11916 * The contents of the response iocb will be copied to prspiocbq 11917 * by the completion handler when the command completes. 11918 * This function returns IOCB_SUCCESS when success. 11919 * This function is called with no lock held. 11920 **/ 11921 int 11922 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11923 uint32_t ring_number, 11924 struct lpfc_iocbq *piocb, 11925 struct lpfc_iocbq *prspiocbq, 11926 uint32_t timeout) 11927 { 11928 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11929 long timeleft, timeout_req = 0; 11930 int retval = IOCB_SUCCESS; 11931 uint32_t creg_val; 11932 struct lpfc_iocbq *iocb; 11933 int txq_cnt = 0; 11934 int txcmplq_cnt = 0; 11935 struct lpfc_sli_ring *pring; 11936 unsigned long iflags; 11937 bool iocb_completed = true; 11938 11939 if (phba->sli_rev >= LPFC_SLI_REV4) 11940 pring = lpfc_sli4_calc_ring(phba, piocb); 11941 else 11942 pring = &phba->sli.sli3_ring[ring_number]; 11943 /* 11944 * If the caller has provided a response iocbq buffer, then context2 11945 * is NULL or its an error. 11946 */ 11947 if (prspiocbq) { 11948 if (piocb->context2) 11949 return IOCB_ERROR; 11950 piocb->context2 = prspiocbq; 11951 } 11952 11953 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11954 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11955 piocb->context_un.wait_queue = &done_q; 11956 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11957 11958 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11959 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11960 return IOCB_ERROR; 11961 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11962 writel(creg_val, phba->HCregaddr); 11963 readl(phba->HCregaddr); /* flush */ 11964 } 11965 11966 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11967 SLI_IOCB_RET_IOCB); 11968 if (retval == IOCB_SUCCESS) { 11969 timeout_req = msecs_to_jiffies(timeout * 1000); 11970 timeleft = wait_event_timeout(done_q, 11971 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11972 timeout_req); 11973 spin_lock_irqsave(&phba->hbalock, iflags); 11974 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11975 11976 /* 11977 * IOCB timed out. Inform the wake iocb wait 11978 * completion function and set local status 11979 */ 11980 11981 iocb_completed = false; 11982 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11983 } 11984 spin_unlock_irqrestore(&phba->hbalock, iflags); 11985 if (iocb_completed) { 11986 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11987 "0331 IOCB wake signaled\n"); 11988 /* Note: we are not indicating if the IOCB has a success 11989 * status or not - that's for the caller to check. 11990 * IOCB_SUCCESS means just that the command was sent and 11991 * completed. Not that it completed successfully. 11992 * */ 11993 } else if (timeleft == 0) { 11994 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11995 "0338 IOCB wait timeout error - no " 11996 "wake response Data x%x\n", timeout); 11997 retval = IOCB_TIMEDOUT; 11998 } else { 11999 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12000 "0330 IOCB wake NOT set, " 12001 "Data x%x x%lx\n", 12002 timeout, (timeleft / jiffies)); 12003 retval = IOCB_TIMEDOUT; 12004 } 12005 } else if (retval == IOCB_BUSY) { 12006 if (phba->cfg_log_verbose & LOG_SLI) { 12007 list_for_each_entry(iocb, &pring->txq, list) { 12008 txq_cnt++; 12009 } 12010 list_for_each_entry(iocb, &pring->txcmplq, list) { 12011 txcmplq_cnt++; 12012 } 12013 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12014 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12015 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12016 } 12017 return retval; 12018 } else { 12019 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12020 "0332 IOCB wait issue failed, Data x%x\n", 12021 retval); 12022 retval = IOCB_ERROR; 12023 } 12024 12025 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12026 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12027 return IOCB_ERROR; 12028 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12029 writel(creg_val, phba->HCregaddr); 12030 readl(phba->HCregaddr); /* flush */ 12031 } 12032 12033 if (prspiocbq) 12034 piocb->context2 = NULL; 12035 12036 piocb->context_un.wait_queue = NULL; 12037 piocb->iocb_cmpl = NULL; 12038 return retval; 12039 } 12040 12041 /** 12042 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12043 * @phba: Pointer to HBA context object. 12044 * @pmboxq: Pointer to driver mailbox object. 12045 * @timeout: Timeout in number of seconds. 12046 * 12047 * This function issues the mailbox to firmware and waits for the 12048 * mailbox command to complete. If the mailbox command is not 12049 * completed within timeout seconds, it returns MBX_TIMEOUT. 12050 * The function waits for the mailbox completion using an 12051 * interruptible wait. If the thread is woken up due to a 12052 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12053 * should not free the mailbox resources, if this function returns 12054 * MBX_TIMEOUT. 12055 * This function will sleep while waiting for mailbox completion. 12056 * So, this function should not be called from any context which 12057 * does not allow sleeping. Due to the same reason, this function 12058 * cannot be called with interrupt disabled. 12059 * This function assumes that the mailbox completion occurs while 12060 * this function sleep. So, this function cannot be called from 12061 * the worker thread which processes mailbox completion. 12062 * This function is called in the context of HBA management 12063 * applications. 12064 * This function returns MBX_SUCCESS when successful. 12065 * This function is called with no lock held. 12066 **/ 12067 int 12068 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12069 uint32_t timeout) 12070 { 12071 struct completion mbox_done; 12072 int retval; 12073 unsigned long flag; 12074 12075 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12076 /* setup wake call as IOCB callback */ 12077 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12078 12079 /* setup context3 field to pass wait_queue pointer to wake function */ 12080 init_completion(&mbox_done); 12081 pmboxq->context3 = &mbox_done; 12082 /* now issue the command */ 12083 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12084 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12085 wait_for_completion_timeout(&mbox_done, 12086 msecs_to_jiffies(timeout * 1000)); 12087 12088 spin_lock_irqsave(&phba->hbalock, flag); 12089 pmboxq->context3 = NULL; 12090 /* 12091 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12092 * else do not free the resources. 12093 */ 12094 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12095 retval = MBX_SUCCESS; 12096 } else { 12097 retval = MBX_TIMEOUT; 12098 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12099 } 12100 spin_unlock_irqrestore(&phba->hbalock, flag); 12101 } 12102 return retval; 12103 } 12104 12105 /** 12106 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12107 * @phba: Pointer to HBA context. 12108 * 12109 * This function is called to shutdown the driver's mailbox sub-system. 12110 * It first marks the mailbox sub-system is in a block state to prevent 12111 * the asynchronous mailbox command from issued off the pending mailbox 12112 * command queue. If the mailbox command sub-system shutdown is due to 12113 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12114 * the mailbox sub-system flush routine to forcefully bring down the 12115 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12116 * as with offline or HBA function reset), this routine will wait for the 12117 * outstanding mailbox command to complete before invoking the mailbox 12118 * sub-system flush routine to gracefully bring down mailbox sub-system. 12119 **/ 12120 void 12121 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12122 { 12123 struct lpfc_sli *psli = &phba->sli; 12124 unsigned long timeout; 12125 12126 if (mbx_action == LPFC_MBX_NO_WAIT) { 12127 /* delay 100ms for port state */ 12128 msleep(100); 12129 lpfc_sli_mbox_sys_flush(phba); 12130 return; 12131 } 12132 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12133 12134 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12135 local_bh_disable(); 12136 12137 spin_lock_irq(&phba->hbalock); 12138 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12139 12140 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12141 /* Determine how long we might wait for the active mailbox 12142 * command to be gracefully completed by firmware. 12143 */ 12144 if (phba->sli.mbox_active) 12145 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12146 phba->sli.mbox_active) * 12147 1000) + jiffies; 12148 spin_unlock_irq(&phba->hbalock); 12149 12150 /* Enable softirqs again, done with phba->hbalock */ 12151 local_bh_enable(); 12152 12153 while (phba->sli.mbox_active) { 12154 /* Check active mailbox complete status every 2ms */ 12155 msleep(2); 12156 if (time_after(jiffies, timeout)) 12157 /* Timeout, let the mailbox flush routine to 12158 * forcefully release active mailbox command 12159 */ 12160 break; 12161 } 12162 } else { 12163 spin_unlock_irq(&phba->hbalock); 12164 12165 /* Enable softirqs again, done with phba->hbalock */ 12166 local_bh_enable(); 12167 } 12168 12169 lpfc_sli_mbox_sys_flush(phba); 12170 } 12171 12172 /** 12173 * lpfc_sli_eratt_read - read sli-3 error attention events 12174 * @phba: Pointer to HBA context. 12175 * 12176 * This function is called to read the SLI3 device error attention registers 12177 * for possible error attention events. The caller must hold the hostlock 12178 * with spin_lock_irq(). 12179 * 12180 * This function returns 1 when there is Error Attention in the Host Attention 12181 * Register and returns 0 otherwise. 12182 **/ 12183 static int 12184 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12185 { 12186 uint32_t ha_copy; 12187 12188 /* Read chip Host Attention (HA) register */ 12189 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12190 goto unplug_err; 12191 12192 if (ha_copy & HA_ERATT) { 12193 /* Read host status register to retrieve error event */ 12194 if (lpfc_sli_read_hs(phba)) 12195 goto unplug_err; 12196 12197 /* Check if there is a deferred error condition is active */ 12198 if ((HS_FFER1 & phba->work_hs) && 12199 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12200 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12201 phba->hba_flag |= DEFER_ERATT; 12202 /* Clear all interrupt enable conditions */ 12203 writel(0, phba->HCregaddr); 12204 readl(phba->HCregaddr); 12205 } 12206 12207 /* Set the driver HA work bitmap */ 12208 phba->work_ha |= HA_ERATT; 12209 /* Indicate polling handles this ERATT */ 12210 phba->hba_flag |= HBA_ERATT_HANDLED; 12211 return 1; 12212 } 12213 return 0; 12214 12215 unplug_err: 12216 /* Set the driver HS work bitmap */ 12217 phba->work_hs |= UNPLUG_ERR; 12218 /* Set the driver HA work bitmap */ 12219 phba->work_ha |= HA_ERATT; 12220 /* Indicate polling handles this ERATT */ 12221 phba->hba_flag |= HBA_ERATT_HANDLED; 12222 return 1; 12223 } 12224 12225 /** 12226 * lpfc_sli4_eratt_read - read sli-4 error attention events 12227 * @phba: Pointer to HBA context. 12228 * 12229 * This function is called to read the SLI4 device error attention registers 12230 * for possible error attention events. The caller must hold the hostlock 12231 * with spin_lock_irq(). 12232 * 12233 * This function returns 1 when there is Error Attention in the Host Attention 12234 * Register and returns 0 otherwise. 12235 **/ 12236 static int 12237 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12238 { 12239 uint32_t uerr_sta_hi, uerr_sta_lo; 12240 uint32_t if_type, portsmphr; 12241 struct lpfc_register portstat_reg; 12242 12243 /* 12244 * For now, use the SLI4 device internal unrecoverable error 12245 * registers for error attention. This can be changed later. 12246 */ 12247 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12248 switch (if_type) { 12249 case LPFC_SLI_INTF_IF_TYPE_0: 12250 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12251 &uerr_sta_lo) || 12252 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12253 &uerr_sta_hi)) { 12254 phba->work_hs |= UNPLUG_ERR; 12255 phba->work_ha |= HA_ERATT; 12256 phba->hba_flag |= HBA_ERATT_HANDLED; 12257 return 1; 12258 } 12259 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12260 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12261 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12262 "1423 HBA Unrecoverable error: " 12263 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12264 "ue_mask_lo_reg=0x%x, " 12265 "ue_mask_hi_reg=0x%x\n", 12266 uerr_sta_lo, uerr_sta_hi, 12267 phba->sli4_hba.ue_mask_lo, 12268 phba->sli4_hba.ue_mask_hi); 12269 phba->work_status[0] = uerr_sta_lo; 12270 phba->work_status[1] = uerr_sta_hi; 12271 phba->work_ha |= HA_ERATT; 12272 phba->hba_flag |= HBA_ERATT_HANDLED; 12273 return 1; 12274 } 12275 break; 12276 case LPFC_SLI_INTF_IF_TYPE_2: 12277 case LPFC_SLI_INTF_IF_TYPE_6: 12278 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12279 &portstat_reg.word0) || 12280 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12281 &portsmphr)){ 12282 phba->work_hs |= UNPLUG_ERR; 12283 phba->work_ha |= HA_ERATT; 12284 phba->hba_flag |= HBA_ERATT_HANDLED; 12285 return 1; 12286 } 12287 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12288 phba->work_status[0] = 12289 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12290 phba->work_status[1] = 12291 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12293 "2885 Port Status Event: " 12294 "port status reg 0x%x, " 12295 "port smphr reg 0x%x, " 12296 "error 1=0x%x, error 2=0x%x\n", 12297 portstat_reg.word0, 12298 portsmphr, 12299 phba->work_status[0], 12300 phba->work_status[1]); 12301 phba->work_ha |= HA_ERATT; 12302 phba->hba_flag |= HBA_ERATT_HANDLED; 12303 return 1; 12304 } 12305 break; 12306 case LPFC_SLI_INTF_IF_TYPE_1: 12307 default: 12308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12309 "2886 HBA Error Attention on unsupported " 12310 "if type %d.", if_type); 12311 return 1; 12312 } 12313 12314 return 0; 12315 } 12316 12317 /** 12318 * lpfc_sli_check_eratt - check error attention events 12319 * @phba: Pointer to HBA context. 12320 * 12321 * This function is called from timer soft interrupt context to check HBA's 12322 * error attention register bit for error attention events. 12323 * 12324 * This function returns 1 when there is Error Attention in the Host Attention 12325 * Register and returns 0 otherwise. 12326 **/ 12327 int 12328 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12329 { 12330 uint32_t ha_copy; 12331 12332 /* If somebody is waiting to handle an eratt, don't process it 12333 * here. The brdkill function will do this. 12334 */ 12335 if (phba->link_flag & LS_IGNORE_ERATT) 12336 return 0; 12337 12338 /* Check if interrupt handler handles this ERATT */ 12339 spin_lock_irq(&phba->hbalock); 12340 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12341 /* Interrupt handler has handled ERATT */ 12342 spin_unlock_irq(&phba->hbalock); 12343 return 0; 12344 } 12345 12346 /* 12347 * If there is deferred error attention, do not check for error 12348 * attention 12349 */ 12350 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12351 spin_unlock_irq(&phba->hbalock); 12352 return 0; 12353 } 12354 12355 /* If PCI channel is offline, don't process it */ 12356 if (unlikely(pci_channel_offline(phba->pcidev))) { 12357 spin_unlock_irq(&phba->hbalock); 12358 return 0; 12359 } 12360 12361 switch (phba->sli_rev) { 12362 case LPFC_SLI_REV2: 12363 case LPFC_SLI_REV3: 12364 /* Read chip Host Attention (HA) register */ 12365 ha_copy = lpfc_sli_eratt_read(phba); 12366 break; 12367 case LPFC_SLI_REV4: 12368 /* Read device Uncoverable Error (UERR) registers */ 12369 ha_copy = lpfc_sli4_eratt_read(phba); 12370 break; 12371 default: 12372 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12373 "0299 Invalid SLI revision (%d)\n", 12374 phba->sli_rev); 12375 ha_copy = 0; 12376 break; 12377 } 12378 spin_unlock_irq(&phba->hbalock); 12379 12380 return ha_copy; 12381 } 12382 12383 /** 12384 * lpfc_intr_state_check - Check device state for interrupt handling 12385 * @phba: Pointer to HBA context. 12386 * 12387 * This inline routine checks whether a device or its PCI slot is in a state 12388 * that the interrupt should be handled. 12389 * 12390 * This function returns 0 if the device or the PCI slot is in a state that 12391 * interrupt should be handled, otherwise -EIO. 12392 */ 12393 static inline int 12394 lpfc_intr_state_check(struct lpfc_hba *phba) 12395 { 12396 /* If the pci channel is offline, ignore all the interrupts */ 12397 if (unlikely(pci_channel_offline(phba->pcidev))) 12398 return -EIO; 12399 12400 /* Update device level interrupt statistics */ 12401 phba->sli.slistat.sli_intr++; 12402 12403 /* Ignore all interrupts during initialization. */ 12404 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12405 return -EIO; 12406 12407 return 0; 12408 } 12409 12410 /** 12411 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12412 * @irq: Interrupt number. 12413 * @dev_id: The device context pointer. 12414 * 12415 * This function is directly called from the PCI layer as an interrupt 12416 * service routine when device with SLI-3 interface spec is enabled with 12417 * MSI-X multi-message interrupt mode and there are slow-path events in 12418 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12419 * interrupt mode, this function is called as part of the device-level 12420 * interrupt handler. When the PCI slot is in error recovery or the HBA 12421 * is undergoing initialization, the interrupt handler will not process 12422 * the interrupt. The link attention and ELS ring attention events are 12423 * handled by the worker thread. The interrupt handler signals the worker 12424 * thread and returns for these events. This function is called without 12425 * any lock held. It gets the hbalock to access and update SLI data 12426 * structures. 12427 * 12428 * This function returns IRQ_HANDLED when interrupt is handled else it 12429 * returns IRQ_NONE. 12430 **/ 12431 irqreturn_t 12432 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12433 { 12434 struct lpfc_hba *phba; 12435 uint32_t ha_copy, hc_copy; 12436 uint32_t work_ha_copy; 12437 unsigned long status; 12438 unsigned long iflag; 12439 uint32_t control; 12440 12441 MAILBOX_t *mbox, *pmbox; 12442 struct lpfc_vport *vport; 12443 struct lpfc_nodelist *ndlp; 12444 struct lpfc_dmabuf *mp; 12445 LPFC_MBOXQ_t *pmb; 12446 int rc; 12447 12448 /* 12449 * Get the driver's phba structure from the dev_id and 12450 * assume the HBA is not interrupting. 12451 */ 12452 phba = (struct lpfc_hba *)dev_id; 12453 12454 if (unlikely(!phba)) 12455 return IRQ_NONE; 12456 12457 /* 12458 * Stuff needs to be attented to when this function is invoked as an 12459 * individual interrupt handler in MSI-X multi-message interrupt mode 12460 */ 12461 if (phba->intr_type == MSIX) { 12462 /* Check device state for handling interrupt */ 12463 if (lpfc_intr_state_check(phba)) 12464 return IRQ_NONE; 12465 /* Need to read HA REG for slow-path events */ 12466 spin_lock_irqsave(&phba->hbalock, iflag); 12467 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12468 goto unplug_error; 12469 /* If somebody is waiting to handle an eratt don't process it 12470 * here. The brdkill function will do this. 12471 */ 12472 if (phba->link_flag & LS_IGNORE_ERATT) 12473 ha_copy &= ~HA_ERATT; 12474 /* Check the need for handling ERATT in interrupt handler */ 12475 if (ha_copy & HA_ERATT) { 12476 if (phba->hba_flag & HBA_ERATT_HANDLED) 12477 /* ERATT polling has handled ERATT */ 12478 ha_copy &= ~HA_ERATT; 12479 else 12480 /* Indicate interrupt handler handles ERATT */ 12481 phba->hba_flag |= HBA_ERATT_HANDLED; 12482 } 12483 12484 /* 12485 * If there is deferred error attention, do not check for any 12486 * interrupt. 12487 */ 12488 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12489 spin_unlock_irqrestore(&phba->hbalock, iflag); 12490 return IRQ_NONE; 12491 } 12492 12493 /* Clear up only attention source related to slow-path */ 12494 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12495 goto unplug_error; 12496 12497 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12498 HC_LAINT_ENA | HC_ERINT_ENA), 12499 phba->HCregaddr); 12500 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12501 phba->HAregaddr); 12502 writel(hc_copy, phba->HCregaddr); 12503 readl(phba->HAregaddr); /* flush */ 12504 spin_unlock_irqrestore(&phba->hbalock, iflag); 12505 } else 12506 ha_copy = phba->ha_copy; 12507 12508 work_ha_copy = ha_copy & phba->work_ha_mask; 12509 12510 if (work_ha_copy) { 12511 if (work_ha_copy & HA_LATT) { 12512 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12513 /* 12514 * Turn off Link Attention interrupts 12515 * until CLEAR_LA done 12516 */ 12517 spin_lock_irqsave(&phba->hbalock, iflag); 12518 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12519 if (lpfc_readl(phba->HCregaddr, &control)) 12520 goto unplug_error; 12521 control &= ~HC_LAINT_ENA; 12522 writel(control, phba->HCregaddr); 12523 readl(phba->HCregaddr); /* flush */ 12524 spin_unlock_irqrestore(&phba->hbalock, iflag); 12525 } 12526 else 12527 work_ha_copy &= ~HA_LATT; 12528 } 12529 12530 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12531 /* 12532 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12533 * the only slow ring. 12534 */ 12535 status = (work_ha_copy & 12536 (HA_RXMASK << (4*LPFC_ELS_RING))); 12537 status >>= (4*LPFC_ELS_RING); 12538 if (status & HA_RXMASK) { 12539 spin_lock_irqsave(&phba->hbalock, iflag); 12540 if (lpfc_readl(phba->HCregaddr, &control)) 12541 goto unplug_error; 12542 12543 lpfc_debugfs_slow_ring_trc(phba, 12544 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12545 control, status, 12546 (uint32_t)phba->sli.slistat.sli_intr); 12547 12548 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12549 lpfc_debugfs_slow_ring_trc(phba, 12550 "ISR Disable ring:" 12551 "pwork:x%x hawork:x%x wait:x%x", 12552 phba->work_ha, work_ha_copy, 12553 (uint32_t)((unsigned long) 12554 &phba->work_waitq)); 12555 12556 control &= 12557 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12558 writel(control, phba->HCregaddr); 12559 readl(phba->HCregaddr); /* flush */ 12560 } 12561 else { 12562 lpfc_debugfs_slow_ring_trc(phba, 12563 "ISR slow ring: pwork:" 12564 "x%x hawork:x%x wait:x%x", 12565 phba->work_ha, work_ha_copy, 12566 (uint32_t)((unsigned long) 12567 &phba->work_waitq)); 12568 } 12569 spin_unlock_irqrestore(&phba->hbalock, iflag); 12570 } 12571 } 12572 spin_lock_irqsave(&phba->hbalock, iflag); 12573 if (work_ha_copy & HA_ERATT) { 12574 if (lpfc_sli_read_hs(phba)) 12575 goto unplug_error; 12576 /* 12577 * Check if there is a deferred error condition 12578 * is active 12579 */ 12580 if ((HS_FFER1 & phba->work_hs) && 12581 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12582 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12583 phba->work_hs)) { 12584 phba->hba_flag |= DEFER_ERATT; 12585 /* Clear all interrupt enable conditions */ 12586 writel(0, phba->HCregaddr); 12587 readl(phba->HCregaddr); 12588 } 12589 } 12590 12591 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12592 pmb = phba->sli.mbox_active; 12593 pmbox = &pmb->u.mb; 12594 mbox = phba->mbox; 12595 vport = pmb->vport; 12596 12597 /* First check out the status word */ 12598 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12599 if (pmbox->mbxOwner != OWN_HOST) { 12600 spin_unlock_irqrestore(&phba->hbalock, iflag); 12601 /* 12602 * Stray Mailbox Interrupt, mbxCommand <cmd> 12603 * mbxStatus <status> 12604 */ 12605 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12606 LOG_SLI, 12607 "(%d):0304 Stray Mailbox " 12608 "Interrupt mbxCommand x%x " 12609 "mbxStatus x%x\n", 12610 (vport ? vport->vpi : 0), 12611 pmbox->mbxCommand, 12612 pmbox->mbxStatus); 12613 /* clear mailbox attention bit */ 12614 work_ha_copy &= ~HA_MBATT; 12615 } else { 12616 phba->sli.mbox_active = NULL; 12617 spin_unlock_irqrestore(&phba->hbalock, iflag); 12618 phba->last_completion_time = jiffies; 12619 del_timer(&phba->sli.mbox_tmo); 12620 if (pmb->mbox_cmpl) { 12621 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12622 MAILBOX_CMD_SIZE); 12623 if (pmb->out_ext_byte_len && 12624 pmb->ctx_buf) 12625 lpfc_sli_pcimem_bcopy( 12626 phba->mbox_ext, 12627 pmb->ctx_buf, 12628 pmb->out_ext_byte_len); 12629 } 12630 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12631 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12632 12633 lpfc_debugfs_disc_trc(vport, 12634 LPFC_DISC_TRC_MBOX_VPORT, 12635 "MBOX dflt rpi: : " 12636 "status:x%x rpi:x%x", 12637 (uint32_t)pmbox->mbxStatus, 12638 pmbox->un.varWords[0], 0); 12639 12640 if (!pmbox->mbxStatus) { 12641 mp = (struct lpfc_dmabuf *) 12642 (pmb->ctx_buf); 12643 ndlp = (struct lpfc_nodelist *) 12644 pmb->ctx_ndlp; 12645 12646 /* Reg_LOGIN of dflt RPI was 12647 * successful. new lets get 12648 * rid of the RPI using the 12649 * same mbox buffer. 12650 */ 12651 lpfc_unreg_login(phba, 12652 vport->vpi, 12653 pmbox->un.varWords[0], 12654 pmb); 12655 pmb->mbox_cmpl = 12656 lpfc_mbx_cmpl_dflt_rpi; 12657 pmb->ctx_buf = mp; 12658 pmb->ctx_ndlp = ndlp; 12659 pmb->vport = vport; 12660 rc = lpfc_sli_issue_mbox(phba, 12661 pmb, 12662 MBX_NOWAIT); 12663 if (rc != MBX_BUSY) 12664 lpfc_printf_log(phba, 12665 KERN_ERR, 12666 LOG_MBOX | LOG_SLI, 12667 "0350 rc should have" 12668 "been MBX_BUSY\n"); 12669 if (rc != MBX_NOT_FINISHED) 12670 goto send_current_mbox; 12671 } 12672 } 12673 spin_lock_irqsave( 12674 &phba->pport->work_port_lock, 12675 iflag); 12676 phba->pport->work_port_events &= 12677 ~WORKER_MBOX_TMO; 12678 spin_unlock_irqrestore( 12679 &phba->pport->work_port_lock, 12680 iflag); 12681 lpfc_mbox_cmpl_put(phba, pmb); 12682 } 12683 } else 12684 spin_unlock_irqrestore(&phba->hbalock, iflag); 12685 12686 if ((work_ha_copy & HA_MBATT) && 12687 (phba->sli.mbox_active == NULL)) { 12688 send_current_mbox: 12689 /* Process next mailbox command if there is one */ 12690 do { 12691 rc = lpfc_sli_issue_mbox(phba, NULL, 12692 MBX_NOWAIT); 12693 } while (rc == MBX_NOT_FINISHED); 12694 if (rc != MBX_SUCCESS) 12695 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12696 LOG_SLI, "0349 rc should be " 12697 "MBX_SUCCESS\n"); 12698 } 12699 12700 spin_lock_irqsave(&phba->hbalock, iflag); 12701 phba->work_ha |= work_ha_copy; 12702 spin_unlock_irqrestore(&phba->hbalock, iflag); 12703 lpfc_worker_wake_up(phba); 12704 } 12705 return IRQ_HANDLED; 12706 unplug_error: 12707 spin_unlock_irqrestore(&phba->hbalock, iflag); 12708 return IRQ_HANDLED; 12709 12710 } /* lpfc_sli_sp_intr_handler */ 12711 12712 /** 12713 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12714 * @irq: Interrupt number. 12715 * @dev_id: The device context pointer. 12716 * 12717 * This function is directly called from the PCI layer as an interrupt 12718 * service routine when device with SLI-3 interface spec is enabled with 12719 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12720 * ring event in the HBA. However, when the device is enabled with either 12721 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12722 * device-level interrupt handler. When the PCI slot is in error recovery 12723 * or the HBA is undergoing initialization, the interrupt handler will not 12724 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12725 * the intrrupt context. This function is called without any lock held. 12726 * It gets the hbalock to access and update SLI data structures. 12727 * 12728 * This function returns IRQ_HANDLED when interrupt is handled else it 12729 * returns IRQ_NONE. 12730 **/ 12731 irqreturn_t 12732 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12733 { 12734 struct lpfc_hba *phba; 12735 uint32_t ha_copy; 12736 unsigned long status; 12737 unsigned long iflag; 12738 struct lpfc_sli_ring *pring; 12739 12740 /* Get the driver's phba structure from the dev_id and 12741 * assume the HBA is not interrupting. 12742 */ 12743 phba = (struct lpfc_hba *) dev_id; 12744 12745 if (unlikely(!phba)) 12746 return IRQ_NONE; 12747 12748 /* 12749 * Stuff needs to be attented to when this function is invoked as an 12750 * individual interrupt handler in MSI-X multi-message interrupt mode 12751 */ 12752 if (phba->intr_type == MSIX) { 12753 /* Check device state for handling interrupt */ 12754 if (lpfc_intr_state_check(phba)) 12755 return IRQ_NONE; 12756 /* Need to read HA REG for FCP ring and other ring events */ 12757 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12758 return IRQ_HANDLED; 12759 /* Clear up only attention source related to fast-path */ 12760 spin_lock_irqsave(&phba->hbalock, iflag); 12761 /* 12762 * If there is deferred error attention, do not check for 12763 * any interrupt. 12764 */ 12765 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12766 spin_unlock_irqrestore(&phba->hbalock, iflag); 12767 return IRQ_NONE; 12768 } 12769 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12770 phba->HAregaddr); 12771 readl(phba->HAregaddr); /* flush */ 12772 spin_unlock_irqrestore(&phba->hbalock, iflag); 12773 } else 12774 ha_copy = phba->ha_copy; 12775 12776 /* 12777 * Process all events on FCP ring. Take the optimized path for FCP IO. 12778 */ 12779 ha_copy &= ~(phba->work_ha_mask); 12780 12781 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12782 status >>= (4*LPFC_FCP_RING); 12783 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12784 if (status & HA_RXMASK) 12785 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12786 12787 if (phba->cfg_multi_ring_support == 2) { 12788 /* 12789 * Process all events on extra ring. Take the optimized path 12790 * for extra ring IO. 12791 */ 12792 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12793 status >>= (4*LPFC_EXTRA_RING); 12794 if (status & HA_RXMASK) { 12795 lpfc_sli_handle_fast_ring_event(phba, 12796 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12797 status); 12798 } 12799 } 12800 return IRQ_HANDLED; 12801 } /* lpfc_sli_fp_intr_handler */ 12802 12803 /** 12804 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12805 * @irq: Interrupt number. 12806 * @dev_id: The device context pointer. 12807 * 12808 * This function is the HBA device-level interrupt handler to device with 12809 * SLI-3 interface spec, called from the PCI layer when either MSI or 12810 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12811 * requires driver attention. This function invokes the slow-path interrupt 12812 * attention handling function and fast-path interrupt attention handling 12813 * function in turn to process the relevant HBA attention events. This 12814 * function is called without any lock held. It gets the hbalock to access 12815 * and update SLI data structures. 12816 * 12817 * This function returns IRQ_HANDLED when interrupt is handled, else it 12818 * returns IRQ_NONE. 12819 **/ 12820 irqreturn_t 12821 lpfc_sli_intr_handler(int irq, void *dev_id) 12822 { 12823 struct lpfc_hba *phba; 12824 irqreturn_t sp_irq_rc, fp_irq_rc; 12825 unsigned long status1, status2; 12826 uint32_t hc_copy; 12827 12828 /* 12829 * Get the driver's phba structure from the dev_id and 12830 * assume the HBA is not interrupting. 12831 */ 12832 phba = (struct lpfc_hba *) dev_id; 12833 12834 if (unlikely(!phba)) 12835 return IRQ_NONE; 12836 12837 /* Check device state for handling interrupt */ 12838 if (lpfc_intr_state_check(phba)) 12839 return IRQ_NONE; 12840 12841 spin_lock(&phba->hbalock); 12842 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12843 spin_unlock(&phba->hbalock); 12844 return IRQ_HANDLED; 12845 } 12846 12847 if (unlikely(!phba->ha_copy)) { 12848 spin_unlock(&phba->hbalock); 12849 return IRQ_NONE; 12850 } else if (phba->ha_copy & HA_ERATT) { 12851 if (phba->hba_flag & HBA_ERATT_HANDLED) 12852 /* ERATT polling has handled ERATT */ 12853 phba->ha_copy &= ~HA_ERATT; 12854 else 12855 /* Indicate interrupt handler handles ERATT */ 12856 phba->hba_flag |= HBA_ERATT_HANDLED; 12857 } 12858 12859 /* 12860 * If there is deferred error attention, do not check for any interrupt. 12861 */ 12862 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12863 spin_unlock(&phba->hbalock); 12864 return IRQ_NONE; 12865 } 12866 12867 /* Clear attention sources except link and error attentions */ 12868 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12869 spin_unlock(&phba->hbalock); 12870 return IRQ_HANDLED; 12871 } 12872 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12873 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12874 phba->HCregaddr); 12875 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12876 writel(hc_copy, phba->HCregaddr); 12877 readl(phba->HAregaddr); /* flush */ 12878 spin_unlock(&phba->hbalock); 12879 12880 /* 12881 * Invokes slow-path host attention interrupt handling as appropriate. 12882 */ 12883 12884 /* status of events with mailbox and link attention */ 12885 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12886 12887 /* status of events with ELS ring */ 12888 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12889 status2 >>= (4*LPFC_ELS_RING); 12890 12891 if (status1 || (status2 & HA_RXMASK)) 12892 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12893 else 12894 sp_irq_rc = IRQ_NONE; 12895 12896 /* 12897 * Invoke fast-path host attention interrupt handling as appropriate. 12898 */ 12899 12900 /* status of events with FCP ring */ 12901 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12902 status1 >>= (4*LPFC_FCP_RING); 12903 12904 /* status of events with extra ring */ 12905 if (phba->cfg_multi_ring_support == 2) { 12906 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12907 status2 >>= (4*LPFC_EXTRA_RING); 12908 } else 12909 status2 = 0; 12910 12911 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12912 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12913 else 12914 fp_irq_rc = IRQ_NONE; 12915 12916 /* Return device-level interrupt handling status */ 12917 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12918 } /* lpfc_sli_intr_handler */ 12919 12920 /** 12921 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12922 * @phba: pointer to lpfc hba data structure. 12923 * 12924 * This routine is invoked by the worker thread to process all the pending 12925 * SLI4 FCP abort XRI events. 12926 **/ 12927 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12928 { 12929 struct lpfc_cq_event *cq_event; 12930 12931 /* First, declare the fcp xri abort event has been handled */ 12932 spin_lock_irq(&phba->hbalock); 12933 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12934 spin_unlock_irq(&phba->hbalock); 12935 /* Now, handle all the fcp xri abort events */ 12936 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12937 /* Get the first event from the head of the event queue */ 12938 spin_lock_irq(&phba->hbalock); 12939 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12940 cq_event, struct lpfc_cq_event, list); 12941 spin_unlock_irq(&phba->hbalock); 12942 /* Notify aborted XRI for FCP work queue */ 12943 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12944 /* Free the event processed back to the free pool */ 12945 lpfc_sli4_cq_event_release(phba, cq_event); 12946 } 12947 } 12948 12949 /** 12950 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12951 * @phba: pointer to lpfc hba data structure. 12952 * 12953 * This routine is invoked by the worker thread to process all the pending 12954 * SLI4 els abort xri events. 12955 **/ 12956 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12957 { 12958 struct lpfc_cq_event *cq_event; 12959 12960 /* First, declare the els xri abort event has been handled */ 12961 spin_lock_irq(&phba->hbalock); 12962 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12963 spin_unlock_irq(&phba->hbalock); 12964 /* Now, handle all the els xri abort events */ 12965 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12966 /* Get the first event from the head of the event queue */ 12967 spin_lock_irq(&phba->hbalock); 12968 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12969 cq_event, struct lpfc_cq_event, list); 12970 spin_unlock_irq(&phba->hbalock); 12971 /* Notify aborted XRI for ELS work queue */ 12972 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12973 /* Free the event processed back to the free pool */ 12974 lpfc_sli4_cq_event_release(phba, cq_event); 12975 } 12976 } 12977 12978 /** 12979 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12980 * @phba: pointer to lpfc hba data structure 12981 * @pIocbIn: pointer to the rspiocbq 12982 * @pIocbOut: pointer to the cmdiocbq 12983 * @wcqe: pointer to the complete wcqe 12984 * 12985 * This routine transfers the fields of a command iocbq to a response iocbq 12986 * by copying all the IOCB fields from command iocbq and transferring the 12987 * completion status information from the complete wcqe. 12988 **/ 12989 static void 12990 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12991 struct lpfc_iocbq *pIocbIn, 12992 struct lpfc_iocbq *pIocbOut, 12993 struct lpfc_wcqe_complete *wcqe) 12994 { 12995 int numBdes, i; 12996 unsigned long iflags; 12997 uint32_t status, max_response; 12998 struct lpfc_dmabuf *dmabuf; 12999 struct ulp_bde64 *bpl, bde; 13000 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13001 13002 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13003 sizeof(struct lpfc_iocbq) - offset); 13004 /* Map WCQE parameters into irspiocb parameters */ 13005 status = bf_get(lpfc_wcqe_c_status, wcqe); 13006 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13007 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13008 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13009 pIocbIn->iocb.un.fcpi.fcpi_parm = 13010 pIocbOut->iocb.un.fcpi.fcpi_parm - 13011 wcqe->total_data_placed; 13012 else 13013 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13014 else { 13015 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13016 switch (pIocbOut->iocb.ulpCommand) { 13017 case CMD_ELS_REQUEST64_CR: 13018 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13019 bpl = (struct ulp_bde64 *)dmabuf->virt; 13020 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13021 max_response = bde.tus.f.bdeSize; 13022 break; 13023 case CMD_GEN_REQUEST64_CR: 13024 max_response = 0; 13025 if (!pIocbOut->context3) 13026 break; 13027 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13028 sizeof(struct ulp_bde64); 13029 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13030 bpl = (struct ulp_bde64 *)dmabuf->virt; 13031 for (i = 0; i < numBdes; i++) { 13032 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13033 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13034 max_response += bde.tus.f.bdeSize; 13035 } 13036 break; 13037 default: 13038 max_response = wcqe->total_data_placed; 13039 break; 13040 } 13041 if (max_response < wcqe->total_data_placed) 13042 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13043 else 13044 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13045 wcqe->total_data_placed; 13046 } 13047 13048 /* Convert BG errors for completion status */ 13049 if (status == CQE_STATUS_DI_ERROR) { 13050 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13051 13052 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13053 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13054 else 13055 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13056 13057 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13058 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13059 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13060 BGS_GUARD_ERR_MASK; 13061 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13062 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13063 BGS_APPTAG_ERR_MASK; 13064 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13065 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13066 BGS_REFTAG_ERR_MASK; 13067 13068 /* Check to see if there was any good data before the error */ 13069 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13070 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13071 BGS_HI_WATER_MARK_PRESENT_MASK; 13072 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13073 wcqe->total_data_placed; 13074 } 13075 13076 /* 13077 * Set ALL the error bits to indicate we don't know what 13078 * type of error it is. 13079 */ 13080 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13081 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13082 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13083 BGS_GUARD_ERR_MASK); 13084 } 13085 13086 /* Pick up HBA exchange busy condition */ 13087 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13088 spin_lock_irqsave(&phba->hbalock, iflags); 13089 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13090 spin_unlock_irqrestore(&phba->hbalock, iflags); 13091 } 13092 } 13093 13094 /** 13095 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13096 * @phba: Pointer to HBA context object. 13097 * @wcqe: Pointer to work-queue completion queue entry. 13098 * 13099 * This routine handles an ELS work-queue completion event and construct 13100 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13101 * discovery engine to handle. 13102 * 13103 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13104 **/ 13105 static struct lpfc_iocbq * 13106 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13107 struct lpfc_iocbq *irspiocbq) 13108 { 13109 struct lpfc_sli_ring *pring; 13110 struct lpfc_iocbq *cmdiocbq; 13111 struct lpfc_wcqe_complete *wcqe; 13112 unsigned long iflags; 13113 13114 pring = lpfc_phba_elsring(phba); 13115 if (unlikely(!pring)) 13116 return NULL; 13117 13118 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13119 spin_lock_irqsave(&pring->ring_lock, iflags); 13120 pring->stats.iocb_event++; 13121 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13122 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13123 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13124 if (unlikely(!cmdiocbq)) { 13125 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13126 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13127 "0386 ELS complete with no corresponding " 13128 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13129 wcqe->word0, wcqe->total_data_placed, 13130 wcqe->parameter, wcqe->word3); 13131 lpfc_sli_release_iocbq(phba, irspiocbq); 13132 return NULL; 13133 } 13134 13135 /* Put the iocb back on the txcmplq */ 13136 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13137 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13138 13139 /* Fake the irspiocbq and copy necessary response information */ 13140 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13141 13142 return irspiocbq; 13143 } 13144 13145 inline struct lpfc_cq_event * 13146 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13147 { 13148 struct lpfc_cq_event *cq_event; 13149 13150 /* Allocate a new internal CQ_EVENT entry */ 13151 cq_event = lpfc_sli4_cq_event_alloc(phba); 13152 if (!cq_event) { 13153 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13154 "0602 Failed to alloc CQ_EVENT entry\n"); 13155 return NULL; 13156 } 13157 13158 /* Move the CQE into the event */ 13159 memcpy(&cq_event->cqe, entry, size); 13160 return cq_event; 13161 } 13162 13163 /** 13164 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 13165 * @phba: Pointer to HBA context object. 13166 * @cqe: Pointer to mailbox completion queue entry. 13167 * 13168 * This routine process a mailbox completion queue entry with asynchrous 13169 * event. 13170 * 13171 * Return: true if work posted to worker thread, otherwise false. 13172 **/ 13173 static bool 13174 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13175 { 13176 struct lpfc_cq_event *cq_event; 13177 unsigned long iflags; 13178 13179 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13180 "0392 Async Event: word0:x%x, word1:x%x, " 13181 "word2:x%x, word3:x%x\n", mcqe->word0, 13182 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13183 13184 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13185 if (!cq_event) 13186 return false; 13187 spin_lock_irqsave(&phba->hbalock, iflags); 13188 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13189 /* Set the async event flag */ 13190 phba->hba_flag |= ASYNC_EVENT; 13191 spin_unlock_irqrestore(&phba->hbalock, iflags); 13192 13193 return true; 13194 } 13195 13196 /** 13197 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13198 * @phba: Pointer to HBA context object. 13199 * @cqe: Pointer to mailbox completion queue entry. 13200 * 13201 * This routine process a mailbox completion queue entry with mailbox 13202 * completion event. 13203 * 13204 * Return: true if work posted to worker thread, otherwise false. 13205 **/ 13206 static bool 13207 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13208 { 13209 uint32_t mcqe_status; 13210 MAILBOX_t *mbox, *pmbox; 13211 struct lpfc_mqe *mqe; 13212 struct lpfc_vport *vport; 13213 struct lpfc_nodelist *ndlp; 13214 struct lpfc_dmabuf *mp; 13215 unsigned long iflags; 13216 LPFC_MBOXQ_t *pmb; 13217 bool workposted = false; 13218 int rc; 13219 13220 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13221 if (!bf_get(lpfc_trailer_completed, mcqe)) 13222 goto out_no_mqe_complete; 13223 13224 /* Get the reference to the active mbox command */ 13225 spin_lock_irqsave(&phba->hbalock, iflags); 13226 pmb = phba->sli.mbox_active; 13227 if (unlikely(!pmb)) { 13228 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13229 "1832 No pending MBOX command to handle\n"); 13230 spin_unlock_irqrestore(&phba->hbalock, iflags); 13231 goto out_no_mqe_complete; 13232 } 13233 spin_unlock_irqrestore(&phba->hbalock, iflags); 13234 mqe = &pmb->u.mqe; 13235 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13236 mbox = phba->mbox; 13237 vport = pmb->vport; 13238 13239 /* Reset heartbeat timer */ 13240 phba->last_completion_time = jiffies; 13241 del_timer(&phba->sli.mbox_tmo); 13242 13243 /* Move mbox data to caller's mailbox region, do endian swapping */ 13244 if (pmb->mbox_cmpl && mbox) 13245 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13246 13247 /* 13248 * For mcqe errors, conditionally move a modified error code to 13249 * the mbox so that the error will not be missed. 13250 */ 13251 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13252 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13253 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13254 bf_set(lpfc_mqe_status, mqe, 13255 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13256 } 13257 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13258 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13259 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13260 "MBOX dflt rpi: status:x%x rpi:x%x", 13261 mcqe_status, 13262 pmbox->un.varWords[0], 0); 13263 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13264 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13265 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13266 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13267 * RID of the PPI using the same mbox buffer. 13268 */ 13269 lpfc_unreg_login(phba, vport->vpi, 13270 pmbox->un.varWords[0], pmb); 13271 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13272 pmb->ctx_buf = mp; 13273 pmb->ctx_ndlp = ndlp; 13274 pmb->vport = vport; 13275 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13276 if (rc != MBX_BUSY) 13277 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13278 LOG_SLI, "0385 rc should " 13279 "have been MBX_BUSY\n"); 13280 if (rc != MBX_NOT_FINISHED) 13281 goto send_current_mbox; 13282 } 13283 } 13284 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13285 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13286 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13287 13288 /* There is mailbox completion work to do */ 13289 spin_lock_irqsave(&phba->hbalock, iflags); 13290 __lpfc_mbox_cmpl_put(phba, pmb); 13291 phba->work_ha |= HA_MBATT; 13292 spin_unlock_irqrestore(&phba->hbalock, iflags); 13293 workposted = true; 13294 13295 send_current_mbox: 13296 spin_lock_irqsave(&phba->hbalock, iflags); 13297 /* Release the mailbox command posting token */ 13298 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13299 /* Setting active mailbox pointer need to be in sync to flag clear */ 13300 phba->sli.mbox_active = NULL; 13301 spin_unlock_irqrestore(&phba->hbalock, iflags); 13302 /* Wake up worker thread to post the next pending mailbox command */ 13303 lpfc_worker_wake_up(phba); 13304 out_no_mqe_complete: 13305 if (bf_get(lpfc_trailer_consumed, mcqe)) 13306 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13307 return workposted; 13308 } 13309 13310 /** 13311 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13312 * @phba: Pointer to HBA context object. 13313 * @cqe: Pointer to mailbox completion queue entry. 13314 * 13315 * This routine process a mailbox completion queue entry, it invokes the 13316 * proper mailbox complete handling or asynchrous event handling routine 13317 * according to the MCQE's async bit. 13318 * 13319 * Return: true if work posted to worker thread, otherwise false. 13320 **/ 13321 static bool 13322 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 13323 { 13324 struct lpfc_mcqe mcqe; 13325 bool workposted; 13326 13327 /* Copy the mailbox MCQE and convert endian order as needed */ 13328 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13329 13330 /* Invoke the proper event handling routine */ 13331 if (!bf_get(lpfc_trailer_async, &mcqe)) 13332 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13333 else 13334 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13335 return workposted; 13336 } 13337 13338 /** 13339 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13340 * @phba: Pointer to HBA context object. 13341 * @cq: Pointer to associated CQ 13342 * @wcqe: Pointer to work-queue completion queue entry. 13343 * 13344 * This routine handles an ELS work-queue completion event. 13345 * 13346 * Return: true if work posted to worker thread, otherwise false. 13347 **/ 13348 static bool 13349 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13350 struct lpfc_wcqe_complete *wcqe) 13351 { 13352 struct lpfc_iocbq *irspiocbq; 13353 unsigned long iflags; 13354 struct lpfc_sli_ring *pring = cq->pring; 13355 int txq_cnt = 0; 13356 int txcmplq_cnt = 0; 13357 int fcp_txcmplq_cnt = 0; 13358 13359 /* Check for response status */ 13360 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13361 /* Log the error status */ 13362 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13363 "0357 ELS CQE error: status=x%x: " 13364 "CQE: %08x %08x %08x %08x\n", 13365 bf_get(lpfc_wcqe_c_status, wcqe), 13366 wcqe->word0, wcqe->total_data_placed, 13367 wcqe->parameter, wcqe->word3); 13368 } 13369 13370 /* Get an irspiocbq for later ELS response processing use */ 13371 irspiocbq = lpfc_sli_get_iocbq(phba); 13372 if (!irspiocbq) { 13373 if (!list_empty(&pring->txq)) 13374 txq_cnt++; 13375 if (!list_empty(&pring->txcmplq)) 13376 txcmplq_cnt++; 13377 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13378 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13379 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 13380 txq_cnt, phba->iocb_cnt, 13381 fcp_txcmplq_cnt, 13382 txcmplq_cnt); 13383 return false; 13384 } 13385 13386 /* Save off the slow-path queue event for work thread to process */ 13387 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13388 spin_lock_irqsave(&phba->hbalock, iflags); 13389 list_add_tail(&irspiocbq->cq_event.list, 13390 &phba->sli4_hba.sp_queue_event); 13391 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13392 spin_unlock_irqrestore(&phba->hbalock, iflags); 13393 13394 return true; 13395 } 13396 13397 /** 13398 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13399 * @phba: Pointer to HBA context object. 13400 * @wcqe: Pointer to work-queue completion queue entry. 13401 * 13402 * This routine handles slow-path WQ entry consumed event by invoking the 13403 * proper WQ release routine to the slow-path WQ. 13404 **/ 13405 static void 13406 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13407 struct lpfc_wcqe_release *wcqe) 13408 { 13409 /* sanity check on queue memory */ 13410 if (unlikely(!phba->sli4_hba.els_wq)) 13411 return; 13412 /* Check for the slow-path ELS work queue */ 13413 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13414 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13415 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13416 else 13417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13418 "2579 Slow-path wqe consume event carries " 13419 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13420 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13421 phba->sli4_hba.els_wq->queue_id); 13422 } 13423 13424 /** 13425 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13426 * @phba: Pointer to HBA context object. 13427 * @cq: Pointer to a WQ completion queue. 13428 * @wcqe: Pointer to work-queue completion queue entry. 13429 * 13430 * This routine handles an XRI abort event. 13431 * 13432 * Return: true if work posted to worker thread, otherwise false. 13433 **/ 13434 static bool 13435 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13436 struct lpfc_queue *cq, 13437 struct sli4_wcqe_xri_aborted *wcqe) 13438 { 13439 bool workposted = false; 13440 struct lpfc_cq_event *cq_event; 13441 unsigned long iflags; 13442 13443 switch (cq->subtype) { 13444 case LPFC_FCP: 13445 cq_event = lpfc_cq_event_setup( 13446 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13447 if (!cq_event) 13448 return false; 13449 spin_lock_irqsave(&phba->hbalock, iflags); 13450 list_add_tail(&cq_event->list, 13451 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 13452 /* Set the fcp xri abort event flag */ 13453 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 13454 spin_unlock_irqrestore(&phba->hbalock, iflags); 13455 workposted = true; 13456 break; 13457 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13458 case LPFC_ELS: 13459 cq_event = lpfc_cq_event_setup( 13460 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13461 if (!cq_event) 13462 return false; 13463 spin_lock_irqsave(&phba->hbalock, iflags); 13464 list_add_tail(&cq_event->list, 13465 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13466 /* Set the els xri abort event flag */ 13467 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13468 spin_unlock_irqrestore(&phba->hbalock, iflags); 13469 workposted = true; 13470 break; 13471 case LPFC_NVME: 13472 /* Notify aborted XRI for NVME work queue */ 13473 if (phba->nvmet_support) 13474 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13475 else 13476 lpfc_sli4_nvme_xri_aborted(phba, wcqe); 13477 13478 workposted = false; 13479 break; 13480 default: 13481 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13482 "0603 Invalid CQ subtype %d: " 13483 "%08x %08x %08x %08x\n", 13484 cq->subtype, wcqe->word0, wcqe->parameter, 13485 wcqe->word2, wcqe->word3); 13486 workposted = false; 13487 break; 13488 } 13489 return workposted; 13490 } 13491 13492 #define FC_RCTL_MDS_DIAGS 0xF4 13493 13494 /** 13495 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13496 * @phba: Pointer to HBA context object. 13497 * @rcqe: Pointer to receive-queue completion queue entry. 13498 * 13499 * This routine process a receive-queue completion queue entry. 13500 * 13501 * Return: true if work posted to worker thread, otherwise false. 13502 **/ 13503 static bool 13504 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13505 { 13506 bool workposted = false; 13507 struct fc_frame_header *fc_hdr; 13508 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13509 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13510 struct lpfc_nvmet_tgtport *tgtp; 13511 struct hbq_dmabuf *dma_buf; 13512 uint32_t status, rq_id; 13513 unsigned long iflags; 13514 13515 /* sanity check on queue memory */ 13516 if (unlikely(!hrq) || unlikely(!drq)) 13517 return workposted; 13518 13519 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13520 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13521 else 13522 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13523 if (rq_id != hrq->queue_id) 13524 goto out; 13525 13526 status = bf_get(lpfc_rcqe_status, rcqe); 13527 switch (status) { 13528 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13529 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13530 "2537 Receive Frame Truncated!!\n"); 13531 case FC_STATUS_RQ_SUCCESS: 13532 spin_lock_irqsave(&phba->hbalock, iflags); 13533 lpfc_sli4_rq_release(hrq, drq); 13534 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13535 if (!dma_buf) { 13536 hrq->RQ_no_buf_found++; 13537 spin_unlock_irqrestore(&phba->hbalock, iflags); 13538 goto out; 13539 } 13540 hrq->RQ_rcv_buf++; 13541 hrq->RQ_buf_posted--; 13542 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13543 13544 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13545 13546 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13547 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13548 spin_unlock_irqrestore(&phba->hbalock, iflags); 13549 /* Handle MDS Loopback frames */ 13550 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13551 break; 13552 } 13553 13554 /* save off the frame for the work thread to process */ 13555 list_add_tail(&dma_buf->cq_event.list, 13556 &phba->sli4_hba.sp_queue_event); 13557 /* Frame received */ 13558 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13559 spin_unlock_irqrestore(&phba->hbalock, iflags); 13560 workposted = true; 13561 break; 13562 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13563 if (phba->nvmet_support) { 13564 tgtp = phba->targetport->private; 13565 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13566 "6402 RQE Error x%x, posted %d err_cnt " 13567 "%d: %x %x %x\n", 13568 status, hrq->RQ_buf_posted, 13569 hrq->RQ_no_posted_buf, 13570 atomic_read(&tgtp->rcv_fcp_cmd_in), 13571 atomic_read(&tgtp->rcv_fcp_cmd_out), 13572 atomic_read(&tgtp->xmt_fcp_release)); 13573 } 13574 /* fallthrough */ 13575 13576 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13577 hrq->RQ_no_posted_buf++; 13578 /* Post more buffers if possible */ 13579 spin_lock_irqsave(&phba->hbalock, iflags); 13580 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13581 spin_unlock_irqrestore(&phba->hbalock, iflags); 13582 workposted = true; 13583 break; 13584 } 13585 out: 13586 return workposted; 13587 } 13588 13589 /** 13590 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13591 * @phba: Pointer to HBA context object. 13592 * @cq: Pointer to the completion queue. 13593 * @wcqe: Pointer to a completion queue entry. 13594 * 13595 * This routine process a slow-path work-queue or receive queue completion queue 13596 * entry. 13597 * 13598 * Return: true if work posted to worker thread, otherwise false. 13599 **/ 13600 static bool 13601 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13602 struct lpfc_cqe *cqe) 13603 { 13604 struct lpfc_cqe cqevt; 13605 bool workposted = false; 13606 13607 /* Copy the work queue CQE and convert endian order if needed */ 13608 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13609 13610 /* Check and process for different type of WCQE and dispatch */ 13611 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13612 case CQE_CODE_COMPL_WQE: 13613 /* Process the WQ/RQ complete event */ 13614 phba->last_completion_time = jiffies; 13615 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13616 (struct lpfc_wcqe_complete *)&cqevt); 13617 break; 13618 case CQE_CODE_RELEASE_WQE: 13619 /* Process the WQ release event */ 13620 lpfc_sli4_sp_handle_rel_wcqe(phba, 13621 (struct lpfc_wcqe_release *)&cqevt); 13622 break; 13623 case CQE_CODE_XRI_ABORTED: 13624 /* Process the WQ XRI abort event */ 13625 phba->last_completion_time = jiffies; 13626 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13627 (struct sli4_wcqe_xri_aborted *)&cqevt); 13628 break; 13629 case CQE_CODE_RECEIVE: 13630 case CQE_CODE_RECEIVE_V1: 13631 /* Process the RQ event */ 13632 phba->last_completion_time = jiffies; 13633 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13634 (struct lpfc_rcqe *)&cqevt); 13635 break; 13636 default: 13637 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13638 "0388 Not a valid WCQE code: x%x\n", 13639 bf_get(lpfc_cqe_code, &cqevt)); 13640 break; 13641 } 13642 return workposted; 13643 } 13644 13645 /** 13646 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13647 * @phba: Pointer to HBA context object. 13648 * @eqe: Pointer to fast-path event queue entry. 13649 * 13650 * This routine process a event queue entry from the slow-path event queue. 13651 * It will check the MajorCode and MinorCode to determine this is for a 13652 * completion event on a completion queue, if not, an error shall be logged 13653 * and just return. Otherwise, it will get to the corresponding completion 13654 * queue and process all the entries on that completion queue, rearm the 13655 * completion queue, and then return. 13656 * 13657 **/ 13658 static void 13659 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13660 struct lpfc_queue *speq) 13661 { 13662 struct lpfc_queue *cq = NULL, *childq; 13663 uint16_t cqid; 13664 13665 /* Get the reference to the corresponding CQ */ 13666 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13667 13668 list_for_each_entry(childq, &speq->child_list, list) { 13669 if (childq->queue_id == cqid) { 13670 cq = childq; 13671 break; 13672 } 13673 } 13674 if (unlikely(!cq)) { 13675 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13676 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13677 "0365 Slow-path CQ identifier " 13678 "(%d) does not exist\n", cqid); 13679 return; 13680 } 13681 13682 /* Save EQ associated with this CQ */ 13683 cq->assoc_qp = speq; 13684 13685 if (!queue_work(phba->wq, &cq->spwork)) 13686 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13687 "0390 Cannot schedule soft IRQ " 13688 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13689 cqid, cq->queue_id, smp_processor_id()); 13690 } 13691 13692 /** 13693 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13694 * @phba: Pointer to HBA context object. 13695 * 13696 * This routine process a event queue entry from the slow-path event queue. 13697 * It will check the MajorCode and MinorCode to determine this is for a 13698 * completion event on a completion queue, if not, an error shall be logged 13699 * and just return. Otherwise, it will get to the corresponding completion 13700 * queue and process all the entries on that completion queue, rearm the 13701 * completion queue, and then return. 13702 * 13703 **/ 13704 static void 13705 lpfc_sli4_sp_process_cq(struct work_struct *work) 13706 { 13707 struct lpfc_queue *cq = 13708 container_of(work, struct lpfc_queue, spwork); 13709 struct lpfc_hba *phba = cq->phba; 13710 struct lpfc_cqe *cqe; 13711 bool workposted = false; 13712 int ccount = 0; 13713 13714 /* Process all the entries to the CQ */ 13715 switch (cq->type) { 13716 case LPFC_MCQ: 13717 while ((cqe = lpfc_sli4_cq_get(cq))) { 13718 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13719 if (!(++ccount % cq->entry_repost)) 13720 break; 13721 cq->CQ_mbox++; 13722 } 13723 break; 13724 case LPFC_WCQ: 13725 while ((cqe = lpfc_sli4_cq_get(cq))) { 13726 if (cq->subtype == LPFC_FCP || 13727 cq->subtype == LPFC_NVME) { 13728 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13729 if (phba->ktime_on) 13730 cq->isr_timestamp = ktime_get_ns(); 13731 else 13732 cq->isr_timestamp = 0; 13733 #endif 13734 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13735 cqe); 13736 } else { 13737 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13738 cqe); 13739 } 13740 if (!(++ccount % cq->entry_repost)) 13741 break; 13742 } 13743 13744 /* Track the max number of CQEs processed in 1 EQ */ 13745 if (ccount > cq->CQ_max_cqe) 13746 cq->CQ_max_cqe = ccount; 13747 break; 13748 default: 13749 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13750 "0370 Invalid completion queue type (%d)\n", 13751 cq->type); 13752 return; 13753 } 13754 13755 /* Catch the no cq entry condition, log an error */ 13756 if (unlikely(ccount == 0)) 13757 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13758 "0371 No entry from the CQ: identifier " 13759 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13760 13761 /* In any case, flash and re-arm the RCQ */ 13762 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13763 13764 /* wake up worker thread if there are works to be done */ 13765 if (workposted) 13766 lpfc_worker_wake_up(phba); 13767 } 13768 13769 /** 13770 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13771 * @phba: Pointer to HBA context object. 13772 * @cq: Pointer to associated CQ 13773 * @wcqe: Pointer to work-queue completion queue entry. 13774 * 13775 * This routine process a fast-path work queue completion entry from fast-path 13776 * event queue for FCP command response completion. 13777 **/ 13778 static void 13779 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13780 struct lpfc_wcqe_complete *wcqe) 13781 { 13782 struct lpfc_sli_ring *pring = cq->pring; 13783 struct lpfc_iocbq *cmdiocbq; 13784 struct lpfc_iocbq irspiocbq; 13785 unsigned long iflags; 13786 13787 /* Check for response status */ 13788 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13789 /* If resource errors reported from HBA, reduce queue 13790 * depth of the SCSI device. 13791 */ 13792 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13793 IOSTAT_LOCAL_REJECT)) && 13794 ((wcqe->parameter & IOERR_PARAM_MASK) == 13795 IOERR_NO_RESOURCES)) 13796 phba->lpfc_rampdown_queue_depth(phba); 13797 13798 /* Log the error status */ 13799 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13800 "0373 FCP CQE error: status=x%x: " 13801 "CQE: %08x %08x %08x %08x\n", 13802 bf_get(lpfc_wcqe_c_status, wcqe), 13803 wcqe->word0, wcqe->total_data_placed, 13804 wcqe->parameter, wcqe->word3); 13805 } 13806 13807 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13808 spin_lock_irqsave(&pring->ring_lock, iflags); 13809 pring->stats.iocb_event++; 13810 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13811 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13812 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13813 if (unlikely(!cmdiocbq)) { 13814 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13815 "0374 FCP complete with no corresponding " 13816 "cmdiocb: iotag (%d)\n", 13817 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13818 return; 13819 } 13820 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13821 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13822 #endif 13823 if (cmdiocbq->iocb_cmpl == NULL) { 13824 if (cmdiocbq->wqe_cmpl) { 13825 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13826 spin_lock_irqsave(&phba->hbalock, iflags); 13827 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13828 spin_unlock_irqrestore(&phba->hbalock, iflags); 13829 } 13830 13831 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13832 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13833 return; 13834 } 13835 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13836 "0375 FCP cmdiocb not callback function " 13837 "iotag: (%d)\n", 13838 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13839 return; 13840 } 13841 13842 /* Fake the irspiocb and copy necessary response information */ 13843 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13844 13845 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13846 spin_lock_irqsave(&phba->hbalock, iflags); 13847 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13848 spin_unlock_irqrestore(&phba->hbalock, iflags); 13849 } 13850 13851 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13852 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13853 } 13854 13855 /** 13856 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13857 * @phba: Pointer to HBA context object. 13858 * @cq: Pointer to completion queue. 13859 * @wcqe: Pointer to work-queue completion queue entry. 13860 * 13861 * This routine handles an fast-path WQ entry consumed event by invoking the 13862 * proper WQ release routine to the slow-path WQ. 13863 **/ 13864 static void 13865 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13866 struct lpfc_wcqe_release *wcqe) 13867 { 13868 struct lpfc_queue *childwq; 13869 bool wqid_matched = false; 13870 uint16_t hba_wqid; 13871 13872 /* Check for fast-path FCP work queue release */ 13873 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13874 list_for_each_entry(childwq, &cq->child_list, list) { 13875 if (childwq->queue_id == hba_wqid) { 13876 lpfc_sli4_wq_release(childwq, 13877 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13878 if (childwq->q_flag & HBA_NVMET_WQFULL) 13879 lpfc_nvmet_wqfull_process(phba, childwq); 13880 wqid_matched = true; 13881 break; 13882 } 13883 } 13884 /* Report warning log message if no match found */ 13885 if (wqid_matched != true) 13886 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13887 "2580 Fast-path wqe consume event carries " 13888 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13889 } 13890 13891 /** 13892 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13893 * @phba: Pointer to HBA context object. 13894 * @rcqe: Pointer to receive-queue completion queue entry. 13895 * 13896 * This routine process a receive-queue completion queue entry. 13897 * 13898 * Return: true if work posted to worker thread, otherwise false. 13899 **/ 13900 static bool 13901 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13902 struct lpfc_rcqe *rcqe) 13903 { 13904 bool workposted = false; 13905 struct lpfc_queue *hrq; 13906 struct lpfc_queue *drq; 13907 struct rqb_dmabuf *dma_buf; 13908 struct fc_frame_header *fc_hdr; 13909 struct lpfc_nvmet_tgtport *tgtp; 13910 uint32_t status, rq_id; 13911 unsigned long iflags; 13912 uint32_t fctl, idx; 13913 13914 if ((phba->nvmet_support == 0) || 13915 (phba->sli4_hba.nvmet_cqset == NULL)) 13916 return workposted; 13917 13918 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13919 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13920 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13921 13922 /* sanity check on queue memory */ 13923 if (unlikely(!hrq) || unlikely(!drq)) 13924 return workposted; 13925 13926 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13927 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13928 else 13929 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13930 13931 if ((phba->nvmet_support == 0) || 13932 (rq_id != hrq->queue_id)) 13933 return workposted; 13934 13935 status = bf_get(lpfc_rcqe_status, rcqe); 13936 switch (status) { 13937 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13938 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13939 "6126 Receive Frame Truncated!!\n"); 13940 /* Drop thru */ 13941 case FC_STATUS_RQ_SUCCESS: 13942 spin_lock_irqsave(&phba->hbalock, iflags); 13943 lpfc_sli4_rq_release(hrq, drq); 13944 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13945 if (!dma_buf) { 13946 hrq->RQ_no_buf_found++; 13947 spin_unlock_irqrestore(&phba->hbalock, iflags); 13948 goto out; 13949 } 13950 spin_unlock_irqrestore(&phba->hbalock, iflags); 13951 hrq->RQ_rcv_buf++; 13952 hrq->RQ_buf_posted--; 13953 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13954 13955 /* Just some basic sanity checks on FCP Command frame */ 13956 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13957 fc_hdr->fh_f_ctl[1] << 8 | 13958 fc_hdr->fh_f_ctl[2]); 13959 if (((fctl & 13960 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13961 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13962 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13963 goto drop; 13964 13965 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13966 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13967 lpfc_nvmet_unsol_fcp_event( 13968 phba, idx, dma_buf, 13969 cq->isr_timestamp); 13970 return false; 13971 } 13972 drop: 13973 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13974 break; 13975 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13976 if (phba->nvmet_support) { 13977 tgtp = phba->targetport->private; 13978 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13979 "6401 RQE Error x%x, posted %d err_cnt " 13980 "%d: %x %x %x\n", 13981 status, hrq->RQ_buf_posted, 13982 hrq->RQ_no_posted_buf, 13983 atomic_read(&tgtp->rcv_fcp_cmd_in), 13984 atomic_read(&tgtp->rcv_fcp_cmd_out), 13985 atomic_read(&tgtp->xmt_fcp_release)); 13986 } 13987 /* fallthrough */ 13988 13989 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13990 hrq->RQ_no_posted_buf++; 13991 /* Post more buffers if possible */ 13992 break; 13993 } 13994 out: 13995 return workposted; 13996 } 13997 13998 /** 13999 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14000 * @cq: Pointer to the completion queue. 14001 * @eqe: Pointer to fast-path completion queue entry. 14002 * 14003 * This routine process a fast-path work queue completion entry from fast-path 14004 * event queue for FCP command response completion. 14005 **/ 14006 static int 14007 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14008 struct lpfc_cqe *cqe) 14009 { 14010 struct lpfc_wcqe_release wcqe; 14011 bool workposted = false; 14012 14013 /* Copy the work queue CQE and convert endian order if needed */ 14014 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14015 14016 /* Check and process for different type of WCQE and dispatch */ 14017 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14018 case CQE_CODE_COMPL_WQE: 14019 case CQE_CODE_NVME_ERSP: 14020 cq->CQ_wq++; 14021 /* Process the WQ complete event */ 14022 phba->last_completion_time = jiffies; 14023 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 14024 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14025 (struct lpfc_wcqe_complete *)&wcqe); 14026 if (cq->subtype == LPFC_NVME_LS) 14027 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14028 (struct lpfc_wcqe_complete *)&wcqe); 14029 break; 14030 case CQE_CODE_RELEASE_WQE: 14031 cq->CQ_release_wqe++; 14032 /* Process the WQ release event */ 14033 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14034 (struct lpfc_wcqe_release *)&wcqe); 14035 break; 14036 case CQE_CODE_XRI_ABORTED: 14037 cq->CQ_xri_aborted++; 14038 /* Process the WQ XRI abort event */ 14039 phba->last_completion_time = jiffies; 14040 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14041 (struct sli4_wcqe_xri_aborted *)&wcqe); 14042 break; 14043 case CQE_CODE_RECEIVE_V1: 14044 case CQE_CODE_RECEIVE: 14045 phba->last_completion_time = jiffies; 14046 if (cq->subtype == LPFC_NVMET) { 14047 workposted = lpfc_sli4_nvmet_handle_rcqe( 14048 phba, cq, (struct lpfc_rcqe *)&wcqe); 14049 } 14050 break; 14051 default: 14052 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14053 "0144 Not a valid CQE code: x%x\n", 14054 bf_get(lpfc_wcqe_c_code, &wcqe)); 14055 break; 14056 } 14057 return workposted; 14058 } 14059 14060 /** 14061 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14062 * @phba: Pointer to HBA context object. 14063 * @eqe: Pointer to fast-path event queue entry. 14064 * 14065 * This routine process a event queue entry from the fast-path event queue. 14066 * It will check the MajorCode and MinorCode to determine this is for a 14067 * completion event on a completion queue, if not, an error shall be logged 14068 * and just return. Otherwise, it will get to the corresponding completion 14069 * queue and process all the entries on the completion queue, rearm the 14070 * completion queue, and then return. 14071 **/ 14072 static void 14073 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14074 uint32_t qidx) 14075 { 14076 struct lpfc_queue *cq = NULL; 14077 uint16_t cqid, id; 14078 14079 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14080 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14081 "0366 Not a valid completion " 14082 "event: majorcode=x%x, minorcode=x%x\n", 14083 bf_get_le32(lpfc_eqe_major_code, eqe), 14084 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14085 return; 14086 } 14087 14088 /* Get the reference to the corresponding CQ */ 14089 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14090 14091 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14092 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14093 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14094 /* Process NVMET unsol rcv */ 14095 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14096 goto process_cq; 14097 } 14098 } 14099 14100 if (phba->sli4_hba.nvme_cq_map && 14101 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 14102 /* Process NVME / NVMET command completion */ 14103 cq = phba->sli4_hba.nvme_cq[qidx]; 14104 goto process_cq; 14105 } 14106 14107 if (phba->sli4_hba.fcp_cq_map && 14108 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 14109 /* Process FCP command completion */ 14110 cq = phba->sli4_hba.fcp_cq[qidx]; 14111 goto process_cq; 14112 } 14113 14114 if (phba->sli4_hba.nvmels_cq && 14115 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14116 /* Process NVME unsol rcv */ 14117 cq = phba->sli4_hba.nvmels_cq; 14118 } 14119 14120 /* Otherwise this is a Slow path event */ 14121 if (cq == NULL) { 14122 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 14123 return; 14124 } 14125 14126 process_cq: 14127 if (unlikely(cqid != cq->queue_id)) { 14128 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14129 "0368 Miss-matched fast-path completion " 14130 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14131 cqid, cq->queue_id); 14132 return; 14133 } 14134 14135 /* Save EQ associated with this CQ */ 14136 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 14137 14138 if (!queue_work(phba->wq, &cq->irqwork)) 14139 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14140 "0363 Cannot schedule soft IRQ " 14141 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14142 cqid, cq->queue_id, smp_processor_id()); 14143 } 14144 14145 /** 14146 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14147 * @phba: Pointer to HBA context object. 14148 * @eqe: Pointer to fast-path event queue entry. 14149 * 14150 * This routine process a event queue entry from the fast-path event queue. 14151 * It will check the MajorCode and MinorCode to determine this is for a 14152 * completion event on a completion queue, if not, an error shall be logged 14153 * and just return. Otherwise, it will get to the corresponding completion 14154 * queue and process all the entries on the completion queue, rearm the 14155 * completion queue, and then return. 14156 **/ 14157 static void 14158 lpfc_sli4_hba_process_cq(struct work_struct *work) 14159 { 14160 struct lpfc_queue *cq = 14161 container_of(work, struct lpfc_queue, irqwork); 14162 struct lpfc_hba *phba = cq->phba; 14163 struct lpfc_cqe *cqe; 14164 bool workposted = false; 14165 int ccount = 0; 14166 14167 /* Process all the entries to the CQ */ 14168 while ((cqe = lpfc_sli4_cq_get(cq))) { 14169 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14170 if (phba->ktime_on) 14171 cq->isr_timestamp = ktime_get_ns(); 14172 else 14173 cq->isr_timestamp = 0; 14174 #endif 14175 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 14176 if (!(++ccount % cq->entry_repost)) 14177 break; 14178 } 14179 14180 /* Track the max number of CQEs processed in 1 EQ */ 14181 if (ccount > cq->CQ_max_cqe) 14182 cq->CQ_max_cqe = ccount; 14183 cq->assoc_qp->EQ_cqe_cnt += ccount; 14184 14185 /* Catch the no cq entry condition */ 14186 if (unlikely(ccount == 0)) 14187 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14188 "0369 No entry from fast-path completion " 14189 "queue fcpcqid=%d\n", cq->queue_id); 14190 14191 /* In any case, flash and re-arm the CQ */ 14192 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 14193 14194 /* wake up worker thread if there are works to be done */ 14195 if (workposted) 14196 lpfc_worker_wake_up(phba); 14197 } 14198 14199 static void 14200 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 14201 { 14202 struct lpfc_eqe *eqe; 14203 14204 /* walk all the EQ entries and drop on the floor */ 14205 while ((eqe = lpfc_sli4_eq_get(eq))) 14206 ; 14207 14208 /* Clear and re-arm the EQ */ 14209 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14210 } 14211 14212 14213 /** 14214 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 14215 * entry 14216 * @phba: Pointer to HBA context object. 14217 * @eqe: Pointer to fast-path event queue entry. 14218 * 14219 * This routine process a event queue entry from the Flash Optimized Fabric 14220 * event queue. It will check the MajorCode and MinorCode to determine this 14221 * is for a completion event on a completion queue, if not, an error shall be 14222 * logged and just return. Otherwise, it will get to the corresponding 14223 * completion queue and process all the entries on the completion queue, rearm 14224 * the completion queue, and then return. 14225 **/ 14226 static void 14227 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 14228 { 14229 struct lpfc_queue *cq; 14230 uint16_t cqid; 14231 14232 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14233 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14234 "9147 Not a valid completion " 14235 "event: majorcode=x%x, minorcode=x%x\n", 14236 bf_get_le32(lpfc_eqe_major_code, eqe), 14237 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14238 return; 14239 } 14240 14241 /* Get the reference to the corresponding CQ */ 14242 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14243 14244 /* Next check for OAS */ 14245 cq = phba->sli4_hba.oas_cq; 14246 if (unlikely(!cq)) { 14247 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14248 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14249 "9148 OAS completion queue " 14250 "does not exist\n"); 14251 return; 14252 } 14253 14254 if (unlikely(cqid != cq->queue_id)) { 14255 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14256 "9149 Miss-matched fast-path compl " 14257 "queue id: eqcqid=%d, fcpcqid=%d\n", 14258 cqid, cq->queue_id); 14259 return; 14260 } 14261 14262 /* Save EQ associated with this CQ */ 14263 cq->assoc_qp = phba->sli4_hba.fof_eq; 14264 14265 /* CQ work will be processed on CPU affinitized to this IRQ */ 14266 if (!queue_work(phba->wq, &cq->irqwork)) 14267 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14268 "0367 Cannot schedule soft IRQ " 14269 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14270 cqid, cq->queue_id, smp_processor_id()); 14271 } 14272 14273 /** 14274 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 14275 * @irq: Interrupt number. 14276 * @dev_id: The device context pointer. 14277 * 14278 * This function is directly called from the PCI layer as an interrupt 14279 * service routine when device with SLI-4 interface spec is enabled with 14280 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 14281 * IOCB ring event in the HBA. However, when the device is enabled with either 14282 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14283 * device-level interrupt handler. When the PCI slot is in error recovery 14284 * or the HBA is undergoing initialization, the interrupt handler will not 14285 * process the interrupt. The Flash Optimized Fabric ring event are handled in 14286 * the intrrupt context. This function is called without any lock held. 14287 * It gets the hbalock to access and update SLI data structures. Note that, 14288 * the EQ to CQ are one-to-one map such that the EQ index is 14289 * equal to that of CQ index. 14290 * 14291 * This function returns IRQ_HANDLED when interrupt is handled else it 14292 * returns IRQ_NONE. 14293 **/ 14294 irqreturn_t 14295 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 14296 { 14297 struct lpfc_hba *phba; 14298 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14299 struct lpfc_queue *eq; 14300 struct lpfc_eqe *eqe; 14301 unsigned long iflag; 14302 int ecount = 0; 14303 14304 /* Get the driver's phba structure from the dev_id */ 14305 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14306 phba = hba_eq_hdl->phba; 14307 14308 if (unlikely(!phba)) 14309 return IRQ_NONE; 14310 14311 /* Get to the EQ struct associated with this vector */ 14312 eq = phba->sli4_hba.fof_eq; 14313 if (unlikely(!eq)) 14314 return IRQ_NONE; 14315 14316 /* Check device state for handling interrupt */ 14317 if (unlikely(lpfc_intr_state_check(phba))) { 14318 /* Check again for link_state with lock held */ 14319 spin_lock_irqsave(&phba->hbalock, iflag); 14320 if (phba->link_state < LPFC_LINK_DOWN) 14321 /* Flush, clear interrupt, and rearm the EQ */ 14322 lpfc_sli4_eq_flush(phba, eq); 14323 spin_unlock_irqrestore(&phba->hbalock, iflag); 14324 return IRQ_NONE; 14325 } 14326 14327 /* 14328 * Process all the event on FCP fast-path EQ 14329 */ 14330 while ((eqe = lpfc_sli4_eq_get(eq))) { 14331 lpfc_sli4_fof_handle_eqe(phba, eqe); 14332 if (!(++ecount % eq->entry_repost)) 14333 break; 14334 eq->EQ_processed++; 14335 } 14336 14337 /* Track the max number of EQEs processed in 1 intr */ 14338 if (ecount > eq->EQ_max_eqe) 14339 eq->EQ_max_eqe = ecount; 14340 14341 14342 if (unlikely(ecount == 0)) { 14343 eq->EQ_no_entry++; 14344 14345 if (phba->intr_type == MSIX) 14346 /* MSI-X treated interrupt served as no EQ share INT */ 14347 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14348 "9145 MSI-X interrupt with no EQE\n"); 14349 else { 14350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14351 "9146 ISR interrupt with no EQE\n"); 14352 /* Non MSI-X treated on interrupt as EQ share INT */ 14353 return IRQ_NONE; 14354 } 14355 } 14356 /* Always clear and re-arm the fast-path EQ */ 14357 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14358 return IRQ_HANDLED; 14359 } 14360 14361 /** 14362 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14363 * @irq: Interrupt number. 14364 * @dev_id: The device context pointer. 14365 * 14366 * This function is directly called from the PCI layer as an interrupt 14367 * service routine when device with SLI-4 interface spec is enabled with 14368 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14369 * ring event in the HBA. However, when the device is enabled with either 14370 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14371 * device-level interrupt handler. When the PCI slot is in error recovery 14372 * or the HBA is undergoing initialization, the interrupt handler will not 14373 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14374 * the intrrupt context. This function is called without any lock held. 14375 * It gets the hbalock to access and update SLI data structures. Note that, 14376 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14377 * equal to that of FCP CQ index. 14378 * 14379 * The link attention and ELS ring attention events are handled 14380 * by the worker thread. The interrupt handler signals the worker thread 14381 * and returns for these events. This function is called without any lock 14382 * held. It gets the hbalock to access and update SLI data structures. 14383 * 14384 * This function returns IRQ_HANDLED when interrupt is handled else it 14385 * returns IRQ_NONE. 14386 **/ 14387 irqreturn_t 14388 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14389 { 14390 struct lpfc_hba *phba; 14391 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14392 struct lpfc_queue *fpeq; 14393 struct lpfc_eqe *eqe; 14394 unsigned long iflag; 14395 int ecount = 0; 14396 int hba_eqidx; 14397 14398 /* Get the driver's phba structure from the dev_id */ 14399 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14400 phba = hba_eq_hdl->phba; 14401 hba_eqidx = hba_eq_hdl->idx; 14402 14403 if (unlikely(!phba)) 14404 return IRQ_NONE; 14405 if (unlikely(!phba->sli4_hba.hba_eq)) 14406 return IRQ_NONE; 14407 14408 /* Get to the EQ struct associated with this vector */ 14409 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 14410 if (unlikely(!fpeq)) 14411 return IRQ_NONE; 14412 14413 if (lpfc_fcp_look_ahead) { 14414 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 14415 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 14416 else { 14417 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14418 return IRQ_NONE; 14419 } 14420 } 14421 14422 /* Check device state for handling interrupt */ 14423 if (unlikely(lpfc_intr_state_check(phba))) { 14424 /* Check again for link_state with lock held */ 14425 spin_lock_irqsave(&phba->hbalock, iflag); 14426 if (phba->link_state < LPFC_LINK_DOWN) 14427 /* Flush, clear interrupt, and rearm the EQ */ 14428 lpfc_sli4_eq_flush(phba, fpeq); 14429 spin_unlock_irqrestore(&phba->hbalock, iflag); 14430 if (lpfc_fcp_look_ahead) 14431 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14432 return IRQ_NONE; 14433 } 14434 14435 /* 14436 * Process all the event on FCP fast-path EQ 14437 */ 14438 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 14439 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 14440 if (!(++ecount % fpeq->entry_repost)) 14441 break; 14442 fpeq->EQ_processed++; 14443 } 14444 14445 /* Track the max number of EQEs processed in 1 intr */ 14446 if (ecount > fpeq->EQ_max_eqe) 14447 fpeq->EQ_max_eqe = ecount; 14448 14449 /* Always clear and re-arm the fast-path EQ */ 14450 phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 14451 14452 if (unlikely(ecount == 0)) { 14453 fpeq->EQ_no_entry++; 14454 14455 if (lpfc_fcp_look_ahead) { 14456 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14457 return IRQ_NONE; 14458 } 14459 14460 if (phba->intr_type == MSIX) 14461 /* MSI-X treated interrupt served as no EQ share INT */ 14462 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14463 "0358 MSI-X interrupt with no EQE\n"); 14464 else 14465 /* Non MSI-X treated on interrupt as EQ share INT */ 14466 return IRQ_NONE; 14467 } 14468 14469 if (lpfc_fcp_look_ahead) 14470 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14471 14472 return IRQ_HANDLED; 14473 } /* lpfc_sli4_fp_intr_handler */ 14474 14475 /** 14476 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14477 * @irq: Interrupt number. 14478 * @dev_id: The device context pointer. 14479 * 14480 * This function is the device-level interrupt handler to device with SLI-4 14481 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14482 * interrupt mode is enabled and there is an event in the HBA which requires 14483 * driver attention. This function invokes the slow-path interrupt attention 14484 * handling function and fast-path interrupt attention handling function in 14485 * turn to process the relevant HBA attention events. This function is called 14486 * without any lock held. It gets the hbalock to access and update SLI data 14487 * structures. 14488 * 14489 * This function returns IRQ_HANDLED when interrupt is handled, else it 14490 * returns IRQ_NONE. 14491 **/ 14492 irqreturn_t 14493 lpfc_sli4_intr_handler(int irq, void *dev_id) 14494 { 14495 struct lpfc_hba *phba; 14496 irqreturn_t hba_irq_rc; 14497 bool hba_handled = false; 14498 int qidx; 14499 14500 /* Get the driver's phba structure from the dev_id */ 14501 phba = (struct lpfc_hba *)dev_id; 14502 14503 if (unlikely(!phba)) 14504 return IRQ_NONE; 14505 14506 /* 14507 * Invoke fast-path host attention interrupt handling as appropriate. 14508 */ 14509 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 14510 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14511 &phba->sli4_hba.hba_eq_hdl[qidx]); 14512 if (hba_irq_rc == IRQ_HANDLED) 14513 hba_handled |= true; 14514 } 14515 14516 if (phba->cfg_fof) { 14517 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 14518 &phba->sli4_hba.hba_eq_hdl[qidx]); 14519 if (hba_irq_rc == IRQ_HANDLED) 14520 hba_handled |= true; 14521 } 14522 14523 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14524 } /* lpfc_sli4_intr_handler */ 14525 14526 /** 14527 * lpfc_sli4_queue_free - free a queue structure and associated memory 14528 * @queue: The queue structure to free. 14529 * 14530 * This function frees a queue structure and the DMAable memory used for 14531 * the host resident queue. This function must be called after destroying the 14532 * queue on the HBA. 14533 **/ 14534 void 14535 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14536 { 14537 struct lpfc_dmabuf *dmabuf; 14538 14539 if (!queue) 14540 return; 14541 14542 while (!list_empty(&queue->page_list)) { 14543 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14544 list); 14545 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14546 dmabuf->virt, dmabuf->phys); 14547 kfree(dmabuf); 14548 } 14549 if (queue->rqbp) { 14550 lpfc_free_rq_buffer(queue->phba, queue); 14551 kfree(queue->rqbp); 14552 } 14553 14554 if (!list_empty(&queue->wq_list)) 14555 list_del(&queue->wq_list); 14556 14557 kfree(queue); 14558 return; 14559 } 14560 14561 /** 14562 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14563 * @phba: The HBA that this queue is being created on. 14564 * @page_size: The size of a queue page 14565 * @entry_size: The size of each queue entry for this queue. 14566 * @entry count: The number of entries that this queue will handle. 14567 * 14568 * This function allocates a queue structure and the DMAable memory used for 14569 * the host resident queue. This function must be called before creating the 14570 * queue on the HBA. 14571 **/ 14572 struct lpfc_queue * 14573 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14574 uint32_t entry_size, uint32_t entry_count) 14575 { 14576 struct lpfc_queue *queue; 14577 struct lpfc_dmabuf *dmabuf; 14578 int x, total_qe_count; 14579 void *dma_pointer; 14580 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14581 14582 if (!phba->sli4_hba.pc_sli4_params.supported) 14583 hw_page_size = page_size; 14584 14585 queue = kzalloc(sizeof(struct lpfc_queue) + 14586 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 14587 if (!queue) 14588 return NULL; 14589 queue->page_count = (ALIGN(entry_size * entry_count, 14590 hw_page_size))/hw_page_size; 14591 14592 /* If needed, Adjust page count to match the max the adapter supports */ 14593 if (phba->sli4_hba.pc_sli4_params.wqpcnt && 14594 (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)) 14595 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 14596 14597 INIT_LIST_HEAD(&queue->list); 14598 INIT_LIST_HEAD(&queue->wq_list); 14599 INIT_LIST_HEAD(&queue->wqfull_list); 14600 INIT_LIST_HEAD(&queue->page_list); 14601 INIT_LIST_HEAD(&queue->child_list); 14602 14603 /* Set queue parameters now. If the system cannot provide memory 14604 * resources, the free routine needs to know what was allocated. 14605 */ 14606 queue->entry_size = entry_size; 14607 queue->entry_count = entry_count; 14608 queue->page_size = hw_page_size; 14609 queue->phba = phba; 14610 14611 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 14612 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 14613 if (!dmabuf) 14614 goto out_fail; 14615 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14616 hw_page_size, &dmabuf->phys, 14617 GFP_KERNEL); 14618 if (!dmabuf->virt) { 14619 kfree(dmabuf); 14620 goto out_fail; 14621 } 14622 dmabuf->buffer_tag = x; 14623 list_add_tail(&dmabuf->list, &queue->page_list); 14624 /* initialize queue's entry array */ 14625 dma_pointer = dmabuf->virt; 14626 for (; total_qe_count < entry_count && 14627 dma_pointer < (hw_page_size + dmabuf->virt); 14628 total_qe_count++, dma_pointer += entry_size) { 14629 queue->qe[total_qe_count].address = dma_pointer; 14630 } 14631 } 14632 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14633 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14634 14635 /* entry_repost will be set during q creation */ 14636 14637 return queue; 14638 out_fail: 14639 lpfc_sli4_queue_free(queue); 14640 return NULL; 14641 } 14642 14643 /** 14644 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14645 * @phba: HBA structure that indicates port to create a queue on. 14646 * @pci_barset: PCI BAR set flag. 14647 * 14648 * This function shall perform iomap of the specified PCI BAR address to host 14649 * memory address if not already done so and return it. The returned host 14650 * memory address can be NULL. 14651 */ 14652 static void __iomem * 14653 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14654 { 14655 if (!phba->pcidev) 14656 return NULL; 14657 14658 switch (pci_barset) { 14659 case WQ_PCI_BAR_0_AND_1: 14660 return phba->pci_bar0_memmap_p; 14661 case WQ_PCI_BAR_2_AND_3: 14662 return phba->pci_bar2_memmap_p; 14663 case WQ_PCI_BAR_4_AND_5: 14664 return phba->pci_bar4_memmap_p; 14665 default: 14666 break; 14667 } 14668 return NULL; 14669 } 14670 14671 /** 14672 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14673 * @phba: HBA structure that indicates port to create a queue on. 14674 * @startq: The starting FCP EQ to modify 14675 * 14676 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14677 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14678 * updated in one mailbox command. 14679 * 14680 * The @phba struct is used to send mailbox command to HBA. The @startq 14681 * is used to get the starting FCP EQ to change. 14682 * This function is asynchronous and will wait for the mailbox 14683 * command to finish before continuing. 14684 * 14685 * On success this function will return a zero. If unable to allocate enough 14686 * memory this function will return -ENOMEM. If the queue create mailbox command 14687 * fails this function will return -ENXIO. 14688 **/ 14689 int 14690 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14691 uint32_t numq, uint32_t imax) 14692 { 14693 struct lpfc_mbx_modify_eq_delay *eq_delay; 14694 LPFC_MBOXQ_t *mbox; 14695 struct lpfc_queue *eq; 14696 int cnt, rc, length, status = 0; 14697 uint32_t shdr_status, shdr_add_status; 14698 uint32_t result, val; 14699 int qidx; 14700 union lpfc_sli4_cfg_shdr *shdr; 14701 uint16_t dmult; 14702 14703 if (startq >= phba->io_channel_irqs) 14704 return 0; 14705 14706 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14707 if (!mbox) 14708 return -ENOMEM; 14709 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14710 sizeof(struct lpfc_sli4_cfg_mhdr)); 14711 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14712 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14713 length, LPFC_SLI4_MBX_EMBED); 14714 eq_delay = &mbox->u.mqe.un.eq_delay; 14715 14716 /* Calculate delay multiper from maximum interrupt per second */ 14717 result = imax / phba->io_channel_irqs; 14718 if (result > LPFC_DMULT_CONST || result == 0) 14719 dmult = 0; 14720 else 14721 dmult = LPFC_DMULT_CONST/result - 1; 14722 if (dmult > LPFC_DMULT_MAX) 14723 dmult = LPFC_DMULT_MAX; 14724 14725 cnt = 0; 14726 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14727 eq = phba->sli4_hba.hba_eq[qidx]; 14728 if (!eq) 14729 continue; 14730 eq->q_mode = imax; 14731 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14732 eq_delay->u.request.eq[cnt].phase = 0; 14733 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14734 cnt++; 14735 14736 /* q_mode is only used for auto_imax */ 14737 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14738 /* Use EQ Delay Register method for q_mode */ 14739 14740 /* Convert for EQ Delay register */ 14741 val = phba->cfg_fcp_imax; 14742 if (val) { 14743 /* First, interrupts per sec per EQ */ 14744 val = phba->cfg_fcp_imax / 14745 phba->io_channel_irqs; 14746 14747 /* us delay between each interrupt */ 14748 val = LPFC_SEC_TO_USEC / val; 14749 } 14750 eq->q_mode = val; 14751 } else { 14752 eq->q_mode = imax; 14753 } 14754 14755 if (cnt >= numq) 14756 break; 14757 } 14758 eq_delay->u.request.num_eq = cnt; 14759 14760 mbox->vport = phba->pport; 14761 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14762 mbox->ctx_buf = NULL; 14763 mbox->ctx_ndlp = NULL; 14764 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14765 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14766 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14767 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14768 if (shdr_status || shdr_add_status || rc) { 14769 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14770 "2512 MODIFY_EQ_DELAY mailbox failed with " 14771 "status x%x add_status x%x, mbx status x%x\n", 14772 shdr_status, shdr_add_status, rc); 14773 status = -ENXIO; 14774 } 14775 mempool_free(mbox, phba->mbox_mem_pool); 14776 return status; 14777 } 14778 14779 /** 14780 * lpfc_eq_create - Create an Event Queue on the HBA 14781 * @phba: HBA structure that indicates port to create a queue on. 14782 * @eq: The queue structure to use to create the event queue. 14783 * @imax: The maximum interrupt per second limit. 14784 * 14785 * This function creates an event queue, as detailed in @eq, on a port, 14786 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14787 * 14788 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14789 * is used to get the entry count and entry size that are necessary to 14790 * determine the number of pages to allocate and use for this queue. This 14791 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14792 * event queue. This function is asynchronous and will wait for the mailbox 14793 * command to finish before continuing. 14794 * 14795 * On success this function will return a zero. If unable to allocate enough 14796 * memory this function will return -ENOMEM. If the queue create mailbox command 14797 * fails this function will return -ENXIO. 14798 **/ 14799 int 14800 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14801 { 14802 struct lpfc_mbx_eq_create *eq_create; 14803 LPFC_MBOXQ_t *mbox; 14804 int rc, length, status = 0; 14805 struct lpfc_dmabuf *dmabuf; 14806 uint32_t shdr_status, shdr_add_status; 14807 union lpfc_sli4_cfg_shdr *shdr; 14808 uint16_t dmult; 14809 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14810 14811 /* sanity check on queue memory */ 14812 if (!eq) 14813 return -ENODEV; 14814 if (!phba->sli4_hba.pc_sli4_params.supported) 14815 hw_page_size = SLI4_PAGE_SIZE; 14816 14817 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14818 if (!mbox) 14819 return -ENOMEM; 14820 length = (sizeof(struct lpfc_mbx_eq_create) - 14821 sizeof(struct lpfc_sli4_cfg_mhdr)); 14822 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14823 LPFC_MBOX_OPCODE_EQ_CREATE, 14824 length, LPFC_SLI4_MBX_EMBED); 14825 eq_create = &mbox->u.mqe.un.eq_create; 14826 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14827 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14828 eq->page_count); 14829 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14830 LPFC_EQE_SIZE); 14831 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14832 14833 /* Use version 2 of CREATE_EQ if eqav is set */ 14834 if (phba->sli4_hba.pc_sli4_params.eqav) { 14835 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14836 LPFC_Q_CREATE_VERSION_2); 14837 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14838 phba->sli4_hba.pc_sli4_params.eqav); 14839 } 14840 14841 /* don't setup delay multiplier using EQ_CREATE */ 14842 dmult = 0; 14843 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14844 dmult); 14845 switch (eq->entry_count) { 14846 default: 14847 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14848 "0360 Unsupported EQ count. (%d)\n", 14849 eq->entry_count); 14850 if (eq->entry_count < 256) 14851 return -EINVAL; 14852 /* otherwise default to smallest count (drop through) */ 14853 case 256: 14854 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14855 LPFC_EQ_CNT_256); 14856 break; 14857 case 512: 14858 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14859 LPFC_EQ_CNT_512); 14860 break; 14861 case 1024: 14862 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14863 LPFC_EQ_CNT_1024); 14864 break; 14865 case 2048: 14866 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14867 LPFC_EQ_CNT_2048); 14868 break; 14869 case 4096: 14870 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14871 LPFC_EQ_CNT_4096); 14872 break; 14873 } 14874 list_for_each_entry(dmabuf, &eq->page_list, list) { 14875 memset(dmabuf->virt, 0, hw_page_size); 14876 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14877 putPaddrLow(dmabuf->phys); 14878 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14879 putPaddrHigh(dmabuf->phys); 14880 } 14881 mbox->vport = phba->pport; 14882 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14883 mbox->ctx_buf = NULL; 14884 mbox->ctx_ndlp = NULL; 14885 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14886 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14887 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14888 if (shdr_status || shdr_add_status || rc) { 14889 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14890 "2500 EQ_CREATE mailbox failed with " 14891 "status x%x add_status x%x, mbx status x%x\n", 14892 shdr_status, shdr_add_status, rc); 14893 status = -ENXIO; 14894 } 14895 eq->type = LPFC_EQ; 14896 eq->subtype = LPFC_NONE; 14897 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14898 if (eq->queue_id == 0xFFFF) 14899 status = -ENXIO; 14900 eq->host_index = 0; 14901 eq->hba_index = 0; 14902 eq->entry_repost = LPFC_EQ_REPOST; 14903 14904 mempool_free(mbox, phba->mbox_mem_pool); 14905 return status; 14906 } 14907 14908 /** 14909 * lpfc_cq_create - Create a Completion Queue on the HBA 14910 * @phba: HBA structure that indicates port to create a queue on. 14911 * @cq: The queue structure to use to create the completion queue. 14912 * @eq: The event queue to bind this completion queue to. 14913 * 14914 * This function creates a completion queue, as detailed in @wq, on a port, 14915 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14916 * 14917 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14918 * is used to get the entry count and entry size that are necessary to 14919 * determine the number of pages to allocate and use for this queue. The @eq 14920 * is used to indicate which event queue to bind this completion queue to. This 14921 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14922 * completion queue. This function is asynchronous and will wait for the mailbox 14923 * command to finish before continuing. 14924 * 14925 * On success this function will return a zero. If unable to allocate enough 14926 * memory this function will return -ENOMEM. If the queue create mailbox command 14927 * fails this function will return -ENXIO. 14928 **/ 14929 int 14930 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14931 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14932 { 14933 struct lpfc_mbx_cq_create *cq_create; 14934 struct lpfc_dmabuf *dmabuf; 14935 LPFC_MBOXQ_t *mbox; 14936 int rc, length, status = 0; 14937 uint32_t shdr_status, shdr_add_status; 14938 union lpfc_sli4_cfg_shdr *shdr; 14939 14940 /* sanity check on queue memory */ 14941 if (!cq || !eq) 14942 return -ENODEV; 14943 14944 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14945 if (!mbox) 14946 return -ENOMEM; 14947 length = (sizeof(struct lpfc_mbx_cq_create) - 14948 sizeof(struct lpfc_sli4_cfg_mhdr)); 14949 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14950 LPFC_MBOX_OPCODE_CQ_CREATE, 14951 length, LPFC_SLI4_MBX_EMBED); 14952 cq_create = &mbox->u.mqe.un.cq_create; 14953 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14954 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14955 cq->page_count); 14956 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14957 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14958 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14959 phba->sli4_hba.pc_sli4_params.cqv); 14960 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14961 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14962 (cq->page_size / SLI4_PAGE_SIZE)); 14963 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14964 eq->queue_id); 14965 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14966 phba->sli4_hba.pc_sli4_params.cqav); 14967 } else { 14968 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14969 eq->queue_id); 14970 } 14971 switch (cq->entry_count) { 14972 case 2048: 14973 case 4096: 14974 if (phba->sli4_hba.pc_sli4_params.cqv == 14975 LPFC_Q_CREATE_VERSION_2) { 14976 cq_create->u.request.context.lpfc_cq_context_count = 14977 cq->entry_count; 14978 bf_set(lpfc_cq_context_count, 14979 &cq_create->u.request.context, 14980 LPFC_CQ_CNT_WORD7); 14981 break; 14982 } 14983 /* Fall Thru */ 14984 default: 14985 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14986 "0361 Unsupported CQ count: " 14987 "entry cnt %d sz %d pg cnt %d\n", 14988 cq->entry_count, cq->entry_size, 14989 cq->page_count); 14990 if (cq->entry_count < 256) { 14991 status = -EINVAL; 14992 goto out; 14993 } 14994 /* otherwise default to smallest count (drop through) */ 14995 case 256: 14996 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14997 LPFC_CQ_CNT_256); 14998 break; 14999 case 512: 15000 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15001 LPFC_CQ_CNT_512); 15002 break; 15003 case 1024: 15004 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15005 LPFC_CQ_CNT_1024); 15006 break; 15007 } 15008 list_for_each_entry(dmabuf, &cq->page_list, list) { 15009 memset(dmabuf->virt, 0, cq->page_size); 15010 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15011 putPaddrLow(dmabuf->phys); 15012 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15013 putPaddrHigh(dmabuf->phys); 15014 } 15015 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15016 15017 /* The IOCTL status is embedded in the mailbox subheader. */ 15018 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15019 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15020 if (shdr_status || shdr_add_status || rc) { 15021 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15022 "2501 CQ_CREATE mailbox failed with " 15023 "status x%x add_status x%x, mbx status x%x\n", 15024 shdr_status, shdr_add_status, rc); 15025 status = -ENXIO; 15026 goto out; 15027 } 15028 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15029 if (cq->queue_id == 0xFFFF) { 15030 status = -ENXIO; 15031 goto out; 15032 } 15033 /* link the cq onto the parent eq child list */ 15034 list_add_tail(&cq->list, &eq->child_list); 15035 /* Set up completion queue's type and subtype */ 15036 cq->type = type; 15037 cq->subtype = subtype; 15038 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15039 cq->assoc_qid = eq->queue_id; 15040 cq->host_index = 0; 15041 cq->hba_index = 0; 15042 cq->entry_repost = LPFC_CQ_REPOST; 15043 15044 out: 15045 mempool_free(mbox, phba->mbox_mem_pool); 15046 return status; 15047 } 15048 15049 /** 15050 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15051 * @phba: HBA structure that indicates port to create a queue on. 15052 * @cqp: The queue structure array to use to create the completion queues. 15053 * @eqp: The event queue array to bind these completion queues to. 15054 * 15055 * This function creates a set of completion queue, s to support MRQ 15056 * as detailed in @cqp, on a port, 15057 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15058 * 15059 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15060 * is used to get the entry count and entry size that are necessary to 15061 * determine the number of pages to allocate and use for this queue. The @eq 15062 * is used to indicate which event queue to bind this completion queue to. This 15063 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15064 * completion queue. This function is asynchronous and will wait for the mailbox 15065 * command to finish before continuing. 15066 * 15067 * On success this function will return a zero. If unable to allocate enough 15068 * memory this function will return -ENOMEM. If the queue create mailbox command 15069 * fails this function will return -ENXIO. 15070 **/ 15071 int 15072 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15073 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 15074 { 15075 struct lpfc_queue *cq; 15076 struct lpfc_queue *eq; 15077 struct lpfc_mbx_cq_create_set *cq_set; 15078 struct lpfc_dmabuf *dmabuf; 15079 LPFC_MBOXQ_t *mbox; 15080 int rc, length, alloclen, status = 0; 15081 int cnt, idx, numcq, page_idx = 0; 15082 uint32_t shdr_status, shdr_add_status; 15083 union lpfc_sli4_cfg_shdr *shdr; 15084 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15085 15086 /* sanity check on queue memory */ 15087 numcq = phba->cfg_nvmet_mrq; 15088 if (!cqp || !eqp || !numcq) 15089 return -ENODEV; 15090 15091 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15092 if (!mbox) 15093 return -ENOMEM; 15094 15095 length = sizeof(struct lpfc_mbx_cq_create_set); 15096 length += ((numcq * cqp[0]->page_count) * 15097 sizeof(struct dma_address)); 15098 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15099 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15100 LPFC_SLI4_MBX_NEMBED); 15101 if (alloclen < length) { 15102 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15103 "3098 Allocated DMA memory size (%d) is " 15104 "less than the requested DMA memory size " 15105 "(%d)\n", alloclen, length); 15106 status = -ENOMEM; 15107 goto out; 15108 } 15109 cq_set = mbox->sge_array->addr[0]; 15110 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15111 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15112 15113 for (idx = 0; idx < numcq; idx++) { 15114 cq = cqp[idx]; 15115 eq = eqp[idx]; 15116 if (!cq || !eq) { 15117 status = -ENOMEM; 15118 goto out; 15119 } 15120 if (!phba->sli4_hba.pc_sli4_params.supported) 15121 hw_page_size = cq->page_size; 15122 15123 switch (idx) { 15124 case 0: 15125 bf_set(lpfc_mbx_cq_create_set_page_size, 15126 &cq_set->u.request, 15127 (hw_page_size / SLI4_PAGE_SIZE)); 15128 bf_set(lpfc_mbx_cq_create_set_num_pages, 15129 &cq_set->u.request, cq->page_count); 15130 bf_set(lpfc_mbx_cq_create_set_evt, 15131 &cq_set->u.request, 1); 15132 bf_set(lpfc_mbx_cq_create_set_valid, 15133 &cq_set->u.request, 1); 15134 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15135 &cq_set->u.request, 0); 15136 bf_set(lpfc_mbx_cq_create_set_num_cq, 15137 &cq_set->u.request, numcq); 15138 bf_set(lpfc_mbx_cq_create_set_autovalid, 15139 &cq_set->u.request, 15140 phba->sli4_hba.pc_sli4_params.cqav); 15141 switch (cq->entry_count) { 15142 case 2048: 15143 case 4096: 15144 if (phba->sli4_hba.pc_sli4_params.cqv == 15145 LPFC_Q_CREATE_VERSION_2) { 15146 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15147 &cq_set->u.request, 15148 cq->entry_count); 15149 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15150 &cq_set->u.request, 15151 LPFC_CQ_CNT_WORD7); 15152 break; 15153 } 15154 /* Fall Thru */ 15155 default: 15156 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15157 "3118 Bad CQ count. (%d)\n", 15158 cq->entry_count); 15159 if (cq->entry_count < 256) { 15160 status = -EINVAL; 15161 goto out; 15162 } 15163 /* otherwise default to smallest (drop thru) */ 15164 case 256: 15165 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15166 &cq_set->u.request, LPFC_CQ_CNT_256); 15167 break; 15168 case 512: 15169 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15170 &cq_set->u.request, LPFC_CQ_CNT_512); 15171 break; 15172 case 1024: 15173 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15174 &cq_set->u.request, LPFC_CQ_CNT_1024); 15175 break; 15176 } 15177 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15178 &cq_set->u.request, eq->queue_id); 15179 break; 15180 case 1: 15181 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15182 &cq_set->u.request, eq->queue_id); 15183 break; 15184 case 2: 15185 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15186 &cq_set->u.request, eq->queue_id); 15187 break; 15188 case 3: 15189 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15190 &cq_set->u.request, eq->queue_id); 15191 break; 15192 case 4: 15193 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15194 &cq_set->u.request, eq->queue_id); 15195 break; 15196 case 5: 15197 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15198 &cq_set->u.request, eq->queue_id); 15199 break; 15200 case 6: 15201 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15202 &cq_set->u.request, eq->queue_id); 15203 break; 15204 case 7: 15205 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15206 &cq_set->u.request, eq->queue_id); 15207 break; 15208 case 8: 15209 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15210 &cq_set->u.request, eq->queue_id); 15211 break; 15212 case 9: 15213 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15214 &cq_set->u.request, eq->queue_id); 15215 break; 15216 case 10: 15217 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15218 &cq_set->u.request, eq->queue_id); 15219 break; 15220 case 11: 15221 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15222 &cq_set->u.request, eq->queue_id); 15223 break; 15224 case 12: 15225 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15226 &cq_set->u.request, eq->queue_id); 15227 break; 15228 case 13: 15229 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15230 &cq_set->u.request, eq->queue_id); 15231 break; 15232 case 14: 15233 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15234 &cq_set->u.request, eq->queue_id); 15235 break; 15236 case 15: 15237 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15238 &cq_set->u.request, eq->queue_id); 15239 break; 15240 } 15241 15242 /* link the cq onto the parent eq child list */ 15243 list_add_tail(&cq->list, &eq->child_list); 15244 /* Set up completion queue's type and subtype */ 15245 cq->type = type; 15246 cq->subtype = subtype; 15247 cq->assoc_qid = eq->queue_id; 15248 cq->host_index = 0; 15249 cq->hba_index = 0; 15250 cq->entry_repost = LPFC_CQ_REPOST; 15251 cq->chann = idx; 15252 15253 rc = 0; 15254 list_for_each_entry(dmabuf, &cq->page_list, list) { 15255 memset(dmabuf->virt, 0, hw_page_size); 15256 cnt = page_idx + dmabuf->buffer_tag; 15257 cq_set->u.request.page[cnt].addr_lo = 15258 putPaddrLow(dmabuf->phys); 15259 cq_set->u.request.page[cnt].addr_hi = 15260 putPaddrHigh(dmabuf->phys); 15261 rc++; 15262 } 15263 page_idx += rc; 15264 } 15265 15266 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15267 15268 /* The IOCTL status is embedded in the mailbox subheader. */ 15269 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15270 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15271 if (shdr_status || shdr_add_status || rc) { 15272 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15273 "3119 CQ_CREATE_SET mailbox failed with " 15274 "status x%x add_status x%x, mbx status x%x\n", 15275 shdr_status, shdr_add_status, rc); 15276 status = -ENXIO; 15277 goto out; 15278 } 15279 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15280 if (rc == 0xFFFF) { 15281 status = -ENXIO; 15282 goto out; 15283 } 15284 15285 for (idx = 0; idx < numcq; idx++) { 15286 cq = cqp[idx]; 15287 cq->queue_id = rc + idx; 15288 } 15289 15290 out: 15291 lpfc_sli4_mbox_cmd_free(phba, mbox); 15292 return status; 15293 } 15294 15295 /** 15296 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15297 * @phba: HBA structure that indicates port to create a queue on. 15298 * @mq: The queue structure to use to create the mailbox queue. 15299 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15300 * @cq: The completion queue to associate with this cq. 15301 * 15302 * This function provides failback (fb) functionality when the 15303 * mq_create_ext fails on older FW generations. It's purpose is identical 15304 * to mq_create_ext otherwise. 15305 * 15306 * This routine cannot fail as all attributes were previously accessed and 15307 * initialized in mq_create_ext. 15308 **/ 15309 static void 15310 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15311 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15312 { 15313 struct lpfc_mbx_mq_create *mq_create; 15314 struct lpfc_dmabuf *dmabuf; 15315 int length; 15316 15317 length = (sizeof(struct lpfc_mbx_mq_create) - 15318 sizeof(struct lpfc_sli4_cfg_mhdr)); 15319 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15320 LPFC_MBOX_OPCODE_MQ_CREATE, 15321 length, LPFC_SLI4_MBX_EMBED); 15322 mq_create = &mbox->u.mqe.un.mq_create; 15323 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15324 mq->page_count); 15325 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15326 cq->queue_id); 15327 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15328 switch (mq->entry_count) { 15329 case 16: 15330 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15331 LPFC_MQ_RING_SIZE_16); 15332 break; 15333 case 32: 15334 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15335 LPFC_MQ_RING_SIZE_32); 15336 break; 15337 case 64: 15338 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15339 LPFC_MQ_RING_SIZE_64); 15340 break; 15341 case 128: 15342 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15343 LPFC_MQ_RING_SIZE_128); 15344 break; 15345 } 15346 list_for_each_entry(dmabuf, &mq->page_list, list) { 15347 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15348 putPaddrLow(dmabuf->phys); 15349 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15350 putPaddrHigh(dmabuf->phys); 15351 } 15352 } 15353 15354 /** 15355 * lpfc_mq_create - Create a mailbox Queue on the HBA 15356 * @phba: HBA structure that indicates port to create a queue on. 15357 * @mq: The queue structure to use to create the mailbox queue. 15358 * @cq: The completion queue to associate with this cq. 15359 * @subtype: The queue's subtype. 15360 * 15361 * This function creates a mailbox queue, as detailed in @mq, on a port, 15362 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15363 * 15364 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15365 * is used to get the entry count and entry size that are necessary to 15366 * determine the number of pages to allocate and use for this queue. This 15367 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15368 * mailbox queue. This function is asynchronous and will wait for the mailbox 15369 * command to finish before continuing. 15370 * 15371 * On success this function will return a zero. If unable to allocate enough 15372 * memory this function will return -ENOMEM. If the queue create mailbox command 15373 * fails this function will return -ENXIO. 15374 **/ 15375 int32_t 15376 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15377 struct lpfc_queue *cq, uint32_t subtype) 15378 { 15379 struct lpfc_mbx_mq_create *mq_create; 15380 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15381 struct lpfc_dmabuf *dmabuf; 15382 LPFC_MBOXQ_t *mbox; 15383 int rc, length, status = 0; 15384 uint32_t shdr_status, shdr_add_status; 15385 union lpfc_sli4_cfg_shdr *shdr; 15386 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15387 15388 /* sanity check on queue memory */ 15389 if (!mq || !cq) 15390 return -ENODEV; 15391 if (!phba->sli4_hba.pc_sli4_params.supported) 15392 hw_page_size = SLI4_PAGE_SIZE; 15393 15394 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15395 if (!mbox) 15396 return -ENOMEM; 15397 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15398 sizeof(struct lpfc_sli4_cfg_mhdr)); 15399 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15400 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15401 length, LPFC_SLI4_MBX_EMBED); 15402 15403 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15404 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15405 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15406 &mq_create_ext->u.request, mq->page_count); 15407 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15408 &mq_create_ext->u.request, 1); 15409 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15410 &mq_create_ext->u.request, 1); 15411 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15412 &mq_create_ext->u.request, 1); 15413 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15414 &mq_create_ext->u.request, 1); 15415 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15416 &mq_create_ext->u.request, 1); 15417 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15418 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15419 phba->sli4_hba.pc_sli4_params.mqv); 15420 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15421 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15422 cq->queue_id); 15423 else 15424 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15425 cq->queue_id); 15426 switch (mq->entry_count) { 15427 default: 15428 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15429 "0362 Unsupported MQ count. (%d)\n", 15430 mq->entry_count); 15431 if (mq->entry_count < 16) { 15432 status = -EINVAL; 15433 goto out; 15434 } 15435 /* otherwise default to smallest count (drop through) */ 15436 case 16: 15437 bf_set(lpfc_mq_context_ring_size, 15438 &mq_create_ext->u.request.context, 15439 LPFC_MQ_RING_SIZE_16); 15440 break; 15441 case 32: 15442 bf_set(lpfc_mq_context_ring_size, 15443 &mq_create_ext->u.request.context, 15444 LPFC_MQ_RING_SIZE_32); 15445 break; 15446 case 64: 15447 bf_set(lpfc_mq_context_ring_size, 15448 &mq_create_ext->u.request.context, 15449 LPFC_MQ_RING_SIZE_64); 15450 break; 15451 case 128: 15452 bf_set(lpfc_mq_context_ring_size, 15453 &mq_create_ext->u.request.context, 15454 LPFC_MQ_RING_SIZE_128); 15455 break; 15456 } 15457 list_for_each_entry(dmabuf, &mq->page_list, list) { 15458 memset(dmabuf->virt, 0, hw_page_size); 15459 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15460 putPaddrLow(dmabuf->phys); 15461 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15462 putPaddrHigh(dmabuf->phys); 15463 } 15464 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15465 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15466 &mq_create_ext->u.response); 15467 if (rc != MBX_SUCCESS) { 15468 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15469 "2795 MQ_CREATE_EXT failed with " 15470 "status x%x. Failback to MQ_CREATE.\n", 15471 rc); 15472 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15473 mq_create = &mbox->u.mqe.un.mq_create; 15474 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15475 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15476 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15477 &mq_create->u.response); 15478 } 15479 15480 /* The IOCTL status is embedded in the mailbox subheader. */ 15481 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15482 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15483 if (shdr_status || shdr_add_status || rc) { 15484 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15485 "2502 MQ_CREATE mailbox failed with " 15486 "status x%x add_status x%x, mbx status x%x\n", 15487 shdr_status, shdr_add_status, rc); 15488 status = -ENXIO; 15489 goto out; 15490 } 15491 if (mq->queue_id == 0xFFFF) { 15492 status = -ENXIO; 15493 goto out; 15494 } 15495 mq->type = LPFC_MQ; 15496 mq->assoc_qid = cq->queue_id; 15497 mq->subtype = subtype; 15498 mq->host_index = 0; 15499 mq->hba_index = 0; 15500 mq->entry_repost = LPFC_MQ_REPOST; 15501 15502 /* link the mq onto the parent cq child list */ 15503 list_add_tail(&mq->list, &cq->child_list); 15504 out: 15505 mempool_free(mbox, phba->mbox_mem_pool); 15506 return status; 15507 } 15508 15509 /** 15510 * lpfc_wq_create - Create a Work Queue on the HBA 15511 * @phba: HBA structure that indicates port to create a queue on. 15512 * @wq: The queue structure to use to create the work queue. 15513 * @cq: The completion queue to bind this work queue to. 15514 * @subtype: The subtype of the work queue indicating its functionality. 15515 * 15516 * This function creates a work queue, as detailed in @wq, on a port, described 15517 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15518 * 15519 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15520 * is used to get the entry count and entry size that are necessary to 15521 * determine the number of pages to allocate and use for this queue. The @cq 15522 * is used to indicate which completion queue to bind this work queue to. This 15523 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15524 * work queue. This function is asynchronous and will wait for the mailbox 15525 * command to finish before continuing. 15526 * 15527 * On success this function will return a zero. If unable to allocate enough 15528 * memory this function will return -ENOMEM. If the queue create mailbox command 15529 * fails this function will return -ENXIO. 15530 **/ 15531 int 15532 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15533 struct lpfc_queue *cq, uint32_t subtype) 15534 { 15535 struct lpfc_mbx_wq_create *wq_create; 15536 struct lpfc_dmabuf *dmabuf; 15537 LPFC_MBOXQ_t *mbox; 15538 int rc, length, status = 0; 15539 uint32_t shdr_status, shdr_add_status; 15540 union lpfc_sli4_cfg_shdr *shdr; 15541 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15542 struct dma_address *page; 15543 void __iomem *bar_memmap_p; 15544 uint32_t db_offset; 15545 uint16_t pci_barset; 15546 uint8_t dpp_barset; 15547 uint32_t dpp_offset; 15548 unsigned long pg_addr; 15549 uint8_t wq_create_version; 15550 15551 /* sanity check on queue memory */ 15552 if (!wq || !cq) 15553 return -ENODEV; 15554 if (!phba->sli4_hba.pc_sli4_params.supported) 15555 hw_page_size = wq->page_size; 15556 15557 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15558 if (!mbox) 15559 return -ENOMEM; 15560 length = (sizeof(struct lpfc_mbx_wq_create) - 15561 sizeof(struct lpfc_sli4_cfg_mhdr)); 15562 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15563 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15564 length, LPFC_SLI4_MBX_EMBED); 15565 wq_create = &mbox->u.mqe.un.wq_create; 15566 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15567 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15568 wq->page_count); 15569 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15570 cq->queue_id); 15571 15572 /* wqv is the earliest version supported, NOT the latest */ 15573 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15574 phba->sli4_hba.pc_sli4_params.wqv); 15575 15576 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15577 (wq->page_size > SLI4_PAGE_SIZE)) 15578 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15579 else 15580 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15581 15582 15583 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15584 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15585 else 15586 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15587 15588 switch (wq_create_version) { 15589 case LPFC_Q_CREATE_VERSION_1: 15590 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15591 wq->entry_count); 15592 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15593 LPFC_Q_CREATE_VERSION_1); 15594 15595 switch (wq->entry_size) { 15596 default: 15597 case 64: 15598 bf_set(lpfc_mbx_wq_create_wqe_size, 15599 &wq_create->u.request_1, 15600 LPFC_WQ_WQE_SIZE_64); 15601 break; 15602 case 128: 15603 bf_set(lpfc_mbx_wq_create_wqe_size, 15604 &wq_create->u.request_1, 15605 LPFC_WQ_WQE_SIZE_128); 15606 break; 15607 } 15608 /* Request DPP by default */ 15609 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15610 bf_set(lpfc_mbx_wq_create_page_size, 15611 &wq_create->u.request_1, 15612 (wq->page_size / SLI4_PAGE_SIZE)); 15613 page = wq_create->u.request_1.page; 15614 break; 15615 default: 15616 page = wq_create->u.request.page; 15617 break; 15618 } 15619 15620 list_for_each_entry(dmabuf, &wq->page_list, list) { 15621 memset(dmabuf->virt, 0, hw_page_size); 15622 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15623 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15624 } 15625 15626 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15627 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15628 15629 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15630 /* The IOCTL status is embedded in the mailbox subheader. */ 15631 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15632 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15633 if (shdr_status || shdr_add_status || rc) { 15634 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15635 "2503 WQ_CREATE mailbox failed with " 15636 "status x%x add_status x%x, mbx status x%x\n", 15637 shdr_status, shdr_add_status, rc); 15638 status = -ENXIO; 15639 goto out; 15640 } 15641 15642 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15643 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15644 &wq_create->u.response); 15645 else 15646 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15647 &wq_create->u.response_1); 15648 15649 if (wq->queue_id == 0xFFFF) { 15650 status = -ENXIO; 15651 goto out; 15652 } 15653 15654 wq->db_format = LPFC_DB_LIST_FORMAT; 15655 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15656 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15657 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15658 &wq_create->u.response); 15659 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15660 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15661 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15662 "3265 WQ[%d] doorbell format " 15663 "not supported: x%x\n", 15664 wq->queue_id, wq->db_format); 15665 status = -EINVAL; 15666 goto out; 15667 } 15668 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15669 &wq_create->u.response); 15670 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15671 pci_barset); 15672 if (!bar_memmap_p) { 15673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15674 "3263 WQ[%d] failed to memmap " 15675 "pci barset:x%x\n", 15676 wq->queue_id, pci_barset); 15677 status = -ENOMEM; 15678 goto out; 15679 } 15680 db_offset = wq_create->u.response.doorbell_offset; 15681 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15682 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15683 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15684 "3252 WQ[%d] doorbell offset " 15685 "not supported: x%x\n", 15686 wq->queue_id, db_offset); 15687 status = -EINVAL; 15688 goto out; 15689 } 15690 wq->db_regaddr = bar_memmap_p + db_offset; 15691 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15692 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15693 "format:x%x\n", wq->queue_id, 15694 pci_barset, db_offset, wq->db_format); 15695 } else 15696 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15697 } else { 15698 /* Check if DPP was honored by the firmware */ 15699 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15700 &wq_create->u.response_1); 15701 if (wq->dpp_enable) { 15702 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15703 &wq_create->u.response_1); 15704 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15705 pci_barset); 15706 if (!bar_memmap_p) { 15707 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15708 "3267 WQ[%d] failed to memmap " 15709 "pci barset:x%x\n", 15710 wq->queue_id, pci_barset); 15711 status = -ENOMEM; 15712 goto out; 15713 } 15714 db_offset = wq_create->u.response_1.doorbell_offset; 15715 wq->db_regaddr = bar_memmap_p + db_offset; 15716 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15717 &wq_create->u.response_1); 15718 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15719 &wq_create->u.response_1); 15720 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15721 dpp_barset); 15722 if (!bar_memmap_p) { 15723 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15724 "3268 WQ[%d] failed to memmap " 15725 "pci barset:x%x\n", 15726 wq->queue_id, dpp_barset); 15727 status = -ENOMEM; 15728 goto out; 15729 } 15730 dpp_offset = wq_create->u.response_1.dpp_offset; 15731 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15732 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15733 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15734 "dpp_id:x%x dpp_barset:x%x " 15735 "dpp_offset:x%x\n", 15736 wq->queue_id, pci_barset, db_offset, 15737 wq->dpp_id, dpp_barset, dpp_offset); 15738 15739 /* Enable combined writes for DPP aperture */ 15740 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15741 #ifdef CONFIG_X86 15742 rc = set_memory_wc(pg_addr, 1); 15743 if (rc) { 15744 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15745 "3272 Cannot setup Combined " 15746 "Write on WQ[%d] - disable DPP\n", 15747 wq->queue_id); 15748 phba->cfg_enable_dpp = 0; 15749 } 15750 #else 15751 phba->cfg_enable_dpp = 0; 15752 #endif 15753 } else 15754 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15755 } 15756 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15757 if (wq->pring == NULL) { 15758 status = -ENOMEM; 15759 goto out; 15760 } 15761 wq->type = LPFC_WQ; 15762 wq->assoc_qid = cq->queue_id; 15763 wq->subtype = subtype; 15764 wq->host_index = 0; 15765 wq->hba_index = 0; 15766 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15767 15768 /* link the wq onto the parent cq child list */ 15769 list_add_tail(&wq->list, &cq->child_list); 15770 out: 15771 mempool_free(mbox, phba->mbox_mem_pool); 15772 return status; 15773 } 15774 15775 /** 15776 * lpfc_rq_create - Create a Receive Queue on the HBA 15777 * @phba: HBA structure that indicates port to create a queue on. 15778 * @hrq: The queue structure to use to create the header receive queue. 15779 * @drq: The queue structure to use to create the data receive queue. 15780 * @cq: The completion queue to bind this work queue to. 15781 * 15782 * This function creates a receive buffer queue pair , as detailed in @hrq and 15783 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15784 * to the HBA. 15785 * 15786 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15787 * struct is used to get the entry count that is necessary to determine the 15788 * number of pages to use for this queue. The @cq is used to indicate which 15789 * completion queue to bind received buffers that are posted to these queues to. 15790 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15791 * receive queue pair. This function is asynchronous and will wait for the 15792 * mailbox command to finish before continuing. 15793 * 15794 * On success this function will return a zero. If unable to allocate enough 15795 * memory this function will return -ENOMEM. If the queue create mailbox command 15796 * fails this function will return -ENXIO. 15797 **/ 15798 int 15799 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15800 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15801 { 15802 struct lpfc_mbx_rq_create *rq_create; 15803 struct lpfc_dmabuf *dmabuf; 15804 LPFC_MBOXQ_t *mbox; 15805 int rc, length, status = 0; 15806 uint32_t shdr_status, shdr_add_status; 15807 union lpfc_sli4_cfg_shdr *shdr; 15808 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15809 void __iomem *bar_memmap_p; 15810 uint32_t db_offset; 15811 uint16_t pci_barset; 15812 15813 /* sanity check on queue memory */ 15814 if (!hrq || !drq || !cq) 15815 return -ENODEV; 15816 if (!phba->sli4_hba.pc_sli4_params.supported) 15817 hw_page_size = SLI4_PAGE_SIZE; 15818 15819 if (hrq->entry_count != drq->entry_count) 15820 return -EINVAL; 15821 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15822 if (!mbox) 15823 return -ENOMEM; 15824 length = (sizeof(struct lpfc_mbx_rq_create) - 15825 sizeof(struct lpfc_sli4_cfg_mhdr)); 15826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15827 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15828 length, LPFC_SLI4_MBX_EMBED); 15829 rq_create = &mbox->u.mqe.un.rq_create; 15830 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15831 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15832 phba->sli4_hba.pc_sli4_params.rqv); 15833 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15834 bf_set(lpfc_rq_context_rqe_count_1, 15835 &rq_create->u.request.context, 15836 hrq->entry_count); 15837 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15838 bf_set(lpfc_rq_context_rqe_size, 15839 &rq_create->u.request.context, 15840 LPFC_RQE_SIZE_8); 15841 bf_set(lpfc_rq_context_page_size, 15842 &rq_create->u.request.context, 15843 LPFC_RQ_PAGE_SIZE_4096); 15844 } else { 15845 switch (hrq->entry_count) { 15846 default: 15847 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15848 "2535 Unsupported RQ count. (%d)\n", 15849 hrq->entry_count); 15850 if (hrq->entry_count < 512) { 15851 status = -EINVAL; 15852 goto out; 15853 } 15854 /* otherwise default to smallest count (drop through) */ 15855 case 512: 15856 bf_set(lpfc_rq_context_rqe_count, 15857 &rq_create->u.request.context, 15858 LPFC_RQ_RING_SIZE_512); 15859 break; 15860 case 1024: 15861 bf_set(lpfc_rq_context_rqe_count, 15862 &rq_create->u.request.context, 15863 LPFC_RQ_RING_SIZE_1024); 15864 break; 15865 case 2048: 15866 bf_set(lpfc_rq_context_rqe_count, 15867 &rq_create->u.request.context, 15868 LPFC_RQ_RING_SIZE_2048); 15869 break; 15870 case 4096: 15871 bf_set(lpfc_rq_context_rqe_count, 15872 &rq_create->u.request.context, 15873 LPFC_RQ_RING_SIZE_4096); 15874 break; 15875 } 15876 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15877 LPFC_HDR_BUF_SIZE); 15878 } 15879 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15880 cq->queue_id); 15881 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15882 hrq->page_count); 15883 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15884 memset(dmabuf->virt, 0, hw_page_size); 15885 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15886 putPaddrLow(dmabuf->phys); 15887 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15888 putPaddrHigh(dmabuf->phys); 15889 } 15890 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15891 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15892 15893 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15894 /* The IOCTL status is embedded in the mailbox subheader. */ 15895 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15896 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15897 if (shdr_status || shdr_add_status || rc) { 15898 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15899 "2504 RQ_CREATE mailbox failed with " 15900 "status x%x add_status x%x, mbx status x%x\n", 15901 shdr_status, shdr_add_status, rc); 15902 status = -ENXIO; 15903 goto out; 15904 } 15905 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15906 if (hrq->queue_id == 0xFFFF) { 15907 status = -ENXIO; 15908 goto out; 15909 } 15910 15911 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15912 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15913 &rq_create->u.response); 15914 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15915 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15916 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15917 "3262 RQ [%d] doorbell format not " 15918 "supported: x%x\n", hrq->queue_id, 15919 hrq->db_format); 15920 status = -EINVAL; 15921 goto out; 15922 } 15923 15924 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15925 &rq_create->u.response); 15926 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15927 if (!bar_memmap_p) { 15928 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15929 "3269 RQ[%d] failed to memmap pci " 15930 "barset:x%x\n", hrq->queue_id, 15931 pci_barset); 15932 status = -ENOMEM; 15933 goto out; 15934 } 15935 15936 db_offset = rq_create->u.response.doorbell_offset; 15937 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15938 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15939 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15940 "3270 RQ[%d] doorbell offset not " 15941 "supported: x%x\n", hrq->queue_id, 15942 db_offset); 15943 status = -EINVAL; 15944 goto out; 15945 } 15946 hrq->db_regaddr = bar_memmap_p + db_offset; 15947 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15948 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15949 "format:x%x\n", hrq->queue_id, pci_barset, 15950 db_offset, hrq->db_format); 15951 } else { 15952 hrq->db_format = LPFC_DB_RING_FORMAT; 15953 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15954 } 15955 hrq->type = LPFC_HRQ; 15956 hrq->assoc_qid = cq->queue_id; 15957 hrq->subtype = subtype; 15958 hrq->host_index = 0; 15959 hrq->hba_index = 0; 15960 hrq->entry_repost = LPFC_RQ_REPOST; 15961 15962 /* now create the data queue */ 15963 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15964 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15965 length, LPFC_SLI4_MBX_EMBED); 15966 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15967 phba->sli4_hba.pc_sli4_params.rqv); 15968 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15969 bf_set(lpfc_rq_context_rqe_count_1, 15970 &rq_create->u.request.context, hrq->entry_count); 15971 if (subtype == LPFC_NVMET) 15972 rq_create->u.request.context.buffer_size = 15973 LPFC_NVMET_DATA_BUF_SIZE; 15974 else 15975 rq_create->u.request.context.buffer_size = 15976 LPFC_DATA_BUF_SIZE; 15977 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15978 LPFC_RQE_SIZE_8); 15979 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15980 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15981 } else { 15982 switch (drq->entry_count) { 15983 default: 15984 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15985 "2536 Unsupported RQ count. (%d)\n", 15986 drq->entry_count); 15987 if (drq->entry_count < 512) { 15988 status = -EINVAL; 15989 goto out; 15990 } 15991 /* otherwise default to smallest count (drop through) */ 15992 case 512: 15993 bf_set(lpfc_rq_context_rqe_count, 15994 &rq_create->u.request.context, 15995 LPFC_RQ_RING_SIZE_512); 15996 break; 15997 case 1024: 15998 bf_set(lpfc_rq_context_rqe_count, 15999 &rq_create->u.request.context, 16000 LPFC_RQ_RING_SIZE_1024); 16001 break; 16002 case 2048: 16003 bf_set(lpfc_rq_context_rqe_count, 16004 &rq_create->u.request.context, 16005 LPFC_RQ_RING_SIZE_2048); 16006 break; 16007 case 4096: 16008 bf_set(lpfc_rq_context_rqe_count, 16009 &rq_create->u.request.context, 16010 LPFC_RQ_RING_SIZE_4096); 16011 break; 16012 } 16013 if (subtype == LPFC_NVMET) 16014 bf_set(lpfc_rq_context_buf_size, 16015 &rq_create->u.request.context, 16016 LPFC_NVMET_DATA_BUF_SIZE); 16017 else 16018 bf_set(lpfc_rq_context_buf_size, 16019 &rq_create->u.request.context, 16020 LPFC_DATA_BUF_SIZE); 16021 } 16022 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16023 cq->queue_id); 16024 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16025 drq->page_count); 16026 list_for_each_entry(dmabuf, &drq->page_list, list) { 16027 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16028 putPaddrLow(dmabuf->phys); 16029 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16030 putPaddrHigh(dmabuf->phys); 16031 } 16032 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16033 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16034 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16035 /* The IOCTL status is embedded in the mailbox subheader. */ 16036 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16037 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16038 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16039 if (shdr_status || shdr_add_status || rc) { 16040 status = -ENXIO; 16041 goto out; 16042 } 16043 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16044 if (drq->queue_id == 0xFFFF) { 16045 status = -ENXIO; 16046 goto out; 16047 } 16048 drq->type = LPFC_DRQ; 16049 drq->assoc_qid = cq->queue_id; 16050 drq->subtype = subtype; 16051 drq->host_index = 0; 16052 drq->hba_index = 0; 16053 drq->entry_repost = LPFC_RQ_REPOST; 16054 16055 /* link the header and data RQs onto the parent cq child list */ 16056 list_add_tail(&hrq->list, &cq->child_list); 16057 list_add_tail(&drq->list, &cq->child_list); 16058 16059 out: 16060 mempool_free(mbox, phba->mbox_mem_pool); 16061 return status; 16062 } 16063 16064 /** 16065 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16066 * @phba: HBA structure that indicates port to create a queue on. 16067 * @hrqp: The queue structure array to use to create the header receive queues. 16068 * @drqp: The queue structure array to use to create the data receive queues. 16069 * @cqp: The completion queue array to bind these receive queues to. 16070 * 16071 * This function creates a receive buffer queue pair , as detailed in @hrq and 16072 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16073 * to the HBA. 16074 * 16075 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16076 * struct is used to get the entry count that is necessary to determine the 16077 * number of pages to use for this queue. The @cq is used to indicate which 16078 * completion queue to bind received buffers that are posted to these queues to. 16079 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16080 * receive queue pair. This function is asynchronous and will wait for the 16081 * mailbox command to finish before continuing. 16082 * 16083 * On success this function will return a zero. If unable to allocate enough 16084 * memory this function will return -ENOMEM. If the queue create mailbox command 16085 * fails this function will return -ENXIO. 16086 **/ 16087 int 16088 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16089 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16090 uint32_t subtype) 16091 { 16092 struct lpfc_queue *hrq, *drq, *cq; 16093 struct lpfc_mbx_rq_create_v2 *rq_create; 16094 struct lpfc_dmabuf *dmabuf; 16095 LPFC_MBOXQ_t *mbox; 16096 int rc, length, alloclen, status = 0; 16097 int cnt, idx, numrq, page_idx = 0; 16098 uint32_t shdr_status, shdr_add_status; 16099 union lpfc_sli4_cfg_shdr *shdr; 16100 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16101 16102 numrq = phba->cfg_nvmet_mrq; 16103 /* sanity check on array memory */ 16104 if (!hrqp || !drqp || !cqp || !numrq) 16105 return -ENODEV; 16106 if (!phba->sli4_hba.pc_sli4_params.supported) 16107 hw_page_size = SLI4_PAGE_SIZE; 16108 16109 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16110 if (!mbox) 16111 return -ENOMEM; 16112 16113 length = sizeof(struct lpfc_mbx_rq_create_v2); 16114 length += ((2 * numrq * hrqp[0]->page_count) * 16115 sizeof(struct dma_address)); 16116 16117 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16118 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16119 LPFC_SLI4_MBX_NEMBED); 16120 if (alloclen < length) { 16121 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16122 "3099 Allocated DMA memory size (%d) is " 16123 "less than the requested DMA memory size " 16124 "(%d)\n", alloclen, length); 16125 status = -ENOMEM; 16126 goto out; 16127 } 16128 16129 16130 16131 rq_create = mbox->sge_array->addr[0]; 16132 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16133 16134 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16135 cnt = 0; 16136 16137 for (idx = 0; idx < numrq; idx++) { 16138 hrq = hrqp[idx]; 16139 drq = drqp[idx]; 16140 cq = cqp[idx]; 16141 16142 /* sanity check on queue memory */ 16143 if (!hrq || !drq || !cq) { 16144 status = -ENODEV; 16145 goto out; 16146 } 16147 16148 if (hrq->entry_count != drq->entry_count) { 16149 status = -EINVAL; 16150 goto out; 16151 } 16152 16153 if (idx == 0) { 16154 bf_set(lpfc_mbx_rq_create_num_pages, 16155 &rq_create->u.request, 16156 hrq->page_count); 16157 bf_set(lpfc_mbx_rq_create_rq_cnt, 16158 &rq_create->u.request, (numrq * 2)); 16159 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16160 1); 16161 bf_set(lpfc_rq_context_base_cq, 16162 &rq_create->u.request.context, 16163 cq->queue_id); 16164 bf_set(lpfc_rq_context_data_size, 16165 &rq_create->u.request.context, 16166 LPFC_NVMET_DATA_BUF_SIZE); 16167 bf_set(lpfc_rq_context_hdr_size, 16168 &rq_create->u.request.context, 16169 LPFC_HDR_BUF_SIZE); 16170 bf_set(lpfc_rq_context_rqe_count_1, 16171 &rq_create->u.request.context, 16172 hrq->entry_count); 16173 bf_set(lpfc_rq_context_rqe_size, 16174 &rq_create->u.request.context, 16175 LPFC_RQE_SIZE_8); 16176 bf_set(lpfc_rq_context_page_size, 16177 &rq_create->u.request.context, 16178 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16179 } 16180 rc = 0; 16181 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16182 memset(dmabuf->virt, 0, hw_page_size); 16183 cnt = page_idx + dmabuf->buffer_tag; 16184 rq_create->u.request.page[cnt].addr_lo = 16185 putPaddrLow(dmabuf->phys); 16186 rq_create->u.request.page[cnt].addr_hi = 16187 putPaddrHigh(dmabuf->phys); 16188 rc++; 16189 } 16190 page_idx += rc; 16191 16192 rc = 0; 16193 list_for_each_entry(dmabuf, &drq->page_list, list) { 16194 memset(dmabuf->virt, 0, hw_page_size); 16195 cnt = page_idx + dmabuf->buffer_tag; 16196 rq_create->u.request.page[cnt].addr_lo = 16197 putPaddrLow(dmabuf->phys); 16198 rq_create->u.request.page[cnt].addr_hi = 16199 putPaddrHigh(dmabuf->phys); 16200 rc++; 16201 } 16202 page_idx += rc; 16203 16204 hrq->db_format = LPFC_DB_RING_FORMAT; 16205 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16206 hrq->type = LPFC_HRQ; 16207 hrq->assoc_qid = cq->queue_id; 16208 hrq->subtype = subtype; 16209 hrq->host_index = 0; 16210 hrq->hba_index = 0; 16211 hrq->entry_repost = LPFC_RQ_REPOST; 16212 16213 drq->db_format = LPFC_DB_RING_FORMAT; 16214 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16215 drq->type = LPFC_DRQ; 16216 drq->assoc_qid = cq->queue_id; 16217 drq->subtype = subtype; 16218 drq->host_index = 0; 16219 drq->hba_index = 0; 16220 drq->entry_repost = LPFC_RQ_REPOST; 16221 16222 list_add_tail(&hrq->list, &cq->child_list); 16223 list_add_tail(&drq->list, &cq->child_list); 16224 } 16225 16226 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16227 /* The IOCTL status is embedded in the mailbox subheader. */ 16228 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16229 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16230 if (shdr_status || shdr_add_status || rc) { 16231 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16232 "3120 RQ_CREATE mailbox failed with " 16233 "status x%x add_status x%x, mbx status x%x\n", 16234 shdr_status, shdr_add_status, rc); 16235 status = -ENXIO; 16236 goto out; 16237 } 16238 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16239 if (rc == 0xFFFF) { 16240 status = -ENXIO; 16241 goto out; 16242 } 16243 16244 /* Initialize all RQs with associated queue id */ 16245 for (idx = 0; idx < numrq; idx++) { 16246 hrq = hrqp[idx]; 16247 hrq->queue_id = rc + (2 * idx); 16248 drq = drqp[idx]; 16249 drq->queue_id = rc + (2 * idx) + 1; 16250 } 16251 16252 out: 16253 lpfc_sli4_mbox_cmd_free(phba, mbox); 16254 return status; 16255 } 16256 16257 /** 16258 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16259 * @eq: The queue structure associated with the queue to destroy. 16260 * 16261 * This function destroys a queue, as detailed in @eq by sending an mailbox 16262 * command, specific to the type of queue, to the HBA. 16263 * 16264 * The @eq struct is used to get the queue ID of the queue to destroy. 16265 * 16266 * On success this function will return a zero. If the queue destroy mailbox 16267 * command fails this function will return -ENXIO. 16268 **/ 16269 int 16270 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16271 { 16272 LPFC_MBOXQ_t *mbox; 16273 int rc, length, status = 0; 16274 uint32_t shdr_status, shdr_add_status; 16275 union lpfc_sli4_cfg_shdr *shdr; 16276 16277 /* sanity check on queue memory */ 16278 if (!eq) 16279 return -ENODEV; 16280 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16281 if (!mbox) 16282 return -ENOMEM; 16283 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16284 sizeof(struct lpfc_sli4_cfg_mhdr)); 16285 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16286 LPFC_MBOX_OPCODE_EQ_DESTROY, 16287 length, LPFC_SLI4_MBX_EMBED); 16288 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16289 eq->queue_id); 16290 mbox->vport = eq->phba->pport; 16291 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16292 16293 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16294 /* The IOCTL status is embedded in the mailbox subheader. */ 16295 shdr = (union lpfc_sli4_cfg_shdr *) 16296 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16297 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16298 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16299 if (shdr_status || shdr_add_status || rc) { 16300 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16301 "2505 EQ_DESTROY mailbox failed with " 16302 "status x%x add_status x%x, mbx status x%x\n", 16303 shdr_status, shdr_add_status, rc); 16304 status = -ENXIO; 16305 } 16306 16307 /* Remove eq from any list */ 16308 list_del_init(&eq->list); 16309 mempool_free(mbox, eq->phba->mbox_mem_pool); 16310 return status; 16311 } 16312 16313 /** 16314 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16315 * @cq: The queue structure associated with the queue to destroy. 16316 * 16317 * This function destroys a queue, as detailed in @cq by sending an mailbox 16318 * command, specific to the type of queue, to the HBA. 16319 * 16320 * The @cq struct is used to get the queue ID of the queue to destroy. 16321 * 16322 * On success this function will return a zero. If the queue destroy mailbox 16323 * command fails this function will return -ENXIO. 16324 **/ 16325 int 16326 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16327 { 16328 LPFC_MBOXQ_t *mbox; 16329 int rc, length, status = 0; 16330 uint32_t shdr_status, shdr_add_status; 16331 union lpfc_sli4_cfg_shdr *shdr; 16332 16333 /* sanity check on queue memory */ 16334 if (!cq) 16335 return -ENODEV; 16336 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16337 if (!mbox) 16338 return -ENOMEM; 16339 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16340 sizeof(struct lpfc_sli4_cfg_mhdr)); 16341 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16342 LPFC_MBOX_OPCODE_CQ_DESTROY, 16343 length, LPFC_SLI4_MBX_EMBED); 16344 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16345 cq->queue_id); 16346 mbox->vport = cq->phba->pport; 16347 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16348 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16349 /* The IOCTL status is embedded in the mailbox subheader. */ 16350 shdr = (union lpfc_sli4_cfg_shdr *) 16351 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16352 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16353 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16354 if (shdr_status || shdr_add_status || rc) { 16355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16356 "2506 CQ_DESTROY mailbox failed with " 16357 "status x%x add_status x%x, mbx status x%x\n", 16358 shdr_status, shdr_add_status, rc); 16359 status = -ENXIO; 16360 } 16361 /* Remove cq from any list */ 16362 list_del_init(&cq->list); 16363 mempool_free(mbox, cq->phba->mbox_mem_pool); 16364 return status; 16365 } 16366 16367 /** 16368 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16369 * @qm: The queue structure associated with the queue to destroy. 16370 * 16371 * This function destroys a queue, as detailed in @mq by sending an mailbox 16372 * command, specific to the type of queue, to the HBA. 16373 * 16374 * The @mq struct is used to get the queue ID of the queue to destroy. 16375 * 16376 * On success this function will return a zero. If the queue destroy mailbox 16377 * command fails this function will return -ENXIO. 16378 **/ 16379 int 16380 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16381 { 16382 LPFC_MBOXQ_t *mbox; 16383 int rc, length, status = 0; 16384 uint32_t shdr_status, shdr_add_status; 16385 union lpfc_sli4_cfg_shdr *shdr; 16386 16387 /* sanity check on queue memory */ 16388 if (!mq) 16389 return -ENODEV; 16390 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16391 if (!mbox) 16392 return -ENOMEM; 16393 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16394 sizeof(struct lpfc_sli4_cfg_mhdr)); 16395 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16396 LPFC_MBOX_OPCODE_MQ_DESTROY, 16397 length, LPFC_SLI4_MBX_EMBED); 16398 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16399 mq->queue_id); 16400 mbox->vport = mq->phba->pport; 16401 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16402 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16403 /* The IOCTL status is embedded in the mailbox subheader. */ 16404 shdr = (union lpfc_sli4_cfg_shdr *) 16405 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16406 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16407 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16408 if (shdr_status || shdr_add_status || rc) { 16409 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16410 "2507 MQ_DESTROY mailbox failed with " 16411 "status x%x add_status x%x, mbx status x%x\n", 16412 shdr_status, shdr_add_status, rc); 16413 status = -ENXIO; 16414 } 16415 /* Remove mq from any list */ 16416 list_del_init(&mq->list); 16417 mempool_free(mbox, mq->phba->mbox_mem_pool); 16418 return status; 16419 } 16420 16421 /** 16422 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16423 * @wq: The queue structure associated with the queue to destroy. 16424 * 16425 * This function destroys a queue, as detailed in @wq by sending an mailbox 16426 * command, specific to the type of queue, to the HBA. 16427 * 16428 * The @wq struct is used to get the queue ID of the queue to destroy. 16429 * 16430 * On success this function will return a zero. If the queue destroy mailbox 16431 * command fails this function will return -ENXIO. 16432 **/ 16433 int 16434 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16435 { 16436 LPFC_MBOXQ_t *mbox; 16437 int rc, length, status = 0; 16438 uint32_t shdr_status, shdr_add_status; 16439 union lpfc_sli4_cfg_shdr *shdr; 16440 16441 /* sanity check on queue memory */ 16442 if (!wq) 16443 return -ENODEV; 16444 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16445 if (!mbox) 16446 return -ENOMEM; 16447 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16448 sizeof(struct lpfc_sli4_cfg_mhdr)); 16449 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16450 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16451 length, LPFC_SLI4_MBX_EMBED); 16452 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16453 wq->queue_id); 16454 mbox->vport = wq->phba->pport; 16455 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16456 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16457 shdr = (union lpfc_sli4_cfg_shdr *) 16458 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16459 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16460 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16461 if (shdr_status || shdr_add_status || rc) { 16462 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16463 "2508 WQ_DESTROY mailbox failed with " 16464 "status x%x add_status x%x, mbx status x%x\n", 16465 shdr_status, shdr_add_status, rc); 16466 status = -ENXIO; 16467 } 16468 /* Remove wq from any list */ 16469 list_del_init(&wq->list); 16470 kfree(wq->pring); 16471 wq->pring = NULL; 16472 mempool_free(mbox, wq->phba->mbox_mem_pool); 16473 return status; 16474 } 16475 16476 /** 16477 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16478 * @rq: The queue structure associated with the queue to destroy. 16479 * 16480 * This function destroys a queue, as detailed in @rq by sending an mailbox 16481 * command, specific to the type of queue, to the HBA. 16482 * 16483 * The @rq struct is used to get the queue ID of the queue to destroy. 16484 * 16485 * On success this function will return a zero. If the queue destroy mailbox 16486 * command fails this function will return -ENXIO. 16487 **/ 16488 int 16489 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16490 struct lpfc_queue *drq) 16491 { 16492 LPFC_MBOXQ_t *mbox; 16493 int rc, length, status = 0; 16494 uint32_t shdr_status, shdr_add_status; 16495 union lpfc_sli4_cfg_shdr *shdr; 16496 16497 /* sanity check on queue memory */ 16498 if (!hrq || !drq) 16499 return -ENODEV; 16500 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16501 if (!mbox) 16502 return -ENOMEM; 16503 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16504 sizeof(struct lpfc_sli4_cfg_mhdr)); 16505 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16506 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16507 length, LPFC_SLI4_MBX_EMBED); 16508 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16509 hrq->queue_id); 16510 mbox->vport = hrq->phba->pport; 16511 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16512 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16513 /* The IOCTL status is embedded in the mailbox subheader. */ 16514 shdr = (union lpfc_sli4_cfg_shdr *) 16515 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16516 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16517 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16518 if (shdr_status || shdr_add_status || rc) { 16519 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16520 "2509 RQ_DESTROY mailbox failed with " 16521 "status x%x add_status x%x, mbx status x%x\n", 16522 shdr_status, shdr_add_status, rc); 16523 if (rc != MBX_TIMEOUT) 16524 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16525 return -ENXIO; 16526 } 16527 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16528 drq->queue_id); 16529 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16530 shdr = (union lpfc_sli4_cfg_shdr *) 16531 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16532 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16533 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16534 if (shdr_status || shdr_add_status || rc) { 16535 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16536 "2510 RQ_DESTROY mailbox failed with " 16537 "status x%x add_status x%x, mbx status x%x\n", 16538 shdr_status, shdr_add_status, rc); 16539 status = -ENXIO; 16540 } 16541 list_del_init(&hrq->list); 16542 list_del_init(&drq->list); 16543 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16544 return status; 16545 } 16546 16547 /** 16548 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16549 * @phba: The virtual port for which this call being executed. 16550 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16551 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16552 * @xritag: the xritag that ties this io to the SGL pages. 16553 * 16554 * This routine will post the sgl pages for the IO that has the xritag 16555 * that is in the iocbq structure. The xritag is assigned during iocbq 16556 * creation and persists for as long as the driver is loaded. 16557 * if the caller has fewer than 256 scatter gather segments to map then 16558 * pdma_phys_addr1 should be 0. 16559 * If the caller needs to map more than 256 scatter gather segment then 16560 * pdma_phys_addr1 should be a valid physical address. 16561 * physical address for SGLs must be 64 byte aligned. 16562 * If you are going to map 2 SGL's then the first one must have 256 entries 16563 * the second sgl can have between 1 and 256 entries. 16564 * 16565 * Return codes: 16566 * 0 - Success 16567 * -ENXIO, -ENOMEM - Failure 16568 **/ 16569 int 16570 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16571 dma_addr_t pdma_phys_addr0, 16572 dma_addr_t pdma_phys_addr1, 16573 uint16_t xritag) 16574 { 16575 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16576 LPFC_MBOXQ_t *mbox; 16577 int rc; 16578 uint32_t shdr_status, shdr_add_status; 16579 uint32_t mbox_tmo; 16580 union lpfc_sli4_cfg_shdr *shdr; 16581 16582 if (xritag == NO_XRI) { 16583 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16584 "0364 Invalid param:\n"); 16585 return -EINVAL; 16586 } 16587 16588 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16589 if (!mbox) 16590 return -ENOMEM; 16591 16592 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16593 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16594 sizeof(struct lpfc_mbx_post_sgl_pages) - 16595 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16596 16597 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16598 &mbox->u.mqe.un.post_sgl_pages; 16599 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16600 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16601 16602 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16603 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16604 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16605 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16606 16607 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16608 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16609 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16610 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16611 if (!phba->sli4_hba.intr_enable) 16612 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16613 else { 16614 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16615 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16616 } 16617 /* The IOCTL status is embedded in the mailbox subheader. */ 16618 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16619 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16620 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16621 if (rc != MBX_TIMEOUT) 16622 mempool_free(mbox, phba->mbox_mem_pool); 16623 if (shdr_status || shdr_add_status || rc) { 16624 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16625 "2511 POST_SGL mailbox failed with " 16626 "status x%x add_status x%x, mbx status x%x\n", 16627 shdr_status, shdr_add_status, rc); 16628 } 16629 return 0; 16630 } 16631 16632 /** 16633 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16634 * @phba: pointer to lpfc hba data structure. 16635 * 16636 * This routine is invoked to post rpi header templates to the 16637 * HBA consistent with the SLI-4 interface spec. This routine 16638 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16639 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16640 * 16641 * Returns 16642 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16643 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16644 **/ 16645 static uint16_t 16646 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16647 { 16648 unsigned long xri; 16649 16650 /* 16651 * Fetch the next logical xri. Because this index is logical, 16652 * the driver starts at 0 each time. 16653 */ 16654 spin_lock_irq(&phba->hbalock); 16655 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16656 phba->sli4_hba.max_cfg_param.max_xri, 0); 16657 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16658 spin_unlock_irq(&phba->hbalock); 16659 return NO_XRI; 16660 } else { 16661 set_bit(xri, phba->sli4_hba.xri_bmask); 16662 phba->sli4_hba.max_cfg_param.xri_used++; 16663 } 16664 spin_unlock_irq(&phba->hbalock); 16665 return xri; 16666 } 16667 16668 /** 16669 * lpfc_sli4_free_xri - Release an xri for reuse. 16670 * @phba: pointer to lpfc hba data structure. 16671 * 16672 * This routine is invoked to release an xri to the pool of 16673 * available rpis maintained by the driver. 16674 **/ 16675 static void 16676 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16677 { 16678 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16679 phba->sli4_hba.max_cfg_param.xri_used--; 16680 } 16681 } 16682 16683 /** 16684 * lpfc_sli4_free_xri - Release an xri for reuse. 16685 * @phba: pointer to lpfc hba data structure. 16686 * 16687 * This routine is invoked to release an xri to the pool of 16688 * available rpis maintained by the driver. 16689 **/ 16690 void 16691 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16692 { 16693 spin_lock_irq(&phba->hbalock); 16694 __lpfc_sli4_free_xri(phba, xri); 16695 spin_unlock_irq(&phba->hbalock); 16696 } 16697 16698 /** 16699 * lpfc_sli4_next_xritag - Get an xritag for the io 16700 * @phba: Pointer to HBA context object. 16701 * 16702 * This function gets an xritag for the iocb. If there is no unused xritag 16703 * it will return 0xffff. 16704 * The function returns the allocated xritag if successful, else returns zero. 16705 * Zero is not a valid xritag. 16706 * The caller is not required to hold any lock. 16707 **/ 16708 uint16_t 16709 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16710 { 16711 uint16_t xri_index; 16712 16713 xri_index = lpfc_sli4_alloc_xri(phba); 16714 if (xri_index == NO_XRI) 16715 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16716 "2004 Failed to allocate XRI.last XRITAG is %d" 16717 " Max XRI is %d, Used XRI is %d\n", 16718 xri_index, 16719 phba->sli4_hba.max_cfg_param.max_xri, 16720 phba->sli4_hba.max_cfg_param.xri_used); 16721 return xri_index; 16722 } 16723 16724 /** 16725 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16726 * @phba: pointer to lpfc hba data structure. 16727 * @post_sgl_list: pointer to els sgl entry list. 16728 * @count: number of els sgl entries on the list. 16729 * 16730 * This routine is invoked to post a block of driver's sgl pages to the 16731 * HBA using non-embedded mailbox command. No Lock is held. This routine 16732 * is only called when the driver is loading and after all IO has been 16733 * stopped. 16734 **/ 16735 static int 16736 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16737 struct list_head *post_sgl_list, 16738 int post_cnt) 16739 { 16740 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16741 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16742 struct sgl_page_pairs *sgl_pg_pairs; 16743 void *viraddr; 16744 LPFC_MBOXQ_t *mbox; 16745 uint32_t reqlen, alloclen, pg_pairs; 16746 uint32_t mbox_tmo; 16747 uint16_t xritag_start = 0; 16748 int rc = 0; 16749 uint32_t shdr_status, shdr_add_status; 16750 union lpfc_sli4_cfg_shdr *shdr; 16751 16752 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16753 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16754 if (reqlen > SLI4_PAGE_SIZE) { 16755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16756 "2559 Block sgl registration required DMA " 16757 "size (%d) great than a page\n", reqlen); 16758 return -ENOMEM; 16759 } 16760 16761 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16762 if (!mbox) 16763 return -ENOMEM; 16764 16765 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16766 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16767 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16768 LPFC_SLI4_MBX_NEMBED); 16769 16770 if (alloclen < reqlen) { 16771 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16772 "0285 Allocated DMA memory size (%d) is " 16773 "less than the requested DMA memory " 16774 "size (%d)\n", alloclen, reqlen); 16775 lpfc_sli4_mbox_cmd_free(phba, mbox); 16776 return -ENOMEM; 16777 } 16778 /* Set up the SGL pages in the non-embedded DMA pages */ 16779 viraddr = mbox->sge_array->addr[0]; 16780 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16781 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16782 16783 pg_pairs = 0; 16784 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16785 /* Set up the sge entry */ 16786 sgl_pg_pairs->sgl_pg0_addr_lo = 16787 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16788 sgl_pg_pairs->sgl_pg0_addr_hi = 16789 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16790 sgl_pg_pairs->sgl_pg1_addr_lo = 16791 cpu_to_le32(putPaddrLow(0)); 16792 sgl_pg_pairs->sgl_pg1_addr_hi = 16793 cpu_to_le32(putPaddrHigh(0)); 16794 16795 /* Keep the first xritag on the list */ 16796 if (pg_pairs == 0) 16797 xritag_start = sglq_entry->sli4_xritag; 16798 sgl_pg_pairs++; 16799 pg_pairs++; 16800 } 16801 16802 /* Complete initialization and perform endian conversion. */ 16803 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16804 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16805 sgl->word0 = cpu_to_le32(sgl->word0); 16806 16807 if (!phba->sli4_hba.intr_enable) 16808 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16809 else { 16810 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16811 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16812 } 16813 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16814 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16815 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16816 if (rc != MBX_TIMEOUT) 16817 lpfc_sli4_mbox_cmd_free(phba, mbox); 16818 if (shdr_status || shdr_add_status || rc) { 16819 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16820 "2513 POST_SGL_BLOCK mailbox command failed " 16821 "status x%x add_status x%x mbx status x%x\n", 16822 shdr_status, shdr_add_status, rc); 16823 rc = -ENXIO; 16824 } 16825 return rc; 16826 } 16827 16828 /** 16829 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16830 * @phba: pointer to lpfc hba data structure. 16831 * @sblist: pointer to scsi buffer list. 16832 * @count: number of scsi buffers on the list. 16833 * 16834 * This routine is invoked to post a block of @count scsi sgl pages from a 16835 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16836 * No Lock is held. 16837 * 16838 **/ 16839 int 16840 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16841 struct list_head *sblist, 16842 int count) 16843 { 16844 struct lpfc_scsi_buf *psb; 16845 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16846 struct sgl_page_pairs *sgl_pg_pairs; 16847 void *viraddr; 16848 LPFC_MBOXQ_t *mbox; 16849 uint32_t reqlen, alloclen, pg_pairs; 16850 uint32_t mbox_tmo; 16851 uint16_t xritag_start = 0; 16852 int rc = 0; 16853 uint32_t shdr_status, shdr_add_status; 16854 dma_addr_t pdma_phys_bpl1; 16855 union lpfc_sli4_cfg_shdr *shdr; 16856 16857 /* Calculate the requested length of the dma memory */ 16858 reqlen = count * sizeof(struct sgl_page_pairs) + 16859 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16860 if (reqlen > SLI4_PAGE_SIZE) { 16861 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16862 "0217 Block sgl registration required DMA " 16863 "size (%d) great than a page\n", reqlen); 16864 return -ENOMEM; 16865 } 16866 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16867 if (!mbox) { 16868 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16869 "0283 Failed to allocate mbox cmd memory\n"); 16870 return -ENOMEM; 16871 } 16872 16873 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16874 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16875 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16876 LPFC_SLI4_MBX_NEMBED); 16877 16878 if (alloclen < reqlen) { 16879 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16880 "2561 Allocated DMA memory size (%d) is " 16881 "less than the requested DMA memory " 16882 "size (%d)\n", alloclen, reqlen); 16883 lpfc_sli4_mbox_cmd_free(phba, mbox); 16884 return -ENOMEM; 16885 } 16886 16887 /* Get the first SGE entry from the non-embedded DMA memory */ 16888 viraddr = mbox->sge_array->addr[0]; 16889 16890 /* Set up the SGL pages in the non-embedded DMA pages */ 16891 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16892 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16893 16894 pg_pairs = 0; 16895 list_for_each_entry(psb, sblist, list) { 16896 /* Set up the sge entry */ 16897 sgl_pg_pairs->sgl_pg0_addr_lo = 16898 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16899 sgl_pg_pairs->sgl_pg0_addr_hi = 16900 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16901 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16902 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16903 else 16904 pdma_phys_bpl1 = 0; 16905 sgl_pg_pairs->sgl_pg1_addr_lo = 16906 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16907 sgl_pg_pairs->sgl_pg1_addr_hi = 16908 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16909 /* Keep the first xritag on the list */ 16910 if (pg_pairs == 0) 16911 xritag_start = psb->cur_iocbq.sli4_xritag; 16912 sgl_pg_pairs++; 16913 pg_pairs++; 16914 } 16915 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16916 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16917 /* Perform endian conversion if necessary */ 16918 sgl->word0 = cpu_to_le32(sgl->word0); 16919 16920 if (!phba->sli4_hba.intr_enable) 16921 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16922 else { 16923 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16924 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16925 } 16926 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16927 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16928 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16929 if (rc != MBX_TIMEOUT) 16930 lpfc_sli4_mbox_cmd_free(phba, mbox); 16931 if (shdr_status || shdr_add_status || rc) { 16932 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16933 "2564 POST_SGL_BLOCK mailbox command failed " 16934 "status x%x add_status x%x mbx status x%x\n", 16935 shdr_status, shdr_add_status, rc); 16936 rc = -ENXIO; 16937 } 16938 return rc; 16939 } 16940 16941 /** 16942 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16943 * @phba: pointer to lpfc_hba struct that the frame was received on 16944 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16945 * 16946 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16947 * valid type of frame that the LPFC driver will handle. This function will 16948 * return a zero if the frame is a valid frame or a non zero value when the 16949 * frame does not pass the check. 16950 **/ 16951 static int 16952 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16953 { 16954 /* make rctl_names static to save stack space */ 16955 struct fc_vft_header *fc_vft_hdr; 16956 uint32_t *header = (uint32_t *) fc_hdr; 16957 16958 switch (fc_hdr->fh_r_ctl) { 16959 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16960 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16961 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16962 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16963 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16964 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16965 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16966 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16967 case FC_RCTL_ELS_REQ: /* extended link services request */ 16968 case FC_RCTL_ELS_REP: /* extended link services reply */ 16969 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16970 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16971 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16972 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16973 case FC_RCTL_BA_RMC: /* remove connection */ 16974 case FC_RCTL_BA_ACC: /* basic accept */ 16975 case FC_RCTL_BA_RJT: /* basic reject */ 16976 case FC_RCTL_BA_PRMT: 16977 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16978 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16979 case FC_RCTL_P_RJT: /* port reject */ 16980 case FC_RCTL_F_RJT: /* fabric reject */ 16981 case FC_RCTL_P_BSY: /* port busy */ 16982 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16983 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16984 case FC_RCTL_LCR: /* link credit reset */ 16985 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16986 case FC_RCTL_END: /* end */ 16987 break; 16988 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16989 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16990 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16991 return lpfc_fc_frame_check(phba, fc_hdr); 16992 default: 16993 goto drop; 16994 } 16995 16996 switch (fc_hdr->fh_type) { 16997 case FC_TYPE_BLS: 16998 case FC_TYPE_ELS: 16999 case FC_TYPE_FCP: 17000 case FC_TYPE_CT: 17001 case FC_TYPE_NVME: 17002 break; 17003 case FC_TYPE_IP: 17004 case FC_TYPE_ILS: 17005 default: 17006 goto drop; 17007 } 17008 17009 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17010 "2538 Received frame rctl:x%x, type:x%x, " 17011 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17012 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17013 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17014 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17015 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17016 be32_to_cpu(header[6])); 17017 return 0; 17018 drop: 17019 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17020 "2539 Dropped frame rctl:x%x type:x%x\n", 17021 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17022 return 1; 17023 } 17024 17025 /** 17026 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17027 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17028 * 17029 * This function processes the FC header to retrieve the VFI from the VF 17030 * header, if one exists. This function will return the VFI if one exists 17031 * or 0 if no VSAN Header exists. 17032 **/ 17033 static uint32_t 17034 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17035 { 17036 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17037 17038 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17039 return 0; 17040 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17041 } 17042 17043 /** 17044 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17045 * @phba: Pointer to the HBA structure to search for the vport on 17046 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17047 * @fcfi: The FC Fabric ID that the frame came from 17048 * 17049 * This function searches the @phba for a vport that matches the content of the 17050 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17051 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17052 * returns the matching vport pointer or NULL if unable to match frame to a 17053 * vport. 17054 **/ 17055 static struct lpfc_vport * 17056 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17057 uint16_t fcfi, uint32_t did) 17058 { 17059 struct lpfc_vport **vports; 17060 struct lpfc_vport *vport = NULL; 17061 int i; 17062 17063 if (did == Fabric_DID) 17064 return phba->pport; 17065 if ((phba->pport->fc_flag & FC_PT2PT) && 17066 !(phba->link_state == LPFC_HBA_READY)) 17067 return phba->pport; 17068 17069 vports = lpfc_create_vport_work_array(phba); 17070 if (vports != NULL) { 17071 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17072 if (phba->fcf.fcfi == fcfi && 17073 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17074 vports[i]->fc_myDID == did) { 17075 vport = vports[i]; 17076 break; 17077 } 17078 } 17079 } 17080 lpfc_destroy_vport_work_array(phba, vports); 17081 return vport; 17082 } 17083 17084 /** 17085 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17086 * @vport: The vport to work on. 17087 * 17088 * This function updates the receive sequence time stamp for this vport. The 17089 * receive sequence time stamp indicates the time that the last frame of the 17090 * the sequence that has been idle for the longest amount of time was received. 17091 * the driver uses this time stamp to indicate if any received sequences have 17092 * timed out. 17093 **/ 17094 static void 17095 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17096 { 17097 struct lpfc_dmabuf *h_buf; 17098 struct hbq_dmabuf *dmabuf = NULL; 17099 17100 /* get the oldest sequence on the rcv list */ 17101 h_buf = list_get_first(&vport->rcv_buffer_list, 17102 struct lpfc_dmabuf, list); 17103 if (!h_buf) 17104 return; 17105 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17106 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17107 } 17108 17109 /** 17110 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17111 * @vport: The vport that the received sequences were sent to. 17112 * 17113 * This function cleans up all outstanding received sequences. This is called 17114 * by the driver when a link event or user action invalidates all the received 17115 * sequences. 17116 **/ 17117 void 17118 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17119 { 17120 struct lpfc_dmabuf *h_buf, *hnext; 17121 struct lpfc_dmabuf *d_buf, *dnext; 17122 struct hbq_dmabuf *dmabuf = NULL; 17123 17124 /* start with the oldest sequence on the rcv list */ 17125 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17126 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17127 list_del_init(&dmabuf->hbuf.list); 17128 list_for_each_entry_safe(d_buf, dnext, 17129 &dmabuf->dbuf.list, list) { 17130 list_del_init(&d_buf->list); 17131 lpfc_in_buf_free(vport->phba, d_buf); 17132 } 17133 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17134 } 17135 } 17136 17137 /** 17138 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17139 * @vport: The vport that the received sequences were sent to. 17140 * 17141 * This function determines whether any received sequences have timed out by 17142 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17143 * indicates that there is at least one timed out sequence this routine will 17144 * go through the received sequences one at a time from most inactive to most 17145 * active to determine which ones need to be cleaned up. Once it has determined 17146 * that a sequence needs to be cleaned up it will simply free up the resources 17147 * without sending an abort. 17148 **/ 17149 void 17150 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17151 { 17152 struct lpfc_dmabuf *h_buf, *hnext; 17153 struct lpfc_dmabuf *d_buf, *dnext; 17154 struct hbq_dmabuf *dmabuf = NULL; 17155 unsigned long timeout; 17156 int abort_count = 0; 17157 17158 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17159 vport->rcv_buffer_time_stamp); 17160 if (list_empty(&vport->rcv_buffer_list) || 17161 time_before(jiffies, timeout)) 17162 return; 17163 /* start with the oldest sequence on the rcv list */ 17164 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17165 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17166 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17167 dmabuf->time_stamp); 17168 if (time_before(jiffies, timeout)) 17169 break; 17170 abort_count++; 17171 list_del_init(&dmabuf->hbuf.list); 17172 list_for_each_entry_safe(d_buf, dnext, 17173 &dmabuf->dbuf.list, list) { 17174 list_del_init(&d_buf->list); 17175 lpfc_in_buf_free(vport->phba, d_buf); 17176 } 17177 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17178 } 17179 if (abort_count) 17180 lpfc_update_rcv_time_stamp(vport); 17181 } 17182 17183 /** 17184 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17185 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17186 * 17187 * This function searches through the existing incomplete sequences that have 17188 * been sent to this @vport. If the frame matches one of the incomplete 17189 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17190 * make up that sequence. If no sequence is found that matches this frame then 17191 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17192 * This function returns a pointer to the first dmabuf in the sequence list that 17193 * the frame was linked to. 17194 **/ 17195 static struct hbq_dmabuf * 17196 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17197 { 17198 struct fc_frame_header *new_hdr; 17199 struct fc_frame_header *temp_hdr; 17200 struct lpfc_dmabuf *d_buf; 17201 struct lpfc_dmabuf *h_buf; 17202 struct hbq_dmabuf *seq_dmabuf = NULL; 17203 struct hbq_dmabuf *temp_dmabuf = NULL; 17204 uint8_t found = 0; 17205 17206 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17207 dmabuf->time_stamp = jiffies; 17208 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17209 17210 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17211 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17212 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17213 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17214 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17215 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17216 continue; 17217 /* found a pending sequence that matches this frame */ 17218 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17219 break; 17220 } 17221 if (!seq_dmabuf) { 17222 /* 17223 * This indicates first frame received for this sequence. 17224 * Queue the buffer on the vport's rcv_buffer_list. 17225 */ 17226 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17227 lpfc_update_rcv_time_stamp(vport); 17228 return dmabuf; 17229 } 17230 temp_hdr = seq_dmabuf->hbuf.virt; 17231 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17232 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17233 list_del_init(&seq_dmabuf->hbuf.list); 17234 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17235 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17236 lpfc_update_rcv_time_stamp(vport); 17237 return dmabuf; 17238 } 17239 /* move this sequence to the tail to indicate a young sequence */ 17240 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17241 seq_dmabuf->time_stamp = jiffies; 17242 lpfc_update_rcv_time_stamp(vport); 17243 if (list_empty(&seq_dmabuf->dbuf.list)) { 17244 temp_hdr = dmabuf->hbuf.virt; 17245 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17246 return seq_dmabuf; 17247 } 17248 /* find the correct place in the sequence to insert this frame */ 17249 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17250 while (!found) { 17251 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17252 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17253 /* 17254 * If the frame's sequence count is greater than the frame on 17255 * the list then insert the frame right after this frame 17256 */ 17257 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17258 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17259 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17260 found = 1; 17261 break; 17262 } 17263 17264 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17265 break; 17266 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17267 } 17268 17269 if (found) 17270 return seq_dmabuf; 17271 return NULL; 17272 } 17273 17274 /** 17275 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17276 * @vport: pointer to a vitural port 17277 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17278 * 17279 * This function tries to abort from the partially assembed sequence, described 17280 * by the information from basic abbort @dmabuf. It checks to see whether such 17281 * partially assembled sequence held by the driver. If so, it shall free up all 17282 * the frames from the partially assembled sequence. 17283 * 17284 * Return 17285 * true -- if there is matching partially assembled sequence present and all 17286 * the frames freed with the sequence; 17287 * false -- if there is no matching partially assembled sequence present so 17288 * nothing got aborted in the lower layer driver 17289 **/ 17290 static bool 17291 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17292 struct hbq_dmabuf *dmabuf) 17293 { 17294 struct fc_frame_header *new_hdr; 17295 struct fc_frame_header *temp_hdr; 17296 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17297 struct hbq_dmabuf *seq_dmabuf = NULL; 17298 17299 /* Use the hdr_buf to find the sequence that matches this frame */ 17300 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17301 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17302 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17303 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17304 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17305 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17306 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17307 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17308 continue; 17309 /* found a pending sequence that matches this frame */ 17310 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17311 break; 17312 } 17313 17314 /* Free up all the frames from the partially assembled sequence */ 17315 if (seq_dmabuf) { 17316 list_for_each_entry_safe(d_buf, n_buf, 17317 &seq_dmabuf->dbuf.list, list) { 17318 list_del_init(&d_buf->list); 17319 lpfc_in_buf_free(vport->phba, d_buf); 17320 } 17321 return true; 17322 } 17323 return false; 17324 } 17325 17326 /** 17327 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17328 * @vport: pointer to a vitural port 17329 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17330 * 17331 * This function tries to abort from the assembed sequence from upper level 17332 * protocol, described by the information from basic abbort @dmabuf. It 17333 * checks to see whether such pending context exists at upper level protocol. 17334 * If so, it shall clean up the pending context. 17335 * 17336 * Return 17337 * true -- if there is matching pending context of the sequence cleaned 17338 * at ulp; 17339 * false -- if there is no matching pending context of the sequence present 17340 * at ulp. 17341 **/ 17342 static bool 17343 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17344 { 17345 struct lpfc_hba *phba = vport->phba; 17346 int handled; 17347 17348 /* Accepting abort at ulp with SLI4 only */ 17349 if (phba->sli_rev < LPFC_SLI_REV4) 17350 return false; 17351 17352 /* Register all caring upper level protocols to attend abort */ 17353 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17354 if (handled) 17355 return true; 17356 17357 return false; 17358 } 17359 17360 /** 17361 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17362 * @phba: Pointer to HBA context object. 17363 * @cmd_iocbq: pointer to the command iocbq structure. 17364 * @rsp_iocbq: pointer to the response iocbq structure. 17365 * 17366 * This function handles the sequence abort response iocb command complete 17367 * event. It properly releases the memory allocated to the sequence abort 17368 * accept iocb. 17369 **/ 17370 static void 17371 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17372 struct lpfc_iocbq *cmd_iocbq, 17373 struct lpfc_iocbq *rsp_iocbq) 17374 { 17375 struct lpfc_nodelist *ndlp; 17376 17377 if (cmd_iocbq) { 17378 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17379 lpfc_nlp_put(ndlp); 17380 lpfc_nlp_not_used(ndlp); 17381 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17382 } 17383 17384 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17385 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17386 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17387 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17388 rsp_iocbq->iocb.ulpStatus, 17389 rsp_iocbq->iocb.un.ulpWord[4]); 17390 } 17391 17392 /** 17393 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17394 * @phba: Pointer to HBA context object. 17395 * @xri: xri id in transaction. 17396 * 17397 * This function validates the xri maps to the known range of XRIs allocated an 17398 * used by the driver. 17399 **/ 17400 uint16_t 17401 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17402 uint16_t xri) 17403 { 17404 uint16_t i; 17405 17406 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17407 if (xri == phba->sli4_hba.xri_ids[i]) 17408 return i; 17409 } 17410 return NO_XRI; 17411 } 17412 17413 /** 17414 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17415 * @phba: Pointer to HBA context object. 17416 * @fc_hdr: pointer to a FC frame header. 17417 * 17418 * This function sends a basic response to a previous unsol sequence abort 17419 * event after aborting the sequence handling. 17420 **/ 17421 void 17422 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17423 struct fc_frame_header *fc_hdr, bool aborted) 17424 { 17425 struct lpfc_hba *phba = vport->phba; 17426 struct lpfc_iocbq *ctiocb = NULL; 17427 struct lpfc_nodelist *ndlp; 17428 uint16_t oxid, rxid, xri, lxri; 17429 uint32_t sid, fctl; 17430 IOCB_t *icmd; 17431 int rc; 17432 17433 if (!lpfc_is_link_up(phba)) 17434 return; 17435 17436 sid = sli4_sid_from_fc_hdr(fc_hdr); 17437 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17438 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17439 17440 ndlp = lpfc_findnode_did(vport, sid); 17441 if (!ndlp) { 17442 ndlp = lpfc_nlp_init(vport, sid); 17443 if (!ndlp) { 17444 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17445 "1268 Failed to allocate ndlp for " 17446 "oxid:x%x SID:x%x\n", oxid, sid); 17447 return; 17448 } 17449 /* Put ndlp onto pport node list */ 17450 lpfc_enqueue_node(vport, ndlp); 17451 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17452 /* re-setup ndlp without removing from node list */ 17453 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17454 if (!ndlp) { 17455 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17456 "3275 Failed to active ndlp found " 17457 "for oxid:x%x SID:x%x\n", oxid, sid); 17458 return; 17459 } 17460 } 17461 17462 /* Allocate buffer for rsp iocb */ 17463 ctiocb = lpfc_sli_get_iocbq(phba); 17464 if (!ctiocb) 17465 return; 17466 17467 /* Extract the F_CTL field from FC_HDR */ 17468 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17469 17470 icmd = &ctiocb->iocb; 17471 icmd->un.xseq64.bdl.bdeSize = 0; 17472 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17473 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17474 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17475 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17476 17477 /* Fill in the rest of iocb fields */ 17478 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17479 icmd->ulpBdeCount = 0; 17480 icmd->ulpLe = 1; 17481 icmd->ulpClass = CLASS3; 17482 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17483 ctiocb->context1 = lpfc_nlp_get(ndlp); 17484 17485 ctiocb->iocb_cmpl = NULL; 17486 ctiocb->vport = phba->pport; 17487 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17488 ctiocb->sli4_lxritag = NO_XRI; 17489 ctiocb->sli4_xritag = NO_XRI; 17490 17491 if (fctl & FC_FC_EX_CTX) 17492 /* Exchange responder sent the abort so we 17493 * own the oxid. 17494 */ 17495 xri = oxid; 17496 else 17497 xri = rxid; 17498 lxri = lpfc_sli4_xri_inrange(phba, xri); 17499 if (lxri != NO_XRI) 17500 lpfc_set_rrq_active(phba, ndlp, lxri, 17501 (xri == oxid) ? rxid : oxid, 0); 17502 /* For BA_ABTS from exchange responder, if the logical xri with 17503 * the oxid maps to the FCP XRI range, the port no longer has 17504 * that exchange context, send a BLS_RJT. Override the IOCB for 17505 * a BA_RJT. 17506 */ 17507 if ((fctl & FC_FC_EX_CTX) && 17508 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17509 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17510 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17511 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17512 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17513 } 17514 17515 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17516 * the driver no longer has that exchange, send a BLS_RJT. Override 17517 * the IOCB for a BA_RJT. 17518 */ 17519 if (aborted == false) { 17520 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17521 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17522 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17523 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17524 } 17525 17526 if (fctl & FC_FC_EX_CTX) { 17527 /* ABTS sent by responder to CT exchange, construction 17528 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17529 * field and RX_ID from ABTS for RX_ID field. 17530 */ 17531 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17532 } else { 17533 /* ABTS sent by initiator to CT exchange, construction 17534 * of BA_ACC will need to allocate a new XRI as for the 17535 * XRI_TAG field. 17536 */ 17537 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17538 } 17539 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17540 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17541 17542 /* Xmit CT abts response on exchange <xid> */ 17543 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17544 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17545 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17546 17547 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17548 if (rc == IOCB_ERROR) { 17549 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17550 "2925 Failed to issue CT ABTS RSP x%x on " 17551 "xri x%x, Data x%x\n", 17552 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17553 phba->link_state); 17554 lpfc_nlp_put(ndlp); 17555 ctiocb->context1 = NULL; 17556 lpfc_sli_release_iocbq(phba, ctiocb); 17557 } 17558 } 17559 17560 /** 17561 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17562 * @vport: Pointer to the vport on which this sequence was received 17563 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17564 * 17565 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17566 * receive sequence is only partially assembed by the driver, it shall abort 17567 * the partially assembled frames for the sequence. Otherwise, if the 17568 * unsolicited receive sequence has been completely assembled and passed to 17569 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17570 * unsolicited sequence has been aborted. After that, it will issue a basic 17571 * accept to accept the abort. 17572 **/ 17573 static void 17574 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17575 struct hbq_dmabuf *dmabuf) 17576 { 17577 struct lpfc_hba *phba = vport->phba; 17578 struct fc_frame_header fc_hdr; 17579 uint32_t fctl; 17580 bool aborted; 17581 17582 /* Make a copy of fc_hdr before the dmabuf being released */ 17583 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17584 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17585 17586 if (fctl & FC_FC_EX_CTX) { 17587 /* ABTS by responder to exchange, no cleanup needed */ 17588 aborted = true; 17589 } else { 17590 /* ABTS by initiator to exchange, need to do cleanup */ 17591 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17592 if (aborted == false) 17593 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17594 } 17595 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17596 17597 if (phba->nvmet_support) { 17598 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17599 return; 17600 } 17601 17602 /* Respond with BA_ACC or BA_RJT accordingly */ 17603 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17604 } 17605 17606 /** 17607 * lpfc_seq_complete - Indicates if a sequence is complete 17608 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17609 * 17610 * This function checks the sequence, starting with the frame described by 17611 * @dmabuf, to see if all the frames associated with this sequence are present. 17612 * the frames associated with this sequence are linked to the @dmabuf using the 17613 * dbuf list. This function looks for two major things. 1) That the first frame 17614 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17615 * set. 3) That there are no holes in the sequence count. The function will 17616 * return 1 when the sequence is complete, otherwise it will return 0. 17617 **/ 17618 static int 17619 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17620 { 17621 struct fc_frame_header *hdr; 17622 struct lpfc_dmabuf *d_buf; 17623 struct hbq_dmabuf *seq_dmabuf; 17624 uint32_t fctl; 17625 int seq_count = 0; 17626 17627 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17628 /* make sure first fame of sequence has a sequence count of zero */ 17629 if (hdr->fh_seq_cnt != seq_count) 17630 return 0; 17631 fctl = (hdr->fh_f_ctl[0] << 16 | 17632 hdr->fh_f_ctl[1] << 8 | 17633 hdr->fh_f_ctl[2]); 17634 /* If last frame of sequence we can return success. */ 17635 if (fctl & FC_FC_END_SEQ) 17636 return 1; 17637 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17638 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17639 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17640 /* If there is a hole in the sequence count then fail. */ 17641 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17642 return 0; 17643 fctl = (hdr->fh_f_ctl[0] << 16 | 17644 hdr->fh_f_ctl[1] << 8 | 17645 hdr->fh_f_ctl[2]); 17646 /* If last frame of sequence we can return success. */ 17647 if (fctl & FC_FC_END_SEQ) 17648 return 1; 17649 } 17650 return 0; 17651 } 17652 17653 /** 17654 * lpfc_prep_seq - Prep sequence for ULP processing 17655 * @vport: Pointer to the vport on which this sequence was received 17656 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17657 * 17658 * This function takes a sequence, described by a list of frames, and creates 17659 * a list of iocbq structures to describe the sequence. This iocbq list will be 17660 * used to issue to the generic unsolicited sequence handler. This routine 17661 * returns a pointer to the first iocbq in the list. If the function is unable 17662 * to allocate an iocbq then it throw out the received frames that were not 17663 * able to be described and return a pointer to the first iocbq. If unable to 17664 * allocate any iocbqs (including the first) this function will return NULL. 17665 **/ 17666 static struct lpfc_iocbq * 17667 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17668 { 17669 struct hbq_dmabuf *hbq_buf; 17670 struct lpfc_dmabuf *d_buf, *n_buf; 17671 struct lpfc_iocbq *first_iocbq, *iocbq; 17672 struct fc_frame_header *fc_hdr; 17673 uint32_t sid; 17674 uint32_t len, tot_len; 17675 struct ulp_bde64 *pbde; 17676 17677 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17678 /* remove from receive buffer list */ 17679 list_del_init(&seq_dmabuf->hbuf.list); 17680 lpfc_update_rcv_time_stamp(vport); 17681 /* get the Remote Port's SID */ 17682 sid = sli4_sid_from_fc_hdr(fc_hdr); 17683 tot_len = 0; 17684 /* Get an iocbq struct to fill in. */ 17685 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17686 if (first_iocbq) { 17687 /* Initialize the first IOCB. */ 17688 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17689 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17690 first_iocbq->vport = vport; 17691 17692 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17693 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17694 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17695 first_iocbq->iocb.un.rcvels.parmRo = 17696 sli4_did_from_fc_hdr(fc_hdr); 17697 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17698 } else 17699 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17700 first_iocbq->iocb.ulpContext = NO_XRI; 17701 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17702 be16_to_cpu(fc_hdr->fh_ox_id); 17703 /* iocbq is prepped for internal consumption. Physical vpi. */ 17704 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17705 vport->phba->vpi_ids[vport->vpi]; 17706 /* put the first buffer into the first IOCBq */ 17707 tot_len = bf_get(lpfc_rcqe_length, 17708 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17709 17710 first_iocbq->context2 = &seq_dmabuf->dbuf; 17711 first_iocbq->context3 = NULL; 17712 first_iocbq->iocb.ulpBdeCount = 1; 17713 if (tot_len > LPFC_DATA_BUF_SIZE) 17714 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17715 LPFC_DATA_BUF_SIZE; 17716 else 17717 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17718 17719 first_iocbq->iocb.un.rcvels.remoteID = sid; 17720 17721 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17722 } 17723 iocbq = first_iocbq; 17724 /* 17725 * Each IOCBq can have two Buffers assigned, so go through the list 17726 * of buffers for this sequence and save two buffers in each IOCBq 17727 */ 17728 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17729 if (!iocbq) { 17730 lpfc_in_buf_free(vport->phba, d_buf); 17731 continue; 17732 } 17733 if (!iocbq->context3) { 17734 iocbq->context3 = d_buf; 17735 iocbq->iocb.ulpBdeCount++; 17736 /* We need to get the size out of the right CQE */ 17737 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17738 len = bf_get(lpfc_rcqe_length, 17739 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17740 pbde = (struct ulp_bde64 *) 17741 &iocbq->iocb.unsli3.sli3Words[4]; 17742 if (len > LPFC_DATA_BUF_SIZE) 17743 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17744 else 17745 pbde->tus.f.bdeSize = len; 17746 17747 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17748 tot_len += len; 17749 } else { 17750 iocbq = lpfc_sli_get_iocbq(vport->phba); 17751 if (!iocbq) { 17752 if (first_iocbq) { 17753 first_iocbq->iocb.ulpStatus = 17754 IOSTAT_FCP_RSP_ERROR; 17755 first_iocbq->iocb.un.ulpWord[4] = 17756 IOERR_NO_RESOURCES; 17757 } 17758 lpfc_in_buf_free(vport->phba, d_buf); 17759 continue; 17760 } 17761 /* We need to get the size out of the right CQE */ 17762 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17763 len = bf_get(lpfc_rcqe_length, 17764 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17765 iocbq->context2 = d_buf; 17766 iocbq->context3 = NULL; 17767 iocbq->iocb.ulpBdeCount = 1; 17768 if (len > LPFC_DATA_BUF_SIZE) 17769 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17770 LPFC_DATA_BUF_SIZE; 17771 else 17772 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17773 17774 tot_len += len; 17775 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17776 17777 iocbq->iocb.un.rcvels.remoteID = sid; 17778 list_add_tail(&iocbq->list, &first_iocbq->list); 17779 } 17780 } 17781 return first_iocbq; 17782 } 17783 17784 static void 17785 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17786 struct hbq_dmabuf *seq_dmabuf) 17787 { 17788 struct fc_frame_header *fc_hdr; 17789 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17790 struct lpfc_hba *phba = vport->phba; 17791 17792 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17793 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17794 if (!iocbq) { 17795 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17796 "2707 Ring %d handler: Failed to allocate " 17797 "iocb Rctl x%x Type x%x received\n", 17798 LPFC_ELS_RING, 17799 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17800 return; 17801 } 17802 if (!lpfc_complete_unsol_iocb(phba, 17803 phba->sli4_hba.els_wq->pring, 17804 iocbq, fc_hdr->fh_r_ctl, 17805 fc_hdr->fh_type)) 17806 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17807 "2540 Ring %d handler: unexpected Rctl " 17808 "x%x Type x%x received\n", 17809 LPFC_ELS_RING, 17810 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17811 17812 /* Free iocb created in lpfc_prep_seq */ 17813 list_for_each_entry_safe(curr_iocb, next_iocb, 17814 &iocbq->list, list) { 17815 list_del_init(&curr_iocb->list); 17816 lpfc_sli_release_iocbq(phba, curr_iocb); 17817 } 17818 lpfc_sli_release_iocbq(phba, iocbq); 17819 } 17820 17821 static void 17822 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17823 struct lpfc_iocbq *rspiocb) 17824 { 17825 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17826 17827 if (pcmd && pcmd->virt) 17828 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17829 kfree(pcmd); 17830 lpfc_sli_release_iocbq(phba, cmdiocb); 17831 lpfc_drain_txq(phba); 17832 } 17833 17834 static void 17835 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17836 struct hbq_dmabuf *dmabuf) 17837 { 17838 struct fc_frame_header *fc_hdr; 17839 struct lpfc_hba *phba = vport->phba; 17840 struct lpfc_iocbq *iocbq = NULL; 17841 union lpfc_wqe *wqe; 17842 struct lpfc_dmabuf *pcmd = NULL; 17843 uint32_t frame_len; 17844 int rc; 17845 unsigned long iflags; 17846 17847 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17848 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17849 17850 /* Send the received frame back */ 17851 iocbq = lpfc_sli_get_iocbq(phba); 17852 if (!iocbq) { 17853 /* Queue cq event and wakeup worker thread to process it */ 17854 spin_lock_irqsave(&phba->hbalock, iflags); 17855 list_add_tail(&dmabuf->cq_event.list, 17856 &phba->sli4_hba.sp_queue_event); 17857 phba->hba_flag |= HBA_SP_QUEUE_EVT; 17858 spin_unlock_irqrestore(&phba->hbalock, iflags); 17859 lpfc_worker_wake_up(phba); 17860 return; 17861 } 17862 17863 /* Allocate buffer for command payload */ 17864 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17865 if (pcmd) 17866 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17867 &pcmd->phys); 17868 if (!pcmd || !pcmd->virt) 17869 goto exit; 17870 17871 INIT_LIST_HEAD(&pcmd->list); 17872 17873 /* copyin the payload */ 17874 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17875 17876 /* fill in BDE's for command */ 17877 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17878 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17879 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17880 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17881 17882 iocbq->context2 = pcmd; 17883 iocbq->vport = vport; 17884 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17885 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17886 17887 /* 17888 * Setup rest of the iocb as though it were a WQE 17889 * Build the SEND_FRAME WQE 17890 */ 17891 wqe = (union lpfc_wqe *)&iocbq->iocb; 17892 17893 wqe->send_frame.frame_len = frame_len; 17894 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17895 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17896 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17897 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17898 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17899 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17900 17901 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17902 iocbq->iocb.ulpLe = 1; 17903 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17904 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17905 if (rc == IOCB_ERROR) 17906 goto exit; 17907 17908 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17909 return; 17910 17911 exit: 17912 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17913 "2023 Unable to process MDS loopback frame\n"); 17914 if (pcmd && pcmd->virt) 17915 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17916 kfree(pcmd); 17917 if (iocbq) 17918 lpfc_sli_release_iocbq(phba, iocbq); 17919 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17920 } 17921 17922 /** 17923 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17924 * @phba: Pointer to HBA context object. 17925 * 17926 * This function is called with no lock held. This function processes all 17927 * the received buffers and gives it to upper layers when a received buffer 17928 * indicates that it is the final frame in the sequence. The interrupt 17929 * service routine processes received buffers at interrupt contexts. 17930 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17931 * appropriate receive function when the final frame in a sequence is received. 17932 **/ 17933 void 17934 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17935 struct hbq_dmabuf *dmabuf) 17936 { 17937 struct hbq_dmabuf *seq_dmabuf; 17938 struct fc_frame_header *fc_hdr; 17939 struct lpfc_vport *vport; 17940 uint32_t fcfi; 17941 uint32_t did; 17942 17943 /* Process each received buffer */ 17944 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17945 17946 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 17947 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 17948 vport = phba->pport; 17949 /* Handle MDS Loopback frames */ 17950 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17951 return; 17952 } 17953 17954 /* check to see if this a valid type of frame */ 17955 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17956 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17957 return; 17958 } 17959 17960 if ((bf_get(lpfc_cqe_code, 17961 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17962 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17963 &dmabuf->cq_event.cqe.rcqe_cmpl); 17964 else 17965 fcfi = bf_get(lpfc_rcqe_fcf_id, 17966 &dmabuf->cq_event.cqe.rcqe_cmpl); 17967 17968 /* d_id this frame is directed to */ 17969 did = sli4_did_from_fc_hdr(fc_hdr); 17970 17971 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17972 if (!vport) { 17973 /* throw out the frame */ 17974 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17975 return; 17976 } 17977 17978 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17979 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17980 (did != Fabric_DID)) { 17981 /* 17982 * Throw out the frame if we are not pt2pt. 17983 * The pt2pt protocol allows for discovery frames 17984 * to be received without a registered VPI. 17985 */ 17986 if (!(vport->fc_flag & FC_PT2PT) || 17987 (phba->link_state == LPFC_HBA_READY)) { 17988 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17989 return; 17990 } 17991 } 17992 17993 /* Handle the basic abort sequence (BA_ABTS) event */ 17994 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17995 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17996 return; 17997 } 17998 17999 /* Link this frame */ 18000 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18001 if (!seq_dmabuf) { 18002 /* unable to add frame to vport - throw it out */ 18003 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18004 return; 18005 } 18006 /* If not last frame in sequence continue processing frames. */ 18007 if (!lpfc_seq_complete(seq_dmabuf)) 18008 return; 18009 18010 /* Send the complete sequence to the upper layer protocol */ 18011 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18012 } 18013 18014 /** 18015 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18016 * @phba: pointer to lpfc hba data structure. 18017 * 18018 * This routine is invoked to post rpi header templates to the 18019 * HBA consistent with the SLI-4 interface spec. This routine 18020 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18021 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18022 * 18023 * This routine does not require any locks. It's usage is expected 18024 * to be driver load or reset recovery when the driver is 18025 * sequential. 18026 * 18027 * Return codes 18028 * 0 - successful 18029 * -EIO - The mailbox failed to complete successfully. 18030 * When this error occurs, the driver is not guaranteed 18031 * to have any rpi regions posted to the device and 18032 * must either attempt to repost the regions or take a 18033 * fatal error. 18034 **/ 18035 int 18036 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18037 { 18038 struct lpfc_rpi_hdr *rpi_page; 18039 uint32_t rc = 0; 18040 uint16_t lrpi = 0; 18041 18042 /* SLI4 ports that support extents do not require RPI headers. */ 18043 if (!phba->sli4_hba.rpi_hdrs_in_use) 18044 goto exit; 18045 if (phba->sli4_hba.extents_in_use) 18046 return -EIO; 18047 18048 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18049 /* 18050 * Assign the rpi headers a physical rpi only if the driver 18051 * has not initialized those resources. A port reset only 18052 * needs the headers posted. 18053 */ 18054 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18055 LPFC_RPI_RSRC_RDY) 18056 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18057 18058 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18059 if (rc != MBX_SUCCESS) { 18060 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18061 "2008 Error %d posting all rpi " 18062 "headers\n", rc); 18063 rc = -EIO; 18064 break; 18065 } 18066 } 18067 18068 exit: 18069 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18070 LPFC_RPI_RSRC_RDY); 18071 return rc; 18072 } 18073 18074 /** 18075 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18076 * @phba: pointer to lpfc hba data structure. 18077 * @rpi_page: pointer to the rpi memory region. 18078 * 18079 * This routine is invoked to post a single rpi header to the 18080 * HBA consistent with the SLI-4 interface spec. This memory region 18081 * maps up to 64 rpi context regions. 18082 * 18083 * Return codes 18084 * 0 - successful 18085 * -ENOMEM - No available memory 18086 * -EIO - The mailbox failed to complete successfully. 18087 **/ 18088 int 18089 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18090 { 18091 LPFC_MBOXQ_t *mboxq; 18092 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18093 uint32_t rc = 0; 18094 uint32_t shdr_status, shdr_add_status; 18095 union lpfc_sli4_cfg_shdr *shdr; 18096 18097 /* SLI4 ports that support extents do not require RPI headers. */ 18098 if (!phba->sli4_hba.rpi_hdrs_in_use) 18099 return rc; 18100 if (phba->sli4_hba.extents_in_use) 18101 return -EIO; 18102 18103 /* The port is notified of the header region via a mailbox command. */ 18104 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18105 if (!mboxq) { 18106 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18107 "2001 Unable to allocate memory for issuing " 18108 "SLI_CONFIG_SPECIAL mailbox command\n"); 18109 return -ENOMEM; 18110 } 18111 18112 /* Post all rpi memory regions to the port. */ 18113 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18114 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18115 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18116 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18117 sizeof(struct lpfc_sli4_cfg_mhdr), 18118 LPFC_SLI4_MBX_EMBED); 18119 18120 18121 /* Post the physical rpi to the port for this rpi header. */ 18122 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18123 rpi_page->start_rpi); 18124 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18125 hdr_tmpl, rpi_page->page_count); 18126 18127 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18128 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18129 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18130 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18131 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18132 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18133 if (rc != MBX_TIMEOUT) 18134 mempool_free(mboxq, phba->mbox_mem_pool); 18135 if (shdr_status || shdr_add_status || rc) { 18136 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18137 "2514 POST_RPI_HDR mailbox failed with " 18138 "status x%x add_status x%x, mbx status x%x\n", 18139 shdr_status, shdr_add_status, rc); 18140 rc = -ENXIO; 18141 } else { 18142 /* 18143 * The next_rpi stores the next logical module-64 rpi value used 18144 * to post physical rpis in subsequent rpi postings. 18145 */ 18146 spin_lock_irq(&phba->hbalock); 18147 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18148 spin_unlock_irq(&phba->hbalock); 18149 } 18150 return rc; 18151 } 18152 18153 /** 18154 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18155 * @phba: pointer to lpfc hba data structure. 18156 * 18157 * This routine is invoked to post rpi header templates to the 18158 * HBA consistent with the SLI-4 interface spec. This routine 18159 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18160 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18161 * 18162 * Returns 18163 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18164 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18165 **/ 18166 int 18167 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18168 { 18169 unsigned long rpi; 18170 uint16_t max_rpi, rpi_limit; 18171 uint16_t rpi_remaining, lrpi = 0; 18172 struct lpfc_rpi_hdr *rpi_hdr; 18173 unsigned long iflag; 18174 18175 /* 18176 * Fetch the next logical rpi. Because this index is logical, 18177 * the driver starts at 0 each time. 18178 */ 18179 spin_lock_irqsave(&phba->hbalock, iflag); 18180 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18181 rpi_limit = phba->sli4_hba.next_rpi; 18182 18183 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18184 if (rpi >= rpi_limit) 18185 rpi = LPFC_RPI_ALLOC_ERROR; 18186 else { 18187 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18188 phba->sli4_hba.max_cfg_param.rpi_used++; 18189 phba->sli4_hba.rpi_count++; 18190 } 18191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18192 "0001 rpi:%x max:%x lim:%x\n", 18193 (int) rpi, max_rpi, rpi_limit); 18194 18195 /* 18196 * Don't try to allocate more rpi header regions if the device limit 18197 * has been exhausted. 18198 */ 18199 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18200 (phba->sli4_hba.rpi_count >= max_rpi)) { 18201 spin_unlock_irqrestore(&phba->hbalock, iflag); 18202 return rpi; 18203 } 18204 18205 /* 18206 * RPI header postings are not required for SLI4 ports capable of 18207 * extents. 18208 */ 18209 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18210 spin_unlock_irqrestore(&phba->hbalock, iflag); 18211 return rpi; 18212 } 18213 18214 /* 18215 * If the driver is running low on rpi resources, allocate another 18216 * page now. Note that the next_rpi value is used because 18217 * it represents how many are actually in use whereas max_rpi notes 18218 * how many are supported max by the device. 18219 */ 18220 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18221 spin_unlock_irqrestore(&phba->hbalock, iflag); 18222 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18223 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18224 if (!rpi_hdr) { 18225 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18226 "2002 Error Could not grow rpi " 18227 "count\n"); 18228 } else { 18229 lrpi = rpi_hdr->start_rpi; 18230 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18231 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18232 } 18233 } 18234 18235 return rpi; 18236 } 18237 18238 /** 18239 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18240 * @phba: pointer to lpfc hba data structure. 18241 * 18242 * This routine is invoked to release an rpi to the pool of 18243 * available rpis maintained by the driver. 18244 **/ 18245 static void 18246 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18247 { 18248 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18249 phba->sli4_hba.rpi_count--; 18250 phba->sli4_hba.max_cfg_param.rpi_used--; 18251 } 18252 } 18253 18254 /** 18255 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18256 * @phba: pointer to lpfc hba data structure. 18257 * 18258 * This routine is invoked to release an rpi to the pool of 18259 * available rpis maintained by the driver. 18260 **/ 18261 void 18262 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18263 { 18264 spin_lock_irq(&phba->hbalock); 18265 __lpfc_sli4_free_rpi(phba, rpi); 18266 spin_unlock_irq(&phba->hbalock); 18267 } 18268 18269 /** 18270 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18271 * @phba: pointer to lpfc hba data structure. 18272 * 18273 * This routine is invoked to remove the memory region that 18274 * provided rpi via a bitmask. 18275 **/ 18276 void 18277 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18278 { 18279 kfree(phba->sli4_hba.rpi_bmask); 18280 kfree(phba->sli4_hba.rpi_ids); 18281 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18282 } 18283 18284 /** 18285 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18286 * @phba: pointer to lpfc hba data structure. 18287 * 18288 * This routine is invoked to remove the memory region that 18289 * provided rpi via a bitmask. 18290 **/ 18291 int 18292 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18293 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18294 { 18295 LPFC_MBOXQ_t *mboxq; 18296 struct lpfc_hba *phba = ndlp->phba; 18297 int rc; 18298 18299 /* The port is notified of the header region via a mailbox command. */ 18300 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18301 if (!mboxq) 18302 return -ENOMEM; 18303 18304 /* Post all rpi memory regions to the port. */ 18305 lpfc_resume_rpi(mboxq, ndlp); 18306 if (cmpl) { 18307 mboxq->mbox_cmpl = cmpl; 18308 mboxq->ctx_buf = arg; 18309 mboxq->ctx_ndlp = ndlp; 18310 } else 18311 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18312 mboxq->vport = ndlp->vport; 18313 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18314 if (rc == MBX_NOT_FINISHED) { 18315 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18316 "2010 Resume RPI Mailbox failed " 18317 "status %d, mbxStatus x%x\n", rc, 18318 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18319 mempool_free(mboxq, phba->mbox_mem_pool); 18320 return -EIO; 18321 } 18322 return 0; 18323 } 18324 18325 /** 18326 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18327 * @vport: Pointer to the vport for which the vpi is being initialized 18328 * 18329 * This routine is invoked to activate a vpi with the port. 18330 * 18331 * Returns: 18332 * 0 success 18333 * -Evalue otherwise 18334 **/ 18335 int 18336 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18337 { 18338 LPFC_MBOXQ_t *mboxq; 18339 int rc = 0; 18340 int retval = MBX_SUCCESS; 18341 uint32_t mbox_tmo; 18342 struct lpfc_hba *phba = vport->phba; 18343 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18344 if (!mboxq) 18345 return -ENOMEM; 18346 lpfc_init_vpi(phba, mboxq, vport->vpi); 18347 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18348 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18349 if (rc != MBX_SUCCESS) { 18350 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18351 "2022 INIT VPI Mailbox failed " 18352 "status %d, mbxStatus x%x\n", rc, 18353 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18354 retval = -EIO; 18355 } 18356 if (rc != MBX_TIMEOUT) 18357 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18358 18359 return retval; 18360 } 18361 18362 /** 18363 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18364 * @phba: pointer to lpfc hba data structure. 18365 * @mboxq: Pointer to mailbox object. 18366 * 18367 * This routine is invoked to manually add a single FCF record. The caller 18368 * must pass a completely initialized FCF_Record. This routine takes 18369 * care of the nonembedded mailbox operations. 18370 **/ 18371 static void 18372 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18373 { 18374 void *virt_addr; 18375 union lpfc_sli4_cfg_shdr *shdr; 18376 uint32_t shdr_status, shdr_add_status; 18377 18378 virt_addr = mboxq->sge_array->addr[0]; 18379 /* The IOCTL status is embedded in the mailbox subheader. */ 18380 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18381 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18382 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18383 18384 if ((shdr_status || shdr_add_status) && 18385 (shdr_status != STATUS_FCF_IN_USE)) 18386 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18387 "2558 ADD_FCF_RECORD mailbox failed with " 18388 "status x%x add_status x%x\n", 18389 shdr_status, shdr_add_status); 18390 18391 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18392 } 18393 18394 /** 18395 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18396 * @phba: pointer to lpfc hba data structure. 18397 * @fcf_record: pointer to the initialized fcf record to add. 18398 * 18399 * This routine is invoked to manually add a single FCF record. The caller 18400 * must pass a completely initialized FCF_Record. This routine takes 18401 * care of the nonembedded mailbox operations. 18402 **/ 18403 int 18404 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18405 { 18406 int rc = 0; 18407 LPFC_MBOXQ_t *mboxq; 18408 uint8_t *bytep; 18409 void *virt_addr; 18410 struct lpfc_mbx_sge sge; 18411 uint32_t alloc_len, req_len; 18412 uint32_t fcfindex; 18413 18414 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18415 if (!mboxq) { 18416 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18417 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18418 return -ENOMEM; 18419 } 18420 18421 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18422 sizeof(uint32_t); 18423 18424 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18425 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18426 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18427 req_len, LPFC_SLI4_MBX_NEMBED); 18428 if (alloc_len < req_len) { 18429 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18430 "2523 Allocated DMA memory size (x%x) is " 18431 "less than the requested DMA memory " 18432 "size (x%x)\n", alloc_len, req_len); 18433 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18434 return -ENOMEM; 18435 } 18436 18437 /* 18438 * Get the first SGE entry from the non-embedded DMA memory. This 18439 * routine only uses a single SGE. 18440 */ 18441 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18442 virt_addr = mboxq->sge_array->addr[0]; 18443 /* 18444 * Configure the FCF record for FCFI 0. This is the driver's 18445 * hardcoded default and gets used in nonFIP mode. 18446 */ 18447 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18448 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18449 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18450 18451 /* 18452 * Copy the fcf_index and the FCF Record Data. The data starts after 18453 * the FCoE header plus word10. The data copy needs to be endian 18454 * correct. 18455 */ 18456 bytep += sizeof(uint32_t); 18457 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18458 mboxq->vport = phba->pport; 18459 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18460 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18461 if (rc == MBX_NOT_FINISHED) { 18462 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18463 "2515 ADD_FCF_RECORD mailbox failed with " 18464 "status 0x%x\n", rc); 18465 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18466 rc = -EIO; 18467 } else 18468 rc = 0; 18469 18470 return rc; 18471 } 18472 18473 /** 18474 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18475 * @phba: pointer to lpfc hba data structure. 18476 * @fcf_record: pointer to the fcf record to write the default data. 18477 * @fcf_index: FCF table entry index. 18478 * 18479 * This routine is invoked to build the driver's default FCF record. The 18480 * values used are hardcoded. This routine handles memory initialization. 18481 * 18482 **/ 18483 void 18484 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18485 struct fcf_record *fcf_record, 18486 uint16_t fcf_index) 18487 { 18488 memset(fcf_record, 0, sizeof(struct fcf_record)); 18489 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18490 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18491 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18492 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18493 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18494 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18495 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18496 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18497 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18498 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18499 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18500 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18501 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18502 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18503 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18504 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18505 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18506 /* Set the VLAN bit map */ 18507 if (phba->valid_vlan) { 18508 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18509 = 1 << (phba->vlan_id % 8); 18510 } 18511 } 18512 18513 /** 18514 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18515 * @phba: pointer to lpfc hba data structure. 18516 * @fcf_index: FCF table entry offset. 18517 * 18518 * This routine is invoked to scan the entire FCF table by reading FCF 18519 * record and processing it one at a time starting from the @fcf_index 18520 * for initial FCF discovery or fast FCF failover rediscovery. 18521 * 18522 * Return 0 if the mailbox command is submitted successfully, none 0 18523 * otherwise. 18524 **/ 18525 int 18526 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18527 { 18528 int rc = 0, error; 18529 LPFC_MBOXQ_t *mboxq; 18530 18531 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18532 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18533 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18534 if (!mboxq) { 18535 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18536 "2000 Failed to allocate mbox for " 18537 "READ_FCF cmd\n"); 18538 error = -ENOMEM; 18539 goto fail_fcf_scan; 18540 } 18541 /* Construct the read FCF record mailbox command */ 18542 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18543 if (rc) { 18544 error = -EINVAL; 18545 goto fail_fcf_scan; 18546 } 18547 /* Issue the mailbox command asynchronously */ 18548 mboxq->vport = phba->pport; 18549 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18550 18551 spin_lock_irq(&phba->hbalock); 18552 phba->hba_flag |= FCF_TS_INPROG; 18553 spin_unlock_irq(&phba->hbalock); 18554 18555 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18556 if (rc == MBX_NOT_FINISHED) 18557 error = -EIO; 18558 else { 18559 /* Reset eligible FCF count for new scan */ 18560 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18561 phba->fcf.eligible_fcf_cnt = 0; 18562 error = 0; 18563 } 18564 fail_fcf_scan: 18565 if (error) { 18566 if (mboxq) 18567 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18568 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18569 spin_lock_irq(&phba->hbalock); 18570 phba->hba_flag &= ~FCF_TS_INPROG; 18571 spin_unlock_irq(&phba->hbalock); 18572 } 18573 return error; 18574 } 18575 18576 /** 18577 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18578 * @phba: pointer to lpfc hba data structure. 18579 * @fcf_index: FCF table entry offset. 18580 * 18581 * This routine is invoked to read an FCF record indicated by @fcf_index 18582 * and to use it for FLOGI roundrobin FCF failover. 18583 * 18584 * Return 0 if the mailbox command is submitted successfully, none 0 18585 * otherwise. 18586 **/ 18587 int 18588 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18589 { 18590 int rc = 0, error; 18591 LPFC_MBOXQ_t *mboxq; 18592 18593 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18594 if (!mboxq) { 18595 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18596 "2763 Failed to allocate mbox for " 18597 "READ_FCF cmd\n"); 18598 error = -ENOMEM; 18599 goto fail_fcf_read; 18600 } 18601 /* Construct the read FCF record mailbox command */ 18602 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18603 if (rc) { 18604 error = -EINVAL; 18605 goto fail_fcf_read; 18606 } 18607 /* Issue the mailbox command asynchronously */ 18608 mboxq->vport = phba->pport; 18609 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18610 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18611 if (rc == MBX_NOT_FINISHED) 18612 error = -EIO; 18613 else 18614 error = 0; 18615 18616 fail_fcf_read: 18617 if (error && mboxq) 18618 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18619 return error; 18620 } 18621 18622 /** 18623 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18624 * @phba: pointer to lpfc hba data structure. 18625 * @fcf_index: FCF table entry offset. 18626 * 18627 * This routine is invoked to read an FCF record indicated by @fcf_index to 18628 * determine whether it's eligible for FLOGI roundrobin failover list. 18629 * 18630 * Return 0 if the mailbox command is submitted successfully, none 0 18631 * otherwise. 18632 **/ 18633 int 18634 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18635 { 18636 int rc = 0, error; 18637 LPFC_MBOXQ_t *mboxq; 18638 18639 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18640 if (!mboxq) { 18641 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18642 "2758 Failed to allocate mbox for " 18643 "READ_FCF cmd\n"); 18644 error = -ENOMEM; 18645 goto fail_fcf_read; 18646 } 18647 /* Construct the read FCF record mailbox command */ 18648 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18649 if (rc) { 18650 error = -EINVAL; 18651 goto fail_fcf_read; 18652 } 18653 /* Issue the mailbox command asynchronously */ 18654 mboxq->vport = phba->pport; 18655 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18656 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18657 if (rc == MBX_NOT_FINISHED) 18658 error = -EIO; 18659 else 18660 error = 0; 18661 18662 fail_fcf_read: 18663 if (error && mboxq) 18664 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18665 return error; 18666 } 18667 18668 /** 18669 * lpfc_check_next_fcf_pri_level 18670 * phba pointer to the lpfc_hba struct for this port. 18671 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18672 * routine when the rr_bmask is empty. The FCF indecies are put into the 18673 * rr_bmask based on their priority level. Starting from the highest priority 18674 * to the lowest. The most likely FCF candidate will be in the highest 18675 * priority group. When this routine is called it searches the fcf_pri list for 18676 * next lowest priority group and repopulates the rr_bmask with only those 18677 * fcf_indexes. 18678 * returns: 18679 * 1=success 0=failure 18680 **/ 18681 static int 18682 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18683 { 18684 uint16_t next_fcf_pri; 18685 uint16_t last_index; 18686 struct lpfc_fcf_pri *fcf_pri; 18687 int rc; 18688 int ret = 0; 18689 18690 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18691 LPFC_SLI4_FCF_TBL_INDX_MAX); 18692 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18693 "3060 Last IDX %d\n", last_index); 18694 18695 /* Verify the priority list has 2 or more entries */ 18696 spin_lock_irq(&phba->hbalock); 18697 if (list_empty(&phba->fcf.fcf_pri_list) || 18698 list_is_singular(&phba->fcf.fcf_pri_list)) { 18699 spin_unlock_irq(&phba->hbalock); 18700 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18701 "3061 Last IDX %d\n", last_index); 18702 return 0; /* Empty rr list */ 18703 } 18704 spin_unlock_irq(&phba->hbalock); 18705 18706 next_fcf_pri = 0; 18707 /* 18708 * Clear the rr_bmask and set all of the bits that are at this 18709 * priority. 18710 */ 18711 memset(phba->fcf.fcf_rr_bmask, 0, 18712 sizeof(*phba->fcf.fcf_rr_bmask)); 18713 spin_lock_irq(&phba->hbalock); 18714 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18715 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18716 continue; 18717 /* 18718 * the 1st priority that has not FLOGI failed 18719 * will be the highest. 18720 */ 18721 if (!next_fcf_pri) 18722 next_fcf_pri = fcf_pri->fcf_rec.priority; 18723 spin_unlock_irq(&phba->hbalock); 18724 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18725 rc = lpfc_sli4_fcf_rr_index_set(phba, 18726 fcf_pri->fcf_rec.fcf_index); 18727 if (rc) 18728 return 0; 18729 } 18730 spin_lock_irq(&phba->hbalock); 18731 } 18732 /* 18733 * if next_fcf_pri was not set above and the list is not empty then 18734 * we have failed flogis on all of them. So reset flogi failed 18735 * and start at the beginning. 18736 */ 18737 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18738 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18739 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18740 /* 18741 * the 1st priority that has not FLOGI failed 18742 * will be the highest. 18743 */ 18744 if (!next_fcf_pri) 18745 next_fcf_pri = fcf_pri->fcf_rec.priority; 18746 spin_unlock_irq(&phba->hbalock); 18747 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18748 rc = lpfc_sli4_fcf_rr_index_set(phba, 18749 fcf_pri->fcf_rec.fcf_index); 18750 if (rc) 18751 return 0; 18752 } 18753 spin_lock_irq(&phba->hbalock); 18754 } 18755 } else 18756 ret = 1; 18757 spin_unlock_irq(&phba->hbalock); 18758 18759 return ret; 18760 } 18761 /** 18762 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18763 * @phba: pointer to lpfc hba data structure. 18764 * 18765 * This routine is to get the next eligible FCF record index in a round 18766 * robin fashion. If the next eligible FCF record index equals to the 18767 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18768 * shall be returned, otherwise, the next eligible FCF record's index 18769 * shall be returned. 18770 **/ 18771 uint16_t 18772 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18773 { 18774 uint16_t next_fcf_index; 18775 18776 initial_priority: 18777 /* Search start from next bit of currently registered FCF index */ 18778 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18779 18780 next_priority: 18781 /* Determine the next fcf index to check */ 18782 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18783 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18784 LPFC_SLI4_FCF_TBL_INDX_MAX, 18785 next_fcf_index); 18786 18787 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18788 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18789 /* 18790 * If we have wrapped then we need to clear the bits that 18791 * have been tested so that we can detect when we should 18792 * change the priority level. 18793 */ 18794 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18795 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18796 } 18797 18798 18799 /* Check roundrobin failover list empty condition */ 18800 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18801 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18802 /* 18803 * If next fcf index is not found check if there are lower 18804 * Priority level fcf's in the fcf_priority list. 18805 * Set up the rr_bmask with all of the avaiable fcf bits 18806 * at that level and continue the selection process. 18807 */ 18808 if (lpfc_check_next_fcf_pri_level(phba)) 18809 goto initial_priority; 18810 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18811 "2844 No roundrobin failover FCF available\n"); 18812 18813 return LPFC_FCOE_FCF_NEXT_NONE; 18814 } 18815 18816 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18817 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18818 LPFC_FCF_FLOGI_FAILED) { 18819 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18820 return LPFC_FCOE_FCF_NEXT_NONE; 18821 18822 goto next_priority; 18823 } 18824 18825 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18826 "2845 Get next roundrobin failover FCF (x%x)\n", 18827 next_fcf_index); 18828 18829 return next_fcf_index; 18830 } 18831 18832 /** 18833 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18834 * @phba: pointer to lpfc hba data structure. 18835 * 18836 * This routine sets the FCF record index in to the eligible bmask for 18837 * roundrobin failover search. It checks to make sure that the index 18838 * does not go beyond the range of the driver allocated bmask dimension 18839 * before setting the bit. 18840 * 18841 * Returns 0 if the index bit successfully set, otherwise, it returns 18842 * -EINVAL. 18843 **/ 18844 int 18845 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18846 { 18847 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18848 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18849 "2610 FCF (x%x) reached driver's book " 18850 "keeping dimension:x%x\n", 18851 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18852 return -EINVAL; 18853 } 18854 /* Set the eligible FCF record index bmask */ 18855 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18856 18857 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18858 "2790 Set FCF (x%x) to roundrobin FCF failover " 18859 "bmask\n", fcf_index); 18860 18861 return 0; 18862 } 18863 18864 /** 18865 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18866 * @phba: pointer to lpfc hba data structure. 18867 * 18868 * This routine clears the FCF record index from the eligible bmask for 18869 * roundrobin failover search. It checks to make sure that the index 18870 * does not go beyond the range of the driver allocated bmask dimension 18871 * before clearing the bit. 18872 **/ 18873 void 18874 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18875 { 18876 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18877 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18878 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18879 "2762 FCF (x%x) reached driver's book " 18880 "keeping dimension:x%x\n", 18881 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18882 return; 18883 } 18884 /* Clear the eligible FCF record index bmask */ 18885 spin_lock_irq(&phba->hbalock); 18886 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18887 list) { 18888 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18889 list_del_init(&fcf_pri->list); 18890 break; 18891 } 18892 } 18893 spin_unlock_irq(&phba->hbalock); 18894 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18895 18896 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18897 "2791 Clear FCF (x%x) from roundrobin failover " 18898 "bmask\n", fcf_index); 18899 } 18900 18901 /** 18902 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18903 * @phba: pointer to lpfc hba data structure. 18904 * 18905 * This routine is the completion routine for the rediscover FCF table mailbox 18906 * command. If the mailbox command returned failure, it will try to stop the 18907 * FCF rediscover wait timer. 18908 **/ 18909 static void 18910 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18911 { 18912 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18913 uint32_t shdr_status, shdr_add_status; 18914 18915 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18916 18917 shdr_status = bf_get(lpfc_mbox_hdr_status, 18918 &redisc_fcf->header.cfg_shdr.response); 18919 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18920 &redisc_fcf->header.cfg_shdr.response); 18921 if (shdr_status || shdr_add_status) { 18922 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18923 "2746 Requesting for FCF rediscovery failed " 18924 "status x%x add_status x%x\n", 18925 shdr_status, shdr_add_status); 18926 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18927 spin_lock_irq(&phba->hbalock); 18928 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18929 spin_unlock_irq(&phba->hbalock); 18930 /* 18931 * CVL event triggered FCF rediscover request failed, 18932 * last resort to re-try current registered FCF entry. 18933 */ 18934 lpfc_retry_pport_discovery(phba); 18935 } else { 18936 spin_lock_irq(&phba->hbalock); 18937 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18938 spin_unlock_irq(&phba->hbalock); 18939 /* 18940 * DEAD FCF event triggered FCF rediscover request 18941 * failed, last resort to fail over as a link down 18942 * to FCF registration. 18943 */ 18944 lpfc_sli4_fcf_dead_failthrough(phba); 18945 } 18946 } else { 18947 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18948 "2775 Start FCF rediscover quiescent timer\n"); 18949 /* 18950 * Start FCF rediscovery wait timer for pending FCF 18951 * before rescan FCF record table. 18952 */ 18953 lpfc_fcf_redisc_wait_start_timer(phba); 18954 } 18955 18956 mempool_free(mbox, phba->mbox_mem_pool); 18957 } 18958 18959 /** 18960 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18961 * @phba: pointer to lpfc hba data structure. 18962 * 18963 * This routine is invoked to request for rediscovery of the entire FCF table 18964 * by the port. 18965 **/ 18966 int 18967 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18968 { 18969 LPFC_MBOXQ_t *mbox; 18970 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18971 int rc, length; 18972 18973 /* Cancel retry delay timers to all vports before FCF rediscover */ 18974 lpfc_cancel_all_vport_retry_delay_timer(phba); 18975 18976 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18977 if (!mbox) { 18978 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18979 "2745 Failed to allocate mbox for " 18980 "requesting FCF rediscover.\n"); 18981 return -ENOMEM; 18982 } 18983 18984 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18985 sizeof(struct lpfc_sli4_cfg_mhdr)); 18986 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18987 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18988 length, LPFC_SLI4_MBX_EMBED); 18989 18990 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18991 /* Set count to 0 for invalidating the entire FCF database */ 18992 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18993 18994 /* Issue the mailbox command asynchronously */ 18995 mbox->vport = phba->pport; 18996 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18997 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18998 18999 if (rc == MBX_NOT_FINISHED) { 19000 mempool_free(mbox, phba->mbox_mem_pool); 19001 return -EIO; 19002 } 19003 return 0; 19004 } 19005 19006 /** 19007 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19008 * @phba: pointer to lpfc hba data structure. 19009 * 19010 * This function is the failover routine as a last resort to the FCF DEAD 19011 * event when driver failed to perform fast FCF failover. 19012 **/ 19013 void 19014 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19015 { 19016 uint32_t link_state; 19017 19018 /* 19019 * Last resort as FCF DEAD event failover will treat this as 19020 * a link down, but save the link state because we don't want 19021 * it to be changed to Link Down unless it is already down. 19022 */ 19023 link_state = phba->link_state; 19024 lpfc_linkdown(phba); 19025 phba->link_state = link_state; 19026 19027 /* Unregister FCF if no devices connected to it */ 19028 lpfc_unregister_unused_fcf(phba); 19029 } 19030 19031 /** 19032 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19033 * @phba: pointer to lpfc hba data structure. 19034 * @rgn23_data: pointer to configure region 23 data. 19035 * 19036 * This function gets SLI3 port configure region 23 data through memory dump 19037 * mailbox command. When it successfully retrieves data, the size of the data 19038 * will be returned, otherwise, 0 will be returned. 19039 **/ 19040 static uint32_t 19041 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19042 { 19043 LPFC_MBOXQ_t *pmb = NULL; 19044 MAILBOX_t *mb; 19045 uint32_t offset = 0; 19046 int rc; 19047 19048 if (!rgn23_data) 19049 return 0; 19050 19051 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19052 if (!pmb) { 19053 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19054 "2600 failed to allocate mailbox memory\n"); 19055 return 0; 19056 } 19057 mb = &pmb->u.mb; 19058 19059 do { 19060 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19061 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19062 19063 if (rc != MBX_SUCCESS) { 19064 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19065 "2601 failed to read config " 19066 "region 23, rc 0x%x Status 0x%x\n", 19067 rc, mb->mbxStatus); 19068 mb->un.varDmp.word_cnt = 0; 19069 } 19070 /* 19071 * dump mem may return a zero when finished or we got a 19072 * mailbox error, either way we are done. 19073 */ 19074 if (mb->un.varDmp.word_cnt == 0) 19075 break; 19076 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19077 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19078 19079 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19080 rgn23_data + offset, 19081 mb->un.varDmp.word_cnt); 19082 offset += mb->un.varDmp.word_cnt; 19083 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19084 19085 mempool_free(pmb, phba->mbox_mem_pool); 19086 return offset; 19087 } 19088 19089 /** 19090 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19091 * @phba: pointer to lpfc hba data structure. 19092 * @rgn23_data: pointer to configure region 23 data. 19093 * 19094 * This function gets SLI4 port configure region 23 data through memory dump 19095 * mailbox command. When it successfully retrieves data, the size of the data 19096 * will be returned, otherwise, 0 will be returned. 19097 **/ 19098 static uint32_t 19099 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19100 { 19101 LPFC_MBOXQ_t *mboxq = NULL; 19102 struct lpfc_dmabuf *mp = NULL; 19103 struct lpfc_mqe *mqe; 19104 uint32_t data_length = 0; 19105 int rc; 19106 19107 if (!rgn23_data) 19108 return 0; 19109 19110 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19111 if (!mboxq) { 19112 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19113 "3105 failed to allocate mailbox memory\n"); 19114 return 0; 19115 } 19116 19117 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19118 goto out; 19119 mqe = &mboxq->u.mqe; 19120 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19121 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19122 if (rc) 19123 goto out; 19124 data_length = mqe->un.mb_words[5]; 19125 if (data_length == 0) 19126 goto out; 19127 if (data_length > DMP_RGN23_SIZE) { 19128 data_length = 0; 19129 goto out; 19130 } 19131 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19132 out: 19133 mempool_free(mboxq, phba->mbox_mem_pool); 19134 if (mp) { 19135 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19136 kfree(mp); 19137 } 19138 return data_length; 19139 } 19140 19141 /** 19142 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19143 * @phba: pointer to lpfc hba data structure. 19144 * 19145 * This function read region 23 and parse TLV for port status to 19146 * decide if the user disaled the port. If the TLV indicates the 19147 * port is disabled, the hba_flag is set accordingly. 19148 **/ 19149 void 19150 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19151 { 19152 uint8_t *rgn23_data = NULL; 19153 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19154 uint32_t offset = 0; 19155 19156 /* Get adapter Region 23 data */ 19157 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19158 if (!rgn23_data) 19159 goto out; 19160 19161 if (phba->sli_rev < LPFC_SLI_REV4) 19162 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19163 else { 19164 if_type = bf_get(lpfc_sli_intf_if_type, 19165 &phba->sli4_hba.sli_intf); 19166 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19167 goto out; 19168 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19169 } 19170 19171 if (!data_size) 19172 goto out; 19173 19174 /* Check the region signature first */ 19175 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19176 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19177 "2619 Config region 23 has bad signature\n"); 19178 goto out; 19179 } 19180 offset += 4; 19181 19182 /* Check the data structure version */ 19183 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19184 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19185 "2620 Config region 23 has bad version\n"); 19186 goto out; 19187 } 19188 offset += 4; 19189 19190 /* Parse TLV entries in the region */ 19191 while (offset < data_size) { 19192 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19193 break; 19194 /* 19195 * If the TLV is not driver specific TLV or driver id is 19196 * not linux driver id, skip the record. 19197 */ 19198 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19199 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19200 (rgn23_data[offset + 3] != 0)) { 19201 offset += rgn23_data[offset + 1] * 4 + 4; 19202 continue; 19203 } 19204 19205 /* Driver found a driver specific TLV in the config region */ 19206 sub_tlv_len = rgn23_data[offset + 1] * 4; 19207 offset += 4; 19208 tlv_offset = 0; 19209 19210 /* 19211 * Search for configured port state sub-TLV. 19212 */ 19213 while ((offset < data_size) && 19214 (tlv_offset < sub_tlv_len)) { 19215 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19216 offset += 4; 19217 tlv_offset += 4; 19218 break; 19219 } 19220 if (rgn23_data[offset] != PORT_STE_TYPE) { 19221 offset += rgn23_data[offset + 1] * 4 + 4; 19222 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19223 continue; 19224 } 19225 19226 /* This HBA contains PORT_STE configured */ 19227 if (!rgn23_data[offset + 2]) 19228 phba->hba_flag |= LINK_DISABLED; 19229 19230 goto out; 19231 } 19232 } 19233 19234 out: 19235 kfree(rgn23_data); 19236 return; 19237 } 19238 19239 /** 19240 * lpfc_wr_object - write an object to the firmware 19241 * @phba: HBA structure that indicates port to create a queue on. 19242 * @dmabuf_list: list of dmabufs to write to the port. 19243 * @size: the total byte value of the objects to write to the port. 19244 * @offset: the current offset to be used to start the transfer. 19245 * 19246 * This routine will create a wr_object mailbox command to send to the port. 19247 * the mailbox command will be constructed using the dma buffers described in 19248 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19249 * BDEs that the imbedded mailbox can support. The @offset variable will be 19250 * used to indicate the starting offset of the transfer and will also return 19251 * the offset after the write object mailbox has completed. @size is used to 19252 * determine the end of the object and whether the eof bit should be set. 19253 * 19254 * Return 0 is successful and offset will contain the the new offset to use 19255 * for the next write. 19256 * Return negative value for error cases. 19257 **/ 19258 int 19259 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19260 uint32_t size, uint32_t *offset) 19261 { 19262 struct lpfc_mbx_wr_object *wr_object; 19263 LPFC_MBOXQ_t *mbox; 19264 int rc = 0, i = 0; 19265 uint32_t shdr_status, shdr_add_status, shdr_change_status; 19266 uint32_t mbox_tmo; 19267 struct lpfc_dmabuf *dmabuf; 19268 uint32_t written = 0; 19269 bool check_change_status = false; 19270 19271 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19272 if (!mbox) 19273 return -ENOMEM; 19274 19275 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19276 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19277 sizeof(struct lpfc_mbx_wr_object) - 19278 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19279 19280 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19281 wr_object->u.request.write_offset = *offset; 19282 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19283 wr_object->u.request.object_name[0] = 19284 cpu_to_le32(wr_object->u.request.object_name[0]); 19285 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19286 list_for_each_entry(dmabuf, dmabuf_list, list) { 19287 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19288 break; 19289 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19290 wr_object->u.request.bde[i].addrHigh = 19291 putPaddrHigh(dmabuf->phys); 19292 if (written + SLI4_PAGE_SIZE >= size) { 19293 wr_object->u.request.bde[i].tus.f.bdeSize = 19294 (size - written); 19295 written += (size - written); 19296 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19297 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19298 check_change_status = true; 19299 } else { 19300 wr_object->u.request.bde[i].tus.f.bdeSize = 19301 SLI4_PAGE_SIZE; 19302 written += SLI4_PAGE_SIZE; 19303 } 19304 i++; 19305 } 19306 wr_object->u.request.bde_count = i; 19307 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19308 if (!phba->sli4_hba.intr_enable) 19309 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19310 else { 19311 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19312 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19313 } 19314 /* The IOCTL status is embedded in the mailbox subheader. */ 19315 shdr_status = bf_get(lpfc_mbox_hdr_status, 19316 &wr_object->header.cfg_shdr.response); 19317 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19318 &wr_object->header.cfg_shdr.response); 19319 if (check_change_status) { 19320 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19321 &wr_object->u.response); 19322 switch (shdr_change_status) { 19323 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19324 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19325 "3198 Firmware write complete: System " 19326 "reboot required to instantiate\n"); 19327 break; 19328 case (LPFC_CHANGE_STATUS_FW_RESET): 19329 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19330 "3199 Firmware write complete: Firmware" 19331 " reset required to instantiate\n"); 19332 break; 19333 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19334 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19335 "3200 Firmware write complete: Port " 19336 "Migration or PCI Reset required to " 19337 "instantiate\n"); 19338 break; 19339 case (LPFC_CHANGE_STATUS_PCI_RESET): 19340 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19341 "3201 Firmware write complete: PCI " 19342 "Reset required to instantiate\n"); 19343 break; 19344 default: 19345 break; 19346 } 19347 } 19348 if (rc != MBX_TIMEOUT) 19349 mempool_free(mbox, phba->mbox_mem_pool); 19350 if (shdr_status || shdr_add_status || rc) { 19351 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19352 "3025 Write Object mailbox failed with " 19353 "status x%x add_status x%x, mbx status x%x\n", 19354 shdr_status, shdr_add_status, rc); 19355 rc = -ENXIO; 19356 *offset = shdr_add_status; 19357 } else 19358 *offset += wr_object->u.response.actual_write_length; 19359 return rc; 19360 } 19361 19362 /** 19363 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19364 * @vport: pointer to vport data structure. 19365 * 19366 * This function iterate through the mailboxq and clean up all REG_LOGIN 19367 * and REG_VPI mailbox commands associated with the vport. This function 19368 * is called when driver want to restart discovery of the vport due to 19369 * a Clear Virtual Link event. 19370 **/ 19371 void 19372 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19373 { 19374 struct lpfc_hba *phba = vport->phba; 19375 LPFC_MBOXQ_t *mb, *nextmb; 19376 struct lpfc_dmabuf *mp; 19377 struct lpfc_nodelist *ndlp; 19378 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19379 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19380 LIST_HEAD(mbox_cmd_list); 19381 uint8_t restart_loop; 19382 19383 /* Clean up internally queued mailbox commands with the vport */ 19384 spin_lock_irq(&phba->hbalock); 19385 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19386 if (mb->vport != vport) 19387 continue; 19388 19389 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19390 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19391 continue; 19392 19393 list_del(&mb->list); 19394 list_add_tail(&mb->list, &mbox_cmd_list); 19395 } 19396 /* Clean up active mailbox command with the vport */ 19397 mb = phba->sli.mbox_active; 19398 if (mb && (mb->vport == vport)) { 19399 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19400 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19401 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19402 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19403 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19404 /* Put reference count for delayed processing */ 19405 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19406 /* Unregister the RPI when mailbox complete */ 19407 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19408 } 19409 } 19410 /* Cleanup any mailbox completions which are not yet processed */ 19411 do { 19412 restart_loop = 0; 19413 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19414 /* 19415 * If this mailox is already processed or it is 19416 * for another vport ignore it. 19417 */ 19418 if ((mb->vport != vport) || 19419 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19420 continue; 19421 19422 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19423 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19424 continue; 19425 19426 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19427 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19428 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19429 /* Unregister the RPI when mailbox complete */ 19430 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19431 restart_loop = 1; 19432 spin_unlock_irq(&phba->hbalock); 19433 spin_lock(shost->host_lock); 19434 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19435 spin_unlock(shost->host_lock); 19436 spin_lock_irq(&phba->hbalock); 19437 break; 19438 } 19439 } 19440 } while (restart_loop); 19441 19442 spin_unlock_irq(&phba->hbalock); 19443 19444 /* Release the cleaned-up mailbox commands */ 19445 while (!list_empty(&mbox_cmd_list)) { 19446 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19447 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19448 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19449 if (mp) { 19450 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19451 kfree(mp); 19452 } 19453 mb->ctx_buf = NULL; 19454 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19455 mb->ctx_ndlp = NULL; 19456 if (ndlp) { 19457 spin_lock(shost->host_lock); 19458 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19459 spin_unlock(shost->host_lock); 19460 lpfc_nlp_put(ndlp); 19461 } 19462 } 19463 mempool_free(mb, phba->mbox_mem_pool); 19464 } 19465 19466 /* Release the ndlp with the cleaned-up active mailbox command */ 19467 if (act_mbx_ndlp) { 19468 spin_lock(shost->host_lock); 19469 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19470 spin_unlock(shost->host_lock); 19471 lpfc_nlp_put(act_mbx_ndlp); 19472 } 19473 } 19474 19475 /** 19476 * lpfc_drain_txq - Drain the txq 19477 * @phba: Pointer to HBA context object. 19478 * 19479 * This function attempt to submit IOCBs on the txq 19480 * to the adapter. For SLI4 adapters, the txq contains 19481 * ELS IOCBs that have been deferred because the there 19482 * are no SGLs. This congestion can occur with large 19483 * vport counts during node discovery. 19484 **/ 19485 19486 uint32_t 19487 lpfc_drain_txq(struct lpfc_hba *phba) 19488 { 19489 LIST_HEAD(completions); 19490 struct lpfc_sli_ring *pring; 19491 struct lpfc_iocbq *piocbq = NULL; 19492 unsigned long iflags = 0; 19493 char *fail_msg = NULL; 19494 struct lpfc_sglq *sglq; 19495 union lpfc_wqe128 wqe; 19496 uint32_t txq_cnt = 0; 19497 struct lpfc_queue *wq; 19498 19499 if (phba->link_flag & LS_MDS_LOOPBACK) { 19500 /* MDS WQE are posted only to first WQ*/ 19501 wq = phba->sli4_hba.fcp_wq[0]; 19502 if (unlikely(!wq)) 19503 return 0; 19504 pring = wq->pring; 19505 } else { 19506 wq = phba->sli4_hba.els_wq; 19507 if (unlikely(!wq)) 19508 return 0; 19509 pring = lpfc_phba_elsring(phba); 19510 } 19511 19512 if (unlikely(!pring) || list_empty(&pring->txq)) 19513 return 0; 19514 19515 spin_lock_irqsave(&pring->ring_lock, iflags); 19516 list_for_each_entry(piocbq, &pring->txq, list) { 19517 txq_cnt++; 19518 } 19519 19520 if (txq_cnt > pring->txq_max) 19521 pring->txq_max = txq_cnt; 19522 19523 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19524 19525 while (!list_empty(&pring->txq)) { 19526 spin_lock_irqsave(&pring->ring_lock, iflags); 19527 19528 piocbq = lpfc_sli_ringtx_get(phba, pring); 19529 if (!piocbq) { 19530 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19531 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19532 "2823 txq empty and txq_cnt is %d\n ", 19533 txq_cnt); 19534 break; 19535 } 19536 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19537 if (!sglq) { 19538 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19539 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19540 break; 19541 } 19542 txq_cnt--; 19543 19544 /* The xri and iocb resources secured, 19545 * attempt to issue request 19546 */ 19547 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19548 piocbq->sli4_xritag = sglq->sli4_xritag; 19549 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19550 fail_msg = "to convert bpl to sgl"; 19551 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19552 fail_msg = "to convert iocb to wqe"; 19553 else if (lpfc_sli4_wq_put(wq, &wqe)) 19554 fail_msg = " - Wq is full"; 19555 else 19556 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19557 19558 if (fail_msg) { 19559 /* Failed means we can't issue and need to cancel */ 19560 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19561 "2822 IOCB failed %s iotag 0x%x " 19562 "xri 0x%x\n", 19563 fail_msg, 19564 piocbq->iotag, piocbq->sli4_xritag); 19565 list_add_tail(&piocbq->list, &completions); 19566 } 19567 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19568 } 19569 19570 /* Cancel all the IOCBs that cannot be issued */ 19571 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19572 IOERR_SLI_ABORTED); 19573 19574 return txq_cnt; 19575 } 19576 19577 /** 19578 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19579 * @phba: Pointer to HBA context object. 19580 * @pwqe: Pointer to command WQE. 19581 * @sglq: Pointer to the scatter gather queue object. 19582 * 19583 * This routine converts the bpl or bde that is in the WQE 19584 * to a sgl list for the sli4 hardware. The physical address 19585 * of the bpl/bde is converted back to a virtual address. 19586 * If the WQE contains a BPL then the list of BDE's is 19587 * converted to sli4_sge's. If the WQE contains a single 19588 * BDE then it is converted to a single sli_sge. 19589 * The WQE is still in cpu endianness so the contents of 19590 * the bpl can be used without byte swapping. 19591 * 19592 * Returns valid XRI = Success, NO_XRI = Failure. 19593 */ 19594 static uint16_t 19595 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19596 struct lpfc_sglq *sglq) 19597 { 19598 uint16_t xritag = NO_XRI; 19599 struct ulp_bde64 *bpl = NULL; 19600 struct ulp_bde64 bde; 19601 struct sli4_sge *sgl = NULL; 19602 struct lpfc_dmabuf *dmabuf; 19603 union lpfc_wqe128 *wqe; 19604 int numBdes = 0; 19605 int i = 0; 19606 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19607 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19608 uint32_t cmd; 19609 19610 if (!pwqeq || !sglq) 19611 return xritag; 19612 19613 sgl = (struct sli4_sge *)sglq->sgl; 19614 wqe = &pwqeq->wqe; 19615 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19616 19617 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19618 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19619 return sglq->sli4_xritag; 19620 numBdes = pwqeq->rsvd2; 19621 if (numBdes) { 19622 /* The addrHigh and addrLow fields within the WQE 19623 * have not been byteswapped yet so there is no 19624 * need to swap them back. 19625 */ 19626 if (pwqeq->context3) 19627 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19628 else 19629 return xritag; 19630 19631 bpl = (struct ulp_bde64 *)dmabuf->virt; 19632 if (!bpl) 19633 return xritag; 19634 19635 for (i = 0; i < numBdes; i++) { 19636 /* Should already be byte swapped. */ 19637 sgl->addr_hi = bpl->addrHigh; 19638 sgl->addr_lo = bpl->addrLow; 19639 19640 sgl->word2 = le32_to_cpu(sgl->word2); 19641 if ((i+1) == numBdes) 19642 bf_set(lpfc_sli4_sge_last, sgl, 1); 19643 else 19644 bf_set(lpfc_sli4_sge_last, sgl, 0); 19645 /* swap the size field back to the cpu so we 19646 * can assign it to the sgl. 19647 */ 19648 bde.tus.w = le32_to_cpu(bpl->tus.w); 19649 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19650 /* The offsets in the sgl need to be accumulated 19651 * separately for the request and reply lists. 19652 * The request is always first, the reply follows. 19653 */ 19654 switch (cmd) { 19655 case CMD_GEN_REQUEST64_WQE: 19656 /* add up the reply sg entries */ 19657 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19658 inbound++; 19659 /* first inbound? reset the offset */ 19660 if (inbound == 1) 19661 offset = 0; 19662 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19663 bf_set(lpfc_sli4_sge_type, sgl, 19664 LPFC_SGE_TYPE_DATA); 19665 offset += bde.tus.f.bdeSize; 19666 break; 19667 case CMD_FCP_TRSP64_WQE: 19668 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19669 bf_set(lpfc_sli4_sge_type, sgl, 19670 LPFC_SGE_TYPE_DATA); 19671 break; 19672 case CMD_FCP_TSEND64_WQE: 19673 case CMD_FCP_TRECEIVE64_WQE: 19674 bf_set(lpfc_sli4_sge_type, sgl, 19675 bpl->tus.f.bdeFlags); 19676 if (i < 3) 19677 offset = 0; 19678 else 19679 offset += bde.tus.f.bdeSize; 19680 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19681 break; 19682 } 19683 sgl->word2 = cpu_to_le32(sgl->word2); 19684 bpl++; 19685 sgl++; 19686 } 19687 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19688 /* The addrHigh and addrLow fields of the BDE have not 19689 * been byteswapped yet so they need to be swapped 19690 * before putting them in the sgl. 19691 */ 19692 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19693 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19694 sgl->word2 = le32_to_cpu(sgl->word2); 19695 bf_set(lpfc_sli4_sge_last, sgl, 1); 19696 sgl->word2 = cpu_to_le32(sgl->word2); 19697 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19698 } 19699 return sglq->sli4_xritag; 19700 } 19701 19702 /** 19703 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19704 * @phba: Pointer to HBA context object. 19705 * @ring_number: Base sli ring number 19706 * @pwqe: Pointer to command WQE. 19707 **/ 19708 int 19709 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 19710 struct lpfc_iocbq *pwqe) 19711 { 19712 union lpfc_wqe128 *wqe = &pwqe->wqe; 19713 struct lpfc_nvmet_rcv_ctx *ctxp; 19714 struct lpfc_queue *wq; 19715 struct lpfc_sglq *sglq; 19716 struct lpfc_sli_ring *pring; 19717 unsigned long iflags; 19718 uint32_t ret = 0; 19719 19720 /* NVME_LS and NVME_LS ABTS requests. */ 19721 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19722 pring = phba->sli4_hba.nvmels_wq->pring; 19723 spin_lock_irqsave(&pring->ring_lock, iflags); 19724 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19725 if (!sglq) { 19726 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19727 return WQE_BUSY; 19728 } 19729 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19730 pwqe->sli4_xritag = sglq->sli4_xritag; 19731 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19732 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19733 return WQE_ERROR; 19734 } 19735 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19736 pwqe->sli4_xritag); 19737 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19738 if (ret) { 19739 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19740 return ret; 19741 } 19742 19743 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19744 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19745 return 0; 19746 } 19747 19748 /* NVME_FCREQ and NVME_ABTS requests */ 19749 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19750 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19751 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19752 19753 spin_lock_irqsave(&pring->ring_lock, iflags); 19754 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19755 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19756 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19757 ret = lpfc_sli4_wq_put(wq, wqe); 19758 if (ret) { 19759 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19760 return ret; 19761 } 19762 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19763 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19764 return 0; 19765 } 19766 19767 /* NVMET requests */ 19768 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19769 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19770 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19771 19772 spin_lock_irqsave(&pring->ring_lock, iflags); 19773 ctxp = pwqe->context2; 19774 sglq = ctxp->ctxbuf->sglq; 19775 if (pwqe->sli4_xritag == NO_XRI) { 19776 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19777 pwqe->sli4_xritag = sglq->sli4_xritag; 19778 } 19779 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19780 pwqe->sli4_xritag); 19781 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19782 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19783 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19784 ret = lpfc_sli4_wq_put(wq, wqe); 19785 if (ret) { 19786 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19787 return ret; 19788 } 19789 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19790 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19791 return 0; 19792 } 19793 return WQE_ERROR; 19794 } 19795