1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2014 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_transport_fc.h> 33 #include <scsi/fc/fc_fs.h> 34 #include <linux/aer.h> 35 36 #include "lpfc_hw4.h" 37 #include "lpfc_hw.h" 38 #include "lpfc_sli.h" 39 #include "lpfc_sli4.h" 40 #include "lpfc_nl.h" 41 #include "lpfc_disc.h" 42 #include "lpfc_scsi.h" 43 #include "lpfc.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_logmsg.h" 46 #include "lpfc_compat.h" 47 #include "lpfc_debugfs.h" 48 #include "lpfc_vport.h" 49 50 /* There are only four IOCB completion types. */ 51 typedef enum _lpfc_iocb_type { 52 LPFC_UNKNOWN_IOCB, 53 LPFC_UNSOL_IOCB, 54 LPFC_SOL_IOCB, 55 LPFC_ABORT_IOCB 56 } lpfc_iocb_type; 57 58 59 /* Provide function prototypes local to this module. */ 60 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 61 uint32_t); 62 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint8_t *, uint32_t *); 64 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 65 struct lpfc_iocbq *); 66 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 67 struct hbq_dmabuf *); 68 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 69 struct lpfc_cqe *); 70 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 71 int); 72 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 73 uint32_t); 74 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 75 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 76 77 static IOCB_t * 78 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 79 { 80 return &iocbq->iocb; 81 } 82 83 /** 84 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 85 * @q: The Work Queue to operate on. 86 * @wqe: The work Queue Entry to put on the Work queue. 87 * 88 * This routine will copy the contents of @wqe to the next available entry on 89 * the @q. This function will then ring the Work Queue Doorbell to signal the 90 * HBA to start processing the Work Queue Entry. This function returns 0 if 91 * successful. If no entries are available on @q then this function will return 92 * -ENOMEM. 93 * The caller is expected to hold the hbalock when calling this routine. 94 **/ 95 static uint32_t 96 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 97 { 98 union lpfc_wqe *temp_wqe; 99 struct lpfc_register doorbell; 100 uint32_t host_index; 101 uint32_t idx; 102 103 /* sanity check on queue memory */ 104 if (unlikely(!q)) 105 return -ENOMEM; 106 temp_wqe = q->qe[q->host_index].wqe; 107 108 /* If the host has not yet processed the next entry then we are done */ 109 idx = ((q->host_index + 1) % q->entry_count); 110 if (idx == q->hba_index) { 111 q->WQ_overflow++; 112 return -ENOMEM; 113 } 114 q->WQ_posted++; 115 /* set consumption flag every once in a while */ 116 if (!((q->host_index + 1) % q->entry_repost)) 117 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 118 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 119 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 120 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 121 122 /* Update the host index before invoking device */ 123 host_index = q->host_index; 124 125 q->host_index = idx; 126 127 /* Ring Doorbell */ 128 doorbell.word0 = 0; 129 if (q->db_format == LPFC_DB_LIST_FORMAT) { 130 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 131 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 132 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 133 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 134 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 135 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 136 } else { 137 return -EINVAL; 138 } 139 writel(doorbell.word0, q->db_regaddr); 140 141 return 0; 142 } 143 144 /** 145 * lpfc_sli4_wq_release - Updates internal hba index for WQ 146 * @q: The Work Queue to operate on. 147 * @index: The index to advance the hba index to. 148 * 149 * This routine will update the HBA index of a queue to reflect consumption of 150 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 151 * an entry the host calls this function to update the queue's internal 152 * pointers. This routine returns the number of entries that were consumed by 153 * the HBA. 154 **/ 155 static uint32_t 156 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 157 { 158 uint32_t released = 0; 159 160 /* sanity check on queue memory */ 161 if (unlikely(!q)) 162 return 0; 163 164 if (q->hba_index == index) 165 return 0; 166 do { 167 q->hba_index = ((q->hba_index + 1) % q->entry_count); 168 released++; 169 } while (q->hba_index != index); 170 return released; 171 } 172 173 /** 174 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 175 * @q: The Mailbox Queue to operate on. 176 * @wqe: The Mailbox Queue Entry to put on the Work queue. 177 * 178 * This routine will copy the contents of @mqe to the next available entry on 179 * the @q. This function will then ring the Work Queue Doorbell to signal the 180 * HBA to start processing the Work Queue Entry. This function returns 0 if 181 * successful. If no entries are available on @q then this function will return 182 * -ENOMEM. 183 * The caller is expected to hold the hbalock when calling this routine. 184 **/ 185 static uint32_t 186 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 187 { 188 struct lpfc_mqe *temp_mqe; 189 struct lpfc_register doorbell; 190 191 /* sanity check on queue memory */ 192 if (unlikely(!q)) 193 return -ENOMEM; 194 temp_mqe = q->qe[q->host_index].mqe; 195 196 /* If the host has not yet processed the next entry then we are done */ 197 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 198 return -ENOMEM; 199 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 200 /* Save off the mailbox pointer for completion */ 201 q->phba->mbox = (MAILBOX_t *)temp_mqe; 202 203 /* Update the host index before invoking device */ 204 q->host_index = ((q->host_index + 1) % q->entry_count); 205 206 /* Ring Doorbell */ 207 doorbell.word0 = 0; 208 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 209 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 210 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 211 return 0; 212 } 213 214 /** 215 * lpfc_sli4_mq_release - Updates internal hba index for MQ 216 * @q: The Mailbox Queue to operate on. 217 * 218 * This routine will update the HBA index of a queue to reflect consumption of 219 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 220 * an entry the host calls this function to update the queue's internal 221 * pointers. This routine returns the number of entries that were consumed by 222 * the HBA. 223 **/ 224 static uint32_t 225 lpfc_sli4_mq_release(struct lpfc_queue *q) 226 { 227 /* sanity check on queue memory */ 228 if (unlikely(!q)) 229 return 0; 230 231 /* Clear the mailbox pointer for completion */ 232 q->phba->mbox = NULL; 233 q->hba_index = ((q->hba_index + 1) % q->entry_count); 234 return 1; 235 } 236 237 /** 238 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 239 * @q: The Event Queue to get the first valid EQE from 240 * 241 * This routine will get the first valid Event Queue Entry from @q, update 242 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 243 * the Queue (no more work to do), or the Queue is full of EQEs that have been 244 * processed, but not popped back to the HBA then this routine will return NULL. 245 **/ 246 static struct lpfc_eqe * 247 lpfc_sli4_eq_get(struct lpfc_queue *q) 248 { 249 struct lpfc_eqe *eqe; 250 uint32_t idx; 251 252 /* sanity check on queue memory */ 253 if (unlikely(!q)) 254 return NULL; 255 eqe = q->qe[q->hba_index].eqe; 256 257 /* If the next EQE is not valid then we are done */ 258 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 259 return NULL; 260 /* If the host has not yet processed the next entry then we are done */ 261 idx = ((q->hba_index + 1) % q->entry_count); 262 if (idx == q->host_index) 263 return NULL; 264 265 q->hba_index = idx; 266 267 /* 268 * insert barrier for instruction interlock : data from the hardware 269 * must have the valid bit checked before it can be copied and acted 270 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 271 * instructions allowing action on content before valid bit checked, 272 * add barrier here as well. May not be needed as "content" is a 273 * single 32-bit entity here (vs multi word structure for cq's). 274 */ 275 mb(); 276 return eqe; 277 } 278 279 /** 280 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 281 * @q: The Event Queue to disable interrupts 282 * 283 **/ 284 static inline void 285 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 286 { 287 struct lpfc_register doorbell; 288 289 doorbell.word0 = 0; 290 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 291 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 292 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 293 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 294 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 295 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 296 } 297 298 /** 299 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 300 * @q: The Event Queue that the host has completed processing for. 301 * @arm: Indicates whether the host wants to arms this CQ. 302 * 303 * This routine will mark all Event Queue Entries on @q, from the last 304 * known completed entry to the last entry that was processed, as completed 305 * by clearing the valid bit for each completion queue entry. Then it will 306 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 307 * The internal host index in the @q will be updated by this routine to indicate 308 * that the host has finished processing the entries. The @arm parameter 309 * indicates that the queue should be rearmed when ringing the doorbell. 310 * 311 * This function will return the number of EQEs that were popped. 312 **/ 313 uint32_t 314 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 315 { 316 uint32_t released = 0; 317 struct lpfc_eqe *temp_eqe; 318 struct lpfc_register doorbell; 319 320 /* sanity check on queue memory */ 321 if (unlikely(!q)) 322 return 0; 323 324 /* while there are valid entries */ 325 while (q->hba_index != q->host_index) { 326 temp_eqe = q->qe[q->host_index].eqe; 327 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 328 released++; 329 q->host_index = ((q->host_index + 1) % q->entry_count); 330 } 331 if (unlikely(released == 0 && !arm)) 332 return 0; 333 334 /* ring doorbell for number popped */ 335 doorbell.word0 = 0; 336 if (arm) { 337 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 338 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 339 } 340 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 341 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 342 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 343 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 344 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 345 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 346 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 347 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 348 readl(q->phba->sli4_hba.EQCQDBregaddr); 349 return released; 350 } 351 352 /** 353 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 354 * @q: The Completion Queue to get the first valid CQE from 355 * 356 * This routine will get the first valid Completion Queue Entry from @q, update 357 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 358 * the Queue (no more work to do), or the Queue is full of CQEs that have been 359 * processed, but not popped back to the HBA then this routine will return NULL. 360 **/ 361 static struct lpfc_cqe * 362 lpfc_sli4_cq_get(struct lpfc_queue *q) 363 { 364 struct lpfc_cqe *cqe; 365 uint32_t idx; 366 367 /* sanity check on queue memory */ 368 if (unlikely(!q)) 369 return NULL; 370 371 /* If the next CQE is not valid then we are done */ 372 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 373 return NULL; 374 /* If the host has not yet processed the next entry then we are done */ 375 idx = ((q->hba_index + 1) % q->entry_count); 376 if (idx == q->host_index) 377 return NULL; 378 379 cqe = q->qe[q->hba_index].cqe; 380 q->hba_index = idx; 381 382 /* 383 * insert barrier for instruction interlock : data from the hardware 384 * must have the valid bit checked before it can be copied and acted 385 * upon. Speculative instructions were allowing a bcopy at the start 386 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 387 * after our return, to copy data before the valid bit check above 388 * was done. As such, some of the copied data was stale. The barrier 389 * ensures the check is before any data is copied. 390 */ 391 mb(); 392 return cqe; 393 } 394 395 /** 396 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 397 * @q: The Completion Queue that the host has completed processing for. 398 * @arm: Indicates whether the host wants to arms this CQ. 399 * 400 * This routine will mark all Completion queue entries on @q, from the last 401 * known completed entry to the last entry that was processed, as completed 402 * by clearing the valid bit for each completion queue entry. Then it will 403 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 404 * The internal host index in the @q will be updated by this routine to indicate 405 * that the host has finished processing the entries. The @arm parameter 406 * indicates that the queue should be rearmed when ringing the doorbell. 407 * 408 * This function will return the number of CQEs that were released. 409 **/ 410 uint32_t 411 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 412 { 413 uint32_t released = 0; 414 struct lpfc_cqe *temp_qe; 415 struct lpfc_register doorbell; 416 417 /* sanity check on queue memory */ 418 if (unlikely(!q)) 419 return 0; 420 /* while there are valid entries */ 421 while (q->hba_index != q->host_index) { 422 temp_qe = q->qe[q->host_index].cqe; 423 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 424 released++; 425 q->host_index = ((q->host_index + 1) % q->entry_count); 426 } 427 if (unlikely(released == 0 && !arm)) 428 return 0; 429 430 /* ring doorbell for number popped */ 431 doorbell.word0 = 0; 432 if (arm) 433 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 434 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 435 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 436 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 437 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 438 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 439 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 440 return released; 441 } 442 443 /** 444 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 445 * @q: The Header Receive Queue to operate on. 446 * @wqe: The Receive Queue Entry to put on the Receive queue. 447 * 448 * This routine will copy the contents of @wqe to the next available entry on 449 * the @q. This function will then ring the Receive Queue Doorbell to signal the 450 * HBA to start processing the Receive Queue Entry. This function returns the 451 * index that the rqe was copied to if successful. If no entries are available 452 * on @q then this function will return -ENOMEM. 453 * The caller is expected to hold the hbalock when calling this routine. 454 **/ 455 static int 456 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 457 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 458 { 459 struct lpfc_rqe *temp_hrqe; 460 struct lpfc_rqe *temp_drqe; 461 struct lpfc_register doorbell; 462 int put_index; 463 464 /* sanity check on queue memory */ 465 if (unlikely(!hq) || unlikely(!dq)) 466 return -ENOMEM; 467 put_index = hq->host_index; 468 temp_hrqe = hq->qe[hq->host_index].rqe; 469 temp_drqe = dq->qe[dq->host_index].rqe; 470 471 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 472 return -EINVAL; 473 if (hq->host_index != dq->host_index) 474 return -EINVAL; 475 /* If the host has not yet processed the next entry then we are done */ 476 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 477 return -EBUSY; 478 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 479 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 480 481 /* Update the host index to point to the next slot */ 482 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 483 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 484 485 /* Ring The Header Receive Queue Doorbell */ 486 if (!(hq->host_index % hq->entry_repost)) { 487 doorbell.word0 = 0; 488 if (hq->db_format == LPFC_DB_RING_FORMAT) { 489 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 490 hq->entry_repost); 491 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 492 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 493 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 494 hq->entry_repost); 495 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 496 hq->host_index); 497 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 498 } else { 499 return -EINVAL; 500 } 501 writel(doorbell.word0, hq->db_regaddr); 502 } 503 return put_index; 504 } 505 506 /** 507 * lpfc_sli4_rq_release - Updates internal hba index for RQ 508 * @q: The Header Receive Queue to operate on. 509 * 510 * This routine will update the HBA index of a queue to reflect consumption of 511 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 512 * consumed an entry the host calls this function to update the queue's 513 * internal pointers. This routine returns the number of entries that were 514 * consumed by the HBA. 515 **/ 516 static uint32_t 517 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 518 { 519 /* sanity check on queue memory */ 520 if (unlikely(!hq) || unlikely(!dq)) 521 return 0; 522 523 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 524 return 0; 525 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 526 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 527 return 1; 528 } 529 530 /** 531 * lpfc_cmd_iocb - Get next command iocb entry in the ring 532 * @phba: Pointer to HBA context object. 533 * @pring: Pointer to driver SLI ring object. 534 * 535 * This function returns pointer to next command iocb entry 536 * in the command ring. The caller must hold hbalock to prevent 537 * other threads consume the next command iocb. 538 * SLI-2/SLI-3 provide different sized iocbs. 539 **/ 540 static inline IOCB_t * 541 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 542 { 543 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 544 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 545 } 546 547 /** 548 * lpfc_resp_iocb - Get next response iocb entry in the ring 549 * @phba: Pointer to HBA context object. 550 * @pring: Pointer to driver SLI ring object. 551 * 552 * This function returns pointer to next response iocb entry 553 * in the response ring. The caller must hold hbalock to make sure 554 * that no other thread consume the next response iocb. 555 * SLI-2/SLI-3 provide different sized iocbs. 556 **/ 557 static inline IOCB_t * 558 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 559 { 560 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 561 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 562 } 563 564 /** 565 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 566 * @phba: Pointer to HBA context object. 567 * 568 * This function is called with hbalock held. This function 569 * allocates a new driver iocb object from the iocb pool. If the 570 * allocation is successful, it returns pointer to the newly 571 * allocated iocb object else it returns NULL. 572 **/ 573 struct lpfc_iocbq * 574 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 575 { 576 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 577 struct lpfc_iocbq * iocbq = NULL; 578 579 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 580 if (iocbq) 581 phba->iocb_cnt++; 582 if (phba->iocb_cnt > phba->iocb_max) 583 phba->iocb_max = phba->iocb_cnt; 584 return iocbq; 585 } 586 587 /** 588 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 589 * @phba: Pointer to HBA context object. 590 * @xritag: XRI value. 591 * 592 * This function clears the sglq pointer from the array of acive 593 * sglq's. The xritag that is passed in is used to index into the 594 * array. Before the xritag can be used it needs to be adjusted 595 * by subtracting the xribase. 596 * 597 * Returns sglq ponter = success, NULL = Failure. 598 **/ 599 static struct lpfc_sglq * 600 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 601 { 602 struct lpfc_sglq *sglq; 603 604 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 605 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 606 return sglq; 607 } 608 609 /** 610 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 611 * @phba: Pointer to HBA context object. 612 * @xritag: XRI value. 613 * 614 * This function returns the sglq pointer from the array of acive 615 * sglq's. The xritag that is passed in is used to index into the 616 * array. Before the xritag can be used it needs to be adjusted 617 * by subtracting the xribase. 618 * 619 * Returns sglq ponter = success, NULL = Failure. 620 **/ 621 struct lpfc_sglq * 622 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 623 { 624 struct lpfc_sglq *sglq; 625 626 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 627 return sglq; 628 } 629 630 /** 631 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 632 * @phba: Pointer to HBA context object. 633 * @xritag: xri used in this exchange. 634 * @rrq: The RRQ to be cleared. 635 * 636 **/ 637 void 638 lpfc_clr_rrq_active(struct lpfc_hba *phba, 639 uint16_t xritag, 640 struct lpfc_node_rrq *rrq) 641 { 642 struct lpfc_nodelist *ndlp = NULL; 643 644 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 645 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 646 647 /* The target DID could have been swapped (cable swap) 648 * we should use the ndlp from the findnode if it is 649 * available. 650 */ 651 if ((!ndlp) && rrq->ndlp) 652 ndlp = rrq->ndlp; 653 654 if (!ndlp) 655 goto out; 656 657 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 658 rrq->send_rrq = 0; 659 rrq->xritag = 0; 660 rrq->rrq_stop_time = 0; 661 } 662 out: 663 mempool_free(rrq, phba->rrq_pool); 664 } 665 666 /** 667 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 668 * @phba: Pointer to HBA context object. 669 * 670 * This function is called with hbalock held. This function 671 * Checks if stop_time (ratov from setting rrq active) has 672 * been reached, if it has and the send_rrq flag is set then 673 * it will call lpfc_send_rrq. If the send_rrq flag is not set 674 * then it will just call the routine to clear the rrq and 675 * free the rrq resource. 676 * The timer is set to the next rrq that is going to expire before 677 * leaving the routine. 678 * 679 **/ 680 void 681 lpfc_handle_rrq_active(struct lpfc_hba *phba) 682 { 683 struct lpfc_node_rrq *rrq; 684 struct lpfc_node_rrq *nextrrq; 685 unsigned long next_time; 686 unsigned long iflags; 687 LIST_HEAD(send_rrq); 688 689 spin_lock_irqsave(&phba->hbalock, iflags); 690 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 691 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 692 list_for_each_entry_safe(rrq, nextrrq, 693 &phba->active_rrq_list, list) { 694 if (time_after(jiffies, rrq->rrq_stop_time)) 695 list_move(&rrq->list, &send_rrq); 696 else if (time_before(rrq->rrq_stop_time, next_time)) 697 next_time = rrq->rrq_stop_time; 698 } 699 spin_unlock_irqrestore(&phba->hbalock, iflags); 700 if ((!list_empty(&phba->active_rrq_list)) && 701 (!(phba->pport->load_flag & FC_UNLOADING))) 702 mod_timer(&phba->rrq_tmr, next_time); 703 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 704 list_del(&rrq->list); 705 if (!rrq->send_rrq) 706 /* this call will free the rrq */ 707 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 708 else if (lpfc_send_rrq(phba, rrq)) { 709 /* if we send the rrq then the completion handler 710 * will clear the bit in the xribitmap. 711 */ 712 lpfc_clr_rrq_active(phba, rrq->xritag, 713 rrq); 714 } 715 } 716 } 717 718 /** 719 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 720 * @vport: Pointer to vport context object. 721 * @xri: The xri used in the exchange. 722 * @did: The targets DID for this exchange. 723 * 724 * returns NULL = rrq not found in the phba->active_rrq_list. 725 * rrq = rrq for this xri and target. 726 **/ 727 struct lpfc_node_rrq * 728 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 729 { 730 struct lpfc_hba *phba = vport->phba; 731 struct lpfc_node_rrq *rrq; 732 struct lpfc_node_rrq *nextrrq; 733 unsigned long iflags; 734 735 if (phba->sli_rev != LPFC_SLI_REV4) 736 return NULL; 737 spin_lock_irqsave(&phba->hbalock, iflags); 738 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 739 if (rrq->vport == vport && rrq->xritag == xri && 740 rrq->nlp_DID == did){ 741 list_del(&rrq->list); 742 spin_unlock_irqrestore(&phba->hbalock, iflags); 743 return rrq; 744 } 745 } 746 spin_unlock_irqrestore(&phba->hbalock, iflags); 747 return NULL; 748 } 749 750 /** 751 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 752 * @vport: Pointer to vport context object. 753 * @ndlp: Pointer to the lpfc_node_list structure. 754 * If ndlp is NULL Remove all active RRQs for this vport from the 755 * phba->active_rrq_list and clear the rrq. 756 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 757 **/ 758 void 759 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 760 761 { 762 struct lpfc_hba *phba = vport->phba; 763 struct lpfc_node_rrq *rrq; 764 struct lpfc_node_rrq *nextrrq; 765 unsigned long iflags; 766 LIST_HEAD(rrq_list); 767 768 if (phba->sli_rev != LPFC_SLI_REV4) 769 return; 770 if (!ndlp) { 771 lpfc_sli4_vport_delete_els_xri_aborted(vport); 772 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 773 } 774 spin_lock_irqsave(&phba->hbalock, iflags); 775 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 776 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 777 list_move(&rrq->list, &rrq_list); 778 spin_unlock_irqrestore(&phba->hbalock, iflags); 779 780 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 781 list_del(&rrq->list); 782 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 783 } 784 } 785 786 /** 787 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 788 * @phba: Pointer to HBA context object. 789 * @ndlp: Targets nodelist pointer for this exchange. 790 * @xritag the xri in the bitmap to test. 791 * 792 * This function is called with hbalock held. This function 793 * returns 0 = rrq not active for this xri 794 * 1 = rrq is valid for this xri. 795 **/ 796 int 797 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 798 uint16_t xritag) 799 { 800 if (!ndlp) 801 return 0; 802 if (!ndlp->active_rrqs_xri_bitmap) 803 return 0; 804 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 805 return 1; 806 else 807 return 0; 808 } 809 810 /** 811 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 812 * @phba: Pointer to HBA context object. 813 * @ndlp: nodelist pointer for this target. 814 * @xritag: xri used in this exchange. 815 * @rxid: Remote Exchange ID. 816 * @send_rrq: Flag used to determine if we should send rrq els cmd. 817 * 818 * This function takes the hbalock. 819 * The active bit is always set in the active rrq xri_bitmap even 820 * if there is no slot avaiable for the other rrq information. 821 * 822 * returns 0 rrq actived for this xri 823 * < 0 No memory or invalid ndlp. 824 **/ 825 int 826 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 827 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 828 { 829 unsigned long iflags; 830 struct lpfc_node_rrq *rrq; 831 int empty; 832 833 if (!ndlp) 834 return -EINVAL; 835 836 if (!phba->cfg_enable_rrq) 837 return -EINVAL; 838 839 spin_lock_irqsave(&phba->hbalock, iflags); 840 if (phba->pport->load_flag & FC_UNLOADING) { 841 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 842 goto out; 843 } 844 845 /* 846 * set the active bit even if there is no mem available. 847 */ 848 if (NLP_CHK_FREE_REQ(ndlp)) 849 goto out; 850 851 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 852 goto out; 853 854 if (!ndlp->active_rrqs_xri_bitmap) 855 goto out; 856 857 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 858 goto out; 859 860 spin_unlock_irqrestore(&phba->hbalock, iflags); 861 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 862 if (!rrq) { 863 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 864 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 865 " DID:0x%x Send:%d\n", 866 xritag, rxid, ndlp->nlp_DID, send_rrq); 867 return -EINVAL; 868 } 869 if (phba->cfg_enable_rrq == 1) 870 rrq->send_rrq = send_rrq; 871 else 872 rrq->send_rrq = 0; 873 rrq->xritag = xritag; 874 rrq->rrq_stop_time = jiffies + 875 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 876 rrq->ndlp = ndlp; 877 rrq->nlp_DID = ndlp->nlp_DID; 878 rrq->vport = ndlp->vport; 879 rrq->rxid = rxid; 880 spin_lock_irqsave(&phba->hbalock, iflags); 881 empty = list_empty(&phba->active_rrq_list); 882 list_add_tail(&rrq->list, &phba->active_rrq_list); 883 phba->hba_flag |= HBA_RRQ_ACTIVE; 884 if (empty) 885 lpfc_worker_wake_up(phba); 886 spin_unlock_irqrestore(&phba->hbalock, iflags); 887 return 0; 888 out: 889 spin_unlock_irqrestore(&phba->hbalock, iflags); 890 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 891 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 892 " DID:0x%x Send:%d\n", 893 xritag, rxid, ndlp->nlp_DID, send_rrq); 894 return -EINVAL; 895 } 896 897 /** 898 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 899 * @phba: Pointer to HBA context object. 900 * @piocb: Pointer to the iocbq. 901 * 902 * This function is called with the ring lock held. This function 903 * gets a new driver sglq object from the sglq list. If the 904 * list is not empty then it is successful, it returns pointer to the newly 905 * allocated sglq object else it returns NULL. 906 **/ 907 static struct lpfc_sglq * 908 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 909 { 910 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 911 struct lpfc_sglq *sglq = NULL; 912 struct lpfc_sglq *start_sglq = NULL; 913 struct lpfc_scsi_buf *lpfc_cmd; 914 struct lpfc_nodelist *ndlp; 915 int found = 0; 916 917 if (piocbq->iocb_flag & LPFC_IO_FCP) { 918 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 919 ndlp = lpfc_cmd->rdata->pnode; 920 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 921 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) 922 ndlp = piocbq->context_un.ndlp; 923 else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) 924 ndlp = piocbq->context_un.ndlp; 925 else 926 ndlp = piocbq->context1; 927 928 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 929 start_sglq = sglq; 930 while (!found) { 931 if (!sglq) 932 return NULL; 933 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 934 /* This xri has an rrq outstanding for this DID. 935 * put it back in the list and get another xri. 936 */ 937 list_add_tail(&sglq->list, lpfc_sgl_list); 938 sglq = NULL; 939 list_remove_head(lpfc_sgl_list, sglq, 940 struct lpfc_sglq, list); 941 if (sglq == start_sglq) { 942 sglq = NULL; 943 break; 944 } else 945 continue; 946 } 947 sglq->ndlp = ndlp; 948 found = 1; 949 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 950 sglq->state = SGL_ALLOCATED; 951 } 952 return sglq; 953 } 954 955 /** 956 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 957 * @phba: Pointer to HBA context object. 958 * 959 * This function is called with no lock held. This function 960 * allocates a new driver iocb object from the iocb pool. If the 961 * allocation is successful, it returns pointer to the newly 962 * allocated iocb object else it returns NULL. 963 **/ 964 struct lpfc_iocbq * 965 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 966 { 967 struct lpfc_iocbq * iocbq = NULL; 968 unsigned long iflags; 969 970 spin_lock_irqsave(&phba->hbalock, iflags); 971 iocbq = __lpfc_sli_get_iocbq(phba); 972 spin_unlock_irqrestore(&phba->hbalock, iflags); 973 return iocbq; 974 } 975 976 /** 977 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 978 * @phba: Pointer to HBA context object. 979 * @iocbq: Pointer to driver iocb object. 980 * 981 * This function is called with hbalock held to release driver 982 * iocb object to the iocb pool. The iotag in the iocb object 983 * does not change for each use of the iocb object. This function 984 * clears all other fields of the iocb object when it is freed. 985 * The sqlq structure that holds the xritag and phys and virtual 986 * mappings for the scatter gather list is retrieved from the 987 * active array of sglq. The get of the sglq pointer also clears 988 * the entry in the array. If the status of the IO indiactes that 989 * this IO was aborted then the sglq entry it put on the 990 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 991 * IO has good status or fails for any other reason then the sglq 992 * entry is added to the free list (lpfc_sgl_list). 993 **/ 994 static void 995 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 996 { 997 struct lpfc_sglq *sglq; 998 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 999 unsigned long iflag = 0; 1000 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1001 1002 if (iocbq->sli4_xritag == NO_XRI) 1003 sglq = NULL; 1004 else 1005 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1006 1007 1008 if (sglq) { 1009 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1010 (sglq->state != SGL_XRI_ABORTED)) { 1011 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1012 iflag); 1013 list_add(&sglq->list, 1014 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1015 spin_unlock_irqrestore( 1016 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1017 } else { 1018 spin_lock_irqsave(&pring->ring_lock, iflag); 1019 sglq->state = SGL_FREED; 1020 sglq->ndlp = NULL; 1021 list_add_tail(&sglq->list, 1022 &phba->sli4_hba.lpfc_sgl_list); 1023 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1024 1025 /* Check if TXQ queue needs to be serviced */ 1026 if (!list_empty(&pring->txq)) 1027 lpfc_worker_wake_up(phba); 1028 } 1029 } 1030 1031 1032 /* 1033 * Clean all volatile data fields, preserve iotag and node struct. 1034 */ 1035 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1036 iocbq->sli4_lxritag = NO_XRI; 1037 iocbq->sli4_xritag = NO_XRI; 1038 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1039 } 1040 1041 1042 /** 1043 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1044 * @phba: Pointer to HBA context object. 1045 * @iocbq: Pointer to driver iocb object. 1046 * 1047 * This function is called with hbalock held to release driver 1048 * iocb object to the iocb pool. The iotag in the iocb object 1049 * does not change for each use of the iocb object. This function 1050 * clears all other fields of the iocb object when it is freed. 1051 **/ 1052 static void 1053 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1054 { 1055 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1056 1057 1058 /* 1059 * Clean all volatile data fields, preserve iotag and node struct. 1060 */ 1061 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1062 iocbq->sli4_xritag = NO_XRI; 1063 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1064 } 1065 1066 /** 1067 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1068 * @phba: Pointer to HBA context object. 1069 * @iocbq: Pointer to driver iocb object. 1070 * 1071 * This function is called with hbalock held to release driver 1072 * iocb object to the iocb pool. The iotag in the iocb object 1073 * does not change for each use of the iocb object. This function 1074 * clears all other fields of the iocb object when it is freed. 1075 **/ 1076 static void 1077 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1078 { 1079 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1080 phba->iocb_cnt--; 1081 } 1082 1083 /** 1084 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1085 * @phba: Pointer to HBA context object. 1086 * @iocbq: Pointer to driver iocb object. 1087 * 1088 * This function is called with no lock held to release the iocb to 1089 * iocb pool. 1090 **/ 1091 void 1092 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1093 { 1094 unsigned long iflags; 1095 1096 /* 1097 * Clean all volatile data fields, preserve iotag and node struct. 1098 */ 1099 spin_lock_irqsave(&phba->hbalock, iflags); 1100 __lpfc_sli_release_iocbq(phba, iocbq); 1101 spin_unlock_irqrestore(&phba->hbalock, iflags); 1102 } 1103 1104 /** 1105 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1106 * @phba: Pointer to HBA context object. 1107 * @iocblist: List of IOCBs. 1108 * @ulpstatus: ULP status in IOCB command field. 1109 * @ulpWord4: ULP word-4 in IOCB command field. 1110 * 1111 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1112 * on the list by invoking the complete callback function associated with the 1113 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1114 * fields. 1115 **/ 1116 void 1117 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1118 uint32_t ulpstatus, uint32_t ulpWord4) 1119 { 1120 struct lpfc_iocbq *piocb; 1121 1122 while (!list_empty(iocblist)) { 1123 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1124 if (!piocb->iocb_cmpl) 1125 lpfc_sli_release_iocbq(phba, piocb); 1126 else { 1127 piocb->iocb.ulpStatus = ulpstatus; 1128 piocb->iocb.un.ulpWord[4] = ulpWord4; 1129 (piocb->iocb_cmpl) (phba, piocb, piocb); 1130 } 1131 } 1132 return; 1133 } 1134 1135 /** 1136 * lpfc_sli_iocb_cmd_type - Get the iocb type 1137 * @iocb_cmnd: iocb command code. 1138 * 1139 * This function is called by ring event handler function to get the iocb type. 1140 * This function translates the iocb command to an iocb command type used to 1141 * decide the final disposition of each completed IOCB. 1142 * The function returns 1143 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1144 * LPFC_SOL_IOCB if it is a solicited iocb completion 1145 * LPFC_ABORT_IOCB if it is an abort iocb 1146 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1147 * 1148 * The caller is not required to hold any lock. 1149 **/ 1150 static lpfc_iocb_type 1151 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1152 { 1153 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1154 1155 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1156 return 0; 1157 1158 switch (iocb_cmnd) { 1159 case CMD_XMIT_SEQUENCE_CR: 1160 case CMD_XMIT_SEQUENCE_CX: 1161 case CMD_XMIT_BCAST_CN: 1162 case CMD_XMIT_BCAST_CX: 1163 case CMD_ELS_REQUEST_CR: 1164 case CMD_ELS_REQUEST_CX: 1165 case CMD_CREATE_XRI_CR: 1166 case CMD_CREATE_XRI_CX: 1167 case CMD_GET_RPI_CN: 1168 case CMD_XMIT_ELS_RSP_CX: 1169 case CMD_GET_RPI_CR: 1170 case CMD_FCP_IWRITE_CR: 1171 case CMD_FCP_IWRITE_CX: 1172 case CMD_FCP_IREAD_CR: 1173 case CMD_FCP_IREAD_CX: 1174 case CMD_FCP_ICMND_CR: 1175 case CMD_FCP_ICMND_CX: 1176 case CMD_FCP_TSEND_CX: 1177 case CMD_FCP_TRSP_CX: 1178 case CMD_FCP_TRECEIVE_CX: 1179 case CMD_FCP_AUTO_TRSP_CX: 1180 case CMD_ADAPTER_MSG: 1181 case CMD_ADAPTER_DUMP: 1182 case CMD_XMIT_SEQUENCE64_CR: 1183 case CMD_XMIT_SEQUENCE64_CX: 1184 case CMD_XMIT_BCAST64_CN: 1185 case CMD_XMIT_BCAST64_CX: 1186 case CMD_ELS_REQUEST64_CR: 1187 case CMD_ELS_REQUEST64_CX: 1188 case CMD_FCP_IWRITE64_CR: 1189 case CMD_FCP_IWRITE64_CX: 1190 case CMD_FCP_IREAD64_CR: 1191 case CMD_FCP_IREAD64_CX: 1192 case CMD_FCP_ICMND64_CR: 1193 case CMD_FCP_ICMND64_CX: 1194 case CMD_FCP_TSEND64_CX: 1195 case CMD_FCP_TRSP64_CX: 1196 case CMD_FCP_TRECEIVE64_CX: 1197 case CMD_GEN_REQUEST64_CR: 1198 case CMD_GEN_REQUEST64_CX: 1199 case CMD_XMIT_ELS_RSP64_CX: 1200 case DSSCMD_IWRITE64_CR: 1201 case DSSCMD_IWRITE64_CX: 1202 case DSSCMD_IREAD64_CR: 1203 case DSSCMD_IREAD64_CX: 1204 type = LPFC_SOL_IOCB; 1205 break; 1206 case CMD_ABORT_XRI_CN: 1207 case CMD_ABORT_XRI_CX: 1208 case CMD_CLOSE_XRI_CN: 1209 case CMD_CLOSE_XRI_CX: 1210 case CMD_XRI_ABORTED_CX: 1211 case CMD_ABORT_MXRI64_CN: 1212 case CMD_XMIT_BLS_RSP64_CX: 1213 type = LPFC_ABORT_IOCB; 1214 break; 1215 case CMD_RCV_SEQUENCE_CX: 1216 case CMD_RCV_ELS_REQ_CX: 1217 case CMD_RCV_SEQUENCE64_CX: 1218 case CMD_RCV_ELS_REQ64_CX: 1219 case CMD_ASYNC_STATUS: 1220 case CMD_IOCB_RCV_SEQ64_CX: 1221 case CMD_IOCB_RCV_ELS64_CX: 1222 case CMD_IOCB_RCV_CONT64_CX: 1223 case CMD_IOCB_RET_XRI64_CX: 1224 type = LPFC_UNSOL_IOCB; 1225 break; 1226 case CMD_IOCB_XMIT_MSEQ64_CR: 1227 case CMD_IOCB_XMIT_MSEQ64_CX: 1228 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1229 case CMD_IOCB_RCV_ELS_LIST64_CX: 1230 case CMD_IOCB_CLOSE_EXTENDED_CN: 1231 case CMD_IOCB_ABORT_EXTENDED_CN: 1232 case CMD_IOCB_RET_HBQE64_CN: 1233 case CMD_IOCB_FCP_IBIDIR64_CR: 1234 case CMD_IOCB_FCP_IBIDIR64_CX: 1235 case CMD_IOCB_FCP_ITASKMGT64_CX: 1236 case CMD_IOCB_LOGENTRY_CN: 1237 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1238 printk("%s - Unhandled SLI-3 Command x%x\n", 1239 __func__, iocb_cmnd); 1240 type = LPFC_UNKNOWN_IOCB; 1241 break; 1242 default: 1243 type = LPFC_UNKNOWN_IOCB; 1244 break; 1245 } 1246 1247 return type; 1248 } 1249 1250 /** 1251 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1252 * @phba: Pointer to HBA context object. 1253 * 1254 * This function is called from SLI initialization code 1255 * to configure every ring of the HBA's SLI interface. The 1256 * caller is not required to hold any lock. This function issues 1257 * a config_ring mailbox command for each ring. 1258 * This function returns zero if successful else returns a negative 1259 * error code. 1260 **/ 1261 static int 1262 lpfc_sli_ring_map(struct lpfc_hba *phba) 1263 { 1264 struct lpfc_sli *psli = &phba->sli; 1265 LPFC_MBOXQ_t *pmb; 1266 MAILBOX_t *pmbox; 1267 int i, rc, ret = 0; 1268 1269 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1270 if (!pmb) 1271 return -ENOMEM; 1272 pmbox = &pmb->u.mb; 1273 phba->link_state = LPFC_INIT_MBX_CMDS; 1274 for (i = 0; i < psli->num_rings; i++) { 1275 lpfc_config_ring(phba, i, pmb); 1276 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1277 if (rc != MBX_SUCCESS) { 1278 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1279 "0446 Adapter failed to init (%d), " 1280 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1281 "ring %d\n", 1282 rc, pmbox->mbxCommand, 1283 pmbox->mbxStatus, i); 1284 phba->link_state = LPFC_HBA_ERROR; 1285 ret = -ENXIO; 1286 break; 1287 } 1288 } 1289 mempool_free(pmb, phba->mbox_mem_pool); 1290 return ret; 1291 } 1292 1293 /** 1294 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1295 * @phba: Pointer to HBA context object. 1296 * @pring: Pointer to driver SLI ring object. 1297 * @piocb: Pointer to the driver iocb object. 1298 * 1299 * This function is called with hbalock held. The function adds the 1300 * new iocb to txcmplq of the given ring. This function always returns 1301 * 0. If this function is called for ELS ring, this function checks if 1302 * there is a vport associated with the ELS command. This function also 1303 * starts els_tmofunc timer if this is an ELS command. 1304 **/ 1305 static int 1306 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1307 struct lpfc_iocbq *piocb) 1308 { 1309 list_add_tail(&piocb->list, &pring->txcmplq); 1310 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1311 1312 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1313 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1314 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN) && 1315 (!(piocb->vport->load_flag & FC_UNLOADING))) { 1316 if (!piocb->vport) 1317 BUG(); 1318 else 1319 mod_timer(&piocb->vport->els_tmofunc, 1320 jiffies + 1321 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1322 } 1323 1324 1325 return 0; 1326 } 1327 1328 /** 1329 * lpfc_sli_ringtx_get - Get first element of the txq 1330 * @phba: Pointer to HBA context object. 1331 * @pring: Pointer to driver SLI ring object. 1332 * 1333 * This function is called with hbalock held to get next 1334 * iocb in txq of the given ring. If there is any iocb in 1335 * the txq, the function returns first iocb in the list after 1336 * removing the iocb from the list, else it returns NULL. 1337 **/ 1338 struct lpfc_iocbq * 1339 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1340 { 1341 struct lpfc_iocbq *cmd_iocb; 1342 1343 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1344 return cmd_iocb; 1345 } 1346 1347 /** 1348 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1349 * @phba: Pointer to HBA context object. 1350 * @pring: Pointer to driver SLI ring object. 1351 * 1352 * This function is called with hbalock held and the caller must post the 1353 * iocb without releasing the lock. If the caller releases the lock, 1354 * iocb slot returned by the function is not guaranteed to be available. 1355 * The function returns pointer to the next available iocb slot if there 1356 * is available slot in the ring, else it returns NULL. 1357 * If the get index of the ring is ahead of the put index, the function 1358 * will post an error attention event to the worker thread to take the 1359 * HBA to offline state. 1360 **/ 1361 static IOCB_t * 1362 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1363 { 1364 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1365 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1366 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1367 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1368 pring->sli.sli3.next_cmdidx = 0; 1369 1370 if (unlikely(pring->sli.sli3.local_getidx == 1371 pring->sli.sli3.next_cmdidx)) { 1372 1373 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1374 1375 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1376 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1377 "0315 Ring %d issue: portCmdGet %d " 1378 "is bigger than cmd ring %d\n", 1379 pring->ringno, 1380 pring->sli.sli3.local_getidx, 1381 max_cmd_idx); 1382 1383 phba->link_state = LPFC_HBA_ERROR; 1384 /* 1385 * All error attention handlers are posted to 1386 * worker thread 1387 */ 1388 phba->work_ha |= HA_ERATT; 1389 phba->work_hs = HS_FFER3; 1390 1391 lpfc_worker_wake_up(phba); 1392 1393 return NULL; 1394 } 1395 1396 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1397 return NULL; 1398 } 1399 1400 return lpfc_cmd_iocb(phba, pring); 1401 } 1402 1403 /** 1404 * lpfc_sli_next_iotag - Get an iotag for the iocb 1405 * @phba: Pointer to HBA context object. 1406 * @iocbq: Pointer to driver iocb object. 1407 * 1408 * This function gets an iotag for the iocb. If there is no unused iotag and 1409 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1410 * array and assigns a new iotag. 1411 * The function returns the allocated iotag if successful, else returns zero. 1412 * Zero is not a valid iotag. 1413 * The caller is not required to hold any lock. 1414 **/ 1415 uint16_t 1416 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1417 { 1418 struct lpfc_iocbq **new_arr; 1419 struct lpfc_iocbq **old_arr; 1420 size_t new_len; 1421 struct lpfc_sli *psli = &phba->sli; 1422 uint16_t iotag; 1423 1424 spin_lock_irq(&phba->hbalock); 1425 iotag = psli->last_iotag; 1426 if(++iotag < psli->iocbq_lookup_len) { 1427 psli->last_iotag = iotag; 1428 psli->iocbq_lookup[iotag] = iocbq; 1429 spin_unlock_irq(&phba->hbalock); 1430 iocbq->iotag = iotag; 1431 return iotag; 1432 } else if (psli->iocbq_lookup_len < (0xffff 1433 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1434 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1435 spin_unlock_irq(&phba->hbalock); 1436 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1437 GFP_KERNEL); 1438 if (new_arr) { 1439 spin_lock_irq(&phba->hbalock); 1440 old_arr = psli->iocbq_lookup; 1441 if (new_len <= psli->iocbq_lookup_len) { 1442 /* highly unprobable case */ 1443 kfree(new_arr); 1444 iotag = psli->last_iotag; 1445 if(++iotag < psli->iocbq_lookup_len) { 1446 psli->last_iotag = iotag; 1447 psli->iocbq_lookup[iotag] = iocbq; 1448 spin_unlock_irq(&phba->hbalock); 1449 iocbq->iotag = iotag; 1450 return iotag; 1451 } 1452 spin_unlock_irq(&phba->hbalock); 1453 return 0; 1454 } 1455 if (psli->iocbq_lookup) 1456 memcpy(new_arr, old_arr, 1457 ((psli->last_iotag + 1) * 1458 sizeof (struct lpfc_iocbq *))); 1459 psli->iocbq_lookup = new_arr; 1460 psli->iocbq_lookup_len = new_len; 1461 psli->last_iotag = iotag; 1462 psli->iocbq_lookup[iotag] = iocbq; 1463 spin_unlock_irq(&phba->hbalock); 1464 iocbq->iotag = iotag; 1465 kfree(old_arr); 1466 return iotag; 1467 } 1468 } else 1469 spin_unlock_irq(&phba->hbalock); 1470 1471 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1472 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1473 psli->last_iotag); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1480 * @phba: Pointer to HBA context object. 1481 * @pring: Pointer to driver SLI ring object. 1482 * @iocb: Pointer to iocb slot in the ring. 1483 * @nextiocb: Pointer to driver iocb object which need to be 1484 * posted to firmware. 1485 * 1486 * This function is called with hbalock held to post a new iocb to 1487 * the firmware. This function copies the new iocb to ring iocb slot and 1488 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1489 * a completion call back for this iocb else the function will free the 1490 * iocb object. 1491 **/ 1492 static void 1493 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1494 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1495 { 1496 /* 1497 * Set up an iotag 1498 */ 1499 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1500 1501 1502 if (pring->ringno == LPFC_ELS_RING) { 1503 lpfc_debugfs_slow_ring_trc(phba, 1504 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1505 *(((uint32_t *) &nextiocb->iocb) + 4), 1506 *(((uint32_t *) &nextiocb->iocb) + 6), 1507 *(((uint32_t *) &nextiocb->iocb) + 7)); 1508 } 1509 1510 /* 1511 * Issue iocb command to adapter 1512 */ 1513 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1514 wmb(); 1515 pring->stats.iocb_cmd++; 1516 1517 /* 1518 * If there is no completion routine to call, we can release the 1519 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1520 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1521 */ 1522 if (nextiocb->iocb_cmpl) 1523 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1524 else 1525 __lpfc_sli_release_iocbq(phba, nextiocb); 1526 1527 /* 1528 * Let the HBA know what IOCB slot will be the next one the 1529 * driver will put a command into. 1530 */ 1531 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1532 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1533 } 1534 1535 /** 1536 * lpfc_sli_update_full_ring - Update the chip attention register 1537 * @phba: Pointer to HBA context object. 1538 * @pring: Pointer to driver SLI ring object. 1539 * 1540 * The caller is not required to hold any lock for calling this function. 1541 * This function updates the chip attention bits for the ring to inform firmware 1542 * that there are pending work to be done for this ring and requests an 1543 * interrupt when there is space available in the ring. This function is 1544 * called when the driver is unable to post more iocbs to the ring due 1545 * to unavailability of space in the ring. 1546 **/ 1547 static void 1548 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1549 { 1550 int ringno = pring->ringno; 1551 1552 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1553 1554 wmb(); 1555 1556 /* 1557 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1558 * The HBA will tell us when an IOCB entry is available. 1559 */ 1560 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1561 readl(phba->CAregaddr); /* flush */ 1562 1563 pring->stats.iocb_cmd_full++; 1564 } 1565 1566 /** 1567 * lpfc_sli_update_ring - Update chip attention register 1568 * @phba: Pointer to HBA context object. 1569 * @pring: Pointer to driver SLI ring object. 1570 * 1571 * This function updates the chip attention register bit for the 1572 * given ring to inform HBA that there is more work to be done 1573 * in this ring. The caller is not required to hold any lock. 1574 **/ 1575 static void 1576 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1577 { 1578 int ringno = pring->ringno; 1579 1580 /* 1581 * Tell the HBA that there is work to do in this ring. 1582 */ 1583 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1584 wmb(); 1585 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1586 readl(phba->CAregaddr); /* flush */ 1587 } 1588 } 1589 1590 /** 1591 * lpfc_sli_resume_iocb - Process iocbs in the txq 1592 * @phba: Pointer to HBA context object. 1593 * @pring: Pointer to driver SLI ring object. 1594 * 1595 * This function is called with hbalock held to post pending iocbs 1596 * in the txq to the firmware. This function is called when driver 1597 * detects space available in the ring. 1598 **/ 1599 static void 1600 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1601 { 1602 IOCB_t *iocb; 1603 struct lpfc_iocbq *nextiocb; 1604 1605 /* 1606 * Check to see if: 1607 * (a) there is anything on the txq to send 1608 * (b) link is up 1609 * (c) link attention events can be processed (fcp ring only) 1610 * (d) IOCB processing is not blocked by the outstanding mbox command. 1611 */ 1612 1613 if (lpfc_is_link_up(phba) && 1614 (!list_empty(&pring->txq)) && 1615 (pring->ringno != phba->sli.fcp_ring || 1616 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1617 1618 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1619 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1620 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1621 1622 if (iocb) 1623 lpfc_sli_update_ring(phba, pring); 1624 else 1625 lpfc_sli_update_full_ring(phba, pring); 1626 } 1627 1628 return; 1629 } 1630 1631 /** 1632 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1633 * @phba: Pointer to HBA context object. 1634 * @hbqno: HBQ number. 1635 * 1636 * This function is called with hbalock held to get the next 1637 * available slot for the given HBQ. If there is free slot 1638 * available for the HBQ it will return pointer to the next available 1639 * HBQ entry else it will return NULL. 1640 **/ 1641 static struct lpfc_hbq_entry * 1642 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1643 { 1644 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1645 1646 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1647 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1648 hbqp->next_hbqPutIdx = 0; 1649 1650 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1651 uint32_t raw_index = phba->hbq_get[hbqno]; 1652 uint32_t getidx = le32_to_cpu(raw_index); 1653 1654 hbqp->local_hbqGetIdx = getidx; 1655 1656 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1657 lpfc_printf_log(phba, KERN_ERR, 1658 LOG_SLI | LOG_VPORT, 1659 "1802 HBQ %d: local_hbqGetIdx " 1660 "%u is > than hbqp->entry_count %u\n", 1661 hbqno, hbqp->local_hbqGetIdx, 1662 hbqp->entry_count); 1663 1664 phba->link_state = LPFC_HBA_ERROR; 1665 return NULL; 1666 } 1667 1668 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1669 return NULL; 1670 } 1671 1672 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1673 hbqp->hbqPutIdx; 1674 } 1675 1676 /** 1677 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1678 * @phba: Pointer to HBA context object. 1679 * 1680 * This function is called with no lock held to free all the 1681 * hbq buffers while uninitializing the SLI interface. It also 1682 * frees the HBQ buffers returned by the firmware but not yet 1683 * processed by the upper layers. 1684 **/ 1685 void 1686 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1687 { 1688 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1689 struct hbq_dmabuf *hbq_buf; 1690 unsigned long flags; 1691 int i, hbq_count; 1692 uint32_t hbqno; 1693 1694 hbq_count = lpfc_sli_hbq_count(); 1695 /* Return all memory used by all HBQs */ 1696 spin_lock_irqsave(&phba->hbalock, flags); 1697 for (i = 0; i < hbq_count; ++i) { 1698 list_for_each_entry_safe(dmabuf, next_dmabuf, 1699 &phba->hbqs[i].hbq_buffer_list, list) { 1700 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1701 list_del(&hbq_buf->dbuf.list); 1702 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1703 } 1704 phba->hbqs[i].buffer_count = 0; 1705 } 1706 /* Return all HBQ buffer that are in-fly */ 1707 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1708 list) { 1709 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1710 list_del(&hbq_buf->dbuf.list); 1711 if (hbq_buf->tag == -1) { 1712 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1713 (phba, hbq_buf); 1714 } else { 1715 hbqno = hbq_buf->tag >> 16; 1716 if (hbqno >= LPFC_MAX_HBQS) 1717 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1718 (phba, hbq_buf); 1719 else 1720 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1721 hbq_buf); 1722 } 1723 } 1724 1725 /* Mark the HBQs not in use */ 1726 phba->hbq_in_use = 0; 1727 spin_unlock_irqrestore(&phba->hbalock, flags); 1728 } 1729 1730 /** 1731 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1732 * @phba: Pointer to HBA context object. 1733 * @hbqno: HBQ number. 1734 * @hbq_buf: Pointer to HBQ buffer. 1735 * 1736 * This function is called with the hbalock held to post a 1737 * hbq buffer to the firmware. If the function finds an empty 1738 * slot in the HBQ, it will post the buffer. The function will return 1739 * pointer to the hbq entry if it successfully post the buffer 1740 * else it will return NULL. 1741 **/ 1742 static int 1743 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1744 struct hbq_dmabuf *hbq_buf) 1745 { 1746 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1747 } 1748 1749 /** 1750 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1751 * @phba: Pointer to HBA context object. 1752 * @hbqno: HBQ number. 1753 * @hbq_buf: Pointer to HBQ buffer. 1754 * 1755 * This function is called with the hbalock held to post a hbq buffer to the 1756 * firmware. If the function finds an empty slot in the HBQ, it will post the 1757 * buffer and place it on the hbq_buffer_list. The function will return zero if 1758 * it successfully post the buffer else it will return an error. 1759 **/ 1760 static int 1761 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1762 struct hbq_dmabuf *hbq_buf) 1763 { 1764 struct lpfc_hbq_entry *hbqe; 1765 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1766 1767 /* Get next HBQ entry slot to use */ 1768 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1769 if (hbqe) { 1770 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1771 1772 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1773 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1774 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1775 hbqe->bde.tus.f.bdeFlags = 0; 1776 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1777 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1778 /* Sync SLIM */ 1779 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1780 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1781 /* flush */ 1782 readl(phba->hbq_put + hbqno); 1783 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1784 return 0; 1785 } else 1786 return -ENOMEM; 1787 } 1788 1789 /** 1790 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1791 * @phba: Pointer to HBA context object. 1792 * @hbqno: HBQ number. 1793 * @hbq_buf: Pointer to HBQ buffer. 1794 * 1795 * This function is called with the hbalock held to post an RQE to the SLI4 1796 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1797 * the hbq_buffer_list and return zero, otherwise it will return an error. 1798 **/ 1799 static int 1800 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1801 struct hbq_dmabuf *hbq_buf) 1802 { 1803 int rc; 1804 struct lpfc_rqe hrqe; 1805 struct lpfc_rqe drqe; 1806 1807 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1808 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1809 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1810 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1811 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1812 &hrqe, &drqe); 1813 if (rc < 0) 1814 return rc; 1815 hbq_buf->tag = rc; 1816 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1817 return 0; 1818 } 1819 1820 /* HBQ for ELS and CT traffic. */ 1821 static struct lpfc_hbq_init lpfc_els_hbq = { 1822 .rn = 1, 1823 .entry_count = 256, 1824 .mask_count = 0, 1825 .profile = 0, 1826 .ring_mask = (1 << LPFC_ELS_RING), 1827 .buffer_count = 0, 1828 .init_count = 40, 1829 .add_count = 40, 1830 }; 1831 1832 /* HBQ for the extra ring if needed */ 1833 static struct lpfc_hbq_init lpfc_extra_hbq = { 1834 .rn = 1, 1835 .entry_count = 200, 1836 .mask_count = 0, 1837 .profile = 0, 1838 .ring_mask = (1 << LPFC_EXTRA_RING), 1839 .buffer_count = 0, 1840 .init_count = 0, 1841 .add_count = 5, 1842 }; 1843 1844 /* Array of HBQs */ 1845 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1846 &lpfc_els_hbq, 1847 &lpfc_extra_hbq, 1848 }; 1849 1850 /** 1851 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1852 * @phba: Pointer to HBA context object. 1853 * @hbqno: HBQ number. 1854 * @count: Number of HBQ buffers to be posted. 1855 * 1856 * This function is called with no lock held to post more hbq buffers to the 1857 * given HBQ. The function returns the number of HBQ buffers successfully 1858 * posted. 1859 **/ 1860 static int 1861 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1862 { 1863 uint32_t i, posted = 0; 1864 unsigned long flags; 1865 struct hbq_dmabuf *hbq_buffer; 1866 LIST_HEAD(hbq_buf_list); 1867 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1868 return 0; 1869 1870 if ((phba->hbqs[hbqno].buffer_count + count) > 1871 lpfc_hbq_defs[hbqno]->entry_count) 1872 count = lpfc_hbq_defs[hbqno]->entry_count - 1873 phba->hbqs[hbqno].buffer_count; 1874 if (!count) 1875 return 0; 1876 /* Allocate HBQ entries */ 1877 for (i = 0; i < count; i++) { 1878 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1879 if (!hbq_buffer) 1880 break; 1881 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1882 } 1883 /* Check whether HBQ is still in use */ 1884 spin_lock_irqsave(&phba->hbalock, flags); 1885 if (!phba->hbq_in_use) 1886 goto err; 1887 while (!list_empty(&hbq_buf_list)) { 1888 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1889 dbuf.list); 1890 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1891 (hbqno << 16)); 1892 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1893 phba->hbqs[hbqno].buffer_count++; 1894 posted++; 1895 } else 1896 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1897 } 1898 spin_unlock_irqrestore(&phba->hbalock, flags); 1899 return posted; 1900 err: 1901 spin_unlock_irqrestore(&phba->hbalock, flags); 1902 while (!list_empty(&hbq_buf_list)) { 1903 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1904 dbuf.list); 1905 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1906 } 1907 return 0; 1908 } 1909 1910 /** 1911 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1912 * @phba: Pointer to HBA context object. 1913 * @qno: HBQ number. 1914 * 1915 * This function posts more buffers to the HBQ. This function 1916 * is called with no lock held. The function returns the number of HBQ entries 1917 * successfully allocated. 1918 **/ 1919 int 1920 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1921 { 1922 if (phba->sli_rev == LPFC_SLI_REV4) 1923 return 0; 1924 else 1925 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1926 lpfc_hbq_defs[qno]->add_count); 1927 } 1928 1929 /** 1930 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1931 * @phba: Pointer to HBA context object. 1932 * @qno: HBQ queue number. 1933 * 1934 * This function is called from SLI initialization code path with 1935 * no lock held to post initial HBQ buffers to firmware. The 1936 * function returns the number of HBQ entries successfully allocated. 1937 **/ 1938 static int 1939 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1940 { 1941 if (phba->sli_rev == LPFC_SLI_REV4) 1942 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1943 lpfc_hbq_defs[qno]->entry_count); 1944 else 1945 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1946 lpfc_hbq_defs[qno]->init_count); 1947 } 1948 1949 /** 1950 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1951 * @phba: Pointer to HBA context object. 1952 * @hbqno: HBQ number. 1953 * 1954 * This function removes the first hbq buffer on an hbq list and returns a 1955 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1956 **/ 1957 static struct hbq_dmabuf * 1958 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1959 { 1960 struct lpfc_dmabuf *d_buf; 1961 1962 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1963 if (!d_buf) 1964 return NULL; 1965 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1966 } 1967 1968 /** 1969 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 1970 * @phba: Pointer to HBA context object. 1971 * @tag: Tag of the hbq buffer. 1972 * 1973 * This function is called with hbalock held. This function searches 1974 * for the hbq buffer associated with the given tag in the hbq buffer 1975 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise 1976 * it returns NULL. 1977 **/ 1978 static struct hbq_dmabuf * 1979 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 1980 { 1981 struct lpfc_dmabuf *d_buf; 1982 struct hbq_dmabuf *hbq_buf; 1983 uint32_t hbqno; 1984 1985 hbqno = tag >> 16; 1986 if (hbqno >= LPFC_MAX_HBQS) 1987 return NULL; 1988 1989 spin_lock_irq(&phba->hbalock); 1990 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 1991 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 1992 if (hbq_buf->tag == tag) { 1993 spin_unlock_irq(&phba->hbalock); 1994 return hbq_buf; 1995 } 1996 } 1997 spin_unlock_irq(&phba->hbalock); 1998 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 1999 "1803 Bad hbq tag. Data: x%x x%x\n", 2000 tag, phba->hbqs[tag >> 16].buffer_count); 2001 return NULL; 2002 } 2003 2004 /** 2005 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2006 * @phba: Pointer to HBA context object. 2007 * @hbq_buffer: Pointer to HBQ buffer. 2008 * 2009 * This function is called with hbalock. This function gives back 2010 * the hbq buffer to firmware. If the HBQ does not have space to 2011 * post the buffer, it will free the buffer. 2012 **/ 2013 void 2014 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2015 { 2016 uint32_t hbqno; 2017 2018 if (hbq_buffer) { 2019 hbqno = hbq_buffer->tag >> 16; 2020 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2021 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2022 } 2023 } 2024 2025 /** 2026 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2027 * @mbxCommand: mailbox command code. 2028 * 2029 * This function is called by the mailbox event handler function to verify 2030 * that the completed mailbox command is a legitimate mailbox command. If the 2031 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2032 * and the mailbox event handler will take the HBA offline. 2033 **/ 2034 static int 2035 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2036 { 2037 uint8_t ret; 2038 2039 switch (mbxCommand) { 2040 case MBX_LOAD_SM: 2041 case MBX_READ_NV: 2042 case MBX_WRITE_NV: 2043 case MBX_WRITE_VPARMS: 2044 case MBX_RUN_BIU_DIAG: 2045 case MBX_INIT_LINK: 2046 case MBX_DOWN_LINK: 2047 case MBX_CONFIG_LINK: 2048 case MBX_CONFIG_RING: 2049 case MBX_RESET_RING: 2050 case MBX_READ_CONFIG: 2051 case MBX_READ_RCONFIG: 2052 case MBX_READ_SPARM: 2053 case MBX_READ_STATUS: 2054 case MBX_READ_RPI: 2055 case MBX_READ_XRI: 2056 case MBX_READ_REV: 2057 case MBX_READ_LNK_STAT: 2058 case MBX_REG_LOGIN: 2059 case MBX_UNREG_LOGIN: 2060 case MBX_CLEAR_LA: 2061 case MBX_DUMP_MEMORY: 2062 case MBX_DUMP_CONTEXT: 2063 case MBX_RUN_DIAGS: 2064 case MBX_RESTART: 2065 case MBX_UPDATE_CFG: 2066 case MBX_DOWN_LOAD: 2067 case MBX_DEL_LD_ENTRY: 2068 case MBX_RUN_PROGRAM: 2069 case MBX_SET_MASK: 2070 case MBX_SET_VARIABLE: 2071 case MBX_UNREG_D_ID: 2072 case MBX_KILL_BOARD: 2073 case MBX_CONFIG_FARP: 2074 case MBX_BEACON: 2075 case MBX_LOAD_AREA: 2076 case MBX_RUN_BIU_DIAG64: 2077 case MBX_CONFIG_PORT: 2078 case MBX_READ_SPARM64: 2079 case MBX_READ_RPI64: 2080 case MBX_REG_LOGIN64: 2081 case MBX_READ_TOPOLOGY: 2082 case MBX_WRITE_WWN: 2083 case MBX_SET_DEBUG: 2084 case MBX_LOAD_EXP_ROM: 2085 case MBX_ASYNCEVT_ENABLE: 2086 case MBX_REG_VPI: 2087 case MBX_UNREG_VPI: 2088 case MBX_HEARTBEAT: 2089 case MBX_PORT_CAPABILITIES: 2090 case MBX_PORT_IOV_CONTROL: 2091 case MBX_SLI4_CONFIG: 2092 case MBX_SLI4_REQ_FTRS: 2093 case MBX_REG_FCFI: 2094 case MBX_UNREG_FCFI: 2095 case MBX_REG_VFI: 2096 case MBX_UNREG_VFI: 2097 case MBX_INIT_VPI: 2098 case MBX_INIT_VFI: 2099 case MBX_RESUME_RPI: 2100 case MBX_READ_EVENT_LOG_STATUS: 2101 case MBX_READ_EVENT_LOG: 2102 case MBX_SECURITY_MGMT: 2103 case MBX_AUTH_PORT: 2104 case MBX_ACCESS_VDATA: 2105 ret = mbxCommand; 2106 break; 2107 default: 2108 ret = MBX_SHUTDOWN; 2109 break; 2110 } 2111 return ret; 2112 } 2113 2114 /** 2115 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2116 * @phba: Pointer to HBA context object. 2117 * @pmboxq: Pointer to mailbox command. 2118 * 2119 * This is completion handler function for mailbox commands issued from 2120 * lpfc_sli_issue_mbox_wait function. This function is called by the 2121 * mailbox event handler function with no lock held. This function 2122 * will wake up thread waiting on the wait queue pointed by context1 2123 * of the mailbox. 2124 **/ 2125 void 2126 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2127 { 2128 wait_queue_head_t *pdone_q; 2129 unsigned long drvr_flag; 2130 2131 /* 2132 * If pdone_q is empty, the driver thread gave up waiting and 2133 * continued running. 2134 */ 2135 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2136 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2137 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2138 if (pdone_q) 2139 wake_up_interruptible(pdone_q); 2140 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2141 return; 2142 } 2143 2144 2145 /** 2146 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2147 * @phba: Pointer to HBA context object. 2148 * @pmb: Pointer to mailbox object. 2149 * 2150 * This function is the default mailbox completion handler. It 2151 * frees the memory resources associated with the completed mailbox 2152 * command. If the completed command is a REG_LOGIN mailbox command, 2153 * this function will issue a UREG_LOGIN to re-claim the RPI. 2154 **/ 2155 void 2156 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2157 { 2158 struct lpfc_vport *vport = pmb->vport; 2159 struct lpfc_dmabuf *mp; 2160 struct lpfc_nodelist *ndlp; 2161 struct Scsi_Host *shost; 2162 uint16_t rpi, vpi; 2163 int rc; 2164 2165 mp = (struct lpfc_dmabuf *) (pmb->context1); 2166 2167 if (mp) { 2168 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2169 kfree(mp); 2170 } 2171 2172 /* 2173 * If a REG_LOGIN succeeded after node is destroyed or node 2174 * is in re-discovery driver need to cleanup the RPI. 2175 */ 2176 if (!(phba->pport->load_flag & FC_UNLOADING) && 2177 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2178 !pmb->u.mb.mbxStatus) { 2179 rpi = pmb->u.mb.un.varWords[0]; 2180 vpi = pmb->u.mb.un.varRegLogin.vpi; 2181 lpfc_unreg_login(phba, vpi, rpi, pmb); 2182 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2183 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2184 if (rc != MBX_NOT_FINISHED) 2185 return; 2186 } 2187 2188 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2189 !(phba->pport->load_flag & FC_UNLOADING) && 2190 !pmb->u.mb.mbxStatus) { 2191 shost = lpfc_shost_from_vport(vport); 2192 spin_lock_irq(shost->host_lock); 2193 vport->vpi_state |= LPFC_VPI_REGISTERED; 2194 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2195 spin_unlock_irq(shost->host_lock); 2196 } 2197 2198 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2199 ndlp = (struct lpfc_nodelist *)pmb->context2; 2200 lpfc_nlp_put(ndlp); 2201 pmb->context2 = NULL; 2202 } 2203 2204 /* Check security permission status on INIT_LINK mailbox command */ 2205 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2206 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2207 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2208 "2860 SLI authentication is required " 2209 "for INIT_LINK but has not done yet\n"); 2210 2211 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2212 lpfc_sli4_mbox_cmd_free(phba, pmb); 2213 else 2214 mempool_free(pmb, phba->mbox_mem_pool); 2215 } 2216 2217 /** 2218 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2219 * @phba: Pointer to HBA context object. 2220 * 2221 * This function is called with no lock held. This function processes all 2222 * the completed mailbox commands and gives it to upper layers. The interrupt 2223 * service routine processes mailbox completion interrupt and adds completed 2224 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2225 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2226 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2227 * function returns the mailbox commands to the upper layer by calling the 2228 * completion handler function of each mailbox. 2229 **/ 2230 int 2231 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2232 { 2233 MAILBOX_t *pmbox; 2234 LPFC_MBOXQ_t *pmb; 2235 int rc; 2236 LIST_HEAD(cmplq); 2237 2238 phba->sli.slistat.mbox_event++; 2239 2240 /* Get all completed mailboxe buffers into the cmplq */ 2241 spin_lock_irq(&phba->hbalock); 2242 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2243 spin_unlock_irq(&phba->hbalock); 2244 2245 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2246 do { 2247 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2248 if (pmb == NULL) 2249 break; 2250 2251 pmbox = &pmb->u.mb; 2252 2253 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2254 if (pmb->vport) { 2255 lpfc_debugfs_disc_trc(pmb->vport, 2256 LPFC_DISC_TRC_MBOX_VPORT, 2257 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2258 (uint32_t)pmbox->mbxCommand, 2259 pmbox->un.varWords[0], 2260 pmbox->un.varWords[1]); 2261 } 2262 else { 2263 lpfc_debugfs_disc_trc(phba->pport, 2264 LPFC_DISC_TRC_MBOX, 2265 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2266 (uint32_t)pmbox->mbxCommand, 2267 pmbox->un.varWords[0], 2268 pmbox->un.varWords[1]); 2269 } 2270 } 2271 2272 /* 2273 * It is a fatal error if unknown mbox command completion. 2274 */ 2275 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2276 MBX_SHUTDOWN) { 2277 /* Unknown mailbox command compl */ 2278 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2279 "(%d):0323 Unknown Mailbox command " 2280 "x%x (x%x/x%x) Cmpl\n", 2281 pmb->vport ? pmb->vport->vpi : 0, 2282 pmbox->mbxCommand, 2283 lpfc_sli_config_mbox_subsys_get(phba, 2284 pmb), 2285 lpfc_sli_config_mbox_opcode_get(phba, 2286 pmb)); 2287 phba->link_state = LPFC_HBA_ERROR; 2288 phba->work_hs = HS_FFER3; 2289 lpfc_handle_eratt(phba); 2290 continue; 2291 } 2292 2293 if (pmbox->mbxStatus) { 2294 phba->sli.slistat.mbox_stat_err++; 2295 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2296 /* Mbox cmd cmpl error - RETRYing */ 2297 lpfc_printf_log(phba, KERN_INFO, 2298 LOG_MBOX | LOG_SLI, 2299 "(%d):0305 Mbox cmd cmpl " 2300 "error - RETRYing Data: x%x " 2301 "(x%x/x%x) x%x x%x x%x\n", 2302 pmb->vport ? pmb->vport->vpi : 0, 2303 pmbox->mbxCommand, 2304 lpfc_sli_config_mbox_subsys_get(phba, 2305 pmb), 2306 lpfc_sli_config_mbox_opcode_get(phba, 2307 pmb), 2308 pmbox->mbxStatus, 2309 pmbox->un.varWords[0], 2310 pmb->vport->port_state); 2311 pmbox->mbxStatus = 0; 2312 pmbox->mbxOwner = OWN_HOST; 2313 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2314 if (rc != MBX_NOT_FINISHED) 2315 continue; 2316 } 2317 } 2318 2319 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2320 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2321 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2322 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2323 "x%x x%x x%x\n", 2324 pmb->vport ? pmb->vport->vpi : 0, 2325 pmbox->mbxCommand, 2326 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2327 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2328 pmb->mbox_cmpl, 2329 *((uint32_t *) pmbox), 2330 pmbox->un.varWords[0], 2331 pmbox->un.varWords[1], 2332 pmbox->un.varWords[2], 2333 pmbox->un.varWords[3], 2334 pmbox->un.varWords[4], 2335 pmbox->un.varWords[5], 2336 pmbox->un.varWords[6], 2337 pmbox->un.varWords[7], 2338 pmbox->un.varWords[8], 2339 pmbox->un.varWords[9], 2340 pmbox->un.varWords[10]); 2341 2342 if (pmb->mbox_cmpl) 2343 pmb->mbox_cmpl(phba,pmb); 2344 } while (1); 2345 return 0; 2346 } 2347 2348 /** 2349 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2350 * @phba: Pointer to HBA context object. 2351 * @pring: Pointer to driver SLI ring object. 2352 * @tag: buffer tag. 2353 * 2354 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2355 * is set in the tag the buffer is posted for a particular exchange, 2356 * the function will return the buffer without replacing the buffer. 2357 * If the buffer is for unsolicited ELS or CT traffic, this function 2358 * returns the buffer and also posts another buffer to the firmware. 2359 **/ 2360 static struct lpfc_dmabuf * 2361 lpfc_sli_get_buff(struct lpfc_hba *phba, 2362 struct lpfc_sli_ring *pring, 2363 uint32_t tag) 2364 { 2365 struct hbq_dmabuf *hbq_entry; 2366 2367 if (tag & QUE_BUFTAG_BIT) 2368 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2369 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2370 if (!hbq_entry) 2371 return NULL; 2372 return &hbq_entry->dbuf; 2373 } 2374 2375 /** 2376 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2377 * @phba: Pointer to HBA context object. 2378 * @pring: Pointer to driver SLI ring object. 2379 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2380 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2381 * @fch_type: the type for the first frame of the sequence. 2382 * 2383 * This function is called with no lock held. This function uses the r_ctl and 2384 * type of the received sequence to find the correct callback function to call 2385 * to process the sequence. 2386 **/ 2387 static int 2388 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2389 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2390 uint32_t fch_type) 2391 { 2392 int i; 2393 2394 /* unSolicited Responses */ 2395 if (pring->prt[0].profile) { 2396 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2397 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2398 saveq); 2399 return 1; 2400 } 2401 /* We must search, based on rctl / type 2402 for the right routine */ 2403 for (i = 0; i < pring->num_mask; i++) { 2404 if ((pring->prt[i].rctl == fch_r_ctl) && 2405 (pring->prt[i].type == fch_type)) { 2406 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2407 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2408 (phba, pring, saveq); 2409 return 1; 2410 } 2411 } 2412 return 0; 2413 } 2414 2415 /** 2416 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2417 * @phba: Pointer to HBA context object. 2418 * @pring: Pointer to driver SLI ring object. 2419 * @saveq: Pointer to the unsolicited iocb. 2420 * 2421 * This function is called with no lock held by the ring event handler 2422 * when there is an unsolicited iocb posted to the response ring by the 2423 * firmware. This function gets the buffer associated with the iocbs 2424 * and calls the event handler for the ring. This function handles both 2425 * qring buffers and hbq buffers. 2426 * When the function returns 1 the caller can free the iocb object otherwise 2427 * upper layer functions will free the iocb objects. 2428 **/ 2429 static int 2430 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2431 struct lpfc_iocbq *saveq) 2432 { 2433 IOCB_t * irsp; 2434 WORD5 * w5p; 2435 uint32_t Rctl, Type; 2436 struct lpfc_iocbq *iocbq; 2437 struct lpfc_dmabuf *dmzbuf; 2438 2439 irsp = &(saveq->iocb); 2440 2441 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2442 if (pring->lpfc_sli_rcv_async_status) 2443 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2444 else 2445 lpfc_printf_log(phba, 2446 KERN_WARNING, 2447 LOG_SLI, 2448 "0316 Ring %d handler: unexpected " 2449 "ASYNC_STATUS iocb received evt_code " 2450 "0x%x\n", 2451 pring->ringno, 2452 irsp->un.asyncstat.evt_code); 2453 return 1; 2454 } 2455 2456 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2457 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2458 if (irsp->ulpBdeCount > 0) { 2459 dmzbuf = lpfc_sli_get_buff(phba, pring, 2460 irsp->un.ulpWord[3]); 2461 lpfc_in_buf_free(phba, dmzbuf); 2462 } 2463 2464 if (irsp->ulpBdeCount > 1) { 2465 dmzbuf = lpfc_sli_get_buff(phba, pring, 2466 irsp->unsli3.sli3Words[3]); 2467 lpfc_in_buf_free(phba, dmzbuf); 2468 } 2469 2470 if (irsp->ulpBdeCount > 2) { 2471 dmzbuf = lpfc_sli_get_buff(phba, pring, 2472 irsp->unsli3.sli3Words[7]); 2473 lpfc_in_buf_free(phba, dmzbuf); 2474 } 2475 2476 return 1; 2477 } 2478 2479 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2480 if (irsp->ulpBdeCount != 0) { 2481 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2482 irsp->un.ulpWord[3]); 2483 if (!saveq->context2) 2484 lpfc_printf_log(phba, 2485 KERN_ERR, 2486 LOG_SLI, 2487 "0341 Ring %d Cannot find buffer for " 2488 "an unsolicited iocb. tag 0x%x\n", 2489 pring->ringno, 2490 irsp->un.ulpWord[3]); 2491 } 2492 if (irsp->ulpBdeCount == 2) { 2493 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2494 irsp->unsli3.sli3Words[7]); 2495 if (!saveq->context3) 2496 lpfc_printf_log(phba, 2497 KERN_ERR, 2498 LOG_SLI, 2499 "0342 Ring %d Cannot find buffer for an" 2500 " unsolicited iocb. tag 0x%x\n", 2501 pring->ringno, 2502 irsp->unsli3.sli3Words[7]); 2503 } 2504 list_for_each_entry(iocbq, &saveq->list, list) { 2505 irsp = &(iocbq->iocb); 2506 if (irsp->ulpBdeCount != 0) { 2507 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2508 irsp->un.ulpWord[3]); 2509 if (!iocbq->context2) 2510 lpfc_printf_log(phba, 2511 KERN_ERR, 2512 LOG_SLI, 2513 "0343 Ring %d Cannot find " 2514 "buffer for an unsolicited iocb" 2515 ". tag 0x%x\n", pring->ringno, 2516 irsp->un.ulpWord[3]); 2517 } 2518 if (irsp->ulpBdeCount == 2) { 2519 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2520 irsp->unsli3.sli3Words[7]); 2521 if (!iocbq->context3) 2522 lpfc_printf_log(phba, 2523 KERN_ERR, 2524 LOG_SLI, 2525 "0344 Ring %d Cannot find " 2526 "buffer for an unsolicited " 2527 "iocb. tag 0x%x\n", 2528 pring->ringno, 2529 irsp->unsli3.sli3Words[7]); 2530 } 2531 } 2532 } 2533 if (irsp->ulpBdeCount != 0 && 2534 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2535 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2536 int found = 0; 2537 2538 /* search continue save q for same XRI */ 2539 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2540 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2541 saveq->iocb.unsli3.rcvsli3.ox_id) { 2542 list_add_tail(&saveq->list, &iocbq->list); 2543 found = 1; 2544 break; 2545 } 2546 } 2547 if (!found) 2548 list_add_tail(&saveq->clist, 2549 &pring->iocb_continue_saveq); 2550 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2551 list_del_init(&iocbq->clist); 2552 saveq = iocbq; 2553 irsp = &(saveq->iocb); 2554 } else 2555 return 0; 2556 } 2557 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2558 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2559 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2560 Rctl = FC_RCTL_ELS_REQ; 2561 Type = FC_TYPE_ELS; 2562 } else { 2563 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2564 Rctl = w5p->hcsw.Rctl; 2565 Type = w5p->hcsw.Type; 2566 2567 /* Firmware Workaround */ 2568 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2569 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2570 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2571 Rctl = FC_RCTL_ELS_REQ; 2572 Type = FC_TYPE_ELS; 2573 w5p->hcsw.Rctl = Rctl; 2574 w5p->hcsw.Type = Type; 2575 } 2576 } 2577 2578 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2579 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2580 "0313 Ring %d handler: unexpected Rctl x%x " 2581 "Type x%x received\n", 2582 pring->ringno, Rctl, Type); 2583 2584 return 1; 2585 } 2586 2587 /** 2588 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2589 * @phba: Pointer to HBA context object. 2590 * @pring: Pointer to driver SLI ring object. 2591 * @prspiocb: Pointer to response iocb object. 2592 * 2593 * This function looks up the iocb_lookup table to get the command iocb 2594 * corresponding to the given response iocb using the iotag of the 2595 * response iocb. This function is called with the hbalock held. 2596 * This function returns the command iocb object if it finds the command 2597 * iocb else returns NULL. 2598 **/ 2599 static struct lpfc_iocbq * 2600 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2601 struct lpfc_sli_ring *pring, 2602 struct lpfc_iocbq *prspiocb) 2603 { 2604 struct lpfc_iocbq *cmd_iocb = NULL; 2605 uint16_t iotag; 2606 2607 iotag = prspiocb->iocb.ulpIoTag; 2608 2609 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2610 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2611 list_del_init(&cmd_iocb->list); 2612 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2613 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2614 } 2615 return cmd_iocb; 2616 } 2617 2618 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2619 "0317 iotag x%x is out off " 2620 "range: max iotag x%x wd0 x%x\n", 2621 iotag, phba->sli.last_iotag, 2622 *(((uint32_t *) &prspiocb->iocb) + 7)); 2623 return NULL; 2624 } 2625 2626 /** 2627 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2628 * @phba: Pointer to HBA context object. 2629 * @pring: Pointer to driver SLI ring object. 2630 * @iotag: IOCB tag. 2631 * 2632 * This function looks up the iocb_lookup table to get the command iocb 2633 * corresponding to the given iotag. This function is called with the 2634 * hbalock held. 2635 * This function returns the command iocb object if it finds the command 2636 * iocb else returns NULL. 2637 **/ 2638 static struct lpfc_iocbq * 2639 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2640 struct lpfc_sli_ring *pring, uint16_t iotag) 2641 { 2642 struct lpfc_iocbq *cmd_iocb; 2643 2644 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2645 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2646 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2647 /* remove from txcmpl queue list */ 2648 list_del_init(&cmd_iocb->list); 2649 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2650 return cmd_iocb; 2651 } 2652 } 2653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2654 "0372 iotag x%x is out off range: max iotag (x%x)\n", 2655 iotag, phba->sli.last_iotag); 2656 return NULL; 2657 } 2658 2659 /** 2660 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2661 * @phba: Pointer to HBA context object. 2662 * @pring: Pointer to driver SLI ring object. 2663 * @saveq: Pointer to the response iocb to be processed. 2664 * 2665 * This function is called by the ring event handler for non-fcp 2666 * rings when there is a new response iocb in the response ring. 2667 * The caller is not required to hold any locks. This function 2668 * gets the command iocb associated with the response iocb and 2669 * calls the completion handler for the command iocb. If there 2670 * is no completion handler, the function will free the resources 2671 * associated with command iocb. If the response iocb is for 2672 * an already aborted command iocb, the status of the completion 2673 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2674 * This function always returns 1. 2675 **/ 2676 static int 2677 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2678 struct lpfc_iocbq *saveq) 2679 { 2680 struct lpfc_iocbq *cmdiocbp; 2681 int rc = 1; 2682 unsigned long iflag; 2683 2684 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2685 spin_lock_irqsave(&phba->hbalock, iflag); 2686 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2687 spin_unlock_irqrestore(&phba->hbalock, iflag); 2688 2689 if (cmdiocbp) { 2690 if (cmdiocbp->iocb_cmpl) { 2691 /* 2692 * If an ELS command failed send an event to mgmt 2693 * application. 2694 */ 2695 if (saveq->iocb.ulpStatus && 2696 (pring->ringno == LPFC_ELS_RING) && 2697 (cmdiocbp->iocb.ulpCommand == 2698 CMD_ELS_REQUEST64_CR)) 2699 lpfc_send_els_failure_event(phba, 2700 cmdiocbp, saveq); 2701 2702 /* 2703 * Post all ELS completions to the worker thread. 2704 * All other are passed to the completion callback. 2705 */ 2706 if (pring->ringno == LPFC_ELS_RING) { 2707 if ((phba->sli_rev < LPFC_SLI_REV4) && 2708 (cmdiocbp->iocb_flag & 2709 LPFC_DRIVER_ABORTED)) { 2710 spin_lock_irqsave(&phba->hbalock, 2711 iflag); 2712 cmdiocbp->iocb_flag &= 2713 ~LPFC_DRIVER_ABORTED; 2714 spin_unlock_irqrestore(&phba->hbalock, 2715 iflag); 2716 saveq->iocb.ulpStatus = 2717 IOSTAT_LOCAL_REJECT; 2718 saveq->iocb.un.ulpWord[4] = 2719 IOERR_SLI_ABORTED; 2720 2721 /* Firmware could still be in progress 2722 * of DMAing payload, so don't free data 2723 * buffer till after a hbeat. 2724 */ 2725 spin_lock_irqsave(&phba->hbalock, 2726 iflag); 2727 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2728 spin_unlock_irqrestore(&phba->hbalock, 2729 iflag); 2730 } 2731 if (phba->sli_rev == LPFC_SLI_REV4) { 2732 if (saveq->iocb_flag & 2733 LPFC_EXCHANGE_BUSY) { 2734 /* Set cmdiocb flag for the 2735 * exchange busy so sgl (xri) 2736 * will not be released until 2737 * the abort xri is received 2738 * from hba. 2739 */ 2740 spin_lock_irqsave( 2741 &phba->hbalock, iflag); 2742 cmdiocbp->iocb_flag |= 2743 LPFC_EXCHANGE_BUSY; 2744 spin_unlock_irqrestore( 2745 &phba->hbalock, iflag); 2746 } 2747 if (cmdiocbp->iocb_flag & 2748 LPFC_DRIVER_ABORTED) { 2749 /* 2750 * Clear LPFC_DRIVER_ABORTED 2751 * bit in case it was driver 2752 * initiated abort. 2753 */ 2754 spin_lock_irqsave( 2755 &phba->hbalock, iflag); 2756 cmdiocbp->iocb_flag &= 2757 ~LPFC_DRIVER_ABORTED; 2758 spin_unlock_irqrestore( 2759 &phba->hbalock, iflag); 2760 cmdiocbp->iocb.ulpStatus = 2761 IOSTAT_LOCAL_REJECT; 2762 cmdiocbp->iocb.un.ulpWord[4] = 2763 IOERR_ABORT_REQUESTED; 2764 /* 2765 * For SLI4, irsiocb contains 2766 * NO_XRI in sli_xritag, it 2767 * shall not affect releasing 2768 * sgl (xri) process. 2769 */ 2770 saveq->iocb.ulpStatus = 2771 IOSTAT_LOCAL_REJECT; 2772 saveq->iocb.un.ulpWord[4] = 2773 IOERR_SLI_ABORTED; 2774 spin_lock_irqsave( 2775 &phba->hbalock, iflag); 2776 saveq->iocb_flag |= 2777 LPFC_DELAY_MEM_FREE; 2778 spin_unlock_irqrestore( 2779 &phba->hbalock, iflag); 2780 } 2781 } 2782 } 2783 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2784 } else 2785 lpfc_sli_release_iocbq(phba, cmdiocbp); 2786 } else { 2787 /* 2788 * Unknown initiating command based on the response iotag. 2789 * This could be the case on the ELS ring because of 2790 * lpfc_els_abort(). 2791 */ 2792 if (pring->ringno != LPFC_ELS_RING) { 2793 /* 2794 * Ring <ringno> handler: unexpected completion IoTag 2795 * <IoTag> 2796 */ 2797 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2798 "0322 Ring %d handler: " 2799 "unexpected completion IoTag x%x " 2800 "Data: x%x x%x x%x x%x\n", 2801 pring->ringno, 2802 saveq->iocb.ulpIoTag, 2803 saveq->iocb.ulpStatus, 2804 saveq->iocb.un.ulpWord[4], 2805 saveq->iocb.ulpCommand, 2806 saveq->iocb.ulpContext); 2807 } 2808 } 2809 2810 return rc; 2811 } 2812 2813 /** 2814 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2815 * @phba: Pointer to HBA context object. 2816 * @pring: Pointer to driver SLI ring object. 2817 * 2818 * This function is called from the iocb ring event handlers when 2819 * put pointer is ahead of the get pointer for a ring. This function signal 2820 * an error attention condition to the worker thread and the worker 2821 * thread will transition the HBA to offline state. 2822 **/ 2823 static void 2824 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2825 { 2826 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2827 /* 2828 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2829 * rsp ring <portRspMax> 2830 */ 2831 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2832 "0312 Ring %d handler: portRspPut %d " 2833 "is bigger than rsp ring %d\n", 2834 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2835 pring->sli.sli3.numRiocb); 2836 2837 phba->link_state = LPFC_HBA_ERROR; 2838 2839 /* 2840 * All error attention handlers are posted to 2841 * worker thread 2842 */ 2843 phba->work_ha |= HA_ERATT; 2844 phba->work_hs = HS_FFER3; 2845 2846 lpfc_worker_wake_up(phba); 2847 2848 return; 2849 } 2850 2851 /** 2852 * lpfc_poll_eratt - Error attention polling timer timeout handler 2853 * @ptr: Pointer to address of HBA context object. 2854 * 2855 * This function is invoked by the Error Attention polling timer when the 2856 * timer times out. It will check the SLI Error Attention register for 2857 * possible attention events. If so, it will post an Error Attention event 2858 * and wake up worker thread to process it. Otherwise, it will set up the 2859 * Error Attention polling timer for the next poll. 2860 **/ 2861 void lpfc_poll_eratt(unsigned long ptr) 2862 { 2863 struct lpfc_hba *phba; 2864 uint32_t eratt = 0; 2865 uint64_t sli_intr, cnt; 2866 2867 phba = (struct lpfc_hba *)ptr; 2868 2869 /* Here we will also keep track of interrupts per sec of the hba */ 2870 sli_intr = phba->sli.slistat.sli_intr; 2871 2872 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2873 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2874 sli_intr); 2875 else 2876 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2877 2878 /* 64-bit integer division not supporte on 32-bit x86 - use do_div */ 2879 do_div(cnt, LPFC_ERATT_POLL_INTERVAL); 2880 phba->sli.slistat.sli_ips = cnt; 2881 2882 phba->sli.slistat.sli_prev_intr = sli_intr; 2883 2884 /* Check chip HA register for error event */ 2885 eratt = lpfc_sli_check_eratt(phba); 2886 2887 if (eratt) 2888 /* Tell the worker thread there is work to do */ 2889 lpfc_worker_wake_up(phba); 2890 else 2891 /* Restart the timer for next eratt poll */ 2892 mod_timer(&phba->eratt_poll, 2893 jiffies + 2894 msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 2895 return; 2896 } 2897 2898 2899 /** 2900 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2901 * @phba: Pointer to HBA context object. 2902 * @pring: Pointer to driver SLI ring object. 2903 * @mask: Host attention register mask for this ring. 2904 * 2905 * This function is called from the interrupt context when there is a ring 2906 * event for the fcp ring. The caller does not hold any lock. 2907 * The function processes each response iocb in the response ring until it 2908 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2909 * LE bit set. The function will call the completion handler of the command iocb 2910 * if the response iocb indicates a completion for a command iocb or it is 2911 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2912 * function if this is an unsolicited iocb. 2913 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2914 * to check it explicitly. 2915 */ 2916 int 2917 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2918 struct lpfc_sli_ring *pring, uint32_t mask) 2919 { 2920 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2921 IOCB_t *irsp = NULL; 2922 IOCB_t *entry = NULL; 2923 struct lpfc_iocbq *cmdiocbq = NULL; 2924 struct lpfc_iocbq rspiocbq; 2925 uint32_t status; 2926 uint32_t portRspPut, portRspMax; 2927 int rc = 1; 2928 lpfc_iocb_type type; 2929 unsigned long iflag; 2930 uint32_t rsp_cmpl = 0; 2931 2932 spin_lock_irqsave(&phba->hbalock, iflag); 2933 pring->stats.iocb_event++; 2934 2935 /* 2936 * The next available response entry should never exceed the maximum 2937 * entries. If it does, treat it as an adapter hardware error. 2938 */ 2939 portRspMax = pring->sli.sli3.numRiocb; 2940 portRspPut = le32_to_cpu(pgp->rspPutInx); 2941 if (unlikely(portRspPut >= portRspMax)) { 2942 lpfc_sli_rsp_pointers_error(phba, pring); 2943 spin_unlock_irqrestore(&phba->hbalock, iflag); 2944 return 1; 2945 } 2946 if (phba->fcp_ring_in_use) { 2947 spin_unlock_irqrestore(&phba->hbalock, iflag); 2948 return 1; 2949 } else 2950 phba->fcp_ring_in_use = 1; 2951 2952 rmb(); 2953 while (pring->sli.sli3.rspidx != portRspPut) { 2954 /* 2955 * Fetch an entry off the ring and copy it into a local data 2956 * structure. The copy involves a byte-swap since the 2957 * network byte order and pci byte orders are different. 2958 */ 2959 entry = lpfc_resp_iocb(phba, pring); 2960 phba->last_completion_time = jiffies; 2961 2962 if (++pring->sli.sli3.rspidx >= portRspMax) 2963 pring->sli.sli3.rspidx = 0; 2964 2965 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 2966 (uint32_t *) &rspiocbq.iocb, 2967 phba->iocb_rsp_size); 2968 INIT_LIST_HEAD(&(rspiocbq.list)); 2969 irsp = &rspiocbq.iocb; 2970 2971 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 2972 pring->stats.iocb_rsp++; 2973 rsp_cmpl++; 2974 2975 if (unlikely(irsp->ulpStatus)) { 2976 /* 2977 * If resource errors reported from HBA, reduce 2978 * queuedepths of the SCSI device. 2979 */ 2980 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 2981 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 2982 IOERR_NO_RESOURCES)) { 2983 spin_unlock_irqrestore(&phba->hbalock, iflag); 2984 phba->lpfc_rampdown_queue_depth(phba); 2985 spin_lock_irqsave(&phba->hbalock, iflag); 2986 } 2987 2988 /* Rsp ring <ringno> error: IOCB */ 2989 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2990 "0336 Rsp Ring %d error: IOCB Data: " 2991 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 2992 pring->ringno, 2993 irsp->un.ulpWord[0], 2994 irsp->un.ulpWord[1], 2995 irsp->un.ulpWord[2], 2996 irsp->un.ulpWord[3], 2997 irsp->un.ulpWord[4], 2998 irsp->un.ulpWord[5], 2999 *(uint32_t *)&irsp->un1, 3000 *((uint32_t *)&irsp->un1 + 1)); 3001 } 3002 3003 switch (type) { 3004 case LPFC_ABORT_IOCB: 3005 case LPFC_SOL_IOCB: 3006 /* 3007 * Idle exchange closed via ABTS from port. No iocb 3008 * resources need to be recovered. 3009 */ 3010 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3011 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3012 "0333 IOCB cmd 0x%x" 3013 " processed. Skipping" 3014 " completion\n", 3015 irsp->ulpCommand); 3016 break; 3017 } 3018 3019 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3020 &rspiocbq); 3021 if (unlikely(!cmdiocbq)) 3022 break; 3023 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3024 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3025 if (cmdiocbq->iocb_cmpl) { 3026 spin_unlock_irqrestore(&phba->hbalock, iflag); 3027 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3028 &rspiocbq); 3029 spin_lock_irqsave(&phba->hbalock, iflag); 3030 } 3031 break; 3032 case LPFC_UNSOL_IOCB: 3033 spin_unlock_irqrestore(&phba->hbalock, iflag); 3034 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3035 spin_lock_irqsave(&phba->hbalock, iflag); 3036 break; 3037 default: 3038 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3039 char adaptermsg[LPFC_MAX_ADPTMSG]; 3040 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3041 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3042 MAX_MSG_DATA); 3043 dev_warn(&((phba->pcidev)->dev), 3044 "lpfc%d: %s\n", 3045 phba->brd_no, adaptermsg); 3046 } else { 3047 /* Unknown IOCB command */ 3048 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3049 "0334 Unknown IOCB command " 3050 "Data: x%x, x%x x%x x%x x%x\n", 3051 type, irsp->ulpCommand, 3052 irsp->ulpStatus, 3053 irsp->ulpIoTag, 3054 irsp->ulpContext); 3055 } 3056 break; 3057 } 3058 3059 /* 3060 * The response IOCB has been processed. Update the ring 3061 * pointer in SLIM. If the port response put pointer has not 3062 * been updated, sync the pgp->rspPutInx and fetch the new port 3063 * response put pointer. 3064 */ 3065 writel(pring->sli.sli3.rspidx, 3066 &phba->host_gp[pring->ringno].rspGetInx); 3067 3068 if (pring->sli.sli3.rspidx == portRspPut) 3069 portRspPut = le32_to_cpu(pgp->rspPutInx); 3070 } 3071 3072 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3073 pring->stats.iocb_rsp_full++; 3074 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3075 writel(status, phba->CAregaddr); 3076 readl(phba->CAregaddr); 3077 } 3078 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3079 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3080 pring->stats.iocb_cmd_empty++; 3081 3082 /* Force update of the local copy of cmdGetInx */ 3083 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3084 lpfc_sli_resume_iocb(phba, pring); 3085 3086 if ((pring->lpfc_sli_cmd_available)) 3087 (pring->lpfc_sli_cmd_available) (phba, pring); 3088 3089 } 3090 3091 phba->fcp_ring_in_use = 0; 3092 spin_unlock_irqrestore(&phba->hbalock, iflag); 3093 return rc; 3094 } 3095 3096 /** 3097 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3098 * @phba: Pointer to HBA context object. 3099 * @pring: Pointer to driver SLI ring object. 3100 * @rspiocbp: Pointer to driver response IOCB object. 3101 * 3102 * This function is called from the worker thread when there is a slow-path 3103 * response IOCB to process. This function chains all the response iocbs until 3104 * seeing the iocb with the LE bit set. The function will call 3105 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3106 * completion of a command iocb. The function will call the 3107 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3108 * The function frees the resources or calls the completion handler if this 3109 * iocb is an abort completion. The function returns NULL when the response 3110 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3111 * this function shall chain the iocb on to the iocb_continueq and return the 3112 * response iocb passed in. 3113 **/ 3114 static struct lpfc_iocbq * 3115 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3116 struct lpfc_iocbq *rspiocbp) 3117 { 3118 struct lpfc_iocbq *saveq; 3119 struct lpfc_iocbq *cmdiocbp; 3120 struct lpfc_iocbq *next_iocb; 3121 IOCB_t *irsp = NULL; 3122 uint32_t free_saveq; 3123 uint8_t iocb_cmd_type; 3124 lpfc_iocb_type type; 3125 unsigned long iflag; 3126 int rc; 3127 3128 spin_lock_irqsave(&phba->hbalock, iflag); 3129 /* First add the response iocb to the countinueq list */ 3130 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3131 pring->iocb_continueq_cnt++; 3132 3133 /* Now, determine whether the list is completed for processing */ 3134 irsp = &rspiocbp->iocb; 3135 if (irsp->ulpLe) { 3136 /* 3137 * By default, the driver expects to free all resources 3138 * associated with this iocb completion. 3139 */ 3140 free_saveq = 1; 3141 saveq = list_get_first(&pring->iocb_continueq, 3142 struct lpfc_iocbq, list); 3143 irsp = &(saveq->iocb); 3144 list_del_init(&pring->iocb_continueq); 3145 pring->iocb_continueq_cnt = 0; 3146 3147 pring->stats.iocb_rsp++; 3148 3149 /* 3150 * If resource errors reported from HBA, reduce 3151 * queuedepths of the SCSI device. 3152 */ 3153 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3154 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3155 IOERR_NO_RESOURCES)) { 3156 spin_unlock_irqrestore(&phba->hbalock, iflag); 3157 phba->lpfc_rampdown_queue_depth(phba); 3158 spin_lock_irqsave(&phba->hbalock, iflag); 3159 } 3160 3161 if (irsp->ulpStatus) { 3162 /* Rsp ring <ringno> error: IOCB */ 3163 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3164 "0328 Rsp Ring %d error: " 3165 "IOCB Data: " 3166 "x%x x%x x%x x%x " 3167 "x%x x%x x%x x%x " 3168 "x%x x%x x%x x%x " 3169 "x%x x%x x%x x%x\n", 3170 pring->ringno, 3171 irsp->un.ulpWord[0], 3172 irsp->un.ulpWord[1], 3173 irsp->un.ulpWord[2], 3174 irsp->un.ulpWord[3], 3175 irsp->un.ulpWord[4], 3176 irsp->un.ulpWord[5], 3177 *(((uint32_t *) irsp) + 6), 3178 *(((uint32_t *) irsp) + 7), 3179 *(((uint32_t *) irsp) + 8), 3180 *(((uint32_t *) irsp) + 9), 3181 *(((uint32_t *) irsp) + 10), 3182 *(((uint32_t *) irsp) + 11), 3183 *(((uint32_t *) irsp) + 12), 3184 *(((uint32_t *) irsp) + 13), 3185 *(((uint32_t *) irsp) + 14), 3186 *(((uint32_t *) irsp) + 15)); 3187 } 3188 3189 /* 3190 * Fetch the IOCB command type and call the correct completion 3191 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3192 * get freed back to the lpfc_iocb_list by the discovery 3193 * kernel thread. 3194 */ 3195 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3196 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3197 switch (type) { 3198 case LPFC_SOL_IOCB: 3199 spin_unlock_irqrestore(&phba->hbalock, iflag); 3200 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3201 spin_lock_irqsave(&phba->hbalock, iflag); 3202 break; 3203 3204 case LPFC_UNSOL_IOCB: 3205 spin_unlock_irqrestore(&phba->hbalock, iflag); 3206 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3207 spin_lock_irqsave(&phba->hbalock, iflag); 3208 if (!rc) 3209 free_saveq = 0; 3210 break; 3211 3212 case LPFC_ABORT_IOCB: 3213 cmdiocbp = NULL; 3214 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3215 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3216 saveq); 3217 if (cmdiocbp) { 3218 /* Call the specified completion routine */ 3219 if (cmdiocbp->iocb_cmpl) { 3220 spin_unlock_irqrestore(&phba->hbalock, 3221 iflag); 3222 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3223 saveq); 3224 spin_lock_irqsave(&phba->hbalock, 3225 iflag); 3226 } else 3227 __lpfc_sli_release_iocbq(phba, 3228 cmdiocbp); 3229 } 3230 break; 3231 3232 case LPFC_UNKNOWN_IOCB: 3233 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3234 char adaptermsg[LPFC_MAX_ADPTMSG]; 3235 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3236 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3237 MAX_MSG_DATA); 3238 dev_warn(&((phba->pcidev)->dev), 3239 "lpfc%d: %s\n", 3240 phba->brd_no, adaptermsg); 3241 } else { 3242 /* Unknown IOCB command */ 3243 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3244 "0335 Unknown IOCB " 3245 "command Data: x%x " 3246 "x%x x%x x%x\n", 3247 irsp->ulpCommand, 3248 irsp->ulpStatus, 3249 irsp->ulpIoTag, 3250 irsp->ulpContext); 3251 } 3252 break; 3253 } 3254 3255 if (free_saveq) { 3256 list_for_each_entry_safe(rspiocbp, next_iocb, 3257 &saveq->list, list) { 3258 list_del_init(&rspiocbp->list); 3259 __lpfc_sli_release_iocbq(phba, rspiocbp); 3260 } 3261 __lpfc_sli_release_iocbq(phba, saveq); 3262 } 3263 rspiocbp = NULL; 3264 } 3265 spin_unlock_irqrestore(&phba->hbalock, iflag); 3266 return rspiocbp; 3267 } 3268 3269 /** 3270 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3271 * @phba: Pointer to HBA context object. 3272 * @pring: Pointer to driver SLI ring object. 3273 * @mask: Host attention register mask for this ring. 3274 * 3275 * This routine wraps the actual slow_ring event process routine from the 3276 * API jump table function pointer from the lpfc_hba struct. 3277 **/ 3278 void 3279 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3280 struct lpfc_sli_ring *pring, uint32_t mask) 3281 { 3282 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3283 } 3284 3285 /** 3286 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3287 * @phba: Pointer to HBA context object. 3288 * @pring: Pointer to driver SLI ring object. 3289 * @mask: Host attention register mask for this ring. 3290 * 3291 * This function is called from the worker thread when there is a ring event 3292 * for non-fcp rings. The caller does not hold any lock. The function will 3293 * remove each response iocb in the response ring and calls the handle 3294 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3295 **/ 3296 static void 3297 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3298 struct lpfc_sli_ring *pring, uint32_t mask) 3299 { 3300 struct lpfc_pgp *pgp; 3301 IOCB_t *entry; 3302 IOCB_t *irsp = NULL; 3303 struct lpfc_iocbq *rspiocbp = NULL; 3304 uint32_t portRspPut, portRspMax; 3305 unsigned long iflag; 3306 uint32_t status; 3307 3308 pgp = &phba->port_gp[pring->ringno]; 3309 spin_lock_irqsave(&phba->hbalock, iflag); 3310 pring->stats.iocb_event++; 3311 3312 /* 3313 * The next available response entry should never exceed the maximum 3314 * entries. If it does, treat it as an adapter hardware error. 3315 */ 3316 portRspMax = pring->sli.sli3.numRiocb; 3317 portRspPut = le32_to_cpu(pgp->rspPutInx); 3318 if (portRspPut >= portRspMax) { 3319 /* 3320 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3321 * rsp ring <portRspMax> 3322 */ 3323 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3324 "0303 Ring %d handler: portRspPut %d " 3325 "is bigger than rsp ring %d\n", 3326 pring->ringno, portRspPut, portRspMax); 3327 3328 phba->link_state = LPFC_HBA_ERROR; 3329 spin_unlock_irqrestore(&phba->hbalock, iflag); 3330 3331 phba->work_hs = HS_FFER3; 3332 lpfc_handle_eratt(phba); 3333 3334 return; 3335 } 3336 3337 rmb(); 3338 while (pring->sli.sli3.rspidx != portRspPut) { 3339 /* 3340 * Build a completion list and call the appropriate handler. 3341 * The process is to get the next available response iocb, get 3342 * a free iocb from the list, copy the response data into the 3343 * free iocb, insert to the continuation list, and update the 3344 * next response index to slim. This process makes response 3345 * iocb's in the ring available to DMA as fast as possible but 3346 * pays a penalty for a copy operation. Since the iocb is 3347 * only 32 bytes, this penalty is considered small relative to 3348 * the PCI reads for register values and a slim write. When 3349 * the ulpLe field is set, the entire Command has been 3350 * received. 3351 */ 3352 entry = lpfc_resp_iocb(phba, pring); 3353 3354 phba->last_completion_time = jiffies; 3355 rspiocbp = __lpfc_sli_get_iocbq(phba); 3356 if (rspiocbp == NULL) { 3357 printk(KERN_ERR "%s: out of buffers! Failing " 3358 "completion.\n", __func__); 3359 break; 3360 } 3361 3362 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3363 phba->iocb_rsp_size); 3364 irsp = &rspiocbp->iocb; 3365 3366 if (++pring->sli.sli3.rspidx >= portRspMax) 3367 pring->sli.sli3.rspidx = 0; 3368 3369 if (pring->ringno == LPFC_ELS_RING) { 3370 lpfc_debugfs_slow_ring_trc(phba, 3371 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3372 *(((uint32_t *) irsp) + 4), 3373 *(((uint32_t *) irsp) + 6), 3374 *(((uint32_t *) irsp) + 7)); 3375 } 3376 3377 writel(pring->sli.sli3.rspidx, 3378 &phba->host_gp[pring->ringno].rspGetInx); 3379 3380 spin_unlock_irqrestore(&phba->hbalock, iflag); 3381 /* Handle the response IOCB */ 3382 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3383 spin_lock_irqsave(&phba->hbalock, iflag); 3384 3385 /* 3386 * If the port response put pointer has not been updated, sync 3387 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3388 * response put pointer. 3389 */ 3390 if (pring->sli.sli3.rspidx == portRspPut) { 3391 portRspPut = le32_to_cpu(pgp->rspPutInx); 3392 } 3393 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3394 3395 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3396 /* At least one response entry has been freed */ 3397 pring->stats.iocb_rsp_full++; 3398 /* SET RxRE_RSP in Chip Att register */ 3399 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3400 writel(status, phba->CAregaddr); 3401 readl(phba->CAregaddr); /* flush */ 3402 } 3403 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3404 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3405 pring->stats.iocb_cmd_empty++; 3406 3407 /* Force update of the local copy of cmdGetInx */ 3408 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3409 lpfc_sli_resume_iocb(phba, pring); 3410 3411 if ((pring->lpfc_sli_cmd_available)) 3412 (pring->lpfc_sli_cmd_available) (phba, pring); 3413 3414 } 3415 3416 spin_unlock_irqrestore(&phba->hbalock, iflag); 3417 return; 3418 } 3419 3420 /** 3421 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3422 * @phba: Pointer to HBA context object. 3423 * @pring: Pointer to driver SLI ring object. 3424 * @mask: Host attention register mask for this ring. 3425 * 3426 * This function is called from the worker thread when there is a pending 3427 * ELS response iocb on the driver internal slow-path response iocb worker 3428 * queue. The caller does not hold any lock. The function will remove each 3429 * response iocb from the response worker queue and calls the handle 3430 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3431 **/ 3432 static void 3433 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3434 struct lpfc_sli_ring *pring, uint32_t mask) 3435 { 3436 struct lpfc_iocbq *irspiocbq; 3437 struct hbq_dmabuf *dmabuf; 3438 struct lpfc_cq_event *cq_event; 3439 unsigned long iflag; 3440 3441 spin_lock_irqsave(&phba->hbalock, iflag); 3442 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3443 spin_unlock_irqrestore(&phba->hbalock, iflag); 3444 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3445 /* Get the response iocb from the head of work queue */ 3446 spin_lock_irqsave(&phba->hbalock, iflag); 3447 list_remove_head(&phba->sli4_hba.sp_queue_event, 3448 cq_event, struct lpfc_cq_event, list); 3449 spin_unlock_irqrestore(&phba->hbalock, iflag); 3450 3451 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3452 case CQE_CODE_COMPL_WQE: 3453 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3454 cq_event); 3455 /* Translate ELS WCQE to response IOCBQ */ 3456 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3457 irspiocbq); 3458 if (irspiocbq) 3459 lpfc_sli_sp_handle_rspiocb(phba, pring, 3460 irspiocbq); 3461 break; 3462 case CQE_CODE_RECEIVE: 3463 case CQE_CODE_RECEIVE_V1: 3464 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3465 cq_event); 3466 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3467 break; 3468 default: 3469 break; 3470 } 3471 } 3472 } 3473 3474 /** 3475 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3476 * @phba: Pointer to HBA context object. 3477 * @pring: Pointer to driver SLI ring object. 3478 * 3479 * This function aborts all iocbs in the given ring and frees all the iocb 3480 * objects in txq. This function issues an abort iocb for all the iocb commands 3481 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3482 * the return of this function. The caller is not required to hold any locks. 3483 **/ 3484 void 3485 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3486 { 3487 LIST_HEAD(completions); 3488 struct lpfc_iocbq *iocb, *next_iocb; 3489 3490 if (pring->ringno == LPFC_ELS_RING) { 3491 lpfc_fabric_abort_hba(phba); 3492 } 3493 3494 /* Error everything on txq and txcmplq 3495 * First do the txq. 3496 */ 3497 if (phba->sli_rev >= LPFC_SLI_REV4) { 3498 spin_lock_irq(&pring->ring_lock); 3499 list_splice_init(&pring->txq, &completions); 3500 pring->txq_cnt = 0; 3501 spin_unlock_irq(&pring->ring_lock); 3502 3503 spin_lock_irq(&phba->hbalock); 3504 /* Next issue ABTS for everything on the txcmplq */ 3505 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3506 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3507 spin_unlock_irq(&phba->hbalock); 3508 } else { 3509 spin_lock_irq(&phba->hbalock); 3510 list_splice_init(&pring->txq, &completions); 3511 pring->txq_cnt = 0; 3512 3513 /* Next issue ABTS for everything on the txcmplq */ 3514 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3515 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3516 spin_unlock_irq(&phba->hbalock); 3517 } 3518 3519 /* Cancel all the IOCBs from the completions list */ 3520 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3521 IOERR_SLI_ABORTED); 3522 } 3523 3524 /** 3525 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3526 * @phba: Pointer to HBA context object. 3527 * @pring: Pointer to driver SLI ring object. 3528 * 3529 * This function aborts all iocbs in FCP rings and frees all the iocb 3530 * objects in txq. This function issues an abort iocb for all the iocb commands 3531 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3532 * the return of this function. The caller is not required to hold any locks. 3533 **/ 3534 void 3535 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3536 { 3537 struct lpfc_sli *psli = &phba->sli; 3538 struct lpfc_sli_ring *pring; 3539 uint32_t i; 3540 3541 /* Look on all the FCP Rings for the iotag */ 3542 if (phba->sli_rev >= LPFC_SLI_REV4) { 3543 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3544 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3545 lpfc_sli_abort_iocb_ring(phba, pring); 3546 } 3547 } else { 3548 pring = &psli->ring[psli->fcp_ring]; 3549 lpfc_sli_abort_iocb_ring(phba, pring); 3550 } 3551 } 3552 3553 3554 /** 3555 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3556 * @phba: Pointer to HBA context object. 3557 * 3558 * This function flushes all iocbs in the fcp ring and frees all the iocb 3559 * objects in txq and txcmplq. This function will not issue abort iocbs 3560 * for all the iocb commands in txcmplq, they will just be returned with 3561 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3562 * slot has been permanently disabled. 3563 **/ 3564 void 3565 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3566 { 3567 LIST_HEAD(txq); 3568 LIST_HEAD(txcmplq); 3569 struct lpfc_sli *psli = &phba->sli; 3570 struct lpfc_sli_ring *pring; 3571 uint32_t i; 3572 3573 spin_lock_irq(&phba->hbalock); 3574 /* Indicate the I/O queues are flushed */ 3575 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3576 spin_unlock_irq(&phba->hbalock); 3577 3578 /* Look on all the FCP Rings for the iotag */ 3579 if (phba->sli_rev >= LPFC_SLI_REV4) { 3580 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3581 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3582 3583 spin_lock_irq(&pring->ring_lock); 3584 /* Retrieve everything on txq */ 3585 list_splice_init(&pring->txq, &txq); 3586 /* Retrieve everything on the txcmplq */ 3587 list_splice_init(&pring->txcmplq, &txcmplq); 3588 pring->txq_cnt = 0; 3589 pring->txcmplq_cnt = 0; 3590 spin_unlock_irq(&pring->ring_lock); 3591 3592 /* Flush the txq */ 3593 lpfc_sli_cancel_iocbs(phba, &txq, 3594 IOSTAT_LOCAL_REJECT, 3595 IOERR_SLI_DOWN); 3596 /* Flush the txcmpq */ 3597 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3598 IOSTAT_LOCAL_REJECT, 3599 IOERR_SLI_DOWN); 3600 } 3601 } else { 3602 pring = &psli->ring[psli->fcp_ring]; 3603 3604 spin_lock_irq(&phba->hbalock); 3605 /* Retrieve everything on txq */ 3606 list_splice_init(&pring->txq, &txq); 3607 /* Retrieve everything on the txcmplq */ 3608 list_splice_init(&pring->txcmplq, &txcmplq); 3609 pring->txq_cnt = 0; 3610 pring->txcmplq_cnt = 0; 3611 spin_unlock_irq(&phba->hbalock); 3612 3613 /* Flush the txq */ 3614 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3615 IOERR_SLI_DOWN); 3616 /* Flush the txcmpq */ 3617 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3618 IOERR_SLI_DOWN); 3619 } 3620 } 3621 3622 /** 3623 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3624 * @phba: Pointer to HBA context object. 3625 * @mask: Bit mask to be checked. 3626 * 3627 * This function reads the host status register and compares 3628 * with the provided bit mask to check if HBA completed 3629 * the restart. This function will wait in a loop for the 3630 * HBA to complete restart. If the HBA does not restart within 3631 * 15 iterations, the function will reset the HBA again. The 3632 * function returns 1 when HBA fail to restart otherwise returns 3633 * zero. 3634 **/ 3635 static int 3636 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3637 { 3638 uint32_t status; 3639 int i = 0; 3640 int retval = 0; 3641 3642 /* Read the HBA Host Status Register */ 3643 if (lpfc_readl(phba->HSregaddr, &status)) 3644 return 1; 3645 3646 /* 3647 * Check status register every 100ms for 5 retries, then every 3648 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3649 * every 2.5 sec for 4. 3650 * Break our of the loop if errors occurred during init. 3651 */ 3652 while (((status & mask) != mask) && 3653 !(status & HS_FFERM) && 3654 i++ < 20) { 3655 3656 if (i <= 5) 3657 msleep(10); 3658 else if (i <= 10) 3659 msleep(500); 3660 else 3661 msleep(2500); 3662 3663 if (i == 15) { 3664 /* Do post */ 3665 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3666 lpfc_sli_brdrestart(phba); 3667 } 3668 /* Read the HBA Host Status Register */ 3669 if (lpfc_readl(phba->HSregaddr, &status)) { 3670 retval = 1; 3671 break; 3672 } 3673 } 3674 3675 /* Check to see if any errors occurred during init */ 3676 if ((status & HS_FFERM) || (i >= 20)) { 3677 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3678 "2751 Adapter failed to restart, " 3679 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3680 status, 3681 readl(phba->MBslimaddr + 0xa8), 3682 readl(phba->MBslimaddr + 0xac)); 3683 phba->link_state = LPFC_HBA_ERROR; 3684 retval = 1; 3685 } 3686 3687 return retval; 3688 } 3689 3690 /** 3691 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3692 * @phba: Pointer to HBA context object. 3693 * @mask: Bit mask to be checked. 3694 * 3695 * This function checks the host status register to check if HBA is 3696 * ready. This function will wait in a loop for the HBA to be ready 3697 * If the HBA is not ready , the function will will reset the HBA PCI 3698 * function again. The function returns 1 when HBA fail to be ready 3699 * otherwise returns zero. 3700 **/ 3701 static int 3702 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3703 { 3704 uint32_t status; 3705 int retval = 0; 3706 3707 /* Read the HBA Host Status Register */ 3708 status = lpfc_sli4_post_status_check(phba); 3709 3710 if (status) { 3711 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3712 lpfc_sli_brdrestart(phba); 3713 status = lpfc_sli4_post_status_check(phba); 3714 } 3715 3716 /* Check to see if any errors occurred during init */ 3717 if (status) { 3718 phba->link_state = LPFC_HBA_ERROR; 3719 retval = 1; 3720 } else 3721 phba->sli4_hba.intr_enable = 0; 3722 3723 return retval; 3724 } 3725 3726 /** 3727 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3728 * @phba: Pointer to HBA context object. 3729 * @mask: Bit mask to be checked. 3730 * 3731 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3732 * from the API jump table function pointer from the lpfc_hba struct. 3733 **/ 3734 int 3735 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3736 { 3737 return phba->lpfc_sli_brdready(phba, mask); 3738 } 3739 3740 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3741 3742 /** 3743 * lpfc_reset_barrier - Make HBA ready for HBA reset 3744 * @phba: Pointer to HBA context object. 3745 * 3746 * This function is called before resetting an HBA. This function is called 3747 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3748 **/ 3749 void lpfc_reset_barrier(struct lpfc_hba *phba) 3750 { 3751 uint32_t __iomem *resp_buf; 3752 uint32_t __iomem *mbox_buf; 3753 volatile uint32_t mbox; 3754 uint32_t hc_copy, ha_copy, resp_data; 3755 int i; 3756 uint8_t hdrtype; 3757 3758 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3759 if (hdrtype != 0x80 || 3760 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3761 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3762 return; 3763 3764 /* 3765 * Tell the other part of the chip to suspend temporarily all 3766 * its DMA activity. 3767 */ 3768 resp_buf = phba->MBslimaddr; 3769 3770 /* Disable the error attention */ 3771 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3772 return; 3773 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3774 readl(phba->HCregaddr); /* flush */ 3775 phba->link_flag |= LS_IGNORE_ERATT; 3776 3777 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3778 return; 3779 if (ha_copy & HA_ERATT) { 3780 /* Clear Chip error bit */ 3781 writel(HA_ERATT, phba->HAregaddr); 3782 phba->pport->stopped = 1; 3783 } 3784 3785 mbox = 0; 3786 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3787 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3788 3789 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3790 mbox_buf = phba->MBslimaddr; 3791 writel(mbox, mbox_buf); 3792 3793 for (i = 0; i < 50; i++) { 3794 if (lpfc_readl((resp_buf + 1), &resp_data)) 3795 return; 3796 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3797 mdelay(1); 3798 else 3799 break; 3800 } 3801 resp_data = 0; 3802 if (lpfc_readl((resp_buf + 1), &resp_data)) 3803 return; 3804 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3805 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3806 phba->pport->stopped) 3807 goto restore_hc; 3808 else 3809 goto clear_errat; 3810 } 3811 3812 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3813 resp_data = 0; 3814 for (i = 0; i < 500; i++) { 3815 if (lpfc_readl(resp_buf, &resp_data)) 3816 return; 3817 if (resp_data != mbox) 3818 mdelay(1); 3819 else 3820 break; 3821 } 3822 3823 clear_errat: 3824 3825 while (++i < 500) { 3826 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3827 return; 3828 if (!(ha_copy & HA_ERATT)) 3829 mdelay(1); 3830 else 3831 break; 3832 } 3833 3834 if (readl(phba->HAregaddr) & HA_ERATT) { 3835 writel(HA_ERATT, phba->HAregaddr); 3836 phba->pport->stopped = 1; 3837 } 3838 3839 restore_hc: 3840 phba->link_flag &= ~LS_IGNORE_ERATT; 3841 writel(hc_copy, phba->HCregaddr); 3842 readl(phba->HCregaddr); /* flush */ 3843 } 3844 3845 /** 3846 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3847 * @phba: Pointer to HBA context object. 3848 * 3849 * This function issues a kill_board mailbox command and waits for 3850 * the error attention interrupt. This function is called for stopping 3851 * the firmware processing. The caller is not required to hold any 3852 * locks. This function calls lpfc_hba_down_post function to free 3853 * any pending commands after the kill. The function will return 1 when it 3854 * fails to kill the board else will return 0. 3855 **/ 3856 int 3857 lpfc_sli_brdkill(struct lpfc_hba *phba) 3858 { 3859 struct lpfc_sli *psli; 3860 LPFC_MBOXQ_t *pmb; 3861 uint32_t status; 3862 uint32_t ha_copy; 3863 int retval; 3864 int i = 0; 3865 3866 psli = &phba->sli; 3867 3868 /* Kill HBA */ 3869 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3870 "0329 Kill HBA Data: x%x x%x\n", 3871 phba->pport->port_state, psli->sli_flag); 3872 3873 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3874 if (!pmb) 3875 return 1; 3876 3877 /* Disable the error attention */ 3878 spin_lock_irq(&phba->hbalock); 3879 if (lpfc_readl(phba->HCregaddr, &status)) { 3880 spin_unlock_irq(&phba->hbalock); 3881 mempool_free(pmb, phba->mbox_mem_pool); 3882 return 1; 3883 } 3884 status &= ~HC_ERINT_ENA; 3885 writel(status, phba->HCregaddr); 3886 readl(phba->HCregaddr); /* flush */ 3887 phba->link_flag |= LS_IGNORE_ERATT; 3888 spin_unlock_irq(&phba->hbalock); 3889 3890 lpfc_kill_board(phba, pmb); 3891 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3892 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3893 3894 if (retval != MBX_SUCCESS) { 3895 if (retval != MBX_BUSY) 3896 mempool_free(pmb, phba->mbox_mem_pool); 3897 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3898 "2752 KILL_BOARD command failed retval %d\n", 3899 retval); 3900 spin_lock_irq(&phba->hbalock); 3901 phba->link_flag &= ~LS_IGNORE_ERATT; 3902 spin_unlock_irq(&phba->hbalock); 3903 return 1; 3904 } 3905 3906 spin_lock_irq(&phba->hbalock); 3907 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3908 spin_unlock_irq(&phba->hbalock); 3909 3910 mempool_free(pmb, phba->mbox_mem_pool); 3911 3912 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3913 * attention every 100ms for 3 seconds. If we don't get ERATT after 3914 * 3 seconds we still set HBA_ERROR state because the status of the 3915 * board is now undefined. 3916 */ 3917 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3918 return 1; 3919 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3920 mdelay(100); 3921 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3922 return 1; 3923 } 3924 3925 del_timer_sync(&psli->mbox_tmo); 3926 if (ha_copy & HA_ERATT) { 3927 writel(HA_ERATT, phba->HAregaddr); 3928 phba->pport->stopped = 1; 3929 } 3930 spin_lock_irq(&phba->hbalock); 3931 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 3932 psli->mbox_active = NULL; 3933 phba->link_flag &= ~LS_IGNORE_ERATT; 3934 spin_unlock_irq(&phba->hbalock); 3935 3936 lpfc_hba_down_post(phba); 3937 phba->link_state = LPFC_HBA_ERROR; 3938 3939 return ha_copy & HA_ERATT ? 0 : 1; 3940 } 3941 3942 /** 3943 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 3944 * @phba: Pointer to HBA context object. 3945 * 3946 * This function resets the HBA by writing HC_INITFF to the control 3947 * register. After the HBA resets, this function resets all the iocb ring 3948 * indices. This function disables PCI layer parity checking during 3949 * the reset. 3950 * This function returns 0 always. 3951 * The caller is not required to hold any locks. 3952 **/ 3953 int 3954 lpfc_sli_brdreset(struct lpfc_hba *phba) 3955 { 3956 struct lpfc_sli *psli; 3957 struct lpfc_sli_ring *pring; 3958 uint16_t cfg_value; 3959 int i; 3960 3961 psli = &phba->sli; 3962 3963 /* Reset HBA */ 3964 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3965 "0325 Reset HBA Data: x%x x%x\n", 3966 phba->pport->port_state, psli->sli_flag); 3967 3968 /* perform board reset */ 3969 phba->fc_eventTag = 0; 3970 phba->link_events = 0; 3971 phba->pport->fc_myDID = 0; 3972 phba->pport->fc_prevDID = 0; 3973 3974 /* Turn off parity checking and serr during the physical reset */ 3975 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 3976 pci_write_config_word(phba->pcidev, PCI_COMMAND, 3977 (cfg_value & 3978 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 3979 3980 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 3981 3982 /* Now toggle INITFF bit in the Host Control Register */ 3983 writel(HC_INITFF, phba->HCregaddr); 3984 mdelay(1); 3985 readl(phba->HCregaddr); /* flush */ 3986 writel(0, phba->HCregaddr); 3987 readl(phba->HCregaddr); /* flush */ 3988 3989 /* Restore PCI cmd register */ 3990 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 3991 3992 /* Initialize relevant SLI info */ 3993 for (i = 0; i < psli->num_rings; i++) { 3994 pring = &psli->ring[i]; 3995 pring->flag = 0; 3996 pring->sli.sli3.rspidx = 0; 3997 pring->sli.sli3.next_cmdidx = 0; 3998 pring->sli.sli3.local_getidx = 0; 3999 pring->sli.sli3.cmdidx = 0; 4000 pring->missbufcnt = 0; 4001 } 4002 4003 phba->link_state = LPFC_WARM_START; 4004 return 0; 4005 } 4006 4007 /** 4008 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4009 * @phba: Pointer to HBA context object. 4010 * 4011 * This function resets a SLI4 HBA. This function disables PCI layer parity 4012 * checking during resets the device. The caller is not required to hold 4013 * any locks. 4014 * 4015 * This function returns 0 always. 4016 **/ 4017 int 4018 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4019 { 4020 struct lpfc_sli *psli = &phba->sli; 4021 uint16_t cfg_value; 4022 int rc = 0; 4023 4024 /* Reset HBA */ 4025 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4026 "0295 Reset HBA Data: x%x x%x x%x\n", 4027 phba->pport->port_state, psli->sli_flag, 4028 phba->hba_flag); 4029 4030 /* perform board reset */ 4031 phba->fc_eventTag = 0; 4032 phba->link_events = 0; 4033 phba->pport->fc_myDID = 0; 4034 phba->pport->fc_prevDID = 0; 4035 4036 spin_lock_irq(&phba->hbalock); 4037 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4038 phba->fcf.fcf_flag = 0; 4039 spin_unlock_irq(&phba->hbalock); 4040 4041 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4042 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4043 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4044 return rc; 4045 } 4046 4047 /* Now physically reset the device */ 4048 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4049 "0389 Performing PCI function reset!\n"); 4050 4051 /* Turn off parity checking and serr during the physical reset */ 4052 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4053 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4055 4056 /* Perform FCoE PCI function reset before freeing queue memory */ 4057 rc = lpfc_pci_function_reset(phba); 4058 lpfc_sli4_queue_destroy(phba); 4059 4060 /* Restore PCI cmd register */ 4061 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4062 4063 return rc; 4064 } 4065 4066 /** 4067 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4068 * @phba: Pointer to HBA context object. 4069 * 4070 * This function is called in the SLI initialization code path to 4071 * restart the HBA. The caller is not required to hold any lock. 4072 * This function writes MBX_RESTART mailbox command to the SLIM and 4073 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4074 * function to free any pending commands. The function enables 4075 * POST only during the first initialization. The function returns zero. 4076 * The function does not guarantee completion of MBX_RESTART mailbox 4077 * command before the return of this function. 4078 **/ 4079 static int 4080 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4081 { 4082 MAILBOX_t *mb; 4083 struct lpfc_sli *psli; 4084 volatile uint32_t word0; 4085 void __iomem *to_slim; 4086 uint32_t hba_aer_enabled; 4087 4088 spin_lock_irq(&phba->hbalock); 4089 4090 /* Take PCIe device Advanced Error Reporting (AER) state */ 4091 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4092 4093 psli = &phba->sli; 4094 4095 /* Restart HBA */ 4096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4097 "0337 Restart HBA Data: x%x x%x\n", 4098 phba->pport->port_state, psli->sli_flag); 4099 4100 word0 = 0; 4101 mb = (MAILBOX_t *) &word0; 4102 mb->mbxCommand = MBX_RESTART; 4103 mb->mbxHc = 1; 4104 4105 lpfc_reset_barrier(phba); 4106 4107 to_slim = phba->MBslimaddr; 4108 writel(*(uint32_t *) mb, to_slim); 4109 readl(to_slim); /* flush */ 4110 4111 /* Only skip post after fc_ffinit is completed */ 4112 if (phba->pport->port_state) 4113 word0 = 1; /* This is really setting up word1 */ 4114 else 4115 word0 = 0; /* This is really setting up word1 */ 4116 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4117 writel(*(uint32_t *) mb, to_slim); 4118 readl(to_slim); /* flush */ 4119 4120 lpfc_sli_brdreset(phba); 4121 phba->pport->stopped = 0; 4122 phba->link_state = LPFC_INIT_START; 4123 phba->hba_flag = 0; 4124 spin_unlock_irq(&phba->hbalock); 4125 4126 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4127 psli->stats_start = get_seconds(); 4128 4129 /* Give the INITFF and Post time to settle. */ 4130 mdelay(100); 4131 4132 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4133 if (hba_aer_enabled) 4134 pci_disable_pcie_error_reporting(phba->pcidev); 4135 4136 lpfc_hba_down_post(phba); 4137 4138 return 0; 4139 } 4140 4141 /** 4142 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4143 * @phba: Pointer to HBA context object. 4144 * 4145 * This function is called in the SLI initialization code path to restart 4146 * a SLI4 HBA. The caller is not required to hold any lock. 4147 * At the end of the function, it calls lpfc_hba_down_post function to 4148 * free any pending commands. 4149 **/ 4150 static int 4151 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4152 { 4153 struct lpfc_sli *psli = &phba->sli; 4154 uint32_t hba_aer_enabled; 4155 int rc; 4156 4157 /* Restart HBA */ 4158 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4159 "0296 Restart HBA Data: x%x x%x\n", 4160 phba->pport->port_state, psli->sli_flag); 4161 4162 /* Take PCIe device Advanced Error Reporting (AER) state */ 4163 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4164 4165 rc = lpfc_sli4_brdreset(phba); 4166 4167 spin_lock_irq(&phba->hbalock); 4168 phba->pport->stopped = 0; 4169 phba->link_state = LPFC_INIT_START; 4170 phba->hba_flag = 0; 4171 spin_unlock_irq(&phba->hbalock); 4172 4173 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4174 psli->stats_start = get_seconds(); 4175 4176 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4177 if (hba_aer_enabled) 4178 pci_disable_pcie_error_reporting(phba->pcidev); 4179 4180 lpfc_hba_down_post(phba); 4181 4182 return rc; 4183 } 4184 4185 /** 4186 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4187 * @phba: Pointer to HBA context object. 4188 * 4189 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4190 * API jump table function pointer from the lpfc_hba struct. 4191 **/ 4192 int 4193 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4194 { 4195 return phba->lpfc_sli_brdrestart(phba); 4196 } 4197 4198 /** 4199 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4200 * @phba: Pointer to HBA context object. 4201 * 4202 * This function is called after a HBA restart to wait for successful 4203 * restart of the HBA. Successful restart of the HBA is indicated by 4204 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4205 * iteration, the function will restart the HBA again. The function returns 4206 * zero if HBA successfully restarted else returns negative error code. 4207 **/ 4208 static int 4209 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4210 { 4211 uint32_t status, i = 0; 4212 4213 /* Read the HBA Host Status Register */ 4214 if (lpfc_readl(phba->HSregaddr, &status)) 4215 return -EIO; 4216 4217 /* Check status register to see what current state is */ 4218 i = 0; 4219 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4220 4221 /* Check every 10ms for 10 retries, then every 100ms for 90 4222 * retries, then every 1 sec for 50 retires for a total of 4223 * ~60 seconds before reset the board again and check every 4224 * 1 sec for 50 retries. The up to 60 seconds before the 4225 * board ready is required by the Falcon FIPS zeroization 4226 * complete, and any reset the board in between shall cause 4227 * restart of zeroization, further delay the board ready. 4228 */ 4229 if (i++ >= 200) { 4230 /* Adapter failed to init, timeout, status reg 4231 <status> */ 4232 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4233 "0436 Adapter failed to init, " 4234 "timeout, status reg x%x, " 4235 "FW Data: A8 x%x AC x%x\n", status, 4236 readl(phba->MBslimaddr + 0xa8), 4237 readl(phba->MBslimaddr + 0xac)); 4238 phba->link_state = LPFC_HBA_ERROR; 4239 return -ETIMEDOUT; 4240 } 4241 4242 /* Check to see if any errors occurred during init */ 4243 if (status & HS_FFERM) { 4244 /* ERROR: During chipset initialization */ 4245 /* Adapter failed to init, chipset, status reg 4246 <status> */ 4247 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4248 "0437 Adapter failed to init, " 4249 "chipset, status reg x%x, " 4250 "FW Data: A8 x%x AC x%x\n", status, 4251 readl(phba->MBslimaddr + 0xa8), 4252 readl(phba->MBslimaddr + 0xac)); 4253 phba->link_state = LPFC_HBA_ERROR; 4254 return -EIO; 4255 } 4256 4257 if (i <= 10) 4258 msleep(10); 4259 else if (i <= 100) 4260 msleep(100); 4261 else 4262 msleep(1000); 4263 4264 if (i == 150) { 4265 /* Do post */ 4266 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4267 lpfc_sli_brdrestart(phba); 4268 } 4269 /* Read the HBA Host Status Register */ 4270 if (lpfc_readl(phba->HSregaddr, &status)) 4271 return -EIO; 4272 } 4273 4274 /* Check to see if any errors occurred during init */ 4275 if (status & HS_FFERM) { 4276 /* ERROR: During chipset initialization */ 4277 /* Adapter failed to init, chipset, status reg <status> */ 4278 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4279 "0438 Adapter failed to init, chipset, " 4280 "status reg x%x, " 4281 "FW Data: A8 x%x AC x%x\n", status, 4282 readl(phba->MBslimaddr + 0xa8), 4283 readl(phba->MBslimaddr + 0xac)); 4284 phba->link_state = LPFC_HBA_ERROR; 4285 return -EIO; 4286 } 4287 4288 /* Clear all interrupt enable conditions */ 4289 writel(0, phba->HCregaddr); 4290 readl(phba->HCregaddr); /* flush */ 4291 4292 /* setup host attn register */ 4293 writel(0xffffffff, phba->HAregaddr); 4294 readl(phba->HAregaddr); /* flush */ 4295 return 0; 4296 } 4297 4298 /** 4299 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4300 * 4301 * This function calculates and returns the number of HBQs required to be 4302 * configured. 4303 **/ 4304 int 4305 lpfc_sli_hbq_count(void) 4306 { 4307 return ARRAY_SIZE(lpfc_hbq_defs); 4308 } 4309 4310 /** 4311 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4312 * 4313 * This function adds the number of hbq entries in every HBQ to get 4314 * the total number of hbq entries required for the HBA and returns 4315 * the total count. 4316 **/ 4317 static int 4318 lpfc_sli_hbq_entry_count(void) 4319 { 4320 int hbq_count = lpfc_sli_hbq_count(); 4321 int count = 0; 4322 int i; 4323 4324 for (i = 0; i < hbq_count; ++i) 4325 count += lpfc_hbq_defs[i]->entry_count; 4326 return count; 4327 } 4328 4329 /** 4330 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4331 * 4332 * This function calculates amount of memory required for all hbq entries 4333 * to be configured and returns the total memory required. 4334 **/ 4335 int 4336 lpfc_sli_hbq_size(void) 4337 { 4338 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4339 } 4340 4341 /** 4342 * lpfc_sli_hbq_setup - configure and initialize HBQs 4343 * @phba: Pointer to HBA context object. 4344 * 4345 * This function is called during the SLI initialization to configure 4346 * all the HBQs and post buffers to the HBQ. The caller is not 4347 * required to hold any locks. This function will return zero if successful 4348 * else it will return negative error code. 4349 **/ 4350 static int 4351 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4352 { 4353 int hbq_count = lpfc_sli_hbq_count(); 4354 LPFC_MBOXQ_t *pmb; 4355 MAILBOX_t *pmbox; 4356 uint32_t hbqno; 4357 uint32_t hbq_entry_index; 4358 4359 /* Get a Mailbox buffer to setup mailbox 4360 * commands for HBA initialization 4361 */ 4362 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4363 4364 if (!pmb) 4365 return -ENOMEM; 4366 4367 pmbox = &pmb->u.mb; 4368 4369 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4370 phba->link_state = LPFC_INIT_MBX_CMDS; 4371 phba->hbq_in_use = 1; 4372 4373 hbq_entry_index = 0; 4374 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4375 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4376 phba->hbqs[hbqno].hbqPutIdx = 0; 4377 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4378 phba->hbqs[hbqno].entry_count = 4379 lpfc_hbq_defs[hbqno]->entry_count; 4380 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4381 hbq_entry_index, pmb); 4382 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4383 4384 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4385 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4386 mbxStatus <status>, ring <num> */ 4387 4388 lpfc_printf_log(phba, KERN_ERR, 4389 LOG_SLI | LOG_VPORT, 4390 "1805 Adapter failed to init. " 4391 "Data: x%x x%x x%x\n", 4392 pmbox->mbxCommand, 4393 pmbox->mbxStatus, hbqno); 4394 4395 phba->link_state = LPFC_HBA_ERROR; 4396 mempool_free(pmb, phba->mbox_mem_pool); 4397 return -ENXIO; 4398 } 4399 } 4400 phba->hbq_count = hbq_count; 4401 4402 mempool_free(pmb, phba->mbox_mem_pool); 4403 4404 /* Initially populate or replenish the HBQs */ 4405 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4406 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4407 return 0; 4408 } 4409 4410 /** 4411 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4412 * @phba: Pointer to HBA context object. 4413 * 4414 * This function is called during the SLI initialization to configure 4415 * all the HBQs and post buffers to the HBQ. The caller is not 4416 * required to hold any locks. This function will return zero if successful 4417 * else it will return negative error code. 4418 **/ 4419 static int 4420 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4421 { 4422 phba->hbq_in_use = 1; 4423 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4424 phba->hbq_count = 1; 4425 /* Initially populate or replenish the HBQs */ 4426 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4427 return 0; 4428 } 4429 4430 /** 4431 * lpfc_sli_config_port - Issue config port mailbox command 4432 * @phba: Pointer to HBA context object. 4433 * @sli_mode: sli mode - 2/3 4434 * 4435 * This function is called by the sli intialization code path 4436 * to issue config_port mailbox command. This function restarts the 4437 * HBA firmware and issues a config_port mailbox command to configure 4438 * the SLI interface in the sli mode specified by sli_mode 4439 * variable. The caller is not required to hold any locks. 4440 * The function returns 0 if successful, else returns negative error 4441 * code. 4442 **/ 4443 int 4444 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4445 { 4446 LPFC_MBOXQ_t *pmb; 4447 uint32_t resetcount = 0, rc = 0, done = 0; 4448 4449 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4450 if (!pmb) { 4451 phba->link_state = LPFC_HBA_ERROR; 4452 return -ENOMEM; 4453 } 4454 4455 phba->sli_rev = sli_mode; 4456 while (resetcount < 2 && !done) { 4457 spin_lock_irq(&phba->hbalock); 4458 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4459 spin_unlock_irq(&phba->hbalock); 4460 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4461 lpfc_sli_brdrestart(phba); 4462 rc = lpfc_sli_chipset_init(phba); 4463 if (rc) 4464 break; 4465 4466 spin_lock_irq(&phba->hbalock); 4467 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4468 spin_unlock_irq(&phba->hbalock); 4469 resetcount++; 4470 4471 /* Call pre CONFIG_PORT mailbox command initialization. A 4472 * value of 0 means the call was successful. Any other 4473 * nonzero value is a failure, but if ERESTART is returned, 4474 * the driver may reset the HBA and try again. 4475 */ 4476 rc = lpfc_config_port_prep(phba); 4477 if (rc == -ERESTART) { 4478 phba->link_state = LPFC_LINK_UNKNOWN; 4479 continue; 4480 } else if (rc) 4481 break; 4482 4483 phba->link_state = LPFC_INIT_MBX_CMDS; 4484 lpfc_config_port(phba, pmb); 4485 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4486 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4487 LPFC_SLI3_HBQ_ENABLED | 4488 LPFC_SLI3_CRP_ENABLED | 4489 LPFC_SLI3_BG_ENABLED | 4490 LPFC_SLI3_DSS_ENABLED); 4491 if (rc != MBX_SUCCESS) { 4492 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4493 "0442 Adapter failed to init, mbxCmd x%x " 4494 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4495 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4496 spin_lock_irq(&phba->hbalock); 4497 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4498 spin_unlock_irq(&phba->hbalock); 4499 rc = -ENXIO; 4500 } else { 4501 /* Allow asynchronous mailbox command to go through */ 4502 spin_lock_irq(&phba->hbalock); 4503 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4504 spin_unlock_irq(&phba->hbalock); 4505 done = 1; 4506 4507 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4508 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4509 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4510 "3110 Port did not grant ASABT\n"); 4511 } 4512 } 4513 if (!done) { 4514 rc = -EINVAL; 4515 goto do_prep_failed; 4516 } 4517 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4518 if (!pmb->u.mb.un.varCfgPort.cMA) { 4519 rc = -ENXIO; 4520 goto do_prep_failed; 4521 } 4522 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4523 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4524 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4525 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4526 phba->max_vpi : phba->max_vports; 4527 4528 } else 4529 phba->max_vpi = 0; 4530 phba->fips_level = 0; 4531 phba->fips_spec_rev = 0; 4532 if (pmb->u.mb.un.varCfgPort.gdss) { 4533 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4534 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4535 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4536 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4537 "2850 Security Crypto Active. FIPS x%d " 4538 "(Spec Rev: x%d)", 4539 phba->fips_level, phba->fips_spec_rev); 4540 } 4541 if (pmb->u.mb.un.varCfgPort.sec_err) { 4542 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4543 "2856 Config Port Security Crypto " 4544 "Error: x%x ", 4545 pmb->u.mb.un.varCfgPort.sec_err); 4546 } 4547 if (pmb->u.mb.un.varCfgPort.gerbm) 4548 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4549 if (pmb->u.mb.un.varCfgPort.gcrp) 4550 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4551 4552 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4553 phba->port_gp = phba->mbox->us.s3_pgp.port; 4554 4555 if (phba->cfg_enable_bg) { 4556 if (pmb->u.mb.un.varCfgPort.gbg) 4557 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4558 else 4559 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4560 "0443 Adapter did not grant " 4561 "BlockGuard\n"); 4562 } 4563 } else { 4564 phba->hbq_get = NULL; 4565 phba->port_gp = phba->mbox->us.s2.port; 4566 phba->max_vpi = 0; 4567 } 4568 do_prep_failed: 4569 mempool_free(pmb, phba->mbox_mem_pool); 4570 return rc; 4571 } 4572 4573 4574 /** 4575 * lpfc_sli_hba_setup - SLI intialization function 4576 * @phba: Pointer to HBA context object. 4577 * 4578 * This function is the main SLI intialization function. This function 4579 * is called by the HBA intialization code, HBA reset code and HBA 4580 * error attention handler code. Caller is not required to hold any 4581 * locks. This function issues config_port mailbox command to configure 4582 * the SLI, setup iocb rings and HBQ rings. In the end the function 4583 * calls the config_port_post function to issue init_link mailbox 4584 * command and to start the discovery. The function will return zero 4585 * if successful, else it will return negative error code. 4586 **/ 4587 int 4588 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4589 { 4590 uint32_t rc; 4591 int mode = 3, i; 4592 int longs; 4593 4594 switch (lpfc_sli_mode) { 4595 case 2: 4596 if (phba->cfg_enable_npiv) { 4597 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4598 "1824 NPIV enabled: Override lpfc_sli_mode " 4599 "parameter (%d) to auto (0).\n", 4600 lpfc_sli_mode); 4601 break; 4602 } 4603 mode = 2; 4604 break; 4605 case 0: 4606 case 3: 4607 break; 4608 default: 4609 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4610 "1819 Unrecognized lpfc_sli_mode " 4611 "parameter: %d.\n", lpfc_sli_mode); 4612 4613 break; 4614 } 4615 4616 rc = lpfc_sli_config_port(phba, mode); 4617 4618 if (rc && lpfc_sli_mode == 3) 4619 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4620 "1820 Unable to select SLI-3. " 4621 "Not supported by adapter.\n"); 4622 if (rc && mode != 2) 4623 rc = lpfc_sli_config_port(phba, 2); 4624 if (rc) 4625 goto lpfc_sli_hba_setup_error; 4626 4627 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4628 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4629 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4630 if (!rc) { 4631 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4632 "2709 This device supports " 4633 "Advanced Error Reporting (AER)\n"); 4634 spin_lock_irq(&phba->hbalock); 4635 phba->hba_flag |= HBA_AER_ENABLED; 4636 spin_unlock_irq(&phba->hbalock); 4637 } else { 4638 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4639 "2708 This device does not support " 4640 "Advanced Error Reporting (AER): %d\n", 4641 rc); 4642 phba->cfg_aer_support = 0; 4643 } 4644 } 4645 4646 if (phba->sli_rev == 3) { 4647 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4648 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4649 } else { 4650 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4651 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4652 phba->sli3_options = 0; 4653 } 4654 4655 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4656 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4657 phba->sli_rev, phba->max_vpi); 4658 rc = lpfc_sli_ring_map(phba); 4659 4660 if (rc) 4661 goto lpfc_sli_hba_setup_error; 4662 4663 /* Initialize VPIs. */ 4664 if (phba->sli_rev == LPFC_SLI_REV3) { 4665 /* 4666 * The VPI bitmask and physical ID array are allocated 4667 * and initialized once only - at driver load. A port 4668 * reset doesn't need to reinitialize this memory. 4669 */ 4670 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4671 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4672 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4673 GFP_KERNEL); 4674 if (!phba->vpi_bmask) { 4675 rc = -ENOMEM; 4676 goto lpfc_sli_hba_setup_error; 4677 } 4678 4679 phba->vpi_ids = kzalloc( 4680 (phba->max_vpi+1) * sizeof(uint16_t), 4681 GFP_KERNEL); 4682 if (!phba->vpi_ids) { 4683 kfree(phba->vpi_bmask); 4684 rc = -ENOMEM; 4685 goto lpfc_sli_hba_setup_error; 4686 } 4687 for (i = 0; i < phba->max_vpi; i++) 4688 phba->vpi_ids[i] = i; 4689 } 4690 } 4691 4692 /* Init HBQs */ 4693 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4694 rc = lpfc_sli_hbq_setup(phba); 4695 if (rc) 4696 goto lpfc_sli_hba_setup_error; 4697 } 4698 spin_lock_irq(&phba->hbalock); 4699 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4700 spin_unlock_irq(&phba->hbalock); 4701 4702 rc = lpfc_config_port_post(phba); 4703 if (rc) 4704 goto lpfc_sli_hba_setup_error; 4705 4706 return rc; 4707 4708 lpfc_sli_hba_setup_error: 4709 phba->link_state = LPFC_HBA_ERROR; 4710 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4711 "0445 Firmware initialization failed\n"); 4712 return rc; 4713 } 4714 4715 /** 4716 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4717 * @phba: Pointer to HBA context object. 4718 * @mboxq: mailbox pointer. 4719 * This function issue a dump mailbox command to read config region 4720 * 23 and parse the records in the region and populate driver 4721 * data structure. 4722 **/ 4723 static int 4724 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4725 { 4726 LPFC_MBOXQ_t *mboxq; 4727 struct lpfc_dmabuf *mp; 4728 struct lpfc_mqe *mqe; 4729 uint32_t data_length; 4730 int rc; 4731 4732 /* Program the default value of vlan_id and fc_map */ 4733 phba->valid_vlan = 0; 4734 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4735 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4736 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4737 4738 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4739 if (!mboxq) 4740 return -ENOMEM; 4741 4742 mqe = &mboxq->u.mqe; 4743 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4744 rc = -ENOMEM; 4745 goto out_free_mboxq; 4746 } 4747 4748 mp = (struct lpfc_dmabuf *) mboxq->context1; 4749 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4750 4751 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4752 "(%d):2571 Mailbox cmd x%x Status x%x " 4753 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4754 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4755 "CQ: x%x x%x x%x x%x\n", 4756 mboxq->vport ? mboxq->vport->vpi : 0, 4757 bf_get(lpfc_mqe_command, mqe), 4758 bf_get(lpfc_mqe_status, mqe), 4759 mqe->un.mb_words[0], mqe->un.mb_words[1], 4760 mqe->un.mb_words[2], mqe->un.mb_words[3], 4761 mqe->un.mb_words[4], mqe->un.mb_words[5], 4762 mqe->un.mb_words[6], mqe->un.mb_words[7], 4763 mqe->un.mb_words[8], mqe->un.mb_words[9], 4764 mqe->un.mb_words[10], mqe->un.mb_words[11], 4765 mqe->un.mb_words[12], mqe->un.mb_words[13], 4766 mqe->un.mb_words[14], mqe->un.mb_words[15], 4767 mqe->un.mb_words[16], mqe->un.mb_words[50], 4768 mboxq->mcqe.word0, 4769 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4770 mboxq->mcqe.trailer); 4771 4772 if (rc) { 4773 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4774 kfree(mp); 4775 rc = -EIO; 4776 goto out_free_mboxq; 4777 } 4778 data_length = mqe->un.mb_words[5]; 4779 if (data_length > DMP_RGN23_SIZE) { 4780 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4781 kfree(mp); 4782 rc = -EIO; 4783 goto out_free_mboxq; 4784 } 4785 4786 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4787 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4788 kfree(mp); 4789 rc = 0; 4790 4791 out_free_mboxq: 4792 mempool_free(mboxq, phba->mbox_mem_pool); 4793 return rc; 4794 } 4795 4796 /** 4797 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4798 * @phba: pointer to lpfc hba data structure. 4799 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4800 * @vpd: pointer to the memory to hold resulting port vpd data. 4801 * @vpd_size: On input, the number of bytes allocated to @vpd. 4802 * On output, the number of data bytes in @vpd. 4803 * 4804 * This routine executes a READ_REV SLI4 mailbox command. In 4805 * addition, this routine gets the port vpd data. 4806 * 4807 * Return codes 4808 * 0 - successful 4809 * -ENOMEM - could not allocated memory. 4810 **/ 4811 static int 4812 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4813 uint8_t *vpd, uint32_t *vpd_size) 4814 { 4815 int rc = 0; 4816 uint32_t dma_size; 4817 struct lpfc_dmabuf *dmabuf; 4818 struct lpfc_mqe *mqe; 4819 4820 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4821 if (!dmabuf) 4822 return -ENOMEM; 4823 4824 /* 4825 * Get a DMA buffer for the vpd data resulting from the READ_REV 4826 * mailbox command. 4827 */ 4828 dma_size = *vpd_size; 4829 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4830 &dmabuf->phys, GFP_KERNEL); 4831 if (!dmabuf->virt) { 4832 kfree(dmabuf); 4833 return -ENOMEM; 4834 } 4835 4836 /* 4837 * The SLI4 implementation of READ_REV conflicts at word1, 4838 * bits 31:16 and SLI4 adds vpd functionality not present 4839 * in SLI3. This code corrects the conflicts. 4840 */ 4841 lpfc_read_rev(phba, mboxq); 4842 mqe = &mboxq->u.mqe; 4843 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4844 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4845 mqe->un.read_rev.word1 &= 0x0000FFFF; 4846 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4847 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4848 4849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4850 if (rc) { 4851 dma_free_coherent(&phba->pcidev->dev, dma_size, 4852 dmabuf->virt, dmabuf->phys); 4853 kfree(dmabuf); 4854 return -EIO; 4855 } 4856 4857 /* 4858 * The available vpd length cannot be bigger than the 4859 * DMA buffer passed to the port. Catch the less than 4860 * case and update the caller's size. 4861 */ 4862 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4863 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4864 4865 memcpy(vpd, dmabuf->virt, *vpd_size); 4866 4867 dma_free_coherent(&phba->pcidev->dev, dma_size, 4868 dmabuf->virt, dmabuf->phys); 4869 kfree(dmabuf); 4870 return 0; 4871 } 4872 4873 /** 4874 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4875 * @phba: pointer to lpfc hba data structure. 4876 * 4877 * This routine retrieves SLI4 device physical port name this PCI function 4878 * is attached to. 4879 * 4880 * Return codes 4881 * 0 - successful 4882 * otherwise - failed to retrieve physical port name 4883 **/ 4884 static int 4885 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4886 { 4887 LPFC_MBOXQ_t *mboxq; 4888 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4889 struct lpfc_controller_attribute *cntl_attr; 4890 struct lpfc_mbx_get_port_name *get_port_name; 4891 void *virtaddr = NULL; 4892 uint32_t alloclen, reqlen; 4893 uint32_t shdr_status, shdr_add_status; 4894 union lpfc_sli4_cfg_shdr *shdr; 4895 char cport_name = 0; 4896 int rc; 4897 4898 /* We assume nothing at this point */ 4899 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4900 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4901 4902 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4903 if (!mboxq) 4904 return -ENOMEM; 4905 /* obtain link type and link number via READ_CONFIG */ 4906 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4907 lpfc_sli4_read_config(phba); 4908 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4909 goto retrieve_ppname; 4910 4911 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4912 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4913 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4914 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4915 LPFC_SLI4_MBX_NEMBED); 4916 if (alloclen < reqlen) { 4917 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4918 "3084 Allocated DMA memory size (%d) is " 4919 "less than the requested DMA memory size " 4920 "(%d)\n", alloclen, reqlen); 4921 rc = -ENOMEM; 4922 goto out_free_mboxq; 4923 } 4924 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4925 virtaddr = mboxq->sge_array->addr[0]; 4926 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 4927 shdr = &mbx_cntl_attr->cfg_shdr; 4928 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 4929 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 4930 if (shdr_status || shdr_add_status || rc) { 4931 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4932 "3085 Mailbox x%x (x%x/x%x) failed, " 4933 "rc:x%x, status:x%x, add_status:x%x\n", 4934 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4935 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 4936 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 4937 rc, shdr_status, shdr_add_status); 4938 rc = -ENXIO; 4939 goto out_free_mboxq; 4940 } 4941 cntl_attr = &mbx_cntl_attr->cntl_attr; 4942 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 4943 phba->sli4_hba.lnk_info.lnk_tp = 4944 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 4945 phba->sli4_hba.lnk_info.lnk_no = 4946 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 4947 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4948 "3086 lnk_type:%d, lnk_numb:%d\n", 4949 phba->sli4_hba.lnk_info.lnk_tp, 4950 phba->sli4_hba.lnk_info.lnk_no); 4951 4952 retrieve_ppname: 4953 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4954 LPFC_MBOX_OPCODE_GET_PORT_NAME, 4955 sizeof(struct lpfc_mbx_get_port_name) - 4956 sizeof(struct lpfc_sli4_cfg_mhdr), 4957 LPFC_SLI4_MBX_EMBED); 4958 get_port_name = &mboxq->u.mqe.un.get_port_name; 4959 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 4960 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 4961 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 4962 phba->sli4_hba.lnk_info.lnk_tp); 4963 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4964 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 4965 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 4966 if (shdr_status || shdr_add_status || rc) { 4967 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4968 "3087 Mailbox x%x (x%x/x%x) failed: " 4969 "rc:x%x, status:x%x, add_status:x%x\n", 4970 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4971 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 4972 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 4973 rc, shdr_status, shdr_add_status); 4974 rc = -ENXIO; 4975 goto out_free_mboxq; 4976 } 4977 switch (phba->sli4_hba.lnk_info.lnk_no) { 4978 case LPFC_LINK_NUMBER_0: 4979 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 4980 &get_port_name->u.response); 4981 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4982 break; 4983 case LPFC_LINK_NUMBER_1: 4984 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 4985 &get_port_name->u.response); 4986 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4987 break; 4988 case LPFC_LINK_NUMBER_2: 4989 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 4990 &get_port_name->u.response); 4991 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4992 break; 4993 case LPFC_LINK_NUMBER_3: 4994 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 4995 &get_port_name->u.response); 4996 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4997 break; 4998 default: 4999 break; 5000 } 5001 5002 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5003 phba->Port[0] = cport_name; 5004 phba->Port[1] = '\0'; 5005 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5006 "3091 SLI get port name: %s\n", phba->Port); 5007 } 5008 5009 out_free_mboxq: 5010 if (rc != MBX_TIMEOUT) { 5011 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5012 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5013 else 5014 mempool_free(mboxq, phba->mbox_mem_pool); 5015 } 5016 return rc; 5017 } 5018 5019 /** 5020 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5021 * @phba: pointer to lpfc hba data structure. 5022 * 5023 * This routine is called to explicitly arm the SLI4 device's completion and 5024 * event queues 5025 **/ 5026 static void 5027 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5028 { 5029 int fcp_eqidx; 5030 5031 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5032 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5033 fcp_eqidx = 0; 5034 if (phba->sli4_hba.fcp_cq) { 5035 do { 5036 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5037 LPFC_QUEUE_REARM); 5038 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5039 } 5040 5041 if (phba->cfg_fof) 5042 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5043 5044 if (phba->sli4_hba.hba_eq) { 5045 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5046 fcp_eqidx++) 5047 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5048 LPFC_QUEUE_REARM); 5049 } 5050 5051 if (phba->cfg_fof) 5052 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5053 } 5054 5055 /** 5056 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5057 * @phba: Pointer to HBA context object. 5058 * @type: The resource extent type. 5059 * @extnt_count: buffer to hold port available extent count. 5060 * @extnt_size: buffer to hold element count per extent. 5061 * 5062 * This function calls the port and retrievs the number of available 5063 * extents and their size for a particular extent type. 5064 * 5065 * Returns: 0 if successful. Nonzero otherwise. 5066 **/ 5067 int 5068 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5069 uint16_t *extnt_count, uint16_t *extnt_size) 5070 { 5071 int rc = 0; 5072 uint32_t length; 5073 uint32_t mbox_tmo; 5074 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5075 LPFC_MBOXQ_t *mbox; 5076 5077 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5078 if (!mbox) 5079 return -ENOMEM; 5080 5081 /* Find out how many extents are available for this resource type */ 5082 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5083 sizeof(struct lpfc_sli4_cfg_mhdr)); 5084 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5085 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5086 length, LPFC_SLI4_MBX_EMBED); 5087 5088 /* Send an extents count of 0 - the GET doesn't use it. */ 5089 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5090 LPFC_SLI4_MBX_EMBED); 5091 if (unlikely(rc)) { 5092 rc = -EIO; 5093 goto err_exit; 5094 } 5095 5096 if (!phba->sli4_hba.intr_enable) 5097 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5098 else { 5099 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5100 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5101 } 5102 if (unlikely(rc)) { 5103 rc = -EIO; 5104 goto err_exit; 5105 } 5106 5107 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5108 if (bf_get(lpfc_mbox_hdr_status, 5109 &rsrc_info->header.cfg_shdr.response)) { 5110 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5111 "2930 Failed to get resource extents " 5112 "Status 0x%x Add'l Status 0x%x\n", 5113 bf_get(lpfc_mbox_hdr_status, 5114 &rsrc_info->header.cfg_shdr.response), 5115 bf_get(lpfc_mbox_hdr_add_status, 5116 &rsrc_info->header.cfg_shdr.response)); 5117 rc = -EIO; 5118 goto err_exit; 5119 } 5120 5121 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5122 &rsrc_info->u.rsp); 5123 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5124 &rsrc_info->u.rsp); 5125 5126 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5127 "3162 Retrieved extents type-%d from port: count:%d, " 5128 "size:%d\n", type, *extnt_count, *extnt_size); 5129 5130 err_exit: 5131 mempool_free(mbox, phba->mbox_mem_pool); 5132 return rc; 5133 } 5134 5135 /** 5136 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5137 * @phba: Pointer to HBA context object. 5138 * @type: The extent type to check. 5139 * 5140 * This function reads the current available extents from the port and checks 5141 * if the extent count or extent size has changed since the last access. 5142 * Callers use this routine post port reset to understand if there is a 5143 * extent reprovisioning requirement. 5144 * 5145 * Returns: 5146 * -Error: error indicates problem. 5147 * 1: Extent count or size has changed. 5148 * 0: No changes. 5149 **/ 5150 static int 5151 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5152 { 5153 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5154 uint16_t size_diff, rsrc_ext_size; 5155 int rc = 0; 5156 struct lpfc_rsrc_blks *rsrc_entry; 5157 struct list_head *rsrc_blk_list = NULL; 5158 5159 size_diff = 0; 5160 curr_ext_cnt = 0; 5161 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5162 &rsrc_ext_cnt, 5163 &rsrc_ext_size); 5164 if (unlikely(rc)) 5165 return -EIO; 5166 5167 switch (type) { 5168 case LPFC_RSC_TYPE_FCOE_RPI: 5169 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5170 break; 5171 case LPFC_RSC_TYPE_FCOE_VPI: 5172 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5173 break; 5174 case LPFC_RSC_TYPE_FCOE_XRI: 5175 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5176 break; 5177 case LPFC_RSC_TYPE_FCOE_VFI: 5178 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5179 break; 5180 default: 5181 break; 5182 } 5183 5184 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5185 curr_ext_cnt++; 5186 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5187 size_diff++; 5188 } 5189 5190 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5191 rc = 1; 5192 5193 return rc; 5194 } 5195 5196 /** 5197 * lpfc_sli4_cfg_post_extnts - 5198 * @phba: Pointer to HBA context object. 5199 * @extnt_cnt - number of available extents. 5200 * @type - the extent type (rpi, xri, vfi, vpi). 5201 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5202 * @mbox - pointer to the caller's allocated mailbox structure. 5203 * 5204 * This function executes the extents allocation request. It also 5205 * takes care of the amount of memory needed to allocate or get the 5206 * allocated extents. It is the caller's responsibility to evaluate 5207 * the response. 5208 * 5209 * Returns: 5210 * -Error: Error value describes the condition found. 5211 * 0: if successful 5212 **/ 5213 static int 5214 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5215 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5216 { 5217 int rc = 0; 5218 uint32_t req_len; 5219 uint32_t emb_len; 5220 uint32_t alloc_len, mbox_tmo; 5221 5222 /* Calculate the total requested length of the dma memory */ 5223 req_len = extnt_cnt * sizeof(uint16_t); 5224 5225 /* 5226 * Calculate the size of an embedded mailbox. The uint32_t 5227 * accounts for extents-specific word. 5228 */ 5229 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5230 sizeof(uint32_t); 5231 5232 /* 5233 * Presume the allocation and response will fit into an embedded 5234 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5235 */ 5236 *emb = LPFC_SLI4_MBX_EMBED; 5237 if (req_len > emb_len) { 5238 req_len = extnt_cnt * sizeof(uint16_t) + 5239 sizeof(union lpfc_sli4_cfg_shdr) + 5240 sizeof(uint32_t); 5241 *emb = LPFC_SLI4_MBX_NEMBED; 5242 } 5243 5244 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5245 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5246 req_len, *emb); 5247 if (alloc_len < req_len) { 5248 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5249 "2982 Allocated DMA memory size (x%x) is " 5250 "less than the requested DMA memory " 5251 "size (x%x)\n", alloc_len, req_len); 5252 return -ENOMEM; 5253 } 5254 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5255 if (unlikely(rc)) 5256 return -EIO; 5257 5258 if (!phba->sli4_hba.intr_enable) 5259 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5260 else { 5261 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5262 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5263 } 5264 5265 if (unlikely(rc)) 5266 rc = -EIO; 5267 return rc; 5268 } 5269 5270 /** 5271 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5272 * @phba: Pointer to HBA context object. 5273 * @type: The resource extent type to allocate. 5274 * 5275 * This function allocates the number of elements for the specified 5276 * resource type. 5277 **/ 5278 static int 5279 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5280 { 5281 bool emb = false; 5282 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5283 uint16_t rsrc_id, rsrc_start, j, k; 5284 uint16_t *ids; 5285 int i, rc; 5286 unsigned long longs; 5287 unsigned long *bmask; 5288 struct lpfc_rsrc_blks *rsrc_blks; 5289 LPFC_MBOXQ_t *mbox; 5290 uint32_t length; 5291 struct lpfc_id_range *id_array = NULL; 5292 void *virtaddr = NULL; 5293 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5294 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5295 struct list_head *ext_blk_list; 5296 5297 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5298 &rsrc_cnt, 5299 &rsrc_size); 5300 if (unlikely(rc)) 5301 return -EIO; 5302 5303 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5304 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5305 "3009 No available Resource Extents " 5306 "for resource type 0x%x: Count: 0x%x, " 5307 "Size 0x%x\n", type, rsrc_cnt, 5308 rsrc_size); 5309 return -ENOMEM; 5310 } 5311 5312 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5313 "2903 Post resource extents type-0x%x: " 5314 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5315 5316 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5317 if (!mbox) 5318 return -ENOMEM; 5319 5320 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5321 if (unlikely(rc)) { 5322 rc = -EIO; 5323 goto err_exit; 5324 } 5325 5326 /* 5327 * Figure out where the response is located. Then get local pointers 5328 * to the response data. The port does not guarantee to respond to 5329 * all extents counts request so update the local variable with the 5330 * allocated count from the port. 5331 */ 5332 if (emb == LPFC_SLI4_MBX_EMBED) { 5333 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5334 id_array = &rsrc_ext->u.rsp.id[0]; 5335 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5336 } else { 5337 virtaddr = mbox->sge_array->addr[0]; 5338 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5339 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5340 id_array = &n_rsrc->id; 5341 } 5342 5343 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5344 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5345 5346 /* 5347 * Based on the resource size and count, correct the base and max 5348 * resource values. 5349 */ 5350 length = sizeof(struct lpfc_rsrc_blks); 5351 switch (type) { 5352 case LPFC_RSC_TYPE_FCOE_RPI: 5353 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5354 sizeof(unsigned long), 5355 GFP_KERNEL); 5356 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5357 rc = -ENOMEM; 5358 goto err_exit; 5359 } 5360 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5361 sizeof(uint16_t), 5362 GFP_KERNEL); 5363 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5364 kfree(phba->sli4_hba.rpi_bmask); 5365 rc = -ENOMEM; 5366 goto err_exit; 5367 } 5368 5369 /* 5370 * The next_rpi was initialized with the maximum available 5371 * count but the port may allocate a smaller number. Catch 5372 * that case and update the next_rpi. 5373 */ 5374 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5375 5376 /* Initialize local ptrs for common extent processing later. */ 5377 bmask = phba->sli4_hba.rpi_bmask; 5378 ids = phba->sli4_hba.rpi_ids; 5379 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5380 break; 5381 case LPFC_RSC_TYPE_FCOE_VPI: 5382 phba->vpi_bmask = kzalloc(longs * 5383 sizeof(unsigned long), 5384 GFP_KERNEL); 5385 if (unlikely(!phba->vpi_bmask)) { 5386 rc = -ENOMEM; 5387 goto err_exit; 5388 } 5389 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5390 sizeof(uint16_t), 5391 GFP_KERNEL); 5392 if (unlikely(!phba->vpi_ids)) { 5393 kfree(phba->vpi_bmask); 5394 rc = -ENOMEM; 5395 goto err_exit; 5396 } 5397 5398 /* Initialize local ptrs for common extent processing later. */ 5399 bmask = phba->vpi_bmask; 5400 ids = phba->vpi_ids; 5401 ext_blk_list = &phba->lpfc_vpi_blk_list; 5402 break; 5403 case LPFC_RSC_TYPE_FCOE_XRI: 5404 phba->sli4_hba.xri_bmask = kzalloc(longs * 5405 sizeof(unsigned long), 5406 GFP_KERNEL); 5407 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5408 rc = -ENOMEM; 5409 goto err_exit; 5410 } 5411 phba->sli4_hba.max_cfg_param.xri_used = 0; 5412 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5413 sizeof(uint16_t), 5414 GFP_KERNEL); 5415 if (unlikely(!phba->sli4_hba.xri_ids)) { 5416 kfree(phba->sli4_hba.xri_bmask); 5417 rc = -ENOMEM; 5418 goto err_exit; 5419 } 5420 5421 /* Initialize local ptrs for common extent processing later. */ 5422 bmask = phba->sli4_hba.xri_bmask; 5423 ids = phba->sli4_hba.xri_ids; 5424 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5425 break; 5426 case LPFC_RSC_TYPE_FCOE_VFI: 5427 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5428 sizeof(unsigned long), 5429 GFP_KERNEL); 5430 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5431 rc = -ENOMEM; 5432 goto err_exit; 5433 } 5434 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5435 sizeof(uint16_t), 5436 GFP_KERNEL); 5437 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5438 kfree(phba->sli4_hba.vfi_bmask); 5439 rc = -ENOMEM; 5440 goto err_exit; 5441 } 5442 5443 /* Initialize local ptrs for common extent processing later. */ 5444 bmask = phba->sli4_hba.vfi_bmask; 5445 ids = phba->sli4_hba.vfi_ids; 5446 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5447 break; 5448 default: 5449 /* Unsupported Opcode. Fail call. */ 5450 id_array = NULL; 5451 bmask = NULL; 5452 ids = NULL; 5453 ext_blk_list = NULL; 5454 goto err_exit; 5455 } 5456 5457 /* 5458 * Complete initializing the extent configuration with the 5459 * allocated ids assigned to this function. The bitmask serves 5460 * as an index into the array and manages the available ids. The 5461 * array just stores the ids communicated to the port via the wqes. 5462 */ 5463 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5464 if ((i % 2) == 0) 5465 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5466 &id_array[k]); 5467 else 5468 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5469 &id_array[k]); 5470 5471 rsrc_blks = kzalloc(length, GFP_KERNEL); 5472 if (unlikely(!rsrc_blks)) { 5473 rc = -ENOMEM; 5474 kfree(bmask); 5475 kfree(ids); 5476 goto err_exit; 5477 } 5478 rsrc_blks->rsrc_start = rsrc_id; 5479 rsrc_blks->rsrc_size = rsrc_size; 5480 list_add_tail(&rsrc_blks->list, ext_blk_list); 5481 rsrc_start = rsrc_id; 5482 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5483 phba->sli4_hba.scsi_xri_start = rsrc_start + 5484 lpfc_sli4_get_els_iocb_cnt(phba); 5485 5486 while (rsrc_id < (rsrc_start + rsrc_size)) { 5487 ids[j] = rsrc_id; 5488 rsrc_id++; 5489 j++; 5490 } 5491 /* Entire word processed. Get next word.*/ 5492 if ((i % 2) == 1) 5493 k++; 5494 } 5495 err_exit: 5496 lpfc_sli4_mbox_cmd_free(phba, mbox); 5497 return rc; 5498 } 5499 5500 /** 5501 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5502 * @phba: Pointer to HBA context object. 5503 * @type: the extent's type. 5504 * 5505 * This function deallocates all extents of a particular resource type. 5506 * SLI4 does not allow for deallocating a particular extent range. It 5507 * is the caller's responsibility to release all kernel memory resources. 5508 **/ 5509 static int 5510 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5511 { 5512 int rc; 5513 uint32_t length, mbox_tmo = 0; 5514 LPFC_MBOXQ_t *mbox; 5515 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5516 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5517 5518 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5519 if (!mbox) 5520 return -ENOMEM; 5521 5522 /* 5523 * This function sends an embedded mailbox because it only sends the 5524 * the resource type. All extents of this type are released by the 5525 * port. 5526 */ 5527 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5528 sizeof(struct lpfc_sli4_cfg_mhdr)); 5529 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5530 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5531 length, LPFC_SLI4_MBX_EMBED); 5532 5533 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5534 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5535 LPFC_SLI4_MBX_EMBED); 5536 if (unlikely(rc)) { 5537 rc = -EIO; 5538 goto out_free_mbox; 5539 } 5540 if (!phba->sli4_hba.intr_enable) 5541 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5542 else { 5543 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5544 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5545 } 5546 if (unlikely(rc)) { 5547 rc = -EIO; 5548 goto out_free_mbox; 5549 } 5550 5551 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5552 if (bf_get(lpfc_mbox_hdr_status, 5553 &dealloc_rsrc->header.cfg_shdr.response)) { 5554 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5555 "2919 Failed to release resource extents " 5556 "for type %d - Status 0x%x Add'l Status 0x%x. " 5557 "Resource memory not released.\n", 5558 type, 5559 bf_get(lpfc_mbox_hdr_status, 5560 &dealloc_rsrc->header.cfg_shdr.response), 5561 bf_get(lpfc_mbox_hdr_add_status, 5562 &dealloc_rsrc->header.cfg_shdr.response)); 5563 rc = -EIO; 5564 goto out_free_mbox; 5565 } 5566 5567 /* Release kernel memory resources for the specific type. */ 5568 switch (type) { 5569 case LPFC_RSC_TYPE_FCOE_VPI: 5570 kfree(phba->vpi_bmask); 5571 kfree(phba->vpi_ids); 5572 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5573 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5574 &phba->lpfc_vpi_blk_list, list) { 5575 list_del_init(&rsrc_blk->list); 5576 kfree(rsrc_blk); 5577 } 5578 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5579 break; 5580 case LPFC_RSC_TYPE_FCOE_XRI: 5581 kfree(phba->sli4_hba.xri_bmask); 5582 kfree(phba->sli4_hba.xri_ids); 5583 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5584 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5585 list_del_init(&rsrc_blk->list); 5586 kfree(rsrc_blk); 5587 } 5588 break; 5589 case LPFC_RSC_TYPE_FCOE_VFI: 5590 kfree(phba->sli4_hba.vfi_bmask); 5591 kfree(phba->sli4_hba.vfi_ids); 5592 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5593 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5594 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5595 list_del_init(&rsrc_blk->list); 5596 kfree(rsrc_blk); 5597 } 5598 break; 5599 case LPFC_RSC_TYPE_FCOE_RPI: 5600 /* RPI bitmask and physical id array are cleaned up earlier. */ 5601 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5602 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5603 list_del_init(&rsrc_blk->list); 5604 kfree(rsrc_blk); 5605 } 5606 break; 5607 default: 5608 break; 5609 } 5610 5611 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5612 5613 out_free_mbox: 5614 mempool_free(mbox, phba->mbox_mem_pool); 5615 return rc; 5616 } 5617 5618 /** 5619 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5620 * @phba: Pointer to HBA context object. 5621 * 5622 * This function allocates all SLI4 resource identifiers. 5623 **/ 5624 int 5625 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5626 { 5627 int i, rc, error = 0; 5628 uint16_t count, base; 5629 unsigned long longs; 5630 5631 if (!phba->sli4_hba.rpi_hdrs_in_use) 5632 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5633 if (phba->sli4_hba.extents_in_use) { 5634 /* 5635 * The port supports resource extents. The XRI, VPI, VFI, RPI 5636 * resource extent count must be read and allocated before 5637 * provisioning the resource id arrays. 5638 */ 5639 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5640 LPFC_IDX_RSRC_RDY) { 5641 /* 5642 * Extent-based resources are set - the driver could 5643 * be in a port reset. Figure out if any corrective 5644 * actions need to be taken. 5645 */ 5646 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5647 LPFC_RSC_TYPE_FCOE_VFI); 5648 if (rc != 0) 5649 error++; 5650 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5651 LPFC_RSC_TYPE_FCOE_VPI); 5652 if (rc != 0) 5653 error++; 5654 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5655 LPFC_RSC_TYPE_FCOE_XRI); 5656 if (rc != 0) 5657 error++; 5658 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5659 LPFC_RSC_TYPE_FCOE_RPI); 5660 if (rc != 0) 5661 error++; 5662 5663 /* 5664 * It's possible that the number of resources 5665 * provided to this port instance changed between 5666 * resets. Detect this condition and reallocate 5667 * resources. Otherwise, there is no action. 5668 */ 5669 if (error) { 5670 lpfc_printf_log(phba, KERN_INFO, 5671 LOG_MBOX | LOG_INIT, 5672 "2931 Detected extent resource " 5673 "change. Reallocating all " 5674 "extents.\n"); 5675 rc = lpfc_sli4_dealloc_extent(phba, 5676 LPFC_RSC_TYPE_FCOE_VFI); 5677 rc = lpfc_sli4_dealloc_extent(phba, 5678 LPFC_RSC_TYPE_FCOE_VPI); 5679 rc = lpfc_sli4_dealloc_extent(phba, 5680 LPFC_RSC_TYPE_FCOE_XRI); 5681 rc = lpfc_sli4_dealloc_extent(phba, 5682 LPFC_RSC_TYPE_FCOE_RPI); 5683 } else 5684 return 0; 5685 } 5686 5687 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5688 if (unlikely(rc)) 5689 goto err_exit; 5690 5691 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5692 if (unlikely(rc)) 5693 goto err_exit; 5694 5695 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5696 if (unlikely(rc)) 5697 goto err_exit; 5698 5699 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5700 if (unlikely(rc)) 5701 goto err_exit; 5702 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5703 LPFC_IDX_RSRC_RDY); 5704 return rc; 5705 } else { 5706 /* 5707 * The port does not support resource extents. The XRI, VPI, 5708 * VFI, RPI resource ids were determined from READ_CONFIG. 5709 * Just allocate the bitmasks and provision the resource id 5710 * arrays. If a port reset is active, the resources don't 5711 * need any action - just exit. 5712 */ 5713 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5714 LPFC_IDX_RSRC_RDY) { 5715 lpfc_sli4_dealloc_resource_identifiers(phba); 5716 lpfc_sli4_remove_rpis(phba); 5717 } 5718 /* RPIs. */ 5719 count = phba->sli4_hba.max_cfg_param.max_rpi; 5720 if (count <= 0) { 5721 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5722 "3279 Invalid provisioning of " 5723 "rpi:%d\n", count); 5724 rc = -EINVAL; 5725 goto err_exit; 5726 } 5727 base = phba->sli4_hba.max_cfg_param.rpi_base; 5728 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5729 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5730 sizeof(unsigned long), 5731 GFP_KERNEL); 5732 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5733 rc = -ENOMEM; 5734 goto err_exit; 5735 } 5736 phba->sli4_hba.rpi_ids = kzalloc(count * 5737 sizeof(uint16_t), 5738 GFP_KERNEL); 5739 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5740 rc = -ENOMEM; 5741 goto free_rpi_bmask; 5742 } 5743 5744 for (i = 0; i < count; i++) 5745 phba->sli4_hba.rpi_ids[i] = base + i; 5746 5747 /* VPIs. */ 5748 count = phba->sli4_hba.max_cfg_param.max_vpi; 5749 if (count <= 0) { 5750 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5751 "3280 Invalid provisioning of " 5752 "vpi:%d\n", count); 5753 rc = -EINVAL; 5754 goto free_rpi_ids; 5755 } 5756 base = phba->sli4_hba.max_cfg_param.vpi_base; 5757 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5758 phba->vpi_bmask = kzalloc(longs * 5759 sizeof(unsigned long), 5760 GFP_KERNEL); 5761 if (unlikely(!phba->vpi_bmask)) { 5762 rc = -ENOMEM; 5763 goto free_rpi_ids; 5764 } 5765 phba->vpi_ids = kzalloc(count * 5766 sizeof(uint16_t), 5767 GFP_KERNEL); 5768 if (unlikely(!phba->vpi_ids)) { 5769 rc = -ENOMEM; 5770 goto free_vpi_bmask; 5771 } 5772 5773 for (i = 0; i < count; i++) 5774 phba->vpi_ids[i] = base + i; 5775 5776 /* XRIs. */ 5777 count = phba->sli4_hba.max_cfg_param.max_xri; 5778 if (count <= 0) { 5779 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5780 "3281 Invalid provisioning of " 5781 "xri:%d\n", count); 5782 rc = -EINVAL; 5783 goto free_vpi_ids; 5784 } 5785 base = phba->sli4_hba.max_cfg_param.xri_base; 5786 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5787 phba->sli4_hba.xri_bmask = kzalloc(longs * 5788 sizeof(unsigned long), 5789 GFP_KERNEL); 5790 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5791 rc = -ENOMEM; 5792 goto free_vpi_ids; 5793 } 5794 phba->sli4_hba.max_cfg_param.xri_used = 0; 5795 phba->sli4_hba.xri_ids = kzalloc(count * 5796 sizeof(uint16_t), 5797 GFP_KERNEL); 5798 if (unlikely(!phba->sli4_hba.xri_ids)) { 5799 rc = -ENOMEM; 5800 goto free_xri_bmask; 5801 } 5802 5803 for (i = 0; i < count; i++) 5804 phba->sli4_hba.xri_ids[i] = base + i; 5805 5806 /* VFIs. */ 5807 count = phba->sli4_hba.max_cfg_param.max_vfi; 5808 if (count <= 0) { 5809 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5810 "3282 Invalid provisioning of " 5811 "vfi:%d\n", count); 5812 rc = -EINVAL; 5813 goto free_xri_ids; 5814 } 5815 base = phba->sli4_hba.max_cfg_param.vfi_base; 5816 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5817 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5818 sizeof(unsigned long), 5819 GFP_KERNEL); 5820 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5821 rc = -ENOMEM; 5822 goto free_xri_ids; 5823 } 5824 phba->sli4_hba.vfi_ids = kzalloc(count * 5825 sizeof(uint16_t), 5826 GFP_KERNEL); 5827 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5828 rc = -ENOMEM; 5829 goto free_vfi_bmask; 5830 } 5831 5832 for (i = 0; i < count; i++) 5833 phba->sli4_hba.vfi_ids[i] = base + i; 5834 5835 /* 5836 * Mark all resources ready. An HBA reset doesn't need 5837 * to reset the initialization. 5838 */ 5839 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5840 LPFC_IDX_RSRC_RDY); 5841 return 0; 5842 } 5843 5844 free_vfi_bmask: 5845 kfree(phba->sli4_hba.vfi_bmask); 5846 free_xri_ids: 5847 kfree(phba->sli4_hba.xri_ids); 5848 free_xri_bmask: 5849 kfree(phba->sli4_hba.xri_bmask); 5850 free_vpi_ids: 5851 kfree(phba->vpi_ids); 5852 free_vpi_bmask: 5853 kfree(phba->vpi_bmask); 5854 free_rpi_ids: 5855 kfree(phba->sli4_hba.rpi_ids); 5856 free_rpi_bmask: 5857 kfree(phba->sli4_hba.rpi_bmask); 5858 err_exit: 5859 return rc; 5860 } 5861 5862 /** 5863 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5864 * @phba: Pointer to HBA context object. 5865 * 5866 * This function allocates the number of elements for the specified 5867 * resource type. 5868 **/ 5869 int 5870 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5871 { 5872 if (phba->sli4_hba.extents_in_use) { 5873 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5874 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5875 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5876 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5877 } else { 5878 kfree(phba->vpi_bmask); 5879 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5880 kfree(phba->vpi_ids); 5881 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5882 kfree(phba->sli4_hba.xri_bmask); 5883 kfree(phba->sli4_hba.xri_ids); 5884 kfree(phba->sli4_hba.vfi_bmask); 5885 kfree(phba->sli4_hba.vfi_ids); 5886 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5887 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5888 } 5889 5890 return 0; 5891 } 5892 5893 /** 5894 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 5895 * @phba: Pointer to HBA context object. 5896 * @type: The resource extent type. 5897 * @extnt_count: buffer to hold port extent count response 5898 * @extnt_size: buffer to hold port extent size response. 5899 * 5900 * This function calls the port to read the host allocated extents 5901 * for a particular type. 5902 **/ 5903 int 5904 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 5905 uint16_t *extnt_cnt, uint16_t *extnt_size) 5906 { 5907 bool emb; 5908 int rc = 0; 5909 uint16_t curr_blks = 0; 5910 uint32_t req_len, emb_len; 5911 uint32_t alloc_len, mbox_tmo; 5912 struct list_head *blk_list_head; 5913 struct lpfc_rsrc_blks *rsrc_blk; 5914 LPFC_MBOXQ_t *mbox; 5915 void *virtaddr = NULL; 5916 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5917 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5918 union lpfc_sli4_cfg_shdr *shdr; 5919 5920 switch (type) { 5921 case LPFC_RSC_TYPE_FCOE_VPI: 5922 blk_list_head = &phba->lpfc_vpi_blk_list; 5923 break; 5924 case LPFC_RSC_TYPE_FCOE_XRI: 5925 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 5926 break; 5927 case LPFC_RSC_TYPE_FCOE_VFI: 5928 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 5929 break; 5930 case LPFC_RSC_TYPE_FCOE_RPI: 5931 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 5932 break; 5933 default: 5934 return -EIO; 5935 } 5936 5937 /* Count the number of extents currently allocatd for this type. */ 5938 list_for_each_entry(rsrc_blk, blk_list_head, list) { 5939 if (curr_blks == 0) { 5940 /* 5941 * The GET_ALLOCATED mailbox does not return the size, 5942 * just the count. The size should be just the size 5943 * stored in the current allocated block and all sizes 5944 * for an extent type are the same so set the return 5945 * value now. 5946 */ 5947 *extnt_size = rsrc_blk->rsrc_size; 5948 } 5949 curr_blks++; 5950 } 5951 5952 /* 5953 * Calculate the size of an embedded mailbox. The uint32_t 5954 * accounts for extents-specific word. 5955 */ 5956 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5957 sizeof(uint32_t); 5958 5959 /* 5960 * Presume the allocation and response will fit into an embedded 5961 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5962 */ 5963 emb = LPFC_SLI4_MBX_EMBED; 5964 req_len = emb_len; 5965 if (req_len > emb_len) { 5966 req_len = curr_blks * sizeof(uint16_t) + 5967 sizeof(union lpfc_sli4_cfg_shdr) + 5968 sizeof(uint32_t); 5969 emb = LPFC_SLI4_MBX_NEMBED; 5970 } 5971 5972 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5973 if (!mbox) 5974 return -ENOMEM; 5975 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 5976 5977 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5978 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 5979 req_len, emb); 5980 if (alloc_len < req_len) { 5981 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5982 "2983 Allocated DMA memory size (x%x) is " 5983 "less than the requested DMA memory " 5984 "size (x%x)\n", alloc_len, req_len); 5985 rc = -ENOMEM; 5986 goto err_exit; 5987 } 5988 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 5989 if (unlikely(rc)) { 5990 rc = -EIO; 5991 goto err_exit; 5992 } 5993 5994 if (!phba->sli4_hba.intr_enable) 5995 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5996 else { 5997 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5998 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5999 } 6000 6001 if (unlikely(rc)) { 6002 rc = -EIO; 6003 goto err_exit; 6004 } 6005 6006 /* 6007 * Figure out where the response is located. Then get local pointers 6008 * to the response data. The port does not guarantee to respond to 6009 * all extents counts request so update the local variable with the 6010 * allocated count from the port. 6011 */ 6012 if (emb == LPFC_SLI4_MBX_EMBED) { 6013 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6014 shdr = &rsrc_ext->header.cfg_shdr; 6015 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6016 } else { 6017 virtaddr = mbox->sge_array->addr[0]; 6018 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6019 shdr = &n_rsrc->cfg_shdr; 6020 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6021 } 6022 6023 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6024 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6025 "2984 Failed to read allocated resources " 6026 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6027 type, 6028 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6029 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6030 rc = -EIO; 6031 goto err_exit; 6032 } 6033 err_exit: 6034 lpfc_sli4_mbox_cmd_free(phba, mbox); 6035 return rc; 6036 } 6037 6038 /** 6039 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6040 * @phba: pointer to lpfc hba data structure. 6041 * 6042 * This routine walks the list of els buffers that have been allocated and 6043 * repost them to the port by using SGL block post. This is needed after a 6044 * pci_function_reset/warm_start or start. It attempts to construct blocks 6045 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6046 * SGL block post mailbox commands to post them to the port. For single els 6047 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6048 * mailbox command for posting. 6049 * 6050 * Returns: 0 = success, non-zero failure. 6051 **/ 6052 static int 6053 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6054 { 6055 struct lpfc_sglq *sglq_entry = NULL; 6056 struct lpfc_sglq *sglq_entry_next = NULL; 6057 struct lpfc_sglq *sglq_entry_first = NULL; 6058 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6059 int last_xritag = NO_XRI; 6060 struct lpfc_sli_ring *pring; 6061 LIST_HEAD(prep_sgl_list); 6062 LIST_HEAD(blck_sgl_list); 6063 LIST_HEAD(allc_sgl_list); 6064 LIST_HEAD(post_sgl_list); 6065 LIST_HEAD(free_sgl_list); 6066 6067 pring = &phba->sli.ring[LPFC_ELS_RING]; 6068 spin_lock_irq(&phba->hbalock); 6069 spin_lock(&pring->ring_lock); 6070 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6071 spin_unlock(&pring->ring_lock); 6072 spin_unlock_irq(&phba->hbalock); 6073 6074 total_cnt = phba->sli4_hba.els_xri_cnt; 6075 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6076 &allc_sgl_list, list) { 6077 list_del_init(&sglq_entry->list); 6078 block_cnt++; 6079 if ((last_xritag != NO_XRI) && 6080 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6081 /* a hole in xri block, form a sgl posting block */ 6082 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6083 post_cnt = block_cnt - 1; 6084 /* prepare list for next posting block */ 6085 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6086 block_cnt = 1; 6087 } else { 6088 /* prepare list for next posting block */ 6089 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6090 /* enough sgls for non-embed sgl mbox command */ 6091 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6092 list_splice_init(&prep_sgl_list, 6093 &blck_sgl_list); 6094 post_cnt = block_cnt; 6095 block_cnt = 0; 6096 } 6097 } 6098 num_posted++; 6099 6100 /* keep track of last sgl's xritag */ 6101 last_xritag = sglq_entry->sli4_xritag; 6102 6103 /* end of repost sgl list condition for els buffers */ 6104 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6105 if (post_cnt == 0) { 6106 list_splice_init(&prep_sgl_list, 6107 &blck_sgl_list); 6108 post_cnt = block_cnt; 6109 } else if (block_cnt == 1) { 6110 status = lpfc_sli4_post_sgl(phba, 6111 sglq_entry->phys, 0, 6112 sglq_entry->sli4_xritag); 6113 if (!status) { 6114 /* successful, put sgl to posted list */ 6115 list_add_tail(&sglq_entry->list, 6116 &post_sgl_list); 6117 } else { 6118 /* Failure, put sgl to free list */ 6119 lpfc_printf_log(phba, KERN_WARNING, 6120 LOG_SLI, 6121 "3159 Failed to post els " 6122 "sgl, xritag:x%x\n", 6123 sglq_entry->sli4_xritag); 6124 list_add_tail(&sglq_entry->list, 6125 &free_sgl_list); 6126 total_cnt--; 6127 } 6128 } 6129 } 6130 6131 /* continue until a nembed page worth of sgls */ 6132 if (post_cnt == 0) 6133 continue; 6134 6135 /* post the els buffer list sgls as a block */ 6136 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6137 post_cnt); 6138 6139 if (!status) { 6140 /* success, put sgl list to posted sgl list */ 6141 list_splice_init(&blck_sgl_list, &post_sgl_list); 6142 } else { 6143 /* Failure, put sgl list to free sgl list */ 6144 sglq_entry_first = list_first_entry(&blck_sgl_list, 6145 struct lpfc_sglq, 6146 list); 6147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6148 "3160 Failed to post els sgl-list, " 6149 "xritag:x%x-x%x\n", 6150 sglq_entry_first->sli4_xritag, 6151 (sglq_entry_first->sli4_xritag + 6152 post_cnt - 1)); 6153 list_splice_init(&blck_sgl_list, &free_sgl_list); 6154 total_cnt -= post_cnt; 6155 } 6156 6157 /* don't reset xirtag due to hole in xri block */ 6158 if (block_cnt == 0) 6159 last_xritag = NO_XRI; 6160 6161 /* reset els sgl post count for next round of posting */ 6162 post_cnt = 0; 6163 } 6164 /* update the number of XRIs posted for ELS */ 6165 phba->sli4_hba.els_xri_cnt = total_cnt; 6166 6167 /* free the els sgls failed to post */ 6168 lpfc_free_sgl_list(phba, &free_sgl_list); 6169 6170 /* push els sgls posted to the availble list */ 6171 if (!list_empty(&post_sgl_list)) { 6172 spin_lock_irq(&phba->hbalock); 6173 spin_lock(&pring->ring_lock); 6174 list_splice_init(&post_sgl_list, 6175 &phba->sli4_hba.lpfc_sgl_list); 6176 spin_unlock(&pring->ring_lock); 6177 spin_unlock_irq(&phba->hbalock); 6178 } else { 6179 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6180 "3161 Failure to post els sgl to port.\n"); 6181 return -EIO; 6182 } 6183 return 0; 6184 } 6185 6186 /** 6187 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6188 * @phba: Pointer to HBA context object. 6189 * 6190 * This function is the main SLI4 device intialization PCI function. This 6191 * function is called by the HBA intialization code, HBA reset code and 6192 * HBA error attention handler code. Caller is not required to hold any 6193 * locks. 6194 **/ 6195 int 6196 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6197 { 6198 int rc; 6199 LPFC_MBOXQ_t *mboxq; 6200 struct lpfc_mqe *mqe; 6201 uint8_t *vpd; 6202 uint32_t vpd_size; 6203 uint32_t ftr_rsp = 0; 6204 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6205 struct lpfc_vport *vport = phba->pport; 6206 struct lpfc_dmabuf *mp; 6207 6208 /* Perform a PCI function reset to start from clean */ 6209 rc = lpfc_pci_function_reset(phba); 6210 if (unlikely(rc)) 6211 return -ENODEV; 6212 6213 /* Check the HBA Host Status Register for readyness */ 6214 rc = lpfc_sli4_post_status_check(phba); 6215 if (unlikely(rc)) 6216 return -ENODEV; 6217 else { 6218 spin_lock_irq(&phba->hbalock); 6219 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6220 spin_unlock_irq(&phba->hbalock); 6221 } 6222 6223 /* 6224 * Allocate a single mailbox container for initializing the 6225 * port. 6226 */ 6227 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6228 if (!mboxq) 6229 return -ENOMEM; 6230 6231 /* Issue READ_REV to collect vpd and FW information. */ 6232 vpd_size = SLI4_PAGE_SIZE; 6233 vpd = kzalloc(vpd_size, GFP_KERNEL); 6234 if (!vpd) { 6235 rc = -ENOMEM; 6236 goto out_free_mbox; 6237 } 6238 6239 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6240 if (unlikely(rc)) { 6241 kfree(vpd); 6242 goto out_free_mbox; 6243 } 6244 6245 mqe = &mboxq->u.mqe; 6246 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6247 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) 6248 phba->hba_flag |= HBA_FCOE_MODE; 6249 else 6250 phba->hba_flag &= ~HBA_FCOE_MODE; 6251 6252 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6253 LPFC_DCBX_CEE_MODE) 6254 phba->hba_flag |= HBA_FIP_SUPPORT; 6255 else 6256 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6257 6258 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6259 6260 if (phba->sli_rev != LPFC_SLI_REV4) { 6261 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6262 "0376 READ_REV Error. SLI Level %d " 6263 "FCoE enabled %d\n", 6264 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6265 rc = -EIO; 6266 kfree(vpd); 6267 goto out_free_mbox; 6268 } 6269 6270 /* 6271 * Continue initialization with default values even if driver failed 6272 * to read FCoE param config regions, only read parameters if the 6273 * board is FCoE 6274 */ 6275 if (phba->hba_flag & HBA_FCOE_MODE && 6276 lpfc_sli4_read_fcoe_params(phba)) 6277 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6278 "2570 Failed to read FCoE parameters\n"); 6279 6280 /* 6281 * Retrieve sli4 device physical port name, failure of doing it 6282 * is considered as non-fatal. 6283 */ 6284 rc = lpfc_sli4_retrieve_pport_name(phba); 6285 if (!rc) 6286 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6287 "3080 Successful retrieving SLI4 device " 6288 "physical port name: %s.\n", phba->Port); 6289 6290 /* 6291 * Evaluate the read rev and vpd data. Populate the driver 6292 * state with the results. If this routine fails, the failure 6293 * is not fatal as the driver will use generic values. 6294 */ 6295 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6296 if (unlikely(!rc)) { 6297 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6298 "0377 Error %d parsing vpd. " 6299 "Using defaults.\n", rc); 6300 rc = 0; 6301 } 6302 kfree(vpd); 6303 6304 /* Save information as VPD data */ 6305 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6306 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6307 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6308 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6309 &mqe->un.read_rev); 6310 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6311 &mqe->un.read_rev); 6312 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6313 &mqe->un.read_rev); 6314 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6315 &mqe->un.read_rev); 6316 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6317 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6318 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6319 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6320 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6321 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6322 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6323 "(%d):0380 READ_REV Status x%x " 6324 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6325 mboxq->vport ? mboxq->vport->vpi : 0, 6326 bf_get(lpfc_mqe_status, mqe), 6327 phba->vpd.rev.opFwName, 6328 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6329 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6330 6331 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6332 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6333 if (phba->pport->cfg_lun_queue_depth > rc) { 6334 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6335 "3362 LUN queue depth changed from %d to %d\n", 6336 phba->pport->cfg_lun_queue_depth, rc); 6337 phba->pport->cfg_lun_queue_depth = rc; 6338 } 6339 6340 6341 /* 6342 * Discover the port's supported feature set and match it against the 6343 * hosts requests. 6344 */ 6345 lpfc_request_features(phba, mboxq); 6346 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6347 if (unlikely(rc)) { 6348 rc = -EIO; 6349 goto out_free_mbox; 6350 } 6351 6352 /* 6353 * The port must support FCP initiator mode as this is the 6354 * only mode running in the host. 6355 */ 6356 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6357 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6358 "0378 No support for fcpi mode.\n"); 6359 ftr_rsp++; 6360 } 6361 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6362 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6363 else 6364 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6365 /* 6366 * If the port cannot support the host's requested features 6367 * then turn off the global config parameters to disable the 6368 * feature in the driver. This is not a fatal error. 6369 */ 6370 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6371 if (phba->cfg_enable_bg) { 6372 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6373 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6374 else 6375 ftr_rsp++; 6376 } 6377 6378 if (phba->max_vpi && phba->cfg_enable_npiv && 6379 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6380 ftr_rsp++; 6381 6382 if (ftr_rsp) { 6383 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6384 "0379 Feature Mismatch Data: x%08x %08x " 6385 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6386 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6387 phba->cfg_enable_npiv, phba->max_vpi); 6388 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6389 phba->cfg_enable_bg = 0; 6390 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6391 phba->cfg_enable_npiv = 0; 6392 } 6393 6394 /* These SLI3 features are assumed in SLI4 */ 6395 spin_lock_irq(&phba->hbalock); 6396 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6397 spin_unlock_irq(&phba->hbalock); 6398 6399 /* 6400 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6401 * calls depends on these resources to complete port setup. 6402 */ 6403 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6404 if (rc) { 6405 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6406 "2920 Failed to alloc Resource IDs " 6407 "rc = x%x\n", rc); 6408 goto out_free_mbox; 6409 } 6410 6411 /* Read the port's service parameters. */ 6412 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6413 if (rc) { 6414 phba->link_state = LPFC_HBA_ERROR; 6415 rc = -ENOMEM; 6416 goto out_free_mbox; 6417 } 6418 6419 mboxq->vport = vport; 6420 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6421 mp = (struct lpfc_dmabuf *) mboxq->context1; 6422 if (rc == MBX_SUCCESS) { 6423 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6424 rc = 0; 6425 } 6426 6427 /* 6428 * This memory was allocated by the lpfc_read_sparam routine. Release 6429 * it to the mbuf pool. 6430 */ 6431 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6432 kfree(mp); 6433 mboxq->context1 = NULL; 6434 if (unlikely(rc)) { 6435 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6436 "0382 READ_SPARAM command failed " 6437 "status %d, mbxStatus x%x\n", 6438 rc, bf_get(lpfc_mqe_status, mqe)); 6439 phba->link_state = LPFC_HBA_ERROR; 6440 rc = -EIO; 6441 goto out_free_mbox; 6442 } 6443 6444 lpfc_update_vport_wwn(vport); 6445 6446 /* Update the fc_host data structures with new wwn. */ 6447 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6448 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6449 6450 /* update host els and scsi xri-sgl sizes and mappings */ 6451 rc = lpfc_sli4_xri_sgl_update(phba); 6452 if (unlikely(rc)) { 6453 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6454 "1400 Failed to update xri-sgl size and " 6455 "mapping: %d\n", rc); 6456 goto out_free_mbox; 6457 } 6458 6459 /* register the els sgl pool to the port */ 6460 rc = lpfc_sli4_repost_els_sgl_list(phba); 6461 if (unlikely(rc)) { 6462 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6463 "0582 Error %d during els sgl post " 6464 "operation\n", rc); 6465 rc = -ENODEV; 6466 goto out_free_mbox; 6467 } 6468 6469 /* register the allocated scsi sgl pool to the port */ 6470 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6471 if (unlikely(rc)) { 6472 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6473 "0383 Error %d during scsi sgl post " 6474 "operation\n", rc); 6475 /* Some Scsi buffers were moved to the abort scsi list */ 6476 /* A pci function reset will repost them */ 6477 rc = -ENODEV; 6478 goto out_free_mbox; 6479 } 6480 6481 /* Post the rpi header region to the device. */ 6482 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6483 if (unlikely(rc)) { 6484 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6485 "0393 Error %d during rpi post operation\n", 6486 rc); 6487 rc = -ENODEV; 6488 goto out_free_mbox; 6489 } 6490 lpfc_sli4_node_prep(phba); 6491 6492 /* Create all the SLI4 queues */ 6493 rc = lpfc_sli4_queue_create(phba); 6494 if (rc) { 6495 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6496 "3089 Failed to allocate queues\n"); 6497 rc = -ENODEV; 6498 goto out_stop_timers; 6499 } 6500 /* Set up all the queues to the device */ 6501 rc = lpfc_sli4_queue_setup(phba); 6502 if (unlikely(rc)) { 6503 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6504 "0381 Error %d during queue setup.\n ", rc); 6505 goto out_destroy_queue; 6506 } 6507 6508 /* Arm the CQs and then EQs on device */ 6509 lpfc_sli4_arm_cqeq_intr(phba); 6510 6511 /* Indicate device interrupt mode */ 6512 phba->sli4_hba.intr_enable = 1; 6513 6514 /* Allow asynchronous mailbox command to go through */ 6515 spin_lock_irq(&phba->hbalock); 6516 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6517 spin_unlock_irq(&phba->hbalock); 6518 6519 /* Post receive buffers to the device */ 6520 lpfc_sli4_rb_setup(phba); 6521 6522 /* Reset HBA FCF states after HBA reset */ 6523 phba->fcf.fcf_flag = 0; 6524 phba->fcf.current_rec.flag = 0; 6525 6526 /* Start the ELS watchdog timer */ 6527 mod_timer(&vport->els_tmofunc, 6528 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6529 6530 /* Start heart beat timer */ 6531 mod_timer(&phba->hb_tmofunc, 6532 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6533 phba->hb_outstanding = 0; 6534 phba->last_completion_time = jiffies; 6535 6536 /* Start error attention (ERATT) polling timer */ 6537 mod_timer(&phba->eratt_poll, 6538 jiffies + msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 6539 6540 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6541 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6542 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6543 if (!rc) { 6544 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6545 "2829 This device supports " 6546 "Advanced Error Reporting (AER)\n"); 6547 spin_lock_irq(&phba->hbalock); 6548 phba->hba_flag |= HBA_AER_ENABLED; 6549 spin_unlock_irq(&phba->hbalock); 6550 } else { 6551 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6552 "2830 This device does not support " 6553 "Advanced Error Reporting (AER)\n"); 6554 phba->cfg_aer_support = 0; 6555 } 6556 rc = 0; 6557 } 6558 6559 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6560 /* 6561 * The FC Port needs to register FCFI (index 0) 6562 */ 6563 lpfc_reg_fcfi(phba, mboxq); 6564 mboxq->vport = phba->pport; 6565 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6566 if (rc != MBX_SUCCESS) 6567 goto out_unset_queue; 6568 rc = 0; 6569 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6570 &mboxq->u.mqe.un.reg_fcfi); 6571 6572 /* Check if the port is configured to be disabled */ 6573 lpfc_sli_read_link_ste(phba); 6574 } 6575 6576 /* 6577 * The port is ready, set the host's link state to LINK_DOWN 6578 * in preparation for link interrupts. 6579 */ 6580 spin_lock_irq(&phba->hbalock); 6581 phba->link_state = LPFC_LINK_DOWN; 6582 spin_unlock_irq(&phba->hbalock); 6583 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6584 (phba->hba_flag & LINK_DISABLED)) { 6585 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6586 "3103 Adapter Link is disabled.\n"); 6587 lpfc_down_link(phba, mboxq); 6588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6589 if (rc != MBX_SUCCESS) { 6590 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6591 "3104 Adapter failed to issue " 6592 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6593 goto out_unset_queue; 6594 } 6595 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6596 /* don't perform init_link on SLI4 FC port loopback test */ 6597 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6598 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6599 if (rc) 6600 goto out_unset_queue; 6601 } 6602 } 6603 mempool_free(mboxq, phba->mbox_mem_pool); 6604 return rc; 6605 out_unset_queue: 6606 /* Unset all the queues set up in this routine when error out */ 6607 lpfc_sli4_queue_unset(phba); 6608 out_destroy_queue: 6609 lpfc_sli4_queue_destroy(phba); 6610 out_stop_timers: 6611 lpfc_stop_hba_timers(phba); 6612 out_free_mbox: 6613 mempool_free(mboxq, phba->mbox_mem_pool); 6614 return rc; 6615 } 6616 6617 /** 6618 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6619 * @ptr: context object - pointer to hba structure. 6620 * 6621 * This is the callback function for mailbox timer. The mailbox 6622 * timer is armed when a new mailbox command is issued and the timer 6623 * is deleted when the mailbox complete. The function is called by 6624 * the kernel timer code when a mailbox does not complete within 6625 * expected time. This function wakes up the worker thread to 6626 * process the mailbox timeout and returns. All the processing is 6627 * done by the worker thread function lpfc_mbox_timeout_handler. 6628 **/ 6629 void 6630 lpfc_mbox_timeout(unsigned long ptr) 6631 { 6632 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6633 unsigned long iflag; 6634 uint32_t tmo_posted; 6635 6636 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6637 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6638 if (!tmo_posted) 6639 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6640 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6641 6642 if (!tmo_posted) 6643 lpfc_worker_wake_up(phba); 6644 return; 6645 } 6646 6647 /** 6648 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6649 * are pending 6650 * @phba: Pointer to HBA context object. 6651 * 6652 * This function checks if any mailbox completions are present on the mailbox 6653 * completion queue. 6654 **/ 6655 bool 6656 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6657 { 6658 6659 uint32_t idx; 6660 struct lpfc_queue *mcq; 6661 struct lpfc_mcqe *mcqe; 6662 bool pending_completions = false; 6663 6664 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6665 return false; 6666 6667 /* Check for completions on mailbox completion queue */ 6668 6669 mcq = phba->sli4_hba.mbx_cq; 6670 idx = mcq->hba_index; 6671 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6672 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6673 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6674 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6675 pending_completions = true; 6676 break; 6677 } 6678 idx = (idx + 1) % mcq->entry_count; 6679 if (mcq->hba_index == idx) 6680 break; 6681 } 6682 return pending_completions; 6683 6684 } 6685 6686 /** 6687 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6688 * that were missed. 6689 * @phba: Pointer to HBA context object. 6690 * 6691 * For sli4, it is possible to miss an interrupt. As such mbox completions 6692 * maybe missed causing erroneous mailbox timeouts to occur. This function 6693 * checks to see if mbox completions are on the mailbox completion queue 6694 * and will process all the completions associated with the eq for the 6695 * mailbox completion queue. 6696 **/ 6697 bool 6698 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6699 { 6700 6701 uint32_t eqidx; 6702 struct lpfc_queue *fpeq = NULL; 6703 struct lpfc_eqe *eqe; 6704 bool mbox_pending; 6705 6706 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6707 return false; 6708 6709 /* Find the eq associated with the mcq */ 6710 6711 if (phba->sli4_hba.hba_eq) 6712 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6713 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6714 phba->sli4_hba.mbx_cq->assoc_qid) { 6715 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6716 break; 6717 } 6718 if (!fpeq) 6719 return false; 6720 6721 /* Turn off interrupts from this EQ */ 6722 6723 lpfc_sli4_eq_clr_intr(fpeq); 6724 6725 /* Check to see if a mbox completion is pending */ 6726 6727 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6728 6729 /* 6730 * If a mbox completion is pending, process all the events on EQ 6731 * associated with the mbox completion queue (this could include 6732 * mailbox commands, async events, els commands, receive queue data 6733 * and fcp commands) 6734 */ 6735 6736 if (mbox_pending) 6737 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6738 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6739 fpeq->EQ_processed++; 6740 } 6741 6742 /* Always clear and re-arm the EQ */ 6743 6744 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6745 6746 return mbox_pending; 6747 6748 } 6749 6750 /** 6751 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6752 * @phba: Pointer to HBA context object. 6753 * 6754 * This function is called from worker thread when a mailbox command times out. 6755 * The caller is not required to hold any locks. This function will reset the 6756 * HBA and recover all the pending commands. 6757 **/ 6758 void 6759 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6760 { 6761 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6762 MAILBOX_t *mb = NULL; 6763 6764 struct lpfc_sli *psli = &phba->sli; 6765 6766 /* If the mailbox completed, process the completion and return */ 6767 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6768 return; 6769 6770 if (pmbox != NULL) 6771 mb = &pmbox->u.mb; 6772 /* Check the pmbox pointer first. There is a race condition 6773 * between the mbox timeout handler getting executed in the 6774 * worklist and the mailbox actually completing. When this 6775 * race condition occurs, the mbox_active will be NULL. 6776 */ 6777 spin_lock_irq(&phba->hbalock); 6778 if (pmbox == NULL) { 6779 lpfc_printf_log(phba, KERN_WARNING, 6780 LOG_MBOX | LOG_SLI, 6781 "0353 Active Mailbox cleared - mailbox timeout " 6782 "exiting\n"); 6783 spin_unlock_irq(&phba->hbalock); 6784 return; 6785 } 6786 6787 /* Mbox cmd <mbxCommand> timeout */ 6788 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6789 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6790 mb->mbxCommand, 6791 phba->pport->port_state, 6792 phba->sli.sli_flag, 6793 phba->sli.mbox_active); 6794 spin_unlock_irq(&phba->hbalock); 6795 6796 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6797 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6798 * it to fail all outstanding SCSI IO. 6799 */ 6800 spin_lock_irq(&phba->pport->work_port_lock); 6801 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6802 spin_unlock_irq(&phba->pport->work_port_lock); 6803 spin_lock_irq(&phba->hbalock); 6804 phba->link_state = LPFC_LINK_UNKNOWN; 6805 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6806 spin_unlock_irq(&phba->hbalock); 6807 6808 lpfc_sli_abort_fcp_rings(phba); 6809 6810 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6811 "0345 Resetting board due to mailbox timeout\n"); 6812 6813 /* Reset the HBA device */ 6814 lpfc_reset_hba(phba); 6815 } 6816 6817 /** 6818 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6819 * @phba: Pointer to HBA context object. 6820 * @pmbox: Pointer to mailbox object. 6821 * @flag: Flag indicating how the mailbox need to be processed. 6822 * 6823 * This function is called by discovery code and HBA management code 6824 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6825 * function gets the hbalock to protect the data structures. 6826 * The mailbox command can be submitted in polling mode, in which case 6827 * this function will wait in a polling loop for the completion of the 6828 * mailbox. 6829 * If the mailbox is submitted in no_wait mode (not polling) the 6830 * function will submit the command and returns immediately without waiting 6831 * for the mailbox completion. The no_wait is supported only when HBA 6832 * is in SLI2/SLI3 mode - interrupts are enabled. 6833 * The SLI interface allows only one mailbox pending at a time. If the 6834 * mailbox is issued in polling mode and there is already a mailbox 6835 * pending, then the function will return an error. If the mailbox is issued 6836 * in NO_WAIT mode and there is a mailbox pending already, the function 6837 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 6838 * The sli layer owns the mailbox object until the completion of mailbox 6839 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 6840 * return codes the caller owns the mailbox command after the return of 6841 * the function. 6842 **/ 6843 static int 6844 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 6845 uint32_t flag) 6846 { 6847 MAILBOX_t *mbx; 6848 struct lpfc_sli *psli = &phba->sli; 6849 uint32_t status, evtctr; 6850 uint32_t ha_copy, hc_copy; 6851 int i; 6852 unsigned long timeout; 6853 unsigned long drvr_flag = 0; 6854 uint32_t word0, ldata; 6855 void __iomem *to_slim; 6856 int processing_queue = 0; 6857 6858 spin_lock_irqsave(&phba->hbalock, drvr_flag); 6859 if (!pmbox) { 6860 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6861 /* processing mbox queue from intr_handler */ 6862 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 6863 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6864 return MBX_SUCCESS; 6865 } 6866 processing_queue = 1; 6867 pmbox = lpfc_mbox_get(phba); 6868 if (!pmbox) { 6869 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6870 return MBX_SUCCESS; 6871 } 6872 } 6873 6874 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 6875 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 6876 if(!pmbox->vport) { 6877 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6878 lpfc_printf_log(phba, KERN_ERR, 6879 LOG_MBOX | LOG_VPORT, 6880 "1806 Mbox x%x failed. No vport\n", 6881 pmbox->u.mb.mbxCommand); 6882 dump_stack(); 6883 goto out_not_finished; 6884 } 6885 } 6886 6887 /* If the PCI channel is in offline state, do not post mbox. */ 6888 if (unlikely(pci_channel_offline(phba->pcidev))) { 6889 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6890 goto out_not_finished; 6891 } 6892 6893 /* If HBA has a deferred error attention, fail the iocb. */ 6894 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 6895 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6896 goto out_not_finished; 6897 } 6898 6899 psli = &phba->sli; 6900 6901 mbx = &pmbox->u.mb; 6902 status = MBX_SUCCESS; 6903 6904 if (phba->link_state == LPFC_HBA_ERROR) { 6905 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6906 6907 /* Mbox command <mbxCommand> cannot issue */ 6908 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6909 "(%d):0311 Mailbox command x%x cannot " 6910 "issue Data: x%x x%x\n", 6911 pmbox->vport ? pmbox->vport->vpi : 0, 6912 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6913 goto out_not_finished; 6914 } 6915 6916 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 6917 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 6918 !(hc_copy & HC_MBINT_ENA)) { 6919 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6920 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6921 "(%d):2528 Mailbox command x%x cannot " 6922 "issue Data: x%x x%x\n", 6923 pmbox->vport ? pmbox->vport->vpi : 0, 6924 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6925 goto out_not_finished; 6926 } 6927 } 6928 6929 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 6930 /* Polling for a mbox command when another one is already active 6931 * is not allowed in SLI. Also, the driver must have established 6932 * SLI2 mode to queue and process multiple mbox commands. 6933 */ 6934 6935 if (flag & MBX_POLL) { 6936 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6937 6938 /* Mbox command <mbxCommand> cannot issue */ 6939 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6940 "(%d):2529 Mailbox command x%x " 6941 "cannot issue Data: x%x x%x\n", 6942 pmbox->vport ? pmbox->vport->vpi : 0, 6943 pmbox->u.mb.mbxCommand, 6944 psli->sli_flag, flag); 6945 goto out_not_finished; 6946 } 6947 6948 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 6949 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6950 /* Mbox command <mbxCommand> cannot issue */ 6951 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6952 "(%d):2530 Mailbox command x%x " 6953 "cannot issue Data: x%x x%x\n", 6954 pmbox->vport ? pmbox->vport->vpi : 0, 6955 pmbox->u.mb.mbxCommand, 6956 psli->sli_flag, flag); 6957 goto out_not_finished; 6958 } 6959 6960 /* Another mailbox command is still being processed, queue this 6961 * command to be processed later. 6962 */ 6963 lpfc_mbox_put(phba, pmbox); 6964 6965 /* Mbox cmd issue - BUSY */ 6966 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6967 "(%d):0308 Mbox cmd issue - BUSY Data: " 6968 "x%x x%x x%x x%x\n", 6969 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 6970 mbx->mbxCommand, phba->pport->port_state, 6971 psli->sli_flag, flag); 6972 6973 psli->slistat.mbox_busy++; 6974 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6975 6976 if (pmbox->vport) { 6977 lpfc_debugfs_disc_trc(pmbox->vport, 6978 LPFC_DISC_TRC_MBOX_VPORT, 6979 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 6980 (uint32_t)mbx->mbxCommand, 6981 mbx->un.varWords[0], mbx->un.varWords[1]); 6982 } 6983 else { 6984 lpfc_debugfs_disc_trc(phba->pport, 6985 LPFC_DISC_TRC_MBOX, 6986 "MBOX Bsy: cmd:x%x mb:x%x x%x", 6987 (uint32_t)mbx->mbxCommand, 6988 mbx->un.varWords[0], mbx->un.varWords[1]); 6989 } 6990 6991 return MBX_BUSY; 6992 } 6993 6994 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 6995 6996 /* If we are not polling, we MUST be in SLI2 mode */ 6997 if (flag != MBX_POLL) { 6998 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 6999 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7000 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7001 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7002 /* Mbox command <mbxCommand> cannot issue */ 7003 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7004 "(%d):2531 Mailbox command x%x " 7005 "cannot issue Data: x%x x%x\n", 7006 pmbox->vport ? pmbox->vport->vpi : 0, 7007 pmbox->u.mb.mbxCommand, 7008 psli->sli_flag, flag); 7009 goto out_not_finished; 7010 } 7011 /* timeout active mbox command */ 7012 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7013 1000); 7014 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7015 } 7016 7017 /* Mailbox cmd <cmd> issue */ 7018 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7019 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7020 "x%x\n", 7021 pmbox->vport ? pmbox->vport->vpi : 0, 7022 mbx->mbxCommand, phba->pport->port_state, 7023 psli->sli_flag, flag); 7024 7025 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7026 if (pmbox->vport) { 7027 lpfc_debugfs_disc_trc(pmbox->vport, 7028 LPFC_DISC_TRC_MBOX_VPORT, 7029 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7030 (uint32_t)mbx->mbxCommand, 7031 mbx->un.varWords[0], mbx->un.varWords[1]); 7032 } 7033 else { 7034 lpfc_debugfs_disc_trc(phba->pport, 7035 LPFC_DISC_TRC_MBOX, 7036 "MBOX Send: cmd:x%x mb:x%x x%x", 7037 (uint32_t)mbx->mbxCommand, 7038 mbx->un.varWords[0], mbx->un.varWords[1]); 7039 } 7040 } 7041 7042 psli->slistat.mbox_cmd++; 7043 evtctr = psli->slistat.mbox_event; 7044 7045 /* next set own bit for the adapter and copy over command word */ 7046 mbx->mbxOwner = OWN_CHIP; 7047 7048 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7049 /* Populate mbox extension offset word. */ 7050 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7051 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7052 = (uint8_t *)phba->mbox_ext 7053 - (uint8_t *)phba->mbox; 7054 } 7055 7056 /* Copy the mailbox extension data */ 7057 if (pmbox->in_ext_byte_len && pmbox->context2) { 7058 lpfc_sli_pcimem_bcopy(pmbox->context2, 7059 (uint8_t *)phba->mbox_ext, 7060 pmbox->in_ext_byte_len); 7061 } 7062 /* Copy command data to host SLIM area */ 7063 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7064 } else { 7065 /* Populate mbox extension offset word. */ 7066 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7067 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7068 = MAILBOX_HBA_EXT_OFFSET; 7069 7070 /* Copy the mailbox extension data */ 7071 if (pmbox->in_ext_byte_len && pmbox->context2) { 7072 lpfc_memcpy_to_slim(phba->MBslimaddr + 7073 MAILBOX_HBA_EXT_OFFSET, 7074 pmbox->context2, pmbox->in_ext_byte_len); 7075 7076 } 7077 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7078 /* copy command data into host mbox for cmpl */ 7079 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7080 } 7081 7082 /* First copy mbox command data to HBA SLIM, skip past first 7083 word */ 7084 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7085 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7086 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7087 7088 /* Next copy over first word, with mbxOwner set */ 7089 ldata = *((uint32_t *)mbx); 7090 to_slim = phba->MBslimaddr; 7091 writel(ldata, to_slim); 7092 readl(to_slim); /* flush */ 7093 7094 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7095 /* switch over to host mailbox */ 7096 psli->sli_flag |= LPFC_SLI_ACTIVE; 7097 } 7098 } 7099 7100 wmb(); 7101 7102 switch (flag) { 7103 case MBX_NOWAIT: 7104 /* Set up reference to mailbox command */ 7105 psli->mbox_active = pmbox; 7106 /* Interrupt board to do it */ 7107 writel(CA_MBATT, phba->CAregaddr); 7108 readl(phba->CAregaddr); /* flush */ 7109 /* Don't wait for it to finish, just return */ 7110 break; 7111 7112 case MBX_POLL: 7113 /* Set up null reference to mailbox command */ 7114 psli->mbox_active = NULL; 7115 /* Interrupt board to do it */ 7116 writel(CA_MBATT, phba->CAregaddr); 7117 readl(phba->CAregaddr); /* flush */ 7118 7119 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7120 /* First read mbox status word */ 7121 word0 = *((uint32_t *)phba->mbox); 7122 word0 = le32_to_cpu(word0); 7123 } else { 7124 /* First read mbox status word */ 7125 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7126 spin_unlock_irqrestore(&phba->hbalock, 7127 drvr_flag); 7128 goto out_not_finished; 7129 } 7130 } 7131 7132 /* Read the HBA Host Attention Register */ 7133 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7134 spin_unlock_irqrestore(&phba->hbalock, 7135 drvr_flag); 7136 goto out_not_finished; 7137 } 7138 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7139 1000) + jiffies; 7140 i = 0; 7141 /* Wait for command to complete */ 7142 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7143 (!(ha_copy & HA_MBATT) && 7144 (phba->link_state > LPFC_WARM_START))) { 7145 if (time_after(jiffies, timeout)) { 7146 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7147 spin_unlock_irqrestore(&phba->hbalock, 7148 drvr_flag); 7149 goto out_not_finished; 7150 } 7151 7152 /* Check if we took a mbox interrupt while we were 7153 polling */ 7154 if (((word0 & OWN_CHIP) != OWN_CHIP) 7155 && (evtctr != psli->slistat.mbox_event)) 7156 break; 7157 7158 if (i++ > 10) { 7159 spin_unlock_irqrestore(&phba->hbalock, 7160 drvr_flag); 7161 msleep(1); 7162 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7163 } 7164 7165 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7166 /* First copy command data */ 7167 word0 = *((uint32_t *)phba->mbox); 7168 word0 = le32_to_cpu(word0); 7169 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7170 MAILBOX_t *slimmb; 7171 uint32_t slimword0; 7172 /* Check real SLIM for any errors */ 7173 slimword0 = readl(phba->MBslimaddr); 7174 slimmb = (MAILBOX_t *) & slimword0; 7175 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7176 && slimmb->mbxStatus) { 7177 psli->sli_flag &= 7178 ~LPFC_SLI_ACTIVE; 7179 word0 = slimword0; 7180 } 7181 } 7182 } else { 7183 /* First copy command data */ 7184 word0 = readl(phba->MBslimaddr); 7185 } 7186 /* Read the HBA Host Attention Register */ 7187 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7188 spin_unlock_irqrestore(&phba->hbalock, 7189 drvr_flag); 7190 goto out_not_finished; 7191 } 7192 } 7193 7194 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7195 /* copy results back to user */ 7196 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7197 /* Copy the mailbox extension data */ 7198 if (pmbox->out_ext_byte_len && pmbox->context2) { 7199 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7200 pmbox->context2, 7201 pmbox->out_ext_byte_len); 7202 } 7203 } else { 7204 /* First copy command data */ 7205 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7206 MAILBOX_CMD_SIZE); 7207 /* Copy the mailbox extension data */ 7208 if (pmbox->out_ext_byte_len && pmbox->context2) { 7209 lpfc_memcpy_from_slim(pmbox->context2, 7210 phba->MBslimaddr + 7211 MAILBOX_HBA_EXT_OFFSET, 7212 pmbox->out_ext_byte_len); 7213 } 7214 } 7215 7216 writel(HA_MBATT, phba->HAregaddr); 7217 readl(phba->HAregaddr); /* flush */ 7218 7219 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7220 status = mbx->mbxStatus; 7221 } 7222 7223 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7224 return status; 7225 7226 out_not_finished: 7227 if (processing_queue) { 7228 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7229 lpfc_mbox_cmpl_put(phba, pmbox); 7230 } 7231 return MBX_NOT_FINISHED; 7232 } 7233 7234 /** 7235 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7236 * @phba: Pointer to HBA context object. 7237 * 7238 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7239 * the driver internal pending mailbox queue. It will then try to wait out the 7240 * possible outstanding mailbox command before return. 7241 * 7242 * Returns: 7243 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7244 * the outstanding mailbox command timed out. 7245 **/ 7246 static int 7247 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7248 { 7249 struct lpfc_sli *psli = &phba->sli; 7250 int rc = 0; 7251 unsigned long timeout = 0; 7252 7253 /* Mark the asynchronous mailbox command posting as blocked */ 7254 spin_lock_irq(&phba->hbalock); 7255 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7256 /* Determine how long we might wait for the active mailbox 7257 * command to be gracefully completed by firmware. 7258 */ 7259 if (phba->sli.mbox_active) 7260 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7261 phba->sli.mbox_active) * 7262 1000) + jiffies; 7263 spin_unlock_irq(&phba->hbalock); 7264 7265 /* Make sure the mailbox is really active */ 7266 if (timeout) 7267 lpfc_sli4_process_missed_mbox_completions(phba); 7268 7269 /* Wait for the outstnading mailbox command to complete */ 7270 while (phba->sli.mbox_active) { 7271 /* Check active mailbox complete status every 2ms */ 7272 msleep(2); 7273 if (time_after(jiffies, timeout)) { 7274 /* Timeout, marked the outstanding cmd not complete */ 7275 rc = 1; 7276 break; 7277 } 7278 } 7279 7280 /* Can not cleanly block async mailbox command, fails it */ 7281 if (rc) { 7282 spin_lock_irq(&phba->hbalock); 7283 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7284 spin_unlock_irq(&phba->hbalock); 7285 } 7286 return rc; 7287 } 7288 7289 /** 7290 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7291 * @phba: Pointer to HBA context object. 7292 * 7293 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7294 * commands from the driver internal pending mailbox queue. It makes sure 7295 * that there is no outstanding mailbox command before resuming posting 7296 * asynchronous mailbox commands. If, for any reason, there is outstanding 7297 * mailbox command, it will try to wait it out before resuming asynchronous 7298 * mailbox command posting. 7299 **/ 7300 static void 7301 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7302 { 7303 struct lpfc_sli *psli = &phba->sli; 7304 7305 spin_lock_irq(&phba->hbalock); 7306 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7307 /* Asynchronous mailbox posting is not blocked, do nothing */ 7308 spin_unlock_irq(&phba->hbalock); 7309 return; 7310 } 7311 7312 /* Outstanding synchronous mailbox command is guaranteed to be done, 7313 * successful or timeout, after timing-out the outstanding mailbox 7314 * command shall always be removed, so just unblock posting async 7315 * mailbox command and resume 7316 */ 7317 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7318 spin_unlock_irq(&phba->hbalock); 7319 7320 /* wake up worker thread to post asynchronlous mailbox command */ 7321 lpfc_worker_wake_up(phba); 7322 } 7323 7324 /** 7325 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7326 * @phba: Pointer to HBA context object. 7327 * @mboxq: Pointer to mailbox object. 7328 * 7329 * The function waits for the bootstrap mailbox register ready bit from 7330 * port for twice the regular mailbox command timeout value. 7331 * 7332 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7333 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7334 **/ 7335 static int 7336 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7337 { 7338 uint32_t db_ready; 7339 unsigned long timeout; 7340 struct lpfc_register bmbx_reg; 7341 7342 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7343 * 1000) + jiffies; 7344 7345 do { 7346 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7347 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7348 if (!db_ready) 7349 msleep(2); 7350 7351 if (time_after(jiffies, timeout)) 7352 return MBXERR_ERROR; 7353 } while (!db_ready); 7354 7355 return 0; 7356 } 7357 7358 /** 7359 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7360 * @phba: Pointer to HBA context object. 7361 * @mboxq: Pointer to mailbox object. 7362 * 7363 * The function posts a mailbox to the port. The mailbox is expected 7364 * to be comletely filled in and ready for the port to operate on it. 7365 * This routine executes a synchronous completion operation on the 7366 * mailbox by polling for its completion. 7367 * 7368 * The caller must not be holding any locks when calling this routine. 7369 * 7370 * Returns: 7371 * MBX_SUCCESS - mailbox posted successfully 7372 * Any of the MBX error values. 7373 **/ 7374 static int 7375 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7376 { 7377 int rc = MBX_SUCCESS; 7378 unsigned long iflag; 7379 uint32_t mcqe_status; 7380 uint32_t mbx_cmnd; 7381 struct lpfc_sli *psli = &phba->sli; 7382 struct lpfc_mqe *mb = &mboxq->u.mqe; 7383 struct lpfc_bmbx_create *mbox_rgn; 7384 struct dma_address *dma_address; 7385 7386 /* 7387 * Only one mailbox can be active to the bootstrap mailbox region 7388 * at a time and there is no queueing provided. 7389 */ 7390 spin_lock_irqsave(&phba->hbalock, iflag); 7391 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7392 spin_unlock_irqrestore(&phba->hbalock, iflag); 7393 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7394 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7395 "cannot issue Data: x%x x%x\n", 7396 mboxq->vport ? mboxq->vport->vpi : 0, 7397 mboxq->u.mb.mbxCommand, 7398 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7399 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7400 psli->sli_flag, MBX_POLL); 7401 return MBXERR_ERROR; 7402 } 7403 /* The server grabs the token and owns it until release */ 7404 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7405 phba->sli.mbox_active = mboxq; 7406 spin_unlock_irqrestore(&phba->hbalock, iflag); 7407 7408 /* wait for bootstrap mbox register for readyness */ 7409 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7410 if (rc) 7411 goto exit; 7412 7413 /* 7414 * Initialize the bootstrap memory region to avoid stale data areas 7415 * in the mailbox post. Then copy the caller's mailbox contents to 7416 * the bmbx mailbox region. 7417 */ 7418 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7419 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7420 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7421 sizeof(struct lpfc_mqe)); 7422 7423 /* Post the high mailbox dma address to the port and wait for ready. */ 7424 dma_address = &phba->sli4_hba.bmbx.dma_address; 7425 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7426 7427 /* wait for bootstrap mbox register for hi-address write done */ 7428 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7429 if (rc) 7430 goto exit; 7431 7432 /* Post the low mailbox dma address to the port. */ 7433 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7434 7435 /* wait for bootstrap mbox register for low address write done */ 7436 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7437 if (rc) 7438 goto exit; 7439 7440 /* 7441 * Read the CQ to ensure the mailbox has completed. 7442 * If so, update the mailbox status so that the upper layers 7443 * can complete the request normally. 7444 */ 7445 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7446 sizeof(struct lpfc_mqe)); 7447 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7448 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7449 sizeof(struct lpfc_mcqe)); 7450 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7451 /* 7452 * When the CQE status indicates a failure and the mailbox status 7453 * indicates success then copy the CQE status into the mailbox status 7454 * (and prefix it with x4000). 7455 */ 7456 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7457 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7458 bf_set(lpfc_mqe_status, mb, 7459 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7460 rc = MBXERR_ERROR; 7461 } else 7462 lpfc_sli4_swap_str(phba, mboxq); 7463 7464 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7465 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7466 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7467 " x%x x%x CQ: x%x x%x x%x x%x\n", 7468 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7469 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7470 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7471 bf_get(lpfc_mqe_status, mb), 7472 mb->un.mb_words[0], mb->un.mb_words[1], 7473 mb->un.mb_words[2], mb->un.mb_words[3], 7474 mb->un.mb_words[4], mb->un.mb_words[5], 7475 mb->un.mb_words[6], mb->un.mb_words[7], 7476 mb->un.mb_words[8], mb->un.mb_words[9], 7477 mb->un.mb_words[10], mb->un.mb_words[11], 7478 mb->un.mb_words[12], mboxq->mcqe.word0, 7479 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7480 mboxq->mcqe.trailer); 7481 exit: 7482 /* We are holding the token, no needed for lock when release */ 7483 spin_lock_irqsave(&phba->hbalock, iflag); 7484 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7485 phba->sli.mbox_active = NULL; 7486 spin_unlock_irqrestore(&phba->hbalock, iflag); 7487 return rc; 7488 } 7489 7490 /** 7491 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7492 * @phba: Pointer to HBA context object. 7493 * @pmbox: Pointer to mailbox object. 7494 * @flag: Flag indicating how the mailbox need to be processed. 7495 * 7496 * This function is called by discovery code and HBA management code to submit 7497 * a mailbox command to firmware with SLI-4 interface spec. 7498 * 7499 * Return codes the caller owns the mailbox command after the return of the 7500 * function. 7501 **/ 7502 static int 7503 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7504 uint32_t flag) 7505 { 7506 struct lpfc_sli *psli = &phba->sli; 7507 unsigned long iflags; 7508 int rc; 7509 7510 /* dump from issue mailbox command if setup */ 7511 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7512 7513 rc = lpfc_mbox_dev_check(phba); 7514 if (unlikely(rc)) { 7515 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7516 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7517 "cannot issue Data: x%x x%x\n", 7518 mboxq->vport ? mboxq->vport->vpi : 0, 7519 mboxq->u.mb.mbxCommand, 7520 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7521 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7522 psli->sli_flag, flag); 7523 goto out_not_finished; 7524 } 7525 7526 /* Detect polling mode and jump to a handler */ 7527 if (!phba->sli4_hba.intr_enable) { 7528 if (flag == MBX_POLL) 7529 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7530 else 7531 rc = -EIO; 7532 if (rc != MBX_SUCCESS) 7533 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7534 "(%d):2541 Mailbox command x%x " 7535 "(x%x/x%x) failure: " 7536 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7537 "Data: x%x x%x\n,", 7538 mboxq->vport ? mboxq->vport->vpi : 0, 7539 mboxq->u.mb.mbxCommand, 7540 lpfc_sli_config_mbox_subsys_get(phba, 7541 mboxq), 7542 lpfc_sli_config_mbox_opcode_get(phba, 7543 mboxq), 7544 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7545 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7546 bf_get(lpfc_mcqe_ext_status, 7547 &mboxq->mcqe), 7548 psli->sli_flag, flag); 7549 return rc; 7550 } else if (flag == MBX_POLL) { 7551 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7552 "(%d):2542 Try to issue mailbox command " 7553 "x%x (x%x/x%x) synchronously ahead of async" 7554 "mailbox command queue: x%x x%x\n", 7555 mboxq->vport ? mboxq->vport->vpi : 0, 7556 mboxq->u.mb.mbxCommand, 7557 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7558 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7559 psli->sli_flag, flag); 7560 /* Try to block the asynchronous mailbox posting */ 7561 rc = lpfc_sli4_async_mbox_block(phba); 7562 if (!rc) { 7563 /* Successfully blocked, now issue sync mbox cmd */ 7564 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7565 if (rc != MBX_SUCCESS) 7566 lpfc_printf_log(phba, KERN_WARNING, 7567 LOG_MBOX | LOG_SLI, 7568 "(%d):2597 Sync Mailbox command " 7569 "x%x (x%x/x%x) failure: " 7570 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7571 "Data: x%x x%x\n,", 7572 mboxq->vport ? mboxq->vport->vpi : 0, 7573 mboxq->u.mb.mbxCommand, 7574 lpfc_sli_config_mbox_subsys_get(phba, 7575 mboxq), 7576 lpfc_sli_config_mbox_opcode_get(phba, 7577 mboxq), 7578 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7579 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7580 bf_get(lpfc_mcqe_ext_status, 7581 &mboxq->mcqe), 7582 psli->sli_flag, flag); 7583 /* Unblock the async mailbox posting afterward */ 7584 lpfc_sli4_async_mbox_unblock(phba); 7585 } 7586 return rc; 7587 } 7588 7589 /* Now, interrupt mode asynchrous mailbox command */ 7590 rc = lpfc_mbox_cmd_check(phba, mboxq); 7591 if (rc) { 7592 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7593 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7594 "cannot issue Data: x%x x%x\n", 7595 mboxq->vport ? mboxq->vport->vpi : 0, 7596 mboxq->u.mb.mbxCommand, 7597 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7598 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7599 psli->sli_flag, flag); 7600 goto out_not_finished; 7601 } 7602 7603 /* Put the mailbox command to the driver internal FIFO */ 7604 psli->slistat.mbox_busy++; 7605 spin_lock_irqsave(&phba->hbalock, iflags); 7606 lpfc_mbox_put(phba, mboxq); 7607 spin_unlock_irqrestore(&phba->hbalock, iflags); 7608 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7609 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7610 "x%x (x%x/x%x) x%x x%x x%x\n", 7611 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7612 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7613 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7614 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7615 phba->pport->port_state, 7616 psli->sli_flag, MBX_NOWAIT); 7617 /* Wake up worker thread to transport mailbox command from head */ 7618 lpfc_worker_wake_up(phba); 7619 7620 return MBX_BUSY; 7621 7622 out_not_finished: 7623 return MBX_NOT_FINISHED; 7624 } 7625 7626 /** 7627 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7628 * @phba: Pointer to HBA context object. 7629 * 7630 * This function is called by worker thread to send a mailbox command to 7631 * SLI4 HBA firmware. 7632 * 7633 **/ 7634 int 7635 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7636 { 7637 struct lpfc_sli *psli = &phba->sli; 7638 LPFC_MBOXQ_t *mboxq; 7639 int rc = MBX_SUCCESS; 7640 unsigned long iflags; 7641 struct lpfc_mqe *mqe; 7642 uint32_t mbx_cmnd; 7643 7644 /* Check interrupt mode before post async mailbox command */ 7645 if (unlikely(!phba->sli4_hba.intr_enable)) 7646 return MBX_NOT_FINISHED; 7647 7648 /* Check for mailbox command service token */ 7649 spin_lock_irqsave(&phba->hbalock, iflags); 7650 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7651 spin_unlock_irqrestore(&phba->hbalock, iflags); 7652 return MBX_NOT_FINISHED; 7653 } 7654 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7655 spin_unlock_irqrestore(&phba->hbalock, iflags); 7656 return MBX_NOT_FINISHED; 7657 } 7658 if (unlikely(phba->sli.mbox_active)) { 7659 spin_unlock_irqrestore(&phba->hbalock, iflags); 7660 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7661 "0384 There is pending active mailbox cmd\n"); 7662 return MBX_NOT_FINISHED; 7663 } 7664 /* Take the mailbox command service token */ 7665 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7666 7667 /* Get the next mailbox command from head of queue */ 7668 mboxq = lpfc_mbox_get(phba); 7669 7670 /* If no more mailbox command waiting for post, we're done */ 7671 if (!mboxq) { 7672 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7673 spin_unlock_irqrestore(&phba->hbalock, iflags); 7674 return MBX_SUCCESS; 7675 } 7676 phba->sli.mbox_active = mboxq; 7677 spin_unlock_irqrestore(&phba->hbalock, iflags); 7678 7679 /* Check device readiness for posting mailbox command */ 7680 rc = lpfc_mbox_dev_check(phba); 7681 if (unlikely(rc)) 7682 /* Driver clean routine will clean up pending mailbox */ 7683 goto out_not_finished; 7684 7685 /* Prepare the mbox command to be posted */ 7686 mqe = &mboxq->u.mqe; 7687 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7688 7689 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7690 mod_timer(&psli->mbox_tmo, (jiffies + 7691 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7692 7693 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7694 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7695 "x%x x%x\n", 7696 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7697 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7698 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7699 phba->pport->port_state, psli->sli_flag); 7700 7701 if (mbx_cmnd != MBX_HEARTBEAT) { 7702 if (mboxq->vport) { 7703 lpfc_debugfs_disc_trc(mboxq->vport, 7704 LPFC_DISC_TRC_MBOX_VPORT, 7705 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7706 mbx_cmnd, mqe->un.mb_words[0], 7707 mqe->un.mb_words[1]); 7708 } else { 7709 lpfc_debugfs_disc_trc(phba->pport, 7710 LPFC_DISC_TRC_MBOX, 7711 "MBOX Send: cmd:x%x mb:x%x x%x", 7712 mbx_cmnd, mqe->un.mb_words[0], 7713 mqe->un.mb_words[1]); 7714 } 7715 } 7716 psli->slistat.mbox_cmd++; 7717 7718 /* Post the mailbox command to the port */ 7719 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7720 if (rc != MBX_SUCCESS) { 7721 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7722 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7723 "cannot issue Data: x%x x%x\n", 7724 mboxq->vport ? mboxq->vport->vpi : 0, 7725 mboxq->u.mb.mbxCommand, 7726 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7727 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7728 psli->sli_flag, MBX_NOWAIT); 7729 goto out_not_finished; 7730 } 7731 7732 return rc; 7733 7734 out_not_finished: 7735 spin_lock_irqsave(&phba->hbalock, iflags); 7736 if (phba->sli.mbox_active) { 7737 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7738 __lpfc_mbox_cmpl_put(phba, mboxq); 7739 /* Release the token */ 7740 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7741 phba->sli.mbox_active = NULL; 7742 } 7743 spin_unlock_irqrestore(&phba->hbalock, iflags); 7744 7745 return MBX_NOT_FINISHED; 7746 } 7747 7748 /** 7749 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7750 * @phba: Pointer to HBA context object. 7751 * @pmbox: Pointer to mailbox object. 7752 * @flag: Flag indicating how the mailbox need to be processed. 7753 * 7754 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7755 * the API jump table function pointer from the lpfc_hba struct. 7756 * 7757 * Return codes the caller owns the mailbox command after the return of the 7758 * function. 7759 **/ 7760 int 7761 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7762 { 7763 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7764 } 7765 7766 /** 7767 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7768 * @phba: The hba struct for which this call is being executed. 7769 * @dev_grp: The HBA PCI-Device group number. 7770 * 7771 * This routine sets up the mbox interface API function jump table in @phba 7772 * struct. 7773 * Returns: 0 - success, -ENODEV - failure. 7774 **/ 7775 int 7776 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7777 { 7778 7779 switch (dev_grp) { 7780 case LPFC_PCI_DEV_LP: 7781 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7782 phba->lpfc_sli_handle_slow_ring_event = 7783 lpfc_sli_handle_slow_ring_event_s3; 7784 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7785 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7786 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7787 break; 7788 case LPFC_PCI_DEV_OC: 7789 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7790 phba->lpfc_sli_handle_slow_ring_event = 7791 lpfc_sli_handle_slow_ring_event_s4; 7792 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7793 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7794 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7795 break; 7796 default: 7797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7798 "1420 Invalid HBA PCI-device group: 0x%x\n", 7799 dev_grp); 7800 return -ENODEV; 7801 break; 7802 } 7803 return 0; 7804 } 7805 7806 /** 7807 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7808 * @phba: Pointer to HBA context object. 7809 * @pring: Pointer to driver SLI ring object. 7810 * @piocb: Pointer to address of newly added command iocb. 7811 * 7812 * This function is called with hbalock held to add a command 7813 * iocb to the txq when SLI layer cannot submit the command iocb 7814 * to the ring. 7815 **/ 7816 void 7817 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7818 struct lpfc_iocbq *piocb) 7819 { 7820 /* Insert the caller's iocb in the txq tail for later processing. */ 7821 list_add_tail(&piocb->list, &pring->txq); 7822 } 7823 7824 /** 7825 * lpfc_sli_next_iocb - Get the next iocb in the txq 7826 * @phba: Pointer to HBA context object. 7827 * @pring: Pointer to driver SLI ring object. 7828 * @piocb: Pointer to address of newly added command iocb. 7829 * 7830 * This function is called with hbalock held before a new 7831 * iocb is submitted to the firmware. This function checks 7832 * txq to flush the iocbs in txq to Firmware before 7833 * submitting new iocbs to the Firmware. 7834 * If there are iocbs in the txq which need to be submitted 7835 * to firmware, lpfc_sli_next_iocb returns the first element 7836 * of the txq after dequeuing it from txq. 7837 * If there is no iocb in the txq then the function will return 7838 * *piocb and *piocb is set to NULL. Caller needs to check 7839 * *piocb to find if there are more commands in the txq. 7840 **/ 7841 static struct lpfc_iocbq * 7842 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7843 struct lpfc_iocbq **piocb) 7844 { 7845 struct lpfc_iocbq * nextiocb; 7846 7847 nextiocb = lpfc_sli_ringtx_get(phba, pring); 7848 if (!nextiocb) { 7849 nextiocb = *piocb; 7850 *piocb = NULL; 7851 } 7852 7853 return nextiocb; 7854 } 7855 7856 /** 7857 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 7858 * @phba: Pointer to HBA context object. 7859 * @ring_number: SLI ring number to issue iocb on. 7860 * @piocb: Pointer to command iocb. 7861 * @flag: Flag indicating if this command can be put into txq. 7862 * 7863 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 7864 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 7865 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 7866 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 7867 * this function allows only iocbs for posting buffers. This function finds 7868 * next available slot in the command ring and posts the command to the 7869 * available slot and writes the port attention register to request HBA start 7870 * processing new iocb. If there is no slot available in the ring and 7871 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 7872 * the function returns IOCB_BUSY. 7873 * 7874 * This function is called with hbalock held. The function will return success 7875 * after it successfully submit the iocb to firmware or after adding to the 7876 * txq. 7877 **/ 7878 static int 7879 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 7880 struct lpfc_iocbq *piocb, uint32_t flag) 7881 { 7882 struct lpfc_iocbq *nextiocb; 7883 IOCB_t *iocb; 7884 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 7885 7886 if (piocb->iocb_cmpl && (!piocb->vport) && 7887 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 7888 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 7889 lpfc_printf_log(phba, KERN_ERR, 7890 LOG_SLI | LOG_VPORT, 7891 "1807 IOCB x%x failed. No vport\n", 7892 piocb->iocb.ulpCommand); 7893 dump_stack(); 7894 return IOCB_ERROR; 7895 } 7896 7897 7898 /* If the PCI channel is in offline state, do not post iocbs. */ 7899 if (unlikely(pci_channel_offline(phba->pcidev))) 7900 return IOCB_ERROR; 7901 7902 /* If HBA has a deferred error attention, fail the iocb. */ 7903 if (unlikely(phba->hba_flag & DEFER_ERATT)) 7904 return IOCB_ERROR; 7905 7906 /* 7907 * We should never get an IOCB if we are in a < LINK_DOWN state 7908 */ 7909 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 7910 return IOCB_ERROR; 7911 7912 /* 7913 * Check to see if we are blocking IOCB processing because of a 7914 * outstanding event. 7915 */ 7916 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 7917 goto iocb_busy; 7918 7919 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 7920 /* 7921 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 7922 * can be issued if the link is not up. 7923 */ 7924 switch (piocb->iocb.ulpCommand) { 7925 case CMD_GEN_REQUEST64_CR: 7926 case CMD_GEN_REQUEST64_CX: 7927 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 7928 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 7929 FC_RCTL_DD_UNSOL_CMD) || 7930 (piocb->iocb.un.genreq64.w5.hcsw.Type != 7931 MENLO_TRANSPORT_TYPE)) 7932 7933 goto iocb_busy; 7934 break; 7935 case CMD_QUE_RING_BUF_CN: 7936 case CMD_QUE_RING_BUF64_CN: 7937 /* 7938 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 7939 * completion, iocb_cmpl MUST be 0. 7940 */ 7941 if (piocb->iocb_cmpl) 7942 piocb->iocb_cmpl = NULL; 7943 /*FALLTHROUGH*/ 7944 case CMD_CREATE_XRI_CR: 7945 case CMD_CLOSE_XRI_CN: 7946 case CMD_CLOSE_XRI_CX: 7947 break; 7948 default: 7949 goto iocb_busy; 7950 } 7951 7952 /* 7953 * For FCP commands, we must be in a state where we can process link 7954 * attention events. 7955 */ 7956 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 7957 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 7958 goto iocb_busy; 7959 } 7960 7961 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 7962 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 7963 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 7964 7965 if (iocb) 7966 lpfc_sli_update_ring(phba, pring); 7967 else 7968 lpfc_sli_update_full_ring(phba, pring); 7969 7970 if (!piocb) 7971 return IOCB_SUCCESS; 7972 7973 goto out_busy; 7974 7975 iocb_busy: 7976 pring->stats.iocb_cmd_delay++; 7977 7978 out_busy: 7979 7980 if (!(flag & SLI_IOCB_RET_IOCB)) { 7981 __lpfc_sli_ringtx_put(phba, pring, piocb); 7982 return IOCB_SUCCESS; 7983 } 7984 7985 return IOCB_BUSY; 7986 } 7987 7988 /** 7989 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 7990 * @phba: Pointer to HBA context object. 7991 * @piocb: Pointer to command iocb. 7992 * @sglq: Pointer to the scatter gather queue object. 7993 * 7994 * This routine converts the bpl or bde that is in the IOCB 7995 * to a sgl list for the sli4 hardware. The physical address 7996 * of the bpl/bde is converted back to a virtual address. 7997 * If the IOCB contains a BPL then the list of BDE's is 7998 * converted to sli4_sge's. If the IOCB contains a single 7999 * BDE then it is converted to a single sli_sge. 8000 * The IOCB is still in cpu endianess so the contents of 8001 * the bpl can be used without byte swapping. 8002 * 8003 * Returns valid XRI = Success, NO_XRI = Failure. 8004 **/ 8005 static uint16_t 8006 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8007 struct lpfc_sglq *sglq) 8008 { 8009 uint16_t xritag = NO_XRI; 8010 struct ulp_bde64 *bpl = NULL; 8011 struct ulp_bde64 bde; 8012 struct sli4_sge *sgl = NULL; 8013 struct lpfc_dmabuf *dmabuf; 8014 IOCB_t *icmd; 8015 int numBdes = 0; 8016 int i = 0; 8017 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8018 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8019 8020 if (!piocbq || !sglq) 8021 return xritag; 8022 8023 sgl = (struct sli4_sge *)sglq->sgl; 8024 icmd = &piocbq->iocb; 8025 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8026 return sglq->sli4_xritag; 8027 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8028 numBdes = icmd->un.genreq64.bdl.bdeSize / 8029 sizeof(struct ulp_bde64); 8030 /* The addrHigh and addrLow fields within the IOCB 8031 * have not been byteswapped yet so there is no 8032 * need to swap them back. 8033 */ 8034 if (piocbq->context3) 8035 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8036 else 8037 return xritag; 8038 8039 bpl = (struct ulp_bde64 *)dmabuf->virt; 8040 if (!bpl) 8041 return xritag; 8042 8043 for (i = 0; i < numBdes; i++) { 8044 /* Should already be byte swapped. */ 8045 sgl->addr_hi = bpl->addrHigh; 8046 sgl->addr_lo = bpl->addrLow; 8047 8048 sgl->word2 = le32_to_cpu(sgl->word2); 8049 if ((i+1) == numBdes) 8050 bf_set(lpfc_sli4_sge_last, sgl, 1); 8051 else 8052 bf_set(lpfc_sli4_sge_last, sgl, 0); 8053 /* swap the size field back to the cpu so we 8054 * can assign it to the sgl. 8055 */ 8056 bde.tus.w = le32_to_cpu(bpl->tus.w); 8057 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8058 /* The offsets in the sgl need to be accumulated 8059 * separately for the request and reply lists. 8060 * The request is always first, the reply follows. 8061 */ 8062 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8063 /* add up the reply sg entries */ 8064 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8065 inbound++; 8066 /* first inbound? reset the offset */ 8067 if (inbound == 1) 8068 offset = 0; 8069 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8070 bf_set(lpfc_sli4_sge_type, sgl, 8071 LPFC_SGE_TYPE_DATA); 8072 offset += bde.tus.f.bdeSize; 8073 } 8074 sgl->word2 = cpu_to_le32(sgl->word2); 8075 bpl++; 8076 sgl++; 8077 } 8078 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8079 /* The addrHigh and addrLow fields of the BDE have not 8080 * been byteswapped yet so they need to be swapped 8081 * before putting them in the sgl. 8082 */ 8083 sgl->addr_hi = 8084 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8085 sgl->addr_lo = 8086 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8087 sgl->word2 = le32_to_cpu(sgl->word2); 8088 bf_set(lpfc_sli4_sge_last, sgl, 1); 8089 sgl->word2 = cpu_to_le32(sgl->word2); 8090 sgl->sge_len = 8091 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8092 } 8093 return sglq->sli4_xritag; 8094 } 8095 8096 /** 8097 * lpfc_sli4_scmd_to_wqidx_distr - scsi command to SLI4 WQ index distribution 8098 * @phba: Pointer to HBA context object. 8099 * 8100 * This routine performs a roundrobin SCSI command to SLI4 FCP WQ index 8101 * distribution. This is called by __lpfc_sli_issue_iocb_s4() with the hbalock 8102 * held. 8103 * 8104 * Return: index into SLI4 fast-path FCP queue index. 8105 **/ 8106 static inline int 8107 lpfc_sli4_scmd_to_wqidx_distr(struct lpfc_hba *phba) 8108 { 8109 struct lpfc_vector_map_info *cpup; 8110 int chann, cpu; 8111 8112 if (phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_CPU 8113 && phba->cfg_fcp_io_channel > 1) { 8114 cpu = smp_processor_id(); 8115 if (cpu < phba->sli4_hba.num_present_cpu) { 8116 cpup = phba->sli4_hba.cpu_map; 8117 cpup += cpu; 8118 return cpup->channel_id; 8119 } 8120 } 8121 chann = atomic_add_return(1, &phba->fcp_qidx); 8122 chann = (chann % phba->cfg_fcp_io_channel); 8123 return chann; 8124 } 8125 8126 /** 8127 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8128 * @phba: Pointer to HBA context object. 8129 * @piocb: Pointer to command iocb. 8130 * @wqe: Pointer to the work queue entry. 8131 * 8132 * This routine converts the iocb command to its Work Queue Entry 8133 * equivalent. The wqe pointer should not have any fields set when 8134 * this routine is called because it will memcpy over them. 8135 * This routine does not set the CQ_ID or the WQEC bits in the 8136 * wqe. 8137 * 8138 * Returns: 0 = Success, IOCB_ERROR = Failure. 8139 **/ 8140 static int 8141 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8142 union lpfc_wqe *wqe) 8143 { 8144 uint32_t xmit_len = 0, total_len = 0; 8145 uint8_t ct = 0; 8146 uint32_t fip; 8147 uint32_t abort_tag; 8148 uint8_t command_type = ELS_COMMAND_NON_FIP; 8149 uint8_t cmnd; 8150 uint16_t xritag; 8151 uint16_t abrt_iotag; 8152 struct lpfc_iocbq *abrtiocbq; 8153 struct ulp_bde64 *bpl = NULL; 8154 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8155 int numBdes, i; 8156 struct ulp_bde64 bde; 8157 struct lpfc_nodelist *ndlp; 8158 uint32_t *pcmd; 8159 uint32_t if_type; 8160 8161 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8162 /* The fcp commands will set command type */ 8163 if (iocbq->iocb_flag & LPFC_IO_FCP) 8164 command_type = FCP_COMMAND; 8165 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8166 command_type = ELS_COMMAND_FIP; 8167 else 8168 command_type = ELS_COMMAND_NON_FIP; 8169 8170 /* Some of the fields are in the right position already */ 8171 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8172 abort_tag = (uint32_t) iocbq->iotag; 8173 xritag = iocbq->sli4_xritag; 8174 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8175 wqe->generic.wqe_com.word10 = 0; 8176 /* words0-2 bpl convert bde */ 8177 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8178 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8179 sizeof(struct ulp_bde64); 8180 bpl = (struct ulp_bde64 *) 8181 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8182 if (!bpl) 8183 return IOCB_ERROR; 8184 8185 /* Should already be byte swapped. */ 8186 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8187 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8188 /* swap the size field back to the cpu so we 8189 * can assign it to the sgl. 8190 */ 8191 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8192 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8193 total_len = 0; 8194 for (i = 0; i < numBdes; i++) { 8195 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8196 total_len += bde.tus.f.bdeSize; 8197 } 8198 } else 8199 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8200 8201 iocbq->iocb.ulpIoTag = iocbq->iotag; 8202 cmnd = iocbq->iocb.ulpCommand; 8203 8204 switch (iocbq->iocb.ulpCommand) { 8205 case CMD_ELS_REQUEST64_CR: 8206 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8207 ndlp = iocbq->context_un.ndlp; 8208 else 8209 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8210 if (!iocbq->iocb.ulpLe) { 8211 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8212 "2007 Only Limited Edition cmd Format" 8213 " supported 0x%x\n", 8214 iocbq->iocb.ulpCommand); 8215 return IOCB_ERROR; 8216 } 8217 8218 wqe->els_req.payload_len = xmit_len; 8219 /* Els_reguest64 has a TMO */ 8220 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8221 iocbq->iocb.ulpTimeout); 8222 /* Need a VF for word 4 set the vf bit*/ 8223 bf_set(els_req64_vf, &wqe->els_req, 0); 8224 /* And a VFID for word 12 */ 8225 bf_set(els_req64_vfid, &wqe->els_req, 0); 8226 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8227 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8228 iocbq->iocb.ulpContext); 8229 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8230 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8231 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8232 if (command_type == ELS_COMMAND_FIP) 8233 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8234 >> LPFC_FIP_ELS_ID_SHIFT); 8235 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8236 iocbq->context2)->virt); 8237 if_type = bf_get(lpfc_sli_intf_if_type, 8238 &phba->sli4_hba.sli_intf); 8239 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8240 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8241 *pcmd == ELS_CMD_SCR || 8242 *pcmd == ELS_CMD_FDISC || 8243 *pcmd == ELS_CMD_LOGO || 8244 *pcmd == ELS_CMD_PLOGI)) { 8245 bf_set(els_req64_sp, &wqe->els_req, 1); 8246 bf_set(els_req64_sid, &wqe->els_req, 8247 iocbq->vport->fc_myDID); 8248 if ((*pcmd == ELS_CMD_FLOGI) && 8249 !(phba->fc_topology == 8250 LPFC_TOPOLOGY_LOOP)) 8251 bf_set(els_req64_sid, &wqe->els_req, 0); 8252 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8253 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8254 phba->vpi_ids[iocbq->vport->vpi]); 8255 } else if (pcmd && iocbq->context1) { 8256 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8257 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8258 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8259 } 8260 } 8261 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8262 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8263 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8264 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8265 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8266 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8267 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8268 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8269 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8270 break; 8271 case CMD_XMIT_SEQUENCE64_CX: 8272 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8273 iocbq->iocb.un.ulpWord[3]); 8274 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8275 iocbq->iocb.unsli3.rcvsli3.ox_id); 8276 /* The entire sequence is transmitted for this IOCB */ 8277 xmit_len = total_len; 8278 cmnd = CMD_XMIT_SEQUENCE64_CR; 8279 if (phba->link_flag & LS_LOOPBACK_MODE) 8280 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8281 case CMD_XMIT_SEQUENCE64_CR: 8282 /* word3 iocb=io_tag32 wqe=reserved */ 8283 wqe->xmit_sequence.rsvd3 = 0; 8284 /* word4 relative_offset memcpy */ 8285 /* word5 r_ctl/df_ctl memcpy */ 8286 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8287 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8288 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8289 LPFC_WQE_IOD_WRITE); 8290 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8291 LPFC_WQE_LENLOC_WORD12); 8292 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8293 wqe->xmit_sequence.xmit_len = xmit_len; 8294 command_type = OTHER_COMMAND; 8295 break; 8296 case CMD_XMIT_BCAST64_CN: 8297 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8298 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8299 /* word4 iocb=rsvd wqe=rsvd */ 8300 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8301 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8302 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8303 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8304 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8305 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8306 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8307 LPFC_WQE_LENLOC_WORD3); 8308 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8309 break; 8310 case CMD_FCP_IWRITE64_CR: 8311 command_type = FCP_COMMAND_DATA_OUT; 8312 /* word3 iocb=iotag wqe=payload_offset_len */ 8313 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8314 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8315 xmit_len + sizeof(struct fcp_rsp)); 8316 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8317 0); 8318 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8319 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8320 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8321 iocbq->iocb.ulpFCP2Rcvy); 8322 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8323 /* Always open the exchange */ 8324 bf_set(wqe_xc, &wqe->fcp_iwrite.wqe_com, 0); 8325 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8326 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8327 LPFC_WQE_LENLOC_WORD4); 8328 bf_set(wqe_ebde_cnt, &wqe->fcp_iwrite.wqe_com, 0); 8329 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8330 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8331 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8332 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8333 if (phba->cfg_XLanePriority) { 8334 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8335 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8336 (phba->cfg_XLanePriority << 1)); 8337 } 8338 } 8339 break; 8340 case CMD_FCP_IREAD64_CR: 8341 /* word3 iocb=iotag wqe=payload_offset_len */ 8342 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8343 bf_set(payload_offset_len, &wqe->fcp_iread, 8344 xmit_len + sizeof(struct fcp_rsp)); 8345 bf_set(cmd_buff_len, &wqe->fcp_iread, 8346 0); 8347 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8348 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8349 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8350 iocbq->iocb.ulpFCP2Rcvy); 8351 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8352 /* Always open the exchange */ 8353 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0); 8354 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8355 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8356 LPFC_WQE_LENLOC_WORD4); 8357 bf_set(wqe_ebde_cnt, &wqe->fcp_iread.wqe_com, 0); 8358 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8359 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8360 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8361 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8362 if (phba->cfg_XLanePriority) { 8363 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8364 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8365 (phba->cfg_XLanePriority << 1)); 8366 } 8367 } 8368 break; 8369 case CMD_FCP_ICMND64_CR: 8370 /* word3 iocb=iotag wqe=payload_offset_len */ 8371 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8372 bf_set(payload_offset_len, &wqe->fcp_icmd, 8373 xmit_len + sizeof(struct fcp_rsp)); 8374 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8375 0); 8376 /* word3 iocb=IO_TAG wqe=reserved */ 8377 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8378 /* Always open the exchange */ 8379 bf_set(wqe_xc, &wqe->fcp_icmd.wqe_com, 0); 8380 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8381 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8382 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8383 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8384 LPFC_WQE_LENLOC_NONE); 8385 bf_set(wqe_ebde_cnt, &wqe->fcp_icmd.wqe_com, 0); 8386 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8387 iocbq->iocb.ulpFCP2Rcvy); 8388 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8389 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8390 if (phba->cfg_XLanePriority) { 8391 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8392 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8393 (phba->cfg_XLanePriority << 1)); 8394 } 8395 } 8396 break; 8397 case CMD_GEN_REQUEST64_CR: 8398 /* For this command calculate the xmit length of the 8399 * request bde. 8400 */ 8401 xmit_len = 0; 8402 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8403 sizeof(struct ulp_bde64); 8404 for (i = 0; i < numBdes; i++) { 8405 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8406 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8407 break; 8408 xmit_len += bde.tus.f.bdeSize; 8409 } 8410 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8411 wqe->gen_req.request_payload_len = xmit_len; 8412 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8413 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8414 /* word6 context tag copied in memcpy */ 8415 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8416 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8417 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8418 "2015 Invalid CT %x command 0x%x\n", 8419 ct, iocbq->iocb.ulpCommand); 8420 return IOCB_ERROR; 8421 } 8422 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8423 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8424 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8425 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8426 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8427 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8428 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8429 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8430 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8431 command_type = OTHER_COMMAND; 8432 break; 8433 case CMD_XMIT_ELS_RSP64_CX: 8434 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8435 /* words0-2 BDE memcpy */ 8436 /* word3 iocb=iotag32 wqe=response_payload_len */ 8437 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8438 /* word4 */ 8439 wqe->xmit_els_rsp.word4 = 0; 8440 /* word5 iocb=rsvd wge=did */ 8441 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8442 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8443 8444 if_type = bf_get(lpfc_sli_intf_if_type, 8445 &phba->sli4_hba.sli_intf); 8446 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8447 if (iocbq->vport->fc_flag & FC_PT2PT) { 8448 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8449 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8450 iocbq->vport->fc_myDID); 8451 if (iocbq->vport->fc_myDID == Fabric_DID) { 8452 bf_set(wqe_els_did, 8453 &wqe->xmit_els_rsp.wqe_dest, 0); 8454 } 8455 } 8456 } 8457 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8458 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8459 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8460 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8461 iocbq->iocb.unsli3.rcvsli3.ox_id); 8462 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8463 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8464 phba->vpi_ids[iocbq->vport->vpi]); 8465 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8466 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8467 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8468 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8469 LPFC_WQE_LENLOC_WORD3); 8470 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8471 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8472 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8473 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8474 iocbq->context2)->virt); 8475 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8476 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8477 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8478 iocbq->vport->fc_myDID); 8479 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8480 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8481 phba->vpi_ids[phba->pport->vpi]); 8482 } 8483 command_type = OTHER_COMMAND; 8484 break; 8485 case CMD_CLOSE_XRI_CN: 8486 case CMD_ABORT_XRI_CN: 8487 case CMD_ABORT_XRI_CX: 8488 /* words 0-2 memcpy should be 0 rserved */ 8489 /* port will send abts */ 8490 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8491 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8492 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8493 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8494 } else 8495 fip = 0; 8496 8497 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8498 /* 8499 * The link is down, or the command was ELS_FIP 8500 * so the fw does not need to send abts 8501 * on the wire. 8502 */ 8503 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8504 else 8505 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8506 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8507 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8508 wqe->abort_cmd.rsrvd5 = 0; 8509 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8510 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8511 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8512 /* 8513 * The abort handler will send us CMD_ABORT_XRI_CN or 8514 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8515 */ 8516 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8517 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8518 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8519 LPFC_WQE_LENLOC_NONE); 8520 cmnd = CMD_ABORT_XRI_CX; 8521 command_type = OTHER_COMMAND; 8522 xritag = 0; 8523 break; 8524 case CMD_XMIT_BLS_RSP64_CX: 8525 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8526 /* As BLS ABTS RSP WQE is very different from other WQEs, 8527 * we re-construct this WQE here based on information in 8528 * iocbq from scratch. 8529 */ 8530 memset(wqe, 0, sizeof(union lpfc_wqe)); 8531 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8532 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8533 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8534 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8535 LPFC_ABTS_UNSOL_INT) { 8536 /* ABTS sent by initiator to CT exchange, the 8537 * RX_ID field will be filled with the newly 8538 * allocated responder XRI. 8539 */ 8540 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8541 iocbq->sli4_xritag); 8542 } else { 8543 /* ABTS sent by responder to CT exchange, the 8544 * RX_ID field will be filled with the responder 8545 * RX_ID from ABTS. 8546 */ 8547 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8548 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8549 } 8550 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8551 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8552 8553 /* Use CT=VPI */ 8554 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8555 ndlp->nlp_DID); 8556 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8557 iocbq->iocb.ulpContext); 8558 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8559 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8560 phba->vpi_ids[phba->pport->vpi]); 8561 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8562 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8563 LPFC_WQE_LENLOC_NONE); 8564 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8565 command_type = OTHER_COMMAND; 8566 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8567 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8568 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8569 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8570 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8571 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8572 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8573 } 8574 8575 break; 8576 case CMD_XRI_ABORTED_CX: 8577 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8578 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8579 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8580 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8581 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8582 default: 8583 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8584 "2014 Invalid command 0x%x\n", 8585 iocbq->iocb.ulpCommand); 8586 return IOCB_ERROR; 8587 break; 8588 } 8589 8590 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8591 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8592 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8593 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8594 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8595 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8596 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8597 LPFC_IO_DIF_INSERT); 8598 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8599 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8600 wqe->generic.wqe_com.abort_tag = abort_tag; 8601 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8602 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8603 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8604 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8605 return 0; 8606 } 8607 8608 /** 8609 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8610 * @phba: Pointer to HBA context object. 8611 * @ring_number: SLI ring number to issue iocb on. 8612 * @piocb: Pointer to command iocb. 8613 * @flag: Flag indicating if this command can be put into txq. 8614 * 8615 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8616 * an iocb command to an HBA with SLI-4 interface spec. 8617 * 8618 * This function is called with hbalock held. The function will return success 8619 * after it successfully submit the iocb to firmware or after adding to the 8620 * txq. 8621 **/ 8622 static int 8623 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8624 struct lpfc_iocbq *piocb, uint32_t flag) 8625 { 8626 struct lpfc_sglq *sglq; 8627 union lpfc_wqe wqe; 8628 struct lpfc_queue *wq; 8629 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8630 8631 if (piocb->sli4_xritag == NO_XRI) { 8632 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8633 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8634 sglq = NULL; 8635 else { 8636 if (!list_empty(&pring->txq)) { 8637 if (!(flag & SLI_IOCB_RET_IOCB)) { 8638 __lpfc_sli_ringtx_put(phba, 8639 pring, piocb); 8640 return IOCB_SUCCESS; 8641 } else { 8642 return IOCB_BUSY; 8643 } 8644 } else { 8645 sglq = __lpfc_sli_get_sglq(phba, piocb); 8646 if (!sglq) { 8647 if (!(flag & SLI_IOCB_RET_IOCB)) { 8648 __lpfc_sli_ringtx_put(phba, 8649 pring, 8650 piocb); 8651 return IOCB_SUCCESS; 8652 } else 8653 return IOCB_BUSY; 8654 } 8655 } 8656 } 8657 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8658 /* These IO's already have an XRI and a mapped sgl. */ 8659 sglq = NULL; 8660 } else { 8661 /* 8662 * This is a continuation of a commandi,(CX) so this 8663 * sglq is on the active list 8664 */ 8665 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8666 if (!sglq) 8667 return IOCB_ERROR; 8668 } 8669 8670 if (sglq) { 8671 piocb->sli4_lxritag = sglq->sli4_lxritag; 8672 piocb->sli4_xritag = sglq->sli4_xritag; 8673 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8674 return IOCB_ERROR; 8675 } 8676 8677 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 8678 return IOCB_ERROR; 8679 8680 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8681 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8682 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8683 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8684 } else { 8685 wq = phba->sli4_hba.oas_wq; 8686 } 8687 if (lpfc_sli4_wq_put(wq, &wqe)) 8688 return IOCB_ERROR; 8689 } else { 8690 if (unlikely(!phba->sli4_hba.els_wq)) 8691 return IOCB_ERROR; 8692 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 8693 return IOCB_ERROR; 8694 } 8695 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8696 8697 return 0; 8698 } 8699 8700 /** 8701 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8702 * 8703 * This routine wraps the actual lockless version for issusing IOCB function 8704 * pointer from the lpfc_hba struct. 8705 * 8706 * Return codes: 8707 * IOCB_ERROR - Error 8708 * IOCB_SUCCESS - Success 8709 * IOCB_BUSY - Busy 8710 **/ 8711 int 8712 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8713 struct lpfc_iocbq *piocb, uint32_t flag) 8714 { 8715 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8716 } 8717 8718 /** 8719 * lpfc_sli_api_table_setup - Set up sli api function jump table 8720 * @phba: The hba struct for which this call is being executed. 8721 * @dev_grp: The HBA PCI-Device group number. 8722 * 8723 * This routine sets up the SLI interface API function jump table in @phba 8724 * struct. 8725 * Returns: 0 - success, -ENODEV - failure. 8726 **/ 8727 int 8728 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8729 { 8730 8731 switch (dev_grp) { 8732 case LPFC_PCI_DEV_LP: 8733 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8734 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8735 break; 8736 case LPFC_PCI_DEV_OC: 8737 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8738 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8739 break; 8740 default: 8741 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8742 "1419 Invalid HBA PCI-device group: 0x%x\n", 8743 dev_grp); 8744 return -ENODEV; 8745 break; 8746 } 8747 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8748 return 0; 8749 } 8750 8751 int 8752 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 8753 struct lpfc_iocbq *piocb) 8754 { 8755 uint32_t idx; 8756 8757 if (phba->sli_rev == LPFC_SLI_REV4) { 8758 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 8759 /* 8760 * fcp_wqidx should already be setup based on what 8761 * completion queue we want to use. 8762 */ 8763 if (!(phba->cfg_fof) || 8764 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 8765 if (unlikely(!phba->sli4_hba.fcp_wq)) 8766 return LPFC_HBA_ERROR; 8767 idx = lpfc_sli4_scmd_to_wqidx_distr(phba); 8768 piocb->fcp_wqidx = idx; 8769 ring_number = MAX_SLI3_CONFIGURED_RINGS + idx; 8770 } else { 8771 if (unlikely(!phba->sli4_hba.oas_wq)) 8772 return LPFC_HBA_ERROR; 8773 idx = 0; 8774 piocb->fcp_wqidx = idx; 8775 ring_number = LPFC_FCP_OAS_RING; 8776 } 8777 } 8778 } 8779 return ring_number; 8780 } 8781 8782 /** 8783 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 8784 * @phba: Pointer to HBA context object. 8785 * @pring: Pointer to driver SLI ring object. 8786 * @piocb: Pointer to command iocb. 8787 * @flag: Flag indicating if this command can be put into txq. 8788 * 8789 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 8790 * function. This function gets the hbalock and calls 8791 * __lpfc_sli_issue_iocb function and will return the error returned 8792 * by __lpfc_sli_issue_iocb function. This wrapper is used by 8793 * functions which do not hold hbalock. 8794 **/ 8795 int 8796 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8797 struct lpfc_iocbq *piocb, uint32_t flag) 8798 { 8799 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 8800 struct lpfc_sli_ring *pring; 8801 struct lpfc_queue *fpeq; 8802 struct lpfc_eqe *eqe; 8803 unsigned long iflags; 8804 int rc, idx; 8805 8806 if (phba->sli_rev == LPFC_SLI_REV4) { 8807 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 8808 if (unlikely(ring_number == LPFC_HBA_ERROR)) 8809 return IOCB_ERROR; 8810 idx = piocb->fcp_wqidx; 8811 8812 pring = &phba->sli.ring[ring_number]; 8813 spin_lock_irqsave(&pring->ring_lock, iflags); 8814 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8815 spin_unlock_irqrestore(&pring->ring_lock, iflags); 8816 8817 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 8818 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 8819 8820 if (atomic_dec_and_test(&fcp_eq_hdl-> 8821 fcp_eq_in_use)) { 8822 8823 /* Get associated EQ with this index */ 8824 fpeq = phba->sli4_hba.hba_eq[idx]; 8825 8826 /* Turn off interrupts from this EQ */ 8827 lpfc_sli4_eq_clr_intr(fpeq); 8828 8829 /* 8830 * Process all the events on FCP EQ 8831 */ 8832 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 8833 lpfc_sli4_hba_handle_eqe(phba, 8834 eqe, idx); 8835 fpeq->EQ_processed++; 8836 } 8837 8838 /* Always clear and re-arm the EQ */ 8839 lpfc_sli4_eq_release(fpeq, 8840 LPFC_QUEUE_REARM); 8841 } 8842 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 8843 } 8844 } else { 8845 /* For now, SLI2/3 will still use hbalock */ 8846 spin_lock_irqsave(&phba->hbalock, iflags); 8847 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8848 spin_unlock_irqrestore(&phba->hbalock, iflags); 8849 } 8850 return rc; 8851 } 8852 8853 /** 8854 * lpfc_extra_ring_setup - Extra ring setup function 8855 * @phba: Pointer to HBA context object. 8856 * 8857 * This function is called while driver attaches with the 8858 * HBA to setup the extra ring. The extra ring is used 8859 * only when driver needs to support target mode functionality 8860 * or IP over FC functionalities. 8861 * 8862 * This function is called with no lock held. 8863 **/ 8864 static int 8865 lpfc_extra_ring_setup( struct lpfc_hba *phba) 8866 { 8867 struct lpfc_sli *psli; 8868 struct lpfc_sli_ring *pring; 8869 8870 psli = &phba->sli; 8871 8872 /* Adjust cmd/rsp ring iocb entries more evenly */ 8873 8874 /* Take some away from the FCP ring */ 8875 pring = &psli->ring[psli->fcp_ring]; 8876 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8877 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8878 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8879 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8880 8881 /* and give them to the extra ring */ 8882 pring = &psli->ring[psli->extra_ring]; 8883 8884 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8885 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8886 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8887 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8888 8889 /* Setup default profile for this ring */ 8890 pring->iotag_max = 4096; 8891 pring->num_mask = 1; 8892 pring->prt[0].profile = 0; /* Mask 0 */ 8893 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 8894 pring->prt[0].type = phba->cfg_multi_ring_type; 8895 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 8896 return 0; 8897 } 8898 8899 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 8900 * @phba: Pointer to HBA context object. 8901 * @iocbq: Pointer to iocb object. 8902 * 8903 * The async_event handler calls this routine when it receives 8904 * an ASYNC_STATUS_CN event from the port. The port generates 8905 * this event when an Abort Sequence request to an rport fails 8906 * twice in succession. The abort could be originated by the 8907 * driver or by the port. The ABTS could have been for an ELS 8908 * or FCP IO. The port only generates this event when an ABTS 8909 * fails to complete after one retry. 8910 */ 8911 static void 8912 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 8913 struct lpfc_iocbq *iocbq) 8914 { 8915 struct lpfc_nodelist *ndlp = NULL; 8916 uint16_t rpi = 0, vpi = 0; 8917 struct lpfc_vport *vport = NULL; 8918 8919 /* The rpi in the ulpContext is vport-sensitive. */ 8920 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 8921 rpi = iocbq->iocb.ulpContext; 8922 8923 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8924 "3092 Port generated ABTS async event " 8925 "on vpi %d rpi %d status 0x%x\n", 8926 vpi, rpi, iocbq->iocb.ulpStatus); 8927 8928 vport = lpfc_find_vport_by_vpid(phba, vpi); 8929 if (!vport) 8930 goto err_exit; 8931 ndlp = lpfc_findnode_rpi(vport, rpi); 8932 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 8933 goto err_exit; 8934 8935 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 8936 lpfc_sli_abts_recover_port(vport, ndlp); 8937 return; 8938 8939 err_exit: 8940 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8941 "3095 Event Context not found, no " 8942 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 8943 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 8944 vpi, rpi); 8945 } 8946 8947 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 8948 * @phba: pointer to HBA context object. 8949 * @ndlp: nodelist pointer for the impacted rport. 8950 * @axri: pointer to the wcqe containing the failed exchange. 8951 * 8952 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 8953 * port. The port generates this event when an abort exchange request to an 8954 * rport fails twice in succession with no reply. The abort could be originated 8955 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 8956 */ 8957 void 8958 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 8959 struct lpfc_nodelist *ndlp, 8960 struct sli4_wcqe_xri_aborted *axri) 8961 { 8962 struct lpfc_vport *vport; 8963 uint32_t ext_status = 0; 8964 8965 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 8966 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8967 "3115 Node Context not found, driver " 8968 "ignoring abts err event\n"); 8969 return; 8970 } 8971 8972 vport = ndlp->vport; 8973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8974 "3116 Port generated FCP XRI ABORT event on " 8975 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 8976 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 8977 bf_get(lpfc_wcqe_xa_xri, axri), 8978 bf_get(lpfc_wcqe_xa_status, axri), 8979 axri->parameter); 8980 8981 /* 8982 * Catch the ABTS protocol failure case. Older OCe FW releases returned 8983 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 8984 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 8985 */ 8986 ext_status = axri->parameter & IOERR_PARAM_MASK; 8987 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 8988 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 8989 lpfc_sli_abts_recover_port(vport, ndlp); 8990 } 8991 8992 /** 8993 * lpfc_sli_async_event_handler - ASYNC iocb handler function 8994 * @phba: Pointer to HBA context object. 8995 * @pring: Pointer to driver SLI ring object. 8996 * @iocbq: Pointer to iocb object. 8997 * 8998 * This function is called by the slow ring event handler 8999 * function when there is an ASYNC event iocb in the ring. 9000 * This function is called with no lock held. 9001 * Currently this function handles only temperature related 9002 * ASYNC events. The function decodes the temperature sensor 9003 * event message and posts events for the management applications. 9004 **/ 9005 static void 9006 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9007 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9008 { 9009 IOCB_t *icmd; 9010 uint16_t evt_code; 9011 struct temp_event temp_event_data; 9012 struct Scsi_Host *shost; 9013 uint32_t *iocb_w; 9014 9015 icmd = &iocbq->iocb; 9016 evt_code = icmd->un.asyncstat.evt_code; 9017 9018 switch (evt_code) { 9019 case ASYNC_TEMP_WARN: 9020 case ASYNC_TEMP_SAFE: 9021 temp_event_data.data = (uint32_t) icmd->ulpContext; 9022 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9023 if (evt_code == ASYNC_TEMP_WARN) { 9024 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9025 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9026 "0347 Adapter is very hot, please take " 9027 "corrective action. temperature : %d Celsius\n", 9028 (uint32_t) icmd->ulpContext); 9029 } else { 9030 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9031 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9032 "0340 Adapter temperature is OK now. " 9033 "temperature : %d Celsius\n", 9034 (uint32_t) icmd->ulpContext); 9035 } 9036 9037 /* Send temperature change event to applications */ 9038 shost = lpfc_shost_from_vport(phba->pport); 9039 fc_host_post_vendor_event(shost, fc_get_event_number(), 9040 sizeof(temp_event_data), (char *) &temp_event_data, 9041 LPFC_NL_VENDOR_ID); 9042 break; 9043 case ASYNC_STATUS_CN: 9044 lpfc_sli_abts_err_handler(phba, iocbq); 9045 break; 9046 default: 9047 iocb_w = (uint32_t *) icmd; 9048 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9049 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9050 " evt_code 0x%x\n" 9051 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9052 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9053 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9054 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9055 pring->ringno, icmd->un.asyncstat.evt_code, 9056 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9057 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9058 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9059 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9060 9061 break; 9062 } 9063 } 9064 9065 9066 /** 9067 * lpfc_sli_setup - SLI ring setup function 9068 * @phba: Pointer to HBA context object. 9069 * 9070 * lpfc_sli_setup sets up rings of the SLI interface with 9071 * number of iocbs per ring and iotags. This function is 9072 * called while driver attach to the HBA and before the 9073 * interrupts are enabled. So there is no need for locking. 9074 * 9075 * This function always returns 0. 9076 **/ 9077 int 9078 lpfc_sli_setup(struct lpfc_hba *phba) 9079 { 9080 int i, totiocbsize = 0; 9081 struct lpfc_sli *psli = &phba->sli; 9082 struct lpfc_sli_ring *pring; 9083 9084 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9085 if (phba->sli_rev == LPFC_SLI_REV4) 9086 psli->num_rings += phba->cfg_fcp_io_channel; 9087 psli->sli_flag = 0; 9088 psli->fcp_ring = LPFC_FCP_RING; 9089 psli->next_ring = LPFC_FCP_NEXT_RING; 9090 psli->extra_ring = LPFC_EXTRA_RING; 9091 9092 psli->iocbq_lookup = NULL; 9093 psli->iocbq_lookup_len = 0; 9094 psli->last_iotag = 0; 9095 9096 for (i = 0; i < psli->num_rings; i++) { 9097 pring = &psli->ring[i]; 9098 switch (i) { 9099 case LPFC_FCP_RING: /* ring 0 - FCP */ 9100 /* numCiocb and numRiocb are used in config_port */ 9101 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9102 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9103 pring->sli.sli3.numCiocb += 9104 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9105 pring->sli.sli3.numRiocb += 9106 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9107 pring->sli.sli3.numCiocb += 9108 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9109 pring->sli.sli3.numRiocb += 9110 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9111 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9112 SLI3_IOCB_CMD_SIZE : 9113 SLI2_IOCB_CMD_SIZE; 9114 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9115 SLI3_IOCB_RSP_SIZE : 9116 SLI2_IOCB_RSP_SIZE; 9117 pring->iotag_ctr = 0; 9118 pring->iotag_max = 9119 (phba->cfg_hba_queue_depth * 2); 9120 pring->fast_iotag = pring->iotag_max; 9121 pring->num_mask = 0; 9122 break; 9123 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9124 /* numCiocb and numRiocb are used in config_port */ 9125 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9126 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9127 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9128 SLI3_IOCB_CMD_SIZE : 9129 SLI2_IOCB_CMD_SIZE; 9130 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9131 SLI3_IOCB_RSP_SIZE : 9132 SLI2_IOCB_RSP_SIZE; 9133 pring->iotag_max = phba->cfg_hba_queue_depth; 9134 pring->num_mask = 0; 9135 break; 9136 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9137 /* numCiocb and numRiocb are used in config_port */ 9138 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9139 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9140 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9141 SLI3_IOCB_CMD_SIZE : 9142 SLI2_IOCB_CMD_SIZE; 9143 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9144 SLI3_IOCB_RSP_SIZE : 9145 SLI2_IOCB_RSP_SIZE; 9146 pring->fast_iotag = 0; 9147 pring->iotag_ctr = 0; 9148 pring->iotag_max = 4096; 9149 pring->lpfc_sli_rcv_async_status = 9150 lpfc_sli_async_event_handler; 9151 pring->num_mask = LPFC_MAX_RING_MASK; 9152 pring->prt[0].profile = 0; /* Mask 0 */ 9153 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9154 pring->prt[0].type = FC_TYPE_ELS; 9155 pring->prt[0].lpfc_sli_rcv_unsol_event = 9156 lpfc_els_unsol_event; 9157 pring->prt[1].profile = 0; /* Mask 1 */ 9158 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9159 pring->prt[1].type = FC_TYPE_ELS; 9160 pring->prt[1].lpfc_sli_rcv_unsol_event = 9161 lpfc_els_unsol_event; 9162 pring->prt[2].profile = 0; /* Mask 2 */ 9163 /* NameServer Inquiry */ 9164 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9165 /* NameServer */ 9166 pring->prt[2].type = FC_TYPE_CT; 9167 pring->prt[2].lpfc_sli_rcv_unsol_event = 9168 lpfc_ct_unsol_event; 9169 pring->prt[3].profile = 0; /* Mask 3 */ 9170 /* NameServer response */ 9171 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9172 /* NameServer */ 9173 pring->prt[3].type = FC_TYPE_CT; 9174 pring->prt[3].lpfc_sli_rcv_unsol_event = 9175 lpfc_ct_unsol_event; 9176 break; 9177 } 9178 totiocbsize += (pring->sli.sli3.numCiocb * 9179 pring->sli.sli3.sizeCiocb) + 9180 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9181 } 9182 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9183 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9184 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9185 "SLI2 SLIM Data: x%x x%lx\n", 9186 phba->brd_no, totiocbsize, 9187 (unsigned long) MAX_SLIM_IOCB_SIZE); 9188 } 9189 if (phba->cfg_multi_ring_support == 2) 9190 lpfc_extra_ring_setup(phba); 9191 9192 return 0; 9193 } 9194 9195 /** 9196 * lpfc_sli_queue_setup - Queue initialization function 9197 * @phba: Pointer to HBA context object. 9198 * 9199 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9200 * ring. This function also initializes ring indices of each ring. 9201 * This function is called during the initialization of the SLI 9202 * interface of an HBA. 9203 * This function is called with no lock held and always returns 9204 * 1. 9205 **/ 9206 int 9207 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9208 { 9209 struct lpfc_sli *psli; 9210 struct lpfc_sli_ring *pring; 9211 int i; 9212 9213 psli = &phba->sli; 9214 spin_lock_irq(&phba->hbalock); 9215 INIT_LIST_HEAD(&psli->mboxq); 9216 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9217 /* Initialize list headers for txq and txcmplq as double linked lists */ 9218 for (i = 0; i < psli->num_rings; i++) { 9219 pring = &psli->ring[i]; 9220 pring->ringno = i; 9221 pring->sli.sli3.next_cmdidx = 0; 9222 pring->sli.sli3.local_getidx = 0; 9223 pring->sli.sli3.cmdidx = 0; 9224 pring->flag = 0; 9225 INIT_LIST_HEAD(&pring->txq); 9226 INIT_LIST_HEAD(&pring->txcmplq); 9227 INIT_LIST_HEAD(&pring->iocb_continueq); 9228 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9229 INIT_LIST_HEAD(&pring->postbufq); 9230 spin_lock_init(&pring->ring_lock); 9231 } 9232 spin_unlock_irq(&phba->hbalock); 9233 return 1; 9234 } 9235 9236 /** 9237 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9238 * @phba: Pointer to HBA context object. 9239 * 9240 * This routine flushes the mailbox command subsystem. It will unconditionally 9241 * flush all the mailbox commands in the three possible stages in the mailbox 9242 * command sub-system: pending mailbox command queue; the outstanding mailbox 9243 * command; and completed mailbox command queue. It is caller's responsibility 9244 * to make sure that the driver is in the proper state to flush the mailbox 9245 * command sub-system. Namely, the posting of mailbox commands into the 9246 * pending mailbox command queue from the various clients must be stopped; 9247 * either the HBA is in a state that it will never works on the outstanding 9248 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9249 * mailbox command has been completed. 9250 **/ 9251 static void 9252 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9253 { 9254 LIST_HEAD(completions); 9255 struct lpfc_sli *psli = &phba->sli; 9256 LPFC_MBOXQ_t *pmb; 9257 unsigned long iflag; 9258 9259 /* Flush all the mailbox commands in the mbox system */ 9260 spin_lock_irqsave(&phba->hbalock, iflag); 9261 /* The pending mailbox command queue */ 9262 list_splice_init(&phba->sli.mboxq, &completions); 9263 /* The outstanding active mailbox command */ 9264 if (psli->mbox_active) { 9265 list_add_tail(&psli->mbox_active->list, &completions); 9266 psli->mbox_active = NULL; 9267 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9268 } 9269 /* The completed mailbox command queue */ 9270 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9271 spin_unlock_irqrestore(&phba->hbalock, iflag); 9272 9273 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9274 while (!list_empty(&completions)) { 9275 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9276 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9277 if (pmb->mbox_cmpl) 9278 pmb->mbox_cmpl(phba, pmb); 9279 } 9280 } 9281 9282 /** 9283 * lpfc_sli_host_down - Vport cleanup function 9284 * @vport: Pointer to virtual port object. 9285 * 9286 * lpfc_sli_host_down is called to clean up the resources 9287 * associated with a vport before destroying virtual 9288 * port data structures. 9289 * This function does following operations: 9290 * - Free discovery resources associated with this virtual 9291 * port. 9292 * - Free iocbs associated with this virtual port in 9293 * the txq. 9294 * - Send abort for all iocb commands associated with this 9295 * vport in txcmplq. 9296 * 9297 * This function is called with no lock held and always returns 1. 9298 **/ 9299 int 9300 lpfc_sli_host_down(struct lpfc_vport *vport) 9301 { 9302 LIST_HEAD(completions); 9303 struct lpfc_hba *phba = vport->phba; 9304 struct lpfc_sli *psli = &phba->sli; 9305 struct lpfc_sli_ring *pring; 9306 struct lpfc_iocbq *iocb, *next_iocb; 9307 int i; 9308 unsigned long flags = 0; 9309 uint16_t prev_pring_flag; 9310 9311 lpfc_cleanup_discovery_resources(vport); 9312 9313 spin_lock_irqsave(&phba->hbalock, flags); 9314 for (i = 0; i < psli->num_rings; i++) { 9315 pring = &psli->ring[i]; 9316 prev_pring_flag = pring->flag; 9317 /* Only slow rings */ 9318 if (pring->ringno == LPFC_ELS_RING) { 9319 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9320 /* Set the lpfc data pending flag */ 9321 set_bit(LPFC_DATA_READY, &phba->data_flags); 9322 } 9323 /* 9324 * Error everything on the txq since these iocbs have not been 9325 * given to the FW yet. 9326 */ 9327 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9328 if (iocb->vport != vport) 9329 continue; 9330 list_move_tail(&iocb->list, &completions); 9331 } 9332 9333 /* Next issue ABTS for everything on the txcmplq */ 9334 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9335 list) { 9336 if (iocb->vport != vport) 9337 continue; 9338 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9339 } 9340 9341 pring->flag = prev_pring_flag; 9342 } 9343 9344 spin_unlock_irqrestore(&phba->hbalock, flags); 9345 9346 /* Cancel all the IOCBs from the completions list */ 9347 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9348 IOERR_SLI_DOWN); 9349 return 1; 9350 } 9351 9352 /** 9353 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9354 * @phba: Pointer to HBA context object. 9355 * 9356 * This function cleans up all iocb, buffers, mailbox commands 9357 * while shutting down the HBA. This function is called with no 9358 * lock held and always returns 1. 9359 * This function does the following to cleanup driver resources: 9360 * - Free discovery resources for each virtual port 9361 * - Cleanup any pending fabric iocbs 9362 * - Iterate through the iocb txq and free each entry 9363 * in the list. 9364 * - Free up any buffer posted to the HBA 9365 * - Free mailbox commands in the mailbox queue. 9366 **/ 9367 int 9368 lpfc_sli_hba_down(struct lpfc_hba *phba) 9369 { 9370 LIST_HEAD(completions); 9371 struct lpfc_sli *psli = &phba->sli; 9372 struct lpfc_sli_ring *pring; 9373 struct lpfc_dmabuf *buf_ptr; 9374 unsigned long flags = 0; 9375 int i; 9376 9377 /* Shutdown the mailbox command sub-system */ 9378 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9379 9380 lpfc_hba_down_prep(phba); 9381 9382 lpfc_fabric_abort_hba(phba); 9383 9384 spin_lock_irqsave(&phba->hbalock, flags); 9385 for (i = 0; i < psli->num_rings; i++) { 9386 pring = &psli->ring[i]; 9387 /* Only slow rings */ 9388 if (pring->ringno == LPFC_ELS_RING) { 9389 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9390 /* Set the lpfc data pending flag */ 9391 set_bit(LPFC_DATA_READY, &phba->data_flags); 9392 } 9393 9394 /* 9395 * Error everything on the txq since these iocbs have not been 9396 * given to the FW yet. 9397 */ 9398 list_splice_init(&pring->txq, &completions); 9399 } 9400 spin_unlock_irqrestore(&phba->hbalock, flags); 9401 9402 /* Cancel all the IOCBs from the completions list */ 9403 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9404 IOERR_SLI_DOWN); 9405 9406 spin_lock_irqsave(&phba->hbalock, flags); 9407 list_splice_init(&phba->elsbuf, &completions); 9408 phba->elsbuf_cnt = 0; 9409 phba->elsbuf_prev_cnt = 0; 9410 spin_unlock_irqrestore(&phba->hbalock, flags); 9411 9412 while (!list_empty(&completions)) { 9413 list_remove_head(&completions, buf_ptr, 9414 struct lpfc_dmabuf, list); 9415 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9416 kfree(buf_ptr); 9417 } 9418 9419 /* Return any active mbox cmds */ 9420 del_timer_sync(&psli->mbox_tmo); 9421 9422 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9423 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9424 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9425 9426 return 1; 9427 } 9428 9429 /** 9430 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9431 * @srcp: Source memory pointer. 9432 * @destp: Destination memory pointer. 9433 * @cnt: Number of words required to be copied. 9434 * 9435 * This function is used for copying data between driver memory 9436 * and the SLI memory. This function also changes the endianness 9437 * of each word if native endianness is different from SLI 9438 * endianness. This function can be called with or without 9439 * lock. 9440 **/ 9441 void 9442 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9443 { 9444 uint32_t *src = srcp; 9445 uint32_t *dest = destp; 9446 uint32_t ldata; 9447 int i; 9448 9449 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9450 ldata = *src; 9451 ldata = le32_to_cpu(ldata); 9452 *dest = ldata; 9453 src++; 9454 dest++; 9455 } 9456 } 9457 9458 9459 /** 9460 * lpfc_sli_bemem_bcopy - SLI memory copy function 9461 * @srcp: Source memory pointer. 9462 * @destp: Destination memory pointer. 9463 * @cnt: Number of words required to be copied. 9464 * 9465 * This function is used for copying data between a data structure 9466 * with big endian representation to local endianness. 9467 * This function can be called with or without lock. 9468 **/ 9469 void 9470 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9471 { 9472 uint32_t *src = srcp; 9473 uint32_t *dest = destp; 9474 uint32_t ldata; 9475 int i; 9476 9477 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9478 ldata = *src; 9479 ldata = be32_to_cpu(ldata); 9480 *dest = ldata; 9481 src++; 9482 dest++; 9483 } 9484 } 9485 9486 /** 9487 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9488 * @phba: Pointer to HBA context object. 9489 * @pring: Pointer to driver SLI ring object. 9490 * @mp: Pointer to driver buffer object. 9491 * 9492 * This function is called with no lock held. 9493 * It always return zero after adding the buffer to the postbufq 9494 * buffer list. 9495 **/ 9496 int 9497 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9498 struct lpfc_dmabuf *mp) 9499 { 9500 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9501 later */ 9502 spin_lock_irq(&phba->hbalock); 9503 list_add_tail(&mp->list, &pring->postbufq); 9504 pring->postbufq_cnt++; 9505 spin_unlock_irq(&phba->hbalock); 9506 return 0; 9507 } 9508 9509 /** 9510 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9511 * @phba: Pointer to HBA context object. 9512 * 9513 * When HBQ is enabled, buffers are searched based on tags. This function 9514 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9515 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9516 * does not conflict with tags of buffer posted for unsolicited events. 9517 * The function returns the allocated tag. The function is called with 9518 * no locks held. 9519 **/ 9520 uint32_t 9521 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9522 { 9523 spin_lock_irq(&phba->hbalock); 9524 phba->buffer_tag_count++; 9525 /* 9526 * Always set the QUE_BUFTAG_BIT to distiguish between 9527 * a tag assigned by HBQ. 9528 */ 9529 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9530 spin_unlock_irq(&phba->hbalock); 9531 return phba->buffer_tag_count; 9532 } 9533 9534 /** 9535 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9536 * @phba: Pointer to HBA context object. 9537 * @pring: Pointer to driver SLI ring object. 9538 * @tag: Buffer tag. 9539 * 9540 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9541 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9542 * iocb is posted to the response ring with the tag of the buffer. 9543 * This function searches the pring->postbufq list using the tag 9544 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9545 * iocb. If the buffer is found then lpfc_dmabuf object of the 9546 * buffer is returned to the caller else NULL is returned. 9547 * This function is called with no lock held. 9548 **/ 9549 struct lpfc_dmabuf * 9550 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9551 uint32_t tag) 9552 { 9553 struct lpfc_dmabuf *mp, *next_mp; 9554 struct list_head *slp = &pring->postbufq; 9555 9556 /* Search postbufq, from the beginning, looking for a match on tag */ 9557 spin_lock_irq(&phba->hbalock); 9558 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9559 if (mp->buffer_tag == tag) { 9560 list_del_init(&mp->list); 9561 pring->postbufq_cnt--; 9562 spin_unlock_irq(&phba->hbalock); 9563 return mp; 9564 } 9565 } 9566 9567 spin_unlock_irq(&phba->hbalock); 9568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9569 "0402 Cannot find virtual addr for buffer tag on " 9570 "ring %d Data x%lx x%p x%p x%x\n", 9571 pring->ringno, (unsigned long) tag, 9572 slp->next, slp->prev, pring->postbufq_cnt); 9573 9574 return NULL; 9575 } 9576 9577 /** 9578 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9579 * @phba: Pointer to HBA context object. 9580 * @pring: Pointer to driver SLI ring object. 9581 * @phys: DMA address of the buffer. 9582 * 9583 * This function searches the buffer list using the dma_address 9584 * of unsolicited event to find the driver's lpfc_dmabuf object 9585 * corresponding to the dma_address. The function returns the 9586 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9587 * This function is called by the ct and els unsolicited event 9588 * handlers to get the buffer associated with the unsolicited 9589 * event. 9590 * 9591 * This function is called with no lock held. 9592 **/ 9593 struct lpfc_dmabuf * 9594 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9595 dma_addr_t phys) 9596 { 9597 struct lpfc_dmabuf *mp, *next_mp; 9598 struct list_head *slp = &pring->postbufq; 9599 9600 /* Search postbufq, from the beginning, looking for a match on phys */ 9601 spin_lock_irq(&phba->hbalock); 9602 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9603 if (mp->phys == phys) { 9604 list_del_init(&mp->list); 9605 pring->postbufq_cnt--; 9606 spin_unlock_irq(&phba->hbalock); 9607 return mp; 9608 } 9609 } 9610 9611 spin_unlock_irq(&phba->hbalock); 9612 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9613 "0410 Cannot find virtual addr for mapped buf on " 9614 "ring %d Data x%llx x%p x%p x%x\n", 9615 pring->ringno, (unsigned long long)phys, 9616 slp->next, slp->prev, pring->postbufq_cnt); 9617 return NULL; 9618 } 9619 9620 /** 9621 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9622 * @phba: Pointer to HBA context object. 9623 * @cmdiocb: Pointer to driver command iocb object. 9624 * @rspiocb: Pointer to driver response iocb object. 9625 * 9626 * This function is the completion handler for the abort iocbs for 9627 * ELS commands. This function is called from the ELS ring event 9628 * handler with no lock held. This function frees memory resources 9629 * associated with the abort iocb. 9630 **/ 9631 static void 9632 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9633 struct lpfc_iocbq *rspiocb) 9634 { 9635 IOCB_t *irsp = &rspiocb->iocb; 9636 uint16_t abort_iotag, abort_context; 9637 struct lpfc_iocbq *abort_iocb = NULL; 9638 9639 if (irsp->ulpStatus) { 9640 9641 /* 9642 * Assume that the port already completed and returned, or 9643 * will return the iocb. Just Log the message. 9644 */ 9645 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9646 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9647 9648 spin_lock_irq(&phba->hbalock); 9649 if (phba->sli_rev < LPFC_SLI_REV4) { 9650 if (abort_iotag != 0 && 9651 abort_iotag <= phba->sli.last_iotag) 9652 abort_iocb = 9653 phba->sli.iocbq_lookup[abort_iotag]; 9654 } else 9655 /* For sli4 the abort_tag is the XRI, 9656 * so the abort routine puts the iotag of the iocb 9657 * being aborted in the context field of the abort 9658 * IOCB. 9659 */ 9660 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9661 9662 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9663 "0327 Cannot abort els iocb %p " 9664 "with tag %x context %x, abort status %x, " 9665 "abort code %x\n", 9666 abort_iocb, abort_iotag, abort_context, 9667 irsp->ulpStatus, irsp->un.ulpWord[4]); 9668 9669 spin_unlock_irq(&phba->hbalock); 9670 } 9671 lpfc_sli_release_iocbq(phba, cmdiocb); 9672 return; 9673 } 9674 9675 /** 9676 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9677 * @phba: Pointer to HBA context object. 9678 * @cmdiocb: Pointer to driver command iocb object. 9679 * @rspiocb: Pointer to driver response iocb object. 9680 * 9681 * The function is called from SLI ring event handler with no 9682 * lock held. This function is the completion handler for ELS commands 9683 * which are aborted. The function frees memory resources used for 9684 * the aborted ELS commands. 9685 **/ 9686 static void 9687 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9688 struct lpfc_iocbq *rspiocb) 9689 { 9690 IOCB_t *irsp = &rspiocb->iocb; 9691 9692 /* ELS cmd tag <ulpIoTag> completes */ 9693 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9694 "0139 Ignoring ELS cmd tag x%x completion Data: " 9695 "x%x x%x x%x\n", 9696 irsp->ulpIoTag, irsp->ulpStatus, 9697 irsp->un.ulpWord[4], irsp->ulpTimeout); 9698 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9699 lpfc_ct_free_iocb(phba, cmdiocb); 9700 else 9701 lpfc_els_free_iocb(phba, cmdiocb); 9702 return; 9703 } 9704 9705 /** 9706 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9707 * @phba: Pointer to HBA context object. 9708 * @pring: Pointer to driver SLI ring object. 9709 * @cmdiocb: Pointer to driver command iocb object. 9710 * 9711 * This function issues an abort iocb for the provided command iocb down to 9712 * the port. Other than the case the outstanding command iocb is an abort 9713 * request, this function issues abort out unconditionally. This function is 9714 * called with hbalock held. The function returns 0 when it fails due to 9715 * memory allocation failure or when the command iocb is an abort request. 9716 **/ 9717 static int 9718 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9719 struct lpfc_iocbq *cmdiocb) 9720 { 9721 struct lpfc_vport *vport = cmdiocb->vport; 9722 struct lpfc_iocbq *abtsiocbp; 9723 IOCB_t *icmd = NULL; 9724 IOCB_t *iabt = NULL; 9725 int ring_number; 9726 int retval; 9727 unsigned long iflags; 9728 9729 /* 9730 * There are certain command types we don't want to abort. And we 9731 * don't want to abort commands that are already in the process of 9732 * being aborted. 9733 */ 9734 icmd = &cmdiocb->iocb; 9735 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9736 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9737 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9738 return 0; 9739 9740 /* issue ABTS for this IOCB based on iotag */ 9741 abtsiocbp = __lpfc_sli_get_iocbq(phba); 9742 if (abtsiocbp == NULL) 9743 return 0; 9744 9745 /* This signals the response to set the correct status 9746 * before calling the completion handler 9747 */ 9748 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 9749 9750 iabt = &abtsiocbp->iocb; 9751 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 9752 iabt->un.acxri.abortContextTag = icmd->ulpContext; 9753 if (phba->sli_rev == LPFC_SLI_REV4) { 9754 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 9755 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 9756 } 9757 else 9758 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 9759 iabt->ulpLe = 1; 9760 iabt->ulpClass = icmd->ulpClass; 9761 9762 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 9763 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 9764 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 9765 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 9766 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 9767 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 9768 9769 if (phba->link_state >= LPFC_LINK_UP) 9770 iabt->ulpCommand = CMD_ABORT_XRI_CN; 9771 else 9772 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 9773 9774 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 9775 9776 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 9777 "0339 Abort xri x%x, original iotag x%x, " 9778 "abort cmd iotag x%x\n", 9779 iabt->un.acxri.abortIoTag, 9780 iabt->un.acxri.abortContextTag, 9781 abtsiocbp->iotag); 9782 9783 if (phba->sli_rev == LPFC_SLI_REV4) { 9784 ring_number = 9785 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 9786 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9787 return 0; 9788 pring = &phba->sli.ring[ring_number]; 9789 /* Note: both hbalock and ring_lock need to be set here */ 9790 spin_lock_irqsave(&pring->ring_lock, iflags); 9791 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9792 abtsiocbp, 0); 9793 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9794 } else { 9795 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9796 abtsiocbp, 0); 9797 } 9798 9799 if (retval) 9800 __lpfc_sli_release_iocbq(phba, abtsiocbp); 9801 9802 /* 9803 * Caller to this routine should check for IOCB_ERROR 9804 * and handle it properly. This routine no longer removes 9805 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9806 */ 9807 return retval; 9808 } 9809 9810 /** 9811 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 9812 * @phba: Pointer to HBA context object. 9813 * @pring: Pointer to driver SLI ring object. 9814 * @cmdiocb: Pointer to driver command iocb object. 9815 * 9816 * This function issues an abort iocb for the provided command iocb. In case 9817 * of unloading, the abort iocb will not be issued to commands on the ELS 9818 * ring. Instead, the callback function shall be changed to those commands 9819 * so that nothing happens when them finishes. This function is called with 9820 * hbalock held. The function returns 0 when the command iocb is an abort 9821 * request. 9822 **/ 9823 int 9824 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9825 struct lpfc_iocbq *cmdiocb) 9826 { 9827 struct lpfc_vport *vport = cmdiocb->vport; 9828 int retval = IOCB_ERROR; 9829 IOCB_t *icmd = NULL; 9830 9831 /* 9832 * There are certain command types we don't want to abort. And we 9833 * don't want to abort commands that are already in the process of 9834 * being aborted. 9835 */ 9836 icmd = &cmdiocb->iocb; 9837 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9838 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9839 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9840 return 0; 9841 9842 /* 9843 * If we're unloading, don't abort iocb on the ELS ring, but change 9844 * the callback so that nothing happens when it finishes. 9845 */ 9846 if ((vport->load_flag & FC_UNLOADING) && 9847 (pring->ringno == LPFC_ELS_RING)) { 9848 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 9849 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 9850 else 9851 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 9852 goto abort_iotag_exit; 9853 } 9854 9855 /* Now, we try to issue the abort to the cmdiocb out */ 9856 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 9857 9858 abort_iotag_exit: 9859 /* 9860 * Caller to this routine should check for IOCB_ERROR 9861 * and handle it properly. This routine no longer removes 9862 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9863 */ 9864 return retval; 9865 } 9866 9867 /** 9868 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 9869 * @phba: pointer to lpfc HBA data structure. 9870 * 9871 * This routine will abort all pending and outstanding iocbs to an HBA. 9872 **/ 9873 void 9874 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 9875 { 9876 struct lpfc_sli *psli = &phba->sli; 9877 struct lpfc_sli_ring *pring; 9878 int i; 9879 9880 for (i = 0; i < psli->num_rings; i++) { 9881 pring = &psli->ring[i]; 9882 lpfc_sli_abort_iocb_ring(phba, pring); 9883 } 9884 } 9885 9886 /** 9887 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 9888 * @iocbq: Pointer to driver iocb object. 9889 * @vport: Pointer to driver virtual port object. 9890 * @tgt_id: SCSI ID of the target. 9891 * @lun_id: LUN ID of the scsi device. 9892 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 9893 * 9894 * This function acts as an iocb filter for functions which abort or count 9895 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 9896 * 0 if the filtering criteria is met for the given iocb and will return 9897 * 1 if the filtering criteria is not met. 9898 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 9899 * given iocb is for the SCSI device specified by vport, tgt_id and 9900 * lun_id parameter. 9901 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 9902 * given iocb is for the SCSI target specified by vport and tgt_id 9903 * parameters. 9904 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 9905 * given iocb is for the SCSI host associated with the given vport. 9906 * This function is called with no locks held. 9907 **/ 9908 static int 9909 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 9910 uint16_t tgt_id, uint64_t lun_id, 9911 lpfc_ctx_cmd ctx_cmd) 9912 { 9913 struct lpfc_scsi_buf *lpfc_cmd; 9914 int rc = 1; 9915 9916 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 9917 return rc; 9918 9919 if (iocbq->vport != vport) 9920 return rc; 9921 9922 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 9923 9924 if (lpfc_cmd->pCmd == NULL) 9925 return rc; 9926 9927 switch (ctx_cmd) { 9928 case LPFC_CTX_LUN: 9929 if ((lpfc_cmd->rdata->pnode) && 9930 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 9931 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 9932 rc = 0; 9933 break; 9934 case LPFC_CTX_TGT: 9935 if ((lpfc_cmd->rdata->pnode) && 9936 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 9937 rc = 0; 9938 break; 9939 case LPFC_CTX_HOST: 9940 rc = 0; 9941 break; 9942 default: 9943 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 9944 __func__, ctx_cmd); 9945 break; 9946 } 9947 9948 return rc; 9949 } 9950 9951 /** 9952 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 9953 * @vport: Pointer to virtual port. 9954 * @tgt_id: SCSI ID of the target. 9955 * @lun_id: LUN ID of the scsi device. 9956 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 9957 * 9958 * This function returns number of FCP commands pending for the vport. 9959 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 9960 * commands pending on the vport associated with SCSI device specified 9961 * by tgt_id and lun_id parameters. 9962 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 9963 * commands pending on the vport associated with SCSI target specified 9964 * by tgt_id parameter. 9965 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 9966 * commands pending on the vport. 9967 * This function returns the number of iocbs which satisfy the filter. 9968 * This function is called without any lock held. 9969 **/ 9970 int 9971 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 9972 lpfc_ctx_cmd ctx_cmd) 9973 { 9974 struct lpfc_hba *phba = vport->phba; 9975 struct lpfc_iocbq *iocbq; 9976 int sum, i; 9977 9978 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 9979 iocbq = phba->sli.iocbq_lookup[i]; 9980 9981 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 9982 ctx_cmd) == 0) 9983 sum++; 9984 } 9985 9986 return sum; 9987 } 9988 9989 /** 9990 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 9991 * @phba: Pointer to HBA context object 9992 * @cmdiocb: Pointer to command iocb object. 9993 * @rspiocb: Pointer to response iocb object. 9994 * 9995 * This function is called when an aborted FCP iocb completes. This 9996 * function is called by the ring event handler with no lock held. 9997 * This function frees the iocb. 9998 **/ 9999 void 10000 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10001 struct lpfc_iocbq *rspiocb) 10002 { 10003 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10004 "3096 ABORT_XRI_CN completing on rpi x%x " 10005 "original iotag x%x, abort cmd iotag x%x " 10006 "status 0x%x, reason 0x%x\n", 10007 cmdiocb->iocb.un.acxri.abortContextTag, 10008 cmdiocb->iocb.un.acxri.abortIoTag, 10009 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10010 rspiocb->iocb.un.ulpWord[4]); 10011 lpfc_sli_release_iocbq(phba, cmdiocb); 10012 return; 10013 } 10014 10015 /** 10016 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10017 * @vport: Pointer to virtual port. 10018 * @pring: Pointer to driver SLI ring object. 10019 * @tgt_id: SCSI ID of the target. 10020 * @lun_id: LUN ID of the scsi device. 10021 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10022 * 10023 * This function sends an abort command for every SCSI command 10024 * associated with the given virtual port pending on the ring 10025 * filtered by lpfc_sli_validate_fcp_iocb function. 10026 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10027 * FCP iocbs associated with lun specified by tgt_id and lun_id 10028 * parameters 10029 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10030 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10031 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10032 * FCP iocbs associated with virtual port. 10033 * This function returns number of iocbs it failed to abort. 10034 * This function is called with no locks held. 10035 **/ 10036 int 10037 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10038 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10039 { 10040 struct lpfc_hba *phba = vport->phba; 10041 struct lpfc_iocbq *iocbq; 10042 struct lpfc_iocbq *abtsiocb; 10043 IOCB_t *cmd = NULL; 10044 int errcnt = 0, ret_val = 0; 10045 int i; 10046 10047 for (i = 1; i <= phba->sli.last_iotag; i++) { 10048 iocbq = phba->sli.iocbq_lookup[i]; 10049 10050 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10051 abort_cmd) != 0) 10052 continue; 10053 10054 /* 10055 * If the iocbq is already being aborted, don't take a second 10056 * action, but do count it. 10057 */ 10058 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10059 continue; 10060 10061 /* issue ABTS for this IOCB based on iotag */ 10062 abtsiocb = lpfc_sli_get_iocbq(phba); 10063 if (abtsiocb == NULL) { 10064 errcnt++; 10065 continue; 10066 } 10067 10068 /* indicate the IO is being aborted by the driver. */ 10069 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10070 10071 cmd = &iocbq->iocb; 10072 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10073 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10074 if (phba->sli_rev == LPFC_SLI_REV4) 10075 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10076 else 10077 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10078 abtsiocb->iocb.ulpLe = 1; 10079 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10080 abtsiocb->vport = vport; 10081 10082 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10083 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10084 if (iocbq->iocb_flag & LPFC_IO_FCP) 10085 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10086 if (iocbq->iocb_flag & LPFC_IO_FOF) 10087 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10088 10089 if (lpfc_is_link_up(phba)) 10090 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10091 else 10092 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10093 10094 /* Setup callback routine and issue the command. */ 10095 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10096 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10097 abtsiocb, 0); 10098 if (ret_val == IOCB_ERROR) { 10099 lpfc_sli_release_iocbq(phba, abtsiocb); 10100 errcnt++; 10101 continue; 10102 } 10103 } 10104 10105 return errcnt; 10106 } 10107 10108 /** 10109 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10110 * @vport: Pointer to virtual port. 10111 * @pring: Pointer to driver SLI ring object. 10112 * @tgt_id: SCSI ID of the target. 10113 * @lun_id: LUN ID of the scsi device. 10114 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10115 * 10116 * This function sends an abort command for every SCSI command 10117 * associated with the given virtual port pending on the ring 10118 * filtered by lpfc_sli_validate_fcp_iocb function. 10119 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10120 * FCP iocbs associated with lun specified by tgt_id and lun_id 10121 * parameters 10122 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10123 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10124 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10125 * FCP iocbs associated with virtual port. 10126 * This function returns number of iocbs it aborted . 10127 * This function is called with no locks held right after a taskmgmt 10128 * command is sent. 10129 **/ 10130 int 10131 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10132 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10133 { 10134 struct lpfc_hba *phba = vport->phba; 10135 struct lpfc_scsi_buf *lpfc_cmd; 10136 struct lpfc_iocbq *abtsiocbq; 10137 struct lpfc_nodelist *ndlp; 10138 struct lpfc_iocbq *iocbq; 10139 IOCB_t *icmd; 10140 int sum, i, ret_val; 10141 unsigned long iflags; 10142 struct lpfc_sli_ring *pring_s4; 10143 uint32_t ring_number; 10144 10145 spin_lock_irq(&phba->hbalock); 10146 10147 /* all I/Os are in process of being flushed */ 10148 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10149 spin_unlock_irq(&phba->hbalock); 10150 return 0; 10151 } 10152 sum = 0; 10153 10154 for (i = 1; i <= phba->sli.last_iotag; i++) { 10155 iocbq = phba->sli.iocbq_lookup[i]; 10156 10157 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10158 cmd) != 0) 10159 continue; 10160 10161 /* 10162 * If the iocbq is already being aborted, don't take a second 10163 * action, but do count it. 10164 */ 10165 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10166 continue; 10167 10168 /* issue ABTS for this IOCB based on iotag */ 10169 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10170 if (abtsiocbq == NULL) 10171 continue; 10172 10173 icmd = &iocbq->iocb; 10174 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10175 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10176 if (phba->sli_rev == LPFC_SLI_REV4) 10177 abtsiocbq->iocb.un.acxri.abortIoTag = 10178 iocbq->sli4_xritag; 10179 else 10180 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10181 abtsiocbq->iocb.ulpLe = 1; 10182 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10183 abtsiocbq->vport = vport; 10184 10185 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10186 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10187 if (iocbq->iocb_flag & LPFC_IO_FCP) 10188 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10189 if (iocbq->iocb_flag & LPFC_IO_FOF) 10190 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10191 10192 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10193 ndlp = lpfc_cmd->rdata->pnode; 10194 10195 if (lpfc_is_link_up(phba) && 10196 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10197 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10198 else 10199 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10200 10201 /* Setup callback routine and issue the command. */ 10202 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10203 10204 /* 10205 * Indicate the IO is being aborted by the driver and set 10206 * the caller's flag into the aborted IO. 10207 */ 10208 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10209 10210 if (phba->sli_rev == LPFC_SLI_REV4) { 10211 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10212 iocbq->fcp_wqidx; 10213 pring_s4 = &phba->sli.ring[ring_number]; 10214 /* Note: both hbalock and ring_lock must be set here */ 10215 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10216 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10217 abtsiocbq, 0); 10218 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10219 } else { 10220 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10221 abtsiocbq, 0); 10222 } 10223 10224 10225 if (ret_val == IOCB_ERROR) 10226 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10227 else 10228 sum++; 10229 } 10230 spin_unlock_irq(&phba->hbalock); 10231 return sum; 10232 } 10233 10234 /** 10235 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10236 * @phba: Pointer to HBA context object. 10237 * @cmdiocbq: Pointer to command iocb. 10238 * @rspiocbq: Pointer to response iocb. 10239 * 10240 * This function is the completion handler for iocbs issued using 10241 * lpfc_sli_issue_iocb_wait function. This function is called by the 10242 * ring event handler function without any lock held. This function 10243 * can be called from both worker thread context and interrupt 10244 * context. This function also can be called from other thread which 10245 * cleans up the SLI layer objects. 10246 * This function copy the contents of the response iocb to the 10247 * response iocb memory object provided by the caller of 10248 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10249 * sleeps for the iocb completion. 10250 **/ 10251 static void 10252 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10253 struct lpfc_iocbq *cmdiocbq, 10254 struct lpfc_iocbq *rspiocbq) 10255 { 10256 wait_queue_head_t *pdone_q; 10257 unsigned long iflags; 10258 struct lpfc_scsi_buf *lpfc_cmd; 10259 10260 spin_lock_irqsave(&phba->hbalock, iflags); 10261 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10262 10263 /* 10264 * A time out has occurred for the iocb. If a time out 10265 * completion handler has been supplied, call it. Otherwise, 10266 * just free the iocbq. 10267 */ 10268 10269 spin_unlock_irqrestore(&phba->hbalock, iflags); 10270 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10271 cmdiocbq->wait_iocb_cmpl = NULL; 10272 if (cmdiocbq->iocb_cmpl) 10273 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10274 else 10275 lpfc_sli_release_iocbq(phba, cmdiocbq); 10276 return; 10277 } 10278 10279 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10280 if (cmdiocbq->context2 && rspiocbq) 10281 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10282 &rspiocbq->iocb, sizeof(IOCB_t)); 10283 10284 /* Set the exchange busy flag for task management commands */ 10285 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10286 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10287 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10288 cur_iocbq); 10289 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10290 } 10291 10292 pdone_q = cmdiocbq->context_un.wait_queue; 10293 if (pdone_q) 10294 wake_up(pdone_q); 10295 spin_unlock_irqrestore(&phba->hbalock, iflags); 10296 return; 10297 } 10298 10299 /** 10300 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10301 * @phba: Pointer to HBA context object.. 10302 * @piocbq: Pointer to command iocb. 10303 * @flag: Flag to test. 10304 * 10305 * This routine grabs the hbalock and then test the iocb_flag to 10306 * see if the passed in flag is set. 10307 * Returns: 10308 * 1 if flag is set. 10309 * 0 if flag is not set. 10310 **/ 10311 static int 10312 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10313 struct lpfc_iocbq *piocbq, uint32_t flag) 10314 { 10315 unsigned long iflags; 10316 int ret; 10317 10318 spin_lock_irqsave(&phba->hbalock, iflags); 10319 ret = piocbq->iocb_flag & flag; 10320 spin_unlock_irqrestore(&phba->hbalock, iflags); 10321 return ret; 10322 10323 } 10324 10325 /** 10326 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10327 * @phba: Pointer to HBA context object.. 10328 * @pring: Pointer to sli ring. 10329 * @piocb: Pointer to command iocb. 10330 * @prspiocbq: Pointer to response iocb. 10331 * @timeout: Timeout in number of seconds. 10332 * 10333 * This function issues the iocb to firmware and waits for the 10334 * iocb to complete. The iocb_cmpl field of the shall be used 10335 * to handle iocbs which time out. If the field is NULL, the 10336 * function shall free the iocbq structure. If more clean up is 10337 * needed, the caller is expected to provide a completion function 10338 * that will provide the needed clean up. If the iocb command is 10339 * not completed within timeout seconds, the function will either 10340 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10341 * completion function set in the iocb_cmpl field and then return 10342 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10343 * resources if this function returns IOCB_TIMEDOUT. 10344 * The function waits for the iocb completion using an 10345 * non-interruptible wait. 10346 * This function will sleep while waiting for iocb completion. 10347 * So, this function should not be called from any context which 10348 * does not allow sleeping. Due to the same reason, this function 10349 * cannot be called with interrupt disabled. 10350 * This function assumes that the iocb completions occur while 10351 * this function sleep. So, this function cannot be called from 10352 * the thread which process iocb completion for this ring. 10353 * This function clears the iocb_flag of the iocb object before 10354 * issuing the iocb and the iocb completion handler sets this 10355 * flag and wakes this thread when the iocb completes. 10356 * The contents of the response iocb will be copied to prspiocbq 10357 * by the completion handler when the command completes. 10358 * This function returns IOCB_SUCCESS when success. 10359 * This function is called with no lock held. 10360 **/ 10361 int 10362 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10363 uint32_t ring_number, 10364 struct lpfc_iocbq *piocb, 10365 struct lpfc_iocbq *prspiocbq, 10366 uint32_t timeout) 10367 { 10368 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10369 long timeleft, timeout_req = 0; 10370 int retval = IOCB_SUCCESS; 10371 uint32_t creg_val; 10372 struct lpfc_iocbq *iocb; 10373 int txq_cnt = 0; 10374 int txcmplq_cnt = 0; 10375 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10376 unsigned long iflags; 10377 bool iocb_completed = true; 10378 10379 /* 10380 * If the caller has provided a response iocbq buffer, then context2 10381 * is NULL or its an error. 10382 */ 10383 if (prspiocbq) { 10384 if (piocb->context2) 10385 return IOCB_ERROR; 10386 piocb->context2 = prspiocbq; 10387 } 10388 10389 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10390 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10391 piocb->context_un.wait_queue = &done_q; 10392 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10393 10394 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10395 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10396 return IOCB_ERROR; 10397 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10398 writel(creg_val, phba->HCregaddr); 10399 readl(phba->HCregaddr); /* flush */ 10400 } 10401 10402 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10403 SLI_IOCB_RET_IOCB); 10404 if (retval == IOCB_SUCCESS) { 10405 timeout_req = msecs_to_jiffies(timeout * 1000); 10406 timeleft = wait_event_timeout(done_q, 10407 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10408 timeout_req); 10409 spin_lock_irqsave(&phba->hbalock, iflags); 10410 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10411 10412 /* 10413 * IOCB timed out. Inform the wake iocb wait 10414 * completion function and set local status 10415 */ 10416 10417 iocb_completed = false; 10418 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10419 } 10420 spin_unlock_irqrestore(&phba->hbalock, iflags); 10421 if (iocb_completed) { 10422 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10423 "0331 IOCB wake signaled\n"); 10424 /* Note: we are not indicating if the IOCB has a success 10425 * status or not - that's for the caller to check. 10426 * IOCB_SUCCESS means just that the command was sent and 10427 * completed. Not that it completed successfully. 10428 * */ 10429 } else if (timeleft == 0) { 10430 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10431 "0338 IOCB wait timeout error - no " 10432 "wake response Data x%x\n", timeout); 10433 retval = IOCB_TIMEDOUT; 10434 } else { 10435 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10436 "0330 IOCB wake NOT set, " 10437 "Data x%x x%lx\n", 10438 timeout, (timeleft / jiffies)); 10439 retval = IOCB_TIMEDOUT; 10440 } 10441 } else if (retval == IOCB_BUSY) { 10442 if (phba->cfg_log_verbose & LOG_SLI) { 10443 list_for_each_entry(iocb, &pring->txq, list) { 10444 txq_cnt++; 10445 } 10446 list_for_each_entry(iocb, &pring->txcmplq, list) { 10447 txcmplq_cnt++; 10448 } 10449 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10450 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10451 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10452 } 10453 return retval; 10454 } else { 10455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10456 "0332 IOCB wait issue failed, Data x%x\n", 10457 retval); 10458 retval = IOCB_ERROR; 10459 } 10460 10461 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10462 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10463 return IOCB_ERROR; 10464 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10465 writel(creg_val, phba->HCregaddr); 10466 readl(phba->HCregaddr); /* flush */ 10467 } 10468 10469 if (prspiocbq) 10470 piocb->context2 = NULL; 10471 10472 piocb->context_un.wait_queue = NULL; 10473 piocb->iocb_cmpl = NULL; 10474 return retval; 10475 } 10476 10477 /** 10478 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10479 * @phba: Pointer to HBA context object. 10480 * @pmboxq: Pointer to driver mailbox object. 10481 * @timeout: Timeout in number of seconds. 10482 * 10483 * This function issues the mailbox to firmware and waits for the 10484 * mailbox command to complete. If the mailbox command is not 10485 * completed within timeout seconds, it returns MBX_TIMEOUT. 10486 * The function waits for the mailbox completion using an 10487 * interruptible wait. If the thread is woken up due to a 10488 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10489 * should not free the mailbox resources, if this function returns 10490 * MBX_TIMEOUT. 10491 * This function will sleep while waiting for mailbox completion. 10492 * So, this function should not be called from any context which 10493 * does not allow sleeping. Due to the same reason, this function 10494 * cannot be called with interrupt disabled. 10495 * This function assumes that the mailbox completion occurs while 10496 * this function sleep. So, this function cannot be called from 10497 * the worker thread which processes mailbox completion. 10498 * This function is called in the context of HBA management 10499 * applications. 10500 * This function returns MBX_SUCCESS when successful. 10501 * This function is called with no lock held. 10502 **/ 10503 int 10504 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10505 uint32_t timeout) 10506 { 10507 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10508 MAILBOX_t *mb = NULL; 10509 int retval; 10510 unsigned long flag; 10511 10512 /* The caller might set context1 for extended buffer */ 10513 if (pmboxq->context1) 10514 mb = (MAILBOX_t *)pmboxq->context1; 10515 10516 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10517 /* setup wake call as IOCB callback */ 10518 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10519 /* setup context field to pass wait_queue pointer to wake function */ 10520 pmboxq->context1 = &done_q; 10521 10522 /* now issue the command */ 10523 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10524 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10525 wait_event_interruptible_timeout(done_q, 10526 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10527 msecs_to_jiffies(timeout * 1000)); 10528 10529 spin_lock_irqsave(&phba->hbalock, flag); 10530 /* restore the possible extended buffer for free resource */ 10531 pmboxq->context1 = (uint8_t *)mb; 10532 /* 10533 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10534 * else do not free the resources. 10535 */ 10536 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10537 retval = MBX_SUCCESS; 10538 } else { 10539 retval = MBX_TIMEOUT; 10540 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10541 } 10542 spin_unlock_irqrestore(&phba->hbalock, flag); 10543 } else { 10544 /* restore the possible extended buffer for free resource */ 10545 pmboxq->context1 = (uint8_t *)mb; 10546 } 10547 10548 return retval; 10549 } 10550 10551 /** 10552 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10553 * @phba: Pointer to HBA context. 10554 * 10555 * This function is called to shutdown the driver's mailbox sub-system. 10556 * It first marks the mailbox sub-system is in a block state to prevent 10557 * the asynchronous mailbox command from issued off the pending mailbox 10558 * command queue. If the mailbox command sub-system shutdown is due to 10559 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10560 * the mailbox sub-system flush routine to forcefully bring down the 10561 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10562 * as with offline or HBA function reset), this routine will wait for the 10563 * outstanding mailbox command to complete before invoking the mailbox 10564 * sub-system flush routine to gracefully bring down mailbox sub-system. 10565 **/ 10566 void 10567 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10568 { 10569 struct lpfc_sli *psli = &phba->sli; 10570 unsigned long timeout; 10571 10572 if (mbx_action == LPFC_MBX_NO_WAIT) { 10573 /* delay 100ms for port state */ 10574 msleep(100); 10575 lpfc_sli_mbox_sys_flush(phba); 10576 return; 10577 } 10578 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10579 10580 spin_lock_irq(&phba->hbalock); 10581 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10582 10583 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10584 /* Determine how long we might wait for the active mailbox 10585 * command to be gracefully completed by firmware. 10586 */ 10587 if (phba->sli.mbox_active) 10588 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10589 phba->sli.mbox_active) * 10590 1000) + jiffies; 10591 spin_unlock_irq(&phba->hbalock); 10592 10593 while (phba->sli.mbox_active) { 10594 /* Check active mailbox complete status every 2ms */ 10595 msleep(2); 10596 if (time_after(jiffies, timeout)) 10597 /* Timeout, let the mailbox flush routine to 10598 * forcefully release active mailbox command 10599 */ 10600 break; 10601 } 10602 } else 10603 spin_unlock_irq(&phba->hbalock); 10604 10605 lpfc_sli_mbox_sys_flush(phba); 10606 } 10607 10608 /** 10609 * lpfc_sli_eratt_read - read sli-3 error attention events 10610 * @phba: Pointer to HBA context. 10611 * 10612 * This function is called to read the SLI3 device error attention registers 10613 * for possible error attention events. The caller must hold the hostlock 10614 * with spin_lock_irq(). 10615 * 10616 * This function returns 1 when there is Error Attention in the Host Attention 10617 * Register and returns 0 otherwise. 10618 **/ 10619 static int 10620 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10621 { 10622 uint32_t ha_copy; 10623 10624 /* Read chip Host Attention (HA) register */ 10625 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10626 goto unplug_err; 10627 10628 if (ha_copy & HA_ERATT) { 10629 /* Read host status register to retrieve error event */ 10630 if (lpfc_sli_read_hs(phba)) 10631 goto unplug_err; 10632 10633 /* Check if there is a deferred error condition is active */ 10634 if ((HS_FFER1 & phba->work_hs) && 10635 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10636 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10637 phba->hba_flag |= DEFER_ERATT; 10638 /* Clear all interrupt enable conditions */ 10639 writel(0, phba->HCregaddr); 10640 readl(phba->HCregaddr); 10641 } 10642 10643 /* Set the driver HA work bitmap */ 10644 phba->work_ha |= HA_ERATT; 10645 /* Indicate polling handles this ERATT */ 10646 phba->hba_flag |= HBA_ERATT_HANDLED; 10647 return 1; 10648 } 10649 return 0; 10650 10651 unplug_err: 10652 /* Set the driver HS work bitmap */ 10653 phba->work_hs |= UNPLUG_ERR; 10654 /* Set the driver HA work bitmap */ 10655 phba->work_ha |= HA_ERATT; 10656 /* Indicate polling handles this ERATT */ 10657 phba->hba_flag |= HBA_ERATT_HANDLED; 10658 return 1; 10659 } 10660 10661 /** 10662 * lpfc_sli4_eratt_read - read sli-4 error attention events 10663 * @phba: Pointer to HBA context. 10664 * 10665 * This function is called to read the SLI4 device error attention registers 10666 * for possible error attention events. The caller must hold the hostlock 10667 * with spin_lock_irq(). 10668 * 10669 * This function returns 1 when there is Error Attention in the Host Attention 10670 * Register and returns 0 otherwise. 10671 **/ 10672 static int 10673 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10674 { 10675 uint32_t uerr_sta_hi, uerr_sta_lo; 10676 uint32_t if_type, portsmphr; 10677 struct lpfc_register portstat_reg; 10678 10679 /* 10680 * For now, use the SLI4 device internal unrecoverable error 10681 * registers for error attention. This can be changed later. 10682 */ 10683 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10684 switch (if_type) { 10685 case LPFC_SLI_INTF_IF_TYPE_0: 10686 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10687 &uerr_sta_lo) || 10688 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10689 &uerr_sta_hi)) { 10690 phba->work_hs |= UNPLUG_ERR; 10691 phba->work_ha |= HA_ERATT; 10692 phba->hba_flag |= HBA_ERATT_HANDLED; 10693 return 1; 10694 } 10695 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10696 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10697 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10698 "1423 HBA Unrecoverable error: " 10699 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10700 "ue_mask_lo_reg=0x%x, " 10701 "ue_mask_hi_reg=0x%x\n", 10702 uerr_sta_lo, uerr_sta_hi, 10703 phba->sli4_hba.ue_mask_lo, 10704 phba->sli4_hba.ue_mask_hi); 10705 phba->work_status[0] = uerr_sta_lo; 10706 phba->work_status[1] = uerr_sta_hi; 10707 phba->work_ha |= HA_ERATT; 10708 phba->hba_flag |= HBA_ERATT_HANDLED; 10709 return 1; 10710 } 10711 break; 10712 case LPFC_SLI_INTF_IF_TYPE_2: 10713 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10714 &portstat_reg.word0) || 10715 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10716 &portsmphr)){ 10717 phba->work_hs |= UNPLUG_ERR; 10718 phba->work_ha |= HA_ERATT; 10719 phba->hba_flag |= HBA_ERATT_HANDLED; 10720 return 1; 10721 } 10722 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10723 phba->work_status[0] = 10724 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10725 phba->work_status[1] = 10726 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10727 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10728 "2885 Port Status Event: " 10729 "port status reg 0x%x, " 10730 "port smphr reg 0x%x, " 10731 "error 1=0x%x, error 2=0x%x\n", 10732 portstat_reg.word0, 10733 portsmphr, 10734 phba->work_status[0], 10735 phba->work_status[1]); 10736 phba->work_ha |= HA_ERATT; 10737 phba->hba_flag |= HBA_ERATT_HANDLED; 10738 return 1; 10739 } 10740 break; 10741 case LPFC_SLI_INTF_IF_TYPE_1: 10742 default: 10743 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10744 "2886 HBA Error Attention on unsupported " 10745 "if type %d.", if_type); 10746 return 1; 10747 } 10748 10749 return 0; 10750 } 10751 10752 /** 10753 * lpfc_sli_check_eratt - check error attention events 10754 * @phba: Pointer to HBA context. 10755 * 10756 * This function is called from timer soft interrupt context to check HBA's 10757 * error attention register bit for error attention events. 10758 * 10759 * This function returns 1 when there is Error Attention in the Host Attention 10760 * Register and returns 0 otherwise. 10761 **/ 10762 int 10763 lpfc_sli_check_eratt(struct lpfc_hba *phba) 10764 { 10765 uint32_t ha_copy; 10766 10767 /* If somebody is waiting to handle an eratt, don't process it 10768 * here. The brdkill function will do this. 10769 */ 10770 if (phba->link_flag & LS_IGNORE_ERATT) 10771 return 0; 10772 10773 /* Check if interrupt handler handles this ERATT */ 10774 spin_lock_irq(&phba->hbalock); 10775 if (phba->hba_flag & HBA_ERATT_HANDLED) { 10776 /* Interrupt handler has handled ERATT */ 10777 spin_unlock_irq(&phba->hbalock); 10778 return 0; 10779 } 10780 10781 /* 10782 * If there is deferred error attention, do not check for error 10783 * attention 10784 */ 10785 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10786 spin_unlock_irq(&phba->hbalock); 10787 return 0; 10788 } 10789 10790 /* If PCI channel is offline, don't process it */ 10791 if (unlikely(pci_channel_offline(phba->pcidev))) { 10792 spin_unlock_irq(&phba->hbalock); 10793 return 0; 10794 } 10795 10796 switch (phba->sli_rev) { 10797 case LPFC_SLI_REV2: 10798 case LPFC_SLI_REV3: 10799 /* Read chip Host Attention (HA) register */ 10800 ha_copy = lpfc_sli_eratt_read(phba); 10801 break; 10802 case LPFC_SLI_REV4: 10803 /* Read device Uncoverable Error (UERR) registers */ 10804 ha_copy = lpfc_sli4_eratt_read(phba); 10805 break; 10806 default: 10807 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10808 "0299 Invalid SLI revision (%d)\n", 10809 phba->sli_rev); 10810 ha_copy = 0; 10811 break; 10812 } 10813 spin_unlock_irq(&phba->hbalock); 10814 10815 return ha_copy; 10816 } 10817 10818 /** 10819 * lpfc_intr_state_check - Check device state for interrupt handling 10820 * @phba: Pointer to HBA context. 10821 * 10822 * This inline routine checks whether a device or its PCI slot is in a state 10823 * that the interrupt should be handled. 10824 * 10825 * This function returns 0 if the device or the PCI slot is in a state that 10826 * interrupt should be handled, otherwise -EIO. 10827 */ 10828 static inline int 10829 lpfc_intr_state_check(struct lpfc_hba *phba) 10830 { 10831 /* If the pci channel is offline, ignore all the interrupts */ 10832 if (unlikely(pci_channel_offline(phba->pcidev))) 10833 return -EIO; 10834 10835 /* Update device level interrupt statistics */ 10836 phba->sli.slistat.sli_intr++; 10837 10838 /* Ignore all interrupts during initialization. */ 10839 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10840 return -EIO; 10841 10842 return 0; 10843 } 10844 10845 /** 10846 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 10847 * @irq: Interrupt number. 10848 * @dev_id: The device context pointer. 10849 * 10850 * This function is directly called from the PCI layer as an interrupt 10851 * service routine when device with SLI-3 interface spec is enabled with 10852 * MSI-X multi-message interrupt mode and there are slow-path events in 10853 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 10854 * interrupt mode, this function is called as part of the device-level 10855 * interrupt handler. When the PCI slot is in error recovery or the HBA 10856 * is undergoing initialization, the interrupt handler will not process 10857 * the interrupt. The link attention and ELS ring attention events are 10858 * handled by the worker thread. The interrupt handler signals the worker 10859 * thread and returns for these events. This function is called without 10860 * any lock held. It gets the hbalock to access and update SLI data 10861 * structures. 10862 * 10863 * This function returns IRQ_HANDLED when interrupt is handled else it 10864 * returns IRQ_NONE. 10865 **/ 10866 irqreturn_t 10867 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 10868 { 10869 struct lpfc_hba *phba; 10870 uint32_t ha_copy, hc_copy; 10871 uint32_t work_ha_copy; 10872 unsigned long status; 10873 unsigned long iflag; 10874 uint32_t control; 10875 10876 MAILBOX_t *mbox, *pmbox; 10877 struct lpfc_vport *vport; 10878 struct lpfc_nodelist *ndlp; 10879 struct lpfc_dmabuf *mp; 10880 LPFC_MBOXQ_t *pmb; 10881 int rc; 10882 10883 /* 10884 * Get the driver's phba structure from the dev_id and 10885 * assume the HBA is not interrupting. 10886 */ 10887 phba = (struct lpfc_hba *)dev_id; 10888 10889 if (unlikely(!phba)) 10890 return IRQ_NONE; 10891 10892 /* 10893 * Stuff needs to be attented to when this function is invoked as an 10894 * individual interrupt handler in MSI-X multi-message interrupt mode 10895 */ 10896 if (phba->intr_type == MSIX) { 10897 /* Check device state for handling interrupt */ 10898 if (lpfc_intr_state_check(phba)) 10899 return IRQ_NONE; 10900 /* Need to read HA REG for slow-path events */ 10901 spin_lock_irqsave(&phba->hbalock, iflag); 10902 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10903 goto unplug_error; 10904 /* If somebody is waiting to handle an eratt don't process it 10905 * here. The brdkill function will do this. 10906 */ 10907 if (phba->link_flag & LS_IGNORE_ERATT) 10908 ha_copy &= ~HA_ERATT; 10909 /* Check the need for handling ERATT in interrupt handler */ 10910 if (ha_copy & HA_ERATT) { 10911 if (phba->hba_flag & HBA_ERATT_HANDLED) 10912 /* ERATT polling has handled ERATT */ 10913 ha_copy &= ~HA_ERATT; 10914 else 10915 /* Indicate interrupt handler handles ERATT */ 10916 phba->hba_flag |= HBA_ERATT_HANDLED; 10917 } 10918 10919 /* 10920 * If there is deferred error attention, do not check for any 10921 * interrupt. 10922 */ 10923 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10924 spin_unlock_irqrestore(&phba->hbalock, iflag); 10925 return IRQ_NONE; 10926 } 10927 10928 /* Clear up only attention source related to slow-path */ 10929 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 10930 goto unplug_error; 10931 10932 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 10933 HC_LAINT_ENA | HC_ERINT_ENA), 10934 phba->HCregaddr); 10935 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 10936 phba->HAregaddr); 10937 writel(hc_copy, phba->HCregaddr); 10938 readl(phba->HAregaddr); /* flush */ 10939 spin_unlock_irqrestore(&phba->hbalock, iflag); 10940 } else 10941 ha_copy = phba->ha_copy; 10942 10943 work_ha_copy = ha_copy & phba->work_ha_mask; 10944 10945 if (work_ha_copy) { 10946 if (work_ha_copy & HA_LATT) { 10947 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 10948 /* 10949 * Turn off Link Attention interrupts 10950 * until CLEAR_LA done 10951 */ 10952 spin_lock_irqsave(&phba->hbalock, iflag); 10953 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 10954 if (lpfc_readl(phba->HCregaddr, &control)) 10955 goto unplug_error; 10956 control &= ~HC_LAINT_ENA; 10957 writel(control, phba->HCregaddr); 10958 readl(phba->HCregaddr); /* flush */ 10959 spin_unlock_irqrestore(&phba->hbalock, iflag); 10960 } 10961 else 10962 work_ha_copy &= ~HA_LATT; 10963 } 10964 10965 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 10966 /* 10967 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 10968 * the only slow ring. 10969 */ 10970 status = (work_ha_copy & 10971 (HA_RXMASK << (4*LPFC_ELS_RING))); 10972 status >>= (4*LPFC_ELS_RING); 10973 if (status & HA_RXMASK) { 10974 spin_lock_irqsave(&phba->hbalock, iflag); 10975 if (lpfc_readl(phba->HCregaddr, &control)) 10976 goto unplug_error; 10977 10978 lpfc_debugfs_slow_ring_trc(phba, 10979 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 10980 control, status, 10981 (uint32_t)phba->sli.slistat.sli_intr); 10982 10983 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 10984 lpfc_debugfs_slow_ring_trc(phba, 10985 "ISR Disable ring:" 10986 "pwork:x%x hawork:x%x wait:x%x", 10987 phba->work_ha, work_ha_copy, 10988 (uint32_t)((unsigned long) 10989 &phba->work_waitq)); 10990 10991 control &= 10992 ~(HC_R0INT_ENA << LPFC_ELS_RING); 10993 writel(control, phba->HCregaddr); 10994 readl(phba->HCregaddr); /* flush */ 10995 } 10996 else { 10997 lpfc_debugfs_slow_ring_trc(phba, 10998 "ISR slow ring: pwork:" 10999 "x%x hawork:x%x wait:x%x", 11000 phba->work_ha, work_ha_copy, 11001 (uint32_t)((unsigned long) 11002 &phba->work_waitq)); 11003 } 11004 spin_unlock_irqrestore(&phba->hbalock, iflag); 11005 } 11006 } 11007 spin_lock_irqsave(&phba->hbalock, iflag); 11008 if (work_ha_copy & HA_ERATT) { 11009 if (lpfc_sli_read_hs(phba)) 11010 goto unplug_error; 11011 /* 11012 * Check if there is a deferred error condition 11013 * is active 11014 */ 11015 if ((HS_FFER1 & phba->work_hs) && 11016 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11017 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11018 phba->work_hs)) { 11019 phba->hba_flag |= DEFER_ERATT; 11020 /* Clear all interrupt enable conditions */ 11021 writel(0, phba->HCregaddr); 11022 readl(phba->HCregaddr); 11023 } 11024 } 11025 11026 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11027 pmb = phba->sli.mbox_active; 11028 pmbox = &pmb->u.mb; 11029 mbox = phba->mbox; 11030 vport = pmb->vport; 11031 11032 /* First check out the status word */ 11033 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11034 if (pmbox->mbxOwner != OWN_HOST) { 11035 spin_unlock_irqrestore(&phba->hbalock, iflag); 11036 /* 11037 * Stray Mailbox Interrupt, mbxCommand <cmd> 11038 * mbxStatus <status> 11039 */ 11040 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11041 LOG_SLI, 11042 "(%d):0304 Stray Mailbox " 11043 "Interrupt mbxCommand x%x " 11044 "mbxStatus x%x\n", 11045 (vport ? vport->vpi : 0), 11046 pmbox->mbxCommand, 11047 pmbox->mbxStatus); 11048 /* clear mailbox attention bit */ 11049 work_ha_copy &= ~HA_MBATT; 11050 } else { 11051 phba->sli.mbox_active = NULL; 11052 spin_unlock_irqrestore(&phba->hbalock, iflag); 11053 phba->last_completion_time = jiffies; 11054 del_timer(&phba->sli.mbox_tmo); 11055 if (pmb->mbox_cmpl) { 11056 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11057 MAILBOX_CMD_SIZE); 11058 if (pmb->out_ext_byte_len && 11059 pmb->context2) 11060 lpfc_sli_pcimem_bcopy( 11061 phba->mbox_ext, 11062 pmb->context2, 11063 pmb->out_ext_byte_len); 11064 } 11065 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11066 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11067 11068 lpfc_debugfs_disc_trc(vport, 11069 LPFC_DISC_TRC_MBOX_VPORT, 11070 "MBOX dflt rpi: : " 11071 "status:x%x rpi:x%x", 11072 (uint32_t)pmbox->mbxStatus, 11073 pmbox->un.varWords[0], 0); 11074 11075 if (!pmbox->mbxStatus) { 11076 mp = (struct lpfc_dmabuf *) 11077 (pmb->context1); 11078 ndlp = (struct lpfc_nodelist *) 11079 pmb->context2; 11080 11081 /* Reg_LOGIN of dflt RPI was 11082 * successful. new lets get 11083 * rid of the RPI using the 11084 * same mbox buffer. 11085 */ 11086 lpfc_unreg_login(phba, 11087 vport->vpi, 11088 pmbox->un.varWords[0], 11089 pmb); 11090 pmb->mbox_cmpl = 11091 lpfc_mbx_cmpl_dflt_rpi; 11092 pmb->context1 = mp; 11093 pmb->context2 = ndlp; 11094 pmb->vport = vport; 11095 rc = lpfc_sli_issue_mbox(phba, 11096 pmb, 11097 MBX_NOWAIT); 11098 if (rc != MBX_BUSY) 11099 lpfc_printf_log(phba, 11100 KERN_ERR, 11101 LOG_MBOX | LOG_SLI, 11102 "0350 rc should have" 11103 "been MBX_BUSY\n"); 11104 if (rc != MBX_NOT_FINISHED) 11105 goto send_current_mbox; 11106 } 11107 } 11108 spin_lock_irqsave( 11109 &phba->pport->work_port_lock, 11110 iflag); 11111 phba->pport->work_port_events &= 11112 ~WORKER_MBOX_TMO; 11113 spin_unlock_irqrestore( 11114 &phba->pport->work_port_lock, 11115 iflag); 11116 lpfc_mbox_cmpl_put(phba, pmb); 11117 } 11118 } else 11119 spin_unlock_irqrestore(&phba->hbalock, iflag); 11120 11121 if ((work_ha_copy & HA_MBATT) && 11122 (phba->sli.mbox_active == NULL)) { 11123 send_current_mbox: 11124 /* Process next mailbox command if there is one */ 11125 do { 11126 rc = lpfc_sli_issue_mbox(phba, NULL, 11127 MBX_NOWAIT); 11128 } while (rc == MBX_NOT_FINISHED); 11129 if (rc != MBX_SUCCESS) 11130 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11131 LOG_SLI, "0349 rc should be " 11132 "MBX_SUCCESS\n"); 11133 } 11134 11135 spin_lock_irqsave(&phba->hbalock, iflag); 11136 phba->work_ha |= work_ha_copy; 11137 spin_unlock_irqrestore(&phba->hbalock, iflag); 11138 lpfc_worker_wake_up(phba); 11139 } 11140 return IRQ_HANDLED; 11141 unplug_error: 11142 spin_unlock_irqrestore(&phba->hbalock, iflag); 11143 return IRQ_HANDLED; 11144 11145 } /* lpfc_sli_sp_intr_handler */ 11146 11147 /** 11148 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11149 * @irq: Interrupt number. 11150 * @dev_id: The device context pointer. 11151 * 11152 * This function is directly called from the PCI layer as an interrupt 11153 * service routine when device with SLI-3 interface spec is enabled with 11154 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11155 * ring event in the HBA. However, when the device is enabled with either 11156 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11157 * device-level interrupt handler. When the PCI slot is in error recovery 11158 * or the HBA is undergoing initialization, the interrupt handler will not 11159 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11160 * the intrrupt context. This function is called without any lock held. 11161 * It gets the hbalock to access and update SLI data structures. 11162 * 11163 * This function returns IRQ_HANDLED when interrupt is handled else it 11164 * returns IRQ_NONE. 11165 **/ 11166 irqreturn_t 11167 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11168 { 11169 struct lpfc_hba *phba; 11170 uint32_t ha_copy; 11171 unsigned long status; 11172 unsigned long iflag; 11173 11174 /* Get the driver's phba structure from the dev_id and 11175 * assume the HBA is not interrupting. 11176 */ 11177 phba = (struct lpfc_hba *) dev_id; 11178 11179 if (unlikely(!phba)) 11180 return IRQ_NONE; 11181 11182 /* 11183 * Stuff needs to be attented to when this function is invoked as an 11184 * individual interrupt handler in MSI-X multi-message interrupt mode 11185 */ 11186 if (phba->intr_type == MSIX) { 11187 /* Check device state for handling interrupt */ 11188 if (lpfc_intr_state_check(phba)) 11189 return IRQ_NONE; 11190 /* Need to read HA REG for FCP ring and other ring events */ 11191 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11192 return IRQ_HANDLED; 11193 /* Clear up only attention source related to fast-path */ 11194 spin_lock_irqsave(&phba->hbalock, iflag); 11195 /* 11196 * If there is deferred error attention, do not check for 11197 * any interrupt. 11198 */ 11199 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11200 spin_unlock_irqrestore(&phba->hbalock, iflag); 11201 return IRQ_NONE; 11202 } 11203 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11204 phba->HAregaddr); 11205 readl(phba->HAregaddr); /* flush */ 11206 spin_unlock_irqrestore(&phba->hbalock, iflag); 11207 } else 11208 ha_copy = phba->ha_copy; 11209 11210 /* 11211 * Process all events on FCP ring. Take the optimized path for FCP IO. 11212 */ 11213 ha_copy &= ~(phba->work_ha_mask); 11214 11215 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11216 status >>= (4*LPFC_FCP_RING); 11217 if (status & HA_RXMASK) 11218 lpfc_sli_handle_fast_ring_event(phba, 11219 &phba->sli.ring[LPFC_FCP_RING], 11220 status); 11221 11222 if (phba->cfg_multi_ring_support == 2) { 11223 /* 11224 * Process all events on extra ring. Take the optimized path 11225 * for extra ring IO. 11226 */ 11227 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11228 status >>= (4*LPFC_EXTRA_RING); 11229 if (status & HA_RXMASK) { 11230 lpfc_sli_handle_fast_ring_event(phba, 11231 &phba->sli.ring[LPFC_EXTRA_RING], 11232 status); 11233 } 11234 } 11235 return IRQ_HANDLED; 11236 } /* lpfc_sli_fp_intr_handler */ 11237 11238 /** 11239 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11240 * @irq: Interrupt number. 11241 * @dev_id: The device context pointer. 11242 * 11243 * This function is the HBA device-level interrupt handler to device with 11244 * SLI-3 interface spec, called from the PCI layer when either MSI or 11245 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11246 * requires driver attention. This function invokes the slow-path interrupt 11247 * attention handling function and fast-path interrupt attention handling 11248 * function in turn to process the relevant HBA attention events. This 11249 * function is called without any lock held. It gets the hbalock to access 11250 * and update SLI data structures. 11251 * 11252 * This function returns IRQ_HANDLED when interrupt is handled, else it 11253 * returns IRQ_NONE. 11254 **/ 11255 irqreturn_t 11256 lpfc_sli_intr_handler(int irq, void *dev_id) 11257 { 11258 struct lpfc_hba *phba; 11259 irqreturn_t sp_irq_rc, fp_irq_rc; 11260 unsigned long status1, status2; 11261 uint32_t hc_copy; 11262 11263 /* 11264 * Get the driver's phba structure from the dev_id and 11265 * assume the HBA is not interrupting. 11266 */ 11267 phba = (struct lpfc_hba *) dev_id; 11268 11269 if (unlikely(!phba)) 11270 return IRQ_NONE; 11271 11272 /* Check device state for handling interrupt */ 11273 if (lpfc_intr_state_check(phba)) 11274 return IRQ_NONE; 11275 11276 spin_lock(&phba->hbalock); 11277 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11278 spin_unlock(&phba->hbalock); 11279 return IRQ_HANDLED; 11280 } 11281 11282 if (unlikely(!phba->ha_copy)) { 11283 spin_unlock(&phba->hbalock); 11284 return IRQ_NONE; 11285 } else if (phba->ha_copy & HA_ERATT) { 11286 if (phba->hba_flag & HBA_ERATT_HANDLED) 11287 /* ERATT polling has handled ERATT */ 11288 phba->ha_copy &= ~HA_ERATT; 11289 else 11290 /* Indicate interrupt handler handles ERATT */ 11291 phba->hba_flag |= HBA_ERATT_HANDLED; 11292 } 11293 11294 /* 11295 * If there is deferred error attention, do not check for any interrupt. 11296 */ 11297 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11298 spin_unlock(&phba->hbalock); 11299 return IRQ_NONE; 11300 } 11301 11302 /* Clear attention sources except link and error attentions */ 11303 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11304 spin_unlock(&phba->hbalock); 11305 return IRQ_HANDLED; 11306 } 11307 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11308 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11309 phba->HCregaddr); 11310 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11311 writel(hc_copy, phba->HCregaddr); 11312 readl(phba->HAregaddr); /* flush */ 11313 spin_unlock(&phba->hbalock); 11314 11315 /* 11316 * Invokes slow-path host attention interrupt handling as appropriate. 11317 */ 11318 11319 /* status of events with mailbox and link attention */ 11320 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11321 11322 /* status of events with ELS ring */ 11323 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11324 status2 >>= (4*LPFC_ELS_RING); 11325 11326 if (status1 || (status2 & HA_RXMASK)) 11327 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11328 else 11329 sp_irq_rc = IRQ_NONE; 11330 11331 /* 11332 * Invoke fast-path host attention interrupt handling as appropriate. 11333 */ 11334 11335 /* status of events with FCP ring */ 11336 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11337 status1 >>= (4*LPFC_FCP_RING); 11338 11339 /* status of events with extra ring */ 11340 if (phba->cfg_multi_ring_support == 2) { 11341 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11342 status2 >>= (4*LPFC_EXTRA_RING); 11343 } else 11344 status2 = 0; 11345 11346 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11347 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11348 else 11349 fp_irq_rc = IRQ_NONE; 11350 11351 /* Return device-level interrupt handling status */ 11352 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11353 } /* lpfc_sli_intr_handler */ 11354 11355 /** 11356 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11357 * @phba: pointer to lpfc hba data structure. 11358 * 11359 * This routine is invoked by the worker thread to process all the pending 11360 * SLI4 FCP abort XRI events. 11361 **/ 11362 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11363 { 11364 struct lpfc_cq_event *cq_event; 11365 11366 /* First, declare the fcp xri abort event has been handled */ 11367 spin_lock_irq(&phba->hbalock); 11368 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11369 spin_unlock_irq(&phba->hbalock); 11370 /* Now, handle all the fcp xri abort events */ 11371 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11372 /* Get the first event from the head of the event queue */ 11373 spin_lock_irq(&phba->hbalock); 11374 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11375 cq_event, struct lpfc_cq_event, list); 11376 spin_unlock_irq(&phba->hbalock); 11377 /* Notify aborted XRI for FCP work queue */ 11378 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11379 /* Free the event processed back to the free pool */ 11380 lpfc_sli4_cq_event_release(phba, cq_event); 11381 } 11382 } 11383 11384 /** 11385 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11386 * @phba: pointer to lpfc hba data structure. 11387 * 11388 * This routine is invoked by the worker thread to process all the pending 11389 * SLI4 els abort xri events. 11390 **/ 11391 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11392 { 11393 struct lpfc_cq_event *cq_event; 11394 11395 /* First, declare the els xri abort event has been handled */ 11396 spin_lock_irq(&phba->hbalock); 11397 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11398 spin_unlock_irq(&phba->hbalock); 11399 /* Now, handle all the els xri abort events */ 11400 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11401 /* Get the first event from the head of the event queue */ 11402 spin_lock_irq(&phba->hbalock); 11403 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11404 cq_event, struct lpfc_cq_event, list); 11405 spin_unlock_irq(&phba->hbalock); 11406 /* Notify aborted XRI for ELS work queue */ 11407 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11408 /* Free the event processed back to the free pool */ 11409 lpfc_sli4_cq_event_release(phba, cq_event); 11410 } 11411 } 11412 11413 /** 11414 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11415 * @phba: pointer to lpfc hba data structure 11416 * @pIocbIn: pointer to the rspiocbq 11417 * @pIocbOut: pointer to the cmdiocbq 11418 * @wcqe: pointer to the complete wcqe 11419 * 11420 * This routine transfers the fields of a command iocbq to a response iocbq 11421 * by copying all the IOCB fields from command iocbq and transferring the 11422 * completion status information from the complete wcqe. 11423 **/ 11424 static void 11425 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11426 struct lpfc_iocbq *pIocbIn, 11427 struct lpfc_iocbq *pIocbOut, 11428 struct lpfc_wcqe_complete *wcqe) 11429 { 11430 int numBdes, i; 11431 unsigned long iflags; 11432 uint32_t status, max_response; 11433 struct lpfc_dmabuf *dmabuf; 11434 struct ulp_bde64 *bpl, bde; 11435 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11436 11437 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11438 sizeof(struct lpfc_iocbq) - offset); 11439 /* Map WCQE parameters into irspiocb parameters */ 11440 status = bf_get(lpfc_wcqe_c_status, wcqe); 11441 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11442 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11443 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11444 pIocbIn->iocb.un.fcpi.fcpi_parm = 11445 pIocbOut->iocb.un.fcpi.fcpi_parm - 11446 wcqe->total_data_placed; 11447 else 11448 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11449 else { 11450 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11451 switch (pIocbOut->iocb.ulpCommand) { 11452 case CMD_ELS_REQUEST64_CR: 11453 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11454 bpl = (struct ulp_bde64 *)dmabuf->virt; 11455 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11456 max_response = bde.tus.f.bdeSize; 11457 break; 11458 case CMD_GEN_REQUEST64_CR: 11459 max_response = 0; 11460 if (!pIocbOut->context3) 11461 break; 11462 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11463 sizeof(struct ulp_bde64); 11464 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11465 bpl = (struct ulp_bde64 *)dmabuf->virt; 11466 for (i = 0; i < numBdes; i++) { 11467 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11468 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11469 max_response += bde.tus.f.bdeSize; 11470 } 11471 break; 11472 default: 11473 max_response = wcqe->total_data_placed; 11474 break; 11475 } 11476 if (max_response < wcqe->total_data_placed) 11477 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11478 else 11479 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11480 wcqe->total_data_placed; 11481 } 11482 11483 /* Convert BG errors for completion status */ 11484 if (status == CQE_STATUS_DI_ERROR) { 11485 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11486 11487 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11488 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11489 else 11490 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11491 11492 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11493 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11494 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11495 BGS_GUARD_ERR_MASK; 11496 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11497 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11498 BGS_APPTAG_ERR_MASK; 11499 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11500 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11501 BGS_REFTAG_ERR_MASK; 11502 11503 /* Check to see if there was any good data before the error */ 11504 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11505 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11506 BGS_HI_WATER_MARK_PRESENT_MASK; 11507 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11508 wcqe->total_data_placed; 11509 } 11510 11511 /* 11512 * Set ALL the error bits to indicate we don't know what 11513 * type of error it is. 11514 */ 11515 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11516 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11517 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11518 BGS_GUARD_ERR_MASK); 11519 } 11520 11521 /* Pick up HBA exchange busy condition */ 11522 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11523 spin_lock_irqsave(&phba->hbalock, iflags); 11524 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11525 spin_unlock_irqrestore(&phba->hbalock, iflags); 11526 } 11527 } 11528 11529 /** 11530 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11531 * @phba: Pointer to HBA context object. 11532 * @wcqe: Pointer to work-queue completion queue entry. 11533 * 11534 * This routine handles an ELS work-queue completion event and construct 11535 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11536 * discovery engine to handle. 11537 * 11538 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11539 **/ 11540 static struct lpfc_iocbq * 11541 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11542 struct lpfc_iocbq *irspiocbq) 11543 { 11544 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11545 struct lpfc_iocbq *cmdiocbq; 11546 struct lpfc_wcqe_complete *wcqe; 11547 unsigned long iflags; 11548 11549 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11550 spin_lock_irqsave(&pring->ring_lock, iflags); 11551 pring->stats.iocb_event++; 11552 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11553 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11554 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11555 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11556 11557 if (unlikely(!cmdiocbq)) { 11558 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11559 "0386 ELS complete with no corresponding " 11560 "cmdiocb: iotag (%d)\n", 11561 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11562 lpfc_sli_release_iocbq(phba, irspiocbq); 11563 return NULL; 11564 } 11565 11566 /* Fake the irspiocbq and copy necessary response information */ 11567 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11568 11569 return irspiocbq; 11570 } 11571 11572 /** 11573 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11574 * @phba: Pointer to HBA context object. 11575 * @cqe: Pointer to mailbox completion queue entry. 11576 * 11577 * This routine process a mailbox completion queue entry with asynchrous 11578 * event. 11579 * 11580 * Return: true if work posted to worker thread, otherwise false. 11581 **/ 11582 static bool 11583 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11584 { 11585 struct lpfc_cq_event *cq_event; 11586 unsigned long iflags; 11587 11588 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11589 "0392 Async Event: word0:x%x, word1:x%x, " 11590 "word2:x%x, word3:x%x\n", mcqe->word0, 11591 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11592 11593 /* Allocate a new internal CQ_EVENT entry */ 11594 cq_event = lpfc_sli4_cq_event_alloc(phba); 11595 if (!cq_event) { 11596 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11597 "0394 Failed to allocate CQ_EVENT entry\n"); 11598 return false; 11599 } 11600 11601 /* Move the CQE into an asynchronous event entry */ 11602 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11603 spin_lock_irqsave(&phba->hbalock, iflags); 11604 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11605 /* Set the async event flag */ 11606 phba->hba_flag |= ASYNC_EVENT; 11607 spin_unlock_irqrestore(&phba->hbalock, iflags); 11608 11609 return true; 11610 } 11611 11612 /** 11613 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11614 * @phba: Pointer to HBA context object. 11615 * @cqe: Pointer to mailbox completion queue entry. 11616 * 11617 * This routine process a mailbox completion queue entry with mailbox 11618 * completion event. 11619 * 11620 * Return: true if work posted to worker thread, otherwise false. 11621 **/ 11622 static bool 11623 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11624 { 11625 uint32_t mcqe_status; 11626 MAILBOX_t *mbox, *pmbox; 11627 struct lpfc_mqe *mqe; 11628 struct lpfc_vport *vport; 11629 struct lpfc_nodelist *ndlp; 11630 struct lpfc_dmabuf *mp; 11631 unsigned long iflags; 11632 LPFC_MBOXQ_t *pmb; 11633 bool workposted = false; 11634 int rc; 11635 11636 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11637 if (!bf_get(lpfc_trailer_completed, mcqe)) 11638 goto out_no_mqe_complete; 11639 11640 /* Get the reference to the active mbox command */ 11641 spin_lock_irqsave(&phba->hbalock, iflags); 11642 pmb = phba->sli.mbox_active; 11643 if (unlikely(!pmb)) { 11644 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11645 "1832 No pending MBOX command to handle\n"); 11646 spin_unlock_irqrestore(&phba->hbalock, iflags); 11647 goto out_no_mqe_complete; 11648 } 11649 spin_unlock_irqrestore(&phba->hbalock, iflags); 11650 mqe = &pmb->u.mqe; 11651 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11652 mbox = phba->mbox; 11653 vport = pmb->vport; 11654 11655 /* Reset heartbeat timer */ 11656 phba->last_completion_time = jiffies; 11657 del_timer(&phba->sli.mbox_tmo); 11658 11659 /* Move mbox data to caller's mailbox region, do endian swapping */ 11660 if (pmb->mbox_cmpl && mbox) 11661 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11662 11663 /* 11664 * For mcqe errors, conditionally move a modified error code to 11665 * the mbox so that the error will not be missed. 11666 */ 11667 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11668 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11669 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11670 bf_set(lpfc_mqe_status, mqe, 11671 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11672 } 11673 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11674 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11675 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11676 "MBOX dflt rpi: status:x%x rpi:x%x", 11677 mcqe_status, 11678 pmbox->un.varWords[0], 0); 11679 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11680 mp = (struct lpfc_dmabuf *)(pmb->context1); 11681 ndlp = (struct lpfc_nodelist *)pmb->context2; 11682 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11683 * RID of the PPI using the same mbox buffer. 11684 */ 11685 lpfc_unreg_login(phba, vport->vpi, 11686 pmbox->un.varWords[0], pmb); 11687 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11688 pmb->context1 = mp; 11689 pmb->context2 = ndlp; 11690 pmb->vport = vport; 11691 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11692 if (rc != MBX_BUSY) 11693 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11694 LOG_SLI, "0385 rc should " 11695 "have been MBX_BUSY\n"); 11696 if (rc != MBX_NOT_FINISHED) 11697 goto send_current_mbox; 11698 } 11699 } 11700 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11701 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11702 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11703 11704 /* There is mailbox completion work to do */ 11705 spin_lock_irqsave(&phba->hbalock, iflags); 11706 __lpfc_mbox_cmpl_put(phba, pmb); 11707 phba->work_ha |= HA_MBATT; 11708 spin_unlock_irqrestore(&phba->hbalock, iflags); 11709 workposted = true; 11710 11711 send_current_mbox: 11712 spin_lock_irqsave(&phba->hbalock, iflags); 11713 /* Release the mailbox command posting token */ 11714 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11715 /* Setting active mailbox pointer need to be in sync to flag clear */ 11716 phba->sli.mbox_active = NULL; 11717 spin_unlock_irqrestore(&phba->hbalock, iflags); 11718 /* Wake up worker thread to post the next pending mailbox command */ 11719 lpfc_worker_wake_up(phba); 11720 out_no_mqe_complete: 11721 if (bf_get(lpfc_trailer_consumed, mcqe)) 11722 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11723 return workposted; 11724 } 11725 11726 /** 11727 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11728 * @phba: Pointer to HBA context object. 11729 * @cqe: Pointer to mailbox completion queue entry. 11730 * 11731 * This routine process a mailbox completion queue entry, it invokes the 11732 * proper mailbox complete handling or asynchrous event handling routine 11733 * according to the MCQE's async bit. 11734 * 11735 * Return: true if work posted to worker thread, otherwise false. 11736 **/ 11737 static bool 11738 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 11739 { 11740 struct lpfc_mcqe mcqe; 11741 bool workposted; 11742 11743 /* Copy the mailbox MCQE and convert endian order as needed */ 11744 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 11745 11746 /* Invoke the proper event handling routine */ 11747 if (!bf_get(lpfc_trailer_async, &mcqe)) 11748 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 11749 else 11750 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 11751 return workposted; 11752 } 11753 11754 /** 11755 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 11756 * @phba: Pointer to HBA context object. 11757 * @cq: Pointer to associated CQ 11758 * @wcqe: Pointer to work-queue completion queue entry. 11759 * 11760 * This routine handles an ELS work-queue completion event. 11761 * 11762 * Return: true if work posted to worker thread, otherwise false. 11763 **/ 11764 static bool 11765 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11766 struct lpfc_wcqe_complete *wcqe) 11767 { 11768 struct lpfc_iocbq *irspiocbq; 11769 unsigned long iflags; 11770 struct lpfc_sli_ring *pring = cq->pring; 11771 int txq_cnt = 0; 11772 int txcmplq_cnt = 0; 11773 int fcp_txcmplq_cnt = 0; 11774 11775 /* Get an irspiocbq for later ELS response processing use */ 11776 irspiocbq = lpfc_sli_get_iocbq(phba); 11777 if (!irspiocbq) { 11778 if (!list_empty(&pring->txq)) 11779 txq_cnt++; 11780 if (!list_empty(&pring->txcmplq)) 11781 txcmplq_cnt++; 11782 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 11783 fcp_txcmplq_cnt++; 11784 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11785 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 11786 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 11787 txq_cnt, phba->iocb_cnt, 11788 fcp_txcmplq_cnt, 11789 txcmplq_cnt); 11790 return false; 11791 } 11792 11793 /* Save off the slow-path queue event for work thread to process */ 11794 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 11795 spin_lock_irqsave(&phba->hbalock, iflags); 11796 list_add_tail(&irspiocbq->cq_event.list, 11797 &phba->sli4_hba.sp_queue_event); 11798 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11799 spin_unlock_irqrestore(&phba->hbalock, iflags); 11800 11801 return true; 11802 } 11803 11804 /** 11805 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 11806 * @phba: Pointer to HBA context object. 11807 * @wcqe: Pointer to work-queue completion queue entry. 11808 * 11809 * This routine handles slow-path WQ entry comsumed event by invoking the 11810 * proper WQ release routine to the slow-path WQ. 11811 **/ 11812 static void 11813 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 11814 struct lpfc_wcqe_release *wcqe) 11815 { 11816 /* sanity check on queue memory */ 11817 if (unlikely(!phba->sli4_hba.els_wq)) 11818 return; 11819 /* Check for the slow-path ELS work queue */ 11820 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 11821 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 11822 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 11823 else 11824 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11825 "2579 Slow-path wqe consume event carries " 11826 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 11827 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 11828 phba->sli4_hba.els_wq->queue_id); 11829 } 11830 11831 /** 11832 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 11833 * @phba: Pointer to HBA context object. 11834 * @cq: Pointer to a WQ completion queue. 11835 * @wcqe: Pointer to work-queue completion queue entry. 11836 * 11837 * This routine handles an XRI abort event. 11838 * 11839 * Return: true if work posted to worker thread, otherwise false. 11840 **/ 11841 static bool 11842 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 11843 struct lpfc_queue *cq, 11844 struct sli4_wcqe_xri_aborted *wcqe) 11845 { 11846 bool workposted = false; 11847 struct lpfc_cq_event *cq_event; 11848 unsigned long iflags; 11849 11850 /* Allocate a new internal CQ_EVENT entry */ 11851 cq_event = lpfc_sli4_cq_event_alloc(phba); 11852 if (!cq_event) { 11853 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11854 "0602 Failed to allocate CQ_EVENT entry\n"); 11855 return false; 11856 } 11857 11858 /* Move the CQE into the proper xri abort event list */ 11859 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 11860 switch (cq->subtype) { 11861 case LPFC_FCP: 11862 spin_lock_irqsave(&phba->hbalock, iflags); 11863 list_add_tail(&cq_event->list, 11864 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 11865 /* Set the fcp xri abort event flag */ 11866 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 11867 spin_unlock_irqrestore(&phba->hbalock, iflags); 11868 workposted = true; 11869 break; 11870 case LPFC_ELS: 11871 spin_lock_irqsave(&phba->hbalock, iflags); 11872 list_add_tail(&cq_event->list, 11873 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 11874 /* Set the els xri abort event flag */ 11875 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 11876 spin_unlock_irqrestore(&phba->hbalock, iflags); 11877 workposted = true; 11878 break; 11879 default: 11880 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11881 "0603 Invalid work queue CQE subtype (x%x)\n", 11882 cq->subtype); 11883 workposted = false; 11884 break; 11885 } 11886 return workposted; 11887 } 11888 11889 /** 11890 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 11891 * @phba: Pointer to HBA context object. 11892 * @rcqe: Pointer to receive-queue completion queue entry. 11893 * 11894 * This routine process a receive-queue completion queue entry. 11895 * 11896 * Return: true if work posted to worker thread, otherwise false. 11897 **/ 11898 static bool 11899 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 11900 { 11901 bool workposted = false; 11902 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 11903 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 11904 struct hbq_dmabuf *dma_buf; 11905 uint32_t status, rq_id; 11906 unsigned long iflags; 11907 11908 /* sanity check on queue memory */ 11909 if (unlikely(!hrq) || unlikely(!drq)) 11910 return workposted; 11911 11912 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 11913 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 11914 else 11915 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 11916 if (rq_id != hrq->queue_id) 11917 goto out; 11918 11919 status = bf_get(lpfc_rcqe_status, rcqe); 11920 switch (status) { 11921 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 11922 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11923 "2537 Receive Frame Truncated!!\n"); 11924 hrq->RQ_buf_trunc++; 11925 case FC_STATUS_RQ_SUCCESS: 11926 lpfc_sli4_rq_release(hrq, drq); 11927 spin_lock_irqsave(&phba->hbalock, iflags); 11928 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 11929 if (!dma_buf) { 11930 hrq->RQ_no_buf_found++; 11931 spin_unlock_irqrestore(&phba->hbalock, iflags); 11932 goto out; 11933 } 11934 hrq->RQ_rcv_buf++; 11935 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 11936 /* save off the frame for the word thread to process */ 11937 list_add_tail(&dma_buf->cq_event.list, 11938 &phba->sli4_hba.sp_queue_event); 11939 /* Frame received */ 11940 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11941 spin_unlock_irqrestore(&phba->hbalock, iflags); 11942 workposted = true; 11943 break; 11944 case FC_STATUS_INSUFF_BUF_NEED_BUF: 11945 case FC_STATUS_INSUFF_BUF_FRM_DISC: 11946 hrq->RQ_no_posted_buf++; 11947 /* Post more buffers if possible */ 11948 spin_lock_irqsave(&phba->hbalock, iflags); 11949 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 11950 spin_unlock_irqrestore(&phba->hbalock, iflags); 11951 workposted = true; 11952 break; 11953 } 11954 out: 11955 return workposted; 11956 } 11957 11958 /** 11959 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 11960 * @phba: Pointer to HBA context object. 11961 * @cq: Pointer to the completion queue. 11962 * @wcqe: Pointer to a completion queue entry. 11963 * 11964 * This routine process a slow-path work-queue or receive queue completion queue 11965 * entry. 11966 * 11967 * Return: true if work posted to worker thread, otherwise false. 11968 **/ 11969 static bool 11970 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11971 struct lpfc_cqe *cqe) 11972 { 11973 struct lpfc_cqe cqevt; 11974 bool workposted = false; 11975 11976 /* Copy the work queue CQE and convert endian order if needed */ 11977 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 11978 11979 /* Check and process for different type of WCQE and dispatch */ 11980 switch (bf_get(lpfc_cqe_code, &cqevt)) { 11981 case CQE_CODE_COMPL_WQE: 11982 /* Process the WQ/RQ complete event */ 11983 phba->last_completion_time = jiffies; 11984 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 11985 (struct lpfc_wcqe_complete *)&cqevt); 11986 break; 11987 case CQE_CODE_RELEASE_WQE: 11988 /* Process the WQ release event */ 11989 lpfc_sli4_sp_handle_rel_wcqe(phba, 11990 (struct lpfc_wcqe_release *)&cqevt); 11991 break; 11992 case CQE_CODE_XRI_ABORTED: 11993 /* Process the WQ XRI abort event */ 11994 phba->last_completion_time = jiffies; 11995 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 11996 (struct sli4_wcqe_xri_aborted *)&cqevt); 11997 break; 11998 case CQE_CODE_RECEIVE: 11999 case CQE_CODE_RECEIVE_V1: 12000 /* Process the RQ event */ 12001 phba->last_completion_time = jiffies; 12002 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12003 (struct lpfc_rcqe *)&cqevt); 12004 break; 12005 default: 12006 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12007 "0388 Not a valid WCQE code: x%x\n", 12008 bf_get(lpfc_cqe_code, &cqevt)); 12009 break; 12010 } 12011 return workposted; 12012 } 12013 12014 /** 12015 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12016 * @phba: Pointer to HBA context object. 12017 * @eqe: Pointer to fast-path event queue entry. 12018 * 12019 * This routine process a event queue entry from the slow-path event queue. 12020 * It will check the MajorCode and MinorCode to determine this is for a 12021 * completion event on a completion queue, if not, an error shall be logged 12022 * and just return. Otherwise, it will get to the corresponding completion 12023 * queue and process all the entries on that completion queue, rearm the 12024 * completion queue, and then return. 12025 * 12026 **/ 12027 static void 12028 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12029 struct lpfc_queue *speq) 12030 { 12031 struct lpfc_queue *cq = NULL, *childq; 12032 struct lpfc_cqe *cqe; 12033 bool workposted = false; 12034 int ecount = 0; 12035 uint16_t cqid; 12036 12037 /* Get the reference to the corresponding CQ */ 12038 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12039 12040 list_for_each_entry(childq, &speq->child_list, list) { 12041 if (childq->queue_id == cqid) { 12042 cq = childq; 12043 break; 12044 } 12045 } 12046 if (unlikely(!cq)) { 12047 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12048 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12049 "0365 Slow-path CQ identifier " 12050 "(%d) does not exist\n", cqid); 12051 return; 12052 } 12053 12054 /* Process all the entries to the CQ */ 12055 switch (cq->type) { 12056 case LPFC_MCQ: 12057 while ((cqe = lpfc_sli4_cq_get(cq))) { 12058 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12059 if (!(++ecount % cq->entry_repost)) 12060 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12061 cq->CQ_mbox++; 12062 } 12063 break; 12064 case LPFC_WCQ: 12065 while ((cqe = lpfc_sli4_cq_get(cq))) { 12066 if (cq->subtype == LPFC_FCP) 12067 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12068 cqe); 12069 else 12070 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12071 cqe); 12072 if (!(++ecount % cq->entry_repost)) 12073 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12074 } 12075 12076 /* Track the max number of CQEs processed in 1 EQ */ 12077 if (ecount > cq->CQ_max_cqe) 12078 cq->CQ_max_cqe = ecount; 12079 break; 12080 default: 12081 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12082 "0370 Invalid completion queue type (%d)\n", 12083 cq->type); 12084 return; 12085 } 12086 12087 /* Catch the no cq entry condition, log an error */ 12088 if (unlikely(ecount == 0)) 12089 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12090 "0371 No entry from the CQ: identifier " 12091 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12092 12093 /* In any case, flash and re-arm the RCQ */ 12094 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12095 12096 /* wake up worker thread if there are works to be done */ 12097 if (workposted) 12098 lpfc_worker_wake_up(phba); 12099 } 12100 12101 /** 12102 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12103 * @phba: Pointer to HBA context object. 12104 * @cq: Pointer to associated CQ 12105 * @wcqe: Pointer to work-queue completion queue entry. 12106 * 12107 * This routine process a fast-path work queue completion entry from fast-path 12108 * event queue for FCP command response completion. 12109 **/ 12110 static void 12111 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12112 struct lpfc_wcqe_complete *wcqe) 12113 { 12114 struct lpfc_sli_ring *pring = cq->pring; 12115 struct lpfc_iocbq *cmdiocbq; 12116 struct lpfc_iocbq irspiocbq; 12117 unsigned long iflags; 12118 12119 /* Check for response status */ 12120 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12121 /* If resource errors reported from HBA, reduce queue 12122 * depth of the SCSI device. 12123 */ 12124 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12125 IOSTAT_LOCAL_REJECT)) && 12126 ((wcqe->parameter & IOERR_PARAM_MASK) == 12127 IOERR_NO_RESOURCES)) 12128 phba->lpfc_rampdown_queue_depth(phba); 12129 12130 /* Log the error status */ 12131 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12132 "0373 FCP complete error: status=x%x, " 12133 "hw_status=x%x, total_data_specified=%d, " 12134 "parameter=x%x, word3=x%x\n", 12135 bf_get(lpfc_wcqe_c_status, wcqe), 12136 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12137 wcqe->total_data_placed, wcqe->parameter, 12138 wcqe->word3); 12139 } 12140 12141 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12142 spin_lock_irqsave(&pring->ring_lock, iflags); 12143 pring->stats.iocb_event++; 12144 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12145 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12146 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12147 if (unlikely(!cmdiocbq)) { 12148 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12149 "0374 FCP complete with no corresponding " 12150 "cmdiocb: iotag (%d)\n", 12151 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12152 return; 12153 } 12154 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12155 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12156 "0375 FCP cmdiocb not callback function " 12157 "iotag: (%d)\n", 12158 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12159 return; 12160 } 12161 12162 /* Fake the irspiocb and copy necessary response information */ 12163 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12164 12165 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12166 spin_lock_irqsave(&phba->hbalock, iflags); 12167 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12168 spin_unlock_irqrestore(&phba->hbalock, iflags); 12169 } 12170 12171 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12172 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12173 } 12174 12175 /** 12176 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12177 * @phba: Pointer to HBA context object. 12178 * @cq: Pointer to completion queue. 12179 * @wcqe: Pointer to work-queue completion queue entry. 12180 * 12181 * This routine handles an fast-path WQ entry comsumed event by invoking the 12182 * proper WQ release routine to the slow-path WQ. 12183 **/ 12184 static void 12185 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12186 struct lpfc_wcqe_release *wcqe) 12187 { 12188 struct lpfc_queue *childwq; 12189 bool wqid_matched = false; 12190 uint16_t fcp_wqid; 12191 12192 /* Check for fast-path FCP work queue release */ 12193 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12194 list_for_each_entry(childwq, &cq->child_list, list) { 12195 if (childwq->queue_id == fcp_wqid) { 12196 lpfc_sli4_wq_release(childwq, 12197 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12198 wqid_matched = true; 12199 break; 12200 } 12201 } 12202 /* Report warning log message if no match found */ 12203 if (wqid_matched != true) 12204 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12205 "2580 Fast-path wqe consume event carries " 12206 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12207 } 12208 12209 /** 12210 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12211 * @cq: Pointer to the completion queue. 12212 * @eqe: Pointer to fast-path completion queue entry. 12213 * 12214 * This routine process a fast-path work queue completion entry from fast-path 12215 * event queue for FCP command response completion. 12216 **/ 12217 static int 12218 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12219 struct lpfc_cqe *cqe) 12220 { 12221 struct lpfc_wcqe_release wcqe; 12222 bool workposted = false; 12223 12224 /* Copy the work queue CQE and convert endian order if needed */ 12225 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12226 12227 /* Check and process for different type of WCQE and dispatch */ 12228 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12229 case CQE_CODE_COMPL_WQE: 12230 cq->CQ_wq++; 12231 /* Process the WQ complete event */ 12232 phba->last_completion_time = jiffies; 12233 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12234 (struct lpfc_wcqe_complete *)&wcqe); 12235 break; 12236 case CQE_CODE_RELEASE_WQE: 12237 cq->CQ_release_wqe++; 12238 /* Process the WQ release event */ 12239 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12240 (struct lpfc_wcqe_release *)&wcqe); 12241 break; 12242 case CQE_CODE_XRI_ABORTED: 12243 cq->CQ_xri_aborted++; 12244 /* Process the WQ XRI abort event */ 12245 phba->last_completion_time = jiffies; 12246 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12247 (struct sli4_wcqe_xri_aborted *)&wcqe); 12248 break; 12249 default: 12250 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12251 "0144 Not a valid WCQE code: x%x\n", 12252 bf_get(lpfc_wcqe_c_code, &wcqe)); 12253 break; 12254 } 12255 return workposted; 12256 } 12257 12258 /** 12259 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12260 * @phba: Pointer to HBA context object. 12261 * @eqe: Pointer to fast-path event queue entry. 12262 * 12263 * This routine process a event queue entry from the fast-path event queue. 12264 * It will check the MajorCode and MinorCode to determine this is for a 12265 * completion event on a completion queue, if not, an error shall be logged 12266 * and just return. Otherwise, it will get to the corresponding completion 12267 * queue and process all the entries on the completion queue, rearm the 12268 * completion queue, and then return. 12269 **/ 12270 static void 12271 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12272 uint32_t qidx) 12273 { 12274 struct lpfc_queue *cq; 12275 struct lpfc_cqe *cqe; 12276 bool workposted = false; 12277 uint16_t cqid; 12278 int ecount = 0; 12279 12280 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12281 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12282 "0366 Not a valid completion " 12283 "event: majorcode=x%x, minorcode=x%x\n", 12284 bf_get_le32(lpfc_eqe_major_code, eqe), 12285 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12286 return; 12287 } 12288 12289 /* Get the reference to the corresponding CQ */ 12290 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12291 12292 /* Check if this is a Slow path event */ 12293 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12294 lpfc_sli4_sp_handle_eqe(phba, eqe, 12295 phba->sli4_hba.hba_eq[qidx]); 12296 return; 12297 } 12298 12299 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12300 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12301 "3146 Fast-path completion queues " 12302 "does not exist\n"); 12303 return; 12304 } 12305 cq = phba->sli4_hba.fcp_cq[qidx]; 12306 if (unlikely(!cq)) { 12307 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12308 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12309 "0367 Fast-path completion queue " 12310 "(%d) does not exist\n", qidx); 12311 return; 12312 } 12313 12314 if (unlikely(cqid != cq->queue_id)) { 12315 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12316 "0368 Miss-matched fast-path completion " 12317 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12318 cqid, cq->queue_id); 12319 return; 12320 } 12321 12322 /* Process all the entries to the CQ */ 12323 while ((cqe = lpfc_sli4_cq_get(cq))) { 12324 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12325 if (!(++ecount % cq->entry_repost)) 12326 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12327 } 12328 12329 /* Track the max number of CQEs processed in 1 EQ */ 12330 if (ecount > cq->CQ_max_cqe) 12331 cq->CQ_max_cqe = ecount; 12332 12333 /* Catch the no cq entry condition */ 12334 if (unlikely(ecount == 0)) 12335 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12336 "0369 No entry from fast-path completion " 12337 "queue fcpcqid=%d\n", cq->queue_id); 12338 12339 /* In any case, flash and re-arm the CQ */ 12340 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12341 12342 /* wake up worker thread if there are works to be done */ 12343 if (workposted) 12344 lpfc_worker_wake_up(phba); 12345 } 12346 12347 static void 12348 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12349 { 12350 struct lpfc_eqe *eqe; 12351 12352 /* walk all the EQ entries and drop on the floor */ 12353 while ((eqe = lpfc_sli4_eq_get(eq))) 12354 ; 12355 12356 /* Clear and re-arm the EQ */ 12357 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12358 } 12359 12360 12361 /** 12362 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12363 * entry 12364 * @phba: Pointer to HBA context object. 12365 * @eqe: Pointer to fast-path event queue entry. 12366 * 12367 * This routine process a event queue entry from the Flash Optimized Fabric 12368 * event queue. It will check the MajorCode and MinorCode to determine this 12369 * is for a completion event on a completion queue, if not, an error shall be 12370 * logged and just return. Otherwise, it will get to the corresponding 12371 * completion queue and process all the entries on the completion queue, rearm 12372 * the completion queue, and then return. 12373 **/ 12374 static void 12375 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12376 { 12377 struct lpfc_queue *cq; 12378 struct lpfc_cqe *cqe; 12379 bool workposted = false; 12380 uint16_t cqid; 12381 int ecount = 0; 12382 12383 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12385 "9147 Not a valid completion " 12386 "event: majorcode=x%x, minorcode=x%x\n", 12387 bf_get_le32(lpfc_eqe_major_code, eqe), 12388 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12389 return; 12390 } 12391 12392 /* Get the reference to the corresponding CQ */ 12393 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12394 12395 /* Next check for OAS */ 12396 cq = phba->sli4_hba.oas_cq; 12397 if (unlikely(!cq)) { 12398 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12400 "9148 OAS completion queue " 12401 "does not exist\n"); 12402 return; 12403 } 12404 12405 if (unlikely(cqid != cq->queue_id)) { 12406 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12407 "9149 Miss-matched fast-path compl " 12408 "queue id: eqcqid=%d, fcpcqid=%d\n", 12409 cqid, cq->queue_id); 12410 return; 12411 } 12412 12413 /* Process all the entries to the OAS CQ */ 12414 while ((cqe = lpfc_sli4_cq_get(cq))) { 12415 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12416 if (!(++ecount % cq->entry_repost)) 12417 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12418 } 12419 12420 /* Track the max number of CQEs processed in 1 EQ */ 12421 if (ecount > cq->CQ_max_cqe) 12422 cq->CQ_max_cqe = ecount; 12423 12424 /* Catch the no cq entry condition */ 12425 if (unlikely(ecount == 0)) 12426 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12427 "9153 No entry from fast-path completion " 12428 "queue fcpcqid=%d\n", cq->queue_id); 12429 12430 /* In any case, flash and re-arm the CQ */ 12431 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12432 12433 /* wake up worker thread if there are works to be done */ 12434 if (workposted) 12435 lpfc_worker_wake_up(phba); 12436 } 12437 12438 /** 12439 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12440 * @irq: Interrupt number. 12441 * @dev_id: The device context pointer. 12442 * 12443 * This function is directly called from the PCI layer as an interrupt 12444 * service routine when device with SLI-4 interface spec is enabled with 12445 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12446 * IOCB ring event in the HBA. However, when the device is enabled with either 12447 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12448 * device-level interrupt handler. When the PCI slot is in error recovery 12449 * or the HBA is undergoing initialization, the interrupt handler will not 12450 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12451 * the intrrupt context. This function is called without any lock held. 12452 * It gets the hbalock to access and update SLI data structures. Note that, 12453 * the EQ to CQ are one-to-one map such that the EQ index is 12454 * equal to that of CQ index. 12455 * 12456 * This function returns IRQ_HANDLED when interrupt is handled else it 12457 * returns IRQ_NONE. 12458 **/ 12459 irqreturn_t 12460 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12461 { 12462 struct lpfc_hba *phba; 12463 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12464 struct lpfc_queue *eq; 12465 struct lpfc_eqe *eqe; 12466 unsigned long iflag; 12467 int ecount = 0; 12468 uint32_t eqidx; 12469 12470 /* Get the driver's phba structure from the dev_id */ 12471 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12472 phba = fcp_eq_hdl->phba; 12473 eqidx = fcp_eq_hdl->idx; 12474 12475 if (unlikely(!phba)) 12476 return IRQ_NONE; 12477 12478 /* Get to the EQ struct associated with this vector */ 12479 eq = phba->sli4_hba.fof_eq; 12480 if (unlikely(!eq)) 12481 return IRQ_NONE; 12482 12483 /* Check device state for handling interrupt */ 12484 if (unlikely(lpfc_intr_state_check(phba))) { 12485 eq->EQ_badstate++; 12486 /* Check again for link_state with lock held */ 12487 spin_lock_irqsave(&phba->hbalock, iflag); 12488 if (phba->link_state < LPFC_LINK_DOWN) 12489 /* Flush, clear interrupt, and rearm the EQ */ 12490 lpfc_sli4_eq_flush(phba, eq); 12491 spin_unlock_irqrestore(&phba->hbalock, iflag); 12492 return IRQ_NONE; 12493 } 12494 12495 /* 12496 * Process all the event on FCP fast-path EQ 12497 */ 12498 while ((eqe = lpfc_sli4_eq_get(eq))) { 12499 lpfc_sli4_fof_handle_eqe(phba, eqe); 12500 if (!(++ecount % eq->entry_repost)) 12501 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12502 eq->EQ_processed++; 12503 } 12504 12505 /* Track the max number of EQEs processed in 1 intr */ 12506 if (ecount > eq->EQ_max_eqe) 12507 eq->EQ_max_eqe = ecount; 12508 12509 12510 if (unlikely(ecount == 0)) { 12511 eq->EQ_no_entry++; 12512 12513 if (phba->intr_type == MSIX) 12514 /* MSI-X treated interrupt served as no EQ share INT */ 12515 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12516 "9145 MSI-X interrupt with no EQE\n"); 12517 else { 12518 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12519 "9146 ISR interrupt with no EQE\n"); 12520 /* Non MSI-X treated on interrupt as EQ share INT */ 12521 return IRQ_NONE; 12522 } 12523 } 12524 /* Always clear and re-arm the fast-path EQ */ 12525 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12526 return IRQ_HANDLED; 12527 } 12528 12529 /** 12530 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12531 * @irq: Interrupt number. 12532 * @dev_id: The device context pointer. 12533 * 12534 * This function is directly called from the PCI layer as an interrupt 12535 * service routine when device with SLI-4 interface spec is enabled with 12536 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12537 * ring event in the HBA. However, when the device is enabled with either 12538 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12539 * device-level interrupt handler. When the PCI slot is in error recovery 12540 * or the HBA is undergoing initialization, the interrupt handler will not 12541 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12542 * the intrrupt context. This function is called without any lock held. 12543 * It gets the hbalock to access and update SLI data structures. Note that, 12544 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12545 * equal to that of FCP CQ index. 12546 * 12547 * The link attention and ELS ring attention events are handled 12548 * by the worker thread. The interrupt handler signals the worker thread 12549 * and returns for these events. This function is called without any lock 12550 * held. It gets the hbalock to access and update SLI data structures. 12551 * 12552 * This function returns IRQ_HANDLED when interrupt is handled else it 12553 * returns IRQ_NONE. 12554 **/ 12555 irqreturn_t 12556 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12557 { 12558 struct lpfc_hba *phba; 12559 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12560 struct lpfc_queue *fpeq; 12561 struct lpfc_eqe *eqe; 12562 unsigned long iflag; 12563 int ecount = 0; 12564 int fcp_eqidx; 12565 12566 /* Get the driver's phba structure from the dev_id */ 12567 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12568 phba = fcp_eq_hdl->phba; 12569 fcp_eqidx = fcp_eq_hdl->idx; 12570 12571 if (unlikely(!phba)) 12572 return IRQ_NONE; 12573 if (unlikely(!phba->sli4_hba.hba_eq)) 12574 return IRQ_NONE; 12575 12576 /* Get to the EQ struct associated with this vector */ 12577 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12578 if (unlikely(!fpeq)) 12579 return IRQ_NONE; 12580 12581 if (lpfc_fcp_look_ahead) { 12582 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12583 lpfc_sli4_eq_clr_intr(fpeq); 12584 else { 12585 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12586 return IRQ_NONE; 12587 } 12588 } 12589 12590 /* Check device state for handling interrupt */ 12591 if (unlikely(lpfc_intr_state_check(phba))) { 12592 fpeq->EQ_badstate++; 12593 /* Check again for link_state with lock held */ 12594 spin_lock_irqsave(&phba->hbalock, iflag); 12595 if (phba->link_state < LPFC_LINK_DOWN) 12596 /* Flush, clear interrupt, and rearm the EQ */ 12597 lpfc_sli4_eq_flush(phba, fpeq); 12598 spin_unlock_irqrestore(&phba->hbalock, iflag); 12599 if (lpfc_fcp_look_ahead) 12600 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12601 return IRQ_NONE; 12602 } 12603 12604 /* 12605 * Process all the event on FCP fast-path EQ 12606 */ 12607 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12608 if (eqe == NULL) 12609 break; 12610 12611 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12612 if (!(++ecount % fpeq->entry_repost)) 12613 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12614 fpeq->EQ_processed++; 12615 } 12616 12617 /* Track the max number of EQEs processed in 1 intr */ 12618 if (ecount > fpeq->EQ_max_eqe) 12619 fpeq->EQ_max_eqe = ecount; 12620 12621 /* Always clear and re-arm the fast-path EQ */ 12622 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12623 12624 if (unlikely(ecount == 0)) { 12625 fpeq->EQ_no_entry++; 12626 12627 if (lpfc_fcp_look_ahead) { 12628 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12629 return IRQ_NONE; 12630 } 12631 12632 if (phba->intr_type == MSIX) 12633 /* MSI-X treated interrupt served as no EQ share INT */ 12634 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12635 "0358 MSI-X interrupt with no EQE\n"); 12636 else 12637 /* Non MSI-X treated on interrupt as EQ share INT */ 12638 return IRQ_NONE; 12639 } 12640 12641 if (lpfc_fcp_look_ahead) 12642 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12643 return IRQ_HANDLED; 12644 } /* lpfc_sli4_fp_intr_handler */ 12645 12646 /** 12647 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12648 * @irq: Interrupt number. 12649 * @dev_id: The device context pointer. 12650 * 12651 * This function is the device-level interrupt handler to device with SLI-4 12652 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12653 * interrupt mode is enabled and there is an event in the HBA which requires 12654 * driver attention. This function invokes the slow-path interrupt attention 12655 * handling function and fast-path interrupt attention handling function in 12656 * turn to process the relevant HBA attention events. This function is called 12657 * without any lock held. It gets the hbalock to access and update SLI data 12658 * structures. 12659 * 12660 * This function returns IRQ_HANDLED when interrupt is handled, else it 12661 * returns IRQ_NONE. 12662 **/ 12663 irqreturn_t 12664 lpfc_sli4_intr_handler(int irq, void *dev_id) 12665 { 12666 struct lpfc_hba *phba; 12667 irqreturn_t hba_irq_rc; 12668 bool hba_handled = false; 12669 int fcp_eqidx; 12670 12671 /* Get the driver's phba structure from the dev_id */ 12672 phba = (struct lpfc_hba *)dev_id; 12673 12674 if (unlikely(!phba)) 12675 return IRQ_NONE; 12676 12677 /* 12678 * Invoke fast-path host attention interrupt handling as appropriate. 12679 */ 12680 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12681 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12682 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12683 if (hba_irq_rc == IRQ_HANDLED) 12684 hba_handled |= true; 12685 } 12686 12687 if (phba->cfg_fof) { 12688 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12689 &phba->sli4_hba.fcp_eq_hdl[0]); 12690 if (hba_irq_rc == IRQ_HANDLED) 12691 hba_handled |= true; 12692 } 12693 12694 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12695 } /* lpfc_sli4_intr_handler */ 12696 12697 /** 12698 * lpfc_sli4_queue_free - free a queue structure and associated memory 12699 * @queue: The queue structure to free. 12700 * 12701 * This function frees a queue structure and the DMAable memory used for 12702 * the host resident queue. This function must be called after destroying the 12703 * queue on the HBA. 12704 **/ 12705 void 12706 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12707 { 12708 struct lpfc_dmabuf *dmabuf; 12709 12710 if (!queue) 12711 return; 12712 12713 while (!list_empty(&queue->page_list)) { 12714 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12715 list); 12716 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12717 dmabuf->virt, dmabuf->phys); 12718 kfree(dmabuf); 12719 } 12720 kfree(queue); 12721 return; 12722 } 12723 12724 /** 12725 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12726 * @phba: The HBA that this queue is being created on. 12727 * @entry_size: The size of each queue entry for this queue. 12728 * @entry count: The number of entries that this queue will handle. 12729 * 12730 * This function allocates a queue structure and the DMAable memory used for 12731 * the host resident queue. This function must be called before creating the 12732 * queue on the HBA. 12733 **/ 12734 struct lpfc_queue * 12735 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 12736 uint32_t entry_count) 12737 { 12738 struct lpfc_queue *queue; 12739 struct lpfc_dmabuf *dmabuf; 12740 int x, total_qe_count; 12741 void *dma_pointer; 12742 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12743 12744 if (!phba->sli4_hba.pc_sli4_params.supported) 12745 hw_page_size = SLI4_PAGE_SIZE; 12746 12747 queue = kzalloc(sizeof(struct lpfc_queue) + 12748 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 12749 if (!queue) 12750 return NULL; 12751 queue->page_count = (ALIGN(entry_size * entry_count, 12752 hw_page_size))/hw_page_size; 12753 INIT_LIST_HEAD(&queue->list); 12754 INIT_LIST_HEAD(&queue->page_list); 12755 INIT_LIST_HEAD(&queue->child_list); 12756 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 12757 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 12758 if (!dmabuf) 12759 goto out_fail; 12760 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 12761 hw_page_size, &dmabuf->phys, 12762 GFP_KERNEL); 12763 if (!dmabuf->virt) { 12764 kfree(dmabuf); 12765 goto out_fail; 12766 } 12767 dmabuf->buffer_tag = x; 12768 list_add_tail(&dmabuf->list, &queue->page_list); 12769 /* initialize queue's entry array */ 12770 dma_pointer = dmabuf->virt; 12771 for (; total_qe_count < entry_count && 12772 dma_pointer < (hw_page_size + dmabuf->virt); 12773 total_qe_count++, dma_pointer += entry_size) { 12774 queue->qe[total_qe_count].address = dma_pointer; 12775 } 12776 } 12777 queue->entry_size = entry_size; 12778 queue->entry_count = entry_count; 12779 12780 /* 12781 * entry_repost is calculated based on the number of entries in the 12782 * queue. This works out except for RQs. If buffers are NOT initially 12783 * posted for every RQE, entry_repost should be adjusted accordingly. 12784 */ 12785 queue->entry_repost = (entry_count >> 3); 12786 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 12787 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 12788 queue->phba = phba; 12789 12790 return queue; 12791 out_fail: 12792 lpfc_sli4_queue_free(queue); 12793 return NULL; 12794 } 12795 12796 /** 12797 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 12798 * @phba: HBA structure that indicates port to create a queue on. 12799 * @pci_barset: PCI BAR set flag. 12800 * 12801 * This function shall perform iomap of the specified PCI BAR address to host 12802 * memory address if not already done so and return it. The returned host 12803 * memory address can be NULL. 12804 */ 12805 static void __iomem * 12806 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 12807 { 12808 struct pci_dev *pdev; 12809 12810 if (!phba->pcidev) 12811 return NULL; 12812 else 12813 pdev = phba->pcidev; 12814 12815 switch (pci_barset) { 12816 case WQ_PCI_BAR_0_AND_1: 12817 return phba->pci_bar0_memmap_p; 12818 case WQ_PCI_BAR_2_AND_3: 12819 return phba->pci_bar2_memmap_p; 12820 case WQ_PCI_BAR_4_AND_5: 12821 return phba->pci_bar4_memmap_p; 12822 default: 12823 break; 12824 } 12825 return NULL; 12826 } 12827 12828 /** 12829 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 12830 * @phba: HBA structure that indicates port to create a queue on. 12831 * @startq: The starting FCP EQ to modify 12832 * 12833 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 12834 * 12835 * The @phba struct is used to send mailbox command to HBA. The @startq 12836 * is used to get the starting FCP EQ to change. 12837 * This function is asynchronous and will wait for the mailbox 12838 * command to finish before continuing. 12839 * 12840 * On success this function will return a zero. If unable to allocate enough 12841 * memory this function will return -ENOMEM. If the queue create mailbox command 12842 * fails this function will return -ENXIO. 12843 **/ 12844 int 12845 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint16_t startq) 12846 { 12847 struct lpfc_mbx_modify_eq_delay *eq_delay; 12848 LPFC_MBOXQ_t *mbox; 12849 struct lpfc_queue *eq; 12850 int cnt, rc, length, status = 0; 12851 uint32_t shdr_status, shdr_add_status; 12852 uint32_t result; 12853 int fcp_eqidx; 12854 union lpfc_sli4_cfg_shdr *shdr; 12855 uint16_t dmult; 12856 12857 if (startq >= phba->cfg_fcp_io_channel) 12858 return 0; 12859 12860 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12861 if (!mbox) 12862 return -ENOMEM; 12863 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 12864 sizeof(struct lpfc_sli4_cfg_mhdr)); 12865 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12866 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 12867 length, LPFC_SLI4_MBX_EMBED); 12868 eq_delay = &mbox->u.mqe.un.eq_delay; 12869 12870 /* Calculate delay multiper from maximum interrupt per second */ 12871 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 12872 if (result > LPFC_DMULT_CONST) 12873 dmult = 0; 12874 else 12875 dmult = LPFC_DMULT_CONST/result - 1; 12876 12877 cnt = 0; 12878 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 12879 fcp_eqidx++) { 12880 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12881 if (!eq) 12882 continue; 12883 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 12884 eq_delay->u.request.eq[cnt].phase = 0; 12885 eq_delay->u.request.eq[cnt].delay_multi = dmult; 12886 cnt++; 12887 if (cnt >= LPFC_MAX_EQ_DELAY) 12888 break; 12889 } 12890 eq_delay->u.request.num_eq = cnt; 12891 12892 mbox->vport = phba->pport; 12893 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12894 mbox->context1 = NULL; 12895 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12896 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 12897 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12898 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12899 if (shdr_status || shdr_add_status || rc) { 12900 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12901 "2512 MODIFY_EQ_DELAY mailbox failed with " 12902 "status x%x add_status x%x, mbx status x%x\n", 12903 shdr_status, shdr_add_status, rc); 12904 status = -ENXIO; 12905 } 12906 mempool_free(mbox, phba->mbox_mem_pool); 12907 return status; 12908 } 12909 12910 /** 12911 * lpfc_eq_create - Create an Event Queue on the HBA 12912 * @phba: HBA structure that indicates port to create a queue on. 12913 * @eq: The queue structure to use to create the event queue. 12914 * @imax: The maximum interrupt per second limit. 12915 * 12916 * This function creates an event queue, as detailed in @eq, on a port, 12917 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 12918 * 12919 * The @phba struct is used to send mailbox command to HBA. The @eq struct 12920 * is used to get the entry count and entry size that are necessary to 12921 * determine the number of pages to allocate and use for this queue. This 12922 * function will send the EQ_CREATE mailbox command to the HBA to setup the 12923 * event queue. This function is asynchronous and will wait for the mailbox 12924 * command to finish before continuing. 12925 * 12926 * On success this function will return a zero. If unable to allocate enough 12927 * memory this function will return -ENOMEM. If the queue create mailbox command 12928 * fails this function will return -ENXIO. 12929 **/ 12930 int 12931 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 12932 { 12933 struct lpfc_mbx_eq_create *eq_create; 12934 LPFC_MBOXQ_t *mbox; 12935 int rc, length, status = 0; 12936 struct lpfc_dmabuf *dmabuf; 12937 uint32_t shdr_status, shdr_add_status; 12938 union lpfc_sli4_cfg_shdr *shdr; 12939 uint16_t dmult; 12940 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12941 12942 /* sanity check on queue memory */ 12943 if (!eq) 12944 return -ENODEV; 12945 if (!phba->sli4_hba.pc_sli4_params.supported) 12946 hw_page_size = SLI4_PAGE_SIZE; 12947 12948 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12949 if (!mbox) 12950 return -ENOMEM; 12951 length = (sizeof(struct lpfc_mbx_eq_create) - 12952 sizeof(struct lpfc_sli4_cfg_mhdr)); 12953 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12954 LPFC_MBOX_OPCODE_EQ_CREATE, 12955 length, LPFC_SLI4_MBX_EMBED); 12956 eq_create = &mbox->u.mqe.un.eq_create; 12957 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 12958 eq->page_count); 12959 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 12960 LPFC_EQE_SIZE); 12961 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 12962 /* Calculate delay multiper from maximum interrupt per second */ 12963 if (imax > LPFC_DMULT_CONST) 12964 dmult = 0; 12965 else 12966 dmult = LPFC_DMULT_CONST/imax - 1; 12967 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 12968 dmult); 12969 switch (eq->entry_count) { 12970 default: 12971 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12972 "0360 Unsupported EQ count. (%d)\n", 12973 eq->entry_count); 12974 if (eq->entry_count < 256) 12975 return -EINVAL; 12976 /* otherwise default to smallest count (drop through) */ 12977 case 256: 12978 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12979 LPFC_EQ_CNT_256); 12980 break; 12981 case 512: 12982 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12983 LPFC_EQ_CNT_512); 12984 break; 12985 case 1024: 12986 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12987 LPFC_EQ_CNT_1024); 12988 break; 12989 case 2048: 12990 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12991 LPFC_EQ_CNT_2048); 12992 break; 12993 case 4096: 12994 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12995 LPFC_EQ_CNT_4096); 12996 break; 12997 } 12998 list_for_each_entry(dmabuf, &eq->page_list, list) { 12999 memset(dmabuf->virt, 0, hw_page_size); 13000 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13001 putPaddrLow(dmabuf->phys); 13002 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13003 putPaddrHigh(dmabuf->phys); 13004 } 13005 mbox->vport = phba->pport; 13006 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13007 mbox->context1 = NULL; 13008 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13009 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13010 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13011 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13012 if (shdr_status || shdr_add_status || rc) { 13013 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13014 "2500 EQ_CREATE mailbox failed with " 13015 "status x%x add_status x%x, mbx status x%x\n", 13016 shdr_status, shdr_add_status, rc); 13017 status = -ENXIO; 13018 } 13019 eq->type = LPFC_EQ; 13020 eq->subtype = LPFC_NONE; 13021 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13022 if (eq->queue_id == 0xFFFF) 13023 status = -ENXIO; 13024 eq->host_index = 0; 13025 eq->hba_index = 0; 13026 13027 mempool_free(mbox, phba->mbox_mem_pool); 13028 return status; 13029 } 13030 13031 /** 13032 * lpfc_cq_create - Create a Completion Queue on the HBA 13033 * @phba: HBA structure that indicates port to create a queue on. 13034 * @cq: The queue structure to use to create the completion queue. 13035 * @eq: The event queue to bind this completion queue to. 13036 * 13037 * This function creates a completion queue, as detailed in @wq, on a port, 13038 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13039 * 13040 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13041 * is used to get the entry count and entry size that are necessary to 13042 * determine the number of pages to allocate and use for this queue. The @eq 13043 * is used to indicate which event queue to bind this completion queue to. This 13044 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13045 * completion queue. This function is asynchronous and will wait for the mailbox 13046 * command to finish before continuing. 13047 * 13048 * On success this function will return a zero. If unable to allocate enough 13049 * memory this function will return -ENOMEM. If the queue create mailbox command 13050 * fails this function will return -ENXIO. 13051 **/ 13052 int 13053 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13054 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13055 { 13056 struct lpfc_mbx_cq_create *cq_create; 13057 struct lpfc_dmabuf *dmabuf; 13058 LPFC_MBOXQ_t *mbox; 13059 int rc, length, status = 0; 13060 uint32_t shdr_status, shdr_add_status; 13061 union lpfc_sli4_cfg_shdr *shdr; 13062 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13063 13064 /* sanity check on queue memory */ 13065 if (!cq || !eq) 13066 return -ENODEV; 13067 if (!phba->sli4_hba.pc_sli4_params.supported) 13068 hw_page_size = SLI4_PAGE_SIZE; 13069 13070 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13071 if (!mbox) 13072 return -ENOMEM; 13073 length = (sizeof(struct lpfc_mbx_cq_create) - 13074 sizeof(struct lpfc_sli4_cfg_mhdr)); 13075 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13076 LPFC_MBOX_OPCODE_CQ_CREATE, 13077 length, LPFC_SLI4_MBX_EMBED); 13078 cq_create = &mbox->u.mqe.un.cq_create; 13079 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13080 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13081 cq->page_count); 13082 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13083 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13084 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13085 phba->sli4_hba.pc_sli4_params.cqv); 13086 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13087 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13088 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13089 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13090 eq->queue_id); 13091 } else { 13092 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13093 eq->queue_id); 13094 } 13095 switch (cq->entry_count) { 13096 default: 13097 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13098 "0361 Unsupported CQ count. (%d)\n", 13099 cq->entry_count); 13100 if (cq->entry_count < 256) { 13101 status = -EINVAL; 13102 goto out; 13103 } 13104 /* otherwise default to smallest count (drop through) */ 13105 case 256: 13106 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13107 LPFC_CQ_CNT_256); 13108 break; 13109 case 512: 13110 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13111 LPFC_CQ_CNT_512); 13112 break; 13113 case 1024: 13114 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13115 LPFC_CQ_CNT_1024); 13116 break; 13117 } 13118 list_for_each_entry(dmabuf, &cq->page_list, list) { 13119 memset(dmabuf->virt, 0, hw_page_size); 13120 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13121 putPaddrLow(dmabuf->phys); 13122 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13123 putPaddrHigh(dmabuf->phys); 13124 } 13125 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13126 13127 /* The IOCTL status is embedded in the mailbox subheader. */ 13128 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13129 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13130 if (shdr_status || shdr_add_status || rc) { 13131 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13132 "2501 CQ_CREATE mailbox failed with " 13133 "status x%x add_status x%x, mbx status x%x\n", 13134 shdr_status, shdr_add_status, rc); 13135 status = -ENXIO; 13136 goto out; 13137 } 13138 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13139 if (cq->queue_id == 0xFFFF) { 13140 status = -ENXIO; 13141 goto out; 13142 } 13143 /* link the cq onto the parent eq child list */ 13144 list_add_tail(&cq->list, &eq->child_list); 13145 /* Set up completion queue's type and subtype */ 13146 cq->type = type; 13147 cq->subtype = subtype; 13148 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13149 cq->assoc_qid = eq->queue_id; 13150 cq->host_index = 0; 13151 cq->hba_index = 0; 13152 13153 out: 13154 mempool_free(mbox, phba->mbox_mem_pool); 13155 return status; 13156 } 13157 13158 /** 13159 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13160 * @phba: HBA structure that indicates port to create a queue on. 13161 * @mq: The queue structure to use to create the mailbox queue. 13162 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13163 * @cq: The completion queue to associate with this cq. 13164 * 13165 * This function provides failback (fb) functionality when the 13166 * mq_create_ext fails on older FW generations. It's purpose is identical 13167 * to mq_create_ext otherwise. 13168 * 13169 * This routine cannot fail as all attributes were previously accessed and 13170 * initialized in mq_create_ext. 13171 **/ 13172 static void 13173 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13174 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13175 { 13176 struct lpfc_mbx_mq_create *mq_create; 13177 struct lpfc_dmabuf *dmabuf; 13178 int length; 13179 13180 length = (sizeof(struct lpfc_mbx_mq_create) - 13181 sizeof(struct lpfc_sli4_cfg_mhdr)); 13182 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13183 LPFC_MBOX_OPCODE_MQ_CREATE, 13184 length, LPFC_SLI4_MBX_EMBED); 13185 mq_create = &mbox->u.mqe.un.mq_create; 13186 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13187 mq->page_count); 13188 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13189 cq->queue_id); 13190 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13191 switch (mq->entry_count) { 13192 case 16: 13193 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13194 LPFC_MQ_RING_SIZE_16); 13195 break; 13196 case 32: 13197 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13198 LPFC_MQ_RING_SIZE_32); 13199 break; 13200 case 64: 13201 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13202 LPFC_MQ_RING_SIZE_64); 13203 break; 13204 case 128: 13205 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13206 LPFC_MQ_RING_SIZE_128); 13207 break; 13208 } 13209 list_for_each_entry(dmabuf, &mq->page_list, list) { 13210 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13211 putPaddrLow(dmabuf->phys); 13212 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13213 putPaddrHigh(dmabuf->phys); 13214 } 13215 } 13216 13217 /** 13218 * lpfc_mq_create - Create a mailbox Queue on the HBA 13219 * @phba: HBA structure that indicates port to create a queue on. 13220 * @mq: The queue structure to use to create the mailbox queue. 13221 * @cq: The completion queue to associate with this cq. 13222 * @subtype: The queue's subtype. 13223 * 13224 * This function creates a mailbox queue, as detailed in @mq, on a port, 13225 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13226 * 13227 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13228 * is used to get the entry count and entry size that are necessary to 13229 * determine the number of pages to allocate and use for this queue. This 13230 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13231 * mailbox queue. This function is asynchronous and will wait for the mailbox 13232 * command to finish before continuing. 13233 * 13234 * On success this function will return a zero. If unable to allocate enough 13235 * memory this function will return -ENOMEM. If the queue create mailbox command 13236 * fails this function will return -ENXIO. 13237 **/ 13238 int32_t 13239 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13240 struct lpfc_queue *cq, uint32_t subtype) 13241 { 13242 struct lpfc_mbx_mq_create *mq_create; 13243 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13244 struct lpfc_dmabuf *dmabuf; 13245 LPFC_MBOXQ_t *mbox; 13246 int rc, length, status = 0; 13247 uint32_t shdr_status, shdr_add_status; 13248 union lpfc_sli4_cfg_shdr *shdr; 13249 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13250 13251 /* sanity check on queue memory */ 13252 if (!mq || !cq) 13253 return -ENODEV; 13254 if (!phba->sli4_hba.pc_sli4_params.supported) 13255 hw_page_size = SLI4_PAGE_SIZE; 13256 13257 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13258 if (!mbox) 13259 return -ENOMEM; 13260 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13261 sizeof(struct lpfc_sli4_cfg_mhdr)); 13262 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13263 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13264 length, LPFC_SLI4_MBX_EMBED); 13265 13266 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13267 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13268 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13269 &mq_create_ext->u.request, mq->page_count); 13270 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13271 &mq_create_ext->u.request, 1); 13272 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13273 &mq_create_ext->u.request, 1); 13274 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13275 &mq_create_ext->u.request, 1); 13276 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13277 &mq_create_ext->u.request, 1); 13278 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13279 &mq_create_ext->u.request, 1); 13280 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13281 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13282 phba->sli4_hba.pc_sli4_params.mqv); 13283 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13284 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13285 cq->queue_id); 13286 else 13287 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13288 cq->queue_id); 13289 switch (mq->entry_count) { 13290 default: 13291 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13292 "0362 Unsupported MQ count. (%d)\n", 13293 mq->entry_count); 13294 if (mq->entry_count < 16) { 13295 status = -EINVAL; 13296 goto out; 13297 } 13298 /* otherwise default to smallest count (drop through) */ 13299 case 16: 13300 bf_set(lpfc_mq_context_ring_size, 13301 &mq_create_ext->u.request.context, 13302 LPFC_MQ_RING_SIZE_16); 13303 break; 13304 case 32: 13305 bf_set(lpfc_mq_context_ring_size, 13306 &mq_create_ext->u.request.context, 13307 LPFC_MQ_RING_SIZE_32); 13308 break; 13309 case 64: 13310 bf_set(lpfc_mq_context_ring_size, 13311 &mq_create_ext->u.request.context, 13312 LPFC_MQ_RING_SIZE_64); 13313 break; 13314 case 128: 13315 bf_set(lpfc_mq_context_ring_size, 13316 &mq_create_ext->u.request.context, 13317 LPFC_MQ_RING_SIZE_128); 13318 break; 13319 } 13320 list_for_each_entry(dmabuf, &mq->page_list, list) { 13321 memset(dmabuf->virt, 0, hw_page_size); 13322 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13323 putPaddrLow(dmabuf->phys); 13324 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13325 putPaddrHigh(dmabuf->phys); 13326 } 13327 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13328 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13329 &mq_create_ext->u.response); 13330 if (rc != MBX_SUCCESS) { 13331 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13332 "2795 MQ_CREATE_EXT failed with " 13333 "status x%x. Failback to MQ_CREATE.\n", 13334 rc); 13335 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13336 mq_create = &mbox->u.mqe.un.mq_create; 13337 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13338 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13339 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13340 &mq_create->u.response); 13341 } 13342 13343 /* The IOCTL status is embedded in the mailbox subheader. */ 13344 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13345 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13346 if (shdr_status || shdr_add_status || rc) { 13347 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13348 "2502 MQ_CREATE mailbox failed with " 13349 "status x%x add_status x%x, mbx status x%x\n", 13350 shdr_status, shdr_add_status, rc); 13351 status = -ENXIO; 13352 goto out; 13353 } 13354 if (mq->queue_id == 0xFFFF) { 13355 status = -ENXIO; 13356 goto out; 13357 } 13358 mq->type = LPFC_MQ; 13359 mq->assoc_qid = cq->queue_id; 13360 mq->subtype = subtype; 13361 mq->host_index = 0; 13362 mq->hba_index = 0; 13363 13364 /* link the mq onto the parent cq child list */ 13365 list_add_tail(&mq->list, &cq->child_list); 13366 out: 13367 mempool_free(mbox, phba->mbox_mem_pool); 13368 return status; 13369 } 13370 13371 /** 13372 * lpfc_wq_create - Create a Work Queue on the HBA 13373 * @phba: HBA structure that indicates port to create a queue on. 13374 * @wq: The queue structure to use to create the work queue. 13375 * @cq: The completion queue to bind this work queue to. 13376 * @subtype: The subtype of the work queue indicating its functionality. 13377 * 13378 * This function creates a work queue, as detailed in @wq, on a port, described 13379 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13380 * 13381 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13382 * is used to get the entry count and entry size that are necessary to 13383 * determine the number of pages to allocate and use for this queue. The @cq 13384 * is used to indicate which completion queue to bind this work queue to. This 13385 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13386 * work queue. This function is asynchronous and will wait for the mailbox 13387 * command to finish before continuing. 13388 * 13389 * On success this function will return a zero. If unable to allocate enough 13390 * memory this function will return -ENOMEM. If the queue create mailbox command 13391 * fails this function will return -ENXIO. 13392 **/ 13393 int 13394 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13395 struct lpfc_queue *cq, uint32_t subtype) 13396 { 13397 struct lpfc_mbx_wq_create *wq_create; 13398 struct lpfc_dmabuf *dmabuf; 13399 LPFC_MBOXQ_t *mbox; 13400 int rc, length, status = 0; 13401 uint32_t shdr_status, shdr_add_status; 13402 union lpfc_sli4_cfg_shdr *shdr; 13403 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13404 struct dma_address *page; 13405 void __iomem *bar_memmap_p; 13406 uint32_t db_offset; 13407 uint16_t pci_barset; 13408 13409 /* sanity check on queue memory */ 13410 if (!wq || !cq) 13411 return -ENODEV; 13412 if (!phba->sli4_hba.pc_sli4_params.supported) 13413 hw_page_size = SLI4_PAGE_SIZE; 13414 13415 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13416 if (!mbox) 13417 return -ENOMEM; 13418 length = (sizeof(struct lpfc_mbx_wq_create) - 13419 sizeof(struct lpfc_sli4_cfg_mhdr)); 13420 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13421 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13422 length, LPFC_SLI4_MBX_EMBED); 13423 wq_create = &mbox->u.mqe.un.wq_create; 13424 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13425 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13426 wq->page_count); 13427 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13428 cq->queue_id); 13429 13430 /* wqv is the earliest version supported, NOT the latest */ 13431 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13432 phba->sli4_hba.pc_sli4_params.wqv); 13433 13434 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13435 case LPFC_Q_CREATE_VERSION_0: 13436 switch (wq->entry_size) { 13437 default: 13438 case 64: 13439 /* Nothing to do, version 0 ONLY supports 64 byte */ 13440 page = wq_create->u.request.page; 13441 break; 13442 case 128: 13443 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13444 LPFC_WQ_SZ128_SUPPORT)) { 13445 status = -ERANGE; 13446 goto out; 13447 } 13448 /* If we get here the HBA MUST also support V1 and 13449 * we MUST use it 13450 */ 13451 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13452 LPFC_Q_CREATE_VERSION_1); 13453 13454 bf_set(lpfc_mbx_wq_create_wqe_count, 13455 &wq_create->u.request_1, wq->entry_count); 13456 bf_set(lpfc_mbx_wq_create_wqe_size, 13457 &wq_create->u.request_1, 13458 LPFC_WQ_WQE_SIZE_128); 13459 bf_set(lpfc_mbx_wq_create_page_size, 13460 &wq_create->u.request_1, 13461 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13462 page = wq_create->u.request_1.page; 13463 break; 13464 } 13465 break; 13466 case LPFC_Q_CREATE_VERSION_1: 13467 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13468 wq->entry_count); 13469 switch (wq->entry_size) { 13470 default: 13471 case 64: 13472 bf_set(lpfc_mbx_wq_create_wqe_size, 13473 &wq_create->u.request_1, 13474 LPFC_WQ_WQE_SIZE_64); 13475 break; 13476 case 128: 13477 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13478 LPFC_WQ_SZ128_SUPPORT)) { 13479 status = -ERANGE; 13480 goto out; 13481 } 13482 bf_set(lpfc_mbx_wq_create_wqe_size, 13483 &wq_create->u.request_1, 13484 LPFC_WQ_WQE_SIZE_128); 13485 break; 13486 } 13487 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13488 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13489 page = wq_create->u.request_1.page; 13490 break; 13491 default: 13492 status = -ERANGE; 13493 goto out; 13494 } 13495 13496 list_for_each_entry(dmabuf, &wq->page_list, list) { 13497 memset(dmabuf->virt, 0, hw_page_size); 13498 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13499 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13500 } 13501 13502 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13503 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13504 13505 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13506 /* The IOCTL status is embedded in the mailbox subheader. */ 13507 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13508 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13509 if (shdr_status || shdr_add_status || rc) { 13510 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13511 "2503 WQ_CREATE mailbox failed with " 13512 "status x%x add_status x%x, mbx status x%x\n", 13513 shdr_status, shdr_add_status, rc); 13514 status = -ENXIO; 13515 goto out; 13516 } 13517 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13518 if (wq->queue_id == 0xFFFF) { 13519 status = -ENXIO; 13520 goto out; 13521 } 13522 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13523 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13524 &wq_create->u.response); 13525 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13526 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13527 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13528 "3265 WQ[%d] doorbell format not " 13529 "supported: x%x\n", wq->queue_id, 13530 wq->db_format); 13531 status = -EINVAL; 13532 goto out; 13533 } 13534 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13535 &wq_create->u.response); 13536 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13537 if (!bar_memmap_p) { 13538 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13539 "3263 WQ[%d] failed to memmap pci " 13540 "barset:x%x\n", wq->queue_id, 13541 pci_barset); 13542 status = -ENOMEM; 13543 goto out; 13544 } 13545 db_offset = wq_create->u.response.doorbell_offset; 13546 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13547 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13548 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13549 "3252 WQ[%d] doorbell offset not " 13550 "supported: x%x\n", wq->queue_id, 13551 db_offset); 13552 status = -EINVAL; 13553 goto out; 13554 } 13555 wq->db_regaddr = bar_memmap_p + db_offset; 13556 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13557 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13558 "format:x%x\n", wq->queue_id, pci_barset, 13559 db_offset, wq->db_format); 13560 } else { 13561 wq->db_format = LPFC_DB_LIST_FORMAT; 13562 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13563 } 13564 wq->type = LPFC_WQ; 13565 wq->assoc_qid = cq->queue_id; 13566 wq->subtype = subtype; 13567 wq->host_index = 0; 13568 wq->hba_index = 0; 13569 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13570 13571 /* link the wq onto the parent cq child list */ 13572 list_add_tail(&wq->list, &cq->child_list); 13573 out: 13574 mempool_free(mbox, phba->mbox_mem_pool); 13575 return status; 13576 } 13577 13578 /** 13579 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13580 * @phba: HBA structure that indicates port to create a queue on. 13581 * @rq: The queue structure to use for the receive queue. 13582 * @qno: The associated HBQ number 13583 * 13584 * 13585 * For SLI4 we need to adjust the RQ repost value based on 13586 * the number of buffers that are initially posted to the RQ. 13587 */ 13588 void 13589 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13590 { 13591 uint32_t cnt; 13592 13593 /* sanity check on queue memory */ 13594 if (!rq) 13595 return; 13596 cnt = lpfc_hbq_defs[qno]->entry_count; 13597 13598 /* Recalc repost for RQs based on buffers initially posted */ 13599 cnt = (cnt >> 3); 13600 if (cnt < LPFC_QUEUE_MIN_REPOST) 13601 cnt = LPFC_QUEUE_MIN_REPOST; 13602 13603 rq->entry_repost = cnt; 13604 } 13605 13606 /** 13607 * lpfc_rq_create - Create a Receive Queue on the HBA 13608 * @phba: HBA structure that indicates port to create a queue on. 13609 * @hrq: The queue structure to use to create the header receive queue. 13610 * @drq: The queue structure to use to create the data receive queue. 13611 * @cq: The completion queue to bind this work queue to. 13612 * 13613 * This function creates a receive buffer queue pair , as detailed in @hrq and 13614 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13615 * to the HBA. 13616 * 13617 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13618 * struct is used to get the entry count that is necessary to determine the 13619 * number of pages to use for this queue. The @cq is used to indicate which 13620 * completion queue to bind received buffers that are posted to these queues to. 13621 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13622 * receive queue pair. This function is asynchronous and will wait for the 13623 * mailbox command to finish before continuing. 13624 * 13625 * On success this function will return a zero. If unable to allocate enough 13626 * memory this function will return -ENOMEM. If the queue create mailbox command 13627 * fails this function will return -ENXIO. 13628 **/ 13629 int 13630 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13631 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13632 { 13633 struct lpfc_mbx_rq_create *rq_create; 13634 struct lpfc_dmabuf *dmabuf; 13635 LPFC_MBOXQ_t *mbox; 13636 int rc, length, status = 0; 13637 uint32_t shdr_status, shdr_add_status; 13638 union lpfc_sli4_cfg_shdr *shdr; 13639 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13640 void __iomem *bar_memmap_p; 13641 uint32_t db_offset; 13642 uint16_t pci_barset; 13643 13644 /* sanity check on queue memory */ 13645 if (!hrq || !drq || !cq) 13646 return -ENODEV; 13647 if (!phba->sli4_hba.pc_sli4_params.supported) 13648 hw_page_size = SLI4_PAGE_SIZE; 13649 13650 if (hrq->entry_count != drq->entry_count) 13651 return -EINVAL; 13652 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13653 if (!mbox) 13654 return -ENOMEM; 13655 length = (sizeof(struct lpfc_mbx_rq_create) - 13656 sizeof(struct lpfc_sli4_cfg_mhdr)); 13657 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13658 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13659 length, LPFC_SLI4_MBX_EMBED); 13660 rq_create = &mbox->u.mqe.un.rq_create; 13661 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13662 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13663 phba->sli4_hba.pc_sli4_params.rqv); 13664 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13665 bf_set(lpfc_rq_context_rqe_count_1, 13666 &rq_create->u.request.context, 13667 hrq->entry_count); 13668 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13669 bf_set(lpfc_rq_context_rqe_size, 13670 &rq_create->u.request.context, 13671 LPFC_RQE_SIZE_8); 13672 bf_set(lpfc_rq_context_page_size, 13673 &rq_create->u.request.context, 13674 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13675 } else { 13676 switch (hrq->entry_count) { 13677 default: 13678 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13679 "2535 Unsupported RQ count. (%d)\n", 13680 hrq->entry_count); 13681 if (hrq->entry_count < 512) { 13682 status = -EINVAL; 13683 goto out; 13684 } 13685 /* otherwise default to smallest count (drop through) */ 13686 case 512: 13687 bf_set(lpfc_rq_context_rqe_count, 13688 &rq_create->u.request.context, 13689 LPFC_RQ_RING_SIZE_512); 13690 break; 13691 case 1024: 13692 bf_set(lpfc_rq_context_rqe_count, 13693 &rq_create->u.request.context, 13694 LPFC_RQ_RING_SIZE_1024); 13695 break; 13696 case 2048: 13697 bf_set(lpfc_rq_context_rqe_count, 13698 &rq_create->u.request.context, 13699 LPFC_RQ_RING_SIZE_2048); 13700 break; 13701 case 4096: 13702 bf_set(lpfc_rq_context_rqe_count, 13703 &rq_create->u.request.context, 13704 LPFC_RQ_RING_SIZE_4096); 13705 break; 13706 } 13707 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13708 LPFC_HDR_BUF_SIZE); 13709 } 13710 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13711 cq->queue_id); 13712 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13713 hrq->page_count); 13714 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13715 memset(dmabuf->virt, 0, hw_page_size); 13716 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13717 putPaddrLow(dmabuf->phys); 13718 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13719 putPaddrHigh(dmabuf->phys); 13720 } 13721 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13722 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13723 13724 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13725 /* The IOCTL status is embedded in the mailbox subheader. */ 13726 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13727 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13728 if (shdr_status || shdr_add_status || rc) { 13729 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13730 "2504 RQ_CREATE mailbox failed with " 13731 "status x%x add_status x%x, mbx status x%x\n", 13732 shdr_status, shdr_add_status, rc); 13733 status = -ENXIO; 13734 goto out; 13735 } 13736 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13737 if (hrq->queue_id == 0xFFFF) { 13738 status = -ENXIO; 13739 goto out; 13740 } 13741 13742 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13743 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 13744 &rq_create->u.response); 13745 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 13746 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 13747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13748 "3262 RQ [%d] doorbell format not " 13749 "supported: x%x\n", hrq->queue_id, 13750 hrq->db_format); 13751 status = -EINVAL; 13752 goto out; 13753 } 13754 13755 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 13756 &rq_create->u.response); 13757 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13758 if (!bar_memmap_p) { 13759 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13760 "3269 RQ[%d] failed to memmap pci " 13761 "barset:x%x\n", hrq->queue_id, 13762 pci_barset); 13763 status = -ENOMEM; 13764 goto out; 13765 } 13766 13767 db_offset = rq_create->u.response.doorbell_offset; 13768 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 13769 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 13770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13771 "3270 RQ[%d] doorbell offset not " 13772 "supported: x%x\n", hrq->queue_id, 13773 db_offset); 13774 status = -EINVAL; 13775 goto out; 13776 } 13777 hrq->db_regaddr = bar_memmap_p + db_offset; 13778 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13779 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 13780 "format:x%x\n", hrq->queue_id, pci_barset, 13781 db_offset, hrq->db_format); 13782 } else { 13783 hrq->db_format = LPFC_DB_RING_FORMAT; 13784 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 13785 } 13786 hrq->type = LPFC_HRQ; 13787 hrq->assoc_qid = cq->queue_id; 13788 hrq->subtype = subtype; 13789 hrq->host_index = 0; 13790 hrq->hba_index = 0; 13791 13792 /* now create the data queue */ 13793 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13794 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13795 length, LPFC_SLI4_MBX_EMBED); 13796 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13797 phba->sli4_hba.pc_sli4_params.rqv); 13798 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13799 bf_set(lpfc_rq_context_rqe_count_1, 13800 &rq_create->u.request.context, hrq->entry_count); 13801 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 13802 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 13803 LPFC_RQE_SIZE_8); 13804 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 13805 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13806 } else { 13807 switch (drq->entry_count) { 13808 default: 13809 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13810 "2536 Unsupported RQ count. (%d)\n", 13811 drq->entry_count); 13812 if (drq->entry_count < 512) { 13813 status = -EINVAL; 13814 goto out; 13815 } 13816 /* otherwise default to smallest count (drop through) */ 13817 case 512: 13818 bf_set(lpfc_rq_context_rqe_count, 13819 &rq_create->u.request.context, 13820 LPFC_RQ_RING_SIZE_512); 13821 break; 13822 case 1024: 13823 bf_set(lpfc_rq_context_rqe_count, 13824 &rq_create->u.request.context, 13825 LPFC_RQ_RING_SIZE_1024); 13826 break; 13827 case 2048: 13828 bf_set(lpfc_rq_context_rqe_count, 13829 &rq_create->u.request.context, 13830 LPFC_RQ_RING_SIZE_2048); 13831 break; 13832 case 4096: 13833 bf_set(lpfc_rq_context_rqe_count, 13834 &rq_create->u.request.context, 13835 LPFC_RQ_RING_SIZE_4096); 13836 break; 13837 } 13838 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13839 LPFC_DATA_BUF_SIZE); 13840 } 13841 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13842 cq->queue_id); 13843 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13844 drq->page_count); 13845 list_for_each_entry(dmabuf, &drq->page_list, list) { 13846 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13847 putPaddrLow(dmabuf->phys); 13848 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13849 putPaddrHigh(dmabuf->phys); 13850 } 13851 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13852 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13853 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13854 /* The IOCTL status is embedded in the mailbox subheader. */ 13855 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13856 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13857 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13858 if (shdr_status || shdr_add_status || rc) { 13859 status = -ENXIO; 13860 goto out; 13861 } 13862 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13863 if (drq->queue_id == 0xFFFF) { 13864 status = -ENXIO; 13865 goto out; 13866 } 13867 drq->type = LPFC_DRQ; 13868 drq->assoc_qid = cq->queue_id; 13869 drq->subtype = subtype; 13870 drq->host_index = 0; 13871 drq->hba_index = 0; 13872 13873 /* link the header and data RQs onto the parent cq child list */ 13874 list_add_tail(&hrq->list, &cq->child_list); 13875 list_add_tail(&drq->list, &cq->child_list); 13876 13877 out: 13878 mempool_free(mbox, phba->mbox_mem_pool); 13879 return status; 13880 } 13881 13882 /** 13883 * lpfc_eq_destroy - Destroy an event Queue on the HBA 13884 * @eq: The queue structure associated with the queue to destroy. 13885 * 13886 * This function destroys a queue, as detailed in @eq by sending an mailbox 13887 * command, specific to the type of queue, to the HBA. 13888 * 13889 * The @eq struct is used to get the queue ID of the queue to destroy. 13890 * 13891 * On success this function will return a zero. If the queue destroy mailbox 13892 * command fails this function will return -ENXIO. 13893 **/ 13894 int 13895 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 13896 { 13897 LPFC_MBOXQ_t *mbox; 13898 int rc, length, status = 0; 13899 uint32_t shdr_status, shdr_add_status; 13900 union lpfc_sli4_cfg_shdr *shdr; 13901 13902 /* sanity check on queue memory */ 13903 if (!eq) 13904 return -ENODEV; 13905 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 13906 if (!mbox) 13907 return -ENOMEM; 13908 length = (sizeof(struct lpfc_mbx_eq_destroy) - 13909 sizeof(struct lpfc_sli4_cfg_mhdr)); 13910 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13911 LPFC_MBOX_OPCODE_EQ_DESTROY, 13912 length, LPFC_SLI4_MBX_EMBED); 13913 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 13914 eq->queue_id); 13915 mbox->vport = eq->phba->pport; 13916 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13917 13918 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 13919 /* The IOCTL status is embedded in the mailbox subheader. */ 13920 shdr = (union lpfc_sli4_cfg_shdr *) 13921 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 13922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13924 if (shdr_status || shdr_add_status || rc) { 13925 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13926 "2505 EQ_DESTROY mailbox failed with " 13927 "status x%x add_status x%x, mbx status x%x\n", 13928 shdr_status, shdr_add_status, rc); 13929 status = -ENXIO; 13930 } 13931 13932 /* Remove eq from any list */ 13933 list_del_init(&eq->list); 13934 mempool_free(mbox, eq->phba->mbox_mem_pool); 13935 return status; 13936 } 13937 13938 /** 13939 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 13940 * @cq: The queue structure associated with the queue to destroy. 13941 * 13942 * This function destroys a queue, as detailed in @cq by sending an mailbox 13943 * command, specific to the type of queue, to the HBA. 13944 * 13945 * The @cq struct is used to get the queue ID of the queue to destroy. 13946 * 13947 * On success this function will return a zero. If the queue destroy mailbox 13948 * command fails this function will return -ENXIO. 13949 **/ 13950 int 13951 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 13952 { 13953 LPFC_MBOXQ_t *mbox; 13954 int rc, length, status = 0; 13955 uint32_t shdr_status, shdr_add_status; 13956 union lpfc_sli4_cfg_shdr *shdr; 13957 13958 /* sanity check on queue memory */ 13959 if (!cq) 13960 return -ENODEV; 13961 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 13962 if (!mbox) 13963 return -ENOMEM; 13964 length = (sizeof(struct lpfc_mbx_cq_destroy) - 13965 sizeof(struct lpfc_sli4_cfg_mhdr)); 13966 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13967 LPFC_MBOX_OPCODE_CQ_DESTROY, 13968 length, LPFC_SLI4_MBX_EMBED); 13969 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 13970 cq->queue_id); 13971 mbox->vport = cq->phba->pport; 13972 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13973 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 13974 /* The IOCTL status is embedded in the mailbox subheader. */ 13975 shdr = (union lpfc_sli4_cfg_shdr *) 13976 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 13977 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13978 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13979 if (shdr_status || shdr_add_status || rc) { 13980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13981 "2506 CQ_DESTROY mailbox failed with " 13982 "status x%x add_status x%x, mbx status x%x\n", 13983 shdr_status, shdr_add_status, rc); 13984 status = -ENXIO; 13985 } 13986 /* Remove cq from any list */ 13987 list_del_init(&cq->list); 13988 mempool_free(mbox, cq->phba->mbox_mem_pool); 13989 return status; 13990 } 13991 13992 /** 13993 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 13994 * @qm: The queue structure associated with the queue to destroy. 13995 * 13996 * This function destroys a queue, as detailed in @mq by sending an mailbox 13997 * command, specific to the type of queue, to the HBA. 13998 * 13999 * The @mq struct is used to get the queue ID of the queue to destroy. 14000 * 14001 * On success this function will return a zero. If the queue destroy mailbox 14002 * command fails this function will return -ENXIO. 14003 **/ 14004 int 14005 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14006 { 14007 LPFC_MBOXQ_t *mbox; 14008 int rc, length, status = 0; 14009 uint32_t shdr_status, shdr_add_status; 14010 union lpfc_sli4_cfg_shdr *shdr; 14011 14012 /* sanity check on queue memory */ 14013 if (!mq) 14014 return -ENODEV; 14015 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14016 if (!mbox) 14017 return -ENOMEM; 14018 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14019 sizeof(struct lpfc_sli4_cfg_mhdr)); 14020 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14021 LPFC_MBOX_OPCODE_MQ_DESTROY, 14022 length, LPFC_SLI4_MBX_EMBED); 14023 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14024 mq->queue_id); 14025 mbox->vport = mq->phba->pport; 14026 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14027 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14028 /* The IOCTL status is embedded in the mailbox subheader. */ 14029 shdr = (union lpfc_sli4_cfg_shdr *) 14030 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14031 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14032 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14033 if (shdr_status || shdr_add_status || rc) { 14034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14035 "2507 MQ_DESTROY mailbox failed with " 14036 "status x%x add_status x%x, mbx status x%x\n", 14037 shdr_status, shdr_add_status, rc); 14038 status = -ENXIO; 14039 } 14040 /* Remove mq from any list */ 14041 list_del_init(&mq->list); 14042 mempool_free(mbox, mq->phba->mbox_mem_pool); 14043 return status; 14044 } 14045 14046 /** 14047 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14048 * @wq: The queue structure associated with the queue to destroy. 14049 * 14050 * This function destroys a queue, as detailed in @wq by sending an mailbox 14051 * command, specific to the type of queue, to the HBA. 14052 * 14053 * The @wq struct is used to get the queue ID of the queue to destroy. 14054 * 14055 * On success this function will return a zero. If the queue destroy mailbox 14056 * command fails this function will return -ENXIO. 14057 **/ 14058 int 14059 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14060 { 14061 LPFC_MBOXQ_t *mbox; 14062 int rc, length, status = 0; 14063 uint32_t shdr_status, shdr_add_status; 14064 union lpfc_sli4_cfg_shdr *shdr; 14065 14066 /* sanity check on queue memory */ 14067 if (!wq) 14068 return -ENODEV; 14069 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14070 if (!mbox) 14071 return -ENOMEM; 14072 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14073 sizeof(struct lpfc_sli4_cfg_mhdr)); 14074 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14075 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14076 length, LPFC_SLI4_MBX_EMBED); 14077 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14078 wq->queue_id); 14079 mbox->vport = wq->phba->pport; 14080 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14081 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14082 shdr = (union lpfc_sli4_cfg_shdr *) 14083 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14084 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14085 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14086 if (shdr_status || shdr_add_status || rc) { 14087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14088 "2508 WQ_DESTROY mailbox failed with " 14089 "status x%x add_status x%x, mbx status x%x\n", 14090 shdr_status, shdr_add_status, rc); 14091 status = -ENXIO; 14092 } 14093 /* Remove wq from any list */ 14094 list_del_init(&wq->list); 14095 mempool_free(mbox, wq->phba->mbox_mem_pool); 14096 return status; 14097 } 14098 14099 /** 14100 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14101 * @rq: The queue structure associated with the queue to destroy. 14102 * 14103 * This function destroys a queue, as detailed in @rq by sending an mailbox 14104 * command, specific to the type of queue, to the HBA. 14105 * 14106 * The @rq struct is used to get the queue ID of the queue to destroy. 14107 * 14108 * On success this function will return a zero. If the queue destroy mailbox 14109 * command fails this function will return -ENXIO. 14110 **/ 14111 int 14112 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14113 struct lpfc_queue *drq) 14114 { 14115 LPFC_MBOXQ_t *mbox; 14116 int rc, length, status = 0; 14117 uint32_t shdr_status, shdr_add_status; 14118 union lpfc_sli4_cfg_shdr *shdr; 14119 14120 /* sanity check on queue memory */ 14121 if (!hrq || !drq) 14122 return -ENODEV; 14123 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14124 if (!mbox) 14125 return -ENOMEM; 14126 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14127 sizeof(struct lpfc_sli4_cfg_mhdr)); 14128 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14129 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14130 length, LPFC_SLI4_MBX_EMBED); 14131 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14132 hrq->queue_id); 14133 mbox->vport = hrq->phba->pport; 14134 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14135 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14136 /* The IOCTL status is embedded in the mailbox subheader. */ 14137 shdr = (union lpfc_sli4_cfg_shdr *) 14138 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14139 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14140 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14141 if (shdr_status || shdr_add_status || rc) { 14142 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14143 "2509 RQ_DESTROY mailbox failed with " 14144 "status x%x add_status x%x, mbx status x%x\n", 14145 shdr_status, shdr_add_status, rc); 14146 if (rc != MBX_TIMEOUT) 14147 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14148 return -ENXIO; 14149 } 14150 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14151 drq->queue_id); 14152 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14153 shdr = (union lpfc_sli4_cfg_shdr *) 14154 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14155 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14156 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14157 if (shdr_status || shdr_add_status || rc) { 14158 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14159 "2510 RQ_DESTROY mailbox failed with " 14160 "status x%x add_status x%x, mbx status x%x\n", 14161 shdr_status, shdr_add_status, rc); 14162 status = -ENXIO; 14163 } 14164 list_del_init(&hrq->list); 14165 list_del_init(&drq->list); 14166 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14167 return status; 14168 } 14169 14170 /** 14171 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14172 * @phba: The virtual port for which this call being executed. 14173 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14174 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14175 * @xritag: the xritag that ties this io to the SGL pages. 14176 * 14177 * This routine will post the sgl pages for the IO that has the xritag 14178 * that is in the iocbq structure. The xritag is assigned during iocbq 14179 * creation and persists for as long as the driver is loaded. 14180 * if the caller has fewer than 256 scatter gather segments to map then 14181 * pdma_phys_addr1 should be 0. 14182 * If the caller needs to map more than 256 scatter gather segment then 14183 * pdma_phys_addr1 should be a valid physical address. 14184 * physical address for SGLs must be 64 byte aligned. 14185 * If you are going to map 2 SGL's then the first one must have 256 entries 14186 * the second sgl can have between 1 and 256 entries. 14187 * 14188 * Return codes: 14189 * 0 - Success 14190 * -ENXIO, -ENOMEM - Failure 14191 **/ 14192 int 14193 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14194 dma_addr_t pdma_phys_addr0, 14195 dma_addr_t pdma_phys_addr1, 14196 uint16_t xritag) 14197 { 14198 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14199 LPFC_MBOXQ_t *mbox; 14200 int rc; 14201 uint32_t shdr_status, shdr_add_status; 14202 uint32_t mbox_tmo; 14203 union lpfc_sli4_cfg_shdr *shdr; 14204 14205 if (xritag == NO_XRI) { 14206 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14207 "0364 Invalid param:\n"); 14208 return -EINVAL; 14209 } 14210 14211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14212 if (!mbox) 14213 return -ENOMEM; 14214 14215 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14216 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14217 sizeof(struct lpfc_mbx_post_sgl_pages) - 14218 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14219 14220 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14221 &mbox->u.mqe.un.post_sgl_pages; 14222 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14223 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14224 14225 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14226 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14227 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14228 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14229 14230 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14231 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14232 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14233 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14234 if (!phba->sli4_hba.intr_enable) 14235 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14236 else { 14237 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14238 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14239 } 14240 /* The IOCTL status is embedded in the mailbox subheader. */ 14241 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14242 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14243 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14244 if (rc != MBX_TIMEOUT) 14245 mempool_free(mbox, phba->mbox_mem_pool); 14246 if (shdr_status || shdr_add_status || rc) { 14247 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14248 "2511 POST_SGL mailbox failed with " 14249 "status x%x add_status x%x, mbx status x%x\n", 14250 shdr_status, shdr_add_status, rc); 14251 } 14252 return 0; 14253 } 14254 14255 /** 14256 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14257 * @phba: pointer to lpfc hba data structure. 14258 * 14259 * This routine is invoked to post rpi header templates to the 14260 * HBA consistent with the SLI-4 interface spec. This routine 14261 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14262 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14263 * 14264 * Returns 14265 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14266 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14267 **/ 14268 static uint16_t 14269 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14270 { 14271 unsigned long xri; 14272 14273 /* 14274 * Fetch the next logical xri. Because this index is logical, 14275 * the driver starts at 0 each time. 14276 */ 14277 spin_lock_irq(&phba->hbalock); 14278 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14279 phba->sli4_hba.max_cfg_param.max_xri, 0); 14280 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14281 spin_unlock_irq(&phba->hbalock); 14282 return NO_XRI; 14283 } else { 14284 set_bit(xri, phba->sli4_hba.xri_bmask); 14285 phba->sli4_hba.max_cfg_param.xri_used++; 14286 } 14287 spin_unlock_irq(&phba->hbalock); 14288 return xri; 14289 } 14290 14291 /** 14292 * lpfc_sli4_free_xri - Release an xri for reuse. 14293 * @phba: pointer to lpfc hba data structure. 14294 * 14295 * This routine is invoked to release an xri to the pool of 14296 * available rpis maintained by the driver. 14297 **/ 14298 static void 14299 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14300 { 14301 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14302 phba->sli4_hba.max_cfg_param.xri_used--; 14303 } 14304 } 14305 14306 /** 14307 * lpfc_sli4_free_xri - Release an xri for reuse. 14308 * @phba: pointer to lpfc hba data structure. 14309 * 14310 * This routine is invoked to release an xri to the pool of 14311 * available rpis maintained by the driver. 14312 **/ 14313 void 14314 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14315 { 14316 spin_lock_irq(&phba->hbalock); 14317 __lpfc_sli4_free_xri(phba, xri); 14318 spin_unlock_irq(&phba->hbalock); 14319 } 14320 14321 /** 14322 * lpfc_sli4_next_xritag - Get an xritag for the io 14323 * @phba: Pointer to HBA context object. 14324 * 14325 * This function gets an xritag for the iocb. If there is no unused xritag 14326 * it will return 0xffff. 14327 * The function returns the allocated xritag if successful, else returns zero. 14328 * Zero is not a valid xritag. 14329 * The caller is not required to hold any lock. 14330 **/ 14331 uint16_t 14332 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14333 { 14334 uint16_t xri_index; 14335 14336 xri_index = lpfc_sli4_alloc_xri(phba); 14337 if (xri_index == NO_XRI) 14338 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14339 "2004 Failed to allocate XRI.last XRITAG is %d" 14340 " Max XRI is %d, Used XRI is %d\n", 14341 xri_index, 14342 phba->sli4_hba.max_cfg_param.max_xri, 14343 phba->sli4_hba.max_cfg_param.xri_used); 14344 return xri_index; 14345 } 14346 14347 /** 14348 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14349 * @phba: pointer to lpfc hba data structure. 14350 * @post_sgl_list: pointer to els sgl entry list. 14351 * @count: number of els sgl entries on the list. 14352 * 14353 * This routine is invoked to post a block of driver's sgl pages to the 14354 * HBA using non-embedded mailbox command. No Lock is held. This routine 14355 * is only called when the driver is loading and after all IO has been 14356 * stopped. 14357 **/ 14358 static int 14359 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14360 struct list_head *post_sgl_list, 14361 int post_cnt) 14362 { 14363 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14364 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14365 struct sgl_page_pairs *sgl_pg_pairs; 14366 void *viraddr; 14367 LPFC_MBOXQ_t *mbox; 14368 uint32_t reqlen, alloclen, pg_pairs; 14369 uint32_t mbox_tmo; 14370 uint16_t xritag_start = 0; 14371 int rc = 0; 14372 uint32_t shdr_status, shdr_add_status; 14373 union lpfc_sli4_cfg_shdr *shdr; 14374 14375 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14376 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14377 if (reqlen > SLI4_PAGE_SIZE) { 14378 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14379 "2559 Block sgl registration required DMA " 14380 "size (%d) great than a page\n", reqlen); 14381 return -ENOMEM; 14382 } 14383 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14384 if (!mbox) 14385 return -ENOMEM; 14386 14387 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14388 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14389 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14390 LPFC_SLI4_MBX_NEMBED); 14391 14392 if (alloclen < reqlen) { 14393 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14394 "0285 Allocated DMA memory size (%d) is " 14395 "less than the requested DMA memory " 14396 "size (%d)\n", alloclen, reqlen); 14397 lpfc_sli4_mbox_cmd_free(phba, mbox); 14398 return -ENOMEM; 14399 } 14400 /* Set up the SGL pages in the non-embedded DMA pages */ 14401 viraddr = mbox->sge_array->addr[0]; 14402 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14403 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14404 14405 pg_pairs = 0; 14406 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14407 /* Set up the sge entry */ 14408 sgl_pg_pairs->sgl_pg0_addr_lo = 14409 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14410 sgl_pg_pairs->sgl_pg0_addr_hi = 14411 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14412 sgl_pg_pairs->sgl_pg1_addr_lo = 14413 cpu_to_le32(putPaddrLow(0)); 14414 sgl_pg_pairs->sgl_pg1_addr_hi = 14415 cpu_to_le32(putPaddrHigh(0)); 14416 14417 /* Keep the first xritag on the list */ 14418 if (pg_pairs == 0) 14419 xritag_start = sglq_entry->sli4_xritag; 14420 sgl_pg_pairs++; 14421 pg_pairs++; 14422 } 14423 14424 /* Complete initialization and perform endian conversion. */ 14425 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14426 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14427 sgl->word0 = cpu_to_le32(sgl->word0); 14428 if (!phba->sli4_hba.intr_enable) 14429 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14430 else { 14431 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14432 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14433 } 14434 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14435 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14436 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14437 if (rc != MBX_TIMEOUT) 14438 lpfc_sli4_mbox_cmd_free(phba, mbox); 14439 if (shdr_status || shdr_add_status || rc) { 14440 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14441 "2513 POST_SGL_BLOCK mailbox command failed " 14442 "status x%x add_status x%x mbx status x%x\n", 14443 shdr_status, shdr_add_status, rc); 14444 rc = -ENXIO; 14445 } 14446 return rc; 14447 } 14448 14449 /** 14450 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14451 * @phba: pointer to lpfc hba data structure. 14452 * @sblist: pointer to scsi buffer list. 14453 * @count: number of scsi buffers on the list. 14454 * 14455 * This routine is invoked to post a block of @count scsi sgl pages from a 14456 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14457 * No Lock is held. 14458 * 14459 **/ 14460 int 14461 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14462 struct list_head *sblist, 14463 int count) 14464 { 14465 struct lpfc_scsi_buf *psb; 14466 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14467 struct sgl_page_pairs *sgl_pg_pairs; 14468 void *viraddr; 14469 LPFC_MBOXQ_t *mbox; 14470 uint32_t reqlen, alloclen, pg_pairs; 14471 uint32_t mbox_tmo; 14472 uint16_t xritag_start = 0; 14473 int rc = 0; 14474 uint32_t shdr_status, shdr_add_status; 14475 dma_addr_t pdma_phys_bpl1; 14476 union lpfc_sli4_cfg_shdr *shdr; 14477 14478 /* Calculate the requested length of the dma memory */ 14479 reqlen = count * sizeof(struct sgl_page_pairs) + 14480 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14481 if (reqlen > SLI4_PAGE_SIZE) { 14482 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14483 "0217 Block sgl registration required DMA " 14484 "size (%d) great than a page\n", reqlen); 14485 return -ENOMEM; 14486 } 14487 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14488 if (!mbox) { 14489 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14490 "0283 Failed to allocate mbox cmd memory\n"); 14491 return -ENOMEM; 14492 } 14493 14494 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14495 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14496 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14497 LPFC_SLI4_MBX_NEMBED); 14498 14499 if (alloclen < reqlen) { 14500 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14501 "2561 Allocated DMA memory size (%d) is " 14502 "less than the requested DMA memory " 14503 "size (%d)\n", alloclen, reqlen); 14504 lpfc_sli4_mbox_cmd_free(phba, mbox); 14505 return -ENOMEM; 14506 } 14507 14508 /* Get the first SGE entry from the non-embedded DMA memory */ 14509 viraddr = mbox->sge_array->addr[0]; 14510 14511 /* Set up the SGL pages in the non-embedded DMA pages */ 14512 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14513 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14514 14515 pg_pairs = 0; 14516 list_for_each_entry(psb, sblist, list) { 14517 /* Set up the sge entry */ 14518 sgl_pg_pairs->sgl_pg0_addr_lo = 14519 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14520 sgl_pg_pairs->sgl_pg0_addr_hi = 14521 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14522 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14523 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14524 else 14525 pdma_phys_bpl1 = 0; 14526 sgl_pg_pairs->sgl_pg1_addr_lo = 14527 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14528 sgl_pg_pairs->sgl_pg1_addr_hi = 14529 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14530 /* Keep the first xritag on the list */ 14531 if (pg_pairs == 0) 14532 xritag_start = psb->cur_iocbq.sli4_xritag; 14533 sgl_pg_pairs++; 14534 pg_pairs++; 14535 } 14536 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14537 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14538 /* Perform endian conversion if necessary */ 14539 sgl->word0 = cpu_to_le32(sgl->word0); 14540 14541 if (!phba->sli4_hba.intr_enable) 14542 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14543 else { 14544 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14545 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14546 } 14547 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14548 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14549 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14550 if (rc != MBX_TIMEOUT) 14551 lpfc_sli4_mbox_cmd_free(phba, mbox); 14552 if (shdr_status || shdr_add_status || rc) { 14553 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14554 "2564 POST_SGL_BLOCK mailbox command failed " 14555 "status x%x add_status x%x mbx status x%x\n", 14556 shdr_status, shdr_add_status, rc); 14557 rc = -ENXIO; 14558 } 14559 return rc; 14560 } 14561 14562 /** 14563 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14564 * @phba: pointer to lpfc_hba struct that the frame was received on 14565 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14566 * 14567 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14568 * valid type of frame that the LPFC driver will handle. This function will 14569 * return a zero if the frame is a valid frame or a non zero value when the 14570 * frame does not pass the check. 14571 **/ 14572 static int 14573 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14574 { 14575 /* make rctl_names static to save stack space */ 14576 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14577 char *type_names[] = FC_TYPE_NAMES_INIT; 14578 struct fc_vft_header *fc_vft_hdr; 14579 uint32_t *header = (uint32_t *) fc_hdr; 14580 14581 switch (fc_hdr->fh_r_ctl) { 14582 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14583 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14584 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14585 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14586 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14587 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14588 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14589 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14590 case FC_RCTL_ELS_REQ: /* extended link services request */ 14591 case FC_RCTL_ELS_REP: /* extended link services reply */ 14592 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14593 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14594 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14595 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14596 case FC_RCTL_BA_RMC: /* remove connection */ 14597 case FC_RCTL_BA_ACC: /* basic accept */ 14598 case FC_RCTL_BA_RJT: /* basic reject */ 14599 case FC_RCTL_BA_PRMT: 14600 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14601 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14602 case FC_RCTL_P_RJT: /* port reject */ 14603 case FC_RCTL_F_RJT: /* fabric reject */ 14604 case FC_RCTL_P_BSY: /* port busy */ 14605 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14606 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14607 case FC_RCTL_LCR: /* link credit reset */ 14608 case FC_RCTL_END: /* end */ 14609 break; 14610 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14611 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14612 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14613 return lpfc_fc_frame_check(phba, fc_hdr); 14614 default: 14615 goto drop; 14616 } 14617 switch (fc_hdr->fh_type) { 14618 case FC_TYPE_BLS: 14619 case FC_TYPE_ELS: 14620 case FC_TYPE_FCP: 14621 case FC_TYPE_CT: 14622 break; 14623 case FC_TYPE_IP: 14624 case FC_TYPE_ILS: 14625 default: 14626 goto drop; 14627 } 14628 14629 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14630 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14631 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14632 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14633 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14634 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14635 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14636 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14637 be32_to_cpu(header[6])); 14638 return 0; 14639 drop: 14640 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14641 "2539 Dropped frame rctl:%s type:%s\n", 14642 rctl_names[fc_hdr->fh_r_ctl], 14643 type_names[fc_hdr->fh_type]); 14644 return 1; 14645 } 14646 14647 /** 14648 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14649 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14650 * 14651 * This function processes the FC header to retrieve the VFI from the VF 14652 * header, if one exists. This function will return the VFI if one exists 14653 * or 0 if no VSAN Header exists. 14654 **/ 14655 static uint32_t 14656 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14657 { 14658 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14659 14660 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14661 return 0; 14662 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14663 } 14664 14665 /** 14666 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14667 * @phba: Pointer to the HBA structure to search for the vport on 14668 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14669 * @fcfi: The FC Fabric ID that the frame came from 14670 * 14671 * This function searches the @phba for a vport that matches the content of the 14672 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14673 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14674 * returns the matching vport pointer or NULL if unable to match frame to a 14675 * vport. 14676 **/ 14677 static struct lpfc_vport * 14678 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14679 uint16_t fcfi) 14680 { 14681 struct lpfc_vport **vports; 14682 struct lpfc_vport *vport = NULL; 14683 int i; 14684 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14685 fc_hdr->fh_d_id[1] << 8 | 14686 fc_hdr->fh_d_id[2]); 14687 14688 if (did == Fabric_DID) 14689 return phba->pport; 14690 if ((phba->pport->fc_flag & FC_PT2PT) && 14691 !(phba->link_state == LPFC_HBA_READY)) 14692 return phba->pport; 14693 14694 vports = lpfc_create_vport_work_array(phba); 14695 if (vports != NULL) 14696 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14697 if (phba->fcf.fcfi == fcfi && 14698 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14699 vports[i]->fc_myDID == did) { 14700 vport = vports[i]; 14701 break; 14702 } 14703 } 14704 lpfc_destroy_vport_work_array(phba, vports); 14705 return vport; 14706 } 14707 14708 /** 14709 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14710 * @vport: The vport to work on. 14711 * 14712 * This function updates the receive sequence time stamp for this vport. The 14713 * receive sequence time stamp indicates the time that the last frame of the 14714 * the sequence that has been idle for the longest amount of time was received. 14715 * the driver uses this time stamp to indicate if any received sequences have 14716 * timed out. 14717 **/ 14718 static void 14719 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14720 { 14721 struct lpfc_dmabuf *h_buf; 14722 struct hbq_dmabuf *dmabuf = NULL; 14723 14724 /* get the oldest sequence on the rcv list */ 14725 h_buf = list_get_first(&vport->rcv_buffer_list, 14726 struct lpfc_dmabuf, list); 14727 if (!h_buf) 14728 return; 14729 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14730 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14731 } 14732 14733 /** 14734 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14735 * @vport: The vport that the received sequences were sent to. 14736 * 14737 * This function cleans up all outstanding received sequences. This is called 14738 * by the driver when a link event or user action invalidates all the received 14739 * sequences. 14740 **/ 14741 void 14742 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 14743 { 14744 struct lpfc_dmabuf *h_buf, *hnext; 14745 struct lpfc_dmabuf *d_buf, *dnext; 14746 struct hbq_dmabuf *dmabuf = NULL; 14747 14748 /* start with the oldest sequence on the rcv list */ 14749 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14750 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14751 list_del_init(&dmabuf->hbuf.list); 14752 list_for_each_entry_safe(d_buf, dnext, 14753 &dmabuf->dbuf.list, list) { 14754 list_del_init(&d_buf->list); 14755 lpfc_in_buf_free(vport->phba, d_buf); 14756 } 14757 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14758 } 14759 } 14760 14761 /** 14762 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 14763 * @vport: The vport that the received sequences were sent to. 14764 * 14765 * This function determines whether any received sequences have timed out by 14766 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 14767 * indicates that there is at least one timed out sequence this routine will 14768 * go through the received sequences one at a time from most inactive to most 14769 * active to determine which ones need to be cleaned up. Once it has determined 14770 * that a sequence needs to be cleaned up it will simply free up the resources 14771 * without sending an abort. 14772 **/ 14773 void 14774 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 14775 { 14776 struct lpfc_dmabuf *h_buf, *hnext; 14777 struct lpfc_dmabuf *d_buf, *dnext; 14778 struct hbq_dmabuf *dmabuf = NULL; 14779 unsigned long timeout; 14780 int abort_count = 0; 14781 14782 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14783 vport->rcv_buffer_time_stamp); 14784 if (list_empty(&vport->rcv_buffer_list) || 14785 time_before(jiffies, timeout)) 14786 return; 14787 /* start with the oldest sequence on the rcv list */ 14788 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14789 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14790 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14791 dmabuf->time_stamp); 14792 if (time_before(jiffies, timeout)) 14793 break; 14794 abort_count++; 14795 list_del_init(&dmabuf->hbuf.list); 14796 list_for_each_entry_safe(d_buf, dnext, 14797 &dmabuf->dbuf.list, list) { 14798 list_del_init(&d_buf->list); 14799 lpfc_in_buf_free(vport->phba, d_buf); 14800 } 14801 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14802 } 14803 if (abort_count) 14804 lpfc_update_rcv_time_stamp(vport); 14805 } 14806 14807 /** 14808 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 14809 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 14810 * 14811 * This function searches through the existing incomplete sequences that have 14812 * been sent to this @vport. If the frame matches one of the incomplete 14813 * sequences then the dbuf in the @dmabuf is added to the list of frames that 14814 * make up that sequence. If no sequence is found that matches this frame then 14815 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 14816 * This function returns a pointer to the first dmabuf in the sequence list that 14817 * the frame was linked to. 14818 **/ 14819 static struct hbq_dmabuf * 14820 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14821 { 14822 struct fc_frame_header *new_hdr; 14823 struct fc_frame_header *temp_hdr; 14824 struct lpfc_dmabuf *d_buf; 14825 struct lpfc_dmabuf *h_buf; 14826 struct hbq_dmabuf *seq_dmabuf = NULL; 14827 struct hbq_dmabuf *temp_dmabuf = NULL; 14828 14829 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14830 dmabuf->time_stamp = jiffies; 14831 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14832 /* Use the hdr_buf to find the sequence that this frame belongs to */ 14833 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14834 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14835 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14836 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14837 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14838 continue; 14839 /* found a pending sequence that matches this frame */ 14840 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14841 break; 14842 } 14843 if (!seq_dmabuf) { 14844 /* 14845 * This indicates first frame received for this sequence. 14846 * Queue the buffer on the vport's rcv_buffer_list. 14847 */ 14848 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14849 lpfc_update_rcv_time_stamp(vport); 14850 return dmabuf; 14851 } 14852 temp_hdr = seq_dmabuf->hbuf.virt; 14853 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 14854 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14855 list_del_init(&seq_dmabuf->hbuf.list); 14856 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14857 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14858 lpfc_update_rcv_time_stamp(vport); 14859 return dmabuf; 14860 } 14861 /* move this sequence to the tail to indicate a young sequence */ 14862 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 14863 seq_dmabuf->time_stamp = jiffies; 14864 lpfc_update_rcv_time_stamp(vport); 14865 if (list_empty(&seq_dmabuf->dbuf.list)) { 14866 temp_hdr = dmabuf->hbuf.virt; 14867 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14868 return seq_dmabuf; 14869 } 14870 /* find the correct place in the sequence to insert this frame */ 14871 list_for_each_entry_reverse(d_buf, &seq_dmabuf->dbuf.list, list) { 14872 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14873 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 14874 /* 14875 * If the frame's sequence count is greater than the frame on 14876 * the list then insert the frame right after this frame 14877 */ 14878 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 14879 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14880 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 14881 return seq_dmabuf; 14882 } 14883 } 14884 return NULL; 14885 } 14886 14887 /** 14888 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 14889 * @vport: pointer to a vitural port 14890 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14891 * 14892 * This function tries to abort from the partially assembed sequence, described 14893 * by the information from basic abbort @dmabuf. It checks to see whether such 14894 * partially assembled sequence held by the driver. If so, it shall free up all 14895 * the frames from the partially assembled sequence. 14896 * 14897 * Return 14898 * true -- if there is matching partially assembled sequence present and all 14899 * the frames freed with the sequence; 14900 * false -- if there is no matching partially assembled sequence present so 14901 * nothing got aborted in the lower layer driver 14902 **/ 14903 static bool 14904 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 14905 struct hbq_dmabuf *dmabuf) 14906 { 14907 struct fc_frame_header *new_hdr; 14908 struct fc_frame_header *temp_hdr; 14909 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 14910 struct hbq_dmabuf *seq_dmabuf = NULL; 14911 14912 /* Use the hdr_buf to find the sequence that matches this frame */ 14913 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14914 INIT_LIST_HEAD(&dmabuf->hbuf.list); 14915 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14916 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14917 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14918 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14919 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14920 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14921 continue; 14922 /* found a pending sequence that matches this frame */ 14923 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14924 break; 14925 } 14926 14927 /* Free up all the frames from the partially assembled sequence */ 14928 if (seq_dmabuf) { 14929 list_for_each_entry_safe(d_buf, n_buf, 14930 &seq_dmabuf->dbuf.list, list) { 14931 list_del_init(&d_buf->list); 14932 lpfc_in_buf_free(vport->phba, d_buf); 14933 } 14934 return true; 14935 } 14936 return false; 14937 } 14938 14939 /** 14940 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 14941 * @vport: pointer to a vitural port 14942 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14943 * 14944 * This function tries to abort from the assembed sequence from upper level 14945 * protocol, described by the information from basic abbort @dmabuf. It 14946 * checks to see whether such pending context exists at upper level protocol. 14947 * If so, it shall clean up the pending context. 14948 * 14949 * Return 14950 * true -- if there is matching pending context of the sequence cleaned 14951 * at ulp; 14952 * false -- if there is no matching pending context of the sequence present 14953 * at ulp. 14954 **/ 14955 static bool 14956 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14957 { 14958 struct lpfc_hba *phba = vport->phba; 14959 int handled; 14960 14961 /* Accepting abort at ulp with SLI4 only */ 14962 if (phba->sli_rev < LPFC_SLI_REV4) 14963 return false; 14964 14965 /* Register all caring upper level protocols to attend abort */ 14966 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 14967 if (handled) 14968 return true; 14969 14970 return false; 14971 } 14972 14973 /** 14974 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 14975 * @phba: Pointer to HBA context object. 14976 * @cmd_iocbq: pointer to the command iocbq structure. 14977 * @rsp_iocbq: pointer to the response iocbq structure. 14978 * 14979 * This function handles the sequence abort response iocb command complete 14980 * event. It properly releases the memory allocated to the sequence abort 14981 * accept iocb. 14982 **/ 14983 static void 14984 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 14985 struct lpfc_iocbq *cmd_iocbq, 14986 struct lpfc_iocbq *rsp_iocbq) 14987 { 14988 struct lpfc_nodelist *ndlp; 14989 14990 if (cmd_iocbq) { 14991 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 14992 lpfc_nlp_put(ndlp); 14993 lpfc_nlp_not_used(ndlp); 14994 lpfc_sli_release_iocbq(phba, cmd_iocbq); 14995 } 14996 14997 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 14998 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 14999 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15000 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15001 rsp_iocbq->iocb.ulpStatus, 15002 rsp_iocbq->iocb.un.ulpWord[4]); 15003 } 15004 15005 /** 15006 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15007 * @phba: Pointer to HBA context object. 15008 * @xri: xri id in transaction. 15009 * 15010 * This function validates the xri maps to the known range of XRIs allocated an 15011 * used by the driver. 15012 **/ 15013 uint16_t 15014 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15015 uint16_t xri) 15016 { 15017 uint16_t i; 15018 15019 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15020 if (xri == phba->sli4_hba.xri_ids[i]) 15021 return i; 15022 } 15023 return NO_XRI; 15024 } 15025 15026 /** 15027 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15028 * @phba: Pointer to HBA context object. 15029 * @fc_hdr: pointer to a FC frame header. 15030 * 15031 * This function sends a basic response to a previous unsol sequence abort 15032 * event after aborting the sequence handling. 15033 **/ 15034 static void 15035 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15036 struct fc_frame_header *fc_hdr, bool aborted) 15037 { 15038 struct lpfc_hba *phba = vport->phba; 15039 struct lpfc_iocbq *ctiocb = NULL; 15040 struct lpfc_nodelist *ndlp; 15041 uint16_t oxid, rxid, xri, lxri; 15042 uint32_t sid, fctl; 15043 IOCB_t *icmd; 15044 int rc; 15045 15046 if (!lpfc_is_link_up(phba)) 15047 return; 15048 15049 sid = sli4_sid_from_fc_hdr(fc_hdr); 15050 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15051 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15052 15053 ndlp = lpfc_findnode_did(vport, sid); 15054 if (!ndlp) { 15055 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15056 if (!ndlp) { 15057 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15058 "1268 Failed to allocate ndlp for " 15059 "oxid:x%x SID:x%x\n", oxid, sid); 15060 return; 15061 } 15062 lpfc_nlp_init(vport, ndlp, sid); 15063 /* Put ndlp onto pport node list */ 15064 lpfc_enqueue_node(vport, ndlp); 15065 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15066 /* re-setup ndlp without removing from node list */ 15067 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15068 if (!ndlp) { 15069 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15070 "3275 Failed to active ndlp found " 15071 "for oxid:x%x SID:x%x\n", oxid, sid); 15072 return; 15073 } 15074 } 15075 15076 /* Allocate buffer for rsp iocb */ 15077 ctiocb = lpfc_sli_get_iocbq(phba); 15078 if (!ctiocb) 15079 return; 15080 15081 /* Extract the F_CTL field from FC_HDR */ 15082 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15083 15084 icmd = &ctiocb->iocb; 15085 icmd->un.xseq64.bdl.bdeSize = 0; 15086 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15087 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15088 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15089 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15090 15091 /* Fill in the rest of iocb fields */ 15092 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15093 icmd->ulpBdeCount = 0; 15094 icmd->ulpLe = 1; 15095 icmd->ulpClass = CLASS3; 15096 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15097 ctiocb->context1 = lpfc_nlp_get(ndlp); 15098 15099 ctiocb->iocb_cmpl = NULL; 15100 ctiocb->vport = phba->pport; 15101 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15102 ctiocb->sli4_lxritag = NO_XRI; 15103 ctiocb->sli4_xritag = NO_XRI; 15104 15105 if (fctl & FC_FC_EX_CTX) 15106 /* Exchange responder sent the abort so we 15107 * own the oxid. 15108 */ 15109 xri = oxid; 15110 else 15111 xri = rxid; 15112 lxri = lpfc_sli4_xri_inrange(phba, xri); 15113 if (lxri != NO_XRI) 15114 lpfc_set_rrq_active(phba, ndlp, lxri, 15115 (xri == oxid) ? rxid : oxid, 0); 15116 /* For BA_ABTS from exchange responder, if the logical xri with 15117 * the oxid maps to the FCP XRI range, the port no longer has 15118 * that exchange context, send a BLS_RJT. Override the IOCB for 15119 * a BA_RJT. 15120 */ 15121 if ((fctl & FC_FC_EX_CTX) && 15122 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15123 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15124 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15125 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15126 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15127 } 15128 15129 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15130 * the driver no longer has that exchange, send a BLS_RJT. Override 15131 * the IOCB for a BA_RJT. 15132 */ 15133 if (aborted == false) { 15134 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15135 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15136 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15137 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15138 } 15139 15140 if (fctl & FC_FC_EX_CTX) { 15141 /* ABTS sent by responder to CT exchange, construction 15142 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15143 * field and RX_ID from ABTS for RX_ID field. 15144 */ 15145 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15146 } else { 15147 /* ABTS sent by initiator to CT exchange, construction 15148 * of BA_ACC will need to allocate a new XRI as for the 15149 * XRI_TAG field. 15150 */ 15151 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15152 } 15153 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15154 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15155 15156 /* Xmit CT abts response on exchange <xid> */ 15157 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15158 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15159 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15160 15161 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15162 if (rc == IOCB_ERROR) { 15163 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15164 "2925 Failed to issue CT ABTS RSP x%x on " 15165 "xri x%x, Data x%x\n", 15166 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15167 phba->link_state); 15168 lpfc_nlp_put(ndlp); 15169 ctiocb->context1 = NULL; 15170 lpfc_sli_release_iocbq(phba, ctiocb); 15171 } 15172 } 15173 15174 /** 15175 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15176 * @vport: Pointer to the vport on which this sequence was received 15177 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15178 * 15179 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15180 * receive sequence is only partially assembed by the driver, it shall abort 15181 * the partially assembled frames for the sequence. Otherwise, if the 15182 * unsolicited receive sequence has been completely assembled and passed to 15183 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15184 * unsolicited sequence has been aborted. After that, it will issue a basic 15185 * accept to accept the abort. 15186 **/ 15187 static void 15188 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15189 struct hbq_dmabuf *dmabuf) 15190 { 15191 struct lpfc_hba *phba = vport->phba; 15192 struct fc_frame_header fc_hdr; 15193 uint32_t fctl; 15194 bool aborted; 15195 15196 /* Make a copy of fc_hdr before the dmabuf being released */ 15197 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15198 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15199 15200 if (fctl & FC_FC_EX_CTX) { 15201 /* ABTS by responder to exchange, no cleanup needed */ 15202 aborted = true; 15203 } else { 15204 /* ABTS by initiator to exchange, need to do cleanup */ 15205 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15206 if (aborted == false) 15207 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15208 } 15209 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15210 15211 /* Respond with BA_ACC or BA_RJT accordingly */ 15212 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15213 } 15214 15215 /** 15216 * lpfc_seq_complete - Indicates if a sequence is complete 15217 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15218 * 15219 * This function checks the sequence, starting with the frame described by 15220 * @dmabuf, to see if all the frames associated with this sequence are present. 15221 * the frames associated with this sequence are linked to the @dmabuf using the 15222 * dbuf list. This function looks for two major things. 1) That the first frame 15223 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15224 * set. 3) That there are no holes in the sequence count. The function will 15225 * return 1 when the sequence is complete, otherwise it will return 0. 15226 **/ 15227 static int 15228 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15229 { 15230 struct fc_frame_header *hdr; 15231 struct lpfc_dmabuf *d_buf; 15232 struct hbq_dmabuf *seq_dmabuf; 15233 uint32_t fctl; 15234 int seq_count = 0; 15235 15236 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15237 /* make sure first fame of sequence has a sequence count of zero */ 15238 if (hdr->fh_seq_cnt != seq_count) 15239 return 0; 15240 fctl = (hdr->fh_f_ctl[0] << 16 | 15241 hdr->fh_f_ctl[1] << 8 | 15242 hdr->fh_f_ctl[2]); 15243 /* If last frame of sequence we can return success. */ 15244 if (fctl & FC_FC_END_SEQ) 15245 return 1; 15246 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15247 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15248 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15249 /* If there is a hole in the sequence count then fail. */ 15250 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15251 return 0; 15252 fctl = (hdr->fh_f_ctl[0] << 16 | 15253 hdr->fh_f_ctl[1] << 8 | 15254 hdr->fh_f_ctl[2]); 15255 /* If last frame of sequence we can return success. */ 15256 if (fctl & FC_FC_END_SEQ) 15257 return 1; 15258 } 15259 return 0; 15260 } 15261 15262 /** 15263 * lpfc_prep_seq - Prep sequence for ULP processing 15264 * @vport: Pointer to the vport on which this sequence was received 15265 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15266 * 15267 * This function takes a sequence, described by a list of frames, and creates 15268 * a list of iocbq structures to describe the sequence. This iocbq list will be 15269 * used to issue to the generic unsolicited sequence handler. This routine 15270 * returns a pointer to the first iocbq in the list. If the function is unable 15271 * to allocate an iocbq then it throw out the received frames that were not 15272 * able to be described and return a pointer to the first iocbq. If unable to 15273 * allocate any iocbqs (including the first) this function will return NULL. 15274 **/ 15275 static struct lpfc_iocbq * 15276 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15277 { 15278 struct hbq_dmabuf *hbq_buf; 15279 struct lpfc_dmabuf *d_buf, *n_buf; 15280 struct lpfc_iocbq *first_iocbq, *iocbq; 15281 struct fc_frame_header *fc_hdr; 15282 uint32_t sid; 15283 uint32_t len, tot_len; 15284 struct ulp_bde64 *pbde; 15285 15286 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15287 /* remove from receive buffer list */ 15288 list_del_init(&seq_dmabuf->hbuf.list); 15289 lpfc_update_rcv_time_stamp(vport); 15290 /* get the Remote Port's SID */ 15291 sid = sli4_sid_from_fc_hdr(fc_hdr); 15292 tot_len = 0; 15293 /* Get an iocbq struct to fill in. */ 15294 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15295 if (first_iocbq) { 15296 /* Initialize the first IOCB. */ 15297 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15298 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15299 15300 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15301 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15302 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15303 first_iocbq->iocb.un.rcvels.parmRo = 15304 sli4_did_from_fc_hdr(fc_hdr); 15305 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15306 } else 15307 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15308 first_iocbq->iocb.ulpContext = NO_XRI; 15309 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15310 be16_to_cpu(fc_hdr->fh_ox_id); 15311 /* iocbq is prepped for internal consumption. Physical vpi. */ 15312 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15313 vport->phba->vpi_ids[vport->vpi]; 15314 /* put the first buffer into the first IOCBq */ 15315 tot_len = bf_get(lpfc_rcqe_length, 15316 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15317 15318 first_iocbq->context2 = &seq_dmabuf->dbuf; 15319 first_iocbq->context3 = NULL; 15320 first_iocbq->iocb.ulpBdeCount = 1; 15321 if (tot_len > LPFC_DATA_BUF_SIZE) 15322 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15323 LPFC_DATA_BUF_SIZE; 15324 else 15325 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15326 15327 first_iocbq->iocb.un.rcvels.remoteID = sid; 15328 15329 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15330 } 15331 iocbq = first_iocbq; 15332 /* 15333 * Each IOCBq can have two Buffers assigned, so go through the list 15334 * of buffers for this sequence and save two buffers in each IOCBq 15335 */ 15336 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15337 if (!iocbq) { 15338 lpfc_in_buf_free(vport->phba, d_buf); 15339 continue; 15340 } 15341 if (!iocbq->context3) { 15342 iocbq->context3 = d_buf; 15343 iocbq->iocb.ulpBdeCount++; 15344 /* We need to get the size out of the right CQE */ 15345 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15346 len = bf_get(lpfc_rcqe_length, 15347 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15348 pbde = (struct ulp_bde64 *) 15349 &iocbq->iocb.unsli3.sli3Words[4]; 15350 if (len > LPFC_DATA_BUF_SIZE) 15351 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15352 else 15353 pbde->tus.f.bdeSize = len; 15354 15355 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15356 tot_len += len; 15357 } else { 15358 iocbq = lpfc_sli_get_iocbq(vport->phba); 15359 if (!iocbq) { 15360 if (first_iocbq) { 15361 first_iocbq->iocb.ulpStatus = 15362 IOSTAT_FCP_RSP_ERROR; 15363 first_iocbq->iocb.un.ulpWord[4] = 15364 IOERR_NO_RESOURCES; 15365 } 15366 lpfc_in_buf_free(vport->phba, d_buf); 15367 continue; 15368 } 15369 /* We need to get the size out of the right CQE */ 15370 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15371 len = bf_get(lpfc_rcqe_length, 15372 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15373 iocbq->context2 = d_buf; 15374 iocbq->context3 = NULL; 15375 iocbq->iocb.ulpBdeCount = 1; 15376 if (len > LPFC_DATA_BUF_SIZE) 15377 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15378 LPFC_DATA_BUF_SIZE; 15379 else 15380 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15381 15382 tot_len += len; 15383 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15384 15385 iocbq->iocb.un.rcvels.remoteID = sid; 15386 list_add_tail(&iocbq->list, &first_iocbq->list); 15387 } 15388 } 15389 return first_iocbq; 15390 } 15391 15392 static void 15393 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15394 struct hbq_dmabuf *seq_dmabuf) 15395 { 15396 struct fc_frame_header *fc_hdr; 15397 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15398 struct lpfc_hba *phba = vport->phba; 15399 15400 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15401 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15402 if (!iocbq) { 15403 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15404 "2707 Ring %d handler: Failed to allocate " 15405 "iocb Rctl x%x Type x%x received\n", 15406 LPFC_ELS_RING, 15407 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15408 return; 15409 } 15410 if (!lpfc_complete_unsol_iocb(phba, 15411 &phba->sli.ring[LPFC_ELS_RING], 15412 iocbq, fc_hdr->fh_r_ctl, 15413 fc_hdr->fh_type)) 15414 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15415 "2540 Ring %d handler: unexpected Rctl " 15416 "x%x Type x%x received\n", 15417 LPFC_ELS_RING, 15418 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15419 15420 /* Free iocb created in lpfc_prep_seq */ 15421 list_for_each_entry_safe(curr_iocb, next_iocb, 15422 &iocbq->list, list) { 15423 list_del_init(&curr_iocb->list); 15424 lpfc_sli_release_iocbq(phba, curr_iocb); 15425 } 15426 lpfc_sli_release_iocbq(phba, iocbq); 15427 } 15428 15429 /** 15430 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15431 * @phba: Pointer to HBA context object. 15432 * 15433 * This function is called with no lock held. This function processes all 15434 * the received buffers and gives it to upper layers when a received buffer 15435 * indicates that it is the final frame in the sequence. The interrupt 15436 * service routine processes received buffers at interrupt contexts and adds 15437 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15438 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15439 * appropriate receive function when the final frame in a sequence is received. 15440 **/ 15441 void 15442 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15443 struct hbq_dmabuf *dmabuf) 15444 { 15445 struct hbq_dmabuf *seq_dmabuf; 15446 struct fc_frame_header *fc_hdr; 15447 struct lpfc_vport *vport; 15448 uint32_t fcfi; 15449 uint32_t did; 15450 15451 /* Process each received buffer */ 15452 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15453 /* check to see if this a valid type of frame */ 15454 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15455 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15456 return; 15457 } 15458 if ((bf_get(lpfc_cqe_code, 15459 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15460 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15461 &dmabuf->cq_event.cqe.rcqe_cmpl); 15462 else 15463 fcfi = bf_get(lpfc_rcqe_fcf_id, 15464 &dmabuf->cq_event.cqe.rcqe_cmpl); 15465 15466 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15467 if (!vport) { 15468 /* throw out the frame */ 15469 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15470 return; 15471 } 15472 15473 /* d_id this frame is directed to */ 15474 did = sli4_did_from_fc_hdr(fc_hdr); 15475 15476 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15477 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15478 (did != Fabric_DID)) { 15479 /* 15480 * Throw out the frame if we are not pt2pt. 15481 * The pt2pt protocol allows for discovery frames 15482 * to be received without a registered VPI. 15483 */ 15484 if (!(vport->fc_flag & FC_PT2PT) || 15485 (phba->link_state == LPFC_HBA_READY)) { 15486 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15487 return; 15488 } 15489 } 15490 15491 /* Handle the basic abort sequence (BA_ABTS) event */ 15492 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15493 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15494 return; 15495 } 15496 15497 /* Link this frame */ 15498 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15499 if (!seq_dmabuf) { 15500 /* unable to add frame to vport - throw it out */ 15501 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15502 return; 15503 } 15504 /* If not last frame in sequence continue processing frames. */ 15505 if (!lpfc_seq_complete(seq_dmabuf)) 15506 return; 15507 15508 /* Send the complete sequence to the upper layer protocol */ 15509 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15510 } 15511 15512 /** 15513 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15514 * @phba: pointer to lpfc hba data structure. 15515 * 15516 * This routine is invoked to post rpi header templates to the 15517 * HBA consistent with the SLI-4 interface spec. This routine 15518 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15519 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15520 * 15521 * This routine does not require any locks. It's usage is expected 15522 * to be driver load or reset recovery when the driver is 15523 * sequential. 15524 * 15525 * Return codes 15526 * 0 - successful 15527 * -EIO - The mailbox failed to complete successfully. 15528 * When this error occurs, the driver is not guaranteed 15529 * to have any rpi regions posted to the device and 15530 * must either attempt to repost the regions or take a 15531 * fatal error. 15532 **/ 15533 int 15534 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15535 { 15536 struct lpfc_rpi_hdr *rpi_page; 15537 uint32_t rc = 0; 15538 uint16_t lrpi = 0; 15539 15540 /* SLI4 ports that support extents do not require RPI headers. */ 15541 if (!phba->sli4_hba.rpi_hdrs_in_use) 15542 goto exit; 15543 if (phba->sli4_hba.extents_in_use) 15544 return -EIO; 15545 15546 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15547 /* 15548 * Assign the rpi headers a physical rpi only if the driver 15549 * has not initialized those resources. A port reset only 15550 * needs the headers posted. 15551 */ 15552 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15553 LPFC_RPI_RSRC_RDY) 15554 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15555 15556 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15557 if (rc != MBX_SUCCESS) { 15558 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15559 "2008 Error %d posting all rpi " 15560 "headers\n", rc); 15561 rc = -EIO; 15562 break; 15563 } 15564 } 15565 15566 exit: 15567 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15568 LPFC_RPI_RSRC_RDY); 15569 return rc; 15570 } 15571 15572 /** 15573 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15574 * @phba: pointer to lpfc hba data structure. 15575 * @rpi_page: pointer to the rpi memory region. 15576 * 15577 * This routine is invoked to post a single rpi header to the 15578 * HBA consistent with the SLI-4 interface spec. This memory region 15579 * maps up to 64 rpi context regions. 15580 * 15581 * Return codes 15582 * 0 - successful 15583 * -ENOMEM - No available memory 15584 * -EIO - The mailbox failed to complete successfully. 15585 **/ 15586 int 15587 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15588 { 15589 LPFC_MBOXQ_t *mboxq; 15590 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15591 uint32_t rc = 0; 15592 uint32_t shdr_status, shdr_add_status; 15593 union lpfc_sli4_cfg_shdr *shdr; 15594 15595 /* SLI4 ports that support extents do not require RPI headers. */ 15596 if (!phba->sli4_hba.rpi_hdrs_in_use) 15597 return rc; 15598 if (phba->sli4_hba.extents_in_use) 15599 return -EIO; 15600 15601 /* The port is notified of the header region via a mailbox command. */ 15602 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15603 if (!mboxq) { 15604 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15605 "2001 Unable to allocate memory for issuing " 15606 "SLI_CONFIG_SPECIAL mailbox command\n"); 15607 return -ENOMEM; 15608 } 15609 15610 /* Post all rpi memory regions to the port. */ 15611 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15612 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15613 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15614 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15615 sizeof(struct lpfc_sli4_cfg_mhdr), 15616 LPFC_SLI4_MBX_EMBED); 15617 15618 15619 /* Post the physical rpi to the port for this rpi header. */ 15620 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15621 rpi_page->start_rpi); 15622 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15623 hdr_tmpl, rpi_page->page_count); 15624 15625 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15626 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15627 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15628 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15629 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15630 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15631 if (rc != MBX_TIMEOUT) 15632 mempool_free(mboxq, phba->mbox_mem_pool); 15633 if (shdr_status || shdr_add_status || rc) { 15634 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15635 "2514 POST_RPI_HDR mailbox failed with " 15636 "status x%x add_status x%x, mbx status x%x\n", 15637 shdr_status, shdr_add_status, rc); 15638 rc = -ENXIO; 15639 } 15640 return rc; 15641 } 15642 15643 /** 15644 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15645 * @phba: pointer to lpfc hba data structure. 15646 * 15647 * This routine is invoked to post rpi header templates to the 15648 * HBA consistent with the SLI-4 interface spec. This routine 15649 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15650 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15651 * 15652 * Returns 15653 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15654 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15655 **/ 15656 int 15657 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15658 { 15659 unsigned long rpi; 15660 uint16_t max_rpi, rpi_limit; 15661 uint16_t rpi_remaining, lrpi = 0; 15662 struct lpfc_rpi_hdr *rpi_hdr; 15663 unsigned long iflag; 15664 15665 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15666 rpi_limit = phba->sli4_hba.next_rpi; 15667 15668 /* 15669 * Fetch the next logical rpi. Because this index is logical, 15670 * the driver starts at 0 each time. 15671 */ 15672 spin_lock_irqsave(&phba->hbalock, iflag); 15673 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15674 if (rpi >= rpi_limit) 15675 rpi = LPFC_RPI_ALLOC_ERROR; 15676 else { 15677 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15678 phba->sli4_hba.max_cfg_param.rpi_used++; 15679 phba->sli4_hba.rpi_count++; 15680 } 15681 15682 /* 15683 * Don't try to allocate more rpi header regions if the device limit 15684 * has been exhausted. 15685 */ 15686 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15687 (phba->sli4_hba.rpi_count >= max_rpi)) { 15688 spin_unlock_irqrestore(&phba->hbalock, iflag); 15689 return rpi; 15690 } 15691 15692 /* 15693 * RPI header postings are not required for SLI4 ports capable of 15694 * extents. 15695 */ 15696 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15697 spin_unlock_irqrestore(&phba->hbalock, iflag); 15698 return rpi; 15699 } 15700 15701 /* 15702 * If the driver is running low on rpi resources, allocate another 15703 * page now. Note that the next_rpi value is used because 15704 * it represents how many are actually in use whereas max_rpi notes 15705 * how many are supported max by the device. 15706 */ 15707 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15708 spin_unlock_irqrestore(&phba->hbalock, iflag); 15709 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15710 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15711 if (!rpi_hdr) { 15712 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15713 "2002 Error Could not grow rpi " 15714 "count\n"); 15715 } else { 15716 lrpi = rpi_hdr->start_rpi; 15717 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15718 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15719 } 15720 } 15721 15722 return rpi; 15723 } 15724 15725 /** 15726 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15727 * @phba: pointer to lpfc hba data structure. 15728 * 15729 * This routine is invoked to release an rpi to the pool of 15730 * available rpis maintained by the driver. 15731 **/ 15732 static void 15733 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15734 { 15735 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 15736 phba->sli4_hba.rpi_count--; 15737 phba->sli4_hba.max_cfg_param.rpi_used--; 15738 } 15739 } 15740 15741 /** 15742 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15743 * @phba: pointer to lpfc hba data structure. 15744 * 15745 * This routine is invoked to release an rpi to the pool of 15746 * available rpis maintained by the driver. 15747 **/ 15748 void 15749 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15750 { 15751 spin_lock_irq(&phba->hbalock); 15752 __lpfc_sli4_free_rpi(phba, rpi); 15753 spin_unlock_irq(&phba->hbalock); 15754 } 15755 15756 /** 15757 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 15758 * @phba: pointer to lpfc hba data structure. 15759 * 15760 * This routine is invoked to remove the memory region that 15761 * provided rpi via a bitmask. 15762 **/ 15763 void 15764 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 15765 { 15766 kfree(phba->sli4_hba.rpi_bmask); 15767 kfree(phba->sli4_hba.rpi_ids); 15768 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 15769 } 15770 15771 /** 15772 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 15773 * @phba: pointer to lpfc hba data structure. 15774 * 15775 * This routine is invoked to remove the memory region that 15776 * provided rpi via a bitmask. 15777 **/ 15778 int 15779 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 15780 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 15781 { 15782 LPFC_MBOXQ_t *mboxq; 15783 struct lpfc_hba *phba = ndlp->phba; 15784 int rc; 15785 15786 /* The port is notified of the header region via a mailbox command. */ 15787 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15788 if (!mboxq) 15789 return -ENOMEM; 15790 15791 /* Post all rpi memory regions to the port. */ 15792 lpfc_resume_rpi(mboxq, ndlp); 15793 if (cmpl) { 15794 mboxq->mbox_cmpl = cmpl; 15795 mboxq->context1 = arg; 15796 mboxq->context2 = ndlp; 15797 } else 15798 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15799 mboxq->vport = ndlp->vport; 15800 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15801 if (rc == MBX_NOT_FINISHED) { 15802 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15803 "2010 Resume RPI Mailbox failed " 15804 "status %d, mbxStatus x%x\n", rc, 15805 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15806 mempool_free(mboxq, phba->mbox_mem_pool); 15807 return -EIO; 15808 } 15809 return 0; 15810 } 15811 15812 /** 15813 * lpfc_sli4_init_vpi - Initialize a vpi with the port 15814 * @vport: Pointer to the vport for which the vpi is being initialized 15815 * 15816 * This routine is invoked to activate a vpi with the port. 15817 * 15818 * Returns: 15819 * 0 success 15820 * -Evalue otherwise 15821 **/ 15822 int 15823 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 15824 { 15825 LPFC_MBOXQ_t *mboxq; 15826 int rc = 0; 15827 int retval = MBX_SUCCESS; 15828 uint32_t mbox_tmo; 15829 struct lpfc_hba *phba = vport->phba; 15830 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15831 if (!mboxq) 15832 return -ENOMEM; 15833 lpfc_init_vpi(phba, mboxq, vport->vpi); 15834 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 15835 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 15836 if (rc != MBX_SUCCESS) { 15837 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 15838 "2022 INIT VPI Mailbox failed " 15839 "status %d, mbxStatus x%x\n", rc, 15840 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15841 retval = -EIO; 15842 } 15843 if (rc != MBX_TIMEOUT) 15844 mempool_free(mboxq, vport->phba->mbox_mem_pool); 15845 15846 return retval; 15847 } 15848 15849 /** 15850 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 15851 * @phba: pointer to lpfc hba data structure. 15852 * @mboxq: Pointer to mailbox object. 15853 * 15854 * This routine is invoked to manually add a single FCF record. The caller 15855 * must pass a completely initialized FCF_Record. This routine takes 15856 * care of the nonembedded mailbox operations. 15857 **/ 15858 static void 15859 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 15860 { 15861 void *virt_addr; 15862 union lpfc_sli4_cfg_shdr *shdr; 15863 uint32_t shdr_status, shdr_add_status; 15864 15865 virt_addr = mboxq->sge_array->addr[0]; 15866 /* The IOCTL status is embedded in the mailbox subheader. */ 15867 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 15868 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15869 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15870 15871 if ((shdr_status || shdr_add_status) && 15872 (shdr_status != STATUS_FCF_IN_USE)) 15873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15874 "2558 ADD_FCF_RECORD mailbox failed with " 15875 "status x%x add_status x%x\n", 15876 shdr_status, shdr_add_status); 15877 15878 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15879 } 15880 15881 /** 15882 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 15883 * @phba: pointer to lpfc hba data structure. 15884 * @fcf_record: pointer to the initialized fcf record to add. 15885 * 15886 * This routine is invoked to manually add a single FCF record. The caller 15887 * must pass a completely initialized FCF_Record. This routine takes 15888 * care of the nonembedded mailbox operations. 15889 **/ 15890 int 15891 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 15892 { 15893 int rc = 0; 15894 LPFC_MBOXQ_t *mboxq; 15895 uint8_t *bytep; 15896 void *virt_addr; 15897 dma_addr_t phys_addr; 15898 struct lpfc_mbx_sge sge; 15899 uint32_t alloc_len, req_len; 15900 uint32_t fcfindex; 15901 15902 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15903 if (!mboxq) { 15904 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15905 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 15906 return -ENOMEM; 15907 } 15908 15909 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 15910 sizeof(uint32_t); 15911 15912 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15913 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15914 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 15915 req_len, LPFC_SLI4_MBX_NEMBED); 15916 if (alloc_len < req_len) { 15917 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15918 "2523 Allocated DMA memory size (x%x) is " 15919 "less than the requested DMA memory " 15920 "size (x%x)\n", alloc_len, req_len); 15921 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15922 return -ENOMEM; 15923 } 15924 15925 /* 15926 * Get the first SGE entry from the non-embedded DMA memory. This 15927 * routine only uses a single SGE. 15928 */ 15929 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 15930 phys_addr = getPaddr(sge.pa_hi, sge.pa_lo); 15931 virt_addr = mboxq->sge_array->addr[0]; 15932 /* 15933 * Configure the FCF record for FCFI 0. This is the driver's 15934 * hardcoded default and gets used in nonFIP mode. 15935 */ 15936 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 15937 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 15938 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 15939 15940 /* 15941 * Copy the fcf_index and the FCF Record Data. The data starts after 15942 * the FCoE header plus word10. The data copy needs to be endian 15943 * correct. 15944 */ 15945 bytep += sizeof(uint32_t); 15946 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 15947 mboxq->vport = phba->pport; 15948 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 15949 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15950 if (rc == MBX_NOT_FINISHED) { 15951 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15952 "2515 ADD_FCF_RECORD mailbox failed with " 15953 "status 0x%x\n", rc); 15954 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15955 rc = -EIO; 15956 } else 15957 rc = 0; 15958 15959 return rc; 15960 } 15961 15962 /** 15963 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 15964 * @phba: pointer to lpfc hba data structure. 15965 * @fcf_record: pointer to the fcf record to write the default data. 15966 * @fcf_index: FCF table entry index. 15967 * 15968 * This routine is invoked to build the driver's default FCF record. The 15969 * values used are hardcoded. This routine handles memory initialization. 15970 * 15971 **/ 15972 void 15973 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 15974 struct fcf_record *fcf_record, 15975 uint16_t fcf_index) 15976 { 15977 memset(fcf_record, 0, sizeof(struct fcf_record)); 15978 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 15979 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 15980 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 15981 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 15982 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 15983 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 15984 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 15985 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 15986 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 15987 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 15988 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 15989 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 15990 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 15991 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 15992 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 15993 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 15994 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 15995 /* Set the VLAN bit map */ 15996 if (phba->valid_vlan) { 15997 fcf_record->vlan_bitmap[phba->vlan_id / 8] 15998 = 1 << (phba->vlan_id % 8); 15999 } 16000 } 16001 16002 /** 16003 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16004 * @phba: pointer to lpfc hba data structure. 16005 * @fcf_index: FCF table entry offset. 16006 * 16007 * This routine is invoked to scan the entire FCF table by reading FCF 16008 * record and processing it one at a time starting from the @fcf_index 16009 * for initial FCF discovery or fast FCF failover rediscovery. 16010 * 16011 * Return 0 if the mailbox command is submitted successfully, none 0 16012 * otherwise. 16013 **/ 16014 int 16015 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16016 { 16017 int rc = 0, error; 16018 LPFC_MBOXQ_t *mboxq; 16019 16020 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16021 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16022 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16023 if (!mboxq) { 16024 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16025 "2000 Failed to allocate mbox for " 16026 "READ_FCF cmd\n"); 16027 error = -ENOMEM; 16028 goto fail_fcf_scan; 16029 } 16030 /* Construct the read FCF record mailbox command */ 16031 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16032 if (rc) { 16033 error = -EINVAL; 16034 goto fail_fcf_scan; 16035 } 16036 /* Issue the mailbox command asynchronously */ 16037 mboxq->vport = phba->pport; 16038 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16039 16040 spin_lock_irq(&phba->hbalock); 16041 phba->hba_flag |= FCF_TS_INPROG; 16042 spin_unlock_irq(&phba->hbalock); 16043 16044 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16045 if (rc == MBX_NOT_FINISHED) 16046 error = -EIO; 16047 else { 16048 /* Reset eligible FCF count for new scan */ 16049 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16050 phba->fcf.eligible_fcf_cnt = 0; 16051 error = 0; 16052 } 16053 fail_fcf_scan: 16054 if (error) { 16055 if (mboxq) 16056 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16057 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16058 spin_lock_irq(&phba->hbalock); 16059 phba->hba_flag &= ~FCF_TS_INPROG; 16060 spin_unlock_irq(&phba->hbalock); 16061 } 16062 return error; 16063 } 16064 16065 /** 16066 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16067 * @phba: pointer to lpfc hba data structure. 16068 * @fcf_index: FCF table entry offset. 16069 * 16070 * This routine is invoked to read an FCF record indicated by @fcf_index 16071 * and to use it for FLOGI roundrobin FCF failover. 16072 * 16073 * Return 0 if the mailbox command is submitted successfully, none 0 16074 * otherwise. 16075 **/ 16076 int 16077 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16078 { 16079 int rc = 0, error; 16080 LPFC_MBOXQ_t *mboxq; 16081 16082 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16083 if (!mboxq) { 16084 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16085 "2763 Failed to allocate mbox for " 16086 "READ_FCF cmd\n"); 16087 error = -ENOMEM; 16088 goto fail_fcf_read; 16089 } 16090 /* Construct the read FCF record mailbox command */ 16091 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16092 if (rc) { 16093 error = -EINVAL; 16094 goto fail_fcf_read; 16095 } 16096 /* Issue the mailbox command asynchronously */ 16097 mboxq->vport = phba->pport; 16098 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16099 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16100 if (rc == MBX_NOT_FINISHED) 16101 error = -EIO; 16102 else 16103 error = 0; 16104 16105 fail_fcf_read: 16106 if (error && mboxq) 16107 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16108 return error; 16109 } 16110 16111 /** 16112 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16113 * @phba: pointer to lpfc hba data structure. 16114 * @fcf_index: FCF table entry offset. 16115 * 16116 * This routine is invoked to read an FCF record indicated by @fcf_index to 16117 * determine whether it's eligible for FLOGI roundrobin failover list. 16118 * 16119 * Return 0 if the mailbox command is submitted successfully, none 0 16120 * otherwise. 16121 **/ 16122 int 16123 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16124 { 16125 int rc = 0, error; 16126 LPFC_MBOXQ_t *mboxq; 16127 16128 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16129 if (!mboxq) { 16130 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16131 "2758 Failed to allocate mbox for " 16132 "READ_FCF cmd\n"); 16133 error = -ENOMEM; 16134 goto fail_fcf_read; 16135 } 16136 /* Construct the read FCF record mailbox command */ 16137 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16138 if (rc) { 16139 error = -EINVAL; 16140 goto fail_fcf_read; 16141 } 16142 /* Issue the mailbox command asynchronously */ 16143 mboxq->vport = phba->pport; 16144 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16145 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16146 if (rc == MBX_NOT_FINISHED) 16147 error = -EIO; 16148 else 16149 error = 0; 16150 16151 fail_fcf_read: 16152 if (error && mboxq) 16153 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16154 return error; 16155 } 16156 16157 /** 16158 * lpfc_check_next_fcf_pri 16159 * phba pointer to the lpfc_hba struct for this port. 16160 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16161 * routine when the rr_bmask is empty. The FCF indecies are put into the 16162 * rr_bmask based on their priority level. Starting from the highest priority 16163 * to the lowest. The most likely FCF candidate will be in the highest 16164 * priority group. When this routine is called it searches the fcf_pri list for 16165 * next lowest priority group and repopulates the rr_bmask with only those 16166 * fcf_indexes. 16167 * returns: 16168 * 1=success 0=failure 16169 **/ 16170 static int 16171 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16172 { 16173 uint16_t next_fcf_pri; 16174 uint16_t last_index; 16175 struct lpfc_fcf_pri *fcf_pri; 16176 int rc; 16177 int ret = 0; 16178 16179 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16180 LPFC_SLI4_FCF_TBL_INDX_MAX); 16181 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16182 "3060 Last IDX %d\n", last_index); 16183 16184 /* Verify the priority list has 2 or more entries */ 16185 spin_lock_irq(&phba->hbalock); 16186 if (list_empty(&phba->fcf.fcf_pri_list) || 16187 list_is_singular(&phba->fcf.fcf_pri_list)) { 16188 spin_unlock_irq(&phba->hbalock); 16189 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16190 "3061 Last IDX %d\n", last_index); 16191 return 0; /* Empty rr list */ 16192 } 16193 spin_unlock_irq(&phba->hbalock); 16194 16195 next_fcf_pri = 0; 16196 /* 16197 * Clear the rr_bmask and set all of the bits that are at this 16198 * priority. 16199 */ 16200 memset(phba->fcf.fcf_rr_bmask, 0, 16201 sizeof(*phba->fcf.fcf_rr_bmask)); 16202 spin_lock_irq(&phba->hbalock); 16203 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16204 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16205 continue; 16206 /* 16207 * the 1st priority that has not FLOGI failed 16208 * will be the highest. 16209 */ 16210 if (!next_fcf_pri) 16211 next_fcf_pri = fcf_pri->fcf_rec.priority; 16212 spin_unlock_irq(&phba->hbalock); 16213 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16214 rc = lpfc_sli4_fcf_rr_index_set(phba, 16215 fcf_pri->fcf_rec.fcf_index); 16216 if (rc) 16217 return 0; 16218 } 16219 spin_lock_irq(&phba->hbalock); 16220 } 16221 /* 16222 * if next_fcf_pri was not set above and the list is not empty then 16223 * we have failed flogis on all of them. So reset flogi failed 16224 * and start at the beginning. 16225 */ 16226 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16227 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16228 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16229 /* 16230 * the 1st priority that has not FLOGI failed 16231 * will be the highest. 16232 */ 16233 if (!next_fcf_pri) 16234 next_fcf_pri = fcf_pri->fcf_rec.priority; 16235 spin_unlock_irq(&phba->hbalock); 16236 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16237 rc = lpfc_sli4_fcf_rr_index_set(phba, 16238 fcf_pri->fcf_rec.fcf_index); 16239 if (rc) 16240 return 0; 16241 } 16242 spin_lock_irq(&phba->hbalock); 16243 } 16244 } else 16245 ret = 1; 16246 spin_unlock_irq(&phba->hbalock); 16247 16248 return ret; 16249 } 16250 /** 16251 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16252 * @phba: pointer to lpfc hba data structure. 16253 * 16254 * This routine is to get the next eligible FCF record index in a round 16255 * robin fashion. If the next eligible FCF record index equals to the 16256 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16257 * shall be returned, otherwise, the next eligible FCF record's index 16258 * shall be returned. 16259 **/ 16260 uint16_t 16261 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16262 { 16263 uint16_t next_fcf_index; 16264 16265 initial_priority: 16266 /* Search start from next bit of currently registered FCF index */ 16267 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16268 16269 next_priority: 16270 /* Determine the next fcf index to check */ 16271 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16272 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16273 LPFC_SLI4_FCF_TBL_INDX_MAX, 16274 next_fcf_index); 16275 16276 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16277 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16278 /* 16279 * If we have wrapped then we need to clear the bits that 16280 * have been tested so that we can detect when we should 16281 * change the priority level. 16282 */ 16283 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16284 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16285 } 16286 16287 16288 /* Check roundrobin failover list empty condition */ 16289 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16290 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16291 /* 16292 * If next fcf index is not found check if there are lower 16293 * Priority level fcf's in the fcf_priority list. 16294 * Set up the rr_bmask with all of the avaiable fcf bits 16295 * at that level and continue the selection process. 16296 */ 16297 if (lpfc_check_next_fcf_pri_level(phba)) 16298 goto initial_priority; 16299 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16300 "2844 No roundrobin failover FCF available\n"); 16301 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16302 return LPFC_FCOE_FCF_NEXT_NONE; 16303 else { 16304 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16305 "3063 Only FCF available idx %d, flag %x\n", 16306 next_fcf_index, 16307 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16308 return next_fcf_index; 16309 } 16310 } 16311 16312 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16313 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16314 LPFC_FCF_FLOGI_FAILED) 16315 goto next_priority; 16316 16317 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16318 "2845 Get next roundrobin failover FCF (x%x)\n", 16319 next_fcf_index); 16320 16321 return next_fcf_index; 16322 } 16323 16324 /** 16325 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16326 * @phba: pointer to lpfc hba data structure. 16327 * 16328 * This routine sets the FCF record index in to the eligible bmask for 16329 * roundrobin failover search. It checks to make sure that the index 16330 * does not go beyond the range of the driver allocated bmask dimension 16331 * before setting the bit. 16332 * 16333 * Returns 0 if the index bit successfully set, otherwise, it returns 16334 * -EINVAL. 16335 **/ 16336 int 16337 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16338 { 16339 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16340 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16341 "2610 FCF (x%x) reached driver's book " 16342 "keeping dimension:x%x\n", 16343 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16344 return -EINVAL; 16345 } 16346 /* Set the eligible FCF record index bmask */ 16347 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16348 16349 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16350 "2790 Set FCF (x%x) to roundrobin FCF failover " 16351 "bmask\n", fcf_index); 16352 16353 return 0; 16354 } 16355 16356 /** 16357 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16358 * @phba: pointer to lpfc hba data structure. 16359 * 16360 * This routine clears the FCF record index from the eligible bmask for 16361 * roundrobin failover search. It checks to make sure that the index 16362 * does not go beyond the range of the driver allocated bmask dimension 16363 * before clearing the bit. 16364 **/ 16365 void 16366 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16367 { 16368 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16369 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16370 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16371 "2762 FCF (x%x) reached driver's book " 16372 "keeping dimension:x%x\n", 16373 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16374 return; 16375 } 16376 /* Clear the eligible FCF record index bmask */ 16377 spin_lock_irq(&phba->hbalock); 16378 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16379 list) { 16380 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16381 list_del_init(&fcf_pri->list); 16382 break; 16383 } 16384 } 16385 spin_unlock_irq(&phba->hbalock); 16386 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16387 16388 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16389 "2791 Clear FCF (x%x) from roundrobin failover " 16390 "bmask\n", fcf_index); 16391 } 16392 16393 /** 16394 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16395 * @phba: pointer to lpfc hba data structure. 16396 * 16397 * This routine is the completion routine for the rediscover FCF table mailbox 16398 * command. If the mailbox command returned failure, it will try to stop the 16399 * FCF rediscover wait timer. 16400 **/ 16401 static void 16402 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16403 { 16404 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16405 uint32_t shdr_status, shdr_add_status; 16406 16407 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16408 16409 shdr_status = bf_get(lpfc_mbox_hdr_status, 16410 &redisc_fcf->header.cfg_shdr.response); 16411 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16412 &redisc_fcf->header.cfg_shdr.response); 16413 if (shdr_status || shdr_add_status) { 16414 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16415 "2746 Requesting for FCF rediscovery failed " 16416 "status x%x add_status x%x\n", 16417 shdr_status, shdr_add_status); 16418 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16419 spin_lock_irq(&phba->hbalock); 16420 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16421 spin_unlock_irq(&phba->hbalock); 16422 /* 16423 * CVL event triggered FCF rediscover request failed, 16424 * last resort to re-try current registered FCF entry. 16425 */ 16426 lpfc_retry_pport_discovery(phba); 16427 } else { 16428 spin_lock_irq(&phba->hbalock); 16429 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16430 spin_unlock_irq(&phba->hbalock); 16431 /* 16432 * DEAD FCF event triggered FCF rediscover request 16433 * failed, last resort to fail over as a link down 16434 * to FCF registration. 16435 */ 16436 lpfc_sli4_fcf_dead_failthrough(phba); 16437 } 16438 } else { 16439 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16440 "2775 Start FCF rediscover quiescent timer\n"); 16441 /* 16442 * Start FCF rediscovery wait timer for pending FCF 16443 * before rescan FCF record table. 16444 */ 16445 lpfc_fcf_redisc_wait_start_timer(phba); 16446 } 16447 16448 mempool_free(mbox, phba->mbox_mem_pool); 16449 } 16450 16451 /** 16452 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16453 * @phba: pointer to lpfc hba data structure. 16454 * 16455 * This routine is invoked to request for rediscovery of the entire FCF table 16456 * by the port. 16457 **/ 16458 int 16459 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16460 { 16461 LPFC_MBOXQ_t *mbox; 16462 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16463 int rc, length; 16464 16465 /* Cancel retry delay timers to all vports before FCF rediscover */ 16466 lpfc_cancel_all_vport_retry_delay_timer(phba); 16467 16468 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16469 if (!mbox) { 16470 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16471 "2745 Failed to allocate mbox for " 16472 "requesting FCF rediscover.\n"); 16473 return -ENOMEM; 16474 } 16475 16476 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16477 sizeof(struct lpfc_sli4_cfg_mhdr)); 16478 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16479 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16480 length, LPFC_SLI4_MBX_EMBED); 16481 16482 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16483 /* Set count to 0 for invalidating the entire FCF database */ 16484 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16485 16486 /* Issue the mailbox command asynchronously */ 16487 mbox->vport = phba->pport; 16488 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16489 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16490 16491 if (rc == MBX_NOT_FINISHED) { 16492 mempool_free(mbox, phba->mbox_mem_pool); 16493 return -EIO; 16494 } 16495 return 0; 16496 } 16497 16498 /** 16499 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16500 * @phba: pointer to lpfc hba data structure. 16501 * 16502 * This function is the failover routine as a last resort to the FCF DEAD 16503 * event when driver failed to perform fast FCF failover. 16504 **/ 16505 void 16506 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16507 { 16508 uint32_t link_state; 16509 16510 /* 16511 * Last resort as FCF DEAD event failover will treat this as 16512 * a link down, but save the link state because we don't want 16513 * it to be changed to Link Down unless it is already down. 16514 */ 16515 link_state = phba->link_state; 16516 lpfc_linkdown(phba); 16517 phba->link_state = link_state; 16518 16519 /* Unregister FCF if no devices connected to it */ 16520 lpfc_unregister_unused_fcf(phba); 16521 } 16522 16523 /** 16524 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16525 * @phba: pointer to lpfc hba data structure. 16526 * @rgn23_data: pointer to configure region 23 data. 16527 * 16528 * This function gets SLI3 port configure region 23 data through memory dump 16529 * mailbox command. When it successfully retrieves data, the size of the data 16530 * will be returned, otherwise, 0 will be returned. 16531 **/ 16532 static uint32_t 16533 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16534 { 16535 LPFC_MBOXQ_t *pmb = NULL; 16536 MAILBOX_t *mb; 16537 uint32_t offset = 0; 16538 int rc; 16539 16540 if (!rgn23_data) 16541 return 0; 16542 16543 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16544 if (!pmb) { 16545 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16546 "2600 failed to allocate mailbox memory\n"); 16547 return 0; 16548 } 16549 mb = &pmb->u.mb; 16550 16551 do { 16552 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16553 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16554 16555 if (rc != MBX_SUCCESS) { 16556 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16557 "2601 failed to read config " 16558 "region 23, rc 0x%x Status 0x%x\n", 16559 rc, mb->mbxStatus); 16560 mb->un.varDmp.word_cnt = 0; 16561 } 16562 /* 16563 * dump mem may return a zero when finished or we got a 16564 * mailbox error, either way we are done. 16565 */ 16566 if (mb->un.varDmp.word_cnt == 0) 16567 break; 16568 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16569 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16570 16571 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16572 rgn23_data + offset, 16573 mb->un.varDmp.word_cnt); 16574 offset += mb->un.varDmp.word_cnt; 16575 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16576 16577 mempool_free(pmb, phba->mbox_mem_pool); 16578 return offset; 16579 } 16580 16581 /** 16582 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16583 * @phba: pointer to lpfc hba data structure. 16584 * @rgn23_data: pointer to configure region 23 data. 16585 * 16586 * This function gets SLI4 port configure region 23 data through memory dump 16587 * mailbox command. When it successfully retrieves data, the size of the data 16588 * will be returned, otherwise, 0 will be returned. 16589 **/ 16590 static uint32_t 16591 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16592 { 16593 LPFC_MBOXQ_t *mboxq = NULL; 16594 struct lpfc_dmabuf *mp = NULL; 16595 struct lpfc_mqe *mqe; 16596 uint32_t data_length = 0; 16597 int rc; 16598 16599 if (!rgn23_data) 16600 return 0; 16601 16602 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16603 if (!mboxq) { 16604 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16605 "3105 failed to allocate mailbox memory\n"); 16606 return 0; 16607 } 16608 16609 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16610 goto out; 16611 mqe = &mboxq->u.mqe; 16612 mp = (struct lpfc_dmabuf *) mboxq->context1; 16613 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16614 if (rc) 16615 goto out; 16616 data_length = mqe->un.mb_words[5]; 16617 if (data_length == 0) 16618 goto out; 16619 if (data_length > DMP_RGN23_SIZE) { 16620 data_length = 0; 16621 goto out; 16622 } 16623 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16624 out: 16625 mempool_free(mboxq, phba->mbox_mem_pool); 16626 if (mp) { 16627 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16628 kfree(mp); 16629 } 16630 return data_length; 16631 } 16632 16633 /** 16634 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16635 * @phba: pointer to lpfc hba data structure. 16636 * 16637 * This function read region 23 and parse TLV for port status to 16638 * decide if the user disaled the port. If the TLV indicates the 16639 * port is disabled, the hba_flag is set accordingly. 16640 **/ 16641 void 16642 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16643 { 16644 uint8_t *rgn23_data = NULL; 16645 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16646 uint32_t offset = 0; 16647 16648 /* Get adapter Region 23 data */ 16649 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16650 if (!rgn23_data) 16651 goto out; 16652 16653 if (phba->sli_rev < LPFC_SLI_REV4) 16654 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16655 else { 16656 if_type = bf_get(lpfc_sli_intf_if_type, 16657 &phba->sli4_hba.sli_intf); 16658 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16659 goto out; 16660 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16661 } 16662 16663 if (!data_size) 16664 goto out; 16665 16666 /* Check the region signature first */ 16667 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16668 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16669 "2619 Config region 23 has bad signature\n"); 16670 goto out; 16671 } 16672 offset += 4; 16673 16674 /* Check the data structure version */ 16675 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16676 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16677 "2620 Config region 23 has bad version\n"); 16678 goto out; 16679 } 16680 offset += 4; 16681 16682 /* Parse TLV entries in the region */ 16683 while (offset < data_size) { 16684 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16685 break; 16686 /* 16687 * If the TLV is not driver specific TLV or driver id is 16688 * not linux driver id, skip the record. 16689 */ 16690 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16691 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16692 (rgn23_data[offset + 3] != 0)) { 16693 offset += rgn23_data[offset + 1] * 4 + 4; 16694 continue; 16695 } 16696 16697 /* Driver found a driver specific TLV in the config region */ 16698 sub_tlv_len = rgn23_data[offset + 1] * 4; 16699 offset += 4; 16700 tlv_offset = 0; 16701 16702 /* 16703 * Search for configured port state sub-TLV. 16704 */ 16705 while ((offset < data_size) && 16706 (tlv_offset < sub_tlv_len)) { 16707 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16708 offset += 4; 16709 tlv_offset += 4; 16710 break; 16711 } 16712 if (rgn23_data[offset] != PORT_STE_TYPE) { 16713 offset += rgn23_data[offset + 1] * 4 + 4; 16714 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16715 continue; 16716 } 16717 16718 /* This HBA contains PORT_STE configured */ 16719 if (!rgn23_data[offset + 2]) 16720 phba->hba_flag |= LINK_DISABLED; 16721 16722 goto out; 16723 } 16724 } 16725 16726 out: 16727 kfree(rgn23_data); 16728 return; 16729 } 16730 16731 /** 16732 * lpfc_wr_object - write an object to the firmware 16733 * @phba: HBA structure that indicates port to create a queue on. 16734 * @dmabuf_list: list of dmabufs to write to the port. 16735 * @size: the total byte value of the objects to write to the port. 16736 * @offset: the current offset to be used to start the transfer. 16737 * 16738 * This routine will create a wr_object mailbox command to send to the port. 16739 * the mailbox command will be constructed using the dma buffers described in 16740 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 16741 * BDEs that the imbedded mailbox can support. The @offset variable will be 16742 * used to indicate the starting offset of the transfer and will also return 16743 * the offset after the write object mailbox has completed. @size is used to 16744 * determine the end of the object and whether the eof bit should be set. 16745 * 16746 * Return 0 is successful and offset will contain the the new offset to use 16747 * for the next write. 16748 * Return negative value for error cases. 16749 **/ 16750 int 16751 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 16752 uint32_t size, uint32_t *offset) 16753 { 16754 struct lpfc_mbx_wr_object *wr_object; 16755 LPFC_MBOXQ_t *mbox; 16756 int rc = 0, i = 0; 16757 uint32_t shdr_status, shdr_add_status; 16758 uint32_t mbox_tmo; 16759 union lpfc_sli4_cfg_shdr *shdr; 16760 struct lpfc_dmabuf *dmabuf; 16761 uint32_t written = 0; 16762 16763 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16764 if (!mbox) 16765 return -ENOMEM; 16766 16767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16768 LPFC_MBOX_OPCODE_WRITE_OBJECT, 16769 sizeof(struct lpfc_mbx_wr_object) - 16770 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16771 16772 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 16773 wr_object->u.request.write_offset = *offset; 16774 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 16775 wr_object->u.request.object_name[0] = 16776 cpu_to_le32(wr_object->u.request.object_name[0]); 16777 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 16778 list_for_each_entry(dmabuf, dmabuf_list, list) { 16779 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 16780 break; 16781 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 16782 wr_object->u.request.bde[i].addrHigh = 16783 putPaddrHigh(dmabuf->phys); 16784 if (written + SLI4_PAGE_SIZE >= size) { 16785 wr_object->u.request.bde[i].tus.f.bdeSize = 16786 (size - written); 16787 written += (size - written); 16788 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 16789 } else { 16790 wr_object->u.request.bde[i].tus.f.bdeSize = 16791 SLI4_PAGE_SIZE; 16792 written += SLI4_PAGE_SIZE; 16793 } 16794 i++; 16795 } 16796 wr_object->u.request.bde_count = i; 16797 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 16798 if (!phba->sli4_hba.intr_enable) 16799 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16800 else { 16801 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16802 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16803 } 16804 /* The IOCTL status is embedded in the mailbox subheader. */ 16805 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 16806 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16807 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16808 if (rc != MBX_TIMEOUT) 16809 mempool_free(mbox, phba->mbox_mem_pool); 16810 if (shdr_status || shdr_add_status || rc) { 16811 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16812 "3025 Write Object mailbox failed with " 16813 "status x%x add_status x%x, mbx status x%x\n", 16814 shdr_status, shdr_add_status, rc); 16815 rc = -ENXIO; 16816 } else 16817 *offset += wr_object->u.response.actual_write_length; 16818 return rc; 16819 } 16820 16821 /** 16822 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 16823 * @vport: pointer to vport data structure. 16824 * 16825 * This function iterate through the mailboxq and clean up all REG_LOGIN 16826 * and REG_VPI mailbox commands associated with the vport. This function 16827 * is called when driver want to restart discovery of the vport due to 16828 * a Clear Virtual Link event. 16829 **/ 16830 void 16831 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 16832 { 16833 struct lpfc_hba *phba = vport->phba; 16834 LPFC_MBOXQ_t *mb, *nextmb; 16835 struct lpfc_dmabuf *mp; 16836 struct lpfc_nodelist *ndlp; 16837 struct lpfc_nodelist *act_mbx_ndlp = NULL; 16838 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 16839 LIST_HEAD(mbox_cmd_list); 16840 uint8_t restart_loop; 16841 16842 /* Clean up internally queued mailbox commands with the vport */ 16843 spin_lock_irq(&phba->hbalock); 16844 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 16845 if (mb->vport != vport) 16846 continue; 16847 16848 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16849 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16850 continue; 16851 16852 list_del(&mb->list); 16853 list_add_tail(&mb->list, &mbox_cmd_list); 16854 } 16855 /* Clean up active mailbox command with the vport */ 16856 mb = phba->sli.mbox_active; 16857 if (mb && (mb->vport == vport)) { 16858 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 16859 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 16860 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16861 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16862 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 16863 /* Put reference count for delayed processing */ 16864 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 16865 /* Unregister the RPI when mailbox complete */ 16866 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16867 } 16868 } 16869 /* Cleanup any mailbox completions which are not yet processed */ 16870 do { 16871 restart_loop = 0; 16872 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 16873 /* 16874 * If this mailox is already processed or it is 16875 * for another vport ignore it. 16876 */ 16877 if ((mb->vport != vport) || 16878 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 16879 continue; 16880 16881 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16882 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16883 continue; 16884 16885 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16886 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16887 ndlp = (struct lpfc_nodelist *)mb->context2; 16888 /* Unregister the RPI when mailbox complete */ 16889 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16890 restart_loop = 1; 16891 spin_unlock_irq(&phba->hbalock); 16892 spin_lock(shost->host_lock); 16893 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16894 spin_unlock(shost->host_lock); 16895 spin_lock_irq(&phba->hbalock); 16896 break; 16897 } 16898 } 16899 } while (restart_loop); 16900 16901 spin_unlock_irq(&phba->hbalock); 16902 16903 /* Release the cleaned-up mailbox commands */ 16904 while (!list_empty(&mbox_cmd_list)) { 16905 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 16906 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16907 mp = (struct lpfc_dmabuf *) (mb->context1); 16908 if (mp) { 16909 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 16910 kfree(mp); 16911 } 16912 ndlp = (struct lpfc_nodelist *) mb->context2; 16913 mb->context2 = NULL; 16914 if (ndlp) { 16915 spin_lock(shost->host_lock); 16916 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16917 spin_unlock(shost->host_lock); 16918 lpfc_nlp_put(ndlp); 16919 } 16920 } 16921 mempool_free(mb, phba->mbox_mem_pool); 16922 } 16923 16924 /* Release the ndlp with the cleaned-up active mailbox command */ 16925 if (act_mbx_ndlp) { 16926 spin_lock(shost->host_lock); 16927 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16928 spin_unlock(shost->host_lock); 16929 lpfc_nlp_put(act_mbx_ndlp); 16930 } 16931 } 16932 16933 /** 16934 * lpfc_drain_txq - Drain the txq 16935 * @phba: Pointer to HBA context object. 16936 * 16937 * This function attempt to submit IOCBs on the txq 16938 * to the adapter. For SLI4 adapters, the txq contains 16939 * ELS IOCBs that have been deferred because the there 16940 * are no SGLs. This congestion can occur with large 16941 * vport counts during node discovery. 16942 **/ 16943 16944 uint32_t 16945 lpfc_drain_txq(struct lpfc_hba *phba) 16946 { 16947 LIST_HEAD(completions); 16948 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 16949 struct lpfc_iocbq *piocbq = NULL; 16950 unsigned long iflags = 0; 16951 char *fail_msg = NULL; 16952 struct lpfc_sglq *sglq; 16953 union lpfc_wqe wqe; 16954 uint32_t txq_cnt = 0; 16955 16956 spin_lock_irqsave(&pring->ring_lock, iflags); 16957 list_for_each_entry(piocbq, &pring->txq, list) { 16958 txq_cnt++; 16959 } 16960 16961 if (txq_cnt > pring->txq_max) 16962 pring->txq_max = txq_cnt; 16963 16964 spin_unlock_irqrestore(&pring->ring_lock, iflags); 16965 16966 while (!list_empty(&pring->txq)) { 16967 spin_lock_irqsave(&pring->ring_lock, iflags); 16968 16969 piocbq = lpfc_sli_ringtx_get(phba, pring); 16970 if (!piocbq) { 16971 spin_unlock_irqrestore(&pring->ring_lock, iflags); 16972 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16973 "2823 txq empty and txq_cnt is %d\n ", 16974 txq_cnt); 16975 break; 16976 } 16977 sglq = __lpfc_sli_get_sglq(phba, piocbq); 16978 if (!sglq) { 16979 __lpfc_sli_ringtx_put(phba, pring, piocbq); 16980 spin_unlock_irqrestore(&pring->ring_lock, iflags); 16981 break; 16982 } 16983 txq_cnt--; 16984 16985 /* The xri and iocb resources secured, 16986 * attempt to issue request 16987 */ 16988 piocbq->sli4_lxritag = sglq->sli4_lxritag; 16989 piocbq->sli4_xritag = sglq->sli4_xritag; 16990 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 16991 fail_msg = "to convert bpl to sgl"; 16992 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 16993 fail_msg = "to convert iocb to wqe"; 16994 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 16995 fail_msg = " - Wq is full"; 16996 else 16997 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 16998 16999 if (fail_msg) { 17000 /* Failed means we can't issue and need to cancel */ 17001 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17002 "2822 IOCB failed %s iotag 0x%x " 17003 "xri 0x%x\n", 17004 fail_msg, 17005 piocbq->iotag, piocbq->sli4_xritag); 17006 list_add_tail(&piocbq->list, &completions); 17007 } 17008 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17009 } 17010 17011 /* Cancel all the IOCBs that cannot be issued */ 17012 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17013 IOERR_SLI_ABORTED); 17014 17015 return txq_cnt; 17016 } 17017