1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <linux/lockdep.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport_fc.h> 34 #include <scsi/fc/fc_fs.h> 35 #include <linux/aer.h> 36 37 #include "lpfc_hw4.h" 38 #include "lpfc_hw.h" 39 #include "lpfc_sli.h" 40 #include "lpfc_sli4.h" 41 #include "lpfc_nl.h" 42 #include "lpfc_disc.h" 43 #include "lpfc_scsi.h" 44 #include "lpfc.h" 45 #include "lpfc_crtn.h" 46 #include "lpfc_logmsg.h" 47 #include "lpfc_compat.h" 48 #include "lpfc_debugfs.h" 49 #include "lpfc_vport.h" 50 #include "lpfc_version.h" 51 52 /* There are only four IOCB completion types. */ 53 typedef enum _lpfc_iocb_type { 54 LPFC_UNKNOWN_IOCB, 55 LPFC_UNSOL_IOCB, 56 LPFC_SOL_IOCB, 57 LPFC_ABORT_IOCB 58 } lpfc_iocb_type; 59 60 61 /* Provide function prototypes local to this module. */ 62 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint32_t); 64 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 65 uint8_t *, uint32_t *); 66 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 67 struct lpfc_iocbq *); 68 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 69 struct hbq_dmabuf *); 70 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 71 struct lpfc_cqe *); 72 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 73 int); 74 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 75 uint32_t); 76 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 77 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 78 79 static IOCB_t * 80 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 81 { 82 return &iocbq->iocb; 83 } 84 85 /** 86 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 87 * @q: The Work Queue to operate on. 88 * @wqe: The work Queue Entry to put on the Work queue. 89 * 90 * This routine will copy the contents of @wqe to the next available entry on 91 * the @q. This function will then ring the Work Queue Doorbell to signal the 92 * HBA to start processing the Work Queue Entry. This function returns 0 if 93 * successful. If no entries are available on @q then this function will return 94 * -ENOMEM. 95 * The caller is expected to hold the hbalock when calling this routine. 96 **/ 97 static uint32_t 98 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 99 { 100 union lpfc_wqe *temp_wqe; 101 struct lpfc_register doorbell; 102 uint32_t host_index; 103 uint32_t idx; 104 105 /* sanity check on queue memory */ 106 if (unlikely(!q)) 107 return -ENOMEM; 108 temp_wqe = q->qe[q->host_index].wqe; 109 110 /* If the host has not yet processed the next entry then we are done */ 111 idx = ((q->host_index + 1) % q->entry_count); 112 if (idx == q->hba_index) { 113 q->WQ_overflow++; 114 return -ENOMEM; 115 } 116 q->WQ_posted++; 117 /* set consumption flag every once in a while */ 118 if (!((q->host_index + 1) % q->entry_repost)) 119 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 120 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 121 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 122 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 123 124 /* Update the host index before invoking device */ 125 host_index = q->host_index; 126 127 q->host_index = idx; 128 129 /* Ring Doorbell */ 130 doorbell.word0 = 0; 131 if (q->db_format == LPFC_DB_LIST_FORMAT) { 132 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 133 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 134 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 135 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 136 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 137 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 138 } else { 139 return -EINVAL; 140 } 141 writel(doorbell.word0, q->db_regaddr); 142 143 return 0; 144 } 145 146 /** 147 * lpfc_sli4_wq_release - Updates internal hba index for WQ 148 * @q: The Work Queue to operate on. 149 * @index: The index to advance the hba index to. 150 * 151 * This routine will update the HBA index of a queue to reflect consumption of 152 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 153 * an entry the host calls this function to update the queue's internal 154 * pointers. This routine returns the number of entries that were consumed by 155 * the HBA. 156 **/ 157 static uint32_t 158 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 159 { 160 uint32_t released = 0; 161 162 /* sanity check on queue memory */ 163 if (unlikely(!q)) 164 return 0; 165 166 if (q->hba_index == index) 167 return 0; 168 do { 169 q->hba_index = ((q->hba_index + 1) % q->entry_count); 170 released++; 171 } while (q->hba_index != index); 172 return released; 173 } 174 175 /** 176 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 177 * @q: The Mailbox Queue to operate on. 178 * @wqe: The Mailbox Queue Entry to put on the Work queue. 179 * 180 * This routine will copy the contents of @mqe to the next available entry on 181 * the @q. This function will then ring the Work Queue Doorbell to signal the 182 * HBA to start processing the Work Queue Entry. This function returns 0 if 183 * successful. If no entries are available on @q then this function will return 184 * -ENOMEM. 185 * The caller is expected to hold the hbalock when calling this routine. 186 **/ 187 static uint32_t 188 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 189 { 190 struct lpfc_mqe *temp_mqe; 191 struct lpfc_register doorbell; 192 193 /* sanity check on queue memory */ 194 if (unlikely(!q)) 195 return -ENOMEM; 196 temp_mqe = q->qe[q->host_index].mqe; 197 198 /* If the host has not yet processed the next entry then we are done */ 199 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 200 return -ENOMEM; 201 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 202 /* Save off the mailbox pointer for completion */ 203 q->phba->mbox = (MAILBOX_t *)temp_mqe; 204 205 /* Update the host index before invoking device */ 206 q->host_index = ((q->host_index + 1) % q->entry_count); 207 208 /* Ring Doorbell */ 209 doorbell.word0 = 0; 210 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 211 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 212 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 213 return 0; 214 } 215 216 /** 217 * lpfc_sli4_mq_release - Updates internal hba index for MQ 218 * @q: The Mailbox Queue to operate on. 219 * 220 * This routine will update the HBA index of a queue to reflect consumption of 221 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 222 * an entry the host calls this function to update the queue's internal 223 * pointers. This routine returns the number of entries that were consumed by 224 * the HBA. 225 **/ 226 static uint32_t 227 lpfc_sli4_mq_release(struct lpfc_queue *q) 228 { 229 /* sanity check on queue memory */ 230 if (unlikely(!q)) 231 return 0; 232 233 /* Clear the mailbox pointer for completion */ 234 q->phba->mbox = NULL; 235 q->hba_index = ((q->hba_index + 1) % q->entry_count); 236 return 1; 237 } 238 239 /** 240 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 241 * @q: The Event Queue to get the first valid EQE from 242 * 243 * This routine will get the first valid Event Queue Entry from @q, update 244 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 245 * the Queue (no more work to do), or the Queue is full of EQEs that have been 246 * processed, but not popped back to the HBA then this routine will return NULL. 247 **/ 248 static struct lpfc_eqe * 249 lpfc_sli4_eq_get(struct lpfc_queue *q) 250 { 251 struct lpfc_eqe *eqe; 252 uint32_t idx; 253 254 /* sanity check on queue memory */ 255 if (unlikely(!q)) 256 return NULL; 257 eqe = q->qe[q->hba_index].eqe; 258 259 /* If the next EQE is not valid then we are done */ 260 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 261 return NULL; 262 /* If the host has not yet processed the next entry then we are done */ 263 idx = ((q->hba_index + 1) % q->entry_count); 264 if (idx == q->host_index) 265 return NULL; 266 267 q->hba_index = idx; 268 269 /* 270 * insert barrier for instruction interlock : data from the hardware 271 * must have the valid bit checked before it can be copied and acted 272 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 273 * instructions allowing action on content before valid bit checked, 274 * add barrier here as well. May not be needed as "content" is a 275 * single 32-bit entity here (vs multi word structure for cq's). 276 */ 277 mb(); 278 return eqe; 279 } 280 281 /** 282 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 283 * @q: The Event Queue to disable interrupts 284 * 285 **/ 286 static inline void 287 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 288 { 289 struct lpfc_register doorbell; 290 291 doorbell.word0 = 0; 292 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 293 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 294 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 295 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 296 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 297 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 298 } 299 300 /** 301 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 302 * @q: The Event Queue that the host has completed processing for. 303 * @arm: Indicates whether the host wants to arms this CQ. 304 * 305 * This routine will mark all Event Queue Entries on @q, from the last 306 * known completed entry to the last entry that was processed, as completed 307 * by clearing the valid bit for each completion queue entry. Then it will 308 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 309 * The internal host index in the @q will be updated by this routine to indicate 310 * that the host has finished processing the entries. The @arm parameter 311 * indicates that the queue should be rearmed when ringing the doorbell. 312 * 313 * This function will return the number of EQEs that were popped. 314 **/ 315 uint32_t 316 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 317 { 318 uint32_t released = 0; 319 struct lpfc_eqe *temp_eqe; 320 struct lpfc_register doorbell; 321 322 /* sanity check on queue memory */ 323 if (unlikely(!q)) 324 return 0; 325 326 /* while there are valid entries */ 327 while (q->hba_index != q->host_index) { 328 temp_eqe = q->qe[q->host_index].eqe; 329 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 330 released++; 331 q->host_index = ((q->host_index + 1) % q->entry_count); 332 } 333 if (unlikely(released == 0 && !arm)) 334 return 0; 335 336 /* ring doorbell for number popped */ 337 doorbell.word0 = 0; 338 if (arm) { 339 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 340 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 341 } 342 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 343 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 344 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 345 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 346 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 347 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 348 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 349 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 350 readl(q->phba->sli4_hba.EQCQDBregaddr); 351 return released; 352 } 353 354 /** 355 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 356 * @q: The Completion Queue to get the first valid CQE from 357 * 358 * This routine will get the first valid Completion Queue Entry from @q, update 359 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 360 * the Queue (no more work to do), or the Queue is full of CQEs that have been 361 * processed, but not popped back to the HBA then this routine will return NULL. 362 **/ 363 static struct lpfc_cqe * 364 lpfc_sli4_cq_get(struct lpfc_queue *q) 365 { 366 struct lpfc_cqe *cqe; 367 uint32_t idx; 368 369 /* sanity check on queue memory */ 370 if (unlikely(!q)) 371 return NULL; 372 373 /* If the next CQE is not valid then we are done */ 374 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 375 return NULL; 376 /* If the host has not yet processed the next entry then we are done */ 377 idx = ((q->hba_index + 1) % q->entry_count); 378 if (idx == q->host_index) 379 return NULL; 380 381 cqe = q->qe[q->hba_index].cqe; 382 q->hba_index = idx; 383 384 /* 385 * insert barrier for instruction interlock : data from the hardware 386 * must have the valid bit checked before it can be copied and acted 387 * upon. Speculative instructions were allowing a bcopy at the start 388 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 389 * after our return, to copy data before the valid bit check above 390 * was done. As such, some of the copied data was stale. The barrier 391 * ensures the check is before any data is copied. 392 */ 393 mb(); 394 return cqe; 395 } 396 397 /** 398 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 399 * @q: The Completion Queue that the host has completed processing for. 400 * @arm: Indicates whether the host wants to arms this CQ. 401 * 402 * This routine will mark all Completion queue entries on @q, from the last 403 * known completed entry to the last entry that was processed, as completed 404 * by clearing the valid bit for each completion queue entry. Then it will 405 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 406 * The internal host index in the @q will be updated by this routine to indicate 407 * that the host has finished processing the entries. The @arm parameter 408 * indicates that the queue should be rearmed when ringing the doorbell. 409 * 410 * This function will return the number of CQEs that were released. 411 **/ 412 uint32_t 413 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 414 { 415 uint32_t released = 0; 416 struct lpfc_cqe *temp_qe; 417 struct lpfc_register doorbell; 418 419 /* sanity check on queue memory */ 420 if (unlikely(!q)) 421 return 0; 422 /* while there are valid entries */ 423 while (q->hba_index != q->host_index) { 424 temp_qe = q->qe[q->host_index].cqe; 425 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 426 released++; 427 q->host_index = ((q->host_index + 1) % q->entry_count); 428 } 429 if (unlikely(released == 0 && !arm)) 430 return 0; 431 432 /* ring doorbell for number popped */ 433 doorbell.word0 = 0; 434 if (arm) 435 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 436 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 437 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 438 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 439 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 440 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 441 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 442 return released; 443 } 444 445 /** 446 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 447 * @q: The Header Receive Queue to operate on. 448 * @wqe: The Receive Queue Entry to put on the Receive queue. 449 * 450 * This routine will copy the contents of @wqe to the next available entry on 451 * the @q. This function will then ring the Receive Queue Doorbell to signal the 452 * HBA to start processing the Receive Queue Entry. This function returns the 453 * index that the rqe was copied to if successful. If no entries are available 454 * on @q then this function will return -ENOMEM. 455 * The caller is expected to hold the hbalock when calling this routine. 456 **/ 457 static int 458 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 459 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 460 { 461 struct lpfc_rqe *temp_hrqe; 462 struct lpfc_rqe *temp_drqe; 463 struct lpfc_register doorbell; 464 int put_index; 465 466 /* sanity check on queue memory */ 467 if (unlikely(!hq) || unlikely(!dq)) 468 return -ENOMEM; 469 put_index = hq->host_index; 470 temp_hrqe = hq->qe[hq->host_index].rqe; 471 temp_drqe = dq->qe[dq->host_index].rqe; 472 473 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 474 return -EINVAL; 475 if (hq->host_index != dq->host_index) 476 return -EINVAL; 477 /* If the host has not yet processed the next entry then we are done */ 478 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 479 return -EBUSY; 480 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 481 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 482 483 /* Update the host index to point to the next slot */ 484 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 485 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 486 487 /* Ring The Header Receive Queue Doorbell */ 488 if (!(hq->host_index % hq->entry_repost)) { 489 doorbell.word0 = 0; 490 if (hq->db_format == LPFC_DB_RING_FORMAT) { 491 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 492 hq->entry_repost); 493 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 494 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 495 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 496 hq->entry_repost); 497 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 498 hq->host_index); 499 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 500 } else { 501 return -EINVAL; 502 } 503 writel(doorbell.word0, hq->db_regaddr); 504 } 505 return put_index; 506 } 507 508 /** 509 * lpfc_sli4_rq_release - Updates internal hba index for RQ 510 * @q: The Header Receive Queue to operate on. 511 * 512 * This routine will update the HBA index of a queue to reflect consumption of 513 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 514 * consumed an entry the host calls this function to update the queue's 515 * internal pointers. This routine returns the number of entries that were 516 * consumed by the HBA. 517 **/ 518 static uint32_t 519 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 520 { 521 /* sanity check on queue memory */ 522 if (unlikely(!hq) || unlikely(!dq)) 523 return 0; 524 525 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 526 return 0; 527 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 528 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 529 return 1; 530 } 531 532 /** 533 * lpfc_cmd_iocb - Get next command iocb entry in the ring 534 * @phba: Pointer to HBA context object. 535 * @pring: Pointer to driver SLI ring object. 536 * 537 * This function returns pointer to next command iocb entry 538 * in the command ring. The caller must hold hbalock to prevent 539 * other threads consume the next command iocb. 540 * SLI-2/SLI-3 provide different sized iocbs. 541 **/ 542 static inline IOCB_t * 543 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 544 { 545 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 546 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 547 } 548 549 /** 550 * lpfc_resp_iocb - Get next response iocb entry in the ring 551 * @phba: Pointer to HBA context object. 552 * @pring: Pointer to driver SLI ring object. 553 * 554 * This function returns pointer to next response iocb entry 555 * in the response ring. The caller must hold hbalock to make sure 556 * that no other thread consume the next response iocb. 557 * SLI-2/SLI-3 provide different sized iocbs. 558 **/ 559 static inline IOCB_t * 560 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 561 { 562 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 563 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 564 } 565 566 /** 567 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 568 * @phba: Pointer to HBA context object. 569 * 570 * This function is called with hbalock held. This function 571 * allocates a new driver iocb object from the iocb pool. If the 572 * allocation is successful, it returns pointer to the newly 573 * allocated iocb object else it returns NULL. 574 **/ 575 struct lpfc_iocbq * 576 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 577 { 578 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 579 struct lpfc_iocbq * iocbq = NULL; 580 581 lockdep_assert_held(&phba->hbalock); 582 583 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 584 if (iocbq) 585 phba->iocb_cnt++; 586 if (phba->iocb_cnt > phba->iocb_max) 587 phba->iocb_max = phba->iocb_cnt; 588 return iocbq; 589 } 590 591 /** 592 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 593 * @phba: Pointer to HBA context object. 594 * @xritag: XRI value. 595 * 596 * This function clears the sglq pointer from the array of acive 597 * sglq's. The xritag that is passed in is used to index into the 598 * array. Before the xritag can be used it needs to be adjusted 599 * by subtracting the xribase. 600 * 601 * Returns sglq ponter = success, NULL = Failure. 602 **/ 603 static struct lpfc_sglq * 604 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 605 { 606 struct lpfc_sglq *sglq; 607 608 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 609 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 610 return sglq; 611 } 612 613 /** 614 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 615 * @phba: Pointer to HBA context object. 616 * @xritag: XRI value. 617 * 618 * This function returns the sglq pointer from the array of acive 619 * sglq's. The xritag that is passed in is used to index into the 620 * array. Before the xritag can be used it needs to be adjusted 621 * by subtracting the xribase. 622 * 623 * Returns sglq ponter = success, NULL = Failure. 624 **/ 625 struct lpfc_sglq * 626 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 627 { 628 struct lpfc_sglq *sglq; 629 630 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 631 return sglq; 632 } 633 634 /** 635 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 636 * @phba: Pointer to HBA context object. 637 * @xritag: xri used in this exchange. 638 * @rrq: The RRQ to be cleared. 639 * 640 **/ 641 void 642 lpfc_clr_rrq_active(struct lpfc_hba *phba, 643 uint16_t xritag, 644 struct lpfc_node_rrq *rrq) 645 { 646 struct lpfc_nodelist *ndlp = NULL; 647 648 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 649 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 650 651 /* The target DID could have been swapped (cable swap) 652 * we should use the ndlp from the findnode if it is 653 * available. 654 */ 655 if ((!ndlp) && rrq->ndlp) 656 ndlp = rrq->ndlp; 657 658 if (!ndlp) 659 goto out; 660 661 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 662 rrq->send_rrq = 0; 663 rrq->xritag = 0; 664 rrq->rrq_stop_time = 0; 665 } 666 out: 667 mempool_free(rrq, phba->rrq_pool); 668 } 669 670 /** 671 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 672 * @phba: Pointer to HBA context object. 673 * 674 * This function is called with hbalock held. This function 675 * Checks if stop_time (ratov from setting rrq active) has 676 * been reached, if it has and the send_rrq flag is set then 677 * it will call lpfc_send_rrq. If the send_rrq flag is not set 678 * then it will just call the routine to clear the rrq and 679 * free the rrq resource. 680 * The timer is set to the next rrq that is going to expire before 681 * leaving the routine. 682 * 683 **/ 684 void 685 lpfc_handle_rrq_active(struct lpfc_hba *phba) 686 { 687 struct lpfc_node_rrq *rrq; 688 struct lpfc_node_rrq *nextrrq; 689 unsigned long next_time; 690 unsigned long iflags; 691 LIST_HEAD(send_rrq); 692 693 spin_lock_irqsave(&phba->hbalock, iflags); 694 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 695 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 696 list_for_each_entry_safe(rrq, nextrrq, 697 &phba->active_rrq_list, list) { 698 if (time_after(jiffies, rrq->rrq_stop_time)) 699 list_move(&rrq->list, &send_rrq); 700 else if (time_before(rrq->rrq_stop_time, next_time)) 701 next_time = rrq->rrq_stop_time; 702 } 703 spin_unlock_irqrestore(&phba->hbalock, iflags); 704 if ((!list_empty(&phba->active_rrq_list)) && 705 (!(phba->pport->load_flag & FC_UNLOADING))) 706 mod_timer(&phba->rrq_tmr, next_time); 707 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 708 list_del(&rrq->list); 709 if (!rrq->send_rrq) 710 /* this call will free the rrq */ 711 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 712 else if (lpfc_send_rrq(phba, rrq)) { 713 /* if we send the rrq then the completion handler 714 * will clear the bit in the xribitmap. 715 */ 716 lpfc_clr_rrq_active(phba, rrq->xritag, 717 rrq); 718 } 719 } 720 } 721 722 /** 723 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 724 * @vport: Pointer to vport context object. 725 * @xri: The xri used in the exchange. 726 * @did: The targets DID for this exchange. 727 * 728 * returns NULL = rrq not found in the phba->active_rrq_list. 729 * rrq = rrq for this xri and target. 730 **/ 731 struct lpfc_node_rrq * 732 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 733 { 734 struct lpfc_hba *phba = vport->phba; 735 struct lpfc_node_rrq *rrq; 736 struct lpfc_node_rrq *nextrrq; 737 unsigned long iflags; 738 739 if (phba->sli_rev != LPFC_SLI_REV4) 740 return NULL; 741 spin_lock_irqsave(&phba->hbalock, iflags); 742 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 743 if (rrq->vport == vport && rrq->xritag == xri && 744 rrq->nlp_DID == did){ 745 list_del(&rrq->list); 746 spin_unlock_irqrestore(&phba->hbalock, iflags); 747 return rrq; 748 } 749 } 750 spin_unlock_irqrestore(&phba->hbalock, iflags); 751 return NULL; 752 } 753 754 /** 755 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 756 * @vport: Pointer to vport context object. 757 * @ndlp: Pointer to the lpfc_node_list structure. 758 * If ndlp is NULL Remove all active RRQs for this vport from the 759 * phba->active_rrq_list and clear the rrq. 760 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 761 **/ 762 void 763 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 764 765 { 766 struct lpfc_hba *phba = vport->phba; 767 struct lpfc_node_rrq *rrq; 768 struct lpfc_node_rrq *nextrrq; 769 unsigned long iflags; 770 LIST_HEAD(rrq_list); 771 772 if (phba->sli_rev != LPFC_SLI_REV4) 773 return; 774 if (!ndlp) { 775 lpfc_sli4_vport_delete_els_xri_aborted(vport); 776 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 777 } 778 spin_lock_irqsave(&phba->hbalock, iflags); 779 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 780 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 781 list_move(&rrq->list, &rrq_list); 782 spin_unlock_irqrestore(&phba->hbalock, iflags); 783 784 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 785 list_del(&rrq->list); 786 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 787 } 788 } 789 790 /** 791 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 792 * @phba: Pointer to HBA context object. 793 * @ndlp: Targets nodelist pointer for this exchange. 794 * @xritag the xri in the bitmap to test. 795 * 796 * This function is called with hbalock held. This function 797 * returns 0 = rrq not active for this xri 798 * 1 = rrq is valid for this xri. 799 **/ 800 int 801 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 802 uint16_t xritag) 803 { 804 lockdep_assert_held(&phba->hbalock); 805 if (!ndlp) 806 return 0; 807 if (!ndlp->active_rrqs_xri_bitmap) 808 return 0; 809 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 810 return 1; 811 else 812 return 0; 813 } 814 815 /** 816 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 817 * @phba: Pointer to HBA context object. 818 * @ndlp: nodelist pointer for this target. 819 * @xritag: xri used in this exchange. 820 * @rxid: Remote Exchange ID. 821 * @send_rrq: Flag used to determine if we should send rrq els cmd. 822 * 823 * This function takes the hbalock. 824 * The active bit is always set in the active rrq xri_bitmap even 825 * if there is no slot avaiable for the other rrq information. 826 * 827 * returns 0 rrq actived for this xri 828 * < 0 No memory or invalid ndlp. 829 **/ 830 int 831 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 832 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 833 { 834 unsigned long iflags; 835 struct lpfc_node_rrq *rrq; 836 int empty; 837 838 if (!ndlp) 839 return -EINVAL; 840 841 if (!phba->cfg_enable_rrq) 842 return -EINVAL; 843 844 spin_lock_irqsave(&phba->hbalock, iflags); 845 if (phba->pport->load_flag & FC_UNLOADING) { 846 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 847 goto out; 848 } 849 850 /* 851 * set the active bit even if there is no mem available. 852 */ 853 if (NLP_CHK_FREE_REQ(ndlp)) 854 goto out; 855 856 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 857 goto out; 858 859 if (!ndlp->active_rrqs_xri_bitmap) 860 goto out; 861 862 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 863 goto out; 864 865 spin_unlock_irqrestore(&phba->hbalock, iflags); 866 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 867 if (!rrq) { 868 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 869 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 870 " DID:0x%x Send:%d\n", 871 xritag, rxid, ndlp->nlp_DID, send_rrq); 872 return -EINVAL; 873 } 874 if (phba->cfg_enable_rrq == 1) 875 rrq->send_rrq = send_rrq; 876 else 877 rrq->send_rrq = 0; 878 rrq->xritag = xritag; 879 rrq->rrq_stop_time = jiffies + 880 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 881 rrq->ndlp = ndlp; 882 rrq->nlp_DID = ndlp->nlp_DID; 883 rrq->vport = ndlp->vport; 884 rrq->rxid = rxid; 885 spin_lock_irqsave(&phba->hbalock, iflags); 886 empty = list_empty(&phba->active_rrq_list); 887 list_add_tail(&rrq->list, &phba->active_rrq_list); 888 phba->hba_flag |= HBA_RRQ_ACTIVE; 889 if (empty) 890 lpfc_worker_wake_up(phba); 891 spin_unlock_irqrestore(&phba->hbalock, iflags); 892 return 0; 893 out: 894 spin_unlock_irqrestore(&phba->hbalock, iflags); 895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 896 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 897 " DID:0x%x Send:%d\n", 898 xritag, rxid, ndlp->nlp_DID, send_rrq); 899 return -EINVAL; 900 } 901 902 /** 903 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 904 * @phba: Pointer to HBA context object. 905 * @piocb: Pointer to the iocbq. 906 * 907 * This function is called with the ring lock held. This function 908 * gets a new driver sglq object from the sglq list. If the 909 * list is not empty then it is successful, it returns pointer to the newly 910 * allocated sglq object else it returns NULL. 911 **/ 912 static struct lpfc_sglq * 913 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 914 { 915 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 916 struct lpfc_sglq *sglq = NULL; 917 struct lpfc_sglq *start_sglq = NULL; 918 struct lpfc_scsi_buf *lpfc_cmd; 919 struct lpfc_nodelist *ndlp; 920 int found = 0; 921 922 lockdep_assert_held(&phba->hbalock); 923 924 if (piocbq->iocb_flag & LPFC_IO_FCP) { 925 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 926 ndlp = lpfc_cmd->rdata->pnode; 927 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 928 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 929 ndlp = piocbq->context_un.ndlp; 930 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 931 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 932 ndlp = NULL; 933 else 934 ndlp = piocbq->context_un.ndlp; 935 } else { 936 ndlp = piocbq->context1; 937 } 938 939 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 940 start_sglq = sglq; 941 while (!found) { 942 if (!sglq) 943 return NULL; 944 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 945 /* This xri has an rrq outstanding for this DID. 946 * put it back in the list and get another xri. 947 */ 948 list_add_tail(&sglq->list, lpfc_sgl_list); 949 sglq = NULL; 950 list_remove_head(lpfc_sgl_list, sglq, 951 struct lpfc_sglq, list); 952 if (sglq == start_sglq) { 953 sglq = NULL; 954 break; 955 } else 956 continue; 957 } 958 sglq->ndlp = ndlp; 959 found = 1; 960 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 961 sglq->state = SGL_ALLOCATED; 962 } 963 return sglq; 964 } 965 966 /** 967 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 968 * @phba: Pointer to HBA context object. 969 * 970 * This function is called with no lock held. This function 971 * allocates a new driver iocb object from the iocb pool. If the 972 * allocation is successful, it returns pointer to the newly 973 * allocated iocb object else it returns NULL. 974 **/ 975 struct lpfc_iocbq * 976 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 977 { 978 struct lpfc_iocbq * iocbq = NULL; 979 unsigned long iflags; 980 981 spin_lock_irqsave(&phba->hbalock, iflags); 982 iocbq = __lpfc_sli_get_iocbq(phba); 983 spin_unlock_irqrestore(&phba->hbalock, iflags); 984 return iocbq; 985 } 986 987 /** 988 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 989 * @phba: Pointer to HBA context object. 990 * @iocbq: Pointer to driver iocb object. 991 * 992 * This function is called with hbalock held to release driver 993 * iocb object to the iocb pool. The iotag in the iocb object 994 * does not change for each use of the iocb object. This function 995 * clears all other fields of the iocb object when it is freed. 996 * The sqlq structure that holds the xritag and phys and virtual 997 * mappings for the scatter gather list is retrieved from the 998 * active array of sglq. The get of the sglq pointer also clears 999 * the entry in the array. If the status of the IO indiactes that 1000 * this IO was aborted then the sglq entry it put on the 1001 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1002 * IO has good status or fails for any other reason then the sglq 1003 * entry is added to the free list (lpfc_sgl_list). 1004 **/ 1005 static void 1006 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1007 { 1008 struct lpfc_sglq *sglq; 1009 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1010 unsigned long iflag = 0; 1011 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1012 1013 lockdep_assert_held(&phba->hbalock); 1014 1015 if (iocbq->sli4_xritag == NO_XRI) 1016 sglq = NULL; 1017 else 1018 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1019 1020 1021 if (sglq) { 1022 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1023 (sglq->state != SGL_XRI_ABORTED)) { 1024 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1025 iflag); 1026 list_add(&sglq->list, 1027 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1028 spin_unlock_irqrestore( 1029 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1030 } else { 1031 spin_lock_irqsave(&pring->ring_lock, iflag); 1032 sglq->state = SGL_FREED; 1033 sglq->ndlp = NULL; 1034 list_add_tail(&sglq->list, 1035 &phba->sli4_hba.lpfc_sgl_list); 1036 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1037 1038 /* Check if TXQ queue needs to be serviced */ 1039 if (!list_empty(&pring->txq)) 1040 lpfc_worker_wake_up(phba); 1041 } 1042 } 1043 1044 1045 /* 1046 * Clean all volatile data fields, preserve iotag and node struct. 1047 */ 1048 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1049 iocbq->sli4_lxritag = NO_XRI; 1050 iocbq->sli4_xritag = NO_XRI; 1051 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1052 } 1053 1054 1055 /** 1056 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1057 * @phba: Pointer to HBA context object. 1058 * @iocbq: Pointer to driver iocb object. 1059 * 1060 * This function is called with hbalock held to release driver 1061 * iocb object to the iocb pool. The iotag in the iocb object 1062 * does not change for each use of the iocb object. This function 1063 * clears all other fields of the iocb object when it is freed. 1064 **/ 1065 static void 1066 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1067 { 1068 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1069 1070 lockdep_assert_held(&phba->hbalock); 1071 1072 /* 1073 * Clean all volatile data fields, preserve iotag and node struct. 1074 */ 1075 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1076 iocbq->sli4_xritag = NO_XRI; 1077 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1078 } 1079 1080 /** 1081 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1082 * @phba: Pointer to HBA context object. 1083 * @iocbq: Pointer to driver iocb object. 1084 * 1085 * This function is called with hbalock held to release driver 1086 * iocb object to the iocb pool. The iotag in the iocb object 1087 * does not change for each use of the iocb object. This function 1088 * clears all other fields of the iocb object when it is freed. 1089 **/ 1090 static void 1091 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1092 { 1093 lockdep_assert_held(&phba->hbalock); 1094 1095 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1096 phba->iocb_cnt--; 1097 } 1098 1099 /** 1100 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1101 * @phba: Pointer to HBA context object. 1102 * @iocbq: Pointer to driver iocb object. 1103 * 1104 * This function is called with no lock held to release the iocb to 1105 * iocb pool. 1106 **/ 1107 void 1108 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1109 { 1110 unsigned long iflags; 1111 1112 /* 1113 * Clean all volatile data fields, preserve iotag and node struct. 1114 */ 1115 spin_lock_irqsave(&phba->hbalock, iflags); 1116 __lpfc_sli_release_iocbq(phba, iocbq); 1117 spin_unlock_irqrestore(&phba->hbalock, iflags); 1118 } 1119 1120 /** 1121 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1122 * @phba: Pointer to HBA context object. 1123 * @iocblist: List of IOCBs. 1124 * @ulpstatus: ULP status in IOCB command field. 1125 * @ulpWord4: ULP word-4 in IOCB command field. 1126 * 1127 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1128 * on the list by invoking the complete callback function associated with the 1129 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1130 * fields. 1131 **/ 1132 void 1133 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1134 uint32_t ulpstatus, uint32_t ulpWord4) 1135 { 1136 struct lpfc_iocbq *piocb; 1137 1138 while (!list_empty(iocblist)) { 1139 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1140 if (!piocb->iocb_cmpl) 1141 lpfc_sli_release_iocbq(phba, piocb); 1142 else { 1143 piocb->iocb.ulpStatus = ulpstatus; 1144 piocb->iocb.un.ulpWord[4] = ulpWord4; 1145 (piocb->iocb_cmpl) (phba, piocb, piocb); 1146 } 1147 } 1148 return; 1149 } 1150 1151 /** 1152 * lpfc_sli_iocb_cmd_type - Get the iocb type 1153 * @iocb_cmnd: iocb command code. 1154 * 1155 * This function is called by ring event handler function to get the iocb type. 1156 * This function translates the iocb command to an iocb command type used to 1157 * decide the final disposition of each completed IOCB. 1158 * The function returns 1159 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1160 * LPFC_SOL_IOCB if it is a solicited iocb completion 1161 * LPFC_ABORT_IOCB if it is an abort iocb 1162 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1163 * 1164 * The caller is not required to hold any lock. 1165 **/ 1166 static lpfc_iocb_type 1167 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1168 { 1169 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1170 1171 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1172 return 0; 1173 1174 switch (iocb_cmnd) { 1175 case CMD_XMIT_SEQUENCE_CR: 1176 case CMD_XMIT_SEQUENCE_CX: 1177 case CMD_XMIT_BCAST_CN: 1178 case CMD_XMIT_BCAST_CX: 1179 case CMD_ELS_REQUEST_CR: 1180 case CMD_ELS_REQUEST_CX: 1181 case CMD_CREATE_XRI_CR: 1182 case CMD_CREATE_XRI_CX: 1183 case CMD_GET_RPI_CN: 1184 case CMD_XMIT_ELS_RSP_CX: 1185 case CMD_GET_RPI_CR: 1186 case CMD_FCP_IWRITE_CR: 1187 case CMD_FCP_IWRITE_CX: 1188 case CMD_FCP_IREAD_CR: 1189 case CMD_FCP_IREAD_CX: 1190 case CMD_FCP_ICMND_CR: 1191 case CMD_FCP_ICMND_CX: 1192 case CMD_FCP_TSEND_CX: 1193 case CMD_FCP_TRSP_CX: 1194 case CMD_FCP_TRECEIVE_CX: 1195 case CMD_FCP_AUTO_TRSP_CX: 1196 case CMD_ADAPTER_MSG: 1197 case CMD_ADAPTER_DUMP: 1198 case CMD_XMIT_SEQUENCE64_CR: 1199 case CMD_XMIT_SEQUENCE64_CX: 1200 case CMD_XMIT_BCAST64_CN: 1201 case CMD_XMIT_BCAST64_CX: 1202 case CMD_ELS_REQUEST64_CR: 1203 case CMD_ELS_REQUEST64_CX: 1204 case CMD_FCP_IWRITE64_CR: 1205 case CMD_FCP_IWRITE64_CX: 1206 case CMD_FCP_IREAD64_CR: 1207 case CMD_FCP_IREAD64_CX: 1208 case CMD_FCP_ICMND64_CR: 1209 case CMD_FCP_ICMND64_CX: 1210 case CMD_FCP_TSEND64_CX: 1211 case CMD_FCP_TRSP64_CX: 1212 case CMD_FCP_TRECEIVE64_CX: 1213 case CMD_GEN_REQUEST64_CR: 1214 case CMD_GEN_REQUEST64_CX: 1215 case CMD_XMIT_ELS_RSP64_CX: 1216 case DSSCMD_IWRITE64_CR: 1217 case DSSCMD_IWRITE64_CX: 1218 case DSSCMD_IREAD64_CR: 1219 case DSSCMD_IREAD64_CX: 1220 type = LPFC_SOL_IOCB; 1221 break; 1222 case CMD_ABORT_XRI_CN: 1223 case CMD_ABORT_XRI_CX: 1224 case CMD_CLOSE_XRI_CN: 1225 case CMD_CLOSE_XRI_CX: 1226 case CMD_XRI_ABORTED_CX: 1227 case CMD_ABORT_MXRI64_CN: 1228 case CMD_XMIT_BLS_RSP64_CX: 1229 type = LPFC_ABORT_IOCB; 1230 break; 1231 case CMD_RCV_SEQUENCE_CX: 1232 case CMD_RCV_ELS_REQ_CX: 1233 case CMD_RCV_SEQUENCE64_CX: 1234 case CMD_RCV_ELS_REQ64_CX: 1235 case CMD_ASYNC_STATUS: 1236 case CMD_IOCB_RCV_SEQ64_CX: 1237 case CMD_IOCB_RCV_ELS64_CX: 1238 case CMD_IOCB_RCV_CONT64_CX: 1239 case CMD_IOCB_RET_XRI64_CX: 1240 type = LPFC_UNSOL_IOCB; 1241 break; 1242 case CMD_IOCB_XMIT_MSEQ64_CR: 1243 case CMD_IOCB_XMIT_MSEQ64_CX: 1244 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1245 case CMD_IOCB_RCV_ELS_LIST64_CX: 1246 case CMD_IOCB_CLOSE_EXTENDED_CN: 1247 case CMD_IOCB_ABORT_EXTENDED_CN: 1248 case CMD_IOCB_RET_HBQE64_CN: 1249 case CMD_IOCB_FCP_IBIDIR64_CR: 1250 case CMD_IOCB_FCP_IBIDIR64_CX: 1251 case CMD_IOCB_FCP_ITASKMGT64_CX: 1252 case CMD_IOCB_LOGENTRY_CN: 1253 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1254 printk("%s - Unhandled SLI-3 Command x%x\n", 1255 __func__, iocb_cmnd); 1256 type = LPFC_UNKNOWN_IOCB; 1257 break; 1258 default: 1259 type = LPFC_UNKNOWN_IOCB; 1260 break; 1261 } 1262 1263 return type; 1264 } 1265 1266 /** 1267 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1268 * @phba: Pointer to HBA context object. 1269 * 1270 * This function is called from SLI initialization code 1271 * to configure every ring of the HBA's SLI interface. The 1272 * caller is not required to hold any lock. This function issues 1273 * a config_ring mailbox command for each ring. 1274 * This function returns zero if successful else returns a negative 1275 * error code. 1276 **/ 1277 static int 1278 lpfc_sli_ring_map(struct lpfc_hba *phba) 1279 { 1280 struct lpfc_sli *psli = &phba->sli; 1281 LPFC_MBOXQ_t *pmb; 1282 MAILBOX_t *pmbox; 1283 int i, rc, ret = 0; 1284 1285 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1286 if (!pmb) 1287 return -ENOMEM; 1288 pmbox = &pmb->u.mb; 1289 phba->link_state = LPFC_INIT_MBX_CMDS; 1290 for (i = 0; i < psli->num_rings; i++) { 1291 lpfc_config_ring(phba, i, pmb); 1292 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1293 if (rc != MBX_SUCCESS) { 1294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1295 "0446 Adapter failed to init (%d), " 1296 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1297 "ring %d\n", 1298 rc, pmbox->mbxCommand, 1299 pmbox->mbxStatus, i); 1300 phba->link_state = LPFC_HBA_ERROR; 1301 ret = -ENXIO; 1302 break; 1303 } 1304 } 1305 mempool_free(pmb, phba->mbox_mem_pool); 1306 return ret; 1307 } 1308 1309 /** 1310 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1311 * @phba: Pointer to HBA context object. 1312 * @pring: Pointer to driver SLI ring object. 1313 * @piocb: Pointer to the driver iocb object. 1314 * 1315 * This function is called with hbalock held. The function adds the 1316 * new iocb to txcmplq of the given ring. This function always returns 1317 * 0. If this function is called for ELS ring, this function checks if 1318 * there is a vport associated with the ELS command. This function also 1319 * starts els_tmofunc timer if this is an ELS command. 1320 **/ 1321 static int 1322 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1323 struct lpfc_iocbq *piocb) 1324 { 1325 lockdep_assert_held(&phba->hbalock); 1326 1327 BUG_ON(!piocb); 1328 1329 list_add_tail(&piocb->list, &pring->txcmplq); 1330 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1331 1332 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1333 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1334 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1335 BUG_ON(!piocb->vport); 1336 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1337 mod_timer(&piocb->vport->els_tmofunc, 1338 jiffies + 1339 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1340 } 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * lpfc_sli_ringtx_get - Get first element of the txq 1347 * @phba: Pointer to HBA context object. 1348 * @pring: Pointer to driver SLI ring object. 1349 * 1350 * This function is called with hbalock held to get next 1351 * iocb in txq of the given ring. If there is any iocb in 1352 * the txq, the function returns first iocb in the list after 1353 * removing the iocb from the list, else it returns NULL. 1354 **/ 1355 struct lpfc_iocbq * 1356 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1357 { 1358 struct lpfc_iocbq *cmd_iocb; 1359 1360 lockdep_assert_held(&phba->hbalock); 1361 1362 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1363 return cmd_iocb; 1364 } 1365 1366 /** 1367 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1368 * @phba: Pointer to HBA context object. 1369 * @pring: Pointer to driver SLI ring object. 1370 * 1371 * This function is called with hbalock held and the caller must post the 1372 * iocb without releasing the lock. If the caller releases the lock, 1373 * iocb slot returned by the function is not guaranteed to be available. 1374 * The function returns pointer to the next available iocb slot if there 1375 * is available slot in the ring, else it returns NULL. 1376 * If the get index of the ring is ahead of the put index, the function 1377 * will post an error attention event to the worker thread to take the 1378 * HBA to offline state. 1379 **/ 1380 static IOCB_t * 1381 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1382 { 1383 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1384 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1385 1386 lockdep_assert_held(&phba->hbalock); 1387 1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1390 pring->sli.sli3.next_cmdidx = 0; 1391 1392 if (unlikely(pring->sli.sli3.local_getidx == 1393 pring->sli.sli3.next_cmdidx)) { 1394 1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1396 1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1399 "0315 Ring %d issue: portCmdGet %d " 1400 "is bigger than cmd ring %d\n", 1401 pring->ringno, 1402 pring->sli.sli3.local_getidx, 1403 max_cmd_idx); 1404 1405 phba->link_state = LPFC_HBA_ERROR; 1406 /* 1407 * All error attention handlers are posted to 1408 * worker thread 1409 */ 1410 phba->work_ha |= HA_ERATT; 1411 phba->work_hs = HS_FFER3; 1412 1413 lpfc_worker_wake_up(phba); 1414 1415 return NULL; 1416 } 1417 1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1419 return NULL; 1420 } 1421 1422 return lpfc_cmd_iocb(phba, pring); 1423 } 1424 1425 /** 1426 * lpfc_sli_next_iotag - Get an iotag for the iocb 1427 * @phba: Pointer to HBA context object. 1428 * @iocbq: Pointer to driver iocb object. 1429 * 1430 * This function gets an iotag for the iocb. If there is no unused iotag and 1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1432 * array and assigns a new iotag. 1433 * The function returns the allocated iotag if successful, else returns zero. 1434 * Zero is not a valid iotag. 1435 * The caller is not required to hold any lock. 1436 **/ 1437 uint16_t 1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1439 { 1440 struct lpfc_iocbq **new_arr; 1441 struct lpfc_iocbq **old_arr; 1442 size_t new_len; 1443 struct lpfc_sli *psli = &phba->sli; 1444 uint16_t iotag; 1445 1446 spin_lock_irq(&phba->hbalock); 1447 iotag = psli->last_iotag; 1448 if(++iotag < psli->iocbq_lookup_len) { 1449 psli->last_iotag = iotag; 1450 psli->iocbq_lookup[iotag] = iocbq; 1451 spin_unlock_irq(&phba->hbalock); 1452 iocbq->iotag = iotag; 1453 return iotag; 1454 } else if (psli->iocbq_lookup_len < (0xffff 1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1457 spin_unlock_irq(&phba->hbalock); 1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1459 GFP_KERNEL); 1460 if (new_arr) { 1461 spin_lock_irq(&phba->hbalock); 1462 old_arr = psli->iocbq_lookup; 1463 if (new_len <= psli->iocbq_lookup_len) { 1464 /* highly unprobable case */ 1465 kfree(new_arr); 1466 iotag = psli->last_iotag; 1467 if(++iotag < psli->iocbq_lookup_len) { 1468 psli->last_iotag = iotag; 1469 psli->iocbq_lookup[iotag] = iocbq; 1470 spin_unlock_irq(&phba->hbalock); 1471 iocbq->iotag = iotag; 1472 return iotag; 1473 } 1474 spin_unlock_irq(&phba->hbalock); 1475 return 0; 1476 } 1477 if (psli->iocbq_lookup) 1478 memcpy(new_arr, old_arr, 1479 ((psli->last_iotag + 1) * 1480 sizeof (struct lpfc_iocbq *))); 1481 psli->iocbq_lookup = new_arr; 1482 psli->iocbq_lookup_len = new_len; 1483 psli->last_iotag = iotag; 1484 psli->iocbq_lookup[iotag] = iocbq; 1485 spin_unlock_irq(&phba->hbalock); 1486 iocbq->iotag = iotag; 1487 kfree(old_arr); 1488 return iotag; 1489 } 1490 } else 1491 spin_unlock_irq(&phba->hbalock); 1492 1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1495 psli->last_iotag); 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1502 * @phba: Pointer to HBA context object. 1503 * @pring: Pointer to driver SLI ring object. 1504 * @iocb: Pointer to iocb slot in the ring. 1505 * @nextiocb: Pointer to driver iocb object which need to be 1506 * posted to firmware. 1507 * 1508 * This function is called with hbalock held to post a new iocb to 1509 * the firmware. This function copies the new iocb to ring iocb slot and 1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1511 * a completion call back for this iocb else the function will free the 1512 * iocb object. 1513 **/ 1514 static void 1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1517 { 1518 lockdep_assert_held(&phba->hbalock); 1519 /* 1520 * Set up an iotag 1521 */ 1522 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1523 1524 1525 if (pring->ringno == LPFC_ELS_RING) { 1526 lpfc_debugfs_slow_ring_trc(phba, 1527 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1528 *(((uint32_t *) &nextiocb->iocb) + 4), 1529 *(((uint32_t *) &nextiocb->iocb) + 6), 1530 *(((uint32_t *) &nextiocb->iocb) + 7)); 1531 } 1532 1533 /* 1534 * Issue iocb command to adapter 1535 */ 1536 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1537 wmb(); 1538 pring->stats.iocb_cmd++; 1539 1540 /* 1541 * If there is no completion routine to call, we can release the 1542 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1543 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1544 */ 1545 if (nextiocb->iocb_cmpl) 1546 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1547 else 1548 __lpfc_sli_release_iocbq(phba, nextiocb); 1549 1550 /* 1551 * Let the HBA know what IOCB slot will be the next one the 1552 * driver will put a command into. 1553 */ 1554 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1555 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1556 } 1557 1558 /** 1559 * lpfc_sli_update_full_ring - Update the chip attention register 1560 * @phba: Pointer to HBA context object. 1561 * @pring: Pointer to driver SLI ring object. 1562 * 1563 * The caller is not required to hold any lock for calling this function. 1564 * This function updates the chip attention bits for the ring to inform firmware 1565 * that there are pending work to be done for this ring and requests an 1566 * interrupt when there is space available in the ring. This function is 1567 * called when the driver is unable to post more iocbs to the ring due 1568 * to unavailability of space in the ring. 1569 **/ 1570 static void 1571 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1572 { 1573 int ringno = pring->ringno; 1574 1575 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1576 1577 wmb(); 1578 1579 /* 1580 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1581 * The HBA will tell us when an IOCB entry is available. 1582 */ 1583 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1584 readl(phba->CAregaddr); /* flush */ 1585 1586 pring->stats.iocb_cmd_full++; 1587 } 1588 1589 /** 1590 * lpfc_sli_update_ring - Update chip attention register 1591 * @phba: Pointer to HBA context object. 1592 * @pring: Pointer to driver SLI ring object. 1593 * 1594 * This function updates the chip attention register bit for the 1595 * given ring to inform HBA that there is more work to be done 1596 * in this ring. The caller is not required to hold any lock. 1597 **/ 1598 static void 1599 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1600 { 1601 int ringno = pring->ringno; 1602 1603 /* 1604 * Tell the HBA that there is work to do in this ring. 1605 */ 1606 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1607 wmb(); 1608 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1609 readl(phba->CAregaddr); /* flush */ 1610 } 1611 } 1612 1613 /** 1614 * lpfc_sli_resume_iocb - Process iocbs in the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to post pending iocbs 1619 * in the txq to the firmware. This function is called when driver 1620 * detects space available in the ring. 1621 **/ 1622 static void 1623 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1624 { 1625 IOCB_t *iocb; 1626 struct lpfc_iocbq *nextiocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 /* 1631 * Check to see if: 1632 * (a) there is anything on the txq to send 1633 * (b) link is up 1634 * (c) link attention events can be processed (fcp ring only) 1635 * (d) IOCB processing is not blocked by the outstanding mbox command. 1636 */ 1637 1638 if (lpfc_is_link_up(phba) && 1639 (!list_empty(&pring->txq)) && 1640 (pring->ringno != phba->sli.fcp_ring || 1641 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1642 1643 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1644 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1645 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1646 1647 if (iocb) 1648 lpfc_sli_update_ring(phba, pring); 1649 else 1650 lpfc_sli_update_full_ring(phba, pring); 1651 } 1652 1653 return; 1654 } 1655 1656 /** 1657 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1658 * @phba: Pointer to HBA context object. 1659 * @hbqno: HBQ number. 1660 * 1661 * This function is called with hbalock held to get the next 1662 * available slot for the given HBQ. If there is free slot 1663 * available for the HBQ it will return pointer to the next available 1664 * HBQ entry else it will return NULL. 1665 **/ 1666 static struct lpfc_hbq_entry * 1667 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1668 { 1669 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1670 1671 lockdep_assert_held(&phba->hbalock); 1672 1673 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1674 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1675 hbqp->next_hbqPutIdx = 0; 1676 1677 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1678 uint32_t raw_index = phba->hbq_get[hbqno]; 1679 uint32_t getidx = le32_to_cpu(raw_index); 1680 1681 hbqp->local_hbqGetIdx = getidx; 1682 1683 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1684 lpfc_printf_log(phba, KERN_ERR, 1685 LOG_SLI | LOG_VPORT, 1686 "1802 HBQ %d: local_hbqGetIdx " 1687 "%u is > than hbqp->entry_count %u\n", 1688 hbqno, hbqp->local_hbqGetIdx, 1689 hbqp->entry_count); 1690 1691 phba->link_state = LPFC_HBA_ERROR; 1692 return NULL; 1693 } 1694 1695 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1696 return NULL; 1697 } 1698 1699 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1700 hbqp->hbqPutIdx; 1701 } 1702 1703 /** 1704 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1705 * @phba: Pointer to HBA context object. 1706 * 1707 * This function is called with no lock held to free all the 1708 * hbq buffers while uninitializing the SLI interface. It also 1709 * frees the HBQ buffers returned by the firmware but not yet 1710 * processed by the upper layers. 1711 **/ 1712 void 1713 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1714 { 1715 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1716 struct hbq_dmabuf *hbq_buf; 1717 unsigned long flags; 1718 int i, hbq_count; 1719 uint32_t hbqno; 1720 1721 hbq_count = lpfc_sli_hbq_count(); 1722 /* Return all memory used by all HBQs */ 1723 spin_lock_irqsave(&phba->hbalock, flags); 1724 for (i = 0; i < hbq_count; ++i) { 1725 list_for_each_entry_safe(dmabuf, next_dmabuf, 1726 &phba->hbqs[i].hbq_buffer_list, list) { 1727 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1728 list_del(&hbq_buf->dbuf.list); 1729 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1730 } 1731 phba->hbqs[i].buffer_count = 0; 1732 } 1733 /* Return all HBQ buffer that are in-fly */ 1734 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1735 list) { 1736 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1737 list_del(&hbq_buf->dbuf.list); 1738 if (hbq_buf->tag == -1) { 1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1740 (phba, hbq_buf); 1741 } else { 1742 hbqno = hbq_buf->tag >> 16; 1743 if (hbqno >= LPFC_MAX_HBQS) 1744 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1745 (phba, hbq_buf); 1746 else 1747 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1748 hbq_buf); 1749 } 1750 } 1751 1752 /* Mark the HBQs not in use */ 1753 phba->hbq_in_use = 0; 1754 spin_unlock_irqrestore(&phba->hbalock, flags); 1755 } 1756 1757 /** 1758 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1759 * @phba: Pointer to HBA context object. 1760 * @hbqno: HBQ number. 1761 * @hbq_buf: Pointer to HBQ buffer. 1762 * 1763 * This function is called with the hbalock held to post a 1764 * hbq buffer to the firmware. If the function finds an empty 1765 * slot in the HBQ, it will post the buffer. The function will return 1766 * pointer to the hbq entry if it successfully post the buffer 1767 * else it will return NULL. 1768 **/ 1769 static int 1770 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1771 struct hbq_dmabuf *hbq_buf) 1772 { 1773 lockdep_assert_held(&phba->hbalock); 1774 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1775 } 1776 1777 /** 1778 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1779 * @phba: Pointer to HBA context object. 1780 * @hbqno: HBQ number. 1781 * @hbq_buf: Pointer to HBQ buffer. 1782 * 1783 * This function is called with the hbalock held to post a hbq buffer to the 1784 * firmware. If the function finds an empty slot in the HBQ, it will post the 1785 * buffer and place it on the hbq_buffer_list. The function will return zero if 1786 * it successfully post the buffer else it will return an error. 1787 **/ 1788 static int 1789 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1790 struct hbq_dmabuf *hbq_buf) 1791 { 1792 struct lpfc_hbq_entry *hbqe; 1793 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1794 1795 lockdep_assert_held(&phba->hbalock); 1796 /* Get next HBQ entry slot to use */ 1797 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1798 if (hbqe) { 1799 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1800 1801 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1802 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1803 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1804 hbqe->bde.tus.f.bdeFlags = 0; 1805 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1806 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1807 /* Sync SLIM */ 1808 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1809 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1810 /* flush */ 1811 readl(phba->hbq_put + hbqno); 1812 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1813 return 0; 1814 } else 1815 return -ENOMEM; 1816 } 1817 1818 /** 1819 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1820 * @phba: Pointer to HBA context object. 1821 * @hbqno: HBQ number. 1822 * @hbq_buf: Pointer to HBQ buffer. 1823 * 1824 * This function is called with the hbalock held to post an RQE to the SLI4 1825 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1826 * the hbq_buffer_list and return zero, otherwise it will return an error. 1827 **/ 1828 static int 1829 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1830 struct hbq_dmabuf *hbq_buf) 1831 { 1832 int rc; 1833 struct lpfc_rqe hrqe; 1834 struct lpfc_rqe drqe; 1835 1836 lockdep_assert_held(&phba->hbalock); 1837 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1838 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1839 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1840 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1841 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1842 &hrqe, &drqe); 1843 if (rc < 0) 1844 return rc; 1845 hbq_buf->tag = rc; 1846 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1847 return 0; 1848 } 1849 1850 /* HBQ for ELS and CT traffic. */ 1851 static struct lpfc_hbq_init lpfc_els_hbq = { 1852 .rn = 1, 1853 .entry_count = 256, 1854 .mask_count = 0, 1855 .profile = 0, 1856 .ring_mask = (1 << LPFC_ELS_RING), 1857 .buffer_count = 0, 1858 .init_count = 40, 1859 .add_count = 40, 1860 }; 1861 1862 /* HBQ for the extra ring if needed */ 1863 static struct lpfc_hbq_init lpfc_extra_hbq = { 1864 .rn = 1, 1865 .entry_count = 200, 1866 .mask_count = 0, 1867 .profile = 0, 1868 .ring_mask = (1 << LPFC_EXTRA_RING), 1869 .buffer_count = 0, 1870 .init_count = 0, 1871 .add_count = 5, 1872 }; 1873 1874 /* Array of HBQs */ 1875 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1876 &lpfc_els_hbq, 1877 &lpfc_extra_hbq, 1878 }; 1879 1880 /** 1881 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1882 * @phba: Pointer to HBA context object. 1883 * @hbqno: HBQ number. 1884 * @count: Number of HBQ buffers to be posted. 1885 * 1886 * This function is called with no lock held to post more hbq buffers to the 1887 * given HBQ. The function returns the number of HBQ buffers successfully 1888 * posted. 1889 **/ 1890 static int 1891 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1892 { 1893 uint32_t i, posted = 0; 1894 unsigned long flags; 1895 struct hbq_dmabuf *hbq_buffer; 1896 LIST_HEAD(hbq_buf_list); 1897 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1898 return 0; 1899 1900 if ((phba->hbqs[hbqno].buffer_count + count) > 1901 lpfc_hbq_defs[hbqno]->entry_count) 1902 count = lpfc_hbq_defs[hbqno]->entry_count - 1903 phba->hbqs[hbqno].buffer_count; 1904 if (!count) 1905 return 0; 1906 /* Allocate HBQ entries */ 1907 for (i = 0; i < count; i++) { 1908 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1909 if (!hbq_buffer) 1910 break; 1911 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1912 } 1913 /* Check whether HBQ is still in use */ 1914 spin_lock_irqsave(&phba->hbalock, flags); 1915 if (!phba->hbq_in_use) 1916 goto err; 1917 while (!list_empty(&hbq_buf_list)) { 1918 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1919 dbuf.list); 1920 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1921 (hbqno << 16)); 1922 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1923 phba->hbqs[hbqno].buffer_count++; 1924 posted++; 1925 } else 1926 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1927 } 1928 spin_unlock_irqrestore(&phba->hbalock, flags); 1929 return posted; 1930 err: 1931 spin_unlock_irqrestore(&phba->hbalock, flags); 1932 while (!list_empty(&hbq_buf_list)) { 1933 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1934 dbuf.list); 1935 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1936 } 1937 return 0; 1938 } 1939 1940 /** 1941 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1942 * @phba: Pointer to HBA context object. 1943 * @qno: HBQ number. 1944 * 1945 * This function posts more buffers to the HBQ. This function 1946 * is called with no lock held. The function returns the number of HBQ entries 1947 * successfully allocated. 1948 **/ 1949 int 1950 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1951 { 1952 if (phba->sli_rev == LPFC_SLI_REV4) 1953 return 0; 1954 else 1955 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1956 lpfc_hbq_defs[qno]->add_count); 1957 } 1958 1959 /** 1960 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1961 * @phba: Pointer to HBA context object. 1962 * @qno: HBQ queue number. 1963 * 1964 * This function is called from SLI initialization code path with 1965 * no lock held to post initial HBQ buffers to firmware. The 1966 * function returns the number of HBQ entries successfully allocated. 1967 **/ 1968 static int 1969 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1970 { 1971 if (phba->sli_rev == LPFC_SLI_REV4) 1972 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1973 lpfc_hbq_defs[qno]->entry_count); 1974 else 1975 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1976 lpfc_hbq_defs[qno]->init_count); 1977 } 1978 1979 /** 1980 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1981 * @phba: Pointer to HBA context object. 1982 * @hbqno: HBQ number. 1983 * 1984 * This function removes the first hbq buffer on an hbq list and returns a 1985 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1986 **/ 1987 static struct hbq_dmabuf * 1988 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1989 { 1990 struct lpfc_dmabuf *d_buf; 1991 1992 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1993 if (!d_buf) 1994 return NULL; 1995 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1996 } 1997 1998 /** 1999 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2000 * @phba: Pointer to HBA context object. 2001 * @tag: Tag of the hbq buffer. 2002 * 2003 * This function searches for the hbq buffer associated with the given tag in 2004 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2005 * otherwise it returns NULL. 2006 **/ 2007 static struct hbq_dmabuf * 2008 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2009 { 2010 struct lpfc_dmabuf *d_buf; 2011 struct hbq_dmabuf *hbq_buf; 2012 uint32_t hbqno; 2013 2014 hbqno = tag >> 16; 2015 if (hbqno >= LPFC_MAX_HBQS) 2016 return NULL; 2017 2018 spin_lock_irq(&phba->hbalock); 2019 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2020 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2021 if (hbq_buf->tag == tag) { 2022 spin_unlock_irq(&phba->hbalock); 2023 return hbq_buf; 2024 } 2025 } 2026 spin_unlock_irq(&phba->hbalock); 2027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2028 "1803 Bad hbq tag. Data: x%x x%x\n", 2029 tag, phba->hbqs[tag >> 16].buffer_count); 2030 return NULL; 2031 } 2032 2033 /** 2034 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2035 * @phba: Pointer to HBA context object. 2036 * @hbq_buffer: Pointer to HBQ buffer. 2037 * 2038 * This function is called with hbalock. This function gives back 2039 * the hbq buffer to firmware. If the HBQ does not have space to 2040 * post the buffer, it will free the buffer. 2041 **/ 2042 void 2043 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2044 { 2045 uint32_t hbqno; 2046 2047 if (hbq_buffer) { 2048 hbqno = hbq_buffer->tag >> 16; 2049 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2050 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2051 } 2052 } 2053 2054 /** 2055 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2056 * @mbxCommand: mailbox command code. 2057 * 2058 * This function is called by the mailbox event handler function to verify 2059 * that the completed mailbox command is a legitimate mailbox command. If the 2060 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2061 * and the mailbox event handler will take the HBA offline. 2062 **/ 2063 static int 2064 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2065 { 2066 uint8_t ret; 2067 2068 switch (mbxCommand) { 2069 case MBX_LOAD_SM: 2070 case MBX_READ_NV: 2071 case MBX_WRITE_NV: 2072 case MBX_WRITE_VPARMS: 2073 case MBX_RUN_BIU_DIAG: 2074 case MBX_INIT_LINK: 2075 case MBX_DOWN_LINK: 2076 case MBX_CONFIG_LINK: 2077 case MBX_CONFIG_RING: 2078 case MBX_RESET_RING: 2079 case MBX_READ_CONFIG: 2080 case MBX_READ_RCONFIG: 2081 case MBX_READ_SPARM: 2082 case MBX_READ_STATUS: 2083 case MBX_READ_RPI: 2084 case MBX_READ_XRI: 2085 case MBX_READ_REV: 2086 case MBX_READ_LNK_STAT: 2087 case MBX_REG_LOGIN: 2088 case MBX_UNREG_LOGIN: 2089 case MBX_CLEAR_LA: 2090 case MBX_DUMP_MEMORY: 2091 case MBX_DUMP_CONTEXT: 2092 case MBX_RUN_DIAGS: 2093 case MBX_RESTART: 2094 case MBX_UPDATE_CFG: 2095 case MBX_DOWN_LOAD: 2096 case MBX_DEL_LD_ENTRY: 2097 case MBX_RUN_PROGRAM: 2098 case MBX_SET_MASK: 2099 case MBX_SET_VARIABLE: 2100 case MBX_UNREG_D_ID: 2101 case MBX_KILL_BOARD: 2102 case MBX_CONFIG_FARP: 2103 case MBX_BEACON: 2104 case MBX_LOAD_AREA: 2105 case MBX_RUN_BIU_DIAG64: 2106 case MBX_CONFIG_PORT: 2107 case MBX_READ_SPARM64: 2108 case MBX_READ_RPI64: 2109 case MBX_REG_LOGIN64: 2110 case MBX_READ_TOPOLOGY: 2111 case MBX_WRITE_WWN: 2112 case MBX_SET_DEBUG: 2113 case MBX_LOAD_EXP_ROM: 2114 case MBX_ASYNCEVT_ENABLE: 2115 case MBX_REG_VPI: 2116 case MBX_UNREG_VPI: 2117 case MBX_HEARTBEAT: 2118 case MBX_PORT_CAPABILITIES: 2119 case MBX_PORT_IOV_CONTROL: 2120 case MBX_SLI4_CONFIG: 2121 case MBX_SLI4_REQ_FTRS: 2122 case MBX_REG_FCFI: 2123 case MBX_UNREG_FCFI: 2124 case MBX_REG_VFI: 2125 case MBX_UNREG_VFI: 2126 case MBX_INIT_VPI: 2127 case MBX_INIT_VFI: 2128 case MBX_RESUME_RPI: 2129 case MBX_READ_EVENT_LOG_STATUS: 2130 case MBX_READ_EVENT_LOG: 2131 case MBX_SECURITY_MGMT: 2132 case MBX_AUTH_PORT: 2133 case MBX_ACCESS_VDATA: 2134 ret = mbxCommand; 2135 break; 2136 default: 2137 ret = MBX_SHUTDOWN; 2138 break; 2139 } 2140 return ret; 2141 } 2142 2143 /** 2144 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2145 * @phba: Pointer to HBA context object. 2146 * @pmboxq: Pointer to mailbox command. 2147 * 2148 * This is completion handler function for mailbox commands issued from 2149 * lpfc_sli_issue_mbox_wait function. This function is called by the 2150 * mailbox event handler function with no lock held. This function 2151 * will wake up thread waiting on the wait queue pointed by context1 2152 * of the mailbox. 2153 **/ 2154 void 2155 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2156 { 2157 wait_queue_head_t *pdone_q; 2158 unsigned long drvr_flag; 2159 2160 /* 2161 * If pdone_q is empty, the driver thread gave up waiting and 2162 * continued running. 2163 */ 2164 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2165 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2166 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2167 if (pdone_q) 2168 wake_up_interruptible(pdone_q); 2169 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2170 return; 2171 } 2172 2173 2174 /** 2175 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2176 * @phba: Pointer to HBA context object. 2177 * @pmb: Pointer to mailbox object. 2178 * 2179 * This function is the default mailbox completion handler. It 2180 * frees the memory resources associated with the completed mailbox 2181 * command. If the completed command is a REG_LOGIN mailbox command, 2182 * this function will issue a UREG_LOGIN to re-claim the RPI. 2183 **/ 2184 void 2185 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2186 { 2187 struct lpfc_vport *vport = pmb->vport; 2188 struct lpfc_dmabuf *mp; 2189 struct lpfc_nodelist *ndlp; 2190 struct Scsi_Host *shost; 2191 uint16_t rpi, vpi; 2192 int rc; 2193 2194 mp = (struct lpfc_dmabuf *) (pmb->context1); 2195 2196 if (mp) { 2197 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2198 kfree(mp); 2199 } 2200 2201 /* 2202 * If a REG_LOGIN succeeded after node is destroyed or node 2203 * is in re-discovery driver need to cleanup the RPI. 2204 */ 2205 if (!(phba->pport->load_flag & FC_UNLOADING) && 2206 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2207 !pmb->u.mb.mbxStatus) { 2208 rpi = pmb->u.mb.un.varWords[0]; 2209 vpi = pmb->u.mb.un.varRegLogin.vpi; 2210 lpfc_unreg_login(phba, vpi, rpi, pmb); 2211 pmb->vport = vport; 2212 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2213 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2214 if (rc != MBX_NOT_FINISHED) 2215 return; 2216 } 2217 2218 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2219 !(phba->pport->load_flag & FC_UNLOADING) && 2220 !pmb->u.mb.mbxStatus) { 2221 shost = lpfc_shost_from_vport(vport); 2222 spin_lock_irq(shost->host_lock); 2223 vport->vpi_state |= LPFC_VPI_REGISTERED; 2224 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2225 spin_unlock_irq(shost->host_lock); 2226 } 2227 2228 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2229 ndlp = (struct lpfc_nodelist *)pmb->context2; 2230 lpfc_nlp_put(ndlp); 2231 pmb->context2 = NULL; 2232 } 2233 2234 /* Check security permission status on INIT_LINK mailbox command */ 2235 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2236 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2238 "2860 SLI authentication is required " 2239 "for INIT_LINK but has not done yet\n"); 2240 2241 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2242 lpfc_sli4_mbox_cmd_free(phba, pmb); 2243 else 2244 mempool_free(pmb, phba->mbox_mem_pool); 2245 } 2246 /** 2247 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2248 * @phba: Pointer to HBA context object. 2249 * @pmb: Pointer to mailbox object. 2250 * 2251 * This function is the unreg rpi mailbox completion handler. It 2252 * frees the memory resources associated with the completed mailbox 2253 * command. An additional refrenece is put on the ndlp to prevent 2254 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2255 * the unreg mailbox command completes, this routine puts the 2256 * reference back. 2257 * 2258 **/ 2259 void 2260 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2261 { 2262 struct lpfc_vport *vport = pmb->vport; 2263 struct lpfc_nodelist *ndlp; 2264 2265 ndlp = pmb->context1; 2266 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2267 if (phba->sli_rev == LPFC_SLI_REV4 && 2268 (bf_get(lpfc_sli_intf_if_type, 2269 &phba->sli4_hba.sli_intf) == 2270 LPFC_SLI_INTF_IF_TYPE_2)) { 2271 if (ndlp) { 2272 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2273 "0010 UNREG_LOGIN vpi:%x " 2274 "rpi:%x DID:%x map:%x %p\n", 2275 vport->vpi, ndlp->nlp_rpi, 2276 ndlp->nlp_DID, 2277 ndlp->nlp_usg_map, ndlp); 2278 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2279 lpfc_nlp_put(ndlp); 2280 } 2281 } 2282 } 2283 2284 mempool_free(pmb, phba->mbox_mem_pool); 2285 } 2286 2287 /** 2288 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2289 * @phba: Pointer to HBA context object. 2290 * 2291 * This function is called with no lock held. This function processes all 2292 * the completed mailbox commands and gives it to upper layers. The interrupt 2293 * service routine processes mailbox completion interrupt and adds completed 2294 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2295 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2296 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2297 * function returns the mailbox commands to the upper layer by calling the 2298 * completion handler function of each mailbox. 2299 **/ 2300 int 2301 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2302 { 2303 MAILBOX_t *pmbox; 2304 LPFC_MBOXQ_t *pmb; 2305 int rc; 2306 LIST_HEAD(cmplq); 2307 2308 phba->sli.slistat.mbox_event++; 2309 2310 /* Get all completed mailboxe buffers into the cmplq */ 2311 spin_lock_irq(&phba->hbalock); 2312 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2313 spin_unlock_irq(&phba->hbalock); 2314 2315 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2316 do { 2317 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2318 if (pmb == NULL) 2319 break; 2320 2321 pmbox = &pmb->u.mb; 2322 2323 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2324 if (pmb->vport) { 2325 lpfc_debugfs_disc_trc(pmb->vport, 2326 LPFC_DISC_TRC_MBOX_VPORT, 2327 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2328 (uint32_t)pmbox->mbxCommand, 2329 pmbox->un.varWords[0], 2330 pmbox->un.varWords[1]); 2331 } 2332 else { 2333 lpfc_debugfs_disc_trc(phba->pport, 2334 LPFC_DISC_TRC_MBOX, 2335 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2336 (uint32_t)pmbox->mbxCommand, 2337 pmbox->un.varWords[0], 2338 pmbox->un.varWords[1]); 2339 } 2340 } 2341 2342 /* 2343 * It is a fatal error if unknown mbox command completion. 2344 */ 2345 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2346 MBX_SHUTDOWN) { 2347 /* Unknown mailbox command compl */ 2348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2349 "(%d):0323 Unknown Mailbox command " 2350 "x%x (x%x/x%x) Cmpl\n", 2351 pmb->vport ? pmb->vport->vpi : 0, 2352 pmbox->mbxCommand, 2353 lpfc_sli_config_mbox_subsys_get(phba, 2354 pmb), 2355 lpfc_sli_config_mbox_opcode_get(phba, 2356 pmb)); 2357 phba->link_state = LPFC_HBA_ERROR; 2358 phba->work_hs = HS_FFER3; 2359 lpfc_handle_eratt(phba); 2360 continue; 2361 } 2362 2363 if (pmbox->mbxStatus) { 2364 phba->sli.slistat.mbox_stat_err++; 2365 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2366 /* Mbox cmd cmpl error - RETRYing */ 2367 lpfc_printf_log(phba, KERN_INFO, 2368 LOG_MBOX | LOG_SLI, 2369 "(%d):0305 Mbox cmd cmpl " 2370 "error - RETRYing Data: x%x " 2371 "(x%x/x%x) x%x x%x x%x\n", 2372 pmb->vport ? pmb->vport->vpi : 0, 2373 pmbox->mbxCommand, 2374 lpfc_sli_config_mbox_subsys_get(phba, 2375 pmb), 2376 lpfc_sli_config_mbox_opcode_get(phba, 2377 pmb), 2378 pmbox->mbxStatus, 2379 pmbox->un.varWords[0], 2380 pmb->vport->port_state); 2381 pmbox->mbxStatus = 0; 2382 pmbox->mbxOwner = OWN_HOST; 2383 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2384 if (rc != MBX_NOT_FINISHED) 2385 continue; 2386 } 2387 } 2388 2389 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2390 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2391 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2392 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2393 "x%x x%x x%x\n", 2394 pmb->vport ? pmb->vport->vpi : 0, 2395 pmbox->mbxCommand, 2396 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2397 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2398 pmb->mbox_cmpl, 2399 *((uint32_t *) pmbox), 2400 pmbox->un.varWords[0], 2401 pmbox->un.varWords[1], 2402 pmbox->un.varWords[2], 2403 pmbox->un.varWords[3], 2404 pmbox->un.varWords[4], 2405 pmbox->un.varWords[5], 2406 pmbox->un.varWords[6], 2407 pmbox->un.varWords[7], 2408 pmbox->un.varWords[8], 2409 pmbox->un.varWords[9], 2410 pmbox->un.varWords[10]); 2411 2412 if (pmb->mbox_cmpl) 2413 pmb->mbox_cmpl(phba,pmb); 2414 } while (1); 2415 return 0; 2416 } 2417 2418 /** 2419 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2420 * @phba: Pointer to HBA context object. 2421 * @pring: Pointer to driver SLI ring object. 2422 * @tag: buffer tag. 2423 * 2424 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2425 * is set in the tag the buffer is posted for a particular exchange, 2426 * the function will return the buffer without replacing the buffer. 2427 * If the buffer is for unsolicited ELS or CT traffic, this function 2428 * returns the buffer and also posts another buffer to the firmware. 2429 **/ 2430 static struct lpfc_dmabuf * 2431 lpfc_sli_get_buff(struct lpfc_hba *phba, 2432 struct lpfc_sli_ring *pring, 2433 uint32_t tag) 2434 { 2435 struct hbq_dmabuf *hbq_entry; 2436 2437 if (tag & QUE_BUFTAG_BIT) 2438 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2439 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2440 if (!hbq_entry) 2441 return NULL; 2442 return &hbq_entry->dbuf; 2443 } 2444 2445 /** 2446 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2447 * @phba: Pointer to HBA context object. 2448 * @pring: Pointer to driver SLI ring object. 2449 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2450 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2451 * @fch_type: the type for the first frame of the sequence. 2452 * 2453 * This function is called with no lock held. This function uses the r_ctl and 2454 * type of the received sequence to find the correct callback function to call 2455 * to process the sequence. 2456 **/ 2457 static int 2458 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2459 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2460 uint32_t fch_type) 2461 { 2462 int i; 2463 2464 /* unSolicited Responses */ 2465 if (pring->prt[0].profile) { 2466 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2467 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2468 saveq); 2469 return 1; 2470 } 2471 /* We must search, based on rctl / type 2472 for the right routine */ 2473 for (i = 0; i < pring->num_mask; i++) { 2474 if ((pring->prt[i].rctl == fch_r_ctl) && 2475 (pring->prt[i].type == fch_type)) { 2476 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2477 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2478 (phba, pring, saveq); 2479 return 1; 2480 } 2481 } 2482 return 0; 2483 } 2484 2485 /** 2486 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2487 * @phba: Pointer to HBA context object. 2488 * @pring: Pointer to driver SLI ring object. 2489 * @saveq: Pointer to the unsolicited iocb. 2490 * 2491 * This function is called with no lock held by the ring event handler 2492 * when there is an unsolicited iocb posted to the response ring by the 2493 * firmware. This function gets the buffer associated with the iocbs 2494 * and calls the event handler for the ring. This function handles both 2495 * qring buffers and hbq buffers. 2496 * When the function returns 1 the caller can free the iocb object otherwise 2497 * upper layer functions will free the iocb objects. 2498 **/ 2499 static int 2500 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2501 struct lpfc_iocbq *saveq) 2502 { 2503 IOCB_t * irsp; 2504 WORD5 * w5p; 2505 uint32_t Rctl, Type; 2506 struct lpfc_iocbq *iocbq; 2507 struct lpfc_dmabuf *dmzbuf; 2508 2509 irsp = &(saveq->iocb); 2510 2511 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2512 if (pring->lpfc_sli_rcv_async_status) 2513 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2514 else 2515 lpfc_printf_log(phba, 2516 KERN_WARNING, 2517 LOG_SLI, 2518 "0316 Ring %d handler: unexpected " 2519 "ASYNC_STATUS iocb received evt_code " 2520 "0x%x\n", 2521 pring->ringno, 2522 irsp->un.asyncstat.evt_code); 2523 return 1; 2524 } 2525 2526 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2527 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2528 if (irsp->ulpBdeCount > 0) { 2529 dmzbuf = lpfc_sli_get_buff(phba, pring, 2530 irsp->un.ulpWord[3]); 2531 lpfc_in_buf_free(phba, dmzbuf); 2532 } 2533 2534 if (irsp->ulpBdeCount > 1) { 2535 dmzbuf = lpfc_sli_get_buff(phba, pring, 2536 irsp->unsli3.sli3Words[3]); 2537 lpfc_in_buf_free(phba, dmzbuf); 2538 } 2539 2540 if (irsp->ulpBdeCount > 2) { 2541 dmzbuf = lpfc_sli_get_buff(phba, pring, 2542 irsp->unsli3.sli3Words[7]); 2543 lpfc_in_buf_free(phba, dmzbuf); 2544 } 2545 2546 return 1; 2547 } 2548 2549 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2550 if (irsp->ulpBdeCount != 0) { 2551 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2552 irsp->un.ulpWord[3]); 2553 if (!saveq->context2) 2554 lpfc_printf_log(phba, 2555 KERN_ERR, 2556 LOG_SLI, 2557 "0341 Ring %d Cannot find buffer for " 2558 "an unsolicited iocb. tag 0x%x\n", 2559 pring->ringno, 2560 irsp->un.ulpWord[3]); 2561 } 2562 if (irsp->ulpBdeCount == 2) { 2563 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2564 irsp->unsli3.sli3Words[7]); 2565 if (!saveq->context3) 2566 lpfc_printf_log(phba, 2567 KERN_ERR, 2568 LOG_SLI, 2569 "0342 Ring %d Cannot find buffer for an" 2570 " unsolicited iocb. tag 0x%x\n", 2571 pring->ringno, 2572 irsp->unsli3.sli3Words[7]); 2573 } 2574 list_for_each_entry(iocbq, &saveq->list, list) { 2575 irsp = &(iocbq->iocb); 2576 if (irsp->ulpBdeCount != 0) { 2577 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2578 irsp->un.ulpWord[3]); 2579 if (!iocbq->context2) 2580 lpfc_printf_log(phba, 2581 KERN_ERR, 2582 LOG_SLI, 2583 "0343 Ring %d Cannot find " 2584 "buffer for an unsolicited iocb" 2585 ". tag 0x%x\n", pring->ringno, 2586 irsp->un.ulpWord[3]); 2587 } 2588 if (irsp->ulpBdeCount == 2) { 2589 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2590 irsp->unsli3.sli3Words[7]); 2591 if (!iocbq->context3) 2592 lpfc_printf_log(phba, 2593 KERN_ERR, 2594 LOG_SLI, 2595 "0344 Ring %d Cannot find " 2596 "buffer for an unsolicited " 2597 "iocb. tag 0x%x\n", 2598 pring->ringno, 2599 irsp->unsli3.sli3Words[7]); 2600 } 2601 } 2602 } 2603 if (irsp->ulpBdeCount != 0 && 2604 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2605 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2606 int found = 0; 2607 2608 /* search continue save q for same XRI */ 2609 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2610 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2611 saveq->iocb.unsli3.rcvsli3.ox_id) { 2612 list_add_tail(&saveq->list, &iocbq->list); 2613 found = 1; 2614 break; 2615 } 2616 } 2617 if (!found) 2618 list_add_tail(&saveq->clist, 2619 &pring->iocb_continue_saveq); 2620 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2621 list_del_init(&iocbq->clist); 2622 saveq = iocbq; 2623 irsp = &(saveq->iocb); 2624 } else 2625 return 0; 2626 } 2627 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2628 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2629 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2630 Rctl = FC_RCTL_ELS_REQ; 2631 Type = FC_TYPE_ELS; 2632 } else { 2633 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2634 Rctl = w5p->hcsw.Rctl; 2635 Type = w5p->hcsw.Type; 2636 2637 /* Firmware Workaround */ 2638 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2639 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2640 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2641 Rctl = FC_RCTL_ELS_REQ; 2642 Type = FC_TYPE_ELS; 2643 w5p->hcsw.Rctl = Rctl; 2644 w5p->hcsw.Type = Type; 2645 } 2646 } 2647 2648 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2649 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2650 "0313 Ring %d handler: unexpected Rctl x%x " 2651 "Type x%x received\n", 2652 pring->ringno, Rctl, Type); 2653 2654 return 1; 2655 } 2656 2657 /** 2658 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2659 * @phba: Pointer to HBA context object. 2660 * @pring: Pointer to driver SLI ring object. 2661 * @prspiocb: Pointer to response iocb object. 2662 * 2663 * This function looks up the iocb_lookup table to get the command iocb 2664 * corresponding to the given response iocb using the iotag of the 2665 * response iocb. This function is called with the hbalock held. 2666 * This function returns the command iocb object if it finds the command 2667 * iocb else returns NULL. 2668 **/ 2669 static struct lpfc_iocbq * 2670 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2671 struct lpfc_sli_ring *pring, 2672 struct lpfc_iocbq *prspiocb) 2673 { 2674 struct lpfc_iocbq *cmd_iocb = NULL; 2675 uint16_t iotag; 2676 lockdep_assert_held(&phba->hbalock); 2677 2678 iotag = prspiocb->iocb.ulpIoTag; 2679 2680 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2681 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2682 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2683 /* remove from txcmpl queue list */ 2684 list_del_init(&cmd_iocb->list); 2685 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2686 return cmd_iocb; 2687 } 2688 } 2689 2690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2691 "0317 iotag x%x is out of " 2692 "range: max iotag x%x wd0 x%x\n", 2693 iotag, phba->sli.last_iotag, 2694 *(((uint32_t *) &prspiocb->iocb) + 7)); 2695 return NULL; 2696 } 2697 2698 /** 2699 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2700 * @phba: Pointer to HBA context object. 2701 * @pring: Pointer to driver SLI ring object. 2702 * @iotag: IOCB tag. 2703 * 2704 * This function looks up the iocb_lookup table to get the command iocb 2705 * corresponding to the given iotag. This function is called with the 2706 * hbalock held. 2707 * This function returns the command iocb object if it finds the command 2708 * iocb else returns NULL. 2709 **/ 2710 static struct lpfc_iocbq * 2711 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2712 struct lpfc_sli_ring *pring, uint16_t iotag) 2713 { 2714 struct lpfc_iocbq *cmd_iocb; 2715 2716 lockdep_assert_held(&phba->hbalock); 2717 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2718 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2719 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2720 /* remove from txcmpl queue list */ 2721 list_del_init(&cmd_iocb->list); 2722 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2723 return cmd_iocb; 2724 } 2725 } 2726 2727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2728 "0372 iotag x%x is out of range: max iotag (x%x)\n", 2729 iotag, phba->sli.last_iotag); 2730 return NULL; 2731 } 2732 2733 /** 2734 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2735 * @phba: Pointer to HBA context object. 2736 * @pring: Pointer to driver SLI ring object. 2737 * @saveq: Pointer to the response iocb to be processed. 2738 * 2739 * This function is called by the ring event handler for non-fcp 2740 * rings when there is a new response iocb in the response ring. 2741 * The caller is not required to hold any locks. This function 2742 * gets the command iocb associated with the response iocb and 2743 * calls the completion handler for the command iocb. If there 2744 * is no completion handler, the function will free the resources 2745 * associated with command iocb. If the response iocb is for 2746 * an already aborted command iocb, the status of the completion 2747 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2748 * This function always returns 1. 2749 **/ 2750 static int 2751 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2752 struct lpfc_iocbq *saveq) 2753 { 2754 struct lpfc_iocbq *cmdiocbp; 2755 int rc = 1; 2756 unsigned long iflag; 2757 2758 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2759 spin_lock_irqsave(&phba->hbalock, iflag); 2760 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2761 spin_unlock_irqrestore(&phba->hbalock, iflag); 2762 2763 if (cmdiocbp) { 2764 if (cmdiocbp->iocb_cmpl) { 2765 /* 2766 * If an ELS command failed send an event to mgmt 2767 * application. 2768 */ 2769 if (saveq->iocb.ulpStatus && 2770 (pring->ringno == LPFC_ELS_RING) && 2771 (cmdiocbp->iocb.ulpCommand == 2772 CMD_ELS_REQUEST64_CR)) 2773 lpfc_send_els_failure_event(phba, 2774 cmdiocbp, saveq); 2775 2776 /* 2777 * Post all ELS completions to the worker thread. 2778 * All other are passed to the completion callback. 2779 */ 2780 if (pring->ringno == LPFC_ELS_RING) { 2781 if ((phba->sli_rev < LPFC_SLI_REV4) && 2782 (cmdiocbp->iocb_flag & 2783 LPFC_DRIVER_ABORTED)) { 2784 spin_lock_irqsave(&phba->hbalock, 2785 iflag); 2786 cmdiocbp->iocb_flag &= 2787 ~LPFC_DRIVER_ABORTED; 2788 spin_unlock_irqrestore(&phba->hbalock, 2789 iflag); 2790 saveq->iocb.ulpStatus = 2791 IOSTAT_LOCAL_REJECT; 2792 saveq->iocb.un.ulpWord[4] = 2793 IOERR_SLI_ABORTED; 2794 2795 /* Firmware could still be in progress 2796 * of DMAing payload, so don't free data 2797 * buffer till after a hbeat. 2798 */ 2799 spin_lock_irqsave(&phba->hbalock, 2800 iflag); 2801 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2802 spin_unlock_irqrestore(&phba->hbalock, 2803 iflag); 2804 } 2805 if (phba->sli_rev == LPFC_SLI_REV4) { 2806 if (saveq->iocb_flag & 2807 LPFC_EXCHANGE_BUSY) { 2808 /* Set cmdiocb flag for the 2809 * exchange busy so sgl (xri) 2810 * will not be released until 2811 * the abort xri is received 2812 * from hba. 2813 */ 2814 spin_lock_irqsave( 2815 &phba->hbalock, iflag); 2816 cmdiocbp->iocb_flag |= 2817 LPFC_EXCHANGE_BUSY; 2818 spin_unlock_irqrestore( 2819 &phba->hbalock, iflag); 2820 } 2821 if (cmdiocbp->iocb_flag & 2822 LPFC_DRIVER_ABORTED) { 2823 /* 2824 * Clear LPFC_DRIVER_ABORTED 2825 * bit in case it was driver 2826 * initiated abort. 2827 */ 2828 spin_lock_irqsave( 2829 &phba->hbalock, iflag); 2830 cmdiocbp->iocb_flag &= 2831 ~LPFC_DRIVER_ABORTED; 2832 spin_unlock_irqrestore( 2833 &phba->hbalock, iflag); 2834 cmdiocbp->iocb.ulpStatus = 2835 IOSTAT_LOCAL_REJECT; 2836 cmdiocbp->iocb.un.ulpWord[4] = 2837 IOERR_ABORT_REQUESTED; 2838 /* 2839 * For SLI4, irsiocb contains 2840 * NO_XRI in sli_xritag, it 2841 * shall not affect releasing 2842 * sgl (xri) process. 2843 */ 2844 saveq->iocb.ulpStatus = 2845 IOSTAT_LOCAL_REJECT; 2846 saveq->iocb.un.ulpWord[4] = 2847 IOERR_SLI_ABORTED; 2848 spin_lock_irqsave( 2849 &phba->hbalock, iflag); 2850 saveq->iocb_flag |= 2851 LPFC_DELAY_MEM_FREE; 2852 spin_unlock_irqrestore( 2853 &phba->hbalock, iflag); 2854 } 2855 } 2856 } 2857 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2858 } else 2859 lpfc_sli_release_iocbq(phba, cmdiocbp); 2860 } else { 2861 /* 2862 * Unknown initiating command based on the response iotag. 2863 * This could be the case on the ELS ring because of 2864 * lpfc_els_abort(). 2865 */ 2866 if (pring->ringno != LPFC_ELS_RING) { 2867 /* 2868 * Ring <ringno> handler: unexpected completion IoTag 2869 * <IoTag> 2870 */ 2871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2872 "0322 Ring %d handler: " 2873 "unexpected completion IoTag x%x " 2874 "Data: x%x x%x x%x x%x\n", 2875 pring->ringno, 2876 saveq->iocb.ulpIoTag, 2877 saveq->iocb.ulpStatus, 2878 saveq->iocb.un.ulpWord[4], 2879 saveq->iocb.ulpCommand, 2880 saveq->iocb.ulpContext); 2881 } 2882 } 2883 2884 return rc; 2885 } 2886 2887 /** 2888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2889 * @phba: Pointer to HBA context object. 2890 * @pring: Pointer to driver SLI ring object. 2891 * 2892 * This function is called from the iocb ring event handlers when 2893 * put pointer is ahead of the get pointer for a ring. This function signal 2894 * an error attention condition to the worker thread and the worker 2895 * thread will transition the HBA to offline state. 2896 **/ 2897 static void 2898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2899 { 2900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2901 /* 2902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2903 * rsp ring <portRspMax> 2904 */ 2905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2906 "0312 Ring %d handler: portRspPut %d " 2907 "is bigger than rsp ring %d\n", 2908 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2909 pring->sli.sli3.numRiocb); 2910 2911 phba->link_state = LPFC_HBA_ERROR; 2912 2913 /* 2914 * All error attention handlers are posted to 2915 * worker thread 2916 */ 2917 phba->work_ha |= HA_ERATT; 2918 phba->work_hs = HS_FFER3; 2919 2920 lpfc_worker_wake_up(phba); 2921 2922 return; 2923 } 2924 2925 /** 2926 * lpfc_poll_eratt - Error attention polling timer timeout handler 2927 * @ptr: Pointer to address of HBA context object. 2928 * 2929 * This function is invoked by the Error Attention polling timer when the 2930 * timer times out. It will check the SLI Error Attention register for 2931 * possible attention events. If so, it will post an Error Attention event 2932 * and wake up worker thread to process it. Otherwise, it will set up the 2933 * Error Attention polling timer for the next poll. 2934 **/ 2935 void lpfc_poll_eratt(unsigned long ptr) 2936 { 2937 struct lpfc_hba *phba; 2938 uint32_t eratt = 0; 2939 uint64_t sli_intr, cnt; 2940 2941 phba = (struct lpfc_hba *)ptr; 2942 2943 /* Here we will also keep track of interrupts per sec of the hba */ 2944 sli_intr = phba->sli.slistat.sli_intr; 2945 2946 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2947 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2948 sli_intr); 2949 else 2950 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2951 2952 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 2953 do_div(cnt, phba->eratt_poll_interval); 2954 phba->sli.slistat.sli_ips = cnt; 2955 2956 phba->sli.slistat.sli_prev_intr = sli_intr; 2957 2958 /* Check chip HA register for error event */ 2959 eratt = lpfc_sli_check_eratt(phba); 2960 2961 if (eratt) 2962 /* Tell the worker thread there is work to do */ 2963 lpfc_worker_wake_up(phba); 2964 else 2965 /* Restart the timer for next eratt poll */ 2966 mod_timer(&phba->eratt_poll, 2967 jiffies + 2968 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 2969 return; 2970 } 2971 2972 2973 /** 2974 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2975 * @phba: Pointer to HBA context object. 2976 * @pring: Pointer to driver SLI ring object. 2977 * @mask: Host attention register mask for this ring. 2978 * 2979 * This function is called from the interrupt context when there is a ring 2980 * event for the fcp ring. The caller does not hold any lock. 2981 * The function processes each response iocb in the response ring until it 2982 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2983 * LE bit set. The function will call the completion handler of the command iocb 2984 * if the response iocb indicates a completion for a command iocb or it is 2985 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2986 * function if this is an unsolicited iocb. 2987 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2988 * to check it explicitly. 2989 */ 2990 int 2991 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2992 struct lpfc_sli_ring *pring, uint32_t mask) 2993 { 2994 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2995 IOCB_t *irsp = NULL; 2996 IOCB_t *entry = NULL; 2997 struct lpfc_iocbq *cmdiocbq = NULL; 2998 struct lpfc_iocbq rspiocbq; 2999 uint32_t status; 3000 uint32_t portRspPut, portRspMax; 3001 int rc = 1; 3002 lpfc_iocb_type type; 3003 unsigned long iflag; 3004 uint32_t rsp_cmpl = 0; 3005 3006 spin_lock_irqsave(&phba->hbalock, iflag); 3007 pring->stats.iocb_event++; 3008 3009 /* 3010 * The next available response entry should never exceed the maximum 3011 * entries. If it does, treat it as an adapter hardware error. 3012 */ 3013 portRspMax = pring->sli.sli3.numRiocb; 3014 portRspPut = le32_to_cpu(pgp->rspPutInx); 3015 if (unlikely(portRspPut >= portRspMax)) { 3016 lpfc_sli_rsp_pointers_error(phba, pring); 3017 spin_unlock_irqrestore(&phba->hbalock, iflag); 3018 return 1; 3019 } 3020 if (phba->fcp_ring_in_use) { 3021 spin_unlock_irqrestore(&phba->hbalock, iflag); 3022 return 1; 3023 } else 3024 phba->fcp_ring_in_use = 1; 3025 3026 rmb(); 3027 while (pring->sli.sli3.rspidx != portRspPut) { 3028 /* 3029 * Fetch an entry off the ring and copy it into a local data 3030 * structure. The copy involves a byte-swap since the 3031 * network byte order and pci byte orders are different. 3032 */ 3033 entry = lpfc_resp_iocb(phba, pring); 3034 phba->last_completion_time = jiffies; 3035 3036 if (++pring->sli.sli3.rspidx >= portRspMax) 3037 pring->sli.sli3.rspidx = 0; 3038 3039 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3040 (uint32_t *) &rspiocbq.iocb, 3041 phba->iocb_rsp_size); 3042 INIT_LIST_HEAD(&(rspiocbq.list)); 3043 irsp = &rspiocbq.iocb; 3044 3045 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3046 pring->stats.iocb_rsp++; 3047 rsp_cmpl++; 3048 3049 if (unlikely(irsp->ulpStatus)) { 3050 /* 3051 * If resource errors reported from HBA, reduce 3052 * queuedepths of the SCSI device. 3053 */ 3054 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3055 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3056 IOERR_NO_RESOURCES)) { 3057 spin_unlock_irqrestore(&phba->hbalock, iflag); 3058 phba->lpfc_rampdown_queue_depth(phba); 3059 spin_lock_irqsave(&phba->hbalock, iflag); 3060 } 3061 3062 /* Rsp ring <ringno> error: IOCB */ 3063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3064 "0336 Rsp Ring %d error: IOCB Data: " 3065 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3066 pring->ringno, 3067 irsp->un.ulpWord[0], 3068 irsp->un.ulpWord[1], 3069 irsp->un.ulpWord[2], 3070 irsp->un.ulpWord[3], 3071 irsp->un.ulpWord[4], 3072 irsp->un.ulpWord[5], 3073 *(uint32_t *)&irsp->un1, 3074 *((uint32_t *)&irsp->un1 + 1)); 3075 } 3076 3077 switch (type) { 3078 case LPFC_ABORT_IOCB: 3079 case LPFC_SOL_IOCB: 3080 /* 3081 * Idle exchange closed via ABTS from port. No iocb 3082 * resources need to be recovered. 3083 */ 3084 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3086 "0333 IOCB cmd 0x%x" 3087 " processed. Skipping" 3088 " completion\n", 3089 irsp->ulpCommand); 3090 break; 3091 } 3092 3093 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3094 &rspiocbq); 3095 if (unlikely(!cmdiocbq)) 3096 break; 3097 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3098 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3099 if (cmdiocbq->iocb_cmpl) { 3100 spin_unlock_irqrestore(&phba->hbalock, iflag); 3101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3102 &rspiocbq); 3103 spin_lock_irqsave(&phba->hbalock, iflag); 3104 } 3105 break; 3106 case LPFC_UNSOL_IOCB: 3107 spin_unlock_irqrestore(&phba->hbalock, iflag); 3108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3109 spin_lock_irqsave(&phba->hbalock, iflag); 3110 break; 3111 default: 3112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3113 char adaptermsg[LPFC_MAX_ADPTMSG]; 3114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3115 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3116 MAX_MSG_DATA); 3117 dev_warn(&((phba->pcidev)->dev), 3118 "lpfc%d: %s\n", 3119 phba->brd_no, adaptermsg); 3120 } else { 3121 /* Unknown IOCB command */ 3122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3123 "0334 Unknown IOCB command " 3124 "Data: x%x, x%x x%x x%x x%x\n", 3125 type, irsp->ulpCommand, 3126 irsp->ulpStatus, 3127 irsp->ulpIoTag, 3128 irsp->ulpContext); 3129 } 3130 break; 3131 } 3132 3133 /* 3134 * The response IOCB has been processed. Update the ring 3135 * pointer in SLIM. If the port response put pointer has not 3136 * been updated, sync the pgp->rspPutInx and fetch the new port 3137 * response put pointer. 3138 */ 3139 writel(pring->sli.sli3.rspidx, 3140 &phba->host_gp[pring->ringno].rspGetInx); 3141 3142 if (pring->sli.sli3.rspidx == portRspPut) 3143 portRspPut = le32_to_cpu(pgp->rspPutInx); 3144 } 3145 3146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3147 pring->stats.iocb_rsp_full++; 3148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3149 writel(status, phba->CAregaddr); 3150 readl(phba->CAregaddr); 3151 } 3152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3154 pring->stats.iocb_cmd_empty++; 3155 3156 /* Force update of the local copy of cmdGetInx */ 3157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3158 lpfc_sli_resume_iocb(phba, pring); 3159 3160 if ((pring->lpfc_sli_cmd_available)) 3161 (pring->lpfc_sli_cmd_available) (phba, pring); 3162 3163 } 3164 3165 phba->fcp_ring_in_use = 0; 3166 spin_unlock_irqrestore(&phba->hbalock, iflag); 3167 return rc; 3168 } 3169 3170 /** 3171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3172 * @phba: Pointer to HBA context object. 3173 * @pring: Pointer to driver SLI ring object. 3174 * @rspiocbp: Pointer to driver response IOCB object. 3175 * 3176 * This function is called from the worker thread when there is a slow-path 3177 * response IOCB to process. This function chains all the response iocbs until 3178 * seeing the iocb with the LE bit set. The function will call 3179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3180 * completion of a command iocb. The function will call the 3181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3182 * The function frees the resources or calls the completion handler if this 3183 * iocb is an abort completion. The function returns NULL when the response 3184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3185 * this function shall chain the iocb on to the iocb_continueq and return the 3186 * response iocb passed in. 3187 **/ 3188 static struct lpfc_iocbq * 3189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3190 struct lpfc_iocbq *rspiocbp) 3191 { 3192 struct lpfc_iocbq *saveq; 3193 struct lpfc_iocbq *cmdiocbp; 3194 struct lpfc_iocbq *next_iocb; 3195 IOCB_t *irsp = NULL; 3196 uint32_t free_saveq; 3197 uint8_t iocb_cmd_type; 3198 lpfc_iocb_type type; 3199 unsigned long iflag; 3200 int rc; 3201 3202 spin_lock_irqsave(&phba->hbalock, iflag); 3203 /* First add the response iocb to the countinueq list */ 3204 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3205 pring->iocb_continueq_cnt++; 3206 3207 /* Now, determine whether the list is completed for processing */ 3208 irsp = &rspiocbp->iocb; 3209 if (irsp->ulpLe) { 3210 /* 3211 * By default, the driver expects to free all resources 3212 * associated with this iocb completion. 3213 */ 3214 free_saveq = 1; 3215 saveq = list_get_first(&pring->iocb_continueq, 3216 struct lpfc_iocbq, list); 3217 irsp = &(saveq->iocb); 3218 list_del_init(&pring->iocb_continueq); 3219 pring->iocb_continueq_cnt = 0; 3220 3221 pring->stats.iocb_rsp++; 3222 3223 /* 3224 * If resource errors reported from HBA, reduce 3225 * queuedepths of the SCSI device. 3226 */ 3227 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3228 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3229 IOERR_NO_RESOURCES)) { 3230 spin_unlock_irqrestore(&phba->hbalock, iflag); 3231 phba->lpfc_rampdown_queue_depth(phba); 3232 spin_lock_irqsave(&phba->hbalock, iflag); 3233 } 3234 3235 if (irsp->ulpStatus) { 3236 /* Rsp ring <ringno> error: IOCB */ 3237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3238 "0328 Rsp Ring %d error: " 3239 "IOCB Data: " 3240 "x%x x%x x%x x%x " 3241 "x%x x%x x%x x%x " 3242 "x%x x%x x%x x%x " 3243 "x%x x%x x%x x%x\n", 3244 pring->ringno, 3245 irsp->un.ulpWord[0], 3246 irsp->un.ulpWord[1], 3247 irsp->un.ulpWord[2], 3248 irsp->un.ulpWord[3], 3249 irsp->un.ulpWord[4], 3250 irsp->un.ulpWord[5], 3251 *(((uint32_t *) irsp) + 6), 3252 *(((uint32_t *) irsp) + 7), 3253 *(((uint32_t *) irsp) + 8), 3254 *(((uint32_t *) irsp) + 9), 3255 *(((uint32_t *) irsp) + 10), 3256 *(((uint32_t *) irsp) + 11), 3257 *(((uint32_t *) irsp) + 12), 3258 *(((uint32_t *) irsp) + 13), 3259 *(((uint32_t *) irsp) + 14), 3260 *(((uint32_t *) irsp) + 15)); 3261 } 3262 3263 /* 3264 * Fetch the IOCB command type and call the correct completion 3265 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3266 * get freed back to the lpfc_iocb_list by the discovery 3267 * kernel thread. 3268 */ 3269 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3270 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3271 switch (type) { 3272 case LPFC_SOL_IOCB: 3273 spin_unlock_irqrestore(&phba->hbalock, iflag); 3274 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3275 spin_lock_irqsave(&phba->hbalock, iflag); 3276 break; 3277 3278 case LPFC_UNSOL_IOCB: 3279 spin_unlock_irqrestore(&phba->hbalock, iflag); 3280 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3281 spin_lock_irqsave(&phba->hbalock, iflag); 3282 if (!rc) 3283 free_saveq = 0; 3284 break; 3285 3286 case LPFC_ABORT_IOCB: 3287 cmdiocbp = NULL; 3288 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3289 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3290 saveq); 3291 if (cmdiocbp) { 3292 /* Call the specified completion routine */ 3293 if (cmdiocbp->iocb_cmpl) { 3294 spin_unlock_irqrestore(&phba->hbalock, 3295 iflag); 3296 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3297 saveq); 3298 spin_lock_irqsave(&phba->hbalock, 3299 iflag); 3300 } else 3301 __lpfc_sli_release_iocbq(phba, 3302 cmdiocbp); 3303 } 3304 break; 3305 3306 case LPFC_UNKNOWN_IOCB: 3307 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3308 char adaptermsg[LPFC_MAX_ADPTMSG]; 3309 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3310 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3311 MAX_MSG_DATA); 3312 dev_warn(&((phba->pcidev)->dev), 3313 "lpfc%d: %s\n", 3314 phba->brd_no, adaptermsg); 3315 } else { 3316 /* Unknown IOCB command */ 3317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3318 "0335 Unknown IOCB " 3319 "command Data: x%x " 3320 "x%x x%x x%x\n", 3321 irsp->ulpCommand, 3322 irsp->ulpStatus, 3323 irsp->ulpIoTag, 3324 irsp->ulpContext); 3325 } 3326 break; 3327 } 3328 3329 if (free_saveq) { 3330 list_for_each_entry_safe(rspiocbp, next_iocb, 3331 &saveq->list, list) { 3332 list_del_init(&rspiocbp->list); 3333 __lpfc_sli_release_iocbq(phba, rspiocbp); 3334 } 3335 __lpfc_sli_release_iocbq(phba, saveq); 3336 } 3337 rspiocbp = NULL; 3338 } 3339 spin_unlock_irqrestore(&phba->hbalock, iflag); 3340 return rspiocbp; 3341 } 3342 3343 /** 3344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3345 * @phba: Pointer to HBA context object. 3346 * @pring: Pointer to driver SLI ring object. 3347 * @mask: Host attention register mask for this ring. 3348 * 3349 * This routine wraps the actual slow_ring event process routine from the 3350 * API jump table function pointer from the lpfc_hba struct. 3351 **/ 3352 void 3353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3354 struct lpfc_sli_ring *pring, uint32_t mask) 3355 { 3356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3357 } 3358 3359 /** 3360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3361 * @phba: Pointer to HBA context object. 3362 * @pring: Pointer to driver SLI ring object. 3363 * @mask: Host attention register mask for this ring. 3364 * 3365 * This function is called from the worker thread when there is a ring event 3366 * for non-fcp rings. The caller does not hold any lock. The function will 3367 * remove each response iocb in the response ring and calls the handle 3368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3369 **/ 3370 static void 3371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3372 struct lpfc_sli_ring *pring, uint32_t mask) 3373 { 3374 struct lpfc_pgp *pgp; 3375 IOCB_t *entry; 3376 IOCB_t *irsp = NULL; 3377 struct lpfc_iocbq *rspiocbp = NULL; 3378 uint32_t portRspPut, portRspMax; 3379 unsigned long iflag; 3380 uint32_t status; 3381 3382 pgp = &phba->port_gp[pring->ringno]; 3383 spin_lock_irqsave(&phba->hbalock, iflag); 3384 pring->stats.iocb_event++; 3385 3386 /* 3387 * The next available response entry should never exceed the maximum 3388 * entries. If it does, treat it as an adapter hardware error. 3389 */ 3390 portRspMax = pring->sli.sli3.numRiocb; 3391 portRspPut = le32_to_cpu(pgp->rspPutInx); 3392 if (portRspPut >= portRspMax) { 3393 /* 3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3395 * rsp ring <portRspMax> 3396 */ 3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3398 "0303 Ring %d handler: portRspPut %d " 3399 "is bigger than rsp ring %d\n", 3400 pring->ringno, portRspPut, portRspMax); 3401 3402 phba->link_state = LPFC_HBA_ERROR; 3403 spin_unlock_irqrestore(&phba->hbalock, iflag); 3404 3405 phba->work_hs = HS_FFER3; 3406 lpfc_handle_eratt(phba); 3407 3408 return; 3409 } 3410 3411 rmb(); 3412 while (pring->sli.sli3.rspidx != portRspPut) { 3413 /* 3414 * Build a completion list and call the appropriate handler. 3415 * The process is to get the next available response iocb, get 3416 * a free iocb from the list, copy the response data into the 3417 * free iocb, insert to the continuation list, and update the 3418 * next response index to slim. This process makes response 3419 * iocb's in the ring available to DMA as fast as possible but 3420 * pays a penalty for a copy operation. Since the iocb is 3421 * only 32 bytes, this penalty is considered small relative to 3422 * the PCI reads for register values and a slim write. When 3423 * the ulpLe field is set, the entire Command has been 3424 * received. 3425 */ 3426 entry = lpfc_resp_iocb(phba, pring); 3427 3428 phba->last_completion_time = jiffies; 3429 rspiocbp = __lpfc_sli_get_iocbq(phba); 3430 if (rspiocbp == NULL) { 3431 printk(KERN_ERR "%s: out of buffers! Failing " 3432 "completion.\n", __func__); 3433 break; 3434 } 3435 3436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3437 phba->iocb_rsp_size); 3438 irsp = &rspiocbp->iocb; 3439 3440 if (++pring->sli.sli3.rspidx >= portRspMax) 3441 pring->sli.sli3.rspidx = 0; 3442 3443 if (pring->ringno == LPFC_ELS_RING) { 3444 lpfc_debugfs_slow_ring_trc(phba, 3445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3446 *(((uint32_t *) irsp) + 4), 3447 *(((uint32_t *) irsp) + 6), 3448 *(((uint32_t *) irsp) + 7)); 3449 } 3450 3451 writel(pring->sli.sli3.rspidx, 3452 &phba->host_gp[pring->ringno].rspGetInx); 3453 3454 spin_unlock_irqrestore(&phba->hbalock, iflag); 3455 /* Handle the response IOCB */ 3456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3457 spin_lock_irqsave(&phba->hbalock, iflag); 3458 3459 /* 3460 * If the port response put pointer has not been updated, sync 3461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3462 * response put pointer. 3463 */ 3464 if (pring->sli.sli3.rspidx == portRspPut) { 3465 portRspPut = le32_to_cpu(pgp->rspPutInx); 3466 } 3467 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3468 3469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3470 /* At least one response entry has been freed */ 3471 pring->stats.iocb_rsp_full++; 3472 /* SET RxRE_RSP in Chip Att register */ 3473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3474 writel(status, phba->CAregaddr); 3475 readl(phba->CAregaddr); /* flush */ 3476 } 3477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3479 pring->stats.iocb_cmd_empty++; 3480 3481 /* Force update of the local copy of cmdGetInx */ 3482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3483 lpfc_sli_resume_iocb(phba, pring); 3484 3485 if ((pring->lpfc_sli_cmd_available)) 3486 (pring->lpfc_sli_cmd_available) (phba, pring); 3487 3488 } 3489 3490 spin_unlock_irqrestore(&phba->hbalock, iflag); 3491 return; 3492 } 3493 3494 /** 3495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3496 * @phba: Pointer to HBA context object. 3497 * @pring: Pointer to driver SLI ring object. 3498 * @mask: Host attention register mask for this ring. 3499 * 3500 * This function is called from the worker thread when there is a pending 3501 * ELS response iocb on the driver internal slow-path response iocb worker 3502 * queue. The caller does not hold any lock. The function will remove each 3503 * response iocb from the response worker queue and calls the handle 3504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3505 **/ 3506 static void 3507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3508 struct lpfc_sli_ring *pring, uint32_t mask) 3509 { 3510 struct lpfc_iocbq *irspiocbq; 3511 struct hbq_dmabuf *dmabuf; 3512 struct lpfc_cq_event *cq_event; 3513 unsigned long iflag; 3514 3515 spin_lock_irqsave(&phba->hbalock, iflag); 3516 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3517 spin_unlock_irqrestore(&phba->hbalock, iflag); 3518 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3519 /* Get the response iocb from the head of work queue */ 3520 spin_lock_irqsave(&phba->hbalock, iflag); 3521 list_remove_head(&phba->sli4_hba.sp_queue_event, 3522 cq_event, struct lpfc_cq_event, list); 3523 spin_unlock_irqrestore(&phba->hbalock, iflag); 3524 3525 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3526 case CQE_CODE_COMPL_WQE: 3527 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3528 cq_event); 3529 /* Translate ELS WCQE to response IOCBQ */ 3530 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3531 irspiocbq); 3532 if (irspiocbq) 3533 lpfc_sli_sp_handle_rspiocb(phba, pring, 3534 irspiocbq); 3535 break; 3536 case CQE_CODE_RECEIVE: 3537 case CQE_CODE_RECEIVE_V1: 3538 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3539 cq_event); 3540 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3541 break; 3542 default: 3543 break; 3544 } 3545 } 3546 } 3547 3548 /** 3549 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3550 * @phba: Pointer to HBA context object. 3551 * @pring: Pointer to driver SLI ring object. 3552 * 3553 * This function aborts all iocbs in the given ring and frees all the iocb 3554 * objects in txq. This function issues an abort iocb for all the iocb commands 3555 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3556 * the return of this function. The caller is not required to hold any locks. 3557 **/ 3558 void 3559 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3560 { 3561 LIST_HEAD(completions); 3562 struct lpfc_iocbq *iocb, *next_iocb; 3563 3564 if (pring->ringno == LPFC_ELS_RING) { 3565 lpfc_fabric_abort_hba(phba); 3566 } 3567 3568 /* Error everything on txq and txcmplq 3569 * First do the txq. 3570 */ 3571 if (phba->sli_rev >= LPFC_SLI_REV4) { 3572 spin_lock_irq(&pring->ring_lock); 3573 list_splice_init(&pring->txq, &completions); 3574 pring->txq_cnt = 0; 3575 spin_unlock_irq(&pring->ring_lock); 3576 3577 spin_lock_irq(&phba->hbalock); 3578 /* Next issue ABTS for everything on the txcmplq */ 3579 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3580 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3581 spin_unlock_irq(&phba->hbalock); 3582 } else { 3583 spin_lock_irq(&phba->hbalock); 3584 list_splice_init(&pring->txq, &completions); 3585 pring->txq_cnt = 0; 3586 3587 /* Next issue ABTS for everything on the txcmplq */ 3588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3589 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3590 spin_unlock_irq(&phba->hbalock); 3591 } 3592 3593 /* Cancel all the IOCBs from the completions list */ 3594 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3595 IOERR_SLI_ABORTED); 3596 } 3597 3598 /** 3599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3600 * @phba: Pointer to HBA context object. 3601 * @pring: Pointer to driver SLI ring object. 3602 * 3603 * This function aborts all iocbs in FCP rings and frees all the iocb 3604 * objects in txq. This function issues an abort iocb for all the iocb commands 3605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3606 * the return of this function. The caller is not required to hold any locks. 3607 **/ 3608 void 3609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3610 { 3611 struct lpfc_sli *psli = &phba->sli; 3612 struct lpfc_sli_ring *pring; 3613 uint32_t i; 3614 3615 /* Look on all the FCP Rings for the iotag */ 3616 if (phba->sli_rev >= LPFC_SLI_REV4) { 3617 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3618 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3619 lpfc_sli_abort_iocb_ring(phba, pring); 3620 } 3621 } else { 3622 pring = &psli->ring[psli->fcp_ring]; 3623 lpfc_sli_abort_iocb_ring(phba, pring); 3624 } 3625 } 3626 3627 3628 /** 3629 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3630 * @phba: Pointer to HBA context object. 3631 * 3632 * This function flushes all iocbs in the fcp ring and frees all the iocb 3633 * objects in txq and txcmplq. This function will not issue abort iocbs 3634 * for all the iocb commands in txcmplq, they will just be returned with 3635 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3636 * slot has been permanently disabled. 3637 **/ 3638 void 3639 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3640 { 3641 LIST_HEAD(txq); 3642 LIST_HEAD(txcmplq); 3643 struct lpfc_sli *psli = &phba->sli; 3644 struct lpfc_sli_ring *pring; 3645 uint32_t i; 3646 3647 spin_lock_irq(&phba->hbalock); 3648 /* Indicate the I/O queues are flushed */ 3649 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3650 spin_unlock_irq(&phba->hbalock); 3651 3652 /* Look on all the FCP Rings for the iotag */ 3653 if (phba->sli_rev >= LPFC_SLI_REV4) { 3654 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3655 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3656 3657 spin_lock_irq(&pring->ring_lock); 3658 /* Retrieve everything on txq */ 3659 list_splice_init(&pring->txq, &txq); 3660 /* Retrieve everything on the txcmplq */ 3661 list_splice_init(&pring->txcmplq, &txcmplq); 3662 pring->txq_cnt = 0; 3663 pring->txcmplq_cnt = 0; 3664 spin_unlock_irq(&pring->ring_lock); 3665 3666 /* Flush the txq */ 3667 lpfc_sli_cancel_iocbs(phba, &txq, 3668 IOSTAT_LOCAL_REJECT, 3669 IOERR_SLI_DOWN); 3670 /* Flush the txcmpq */ 3671 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3672 IOSTAT_LOCAL_REJECT, 3673 IOERR_SLI_DOWN); 3674 } 3675 } else { 3676 pring = &psli->ring[psli->fcp_ring]; 3677 3678 spin_lock_irq(&phba->hbalock); 3679 /* Retrieve everything on txq */ 3680 list_splice_init(&pring->txq, &txq); 3681 /* Retrieve everything on the txcmplq */ 3682 list_splice_init(&pring->txcmplq, &txcmplq); 3683 pring->txq_cnt = 0; 3684 pring->txcmplq_cnt = 0; 3685 spin_unlock_irq(&phba->hbalock); 3686 3687 /* Flush the txq */ 3688 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3689 IOERR_SLI_DOWN); 3690 /* Flush the txcmpq */ 3691 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3692 IOERR_SLI_DOWN); 3693 } 3694 } 3695 3696 /** 3697 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3698 * @phba: Pointer to HBA context object. 3699 * @mask: Bit mask to be checked. 3700 * 3701 * This function reads the host status register and compares 3702 * with the provided bit mask to check if HBA completed 3703 * the restart. This function will wait in a loop for the 3704 * HBA to complete restart. If the HBA does not restart within 3705 * 15 iterations, the function will reset the HBA again. The 3706 * function returns 1 when HBA fail to restart otherwise returns 3707 * zero. 3708 **/ 3709 static int 3710 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3711 { 3712 uint32_t status; 3713 int i = 0; 3714 int retval = 0; 3715 3716 /* Read the HBA Host Status Register */ 3717 if (lpfc_readl(phba->HSregaddr, &status)) 3718 return 1; 3719 3720 /* 3721 * Check status register every 100ms for 5 retries, then every 3722 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3723 * every 2.5 sec for 4. 3724 * Break our of the loop if errors occurred during init. 3725 */ 3726 while (((status & mask) != mask) && 3727 !(status & HS_FFERM) && 3728 i++ < 20) { 3729 3730 if (i <= 5) 3731 msleep(10); 3732 else if (i <= 10) 3733 msleep(500); 3734 else 3735 msleep(2500); 3736 3737 if (i == 15) { 3738 /* Do post */ 3739 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3740 lpfc_sli_brdrestart(phba); 3741 } 3742 /* Read the HBA Host Status Register */ 3743 if (lpfc_readl(phba->HSregaddr, &status)) { 3744 retval = 1; 3745 break; 3746 } 3747 } 3748 3749 /* Check to see if any errors occurred during init */ 3750 if ((status & HS_FFERM) || (i >= 20)) { 3751 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3752 "2751 Adapter failed to restart, " 3753 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3754 status, 3755 readl(phba->MBslimaddr + 0xa8), 3756 readl(phba->MBslimaddr + 0xac)); 3757 phba->link_state = LPFC_HBA_ERROR; 3758 retval = 1; 3759 } 3760 3761 return retval; 3762 } 3763 3764 /** 3765 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3766 * @phba: Pointer to HBA context object. 3767 * @mask: Bit mask to be checked. 3768 * 3769 * This function checks the host status register to check if HBA is 3770 * ready. This function will wait in a loop for the HBA to be ready 3771 * If the HBA is not ready , the function will will reset the HBA PCI 3772 * function again. The function returns 1 when HBA fail to be ready 3773 * otherwise returns zero. 3774 **/ 3775 static int 3776 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3777 { 3778 uint32_t status; 3779 int retval = 0; 3780 3781 /* Read the HBA Host Status Register */ 3782 status = lpfc_sli4_post_status_check(phba); 3783 3784 if (status) { 3785 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3786 lpfc_sli_brdrestart(phba); 3787 status = lpfc_sli4_post_status_check(phba); 3788 } 3789 3790 /* Check to see if any errors occurred during init */ 3791 if (status) { 3792 phba->link_state = LPFC_HBA_ERROR; 3793 retval = 1; 3794 } else 3795 phba->sli4_hba.intr_enable = 0; 3796 3797 return retval; 3798 } 3799 3800 /** 3801 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3802 * @phba: Pointer to HBA context object. 3803 * @mask: Bit mask to be checked. 3804 * 3805 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3806 * from the API jump table function pointer from the lpfc_hba struct. 3807 **/ 3808 int 3809 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3810 { 3811 return phba->lpfc_sli_brdready(phba, mask); 3812 } 3813 3814 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3815 3816 /** 3817 * lpfc_reset_barrier - Make HBA ready for HBA reset 3818 * @phba: Pointer to HBA context object. 3819 * 3820 * This function is called before resetting an HBA. This function is called 3821 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3822 **/ 3823 void lpfc_reset_barrier(struct lpfc_hba *phba) 3824 { 3825 uint32_t __iomem *resp_buf; 3826 uint32_t __iomem *mbox_buf; 3827 volatile uint32_t mbox; 3828 uint32_t hc_copy, ha_copy, resp_data; 3829 int i; 3830 uint8_t hdrtype; 3831 3832 lockdep_assert_held(&phba->hbalock); 3833 3834 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3835 if (hdrtype != 0x80 || 3836 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3837 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3838 return; 3839 3840 /* 3841 * Tell the other part of the chip to suspend temporarily all 3842 * its DMA activity. 3843 */ 3844 resp_buf = phba->MBslimaddr; 3845 3846 /* Disable the error attention */ 3847 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3848 return; 3849 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3850 readl(phba->HCregaddr); /* flush */ 3851 phba->link_flag |= LS_IGNORE_ERATT; 3852 3853 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3854 return; 3855 if (ha_copy & HA_ERATT) { 3856 /* Clear Chip error bit */ 3857 writel(HA_ERATT, phba->HAregaddr); 3858 phba->pport->stopped = 1; 3859 } 3860 3861 mbox = 0; 3862 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3863 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3864 3865 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3866 mbox_buf = phba->MBslimaddr; 3867 writel(mbox, mbox_buf); 3868 3869 for (i = 0; i < 50; i++) { 3870 if (lpfc_readl((resp_buf + 1), &resp_data)) 3871 return; 3872 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3873 mdelay(1); 3874 else 3875 break; 3876 } 3877 resp_data = 0; 3878 if (lpfc_readl((resp_buf + 1), &resp_data)) 3879 return; 3880 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3881 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3882 phba->pport->stopped) 3883 goto restore_hc; 3884 else 3885 goto clear_errat; 3886 } 3887 3888 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3889 resp_data = 0; 3890 for (i = 0; i < 500; i++) { 3891 if (lpfc_readl(resp_buf, &resp_data)) 3892 return; 3893 if (resp_data != mbox) 3894 mdelay(1); 3895 else 3896 break; 3897 } 3898 3899 clear_errat: 3900 3901 while (++i < 500) { 3902 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3903 return; 3904 if (!(ha_copy & HA_ERATT)) 3905 mdelay(1); 3906 else 3907 break; 3908 } 3909 3910 if (readl(phba->HAregaddr) & HA_ERATT) { 3911 writel(HA_ERATT, phba->HAregaddr); 3912 phba->pport->stopped = 1; 3913 } 3914 3915 restore_hc: 3916 phba->link_flag &= ~LS_IGNORE_ERATT; 3917 writel(hc_copy, phba->HCregaddr); 3918 readl(phba->HCregaddr); /* flush */ 3919 } 3920 3921 /** 3922 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3923 * @phba: Pointer to HBA context object. 3924 * 3925 * This function issues a kill_board mailbox command and waits for 3926 * the error attention interrupt. This function is called for stopping 3927 * the firmware processing. The caller is not required to hold any 3928 * locks. This function calls lpfc_hba_down_post function to free 3929 * any pending commands after the kill. The function will return 1 when it 3930 * fails to kill the board else will return 0. 3931 **/ 3932 int 3933 lpfc_sli_brdkill(struct lpfc_hba *phba) 3934 { 3935 struct lpfc_sli *psli; 3936 LPFC_MBOXQ_t *pmb; 3937 uint32_t status; 3938 uint32_t ha_copy; 3939 int retval; 3940 int i = 0; 3941 3942 psli = &phba->sli; 3943 3944 /* Kill HBA */ 3945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3946 "0329 Kill HBA Data: x%x x%x\n", 3947 phba->pport->port_state, psli->sli_flag); 3948 3949 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3950 if (!pmb) 3951 return 1; 3952 3953 /* Disable the error attention */ 3954 spin_lock_irq(&phba->hbalock); 3955 if (lpfc_readl(phba->HCregaddr, &status)) { 3956 spin_unlock_irq(&phba->hbalock); 3957 mempool_free(pmb, phba->mbox_mem_pool); 3958 return 1; 3959 } 3960 status &= ~HC_ERINT_ENA; 3961 writel(status, phba->HCregaddr); 3962 readl(phba->HCregaddr); /* flush */ 3963 phba->link_flag |= LS_IGNORE_ERATT; 3964 spin_unlock_irq(&phba->hbalock); 3965 3966 lpfc_kill_board(phba, pmb); 3967 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3968 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3969 3970 if (retval != MBX_SUCCESS) { 3971 if (retval != MBX_BUSY) 3972 mempool_free(pmb, phba->mbox_mem_pool); 3973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3974 "2752 KILL_BOARD command failed retval %d\n", 3975 retval); 3976 spin_lock_irq(&phba->hbalock); 3977 phba->link_flag &= ~LS_IGNORE_ERATT; 3978 spin_unlock_irq(&phba->hbalock); 3979 return 1; 3980 } 3981 3982 spin_lock_irq(&phba->hbalock); 3983 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3984 spin_unlock_irq(&phba->hbalock); 3985 3986 mempool_free(pmb, phba->mbox_mem_pool); 3987 3988 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3989 * attention every 100ms for 3 seconds. If we don't get ERATT after 3990 * 3 seconds we still set HBA_ERROR state because the status of the 3991 * board is now undefined. 3992 */ 3993 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3994 return 1; 3995 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3996 mdelay(100); 3997 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3998 return 1; 3999 } 4000 4001 del_timer_sync(&psli->mbox_tmo); 4002 if (ha_copy & HA_ERATT) { 4003 writel(HA_ERATT, phba->HAregaddr); 4004 phba->pport->stopped = 1; 4005 } 4006 spin_lock_irq(&phba->hbalock); 4007 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4008 psli->mbox_active = NULL; 4009 phba->link_flag &= ~LS_IGNORE_ERATT; 4010 spin_unlock_irq(&phba->hbalock); 4011 4012 lpfc_hba_down_post(phba); 4013 phba->link_state = LPFC_HBA_ERROR; 4014 4015 return ha_copy & HA_ERATT ? 0 : 1; 4016 } 4017 4018 /** 4019 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4020 * @phba: Pointer to HBA context object. 4021 * 4022 * This function resets the HBA by writing HC_INITFF to the control 4023 * register. After the HBA resets, this function resets all the iocb ring 4024 * indices. This function disables PCI layer parity checking during 4025 * the reset. 4026 * This function returns 0 always. 4027 * The caller is not required to hold any locks. 4028 **/ 4029 int 4030 lpfc_sli_brdreset(struct lpfc_hba *phba) 4031 { 4032 struct lpfc_sli *psli; 4033 struct lpfc_sli_ring *pring; 4034 uint16_t cfg_value; 4035 int i; 4036 4037 psli = &phba->sli; 4038 4039 /* Reset HBA */ 4040 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4041 "0325 Reset HBA Data: x%x x%x\n", 4042 phba->pport->port_state, psli->sli_flag); 4043 4044 /* perform board reset */ 4045 phba->fc_eventTag = 0; 4046 phba->link_events = 0; 4047 phba->pport->fc_myDID = 0; 4048 phba->pport->fc_prevDID = 0; 4049 4050 /* Turn off parity checking and serr during the physical reset */ 4051 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4052 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4053 (cfg_value & 4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4055 4056 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4057 4058 /* Now toggle INITFF bit in the Host Control Register */ 4059 writel(HC_INITFF, phba->HCregaddr); 4060 mdelay(1); 4061 readl(phba->HCregaddr); /* flush */ 4062 writel(0, phba->HCregaddr); 4063 readl(phba->HCregaddr); /* flush */ 4064 4065 /* Restore PCI cmd register */ 4066 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4067 4068 /* Initialize relevant SLI info */ 4069 for (i = 0; i < psli->num_rings; i++) { 4070 pring = &psli->ring[i]; 4071 pring->flag = 0; 4072 pring->sli.sli3.rspidx = 0; 4073 pring->sli.sli3.next_cmdidx = 0; 4074 pring->sli.sli3.local_getidx = 0; 4075 pring->sli.sli3.cmdidx = 0; 4076 pring->missbufcnt = 0; 4077 } 4078 4079 phba->link_state = LPFC_WARM_START; 4080 return 0; 4081 } 4082 4083 /** 4084 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4085 * @phba: Pointer to HBA context object. 4086 * 4087 * This function resets a SLI4 HBA. This function disables PCI layer parity 4088 * checking during resets the device. The caller is not required to hold 4089 * any locks. 4090 * 4091 * This function returns 0 always. 4092 **/ 4093 int 4094 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4095 { 4096 struct lpfc_sli *psli = &phba->sli; 4097 uint16_t cfg_value; 4098 int rc = 0; 4099 4100 /* Reset HBA */ 4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4102 "0295 Reset HBA Data: x%x x%x x%x\n", 4103 phba->pport->port_state, psli->sli_flag, 4104 phba->hba_flag); 4105 4106 /* perform board reset */ 4107 phba->fc_eventTag = 0; 4108 phba->link_events = 0; 4109 phba->pport->fc_myDID = 0; 4110 phba->pport->fc_prevDID = 0; 4111 4112 spin_lock_irq(&phba->hbalock); 4113 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4114 phba->fcf.fcf_flag = 0; 4115 spin_unlock_irq(&phba->hbalock); 4116 4117 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4118 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4119 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4120 return rc; 4121 } 4122 4123 /* Now physically reset the device */ 4124 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4125 "0389 Performing PCI function reset!\n"); 4126 4127 /* Turn off parity checking and serr during the physical reset */ 4128 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4129 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4130 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4131 4132 /* Perform FCoE PCI function reset before freeing queue memory */ 4133 rc = lpfc_pci_function_reset(phba); 4134 lpfc_sli4_queue_destroy(phba); 4135 4136 /* Restore PCI cmd register */ 4137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4138 4139 return rc; 4140 } 4141 4142 /** 4143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4144 * @phba: Pointer to HBA context object. 4145 * 4146 * This function is called in the SLI initialization code path to 4147 * restart the HBA. The caller is not required to hold any lock. 4148 * This function writes MBX_RESTART mailbox command to the SLIM and 4149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4150 * function to free any pending commands. The function enables 4151 * POST only during the first initialization. The function returns zero. 4152 * The function does not guarantee completion of MBX_RESTART mailbox 4153 * command before the return of this function. 4154 **/ 4155 static int 4156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4157 { 4158 MAILBOX_t *mb; 4159 struct lpfc_sli *psli; 4160 volatile uint32_t word0; 4161 void __iomem *to_slim; 4162 uint32_t hba_aer_enabled; 4163 4164 spin_lock_irq(&phba->hbalock); 4165 4166 /* Take PCIe device Advanced Error Reporting (AER) state */ 4167 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4168 4169 psli = &phba->sli; 4170 4171 /* Restart HBA */ 4172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4173 "0337 Restart HBA Data: x%x x%x\n", 4174 phba->pport->port_state, psli->sli_flag); 4175 4176 word0 = 0; 4177 mb = (MAILBOX_t *) &word0; 4178 mb->mbxCommand = MBX_RESTART; 4179 mb->mbxHc = 1; 4180 4181 lpfc_reset_barrier(phba); 4182 4183 to_slim = phba->MBslimaddr; 4184 writel(*(uint32_t *) mb, to_slim); 4185 readl(to_slim); /* flush */ 4186 4187 /* Only skip post after fc_ffinit is completed */ 4188 if (phba->pport->port_state) 4189 word0 = 1; /* This is really setting up word1 */ 4190 else 4191 word0 = 0; /* This is really setting up word1 */ 4192 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4193 writel(*(uint32_t *) mb, to_slim); 4194 readl(to_slim); /* flush */ 4195 4196 lpfc_sli_brdreset(phba); 4197 phba->pport->stopped = 0; 4198 phba->link_state = LPFC_INIT_START; 4199 phba->hba_flag = 0; 4200 spin_unlock_irq(&phba->hbalock); 4201 4202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4203 psli->stats_start = get_seconds(); 4204 4205 /* Give the INITFF and Post time to settle. */ 4206 mdelay(100); 4207 4208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4209 if (hba_aer_enabled) 4210 pci_disable_pcie_error_reporting(phba->pcidev); 4211 4212 lpfc_hba_down_post(phba); 4213 4214 return 0; 4215 } 4216 4217 /** 4218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4219 * @phba: Pointer to HBA context object. 4220 * 4221 * This function is called in the SLI initialization code path to restart 4222 * a SLI4 HBA. The caller is not required to hold any lock. 4223 * At the end of the function, it calls lpfc_hba_down_post function to 4224 * free any pending commands. 4225 **/ 4226 static int 4227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4228 { 4229 struct lpfc_sli *psli = &phba->sli; 4230 uint32_t hba_aer_enabled; 4231 int rc; 4232 4233 /* Restart HBA */ 4234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4235 "0296 Restart HBA Data: x%x x%x\n", 4236 phba->pport->port_state, psli->sli_flag); 4237 4238 /* Take PCIe device Advanced Error Reporting (AER) state */ 4239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4240 4241 rc = lpfc_sli4_brdreset(phba); 4242 4243 spin_lock_irq(&phba->hbalock); 4244 phba->pport->stopped = 0; 4245 phba->link_state = LPFC_INIT_START; 4246 phba->hba_flag = 0; 4247 spin_unlock_irq(&phba->hbalock); 4248 4249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4250 psli->stats_start = get_seconds(); 4251 4252 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4253 if (hba_aer_enabled) 4254 pci_disable_pcie_error_reporting(phba->pcidev); 4255 4256 lpfc_hba_down_post(phba); 4257 4258 return rc; 4259 } 4260 4261 /** 4262 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4263 * @phba: Pointer to HBA context object. 4264 * 4265 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4266 * API jump table function pointer from the lpfc_hba struct. 4267 **/ 4268 int 4269 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4270 { 4271 return phba->lpfc_sli_brdrestart(phba); 4272 } 4273 4274 /** 4275 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4276 * @phba: Pointer to HBA context object. 4277 * 4278 * This function is called after a HBA restart to wait for successful 4279 * restart of the HBA. Successful restart of the HBA is indicated by 4280 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4281 * iteration, the function will restart the HBA again. The function returns 4282 * zero if HBA successfully restarted else returns negative error code. 4283 **/ 4284 static int 4285 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4286 { 4287 uint32_t status, i = 0; 4288 4289 /* Read the HBA Host Status Register */ 4290 if (lpfc_readl(phba->HSregaddr, &status)) 4291 return -EIO; 4292 4293 /* Check status register to see what current state is */ 4294 i = 0; 4295 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4296 4297 /* Check every 10ms for 10 retries, then every 100ms for 90 4298 * retries, then every 1 sec for 50 retires for a total of 4299 * ~60 seconds before reset the board again and check every 4300 * 1 sec for 50 retries. The up to 60 seconds before the 4301 * board ready is required by the Falcon FIPS zeroization 4302 * complete, and any reset the board in between shall cause 4303 * restart of zeroization, further delay the board ready. 4304 */ 4305 if (i++ >= 200) { 4306 /* Adapter failed to init, timeout, status reg 4307 <status> */ 4308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4309 "0436 Adapter failed to init, " 4310 "timeout, status reg x%x, " 4311 "FW Data: A8 x%x AC x%x\n", status, 4312 readl(phba->MBslimaddr + 0xa8), 4313 readl(phba->MBslimaddr + 0xac)); 4314 phba->link_state = LPFC_HBA_ERROR; 4315 return -ETIMEDOUT; 4316 } 4317 4318 /* Check to see if any errors occurred during init */ 4319 if (status & HS_FFERM) { 4320 /* ERROR: During chipset initialization */ 4321 /* Adapter failed to init, chipset, status reg 4322 <status> */ 4323 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4324 "0437 Adapter failed to init, " 4325 "chipset, status reg x%x, " 4326 "FW Data: A8 x%x AC x%x\n", status, 4327 readl(phba->MBslimaddr + 0xa8), 4328 readl(phba->MBslimaddr + 0xac)); 4329 phba->link_state = LPFC_HBA_ERROR; 4330 return -EIO; 4331 } 4332 4333 if (i <= 10) 4334 msleep(10); 4335 else if (i <= 100) 4336 msleep(100); 4337 else 4338 msleep(1000); 4339 4340 if (i == 150) { 4341 /* Do post */ 4342 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4343 lpfc_sli_brdrestart(phba); 4344 } 4345 /* Read the HBA Host Status Register */ 4346 if (lpfc_readl(phba->HSregaddr, &status)) 4347 return -EIO; 4348 } 4349 4350 /* Check to see if any errors occurred during init */ 4351 if (status & HS_FFERM) { 4352 /* ERROR: During chipset initialization */ 4353 /* Adapter failed to init, chipset, status reg <status> */ 4354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4355 "0438 Adapter failed to init, chipset, " 4356 "status reg x%x, " 4357 "FW Data: A8 x%x AC x%x\n", status, 4358 readl(phba->MBslimaddr + 0xa8), 4359 readl(phba->MBslimaddr + 0xac)); 4360 phba->link_state = LPFC_HBA_ERROR; 4361 return -EIO; 4362 } 4363 4364 /* Clear all interrupt enable conditions */ 4365 writel(0, phba->HCregaddr); 4366 readl(phba->HCregaddr); /* flush */ 4367 4368 /* setup host attn register */ 4369 writel(0xffffffff, phba->HAregaddr); 4370 readl(phba->HAregaddr); /* flush */ 4371 return 0; 4372 } 4373 4374 /** 4375 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4376 * 4377 * This function calculates and returns the number of HBQs required to be 4378 * configured. 4379 **/ 4380 int 4381 lpfc_sli_hbq_count(void) 4382 { 4383 return ARRAY_SIZE(lpfc_hbq_defs); 4384 } 4385 4386 /** 4387 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4388 * 4389 * This function adds the number of hbq entries in every HBQ to get 4390 * the total number of hbq entries required for the HBA and returns 4391 * the total count. 4392 **/ 4393 static int 4394 lpfc_sli_hbq_entry_count(void) 4395 { 4396 int hbq_count = lpfc_sli_hbq_count(); 4397 int count = 0; 4398 int i; 4399 4400 for (i = 0; i < hbq_count; ++i) 4401 count += lpfc_hbq_defs[i]->entry_count; 4402 return count; 4403 } 4404 4405 /** 4406 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4407 * 4408 * This function calculates amount of memory required for all hbq entries 4409 * to be configured and returns the total memory required. 4410 **/ 4411 int 4412 lpfc_sli_hbq_size(void) 4413 { 4414 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4415 } 4416 4417 /** 4418 * lpfc_sli_hbq_setup - configure and initialize HBQs 4419 * @phba: Pointer to HBA context object. 4420 * 4421 * This function is called during the SLI initialization to configure 4422 * all the HBQs and post buffers to the HBQ. The caller is not 4423 * required to hold any locks. This function will return zero if successful 4424 * else it will return negative error code. 4425 **/ 4426 static int 4427 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4428 { 4429 int hbq_count = lpfc_sli_hbq_count(); 4430 LPFC_MBOXQ_t *pmb; 4431 MAILBOX_t *pmbox; 4432 uint32_t hbqno; 4433 uint32_t hbq_entry_index; 4434 4435 /* Get a Mailbox buffer to setup mailbox 4436 * commands for HBA initialization 4437 */ 4438 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4439 4440 if (!pmb) 4441 return -ENOMEM; 4442 4443 pmbox = &pmb->u.mb; 4444 4445 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4446 phba->link_state = LPFC_INIT_MBX_CMDS; 4447 phba->hbq_in_use = 1; 4448 4449 hbq_entry_index = 0; 4450 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4451 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4452 phba->hbqs[hbqno].hbqPutIdx = 0; 4453 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4454 phba->hbqs[hbqno].entry_count = 4455 lpfc_hbq_defs[hbqno]->entry_count; 4456 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4457 hbq_entry_index, pmb); 4458 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4459 4460 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4461 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4462 mbxStatus <status>, ring <num> */ 4463 4464 lpfc_printf_log(phba, KERN_ERR, 4465 LOG_SLI | LOG_VPORT, 4466 "1805 Adapter failed to init. " 4467 "Data: x%x x%x x%x\n", 4468 pmbox->mbxCommand, 4469 pmbox->mbxStatus, hbqno); 4470 4471 phba->link_state = LPFC_HBA_ERROR; 4472 mempool_free(pmb, phba->mbox_mem_pool); 4473 return -ENXIO; 4474 } 4475 } 4476 phba->hbq_count = hbq_count; 4477 4478 mempool_free(pmb, phba->mbox_mem_pool); 4479 4480 /* Initially populate or replenish the HBQs */ 4481 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4482 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4483 return 0; 4484 } 4485 4486 /** 4487 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4488 * @phba: Pointer to HBA context object. 4489 * 4490 * This function is called during the SLI initialization to configure 4491 * all the HBQs and post buffers to the HBQ. The caller is not 4492 * required to hold any locks. This function will return zero if successful 4493 * else it will return negative error code. 4494 **/ 4495 static int 4496 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4497 { 4498 phba->hbq_in_use = 1; 4499 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4500 phba->hbq_count = 1; 4501 /* Initially populate or replenish the HBQs */ 4502 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4503 return 0; 4504 } 4505 4506 /** 4507 * lpfc_sli_config_port - Issue config port mailbox command 4508 * @phba: Pointer to HBA context object. 4509 * @sli_mode: sli mode - 2/3 4510 * 4511 * This function is called by the sli intialization code path 4512 * to issue config_port mailbox command. This function restarts the 4513 * HBA firmware and issues a config_port mailbox command to configure 4514 * the SLI interface in the sli mode specified by sli_mode 4515 * variable. The caller is not required to hold any locks. 4516 * The function returns 0 if successful, else returns negative error 4517 * code. 4518 **/ 4519 int 4520 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4521 { 4522 LPFC_MBOXQ_t *pmb; 4523 uint32_t resetcount = 0, rc = 0, done = 0; 4524 4525 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4526 if (!pmb) { 4527 phba->link_state = LPFC_HBA_ERROR; 4528 return -ENOMEM; 4529 } 4530 4531 phba->sli_rev = sli_mode; 4532 while (resetcount < 2 && !done) { 4533 spin_lock_irq(&phba->hbalock); 4534 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4535 spin_unlock_irq(&phba->hbalock); 4536 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4537 lpfc_sli_brdrestart(phba); 4538 rc = lpfc_sli_chipset_init(phba); 4539 if (rc) 4540 break; 4541 4542 spin_lock_irq(&phba->hbalock); 4543 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4544 spin_unlock_irq(&phba->hbalock); 4545 resetcount++; 4546 4547 /* Call pre CONFIG_PORT mailbox command initialization. A 4548 * value of 0 means the call was successful. Any other 4549 * nonzero value is a failure, but if ERESTART is returned, 4550 * the driver may reset the HBA and try again. 4551 */ 4552 rc = lpfc_config_port_prep(phba); 4553 if (rc == -ERESTART) { 4554 phba->link_state = LPFC_LINK_UNKNOWN; 4555 continue; 4556 } else if (rc) 4557 break; 4558 4559 phba->link_state = LPFC_INIT_MBX_CMDS; 4560 lpfc_config_port(phba, pmb); 4561 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4562 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4563 LPFC_SLI3_HBQ_ENABLED | 4564 LPFC_SLI3_CRP_ENABLED | 4565 LPFC_SLI3_BG_ENABLED | 4566 LPFC_SLI3_DSS_ENABLED); 4567 if (rc != MBX_SUCCESS) { 4568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4569 "0442 Adapter failed to init, mbxCmd x%x " 4570 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4571 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4572 spin_lock_irq(&phba->hbalock); 4573 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4574 spin_unlock_irq(&phba->hbalock); 4575 rc = -ENXIO; 4576 } else { 4577 /* Allow asynchronous mailbox command to go through */ 4578 spin_lock_irq(&phba->hbalock); 4579 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4580 spin_unlock_irq(&phba->hbalock); 4581 done = 1; 4582 4583 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4584 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4586 "3110 Port did not grant ASABT\n"); 4587 } 4588 } 4589 if (!done) { 4590 rc = -EINVAL; 4591 goto do_prep_failed; 4592 } 4593 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4594 if (!pmb->u.mb.un.varCfgPort.cMA) { 4595 rc = -ENXIO; 4596 goto do_prep_failed; 4597 } 4598 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4599 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4600 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4601 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4602 phba->max_vpi : phba->max_vports; 4603 4604 } else 4605 phba->max_vpi = 0; 4606 phba->fips_level = 0; 4607 phba->fips_spec_rev = 0; 4608 if (pmb->u.mb.un.varCfgPort.gdss) { 4609 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4610 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4611 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4612 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4613 "2850 Security Crypto Active. FIPS x%d " 4614 "(Spec Rev: x%d)", 4615 phba->fips_level, phba->fips_spec_rev); 4616 } 4617 if (pmb->u.mb.un.varCfgPort.sec_err) { 4618 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4619 "2856 Config Port Security Crypto " 4620 "Error: x%x ", 4621 pmb->u.mb.un.varCfgPort.sec_err); 4622 } 4623 if (pmb->u.mb.un.varCfgPort.gerbm) 4624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4625 if (pmb->u.mb.un.varCfgPort.gcrp) 4626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4627 4628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4629 phba->port_gp = phba->mbox->us.s3_pgp.port; 4630 4631 if (phba->cfg_enable_bg) { 4632 if (pmb->u.mb.un.varCfgPort.gbg) 4633 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4634 else 4635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4636 "0443 Adapter did not grant " 4637 "BlockGuard\n"); 4638 } 4639 } else { 4640 phba->hbq_get = NULL; 4641 phba->port_gp = phba->mbox->us.s2.port; 4642 phba->max_vpi = 0; 4643 } 4644 do_prep_failed: 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 return rc; 4647 } 4648 4649 4650 /** 4651 * lpfc_sli_hba_setup - SLI intialization function 4652 * @phba: Pointer to HBA context object. 4653 * 4654 * This function is the main SLI intialization function. This function 4655 * is called by the HBA intialization code, HBA reset code and HBA 4656 * error attention handler code. Caller is not required to hold any 4657 * locks. This function issues config_port mailbox command to configure 4658 * the SLI, setup iocb rings and HBQ rings. In the end the function 4659 * calls the config_port_post function to issue init_link mailbox 4660 * command and to start the discovery. The function will return zero 4661 * if successful, else it will return negative error code. 4662 **/ 4663 int 4664 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4665 { 4666 uint32_t rc; 4667 int mode = 3, i; 4668 int longs; 4669 4670 switch (phba->cfg_sli_mode) { 4671 case 2: 4672 if (phba->cfg_enable_npiv) { 4673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4674 "1824 NPIV enabled: Override sli_mode " 4675 "parameter (%d) to auto (0).\n", 4676 phba->cfg_sli_mode); 4677 break; 4678 } 4679 mode = 2; 4680 break; 4681 case 0: 4682 case 3: 4683 break; 4684 default: 4685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4686 "1819 Unrecognized sli_mode parameter: %d.\n", 4687 phba->cfg_sli_mode); 4688 4689 break; 4690 } 4691 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4692 4693 rc = lpfc_sli_config_port(phba, mode); 4694 4695 if (rc && phba->cfg_sli_mode == 3) 4696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4697 "1820 Unable to select SLI-3. " 4698 "Not supported by adapter.\n"); 4699 if (rc && mode != 2) 4700 rc = lpfc_sli_config_port(phba, 2); 4701 else if (rc && mode == 2) 4702 rc = lpfc_sli_config_port(phba, 3); 4703 if (rc) 4704 goto lpfc_sli_hba_setup_error; 4705 4706 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4707 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4708 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4709 if (!rc) { 4710 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4711 "2709 This device supports " 4712 "Advanced Error Reporting (AER)\n"); 4713 spin_lock_irq(&phba->hbalock); 4714 phba->hba_flag |= HBA_AER_ENABLED; 4715 spin_unlock_irq(&phba->hbalock); 4716 } else { 4717 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4718 "2708 This device does not support " 4719 "Advanced Error Reporting (AER): %d\n", 4720 rc); 4721 phba->cfg_aer_support = 0; 4722 } 4723 } 4724 4725 if (phba->sli_rev == 3) { 4726 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4727 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4728 } else { 4729 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4730 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4731 phba->sli3_options = 0; 4732 } 4733 4734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4735 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4736 phba->sli_rev, phba->max_vpi); 4737 rc = lpfc_sli_ring_map(phba); 4738 4739 if (rc) 4740 goto lpfc_sli_hba_setup_error; 4741 4742 /* Initialize VPIs. */ 4743 if (phba->sli_rev == LPFC_SLI_REV3) { 4744 /* 4745 * The VPI bitmask and physical ID array are allocated 4746 * and initialized once only - at driver load. A port 4747 * reset doesn't need to reinitialize this memory. 4748 */ 4749 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4750 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4751 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4752 GFP_KERNEL); 4753 if (!phba->vpi_bmask) { 4754 rc = -ENOMEM; 4755 goto lpfc_sli_hba_setup_error; 4756 } 4757 4758 phba->vpi_ids = kzalloc( 4759 (phba->max_vpi+1) * sizeof(uint16_t), 4760 GFP_KERNEL); 4761 if (!phba->vpi_ids) { 4762 kfree(phba->vpi_bmask); 4763 rc = -ENOMEM; 4764 goto lpfc_sli_hba_setup_error; 4765 } 4766 for (i = 0; i < phba->max_vpi; i++) 4767 phba->vpi_ids[i] = i; 4768 } 4769 } 4770 4771 /* Init HBQs */ 4772 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4773 rc = lpfc_sli_hbq_setup(phba); 4774 if (rc) 4775 goto lpfc_sli_hba_setup_error; 4776 } 4777 spin_lock_irq(&phba->hbalock); 4778 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4779 spin_unlock_irq(&phba->hbalock); 4780 4781 rc = lpfc_config_port_post(phba); 4782 if (rc) 4783 goto lpfc_sli_hba_setup_error; 4784 4785 return rc; 4786 4787 lpfc_sli_hba_setup_error: 4788 phba->link_state = LPFC_HBA_ERROR; 4789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4790 "0445 Firmware initialization failed\n"); 4791 return rc; 4792 } 4793 4794 /** 4795 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4796 * @phba: Pointer to HBA context object. 4797 * @mboxq: mailbox pointer. 4798 * This function issue a dump mailbox command to read config region 4799 * 23 and parse the records in the region and populate driver 4800 * data structure. 4801 **/ 4802 static int 4803 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4804 { 4805 LPFC_MBOXQ_t *mboxq; 4806 struct lpfc_dmabuf *mp; 4807 struct lpfc_mqe *mqe; 4808 uint32_t data_length; 4809 int rc; 4810 4811 /* Program the default value of vlan_id and fc_map */ 4812 phba->valid_vlan = 0; 4813 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4814 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4815 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4816 4817 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4818 if (!mboxq) 4819 return -ENOMEM; 4820 4821 mqe = &mboxq->u.mqe; 4822 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4823 rc = -ENOMEM; 4824 goto out_free_mboxq; 4825 } 4826 4827 mp = (struct lpfc_dmabuf *) mboxq->context1; 4828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4829 4830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4831 "(%d):2571 Mailbox cmd x%x Status x%x " 4832 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4833 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4834 "CQ: x%x x%x x%x x%x\n", 4835 mboxq->vport ? mboxq->vport->vpi : 0, 4836 bf_get(lpfc_mqe_command, mqe), 4837 bf_get(lpfc_mqe_status, mqe), 4838 mqe->un.mb_words[0], mqe->un.mb_words[1], 4839 mqe->un.mb_words[2], mqe->un.mb_words[3], 4840 mqe->un.mb_words[4], mqe->un.mb_words[5], 4841 mqe->un.mb_words[6], mqe->un.mb_words[7], 4842 mqe->un.mb_words[8], mqe->un.mb_words[9], 4843 mqe->un.mb_words[10], mqe->un.mb_words[11], 4844 mqe->un.mb_words[12], mqe->un.mb_words[13], 4845 mqe->un.mb_words[14], mqe->un.mb_words[15], 4846 mqe->un.mb_words[16], mqe->un.mb_words[50], 4847 mboxq->mcqe.word0, 4848 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4849 mboxq->mcqe.trailer); 4850 4851 if (rc) { 4852 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4853 kfree(mp); 4854 rc = -EIO; 4855 goto out_free_mboxq; 4856 } 4857 data_length = mqe->un.mb_words[5]; 4858 if (data_length > DMP_RGN23_SIZE) { 4859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4860 kfree(mp); 4861 rc = -EIO; 4862 goto out_free_mboxq; 4863 } 4864 4865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4866 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4867 kfree(mp); 4868 rc = 0; 4869 4870 out_free_mboxq: 4871 mempool_free(mboxq, phba->mbox_mem_pool); 4872 return rc; 4873 } 4874 4875 /** 4876 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4877 * @phba: pointer to lpfc hba data structure. 4878 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4879 * @vpd: pointer to the memory to hold resulting port vpd data. 4880 * @vpd_size: On input, the number of bytes allocated to @vpd. 4881 * On output, the number of data bytes in @vpd. 4882 * 4883 * This routine executes a READ_REV SLI4 mailbox command. In 4884 * addition, this routine gets the port vpd data. 4885 * 4886 * Return codes 4887 * 0 - successful 4888 * -ENOMEM - could not allocated memory. 4889 **/ 4890 static int 4891 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4892 uint8_t *vpd, uint32_t *vpd_size) 4893 { 4894 int rc = 0; 4895 uint32_t dma_size; 4896 struct lpfc_dmabuf *dmabuf; 4897 struct lpfc_mqe *mqe; 4898 4899 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4900 if (!dmabuf) 4901 return -ENOMEM; 4902 4903 /* 4904 * Get a DMA buffer for the vpd data resulting from the READ_REV 4905 * mailbox command. 4906 */ 4907 dma_size = *vpd_size; 4908 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4909 &dmabuf->phys, GFP_KERNEL); 4910 if (!dmabuf->virt) { 4911 kfree(dmabuf); 4912 return -ENOMEM; 4913 } 4914 4915 /* 4916 * The SLI4 implementation of READ_REV conflicts at word1, 4917 * bits 31:16 and SLI4 adds vpd functionality not present 4918 * in SLI3. This code corrects the conflicts. 4919 */ 4920 lpfc_read_rev(phba, mboxq); 4921 mqe = &mboxq->u.mqe; 4922 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4923 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4924 mqe->un.read_rev.word1 &= 0x0000FFFF; 4925 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4926 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4927 4928 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4929 if (rc) { 4930 dma_free_coherent(&phba->pcidev->dev, dma_size, 4931 dmabuf->virt, dmabuf->phys); 4932 kfree(dmabuf); 4933 return -EIO; 4934 } 4935 4936 /* 4937 * The available vpd length cannot be bigger than the 4938 * DMA buffer passed to the port. Catch the less than 4939 * case and update the caller's size. 4940 */ 4941 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4942 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4943 4944 memcpy(vpd, dmabuf->virt, *vpd_size); 4945 4946 dma_free_coherent(&phba->pcidev->dev, dma_size, 4947 dmabuf->virt, dmabuf->phys); 4948 kfree(dmabuf); 4949 return 0; 4950 } 4951 4952 /** 4953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4954 * @phba: pointer to lpfc hba data structure. 4955 * 4956 * This routine retrieves SLI4 device physical port name this PCI function 4957 * is attached to. 4958 * 4959 * Return codes 4960 * 0 - successful 4961 * otherwise - failed to retrieve physical port name 4962 **/ 4963 static int 4964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4965 { 4966 LPFC_MBOXQ_t *mboxq; 4967 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4968 struct lpfc_controller_attribute *cntl_attr; 4969 struct lpfc_mbx_get_port_name *get_port_name; 4970 void *virtaddr = NULL; 4971 uint32_t alloclen, reqlen; 4972 uint32_t shdr_status, shdr_add_status; 4973 union lpfc_sli4_cfg_shdr *shdr; 4974 char cport_name = 0; 4975 int rc; 4976 4977 /* We assume nothing at this point */ 4978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4979 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4980 4981 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4982 if (!mboxq) 4983 return -ENOMEM; 4984 /* obtain link type and link number via READ_CONFIG */ 4985 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4986 lpfc_sli4_read_config(phba); 4987 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4988 goto retrieve_ppname; 4989 4990 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4991 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4992 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4993 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4994 LPFC_SLI4_MBX_NEMBED); 4995 if (alloclen < reqlen) { 4996 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4997 "3084 Allocated DMA memory size (%d) is " 4998 "less than the requested DMA memory size " 4999 "(%d)\n", alloclen, reqlen); 5000 rc = -ENOMEM; 5001 goto out_free_mboxq; 5002 } 5003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5004 virtaddr = mboxq->sge_array->addr[0]; 5005 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5006 shdr = &mbx_cntl_attr->cfg_shdr; 5007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5009 if (shdr_status || shdr_add_status || rc) { 5010 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5011 "3085 Mailbox x%x (x%x/x%x) failed, " 5012 "rc:x%x, status:x%x, add_status:x%x\n", 5013 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5014 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5015 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5016 rc, shdr_status, shdr_add_status); 5017 rc = -ENXIO; 5018 goto out_free_mboxq; 5019 } 5020 cntl_attr = &mbx_cntl_attr->cntl_attr; 5021 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5022 phba->sli4_hba.lnk_info.lnk_tp = 5023 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5024 phba->sli4_hba.lnk_info.lnk_no = 5025 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5026 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5027 "3086 lnk_type:%d, lnk_numb:%d\n", 5028 phba->sli4_hba.lnk_info.lnk_tp, 5029 phba->sli4_hba.lnk_info.lnk_no); 5030 5031 retrieve_ppname: 5032 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5033 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5034 sizeof(struct lpfc_mbx_get_port_name) - 5035 sizeof(struct lpfc_sli4_cfg_mhdr), 5036 LPFC_SLI4_MBX_EMBED); 5037 get_port_name = &mboxq->u.mqe.un.get_port_name; 5038 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5039 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5040 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5041 phba->sli4_hba.lnk_info.lnk_tp); 5042 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5045 if (shdr_status || shdr_add_status || rc) { 5046 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5047 "3087 Mailbox x%x (x%x/x%x) failed: " 5048 "rc:x%x, status:x%x, add_status:x%x\n", 5049 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5050 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5051 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5052 rc, shdr_status, shdr_add_status); 5053 rc = -ENXIO; 5054 goto out_free_mboxq; 5055 } 5056 switch (phba->sli4_hba.lnk_info.lnk_no) { 5057 case LPFC_LINK_NUMBER_0: 5058 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5059 &get_port_name->u.response); 5060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5061 break; 5062 case LPFC_LINK_NUMBER_1: 5063 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5064 &get_port_name->u.response); 5065 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5066 break; 5067 case LPFC_LINK_NUMBER_2: 5068 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5069 &get_port_name->u.response); 5070 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5071 break; 5072 case LPFC_LINK_NUMBER_3: 5073 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5074 &get_port_name->u.response); 5075 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5076 break; 5077 default: 5078 break; 5079 } 5080 5081 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5082 phba->Port[0] = cport_name; 5083 phba->Port[1] = '\0'; 5084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5085 "3091 SLI get port name: %s\n", phba->Port); 5086 } 5087 5088 out_free_mboxq: 5089 if (rc != MBX_TIMEOUT) { 5090 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5091 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5092 else 5093 mempool_free(mboxq, phba->mbox_mem_pool); 5094 } 5095 return rc; 5096 } 5097 5098 /** 5099 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5100 * @phba: pointer to lpfc hba data structure. 5101 * 5102 * This routine is called to explicitly arm the SLI4 device's completion and 5103 * event queues 5104 **/ 5105 static void 5106 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5107 { 5108 int fcp_eqidx; 5109 5110 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5111 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5112 fcp_eqidx = 0; 5113 if (phba->sli4_hba.fcp_cq) { 5114 do { 5115 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5116 LPFC_QUEUE_REARM); 5117 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5118 } 5119 5120 if (phba->cfg_fof) 5121 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5122 5123 if (phba->sli4_hba.hba_eq) { 5124 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5125 fcp_eqidx++) 5126 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5127 LPFC_QUEUE_REARM); 5128 } 5129 5130 if (phba->cfg_fof) 5131 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5132 } 5133 5134 /** 5135 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5136 * @phba: Pointer to HBA context object. 5137 * @type: The resource extent type. 5138 * @extnt_count: buffer to hold port available extent count. 5139 * @extnt_size: buffer to hold element count per extent. 5140 * 5141 * This function calls the port and retrievs the number of available 5142 * extents and their size for a particular extent type. 5143 * 5144 * Returns: 0 if successful. Nonzero otherwise. 5145 **/ 5146 int 5147 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5148 uint16_t *extnt_count, uint16_t *extnt_size) 5149 { 5150 int rc = 0; 5151 uint32_t length; 5152 uint32_t mbox_tmo; 5153 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5154 LPFC_MBOXQ_t *mbox; 5155 5156 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5157 if (!mbox) 5158 return -ENOMEM; 5159 5160 /* Find out how many extents are available for this resource type */ 5161 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5162 sizeof(struct lpfc_sli4_cfg_mhdr)); 5163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5164 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5165 length, LPFC_SLI4_MBX_EMBED); 5166 5167 /* Send an extents count of 0 - the GET doesn't use it. */ 5168 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5169 LPFC_SLI4_MBX_EMBED); 5170 if (unlikely(rc)) { 5171 rc = -EIO; 5172 goto err_exit; 5173 } 5174 5175 if (!phba->sli4_hba.intr_enable) 5176 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5177 else { 5178 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5179 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5180 } 5181 if (unlikely(rc)) { 5182 rc = -EIO; 5183 goto err_exit; 5184 } 5185 5186 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5187 if (bf_get(lpfc_mbox_hdr_status, 5188 &rsrc_info->header.cfg_shdr.response)) { 5189 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5190 "2930 Failed to get resource extents " 5191 "Status 0x%x Add'l Status 0x%x\n", 5192 bf_get(lpfc_mbox_hdr_status, 5193 &rsrc_info->header.cfg_shdr.response), 5194 bf_get(lpfc_mbox_hdr_add_status, 5195 &rsrc_info->header.cfg_shdr.response)); 5196 rc = -EIO; 5197 goto err_exit; 5198 } 5199 5200 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5201 &rsrc_info->u.rsp); 5202 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5203 &rsrc_info->u.rsp); 5204 5205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5206 "3162 Retrieved extents type-%d from port: count:%d, " 5207 "size:%d\n", type, *extnt_count, *extnt_size); 5208 5209 err_exit: 5210 mempool_free(mbox, phba->mbox_mem_pool); 5211 return rc; 5212 } 5213 5214 /** 5215 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5216 * @phba: Pointer to HBA context object. 5217 * @type: The extent type to check. 5218 * 5219 * This function reads the current available extents from the port and checks 5220 * if the extent count or extent size has changed since the last access. 5221 * Callers use this routine post port reset to understand if there is a 5222 * extent reprovisioning requirement. 5223 * 5224 * Returns: 5225 * -Error: error indicates problem. 5226 * 1: Extent count or size has changed. 5227 * 0: No changes. 5228 **/ 5229 static int 5230 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5231 { 5232 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5233 uint16_t size_diff, rsrc_ext_size; 5234 int rc = 0; 5235 struct lpfc_rsrc_blks *rsrc_entry; 5236 struct list_head *rsrc_blk_list = NULL; 5237 5238 size_diff = 0; 5239 curr_ext_cnt = 0; 5240 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5241 &rsrc_ext_cnt, 5242 &rsrc_ext_size); 5243 if (unlikely(rc)) 5244 return -EIO; 5245 5246 switch (type) { 5247 case LPFC_RSC_TYPE_FCOE_RPI: 5248 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5249 break; 5250 case LPFC_RSC_TYPE_FCOE_VPI: 5251 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5252 break; 5253 case LPFC_RSC_TYPE_FCOE_XRI: 5254 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5255 break; 5256 case LPFC_RSC_TYPE_FCOE_VFI: 5257 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5258 break; 5259 default: 5260 break; 5261 } 5262 5263 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5264 curr_ext_cnt++; 5265 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5266 size_diff++; 5267 } 5268 5269 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5270 rc = 1; 5271 5272 return rc; 5273 } 5274 5275 /** 5276 * lpfc_sli4_cfg_post_extnts - 5277 * @phba: Pointer to HBA context object. 5278 * @extnt_cnt - number of available extents. 5279 * @type - the extent type (rpi, xri, vfi, vpi). 5280 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5281 * @mbox - pointer to the caller's allocated mailbox structure. 5282 * 5283 * This function executes the extents allocation request. It also 5284 * takes care of the amount of memory needed to allocate or get the 5285 * allocated extents. It is the caller's responsibility to evaluate 5286 * the response. 5287 * 5288 * Returns: 5289 * -Error: Error value describes the condition found. 5290 * 0: if successful 5291 **/ 5292 static int 5293 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5294 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5295 { 5296 int rc = 0; 5297 uint32_t req_len; 5298 uint32_t emb_len; 5299 uint32_t alloc_len, mbox_tmo; 5300 5301 /* Calculate the total requested length of the dma memory */ 5302 req_len = extnt_cnt * sizeof(uint16_t); 5303 5304 /* 5305 * Calculate the size of an embedded mailbox. The uint32_t 5306 * accounts for extents-specific word. 5307 */ 5308 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5309 sizeof(uint32_t); 5310 5311 /* 5312 * Presume the allocation and response will fit into an embedded 5313 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5314 */ 5315 *emb = LPFC_SLI4_MBX_EMBED; 5316 if (req_len > emb_len) { 5317 req_len = extnt_cnt * sizeof(uint16_t) + 5318 sizeof(union lpfc_sli4_cfg_shdr) + 5319 sizeof(uint32_t); 5320 *emb = LPFC_SLI4_MBX_NEMBED; 5321 } 5322 5323 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5324 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5325 req_len, *emb); 5326 if (alloc_len < req_len) { 5327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5328 "2982 Allocated DMA memory size (x%x) is " 5329 "less than the requested DMA memory " 5330 "size (x%x)\n", alloc_len, req_len); 5331 return -ENOMEM; 5332 } 5333 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5334 if (unlikely(rc)) 5335 return -EIO; 5336 5337 if (!phba->sli4_hba.intr_enable) 5338 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5339 else { 5340 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5341 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5342 } 5343 5344 if (unlikely(rc)) 5345 rc = -EIO; 5346 return rc; 5347 } 5348 5349 /** 5350 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5351 * @phba: Pointer to HBA context object. 5352 * @type: The resource extent type to allocate. 5353 * 5354 * This function allocates the number of elements for the specified 5355 * resource type. 5356 **/ 5357 static int 5358 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5359 { 5360 bool emb = false; 5361 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5362 uint16_t rsrc_id, rsrc_start, j, k; 5363 uint16_t *ids; 5364 int i, rc; 5365 unsigned long longs; 5366 unsigned long *bmask; 5367 struct lpfc_rsrc_blks *rsrc_blks; 5368 LPFC_MBOXQ_t *mbox; 5369 uint32_t length; 5370 struct lpfc_id_range *id_array = NULL; 5371 void *virtaddr = NULL; 5372 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5373 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5374 struct list_head *ext_blk_list; 5375 5376 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5377 &rsrc_cnt, 5378 &rsrc_size); 5379 if (unlikely(rc)) 5380 return -EIO; 5381 5382 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5383 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5384 "3009 No available Resource Extents " 5385 "for resource type 0x%x: Count: 0x%x, " 5386 "Size 0x%x\n", type, rsrc_cnt, 5387 rsrc_size); 5388 return -ENOMEM; 5389 } 5390 5391 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5392 "2903 Post resource extents type-0x%x: " 5393 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5394 5395 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5396 if (!mbox) 5397 return -ENOMEM; 5398 5399 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5400 if (unlikely(rc)) { 5401 rc = -EIO; 5402 goto err_exit; 5403 } 5404 5405 /* 5406 * Figure out where the response is located. Then get local pointers 5407 * to the response data. The port does not guarantee to respond to 5408 * all extents counts request so update the local variable with the 5409 * allocated count from the port. 5410 */ 5411 if (emb == LPFC_SLI4_MBX_EMBED) { 5412 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5413 id_array = &rsrc_ext->u.rsp.id[0]; 5414 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5415 } else { 5416 virtaddr = mbox->sge_array->addr[0]; 5417 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5418 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5419 id_array = &n_rsrc->id; 5420 } 5421 5422 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5423 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5424 5425 /* 5426 * Based on the resource size and count, correct the base and max 5427 * resource values. 5428 */ 5429 length = sizeof(struct lpfc_rsrc_blks); 5430 switch (type) { 5431 case LPFC_RSC_TYPE_FCOE_RPI: 5432 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5433 sizeof(unsigned long), 5434 GFP_KERNEL); 5435 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5436 rc = -ENOMEM; 5437 goto err_exit; 5438 } 5439 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5440 sizeof(uint16_t), 5441 GFP_KERNEL); 5442 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5443 kfree(phba->sli4_hba.rpi_bmask); 5444 rc = -ENOMEM; 5445 goto err_exit; 5446 } 5447 5448 /* 5449 * The next_rpi was initialized with the maximum available 5450 * count but the port may allocate a smaller number. Catch 5451 * that case and update the next_rpi. 5452 */ 5453 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5454 5455 /* Initialize local ptrs for common extent processing later. */ 5456 bmask = phba->sli4_hba.rpi_bmask; 5457 ids = phba->sli4_hba.rpi_ids; 5458 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5459 break; 5460 case LPFC_RSC_TYPE_FCOE_VPI: 5461 phba->vpi_bmask = kzalloc(longs * 5462 sizeof(unsigned long), 5463 GFP_KERNEL); 5464 if (unlikely(!phba->vpi_bmask)) { 5465 rc = -ENOMEM; 5466 goto err_exit; 5467 } 5468 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5469 sizeof(uint16_t), 5470 GFP_KERNEL); 5471 if (unlikely(!phba->vpi_ids)) { 5472 kfree(phba->vpi_bmask); 5473 rc = -ENOMEM; 5474 goto err_exit; 5475 } 5476 5477 /* Initialize local ptrs for common extent processing later. */ 5478 bmask = phba->vpi_bmask; 5479 ids = phba->vpi_ids; 5480 ext_blk_list = &phba->lpfc_vpi_blk_list; 5481 break; 5482 case LPFC_RSC_TYPE_FCOE_XRI: 5483 phba->sli4_hba.xri_bmask = kzalloc(longs * 5484 sizeof(unsigned long), 5485 GFP_KERNEL); 5486 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5487 rc = -ENOMEM; 5488 goto err_exit; 5489 } 5490 phba->sli4_hba.max_cfg_param.xri_used = 0; 5491 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5492 sizeof(uint16_t), 5493 GFP_KERNEL); 5494 if (unlikely(!phba->sli4_hba.xri_ids)) { 5495 kfree(phba->sli4_hba.xri_bmask); 5496 rc = -ENOMEM; 5497 goto err_exit; 5498 } 5499 5500 /* Initialize local ptrs for common extent processing later. */ 5501 bmask = phba->sli4_hba.xri_bmask; 5502 ids = phba->sli4_hba.xri_ids; 5503 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5504 break; 5505 case LPFC_RSC_TYPE_FCOE_VFI: 5506 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5507 sizeof(unsigned long), 5508 GFP_KERNEL); 5509 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5510 rc = -ENOMEM; 5511 goto err_exit; 5512 } 5513 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5514 sizeof(uint16_t), 5515 GFP_KERNEL); 5516 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5517 kfree(phba->sli4_hba.vfi_bmask); 5518 rc = -ENOMEM; 5519 goto err_exit; 5520 } 5521 5522 /* Initialize local ptrs for common extent processing later. */ 5523 bmask = phba->sli4_hba.vfi_bmask; 5524 ids = phba->sli4_hba.vfi_ids; 5525 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5526 break; 5527 default: 5528 /* Unsupported Opcode. Fail call. */ 5529 id_array = NULL; 5530 bmask = NULL; 5531 ids = NULL; 5532 ext_blk_list = NULL; 5533 goto err_exit; 5534 } 5535 5536 /* 5537 * Complete initializing the extent configuration with the 5538 * allocated ids assigned to this function. The bitmask serves 5539 * as an index into the array and manages the available ids. The 5540 * array just stores the ids communicated to the port via the wqes. 5541 */ 5542 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5543 if ((i % 2) == 0) 5544 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5545 &id_array[k]); 5546 else 5547 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5548 &id_array[k]); 5549 5550 rsrc_blks = kzalloc(length, GFP_KERNEL); 5551 if (unlikely(!rsrc_blks)) { 5552 rc = -ENOMEM; 5553 kfree(bmask); 5554 kfree(ids); 5555 goto err_exit; 5556 } 5557 rsrc_blks->rsrc_start = rsrc_id; 5558 rsrc_blks->rsrc_size = rsrc_size; 5559 list_add_tail(&rsrc_blks->list, ext_blk_list); 5560 rsrc_start = rsrc_id; 5561 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5562 phba->sli4_hba.scsi_xri_start = rsrc_start + 5563 lpfc_sli4_get_els_iocb_cnt(phba); 5564 5565 while (rsrc_id < (rsrc_start + rsrc_size)) { 5566 ids[j] = rsrc_id; 5567 rsrc_id++; 5568 j++; 5569 } 5570 /* Entire word processed. Get next word.*/ 5571 if ((i % 2) == 1) 5572 k++; 5573 } 5574 err_exit: 5575 lpfc_sli4_mbox_cmd_free(phba, mbox); 5576 return rc; 5577 } 5578 5579 /** 5580 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5581 * @phba: Pointer to HBA context object. 5582 * @type: the extent's type. 5583 * 5584 * This function deallocates all extents of a particular resource type. 5585 * SLI4 does not allow for deallocating a particular extent range. It 5586 * is the caller's responsibility to release all kernel memory resources. 5587 **/ 5588 static int 5589 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5590 { 5591 int rc; 5592 uint32_t length, mbox_tmo = 0; 5593 LPFC_MBOXQ_t *mbox; 5594 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5595 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5596 5597 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5598 if (!mbox) 5599 return -ENOMEM; 5600 5601 /* 5602 * This function sends an embedded mailbox because it only sends the 5603 * the resource type. All extents of this type are released by the 5604 * port. 5605 */ 5606 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5607 sizeof(struct lpfc_sli4_cfg_mhdr)); 5608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5609 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5610 length, LPFC_SLI4_MBX_EMBED); 5611 5612 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5613 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5614 LPFC_SLI4_MBX_EMBED); 5615 if (unlikely(rc)) { 5616 rc = -EIO; 5617 goto out_free_mbox; 5618 } 5619 if (!phba->sli4_hba.intr_enable) 5620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5621 else { 5622 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5623 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5624 } 5625 if (unlikely(rc)) { 5626 rc = -EIO; 5627 goto out_free_mbox; 5628 } 5629 5630 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5631 if (bf_get(lpfc_mbox_hdr_status, 5632 &dealloc_rsrc->header.cfg_shdr.response)) { 5633 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5634 "2919 Failed to release resource extents " 5635 "for type %d - Status 0x%x Add'l Status 0x%x. " 5636 "Resource memory not released.\n", 5637 type, 5638 bf_get(lpfc_mbox_hdr_status, 5639 &dealloc_rsrc->header.cfg_shdr.response), 5640 bf_get(lpfc_mbox_hdr_add_status, 5641 &dealloc_rsrc->header.cfg_shdr.response)); 5642 rc = -EIO; 5643 goto out_free_mbox; 5644 } 5645 5646 /* Release kernel memory resources for the specific type. */ 5647 switch (type) { 5648 case LPFC_RSC_TYPE_FCOE_VPI: 5649 kfree(phba->vpi_bmask); 5650 kfree(phba->vpi_ids); 5651 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5652 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5653 &phba->lpfc_vpi_blk_list, list) { 5654 list_del_init(&rsrc_blk->list); 5655 kfree(rsrc_blk); 5656 } 5657 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5658 break; 5659 case LPFC_RSC_TYPE_FCOE_XRI: 5660 kfree(phba->sli4_hba.xri_bmask); 5661 kfree(phba->sli4_hba.xri_ids); 5662 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5663 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5664 list_del_init(&rsrc_blk->list); 5665 kfree(rsrc_blk); 5666 } 5667 break; 5668 case LPFC_RSC_TYPE_FCOE_VFI: 5669 kfree(phba->sli4_hba.vfi_bmask); 5670 kfree(phba->sli4_hba.vfi_ids); 5671 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5672 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5673 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5674 list_del_init(&rsrc_blk->list); 5675 kfree(rsrc_blk); 5676 } 5677 break; 5678 case LPFC_RSC_TYPE_FCOE_RPI: 5679 /* RPI bitmask and physical id array are cleaned up earlier. */ 5680 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5681 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5682 list_del_init(&rsrc_blk->list); 5683 kfree(rsrc_blk); 5684 } 5685 break; 5686 default: 5687 break; 5688 } 5689 5690 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5691 5692 out_free_mbox: 5693 mempool_free(mbox, phba->mbox_mem_pool); 5694 return rc; 5695 } 5696 5697 static void 5698 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5699 uint32_t feature) 5700 { 5701 uint32_t len; 5702 5703 len = sizeof(struct lpfc_mbx_set_feature) - 5704 sizeof(struct lpfc_sli4_cfg_mhdr); 5705 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5706 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5707 LPFC_SLI4_MBX_EMBED); 5708 5709 switch (feature) { 5710 case LPFC_SET_UE_RECOVERY: 5711 bf_set(lpfc_mbx_set_feature_UER, 5712 &mbox->u.mqe.un.set_feature, 1); 5713 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5714 mbox->u.mqe.un.set_feature.param_len = 8; 5715 break; 5716 case LPFC_SET_MDS_DIAGS: 5717 bf_set(lpfc_mbx_set_feature_mds, 5718 &mbox->u.mqe.un.set_feature, 1); 5719 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5720 &mbox->u.mqe.un.set_feature, 0); 5721 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5722 mbox->u.mqe.un.set_feature.param_len = 8; 5723 break; 5724 } 5725 5726 return; 5727 } 5728 5729 /** 5730 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5731 * @phba: Pointer to HBA context object. 5732 * 5733 * This function allocates all SLI4 resource identifiers. 5734 **/ 5735 int 5736 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5737 { 5738 int i, rc, error = 0; 5739 uint16_t count, base; 5740 unsigned long longs; 5741 5742 if (!phba->sli4_hba.rpi_hdrs_in_use) 5743 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5744 if (phba->sli4_hba.extents_in_use) { 5745 /* 5746 * The port supports resource extents. The XRI, VPI, VFI, RPI 5747 * resource extent count must be read and allocated before 5748 * provisioning the resource id arrays. 5749 */ 5750 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5751 LPFC_IDX_RSRC_RDY) { 5752 /* 5753 * Extent-based resources are set - the driver could 5754 * be in a port reset. Figure out if any corrective 5755 * actions need to be taken. 5756 */ 5757 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5758 LPFC_RSC_TYPE_FCOE_VFI); 5759 if (rc != 0) 5760 error++; 5761 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5762 LPFC_RSC_TYPE_FCOE_VPI); 5763 if (rc != 0) 5764 error++; 5765 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5766 LPFC_RSC_TYPE_FCOE_XRI); 5767 if (rc != 0) 5768 error++; 5769 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5770 LPFC_RSC_TYPE_FCOE_RPI); 5771 if (rc != 0) 5772 error++; 5773 5774 /* 5775 * It's possible that the number of resources 5776 * provided to this port instance changed between 5777 * resets. Detect this condition and reallocate 5778 * resources. Otherwise, there is no action. 5779 */ 5780 if (error) { 5781 lpfc_printf_log(phba, KERN_INFO, 5782 LOG_MBOX | LOG_INIT, 5783 "2931 Detected extent resource " 5784 "change. Reallocating all " 5785 "extents.\n"); 5786 rc = lpfc_sli4_dealloc_extent(phba, 5787 LPFC_RSC_TYPE_FCOE_VFI); 5788 rc = lpfc_sli4_dealloc_extent(phba, 5789 LPFC_RSC_TYPE_FCOE_VPI); 5790 rc = lpfc_sli4_dealloc_extent(phba, 5791 LPFC_RSC_TYPE_FCOE_XRI); 5792 rc = lpfc_sli4_dealloc_extent(phba, 5793 LPFC_RSC_TYPE_FCOE_RPI); 5794 } else 5795 return 0; 5796 } 5797 5798 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5799 if (unlikely(rc)) 5800 goto err_exit; 5801 5802 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5803 if (unlikely(rc)) 5804 goto err_exit; 5805 5806 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5807 if (unlikely(rc)) 5808 goto err_exit; 5809 5810 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5811 if (unlikely(rc)) 5812 goto err_exit; 5813 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5814 LPFC_IDX_RSRC_RDY); 5815 return rc; 5816 } else { 5817 /* 5818 * The port does not support resource extents. The XRI, VPI, 5819 * VFI, RPI resource ids were determined from READ_CONFIG. 5820 * Just allocate the bitmasks and provision the resource id 5821 * arrays. If a port reset is active, the resources don't 5822 * need any action - just exit. 5823 */ 5824 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5825 LPFC_IDX_RSRC_RDY) { 5826 lpfc_sli4_dealloc_resource_identifiers(phba); 5827 lpfc_sli4_remove_rpis(phba); 5828 } 5829 /* RPIs. */ 5830 count = phba->sli4_hba.max_cfg_param.max_rpi; 5831 if (count <= 0) { 5832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5833 "3279 Invalid provisioning of " 5834 "rpi:%d\n", count); 5835 rc = -EINVAL; 5836 goto err_exit; 5837 } 5838 base = phba->sli4_hba.max_cfg_param.rpi_base; 5839 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5840 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5841 sizeof(unsigned long), 5842 GFP_KERNEL); 5843 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5844 rc = -ENOMEM; 5845 goto err_exit; 5846 } 5847 phba->sli4_hba.rpi_ids = kzalloc(count * 5848 sizeof(uint16_t), 5849 GFP_KERNEL); 5850 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5851 rc = -ENOMEM; 5852 goto free_rpi_bmask; 5853 } 5854 5855 for (i = 0; i < count; i++) 5856 phba->sli4_hba.rpi_ids[i] = base + i; 5857 5858 /* VPIs. */ 5859 count = phba->sli4_hba.max_cfg_param.max_vpi; 5860 if (count <= 0) { 5861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5862 "3280 Invalid provisioning of " 5863 "vpi:%d\n", count); 5864 rc = -EINVAL; 5865 goto free_rpi_ids; 5866 } 5867 base = phba->sli4_hba.max_cfg_param.vpi_base; 5868 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5869 phba->vpi_bmask = kzalloc(longs * 5870 sizeof(unsigned long), 5871 GFP_KERNEL); 5872 if (unlikely(!phba->vpi_bmask)) { 5873 rc = -ENOMEM; 5874 goto free_rpi_ids; 5875 } 5876 phba->vpi_ids = kzalloc(count * 5877 sizeof(uint16_t), 5878 GFP_KERNEL); 5879 if (unlikely(!phba->vpi_ids)) { 5880 rc = -ENOMEM; 5881 goto free_vpi_bmask; 5882 } 5883 5884 for (i = 0; i < count; i++) 5885 phba->vpi_ids[i] = base + i; 5886 5887 /* XRIs. */ 5888 count = phba->sli4_hba.max_cfg_param.max_xri; 5889 if (count <= 0) { 5890 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5891 "3281 Invalid provisioning of " 5892 "xri:%d\n", count); 5893 rc = -EINVAL; 5894 goto free_vpi_ids; 5895 } 5896 base = phba->sli4_hba.max_cfg_param.xri_base; 5897 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5898 phba->sli4_hba.xri_bmask = kzalloc(longs * 5899 sizeof(unsigned long), 5900 GFP_KERNEL); 5901 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5902 rc = -ENOMEM; 5903 goto free_vpi_ids; 5904 } 5905 phba->sli4_hba.max_cfg_param.xri_used = 0; 5906 phba->sli4_hba.xri_ids = kzalloc(count * 5907 sizeof(uint16_t), 5908 GFP_KERNEL); 5909 if (unlikely(!phba->sli4_hba.xri_ids)) { 5910 rc = -ENOMEM; 5911 goto free_xri_bmask; 5912 } 5913 5914 for (i = 0; i < count; i++) 5915 phba->sli4_hba.xri_ids[i] = base + i; 5916 5917 /* VFIs. */ 5918 count = phba->sli4_hba.max_cfg_param.max_vfi; 5919 if (count <= 0) { 5920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5921 "3282 Invalid provisioning of " 5922 "vfi:%d\n", count); 5923 rc = -EINVAL; 5924 goto free_xri_ids; 5925 } 5926 base = phba->sli4_hba.max_cfg_param.vfi_base; 5927 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5928 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5929 sizeof(unsigned long), 5930 GFP_KERNEL); 5931 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5932 rc = -ENOMEM; 5933 goto free_xri_ids; 5934 } 5935 phba->sli4_hba.vfi_ids = kzalloc(count * 5936 sizeof(uint16_t), 5937 GFP_KERNEL); 5938 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5939 rc = -ENOMEM; 5940 goto free_vfi_bmask; 5941 } 5942 5943 for (i = 0; i < count; i++) 5944 phba->sli4_hba.vfi_ids[i] = base + i; 5945 5946 /* 5947 * Mark all resources ready. An HBA reset doesn't need 5948 * to reset the initialization. 5949 */ 5950 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5951 LPFC_IDX_RSRC_RDY); 5952 return 0; 5953 } 5954 5955 free_vfi_bmask: 5956 kfree(phba->sli4_hba.vfi_bmask); 5957 free_xri_ids: 5958 kfree(phba->sli4_hba.xri_ids); 5959 free_xri_bmask: 5960 kfree(phba->sli4_hba.xri_bmask); 5961 free_vpi_ids: 5962 kfree(phba->vpi_ids); 5963 free_vpi_bmask: 5964 kfree(phba->vpi_bmask); 5965 free_rpi_ids: 5966 kfree(phba->sli4_hba.rpi_ids); 5967 free_rpi_bmask: 5968 kfree(phba->sli4_hba.rpi_bmask); 5969 err_exit: 5970 return rc; 5971 } 5972 5973 /** 5974 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5975 * @phba: Pointer to HBA context object. 5976 * 5977 * This function allocates the number of elements for the specified 5978 * resource type. 5979 **/ 5980 int 5981 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5982 { 5983 if (phba->sli4_hba.extents_in_use) { 5984 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5985 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5986 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5987 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5988 } else { 5989 kfree(phba->vpi_bmask); 5990 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5991 kfree(phba->vpi_ids); 5992 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5993 kfree(phba->sli4_hba.xri_bmask); 5994 kfree(phba->sli4_hba.xri_ids); 5995 kfree(phba->sli4_hba.vfi_bmask); 5996 kfree(phba->sli4_hba.vfi_ids); 5997 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5998 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5999 } 6000 6001 return 0; 6002 } 6003 6004 /** 6005 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6006 * @phba: Pointer to HBA context object. 6007 * @type: The resource extent type. 6008 * @extnt_count: buffer to hold port extent count response 6009 * @extnt_size: buffer to hold port extent size response. 6010 * 6011 * This function calls the port to read the host allocated extents 6012 * for a particular type. 6013 **/ 6014 int 6015 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6016 uint16_t *extnt_cnt, uint16_t *extnt_size) 6017 { 6018 bool emb; 6019 int rc = 0; 6020 uint16_t curr_blks = 0; 6021 uint32_t req_len, emb_len; 6022 uint32_t alloc_len, mbox_tmo; 6023 struct list_head *blk_list_head; 6024 struct lpfc_rsrc_blks *rsrc_blk; 6025 LPFC_MBOXQ_t *mbox; 6026 void *virtaddr = NULL; 6027 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6028 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6029 union lpfc_sli4_cfg_shdr *shdr; 6030 6031 switch (type) { 6032 case LPFC_RSC_TYPE_FCOE_VPI: 6033 blk_list_head = &phba->lpfc_vpi_blk_list; 6034 break; 6035 case LPFC_RSC_TYPE_FCOE_XRI: 6036 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6037 break; 6038 case LPFC_RSC_TYPE_FCOE_VFI: 6039 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6040 break; 6041 case LPFC_RSC_TYPE_FCOE_RPI: 6042 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6043 break; 6044 default: 6045 return -EIO; 6046 } 6047 6048 /* Count the number of extents currently allocatd for this type. */ 6049 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6050 if (curr_blks == 0) { 6051 /* 6052 * The GET_ALLOCATED mailbox does not return the size, 6053 * just the count. The size should be just the size 6054 * stored in the current allocated block and all sizes 6055 * for an extent type are the same so set the return 6056 * value now. 6057 */ 6058 *extnt_size = rsrc_blk->rsrc_size; 6059 } 6060 curr_blks++; 6061 } 6062 6063 /* 6064 * Calculate the size of an embedded mailbox. The uint32_t 6065 * accounts for extents-specific word. 6066 */ 6067 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6068 sizeof(uint32_t); 6069 6070 /* 6071 * Presume the allocation and response will fit into an embedded 6072 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6073 */ 6074 emb = LPFC_SLI4_MBX_EMBED; 6075 req_len = emb_len; 6076 if (req_len > emb_len) { 6077 req_len = curr_blks * sizeof(uint16_t) + 6078 sizeof(union lpfc_sli4_cfg_shdr) + 6079 sizeof(uint32_t); 6080 emb = LPFC_SLI4_MBX_NEMBED; 6081 } 6082 6083 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6084 if (!mbox) 6085 return -ENOMEM; 6086 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6087 6088 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6089 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6090 req_len, emb); 6091 if (alloc_len < req_len) { 6092 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6093 "2983 Allocated DMA memory size (x%x) is " 6094 "less than the requested DMA memory " 6095 "size (x%x)\n", alloc_len, req_len); 6096 rc = -ENOMEM; 6097 goto err_exit; 6098 } 6099 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6100 if (unlikely(rc)) { 6101 rc = -EIO; 6102 goto err_exit; 6103 } 6104 6105 if (!phba->sli4_hba.intr_enable) 6106 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6107 else { 6108 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6109 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6110 } 6111 6112 if (unlikely(rc)) { 6113 rc = -EIO; 6114 goto err_exit; 6115 } 6116 6117 /* 6118 * Figure out where the response is located. Then get local pointers 6119 * to the response data. The port does not guarantee to respond to 6120 * all extents counts request so update the local variable with the 6121 * allocated count from the port. 6122 */ 6123 if (emb == LPFC_SLI4_MBX_EMBED) { 6124 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6125 shdr = &rsrc_ext->header.cfg_shdr; 6126 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6127 } else { 6128 virtaddr = mbox->sge_array->addr[0]; 6129 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6130 shdr = &n_rsrc->cfg_shdr; 6131 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6132 } 6133 6134 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6135 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6136 "2984 Failed to read allocated resources " 6137 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6138 type, 6139 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6140 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6141 rc = -EIO; 6142 goto err_exit; 6143 } 6144 err_exit: 6145 lpfc_sli4_mbox_cmd_free(phba, mbox); 6146 return rc; 6147 } 6148 6149 /** 6150 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6151 * @phba: pointer to lpfc hba data structure. 6152 * 6153 * This routine walks the list of els buffers that have been allocated and 6154 * repost them to the port by using SGL block post. This is needed after a 6155 * pci_function_reset/warm_start or start. It attempts to construct blocks 6156 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6157 * SGL block post mailbox commands to post them to the port. For single els 6158 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6159 * mailbox command for posting. 6160 * 6161 * Returns: 0 = success, non-zero failure. 6162 **/ 6163 static int 6164 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6165 { 6166 struct lpfc_sglq *sglq_entry = NULL; 6167 struct lpfc_sglq *sglq_entry_next = NULL; 6168 struct lpfc_sglq *sglq_entry_first = NULL; 6169 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6170 int last_xritag = NO_XRI; 6171 struct lpfc_sli_ring *pring; 6172 LIST_HEAD(prep_sgl_list); 6173 LIST_HEAD(blck_sgl_list); 6174 LIST_HEAD(allc_sgl_list); 6175 LIST_HEAD(post_sgl_list); 6176 LIST_HEAD(free_sgl_list); 6177 6178 pring = &phba->sli.ring[LPFC_ELS_RING]; 6179 spin_lock_irq(&phba->hbalock); 6180 spin_lock(&pring->ring_lock); 6181 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6182 spin_unlock(&pring->ring_lock); 6183 spin_unlock_irq(&phba->hbalock); 6184 6185 total_cnt = phba->sli4_hba.els_xri_cnt; 6186 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6187 &allc_sgl_list, list) { 6188 list_del_init(&sglq_entry->list); 6189 block_cnt++; 6190 if ((last_xritag != NO_XRI) && 6191 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6192 /* a hole in xri block, form a sgl posting block */ 6193 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6194 post_cnt = block_cnt - 1; 6195 /* prepare list for next posting block */ 6196 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6197 block_cnt = 1; 6198 } else { 6199 /* prepare list for next posting block */ 6200 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6201 /* enough sgls for non-embed sgl mbox command */ 6202 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6203 list_splice_init(&prep_sgl_list, 6204 &blck_sgl_list); 6205 post_cnt = block_cnt; 6206 block_cnt = 0; 6207 } 6208 } 6209 num_posted++; 6210 6211 /* keep track of last sgl's xritag */ 6212 last_xritag = sglq_entry->sli4_xritag; 6213 6214 /* end of repost sgl list condition for els buffers */ 6215 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6216 if (post_cnt == 0) { 6217 list_splice_init(&prep_sgl_list, 6218 &blck_sgl_list); 6219 post_cnt = block_cnt; 6220 } else if (block_cnt == 1) { 6221 status = lpfc_sli4_post_sgl(phba, 6222 sglq_entry->phys, 0, 6223 sglq_entry->sli4_xritag); 6224 if (!status) { 6225 /* successful, put sgl to posted list */ 6226 list_add_tail(&sglq_entry->list, 6227 &post_sgl_list); 6228 } else { 6229 /* Failure, put sgl to free list */ 6230 lpfc_printf_log(phba, KERN_WARNING, 6231 LOG_SLI, 6232 "3159 Failed to post els " 6233 "sgl, xritag:x%x\n", 6234 sglq_entry->sli4_xritag); 6235 list_add_tail(&sglq_entry->list, 6236 &free_sgl_list); 6237 total_cnt--; 6238 } 6239 } 6240 } 6241 6242 /* continue until a nembed page worth of sgls */ 6243 if (post_cnt == 0) 6244 continue; 6245 6246 /* post the els buffer list sgls as a block */ 6247 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6248 post_cnt); 6249 6250 if (!status) { 6251 /* success, put sgl list to posted sgl list */ 6252 list_splice_init(&blck_sgl_list, &post_sgl_list); 6253 } else { 6254 /* Failure, put sgl list to free sgl list */ 6255 sglq_entry_first = list_first_entry(&blck_sgl_list, 6256 struct lpfc_sglq, 6257 list); 6258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6259 "3160 Failed to post els sgl-list, " 6260 "xritag:x%x-x%x\n", 6261 sglq_entry_first->sli4_xritag, 6262 (sglq_entry_first->sli4_xritag + 6263 post_cnt - 1)); 6264 list_splice_init(&blck_sgl_list, &free_sgl_list); 6265 total_cnt -= post_cnt; 6266 } 6267 6268 /* don't reset xirtag due to hole in xri block */ 6269 if (block_cnt == 0) 6270 last_xritag = NO_XRI; 6271 6272 /* reset els sgl post count for next round of posting */ 6273 post_cnt = 0; 6274 } 6275 /* update the number of XRIs posted for ELS */ 6276 phba->sli4_hba.els_xri_cnt = total_cnt; 6277 6278 /* free the els sgls failed to post */ 6279 lpfc_free_sgl_list(phba, &free_sgl_list); 6280 6281 /* push els sgls posted to the availble list */ 6282 if (!list_empty(&post_sgl_list)) { 6283 spin_lock_irq(&phba->hbalock); 6284 spin_lock(&pring->ring_lock); 6285 list_splice_init(&post_sgl_list, 6286 &phba->sli4_hba.lpfc_sgl_list); 6287 spin_unlock(&pring->ring_lock); 6288 spin_unlock_irq(&phba->hbalock); 6289 } else { 6290 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6291 "3161 Failure to post els sgl to port.\n"); 6292 return -EIO; 6293 } 6294 return 0; 6295 } 6296 6297 void 6298 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6299 { 6300 uint32_t len; 6301 6302 len = sizeof(struct lpfc_mbx_set_host_data) - 6303 sizeof(struct lpfc_sli4_cfg_mhdr); 6304 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6305 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6306 LPFC_SLI4_MBX_EMBED); 6307 6308 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6309 mbox->u.mqe.un.set_host_data.param_len = 8; 6310 snprintf(mbox->u.mqe.un.set_host_data.data, 6311 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6312 "Linux %s v"LPFC_DRIVER_VERSION, 6313 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6314 } 6315 6316 /** 6317 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6318 * @phba: Pointer to HBA context object. 6319 * 6320 * This function is the main SLI4 device intialization PCI function. This 6321 * function is called by the HBA intialization code, HBA reset code and 6322 * HBA error attention handler code. Caller is not required to hold any 6323 * locks. 6324 **/ 6325 int 6326 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6327 { 6328 int rc; 6329 LPFC_MBOXQ_t *mboxq; 6330 struct lpfc_mqe *mqe; 6331 uint8_t *vpd; 6332 uint32_t vpd_size; 6333 uint32_t ftr_rsp = 0; 6334 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6335 struct lpfc_vport *vport = phba->pport; 6336 struct lpfc_dmabuf *mp; 6337 6338 /* Perform a PCI function reset to start from clean */ 6339 rc = lpfc_pci_function_reset(phba); 6340 if (unlikely(rc)) 6341 return -ENODEV; 6342 6343 /* Check the HBA Host Status Register for readyness */ 6344 rc = lpfc_sli4_post_status_check(phba); 6345 if (unlikely(rc)) 6346 return -ENODEV; 6347 else { 6348 spin_lock_irq(&phba->hbalock); 6349 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6350 spin_unlock_irq(&phba->hbalock); 6351 } 6352 6353 /* 6354 * Allocate a single mailbox container for initializing the 6355 * port. 6356 */ 6357 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6358 if (!mboxq) 6359 return -ENOMEM; 6360 6361 /* Issue READ_REV to collect vpd and FW information. */ 6362 vpd_size = SLI4_PAGE_SIZE; 6363 vpd = kzalloc(vpd_size, GFP_KERNEL); 6364 if (!vpd) { 6365 rc = -ENOMEM; 6366 goto out_free_mbox; 6367 } 6368 6369 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6370 if (unlikely(rc)) { 6371 kfree(vpd); 6372 goto out_free_mbox; 6373 } 6374 6375 mqe = &mboxq->u.mqe; 6376 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6377 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6378 phba->hba_flag |= HBA_FCOE_MODE; 6379 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6380 } else { 6381 phba->hba_flag &= ~HBA_FCOE_MODE; 6382 } 6383 6384 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6385 LPFC_DCBX_CEE_MODE) 6386 phba->hba_flag |= HBA_FIP_SUPPORT; 6387 else 6388 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6389 6390 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6391 6392 if (phba->sli_rev != LPFC_SLI_REV4) { 6393 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6394 "0376 READ_REV Error. SLI Level %d " 6395 "FCoE enabled %d\n", 6396 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6397 rc = -EIO; 6398 kfree(vpd); 6399 goto out_free_mbox; 6400 } 6401 6402 /* 6403 * Continue initialization with default values even if driver failed 6404 * to read FCoE param config regions, only read parameters if the 6405 * board is FCoE 6406 */ 6407 if (phba->hba_flag & HBA_FCOE_MODE && 6408 lpfc_sli4_read_fcoe_params(phba)) 6409 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6410 "2570 Failed to read FCoE parameters\n"); 6411 6412 /* 6413 * Retrieve sli4 device physical port name, failure of doing it 6414 * is considered as non-fatal. 6415 */ 6416 rc = lpfc_sli4_retrieve_pport_name(phba); 6417 if (!rc) 6418 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6419 "3080 Successful retrieving SLI4 device " 6420 "physical port name: %s.\n", phba->Port); 6421 6422 /* 6423 * Evaluate the read rev and vpd data. Populate the driver 6424 * state with the results. If this routine fails, the failure 6425 * is not fatal as the driver will use generic values. 6426 */ 6427 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6428 if (unlikely(!rc)) { 6429 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6430 "0377 Error %d parsing vpd. " 6431 "Using defaults.\n", rc); 6432 rc = 0; 6433 } 6434 kfree(vpd); 6435 6436 /* Save information as VPD data */ 6437 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6438 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6439 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6440 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6441 &mqe->un.read_rev); 6442 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6443 &mqe->un.read_rev); 6444 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6445 &mqe->un.read_rev); 6446 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6447 &mqe->un.read_rev); 6448 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6449 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6450 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6451 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6452 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6453 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6454 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6455 "(%d):0380 READ_REV Status x%x " 6456 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6457 mboxq->vport ? mboxq->vport->vpi : 0, 6458 bf_get(lpfc_mqe_status, mqe), 6459 phba->vpd.rev.opFwName, 6460 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6461 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6462 6463 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6464 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6465 if (phba->pport->cfg_lun_queue_depth > rc) { 6466 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6467 "3362 LUN queue depth changed from %d to %d\n", 6468 phba->pport->cfg_lun_queue_depth, rc); 6469 phba->pport->cfg_lun_queue_depth = rc; 6470 } 6471 6472 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6473 LPFC_SLI_INTF_IF_TYPE_0) { 6474 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6475 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6476 if (rc == MBX_SUCCESS) { 6477 phba->hba_flag |= HBA_RECOVERABLE_UE; 6478 /* Set 1Sec interval to detect UE */ 6479 phba->eratt_poll_interval = 1; 6480 phba->sli4_hba.ue_to_sr = bf_get( 6481 lpfc_mbx_set_feature_UESR, 6482 &mboxq->u.mqe.un.set_feature); 6483 phba->sli4_hba.ue_to_rp = bf_get( 6484 lpfc_mbx_set_feature_UERP, 6485 &mboxq->u.mqe.un.set_feature); 6486 } 6487 } 6488 6489 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6490 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6491 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6492 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6493 if (rc != MBX_SUCCESS) 6494 phba->mds_diags_support = 0; 6495 } 6496 6497 /* 6498 * Discover the port's supported feature set and match it against the 6499 * hosts requests. 6500 */ 6501 lpfc_request_features(phba, mboxq); 6502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6503 if (unlikely(rc)) { 6504 rc = -EIO; 6505 goto out_free_mbox; 6506 } 6507 6508 /* 6509 * The port must support FCP initiator mode as this is the 6510 * only mode running in the host. 6511 */ 6512 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6513 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6514 "0378 No support for fcpi mode.\n"); 6515 ftr_rsp++; 6516 } 6517 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6518 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6519 else 6520 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6521 /* 6522 * If the port cannot support the host's requested features 6523 * then turn off the global config parameters to disable the 6524 * feature in the driver. This is not a fatal error. 6525 */ 6526 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6527 if (phba->cfg_enable_bg) { 6528 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6529 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6530 else 6531 ftr_rsp++; 6532 } 6533 6534 if (phba->max_vpi && phba->cfg_enable_npiv && 6535 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6536 ftr_rsp++; 6537 6538 if (ftr_rsp) { 6539 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6540 "0379 Feature Mismatch Data: x%08x %08x " 6541 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6542 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6543 phba->cfg_enable_npiv, phba->max_vpi); 6544 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6545 phba->cfg_enable_bg = 0; 6546 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6547 phba->cfg_enable_npiv = 0; 6548 } 6549 6550 /* These SLI3 features are assumed in SLI4 */ 6551 spin_lock_irq(&phba->hbalock); 6552 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6553 spin_unlock_irq(&phba->hbalock); 6554 6555 /* 6556 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6557 * calls depends on these resources to complete port setup. 6558 */ 6559 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6560 if (rc) { 6561 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6562 "2920 Failed to alloc Resource IDs " 6563 "rc = x%x\n", rc); 6564 goto out_free_mbox; 6565 } 6566 6567 lpfc_set_host_data(phba, mboxq); 6568 6569 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6570 if (rc) { 6571 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6572 "2134 Failed to set host os driver version %x", 6573 rc); 6574 } 6575 6576 /* Read the port's service parameters. */ 6577 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6578 if (rc) { 6579 phba->link_state = LPFC_HBA_ERROR; 6580 rc = -ENOMEM; 6581 goto out_free_mbox; 6582 } 6583 6584 mboxq->vport = vport; 6585 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6586 mp = (struct lpfc_dmabuf *) mboxq->context1; 6587 if (rc == MBX_SUCCESS) { 6588 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6589 rc = 0; 6590 } 6591 6592 /* 6593 * This memory was allocated by the lpfc_read_sparam routine. Release 6594 * it to the mbuf pool. 6595 */ 6596 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6597 kfree(mp); 6598 mboxq->context1 = NULL; 6599 if (unlikely(rc)) { 6600 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6601 "0382 READ_SPARAM command failed " 6602 "status %d, mbxStatus x%x\n", 6603 rc, bf_get(lpfc_mqe_status, mqe)); 6604 phba->link_state = LPFC_HBA_ERROR; 6605 rc = -EIO; 6606 goto out_free_mbox; 6607 } 6608 6609 lpfc_update_vport_wwn(vport); 6610 6611 /* Update the fc_host data structures with new wwn. */ 6612 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6613 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6614 6615 /* update host els and scsi xri-sgl sizes and mappings */ 6616 rc = lpfc_sli4_xri_sgl_update(phba); 6617 if (unlikely(rc)) { 6618 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6619 "1400 Failed to update xri-sgl size and " 6620 "mapping: %d\n", rc); 6621 goto out_free_mbox; 6622 } 6623 6624 /* register the els sgl pool to the port */ 6625 rc = lpfc_sli4_repost_els_sgl_list(phba); 6626 if (unlikely(rc)) { 6627 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6628 "0582 Error %d during els sgl post " 6629 "operation\n", rc); 6630 rc = -ENODEV; 6631 goto out_free_mbox; 6632 } 6633 6634 /* register the allocated scsi sgl pool to the port */ 6635 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6636 if (unlikely(rc)) { 6637 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6638 "0383 Error %d during scsi sgl post " 6639 "operation\n", rc); 6640 /* Some Scsi buffers were moved to the abort scsi list */ 6641 /* A pci function reset will repost them */ 6642 rc = -ENODEV; 6643 goto out_free_mbox; 6644 } 6645 6646 /* Post the rpi header region to the device. */ 6647 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6648 if (unlikely(rc)) { 6649 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6650 "0393 Error %d during rpi post operation\n", 6651 rc); 6652 rc = -ENODEV; 6653 goto out_free_mbox; 6654 } 6655 lpfc_sli4_node_prep(phba); 6656 6657 /* Create all the SLI4 queues */ 6658 rc = lpfc_sli4_queue_create(phba); 6659 if (rc) { 6660 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6661 "3089 Failed to allocate queues\n"); 6662 rc = -ENODEV; 6663 goto out_stop_timers; 6664 } 6665 /* Set up all the queues to the device */ 6666 rc = lpfc_sli4_queue_setup(phba); 6667 if (unlikely(rc)) { 6668 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6669 "0381 Error %d during queue setup.\n ", rc); 6670 goto out_destroy_queue; 6671 } 6672 6673 /* Arm the CQs and then EQs on device */ 6674 lpfc_sli4_arm_cqeq_intr(phba); 6675 6676 /* Indicate device interrupt mode */ 6677 phba->sli4_hba.intr_enable = 1; 6678 6679 /* Allow asynchronous mailbox command to go through */ 6680 spin_lock_irq(&phba->hbalock); 6681 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6682 spin_unlock_irq(&phba->hbalock); 6683 6684 /* Post receive buffers to the device */ 6685 lpfc_sli4_rb_setup(phba); 6686 6687 /* Reset HBA FCF states after HBA reset */ 6688 phba->fcf.fcf_flag = 0; 6689 phba->fcf.current_rec.flag = 0; 6690 6691 /* Start the ELS watchdog timer */ 6692 mod_timer(&vport->els_tmofunc, 6693 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6694 6695 /* Start heart beat timer */ 6696 mod_timer(&phba->hb_tmofunc, 6697 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6698 phba->hb_outstanding = 0; 6699 phba->last_completion_time = jiffies; 6700 6701 /* Start error attention (ERATT) polling timer */ 6702 mod_timer(&phba->eratt_poll, 6703 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 6704 6705 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6706 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6707 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6708 if (!rc) { 6709 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6710 "2829 This device supports " 6711 "Advanced Error Reporting (AER)\n"); 6712 spin_lock_irq(&phba->hbalock); 6713 phba->hba_flag |= HBA_AER_ENABLED; 6714 spin_unlock_irq(&phba->hbalock); 6715 } else { 6716 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6717 "2830 This device does not support " 6718 "Advanced Error Reporting (AER)\n"); 6719 phba->cfg_aer_support = 0; 6720 } 6721 rc = 0; 6722 } 6723 6724 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6725 /* 6726 * The FC Port needs to register FCFI (index 0) 6727 */ 6728 lpfc_reg_fcfi(phba, mboxq); 6729 mboxq->vport = phba->pport; 6730 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6731 if (rc != MBX_SUCCESS) 6732 goto out_unset_queue; 6733 rc = 0; 6734 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6735 &mboxq->u.mqe.un.reg_fcfi); 6736 6737 /* Check if the port is configured to be disabled */ 6738 lpfc_sli_read_link_ste(phba); 6739 } 6740 6741 /* 6742 * The port is ready, set the host's link state to LINK_DOWN 6743 * in preparation for link interrupts. 6744 */ 6745 spin_lock_irq(&phba->hbalock); 6746 phba->link_state = LPFC_LINK_DOWN; 6747 spin_unlock_irq(&phba->hbalock); 6748 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6749 (phba->hba_flag & LINK_DISABLED)) { 6750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6751 "3103 Adapter Link is disabled.\n"); 6752 lpfc_down_link(phba, mboxq); 6753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6754 if (rc != MBX_SUCCESS) { 6755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6756 "3104 Adapter failed to issue " 6757 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6758 goto out_unset_queue; 6759 } 6760 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6761 /* don't perform init_link on SLI4 FC port loopback test */ 6762 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6763 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6764 if (rc) 6765 goto out_unset_queue; 6766 } 6767 } 6768 mempool_free(mboxq, phba->mbox_mem_pool); 6769 return rc; 6770 out_unset_queue: 6771 /* Unset all the queues set up in this routine when error out */ 6772 lpfc_sli4_queue_unset(phba); 6773 out_destroy_queue: 6774 lpfc_sli4_queue_destroy(phba); 6775 out_stop_timers: 6776 lpfc_stop_hba_timers(phba); 6777 out_free_mbox: 6778 mempool_free(mboxq, phba->mbox_mem_pool); 6779 return rc; 6780 } 6781 6782 /** 6783 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6784 * @ptr: context object - pointer to hba structure. 6785 * 6786 * This is the callback function for mailbox timer. The mailbox 6787 * timer is armed when a new mailbox command is issued and the timer 6788 * is deleted when the mailbox complete. The function is called by 6789 * the kernel timer code when a mailbox does not complete within 6790 * expected time. This function wakes up the worker thread to 6791 * process the mailbox timeout and returns. All the processing is 6792 * done by the worker thread function lpfc_mbox_timeout_handler. 6793 **/ 6794 void 6795 lpfc_mbox_timeout(unsigned long ptr) 6796 { 6797 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6798 unsigned long iflag; 6799 uint32_t tmo_posted; 6800 6801 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6802 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6803 if (!tmo_posted) 6804 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6805 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6806 6807 if (!tmo_posted) 6808 lpfc_worker_wake_up(phba); 6809 return; 6810 } 6811 6812 /** 6813 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6814 * are pending 6815 * @phba: Pointer to HBA context object. 6816 * 6817 * This function checks if any mailbox completions are present on the mailbox 6818 * completion queue. 6819 **/ 6820 static bool 6821 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6822 { 6823 6824 uint32_t idx; 6825 struct lpfc_queue *mcq; 6826 struct lpfc_mcqe *mcqe; 6827 bool pending_completions = false; 6828 6829 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6830 return false; 6831 6832 /* Check for completions on mailbox completion queue */ 6833 6834 mcq = phba->sli4_hba.mbx_cq; 6835 idx = mcq->hba_index; 6836 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6837 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6838 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6839 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6840 pending_completions = true; 6841 break; 6842 } 6843 idx = (idx + 1) % mcq->entry_count; 6844 if (mcq->hba_index == idx) 6845 break; 6846 } 6847 return pending_completions; 6848 6849 } 6850 6851 /** 6852 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6853 * that were missed. 6854 * @phba: Pointer to HBA context object. 6855 * 6856 * For sli4, it is possible to miss an interrupt. As such mbox completions 6857 * maybe missed causing erroneous mailbox timeouts to occur. This function 6858 * checks to see if mbox completions are on the mailbox completion queue 6859 * and will process all the completions associated with the eq for the 6860 * mailbox completion queue. 6861 **/ 6862 bool 6863 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6864 { 6865 6866 uint32_t eqidx; 6867 struct lpfc_queue *fpeq = NULL; 6868 struct lpfc_eqe *eqe; 6869 bool mbox_pending; 6870 6871 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6872 return false; 6873 6874 /* Find the eq associated with the mcq */ 6875 6876 if (phba->sli4_hba.hba_eq) 6877 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6878 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6879 phba->sli4_hba.mbx_cq->assoc_qid) { 6880 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6881 break; 6882 } 6883 if (!fpeq) 6884 return false; 6885 6886 /* Turn off interrupts from this EQ */ 6887 6888 lpfc_sli4_eq_clr_intr(fpeq); 6889 6890 /* Check to see if a mbox completion is pending */ 6891 6892 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6893 6894 /* 6895 * If a mbox completion is pending, process all the events on EQ 6896 * associated with the mbox completion queue (this could include 6897 * mailbox commands, async events, els commands, receive queue data 6898 * and fcp commands) 6899 */ 6900 6901 if (mbox_pending) 6902 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6903 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6904 fpeq->EQ_processed++; 6905 } 6906 6907 /* Always clear and re-arm the EQ */ 6908 6909 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6910 6911 return mbox_pending; 6912 6913 } 6914 6915 /** 6916 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6917 * @phba: Pointer to HBA context object. 6918 * 6919 * This function is called from worker thread when a mailbox command times out. 6920 * The caller is not required to hold any locks. This function will reset the 6921 * HBA and recover all the pending commands. 6922 **/ 6923 void 6924 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6925 { 6926 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6927 MAILBOX_t *mb = NULL; 6928 6929 struct lpfc_sli *psli = &phba->sli; 6930 6931 /* If the mailbox completed, process the completion and return */ 6932 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6933 return; 6934 6935 if (pmbox != NULL) 6936 mb = &pmbox->u.mb; 6937 /* Check the pmbox pointer first. There is a race condition 6938 * between the mbox timeout handler getting executed in the 6939 * worklist and the mailbox actually completing. When this 6940 * race condition occurs, the mbox_active will be NULL. 6941 */ 6942 spin_lock_irq(&phba->hbalock); 6943 if (pmbox == NULL) { 6944 lpfc_printf_log(phba, KERN_WARNING, 6945 LOG_MBOX | LOG_SLI, 6946 "0353 Active Mailbox cleared - mailbox timeout " 6947 "exiting\n"); 6948 spin_unlock_irq(&phba->hbalock); 6949 return; 6950 } 6951 6952 /* Mbox cmd <mbxCommand> timeout */ 6953 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6954 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6955 mb->mbxCommand, 6956 phba->pport->port_state, 6957 phba->sli.sli_flag, 6958 phba->sli.mbox_active); 6959 spin_unlock_irq(&phba->hbalock); 6960 6961 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6962 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6963 * it to fail all outstanding SCSI IO. 6964 */ 6965 spin_lock_irq(&phba->pport->work_port_lock); 6966 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6967 spin_unlock_irq(&phba->pport->work_port_lock); 6968 spin_lock_irq(&phba->hbalock); 6969 phba->link_state = LPFC_LINK_UNKNOWN; 6970 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6971 spin_unlock_irq(&phba->hbalock); 6972 6973 lpfc_sli_abort_fcp_rings(phba); 6974 6975 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6976 "0345 Resetting board due to mailbox timeout\n"); 6977 6978 /* Reset the HBA device */ 6979 lpfc_reset_hba(phba); 6980 } 6981 6982 /** 6983 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6984 * @phba: Pointer to HBA context object. 6985 * @pmbox: Pointer to mailbox object. 6986 * @flag: Flag indicating how the mailbox need to be processed. 6987 * 6988 * This function is called by discovery code and HBA management code 6989 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6990 * function gets the hbalock to protect the data structures. 6991 * The mailbox command can be submitted in polling mode, in which case 6992 * this function will wait in a polling loop for the completion of the 6993 * mailbox. 6994 * If the mailbox is submitted in no_wait mode (not polling) the 6995 * function will submit the command and returns immediately without waiting 6996 * for the mailbox completion. The no_wait is supported only when HBA 6997 * is in SLI2/SLI3 mode - interrupts are enabled. 6998 * The SLI interface allows only one mailbox pending at a time. If the 6999 * mailbox is issued in polling mode and there is already a mailbox 7000 * pending, then the function will return an error. If the mailbox is issued 7001 * in NO_WAIT mode and there is a mailbox pending already, the function 7002 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7003 * The sli layer owns the mailbox object until the completion of mailbox 7004 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7005 * return codes the caller owns the mailbox command after the return of 7006 * the function. 7007 **/ 7008 static int 7009 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7010 uint32_t flag) 7011 { 7012 MAILBOX_t *mbx; 7013 struct lpfc_sli *psli = &phba->sli; 7014 uint32_t status, evtctr; 7015 uint32_t ha_copy, hc_copy; 7016 int i; 7017 unsigned long timeout; 7018 unsigned long drvr_flag = 0; 7019 uint32_t word0, ldata; 7020 void __iomem *to_slim; 7021 int processing_queue = 0; 7022 7023 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7024 if (!pmbox) { 7025 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7026 /* processing mbox queue from intr_handler */ 7027 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7028 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7029 return MBX_SUCCESS; 7030 } 7031 processing_queue = 1; 7032 pmbox = lpfc_mbox_get(phba); 7033 if (!pmbox) { 7034 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7035 return MBX_SUCCESS; 7036 } 7037 } 7038 7039 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7040 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7041 if(!pmbox->vport) { 7042 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7043 lpfc_printf_log(phba, KERN_ERR, 7044 LOG_MBOX | LOG_VPORT, 7045 "1806 Mbox x%x failed. No vport\n", 7046 pmbox->u.mb.mbxCommand); 7047 dump_stack(); 7048 goto out_not_finished; 7049 } 7050 } 7051 7052 /* If the PCI channel is in offline state, do not post mbox. */ 7053 if (unlikely(pci_channel_offline(phba->pcidev))) { 7054 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7055 goto out_not_finished; 7056 } 7057 7058 /* If HBA has a deferred error attention, fail the iocb. */ 7059 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7060 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7061 goto out_not_finished; 7062 } 7063 7064 psli = &phba->sli; 7065 7066 mbx = &pmbox->u.mb; 7067 status = MBX_SUCCESS; 7068 7069 if (phba->link_state == LPFC_HBA_ERROR) { 7070 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7071 7072 /* Mbox command <mbxCommand> cannot issue */ 7073 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7074 "(%d):0311 Mailbox command x%x cannot " 7075 "issue Data: x%x x%x\n", 7076 pmbox->vport ? pmbox->vport->vpi : 0, 7077 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7078 goto out_not_finished; 7079 } 7080 7081 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7082 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7083 !(hc_copy & HC_MBINT_ENA)) { 7084 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7085 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7086 "(%d):2528 Mailbox command x%x cannot " 7087 "issue Data: x%x x%x\n", 7088 pmbox->vport ? pmbox->vport->vpi : 0, 7089 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7090 goto out_not_finished; 7091 } 7092 } 7093 7094 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7095 /* Polling for a mbox command when another one is already active 7096 * is not allowed in SLI. Also, the driver must have established 7097 * SLI2 mode to queue and process multiple mbox commands. 7098 */ 7099 7100 if (flag & MBX_POLL) { 7101 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7102 7103 /* Mbox command <mbxCommand> cannot issue */ 7104 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7105 "(%d):2529 Mailbox command x%x " 7106 "cannot issue Data: x%x x%x\n", 7107 pmbox->vport ? pmbox->vport->vpi : 0, 7108 pmbox->u.mb.mbxCommand, 7109 psli->sli_flag, flag); 7110 goto out_not_finished; 7111 } 7112 7113 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7114 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7115 /* Mbox command <mbxCommand> cannot issue */ 7116 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7117 "(%d):2530 Mailbox command x%x " 7118 "cannot issue Data: x%x x%x\n", 7119 pmbox->vport ? pmbox->vport->vpi : 0, 7120 pmbox->u.mb.mbxCommand, 7121 psli->sli_flag, flag); 7122 goto out_not_finished; 7123 } 7124 7125 /* Another mailbox command is still being processed, queue this 7126 * command to be processed later. 7127 */ 7128 lpfc_mbox_put(phba, pmbox); 7129 7130 /* Mbox cmd issue - BUSY */ 7131 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7132 "(%d):0308 Mbox cmd issue - BUSY Data: " 7133 "x%x x%x x%x x%x\n", 7134 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7135 mbx->mbxCommand, phba->pport->port_state, 7136 psli->sli_flag, flag); 7137 7138 psli->slistat.mbox_busy++; 7139 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7140 7141 if (pmbox->vport) { 7142 lpfc_debugfs_disc_trc(pmbox->vport, 7143 LPFC_DISC_TRC_MBOX_VPORT, 7144 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7145 (uint32_t)mbx->mbxCommand, 7146 mbx->un.varWords[0], mbx->un.varWords[1]); 7147 } 7148 else { 7149 lpfc_debugfs_disc_trc(phba->pport, 7150 LPFC_DISC_TRC_MBOX, 7151 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7152 (uint32_t)mbx->mbxCommand, 7153 mbx->un.varWords[0], mbx->un.varWords[1]); 7154 } 7155 7156 return MBX_BUSY; 7157 } 7158 7159 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7160 7161 /* If we are not polling, we MUST be in SLI2 mode */ 7162 if (flag != MBX_POLL) { 7163 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7164 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7165 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7166 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7167 /* Mbox command <mbxCommand> cannot issue */ 7168 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7169 "(%d):2531 Mailbox command x%x " 7170 "cannot issue Data: x%x x%x\n", 7171 pmbox->vport ? pmbox->vport->vpi : 0, 7172 pmbox->u.mb.mbxCommand, 7173 psli->sli_flag, flag); 7174 goto out_not_finished; 7175 } 7176 /* timeout active mbox command */ 7177 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7178 1000); 7179 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7180 } 7181 7182 /* Mailbox cmd <cmd> issue */ 7183 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7184 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7185 "x%x\n", 7186 pmbox->vport ? pmbox->vport->vpi : 0, 7187 mbx->mbxCommand, phba->pport->port_state, 7188 psli->sli_flag, flag); 7189 7190 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7191 if (pmbox->vport) { 7192 lpfc_debugfs_disc_trc(pmbox->vport, 7193 LPFC_DISC_TRC_MBOX_VPORT, 7194 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7195 (uint32_t)mbx->mbxCommand, 7196 mbx->un.varWords[0], mbx->un.varWords[1]); 7197 } 7198 else { 7199 lpfc_debugfs_disc_trc(phba->pport, 7200 LPFC_DISC_TRC_MBOX, 7201 "MBOX Send: cmd:x%x mb:x%x x%x", 7202 (uint32_t)mbx->mbxCommand, 7203 mbx->un.varWords[0], mbx->un.varWords[1]); 7204 } 7205 } 7206 7207 psli->slistat.mbox_cmd++; 7208 evtctr = psli->slistat.mbox_event; 7209 7210 /* next set own bit for the adapter and copy over command word */ 7211 mbx->mbxOwner = OWN_CHIP; 7212 7213 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7214 /* Populate mbox extension offset word. */ 7215 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7216 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7217 = (uint8_t *)phba->mbox_ext 7218 - (uint8_t *)phba->mbox; 7219 } 7220 7221 /* Copy the mailbox extension data */ 7222 if (pmbox->in_ext_byte_len && pmbox->context2) { 7223 lpfc_sli_pcimem_bcopy(pmbox->context2, 7224 (uint8_t *)phba->mbox_ext, 7225 pmbox->in_ext_byte_len); 7226 } 7227 /* Copy command data to host SLIM area */ 7228 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7229 } else { 7230 /* Populate mbox extension offset word. */ 7231 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7232 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7233 = MAILBOX_HBA_EXT_OFFSET; 7234 7235 /* Copy the mailbox extension data */ 7236 if (pmbox->in_ext_byte_len && pmbox->context2) { 7237 lpfc_memcpy_to_slim(phba->MBslimaddr + 7238 MAILBOX_HBA_EXT_OFFSET, 7239 pmbox->context2, pmbox->in_ext_byte_len); 7240 7241 } 7242 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7243 /* copy command data into host mbox for cmpl */ 7244 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7245 } 7246 7247 /* First copy mbox command data to HBA SLIM, skip past first 7248 word */ 7249 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7250 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7251 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7252 7253 /* Next copy over first word, with mbxOwner set */ 7254 ldata = *((uint32_t *)mbx); 7255 to_slim = phba->MBslimaddr; 7256 writel(ldata, to_slim); 7257 readl(to_slim); /* flush */ 7258 7259 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7260 /* switch over to host mailbox */ 7261 psli->sli_flag |= LPFC_SLI_ACTIVE; 7262 } 7263 } 7264 7265 wmb(); 7266 7267 switch (flag) { 7268 case MBX_NOWAIT: 7269 /* Set up reference to mailbox command */ 7270 psli->mbox_active = pmbox; 7271 /* Interrupt board to do it */ 7272 writel(CA_MBATT, phba->CAregaddr); 7273 readl(phba->CAregaddr); /* flush */ 7274 /* Don't wait for it to finish, just return */ 7275 break; 7276 7277 case MBX_POLL: 7278 /* Set up null reference to mailbox command */ 7279 psli->mbox_active = NULL; 7280 /* Interrupt board to do it */ 7281 writel(CA_MBATT, phba->CAregaddr); 7282 readl(phba->CAregaddr); /* flush */ 7283 7284 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7285 /* First read mbox status word */ 7286 word0 = *((uint32_t *)phba->mbox); 7287 word0 = le32_to_cpu(word0); 7288 } else { 7289 /* First read mbox status word */ 7290 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7291 spin_unlock_irqrestore(&phba->hbalock, 7292 drvr_flag); 7293 goto out_not_finished; 7294 } 7295 } 7296 7297 /* Read the HBA Host Attention Register */ 7298 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7299 spin_unlock_irqrestore(&phba->hbalock, 7300 drvr_flag); 7301 goto out_not_finished; 7302 } 7303 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7304 1000) + jiffies; 7305 i = 0; 7306 /* Wait for command to complete */ 7307 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7308 (!(ha_copy & HA_MBATT) && 7309 (phba->link_state > LPFC_WARM_START))) { 7310 if (time_after(jiffies, timeout)) { 7311 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7312 spin_unlock_irqrestore(&phba->hbalock, 7313 drvr_flag); 7314 goto out_not_finished; 7315 } 7316 7317 /* Check if we took a mbox interrupt while we were 7318 polling */ 7319 if (((word0 & OWN_CHIP) != OWN_CHIP) 7320 && (evtctr != psli->slistat.mbox_event)) 7321 break; 7322 7323 if (i++ > 10) { 7324 spin_unlock_irqrestore(&phba->hbalock, 7325 drvr_flag); 7326 msleep(1); 7327 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7328 } 7329 7330 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7331 /* First copy command data */ 7332 word0 = *((uint32_t *)phba->mbox); 7333 word0 = le32_to_cpu(word0); 7334 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7335 MAILBOX_t *slimmb; 7336 uint32_t slimword0; 7337 /* Check real SLIM for any errors */ 7338 slimword0 = readl(phba->MBslimaddr); 7339 slimmb = (MAILBOX_t *) & slimword0; 7340 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7341 && slimmb->mbxStatus) { 7342 psli->sli_flag &= 7343 ~LPFC_SLI_ACTIVE; 7344 word0 = slimword0; 7345 } 7346 } 7347 } else { 7348 /* First copy command data */ 7349 word0 = readl(phba->MBslimaddr); 7350 } 7351 /* Read the HBA Host Attention Register */ 7352 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7353 spin_unlock_irqrestore(&phba->hbalock, 7354 drvr_flag); 7355 goto out_not_finished; 7356 } 7357 } 7358 7359 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7360 /* copy results back to user */ 7361 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7362 /* Copy the mailbox extension data */ 7363 if (pmbox->out_ext_byte_len && pmbox->context2) { 7364 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7365 pmbox->context2, 7366 pmbox->out_ext_byte_len); 7367 } 7368 } else { 7369 /* First copy command data */ 7370 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7371 MAILBOX_CMD_SIZE); 7372 /* Copy the mailbox extension data */ 7373 if (pmbox->out_ext_byte_len && pmbox->context2) { 7374 lpfc_memcpy_from_slim(pmbox->context2, 7375 phba->MBslimaddr + 7376 MAILBOX_HBA_EXT_OFFSET, 7377 pmbox->out_ext_byte_len); 7378 } 7379 } 7380 7381 writel(HA_MBATT, phba->HAregaddr); 7382 readl(phba->HAregaddr); /* flush */ 7383 7384 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7385 status = mbx->mbxStatus; 7386 } 7387 7388 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7389 return status; 7390 7391 out_not_finished: 7392 if (processing_queue) { 7393 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7394 lpfc_mbox_cmpl_put(phba, pmbox); 7395 } 7396 return MBX_NOT_FINISHED; 7397 } 7398 7399 /** 7400 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7401 * @phba: Pointer to HBA context object. 7402 * 7403 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7404 * the driver internal pending mailbox queue. It will then try to wait out the 7405 * possible outstanding mailbox command before return. 7406 * 7407 * Returns: 7408 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7409 * the outstanding mailbox command timed out. 7410 **/ 7411 static int 7412 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7413 { 7414 struct lpfc_sli *psli = &phba->sli; 7415 int rc = 0; 7416 unsigned long timeout = 0; 7417 7418 /* Mark the asynchronous mailbox command posting as blocked */ 7419 spin_lock_irq(&phba->hbalock); 7420 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7421 /* Determine how long we might wait for the active mailbox 7422 * command to be gracefully completed by firmware. 7423 */ 7424 if (phba->sli.mbox_active) 7425 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7426 phba->sli.mbox_active) * 7427 1000) + jiffies; 7428 spin_unlock_irq(&phba->hbalock); 7429 7430 /* Make sure the mailbox is really active */ 7431 if (timeout) 7432 lpfc_sli4_process_missed_mbox_completions(phba); 7433 7434 /* Wait for the outstnading mailbox command to complete */ 7435 while (phba->sli.mbox_active) { 7436 /* Check active mailbox complete status every 2ms */ 7437 msleep(2); 7438 if (time_after(jiffies, timeout)) { 7439 /* Timeout, marked the outstanding cmd not complete */ 7440 rc = 1; 7441 break; 7442 } 7443 } 7444 7445 /* Can not cleanly block async mailbox command, fails it */ 7446 if (rc) { 7447 spin_lock_irq(&phba->hbalock); 7448 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7449 spin_unlock_irq(&phba->hbalock); 7450 } 7451 return rc; 7452 } 7453 7454 /** 7455 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7456 * @phba: Pointer to HBA context object. 7457 * 7458 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7459 * commands from the driver internal pending mailbox queue. It makes sure 7460 * that there is no outstanding mailbox command before resuming posting 7461 * asynchronous mailbox commands. If, for any reason, there is outstanding 7462 * mailbox command, it will try to wait it out before resuming asynchronous 7463 * mailbox command posting. 7464 **/ 7465 static void 7466 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7467 { 7468 struct lpfc_sli *psli = &phba->sli; 7469 7470 spin_lock_irq(&phba->hbalock); 7471 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7472 /* Asynchronous mailbox posting is not blocked, do nothing */ 7473 spin_unlock_irq(&phba->hbalock); 7474 return; 7475 } 7476 7477 /* Outstanding synchronous mailbox command is guaranteed to be done, 7478 * successful or timeout, after timing-out the outstanding mailbox 7479 * command shall always be removed, so just unblock posting async 7480 * mailbox command and resume 7481 */ 7482 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7483 spin_unlock_irq(&phba->hbalock); 7484 7485 /* wake up worker thread to post asynchronlous mailbox command */ 7486 lpfc_worker_wake_up(phba); 7487 } 7488 7489 /** 7490 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7491 * @phba: Pointer to HBA context object. 7492 * @mboxq: Pointer to mailbox object. 7493 * 7494 * The function waits for the bootstrap mailbox register ready bit from 7495 * port for twice the regular mailbox command timeout value. 7496 * 7497 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7498 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7499 **/ 7500 static int 7501 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7502 { 7503 uint32_t db_ready; 7504 unsigned long timeout; 7505 struct lpfc_register bmbx_reg; 7506 7507 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7508 * 1000) + jiffies; 7509 7510 do { 7511 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7512 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7513 if (!db_ready) 7514 msleep(2); 7515 7516 if (time_after(jiffies, timeout)) 7517 return MBXERR_ERROR; 7518 } while (!db_ready); 7519 7520 return 0; 7521 } 7522 7523 /** 7524 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7525 * @phba: Pointer to HBA context object. 7526 * @mboxq: Pointer to mailbox object. 7527 * 7528 * The function posts a mailbox to the port. The mailbox is expected 7529 * to be comletely filled in and ready for the port to operate on it. 7530 * This routine executes a synchronous completion operation on the 7531 * mailbox by polling for its completion. 7532 * 7533 * The caller must not be holding any locks when calling this routine. 7534 * 7535 * Returns: 7536 * MBX_SUCCESS - mailbox posted successfully 7537 * Any of the MBX error values. 7538 **/ 7539 static int 7540 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7541 { 7542 int rc = MBX_SUCCESS; 7543 unsigned long iflag; 7544 uint32_t mcqe_status; 7545 uint32_t mbx_cmnd; 7546 struct lpfc_sli *psli = &phba->sli; 7547 struct lpfc_mqe *mb = &mboxq->u.mqe; 7548 struct lpfc_bmbx_create *mbox_rgn; 7549 struct dma_address *dma_address; 7550 7551 /* 7552 * Only one mailbox can be active to the bootstrap mailbox region 7553 * at a time and there is no queueing provided. 7554 */ 7555 spin_lock_irqsave(&phba->hbalock, iflag); 7556 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7557 spin_unlock_irqrestore(&phba->hbalock, iflag); 7558 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7559 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7560 "cannot issue Data: x%x x%x\n", 7561 mboxq->vport ? mboxq->vport->vpi : 0, 7562 mboxq->u.mb.mbxCommand, 7563 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7564 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7565 psli->sli_flag, MBX_POLL); 7566 return MBXERR_ERROR; 7567 } 7568 /* The server grabs the token and owns it until release */ 7569 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7570 phba->sli.mbox_active = mboxq; 7571 spin_unlock_irqrestore(&phba->hbalock, iflag); 7572 7573 /* wait for bootstrap mbox register for readyness */ 7574 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7575 if (rc) 7576 goto exit; 7577 7578 /* 7579 * Initialize the bootstrap memory region to avoid stale data areas 7580 * in the mailbox post. Then copy the caller's mailbox contents to 7581 * the bmbx mailbox region. 7582 */ 7583 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7584 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7585 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7586 sizeof(struct lpfc_mqe)); 7587 7588 /* Post the high mailbox dma address to the port and wait for ready. */ 7589 dma_address = &phba->sli4_hba.bmbx.dma_address; 7590 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7591 7592 /* wait for bootstrap mbox register for hi-address write done */ 7593 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7594 if (rc) 7595 goto exit; 7596 7597 /* Post the low mailbox dma address to the port. */ 7598 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7599 7600 /* wait for bootstrap mbox register for low address write done */ 7601 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7602 if (rc) 7603 goto exit; 7604 7605 /* 7606 * Read the CQ to ensure the mailbox has completed. 7607 * If so, update the mailbox status so that the upper layers 7608 * can complete the request normally. 7609 */ 7610 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7611 sizeof(struct lpfc_mqe)); 7612 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7613 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7614 sizeof(struct lpfc_mcqe)); 7615 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7616 /* 7617 * When the CQE status indicates a failure and the mailbox status 7618 * indicates success then copy the CQE status into the mailbox status 7619 * (and prefix it with x4000). 7620 */ 7621 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7622 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7623 bf_set(lpfc_mqe_status, mb, 7624 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7625 rc = MBXERR_ERROR; 7626 } else 7627 lpfc_sli4_swap_str(phba, mboxq); 7628 7629 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7630 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7631 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7632 " x%x x%x CQ: x%x x%x x%x x%x\n", 7633 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7634 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7635 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7636 bf_get(lpfc_mqe_status, mb), 7637 mb->un.mb_words[0], mb->un.mb_words[1], 7638 mb->un.mb_words[2], mb->un.mb_words[3], 7639 mb->un.mb_words[4], mb->un.mb_words[5], 7640 mb->un.mb_words[6], mb->un.mb_words[7], 7641 mb->un.mb_words[8], mb->un.mb_words[9], 7642 mb->un.mb_words[10], mb->un.mb_words[11], 7643 mb->un.mb_words[12], mboxq->mcqe.word0, 7644 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7645 mboxq->mcqe.trailer); 7646 exit: 7647 /* We are holding the token, no needed for lock when release */ 7648 spin_lock_irqsave(&phba->hbalock, iflag); 7649 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7650 phba->sli.mbox_active = NULL; 7651 spin_unlock_irqrestore(&phba->hbalock, iflag); 7652 return rc; 7653 } 7654 7655 /** 7656 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7657 * @phba: Pointer to HBA context object. 7658 * @pmbox: Pointer to mailbox object. 7659 * @flag: Flag indicating how the mailbox need to be processed. 7660 * 7661 * This function is called by discovery code and HBA management code to submit 7662 * a mailbox command to firmware with SLI-4 interface spec. 7663 * 7664 * Return codes the caller owns the mailbox command after the return of the 7665 * function. 7666 **/ 7667 static int 7668 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7669 uint32_t flag) 7670 { 7671 struct lpfc_sli *psli = &phba->sli; 7672 unsigned long iflags; 7673 int rc; 7674 7675 /* dump from issue mailbox command if setup */ 7676 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7677 7678 rc = lpfc_mbox_dev_check(phba); 7679 if (unlikely(rc)) { 7680 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7681 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7682 "cannot issue Data: x%x x%x\n", 7683 mboxq->vport ? mboxq->vport->vpi : 0, 7684 mboxq->u.mb.mbxCommand, 7685 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7686 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7687 psli->sli_flag, flag); 7688 goto out_not_finished; 7689 } 7690 7691 /* Detect polling mode and jump to a handler */ 7692 if (!phba->sli4_hba.intr_enable) { 7693 if (flag == MBX_POLL) 7694 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7695 else 7696 rc = -EIO; 7697 if (rc != MBX_SUCCESS) 7698 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7699 "(%d):2541 Mailbox command x%x " 7700 "(x%x/x%x) failure: " 7701 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7702 "Data: x%x x%x\n,", 7703 mboxq->vport ? mboxq->vport->vpi : 0, 7704 mboxq->u.mb.mbxCommand, 7705 lpfc_sli_config_mbox_subsys_get(phba, 7706 mboxq), 7707 lpfc_sli_config_mbox_opcode_get(phba, 7708 mboxq), 7709 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7710 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7711 bf_get(lpfc_mcqe_ext_status, 7712 &mboxq->mcqe), 7713 psli->sli_flag, flag); 7714 return rc; 7715 } else if (flag == MBX_POLL) { 7716 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7717 "(%d):2542 Try to issue mailbox command " 7718 "x%x (x%x/x%x) synchronously ahead of async" 7719 "mailbox command queue: x%x x%x\n", 7720 mboxq->vport ? mboxq->vport->vpi : 0, 7721 mboxq->u.mb.mbxCommand, 7722 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7723 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7724 psli->sli_flag, flag); 7725 /* Try to block the asynchronous mailbox posting */ 7726 rc = lpfc_sli4_async_mbox_block(phba); 7727 if (!rc) { 7728 /* Successfully blocked, now issue sync mbox cmd */ 7729 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7730 if (rc != MBX_SUCCESS) 7731 lpfc_printf_log(phba, KERN_WARNING, 7732 LOG_MBOX | LOG_SLI, 7733 "(%d):2597 Sync Mailbox command " 7734 "x%x (x%x/x%x) failure: " 7735 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7736 "Data: x%x x%x\n,", 7737 mboxq->vport ? mboxq->vport->vpi : 0, 7738 mboxq->u.mb.mbxCommand, 7739 lpfc_sli_config_mbox_subsys_get(phba, 7740 mboxq), 7741 lpfc_sli_config_mbox_opcode_get(phba, 7742 mboxq), 7743 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7744 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7745 bf_get(lpfc_mcqe_ext_status, 7746 &mboxq->mcqe), 7747 psli->sli_flag, flag); 7748 /* Unblock the async mailbox posting afterward */ 7749 lpfc_sli4_async_mbox_unblock(phba); 7750 } 7751 return rc; 7752 } 7753 7754 /* Now, interrupt mode asynchrous mailbox command */ 7755 rc = lpfc_mbox_cmd_check(phba, mboxq); 7756 if (rc) { 7757 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7758 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7759 "cannot issue Data: x%x x%x\n", 7760 mboxq->vport ? mboxq->vport->vpi : 0, 7761 mboxq->u.mb.mbxCommand, 7762 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7763 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7764 psli->sli_flag, flag); 7765 goto out_not_finished; 7766 } 7767 7768 /* Put the mailbox command to the driver internal FIFO */ 7769 psli->slistat.mbox_busy++; 7770 spin_lock_irqsave(&phba->hbalock, iflags); 7771 lpfc_mbox_put(phba, mboxq); 7772 spin_unlock_irqrestore(&phba->hbalock, iflags); 7773 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7774 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7775 "x%x (x%x/x%x) x%x x%x x%x\n", 7776 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7777 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7778 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7779 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7780 phba->pport->port_state, 7781 psli->sli_flag, MBX_NOWAIT); 7782 /* Wake up worker thread to transport mailbox command from head */ 7783 lpfc_worker_wake_up(phba); 7784 7785 return MBX_BUSY; 7786 7787 out_not_finished: 7788 return MBX_NOT_FINISHED; 7789 } 7790 7791 /** 7792 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7793 * @phba: Pointer to HBA context object. 7794 * 7795 * This function is called by worker thread to send a mailbox command to 7796 * SLI4 HBA firmware. 7797 * 7798 **/ 7799 int 7800 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7801 { 7802 struct lpfc_sli *psli = &phba->sli; 7803 LPFC_MBOXQ_t *mboxq; 7804 int rc = MBX_SUCCESS; 7805 unsigned long iflags; 7806 struct lpfc_mqe *mqe; 7807 uint32_t mbx_cmnd; 7808 7809 /* Check interrupt mode before post async mailbox command */ 7810 if (unlikely(!phba->sli4_hba.intr_enable)) 7811 return MBX_NOT_FINISHED; 7812 7813 /* Check for mailbox command service token */ 7814 spin_lock_irqsave(&phba->hbalock, iflags); 7815 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7816 spin_unlock_irqrestore(&phba->hbalock, iflags); 7817 return MBX_NOT_FINISHED; 7818 } 7819 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7820 spin_unlock_irqrestore(&phba->hbalock, iflags); 7821 return MBX_NOT_FINISHED; 7822 } 7823 if (unlikely(phba->sli.mbox_active)) { 7824 spin_unlock_irqrestore(&phba->hbalock, iflags); 7825 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7826 "0384 There is pending active mailbox cmd\n"); 7827 return MBX_NOT_FINISHED; 7828 } 7829 /* Take the mailbox command service token */ 7830 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7831 7832 /* Get the next mailbox command from head of queue */ 7833 mboxq = lpfc_mbox_get(phba); 7834 7835 /* If no more mailbox command waiting for post, we're done */ 7836 if (!mboxq) { 7837 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7838 spin_unlock_irqrestore(&phba->hbalock, iflags); 7839 return MBX_SUCCESS; 7840 } 7841 phba->sli.mbox_active = mboxq; 7842 spin_unlock_irqrestore(&phba->hbalock, iflags); 7843 7844 /* Check device readiness for posting mailbox command */ 7845 rc = lpfc_mbox_dev_check(phba); 7846 if (unlikely(rc)) 7847 /* Driver clean routine will clean up pending mailbox */ 7848 goto out_not_finished; 7849 7850 /* Prepare the mbox command to be posted */ 7851 mqe = &mboxq->u.mqe; 7852 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7853 7854 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7855 mod_timer(&psli->mbox_tmo, (jiffies + 7856 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7857 7858 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7859 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7860 "x%x x%x\n", 7861 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7862 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7863 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7864 phba->pport->port_state, psli->sli_flag); 7865 7866 if (mbx_cmnd != MBX_HEARTBEAT) { 7867 if (mboxq->vport) { 7868 lpfc_debugfs_disc_trc(mboxq->vport, 7869 LPFC_DISC_TRC_MBOX_VPORT, 7870 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7871 mbx_cmnd, mqe->un.mb_words[0], 7872 mqe->un.mb_words[1]); 7873 } else { 7874 lpfc_debugfs_disc_trc(phba->pport, 7875 LPFC_DISC_TRC_MBOX, 7876 "MBOX Send: cmd:x%x mb:x%x x%x", 7877 mbx_cmnd, mqe->un.mb_words[0], 7878 mqe->un.mb_words[1]); 7879 } 7880 } 7881 psli->slistat.mbox_cmd++; 7882 7883 /* Post the mailbox command to the port */ 7884 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7885 if (rc != MBX_SUCCESS) { 7886 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7887 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7888 "cannot issue Data: x%x x%x\n", 7889 mboxq->vport ? mboxq->vport->vpi : 0, 7890 mboxq->u.mb.mbxCommand, 7891 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7892 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7893 psli->sli_flag, MBX_NOWAIT); 7894 goto out_not_finished; 7895 } 7896 7897 return rc; 7898 7899 out_not_finished: 7900 spin_lock_irqsave(&phba->hbalock, iflags); 7901 if (phba->sli.mbox_active) { 7902 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7903 __lpfc_mbox_cmpl_put(phba, mboxq); 7904 /* Release the token */ 7905 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7906 phba->sli.mbox_active = NULL; 7907 } 7908 spin_unlock_irqrestore(&phba->hbalock, iflags); 7909 7910 return MBX_NOT_FINISHED; 7911 } 7912 7913 /** 7914 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7915 * @phba: Pointer to HBA context object. 7916 * @pmbox: Pointer to mailbox object. 7917 * @flag: Flag indicating how the mailbox need to be processed. 7918 * 7919 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7920 * the API jump table function pointer from the lpfc_hba struct. 7921 * 7922 * Return codes the caller owns the mailbox command after the return of the 7923 * function. 7924 **/ 7925 int 7926 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7927 { 7928 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7929 } 7930 7931 /** 7932 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7933 * @phba: The hba struct for which this call is being executed. 7934 * @dev_grp: The HBA PCI-Device group number. 7935 * 7936 * This routine sets up the mbox interface API function jump table in @phba 7937 * struct. 7938 * Returns: 0 - success, -ENODEV - failure. 7939 **/ 7940 int 7941 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7942 { 7943 7944 switch (dev_grp) { 7945 case LPFC_PCI_DEV_LP: 7946 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7947 phba->lpfc_sli_handle_slow_ring_event = 7948 lpfc_sli_handle_slow_ring_event_s3; 7949 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7950 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7951 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7952 break; 7953 case LPFC_PCI_DEV_OC: 7954 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7955 phba->lpfc_sli_handle_slow_ring_event = 7956 lpfc_sli_handle_slow_ring_event_s4; 7957 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7958 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7959 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7960 break; 7961 default: 7962 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7963 "1420 Invalid HBA PCI-device group: 0x%x\n", 7964 dev_grp); 7965 return -ENODEV; 7966 break; 7967 } 7968 return 0; 7969 } 7970 7971 /** 7972 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7973 * @phba: Pointer to HBA context object. 7974 * @pring: Pointer to driver SLI ring object. 7975 * @piocb: Pointer to address of newly added command iocb. 7976 * 7977 * This function is called with hbalock held to add a command 7978 * iocb to the txq when SLI layer cannot submit the command iocb 7979 * to the ring. 7980 **/ 7981 void 7982 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7983 struct lpfc_iocbq *piocb) 7984 { 7985 lockdep_assert_held(&phba->hbalock); 7986 /* Insert the caller's iocb in the txq tail for later processing. */ 7987 list_add_tail(&piocb->list, &pring->txq); 7988 } 7989 7990 /** 7991 * lpfc_sli_next_iocb - Get the next iocb in the txq 7992 * @phba: Pointer to HBA context object. 7993 * @pring: Pointer to driver SLI ring object. 7994 * @piocb: Pointer to address of newly added command iocb. 7995 * 7996 * This function is called with hbalock held before a new 7997 * iocb is submitted to the firmware. This function checks 7998 * txq to flush the iocbs in txq to Firmware before 7999 * submitting new iocbs to the Firmware. 8000 * If there are iocbs in the txq which need to be submitted 8001 * to firmware, lpfc_sli_next_iocb returns the first element 8002 * of the txq after dequeuing it from txq. 8003 * If there is no iocb in the txq then the function will return 8004 * *piocb and *piocb is set to NULL. Caller needs to check 8005 * *piocb to find if there are more commands in the txq. 8006 **/ 8007 static struct lpfc_iocbq * 8008 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8009 struct lpfc_iocbq **piocb) 8010 { 8011 struct lpfc_iocbq * nextiocb; 8012 8013 lockdep_assert_held(&phba->hbalock); 8014 8015 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8016 if (!nextiocb) { 8017 nextiocb = *piocb; 8018 *piocb = NULL; 8019 } 8020 8021 return nextiocb; 8022 } 8023 8024 /** 8025 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8026 * @phba: Pointer to HBA context object. 8027 * @ring_number: SLI ring number to issue iocb on. 8028 * @piocb: Pointer to command iocb. 8029 * @flag: Flag indicating if this command can be put into txq. 8030 * 8031 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8032 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8033 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8034 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8035 * this function allows only iocbs for posting buffers. This function finds 8036 * next available slot in the command ring and posts the command to the 8037 * available slot and writes the port attention register to request HBA start 8038 * processing new iocb. If there is no slot available in the ring and 8039 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8040 * the function returns IOCB_BUSY. 8041 * 8042 * This function is called with hbalock held. The function will return success 8043 * after it successfully submit the iocb to firmware or after adding to the 8044 * txq. 8045 **/ 8046 static int 8047 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8048 struct lpfc_iocbq *piocb, uint32_t flag) 8049 { 8050 struct lpfc_iocbq *nextiocb; 8051 IOCB_t *iocb; 8052 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8053 8054 lockdep_assert_held(&phba->hbalock); 8055 8056 if (piocb->iocb_cmpl && (!piocb->vport) && 8057 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8058 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8059 lpfc_printf_log(phba, KERN_ERR, 8060 LOG_SLI | LOG_VPORT, 8061 "1807 IOCB x%x failed. No vport\n", 8062 piocb->iocb.ulpCommand); 8063 dump_stack(); 8064 return IOCB_ERROR; 8065 } 8066 8067 8068 /* If the PCI channel is in offline state, do not post iocbs. */ 8069 if (unlikely(pci_channel_offline(phba->pcidev))) 8070 return IOCB_ERROR; 8071 8072 /* If HBA has a deferred error attention, fail the iocb. */ 8073 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8074 return IOCB_ERROR; 8075 8076 /* 8077 * We should never get an IOCB if we are in a < LINK_DOWN state 8078 */ 8079 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8080 return IOCB_ERROR; 8081 8082 /* 8083 * Check to see if we are blocking IOCB processing because of a 8084 * outstanding event. 8085 */ 8086 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8087 goto iocb_busy; 8088 8089 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8090 /* 8091 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8092 * can be issued if the link is not up. 8093 */ 8094 switch (piocb->iocb.ulpCommand) { 8095 case CMD_GEN_REQUEST64_CR: 8096 case CMD_GEN_REQUEST64_CX: 8097 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8098 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8099 FC_RCTL_DD_UNSOL_CMD) || 8100 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8101 MENLO_TRANSPORT_TYPE)) 8102 8103 goto iocb_busy; 8104 break; 8105 case CMD_QUE_RING_BUF_CN: 8106 case CMD_QUE_RING_BUF64_CN: 8107 /* 8108 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8109 * completion, iocb_cmpl MUST be 0. 8110 */ 8111 if (piocb->iocb_cmpl) 8112 piocb->iocb_cmpl = NULL; 8113 /*FALLTHROUGH*/ 8114 case CMD_CREATE_XRI_CR: 8115 case CMD_CLOSE_XRI_CN: 8116 case CMD_CLOSE_XRI_CX: 8117 break; 8118 default: 8119 goto iocb_busy; 8120 } 8121 8122 /* 8123 * For FCP commands, we must be in a state where we can process link 8124 * attention events. 8125 */ 8126 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 8127 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8128 goto iocb_busy; 8129 } 8130 8131 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8132 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8133 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8134 8135 if (iocb) 8136 lpfc_sli_update_ring(phba, pring); 8137 else 8138 lpfc_sli_update_full_ring(phba, pring); 8139 8140 if (!piocb) 8141 return IOCB_SUCCESS; 8142 8143 goto out_busy; 8144 8145 iocb_busy: 8146 pring->stats.iocb_cmd_delay++; 8147 8148 out_busy: 8149 8150 if (!(flag & SLI_IOCB_RET_IOCB)) { 8151 __lpfc_sli_ringtx_put(phba, pring, piocb); 8152 return IOCB_SUCCESS; 8153 } 8154 8155 return IOCB_BUSY; 8156 } 8157 8158 /** 8159 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8160 * @phba: Pointer to HBA context object. 8161 * @piocb: Pointer to command iocb. 8162 * @sglq: Pointer to the scatter gather queue object. 8163 * 8164 * This routine converts the bpl or bde that is in the IOCB 8165 * to a sgl list for the sli4 hardware. The physical address 8166 * of the bpl/bde is converted back to a virtual address. 8167 * If the IOCB contains a BPL then the list of BDE's is 8168 * converted to sli4_sge's. If the IOCB contains a single 8169 * BDE then it is converted to a single sli_sge. 8170 * The IOCB is still in cpu endianess so the contents of 8171 * the bpl can be used without byte swapping. 8172 * 8173 * Returns valid XRI = Success, NO_XRI = Failure. 8174 **/ 8175 static uint16_t 8176 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8177 struct lpfc_sglq *sglq) 8178 { 8179 uint16_t xritag = NO_XRI; 8180 struct ulp_bde64 *bpl = NULL; 8181 struct ulp_bde64 bde; 8182 struct sli4_sge *sgl = NULL; 8183 struct lpfc_dmabuf *dmabuf; 8184 IOCB_t *icmd; 8185 int numBdes = 0; 8186 int i = 0; 8187 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8188 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8189 8190 if (!piocbq || !sglq) 8191 return xritag; 8192 8193 sgl = (struct sli4_sge *)sglq->sgl; 8194 icmd = &piocbq->iocb; 8195 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8196 return sglq->sli4_xritag; 8197 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8198 numBdes = icmd->un.genreq64.bdl.bdeSize / 8199 sizeof(struct ulp_bde64); 8200 /* The addrHigh and addrLow fields within the IOCB 8201 * have not been byteswapped yet so there is no 8202 * need to swap them back. 8203 */ 8204 if (piocbq->context3) 8205 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8206 else 8207 return xritag; 8208 8209 bpl = (struct ulp_bde64 *)dmabuf->virt; 8210 if (!bpl) 8211 return xritag; 8212 8213 for (i = 0; i < numBdes; i++) { 8214 /* Should already be byte swapped. */ 8215 sgl->addr_hi = bpl->addrHigh; 8216 sgl->addr_lo = bpl->addrLow; 8217 8218 sgl->word2 = le32_to_cpu(sgl->word2); 8219 if ((i+1) == numBdes) 8220 bf_set(lpfc_sli4_sge_last, sgl, 1); 8221 else 8222 bf_set(lpfc_sli4_sge_last, sgl, 0); 8223 /* swap the size field back to the cpu so we 8224 * can assign it to the sgl. 8225 */ 8226 bde.tus.w = le32_to_cpu(bpl->tus.w); 8227 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8228 /* The offsets in the sgl need to be accumulated 8229 * separately for the request and reply lists. 8230 * The request is always first, the reply follows. 8231 */ 8232 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8233 /* add up the reply sg entries */ 8234 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8235 inbound++; 8236 /* first inbound? reset the offset */ 8237 if (inbound == 1) 8238 offset = 0; 8239 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8240 bf_set(lpfc_sli4_sge_type, sgl, 8241 LPFC_SGE_TYPE_DATA); 8242 offset += bde.tus.f.bdeSize; 8243 } 8244 sgl->word2 = cpu_to_le32(sgl->word2); 8245 bpl++; 8246 sgl++; 8247 } 8248 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8249 /* The addrHigh and addrLow fields of the BDE have not 8250 * been byteswapped yet so they need to be swapped 8251 * before putting them in the sgl. 8252 */ 8253 sgl->addr_hi = 8254 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8255 sgl->addr_lo = 8256 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8257 sgl->word2 = le32_to_cpu(sgl->word2); 8258 bf_set(lpfc_sli4_sge_last, sgl, 1); 8259 sgl->word2 = cpu_to_le32(sgl->word2); 8260 sgl->sge_len = 8261 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8262 } 8263 return sglq->sli4_xritag; 8264 } 8265 8266 /** 8267 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8268 * @phba: Pointer to HBA context object. 8269 * @piocb: Pointer to command iocb. 8270 * @wqe: Pointer to the work queue entry. 8271 * 8272 * This routine converts the iocb command to its Work Queue Entry 8273 * equivalent. The wqe pointer should not have any fields set when 8274 * this routine is called because it will memcpy over them. 8275 * This routine does not set the CQ_ID or the WQEC bits in the 8276 * wqe. 8277 * 8278 * Returns: 0 = Success, IOCB_ERROR = Failure. 8279 **/ 8280 static int 8281 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8282 union lpfc_wqe *wqe) 8283 { 8284 uint32_t xmit_len = 0, total_len = 0; 8285 uint8_t ct = 0; 8286 uint32_t fip; 8287 uint32_t abort_tag; 8288 uint8_t command_type = ELS_COMMAND_NON_FIP; 8289 uint8_t cmnd; 8290 uint16_t xritag; 8291 uint16_t abrt_iotag; 8292 struct lpfc_iocbq *abrtiocbq; 8293 struct ulp_bde64 *bpl = NULL; 8294 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8295 int numBdes, i; 8296 struct ulp_bde64 bde; 8297 struct lpfc_nodelist *ndlp; 8298 uint32_t *pcmd; 8299 uint32_t if_type; 8300 8301 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8302 /* The fcp commands will set command type */ 8303 if (iocbq->iocb_flag & LPFC_IO_FCP) 8304 command_type = FCP_COMMAND; 8305 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8306 command_type = ELS_COMMAND_FIP; 8307 else 8308 command_type = ELS_COMMAND_NON_FIP; 8309 8310 if (phba->fcp_embed_io) 8311 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8312 /* Some of the fields are in the right position already */ 8313 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8314 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8315 wqe->generic.wqe_com.word10 = 0; 8316 8317 abort_tag = (uint32_t) iocbq->iotag; 8318 xritag = iocbq->sli4_xritag; 8319 /* words0-2 bpl convert bde */ 8320 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8321 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8322 sizeof(struct ulp_bde64); 8323 bpl = (struct ulp_bde64 *) 8324 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8325 if (!bpl) 8326 return IOCB_ERROR; 8327 8328 /* Should already be byte swapped. */ 8329 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8330 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8331 /* swap the size field back to the cpu so we 8332 * can assign it to the sgl. 8333 */ 8334 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8335 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8336 total_len = 0; 8337 for (i = 0; i < numBdes; i++) { 8338 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8339 total_len += bde.tus.f.bdeSize; 8340 } 8341 } else 8342 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8343 8344 iocbq->iocb.ulpIoTag = iocbq->iotag; 8345 cmnd = iocbq->iocb.ulpCommand; 8346 8347 switch (iocbq->iocb.ulpCommand) { 8348 case CMD_ELS_REQUEST64_CR: 8349 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8350 ndlp = iocbq->context_un.ndlp; 8351 else 8352 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8353 if (!iocbq->iocb.ulpLe) { 8354 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8355 "2007 Only Limited Edition cmd Format" 8356 " supported 0x%x\n", 8357 iocbq->iocb.ulpCommand); 8358 return IOCB_ERROR; 8359 } 8360 8361 wqe->els_req.payload_len = xmit_len; 8362 /* Els_reguest64 has a TMO */ 8363 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8364 iocbq->iocb.ulpTimeout); 8365 /* Need a VF for word 4 set the vf bit*/ 8366 bf_set(els_req64_vf, &wqe->els_req, 0); 8367 /* And a VFID for word 12 */ 8368 bf_set(els_req64_vfid, &wqe->els_req, 0); 8369 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8370 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8371 iocbq->iocb.ulpContext); 8372 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8373 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8374 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8375 if (command_type == ELS_COMMAND_FIP) 8376 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8377 >> LPFC_FIP_ELS_ID_SHIFT); 8378 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8379 iocbq->context2)->virt); 8380 if_type = bf_get(lpfc_sli_intf_if_type, 8381 &phba->sli4_hba.sli_intf); 8382 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8383 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8384 *pcmd == ELS_CMD_SCR || 8385 *pcmd == ELS_CMD_FDISC || 8386 *pcmd == ELS_CMD_LOGO || 8387 *pcmd == ELS_CMD_PLOGI)) { 8388 bf_set(els_req64_sp, &wqe->els_req, 1); 8389 bf_set(els_req64_sid, &wqe->els_req, 8390 iocbq->vport->fc_myDID); 8391 if ((*pcmd == ELS_CMD_FLOGI) && 8392 !(phba->fc_topology == 8393 LPFC_TOPOLOGY_LOOP)) 8394 bf_set(els_req64_sid, &wqe->els_req, 0); 8395 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8396 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8397 phba->vpi_ids[iocbq->vport->vpi]); 8398 } else if (pcmd && iocbq->context1) { 8399 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8400 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8401 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8402 } 8403 } 8404 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8405 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8406 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8407 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8408 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8409 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8410 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8411 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8412 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8413 break; 8414 case CMD_XMIT_SEQUENCE64_CX: 8415 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8416 iocbq->iocb.un.ulpWord[3]); 8417 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8418 iocbq->iocb.unsli3.rcvsli3.ox_id); 8419 /* The entire sequence is transmitted for this IOCB */ 8420 xmit_len = total_len; 8421 cmnd = CMD_XMIT_SEQUENCE64_CR; 8422 if (phba->link_flag & LS_LOOPBACK_MODE) 8423 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8424 case CMD_XMIT_SEQUENCE64_CR: 8425 /* word3 iocb=io_tag32 wqe=reserved */ 8426 wqe->xmit_sequence.rsvd3 = 0; 8427 /* word4 relative_offset memcpy */ 8428 /* word5 r_ctl/df_ctl memcpy */ 8429 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8430 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8431 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8432 LPFC_WQE_IOD_WRITE); 8433 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8434 LPFC_WQE_LENLOC_WORD12); 8435 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8436 wqe->xmit_sequence.xmit_len = xmit_len; 8437 command_type = OTHER_COMMAND; 8438 break; 8439 case CMD_XMIT_BCAST64_CN: 8440 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8441 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8442 /* word4 iocb=rsvd wqe=rsvd */ 8443 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8444 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8445 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8446 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8447 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8448 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8449 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8450 LPFC_WQE_LENLOC_WORD3); 8451 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8452 break; 8453 case CMD_FCP_IWRITE64_CR: 8454 command_type = FCP_COMMAND_DATA_OUT; 8455 /* word3 iocb=iotag wqe=payload_offset_len */ 8456 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8457 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8458 xmit_len + sizeof(struct fcp_rsp)); 8459 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8460 0); 8461 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8462 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8463 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8464 iocbq->iocb.ulpFCP2Rcvy); 8465 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8466 /* Always open the exchange */ 8467 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8468 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8469 LPFC_WQE_LENLOC_WORD4); 8470 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8471 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8472 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8473 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8474 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8475 if (iocbq->priority) { 8476 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8477 (iocbq->priority << 1)); 8478 } else { 8479 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8480 (phba->cfg_XLanePriority << 1)); 8481 } 8482 } 8483 /* Note, word 10 is already initialized to 0 */ 8484 8485 if (phba->fcp_embed_io) { 8486 struct lpfc_scsi_buf *lpfc_cmd; 8487 struct sli4_sge *sgl; 8488 union lpfc_wqe128 *wqe128; 8489 struct fcp_cmnd *fcp_cmnd; 8490 uint32_t *ptr; 8491 8492 /* 128 byte wqe support here */ 8493 wqe128 = (union lpfc_wqe128 *)wqe; 8494 8495 lpfc_cmd = iocbq->context1; 8496 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8497 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8498 8499 /* Word 0-2 - FCP_CMND */ 8500 wqe128->generic.bde.tus.f.bdeFlags = 8501 BUFF_TYPE_BDE_IMMED; 8502 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8503 wqe128->generic.bde.addrHigh = 0; 8504 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8505 8506 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8507 8508 /* Word 22-29 FCP CMND Payload */ 8509 ptr = &wqe128->words[22]; 8510 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8511 } 8512 break; 8513 case CMD_FCP_IREAD64_CR: 8514 /* word3 iocb=iotag wqe=payload_offset_len */ 8515 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8516 bf_set(payload_offset_len, &wqe->fcp_iread, 8517 xmit_len + sizeof(struct fcp_rsp)); 8518 bf_set(cmd_buff_len, &wqe->fcp_iread, 8519 0); 8520 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8521 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8522 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8523 iocbq->iocb.ulpFCP2Rcvy); 8524 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8525 /* Always open the exchange */ 8526 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8527 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8528 LPFC_WQE_LENLOC_WORD4); 8529 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8530 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8531 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8532 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8533 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8534 if (iocbq->priority) { 8535 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8536 (iocbq->priority << 1)); 8537 } else { 8538 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8539 (phba->cfg_XLanePriority << 1)); 8540 } 8541 } 8542 /* Note, word 10 is already initialized to 0 */ 8543 8544 if (phba->fcp_embed_io) { 8545 struct lpfc_scsi_buf *lpfc_cmd; 8546 struct sli4_sge *sgl; 8547 union lpfc_wqe128 *wqe128; 8548 struct fcp_cmnd *fcp_cmnd; 8549 uint32_t *ptr; 8550 8551 /* 128 byte wqe support here */ 8552 wqe128 = (union lpfc_wqe128 *)wqe; 8553 8554 lpfc_cmd = iocbq->context1; 8555 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8556 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8557 8558 /* Word 0-2 - FCP_CMND */ 8559 wqe128->generic.bde.tus.f.bdeFlags = 8560 BUFF_TYPE_BDE_IMMED; 8561 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8562 wqe128->generic.bde.addrHigh = 0; 8563 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8564 8565 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8566 8567 /* Word 22-29 FCP CMND Payload */ 8568 ptr = &wqe128->words[22]; 8569 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8570 } 8571 break; 8572 case CMD_FCP_ICMND64_CR: 8573 /* word3 iocb=iotag wqe=payload_offset_len */ 8574 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8575 bf_set(payload_offset_len, &wqe->fcp_icmd, 8576 xmit_len + sizeof(struct fcp_rsp)); 8577 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8578 0); 8579 /* word3 iocb=IO_TAG wqe=reserved */ 8580 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8581 /* Always open the exchange */ 8582 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8583 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8584 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8585 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8586 LPFC_WQE_LENLOC_NONE); 8587 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8588 iocbq->iocb.ulpFCP2Rcvy); 8589 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8590 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8591 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8592 if (iocbq->priority) { 8593 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8594 (iocbq->priority << 1)); 8595 } else { 8596 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8597 (phba->cfg_XLanePriority << 1)); 8598 } 8599 } 8600 /* Note, word 10 is already initialized to 0 */ 8601 8602 if (phba->fcp_embed_io) { 8603 struct lpfc_scsi_buf *lpfc_cmd; 8604 struct sli4_sge *sgl; 8605 union lpfc_wqe128 *wqe128; 8606 struct fcp_cmnd *fcp_cmnd; 8607 uint32_t *ptr; 8608 8609 /* 128 byte wqe support here */ 8610 wqe128 = (union lpfc_wqe128 *)wqe; 8611 8612 lpfc_cmd = iocbq->context1; 8613 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8614 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8615 8616 /* Word 0-2 - FCP_CMND */ 8617 wqe128->generic.bde.tus.f.bdeFlags = 8618 BUFF_TYPE_BDE_IMMED; 8619 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8620 wqe128->generic.bde.addrHigh = 0; 8621 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8622 8623 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8624 8625 /* Word 22-29 FCP CMND Payload */ 8626 ptr = &wqe128->words[22]; 8627 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8628 } 8629 break; 8630 case CMD_GEN_REQUEST64_CR: 8631 /* For this command calculate the xmit length of the 8632 * request bde. 8633 */ 8634 xmit_len = 0; 8635 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8636 sizeof(struct ulp_bde64); 8637 for (i = 0; i < numBdes; i++) { 8638 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8639 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8640 break; 8641 xmit_len += bde.tus.f.bdeSize; 8642 } 8643 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8644 wqe->gen_req.request_payload_len = xmit_len; 8645 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8646 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8647 /* word6 context tag copied in memcpy */ 8648 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8649 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8651 "2015 Invalid CT %x command 0x%x\n", 8652 ct, iocbq->iocb.ulpCommand); 8653 return IOCB_ERROR; 8654 } 8655 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8656 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8657 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8658 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8659 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8660 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8661 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8662 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8663 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8664 command_type = OTHER_COMMAND; 8665 break; 8666 case CMD_XMIT_ELS_RSP64_CX: 8667 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8668 /* words0-2 BDE memcpy */ 8669 /* word3 iocb=iotag32 wqe=response_payload_len */ 8670 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8671 /* word4 */ 8672 wqe->xmit_els_rsp.word4 = 0; 8673 /* word5 iocb=rsvd wge=did */ 8674 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8675 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8676 8677 if_type = bf_get(lpfc_sli_intf_if_type, 8678 &phba->sli4_hba.sli_intf); 8679 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8680 if (iocbq->vport->fc_flag & FC_PT2PT) { 8681 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8682 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8683 iocbq->vport->fc_myDID); 8684 if (iocbq->vport->fc_myDID == Fabric_DID) { 8685 bf_set(wqe_els_did, 8686 &wqe->xmit_els_rsp.wqe_dest, 0); 8687 } 8688 } 8689 } 8690 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8691 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8692 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8693 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8694 iocbq->iocb.unsli3.rcvsli3.ox_id); 8695 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8696 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8697 phba->vpi_ids[iocbq->vport->vpi]); 8698 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8699 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8700 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8701 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8702 LPFC_WQE_LENLOC_WORD3); 8703 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8704 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8705 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8706 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8707 iocbq->context2)->virt); 8708 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8709 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8710 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8711 iocbq->vport->fc_myDID); 8712 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8713 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8714 phba->vpi_ids[phba->pport->vpi]); 8715 } 8716 command_type = OTHER_COMMAND; 8717 break; 8718 case CMD_CLOSE_XRI_CN: 8719 case CMD_ABORT_XRI_CN: 8720 case CMD_ABORT_XRI_CX: 8721 /* words 0-2 memcpy should be 0 rserved */ 8722 /* port will send abts */ 8723 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8724 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8725 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8726 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8727 } else 8728 fip = 0; 8729 8730 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8731 /* 8732 * The link is down, or the command was ELS_FIP 8733 * so the fw does not need to send abts 8734 * on the wire. 8735 */ 8736 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8737 else 8738 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8739 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8740 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8741 wqe->abort_cmd.rsrvd5 = 0; 8742 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8743 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8744 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8745 /* 8746 * The abort handler will send us CMD_ABORT_XRI_CN or 8747 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8748 */ 8749 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8750 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8751 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8752 LPFC_WQE_LENLOC_NONE); 8753 cmnd = CMD_ABORT_XRI_CX; 8754 command_type = OTHER_COMMAND; 8755 xritag = 0; 8756 break; 8757 case CMD_XMIT_BLS_RSP64_CX: 8758 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8759 /* As BLS ABTS RSP WQE is very different from other WQEs, 8760 * we re-construct this WQE here based on information in 8761 * iocbq from scratch. 8762 */ 8763 memset(wqe, 0, sizeof(union lpfc_wqe)); 8764 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8765 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8766 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8767 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8768 LPFC_ABTS_UNSOL_INT) { 8769 /* ABTS sent by initiator to CT exchange, the 8770 * RX_ID field will be filled with the newly 8771 * allocated responder XRI. 8772 */ 8773 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8774 iocbq->sli4_xritag); 8775 } else { 8776 /* ABTS sent by responder to CT exchange, the 8777 * RX_ID field will be filled with the responder 8778 * RX_ID from ABTS. 8779 */ 8780 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8781 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8782 } 8783 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8784 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8785 8786 /* Use CT=VPI */ 8787 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8788 ndlp->nlp_DID); 8789 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8790 iocbq->iocb.ulpContext); 8791 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8792 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8793 phba->vpi_ids[phba->pport->vpi]); 8794 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8795 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8796 LPFC_WQE_LENLOC_NONE); 8797 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8798 command_type = OTHER_COMMAND; 8799 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8800 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8801 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8802 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8803 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8804 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8805 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8806 } 8807 8808 break; 8809 case CMD_XRI_ABORTED_CX: 8810 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8811 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8812 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8813 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8814 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8815 default: 8816 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8817 "2014 Invalid command 0x%x\n", 8818 iocbq->iocb.ulpCommand); 8819 return IOCB_ERROR; 8820 break; 8821 } 8822 8823 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8824 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8825 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8826 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8827 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8828 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8829 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8830 LPFC_IO_DIF_INSERT); 8831 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8832 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8833 wqe->generic.wqe_com.abort_tag = abort_tag; 8834 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8835 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8836 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8837 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8838 return 0; 8839 } 8840 8841 /** 8842 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8843 * @phba: Pointer to HBA context object. 8844 * @ring_number: SLI ring number to issue iocb on. 8845 * @piocb: Pointer to command iocb. 8846 * @flag: Flag indicating if this command can be put into txq. 8847 * 8848 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8849 * an iocb command to an HBA with SLI-4 interface spec. 8850 * 8851 * This function is called with hbalock held. The function will return success 8852 * after it successfully submit the iocb to firmware or after adding to the 8853 * txq. 8854 **/ 8855 static int 8856 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8857 struct lpfc_iocbq *piocb, uint32_t flag) 8858 { 8859 struct lpfc_sglq *sglq; 8860 union lpfc_wqe *wqe; 8861 union lpfc_wqe128 wqe128; 8862 struct lpfc_queue *wq; 8863 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8864 8865 lockdep_assert_held(&phba->hbalock); 8866 8867 /* 8868 * The WQE can be either 64 or 128 bytes, 8869 * so allocate space on the stack assuming the largest. 8870 */ 8871 wqe = (union lpfc_wqe *)&wqe128; 8872 8873 if (piocb->sli4_xritag == NO_XRI) { 8874 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8875 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8876 sglq = NULL; 8877 else { 8878 if (!list_empty(&pring->txq)) { 8879 if (!(flag & SLI_IOCB_RET_IOCB)) { 8880 __lpfc_sli_ringtx_put(phba, 8881 pring, piocb); 8882 return IOCB_SUCCESS; 8883 } else { 8884 return IOCB_BUSY; 8885 } 8886 } else { 8887 sglq = __lpfc_sli_get_sglq(phba, piocb); 8888 if (!sglq) { 8889 if (!(flag & SLI_IOCB_RET_IOCB)) { 8890 __lpfc_sli_ringtx_put(phba, 8891 pring, 8892 piocb); 8893 return IOCB_SUCCESS; 8894 } else 8895 return IOCB_BUSY; 8896 } 8897 } 8898 } 8899 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8900 /* These IO's already have an XRI and a mapped sgl. */ 8901 sglq = NULL; 8902 } else { 8903 /* 8904 * This is a continuation of a commandi,(CX) so this 8905 * sglq is on the active list 8906 */ 8907 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8908 if (!sglq) 8909 return IOCB_ERROR; 8910 } 8911 8912 if (sglq) { 8913 piocb->sli4_lxritag = sglq->sli4_lxritag; 8914 piocb->sli4_xritag = sglq->sli4_xritag; 8915 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8916 return IOCB_ERROR; 8917 } 8918 8919 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 8920 return IOCB_ERROR; 8921 8922 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8923 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8924 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8925 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8926 } else { 8927 wq = phba->sli4_hba.oas_wq; 8928 } 8929 if (lpfc_sli4_wq_put(wq, wqe)) 8930 return IOCB_ERROR; 8931 } else { 8932 if (unlikely(!phba->sli4_hba.els_wq)) 8933 return IOCB_ERROR; 8934 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 8935 return IOCB_ERROR; 8936 } 8937 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8938 8939 return 0; 8940 } 8941 8942 /** 8943 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8944 * 8945 * This routine wraps the actual lockless version for issusing IOCB function 8946 * pointer from the lpfc_hba struct. 8947 * 8948 * Return codes: 8949 * IOCB_ERROR - Error 8950 * IOCB_SUCCESS - Success 8951 * IOCB_BUSY - Busy 8952 **/ 8953 int 8954 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8955 struct lpfc_iocbq *piocb, uint32_t flag) 8956 { 8957 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8958 } 8959 8960 /** 8961 * lpfc_sli_api_table_setup - Set up sli api function jump table 8962 * @phba: The hba struct for which this call is being executed. 8963 * @dev_grp: The HBA PCI-Device group number. 8964 * 8965 * This routine sets up the SLI interface API function jump table in @phba 8966 * struct. 8967 * Returns: 0 - success, -ENODEV - failure. 8968 **/ 8969 int 8970 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8971 { 8972 8973 switch (dev_grp) { 8974 case LPFC_PCI_DEV_LP: 8975 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8976 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8977 break; 8978 case LPFC_PCI_DEV_OC: 8979 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8980 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8981 break; 8982 default: 8983 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8984 "1419 Invalid HBA PCI-device group: 0x%x\n", 8985 dev_grp); 8986 return -ENODEV; 8987 break; 8988 } 8989 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8990 return 0; 8991 } 8992 8993 /** 8994 * lpfc_sli_calc_ring - Calculates which ring to use 8995 * @phba: Pointer to HBA context object. 8996 * @ring_number: Initial ring 8997 * @piocb: Pointer to command iocb. 8998 * 8999 * For SLI4, FCP IO can deferred to one fo many WQs, based on 9000 * fcp_wqidx, thus we need to calculate the corresponding ring. 9001 * Since ABORTS must go on the same WQ of the command they are 9002 * aborting, we use command's fcp_wqidx. 9003 */ 9004 static int 9005 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 9006 struct lpfc_iocbq *piocb) 9007 { 9008 if (phba->sli_rev < LPFC_SLI_REV4) 9009 return ring_number; 9010 9011 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9012 if (!(phba->cfg_fof) || 9013 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9014 if (unlikely(!phba->sli4_hba.fcp_wq)) 9015 return LPFC_HBA_ERROR; 9016 /* 9017 * for abort iocb fcp_wqidx should already 9018 * be setup based on what work queue we used. 9019 */ 9020 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9021 piocb->fcp_wqidx = 9022 lpfc_sli4_scmd_to_wqidx_distr(phba, 9023 piocb->context1); 9024 ring_number = MAX_SLI3_CONFIGURED_RINGS + 9025 piocb->fcp_wqidx; 9026 } else { 9027 if (unlikely(!phba->sli4_hba.oas_wq)) 9028 return LPFC_HBA_ERROR; 9029 piocb->fcp_wqidx = 0; 9030 ring_number = LPFC_FCP_OAS_RING; 9031 } 9032 } 9033 return ring_number; 9034 } 9035 9036 /** 9037 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9038 * @phba: Pointer to HBA context object. 9039 * @pring: Pointer to driver SLI ring object. 9040 * @piocb: Pointer to command iocb. 9041 * @flag: Flag indicating if this command can be put into txq. 9042 * 9043 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9044 * function. This function gets the hbalock and calls 9045 * __lpfc_sli_issue_iocb function and will return the error returned 9046 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9047 * functions which do not hold hbalock. 9048 **/ 9049 int 9050 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9051 struct lpfc_iocbq *piocb, uint32_t flag) 9052 { 9053 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 9054 struct lpfc_sli_ring *pring; 9055 struct lpfc_queue *fpeq; 9056 struct lpfc_eqe *eqe; 9057 unsigned long iflags; 9058 int rc, idx; 9059 9060 if (phba->sli_rev == LPFC_SLI_REV4) { 9061 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 9062 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9063 return IOCB_ERROR; 9064 idx = piocb->fcp_wqidx; 9065 9066 pring = &phba->sli.ring[ring_number]; 9067 spin_lock_irqsave(&pring->ring_lock, iflags); 9068 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9069 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9070 9071 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9072 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 9073 9074 if (atomic_dec_and_test(&fcp_eq_hdl-> 9075 fcp_eq_in_use)) { 9076 9077 /* Get associated EQ with this index */ 9078 fpeq = phba->sli4_hba.hba_eq[idx]; 9079 9080 /* Turn off interrupts from this EQ */ 9081 lpfc_sli4_eq_clr_intr(fpeq); 9082 9083 /* 9084 * Process all the events on FCP EQ 9085 */ 9086 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9087 lpfc_sli4_hba_handle_eqe(phba, 9088 eqe, idx); 9089 fpeq->EQ_processed++; 9090 } 9091 9092 /* Always clear and re-arm the EQ */ 9093 lpfc_sli4_eq_release(fpeq, 9094 LPFC_QUEUE_REARM); 9095 } 9096 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 9097 } 9098 } else { 9099 /* For now, SLI2/3 will still use hbalock */ 9100 spin_lock_irqsave(&phba->hbalock, iflags); 9101 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9102 spin_unlock_irqrestore(&phba->hbalock, iflags); 9103 } 9104 return rc; 9105 } 9106 9107 /** 9108 * lpfc_extra_ring_setup - Extra ring setup function 9109 * @phba: Pointer to HBA context object. 9110 * 9111 * This function is called while driver attaches with the 9112 * HBA to setup the extra ring. The extra ring is used 9113 * only when driver needs to support target mode functionality 9114 * or IP over FC functionalities. 9115 * 9116 * This function is called with no lock held. 9117 **/ 9118 static int 9119 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9120 { 9121 struct lpfc_sli *psli; 9122 struct lpfc_sli_ring *pring; 9123 9124 psli = &phba->sli; 9125 9126 /* Adjust cmd/rsp ring iocb entries more evenly */ 9127 9128 /* Take some away from the FCP ring */ 9129 pring = &psli->ring[psli->fcp_ring]; 9130 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9131 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9132 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9133 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9134 9135 /* and give them to the extra ring */ 9136 pring = &psli->ring[psli->extra_ring]; 9137 9138 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9139 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9140 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9141 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9142 9143 /* Setup default profile for this ring */ 9144 pring->iotag_max = 4096; 9145 pring->num_mask = 1; 9146 pring->prt[0].profile = 0; /* Mask 0 */ 9147 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9148 pring->prt[0].type = phba->cfg_multi_ring_type; 9149 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9150 return 0; 9151 } 9152 9153 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9154 * @phba: Pointer to HBA context object. 9155 * @iocbq: Pointer to iocb object. 9156 * 9157 * The async_event handler calls this routine when it receives 9158 * an ASYNC_STATUS_CN event from the port. The port generates 9159 * this event when an Abort Sequence request to an rport fails 9160 * twice in succession. The abort could be originated by the 9161 * driver or by the port. The ABTS could have been for an ELS 9162 * or FCP IO. The port only generates this event when an ABTS 9163 * fails to complete after one retry. 9164 */ 9165 static void 9166 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9167 struct lpfc_iocbq *iocbq) 9168 { 9169 struct lpfc_nodelist *ndlp = NULL; 9170 uint16_t rpi = 0, vpi = 0; 9171 struct lpfc_vport *vport = NULL; 9172 9173 /* The rpi in the ulpContext is vport-sensitive. */ 9174 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9175 rpi = iocbq->iocb.ulpContext; 9176 9177 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9178 "3092 Port generated ABTS async event " 9179 "on vpi %d rpi %d status 0x%x\n", 9180 vpi, rpi, iocbq->iocb.ulpStatus); 9181 9182 vport = lpfc_find_vport_by_vpid(phba, vpi); 9183 if (!vport) 9184 goto err_exit; 9185 ndlp = lpfc_findnode_rpi(vport, rpi); 9186 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9187 goto err_exit; 9188 9189 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9190 lpfc_sli_abts_recover_port(vport, ndlp); 9191 return; 9192 9193 err_exit: 9194 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9195 "3095 Event Context not found, no " 9196 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9197 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9198 vpi, rpi); 9199 } 9200 9201 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9202 * @phba: pointer to HBA context object. 9203 * @ndlp: nodelist pointer for the impacted rport. 9204 * @axri: pointer to the wcqe containing the failed exchange. 9205 * 9206 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9207 * port. The port generates this event when an abort exchange request to an 9208 * rport fails twice in succession with no reply. The abort could be originated 9209 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9210 */ 9211 void 9212 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9213 struct lpfc_nodelist *ndlp, 9214 struct sli4_wcqe_xri_aborted *axri) 9215 { 9216 struct lpfc_vport *vport; 9217 uint32_t ext_status = 0; 9218 9219 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9220 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9221 "3115 Node Context not found, driver " 9222 "ignoring abts err event\n"); 9223 return; 9224 } 9225 9226 vport = ndlp->vport; 9227 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9228 "3116 Port generated FCP XRI ABORT event on " 9229 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9230 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9231 bf_get(lpfc_wcqe_xa_xri, axri), 9232 bf_get(lpfc_wcqe_xa_status, axri), 9233 axri->parameter); 9234 9235 /* 9236 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9237 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9238 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9239 */ 9240 ext_status = axri->parameter & IOERR_PARAM_MASK; 9241 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9242 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9243 lpfc_sli_abts_recover_port(vport, ndlp); 9244 } 9245 9246 /** 9247 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9248 * @phba: Pointer to HBA context object. 9249 * @pring: Pointer to driver SLI ring object. 9250 * @iocbq: Pointer to iocb object. 9251 * 9252 * This function is called by the slow ring event handler 9253 * function when there is an ASYNC event iocb in the ring. 9254 * This function is called with no lock held. 9255 * Currently this function handles only temperature related 9256 * ASYNC events. The function decodes the temperature sensor 9257 * event message and posts events for the management applications. 9258 **/ 9259 static void 9260 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9261 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9262 { 9263 IOCB_t *icmd; 9264 uint16_t evt_code; 9265 struct temp_event temp_event_data; 9266 struct Scsi_Host *shost; 9267 uint32_t *iocb_w; 9268 9269 icmd = &iocbq->iocb; 9270 evt_code = icmd->un.asyncstat.evt_code; 9271 9272 switch (evt_code) { 9273 case ASYNC_TEMP_WARN: 9274 case ASYNC_TEMP_SAFE: 9275 temp_event_data.data = (uint32_t) icmd->ulpContext; 9276 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9277 if (evt_code == ASYNC_TEMP_WARN) { 9278 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9279 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9280 "0347 Adapter is very hot, please take " 9281 "corrective action. temperature : %d Celsius\n", 9282 (uint32_t) icmd->ulpContext); 9283 } else { 9284 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9285 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9286 "0340 Adapter temperature is OK now. " 9287 "temperature : %d Celsius\n", 9288 (uint32_t) icmd->ulpContext); 9289 } 9290 9291 /* Send temperature change event to applications */ 9292 shost = lpfc_shost_from_vport(phba->pport); 9293 fc_host_post_vendor_event(shost, fc_get_event_number(), 9294 sizeof(temp_event_data), (char *) &temp_event_data, 9295 LPFC_NL_VENDOR_ID); 9296 break; 9297 case ASYNC_STATUS_CN: 9298 lpfc_sli_abts_err_handler(phba, iocbq); 9299 break; 9300 default: 9301 iocb_w = (uint32_t *) icmd; 9302 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9303 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9304 " evt_code 0x%x\n" 9305 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9306 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9307 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9308 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9309 pring->ringno, icmd->un.asyncstat.evt_code, 9310 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9311 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9312 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9313 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9314 9315 break; 9316 } 9317 } 9318 9319 9320 /** 9321 * lpfc_sli_setup - SLI ring setup function 9322 * @phba: Pointer to HBA context object. 9323 * 9324 * lpfc_sli_setup sets up rings of the SLI interface with 9325 * number of iocbs per ring and iotags. This function is 9326 * called while driver attach to the HBA and before the 9327 * interrupts are enabled. So there is no need for locking. 9328 * 9329 * This function always returns 0. 9330 **/ 9331 int 9332 lpfc_sli_setup(struct lpfc_hba *phba) 9333 { 9334 int i, totiocbsize = 0; 9335 struct lpfc_sli *psli = &phba->sli; 9336 struct lpfc_sli_ring *pring; 9337 9338 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9339 if (phba->sli_rev == LPFC_SLI_REV4) 9340 psli->num_rings += phba->cfg_fcp_io_channel; 9341 psli->sli_flag = 0; 9342 psli->fcp_ring = LPFC_FCP_RING; 9343 psli->next_ring = LPFC_FCP_NEXT_RING; 9344 psli->extra_ring = LPFC_EXTRA_RING; 9345 9346 psli->iocbq_lookup = NULL; 9347 psli->iocbq_lookup_len = 0; 9348 psli->last_iotag = 0; 9349 9350 for (i = 0; i < psli->num_rings; i++) { 9351 pring = &psli->ring[i]; 9352 switch (i) { 9353 case LPFC_FCP_RING: /* ring 0 - FCP */ 9354 /* numCiocb and numRiocb are used in config_port */ 9355 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9356 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9357 pring->sli.sli3.numCiocb += 9358 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9359 pring->sli.sli3.numRiocb += 9360 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9361 pring->sli.sli3.numCiocb += 9362 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9363 pring->sli.sli3.numRiocb += 9364 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9365 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9366 SLI3_IOCB_CMD_SIZE : 9367 SLI2_IOCB_CMD_SIZE; 9368 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9369 SLI3_IOCB_RSP_SIZE : 9370 SLI2_IOCB_RSP_SIZE; 9371 pring->iotag_ctr = 0; 9372 pring->iotag_max = 9373 (phba->cfg_hba_queue_depth * 2); 9374 pring->fast_iotag = pring->iotag_max; 9375 pring->num_mask = 0; 9376 break; 9377 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9378 /* numCiocb and numRiocb are used in config_port */ 9379 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9380 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9381 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9382 SLI3_IOCB_CMD_SIZE : 9383 SLI2_IOCB_CMD_SIZE; 9384 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9385 SLI3_IOCB_RSP_SIZE : 9386 SLI2_IOCB_RSP_SIZE; 9387 pring->iotag_max = phba->cfg_hba_queue_depth; 9388 pring->num_mask = 0; 9389 break; 9390 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9391 /* numCiocb and numRiocb are used in config_port */ 9392 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9393 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9394 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9395 SLI3_IOCB_CMD_SIZE : 9396 SLI2_IOCB_CMD_SIZE; 9397 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9398 SLI3_IOCB_RSP_SIZE : 9399 SLI2_IOCB_RSP_SIZE; 9400 pring->fast_iotag = 0; 9401 pring->iotag_ctr = 0; 9402 pring->iotag_max = 4096; 9403 pring->lpfc_sli_rcv_async_status = 9404 lpfc_sli_async_event_handler; 9405 pring->num_mask = LPFC_MAX_RING_MASK; 9406 pring->prt[0].profile = 0; /* Mask 0 */ 9407 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9408 pring->prt[0].type = FC_TYPE_ELS; 9409 pring->prt[0].lpfc_sli_rcv_unsol_event = 9410 lpfc_els_unsol_event; 9411 pring->prt[1].profile = 0; /* Mask 1 */ 9412 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9413 pring->prt[1].type = FC_TYPE_ELS; 9414 pring->prt[1].lpfc_sli_rcv_unsol_event = 9415 lpfc_els_unsol_event; 9416 pring->prt[2].profile = 0; /* Mask 2 */ 9417 /* NameServer Inquiry */ 9418 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9419 /* NameServer */ 9420 pring->prt[2].type = FC_TYPE_CT; 9421 pring->prt[2].lpfc_sli_rcv_unsol_event = 9422 lpfc_ct_unsol_event; 9423 pring->prt[3].profile = 0; /* Mask 3 */ 9424 /* NameServer response */ 9425 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9426 /* NameServer */ 9427 pring->prt[3].type = FC_TYPE_CT; 9428 pring->prt[3].lpfc_sli_rcv_unsol_event = 9429 lpfc_ct_unsol_event; 9430 break; 9431 } 9432 totiocbsize += (pring->sli.sli3.numCiocb * 9433 pring->sli.sli3.sizeCiocb) + 9434 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9435 } 9436 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9437 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9438 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9439 "SLI2 SLIM Data: x%x x%lx\n", 9440 phba->brd_no, totiocbsize, 9441 (unsigned long) MAX_SLIM_IOCB_SIZE); 9442 } 9443 if (phba->cfg_multi_ring_support == 2) 9444 lpfc_extra_ring_setup(phba); 9445 9446 return 0; 9447 } 9448 9449 /** 9450 * lpfc_sli_queue_setup - Queue initialization function 9451 * @phba: Pointer to HBA context object. 9452 * 9453 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9454 * ring. This function also initializes ring indices of each ring. 9455 * This function is called during the initialization of the SLI 9456 * interface of an HBA. 9457 * This function is called with no lock held and always returns 9458 * 1. 9459 **/ 9460 int 9461 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9462 { 9463 struct lpfc_sli *psli; 9464 struct lpfc_sli_ring *pring; 9465 int i; 9466 9467 psli = &phba->sli; 9468 spin_lock_irq(&phba->hbalock); 9469 INIT_LIST_HEAD(&psli->mboxq); 9470 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9471 /* Initialize list headers for txq and txcmplq as double linked lists */ 9472 for (i = 0; i < psli->num_rings; i++) { 9473 pring = &psli->ring[i]; 9474 pring->ringno = i; 9475 pring->sli.sli3.next_cmdidx = 0; 9476 pring->sli.sli3.local_getidx = 0; 9477 pring->sli.sli3.cmdidx = 0; 9478 pring->flag = 0; 9479 INIT_LIST_HEAD(&pring->txq); 9480 INIT_LIST_HEAD(&pring->txcmplq); 9481 INIT_LIST_HEAD(&pring->iocb_continueq); 9482 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9483 INIT_LIST_HEAD(&pring->postbufq); 9484 spin_lock_init(&pring->ring_lock); 9485 } 9486 spin_unlock_irq(&phba->hbalock); 9487 return 1; 9488 } 9489 9490 /** 9491 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9492 * @phba: Pointer to HBA context object. 9493 * 9494 * This routine flushes the mailbox command subsystem. It will unconditionally 9495 * flush all the mailbox commands in the three possible stages in the mailbox 9496 * command sub-system: pending mailbox command queue; the outstanding mailbox 9497 * command; and completed mailbox command queue. It is caller's responsibility 9498 * to make sure that the driver is in the proper state to flush the mailbox 9499 * command sub-system. Namely, the posting of mailbox commands into the 9500 * pending mailbox command queue from the various clients must be stopped; 9501 * either the HBA is in a state that it will never works on the outstanding 9502 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9503 * mailbox command has been completed. 9504 **/ 9505 static void 9506 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9507 { 9508 LIST_HEAD(completions); 9509 struct lpfc_sli *psli = &phba->sli; 9510 LPFC_MBOXQ_t *pmb; 9511 unsigned long iflag; 9512 9513 /* Flush all the mailbox commands in the mbox system */ 9514 spin_lock_irqsave(&phba->hbalock, iflag); 9515 /* The pending mailbox command queue */ 9516 list_splice_init(&phba->sli.mboxq, &completions); 9517 /* The outstanding active mailbox command */ 9518 if (psli->mbox_active) { 9519 list_add_tail(&psli->mbox_active->list, &completions); 9520 psli->mbox_active = NULL; 9521 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9522 } 9523 /* The completed mailbox command queue */ 9524 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9525 spin_unlock_irqrestore(&phba->hbalock, iflag); 9526 9527 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9528 while (!list_empty(&completions)) { 9529 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9530 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9531 if (pmb->mbox_cmpl) 9532 pmb->mbox_cmpl(phba, pmb); 9533 } 9534 } 9535 9536 /** 9537 * lpfc_sli_host_down - Vport cleanup function 9538 * @vport: Pointer to virtual port object. 9539 * 9540 * lpfc_sli_host_down is called to clean up the resources 9541 * associated with a vport before destroying virtual 9542 * port data structures. 9543 * This function does following operations: 9544 * - Free discovery resources associated with this virtual 9545 * port. 9546 * - Free iocbs associated with this virtual port in 9547 * the txq. 9548 * - Send abort for all iocb commands associated with this 9549 * vport in txcmplq. 9550 * 9551 * This function is called with no lock held and always returns 1. 9552 **/ 9553 int 9554 lpfc_sli_host_down(struct lpfc_vport *vport) 9555 { 9556 LIST_HEAD(completions); 9557 struct lpfc_hba *phba = vport->phba; 9558 struct lpfc_sli *psli = &phba->sli; 9559 struct lpfc_sli_ring *pring; 9560 struct lpfc_iocbq *iocb, *next_iocb; 9561 int i; 9562 unsigned long flags = 0; 9563 uint16_t prev_pring_flag; 9564 9565 lpfc_cleanup_discovery_resources(vport); 9566 9567 spin_lock_irqsave(&phba->hbalock, flags); 9568 for (i = 0; i < psli->num_rings; i++) { 9569 pring = &psli->ring[i]; 9570 prev_pring_flag = pring->flag; 9571 /* Only slow rings */ 9572 if (pring->ringno == LPFC_ELS_RING) { 9573 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9574 /* Set the lpfc data pending flag */ 9575 set_bit(LPFC_DATA_READY, &phba->data_flags); 9576 } 9577 /* 9578 * Error everything on the txq since these iocbs have not been 9579 * given to the FW yet. 9580 */ 9581 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9582 if (iocb->vport != vport) 9583 continue; 9584 list_move_tail(&iocb->list, &completions); 9585 } 9586 9587 /* Next issue ABTS for everything on the txcmplq */ 9588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9589 list) { 9590 if (iocb->vport != vport) 9591 continue; 9592 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9593 } 9594 9595 pring->flag = prev_pring_flag; 9596 } 9597 9598 spin_unlock_irqrestore(&phba->hbalock, flags); 9599 9600 /* Cancel all the IOCBs from the completions list */ 9601 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9602 IOERR_SLI_DOWN); 9603 return 1; 9604 } 9605 9606 /** 9607 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9608 * @phba: Pointer to HBA context object. 9609 * 9610 * This function cleans up all iocb, buffers, mailbox commands 9611 * while shutting down the HBA. This function is called with no 9612 * lock held and always returns 1. 9613 * This function does the following to cleanup driver resources: 9614 * - Free discovery resources for each virtual port 9615 * - Cleanup any pending fabric iocbs 9616 * - Iterate through the iocb txq and free each entry 9617 * in the list. 9618 * - Free up any buffer posted to the HBA 9619 * - Free mailbox commands in the mailbox queue. 9620 **/ 9621 int 9622 lpfc_sli_hba_down(struct lpfc_hba *phba) 9623 { 9624 LIST_HEAD(completions); 9625 struct lpfc_sli *psli = &phba->sli; 9626 struct lpfc_sli_ring *pring; 9627 struct lpfc_dmabuf *buf_ptr; 9628 unsigned long flags = 0; 9629 int i; 9630 9631 /* Shutdown the mailbox command sub-system */ 9632 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9633 9634 lpfc_hba_down_prep(phba); 9635 9636 lpfc_fabric_abort_hba(phba); 9637 9638 spin_lock_irqsave(&phba->hbalock, flags); 9639 for (i = 0; i < psli->num_rings; i++) { 9640 pring = &psli->ring[i]; 9641 /* Only slow rings */ 9642 if (pring->ringno == LPFC_ELS_RING) { 9643 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9644 /* Set the lpfc data pending flag */ 9645 set_bit(LPFC_DATA_READY, &phba->data_flags); 9646 } 9647 9648 /* 9649 * Error everything on the txq since these iocbs have not been 9650 * given to the FW yet. 9651 */ 9652 list_splice_init(&pring->txq, &completions); 9653 } 9654 spin_unlock_irqrestore(&phba->hbalock, flags); 9655 9656 /* Cancel all the IOCBs from the completions list */ 9657 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9658 IOERR_SLI_DOWN); 9659 9660 spin_lock_irqsave(&phba->hbalock, flags); 9661 list_splice_init(&phba->elsbuf, &completions); 9662 phba->elsbuf_cnt = 0; 9663 phba->elsbuf_prev_cnt = 0; 9664 spin_unlock_irqrestore(&phba->hbalock, flags); 9665 9666 while (!list_empty(&completions)) { 9667 list_remove_head(&completions, buf_ptr, 9668 struct lpfc_dmabuf, list); 9669 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9670 kfree(buf_ptr); 9671 } 9672 9673 /* Return any active mbox cmds */ 9674 del_timer_sync(&psli->mbox_tmo); 9675 9676 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9677 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9678 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9679 9680 return 1; 9681 } 9682 9683 /** 9684 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9685 * @srcp: Source memory pointer. 9686 * @destp: Destination memory pointer. 9687 * @cnt: Number of words required to be copied. 9688 * 9689 * This function is used for copying data between driver memory 9690 * and the SLI memory. This function also changes the endianness 9691 * of each word if native endianness is different from SLI 9692 * endianness. This function can be called with or without 9693 * lock. 9694 **/ 9695 void 9696 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9697 { 9698 uint32_t *src = srcp; 9699 uint32_t *dest = destp; 9700 uint32_t ldata; 9701 int i; 9702 9703 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9704 ldata = *src; 9705 ldata = le32_to_cpu(ldata); 9706 *dest = ldata; 9707 src++; 9708 dest++; 9709 } 9710 } 9711 9712 9713 /** 9714 * lpfc_sli_bemem_bcopy - SLI memory copy function 9715 * @srcp: Source memory pointer. 9716 * @destp: Destination memory pointer. 9717 * @cnt: Number of words required to be copied. 9718 * 9719 * This function is used for copying data between a data structure 9720 * with big endian representation to local endianness. 9721 * This function can be called with or without lock. 9722 **/ 9723 void 9724 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9725 { 9726 uint32_t *src = srcp; 9727 uint32_t *dest = destp; 9728 uint32_t ldata; 9729 int i; 9730 9731 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9732 ldata = *src; 9733 ldata = be32_to_cpu(ldata); 9734 *dest = ldata; 9735 src++; 9736 dest++; 9737 } 9738 } 9739 9740 /** 9741 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9742 * @phba: Pointer to HBA context object. 9743 * @pring: Pointer to driver SLI ring object. 9744 * @mp: Pointer to driver buffer object. 9745 * 9746 * This function is called with no lock held. 9747 * It always return zero after adding the buffer to the postbufq 9748 * buffer list. 9749 **/ 9750 int 9751 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9752 struct lpfc_dmabuf *mp) 9753 { 9754 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9755 later */ 9756 spin_lock_irq(&phba->hbalock); 9757 list_add_tail(&mp->list, &pring->postbufq); 9758 pring->postbufq_cnt++; 9759 spin_unlock_irq(&phba->hbalock); 9760 return 0; 9761 } 9762 9763 /** 9764 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9765 * @phba: Pointer to HBA context object. 9766 * 9767 * When HBQ is enabled, buffers are searched based on tags. This function 9768 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9769 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9770 * does not conflict with tags of buffer posted for unsolicited events. 9771 * The function returns the allocated tag. The function is called with 9772 * no locks held. 9773 **/ 9774 uint32_t 9775 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9776 { 9777 spin_lock_irq(&phba->hbalock); 9778 phba->buffer_tag_count++; 9779 /* 9780 * Always set the QUE_BUFTAG_BIT to distiguish between 9781 * a tag assigned by HBQ. 9782 */ 9783 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9784 spin_unlock_irq(&phba->hbalock); 9785 return phba->buffer_tag_count; 9786 } 9787 9788 /** 9789 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9790 * @phba: Pointer to HBA context object. 9791 * @pring: Pointer to driver SLI ring object. 9792 * @tag: Buffer tag. 9793 * 9794 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9795 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9796 * iocb is posted to the response ring with the tag of the buffer. 9797 * This function searches the pring->postbufq list using the tag 9798 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9799 * iocb. If the buffer is found then lpfc_dmabuf object of the 9800 * buffer is returned to the caller else NULL is returned. 9801 * This function is called with no lock held. 9802 **/ 9803 struct lpfc_dmabuf * 9804 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9805 uint32_t tag) 9806 { 9807 struct lpfc_dmabuf *mp, *next_mp; 9808 struct list_head *slp = &pring->postbufq; 9809 9810 /* Search postbufq, from the beginning, looking for a match on tag */ 9811 spin_lock_irq(&phba->hbalock); 9812 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9813 if (mp->buffer_tag == tag) { 9814 list_del_init(&mp->list); 9815 pring->postbufq_cnt--; 9816 spin_unlock_irq(&phba->hbalock); 9817 return mp; 9818 } 9819 } 9820 9821 spin_unlock_irq(&phba->hbalock); 9822 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9823 "0402 Cannot find virtual addr for buffer tag on " 9824 "ring %d Data x%lx x%p x%p x%x\n", 9825 pring->ringno, (unsigned long) tag, 9826 slp->next, slp->prev, pring->postbufq_cnt); 9827 9828 return NULL; 9829 } 9830 9831 /** 9832 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9833 * @phba: Pointer to HBA context object. 9834 * @pring: Pointer to driver SLI ring object. 9835 * @phys: DMA address of the buffer. 9836 * 9837 * This function searches the buffer list using the dma_address 9838 * of unsolicited event to find the driver's lpfc_dmabuf object 9839 * corresponding to the dma_address. The function returns the 9840 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9841 * This function is called by the ct and els unsolicited event 9842 * handlers to get the buffer associated with the unsolicited 9843 * event. 9844 * 9845 * This function is called with no lock held. 9846 **/ 9847 struct lpfc_dmabuf * 9848 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9849 dma_addr_t phys) 9850 { 9851 struct lpfc_dmabuf *mp, *next_mp; 9852 struct list_head *slp = &pring->postbufq; 9853 9854 /* Search postbufq, from the beginning, looking for a match on phys */ 9855 spin_lock_irq(&phba->hbalock); 9856 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9857 if (mp->phys == phys) { 9858 list_del_init(&mp->list); 9859 pring->postbufq_cnt--; 9860 spin_unlock_irq(&phba->hbalock); 9861 return mp; 9862 } 9863 } 9864 9865 spin_unlock_irq(&phba->hbalock); 9866 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9867 "0410 Cannot find virtual addr for mapped buf on " 9868 "ring %d Data x%llx x%p x%p x%x\n", 9869 pring->ringno, (unsigned long long)phys, 9870 slp->next, slp->prev, pring->postbufq_cnt); 9871 return NULL; 9872 } 9873 9874 /** 9875 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9876 * @phba: Pointer to HBA context object. 9877 * @cmdiocb: Pointer to driver command iocb object. 9878 * @rspiocb: Pointer to driver response iocb object. 9879 * 9880 * This function is the completion handler for the abort iocbs for 9881 * ELS commands. This function is called from the ELS ring event 9882 * handler with no lock held. This function frees memory resources 9883 * associated with the abort iocb. 9884 **/ 9885 static void 9886 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9887 struct lpfc_iocbq *rspiocb) 9888 { 9889 IOCB_t *irsp = &rspiocb->iocb; 9890 uint16_t abort_iotag, abort_context; 9891 struct lpfc_iocbq *abort_iocb = NULL; 9892 9893 if (irsp->ulpStatus) { 9894 9895 /* 9896 * Assume that the port already completed and returned, or 9897 * will return the iocb. Just Log the message. 9898 */ 9899 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9900 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9901 9902 spin_lock_irq(&phba->hbalock); 9903 if (phba->sli_rev < LPFC_SLI_REV4) { 9904 if (abort_iotag != 0 && 9905 abort_iotag <= phba->sli.last_iotag) 9906 abort_iocb = 9907 phba->sli.iocbq_lookup[abort_iotag]; 9908 } else 9909 /* For sli4 the abort_tag is the XRI, 9910 * so the abort routine puts the iotag of the iocb 9911 * being aborted in the context field of the abort 9912 * IOCB. 9913 */ 9914 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9915 9916 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9917 "0327 Cannot abort els iocb %p " 9918 "with tag %x context %x, abort status %x, " 9919 "abort code %x\n", 9920 abort_iocb, abort_iotag, abort_context, 9921 irsp->ulpStatus, irsp->un.ulpWord[4]); 9922 9923 spin_unlock_irq(&phba->hbalock); 9924 } 9925 lpfc_sli_release_iocbq(phba, cmdiocb); 9926 return; 9927 } 9928 9929 /** 9930 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9931 * @phba: Pointer to HBA context object. 9932 * @cmdiocb: Pointer to driver command iocb object. 9933 * @rspiocb: Pointer to driver response iocb object. 9934 * 9935 * The function is called from SLI ring event handler with no 9936 * lock held. This function is the completion handler for ELS commands 9937 * which are aborted. The function frees memory resources used for 9938 * the aborted ELS commands. 9939 **/ 9940 static void 9941 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9942 struct lpfc_iocbq *rspiocb) 9943 { 9944 IOCB_t *irsp = &rspiocb->iocb; 9945 9946 /* ELS cmd tag <ulpIoTag> completes */ 9947 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9948 "0139 Ignoring ELS cmd tag x%x completion Data: " 9949 "x%x x%x x%x\n", 9950 irsp->ulpIoTag, irsp->ulpStatus, 9951 irsp->un.ulpWord[4], irsp->ulpTimeout); 9952 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9953 lpfc_ct_free_iocb(phba, cmdiocb); 9954 else 9955 lpfc_els_free_iocb(phba, cmdiocb); 9956 return; 9957 } 9958 9959 /** 9960 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9961 * @phba: Pointer to HBA context object. 9962 * @pring: Pointer to driver SLI ring object. 9963 * @cmdiocb: Pointer to driver command iocb object. 9964 * 9965 * This function issues an abort iocb for the provided command iocb down to 9966 * the port. Other than the case the outstanding command iocb is an abort 9967 * request, this function issues abort out unconditionally. This function is 9968 * called with hbalock held. The function returns 0 when it fails due to 9969 * memory allocation failure or when the command iocb is an abort request. 9970 **/ 9971 static int 9972 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9973 struct lpfc_iocbq *cmdiocb) 9974 { 9975 struct lpfc_vport *vport = cmdiocb->vport; 9976 struct lpfc_iocbq *abtsiocbp; 9977 IOCB_t *icmd = NULL; 9978 IOCB_t *iabt = NULL; 9979 int ring_number; 9980 int retval; 9981 unsigned long iflags; 9982 9983 lockdep_assert_held(&phba->hbalock); 9984 9985 /* 9986 * There are certain command types we don't want to abort. And we 9987 * don't want to abort commands that are already in the process of 9988 * being aborted. 9989 */ 9990 icmd = &cmdiocb->iocb; 9991 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9992 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9993 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9994 return 0; 9995 9996 /* issue ABTS for this IOCB based on iotag */ 9997 abtsiocbp = __lpfc_sli_get_iocbq(phba); 9998 if (abtsiocbp == NULL) 9999 return 0; 10000 10001 /* This signals the response to set the correct status 10002 * before calling the completion handler 10003 */ 10004 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10005 10006 iabt = &abtsiocbp->iocb; 10007 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10008 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10009 if (phba->sli_rev == LPFC_SLI_REV4) { 10010 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10011 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10012 } 10013 else 10014 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10015 iabt->ulpLe = 1; 10016 iabt->ulpClass = icmd->ulpClass; 10017 10018 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10019 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 10020 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10021 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10022 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10023 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10024 10025 if (phba->link_state >= LPFC_LINK_UP) 10026 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10027 else 10028 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10029 10030 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10031 10032 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10033 "0339 Abort xri x%x, original iotag x%x, " 10034 "abort cmd iotag x%x\n", 10035 iabt->un.acxri.abortIoTag, 10036 iabt->un.acxri.abortContextTag, 10037 abtsiocbp->iotag); 10038 10039 if (phba->sli_rev == LPFC_SLI_REV4) { 10040 ring_number = 10041 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 10042 if (unlikely(ring_number == LPFC_HBA_ERROR)) 10043 return 0; 10044 pring = &phba->sli.ring[ring_number]; 10045 /* Note: both hbalock and ring_lock need to be set here */ 10046 spin_lock_irqsave(&pring->ring_lock, iflags); 10047 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10048 abtsiocbp, 0); 10049 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10050 } else { 10051 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10052 abtsiocbp, 0); 10053 } 10054 10055 if (retval) 10056 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10057 10058 /* 10059 * Caller to this routine should check for IOCB_ERROR 10060 * and handle it properly. This routine no longer removes 10061 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10062 */ 10063 return retval; 10064 } 10065 10066 /** 10067 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10068 * @phba: Pointer to HBA context object. 10069 * @pring: Pointer to driver SLI ring object. 10070 * @cmdiocb: Pointer to driver command iocb object. 10071 * 10072 * This function issues an abort iocb for the provided command iocb. In case 10073 * of unloading, the abort iocb will not be issued to commands on the ELS 10074 * ring. Instead, the callback function shall be changed to those commands 10075 * so that nothing happens when them finishes. This function is called with 10076 * hbalock held. The function returns 0 when the command iocb is an abort 10077 * request. 10078 **/ 10079 int 10080 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10081 struct lpfc_iocbq *cmdiocb) 10082 { 10083 struct lpfc_vport *vport = cmdiocb->vport; 10084 int retval = IOCB_ERROR; 10085 IOCB_t *icmd = NULL; 10086 10087 lockdep_assert_held(&phba->hbalock); 10088 10089 /* 10090 * There are certain command types we don't want to abort. And we 10091 * don't want to abort commands that are already in the process of 10092 * being aborted. 10093 */ 10094 icmd = &cmdiocb->iocb; 10095 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10096 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10097 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10098 return 0; 10099 10100 /* 10101 * If we're unloading, don't abort iocb on the ELS ring, but change 10102 * the callback so that nothing happens when it finishes. 10103 */ 10104 if ((vport->load_flag & FC_UNLOADING) && 10105 (pring->ringno == LPFC_ELS_RING)) { 10106 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10107 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10108 else 10109 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10110 goto abort_iotag_exit; 10111 } 10112 10113 /* Now, we try to issue the abort to the cmdiocb out */ 10114 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10115 10116 abort_iotag_exit: 10117 /* 10118 * Caller to this routine should check for IOCB_ERROR 10119 * and handle it properly. This routine no longer removes 10120 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10121 */ 10122 return retval; 10123 } 10124 10125 /** 10126 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10127 * @phba: pointer to lpfc HBA data structure. 10128 * 10129 * This routine will abort all pending and outstanding iocbs to an HBA. 10130 **/ 10131 void 10132 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10133 { 10134 struct lpfc_sli *psli = &phba->sli; 10135 struct lpfc_sli_ring *pring; 10136 int i; 10137 10138 for (i = 0; i < psli->num_rings; i++) { 10139 pring = &psli->ring[i]; 10140 lpfc_sli_abort_iocb_ring(phba, pring); 10141 } 10142 } 10143 10144 /** 10145 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10146 * @iocbq: Pointer to driver iocb object. 10147 * @vport: Pointer to driver virtual port object. 10148 * @tgt_id: SCSI ID of the target. 10149 * @lun_id: LUN ID of the scsi device. 10150 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10151 * 10152 * This function acts as an iocb filter for functions which abort or count 10153 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10154 * 0 if the filtering criteria is met for the given iocb and will return 10155 * 1 if the filtering criteria is not met. 10156 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10157 * given iocb is for the SCSI device specified by vport, tgt_id and 10158 * lun_id parameter. 10159 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10160 * given iocb is for the SCSI target specified by vport and tgt_id 10161 * parameters. 10162 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10163 * given iocb is for the SCSI host associated with the given vport. 10164 * This function is called with no locks held. 10165 **/ 10166 static int 10167 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10168 uint16_t tgt_id, uint64_t lun_id, 10169 lpfc_ctx_cmd ctx_cmd) 10170 { 10171 struct lpfc_scsi_buf *lpfc_cmd; 10172 int rc = 1; 10173 10174 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10175 return rc; 10176 10177 if (iocbq->vport != vport) 10178 return rc; 10179 10180 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10181 10182 if (lpfc_cmd->pCmd == NULL) 10183 return rc; 10184 10185 switch (ctx_cmd) { 10186 case LPFC_CTX_LUN: 10187 if ((lpfc_cmd->rdata->pnode) && 10188 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10189 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10190 rc = 0; 10191 break; 10192 case LPFC_CTX_TGT: 10193 if ((lpfc_cmd->rdata->pnode) && 10194 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10195 rc = 0; 10196 break; 10197 case LPFC_CTX_HOST: 10198 rc = 0; 10199 break; 10200 default: 10201 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10202 __func__, ctx_cmd); 10203 break; 10204 } 10205 10206 return rc; 10207 } 10208 10209 /** 10210 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10211 * @vport: Pointer to virtual port. 10212 * @tgt_id: SCSI ID of the target. 10213 * @lun_id: LUN ID of the scsi device. 10214 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10215 * 10216 * This function returns number of FCP commands pending for the vport. 10217 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10218 * commands pending on the vport associated with SCSI device specified 10219 * by tgt_id and lun_id parameters. 10220 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10221 * commands pending on the vport associated with SCSI target specified 10222 * by tgt_id parameter. 10223 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10224 * commands pending on the vport. 10225 * This function returns the number of iocbs which satisfy the filter. 10226 * This function is called without any lock held. 10227 **/ 10228 int 10229 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10230 lpfc_ctx_cmd ctx_cmd) 10231 { 10232 struct lpfc_hba *phba = vport->phba; 10233 struct lpfc_iocbq *iocbq; 10234 int sum, i; 10235 10236 spin_lock_irq(&phba->hbalock); 10237 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10238 iocbq = phba->sli.iocbq_lookup[i]; 10239 10240 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10241 ctx_cmd) == 0) 10242 sum++; 10243 } 10244 spin_unlock_irq(&phba->hbalock); 10245 10246 return sum; 10247 } 10248 10249 /** 10250 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10251 * @phba: Pointer to HBA context object 10252 * @cmdiocb: Pointer to command iocb object. 10253 * @rspiocb: Pointer to response iocb object. 10254 * 10255 * This function is called when an aborted FCP iocb completes. This 10256 * function is called by the ring event handler with no lock held. 10257 * This function frees the iocb. 10258 **/ 10259 void 10260 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10261 struct lpfc_iocbq *rspiocb) 10262 { 10263 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10264 "3096 ABORT_XRI_CN completing on rpi x%x " 10265 "original iotag x%x, abort cmd iotag x%x " 10266 "status 0x%x, reason 0x%x\n", 10267 cmdiocb->iocb.un.acxri.abortContextTag, 10268 cmdiocb->iocb.un.acxri.abortIoTag, 10269 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10270 rspiocb->iocb.un.ulpWord[4]); 10271 lpfc_sli_release_iocbq(phba, cmdiocb); 10272 return; 10273 } 10274 10275 /** 10276 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10277 * @vport: Pointer to virtual port. 10278 * @pring: Pointer to driver SLI ring object. 10279 * @tgt_id: SCSI ID of the target. 10280 * @lun_id: LUN ID of the scsi device. 10281 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10282 * 10283 * This function sends an abort command for every SCSI command 10284 * associated with the given virtual port pending on the ring 10285 * filtered by lpfc_sli_validate_fcp_iocb function. 10286 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10287 * FCP iocbs associated with lun specified by tgt_id and lun_id 10288 * parameters 10289 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10290 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10291 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10292 * FCP iocbs associated with virtual port. 10293 * This function returns number of iocbs it failed to abort. 10294 * This function is called with no locks held. 10295 **/ 10296 int 10297 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10298 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10299 { 10300 struct lpfc_hba *phba = vport->phba; 10301 struct lpfc_iocbq *iocbq; 10302 struct lpfc_iocbq *abtsiocb; 10303 IOCB_t *cmd = NULL; 10304 int errcnt = 0, ret_val = 0; 10305 int i; 10306 10307 for (i = 1; i <= phba->sli.last_iotag; i++) { 10308 iocbq = phba->sli.iocbq_lookup[i]; 10309 10310 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10311 abort_cmd) != 0) 10312 continue; 10313 10314 /* 10315 * If the iocbq is already being aborted, don't take a second 10316 * action, but do count it. 10317 */ 10318 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10319 continue; 10320 10321 /* issue ABTS for this IOCB based on iotag */ 10322 abtsiocb = lpfc_sli_get_iocbq(phba); 10323 if (abtsiocb == NULL) { 10324 errcnt++; 10325 continue; 10326 } 10327 10328 /* indicate the IO is being aborted by the driver. */ 10329 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10330 10331 cmd = &iocbq->iocb; 10332 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10333 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10334 if (phba->sli_rev == LPFC_SLI_REV4) 10335 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10336 else 10337 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10338 abtsiocb->iocb.ulpLe = 1; 10339 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10340 abtsiocb->vport = vport; 10341 10342 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10343 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10344 if (iocbq->iocb_flag & LPFC_IO_FCP) 10345 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10346 if (iocbq->iocb_flag & LPFC_IO_FOF) 10347 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10348 10349 if (lpfc_is_link_up(phba)) 10350 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10351 else 10352 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10353 10354 /* Setup callback routine and issue the command. */ 10355 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10356 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10357 abtsiocb, 0); 10358 if (ret_val == IOCB_ERROR) { 10359 lpfc_sli_release_iocbq(phba, abtsiocb); 10360 errcnt++; 10361 continue; 10362 } 10363 } 10364 10365 return errcnt; 10366 } 10367 10368 /** 10369 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10370 * @vport: Pointer to virtual port. 10371 * @pring: Pointer to driver SLI ring object. 10372 * @tgt_id: SCSI ID of the target. 10373 * @lun_id: LUN ID of the scsi device. 10374 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10375 * 10376 * This function sends an abort command for every SCSI command 10377 * associated with the given virtual port pending on the ring 10378 * filtered by lpfc_sli_validate_fcp_iocb function. 10379 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10380 * FCP iocbs associated with lun specified by tgt_id and lun_id 10381 * parameters 10382 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10383 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10384 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10385 * FCP iocbs associated with virtual port. 10386 * This function returns number of iocbs it aborted . 10387 * This function is called with no locks held right after a taskmgmt 10388 * command is sent. 10389 **/ 10390 int 10391 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10392 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10393 { 10394 struct lpfc_hba *phba = vport->phba; 10395 struct lpfc_scsi_buf *lpfc_cmd; 10396 struct lpfc_iocbq *abtsiocbq; 10397 struct lpfc_nodelist *ndlp; 10398 struct lpfc_iocbq *iocbq; 10399 IOCB_t *icmd; 10400 int sum, i, ret_val; 10401 unsigned long iflags; 10402 struct lpfc_sli_ring *pring_s4; 10403 uint32_t ring_number; 10404 10405 spin_lock_irq(&phba->hbalock); 10406 10407 /* all I/Os are in process of being flushed */ 10408 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10409 spin_unlock_irq(&phba->hbalock); 10410 return 0; 10411 } 10412 sum = 0; 10413 10414 for (i = 1; i <= phba->sli.last_iotag; i++) { 10415 iocbq = phba->sli.iocbq_lookup[i]; 10416 10417 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10418 cmd) != 0) 10419 continue; 10420 10421 /* 10422 * If the iocbq is already being aborted, don't take a second 10423 * action, but do count it. 10424 */ 10425 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10426 continue; 10427 10428 /* issue ABTS for this IOCB based on iotag */ 10429 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10430 if (abtsiocbq == NULL) 10431 continue; 10432 10433 icmd = &iocbq->iocb; 10434 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10435 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10436 if (phba->sli_rev == LPFC_SLI_REV4) 10437 abtsiocbq->iocb.un.acxri.abortIoTag = 10438 iocbq->sli4_xritag; 10439 else 10440 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10441 abtsiocbq->iocb.ulpLe = 1; 10442 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10443 abtsiocbq->vport = vport; 10444 10445 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10446 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10447 if (iocbq->iocb_flag & LPFC_IO_FCP) 10448 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10449 if (iocbq->iocb_flag & LPFC_IO_FOF) 10450 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10451 10452 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10453 ndlp = lpfc_cmd->rdata->pnode; 10454 10455 if (lpfc_is_link_up(phba) && 10456 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10457 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10458 else 10459 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10460 10461 /* Setup callback routine and issue the command. */ 10462 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10463 10464 /* 10465 * Indicate the IO is being aborted by the driver and set 10466 * the caller's flag into the aborted IO. 10467 */ 10468 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10469 10470 if (phba->sli_rev == LPFC_SLI_REV4) { 10471 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10472 iocbq->fcp_wqidx; 10473 pring_s4 = &phba->sli.ring[ring_number]; 10474 /* Note: both hbalock and ring_lock must be set here */ 10475 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10476 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10477 abtsiocbq, 0); 10478 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10479 } else { 10480 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10481 abtsiocbq, 0); 10482 } 10483 10484 10485 if (ret_val == IOCB_ERROR) 10486 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10487 else 10488 sum++; 10489 } 10490 spin_unlock_irq(&phba->hbalock); 10491 return sum; 10492 } 10493 10494 /** 10495 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10496 * @phba: Pointer to HBA context object. 10497 * @cmdiocbq: Pointer to command iocb. 10498 * @rspiocbq: Pointer to response iocb. 10499 * 10500 * This function is the completion handler for iocbs issued using 10501 * lpfc_sli_issue_iocb_wait function. This function is called by the 10502 * ring event handler function without any lock held. This function 10503 * can be called from both worker thread context and interrupt 10504 * context. This function also can be called from other thread which 10505 * cleans up the SLI layer objects. 10506 * This function copy the contents of the response iocb to the 10507 * response iocb memory object provided by the caller of 10508 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10509 * sleeps for the iocb completion. 10510 **/ 10511 static void 10512 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10513 struct lpfc_iocbq *cmdiocbq, 10514 struct lpfc_iocbq *rspiocbq) 10515 { 10516 wait_queue_head_t *pdone_q; 10517 unsigned long iflags; 10518 struct lpfc_scsi_buf *lpfc_cmd; 10519 10520 spin_lock_irqsave(&phba->hbalock, iflags); 10521 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10522 10523 /* 10524 * A time out has occurred for the iocb. If a time out 10525 * completion handler has been supplied, call it. Otherwise, 10526 * just free the iocbq. 10527 */ 10528 10529 spin_unlock_irqrestore(&phba->hbalock, iflags); 10530 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10531 cmdiocbq->wait_iocb_cmpl = NULL; 10532 if (cmdiocbq->iocb_cmpl) 10533 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10534 else 10535 lpfc_sli_release_iocbq(phba, cmdiocbq); 10536 return; 10537 } 10538 10539 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10540 if (cmdiocbq->context2 && rspiocbq) 10541 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10542 &rspiocbq->iocb, sizeof(IOCB_t)); 10543 10544 /* Set the exchange busy flag for task management commands */ 10545 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10546 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10547 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10548 cur_iocbq); 10549 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10550 } 10551 10552 pdone_q = cmdiocbq->context_un.wait_queue; 10553 if (pdone_q) 10554 wake_up(pdone_q); 10555 spin_unlock_irqrestore(&phba->hbalock, iflags); 10556 return; 10557 } 10558 10559 /** 10560 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10561 * @phba: Pointer to HBA context object.. 10562 * @piocbq: Pointer to command iocb. 10563 * @flag: Flag to test. 10564 * 10565 * This routine grabs the hbalock and then test the iocb_flag to 10566 * see if the passed in flag is set. 10567 * Returns: 10568 * 1 if flag is set. 10569 * 0 if flag is not set. 10570 **/ 10571 static int 10572 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10573 struct lpfc_iocbq *piocbq, uint32_t flag) 10574 { 10575 unsigned long iflags; 10576 int ret; 10577 10578 spin_lock_irqsave(&phba->hbalock, iflags); 10579 ret = piocbq->iocb_flag & flag; 10580 spin_unlock_irqrestore(&phba->hbalock, iflags); 10581 return ret; 10582 10583 } 10584 10585 /** 10586 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10587 * @phba: Pointer to HBA context object.. 10588 * @pring: Pointer to sli ring. 10589 * @piocb: Pointer to command iocb. 10590 * @prspiocbq: Pointer to response iocb. 10591 * @timeout: Timeout in number of seconds. 10592 * 10593 * This function issues the iocb to firmware and waits for the 10594 * iocb to complete. The iocb_cmpl field of the shall be used 10595 * to handle iocbs which time out. If the field is NULL, the 10596 * function shall free the iocbq structure. If more clean up is 10597 * needed, the caller is expected to provide a completion function 10598 * that will provide the needed clean up. If the iocb command is 10599 * not completed within timeout seconds, the function will either 10600 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10601 * completion function set in the iocb_cmpl field and then return 10602 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10603 * resources if this function returns IOCB_TIMEDOUT. 10604 * The function waits for the iocb completion using an 10605 * non-interruptible wait. 10606 * This function will sleep while waiting for iocb completion. 10607 * So, this function should not be called from any context which 10608 * does not allow sleeping. Due to the same reason, this function 10609 * cannot be called with interrupt disabled. 10610 * This function assumes that the iocb completions occur while 10611 * this function sleep. So, this function cannot be called from 10612 * the thread which process iocb completion for this ring. 10613 * This function clears the iocb_flag of the iocb object before 10614 * issuing the iocb and the iocb completion handler sets this 10615 * flag and wakes this thread when the iocb completes. 10616 * The contents of the response iocb will be copied to prspiocbq 10617 * by the completion handler when the command completes. 10618 * This function returns IOCB_SUCCESS when success. 10619 * This function is called with no lock held. 10620 **/ 10621 int 10622 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10623 uint32_t ring_number, 10624 struct lpfc_iocbq *piocb, 10625 struct lpfc_iocbq *prspiocbq, 10626 uint32_t timeout) 10627 { 10628 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10629 long timeleft, timeout_req = 0; 10630 int retval = IOCB_SUCCESS; 10631 uint32_t creg_val; 10632 struct lpfc_iocbq *iocb; 10633 int txq_cnt = 0; 10634 int txcmplq_cnt = 0; 10635 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10636 unsigned long iflags; 10637 bool iocb_completed = true; 10638 10639 /* 10640 * If the caller has provided a response iocbq buffer, then context2 10641 * is NULL or its an error. 10642 */ 10643 if (prspiocbq) { 10644 if (piocb->context2) 10645 return IOCB_ERROR; 10646 piocb->context2 = prspiocbq; 10647 } 10648 10649 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10650 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10651 piocb->context_un.wait_queue = &done_q; 10652 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10653 10654 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10655 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10656 return IOCB_ERROR; 10657 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10658 writel(creg_val, phba->HCregaddr); 10659 readl(phba->HCregaddr); /* flush */ 10660 } 10661 10662 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10663 SLI_IOCB_RET_IOCB); 10664 if (retval == IOCB_SUCCESS) { 10665 timeout_req = msecs_to_jiffies(timeout * 1000); 10666 timeleft = wait_event_timeout(done_q, 10667 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10668 timeout_req); 10669 spin_lock_irqsave(&phba->hbalock, iflags); 10670 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10671 10672 /* 10673 * IOCB timed out. Inform the wake iocb wait 10674 * completion function and set local status 10675 */ 10676 10677 iocb_completed = false; 10678 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10679 } 10680 spin_unlock_irqrestore(&phba->hbalock, iflags); 10681 if (iocb_completed) { 10682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10683 "0331 IOCB wake signaled\n"); 10684 /* Note: we are not indicating if the IOCB has a success 10685 * status or not - that's for the caller to check. 10686 * IOCB_SUCCESS means just that the command was sent and 10687 * completed. Not that it completed successfully. 10688 * */ 10689 } else if (timeleft == 0) { 10690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10691 "0338 IOCB wait timeout error - no " 10692 "wake response Data x%x\n", timeout); 10693 retval = IOCB_TIMEDOUT; 10694 } else { 10695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10696 "0330 IOCB wake NOT set, " 10697 "Data x%x x%lx\n", 10698 timeout, (timeleft / jiffies)); 10699 retval = IOCB_TIMEDOUT; 10700 } 10701 } else if (retval == IOCB_BUSY) { 10702 if (phba->cfg_log_verbose & LOG_SLI) { 10703 list_for_each_entry(iocb, &pring->txq, list) { 10704 txq_cnt++; 10705 } 10706 list_for_each_entry(iocb, &pring->txcmplq, list) { 10707 txcmplq_cnt++; 10708 } 10709 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10710 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10711 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10712 } 10713 return retval; 10714 } else { 10715 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10716 "0332 IOCB wait issue failed, Data x%x\n", 10717 retval); 10718 retval = IOCB_ERROR; 10719 } 10720 10721 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10722 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10723 return IOCB_ERROR; 10724 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10725 writel(creg_val, phba->HCregaddr); 10726 readl(phba->HCregaddr); /* flush */ 10727 } 10728 10729 if (prspiocbq) 10730 piocb->context2 = NULL; 10731 10732 piocb->context_un.wait_queue = NULL; 10733 piocb->iocb_cmpl = NULL; 10734 return retval; 10735 } 10736 10737 /** 10738 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10739 * @phba: Pointer to HBA context object. 10740 * @pmboxq: Pointer to driver mailbox object. 10741 * @timeout: Timeout in number of seconds. 10742 * 10743 * This function issues the mailbox to firmware and waits for the 10744 * mailbox command to complete. If the mailbox command is not 10745 * completed within timeout seconds, it returns MBX_TIMEOUT. 10746 * The function waits for the mailbox completion using an 10747 * interruptible wait. If the thread is woken up due to a 10748 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10749 * should not free the mailbox resources, if this function returns 10750 * MBX_TIMEOUT. 10751 * This function will sleep while waiting for mailbox completion. 10752 * So, this function should not be called from any context which 10753 * does not allow sleeping. Due to the same reason, this function 10754 * cannot be called with interrupt disabled. 10755 * This function assumes that the mailbox completion occurs while 10756 * this function sleep. So, this function cannot be called from 10757 * the worker thread which processes mailbox completion. 10758 * This function is called in the context of HBA management 10759 * applications. 10760 * This function returns MBX_SUCCESS when successful. 10761 * This function is called with no lock held. 10762 **/ 10763 int 10764 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10765 uint32_t timeout) 10766 { 10767 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10768 MAILBOX_t *mb = NULL; 10769 int retval; 10770 unsigned long flag; 10771 10772 /* The caller might set context1 for extended buffer */ 10773 if (pmboxq->context1) 10774 mb = (MAILBOX_t *)pmboxq->context1; 10775 10776 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10777 /* setup wake call as IOCB callback */ 10778 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10779 /* setup context field to pass wait_queue pointer to wake function */ 10780 pmboxq->context1 = &done_q; 10781 10782 /* now issue the command */ 10783 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10784 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10785 wait_event_interruptible_timeout(done_q, 10786 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10787 msecs_to_jiffies(timeout * 1000)); 10788 10789 spin_lock_irqsave(&phba->hbalock, flag); 10790 /* restore the possible extended buffer for free resource */ 10791 pmboxq->context1 = (uint8_t *)mb; 10792 /* 10793 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10794 * else do not free the resources. 10795 */ 10796 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10797 retval = MBX_SUCCESS; 10798 } else { 10799 retval = MBX_TIMEOUT; 10800 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10801 } 10802 spin_unlock_irqrestore(&phba->hbalock, flag); 10803 } else { 10804 /* restore the possible extended buffer for free resource */ 10805 pmboxq->context1 = (uint8_t *)mb; 10806 } 10807 10808 return retval; 10809 } 10810 10811 /** 10812 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10813 * @phba: Pointer to HBA context. 10814 * 10815 * This function is called to shutdown the driver's mailbox sub-system. 10816 * It first marks the mailbox sub-system is in a block state to prevent 10817 * the asynchronous mailbox command from issued off the pending mailbox 10818 * command queue. If the mailbox command sub-system shutdown is due to 10819 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10820 * the mailbox sub-system flush routine to forcefully bring down the 10821 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10822 * as with offline or HBA function reset), this routine will wait for the 10823 * outstanding mailbox command to complete before invoking the mailbox 10824 * sub-system flush routine to gracefully bring down mailbox sub-system. 10825 **/ 10826 void 10827 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10828 { 10829 struct lpfc_sli *psli = &phba->sli; 10830 unsigned long timeout; 10831 10832 if (mbx_action == LPFC_MBX_NO_WAIT) { 10833 /* delay 100ms for port state */ 10834 msleep(100); 10835 lpfc_sli_mbox_sys_flush(phba); 10836 return; 10837 } 10838 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10839 10840 spin_lock_irq(&phba->hbalock); 10841 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10842 10843 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10844 /* Determine how long we might wait for the active mailbox 10845 * command to be gracefully completed by firmware. 10846 */ 10847 if (phba->sli.mbox_active) 10848 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10849 phba->sli.mbox_active) * 10850 1000) + jiffies; 10851 spin_unlock_irq(&phba->hbalock); 10852 10853 while (phba->sli.mbox_active) { 10854 /* Check active mailbox complete status every 2ms */ 10855 msleep(2); 10856 if (time_after(jiffies, timeout)) 10857 /* Timeout, let the mailbox flush routine to 10858 * forcefully release active mailbox command 10859 */ 10860 break; 10861 } 10862 } else 10863 spin_unlock_irq(&phba->hbalock); 10864 10865 lpfc_sli_mbox_sys_flush(phba); 10866 } 10867 10868 /** 10869 * lpfc_sli_eratt_read - read sli-3 error attention events 10870 * @phba: Pointer to HBA context. 10871 * 10872 * This function is called to read the SLI3 device error attention registers 10873 * for possible error attention events. The caller must hold the hostlock 10874 * with spin_lock_irq(). 10875 * 10876 * This function returns 1 when there is Error Attention in the Host Attention 10877 * Register and returns 0 otherwise. 10878 **/ 10879 static int 10880 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10881 { 10882 uint32_t ha_copy; 10883 10884 /* Read chip Host Attention (HA) register */ 10885 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10886 goto unplug_err; 10887 10888 if (ha_copy & HA_ERATT) { 10889 /* Read host status register to retrieve error event */ 10890 if (lpfc_sli_read_hs(phba)) 10891 goto unplug_err; 10892 10893 /* Check if there is a deferred error condition is active */ 10894 if ((HS_FFER1 & phba->work_hs) && 10895 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10896 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10897 phba->hba_flag |= DEFER_ERATT; 10898 /* Clear all interrupt enable conditions */ 10899 writel(0, phba->HCregaddr); 10900 readl(phba->HCregaddr); 10901 } 10902 10903 /* Set the driver HA work bitmap */ 10904 phba->work_ha |= HA_ERATT; 10905 /* Indicate polling handles this ERATT */ 10906 phba->hba_flag |= HBA_ERATT_HANDLED; 10907 return 1; 10908 } 10909 return 0; 10910 10911 unplug_err: 10912 /* Set the driver HS work bitmap */ 10913 phba->work_hs |= UNPLUG_ERR; 10914 /* Set the driver HA work bitmap */ 10915 phba->work_ha |= HA_ERATT; 10916 /* Indicate polling handles this ERATT */ 10917 phba->hba_flag |= HBA_ERATT_HANDLED; 10918 return 1; 10919 } 10920 10921 /** 10922 * lpfc_sli4_eratt_read - read sli-4 error attention events 10923 * @phba: Pointer to HBA context. 10924 * 10925 * This function is called to read the SLI4 device error attention registers 10926 * for possible error attention events. The caller must hold the hostlock 10927 * with spin_lock_irq(). 10928 * 10929 * This function returns 1 when there is Error Attention in the Host Attention 10930 * Register and returns 0 otherwise. 10931 **/ 10932 static int 10933 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10934 { 10935 uint32_t uerr_sta_hi, uerr_sta_lo; 10936 uint32_t if_type, portsmphr; 10937 struct lpfc_register portstat_reg; 10938 10939 /* 10940 * For now, use the SLI4 device internal unrecoverable error 10941 * registers for error attention. This can be changed later. 10942 */ 10943 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10944 switch (if_type) { 10945 case LPFC_SLI_INTF_IF_TYPE_0: 10946 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10947 &uerr_sta_lo) || 10948 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10949 &uerr_sta_hi)) { 10950 phba->work_hs |= UNPLUG_ERR; 10951 phba->work_ha |= HA_ERATT; 10952 phba->hba_flag |= HBA_ERATT_HANDLED; 10953 return 1; 10954 } 10955 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10956 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10958 "1423 HBA Unrecoverable error: " 10959 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10960 "ue_mask_lo_reg=0x%x, " 10961 "ue_mask_hi_reg=0x%x\n", 10962 uerr_sta_lo, uerr_sta_hi, 10963 phba->sli4_hba.ue_mask_lo, 10964 phba->sli4_hba.ue_mask_hi); 10965 phba->work_status[0] = uerr_sta_lo; 10966 phba->work_status[1] = uerr_sta_hi; 10967 phba->work_ha |= HA_ERATT; 10968 phba->hba_flag |= HBA_ERATT_HANDLED; 10969 return 1; 10970 } 10971 break; 10972 case LPFC_SLI_INTF_IF_TYPE_2: 10973 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10974 &portstat_reg.word0) || 10975 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10976 &portsmphr)){ 10977 phba->work_hs |= UNPLUG_ERR; 10978 phba->work_ha |= HA_ERATT; 10979 phba->hba_flag |= HBA_ERATT_HANDLED; 10980 return 1; 10981 } 10982 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10983 phba->work_status[0] = 10984 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10985 phba->work_status[1] = 10986 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10987 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10988 "2885 Port Status Event: " 10989 "port status reg 0x%x, " 10990 "port smphr reg 0x%x, " 10991 "error 1=0x%x, error 2=0x%x\n", 10992 portstat_reg.word0, 10993 portsmphr, 10994 phba->work_status[0], 10995 phba->work_status[1]); 10996 phba->work_ha |= HA_ERATT; 10997 phba->hba_flag |= HBA_ERATT_HANDLED; 10998 return 1; 10999 } 11000 break; 11001 case LPFC_SLI_INTF_IF_TYPE_1: 11002 default: 11003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11004 "2886 HBA Error Attention on unsupported " 11005 "if type %d.", if_type); 11006 return 1; 11007 } 11008 11009 return 0; 11010 } 11011 11012 /** 11013 * lpfc_sli_check_eratt - check error attention events 11014 * @phba: Pointer to HBA context. 11015 * 11016 * This function is called from timer soft interrupt context to check HBA's 11017 * error attention register bit for error attention events. 11018 * 11019 * This function returns 1 when there is Error Attention in the Host Attention 11020 * Register and returns 0 otherwise. 11021 **/ 11022 int 11023 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11024 { 11025 uint32_t ha_copy; 11026 11027 /* If somebody is waiting to handle an eratt, don't process it 11028 * here. The brdkill function will do this. 11029 */ 11030 if (phba->link_flag & LS_IGNORE_ERATT) 11031 return 0; 11032 11033 /* Check if interrupt handler handles this ERATT */ 11034 spin_lock_irq(&phba->hbalock); 11035 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11036 /* Interrupt handler has handled ERATT */ 11037 spin_unlock_irq(&phba->hbalock); 11038 return 0; 11039 } 11040 11041 /* 11042 * If there is deferred error attention, do not check for error 11043 * attention 11044 */ 11045 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11046 spin_unlock_irq(&phba->hbalock); 11047 return 0; 11048 } 11049 11050 /* If PCI channel is offline, don't process it */ 11051 if (unlikely(pci_channel_offline(phba->pcidev))) { 11052 spin_unlock_irq(&phba->hbalock); 11053 return 0; 11054 } 11055 11056 switch (phba->sli_rev) { 11057 case LPFC_SLI_REV2: 11058 case LPFC_SLI_REV3: 11059 /* Read chip Host Attention (HA) register */ 11060 ha_copy = lpfc_sli_eratt_read(phba); 11061 break; 11062 case LPFC_SLI_REV4: 11063 /* Read device Uncoverable Error (UERR) registers */ 11064 ha_copy = lpfc_sli4_eratt_read(phba); 11065 break; 11066 default: 11067 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11068 "0299 Invalid SLI revision (%d)\n", 11069 phba->sli_rev); 11070 ha_copy = 0; 11071 break; 11072 } 11073 spin_unlock_irq(&phba->hbalock); 11074 11075 return ha_copy; 11076 } 11077 11078 /** 11079 * lpfc_intr_state_check - Check device state for interrupt handling 11080 * @phba: Pointer to HBA context. 11081 * 11082 * This inline routine checks whether a device or its PCI slot is in a state 11083 * that the interrupt should be handled. 11084 * 11085 * This function returns 0 if the device or the PCI slot is in a state that 11086 * interrupt should be handled, otherwise -EIO. 11087 */ 11088 static inline int 11089 lpfc_intr_state_check(struct lpfc_hba *phba) 11090 { 11091 /* If the pci channel is offline, ignore all the interrupts */ 11092 if (unlikely(pci_channel_offline(phba->pcidev))) 11093 return -EIO; 11094 11095 /* Update device level interrupt statistics */ 11096 phba->sli.slistat.sli_intr++; 11097 11098 /* Ignore all interrupts during initialization. */ 11099 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11100 return -EIO; 11101 11102 return 0; 11103 } 11104 11105 /** 11106 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11107 * @irq: Interrupt number. 11108 * @dev_id: The device context pointer. 11109 * 11110 * This function is directly called from the PCI layer as an interrupt 11111 * service routine when device with SLI-3 interface spec is enabled with 11112 * MSI-X multi-message interrupt mode and there are slow-path events in 11113 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11114 * interrupt mode, this function is called as part of the device-level 11115 * interrupt handler. When the PCI slot is in error recovery or the HBA 11116 * is undergoing initialization, the interrupt handler will not process 11117 * the interrupt. The link attention and ELS ring attention events are 11118 * handled by the worker thread. The interrupt handler signals the worker 11119 * thread and returns for these events. This function is called without 11120 * any lock held. It gets the hbalock to access and update SLI data 11121 * structures. 11122 * 11123 * This function returns IRQ_HANDLED when interrupt is handled else it 11124 * returns IRQ_NONE. 11125 **/ 11126 irqreturn_t 11127 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11128 { 11129 struct lpfc_hba *phba; 11130 uint32_t ha_copy, hc_copy; 11131 uint32_t work_ha_copy; 11132 unsigned long status; 11133 unsigned long iflag; 11134 uint32_t control; 11135 11136 MAILBOX_t *mbox, *pmbox; 11137 struct lpfc_vport *vport; 11138 struct lpfc_nodelist *ndlp; 11139 struct lpfc_dmabuf *mp; 11140 LPFC_MBOXQ_t *pmb; 11141 int rc; 11142 11143 /* 11144 * Get the driver's phba structure from the dev_id and 11145 * assume the HBA is not interrupting. 11146 */ 11147 phba = (struct lpfc_hba *)dev_id; 11148 11149 if (unlikely(!phba)) 11150 return IRQ_NONE; 11151 11152 /* 11153 * Stuff needs to be attented to when this function is invoked as an 11154 * individual interrupt handler in MSI-X multi-message interrupt mode 11155 */ 11156 if (phba->intr_type == MSIX) { 11157 /* Check device state for handling interrupt */ 11158 if (lpfc_intr_state_check(phba)) 11159 return IRQ_NONE; 11160 /* Need to read HA REG for slow-path events */ 11161 spin_lock_irqsave(&phba->hbalock, iflag); 11162 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11163 goto unplug_error; 11164 /* If somebody is waiting to handle an eratt don't process it 11165 * here. The brdkill function will do this. 11166 */ 11167 if (phba->link_flag & LS_IGNORE_ERATT) 11168 ha_copy &= ~HA_ERATT; 11169 /* Check the need for handling ERATT in interrupt handler */ 11170 if (ha_copy & HA_ERATT) { 11171 if (phba->hba_flag & HBA_ERATT_HANDLED) 11172 /* ERATT polling has handled ERATT */ 11173 ha_copy &= ~HA_ERATT; 11174 else 11175 /* Indicate interrupt handler handles ERATT */ 11176 phba->hba_flag |= HBA_ERATT_HANDLED; 11177 } 11178 11179 /* 11180 * If there is deferred error attention, do not check for any 11181 * interrupt. 11182 */ 11183 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11184 spin_unlock_irqrestore(&phba->hbalock, iflag); 11185 return IRQ_NONE; 11186 } 11187 11188 /* Clear up only attention source related to slow-path */ 11189 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11190 goto unplug_error; 11191 11192 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11193 HC_LAINT_ENA | HC_ERINT_ENA), 11194 phba->HCregaddr); 11195 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11196 phba->HAregaddr); 11197 writel(hc_copy, phba->HCregaddr); 11198 readl(phba->HAregaddr); /* flush */ 11199 spin_unlock_irqrestore(&phba->hbalock, iflag); 11200 } else 11201 ha_copy = phba->ha_copy; 11202 11203 work_ha_copy = ha_copy & phba->work_ha_mask; 11204 11205 if (work_ha_copy) { 11206 if (work_ha_copy & HA_LATT) { 11207 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11208 /* 11209 * Turn off Link Attention interrupts 11210 * until CLEAR_LA done 11211 */ 11212 spin_lock_irqsave(&phba->hbalock, iflag); 11213 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11214 if (lpfc_readl(phba->HCregaddr, &control)) 11215 goto unplug_error; 11216 control &= ~HC_LAINT_ENA; 11217 writel(control, phba->HCregaddr); 11218 readl(phba->HCregaddr); /* flush */ 11219 spin_unlock_irqrestore(&phba->hbalock, iflag); 11220 } 11221 else 11222 work_ha_copy &= ~HA_LATT; 11223 } 11224 11225 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11226 /* 11227 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11228 * the only slow ring. 11229 */ 11230 status = (work_ha_copy & 11231 (HA_RXMASK << (4*LPFC_ELS_RING))); 11232 status >>= (4*LPFC_ELS_RING); 11233 if (status & HA_RXMASK) { 11234 spin_lock_irqsave(&phba->hbalock, iflag); 11235 if (lpfc_readl(phba->HCregaddr, &control)) 11236 goto unplug_error; 11237 11238 lpfc_debugfs_slow_ring_trc(phba, 11239 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11240 control, status, 11241 (uint32_t)phba->sli.slistat.sli_intr); 11242 11243 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11244 lpfc_debugfs_slow_ring_trc(phba, 11245 "ISR Disable ring:" 11246 "pwork:x%x hawork:x%x wait:x%x", 11247 phba->work_ha, work_ha_copy, 11248 (uint32_t)((unsigned long) 11249 &phba->work_waitq)); 11250 11251 control &= 11252 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11253 writel(control, phba->HCregaddr); 11254 readl(phba->HCregaddr); /* flush */ 11255 } 11256 else { 11257 lpfc_debugfs_slow_ring_trc(phba, 11258 "ISR slow ring: pwork:" 11259 "x%x hawork:x%x wait:x%x", 11260 phba->work_ha, work_ha_copy, 11261 (uint32_t)((unsigned long) 11262 &phba->work_waitq)); 11263 } 11264 spin_unlock_irqrestore(&phba->hbalock, iflag); 11265 } 11266 } 11267 spin_lock_irqsave(&phba->hbalock, iflag); 11268 if (work_ha_copy & HA_ERATT) { 11269 if (lpfc_sli_read_hs(phba)) 11270 goto unplug_error; 11271 /* 11272 * Check if there is a deferred error condition 11273 * is active 11274 */ 11275 if ((HS_FFER1 & phba->work_hs) && 11276 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11277 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11278 phba->work_hs)) { 11279 phba->hba_flag |= DEFER_ERATT; 11280 /* Clear all interrupt enable conditions */ 11281 writel(0, phba->HCregaddr); 11282 readl(phba->HCregaddr); 11283 } 11284 } 11285 11286 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11287 pmb = phba->sli.mbox_active; 11288 pmbox = &pmb->u.mb; 11289 mbox = phba->mbox; 11290 vport = pmb->vport; 11291 11292 /* First check out the status word */ 11293 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11294 if (pmbox->mbxOwner != OWN_HOST) { 11295 spin_unlock_irqrestore(&phba->hbalock, iflag); 11296 /* 11297 * Stray Mailbox Interrupt, mbxCommand <cmd> 11298 * mbxStatus <status> 11299 */ 11300 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11301 LOG_SLI, 11302 "(%d):0304 Stray Mailbox " 11303 "Interrupt mbxCommand x%x " 11304 "mbxStatus x%x\n", 11305 (vport ? vport->vpi : 0), 11306 pmbox->mbxCommand, 11307 pmbox->mbxStatus); 11308 /* clear mailbox attention bit */ 11309 work_ha_copy &= ~HA_MBATT; 11310 } else { 11311 phba->sli.mbox_active = NULL; 11312 spin_unlock_irqrestore(&phba->hbalock, iflag); 11313 phba->last_completion_time = jiffies; 11314 del_timer(&phba->sli.mbox_tmo); 11315 if (pmb->mbox_cmpl) { 11316 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11317 MAILBOX_CMD_SIZE); 11318 if (pmb->out_ext_byte_len && 11319 pmb->context2) 11320 lpfc_sli_pcimem_bcopy( 11321 phba->mbox_ext, 11322 pmb->context2, 11323 pmb->out_ext_byte_len); 11324 } 11325 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11326 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11327 11328 lpfc_debugfs_disc_trc(vport, 11329 LPFC_DISC_TRC_MBOX_VPORT, 11330 "MBOX dflt rpi: : " 11331 "status:x%x rpi:x%x", 11332 (uint32_t)pmbox->mbxStatus, 11333 pmbox->un.varWords[0], 0); 11334 11335 if (!pmbox->mbxStatus) { 11336 mp = (struct lpfc_dmabuf *) 11337 (pmb->context1); 11338 ndlp = (struct lpfc_nodelist *) 11339 pmb->context2; 11340 11341 /* Reg_LOGIN of dflt RPI was 11342 * successful. new lets get 11343 * rid of the RPI using the 11344 * same mbox buffer. 11345 */ 11346 lpfc_unreg_login(phba, 11347 vport->vpi, 11348 pmbox->un.varWords[0], 11349 pmb); 11350 pmb->mbox_cmpl = 11351 lpfc_mbx_cmpl_dflt_rpi; 11352 pmb->context1 = mp; 11353 pmb->context2 = ndlp; 11354 pmb->vport = vport; 11355 rc = lpfc_sli_issue_mbox(phba, 11356 pmb, 11357 MBX_NOWAIT); 11358 if (rc != MBX_BUSY) 11359 lpfc_printf_log(phba, 11360 KERN_ERR, 11361 LOG_MBOX | LOG_SLI, 11362 "0350 rc should have" 11363 "been MBX_BUSY\n"); 11364 if (rc != MBX_NOT_FINISHED) 11365 goto send_current_mbox; 11366 } 11367 } 11368 spin_lock_irqsave( 11369 &phba->pport->work_port_lock, 11370 iflag); 11371 phba->pport->work_port_events &= 11372 ~WORKER_MBOX_TMO; 11373 spin_unlock_irqrestore( 11374 &phba->pport->work_port_lock, 11375 iflag); 11376 lpfc_mbox_cmpl_put(phba, pmb); 11377 } 11378 } else 11379 spin_unlock_irqrestore(&phba->hbalock, iflag); 11380 11381 if ((work_ha_copy & HA_MBATT) && 11382 (phba->sli.mbox_active == NULL)) { 11383 send_current_mbox: 11384 /* Process next mailbox command if there is one */ 11385 do { 11386 rc = lpfc_sli_issue_mbox(phba, NULL, 11387 MBX_NOWAIT); 11388 } while (rc == MBX_NOT_FINISHED); 11389 if (rc != MBX_SUCCESS) 11390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11391 LOG_SLI, "0349 rc should be " 11392 "MBX_SUCCESS\n"); 11393 } 11394 11395 spin_lock_irqsave(&phba->hbalock, iflag); 11396 phba->work_ha |= work_ha_copy; 11397 spin_unlock_irqrestore(&phba->hbalock, iflag); 11398 lpfc_worker_wake_up(phba); 11399 } 11400 return IRQ_HANDLED; 11401 unplug_error: 11402 spin_unlock_irqrestore(&phba->hbalock, iflag); 11403 return IRQ_HANDLED; 11404 11405 } /* lpfc_sli_sp_intr_handler */ 11406 11407 /** 11408 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11409 * @irq: Interrupt number. 11410 * @dev_id: The device context pointer. 11411 * 11412 * This function is directly called from the PCI layer as an interrupt 11413 * service routine when device with SLI-3 interface spec is enabled with 11414 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11415 * ring event in the HBA. However, when the device is enabled with either 11416 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11417 * device-level interrupt handler. When the PCI slot is in error recovery 11418 * or the HBA is undergoing initialization, the interrupt handler will not 11419 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11420 * the intrrupt context. This function is called without any lock held. 11421 * It gets the hbalock to access and update SLI data structures. 11422 * 11423 * This function returns IRQ_HANDLED when interrupt is handled else it 11424 * returns IRQ_NONE. 11425 **/ 11426 irqreturn_t 11427 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11428 { 11429 struct lpfc_hba *phba; 11430 uint32_t ha_copy; 11431 unsigned long status; 11432 unsigned long iflag; 11433 11434 /* Get the driver's phba structure from the dev_id and 11435 * assume the HBA is not interrupting. 11436 */ 11437 phba = (struct lpfc_hba *) dev_id; 11438 11439 if (unlikely(!phba)) 11440 return IRQ_NONE; 11441 11442 /* 11443 * Stuff needs to be attented to when this function is invoked as an 11444 * individual interrupt handler in MSI-X multi-message interrupt mode 11445 */ 11446 if (phba->intr_type == MSIX) { 11447 /* Check device state for handling interrupt */ 11448 if (lpfc_intr_state_check(phba)) 11449 return IRQ_NONE; 11450 /* Need to read HA REG for FCP ring and other ring events */ 11451 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11452 return IRQ_HANDLED; 11453 /* Clear up only attention source related to fast-path */ 11454 spin_lock_irqsave(&phba->hbalock, iflag); 11455 /* 11456 * If there is deferred error attention, do not check for 11457 * any interrupt. 11458 */ 11459 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11460 spin_unlock_irqrestore(&phba->hbalock, iflag); 11461 return IRQ_NONE; 11462 } 11463 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11464 phba->HAregaddr); 11465 readl(phba->HAregaddr); /* flush */ 11466 spin_unlock_irqrestore(&phba->hbalock, iflag); 11467 } else 11468 ha_copy = phba->ha_copy; 11469 11470 /* 11471 * Process all events on FCP ring. Take the optimized path for FCP IO. 11472 */ 11473 ha_copy &= ~(phba->work_ha_mask); 11474 11475 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11476 status >>= (4*LPFC_FCP_RING); 11477 if (status & HA_RXMASK) 11478 lpfc_sli_handle_fast_ring_event(phba, 11479 &phba->sli.ring[LPFC_FCP_RING], 11480 status); 11481 11482 if (phba->cfg_multi_ring_support == 2) { 11483 /* 11484 * Process all events on extra ring. Take the optimized path 11485 * for extra ring IO. 11486 */ 11487 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11488 status >>= (4*LPFC_EXTRA_RING); 11489 if (status & HA_RXMASK) { 11490 lpfc_sli_handle_fast_ring_event(phba, 11491 &phba->sli.ring[LPFC_EXTRA_RING], 11492 status); 11493 } 11494 } 11495 return IRQ_HANDLED; 11496 } /* lpfc_sli_fp_intr_handler */ 11497 11498 /** 11499 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11500 * @irq: Interrupt number. 11501 * @dev_id: The device context pointer. 11502 * 11503 * This function is the HBA device-level interrupt handler to device with 11504 * SLI-3 interface spec, called from the PCI layer when either MSI or 11505 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11506 * requires driver attention. This function invokes the slow-path interrupt 11507 * attention handling function and fast-path interrupt attention handling 11508 * function in turn to process the relevant HBA attention events. This 11509 * function is called without any lock held. It gets the hbalock to access 11510 * and update SLI data structures. 11511 * 11512 * This function returns IRQ_HANDLED when interrupt is handled, else it 11513 * returns IRQ_NONE. 11514 **/ 11515 irqreturn_t 11516 lpfc_sli_intr_handler(int irq, void *dev_id) 11517 { 11518 struct lpfc_hba *phba; 11519 irqreturn_t sp_irq_rc, fp_irq_rc; 11520 unsigned long status1, status2; 11521 uint32_t hc_copy; 11522 11523 /* 11524 * Get the driver's phba structure from the dev_id and 11525 * assume the HBA is not interrupting. 11526 */ 11527 phba = (struct lpfc_hba *) dev_id; 11528 11529 if (unlikely(!phba)) 11530 return IRQ_NONE; 11531 11532 /* Check device state for handling interrupt */ 11533 if (lpfc_intr_state_check(phba)) 11534 return IRQ_NONE; 11535 11536 spin_lock(&phba->hbalock); 11537 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11538 spin_unlock(&phba->hbalock); 11539 return IRQ_HANDLED; 11540 } 11541 11542 if (unlikely(!phba->ha_copy)) { 11543 spin_unlock(&phba->hbalock); 11544 return IRQ_NONE; 11545 } else if (phba->ha_copy & HA_ERATT) { 11546 if (phba->hba_flag & HBA_ERATT_HANDLED) 11547 /* ERATT polling has handled ERATT */ 11548 phba->ha_copy &= ~HA_ERATT; 11549 else 11550 /* Indicate interrupt handler handles ERATT */ 11551 phba->hba_flag |= HBA_ERATT_HANDLED; 11552 } 11553 11554 /* 11555 * If there is deferred error attention, do not check for any interrupt. 11556 */ 11557 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11558 spin_unlock(&phba->hbalock); 11559 return IRQ_NONE; 11560 } 11561 11562 /* Clear attention sources except link and error attentions */ 11563 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11564 spin_unlock(&phba->hbalock); 11565 return IRQ_HANDLED; 11566 } 11567 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11568 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11569 phba->HCregaddr); 11570 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11571 writel(hc_copy, phba->HCregaddr); 11572 readl(phba->HAregaddr); /* flush */ 11573 spin_unlock(&phba->hbalock); 11574 11575 /* 11576 * Invokes slow-path host attention interrupt handling as appropriate. 11577 */ 11578 11579 /* status of events with mailbox and link attention */ 11580 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11581 11582 /* status of events with ELS ring */ 11583 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11584 status2 >>= (4*LPFC_ELS_RING); 11585 11586 if (status1 || (status2 & HA_RXMASK)) 11587 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11588 else 11589 sp_irq_rc = IRQ_NONE; 11590 11591 /* 11592 * Invoke fast-path host attention interrupt handling as appropriate. 11593 */ 11594 11595 /* status of events with FCP ring */ 11596 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11597 status1 >>= (4*LPFC_FCP_RING); 11598 11599 /* status of events with extra ring */ 11600 if (phba->cfg_multi_ring_support == 2) { 11601 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11602 status2 >>= (4*LPFC_EXTRA_RING); 11603 } else 11604 status2 = 0; 11605 11606 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11607 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11608 else 11609 fp_irq_rc = IRQ_NONE; 11610 11611 /* Return device-level interrupt handling status */ 11612 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11613 } /* lpfc_sli_intr_handler */ 11614 11615 /** 11616 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11617 * @phba: pointer to lpfc hba data structure. 11618 * 11619 * This routine is invoked by the worker thread to process all the pending 11620 * SLI4 FCP abort XRI events. 11621 **/ 11622 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11623 { 11624 struct lpfc_cq_event *cq_event; 11625 11626 /* First, declare the fcp xri abort event has been handled */ 11627 spin_lock_irq(&phba->hbalock); 11628 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11629 spin_unlock_irq(&phba->hbalock); 11630 /* Now, handle all the fcp xri abort events */ 11631 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11632 /* Get the first event from the head of the event queue */ 11633 spin_lock_irq(&phba->hbalock); 11634 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11635 cq_event, struct lpfc_cq_event, list); 11636 spin_unlock_irq(&phba->hbalock); 11637 /* Notify aborted XRI for FCP work queue */ 11638 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11639 /* Free the event processed back to the free pool */ 11640 lpfc_sli4_cq_event_release(phba, cq_event); 11641 } 11642 } 11643 11644 /** 11645 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11646 * @phba: pointer to lpfc hba data structure. 11647 * 11648 * This routine is invoked by the worker thread to process all the pending 11649 * SLI4 els abort xri events. 11650 **/ 11651 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11652 { 11653 struct lpfc_cq_event *cq_event; 11654 11655 /* First, declare the els xri abort event has been handled */ 11656 spin_lock_irq(&phba->hbalock); 11657 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11658 spin_unlock_irq(&phba->hbalock); 11659 /* Now, handle all the els xri abort events */ 11660 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11661 /* Get the first event from the head of the event queue */ 11662 spin_lock_irq(&phba->hbalock); 11663 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11664 cq_event, struct lpfc_cq_event, list); 11665 spin_unlock_irq(&phba->hbalock); 11666 /* Notify aborted XRI for ELS work queue */ 11667 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11668 /* Free the event processed back to the free pool */ 11669 lpfc_sli4_cq_event_release(phba, cq_event); 11670 } 11671 } 11672 11673 /** 11674 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11675 * @phba: pointer to lpfc hba data structure 11676 * @pIocbIn: pointer to the rspiocbq 11677 * @pIocbOut: pointer to the cmdiocbq 11678 * @wcqe: pointer to the complete wcqe 11679 * 11680 * This routine transfers the fields of a command iocbq to a response iocbq 11681 * by copying all the IOCB fields from command iocbq and transferring the 11682 * completion status information from the complete wcqe. 11683 **/ 11684 static void 11685 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11686 struct lpfc_iocbq *pIocbIn, 11687 struct lpfc_iocbq *pIocbOut, 11688 struct lpfc_wcqe_complete *wcqe) 11689 { 11690 int numBdes, i; 11691 unsigned long iflags; 11692 uint32_t status, max_response; 11693 struct lpfc_dmabuf *dmabuf; 11694 struct ulp_bde64 *bpl, bde; 11695 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11696 11697 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11698 sizeof(struct lpfc_iocbq) - offset); 11699 /* Map WCQE parameters into irspiocb parameters */ 11700 status = bf_get(lpfc_wcqe_c_status, wcqe); 11701 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11702 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11703 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11704 pIocbIn->iocb.un.fcpi.fcpi_parm = 11705 pIocbOut->iocb.un.fcpi.fcpi_parm - 11706 wcqe->total_data_placed; 11707 else 11708 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11709 else { 11710 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11711 switch (pIocbOut->iocb.ulpCommand) { 11712 case CMD_ELS_REQUEST64_CR: 11713 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11714 bpl = (struct ulp_bde64 *)dmabuf->virt; 11715 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11716 max_response = bde.tus.f.bdeSize; 11717 break; 11718 case CMD_GEN_REQUEST64_CR: 11719 max_response = 0; 11720 if (!pIocbOut->context3) 11721 break; 11722 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11723 sizeof(struct ulp_bde64); 11724 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11725 bpl = (struct ulp_bde64 *)dmabuf->virt; 11726 for (i = 0; i < numBdes; i++) { 11727 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11728 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11729 max_response += bde.tus.f.bdeSize; 11730 } 11731 break; 11732 default: 11733 max_response = wcqe->total_data_placed; 11734 break; 11735 } 11736 if (max_response < wcqe->total_data_placed) 11737 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11738 else 11739 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11740 wcqe->total_data_placed; 11741 } 11742 11743 /* Convert BG errors for completion status */ 11744 if (status == CQE_STATUS_DI_ERROR) { 11745 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11746 11747 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11748 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11749 else 11750 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11751 11752 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11753 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11754 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11755 BGS_GUARD_ERR_MASK; 11756 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11757 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11758 BGS_APPTAG_ERR_MASK; 11759 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11760 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11761 BGS_REFTAG_ERR_MASK; 11762 11763 /* Check to see if there was any good data before the error */ 11764 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11765 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11766 BGS_HI_WATER_MARK_PRESENT_MASK; 11767 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11768 wcqe->total_data_placed; 11769 } 11770 11771 /* 11772 * Set ALL the error bits to indicate we don't know what 11773 * type of error it is. 11774 */ 11775 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11776 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11777 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11778 BGS_GUARD_ERR_MASK); 11779 } 11780 11781 /* Pick up HBA exchange busy condition */ 11782 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11783 spin_lock_irqsave(&phba->hbalock, iflags); 11784 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11785 spin_unlock_irqrestore(&phba->hbalock, iflags); 11786 } 11787 } 11788 11789 /** 11790 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11791 * @phba: Pointer to HBA context object. 11792 * @wcqe: Pointer to work-queue completion queue entry. 11793 * 11794 * This routine handles an ELS work-queue completion event and construct 11795 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11796 * discovery engine to handle. 11797 * 11798 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11799 **/ 11800 static struct lpfc_iocbq * 11801 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11802 struct lpfc_iocbq *irspiocbq) 11803 { 11804 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11805 struct lpfc_iocbq *cmdiocbq; 11806 struct lpfc_wcqe_complete *wcqe; 11807 unsigned long iflags; 11808 11809 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11810 spin_lock_irqsave(&pring->ring_lock, iflags); 11811 pring->stats.iocb_event++; 11812 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11813 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11814 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11815 /* Put the iocb back on the txcmplq */ 11816 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 11817 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11818 11819 if (unlikely(!cmdiocbq)) { 11820 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11821 "0386 ELS complete with no corresponding " 11822 "cmdiocb: iotag (%d)\n", 11823 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11824 lpfc_sli_release_iocbq(phba, irspiocbq); 11825 return NULL; 11826 } 11827 11828 /* Fake the irspiocbq and copy necessary response information */ 11829 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11830 11831 return irspiocbq; 11832 } 11833 11834 /** 11835 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11836 * @phba: Pointer to HBA context object. 11837 * @cqe: Pointer to mailbox completion queue entry. 11838 * 11839 * This routine process a mailbox completion queue entry with asynchrous 11840 * event. 11841 * 11842 * Return: true if work posted to worker thread, otherwise false. 11843 **/ 11844 static bool 11845 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11846 { 11847 struct lpfc_cq_event *cq_event; 11848 unsigned long iflags; 11849 11850 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11851 "0392 Async Event: word0:x%x, word1:x%x, " 11852 "word2:x%x, word3:x%x\n", mcqe->word0, 11853 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11854 11855 /* Allocate a new internal CQ_EVENT entry */ 11856 cq_event = lpfc_sli4_cq_event_alloc(phba); 11857 if (!cq_event) { 11858 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11859 "0394 Failed to allocate CQ_EVENT entry\n"); 11860 return false; 11861 } 11862 11863 /* Move the CQE into an asynchronous event entry */ 11864 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11865 spin_lock_irqsave(&phba->hbalock, iflags); 11866 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11867 /* Set the async event flag */ 11868 phba->hba_flag |= ASYNC_EVENT; 11869 spin_unlock_irqrestore(&phba->hbalock, iflags); 11870 11871 return true; 11872 } 11873 11874 /** 11875 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11876 * @phba: Pointer to HBA context object. 11877 * @cqe: Pointer to mailbox completion queue entry. 11878 * 11879 * This routine process a mailbox completion queue entry with mailbox 11880 * completion event. 11881 * 11882 * Return: true if work posted to worker thread, otherwise false. 11883 **/ 11884 static bool 11885 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11886 { 11887 uint32_t mcqe_status; 11888 MAILBOX_t *mbox, *pmbox; 11889 struct lpfc_mqe *mqe; 11890 struct lpfc_vport *vport; 11891 struct lpfc_nodelist *ndlp; 11892 struct lpfc_dmabuf *mp; 11893 unsigned long iflags; 11894 LPFC_MBOXQ_t *pmb; 11895 bool workposted = false; 11896 int rc; 11897 11898 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11899 if (!bf_get(lpfc_trailer_completed, mcqe)) 11900 goto out_no_mqe_complete; 11901 11902 /* Get the reference to the active mbox command */ 11903 spin_lock_irqsave(&phba->hbalock, iflags); 11904 pmb = phba->sli.mbox_active; 11905 if (unlikely(!pmb)) { 11906 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11907 "1832 No pending MBOX command to handle\n"); 11908 spin_unlock_irqrestore(&phba->hbalock, iflags); 11909 goto out_no_mqe_complete; 11910 } 11911 spin_unlock_irqrestore(&phba->hbalock, iflags); 11912 mqe = &pmb->u.mqe; 11913 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11914 mbox = phba->mbox; 11915 vport = pmb->vport; 11916 11917 /* Reset heartbeat timer */ 11918 phba->last_completion_time = jiffies; 11919 del_timer(&phba->sli.mbox_tmo); 11920 11921 /* Move mbox data to caller's mailbox region, do endian swapping */ 11922 if (pmb->mbox_cmpl && mbox) 11923 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11924 11925 /* 11926 * For mcqe errors, conditionally move a modified error code to 11927 * the mbox so that the error will not be missed. 11928 */ 11929 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11930 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11931 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11932 bf_set(lpfc_mqe_status, mqe, 11933 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11934 } 11935 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11936 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11937 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11938 "MBOX dflt rpi: status:x%x rpi:x%x", 11939 mcqe_status, 11940 pmbox->un.varWords[0], 0); 11941 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11942 mp = (struct lpfc_dmabuf *)(pmb->context1); 11943 ndlp = (struct lpfc_nodelist *)pmb->context2; 11944 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11945 * RID of the PPI using the same mbox buffer. 11946 */ 11947 lpfc_unreg_login(phba, vport->vpi, 11948 pmbox->un.varWords[0], pmb); 11949 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11950 pmb->context1 = mp; 11951 pmb->context2 = ndlp; 11952 pmb->vport = vport; 11953 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11954 if (rc != MBX_BUSY) 11955 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11956 LOG_SLI, "0385 rc should " 11957 "have been MBX_BUSY\n"); 11958 if (rc != MBX_NOT_FINISHED) 11959 goto send_current_mbox; 11960 } 11961 } 11962 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11963 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11964 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11965 11966 /* There is mailbox completion work to do */ 11967 spin_lock_irqsave(&phba->hbalock, iflags); 11968 __lpfc_mbox_cmpl_put(phba, pmb); 11969 phba->work_ha |= HA_MBATT; 11970 spin_unlock_irqrestore(&phba->hbalock, iflags); 11971 workposted = true; 11972 11973 send_current_mbox: 11974 spin_lock_irqsave(&phba->hbalock, iflags); 11975 /* Release the mailbox command posting token */ 11976 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11977 /* Setting active mailbox pointer need to be in sync to flag clear */ 11978 phba->sli.mbox_active = NULL; 11979 spin_unlock_irqrestore(&phba->hbalock, iflags); 11980 /* Wake up worker thread to post the next pending mailbox command */ 11981 lpfc_worker_wake_up(phba); 11982 out_no_mqe_complete: 11983 if (bf_get(lpfc_trailer_consumed, mcqe)) 11984 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11985 return workposted; 11986 } 11987 11988 /** 11989 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11990 * @phba: Pointer to HBA context object. 11991 * @cqe: Pointer to mailbox completion queue entry. 11992 * 11993 * This routine process a mailbox completion queue entry, it invokes the 11994 * proper mailbox complete handling or asynchrous event handling routine 11995 * according to the MCQE's async bit. 11996 * 11997 * Return: true if work posted to worker thread, otherwise false. 11998 **/ 11999 static bool 12000 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12001 { 12002 struct lpfc_mcqe mcqe; 12003 bool workposted; 12004 12005 /* Copy the mailbox MCQE and convert endian order as needed */ 12006 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12007 12008 /* Invoke the proper event handling routine */ 12009 if (!bf_get(lpfc_trailer_async, &mcqe)) 12010 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12011 else 12012 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12013 return workposted; 12014 } 12015 12016 /** 12017 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12018 * @phba: Pointer to HBA context object. 12019 * @cq: Pointer to associated CQ 12020 * @wcqe: Pointer to work-queue completion queue entry. 12021 * 12022 * This routine handles an ELS work-queue completion event. 12023 * 12024 * Return: true if work posted to worker thread, otherwise false. 12025 **/ 12026 static bool 12027 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12028 struct lpfc_wcqe_complete *wcqe) 12029 { 12030 struct lpfc_iocbq *irspiocbq; 12031 unsigned long iflags; 12032 struct lpfc_sli_ring *pring = cq->pring; 12033 int txq_cnt = 0; 12034 int txcmplq_cnt = 0; 12035 int fcp_txcmplq_cnt = 0; 12036 12037 /* Get an irspiocbq for later ELS response processing use */ 12038 irspiocbq = lpfc_sli_get_iocbq(phba); 12039 if (!irspiocbq) { 12040 if (!list_empty(&pring->txq)) 12041 txq_cnt++; 12042 if (!list_empty(&pring->txcmplq)) 12043 txcmplq_cnt++; 12044 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 12045 fcp_txcmplq_cnt++; 12046 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12047 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12048 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12049 txq_cnt, phba->iocb_cnt, 12050 fcp_txcmplq_cnt, 12051 txcmplq_cnt); 12052 return false; 12053 } 12054 12055 /* Save off the slow-path queue event for work thread to process */ 12056 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12057 spin_lock_irqsave(&phba->hbalock, iflags); 12058 list_add_tail(&irspiocbq->cq_event.list, 12059 &phba->sli4_hba.sp_queue_event); 12060 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12061 spin_unlock_irqrestore(&phba->hbalock, iflags); 12062 12063 return true; 12064 } 12065 12066 /** 12067 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12068 * @phba: Pointer to HBA context object. 12069 * @wcqe: Pointer to work-queue completion queue entry. 12070 * 12071 * This routine handles slow-path WQ entry comsumed event by invoking the 12072 * proper WQ release routine to the slow-path WQ. 12073 **/ 12074 static void 12075 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12076 struct lpfc_wcqe_release *wcqe) 12077 { 12078 /* sanity check on queue memory */ 12079 if (unlikely(!phba->sli4_hba.els_wq)) 12080 return; 12081 /* Check for the slow-path ELS work queue */ 12082 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12083 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12084 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12085 else 12086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12087 "2579 Slow-path wqe consume event carries " 12088 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12089 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12090 phba->sli4_hba.els_wq->queue_id); 12091 } 12092 12093 /** 12094 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12095 * @phba: Pointer to HBA context object. 12096 * @cq: Pointer to a WQ completion queue. 12097 * @wcqe: Pointer to work-queue completion queue entry. 12098 * 12099 * This routine handles an XRI abort event. 12100 * 12101 * Return: true if work posted to worker thread, otherwise false. 12102 **/ 12103 static bool 12104 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12105 struct lpfc_queue *cq, 12106 struct sli4_wcqe_xri_aborted *wcqe) 12107 { 12108 bool workposted = false; 12109 struct lpfc_cq_event *cq_event; 12110 unsigned long iflags; 12111 12112 /* Allocate a new internal CQ_EVENT entry */ 12113 cq_event = lpfc_sli4_cq_event_alloc(phba); 12114 if (!cq_event) { 12115 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12116 "0602 Failed to allocate CQ_EVENT entry\n"); 12117 return false; 12118 } 12119 12120 /* Move the CQE into the proper xri abort event list */ 12121 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12122 switch (cq->subtype) { 12123 case LPFC_FCP: 12124 spin_lock_irqsave(&phba->hbalock, iflags); 12125 list_add_tail(&cq_event->list, 12126 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12127 /* Set the fcp xri abort event flag */ 12128 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12129 spin_unlock_irqrestore(&phba->hbalock, iflags); 12130 workposted = true; 12131 break; 12132 case LPFC_ELS: 12133 spin_lock_irqsave(&phba->hbalock, iflags); 12134 list_add_tail(&cq_event->list, 12135 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12136 /* Set the els xri abort event flag */ 12137 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12138 spin_unlock_irqrestore(&phba->hbalock, iflags); 12139 workposted = true; 12140 break; 12141 default: 12142 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12143 "0603 Invalid work queue CQE subtype (x%x)\n", 12144 cq->subtype); 12145 workposted = false; 12146 break; 12147 } 12148 return workposted; 12149 } 12150 12151 /** 12152 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12153 * @phba: Pointer to HBA context object. 12154 * @rcqe: Pointer to receive-queue completion queue entry. 12155 * 12156 * This routine process a receive-queue completion queue entry. 12157 * 12158 * Return: true if work posted to worker thread, otherwise false. 12159 **/ 12160 static bool 12161 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12162 { 12163 bool workposted = false; 12164 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12165 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12166 struct hbq_dmabuf *dma_buf; 12167 uint32_t status, rq_id; 12168 unsigned long iflags; 12169 12170 /* sanity check on queue memory */ 12171 if (unlikely(!hrq) || unlikely(!drq)) 12172 return workposted; 12173 12174 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12175 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12176 else 12177 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12178 if (rq_id != hrq->queue_id) 12179 goto out; 12180 12181 status = bf_get(lpfc_rcqe_status, rcqe); 12182 switch (status) { 12183 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12184 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12185 "2537 Receive Frame Truncated!!\n"); 12186 hrq->RQ_buf_trunc++; 12187 case FC_STATUS_RQ_SUCCESS: 12188 lpfc_sli4_rq_release(hrq, drq); 12189 spin_lock_irqsave(&phba->hbalock, iflags); 12190 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12191 if (!dma_buf) { 12192 hrq->RQ_no_buf_found++; 12193 spin_unlock_irqrestore(&phba->hbalock, iflags); 12194 goto out; 12195 } 12196 hrq->RQ_rcv_buf++; 12197 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12198 /* save off the frame for the word thread to process */ 12199 list_add_tail(&dma_buf->cq_event.list, 12200 &phba->sli4_hba.sp_queue_event); 12201 /* Frame received */ 12202 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12203 spin_unlock_irqrestore(&phba->hbalock, iflags); 12204 workposted = true; 12205 break; 12206 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12207 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12208 hrq->RQ_no_posted_buf++; 12209 /* Post more buffers if possible */ 12210 spin_lock_irqsave(&phba->hbalock, iflags); 12211 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12212 spin_unlock_irqrestore(&phba->hbalock, iflags); 12213 workposted = true; 12214 break; 12215 } 12216 out: 12217 return workposted; 12218 } 12219 12220 /** 12221 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12222 * @phba: Pointer to HBA context object. 12223 * @cq: Pointer to the completion queue. 12224 * @wcqe: Pointer to a completion queue entry. 12225 * 12226 * This routine process a slow-path work-queue or receive queue completion queue 12227 * entry. 12228 * 12229 * Return: true if work posted to worker thread, otherwise false. 12230 **/ 12231 static bool 12232 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12233 struct lpfc_cqe *cqe) 12234 { 12235 struct lpfc_cqe cqevt; 12236 bool workposted = false; 12237 12238 /* Copy the work queue CQE and convert endian order if needed */ 12239 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12240 12241 /* Check and process for different type of WCQE and dispatch */ 12242 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12243 case CQE_CODE_COMPL_WQE: 12244 /* Process the WQ/RQ complete event */ 12245 phba->last_completion_time = jiffies; 12246 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12247 (struct lpfc_wcqe_complete *)&cqevt); 12248 break; 12249 case CQE_CODE_RELEASE_WQE: 12250 /* Process the WQ release event */ 12251 lpfc_sli4_sp_handle_rel_wcqe(phba, 12252 (struct lpfc_wcqe_release *)&cqevt); 12253 break; 12254 case CQE_CODE_XRI_ABORTED: 12255 /* Process the WQ XRI abort event */ 12256 phba->last_completion_time = jiffies; 12257 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12258 (struct sli4_wcqe_xri_aborted *)&cqevt); 12259 break; 12260 case CQE_CODE_RECEIVE: 12261 case CQE_CODE_RECEIVE_V1: 12262 /* Process the RQ event */ 12263 phba->last_completion_time = jiffies; 12264 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12265 (struct lpfc_rcqe *)&cqevt); 12266 break; 12267 default: 12268 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12269 "0388 Not a valid WCQE code: x%x\n", 12270 bf_get(lpfc_cqe_code, &cqevt)); 12271 break; 12272 } 12273 return workposted; 12274 } 12275 12276 /** 12277 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12278 * @phba: Pointer to HBA context object. 12279 * @eqe: Pointer to fast-path event queue entry. 12280 * 12281 * This routine process a event queue entry from the slow-path event queue. 12282 * It will check the MajorCode and MinorCode to determine this is for a 12283 * completion event on a completion queue, if not, an error shall be logged 12284 * and just return. Otherwise, it will get to the corresponding completion 12285 * queue and process all the entries on that completion queue, rearm the 12286 * completion queue, and then return. 12287 * 12288 **/ 12289 static void 12290 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12291 struct lpfc_queue *speq) 12292 { 12293 struct lpfc_queue *cq = NULL, *childq; 12294 struct lpfc_cqe *cqe; 12295 bool workposted = false; 12296 int ecount = 0; 12297 uint16_t cqid; 12298 12299 /* Get the reference to the corresponding CQ */ 12300 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12301 12302 list_for_each_entry(childq, &speq->child_list, list) { 12303 if (childq->queue_id == cqid) { 12304 cq = childq; 12305 break; 12306 } 12307 } 12308 if (unlikely(!cq)) { 12309 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12310 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12311 "0365 Slow-path CQ identifier " 12312 "(%d) does not exist\n", cqid); 12313 return; 12314 } 12315 12316 /* Process all the entries to the CQ */ 12317 switch (cq->type) { 12318 case LPFC_MCQ: 12319 while ((cqe = lpfc_sli4_cq_get(cq))) { 12320 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12321 if (!(++ecount % cq->entry_repost)) 12322 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12323 cq->CQ_mbox++; 12324 } 12325 break; 12326 case LPFC_WCQ: 12327 while ((cqe = lpfc_sli4_cq_get(cq))) { 12328 if (cq->subtype == LPFC_FCP) 12329 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12330 cqe); 12331 else 12332 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12333 cqe); 12334 if (!(++ecount % cq->entry_repost)) 12335 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12336 } 12337 12338 /* Track the max number of CQEs processed in 1 EQ */ 12339 if (ecount > cq->CQ_max_cqe) 12340 cq->CQ_max_cqe = ecount; 12341 break; 12342 default: 12343 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12344 "0370 Invalid completion queue type (%d)\n", 12345 cq->type); 12346 return; 12347 } 12348 12349 /* Catch the no cq entry condition, log an error */ 12350 if (unlikely(ecount == 0)) 12351 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12352 "0371 No entry from the CQ: identifier " 12353 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12354 12355 /* In any case, flash and re-arm the RCQ */ 12356 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12357 12358 /* wake up worker thread if there are works to be done */ 12359 if (workposted) 12360 lpfc_worker_wake_up(phba); 12361 } 12362 12363 /** 12364 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12365 * @phba: Pointer to HBA context object. 12366 * @cq: Pointer to associated CQ 12367 * @wcqe: Pointer to work-queue completion queue entry. 12368 * 12369 * This routine process a fast-path work queue completion entry from fast-path 12370 * event queue for FCP command response completion. 12371 **/ 12372 static void 12373 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12374 struct lpfc_wcqe_complete *wcqe) 12375 { 12376 struct lpfc_sli_ring *pring = cq->pring; 12377 struct lpfc_iocbq *cmdiocbq; 12378 struct lpfc_iocbq irspiocbq; 12379 unsigned long iflags; 12380 12381 /* Check for response status */ 12382 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12383 /* If resource errors reported from HBA, reduce queue 12384 * depth of the SCSI device. 12385 */ 12386 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12387 IOSTAT_LOCAL_REJECT)) && 12388 ((wcqe->parameter & IOERR_PARAM_MASK) == 12389 IOERR_NO_RESOURCES)) 12390 phba->lpfc_rampdown_queue_depth(phba); 12391 12392 /* Log the error status */ 12393 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12394 "0373 FCP complete error: status=x%x, " 12395 "hw_status=x%x, total_data_specified=%d, " 12396 "parameter=x%x, word3=x%x\n", 12397 bf_get(lpfc_wcqe_c_status, wcqe), 12398 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12399 wcqe->total_data_placed, wcqe->parameter, 12400 wcqe->word3); 12401 } 12402 12403 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12404 spin_lock_irqsave(&pring->ring_lock, iflags); 12405 pring->stats.iocb_event++; 12406 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12407 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12408 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12409 if (unlikely(!cmdiocbq)) { 12410 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12411 "0374 FCP complete with no corresponding " 12412 "cmdiocb: iotag (%d)\n", 12413 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12414 return; 12415 } 12416 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12418 "0375 FCP cmdiocb not callback function " 12419 "iotag: (%d)\n", 12420 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12421 return; 12422 } 12423 12424 /* Fake the irspiocb and copy necessary response information */ 12425 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12426 12427 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12428 spin_lock_irqsave(&phba->hbalock, iflags); 12429 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12430 spin_unlock_irqrestore(&phba->hbalock, iflags); 12431 } 12432 12433 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12434 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12435 } 12436 12437 /** 12438 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12439 * @phba: Pointer to HBA context object. 12440 * @cq: Pointer to completion queue. 12441 * @wcqe: Pointer to work-queue completion queue entry. 12442 * 12443 * This routine handles an fast-path WQ entry comsumed event by invoking the 12444 * proper WQ release routine to the slow-path WQ. 12445 **/ 12446 static void 12447 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12448 struct lpfc_wcqe_release *wcqe) 12449 { 12450 struct lpfc_queue *childwq; 12451 bool wqid_matched = false; 12452 uint16_t fcp_wqid; 12453 12454 /* Check for fast-path FCP work queue release */ 12455 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12456 list_for_each_entry(childwq, &cq->child_list, list) { 12457 if (childwq->queue_id == fcp_wqid) { 12458 lpfc_sli4_wq_release(childwq, 12459 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12460 wqid_matched = true; 12461 break; 12462 } 12463 } 12464 /* Report warning log message if no match found */ 12465 if (wqid_matched != true) 12466 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12467 "2580 Fast-path wqe consume event carries " 12468 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12469 } 12470 12471 /** 12472 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12473 * @cq: Pointer to the completion queue. 12474 * @eqe: Pointer to fast-path completion queue entry. 12475 * 12476 * This routine process a fast-path work queue completion entry from fast-path 12477 * event queue for FCP command response completion. 12478 **/ 12479 static int 12480 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12481 struct lpfc_cqe *cqe) 12482 { 12483 struct lpfc_wcqe_release wcqe; 12484 bool workposted = false; 12485 12486 /* Copy the work queue CQE and convert endian order if needed */ 12487 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12488 12489 /* Check and process for different type of WCQE and dispatch */ 12490 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12491 case CQE_CODE_COMPL_WQE: 12492 cq->CQ_wq++; 12493 /* Process the WQ complete event */ 12494 phba->last_completion_time = jiffies; 12495 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12496 (struct lpfc_wcqe_complete *)&wcqe); 12497 break; 12498 case CQE_CODE_RELEASE_WQE: 12499 cq->CQ_release_wqe++; 12500 /* Process the WQ release event */ 12501 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12502 (struct lpfc_wcqe_release *)&wcqe); 12503 break; 12504 case CQE_CODE_XRI_ABORTED: 12505 cq->CQ_xri_aborted++; 12506 /* Process the WQ XRI abort event */ 12507 phba->last_completion_time = jiffies; 12508 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12509 (struct sli4_wcqe_xri_aborted *)&wcqe); 12510 break; 12511 default: 12512 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12513 "0144 Not a valid WCQE code: x%x\n", 12514 bf_get(lpfc_wcqe_c_code, &wcqe)); 12515 break; 12516 } 12517 return workposted; 12518 } 12519 12520 /** 12521 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12522 * @phba: Pointer to HBA context object. 12523 * @eqe: Pointer to fast-path event queue entry. 12524 * 12525 * This routine process a event queue entry from the fast-path event queue. 12526 * It will check the MajorCode and MinorCode to determine this is for a 12527 * completion event on a completion queue, if not, an error shall be logged 12528 * and just return. Otherwise, it will get to the corresponding completion 12529 * queue and process all the entries on the completion queue, rearm the 12530 * completion queue, and then return. 12531 **/ 12532 static void 12533 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12534 uint32_t qidx) 12535 { 12536 struct lpfc_queue *cq; 12537 struct lpfc_cqe *cqe; 12538 bool workposted = false; 12539 uint16_t cqid; 12540 int ecount = 0; 12541 12542 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12543 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12544 "0366 Not a valid completion " 12545 "event: majorcode=x%x, minorcode=x%x\n", 12546 bf_get_le32(lpfc_eqe_major_code, eqe), 12547 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12548 return; 12549 } 12550 12551 /* Get the reference to the corresponding CQ */ 12552 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12553 12554 /* Check if this is a Slow path event */ 12555 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12556 lpfc_sli4_sp_handle_eqe(phba, eqe, 12557 phba->sli4_hba.hba_eq[qidx]); 12558 return; 12559 } 12560 12561 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12562 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12563 "3146 Fast-path completion queues " 12564 "does not exist\n"); 12565 return; 12566 } 12567 cq = phba->sli4_hba.fcp_cq[qidx]; 12568 if (unlikely(!cq)) { 12569 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12570 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12571 "0367 Fast-path completion queue " 12572 "(%d) does not exist\n", qidx); 12573 return; 12574 } 12575 12576 if (unlikely(cqid != cq->queue_id)) { 12577 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12578 "0368 Miss-matched fast-path completion " 12579 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12580 cqid, cq->queue_id); 12581 return; 12582 } 12583 12584 /* Process all the entries to the CQ */ 12585 while ((cqe = lpfc_sli4_cq_get(cq))) { 12586 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12587 if (!(++ecount % cq->entry_repost)) 12588 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12589 } 12590 12591 /* Track the max number of CQEs processed in 1 EQ */ 12592 if (ecount > cq->CQ_max_cqe) 12593 cq->CQ_max_cqe = ecount; 12594 12595 /* Catch the no cq entry condition */ 12596 if (unlikely(ecount == 0)) 12597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12598 "0369 No entry from fast-path completion " 12599 "queue fcpcqid=%d\n", cq->queue_id); 12600 12601 /* In any case, flash and re-arm the CQ */ 12602 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12603 12604 /* wake up worker thread if there are works to be done */ 12605 if (workposted) 12606 lpfc_worker_wake_up(phba); 12607 } 12608 12609 static void 12610 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12611 { 12612 struct lpfc_eqe *eqe; 12613 12614 /* walk all the EQ entries and drop on the floor */ 12615 while ((eqe = lpfc_sli4_eq_get(eq))) 12616 ; 12617 12618 /* Clear and re-arm the EQ */ 12619 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12620 } 12621 12622 12623 /** 12624 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12625 * entry 12626 * @phba: Pointer to HBA context object. 12627 * @eqe: Pointer to fast-path event queue entry. 12628 * 12629 * This routine process a event queue entry from the Flash Optimized Fabric 12630 * event queue. It will check the MajorCode and MinorCode to determine this 12631 * is for a completion event on a completion queue, if not, an error shall be 12632 * logged and just return. Otherwise, it will get to the corresponding 12633 * completion queue and process all the entries on the completion queue, rearm 12634 * the completion queue, and then return. 12635 **/ 12636 static void 12637 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12638 { 12639 struct lpfc_queue *cq; 12640 struct lpfc_cqe *cqe; 12641 bool workposted = false; 12642 uint16_t cqid; 12643 int ecount = 0; 12644 12645 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12646 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12647 "9147 Not a valid completion " 12648 "event: majorcode=x%x, minorcode=x%x\n", 12649 bf_get_le32(lpfc_eqe_major_code, eqe), 12650 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12651 return; 12652 } 12653 12654 /* Get the reference to the corresponding CQ */ 12655 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12656 12657 /* Next check for OAS */ 12658 cq = phba->sli4_hba.oas_cq; 12659 if (unlikely(!cq)) { 12660 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12661 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12662 "9148 OAS completion queue " 12663 "does not exist\n"); 12664 return; 12665 } 12666 12667 if (unlikely(cqid != cq->queue_id)) { 12668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12669 "9149 Miss-matched fast-path compl " 12670 "queue id: eqcqid=%d, fcpcqid=%d\n", 12671 cqid, cq->queue_id); 12672 return; 12673 } 12674 12675 /* Process all the entries to the OAS CQ */ 12676 while ((cqe = lpfc_sli4_cq_get(cq))) { 12677 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12678 if (!(++ecount % cq->entry_repost)) 12679 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12680 } 12681 12682 /* Track the max number of CQEs processed in 1 EQ */ 12683 if (ecount > cq->CQ_max_cqe) 12684 cq->CQ_max_cqe = ecount; 12685 12686 /* Catch the no cq entry condition */ 12687 if (unlikely(ecount == 0)) 12688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12689 "9153 No entry from fast-path completion " 12690 "queue fcpcqid=%d\n", cq->queue_id); 12691 12692 /* In any case, flash and re-arm the CQ */ 12693 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12694 12695 /* wake up worker thread if there are works to be done */ 12696 if (workposted) 12697 lpfc_worker_wake_up(phba); 12698 } 12699 12700 /** 12701 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12702 * @irq: Interrupt number. 12703 * @dev_id: The device context pointer. 12704 * 12705 * This function is directly called from the PCI layer as an interrupt 12706 * service routine when device with SLI-4 interface spec is enabled with 12707 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12708 * IOCB ring event in the HBA. However, when the device is enabled with either 12709 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12710 * device-level interrupt handler. When the PCI slot is in error recovery 12711 * or the HBA is undergoing initialization, the interrupt handler will not 12712 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12713 * the intrrupt context. This function is called without any lock held. 12714 * It gets the hbalock to access and update SLI data structures. Note that, 12715 * the EQ to CQ are one-to-one map such that the EQ index is 12716 * equal to that of CQ index. 12717 * 12718 * This function returns IRQ_HANDLED when interrupt is handled else it 12719 * returns IRQ_NONE. 12720 **/ 12721 irqreturn_t 12722 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12723 { 12724 struct lpfc_hba *phba; 12725 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12726 struct lpfc_queue *eq; 12727 struct lpfc_eqe *eqe; 12728 unsigned long iflag; 12729 int ecount = 0; 12730 12731 /* Get the driver's phba structure from the dev_id */ 12732 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12733 phba = fcp_eq_hdl->phba; 12734 12735 if (unlikely(!phba)) 12736 return IRQ_NONE; 12737 12738 /* Get to the EQ struct associated with this vector */ 12739 eq = phba->sli4_hba.fof_eq; 12740 if (unlikely(!eq)) 12741 return IRQ_NONE; 12742 12743 /* Check device state for handling interrupt */ 12744 if (unlikely(lpfc_intr_state_check(phba))) { 12745 eq->EQ_badstate++; 12746 /* Check again for link_state with lock held */ 12747 spin_lock_irqsave(&phba->hbalock, iflag); 12748 if (phba->link_state < LPFC_LINK_DOWN) 12749 /* Flush, clear interrupt, and rearm the EQ */ 12750 lpfc_sli4_eq_flush(phba, eq); 12751 spin_unlock_irqrestore(&phba->hbalock, iflag); 12752 return IRQ_NONE; 12753 } 12754 12755 /* 12756 * Process all the event on FCP fast-path EQ 12757 */ 12758 while ((eqe = lpfc_sli4_eq_get(eq))) { 12759 lpfc_sli4_fof_handle_eqe(phba, eqe); 12760 if (!(++ecount % eq->entry_repost)) 12761 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12762 eq->EQ_processed++; 12763 } 12764 12765 /* Track the max number of EQEs processed in 1 intr */ 12766 if (ecount > eq->EQ_max_eqe) 12767 eq->EQ_max_eqe = ecount; 12768 12769 12770 if (unlikely(ecount == 0)) { 12771 eq->EQ_no_entry++; 12772 12773 if (phba->intr_type == MSIX) 12774 /* MSI-X treated interrupt served as no EQ share INT */ 12775 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12776 "9145 MSI-X interrupt with no EQE\n"); 12777 else { 12778 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12779 "9146 ISR interrupt with no EQE\n"); 12780 /* Non MSI-X treated on interrupt as EQ share INT */ 12781 return IRQ_NONE; 12782 } 12783 } 12784 /* Always clear and re-arm the fast-path EQ */ 12785 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12786 return IRQ_HANDLED; 12787 } 12788 12789 /** 12790 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12791 * @irq: Interrupt number. 12792 * @dev_id: The device context pointer. 12793 * 12794 * This function is directly called from the PCI layer as an interrupt 12795 * service routine when device with SLI-4 interface spec is enabled with 12796 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12797 * ring event in the HBA. However, when the device is enabled with either 12798 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12799 * device-level interrupt handler. When the PCI slot is in error recovery 12800 * or the HBA is undergoing initialization, the interrupt handler will not 12801 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12802 * the intrrupt context. This function is called without any lock held. 12803 * It gets the hbalock to access and update SLI data structures. Note that, 12804 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12805 * equal to that of FCP CQ index. 12806 * 12807 * The link attention and ELS ring attention events are handled 12808 * by the worker thread. The interrupt handler signals the worker thread 12809 * and returns for these events. This function is called without any lock 12810 * held. It gets the hbalock to access and update SLI data structures. 12811 * 12812 * This function returns IRQ_HANDLED when interrupt is handled else it 12813 * returns IRQ_NONE. 12814 **/ 12815 irqreturn_t 12816 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12817 { 12818 struct lpfc_hba *phba; 12819 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12820 struct lpfc_queue *fpeq; 12821 struct lpfc_eqe *eqe; 12822 unsigned long iflag; 12823 int ecount = 0; 12824 int fcp_eqidx; 12825 12826 /* Get the driver's phba structure from the dev_id */ 12827 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12828 phba = fcp_eq_hdl->phba; 12829 fcp_eqidx = fcp_eq_hdl->idx; 12830 12831 if (unlikely(!phba)) 12832 return IRQ_NONE; 12833 if (unlikely(!phba->sli4_hba.hba_eq)) 12834 return IRQ_NONE; 12835 12836 /* Get to the EQ struct associated with this vector */ 12837 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12838 if (unlikely(!fpeq)) 12839 return IRQ_NONE; 12840 12841 if (lpfc_fcp_look_ahead) { 12842 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12843 lpfc_sli4_eq_clr_intr(fpeq); 12844 else { 12845 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12846 return IRQ_NONE; 12847 } 12848 } 12849 12850 /* Check device state for handling interrupt */ 12851 if (unlikely(lpfc_intr_state_check(phba))) { 12852 fpeq->EQ_badstate++; 12853 /* Check again for link_state with lock held */ 12854 spin_lock_irqsave(&phba->hbalock, iflag); 12855 if (phba->link_state < LPFC_LINK_DOWN) 12856 /* Flush, clear interrupt, and rearm the EQ */ 12857 lpfc_sli4_eq_flush(phba, fpeq); 12858 spin_unlock_irqrestore(&phba->hbalock, iflag); 12859 if (lpfc_fcp_look_ahead) 12860 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12861 return IRQ_NONE; 12862 } 12863 12864 /* 12865 * Process all the event on FCP fast-path EQ 12866 */ 12867 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12868 if (eqe == NULL) 12869 break; 12870 12871 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12872 if (!(++ecount % fpeq->entry_repost)) 12873 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12874 fpeq->EQ_processed++; 12875 } 12876 12877 /* Track the max number of EQEs processed in 1 intr */ 12878 if (ecount > fpeq->EQ_max_eqe) 12879 fpeq->EQ_max_eqe = ecount; 12880 12881 /* Always clear and re-arm the fast-path EQ */ 12882 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12883 12884 if (unlikely(ecount == 0)) { 12885 fpeq->EQ_no_entry++; 12886 12887 if (lpfc_fcp_look_ahead) { 12888 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12889 return IRQ_NONE; 12890 } 12891 12892 if (phba->intr_type == MSIX) 12893 /* MSI-X treated interrupt served as no EQ share INT */ 12894 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12895 "0358 MSI-X interrupt with no EQE\n"); 12896 else 12897 /* Non MSI-X treated on interrupt as EQ share INT */ 12898 return IRQ_NONE; 12899 } 12900 12901 if (lpfc_fcp_look_ahead) 12902 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12903 return IRQ_HANDLED; 12904 } /* lpfc_sli4_fp_intr_handler */ 12905 12906 /** 12907 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12908 * @irq: Interrupt number. 12909 * @dev_id: The device context pointer. 12910 * 12911 * This function is the device-level interrupt handler to device with SLI-4 12912 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12913 * interrupt mode is enabled and there is an event in the HBA which requires 12914 * driver attention. This function invokes the slow-path interrupt attention 12915 * handling function and fast-path interrupt attention handling function in 12916 * turn to process the relevant HBA attention events. This function is called 12917 * without any lock held. It gets the hbalock to access and update SLI data 12918 * structures. 12919 * 12920 * This function returns IRQ_HANDLED when interrupt is handled, else it 12921 * returns IRQ_NONE. 12922 **/ 12923 irqreturn_t 12924 lpfc_sli4_intr_handler(int irq, void *dev_id) 12925 { 12926 struct lpfc_hba *phba; 12927 irqreturn_t hba_irq_rc; 12928 bool hba_handled = false; 12929 int fcp_eqidx; 12930 12931 /* Get the driver's phba structure from the dev_id */ 12932 phba = (struct lpfc_hba *)dev_id; 12933 12934 if (unlikely(!phba)) 12935 return IRQ_NONE; 12936 12937 /* 12938 * Invoke fast-path host attention interrupt handling as appropriate. 12939 */ 12940 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12941 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12942 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12943 if (hba_irq_rc == IRQ_HANDLED) 12944 hba_handled |= true; 12945 } 12946 12947 if (phba->cfg_fof) { 12948 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12949 &phba->sli4_hba.fcp_eq_hdl[0]); 12950 if (hba_irq_rc == IRQ_HANDLED) 12951 hba_handled |= true; 12952 } 12953 12954 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12955 } /* lpfc_sli4_intr_handler */ 12956 12957 /** 12958 * lpfc_sli4_queue_free - free a queue structure and associated memory 12959 * @queue: The queue structure to free. 12960 * 12961 * This function frees a queue structure and the DMAable memory used for 12962 * the host resident queue. This function must be called after destroying the 12963 * queue on the HBA. 12964 **/ 12965 void 12966 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12967 { 12968 struct lpfc_dmabuf *dmabuf; 12969 12970 if (!queue) 12971 return; 12972 12973 while (!list_empty(&queue->page_list)) { 12974 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12975 list); 12976 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12977 dmabuf->virt, dmabuf->phys); 12978 kfree(dmabuf); 12979 } 12980 kfree(queue); 12981 return; 12982 } 12983 12984 /** 12985 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12986 * @phba: The HBA that this queue is being created on. 12987 * @entry_size: The size of each queue entry for this queue. 12988 * @entry count: The number of entries that this queue will handle. 12989 * 12990 * This function allocates a queue structure and the DMAable memory used for 12991 * the host resident queue. This function must be called before creating the 12992 * queue on the HBA. 12993 **/ 12994 struct lpfc_queue * 12995 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 12996 uint32_t entry_count) 12997 { 12998 struct lpfc_queue *queue; 12999 struct lpfc_dmabuf *dmabuf; 13000 int x, total_qe_count; 13001 void *dma_pointer; 13002 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13003 13004 if (!phba->sli4_hba.pc_sli4_params.supported) 13005 hw_page_size = SLI4_PAGE_SIZE; 13006 13007 queue = kzalloc(sizeof(struct lpfc_queue) + 13008 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13009 if (!queue) 13010 return NULL; 13011 queue->page_count = (ALIGN(entry_size * entry_count, 13012 hw_page_size))/hw_page_size; 13013 INIT_LIST_HEAD(&queue->list); 13014 INIT_LIST_HEAD(&queue->page_list); 13015 INIT_LIST_HEAD(&queue->child_list); 13016 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13017 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13018 if (!dmabuf) 13019 goto out_fail; 13020 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13021 hw_page_size, &dmabuf->phys, 13022 GFP_KERNEL); 13023 if (!dmabuf->virt) { 13024 kfree(dmabuf); 13025 goto out_fail; 13026 } 13027 dmabuf->buffer_tag = x; 13028 list_add_tail(&dmabuf->list, &queue->page_list); 13029 /* initialize queue's entry array */ 13030 dma_pointer = dmabuf->virt; 13031 for (; total_qe_count < entry_count && 13032 dma_pointer < (hw_page_size + dmabuf->virt); 13033 total_qe_count++, dma_pointer += entry_size) { 13034 queue->qe[total_qe_count].address = dma_pointer; 13035 } 13036 } 13037 queue->entry_size = entry_size; 13038 queue->entry_count = entry_count; 13039 13040 /* 13041 * entry_repost is calculated based on the number of entries in the 13042 * queue. This works out except for RQs. If buffers are NOT initially 13043 * posted for every RQE, entry_repost should be adjusted accordingly. 13044 */ 13045 queue->entry_repost = (entry_count >> 3); 13046 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13047 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13048 queue->phba = phba; 13049 13050 return queue; 13051 out_fail: 13052 lpfc_sli4_queue_free(queue); 13053 return NULL; 13054 } 13055 13056 /** 13057 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13058 * @phba: HBA structure that indicates port to create a queue on. 13059 * @pci_barset: PCI BAR set flag. 13060 * 13061 * This function shall perform iomap of the specified PCI BAR address to host 13062 * memory address if not already done so and return it. The returned host 13063 * memory address can be NULL. 13064 */ 13065 static void __iomem * 13066 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13067 { 13068 if (!phba->pcidev) 13069 return NULL; 13070 13071 switch (pci_barset) { 13072 case WQ_PCI_BAR_0_AND_1: 13073 return phba->pci_bar0_memmap_p; 13074 case WQ_PCI_BAR_2_AND_3: 13075 return phba->pci_bar2_memmap_p; 13076 case WQ_PCI_BAR_4_AND_5: 13077 return phba->pci_bar4_memmap_p; 13078 default: 13079 break; 13080 } 13081 return NULL; 13082 } 13083 13084 /** 13085 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 13086 * @phba: HBA structure that indicates port to create a queue on. 13087 * @startq: The starting FCP EQ to modify 13088 * 13089 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13090 * 13091 * The @phba struct is used to send mailbox command to HBA. The @startq 13092 * is used to get the starting FCP EQ to change. 13093 * This function is asynchronous and will wait for the mailbox 13094 * command to finish before continuing. 13095 * 13096 * On success this function will return a zero. If unable to allocate enough 13097 * memory this function will return -ENOMEM. If the queue create mailbox command 13098 * fails this function will return -ENXIO. 13099 **/ 13100 int 13101 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13102 { 13103 struct lpfc_mbx_modify_eq_delay *eq_delay; 13104 LPFC_MBOXQ_t *mbox; 13105 struct lpfc_queue *eq; 13106 int cnt, rc, length, status = 0; 13107 uint32_t shdr_status, shdr_add_status; 13108 uint32_t result; 13109 int fcp_eqidx; 13110 union lpfc_sli4_cfg_shdr *shdr; 13111 uint16_t dmult; 13112 13113 if (startq >= phba->cfg_fcp_io_channel) 13114 return 0; 13115 13116 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13117 if (!mbox) 13118 return -ENOMEM; 13119 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13120 sizeof(struct lpfc_sli4_cfg_mhdr)); 13121 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13122 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13123 length, LPFC_SLI4_MBX_EMBED); 13124 eq_delay = &mbox->u.mqe.un.eq_delay; 13125 13126 /* Calculate delay multiper from maximum interrupt per second */ 13127 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 13128 if (result > LPFC_DMULT_CONST) 13129 dmult = 0; 13130 else 13131 dmult = LPFC_DMULT_CONST/result - 1; 13132 13133 cnt = 0; 13134 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 13135 fcp_eqidx++) { 13136 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 13137 if (!eq) 13138 continue; 13139 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13140 eq_delay->u.request.eq[cnt].phase = 0; 13141 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13142 cnt++; 13143 if (cnt >= LPFC_MAX_EQ_DELAY) 13144 break; 13145 } 13146 eq_delay->u.request.num_eq = cnt; 13147 13148 mbox->vport = phba->pport; 13149 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13150 mbox->context1 = NULL; 13151 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13152 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13153 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13154 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13155 if (shdr_status || shdr_add_status || rc) { 13156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13157 "2512 MODIFY_EQ_DELAY mailbox failed with " 13158 "status x%x add_status x%x, mbx status x%x\n", 13159 shdr_status, shdr_add_status, rc); 13160 status = -ENXIO; 13161 } 13162 mempool_free(mbox, phba->mbox_mem_pool); 13163 return status; 13164 } 13165 13166 /** 13167 * lpfc_eq_create - Create an Event Queue on the HBA 13168 * @phba: HBA structure that indicates port to create a queue on. 13169 * @eq: The queue structure to use to create the event queue. 13170 * @imax: The maximum interrupt per second limit. 13171 * 13172 * This function creates an event queue, as detailed in @eq, on a port, 13173 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13174 * 13175 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13176 * is used to get the entry count and entry size that are necessary to 13177 * determine the number of pages to allocate and use for this queue. This 13178 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13179 * event queue. This function is asynchronous and will wait for the mailbox 13180 * command to finish before continuing. 13181 * 13182 * On success this function will return a zero. If unable to allocate enough 13183 * memory this function will return -ENOMEM. If the queue create mailbox command 13184 * fails this function will return -ENXIO. 13185 **/ 13186 int 13187 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13188 { 13189 struct lpfc_mbx_eq_create *eq_create; 13190 LPFC_MBOXQ_t *mbox; 13191 int rc, length, status = 0; 13192 struct lpfc_dmabuf *dmabuf; 13193 uint32_t shdr_status, shdr_add_status; 13194 union lpfc_sli4_cfg_shdr *shdr; 13195 uint16_t dmult; 13196 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13197 13198 /* sanity check on queue memory */ 13199 if (!eq) 13200 return -ENODEV; 13201 if (!phba->sli4_hba.pc_sli4_params.supported) 13202 hw_page_size = SLI4_PAGE_SIZE; 13203 13204 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13205 if (!mbox) 13206 return -ENOMEM; 13207 length = (sizeof(struct lpfc_mbx_eq_create) - 13208 sizeof(struct lpfc_sli4_cfg_mhdr)); 13209 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13210 LPFC_MBOX_OPCODE_EQ_CREATE, 13211 length, LPFC_SLI4_MBX_EMBED); 13212 eq_create = &mbox->u.mqe.un.eq_create; 13213 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 13214 eq->page_count); 13215 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 13216 LPFC_EQE_SIZE); 13217 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 13218 /* don't setup delay multiplier using EQ_CREATE */ 13219 dmult = 0; 13220 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 13221 dmult); 13222 switch (eq->entry_count) { 13223 default: 13224 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13225 "0360 Unsupported EQ count. (%d)\n", 13226 eq->entry_count); 13227 if (eq->entry_count < 256) 13228 return -EINVAL; 13229 /* otherwise default to smallest count (drop through) */ 13230 case 256: 13231 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13232 LPFC_EQ_CNT_256); 13233 break; 13234 case 512: 13235 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13236 LPFC_EQ_CNT_512); 13237 break; 13238 case 1024: 13239 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13240 LPFC_EQ_CNT_1024); 13241 break; 13242 case 2048: 13243 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13244 LPFC_EQ_CNT_2048); 13245 break; 13246 case 4096: 13247 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13248 LPFC_EQ_CNT_4096); 13249 break; 13250 } 13251 list_for_each_entry(dmabuf, &eq->page_list, list) { 13252 memset(dmabuf->virt, 0, hw_page_size); 13253 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13254 putPaddrLow(dmabuf->phys); 13255 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13256 putPaddrHigh(dmabuf->phys); 13257 } 13258 mbox->vport = phba->pport; 13259 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13260 mbox->context1 = NULL; 13261 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13262 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13263 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13264 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13265 if (shdr_status || shdr_add_status || rc) { 13266 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13267 "2500 EQ_CREATE mailbox failed with " 13268 "status x%x add_status x%x, mbx status x%x\n", 13269 shdr_status, shdr_add_status, rc); 13270 status = -ENXIO; 13271 } 13272 eq->type = LPFC_EQ; 13273 eq->subtype = LPFC_NONE; 13274 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13275 if (eq->queue_id == 0xFFFF) 13276 status = -ENXIO; 13277 eq->host_index = 0; 13278 eq->hba_index = 0; 13279 13280 mempool_free(mbox, phba->mbox_mem_pool); 13281 return status; 13282 } 13283 13284 /** 13285 * lpfc_cq_create - Create a Completion Queue on the HBA 13286 * @phba: HBA structure that indicates port to create a queue on. 13287 * @cq: The queue structure to use to create the completion queue. 13288 * @eq: The event queue to bind this completion queue to. 13289 * 13290 * This function creates a completion queue, as detailed in @wq, on a port, 13291 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13292 * 13293 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13294 * is used to get the entry count and entry size that are necessary to 13295 * determine the number of pages to allocate and use for this queue. The @eq 13296 * is used to indicate which event queue to bind this completion queue to. This 13297 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13298 * completion queue. This function is asynchronous and will wait for the mailbox 13299 * command to finish before continuing. 13300 * 13301 * On success this function will return a zero. If unable to allocate enough 13302 * memory this function will return -ENOMEM. If the queue create mailbox command 13303 * fails this function will return -ENXIO. 13304 **/ 13305 int 13306 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13307 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13308 { 13309 struct lpfc_mbx_cq_create *cq_create; 13310 struct lpfc_dmabuf *dmabuf; 13311 LPFC_MBOXQ_t *mbox; 13312 int rc, length, status = 0; 13313 uint32_t shdr_status, shdr_add_status; 13314 union lpfc_sli4_cfg_shdr *shdr; 13315 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13316 13317 /* sanity check on queue memory */ 13318 if (!cq || !eq) 13319 return -ENODEV; 13320 if (!phba->sli4_hba.pc_sli4_params.supported) 13321 hw_page_size = SLI4_PAGE_SIZE; 13322 13323 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13324 if (!mbox) 13325 return -ENOMEM; 13326 length = (sizeof(struct lpfc_mbx_cq_create) - 13327 sizeof(struct lpfc_sli4_cfg_mhdr)); 13328 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13329 LPFC_MBOX_OPCODE_CQ_CREATE, 13330 length, LPFC_SLI4_MBX_EMBED); 13331 cq_create = &mbox->u.mqe.un.cq_create; 13332 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13333 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13334 cq->page_count); 13335 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13336 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13337 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13338 phba->sli4_hba.pc_sli4_params.cqv); 13339 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13340 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13341 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13342 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13343 eq->queue_id); 13344 } else { 13345 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13346 eq->queue_id); 13347 } 13348 switch (cq->entry_count) { 13349 default: 13350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13351 "0361 Unsupported CQ count. (%d)\n", 13352 cq->entry_count); 13353 if (cq->entry_count < 256) { 13354 status = -EINVAL; 13355 goto out; 13356 } 13357 /* otherwise default to smallest count (drop through) */ 13358 case 256: 13359 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13360 LPFC_CQ_CNT_256); 13361 break; 13362 case 512: 13363 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13364 LPFC_CQ_CNT_512); 13365 break; 13366 case 1024: 13367 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13368 LPFC_CQ_CNT_1024); 13369 break; 13370 } 13371 list_for_each_entry(dmabuf, &cq->page_list, list) { 13372 memset(dmabuf->virt, 0, hw_page_size); 13373 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13374 putPaddrLow(dmabuf->phys); 13375 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13376 putPaddrHigh(dmabuf->phys); 13377 } 13378 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13379 13380 /* The IOCTL status is embedded in the mailbox subheader. */ 13381 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13382 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13383 if (shdr_status || shdr_add_status || rc) { 13384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13385 "2501 CQ_CREATE mailbox failed with " 13386 "status x%x add_status x%x, mbx status x%x\n", 13387 shdr_status, shdr_add_status, rc); 13388 status = -ENXIO; 13389 goto out; 13390 } 13391 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13392 if (cq->queue_id == 0xFFFF) { 13393 status = -ENXIO; 13394 goto out; 13395 } 13396 /* link the cq onto the parent eq child list */ 13397 list_add_tail(&cq->list, &eq->child_list); 13398 /* Set up completion queue's type and subtype */ 13399 cq->type = type; 13400 cq->subtype = subtype; 13401 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13402 cq->assoc_qid = eq->queue_id; 13403 cq->host_index = 0; 13404 cq->hba_index = 0; 13405 13406 out: 13407 mempool_free(mbox, phba->mbox_mem_pool); 13408 return status; 13409 } 13410 13411 /** 13412 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13413 * @phba: HBA structure that indicates port to create a queue on. 13414 * @mq: The queue structure to use to create the mailbox queue. 13415 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13416 * @cq: The completion queue to associate with this cq. 13417 * 13418 * This function provides failback (fb) functionality when the 13419 * mq_create_ext fails on older FW generations. It's purpose is identical 13420 * to mq_create_ext otherwise. 13421 * 13422 * This routine cannot fail as all attributes were previously accessed and 13423 * initialized in mq_create_ext. 13424 **/ 13425 static void 13426 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13427 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13428 { 13429 struct lpfc_mbx_mq_create *mq_create; 13430 struct lpfc_dmabuf *dmabuf; 13431 int length; 13432 13433 length = (sizeof(struct lpfc_mbx_mq_create) - 13434 sizeof(struct lpfc_sli4_cfg_mhdr)); 13435 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13436 LPFC_MBOX_OPCODE_MQ_CREATE, 13437 length, LPFC_SLI4_MBX_EMBED); 13438 mq_create = &mbox->u.mqe.un.mq_create; 13439 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13440 mq->page_count); 13441 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13442 cq->queue_id); 13443 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13444 switch (mq->entry_count) { 13445 case 16: 13446 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13447 LPFC_MQ_RING_SIZE_16); 13448 break; 13449 case 32: 13450 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13451 LPFC_MQ_RING_SIZE_32); 13452 break; 13453 case 64: 13454 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13455 LPFC_MQ_RING_SIZE_64); 13456 break; 13457 case 128: 13458 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13459 LPFC_MQ_RING_SIZE_128); 13460 break; 13461 } 13462 list_for_each_entry(dmabuf, &mq->page_list, list) { 13463 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13464 putPaddrLow(dmabuf->phys); 13465 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13466 putPaddrHigh(dmabuf->phys); 13467 } 13468 } 13469 13470 /** 13471 * lpfc_mq_create - Create a mailbox Queue on the HBA 13472 * @phba: HBA structure that indicates port to create a queue on. 13473 * @mq: The queue structure to use to create the mailbox queue. 13474 * @cq: The completion queue to associate with this cq. 13475 * @subtype: The queue's subtype. 13476 * 13477 * This function creates a mailbox queue, as detailed in @mq, on a port, 13478 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13479 * 13480 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13481 * is used to get the entry count and entry size that are necessary to 13482 * determine the number of pages to allocate and use for this queue. This 13483 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13484 * mailbox queue. This function is asynchronous and will wait for the mailbox 13485 * command to finish before continuing. 13486 * 13487 * On success this function will return a zero. If unable to allocate enough 13488 * memory this function will return -ENOMEM. If the queue create mailbox command 13489 * fails this function will return -ENXIO. 13490 **/ 13491 int32_t 13492 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13493 struct lpfc_queue *cq, uint32_t subtype) 13494 { 13495 struct lpfc_mbx_mq_create *mq_create; 13496 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13497 struct lpfc_dmabuf *dmabuf; 13498 LPFC_MBOXQ_t *mbox; 13499 int rc, length, status = 0; 13500 uint32_t shdr_status, shdr_add_status; 13501 union lpfc_sli4_cfg_shdr *shdr; 13502 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13503 13504 /* sanity check on queue memory */ 13505 if (!mq || !cq) 13506 return -ENODEV; 13507 if (!phba->sli4_hba.pc_sli4_params.supported) 13508 hw_page_size = SLI4_PAGE_SIZE; 13509 13510 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13511 if (!mbox) 13512 return -ENOMEM; 13513 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13514 sizeof(struct lpfc_sli4_cfg_mhdr)); 13515 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13516 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13517 length, LPFC_SLI4_MBX_EMBED); 13518 13519 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13520 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13521 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13522 &mq_create_ext->u.request, mq->page_count); 13523 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13524 &mq_create_ext->u.request, 1); 13525 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13526 &mq_create_ext->u.request, 1); 13527 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13528 &mq_create_ext->u.request, 1); 13529 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13530 &mq_create_ext->u.request, 1); 13531 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13532 &mq_create_ext->u.request, 1); 13533 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13534 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13535 phba->sli4_hba.pc_sli4_params.mqv); 13536 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13537 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13538 cq->queue_id); 13539 else 13540 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13541 cq->queue_id); 13542 switch (mq->entry_count) { 13543 default: 13544 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13545 "0362 Unsupported MQ count. (%d)\n", 13546 mq->entry_count); 13547 if (mq->entry_count < 16) { 13548 status = -EINVAL; 13549 goto out; 13550 } 13551 /* otherwise default to smallest count (drop through) */ 13552 case 16: 13553 bf_set(lpfc_mq_context_ring_size, 13554 &mq_create_ext->u.request.context, 13555 LPFC_MQ_RING_SIZE_16); 13556 break; 13557 case 32: 13558 bf_set(lpfc_mq_context_ring_size, 13559 &mq_create_ext->u.request.context, 13560 LPFC_MQ_RING_SIZE_32); 13561 break; 13562 case 64: 13563 bf_set(lpfc_mq_context_ring_size, 13564 &mq_create_ext->u.request.context, 13565 LPFC_MQ_RING_SIZE_64); 13566 break; 13567 case 128: 13568 bf_set(lpfc_mq_context_ring_size, 13569 &mq_create_ext->u.request.context, 13570 LPFC_MQ_RING_SIZE_128); 13571 break; 13572 } 13573 list_for_each_entry(dmabuf, &mq->page_list, list) { 13574 memset(dmabuf->virt, 0, hw_page_size); 13575 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13576 putPaddrLow(dmabuf->phys); 13577 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13578 putPaddrHigh(dmabuf->phys); 13579 } 13580 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13581 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13582 &mq_create_ext->u.response); 13583 if (rc != MBX_SUCCESS) { 13584 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13585 "2795 MQ_CREATE_EXT failed with " 13586 "status x%x. Failback to MQ_CREATE.\n", 13587 rc); 13588 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13589 mq_create = &mbox->u.mqe.un.mq_create; 13590 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13591 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13592 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13593 &mq_create->u.response); 13594 } 13595 13596 /* The IOCTL status is embedded in the mailbox subheader. */ 13597 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13598 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13599 if (shdr_status || shdr_add_status || rc) { 13600 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13601 "2502 MQ_CREATE mailbox failed with " 13602 "status x%x add_status x%x, mbx status x%x\n", 13603 shdr_status, shdr_add_status, rc); 13604 status = -ENXIO; 13605 goto out; 13606 } 13607 if (mq->queue_id == 0xFFFF) { 13608 status = -ENXIO; 13609 goto out; 13610 } 13611 mq->type = LPFC_MQ; 13612 mq->assoc_qid = cq->queue_id; 13613 mq->subtype = subtype; 13614 mq->host_index = 0; 13615 mq->hba_index = 0; 13616 13617 /* link the mq onto the parent cq child list */ 13618 list_add_tail(&mq->list, &cq->child_list); 13619 out: 13620 mempool_free(mbox, phba->mbox_mem_pool); 13621 return status; 13622 } 13623 13624 /** 13625 * lpfc_wq_create - Create a Work Queue on the HBA 13626 * @phba: HBA structure that indicates port to create a queue on. 13627 * @wq: The queue structure to use to create the work queue. 13628 * @cq: The completion queue to bind this work queue to. 13629 * @subtype: The subtype of the work queue indicating its functionality. 13630 * 13631 * This function creates a work queue, as detailed in @wq, on a port, described 13632 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13633 * 13634 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13635 * is used to get the entry count and entry size that are necessary to 13636 * determine the number of pages to allocate and use for this queue. The @cq 13637 * is used to indicate which completion queue to bind this work queue to. This 13638 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13639 * work queue. This function is asynchronous and will wait for the mailbox 13640 * command to finish before continuing. 13641 * 13642 * On success this function will return a zero. If unable to allocate enough 13643 * memory this function will return -ENOMEM. If the queue create mailbox command 13644 * fails this function will return -ENXIO. 13645 **/ 13646 int 13647 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13648 struct lpfc_queue *cq, uint32_t subtype) 13649 { 13650 struct lpfc_mbx_wq_create *wq_create; 13651 struct lpfc_dmabuf *dmabuf; 13652 LPFC_MBOXQ_t *mbox; 13653 int rc, length, status = 0; 13654 uint32_t shdr_status, shdr_add_status; 13655 union lpfc_sli4_cfg_shdr *shdr; 13656 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13657 struct dma_address *page; 13658 void __iomem *bar_memmap_p; 13659 uint32_t db_offset; 13660 uint16_t pci_barset; 13661 13662 /* sanity check on queue memory */ 13663 if (!wq || !cq) 13664 return -ENODEV; 13665 if (!phba->sli4_hba.pc_sli4_params.supported) 13666 hw_page_size = SLI4_PAGE_SIZE; 13667 13668 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13669 if (!mbox) 13670 return -ENOMEM; 13671 length = (sizeof(struct lpfc_mbx_wq_create) - 13672 sizeof(struct lpfc_sli4_cfg_mhdr)); 13673 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13674 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13675 length, LPFC_SLI4_MBX_EMBED); 13676 wq_create = &mbox->u.mqe.un.wq_create; 13677 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13678 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13679 wq->page_count); 13680 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13681 cq->queue_id); 13682 13683 /* wqv is the earliest version supported, NOT the latest */ 13684 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13685 phba->sli4_hba.pc_sli4_params.wqv); 13686 13687 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13688 case LPFC_Q_CREATE_VERSION_0: 13689 switch (wq->entry_size) { 13690 default: 13691 case 64: 13692 /* Nothing to do, version 0 ONLY supports 64 byte */ 13693 page = wq_create->u.request.page; 13694 break; 13695 case 128: 13696 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13697 LPFC_WQ_SZ128_SUPPORT)) { 13698 status = -ERANGE; 13699 goto out; 13700 } 13701 /* If we get here the HBA MUST also support V1 and 13702 * we MUST use it 13703 */ 13704 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13705 LPFC_Q_CREATE_VERSION_1); 13706 13707 bf_set(lpfc_mbx_wq_create_wqe_count, 13708 &wq_create->u.request_1, wq->entry_count); 13709 bf_set(lpfc_mbx_wq_create_wqe_size, 13710 &wq_create->u.request_1, 13711 LPFC_WQ_WQE_SIZE_128); 13712 bf_set(lpfc_mbx_wq_create_page_size, 13713 &wq_create->u.request_1, 13714 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13715 page = wq_create->u.request_1.page; 13716 break; 13717 } 13718 break; 13719 case LPFC_Q_CREATE_VERSION_1: 13720 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13721 wq->entry_count); 13722 switch (wq->entry_size) { 13723 default: 13724 case 64: 13725 bf_set(lpfc_mbx_wq_create_wqe_size, 13726 &wq_create->u.request_1, 13727 LPFC_WQ_WQE_SIZE_64); 13728 break; 13729 case 128: 13730 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13731 LPFC_WQ_SZ128_SUPPORT)) { 13732 status = -ERANGE; 13733 goto out; 13734 } 13735 bf_set(lpfc_mbx_wq_create_wqe_size, 13736 &wq_create->u.request_1, 13737 LPFC_WQ_WQE_SIZE_128); 13738 break; 13739 } 13740 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13741 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13742 page = wq_create->u.request_1.page; 13743 break; 13744 default: 13745 status = -ERANGE; 13746 goto out; 13747 } 13748 13749 list_for_each_entry(dmabuf, &wq->page_list, list) { 13750 memset(dmabuf->virt, 0, hw_page_size); 13751 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13752 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13753 } 13754 13755 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13756 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13757 13758 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13759 /* The IOCTL status is embedded in the mailbox subheader. */ 13760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13762 if (shdr_status || shdr_add_status || rc) { 13763 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13764 "2503 WQ_CREATE mailbox failed with " 13765 "status x%x add_status x%x, mbx status x%x\n", 13766 shdr_status, shdr_add_status, rc); 13767 status = -ENXIO; 13768 goto out; 13769 } 13770 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13771 if (wq->queue_id == 0xFFFF) { 13772 status = -ENXIO; 13773 goto out; 13774 } 13775 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13776 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13777 &wq_create->u.response); 13778 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13779 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13780 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13781 "3265 WQ[%d] doorbell format not " 13782 "supported: x%x\n", wq->queue_id, 13783 wq->db_format); 13784 status = -EINVAL; 13785 goto out; 13786 } 13787 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13788 &wq_create->u.response); 13789 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13790 if (!bar_memmap_p) { 13791 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13792 "3263 WQ[%d] failed to memmap pci " 13793 "barset:x%x\n", wq->queue_id, 13794 pci_barset); 13795 status = -ENOMEM; 13796 goto out; 13797 } 13798 db_offset = wq_create->u.response.doorbell_offset; 13799 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13800 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13802 "3252 WQ[%d] doorbell offset not " 13803 "supported: x%x\n", wq->queue_id, 13804 db_offset); 13805 status = -EINVAL; 13806 goto out; 13807 } 13808 wq->db_regaddr = bar_memmap_p + db_offset; 13809 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13810 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13811 "format:x%x\n", wq->queue_id, pci_barset, 13812 db_offset, wq->db_format); 13813 } else { 13814 wq->db_format = LPFC_DB_LIST_FORMAT; 13815 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13816 } 13817 wq->type = LPFC_WQ; 13818 wq->assoc_qid = cq->queue_id; 13819 wq->subtype = subtype; 13820 wq->host_index = 0; 13821 wq->hba_index = 0; 13822 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13823 13824 /* link the wq onto the parent cq child list */ 13825 list_add_tail(&wq->list, &cq->child_list); 13826 out: 13827 mempool_free(mbox, phba->mbox_mem_pool); 13828 return status; 13829 } 13830 13831 /** 13832 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13833 * @phba: HBA structure that indicates port to create a queue on. 13834 * @rq: The queue structure to use for the receive queue. 13835 * @qno: The associated HBQ number 13836 * 13837 * 13838 * For SLI4 we need to adjust the RQ repost value based on 13839 * the number of buffers that are initially posted to the RQ. 13840 */ 13841 void 13842 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13843 { 13844 uint32_t cnt; 13845 13846 /* sanity check on queue memory */ 13847 if (!rq) 13848 return; 13849 cnt = lpfc_hbq_defs[qno]->entry_count; 13850 13851 /* Recalc repost for RQs based on buffers initially posted */ 13852 cnt = (cnt >> 3); 13853 if (cnt < LPFC_QUEUE_MIN_REPOST) 13854 cnt = LPFC_QUEUE_MIN_REPOST; 13855 13856 rq->entry_repost = cnt; 13857 } 13858 13859 /** 13860 * lpfc_rq_create - Create a Receive Queue on the HBA 13861 * @phba: HBA structure that indicates port to create a queue on. 13862 * @hrq: The queue structure to use to create the header receive queue. 13863 * @drq: The queue structure to use to create the data receive queue. 13864 * @cq: The completion queue to bind this work queue to. 13865 * 13866 * This function creates a receive buffer queue pair , as detailed in @hrq and 13867 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13868 * to the HBA. 13869 * 13870 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13871 * struct is used to get the entry count that is necessary to determine the 13872 * number of pages to use for this queue. The @cq is used to indicate which 13873 * completion queue to bind received buffers that are posted to these queues to. 13874 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13875 * receive queue pair. This function is asynchronous and will wait for the 13876 * mailbox command to finish before continuing. 13877 * 13878 * On success this function will return a zero. If unable to allocate enough 13879 * memory this function will return -ENOMEM. If the queue create mailbox command 13880 * fails this function will return -ENXIO. 13881 **/ 13882 int 13883 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13884 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13885 { 13886 struct lpfc_mbx_rq_create *rq_create; 13887 struct lpfc_dmabuf *dmabuf; 13888 LPFC_MBOXQ_t *mbox; 13889 int rc, length, status = 0; 13890 uint32_t shdr_status, shdr_add_status; 13891 union lpfc_sli4_cfg_shdr *shdr; 13892 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13893 void __iomem *bar_memmap_p; 13894 uint32_t db_offset; 13895 uint16_t pci_barset; 13896 13897 /* sanity check on queue memory */ 13898 if (!hrq || !drq || !cq) 13899 return -ENODEV; 13900 if (!phba->sli4_hba.pc_sli4_params.supported) 13901 hw_page_size = SLI4_PAGE_SIZE; 13902 13903 if (hrq->entry_count != drq->entry_count) 13904 return -EINVAL; 13905 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13906 if (!mbox) 13907 return -ENOMEM; 13908 length = (sizeof(struct lpfc_mbx_rq_create) - 13909 sizeof(struct lpfc_sli4_cfg_mhdr)); 13910 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13911 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13912 length, LPFC_SLI4_MBX_EMBED); 13913 rq_create = &mbox->u.mqe.un.rq_create; 13914 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13915 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13916 phba->sli4_hba.pc_sli4_params.rqv); 13917 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13918 bf_set(lpfc_rq_context_rqe_count_1, 13919 &rq_create->u.request.context, 13920 hrq->entry_count); 13921 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13922 bf_set(lpfc_rq_context_rqe_size, 13923 &rq_create->u.request.context, 13924 LPFC_RQE_SIZE_8); 13925 bf_set(lpfc_rq_context_page_size, 13926 &rq_create->u.request.context, 13927 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13928 } else { 13929 switch (hrq->entry_count) { 13930 default: 13931 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13932 "2535 Unsupported RQ count. (%d)\n", 13933 hrq->entry_count); 13934 if (hrq->entry_count < 512) { 13935 status = -EINVAL; 13936 goto out; 13937 } 13938 /* otherwise default to smallest count (drop through) */ 13939 case 512: 13940 bf_set(lpfc_rq_context_rqe_count, 13941 &rq_create->u.request.context, 13942 LPFC_RQ_RING_SIZE_512); 13943 break; 13944 case 1024: 13945 bf_set(lpfc_rq_context_rqe_count, 13946 &rq_create->u.request.context, 13947 LPFC_RQ_RING_SIZE_1024); 13948 break; 13949 case 2048: 13950 bf_set(lpfc_rq_context_rqe_count, 13951 &rq_create->u.request.context, 13952 LPFC_RQ_RING_SIZE_2048); 13953 break; 13954 case 4096: 13955 bf_set(lpfc_rq_context_rqe_count, 13956 &rq_create->u.request.context, 13957 LPFC_RQ_RING_SIZE_4096); 13958 break; 13959 } 13960 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13961 LPFC_HDR_BUF_SIZE); 13962 } 13963 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13964 cq->queue_id); 13965 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13966 hrq->page_count); 13967 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13968 memset(dmabuf->virt, 0, hw_page_size); 13969 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13970 putPaddrLow(dmabuf->phys); 13971 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13972 putPaddrHigh(dmabuf->phys); 13973 } 13974 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13975 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13976 13977 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13978 /* The IOCTL status is embedded in the mailbox subheader. */ 13979 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13980 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13981 if (shdr_status || shdr_add_status || rc) { 13982 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13983 "2504 RQ_CREATE mailbox failed with " 13984 "status x%x add_status x%x, mbx status x%x\n", 13985 shdr_status, shdr_add_status, rc); 13986 status = -ENXIO; 13987 goto out; 13988 } 13989 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13990 if (hrq->queue_id == 0xFFFF) { 13991 status = -ENXIO; 13992 goto out; 13993 } 13994 13995 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13996 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 13997 &rq_create->u.response); 13998 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 13999 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 14000 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14001 "3262 RQ [%d] doorbell format not " 14002 "supported: x%x\n", hrq->queue_id, 14003 hrq->db_format); 14004 status = -EINVAL; 14005 goto out; 14006 } 14007 14008 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 14009 &rq_create->u.response); 14010 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14011 if (!bar_memmap_p) { 14012 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14013 "3269 RQ[%d] failed to memmap pci " 14014 "barset:x%x\n", hrq->queue_id, 14015 pci_barset); 14016 status = -ENOMEM; 14017 goto out; 14018 } 14019 14020 db_offset = rq_create->u.response.doorbell_offset; 14021 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 14022 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 14023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14024 "3270 RQ[%d] doorbell offset not " 14025 "supported: x%x\n", hrq->queue_id, 14026 db_offset); 14027 status = -EINVAL; 14028 goto out; 14029 } 14030 hrq->db_regaddr = bar_memmap_p + db_offset; 14031 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14032 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 14033 "format:x%x\n", hrq->queue_id, pci_barset, 14034 db_offset, hrq->db_format); 14035 } else { 14036 hrq->db_format = LPFC_DB_RING_FORMAT; 14037 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 14038 } 14039 hrq->type = LPFC_HRQ; 14040 hrq->assoc_qid = cq->queue_id; 14041 hrq->subtype = subtype; 14042 hrq->host_index = 0; 14043 hrq->hba_index = 0; 14044 14045 /* now create the data queue */ 14046 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14047 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14048 length, LPFC_SLI4_MBX_EMBED); 14049 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14050 phba->sli4_hba.pc_sli4_params.rqv); 14051 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14052 bf_set(lpfc_rq_context_rqe_count_1, 14053 &rq_create->u.request.context, hrq->entry_count); 14054 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 14055 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 14056 LPFC_RQE_SIZE_8); 14057 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 14058 (PAGE_SIZE/SLI4_PAGE_SIZE)); 14059 } else { 14060 switch (drq->entry_count) { 14061 default: 14062 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14063 "2536 Unsupported RQ count. (%d)\n", 14064 drq->entry_count); 14065 if (drq->entry_count < 512) { 14066 status = -EINVAL; 14067 goto out; 14068 } 14069 /* otherwise default to smallest count (drop through) */ 14070 case 512: 14071 bf_set(lpfc_rq_context_rqe_count, 14072 &rq_create->u.request.context, 14073 LPFC_RQ_RING_SIZE_512); 14074 break; 14075 case 1024: 14076 bf_set(lpfc_rq_context_rqe_count, 14077 &rq_create->u.request.context, 14078 LPFC_RQ_RING_SIZE_1024); 14079 break; 14080 case 2048: 14081 bf_set(lpfc_rq_context_rqe_count, 14082 &rq_create->u.request.context, 14083 LPFC_RQ_RING_SIZE_2048); 14084 break; 14085 case 4096: 14086 bf_set(lpfc_rq_context_rqe_count, 14087 &rq_create->u.request.context, 14088 LPFC_RQ_RING_SIZE_4096); 14089 break; 14090 } 14091 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14092 LPFC_DATA_BUF_SIZE); 14093 } 14094 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 14095 cq->queue_id); 14096 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 14097 drq->page_count); 14098 list_for_each_entry(dmabuf, &drq->page_list, list) { 14099 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14100 putPaddrLow(dmabuf->phys); 14101 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14102 putPaddrHigh(dmabuf->phys); 14103 } 14104 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14105 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 14106 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14107 /* The IOCTL status is embedded in the mailbox subheader. */ 14108 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14109 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14110 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14111 if (shdr_status || shdr_add_status || rc) { 14112 status = -ENXIO; 14113 goto out; 14114 } 14115 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 14116 if (drq->queue_id == 0xFFFF) { 14117 status = -ENXIO; 14118 goto out; 14119 } 14120 drq->type = LPFC_DRQ; 14121 drq->assoc_qid = cq->queue_id; 14122 drq->subtype = subtype; 14123 drq->host_index = 0; 14124 drq->hba_index = 0; 14125 14126 /* link the header and data RQs onto the parent cq child list */ 14127 list_add_tail(&hrq->list, &cq->child_list); 14128 list_add_tail(&drq->list, &cq->child_list); 14129 14130 out: 14131 mempool_free(mbox, phba->mbox_mem_pool); 14132 return status; 14133 } 14134 14135 /** 14136 * lpfc_eq_destroy - Destroy an event Queue on the HBA 14137 * @eq: The queue structure associated with the queue to destroy. 14138 * 14139 * This function destroys a queue, as detailed in @eq by sending an mailbox 14140 * command, specific to the type of queue, to the HBA. 14141 * 14142 * The @eq struct is used to get the queue ID of the queue to destroy. 14143 * 14144 * On success this function will return a zero. If the queue destroy mailbox 14145 * command fails this function will return -ENXIO. 14146 **/ 14147 int 14148 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 14149 { 14150 LPFC_MBOXQ_t *mbox; 14151 int rc, length, status = 0; 14152 uint32_t shdr_status, shdr_add_status; 14153 union lpfc_sli4_cfg_shdr *shdr; 14154 14155 /* sanity check on queue memory */ 14156 if (!eq) 14157 return -ENODEV; 14158 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 14159 if (!mbox) 14160 return -ENOMEM; 14161 length = (sizeof(struct lpfc_mbx_eq_destroy) - 14162 sizeof(struct lpfc_sli4_cfg_mhdr)); 14163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14164 LPFC_MBOX_OPCODE_EQ_DESTROY, 14165 length, LPFC_SLI4_MBX_EMBED); 14166 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 14167 eq->queue_id); 14168 mbox->vport = eq->phba->pport; 14169 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14170 14171 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 14172 /* The IOCTL status is embedded in the mailbox subheader. */ 14173 shdr = (union lpfc_sli4_cfg_shdr *) 14174 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 14175 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14176 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14177 if (shdr_status || shdr_add_status || rc) { 14178 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14179 "2505 EQ_DESTROY mailbox failed with " 14180 "status x%x add_status x%x, mbx status x%x\n", 14181 shdr_status, shdr_add_status, rc); 14182 status = -ENXIO; 14183 } 14184 14185 /* Remove eq from any list */ 14186 list_del_init(&eq->list); 14187 mempool_free(mbox, eq->phba->mbox_mem_pool); 14188 return status; 14189 } 14190 14191 /** 14192 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 14193 * @cq: The queue structure associated with the queue to destroy. 14194 * 14195 * This function destroys a queue, as detailed in @cq by sending an mailbox 14196 * command, specific to the type of queue, to the HBA. 14197 * 14198 * The @cq struct is used to get the queue ID of the queue to destroy. 14199 * 14200 * On success this function will return a zero. If the queue destroy mailbox 14201 * command fails this function will return -ENXIO. 14202 **/ 14203 int 14204 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 14205 { 14206 LPFC_MBOXQ_t *mbox; 14207 int rc, length, status = 0; 14208 uint32_t shdr_status, shdr_add_status; 14209 union lpfc_sli4_cfg_shdr *shdr; 14210 14211 /* sanity check on queue memory */ 14212 if (!cq) 14213 return -ENODEV; 14214 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 14215 if (!mbox) 14216 return -ENOMEM; 14217 length = (sizeof(struct lpfc_mbx_cq_destroy) - 14218 sizeof(struct lpfc_sli4_cfg_mhdr)); 14219 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14220 LPFC_MBOX_OPCODE_CQ_DESTROY, 14221 length, LPFC_SLI4_MBX_EMBED); 14222 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 14223 cq->queue_id); 14224 mbox->vport = cq->phba->pport; 14225 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14226 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 14227 /* The IOCTL status is embedded in the mailbox subheader. */ 14228 shdr = (union lpfc_sli4_cfg_shdr *) 14229 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 14230 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14231 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14232 if (shdr_status || shdr_add_status || rc) { 14233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14234 "2506 CQ_DESTROY mailbox failed with " 14235 "status x%x add_status x%x, mbx status x%x\n", 14236 shdr_status, shdr_add_status, rc); 14237 status = -ENXIO; 14238 } 14239 /* Remove cq from any list */ 14240 list_del_init(&cq->list); 14241 mempool_free(mbox, cq->phba->mbox_mem_pool); 14242 return status; 14243 } 14244 14245 /** 14246 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 14247 * @qm: The queue structure associated with the queue to destroy. 14248 * 14249 * This function destroys a queue, as detailed in @mq by sending an mailbox 14250 * command, specific to the type of queue, to the HBA. 14251 * 14252 * The @mq struct is used to get the queue ID of the queue to destroy. 14253 * 14254 * On success this function will return a zero. If the queue destroy mailbox 14255 * command fails this function will return -ENXIO. 14256 **/ 14257 int 14258 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14259 { 14260 LPFC_MBOXQ_t *mbox; 14261 int rc, length, status = 0; 14262 uint32_t shdr_status, shdr_add_status; 14263 union lpfc_sli4_cfg_shdr *shdr; 14264 14265 /* sanity check on queue memory */ 14266 if (!mq) 14267 return -ENODEV; 14268 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14269 if (!mbox) 14270 return -ENOMEM; 14271 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14272 sizeof(struct lpfc_sli4_cfg_mhdr)); 14273 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14274 LPFC_MBOX_OPCODE_MQ_DESTROY, 14275 length, LPFC_SLI4_MBX_EMBED); 14276 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14277 mq->queue_id); 14278 mbox->vport = mq->phba->pport; 14279 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14280 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14281 /* The IOCTL status is embedded in the mailbox subheader. */ 14282 shdr = (union lpfc_sli4_cfg_shdr *) 14283 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14284 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14285 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14286 if (shdr_status || shdr_add_status || rc) { 14287 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14288 "2507 MQ_DESTROY mailbox failed with " 14289 "status x%x add_status x%x, mbx status x%x\n", 14290 shdr_status, shdr_add_status, rc); 14291 status = -ENXIO; 14292 } 14293 /* Remove mq from any list */ 14294 list_del_init(&mq->list); 14295 mempool_free(mbox, mq->phba->mbox_mem_pool); 14296 return status; 14297 } 14298 14299 /** 14300 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14301 * @wq: The queue structure associated with the queue to destroy. 14302 * 14303 * This function destroys a queue, as detailed in @wq by sending an mailbox 14304 * command, specific to the type of queue, to the HBA. 14305 * 14306 * The @wq struct is used to get the queue ID of the queue to destroy. 14307 * 14308 * On success this function will return a zero. If the queue destroy mailbox 14309 * command fails this function will return -ENXIO. 14310 **/ 14311 int 14312 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14313 { 14314 LPFC_MBOXQ_t *mbox; 14315 int rc, length, status = 0; 14316 uint32_t shdr_status, shdr_add_status; 14317 union lpfc_sli4_cfg_shdr *shdr; 14318 14319 /* sanity check on queue memory */ 14320 if (!wq) 14321 return -ENODEV; 14322 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14323 if (!mbox) 14324 return -ENOMEM; 14325 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14326 sizeof(struct lpfc_sli4_cfg_mhdr)); 14327 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14328 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14329 length, LPFC_SLI4_MBX_EMBED); 14330 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14331 wq->queue_id); 14332 mbox->vport = wq->phba->pport; 14333 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14334 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14335 shdr = (union lpfc_sli4_cfg_shdr *) 14336 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14337 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14338 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14339 if (shdr_status || shdr_add_status || rc) { 14340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14341 "2508 WQ_DESTROY mailbox failed with " 14342 "status x%x add_status x%x, mbx status x%x\n", 14343 shdr_status, shdr_add_status, rc); 14344 status = -ENXIO; 14345 } 14346 /* Remove wq from any list */ 14347 list_del_init(&wq->list); 14348 mempool_free(mbox, wq->phba->mbox_mem_pool); 14349 return status; 14350 } 14351 14352 /** 14353 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14354 * @rq: The queue structure associated with the queue to destroy. 14355 * 14356 * This function destroys a queue, as detailed in @rq by sending an mailbox 14357 * command, specific to the type of queue, to the HBA. 14358 * 14359 * The @rq struct is used to get the queue ID of the queue to destroy. 14360 * 14361 * On success this function will return a zero. If the queue destroy mailbox 14362 * command fails this function will return -ENXIO. 14363 **/ 14364 int 14365 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14366 struct lpfc_queue *drq) 14367 { 14368 LPFC_MBOXQ_t *mbox; 14369 int rc, length, status = 0; 14370 uint32_t shdr_status, shdr_add_status; 14371 union lpfc_sli4_cfg_shdr *shdr; 14372 14373 /* sanity check on queue memory */ 14374 if (!hrq || !drq) 14375 return -ENODEV; 14376 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14377 if (!mbox) 14378 return -ENOMEM; 14379 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14380 sizeof(struct lpfc_sli4_cfg_mhdr)); 14381 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14382 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14383 length, LPFC_SLI4_MBX_EMBED); 14384 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14385 hrq->queue_id); 14386 mbox->vport = hrq->phba->pport; 14387 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14388 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14389 /* The IOCTL status is embedded in the mailbox subheader. */ 14390 shdr = (union lpfc_sli4_cfg_shdr *) 14391 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14392 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14393 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14394 if (shdr_status || shdr_add_status || rc) { 14395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14396 "2509 RQ_DESTROY mailbox failed with " 14397 "status x%x add_status x%x, mbx status x%x\n", 14398 shdr_status, shdr_add_status, rc); 14399 if (rc != MBX_TIMEOUT) 14400 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14401 return -ENXIO; 14402 } 14403 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14404 drq->queue_id); 14405 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14406 shdr = (union lpfc_sli4_cfg_shdr *) 14407 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14408 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14409 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14410 if (shdr_status || shdr_add_status || rc) { 14411 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14412 "2510 RQ_DESTROY mailbox failed with " 14413 "status x%x add_status x%x, mbx status x%x\n", 14414 shdr_status, shdr_add_status, rc); 14415 status = -ENXIO; 14416 } 14417 list_del_init(&hrq->list); 14418 list_del_init(&drq->list); 14419 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14420 return status; 14421 } 14422 14423 /** 14424 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14425 * @phba: The virtual port for which this call being executed. 14426 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14427 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14428 * @xritag: the xritag that ties this io to the SGL pages. 14429 * 14430 * This routine will post the sgl pages for the IO that has the xritag 14431 * that is in the iocbq structure. The xritag is assigned during iocbq 14432 * creation and persists for as long as the driver is loaded. 14433 * if the caller has fewer than 256 scatter gather segments to map then 14434 * pdma_phys_addr1 should be 0. 14435 * If the caller needs to map more than 256 scatter gather segment then 14436 * pdma_phys_addr1 should be a valid physical address. 14437 * physical address for SGLs must be 64 byte aligned. 14438 * If you are going to map 2 SGL's then the first one must have 256 entries 14439 * the second sgl can have between 1 and 256 entries. 14440 * 14441 * Return codes: 14442 * 0 - Success 14443 * -ENXIO, -ENOMEM - Failure 14444 **/ 14445 int 14446 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14447 dma_addr_t pdma_phys_addr0, 14448 dma_addr_t pdma_phys_addr1, 14449 uint16_t xritag) 14450 { 14451 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14452 LPFC_MBOXQ_t *mbox; 14453 int rc; 14454 uint32_t shdr_status, shdr_add_status; 14455 uint32_t mbox_tmo; 14456 union lpfc_sli4_cfg_shdr *shdr; 14457 14458 if (xritag == NO_XRI) { 14459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14460 "0364 Invalid param:\n"); 14461 return -EINVAL; 14462 } 14463 14464 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14465 if (!mbox) 14466 return -ENOMEM; 14467 14468 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14469 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14470 sizeof(struct lpfc_mbx_post_sgl_pages) - 14471 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14472 14473 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14474 &mbox->u.mqe.un.post_sgl_pages; 14475 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14476 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14477 14478 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14479 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14480 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14481 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14482 14483 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14484 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14485 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14486 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14487 if (!phba->sli4_hba.intr_enable) 14488 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14489 else { 14490 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14491 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14492 } 14493 /* The IOCTL status is embedded in the mailbox subheader. */ 14494 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14495 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14496 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14497 if (rc != MBX_TIMEOUT) 14498 mempool_free(mbox, phba->mbox_mem_pool); 14499 if (shdr_status || shdr_add_status || rc) { 14500 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14501 "2511 POST_SGL mailbox failed with " 14502 "status x%x add_status x%x, mbx status x%x\n", 14503 shdr_status, shdr_add_status, rc); 14504 } 14505 return 0; 14506 } 14507 14508 /** 14509 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14510 * @phba: pointer to lpfc hba data structure. 14511 * 14512 * This routine is invoked to post rpi header templates to the 14513 * HBA consistent with the SLI-4 interface spec. This routine 14514 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14515 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14516 * 14517 * Returns 14518 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14519 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14520 **/ 14521 static uint16_t 14522 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14523 { 14524 unsigned long xri; 14525 14526 /* 14527 * Fetch the next logical xri. Because this index is logical, 14528 * the driver starts at 0 each time. 14529 */ 14530 spin_lock_irq(&phba->hbalock); 14531 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14532 phba->sli4_hba.max_cfg_param.max_xri, 0); 14533 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14534 spin_unlock_irq(&phba->hbalock); 14535 return NO_XRI; 14536 } else { 14537 set_bit(xri, phba->sli4_hba.xri_bmask); 14538 phba->sli4_hba.max_cfg_param.xri_used++; 14539 } 14540 spin_unlock_irq(&phba->hbalock); 14541 return xri; 14542 } 14543 14544 /** 14545 * lpfc_sli4_free_xri - Release an xri for reuse. 14546 * @phba: pointer to lpfc hba data structure. 14547 * 14548 * This routine is invoked to release an xri to the pool of 14549 * available rpis maintained by the driver. 14550 **/ 14551 static void 14552 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14553 { 14554 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14555 phba->sli4_hba.max_cfg_param.xri_used--; 14556 } 14557 } 14558 14559 /** 14560 * lpfc_sli4_free_xri - Release an xri for reuse. 14561 * @phba: pointer to lpfc hba data structure. 14562 * 14563 * This routine is invoked to release an xri to the pool of 14564 * available rpis maintained by the driver. 14565 **/ 14566 void 14567 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14568 { 14569 spin_lock_irq(&phba->hbalock); 14570 __lpfc_sli4_free_xri(phba, xri); 14571 spin_unlock_irq(&phba->hbalock); 14572 } 14573 14574 /** 14575 * lpfc_sli4_next_xritag - Get an xritag for the io 14576 * @phba: Pointer to HBA context object. 14577 * 14578 * This function gets an xritag for the iocb. If there is no unused xritag 14579 * it will return 0xffff. 14580 * The function returns the allocated xritag if successful, else returns zero. 14581 * Zero is not a valid xritag. 14582 * The caller is not required to hold any lock. 14583 **/ 14584 uint16_t 14585 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14586 { 14587 uint16_t xri_index; 14588 14589 xri_index = lpfc_sli4_alloc_xri(phba); 14590 if (xri_index == NO_XRI) 14591 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14592 "2004 Failed to allocate XRI.last XRITAG is %d" 14593 " Max XRI is %d, Used XRI is %d\n", 14594 xri_index, 14595 phba->sli4_hba.max_cfg_param.max_xri, 14596 phba->sli4_hba.max_cfg_param.xri_used); 14597 return xri_index; 14598 } 14599 14600 /** 14601 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14602 * @phba: pointer to lpfc hba data structure. 14603 * @post_sgl_list: pointer to els sgl entry list. 14604 * @count: number of els sgl entries on the list. 14605 * 14606 * This routine is invoked to post a block of driver's sgl pages to the 14607 * HBA using non-embedded mailbox command. No Lock is held. This routine 14608 * is only called when the driver is loading and after all IO has been 14609 * stopped. 14610 **/ 14611 static int 14612 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14613 struct list_head *post_sgl_list, 14614 int post_cnt) 14615 { 14616 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14617 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14618 struct sgl_page_pairs *sgl_pg_pairs; 14619 void *viraddr; 14620 LPFC_MBOXQ_t *mbox; 14621 uint32_t reqlen, alloclen, pg_pairs; 14622 uint32_t mbox_tmo; 14623 uint16_t xritag_start = 0; 14624 int rc = 0; 14625 uint32_t shdr_status, shdr_add_status; 14626 union lpfc_sli4_cfg_shdr *shdr; 14627 14628 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14629 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14630 if (reqlen > SLI4_PAGE_SIZE) { 14631 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14632 "2559 Block sgl registration required DMA " 14633 "size (%d) great than a page\n", reqlen); 14634 return -ENOMEM; 14635 } 14636 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14637 if (!mbox) 14638 return -ENOMEM; 14639 14640 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14641 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14642 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14643 LPFC_SLI4_MBX_NEMBED); 14644 14645 if (alloclen < reqlen) { 14646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14647 "0285 Allocated DMA memory size (%d) is " 14648 "less than the requested DMA memory " 14649 "size (%d)\n", alloclen, reqlen); 14650 lpfc_sli4_mbox_cmd_free(phba, mbox); 14651 return -ENOMEM; 14652 } 14653 /* Set up the SGL pages in the non-embedded DMA pages */ 14654 viraddr = mbox->sge_array->addr[0]; 14655 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14656 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14657 14658 pg_pairs = 0; 14659 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14660 /* Set up the sge entry */ 14661 sgl_pg_pairs->sgl_pg0_addr_lo = 14662 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14663 sgl_pg_pairs->sgl_pg0_addr_hi = 14664 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14665 sgl_pg_pairs->sgl_pg1_addr_lo = 14666 cpu_to_le32(putPaddrLow(0)); 14667 sgl_pg_pairs->sgl_pg1_addr_hi = 14668 cpu_to_le32(putPaddrHigh(0)); 14669 14670 /* Keep the first xritag on the list */ 14671 if (pg_pairs == 0) 14672 xritag_start = sglq_entry->sli4_xritag; 14673 sgl_pg_pairs++; 14674 pg_pairs++; 14675 } 14676 14677 /* Complete initialization and perform endian conversion. */ 14678 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14679 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14680 sgl->word0 = cpu_to_le32(sgl->word0); 14681 if (!phba->sli4_hba.intr_enable) 14682 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14683 else { 14684 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14685 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14686 } 14687 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14688 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14689 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14690 if (rc != MBX_TIMEOUT) 14691 lpfc_sli4_mbox_cmd_free(phba, mbox); 14692 if (shdr_status || shdr_add_status || rc) { 14693 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14694 "2513 POST_SGL_BLOCK mailbox command failed " 14695 "status x%x add_status x%x mbx status x%x\n", 14696 shdr_status, shdr_add_status, rc); 14697 rc = -ENXIO; 14698 } 14699 return rc; 14700 } 14701 14702 /** 14703 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14704 * @phba: pointer to lpfc hba data structure. 14705 * @sblist: pointer to scsi buffer list. 14706 * @count: number of scsi buffers on the list. 14707 * 14708 * This routine is invoked to post a block of @count scsi sgl pages from a 14709 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14710 * No Lock is held. 14711 * 14712 **/ 14713 int 14714 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14715 struct list_head *sblist, 14716 int count) 14717 { 14718 struct lpfc_scsi_buf *psb; 14719 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14720 struct sgl_page_pairs *sgl_pg_pairs; 14721 void *viraddr; 14722 LPFC_MBOXQ_t *mbox; 14723 uint32_t reqlen, alloclen, pg_pairs; 14724 uint32_t mbox_tmo; 14725 uint16_t xritag_start = 0; 14726 int rc = 0; 14727 uint32_t shdr_status, shdr_add_status; 14728 dma_addr_t pdma_phys_bpl1; 14729 union lpfc_sli4_cfg_shdr *shdr; 14730 14731 /* Calculate the requested length of the dma memory */ 14732 reqlen = count * sizeof(struct sgl_page_pairs) + 14733 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14734 if (reqlen > SLI4_PAGE_SIZE) { 14735 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14736 "0217 Block sgl registration required DMA " 14737 "size (%d) great than a page\n", reqlen); 14738 return -ENOMEM; 14739 } 14740 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14741 if (!mbox) { 14742 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14743 "0283 Failed to allocate mbox cmd memory\n"); 14744 return -ENOMEM; 14745 } 14746 14747 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14748 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14749 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14750 LPFC_SLI4_MBX_NEMBED); 14751 14752 if (alloclen < reqlen) { 14753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14754 "2561 Allocated DMA memory size (%d) is " 14755 "less than the requested DMA memory " 14756 "size (%d)\n", alloclen, reqlen); 14757 lpfc_sli4_mbox_cmd_free(phba, mbox); 14758 return -ENOMEM; 14759 } 14760 14761 /* Get the first SGE entry from the non-embedded DMA memory */ 14762 viraddr = mbox->sge_array->addr[0]; 14763 14764 /* Set up the SGL pages in the non-embedded DMA pages */ 14765 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14766 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14767 14768 pg_pairs = 0; 14769 list_for_each_entry(psb, sblist, list) { 14770 /* Set up the sge entry */ 14771 sgl_pg_pairs->sgl_pg0_addr_lo = 14772 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14773 sgl_pg_pairs->sgl_pg0_addr_hi = 14774 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14775 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14776 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14777 else 14778 pdma_phys_bpl1 = 0; 14779 sgl_pg_pairs->sgl_pg1_addr_lo = 14780 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14781 sgl_pg_pairs->sgl_pg1_addr_hi = 14782 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14783 /* Keep the first xritag on the list */ 14784 if (pg_pairs == 0) 14785 xritag_start = psb->cur_iocbq.sli4_xritag; 14786 sgl_pg_pairs++; 14787 pg_pairs++; 14788 } 14789 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14790 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14791 /* Perform endian conversion if necessary */ 14792 sgl->word0 = cpu_to_le32(sgl->word0); 14793 14794 if (!phba->sli4_hba.intr_enable) 14795 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14796 else { 14797 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14798 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14799 } 14800 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14801 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14802 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14803 if (rc != MBX_TIMEOUT) 14804 lpfc_sli4_mbox_cmd_free(phba, mbox); 14805 if (shdr_status || shdr_add_status || rc) { 14806 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14807 "2564 POST_SGL_BLOCK mailbox command failed " 14808 "status x%x add_status x%x mbx status x%x\n", 14809 shdr_status, shdr_add_status, rc); 14810 rc = -ENXIO; 14811 } 14812 return rc; 14813 } 14814 14815 /** 14816 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14817 * @phba: pointer to lpfc_hba struct that the frame was received on 14818 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14819 * 14820 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14821 * valid type of frame that the LPFC driver will handle. This function will 14822 * return a zero if the frame is a valid frame or a non zero value when the 14823 * frame does not pass the check. 14824 **/ 14825 static int 14826 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14827 { 14828 /* make rctl_names static to save stack space */ 14829 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14830 char *type_names[] = FC_TYPE_NAMES_INIT; 14831 struct fc_vft_header *fc_vft_hdr; 14832 uint32_t *header = (uint32_t *) fc_hdr; 14833 14834 switch (fc_hdr->fh_r_ctl) { 14835 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14836 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14837 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14838 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14839 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14840 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14841 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14842 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14843 case FC_RCTL_ELS_REQ: /* extended link services request */ 14844 case FC_RCTL_ELS_REP: /* extended link services reply */ 14845 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14846 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14847 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14848 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14849 case FC_RCTL_BA_RMC: /* remove connection */ 14850 case FC_RCTL_BA_ACC: /* basic accept */ 14851 case FC_RCTL_BA_RJT: /* basic reject */ 14852 case FC_RCTL_BA_PRMT: 14853 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14854 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14855 case FC_RCTL_P_RJT: /* port reject */ 14856 case FC_RCTL_F_RJT: /* fabric reject */ 14857 case FC_RCTL_P_BSY: /* port busy */ 14858 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14859 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14860 case FC_RCTL_LCR: /* link credit reset */ 14861 case FC_RCTL_END: /* end */ 14862 break; 14863 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14864 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14865 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14866 return lpfc_fc_frame_check(phba, fc_hdr); 14867 default: 14868 goto drop; 14869 } 14870 switch (fc_hdr->fh_type) { 14871 case FC_TYPE_BLS: 14872 case FC_TYPE_ELS: 14873 case FC_TYPE_FCP: 14874 case FC_TYPE_CT: 14875 break; 14876 case FC_TYPE_IP: 14877 case FC_TYPE_ILS: 14878 default: 14879 goto drop; 14880 } 14881 14882 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14883 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14884 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14885 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14886 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14887 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14888 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14889 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14890 be32_to_cpu(header[6])); 14891 return 0; 14892 drop: 14893 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14894 "2539 Dropped frame rctl:%s type:%s\n", 14895 rctl_names[fc_hdr->fh_r_ctl], 14896 type_names[fc_hdr->fh_type]); 14897 return 1; 14898 } 14899 14900 /** 14901 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14902 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14903 * 14904 * This function processes the FC header to retrieve the VFI from the VF 14905 * header, if one exists. This function will return the VFI if one exists 14906 * or 0 if no VSAN Header exists. 14907 **/ 14908 static uint32_t 14909 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14910 { 14911 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14912 14913 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14914 return 0; 14915 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14916 } 14917 14918 /** 14919 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14920 * @phba: Pointer to the HBA structure to search for the vport on 14921 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14922 * @fcfi: The FC Fabric ID that the frame came from 14923 * 14924 * This function searches the @phba for a vport that matches the content of the 14925 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14926 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14927 * returns the matching vport pointer or NULL if unable to match frame to a 14928 * vport. 14929 **/ 14930 static struct lpfc_vport * 14931 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14932 uint16_t fcfi) 14933 { 14934 struct lpfc_vport **vports; 14935 struct lpfc_vport *vport = NULL; 14936 int i; 14937 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14938 fc_hdr->fh_d_id[1] << 8 | 14939 fc_hdr->fh_d_id[2]); 14940 14941 if (did == Fabric_DID) 14942 return phba->pport; 14943 if ((phba->pport->fc_flag & FC_PT2PT) && 14944 !(phba->link_state == LPFC_HBA_READY)) 14945 return phba->pport; 14946 14947 vports = lpfc_create_vport_work_array(phba); 14948 if (vports != NULL) 14949 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14950 if (phba->fcf.fcfi == fcfi && 14951 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14952 vports[i]->fc_myDID == did) { 14953 vport = vports[i]; 14954 break; 14955 } 14956 } 14957 lpfc_destroy_vport_work_array(phba, vports); 14958 return vport; 14959 } 14960 14961 /** 14962 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14963 * @vport: The vport to work on. 14964 * 14965 * This function updates the receive sequence time stamp for this vport. The 14966 * receive sequence time stamp indicates the time that the last frame of the 14967 * the sequence that has been idle for the longest amount of time was received. 14968 * the driver uses this time stamp to indicate if any received sequences have 14969 * timed out. 14970 **/ 14971 static void 14972 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14973 { 14974 struct lpfc_dmabuf *h_buf; 14975 struct hbq_dmabuf *dmabuf = NULL; 14976 14977 /* get the oldest sequence on the rcv list */ 14978 h_buf = list_get_first(&vport->rcv_buffer_list, 14979 struct lpfc_dmabuf, list); 14980 if (!h_buf) 14981 return; 14982 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14983 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14984 } 14985 14986 /** 14987 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14988 * @vport: The vport that the received sequences were sent to. 14989 * 14990 * This function cleans up all outstanding received sequences. This is called 14991 * by the driver when a link event or user action invalidates all the received 14992 * sequences. 14993 **/ 14994 void 14995 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 14996 { 14997 struct lpfc_dmabuf *h_buf, *hnext; 14998 struct lpfc_dmabuf *d_buf, *dnext; 14999 struct hbq_dmabuf *dmabuf = NULL; 15000 15001 /* start with the oldest sequence on the rcv list */ 15002 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15003 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15004 list_del_init(&dmabuf->hbuf.list); 15005 list_for_each_entry_safe(d_buf, dnext, 15006 &dmabuf->dbuf.list, list) { 15007 list_del_init(&d_buf->list); 15008 lpfc_in_buf_free(vport->phba, d_buf); 15009 } 15010 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15011 } 15012 } 15013 15014 /** 15015 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 15016 * @vport: The vport that the received sequences were sent to. 15017 * 15018 * This function determines whether any received sequences have timed out by 15019 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 15020 * indicates that there is at least one timed out sequence this routine will 15021 * go through the received sequences one at a time from most inactive to most 15022 * active to determine which ones need to be cleaned up. Once it has determined 15023 * that a sequence needs to be cleaned up it will simply free up the resources 15024 * without sending an abort. 15025 **/ 15026 void 15027 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 15028 { 15029 struct lpfc_dmabuf *h_buf, *hnext; 15030 struct lpfc_dmabuf *d_buf, *dnext; 15031 struct hbq_dmabuf *dmabuf = NULL; 15032 unsigned long timeout; 15033 int abort_count = 0; 15034 15035 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15036 vport->rcv_buffer_time_stamp); 15037 if (list_empty(&vport->rcv_buffer_list) || 15038 time_before(jiffies, timeout)) 15039 return; 15040 /* start with the oldest sequence on the rcv list */ 15041 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15042 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15043 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15044 dmabuf->time_stamp); 15045 if (time_before(jiffies, timeout)) 15046 break; 15047 abort_count++; 15048 list_del_init(&dmabuf->hbuf.list); 15049 list_for_each_entry_safe(d_buf, dnext, 15050 &dmabuf->dbuf.list, list) { 15051 list_del_init(&d_buf->list); 15052 lpfc_in_buf_free(vport->phba, d_buf); 15053 } 15054 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15055 } 15056 if (abort_count) 15057 lpfc_update_rcv_time_stamp(vport); 15058 } 15059 15060 /** 15061 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 15062 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 15063 * 15064 * This function searches through the existing incomplete sequences that have 15065 * been sent to this @vport. If the frame matches one of the incomplete 15066 * sequences then the dbuf in the @dmabuf is added to the list of frames that 15067 * make up that sequence. If no sequence is found that matches this frame then 15068 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 15069 * This function returns a pointer to the first dmabuf in the sequence list that 15070 * the frame was linked to. 15071 **/ 15072 static struct hbq_dmabuf * 15073 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15074 { 15075 struct fc_frame_header *new_hdr; 15076 struct fc_frame_header *temp_hdr; 15077 struct lpfc_dmabuf *d_buf; 15078 struct lpfc_dmabuf *h_buf; 15079 struct hbq_dmabuf *seq_dmabuf = NULL; 15080 struct hbq_dmabuf *temp_dmabuf = NULL; 15081 uint8_t found = 0; 15082 15083 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15084 dmabuf->time_stamp = jiffies; 15085 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15086 15087 /* Use the hdr_buf to find the sequence that this frame belongs to */ 15088 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15089 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15090 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15091 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15092 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15093 continue; 15094 /* found a pending sequence that matches this frame */ 15095 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15096 break; 15097 } 15098 if (!seq_dmabuf) { 15099 /* 15100 * This indicates first frame received for this sequence. 15101 * Queue the buffer on the vport's rcv_buffer_list. 15102 */ 15103 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15104 lpfc_update_rcv_time_stamp(vport); 15105 return dmabuf; 15106 } 15107 temp_hdr = seq_dmabuf->hbuf.virt; 15108 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 15109 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15110 list_del_init(&seq_dmabuf->hbuf.list); 15111 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15112 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15113 lpfc_update_rcv_time_stamp(vport); 15114 return dmabuf; 15115 } 15116 /* move this sequence to the tail to indicate a young sequence */ 15117 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 15118 seq_dmabuf->time_stamp = jiffies; 15119 lpfc_update_rcv_time_stamp(vport); 15120 if (list_empty(&seq_dmabuf->dbuf.list)) { 15121 temp_hdr = dmabuf->hbuf.virt; 15122 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15123 return seq_dmabuf; 15124 } 15125 /* find the correct place in the sequence to insert this frame */ 15126 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 15127 while (!found) { 15128 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15129 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 15130 /* 15131 * If the frame's sequence count is greater than the frame on 15132 * the list then insert the frame right after this frame 15133 */ 15134 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 15135 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15136 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 15137 found = 1; 15138 break; 15139 } 15140 15141 if (&d_buf->list == &seq_dmabuf->dbuf.list) 15142 break; 15143 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 15144 } 15145 15146 if (found) 15147 return seq_dmabuf; 15148 return NULL; 15149 } 15150 15151 /** 15152 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 15153 * @vport: pointer to a vitural port 15154 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15155 * 15156 * This function tries to abort from the partially assembed sequence, described 15157 * by the information from basic abbort @dmabuf. It checks to see whether such 15158 * partially assembled sequence held by the driver. If so, it shall free up all 15159 * the frames from the partially assembled sequence. 15160 * 15161 * Return 15162 * true -- if there is matching partially assembled sequence present and all 15163 * the frames freed with the sequence; 15164 * false -- if there is no matching partially assembled sequence present so 15165 * nothing got aborted in the lower layer driver 15166 **/ 15167 static bool 15168 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 15169 struct hbq_dmabuf *dmabuf) 15170 { 15171 struct fc_frame_header *new_hdr; 15172 struct fc_frame_header *temp_hdr; 15173 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 15174 struct hbq_dmabuf *seq_dmabuf = NULL; 15175 15176 /* Use the hdr_buf to find the sequence that matches this frame */ 15177 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15178 INIT_LIST_HEAD(&dmabuf->hbuf.list); 15179 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15180 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15181 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15182 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15183 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15184 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15185 continue; 15186 /* found a pending sequence that matches this frame */ 15187 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15188 break; 15189 } 15190 15191 /* Free up all the frames from the partially assembled sequence */ 15192 if (seq_dmabuf) { 15193 list_for_each_entry_safe(d_buf, n_buf, 15194 &seq_dmabuf->dbuf.list, list) { 15195 list_del_init(&d_buf->list); 15196 lpfc_in_buf_free(vport->phba, d_buf); 15197 } 15198 return true; 15199 } 15200 return false; 15201 } 15202 15203 /** 15204 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 15205 * @vport: pointer to a vitural port 15206 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15207 * 15208 * This function tries to abort from the assembed sequence from upper level 15209 * protocol, described by the information from basic abbort @dmabuf. It 15210 * checks to see whether such pending context exists at upper level protocol. 15211 * If so, it shall clean up the pending context. 15212 * 15213 * Return 15214 * true -- if there is matching pending context of the sequence cleaned 15215 * at ulp; 15216 * false -- if there is no matching pending context of the sequence present 15217 * at ulp. 15218 **/ 15219 static bool 15220 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15221 { 15222 struct lpfc_hba *phba = vport->phba; 15223 int handled; 15224 15225 /* Accepting abort at ulp with SLI4 only */ 15226 if (phba->sli_rev < LPFC_SLI_REV4) 15227 return false; 15228 15229 /* Register all caring upper level protocols to attend abort */ 15230 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 15231 if (handled) 15232 return true; 15233 15234 return false; 15235 } 15236 15237 /** 15238 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 15239 * @phba: Pointer to HBA context object. 15240 * @cmd_iocbq: pointer to the command iocbq structure. 15241 * @rsp_iocbq: pointer to the response iocbq structure. 15242 * 15243 * This function handles the sequence abort response iocb command complete 15244 * event. It properly releases the memory allocated to the sequence abort 15245 * accept iocb. 15246 **/ 15247 static void 15248 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 15249 struct lpfc_iocbq *cmd_iocbq, 15250 struct lpfc_iocbq *rsp_iocbq) 15251 { 15252 struct lpfc_nodelist *ndlp; 15253 15254 if (cmd_iocbq) { 15255 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 15256 lpfc_nlp_put(ndlp); 15257 lpfc_nlp_not_used(ndlp); 15258 lpfc_sli_release_iocbq(phba, cmd_iocbq); 15259 } 15260 15261 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 15262 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 15263 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15264 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15265 rsp_iocbq->iocb.ulpStatus, 15266 rsp_iocbq->iocb.un.ulpWord[4]); 15267 } 15268 15269 /** 15270 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15271 * @phba: Pointer to HBA context object. 15272 * @xri: xri id in transaction. 15273 * 15274 * This function validates the xri maps to the known range of XRIs allocated an 15275 * used by the driver. 15276 **/ 15277 uint16_t 15278 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15279 uint16_t xri) 15280 { 15281 uint16_t i; 15282 15283 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15284 if (xri == phba->sli4_hba.xri_ids[i]) 15285 return i; 15286 } 15287 return NO_XRI; 15288 } 15289 15290 /** 15291 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15292 * @phba: Pointer to HBA context object. 15293 * @fc_hdr: pointer to a FC frame header. 15294 * 15295 * This function sends a basic response to a previous unsol sequence abort 15296 * event after aborting the sequence handling. 15297 **/ 15298 static void 15299 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15300 struct fc_frame_header *fc_hdr, bool aborted) 15301 { 15302 struct lpfc_hba *phba = vport->phba; 15303 struct lpfc_iocbq *ctiocb = NULL; 15304 struct lpfc_nodelist *ndlp; 15305 uint16_t oxid, rxid, xri, lxri; 15306 uint32_t sid, fctl; 15307 IOCB_t *icmd; 15308 int rc; 15309 15310 if (!lpfc_is_link_up(phba)) 15311 return; 15312 15313 sid = sli4_sid_from_fc_hdr(fc_hdr); 15314 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15315 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15316 15317 ndlp = lpfc_findnode_did(vport, sid); 15318 if (!ndlp) { 15319 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15320 if (!ndlp) { 15321 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15322 "1268 Failed to allocate ndlp for " 15323 "oxid:x%x SID:x%x\n", oxid, sid); 15324 return; 15325 } 15326 lpfc_nlp_init(vport, ndlp, sid); 15327 /* Put ndlp onto pport node list */ 15328 lpfc_enqueue_node(vport, ndlp); 15329 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15330 /* re-setup ndlp without removing from node list */ 15331 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15332 if (!ndlp) { 15333 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15334 "3275 Failed to active ndlp found " 15335 "for oxid:x%x SID:x%x\n", oxid, sid); 15336 return; 15337 } 15338 } 15339 15340 /* Allocate buffer for rsp iocb */ 15341 ctiocb = lpfc_sli_get_iocbq(phba); 15342 if (!ctiocb) 15343 return; 15344 15345 /* Extract the F_CTL field from FC_HDR */ 15346 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15347 15348 icmd = &ctiocb->iocb; 15349 icmd->un.xseq64.bdl.bdeSize = 0; 15350 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15351 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15352 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15353 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15354 15355 /* Fill in the rest of iocb fields */ 15356 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15357 icmd->ulpBdeCount = 0; 15358 icmd->ulpLe = 1; 15359 icmd->ulpClass = CLASS3; 15360 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15361 ctiocb->context1 = lpfc_nlp_get(ndlp); 15362 15363 ctiocb->iocb_cmpl = NULL; 15364 ctiocb->vport = phba->pport; 15365 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15366 ctiocb->sli4_lxritag = NO_XRI; 15367 ctiocb->sli4_xritag = NO_XRI; 15368 15369 if (fctl & FC_FC_EX_CTX) 15370 /* Exchange responder sent the abort so we 15371 * own the oxid. 15372 */ 15373 xri = oxid; 15374 else 15375 xri = rxid; 15376 lxri = lpfc_sli4_xri_inrange(phba, xri); 15377 if (lxri != NO_XRI) 15378 lpfc_set_rrq_active(phba, ndlp, lxri, 15379 (xri == oxid) ? rxid : oxid, 0); 15380 /* For BA_ABTS from exchange responder, if the logical xri with 15381 * the oxid maps to the FCP XRI range, the port no longer has 15382 * that exchange context, send a BLS_RJT. Override the IOCB for 15383 * a BA_RJT. 15384 */ 15385 if ((fctl & FC_FC_EX_CTX) && 15386 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15387 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15388 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15389 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15390 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15391 } 15392 15393 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15394 * the driver no longer has that exchange, send a BLS_RJT. Override 15395 * the IOCB for a BA_RJT. 15396 */ 15397 if (aborted == false) { 15398 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15399 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15400 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15401 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15402 } 15403 15404 if (fctl & FC_FC_EX_CTX) { 15405 /* ABTS sent by responder to CT exchange, construction 15406 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15407 * field and RX_ID from ABTS for RX_ID field. 15408 */ 15409 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15410 } else { 15411 /* ABTS sent by initiator to CT exchange, construction 15412 * of BA_ACC will need to allocate a new XRI as for the 15413 * XRI_TAG field. 15414 */ 15415 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15416 } 15417 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15418 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15419 15420 /* Xmit CT abts response on exchange <xid> */ 15421 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15422 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15423 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15424 15425 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15426 if (rc == IOCB_ERROR) { 15427 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15428 "2925 Failed to issue CT ABTS RSP x%x on " 15429 "xri x%x, Data x%x\n", 15430 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15431 phba->link_state); 15432 lpfc_nlp_put(ndlp); 15433 ctiocb->context1 = NULL; 15434 lpfc_sli_release_iocbq(phba, ctiocb); 15435 } 15436 } 15437 15438 /** 15439 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15440 * @vport: Pointer to the vport on which this sequence was received 15441 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15442 * 15443 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15444 * receive sequence is only partially assembed by the driver, it shall abort 15445 * the partially assembled frames for the sequence. Otherwise, if the 15446 * unsolicited receive sequence has been completely assembled and passed to 15447 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15448 * unsolicited sequence has been aborted. After that, it will issue a basic 15449 * accept to accept the abort. 15450 **/ 15451 static void 15452 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15453 struct hbq_dmabuf *dmabuf) 15454 { 15455 struct lpfc_hba *phba = vport->phba; 15456 struct fc_frame_header fc_hdr; 15457 uint32_t fctl; 15458 bool aborted; 15459 15460 /* Make a copy of fc_hdr before the dmabuf being released */ 15461 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15462 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15463 15464 if (fctl & FC_FC_EX_CTX) { 15465 /* ABTS by responder to exchange, no cleanup needed */ 15466 aborted = true; 15467 } else { 15468 /* ABTS by initiator to exchange, need to do cleanup */ 15469 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15470 if (aborted == false) 15471 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15472 } 15473 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15474 15475 /* Respond with BA_ACC or BA_RJT accordingly */ 15476 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15477 } 15478 15479 /** 15480 * lpfc_seq_complete - Indicates if a sequence is complete 15481 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15482 * 15483 * This function checks the sequence, starting with the frame described by 15484 * @dmabuf, to see if all the frames associated with this sequence are present. 15485 * the frames associated with this sequence are linked to the @dmabuf using the 15486 * dbuf list. This function looks for two major things. 1) That the first frame 15487 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15488 * set. 3) That there are no holes in the sequence count. The function will 15489 * return 1 when the sequence is complete, otherwise it will return 0. 15490 **/ 15491 static int 15492 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15493 { 15494 struct fc_frame_header *hdr; 15495 struct lpfc_dmabuf *d_buf; 15496 struct hbq_dmabuf *seq_dmabuf; 15497 uint32_t fctl; 15498 int seq_count = 0; 15499 15500 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15501 /* make sure first fame of sequence has a sequence count of zero */ 15502 if (hdr->fh_seq_cnt != seq_count) 15503 return 0; 15504 fctl = (hdr->fh_f_ctl[0] << 16 | 15505 hdr->fh_f_ctl[1] << 8 | 15506 hdr->fh_f_ctl[2]); 15507 /* If last frame of sequence we can return success. */ 15508 if (fctl & FC_FC_END_SEQ) 15509 return 1; 15510 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15511 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15512 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15513 /* If there is a hole in the sequence count then fail. */ 15514 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15515 return 0; 15516 fctl = (hdr->fh_f_ctl[0] << 16 | 15517 hdr->fh_f_ctl[1] << 8 | 15518 hdr->fh_f_ctl[2]); 15519 /* If last frame of sequence we can return success. */ 15520 if (fctl & FC_FC_END_SEQ) 15521 return 1; 15522 } 15523 return 0; 15524 } 15525 15526 /** 15527 * lpfc_prep_seq - Prep sequence for ULP processing 15528 * @vport: Pointer to the vport on which this sequence was received 15529 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15530 * 15531 * This function takes a sequence, described by a list of frames, and creates 15532 * a list of iocbq structures to describe the sequence. This iocbq list will be 15533 * used to issue to the generic unsolicited sequence handler. This routine 15534 * returns a pointer to the first iocbq in the list. If the function is unable 15535 * to allocate an iocbq then it throw out the received frames that were not 15536 * able to be described and return a pointer to the first iocbq. If unable to 15537 * allocate any iocbqs (including the first) this function will return NULL. 15538 **/ 15539 static struct lpfc_iocbq * 15540 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15541 { 15542 struct hbq_dmabuf *hbq_buf; 15543 struct lpfc_dmabuf *d_buf, *n_buf; 15544 struct lpfc_iocbq *first_iocbq, *iocbq; 15545 struct fc_frame_header *fc_hdr; 15546 uint32_t sid; 15547 uint32_t len, tot_len; 15548 struct ulp_bde64 *pbde; 15549 15550 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15551 /* remove from receive buffer list */ 15552 list_del_init(&seq_dmabuf->hbuf.list); 15553 lpfc_update_rcv_time_stamp(vport); 15554 /* get the Remote Port's SID */ 15555 sid = sli4_sid_from_fc_hdr(fc_hdr); 15556 tot_len = 0; 15557 /* Get an iocbq struct to fill in. */ 15558 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15559 if (first_iocbq) { 15560 /* Initialize the first IOCB. */ 15561 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15562 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15563 15564 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15565 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15566 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15567 first_iocbq->iocb.un.rcvels.parmRo = 15568 sli4_did_from_fc_hdr(fc_hdr); 15569 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15570 } else 15571 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15572 first_iocbq->iocb.ulpContext = NO_XRI; 15573 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15574 be16_to_cpu(fc_hdr->fh_ox_id); 15575 /* iocbq is prepped for internal consumption. Physical vpi. */ 15576 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15577 vport->phba->vpi_ids[vport->vpi]; 15578 /* put the first buffer into the first IOCBq */ 15579 tot_len = bf_get(lpfc_rcqe_length, 15580 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15581 15582 first_iocbq->context2 = &seq_dmabuf->dbuf; 15583 first_iocbq->context3 = NULL; 15584 first_iocbq->iocb.ulpBdeCount = 1; 15585 if (tot_len > LPFC_DATA_BUF_SIZE) 15586 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15587 LPFC_DATA_BUF_SIZE; 15588 else 15589 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15590 15591 first_iocbq->iocb.un.rcvels.remoteID = sid; 15592 15593 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15594 } 15595 iocbq = first_iocbq; 15596 /* 15597 * Each IOCBq can have two Buffers assigned, so go through the list 15598 * of buffers for this sequence and save two buffers in each IOCBq 15599 */ 15600 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15601 if (!iocbq) { 15602 lpfc_in_buf_free(vport->phba, d_buf); 15603 continue; 15604 } 15605 if (!iocbq->context3) { 15606 iocbq->context3 = d_buf; 15607 iocbq->iocb.ulpBdeCount++; 15608 /* We need to get the size out of the right CQE */ 15609 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15610 len = bf_get(lpfc_rcqe_length, 15611 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15612 pbde = (struct ulp_bde64 *) 15613 &iocbq->iocb.unsli3.sli3Words[4]; 15614 if (len > LPFC_DATA_BUF_SIZE) 15615 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15616 else 15617 pbde->tus.f.bdeSize = len; 15618 15619 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15620 tot_len += len; 15621 } else { 15622 iocbq = lpfc_sli_get_iocbq(vport->phba); 15623 if (!iocbq) { 15624 if (first_iocbq) { 15625 first_iocbq->iocb.ulpStatus = 15626 IOSTAT_FCP_RSP_ERROR; 15627 first_iocbq->iocb.un.ulpWord[4] = 15628 IOERR_NO_RESOURCES; 15629 } 15630 lpfc_in_buf_free(vport->phba, d_buf); 15631 continue; 15632 } 15633 /* We need to get the size out of the right CQE */ 15634 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15635 len = bf_get(lpfc_rcqe_length, 15636 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15637 iocbq->context2 = d_buf; 15638 iocbq->context3 = NULL; 15639 iocbq->iocb.ulpBdeCount = 1; 15640 if (len > LPFC_DATA_BUF_SIZE) 15641 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15642 LPFC_DATA_BUF_SIZE; 15643 else 15644 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15645 15646 tot_len += len; 15647 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15648 15649 iocbq->iocb.un.rcvels.remoteID = sid; 15650 list_add_tail(&iocbq->list, &first_iocbq->list); 15651 } 15652 } 15653 return first_iocbq; 15654 } 15655 15656 static void 15657 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15658 struct hbq_dmabuf *seq_dmabuf) 15659 { 15660 struct fc_frame_header *fc_hdr; 15661 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15662 struct lpfc_hba *phba = vport->phba; 15663 15664 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15665 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15666 if (!iocbq) { 15667 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15668 "2707 Ring %d handler: Failed to allocate " 15669 "iocb Rctl x%x Type x%x received\n", 15670 LPFC_ELS_RING, 15671 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15672 return; 15673 } 15674 if (!lpfc_complete_unsol_iocb(phba, 15675 &phba->sli.ring[LPFC_ELS_RING], 15676 iocbq, fc_hdr->fh_r_ctl, 15677 fc_hdr->fh_type)) 15678 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15679 "2540 Ring %d handler: unexpected Rctl " 15680 "x%x Type x%x received\n", 15681 LPFC_ELS_RING, 15682 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15683 15684 /* Free iocb created in lpfc_prep_seq */ 15685 list_for_each_entry_safe(curr_iocb, next_iocb, 15686 &iocbq->list, list) { 15687 list_del_init(&curr_iocb->list); 15688 lpfc_sli_release_iocbq(phba, curr_iocb); 15689 } 15690 lpfc_sli_release_iocbq(phba, iocbq); 15691 } 15692 15693 /** 15694 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15695 * @phba: Pointer to HBA context object. 15696 * 15697 * This function is called with no lock held. This function processes all 15698 * the received buffers and gives it to upper layers when a received buffer 15699 * indicates that it is the final frame in the sequence. The interrupt 15700 * service routine processes received buffers at interrupt contexts and adds 15701 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15702 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15703 * appropriate receive function when the final frame in a sequence is received. 15704 **/ 15705 void 15706 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15707 struct hbq_dmabuf *dmabuf) 15708 { 15709 struct hbq_dmabuf *seq_dmabuf; 15710 struct fc_frame_header *fc_hdr; 15711 struct lpfc_vport *vport; 15712 uint32_t fcfi; 15713 uint32_t did; 15714 15715 /* Process each received buffer */ 15716 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15717 /* check to see if this a valid type of frame */ 15718 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15719 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15720 return; 15721 } 15722 if ((bf_get(lpfc_cqe_code, 15723 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15724 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15725 &dmabuf->cq_event.cqe.rcqe_cmpl); 15726 else 15727 fcfi = bf_get(lpfc_rcqe_fcf_id, 15728 &dmabuf->cq_event.cqe.rcqe_cmpl); 15729 15730 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15731 if (!vport) { 15732 /* throw out the frame */ 15733 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15734 return; 15735 } 15736 15737 /* d_id this frame is directed to */ 15738 did = sli4_did_from_fc_hdr(fc_hdr); 15739 15740 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15741 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15742 (did != Fabric_DID)) { 15743 /* 15744 * Throw out the frame if we are not pt2pt. 15745 * The pt2pt protocol allows for discovery frames 15746 * to be received without a registered VPI. 15747 */ 15748 if (!(vport->fc_flag & FC_PT2PT) || 15749 (phba->link_state == LPFC_HBA_READY)) { 15750 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15751 return; 15752 } 15753 } 15754 15755 /* Handle the basic abort sequence (BA_ABTS) event */ 15756 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15757 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15758 return; 15759 } 15760 15761 /* Link this frame */ 15762 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15763 if (!seq_dmabuf) { 15764 /* unable to add frame to vport - throw it out */ 15765 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15766 return; 15767 } 15768 /* If not last frame in sequence continue processing frames. */ 15769 if (!lpfc_seq_complete(seq_dmabuf)) 15770 return; 15771 15772 /* Send the complete sequence to the upper layer protocol */ 15773 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15774 } 15775 15776 /** 15777 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15778 * @phba: pointer to lpfc hba data structure. 15779 * 15780 * This routine is invoked to post rpi header templates to the 15781 * HBA consistent with the SLI-4 interface spec. This routine 15782 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15783 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15784 * 15785 * This routine does not require any locks. It's usage is expected 15786 * to be driver load or reset recovery when the driver is 15787 * sequential. 15788 * 15789 * Return codes 15790 * 0 - successful 15791 * -EIO - The mailbox failed to complete successfully. 15792 * When this error occurs, the driver is not guaranteed 15793 * to have any rpi regions posted to the device and 15794 * must either attempt to repost the regions or take a 15795 * fatal error. 15796 **/ 15797 int 15798 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15799 { 15800 struct lpfc_rpi_hdr *rpi_page; 15801 uint32_t rc = 0; 15802 uint16_t lrpi = 0; 15803 15804 /* SLI4 ports that support extents do not require RPI headers. */ 15805 if (!phba->sli4_hba.rpi_hdrs_in_use) 15806 goto exit; 15807 if (phba->sli4_hba.extents_in_use) 15808 return -EIO; 15809 15810 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15811 /* 15812 * Assign the rpi headers a physical rpi only if the driver 15813 * has not initialized those resources. A port reset only 15814 * needs the headers posted. 15815 */ 15816 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15817 LPFC_RPI_RSRC_RDY) 15818 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15819 15820 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15821 if (rc != MBX_SUCCESS) { 15822 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15823 "2008 Error %d posting all rpi " 15824 "headers\n", rc); 15825 rc = -EIO; 15826 break; 15827 } 15828 } 15829 15830 exit: 15831 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15832 LPFC_RPI_RSRC_RDY); 15833 return rc; 15834 } 15835 15836 /** 15837 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15838 * @phba: pointer to lpfc hba data structure. 15839 * @rpi_page: pointer to the rpi memory region. 15840 * 15841 * This routine is invoked to post a single rpi header to the 15842 * HBA consistent with the SLI-4 interface spec. This memory region 15843 * maps up to 64 rpi context regions. 15844 * 15845 * Return codes 15846 * 0 - successful 15847 * -ENOMEM - No available memory 15848 * -EIO - The mailbox failed to complete successfully. 15849 **/ 15850 int 15851 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15852 { 15853 LPFC_MBOXQ_t *mboxq; 15854 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15855 uint32_t rc = 0; 15856 uint32_t shdr_status, shdr_add_status; 15857 union lpfc_sli4_cfg_shdr *shdr; 15858 15859 /* SLI4 ports that support extents do not require RPI headers. */ 15860 if (!phba->sli4_hba.rpi_hdrs_in_use) 15861 return rc; 15862 if (phba->sli4_hba.extents_in_use) 15863 return -EIO; 15864 15865 /* The port is notified of the header region via a mailbox command. */ 15866 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15867 if (!mboxq) { 15868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15869 "2001 Unable to allocate memory for issuing " 15870 "SLI_CONFIG_SPECIAL mailbox command\n"); 15871 return -ENOMEM; 15872 } 15873 15874 /* Post all rpi memory regions to the port. */ 15875 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15876 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15877 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15878 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15879 sizeof(struct lpfc_sli4_cfg_mhdr), 15880 LPFC_SLI4_MBX_EMBED); 15881 15882 15883 /* Post the physical rpi to the port for this rpi header. */ 15884 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15885 rpi_page->start_rpi); 15886 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15887 hdr_tmpl, rpi_page->page_count); 15888 15889 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15890 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15891 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15892 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15893 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15894 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15895 if (rc != MBX_TIMEOUT) 15896 mempool_free(mboxq, phba->mbox_mem_pool); 15897 if (shdr_status || shdr_add_status || rc) { 15898 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15899 "2514 POST_RPI_HDR mailbox failed with " 15900 "status x%x add_status x%x, mbx status x%x\n", 15901 shdr_status, shdr_add_status, rc); 15902 rc = -ENXIO; 15903 } 15904 return rc; 15905 } 15906 15907 /** 15908 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15909 * @phba: pointer to lpfc hba data structure. 15910 * 15911 * This routine is invoked to post rpi header templates to the 15912 * HBA consistent with the SLI-4 interface spec. This routine 15913 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15914 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15915 * 15916 * Returns 15917 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15918 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15919 **/ 15920 int 15921 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15922 { 15923 unsigned long rpi; 15924 uint16_t max_rpi, rpi_limit; 15925 uint16_t rpi_remaining, lrpi = 0; 15926 struct lpfc_rpi_hdr *rpi_hdr; 15927 unsigned long iflag; 15928 15929 /* 15930 * Fetch the next logical rpi. Because this index is logical, 15931 * the driver starts at 0 each time. 15932 */ 15933 spin_lock_irqsave(&phba->hbalock, iflag); 15934 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15935 rpi_limit = phba->sli4_hba.next_rpi; 15936 15937 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15938 if (rpi >= rpi_limit) 15939 rpi = LPFC_RPI_ALLOC_ERROR; 15940 else { 15941 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15942 phba->sli4_hba.max_cfg_param.rpi_used++; 15943 phba->sli4_hba.rpi_count++; 15944 } 15945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15946 "0001 rpi:%x max:%x lim:%x\n", 15947 (int) rpi, max_rpi, rpi_limit); 15948 15949 /* 15950 * Don't try to allocate more rpi header regions if the device limit 15951 * has been exhausted. 15952 */ 15953 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15954 (phba->sli4_hba.rpi_count >= max_rpi)) { 15955 spin_unlock_irqrestore(&phba->hbalock, iflag); 15956 return rpi; 15957 } 15958 15959 /* 15960 * RPI header postings are not required for SLI4 ports capable of 15961 * extents. 15962 */ 15963 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15964 spin_unlock_irqrestore(&phba->hbalock, iflag); 15965 return rpi; 15966 } 15967 15968 /* 15969 * If the driver is running low on rpi resources, allocate another 15970 * page now. Note that the next_rpi value is used because 15971 * it represents how many are actually in use whereas max_rpi notes 15972 * how many are supported max by the device. 15973 */ 15974 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15975 spin_unlock_irqrestore(&phba->hbalock, iflag); 15976 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15977 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15978 if (!rpi_hdr) { 15979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15980 "2002 Error Could not grow rpi " 15981 "count\n"); 15982 } else { 15983 lrpi = rpi_hdr->start_rpi; 15984 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15985 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15986 } 15987 } 15988 15989 return rpi; 15990 } 15991 15992 /** 15993 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15994 * @phba: pointer to lpfc hba data structure. 15995 * 15996 * This routine is invoked to release an rpi to the pool of 15997 * available rpis maintained by the driver. 15998 **/ 15999 static void 16000 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16001 { 16002 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 16003 phba->sli4_hba.rpi_count--; 16004 phba->sli4_hba.max_cfg_param.rpi_used--; 16005 } 16006 } 16007 16008 /** 16009 * lpfc_sli4_free_rpi - Release an rpi for reuse. 16010 * @phba: pointer to lpfc hba data structure. 16011 * 16012 * This routine is invoked to release an rpi to the pool of 16013 * available rpis maintained by the driver. 16014 **/ 16015 void 16016 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16017 { 16018 spin_lock_irq(&phba->hbalock); 16019 __lpfc_sli4_free_rpi(phba, rpi); 16020 spin_unlock_irq(&phba->hbalock); 16021 } 16022 16023 /** 16024 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 16025 * @phba: pointer to lpfc hba data structure. 16026 * 16027 * This routine is invoked to remove the memory region that 16028 * provided rpi via a bitmask. 16029 **/ 16030 void 16031 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 16032 { 16033 kfree(phba->sli4_hba.rpi_bmask); 16034 kfree(phba->sli4_hba.rpi_ids); 16035 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 16036 } 16037 16038 /** 16039 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 16040 * @phba: pointer to lpfc hba data structure. 16041 * 16042 * This routine is invoked to remove the memory region that 16043 * provided rpi via a bitmask. 16044 **/ 16045 int 16046 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 16047 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 16048 { 16049 LPFC_MBOXQ_t *mboxq; 16050 struct lpfc_hba *phba = ndlp->phba; 16051 int rc; 16052 16053 /* The port is notified of the header region via a mailbox command. */ 16054 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16055 if (!mboxq) 16056 return -ENOMEM; 16057 16058 /* Post all rpi memory regions to the port. */ 16059 lpfc_resume_rpi(mboxq, ndlp); 16060 if (cmpl) { 16061 mboxq->mbox_cmpl = cmpl; 16062 mboxq->context1 = arg; 16063 mboxq->context2 = ndlp; 16064 } else 16065 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16066 mboxq->vport = ndlp->vport; 16067 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16068 if (rc == MBX_NOT_FINISHED) { 16069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16070 "2010 Resume RPI Mailbox failed " 16071 "status %d, mbxStatus x%x\n", rc, 16072 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16073 mempool_free(mboxq, phba->mbox_mem_pool); 16074 return -EIO; 16075 } 16076 return 0; 16077 } 16078 16079 /** 16080 * lpfc_sli4_init_vpi - Initialize a vpi with the port 16081 * @vport: Pointer to the vport for which the vpi is being initialized 16082 * 16083 * This routine is invoked to activate a vpi with the port. 16084 * 16085 * Returns: 16086 * 0 success 16087 * -Evalue otherwise 16088 **/ 16089 int 16090 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 16091 { 16092 LPFC_MBOXQ_t *mboxq; 16093 int rc = 0; 16094 int retval = MBX_SUCCESS; 16095 uint32_t mbox_tmo; 16096 struct lpfc_hba *phba = vport->phba; 16097 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16098 if (!mboxq) 16099 return -ENOMEM; 16100 lpfc_init_vpi(phba, mboxq, vport->vpi); 16101 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 16102 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 16103 if (rc != MBX_SUCCESS) { 16104 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 16105 "2022 INIT VPI Mailbox failed " 16106 "status %d, mbxStatus x%x\n", rc, 16107 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16108 retval = -EIO; 16109 } 16110 if (rc != MBX_TIMEOUT) 16111 mempool_free(mboxq, vport->phba->mbox_mem_pool); 16112 16113 return retval; 16114 } 16115 16116 /** 16117 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 16118 * @phba: pointer to lpfc hba data structure. 16119 * @mboxq: Pointer to mailbox object. 16120 * 16121 * This routine is invoked to manually add a single FCF record. The caller 16122 * must pass a completely initialized FCF_Record. This routine takes 16123 * care of the nonembedded mailbox operations. 16124 **/ 16125 static void 16126 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 16127 { 16128 void *virt_addr; 16129 union lpfc_sli4_cfg_shdr *shdr; 16130 uint32_t shdr_status, shdr_add_status; 16131 16132 virt_addr = mboxq->sge_array->addr[0]; 16133 /* The IOCTL status is embedded in the mailbox subheader. */ 16134 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 16135 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16136 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16137 16138 if ((shdr_status || shdr_add_status) && 16139 (shdr_status != STATUS_FCF_IN_USE)) 16140 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16141 "2558 ADD_FCF_RECORD mailbox failed with " 16142 "status x%x add_status x%x\n", 16143 shdr_status, shdr_add_status); 16144 16145 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16146 } 16147 16148 /** 16149 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 16150 * @phba: pointer to lpfc hba data structure. 16151 * @fcf_record: pointer to the initialized fcf record to add. 16152 * 16153 * This routine is invoked to manually add a single FCF record. The caller 16154 * must pass a completely initialized FCF_Record. This routine takes 16155 * care of the nonembedded mailbox operations. 16156 **/ 16157 int 16158 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 16159 { 16160 int rc = 0; 16161 LPFC_MBOXQ_t *mboxq; 16162 uint8_t *bytep; 16163 void *virt_addr; 16164 struct lpfc_mbx_sge sge; 16165 uint32_t alloc_len, req_len; 16166 uint32_t fcfindex; 16167 16168 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16169 if (!mboxq) { 16170 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16171 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 16172 return -ENOMEM; 16173 } 16174 16175 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 16176 sizeof(uint32_t); 16177 16178 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16179 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 16180 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 16181 req_len, LPFC_SLI4_MBX_NEMBED); 16182 if (alloc_len < req_len) { 16183 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16184 "2523 Allocated DMA memory size (x%x) is " 16185 "less than the requested DMA memory " 16186 "size (x%x)\n", alloc_len, req_len); 16187 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16188 return -ENOMEM; 16189 } 16190 16191 /* 16192 * Get the first SGE entry from the non-embedded DMA memory. This 16193 * routine only uses a single SGE. 16194 */ 16195 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 16196 virt_addr = mboxq->sge_array->addr[0]; 16197 /* 16198 * Configure the FCF record for FCFI 0. This is the driver's 16199 * hardcoded default and gets used in nonFIP mode. 16200 */ 16201 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 16202 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 16203 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 16204 16205 /* 16206 * Copy the fcf_index and the FCF Record Data. The data starts after 16207 * the FCoE header plus word10. The data copy needs to be endian 16208 * correct. 16209 */ 16210 bytep += sizeof(uint32_t); 16211 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 16212 mboxq->vport = phba->pport; 16213 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 16214 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16215 if (rc == MBX_NOT_FINISHED) { 16216 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16217 "2515 ADD_FCF_RECORD mailbox failed with " 16218 "status 0x%x\n", rc); 16219 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16220 rc = -EIO; 16221 } else 16222 rc = 0; 16223 16224 return rc; 16225 } 16226 16227 /** 16228 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 16229 * @phba: pointer to lpfc hba data structure. 16230 * @fcf_record: pointer to the fcf record to write the default data. 16231 * @fcf_index: FCF table entry index. 16232 * 16233 * This routine is invoked to build the driver's default FCF record. The 16234 * values used are hardcoded. This routine handles memory initialization. 16235 * 16236 **/ 16237 void 16238 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 16239 struct fcf_record *fcf_record, 16240 uint16_t fcf_index) 16241 { 16242 memset(fcf_record, 0, sizeof(struct fcf_record)); 16243 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 16244 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 16245 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 16246 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 16247 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 16248 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 16249 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 16250 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 16251 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 16252 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 16253 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 16254 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 16255 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 16256 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 16257 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 16258 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 16259 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 16260 /* Set the VLAN bit map */ 16261 if (phba->valid_vlan) { 16262 fcf_record->vlan_bitmap[phba->vlan_id / 8] 16263 = 1 << (phba->vlan_id % 8); 16264 } 16265 } 16266 16267 /** 16268 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16269 * @phba: pointer to lpfc hba data structure. 16270 * @fcf_index: FCF table entry offset. 16271 * 16272 * This routine is invoked to scan the entire FCF table by reading FCF 16273 * record and processing it one at a time starting from the @fcf_index 16274 * for initial FCF discovery or fast FCF failover rediscovery. 16275 * 16276 * Return 0 if the mailbox command is submitted successfully, none 0 16277 * otherwise. 16278 **/ 16279 int 16280 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16281 { 16282 int rc = 0, error; 16283 LPFC_MBOXQ_t *mboxq; 16284 16285 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16286 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16287 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16288 if (!mboxq) { 16289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16290 "2000 Failed to allocate mbox for " 16291 "READ_FCF cmd\n"); 16292 error = -ENOMEM; 16293 goto fail_fcf_scan; 16294 } 16295 /* Construct the read FCF record mailbox command */ 16296 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16297 if (rc) { 16298 error = -EINVAL; 16299 goto fail_fcf_scan; 16300 } 16301 /* Issue the mailbox command asynchronously */ 16302 mboxq->vport = phba->pport; 16303 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16304 16305 spin_lock_irq(&phba->hbalock); 16306 phba->hba_flag |= FCF_TS_INPROG; 16307 spin_unlock_irq(&phba->hbalock); 16308 16309 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16310 if (rc == MBX_NOT_FINISHED) 16311 error = -EIO; 16312 else { 16313 /* Reset eligible FCF count for new scan */ 16314 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16315 phba->fcf.eligible_fcf_cnt = 0; 16316 error = 0; 16317 } 16318 fail_fcf_scan: 16319 if (error) { 16320 if (mboxq) 16321 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16322 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16323 spin_lock_irq(&phba->hbalock); 16324 phba->hba_flag &= ~FCF_TS_INPROG; 16325 spin_unlock_irq(&phba->hbalock); 16326 } 16327 return error; 16328 } 16329 16330 /** 16331 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16332 * @phba: pointer to lpfc hba data structure. 16333 * @fcf_index: FCF table entry offset. 16334 * 16335 * This routine is invoked to read an FCF record indicated by @fcf_index 16336 * and to use it for FLOGI roundrobin FCF failover. 16337 * 16338 * Return 0 if the mailbox command is submitted successfully, none 0 16339 * otherwise. 16340 **/ 16341 int 16342 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16343 { 16344 int rc = 0, error; 16345 LPFC_MBOXQ_t *mboxq; 16346 16347 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16348 if (!mboxq) { 16349 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16350 "2763 Failed to allocate mbox for " 16351 "READ_FCF cmd\n"); 16352 error = -ENOMEM; 16353 goto fail_fcf_read; 16354 } 16355 /* Construct the read FCF record mailbox command */ 16356 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16357 if (rc) { 16358 error = -EINVAL; 16359 goto fail_fcf_read; 16360 } 16361 /* Issue the mailbox command asynchronously */ 16362 mboxq->vport = phba->pport; 16363 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16364 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16365 if (rc == MBX_NOT_FINISHED) 16366 error = -EIO; 16367 else 16368 error = 0; 16369 16370 fail_fcf_read: 16371 if (error && mboxq) 16372 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16373 return error; 16374 } 16375 16376 /** 16377 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16378 * @phba: pointer to lpfc hba data structure. 16379 * @fcf_index: FCF table entry offset. 16380 * 16381 * This routine is invoked to read an FCF record indicated by @fcf_index to 16382 * determine whether it's eligible for FLOGI roundrobin failover list. 16383 * 16384 * Return 0 if the mailbox command is submitted successfully, none 0 16385 * otherwise. 16386 **/ 16387 int 16388 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16389 { 16390 int rc = 0, error; 16391 LPFC_MBOXQ_t *mboxq; 16392 16393 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16394 if (!mboxq) { 16395 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16396 "2758 Failed to allocate mbox for " 16397 "READ_FCF cmd\n"); 16398 error = -ENOMEM; 16399 goto fail_fcf_read; 16400 } 16401 /* Construct the read FCF record mailbox command */ 16402 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16403 if (rc) { 16404 error = -EINVAL; 16405 goto fail_fcf_read; 16406 } 16407 /* Issue the mailbox command asynchronously */ 16408 mboxq->vport = phba->pport; 16409 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16410 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16411 if (rc == MBX_NOT_FINISHED) 16412 error = -EIO; 16413 else 16414 error = 0; 16415 16416 fail_fcf_read: 16417 if (error && mboxq) 16418 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16419 return error; 16420 } 16421 16422 /** 16423 * lpfc_check_next_fcf_pri_level 16424 * phba pointer to the lpfc_hba struct for this port. 16425 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16426 * routine when the rr_bmask is empty. The FCF indecies are put into the 16427 * rr_bmask based on their priority level. Starting from the highest priority 16428 * to the lowest. The most likely FCF candidate will be in the highest 16429 * priority group. When this routine is called it searches the fcf_pri list for 16430 * next lowest priority group and repopulates the rr_bmask with only those 16431 * fcf_indexes. 16432 * returns: 16433 * 1=success 0=failure 16434 **/ 16435 static int 16436 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16437 { 16438 uint16_t next_fcf_pri; 16439 uint16_t last_index; 16440 struct lpfc_fcf_pri *fcf_pri; 16441 int rc; 16442 int ret = 0; 16443 16444 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16445 LPFC_SLI4_FCF_TBL_INDX_MAX); 16446 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16447 "3060 Last IDX %d\n", last_index); 16448 16449 /* Verify the priority list has 2 or more entries */ 16450 spin_lock_irq(&phba->hbalock); 16451 if (list_empty(&phba->fcf.fcf_pri_list) || 16452 list_is_singular(&phba->fcf.fcf_pri_list)) { 16453 spin_unlock_irq(&phba->hbalock); 16454 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16455 "3061 Last IDX %d\n", last_index); 16456 return 0; /* Empty rr list */ 16457 } 16458 spin_unlock_irq(&phba->hbalock); 16459 16460 next_fcf_pri = 0; 16461 /* 16462 * Clear the rr_bmask and set all of the bits that are at this 16463 * priority. 16464 */ 16465 memset(phba->fcf.fcf_rr_bmask, 0, 16466 sizeof(*phba->fcf.fcf_rr_bmask)); 16467 spin_lock_irq(&phba->hbalock); 16468 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16469 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16470 continue; 16471 /* 16472 * the 1st priority that has not FLOGI failed 16473 * will be the highest. 16474 */ 16475 if (!next_fcf_pri) 16476 next_fcf_pri = fcf_pri->fcf_rec.priority; 16477 spin_unlock_irq(&phba->hbalock); 16478 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16479 rc = lpfc_sli4_fcf_rr_index_set(phba, 16480 fcf_pri->fcf_rec.fcf_index); 16481 if (rc) 16482 return 0; 16483 } 16484 spin_lock_irq(&phba->hbalock); 16485 } 16486 /* 16487 * if next_fcf_pri was not set above and the list is not empty then 16488 * we have failed flogis on all of them. So reset flogi failed 16489 * and start at the beginning. 16490 */ 16491 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16492 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16493 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16494 /* 16495 * the 1st priority that has not FLOGI failed 16496 * will be the highest. 16497 */ 16498 if (!next_fcf_pri) 16499 next_fcf_pri = fcf_pri->fcf_rec.priority; 16500 spin_unlock_irq(&phba->hbalock); 16501 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16502 rc = lpfc_sli4_fcf_rr_index_set(phba, 16503 fcf_pri->fcf_rec.fcf_index); 16504 if (rc) 16505 return 0; 16506 } 16507 spin_lock_irq(&phba->hbalock); 16508 } 16509 } else 16510 ret = 1; 16511 spin_unlock_irq(&phba->hbalock); 16512 16513 return ret; 16514 } 16515 /** 16516 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16517 * @phba: pointer to lpfc hba data structure. 16518 * 16519 * This routine is to get the next eligible FCF record index in a round 16520 * robin fashion. If the next eligible FCF record index equals to the 16521 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16522 * shall be returned, otherwise, the next eligible FCF record's index 16523 * shall be returned. 16524 **/ 16525 uint16_t 16526 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16527 { 16528 uint16_t next_fcf_index; 16529 16530 initial_priority: 16531 /* Search start from next bit of currently registered FCF index */ 16532 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16533 16534 next_priority: 16535 /* Determine the next fcf index to check */ 16536 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16537 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16538 LPFC_SLI4_FCF_TBL_INDX_MAX, 16539 next_fcf_index); 16540 16541 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16542 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16543 /* 16544 * If we have wrapped then we need to clear the bits that 16545 * have been tested so that we can detect when we should 16546 * change the priority level. 16547 */ 16548 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16549 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16550 } 16551 16552 16553 /* Check roundrobin failover list empty condition */ 16554 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16555 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16556 /* 16557 * If next fcf index is not found check if there are lower 16558 * Priority level fcf's in the fcf_priority list. 16559 * Set up the rr_bmask with all of the avaiable fcf bits 16560 * at that level and continue the selection process. 16561 */ 16562 if (lpfc_check_next_fcf_pri_level(phba)) 16563 goto initial_priority; 16564 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16565 "2844 No roundrobin failover FCF available\n"); 16566 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16567 return LPFC_FCOE_FCF_NEXT_NONE; 16568 else { 16569 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16570 "3063 Only FCF available idx %d, flag %x\n", 16571 next_fcf_index, 16572 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16573 return next_fcf_index; 16574 } 16575 } 16576 16577 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16578 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16579 LPFC_FCF_FLOGI_FAILED) { 16580 if (list_is_singular(&phba->fcf.fcf_pri_list)) 16581 return LPFC_FCOE_FCF_NEXT_NONE; 16582 16583 goto next_priority; 16584 } 16585 16586 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16587 "2845 Get next roundrobin failover FCF (x%x)\n", 16588 next_fcf_index); 16589 16590 return next_fcf_index; 16591 } 16592 16593 /** 16594 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16595 * @phba: pointer to lpfc hba data structure. 16596 * 16597 * This routine sets the FCF record index in to the eligible bmask for 16598 * roundrobin failover search. It checks to make sure that the index 16599 * does not go beyond the range of the driver allocated bmask dimension 16600 * before setting the bit. 16601 * 16602 * Returns 0 if the index bit successfully set, otherwise, it returns 16603 * -EINVAL. 16604 **/ 16605 int 16606 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16607 { 16608 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16609 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16610 "2610 FCF (x%x) reached driver's book " 16611 "keeping dimension:x%x\n", 16612 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16613 return -EINVAL; 16614 } 16615 /* Set the eligible FCF record index bmask */ 16616 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16617 16618 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16619 "2790 Set FCF (x%x) to roundrobin FCF failover " 16620 "bmask\n", fcf_index); 16621 16622 return 0; 16623 } 16624 16625 /** 16626 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16627 * @phba: pointer to lpfc hba data structure. 16628 * 16629 * This routine clears the FCF record index from the eligible bmask for 16630 * roundrobin failover search. It checks to make sure that the index 16631 * does not go beyond the range of the driver allocated bmask dimension 16632 * before clearing the bit. 16633 **/ 16634 void 16635 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16636 { 16637 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16638 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16639 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16640 "2762 FCF (x%x) reached driver's book " 16641 "keeping dimension:x%x\n", 16642 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16643 return; 16644 } 16645 /* Clear the eligible FCF record index bmask */ 16646 spin_lock_irq(&phba->hbalock); 16647 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16648 list) { 16649 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16650 list_del_init(&fcf_pri->list); 16651 break; 16652 } 16653 } 16654 spin_unlock_irq(&phba->hbalock); 16655 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16656 16657 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16658 "2791 Clear FCF (x%x) from roundrobin failover " 16659 "bmask\n", fcf_index); 16660 } 16661 16662 /** 16663 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16664 * @phba: pointer to lpfc hba data structure. 16665 * 16666 * This routine is the completion routine for the rediscover FCF table mailbox 16667 * command. If the mailbox command returned failure, it will try to stop the 16668 * FCF rediscover wait timer. 16669 **/ 16670 static void 16671 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16672 { 16673 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16674 uint32_t shdr_status, shdr_add_status; 16675 16676 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16677 16678 shdr_status = bf_get(lpfc_mbox_hdr_status, 16679 &redisc_fcf->header.cfg_shdr.response); 16680 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16681 &redisc_fcf->header.cfg_shdr.response); 16682 if (shdr_status || shdr_add_status) { 16683 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16684 "2746 Requesting for FCF rediscovery failed " 16685 "status x%x add_status x%x\n", 16686 shdr_status, shdr_add_status); 16687 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16688 spin_lock_irq(&phba->hbalock); 16689 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16690 spin_unlock_irq(&phba->hbalock); 16691 /* 16692 * CVL event triggered FCF rediscover request failed, 16693 * last resort to re-try current registered FCF entry. 16694 */ 16695 lpfc_retry_pport_discovery(phba); 16696 } else { 16697 spin_lock_irq(&phba->hbalock); 16698 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16699 spin_unlock_irq(&phba->hbalock); 16700 /* 16701 * DEAD FCF event triggered FCF rediscover request 16702 * failed, last resort to fail over as a link down 16703 * to FCF registration. 16704 */ 16705 lpfc_sli4_fcf_dead_failthrough(phba); 16706 } 16707 } else { 16708 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16709 "2775 Start FCF rediscover quiescent timer\n"); 16710 /* 16711 * Start FCF rediscovery wait timer for pending FCF 16712 * before rescan FCF record table. 16713 */ 16714 lpfc_fcf_redisc_wait_start_timer(phba); 16715 } 16716 16717 mempool_free(mbox, phba->mbox_mem_pool); 16718 } 16719 16720 /** 16721 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16722 * @phba: pointer to lpfc hba data structure. 16723 * 16724 * This routine is invoked to request for rediscovery of the entire FCF table 16725 * by the port. 16726 **/ 16727 int 16728 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16729 { 16730 LPFC_MBOXQ_t *mbox; 16731 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16732 int rc, length; 16733 16734 /* Cancel retry delay timers to all vports before FCF rediscover */ 16735 lpfc_cancel_all_vport_retry_delay_timer(phba); 16736 16737 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16738 if (!mbox) { 16739 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16740 "2745 Failed to allocate mbox for " 16741 "requesting FCF rediscover.\n"); 16742 return -ENOMEM; 16743 } 16744 16745 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16746 sizeof(struct lpfc_sli4_cfg_mhdr)); 16747 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16748 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16749 length, LPFC_SLI4_MBX_EMBED); 16750 16751 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16752 /* Set count to 0 for invalidating the entire FCF database */ 16753 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16754 16755 /* Issue the mailbox command asynchronously */ 16756 mbox->vport = phba->pport; 16757 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16758 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16759 16760 if (rc == MBX_NOT_FINISHED) { 16761 mempool_free(mbox, phba->mbox_mem_pool); 16762 return -EIO; 16763 } 16764 return 0; 16765 } 16766 16767 /** 16768 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16769 * @phba: pointer to lpfc hba data structure. 16770 * 16771 * This function is the failover routine as a last resort to the FCF DEAD 16772 * event when driver failed to perform fast FCF failover. 16773 **/ 16774 void 16775 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16776 { 16777 uint32_t link_state; 16778 16779 /* 16780 * Last resort as FCF DEAD event failover will treat this as 16781 * a link down, but save the link state because we don't want 16782 * it to be changed to Link Down unless it is already down. 16783 */ 16784 link_state = phba->link_state; 16785 lpfc_linkdown(phba); 16786 phba->link_state = link_state; 16787 16788 /* Unregister FCF if no devices connected to it */ 16789 lpfc_unregister_unused_fcf(phba); 16790 } 16791 16792 /** 16793 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16794 * @phba: pointer to lpfc hba data structure. 16795 * @rgn23_data: pointer to configure region 23 data. 16796 * 16797 * This function gets SLI3 port configure region 23 data through memory dump 16798 * mailbox command. When it successfully retrieves data, the size of the data 16799 * will be returned, otherwise, 0 will be returned. 16800 **/ 16801 static uint32_t 16802 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16803 { 16804 LPFC_MBOXQ_t *pmb = NULL; 16805 MAILBOX_t *mb; 16806 uint32_t offset = 0; 16807 int rc; 16808 16809 if (!rgn23_data) 16810 return 0; 16811 16812 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16813 if (!pmb) { 16814 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16815 "2600 failed to allocate mailbox memory\n"); 16816 return 0; 16817 } 16818 mb = &pmb->u.mb; 16819 16820 do { 16821 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16822 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16823 16824 if (rc != MBX_SUCCESS) { 16825 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16826 "2601 failed to read config " 16827 "region 23, rc 0x%x Status 0x%x\n", 16828 rc, mb->mbxStatus); 16829 mb->un.varDmp.word_cnt = 0; 16830 } 16831 /* 16832 * dump mem may return a zero when finished or we got a 16833 * mailbox error, either way we are done. 16834 */ 16835 if (mb->un.varDmp.word_cnt == 0) 16836 break; 16837 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16838 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16839 16840 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16841 rgn23_data + offset, 16842 mb->un.varDmp.word_cnt); 16843 offset += mb->un.varDmp.word_cnt; 16844 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16845 16846 mempool_free(pmb, phba->mbox_mem_pool); 16847 return offset; 16848 } 16849 16850 /** 16851 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16852 * @phba: pointer to lpfc hba data structure. 16853 * @rgn23_data: pointer to configure region 23 data. 16854 * 16855 * This function gets SLI4 port configure region 23 data through memory dump 16856 * mailbox command. When it successfully retrieves data, the size of the data 16857 * will be returned, otherwise, 0 will be returned. 16858 **/ 16859 static uint32_t 16860 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16861 { 16862 LPFC_MBOXQ_t *mboxq = NULL; 16863 struct lpfc_dmabuf *mp = NULL; 16864 struct lpfc_mqe *mqe; 16865 uint32_t data_length = 0; 16866 int rc; 16867 16868 if (!rgn23_data) 16869 return 0; 16870 16871 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16872 if (!mboxq) { 16873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16874 "3105 failed to allocate mailbox memory\n"); 16875 return 0; 16876 } 16877 16878 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16879 goto out; 16880 mqe = &mboxq->u.mqe; 16881 mp = (struct lpfc_dmabuf *) mboxq->context1; 16882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16883 if (rc) 16884 goto out; 16885 data_length = mqe->un.mb_words[5]; 16886 if (data_length == 0) 16887 goto out; 16888 if (data_length > DMP_RGN23_SIZE) { 16889 data_length = 0; 16890 goto out; 16891 } 16892 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16893 out: 16894 mempool_free(mboxq, phba->mbox_mem_pool); 16895 if (mp) { 16896 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16897 kfree(mp); 16898 } 16899 return data_length; 16900 } 16901 16902 /** 16903 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16904 * @phba: pointer to lpfc hba data structure. 16905 * 16906 * This function read region 23 and parse TLV for port status to 16907 * decide if the user disaled the port. If the TLV indicates the 16908 * port is disabled, the hba_flag is set accordingly. 16909 **/ 16910 void 16911 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16912 { 16913 uint8_t *rgn23_data = NULL; 16914 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16915 uint32_t offset = 0; 16916 16917 /* Get adapter Region 23 data */ 16918 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16919 if (!rgn23_data) 16920 goto out; 16921 16922 if (phba->sli_rev < LPFC_SLI_REV4) 16923 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16924 else { 16925 if_type = bf_get(lpfc_sli_intf_if_type, 16926 &phba->sli4_hba.sli_intf); 16927 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16928 goto out; 16929 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16930 } 16931 16932 if (!data_size) 16933 goto out; 16934 16935 /* Check the region signature first */ 16936 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16937 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16938 "2619 Config region 23 has bad signature\n"); 16939 goto out; 16940 } 16941 offset += 4; 16942 16943 /* Check the data structure version */ 16944 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16946 "2620 Config region 23 has bad version\n"); 16947 goto out; 16948 } 16949 offset += 4; 16950 16951 /* Parse TLV entries in the region */ 16952 while (offset < data_size) { 16953 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16954 break; 16955 /* 16956 * If the TLV is not driver specific TLV or driver id is 16957 * not linux driver id, skip the record. 16958 */ 16959 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16960 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16961 (rgn23_data[offset + 3] != 0)) { 16962 offset += rgn23_data[offset + 1] * 4 + 4; 16963 continue; 16964 } 16965 16966 /* Driver found a driver specific TLV in the config region */ 16967 sub_tlv_len = rgn23_data[offset + 1] * 4; 16968 offset += 4; 16969 tlv_offset = 0; 16970 16971 /* 16972 * Search for configured port state sub-TLV. 16973 */ 16974 while ((offset < data_size) && 16975 (tlv_offset < sub_tlv_len)) { 16976 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16977 offset += 4; 16978 tlv_offset += 4; 16979 break; 16980 } 16981 if (rgn23_data[offset] != PORT_STE_TYPE) { 16982 offset += rgn23_data[offset + 1] * 4 + 4; 16983 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16984 continue; 16985 } 16986 16987 /* This HBA contains PORT_STE configured */ 16988 if (!rgn23_data[offset + 2]) 16989 phba->hba_flag |= LINK_DISABLED; 16990 16991 goto out; 16992 } 16993 } 16994 16995 out: 16996 kfree(rgn23_data); 16997 return; 16998 } 16999 17000 /** 17001 * lpfc_wr_object - write an object to the firmware 17002 * @phba: HBA structure that indicates port to create a queue on. 17003 * @dmabuf_list: list of dmabufs to write to the port. 17004 * @size: the total byte value of the objects to write to the port. 17005 * @offset: the current offset to be used to start the transfer. 17006 * 17007 * This routine will create a wr_object mailbox command to send to the port. 17008 * the mailbox command will be constructed using the dma buffers described in 17009 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 17010 * BDEs that the imbedded mailbox can support. The @offset variable will be 17011 * used to indicate the starting offset of the transfer and will also return 17012 * the offset after the write object mailbox has completed. @size is used to 17013 * determine the end of the object and whether the eof bit should be set. 17014 * 17015 * Return 0 is successful and offset will contain the the new offset to use 17016 * for the next write. 17017 * Return negative value for error cases. 17018 **/ 17019 int 17020 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 17021 uint32_t size, uint32_t *offset) 17022 { 17023 struct lpfc_mbx_wr_object *wr_object; 17024 LPFC_MBOXQ_t *mbox; 17025 int rc = 0, i = 0; 17026 uint32_t shdr_status, shdr_add_status; 17027 uint32_t mbox_tmo; 17028 union lpfc_sli4_cfg_shdr *shdr; 17029 struct lpfc_dmabuf *dmabuf; 17030 uint32_t written = 0; 17031 17032 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17033 if (!mbox) 17034 return -ENOMEM; 17035 17036 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17037 LPFC_MBOX_OPCODE_WRITE_OBJECT, 17038 sizeof(struct lpfc_mbx_wr_object) - 17039 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17040 17041 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 17042 wr_object->u.request.write_offset = *offset; 17043 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 17044 wr_object->u.request.object_name[0] = 17045 cpu_to_le32(wr_object->u.request.object_name[0]); 17046 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 17047 list_for_each_entry(dmabuf, dmabuf_list, list) { 17048 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 17049 break; 17050 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 17051 wr_object->u.request.bde[i].addrHigh = 17052 putPaddrHigh(dmabuf->phys); 17053 if (written + SLI4_PAGE_SIZE >= size) { 17054 wr_object->u.request.bde[i].tus.f.bdeSize = 17055 (size - written); 17056 written += (size - written); 17057 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 17058 } else { 17059 wr_object->u.request.bde[i].tus.f.bdeSize = 17060 SLI4_PAGE_SIZE; 17061 written += SLI4_PAGE_SIZE; 17062 } 17063 i++; 17064 } 17065 wr_object->u.request.bde_count = i; 17066 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 17067 if (!phba->sli4_hba.intr_enable) 17068 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17069 else { 17070 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17071 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17072 } 17073 /* The IOCTL status is embedded in the mailbox subheader. */ 17074 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 17075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17077 if (rc != MBX_TIMEOUT) 17078 mempool_free(mbox, phba->mbox_mem_pool); 17079 if (shdr_status || shdr_add_status || rc) { 17080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17081 "3025 Write Object mailbox failed with " 17082 "status x%x add_status x%x, mbx status x%x\n", 17083 shdr_status, shdr_add_status, rc); 17084 rc = -ENXIO; 17085 } else 17086 *offset += wr_object->u.response.actual_write_length; 17087 return rc; 17088 } 17089 17090 /** 17091 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 17092 * @vport: pointer to vport data structure. 17093 * 17094 * This function iterate through the mailboxq and clean up all REG_LOGIN 17095 * and REG_VPI mailbox commands associated with the vport. This function 17096 * is called when driver want to restart discovery of the vport due to 17097 * a Clear Virtual Link event. 17098 **/ 17099 void 17100 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 17101 { 17102 struct lpfc_hba *phba = vport->phba; 17103 LPFC_MBOXQ_t *mb, *nextmb; 17104 struct lpfc_dmabuf *mp; 17105 struct lpfc_nodelist *ndlp; 17106 struct lpfc_nodelist *act_mbx_ndlp = NULL; 17107 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 17108 LIST_HEAD(mbox_cmd_list); 17109 uint8_t restart_loop; 17110 17111 /* Clean up internally queued mailbox commands with the vport */ 17112 spin_lock_irq(&phba->hbalock); 17113 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 17114 if (mb->vport != vport) 17115 continue; 17116 17117 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17118 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17119 continue; 17120 17121 list_del(&mb->list); 17122 list_add_tail(&mb->list, &mbox_cmd_list); 17123 } 17124 /* Clean up active mailbox command with the vport */ 17125 mb = phba->sli.mbox_active; 17126 if (mb && (mb->vport == vport)) { 17127 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 17128 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 17129 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17130 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17131 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 17132 /* Put reference count for delayed processing */ 17133 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 17134 /* Unregister the RPI when mailbox complete */ 17135 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17136 } 17137 } 17138 /* Cleanup any mailbox completions which are not yet processed */ 17139 do { 17140 restart_loop = 0; 17141 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 17142 /* 17143 * If this mailox is already processed or it is 17144 * for another vport ignore it. 17145 */ 17146 if ((mb->vport != vport) || 17147 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 17148 continue; 17149 17150 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17151 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17152 continue; 17153 17154 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17155 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17156 ndlp = (struct lpfc_nodelist *)mb->context2; 17157 /* Unregister the RPI when mailbox complete */ 17158 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17159 restart_loop = 1; 17160 spin_unlock_irq(&phba->hbalock); 17161 spin_lock(shost->host_lock); 17162 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17163 spin_unlock(shost->host_lock); 17164 spin_lock_irq(&phba->hbalock); 17165 break; 17166 } 17167 } 17168 } while (restart_loop); 17169 17170 spin_unlock_irq(&phba->hbalock); 17171 17172 /* Release the cleaned-up mailbox commands */ 17173 while (!list_empty(&mbox_cmd_list)) { 17174 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 17175 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17176 mp = (struct lpfc_dmabuf *) (mb->context1); 17177 if (mp) { 17178 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 17179 kfree(mp); 17180 } 17181 ndlp = (struct lpfc_nodelist *) mb->context2; 17182 mb->context2 = NULL; 17183 if (ndlp) { 17184 spin_lock(shost->host_lock); 17185 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17186 spin_unlock(shost->host_lock); 17187 lpfc_nlp_put(ndlp); 17188 } 17189 } 17190 mempool_free(mb, phba->mbox_mem_pool); 17191 } 17192 17193 /* Release the ndlp with the cleaned-up active mailbox command */ 17194 if (act_mbx_ndlp) { 17195 spin_lock(shost->host_lock); 17196 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17197 spin_unlock(shost->host_lock); 17198 lpfc_nlp_put(act_mbx_ndlp); 17199 } 17200 } 17201 17202 /** 17203 * lpfc_drain_txq - Drain the txq 17204 * @phba: Pointer to HBA context object. 17205 * 17206 * This function attempt to submit IOCBs on the txq 17207 * to the adapter. For SLI4 adapters, the txq contains 17208 * ELS IOCBs that have been deferred because the there 17209 * are no SGLs. This congestion can occur with large 17210 * vport counts during node discovery. 17211 **/ 17212 17213 uint32_t 17214 lpfc_drain_txq(struct lpfc_hba *phba) 17215 { 17216 LIST_HEAD(completions); 17217 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 17218 struct lpfc_iocbq *piocbq = NULL; 17219 unsigned long iflags = 0; 17220 char *fail_msg = NULL; 17221 struct lpfc_sglq *sglq; 17222 union lpfc_wqe wqe; 17223 uint32_t txq_cnt = 0; 17224 17225 spin_lock_irqsave(&pring->ring_lock, iflags); 17226 list_for_each_entry(piocbq, &pring->txq, list) { 17227 txq_cnt++; 17228 } 17229 17230 if (txq_cnt > pring->txq_max) 17231 pring->txq_max = txq_cnt; 17232 17233 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17234 17235 while (!list_empty(&pring->txq)) { 17236 spin_lock_irqsave(&pring->ring_lock, iflags); 17237 17238 piocbq = lpfc_sli_ringtx_get(phba, pring); 17239 if (!piocbq) { 17240 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17241 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17242 "2823 txq empty and txq_cnt is %d\n ", 17243 txq_cnt); 17244 break; 17245 } 17246 sglq = __lpfc_sli_get_sglq(phba, piocbq); 17247 if (!sglq) { 17248 __lpfc_sli_ringtx_put(phba, pring, piocbq); 17249 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17250 break; 17251 } 17252 txq_cnt--; 17253 17254 /* The xri and iocb resources secured, 17255 * attempt to issue request 17256 */ 17257 piocbq->sli4_lxritag = sglq->sli4_lxritag; 17258 piocbq->sli4_xritag = sglq->sli4_xritag; 17259 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 17260 fail_msg = "to convert bpl to sgl"; 17261 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 17262 fail_msg = "to convert iocb to wqe"; 17263 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 17264 fail_msg = " - Wq is full"; 17265 else 17266 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 17267 17268 if (fail_msg) { 17269 /* Failed means we can't issue and need to cancel */ 17270 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17271 "2822 IOCB failed %s iotag 0x%x " 17272 "xri 0x%x\n", 17273 fail_msg, 17274 piocbq->iotag, piocbq->sli4_xritag); 17275 list_add_tail(&piocbq->list, &completions); 17276 } 17277 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17278 } 17279 17280 /* Cancel all the IOCBs that cannot be issued */ 17281 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17282 IOERR_SLI_ABORTED); 17283 17284 return txq_cnt; 17285 } 17286