xref: /linux/drivers/scsi/lpfc/lpfc_sli.c (revision 2f7932b011e7fb9f98732f95a68f6017d4d8c542)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
91 				   struct lpfc_sli_ring *pring,
92 				   struct lpfc_iocbq *cmdiocb);
93 
94 static IOCB_t *
95 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
96 {
97 	return &iocbq->iocb;
98 }
99 
100 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
101 /**
102  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
103  * @srcp: Source memory pointer.
104  * @destp: Destination memory pointer.
105  * @cnt: Number of words required to be copied.
106  *       Must be a multiple of sizeof(uint64_t)
107  *
108  * This function is used for copying data between driver memory
109  * and the SLI WQ. This function also changes the endianness
110  * of each word if native endianness is different from SLI
111  * endianness. This function can be called with or without
112  * lock.
113  **/
114 void
115 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
116 {
117 	uint64_t *src = srcp;
118 	uint64_t *dest = destp;
119 	int i;
120 
121 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
122 		*dest++ = *src++;
123 }
124 #else
125 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
126 #endif
127 
128 /**
129  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
130  * @q: The Work Queue to operate on.
131  * @wqe: The work Queue Entry to put on the Work queue.
132  *
133  * This routine will copy the contents of @wqe to the next available entry on
134  * the @q. This function will then ring the Work Queue Doorbell to signal the
135  * HBA to start processing the Work Queue Entry. This function returns 0 if
136  * successful. If no entries are available on @q then this function will return
137  * -ENOMEM.
138  * The caller is expected to hold the hbalock when calling this routine.
139  **/
140 static int
141 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
142 {
143 	union lpfc_wqe *temp_wqe;
144 	struct lpfc_register doorbell;
145 	uint32_t host_index;
146 	uint32_t idx;
147 	uint32_t i = 0;
148 	uint8_t *tmp;
149 	u32 if_type;
150 
151 	/* sanity check on queue memory */
152 	if (unlikely(!q))
153 		return -ENOMEM;
154 	temp_wqe = q->qe[q->host_index].wqe;
155 
156 	/* If the host has not yet processed the next entry then we are done */
157 	idx = ((q->host_index + 1) % q->entry_count);
158 	if (idx == q->hba_index) {
159 		q->WQ_overflow++;
160 		return -EBUSY;
161 	}
162 	q->WQ_posted++;
163 	/* set consumption flag every once in a while */
164 	if (!((q->host_index + 1) % q->notify_interval))
165 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
166 	else
167 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
168 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
169 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
170 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
171 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
172 		/* write to DPP aperture taking advatage of Combined Writes */
173 		tmp = (uint8_t *)temp_wqe;
174 #ifdef __raw_writeq
175 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
176 			__raw_writeq(*((uint64_t *)(tmp + i)),
177 					q->dpp_regaddr + i);
178 #else
179 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
180 			__raw_writel(*((uint32_t *)(tmp + i)),
181 					q->dpp_regaddr + i);
182 #endif
183 	}
184 	/* ensure WQE bcopy and DPP flushed before doorbell write */
185 	wmb();
186 
187 	/* Update the host index before invoking device */
188 	host_index = q->host_index;
189 
190 	q->host_index = idx;
191 
192 	/* Ring Doorbell */
193 	doorbell.word0 = 0;
194 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
195 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
196 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
197 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
198 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
199 			    q->dpp_id);
200 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
201 			    q->queue_id);
202 		} else {
203 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
204 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
205 
206 			/* Leave bits <23:16> clear for if_type 6 dpp */
207 			if_type = bf_get(lpfc_sli_intf_if_type,
208 					 &q->phba->sli4_hba.sli_intf);
209 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
210 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
211 				       host_index);
212 		}
213 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
214 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
215 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
216 	} else {
217 		return -EINVAL;
218 	}
219 	writel(doorbell.word0, q->db_regaddr);
220 
221 	return 0;
222 }
223 
224 /**
225  * lpfc_sli4_wq_release - Updates internal hba index for WQ
226  * @q: The Work Queue to operate on.
227  * @index: The index to advance the hba index to.
228  *
229  * This routine will update the HBA index of a queue to reflect consumption of
230  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
231  * an entry the host calls this function to update the queue's internal
232  * pointers. This routine returns the number of entries that were consumed by
233  * the HBA.
234  **/
235 static uint32_t
236 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
237 {
238 	uint32_t released = 0;
239 
240 	/* sanity check on queue memory */
241 	if (unlikely(!q))
242 		return 0;
243 
244 	if (q->hba_index == index)
245 		return 0;
246 	do {
247 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
248 		released++;
249 	} while (q->hba_index != index);
250 	return released;
251 }
252 
253 /**
254  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
255  * @q: The Mailbox Queue to operate on.
256  * @wqe: The Mailbox Queue Entry to put on the Work queue.
257  *
258  * This routine will copy the contents of @mqe to the next available entry on
259  * the @q. This function will then ring the Work Queue Doorbell to signal the
260  * HBA to start processing the Work Queue Entry. This function returns 0 if
261  * successful. If no entries are available on @q then this function will return
262  * -ENOMEM.
263  * The caller is expected to hold the hbalock when calling this routine.
264  **/
265 static uint32_t
266 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
267 {
268 	struct lpfc_mqe *temp_mqe;
269 	struct lpfc_register doorbell;
270 
271 	/* sanity check on queue memory */
272 	if (unlikely(!q))
273 		return -ENOMEM;
274 	temp_mqe = q->qe[q->host_index].mqe;
275 
276 	/* If the host has not yet processed the next entry then we are done */
277 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
278 		return -ENOMEM;
279 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
280 	/* Save off the mailbox pointer for completion */
281 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
282 
283 	/* Update the host index before invoking device */
284 	q->host_index = ((q->host_index + 1) % q->entry_count);
285 
286 	/* Ring Doorbell */
287 	doorbell.word0 = 0;
288 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
289 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
290 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
291 	return 0;
292 }
293 
294 /**
295  * lpfc_sli4_mq_release - Updates internal hba index for MQ
296  * @q: The Mailbox Queue to operate on.
297  *
298  * This routine will update the HBA index of a queue to reflect consumption of
299  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
300  * an entry the host calls this function to update the queue's internal
301  * pointers. This routine returns the number of entries that were consumed by
302  * the HBA.
303  **/
304 static uint32_t
305 lpfc_sli4_mq_release(struct lpfc_queue *q)
306 {
307 	/* sanity check on queue memory */
308 	if (unlikely(!q))
309 		return 0;
310 
311 	/* Clear the mailbox pointer for completion */
312 	q->phba->mbox = NULL;
313 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
314 	return 1;
315 }
316 
317 /**
318  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
319  * @q: The Event Queue to get the first valid EQE from
320  *
321  * This routine will get the first valid Event Queue Entry from @q, update
322  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
323  * the Queue (no more work to do), or the Queue is full of EQEs that have been
324  * processed, but not popped back to the HBA then this routine will return NULL.
325  **/
326 static struct lpfc_eqe *
327 lpfc_sli4_eq_get(struct lpfc_queue *q)
328 {
329 	struct lpfc_eqe *eqe;
330 
331 	/* sanity check on queue memory */
332 	if (unlikely(!q))
333 		return NULL;
334 	eqe = q->qe[q->host_index].eqe;
335 
336 	/* If the next EQE is not valid then we are done */
337 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
338 		return NULL;
339 
340 	/*
341 	 * insert barrier for instruction interlock : data from the hardware
342 	 * must have the valid bit checked before it can be copied and acted
343 	 * upon. Speculative instructions were allowing a bcopy at the start
344 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
345 	 * after our return, to copy data before the valid bit check above
346 	 * was done. As such, some of the copied data was stale. The barrier
347 	 * ensures the check is before any data is copied.
348 	 */
349 	mb();
350 	return eqe;
351 }
352 
353 /**
354  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
355  * @q: The Event Queue to disable interrupts
356  *
357  **/
358 inline void
359 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
360 {
361 	struct lpfc_register doorbell;
362 
363 	doorbell.word0 = 0;
364 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
365 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
366 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
367 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
368 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
369 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
370 }
371 
372 /**
373  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
374  * @q: The Event Queue to disable interrupts
375  *
376  **/
377 inline void
378 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
379 {
380 	struct lpfc_register doorbell;
381 
382 	doorbell.word0 = 0;
383 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
384 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
385 }
386 
387 /**
388  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
389  * @phba: adapter with EQ
390  * @q: The Event Queue that the host has completed processing for.
391  * @count: Number of elements that have been consumed
392  * @arm: Indicates whether the host wants to arms this CQ.
393  *
394  * This routine will notify the HBA, by ringing the doorbell, that count
395  * number of EQEs have been processed. The @arm parameter indicates whether
396  * the queue should be rearmed when ringing the doorbell.
397  **/
398 void
399 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
400 		     uint32_t count, bool arm)
401 {
402 	struct lpfc_register doorbell;
403 
404 	/* sanity check on queue memory */
405 	if (unlikely(!q || (count == 0 && !arm)))
406 		return;
407 
408 	/* ring doorbell for number popped */
409 	doorbell.word0 = 0;
410 	if (arm) {
411 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
412 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
413 	}
414 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
415 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
416 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
417 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
418 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
419 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
420 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
421 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
422 		readl(q->phba->sli4_hba.EQDBregaddr);
423 }
424 
425 /**
426  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
427  * @phba: adapter with EQ
428  * @q: The Event Queue that the host has completed processing for.
429  * @count: Number of elements that have been consumed
430  * @arm: Indicates whether the host wants to arms this CQ.
431  *
432  * This routine will notify the HBA, by ringing the doorbell, that count
433  * number of EQEs have been processed. The @arm parameter indicates whether
434  * the queue should be rearmed when ringing the doorbell.
435  **/
436 void
437 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
438 			  uint32_t count, bool arm)
439 {
440 	struct lpfc_register doorbell;
441 
442 	/* sanity check on queue memory */
443 	if (unlikely(!q || (count == 0 && !arm)))
444 		return;
445 
446 	/* ring doorbell for number popped */
447 	doorbell.word0 = 0;
448 	if (arm)
449 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
450 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
451 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
452 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
453 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
454 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
455 		readl(q->phba->sli4_hba.EQDBregaddr);
456 }
457 
458 static void
459 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
460 			struct lpfc_eqe *eqe)
461 {
462 	if (!phba->sli4_hba.pc_sli4_params.eqav)
463 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
464 
465 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
466 
467 	/* if the index wrapped around, toggle the valid bit */
468 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
469 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
470 }
471 
472 static void
473 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
474 {
475 	struct lpfc_eqe *eqe;
476 	uint32_t count = 0;
477 
478 	/* walk all the EQ entries and drop on the floor */
479 	eqe = lpfc_sli4_eq_get(eq);
480 	while (eqe) {
481 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
482 		count++;
483 		eqe = lpfc_sli4_eq_get(eq);
484 	}
485 
486 	/* Clear and re-arm the EQ */
487 	phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
488 }
489 
490 static int
491 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
492 {
493 	struct lpfc_eqe *eqe;
494 	int count = 0, consumed = 0;
495 
496 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
497 		goto rearm_and_exit;
498 
499 	eqe = lpfc_sli4_eq_get(eq);
500 	while (eqe) {
501 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
502 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
503 
504 		consumed++;
505 		if (!(++count % eq->max_proc_limit))
506 			break;
507 
508 		if (!(count % eq->notify_interval)) {
509 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
510 							LPFC_QUEUE_NOARM);
511 			consumed = 0;
512 		}
513 
514 		eqe = lpfc_sli4_eq_get(eq);
515 	}
516 	eq->EQ_processed += count;
517 
518 	/* Track the max number of EQEs processed in 1 intr */
519 	if (count > eq->EQ_max_eqe)
520 		eq->EQ_max_eqe = count;
521 
522 	eq->queue_claimed = 0;
523 
524 rearm_and_exit:
525 	/* Always clear and re-arm the EQ */
526 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
527 
528 	return count;
529 }
530 
531 /**
532  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
533  * @q: The Completion Queue to get the first valid CQE from
534  *
535  * This routine will get the first valid Completion Queue Entry from @q, update
536  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
537  * the Queue (no more work to do), or the Queue is full of CQEs that have been
538  * processed, but not popped back to the HBA then this routine will return NULL.
539  **/
540 static struct lpfc_cqe *
541 lpfc_sli4_cq_get(struct lpfc_queue *q)
542 {
543 	struct lpfc_cqe *cqe;
544 
545 	/* sanity check on queue memory */
546 	if (unlikely(!q))
547 		return NULL;
548 	cqe = q->qe[q->host_index].cqe;
549 
550 	/* If the next CQE is not valid then we are done */
551 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
552 		return NULL;
553 
554 	/*
555 	 * insert barrier for instruction interlock : data from the hardware
556 	 * must have the valid bit checked before it can be copied and acted
557 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
558 	 * instructions allowing action on content before valid bit checked,
559 	 * add barrier here as well. May not be needed as "content" is a
560 	 * single 32-bit entity here (vs multi word structure for cq's).
561 	 */
562 	mb();
563 	return cqe;
564 }
565 
566 static void
567 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
568 			struct lpfc_cqe *cqe)
569 {
570 	if (!phba->sli4_hba.pc_sli4_params.cqav)
571 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
572 
573 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
574 
575 	/* if the index wrapped around, toggle the valid bit */
576 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
577 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
578 }
579 
580 /**
581  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
582  * @phba: the adapter with the CQ
583  * @q: The Completion Queue that the host has completed processing for.
584  * @count: the number of elements that were consumed
585  * @arm: Indicates whether the host wants to arms this CQ.
586  *
587  * This routine will notify the HBA, by ringing the doorbell, that the
588  * CQEs have been processed. The @arm parameter specifies whether the
589  * queue should be rearmed when ringing the doorbell.
590  **/
591 void
592 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
593 		     uint32_t count, bool arm)
594 {
595 	struct lpfc_register doorbell;
596 
597 	/* sanity check on queue memory */
598 	if (unlikely(!q || (count == 0 && !arm)))
599 		return;
600 
601 	/* ring doorbell for number popped */
602 	doorbell.word0 = 0;
603 	if (arm)
604 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
605 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
606 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
607 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
608 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
609 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
610 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
611 }
612 
613 /**
614  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
615  * @phba: the adapter with the CQ
616  * @q: The Completion Queue that the host has completed processing for.
617  * @count: the number of elements that were consumed
618  * @arm: Indicates whether the host wants to arms this CQ.
619  *
620  * This routine will notify the HBA, by ringing the doorbell, that the
621  * CQEs have been processed. The @arm parameter specifies whether the
622  * queue should be rearmed when ringing the doorbell.
623  **/
624 void
625 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
626 			 uint32_t count, bool arm)
627 {
628 	struct lpfc_register doorbell;
629 
630 	/* sanity check on queue memory */
631 	if (unlikely(!q || (count == 0 && !arm)))
632 		return;
633 
634 	/* ring doorbell for number popped */
635 	doorbell.word0 = 0;
636 	if (arm)
637 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
638 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
639 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
640 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
641 }
642 
643 /**
644  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
645  * @q: The Header Receive Queue to operate on.
646  * @wqe: The Receive Queue Entry to put on the Receive queue.
647  *
648  * This routine will copy the contents of @wqe to the next available entry on
649  * the @q. This function will then ring the Receive Queue Doorbell to signal the
650  * HBA to start processing the Receive Queue Entry. This function returns the
651  * index that the rqe was copied to if successful. If no entries are available
652  * on @q then this function will return -ENOMEM.
653  * The caller is expected to hold the hbalock when calling this routine.
654  **/
655 int
656 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
657 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
658 {
659 	struct lpfc_rqe *temp_hrqe;
660 	struct lpfc_rqe *temp_drqe;
661 	struct lpfc_register doorbell;
662 	int hq_put_index;
663 	int dq_put_index;
664 
665 	/* sanity check on queue memory */
666 	if (unlikely(!hq) || unlikely(!dq))
667 		return -ENOMEM;
668 	hq_put_index = hq->host_index;
669 	dq_put_index = dq->host_index;
670 	temp_hrqe = hq->qe[hq_put_index].rqe;
671 	temp_drqe = dq->qe[dq_put_index].rqe;
672 
673 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
674 		return -EINVAL;
675 	if (hq_put_index != dq_put_index)
676 		return -EINVAL;
677 	/* If the host has not yet processed the next entry then we are done */
678 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
679 		return -EBUSY;
680 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
681 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
682 
683 	/* Update the host index to point to the next slot */
684 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
685 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
686 	hq->RQ_buf_posted++;
687 
688 	/* Ring The Header Receive Queue Doorbell */
689 	if (!(hq->host_index % hq->notify_interval)) {
690 		doorbell.word0 = 0;
691 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
692 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
693 			       hq->notify_interval);
694 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
695 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
696 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
697 			       hq->notify_interval);
698 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
699 			       hq->host_index);
700 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
701 		} else {
702 			return -EINVAL;
703 		}
704 		writel(doorbell.word0, hq->db_regaddr);
705 	}
706 	return hq_put_index;
707 }
708 
709 /**
710  * lpfc_sli4_rq_release - Updates internal hba index for RQ
711  * @q: The Header Receive Queue to operate on.
712  *
713  * This routine will update the HBA index of a queue to reflect consumption of
714  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
715  * consumed an entry the host calls this function to update the queue's
716  * internal pointers. This routine returns the number of entries that were
717  * consumed by the HBA.
718  **/
719 static uint32_t
720 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
721 {
722 	/* sanity check on queue memory */
723 	if (unlikely(!hq) || unlikely(!dq))
724 		return 0;
725 
726 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
727 		return 0;
728 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
729 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
730 	return 1;
731 }
732 
733 /**
734  * lpfc_cmd_iocb - Get next command iocb entry in the ring
735  * @phba: Pointer to HBA context object.
736  * @pring: Pointer to driver SLI ring object.
737  *
738  * This function returns pointer to next command iocb entry
739  * in the command ring. The caller must hold hbalock to prevent
740  * other threads consume the next command iocb.
741  * SLI-2/SLI-3 provide different sized iocbs.
742  **/
743 static inline IOCB_t *
744 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
745 {
746 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
747 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
748 }
749 
750 /**
751  * lpfc_resp_iocb - Get next response iocb entry in the ring
752  * @phba: Pointer to HBA context object.
753  * @pring: Pointer to driver SLI ring object.
754  *
755  * This function returns pointer to next response iocb entry
756  * in the response ring. The caller must hold hbalock to make sure
757  * that no other thread consume the next response iocb.
758  * SLI-2/SLI-3 provide different sized iocbs.
759  **/
760 static inline IOCB_t *
761 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
762 {
763 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
764 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
765 }
766 
767 /**
768  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
769  * @phba: Pointer to HBA context object.
770  *
771  * This function is called with hbalock held. This function
772  * allocates a new driver iocb object from the iocb pool. If the
773  * allocation is successful, it returns pointer to the newly
774  * allocated iocb object else it returns NULL.
775  **/
776 struct lpfc_iocbq *
777 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
778 {
779 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
780 	struct lpfc_iocbq * iocbq = NULL;
781 
782 	lockdep_assert_held(&phba->hbalock);
783 
784 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
785 	if (iocbq)
786 		phba->iocb_cnt++;
787 	if (phba->iocb_cnt > phba->iocb_max)
788 		phba->iocb_max = phba->iocb_cnt;
789 	return iocbq;
790 }
791 
792 /**
793  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
794  * @phba: Pointer to HBA context object.
795  * @xritag: XRI value.
796  *
797  * This function clears the sglq pointer from the array of acive
798  * sglq's. The xritag that is passed in is used to index into the
799  * array. Before the xritag can be used it needs to be adjusted
800  * by subtracting the xribase.
801  *
802  * Returns sglq ponter = success, NULL = Failure.
803  **/
804 struct lpfc_sglq *
805 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
806 {
807 	struct lpfc_sglq *sglq;
808 
809 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
810 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
811 	return sglq;
812 }
813 
814 /**
815  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
816  * @phba: Pointer to HBA context object.
817  * @xritag: XRI value.
818  *
819  * This function returns the sglq pointer from the array of acive
820  * sglq's. The xritag that is passed in is used to index into the
821  * array. Before the xritag can be used it needs to be adjusted
822  * by subtracting the xribase.
823  *
824  * Returns sglq ponter = success, NULL = Failure.
825  **/
826 struct lpfc_sglq *
827 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
828 {
829 	struct lpfc_sglq *sglq;
830 
831 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
832 	return sglq;
833 }
834 
835 /**
836  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
837  * @phba: Pointer to HBA context object.
838  * @xritag: xri used in this exchange.
839  * @rrq: The RRQ to be cleared.
840  *
841  **/
842 void
843 lpfc_clr_rrq_active(struct lpfc_hba *phba,
844 		    uint16_t xritag,
845 		    struct lpfc_node_rrq *rrq)
846 {
847 	struct lpfc_nodelist *ndlp = NULL;
848 
849 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
850 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
851 
852 	/* The target DID could have been swapped (cable swap)
853 	 * we should use the ndlp from the findnode if it is
854 	 * available.
855 	 */
856 	if ((!ndlp) && rrq->ndlp)
857 		ndlp = rrq->ndlp;
858 
859 	if (!ndlp)
860 		goto out;
861 
862 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
863 		rrq->send_rrq = 0;
864 		rrq->xritag = 0;
865 		rrq->rrq_stop_time = 0;
866 	}
867 out:
868 	mempool_free(rrq, phba->rrq_pool);
869 }
870 
871 /**
872  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
873  * @phba: Pointer to HBA context object.
874  *
875  * This function is called with hbalock held. This function
876  * Checks if stop_time (ratov from setting rrq active) has
877  * been reached, if it has and the send_rrq flag is set then
878  * it will call lpfc_send_rrq. If the send_rrq flag is not set
879  * then it will just call the routine to clear the rrq and
880  * free the rrq resource.
881  * The timer is set to the next rrq that is going to expire before
882  * leaving the routine.
883  *
884  **/
885 void
886 lpfc_handle_rrq_active(struct lpfc_hba *phba)
887 {
888 	struct lpfc_node_rrq *rrq;
889 	struct lpfc_node_rrq *nextrrq;
890 	unsigned long next_time;
891 	unsigned long iflags;
892 	LIST_HEAD(send_rrq);
893 
894 	spin_lock_irqsave(&phba->hbalock, iflags);
895 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
896 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
897 	list_for_each_entry_safe(rrq, nextrrq,
898 				 &phba->active_rrq_list, list) {
899 		if (time_after(jiffies, rrq->rrq_stop_time))
900 			list_move(&rrq->list, &send_rrq);
901 		else if (time_before(rrq->rrq_stop_time, next_time))
902 			next_time = rrq->rrq_stop_time;
903 	}
904 	spin_unlock_irqrestore(&phba->hbalock, iflags);
905 	if ((!list_empty(&phba->active_rrq_list)) &&
906 	    (!(phba->pport->load_flag & FC_UNLOADING)))
907 		mod_timer(&phba->rrq_tmr, next_time);
908 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
909 		list_del(&rrq->list);
910 		if (!rrq->send_rrq)
911 			/* this call will free the rrq */
912 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
913 		else if (lpfc_send_rrq(phba, rrq)) {
914 			/* if we send the rrq then the completion handler
915 			*  will clear the bit in the xribitmap.
916 			*/
917 			lpfc_clr_rrq_active(phba, rrq->xritag,
918 					    rrq);
919 		}
920 	}
921 }
922 
923 /**
924  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
925  * @vport: Pointer to vport context object.
926  * @xri: The xri used in the exchange.
927  * @did: The targets DID for this exchange.
928  *
929  * returns NULL = rrq not found in the phba->active_rrq_list.
930  *         rrq = rrq for this xri and target.
931  **/
932 struct lpfc_node_rrq *
933 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
934 {
935 	struct lpfc_hba *phba = vport->phba;
936 	struct lpfc_node_rrq *rrq;
937 	struct lpfc_node_rrq *nextrrq;
938 	unsigned long iflags;
939 
940 	if (phba->sli_rev != LPFC_SLI_REV4)
941 		return NULL;
942 	spin_lock_irqsave(&phba->hbalock, iflags);
943 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
944 		if (rrq->vport == vport && rrq->xritag == xri &&
945 				rrq->nlp_DID == did){
946 			list_del(&rrq->list);
947 			spin_unlock_irqrestore(&phba->hbalock, iflags);
948 			return rrq;
949 		}
950 	}
951 	spin_unlock_irqrestore(&phba->hbalock, iflags);
952 	return NULL;
953 }
954 
955 /**
956  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
957  * @vport: Pointer to vport context object.
958  * @ndlp: Pointer to the lpfc_node_list structure.
959  * If ndlp is NULL Remove all active RRQs for this vport from the
960  * phba->active_rrq_list and clear the rrq.
961  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
962  **/
963 void
964 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
965 
966 {
967 	struct lpfc_hba *phba = vport->phba;
968 	struct lpfc_node_rrq *rrq;
969 	struct lpfc_node_rrq *nextrrq;
970 	unsigned long iflags;
971 	LIST_HEAD(rrq_list);
972 
973 	if (phba->sli_rev != LPFC_SLI_REV4)
974 		return;
975 	if (!ndlp) {
976 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
977 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
978 	}
979 	spin_lock_irqsave(&phba->hbalock, iflags);
980 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
981 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
982 			list_move(&rrq->list, &rrq_list);
983 	spin_unlock_irqrestore(&phba->hbalock, iflags);
984 
985 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
986 		list_del(&rrq->list);
987 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
988 	}
989 }
990 
991 /**
992  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
993  * @phba: Pointer to HBA context object.
994  * @ndlp: Targets nodelist pointer for this exchange.
995  * @xritag the xri in the bitmap to test.
996  *
997  * This function is called with hbalock held. This function
998  * returns 0 = rrq not active for this xri
999  *         1 = rrq is valid for this xri.
1000  **/
1001 int
1002 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1003 			uint16_t  xritag)
1004 {
1005 	lockdep_assert_held(&phba->hbalock);
1006 	if (!ndlp)
1007 		return 0;
1008 	if (!ndlp->active_rrqs_xri_bitmap)
1009 		return 0;
1010 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1011 		return 1;
1012 	else
1013 		return 0;
1014 }
1015 
1016 /**
1017  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1018  * @phba: Pointer to HBA context object.
1019  * @ndlp: nodelist pointer for this target.
1020  * @xritag: xri used in this exchange.
1021  * @rxid: Remote Exchange ID.
1022  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1023  *
1024  * This function takes the hbalock.
1025  * The active bit is always set in the active rrq xri_bitmap even
1026  * if there is no slot avaiable for the other rrq information.
1027  *
1028  * returns 0 rrq actived for this xri
1029  *         < 0 No memory or invalid ndlp.
1030  **/
1031 int
1032 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1033 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1034 {
1035 	unsigned long iflags;
1036 	struct lpfc_node_rrq *rrq;
1037 	int empty;
1038 
1039 	if (!ndlp)
1040 		return -EINVAL;
1041 
1042 	if (!phba->cfg_enable_rrq)
1043 		return -EINVAL;
1044 
1045 	spin_lock_irqsave(&phba->hbalock, iflags);
1046 	if (phba->pport->load_flag & FC_UNLOADING) {
1047 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1048 		goto out;
1049 	}
1050 
1051 	/*
1052 	 * set the active bit even if there is no mem available.
1053 	 */
1054 	if (NLP_CHK_FREE_REQ(ndlp))
1055 		goto out;
1056 
1057 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1058 		goto out;
1059 
1060 	if (!ndlp->active_rrqs_xri_bitmap)
1061 		goto out;
1062 
1063 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1064 		goto out;
1065 
1066 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1067 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1068 	if (!rrq) {
1069 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1070 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1071 				" DID:0x%x Send:%d\n",
1072 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1073 		return -EINVAL;
1074 	}
1075 	if (phba->cfg_enable_rrq == 1)
1076 		rrq->send_rrq = send_rrq;
1077 	else
1078 		rrq->send_rrq = 0;
1079 	rrq->xritag = xritag;
1080 	rrq->rrq_stop_time = jiffies +
1081 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1082 	rrq->ndlp = ndlp;
1083 	rrq->nlp_DID = ndlp->nlp_DID;
1084 	rrq->vport = ndlp->vport;
1085 	rrq->rxid = rxid;
1086 	spin_lock_irqsave(&phba->hbalock, iflags);
1087 	empty = list_empty(&phba->active_rrq_list);
1088 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1089 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1090 	if (empty)
1091 		lpfc_worker_wake_up(phba);
1092 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1093 	return 0;
1094 out:
1095 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1096 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1097 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1098 			" DID:0x%x Send:%d\n",
1099 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1100 	return -EINVAL;
1101 }
1102 
1103 /**
1104  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1105  * @phba: Pointer to HBA context object.
1106  * @piocb: Pointer to the iocbq.
1107  *
1108  * This function is called with the ring lock held. This function
1109  * gets a new driver sglq object from the sglq list. If the
1110  * list is not empty then it is successful, it returns pointer to the newly
1111  * allocated sglq object else it returns NULL.
1112  **/
1113 static struct lpfc_sglq *
1114 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1115 {
1116 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1117 	struct lpfc_sglq *sglq = NULL;
1118 	struct lpfc_sglq *start_sglq = NULL;
1119 	struct lpfc_io_buf *lpfc_cmd;
1120 	struct lpfc_nodelist *ndlp;
1121 	int found = 0;
1122 
1123 	lockdep_assert_held(&phba->hbalock);
1124 
1125 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1126 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1127 		ndlp = lpfc_cmd->rdata->pnode;
1128 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1129 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1130 		ndlp = piocbq->context_un.ndlp;
1131 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1132 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1133 			ndlp = NULL;
1134 		else
1135 			ndlp = piocbq->context_un.ndlp;
1136 	} else {
1137 		ndlp = piocbq->context1;
1138 	}
1139 
1140 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1141 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1142 	start_sglq = sglq;
1143 	while (!found) {
1144 		if (!sglq)
1145 			break;
1146 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1147 		    test_bit(sglq->sli4_lxritag,
1148 		    ndlp->active_rrqs_xri_bitmap)) {
1149 			/* This xri has an rrq outstanding for this DID.
1150 			 * put it back in the list and get another xri.
1151 			 */
1152 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1153 			sglq = NULL;
1154 			list_remove_head(lpfc_els_sgl_list, sglq,
1155 						struct lpfc_sglq, list);
1156 			if (sglq == start_sglq) {
1157 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1158 				sglq = NULL;
1159 				break;
1160 			} else
1161 				continue;
1162 		}
1163 		sglq->ndlp = ndlp;
1164 		found = 1;
1165 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1166 		sglq->state = SGL_ALLOCATED;
1167 	}
1168 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1169 	return sglq;
1170 }
1171 
1172 /**
1173  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1174  * @phba: Pointer to HBA context object.
1175  * @piocb: Pointer to the iocbq.
1176  *
1177  * This function is called with the sgl_list lock held. This function
1178  * gets a new driver sglq object from the sglq list. If the
1179  * list is not empty then it is successful, it returns pointer to the newly
1180  * allocated sglq object else it returns NULL.
1181  **/
1182 struct lpfc_sglq *
1183 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1184 {
1185 	struct list_head *lpfc_nvmet_sgl_list;
1186 	struct lpfc_sglq *sglq = NULL;
1187 
1188 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1189 
1190 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1191 
1192 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1193 	if (!sglq)
1194 		return NULL;
1195 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1196 	sglq->state = SGL_ALLOCATED;
1197 	return sglq;
1198 }
1199 
1200 /**
1201  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1202  * @phba: Pointer to HBA context object.
1203  *
1204  * This function is called with no lock held. This function
1205  * allocates a new driver iocb object from the iocb pool. If the
1206  * allocation is successful, it returns pointer to the newly
1207  * allocated iocb object else it returns NULL.
1208  **/
1209 struct lpfc_iocbq *
1210 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1211 {
1212 	struct lpfc_iocbq * iocbq = NULL;
1213 	unsigned long iflags;
1214 
1215 	spin_lock_irqsave(&phba->hbalock, iflags);
1216 	iocbq = __lpfc_sli_get_iocbq(phba);
1217 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1218 	return iocbq;
1219 }
1220 
1221 /**
1222  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1223  * @phba: Pointer to HBA context object.
1224  * @iocbq: Pointer to driver iocb object.
1225  *
1226  * This function is called with hbalock held to release driver
1227  * iocb object to the iocb pool. The iotag in the iocb object
1228  * does not change for each use of the iocb object. This function
1229  * clears all other fields of the iocb object when it is freed.
1230  * The sqlq structure that holds the xritag and phys and virtual
1231  * mappings for the scatter gather list is retrieved from the
1232  * active array of sglq. The get of the sglq pointer also clears
1233  * the entry in the array. If the status of the IO indiactes that
1234  * this IO was aborted then the sglq entry it put on the
1235  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1236  * IO has good status or fails for any other reason then the sglq
1237  * entry is added to the free list (lpfc_els_sgl_list).
1238  **/
1239 static void
1240 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1241 {
1242 	struct lpfc_sglq *sglq;
1243 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1244 	unsigned long iflag = 0;
1245 	struct lpfc_sli_ring *pring;
1246 
1247 	lockdep_assert_held(&phba->hbalock);
1248 
1249 	if (iocbq->sli4_xritag == NO_XRI)
1250 		sglq = NULL;
1251 	else
1252 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1253 
1254 
1255 	if (sglq)  {
1256 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1257 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1258 					  iflag);
1259 			sglq->state = SGL_FREED;
1260 			sglq->ndlp = NULL;
1261 			list_add_tail(&sglq->list,
1262 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1263 			spin_unlock_irqrestore(
1264 				&phba->sli4_hba.sgl_list_lock, iflag);
1265 			goto out;
1266 		}
1267 
1268 		pring = phba->sli4_hba.els_wq->pring;
1269 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1270 			(sglq->state != SGL_XRI_ABORTED)) {
1271 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1272 					  iflag);
1273 			list_add(&sglq->list,
1274 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1275 			spin_unlock_irqrestore(
1276 				&phba->sli4_hba.sgl_list_lock, iflag);
1277 		} else {
1278 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1279 					  iflag);
1280 			sglq->state = SGL_FREED;
1281 			sglq->ndlp = NULL;
1282 			list_add_tail(&sglq->list,
1283 				      &phba->sli4_hba.lpfc_els_sgl_list);
1284 			spin_unlock_irqrestore(
1285 				&phba->sli4_hba.sgl_list_lock, iflag);
1286 
1287 			/* Check if TXQ queue needs to be serviced */
1288 			if (!list_empty(&pring->txq))
1289 				lpfc_worker_wake_up(phba);
1290 		}
1291 	}
1292 
1293 out:
1294 	/*
1295 	 * Clean all volatile data fields, preserve iotag and node struct.
1296 	 */
1297 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1298 	iocbq->sli4_lxritag = NO_XRI;
1299 	iocbq->sli4_xritag = NO_XRI;
1300 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1301 			      LPFC_IO_NVME_LS);
1302 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1303 }
1304 
1305 
1306 /**
1307  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1308  * @phba: Pointer to HBA context object.
1309  * @iocbq: Pointer to driver iocb object.
1310  *
1311  * This function is called with hbalock held to release driver
1312  * iocb object to the iocb pool. The iotag in the iocb object
1313  * does not change for each use of the iocb object. This function
1314  * clears all other fields of the iocb object when it is freed.
1315  **/
1316 static void
1317 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1318 {
1319 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1320 
1321 	lockdep_assert_held(&phba->hbalock);
1322 
1323 	/*
1324 	 * Clean all volatile data fields, preserve iotag and node struct.
1325 	 */
1326 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1327 	iocbq->sli4_xritag = NO_XRI;
1328 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1329 }
1330 
1331 /**
1332  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1333  * @phba: Pointer to HBA context object.
1334  * @iocbq: Pointer to driver iocb object.
1335  *
1336  * This function is called with hbalock held to release driver
1337  * iocb object to the iocb pool. The iotag in the iocb object
1338  * does not change for each use of the iocb object. This function
1339  * clears all other fields of the iocb object when it is freed.
1340  **/
1341 static void
1342 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1343 {
1344 	lockdep_assert_held(&phba->hbalock);
1345 
1346 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1347 	phba->iocb_cnt--;
1348 }
1349 
1350 /**
1351  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1352  * @phba: Pointer to HBA context object.
1353  * @iocbq: Pointer to driver iocb object.
1354  *
1355  * This function is called with no lock held to release the iocb to
1356  * iocb pool.
1357  **/
1358 void
1359 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1360 {
1361 	unsigned long iflags;
1362 
1363 	/*
1364 	 * Clean all volatile data fields, preserve iotag and node struct.
1365 	 */
1366 	spin_lock_irqsave(&phba->hbalock, iflags);
1367 	__lpfc_sli_release_iocbq(phba, iocbq);
1368 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1369 }
1370 
1371 /**
1372  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1373  * @phba: Pointer to HBA context object.
1374  * @iocblist: List of IOCBs.
1375  * @ulpstatus: ULP status in IOCB command field.
1376  * @ulpWord4: ULP word-4 in IOCB command field.
1377  *
1378  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1379  * on the list by invoking the complete callback function associated with the
1380  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1381  * fields.
1382  **/
1383 void
1384 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1385 		      uint32_t ulpstatus, uint32_t ulpWord4)
1386 {
1387 	struct lpfc_iocbq *piocb;
1388 
1389 	while (!list_empty(iocblist)) {
1390 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1391 		if (!piocb->iocb_cmpl)
1392 			lpfc_sli_release_iocbq(phba, piocb);
1393 		else {
1394 			piocb->iocb.ulpStatus = ulpstatus;
1395 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1396 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1397 		}
1398 	}
1399 	return;
1400 }
1401 
1402 /**
1403  * lpfc_sli_iocb_cmd_type - Get the iocb type
1404  * @iocb_cmnd: iocb command code.
1405  *
1406  * This function is called by ring event handler function to get the iocb type.
1407  * This function translates the iocb command to an iocb command type used to
1408  * decide the final disposition of each completed IOCB.
1409  * The function returns
1410  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1411  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1412  * LPFC_ABORT_IOCB   if it is an abort iocb
1413  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1414  *
1415  * The caller is not required to hold any lock.
1416  **/
1417 static lpfc_iocb_type
1418 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1419 {
1420 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1421 
1422 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1423 		return 0;
1424 
1425 	switch (iocb_cmnd) {
1426 	case CMD_XMIT_SEQUENCE_CR:
1427 	case CMD_XMIT_SEQUENCE_CX:
1428 	case CMD_XMIT_BCAST_CN:
1429 	case CMD_XMIT_BCAST_CX:
1430 	case CMD_ELS_REQUEST_CR:
1431 	case CMD_ELS_REQUEST_CX:
1432 	case CMD_CREATE_XRI_CR:
1433 	case CMD_CREATE_XRI_CX:
1434 	case CMD_GET_RPI_CN:
1435 	case CMD_XMIT_ELS_RSP_CX:
1436 	case CMD_GET_RPI_CR:
1437 	case CMD_FCP_IWRITE_CR:
1438 	case CMD_FCP_IWRITE_CX:
1439 	case CMD_FCP_IREAD_CR:
1440 	case CMD_FCP_IREAD_CX:
1441 	case CMD_FCP_ICMND_CR:
1442 	case CMD_FCP_ICMND_CX:
1443 	case CMD_FCP_TSEND_CX:
1444 	case CMD_FCP_TRSP_CX:
1445 	case CMD_FCP_TRECEIVE_CX:
1446 	case CMD_FCP_AUTO_TRSP_CX:
1447 	case CMD_ADAPTER_MSG:
1448 	case CMD_ADAPTER_DUMP:
1449 	case CMD_XMIT_SEQUENCE64_CR:
1450 	case CMD_XMIT_SEQUENCE64_CX:
1451 	case CMD_XMIT_BCAST64_CN:
1452 	case CMD_XMIT_BCAST64_CX:
1453 	case CMD_ELS_REQUEST64_CR:
1454 	case CMD_ELS_REQUEST64_CX:
1455 	case CMD_FCP_IWRITE64_CR:
1456 	case CMD_FCP_IWRITE64_CX:
1457 	case CMD_FCP_IREAD64_CR:
1458 	case CMD_FCP_IREAD64_CX:
1459 	case CMD_FCP_ICMND64_CR:
1460 	case CMD_FCP_ICMND64_CX:
1461 	case CMD_FCP_TSEND64_CX:
1462 	case CMD_FCP_TRSP64_CX:
1463 	case CMD_FCP_TRECEIVE64_CX:
1464 	case CMD_GEN_REQUEST64_CR:
1465 	case CMD_GEN_REQUEST64_CX:
1466 	case CMD_XMIT_ELS_RSP64_CX:
1467 	case DSSCMD_IWRITE64_CR:
1468 	case DSSCMD_IWRITE64_CX:
1469 	case DSSCMD_IREAD64_CR:
1470 	case DSSCMD_IREAD64_CX:
1471 		type = LPFC_SOL_IOCB;
1472 		break;
1473 	case CMD_ABORT_XRI_CN:
1474 	case CMD_ABORT_XRI_CX:
1475 	case CMD_CLOSE_XRI_CN:
1476 	case CMD_CLOSE_XRI_CX:
1477 	case CMD_XRI_ABORTED_CX:
1478 	case CMD_ABORT_MXRI64_CN:
1479 	case CMD_XMIT_BLS_RSP64_CX:
1480 		type = LPFC_ABORT_IOCB;
1481 		break;
1482 	case CMD_RCV_SEQUENCE_CX:
1483 	case CMD_RCV_ELS_REQ_CX:
1484 	case CMD_RCV_SEQUENCE64_CX:
1485 	case CMD_RCV_ELS_REQ64_CX:
1486 	case CMD_ASYNC_STATUS:
1487 	case CMD_IOCB_RCV_SEQ64_CX:
1488 	case CMD_IOCB_RCV_ELS64_CX:
1489 	case CMD_IOCB_RCV_CONT64_CX:
1490 	case CMD_IOCB_RET_XRI64_CX:
1491 		type = LPFC_UNSOL_IOCB;
1492 		break;
1493 	case CMD_IOCB_XMIT_MSEQ64_CR:
1494 	case CMD_IOCB_XMIT_MSEQ64_CX:
1495 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1496 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1497 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1498 	case CMD_IOCB_ABORT_EXTENDED_CN:
1499 	case CMD_IOCB_RET_HBQE64_CN:
1500 	case CMD_IOCB_FCP_IBIDIR64_CR:
1501 	case CMD_IOCB_FCP_IBIDIR64_CX:
1502 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1503 	case CMD_IOCB_LOGENTRY_CN:
1504 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1505 		printk("%s - Unhandled SLI-3 Command x%x\n",
1506 				__func__, iocb_cmnd);
1507 		type = LPFC_UNKNOWN_IOCB;
1508 		break;
1509 	default:
1510 		type = LPFC_UNKNOWN_IOCB;
1511 		break;
1512 	}
1513 
1514 	return type;
1515 }
1516 
1517 /**
1518  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1519  * @phba: Pointer to HBA context object.
1520  *
1521  * This function is called from SLI initialization code
1522  * to configure every ring of the HBA's SLI interface. The
1523  * caller is not required to hold any lock. This function issues
1524  * a config_ring mailbox command for each ring.
1525  * This function returns zero if successful else returns a negative
1526  * error code.
1527  **/
1528 static int
1529 lpfc_sli_ring_map(struct lpfc_hba *phba)
1530 {
1531 	struct lpfc_sli *psli = &phba->sli;
1532 	LPFC_MBOXQ_t *pmb;
1533 	MAILBOX_t *pmbox;
1534 	int i, rc, ret = 0;
1535 
1536 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1537 	if (!pmb)
1538 		return -ENOMEM;
1539 	pmbox = &pmb->u.mb;
1540 	phba->link_state = LPFC_INIT_MBX_CMDS;
1541 	for (i = 0; i < psli->num_rings; i++) {
1542 		lpfc_config_ring(phba, i, pmb);
1543 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1544 		if (rc != MBX_SUCCESS) {
1545 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1546 					"0446 Adapter failed to init (%d), "
1547 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1548 					"ring %d\n",
1549 					rc, pmbox->mbxCommand,
1550 					pmbox->mbxStatus, i);
1551 			phba->link_state = LPFC_HBA_ERROR;
1552 			ret = -ENXIO;
1553 			break;
1554 		}
1555 	}
1556 	mempool_free(pmb, phba->mbox_mem_pool);
1557 	return ret;
1558 }
1559 
1560 /**
1561  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1562  * @phba: Pointer to HBA context object.
1563  * @pring: Pointer to driver SLI ring object.
1564  * @piocb: Pointer to the driver iocb object.
1565  *
1566  * This function is called with hbalock held. The function adds the
1567  * new iocb to txcmplq of the given ring. This function always returns
1568  * 0. If this function is called for ELS ring, this function checks if
1569  * there is a vport associated with the ELS command. This function also
1570  * starts els_tmofunc timer if this is an ELS command.
1571  **/
1572 static int
1573 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1574 			struct lpfc_iocbq *piocb)
1575 {
1576 	lockdep_assert_held(&phba->hbalock);
1577 
1578 	BUG_ON(!piocb);
1579 
1580 	list_add_tail(&piocb->list, &pring->txcmplq);
1581 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1582 	pring->txcmplq_cnt++;
1583 
1584 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1585 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1586 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1587 		BUG_ON(!piocb->vport);
1588 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1589 			mod_timer(&piocb->vport->els_tmofunc,
1590 				  jiffies +
1591 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  * lpfc_sli_ringtx_get - Get first element of the txq
1599  * @phba: Pointer to HBA context object.
1600  * @pring: Pointer to driver SLI ring object.
1601  *
1602  * This function is called with hbalock held to get next
1603  * iocb in txq of the given ring. If there is any iocb in
1604  * the txq, the function returns first iocb in the list after
1605  * removing the iocb from the list, else it returns NULL.
1606  **/
1607 struct lpfc_iocbq *
1608 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1609 {
1610 	struct lpfc_iocbq *cmd_iocb;
1611 
1612 	lockdep_assert_held(&phba->hbalock);
1613 
1614 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1615 	return cmd_iocb;
1616 }
1617 
1618 /**
1619  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1620  * @phba: Pointer to HBA context object.
1621  * @pring: Pointer to driver SLI ring object.
1622  *
1623  * This function is called with hbalock held and the caller must post the
1624  * iocb without releasing the lock. If the caller releases the lock,
1625  * iocb slot returned by the function is not guaranteed to be available.
1626  * The function returns pointer to the next available iocb slot if there
1627  * is available slot in the ring, else it returns NULL.
1628  * If the get index of the ring is ahead of the put index, the function
1629  * will post an error attention event to the worker thread to take the
1630  * HBA to offline state.
1631  **/
1632 static IOCB_t *
1633 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1634 {
1635 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1636 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1637 
1638 	lockdep_assert_held(&phba->hbalock);
1639 
1640 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1641 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1642 		pring->sli.sli3.next_cmdidx = 0;
1643 
1644 	if (unlikely(pring->sli.sli3.local_getidx ==
1645 		pring->sli.sli3.next_cmdidx)) {
1646 
1647 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1648 
1649 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1650 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1651 					"0315 Ring %d issue: portCmdGet %d "
1652 					"is bigger than cmd ring %d\n",
1653 					pring->ringno,
1654 					pring->sli.sli3.local_getidx,
1655 					max_cmd_idx);
1656 
1657 			phba->link_state = LPFC_HBA_ERROR;
1658 			/*
1659 			 * All error attention handlers are posted to
1660 			 * worker thread
1661 			 */
1662 			phba->work_ha |= HA_ERATT;
1663 			phba->work_hs = HS_FFER3;
1664 
1665 			lpfc_worker_wake_up(phba);
1666 
1667 			return NULL;
1668 		}
1669 
1670 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1671 			return NULL;
1672 	}
1673 
1674 	return lpfc_cmd_iocb(phba, pring);
1675 }
1676 
1677 /**
1678  * lpfc_sli_next_iotag - Get an iotag for the iocb
1679  * @phba: Pointer to HBA context object.
1680  * @iocbq: Pointer to driver iocb object.
1681  *
1682  * This function gets an iotag for the iocb. If there is no unused iotag and
1683  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1684  * array and assigns a new iotag.
1685  * The function returns the allocated iotag if successful, else returns zero.
1686  * Zero is not a valid iotag.
1687  * The caller is not required to hold any lock.
1688  **/
1689 uint16_t
1690 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1691 {
1692 	struct lpfc_iocbq **new_arr;
1693 	struct lpfc_iocbq **old_arr;
1694 	size_t new_len;
1695 	struct lpfc_sli *psli = &phba->sli;
1696 	uint16_t iotag;
1697 
1698 	spin_lock_irq(&phba->hbalock);
1699 	iotag = psli->last_iotag;
1700 	if(++iotag < psli->iocbq_lookup_len) {
1701 		psli->last_iotag = iotag;
1702 		psli->iocbq_lookup[iotag] = iocbq;
1703 		spin_unlock_irq(&phba->hbalock);
1704 		iocbq->iotag = iotag;
1705 		return iotag;
1706 	} else if (psli->iocbq_lookup_len < (0xffff
1707 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1708 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1709 		spin_unlock_irq(&phba->hbalock);
1710 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1711 				  GFP_KERNEL);
1712 		if (new_arr) {
1713 			spin_lock_irq(&phba->hbalock);
1714 			old_arr = psli->iocbq_lookup;
1715 			if (new_len <= psli->iocbq_lookup_len) {
1716 				/* highly unprobable case */
1717 				kfree(new_arr);
1718 				iotag = psli->last_iotag;
1719 				if(++iotag < psli->iocbq_lookup_len) {
1720 					psli->last_iotag = iotag;
1721 					psli->iocbq_lookup[iotag] = iocbq;
1722 					spin_unlock_irq(&phba->hbalock);
1723 					iocbq->iotag = iotag;
1724 					return iotag;
1725 				}
1726 				spin_unlock_irq(&phba->hbalock);
1727 				return 0;
1728 			}
1729 			if (psli->iocbq_lookup)
1730 				memcpy(new_arr, old_arr,
1731 				       ((psli->last_iotag  + 1) *
1732 					sizeof (struct lpfc_iocbq *)));
1733 			psli->iocbq_lookup = new_arr;
1734 			psli->iocbq_lookup_len = new_len;
1735 			psli->last_iotag = iotag;
1736 			psli->iocbq_lookup[iotag] = iocbq;
1737 			spin_unlock_irq(&phba->hbalock);
1738 			iocbq->iotag = iotag;
1739 			kfree(old_arr);
1740 			return iotag;
1741 		}
1742 	} else
1743 		spin_unlock_irq(&phba->hbalock);
1744 
1745 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1746 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1747 			psli->last_iotag);
1748 
1749 	return 0;
1750 }
1751 
1752 /**
1753  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1754  * @phba: Pointer to HBA context object.
1755  * @pring: Pointer to driver SLI ring object.
1756  * @iocb: Pointer to iocb slot in the ring.
1757  * @nextiocb: Pointer to driver iocb object which need to be
1758  *            posted to firmware.
1759  *
1760  * This function is called with hbalock held to post a new iocb to
1761  * the firmware. This function copies the new iocb to ring iocb slot and
1762  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1763  * a completion call back for this iocb else the function will free the
1764  * iocb object.
1765  **/
1766 static void
1767 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1768 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1769 {
1770 	lockdep_assert_held(&phba->hbalock);
1771 	/*
1772 	 * Set up an iotag
1773 	 */
1774 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1775 
1776 
1777 	if (pring->ringno == LPFC_ELS_RING) {
1778 		lpfc_debugfs_slow_ring_trc(phba,
1779 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1780 			*(((uint32_t *) &nextiocb->iocb) + 4),
1781 			*(((uint32_t *) &nextiocb->iocb) + 6),
1782 			*(((uint32_t *) &nextiocb->iocb) + 7));
1783 	}
1784 
1785 	/*
1786 	 * Issue iocb command to adapter
1787 	 */
1788 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1789 	wmb();
1790 	pring->stats.iocb_cmd++;
1791 
1792 	/*
1793 	 * If there is no completion routine to call, we can release the
1794 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1795 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1796 	 */
1797 	if (nextiocb->iocb_cmpl)
1798 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1799 	else
1800 		__lpfc_sli_release_iocbq(phba, nextiocb);
1801 
1802 	/*
1803 	 * Let the HBA know what IOCB slot will be the next one the
1804 	 * driver will put a command into.
1805 	 */
1806 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1807 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1808 }
1809 
1810 /**
1811  * lpfc_sli_update_full_ring - Update the chip attention register
1812  * @phba: Pointer to HBA context object.
1813  * @pring: Pointer to driver SLI ring object.
1814  *
1815  * The caller is not required to hold any lock for calling this function.
1816  * This function updates the chip attention bits for the ring to inform firmware
1817  * that there are pending work to be done for this ring and requests an
1818  * interrupt when there is space available in the ring. This function is
1819  * called when the driver is unable to post more iocbs to the ring due
1820  * to unavailability of space in the ring.
1821  **/
1822 static void
1823 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1824 {
1825 	int ringno = pring->ringno;
1826 
1827 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1828 
1829 	wmb();
1830 
1831 	/*
1832 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1833 	 * The HBA will tell us when an IOCB entry is available.
1834 	 */
1835 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1836 	readl(phba->CAregaddr); /* flush */
1837 
1838 	pring->stats.iocb_cmd_full++;
1839 }
1840 
1841 /**
1842  * lpfc_sli_update_ring - Update chip attention register
1843  * @phba: Pointer to HBA context object.
1844  * @pring: Pointer to driver SLI ring object.
1845  *
1846  * This function updates the chip attention register bit for the
1847  * given ring to inform HBA that there is more work to be done
1848  * in this ring. The caller is not required to hold any lock.
1849  **/
1850 static void
1851 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1852 {
1853 	int ringno = pring->ringno;
1854 
1855 	/*
1856 	 * Tell the HBA that there is work to do in this ring.
1857 	 */
1858 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1859 		wmb();
1860 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1861 		readl(phba->CAregaddr); /* flush */
1862 	}
1863 }
1864 
1865 /**
1866  * lpfc_sli_resume_iocb - Process iocbs in the txq
1867  * @phba: Pointer to HBA context object.
1868  * @pring: Pointer to driver SLI ring object.
1869  *
1870  * This function is called with hbalock held to post pending iocbs
1871  * in the txq to the firmware. This function is called when driver
1872  * detects space available in the ring.
1873  **/
1874 static void
1875 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1876 {
1877 	IOCB_t *iocb;
1878 	struct lpfc_iocbq *nextiocb;
1879 
1880 	lockdep_assert_held(&phba->hbalock);
1881 
1882 	/*
1883 	 * Check to see if:
1884 	 *  (a) there is anything on the txq to send
1885 	 *  (b) link is up
1886 	 *  (c) link attention events can be processed (fcp ring only)
1887 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1888 	 */
1889 
1890 	if (lpfc_is_link_up(phba) &&
1891 	    (!list_empty(&pring->txq)) &&
1892 	    (pring->ringno != LPFC_FCP_RING ||
1893 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1894 
1895 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1896 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1897 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1898 
1899 		if (iocb)
1900 			lpfc_sli_update_ring(phba, pring);
1901 		else
1902 			lpfc_sli_update_full_ring(phba, pring);
1903 	}
1904 
1905 	return;
1906 }
1907 
1908 /**
1909  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1910  * @phba: Pointer to HBA context object.
1911  * @hbqno: HBQ number.
1912  *
1913  * This function is called with hbalock held to get the next
1914  * available slot for the given HBQ. If there is free slot
1915  * available for the HBQ it will return pointer to the next available
1916  * HBQ entry else it will return NULL.
1917  **/
1918 static struct lpfc_hbq_entry *
1919 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1920 {
1921 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1922 
1923 	lockdep_assert_held(&phba->hbalock);
1924 
1925 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1926 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1927 		hbqp->next_hbqPutIdx = 0;
1928 
1929 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1930 		uint32_t raw_index = phba->hbq_get[hbqno];
1931 		uint32_t getidx = le32_to_cpu(raw_index);
1932 
1933 		hbqp->local_hbqGetIdx = getidx;
1934 
1935 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1936 			lpfc_printf_log(phba, KERN_ERR,
1937 					LOG_SLI | LOG_VPORT,
1938 					"1802 HBQ %d: local_hbqGetIdx "
1939 					"%u is > than hbqp->entry_count %u\n",
1940 					hbqno, hbqp->local_hbqGetIdx,
1941 					hbqp->entry_count);
1942 
1943 			phba->link_state = LPFC_HBA_ERROR;
1944 			return NULL;
1945 		}
1946 
1947 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1948 			return NULL;
1949 	}
1950 
1951 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1952 			hbqp->hbqPutIdx;
1953 }
1954 
1955 /**
1956  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1957  * @phba: Pointer to HBA context object.
1958  *
1959  * This function is called with no lock held to free all the
1960  * hbq buffers while uninitializing the SLI interface. It also
1961  * frees the HBQ buffers returned by the firmware but not yet
1962  * processed by the upper layers.
1963  **/
1964 void
1965 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1966 {
1967 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1968 	struct hbq_dmabuf *hbq_buf;
1969 	unsigned long flags;
1970 	int i, hbq_count;
1971 
1972 	hbq_count = lpfc_sli_hbq_count();
1973 	/* Return all memory used by all HBQs */
1974 	spin_lock_irqsave(&phba->hbalock, flags);
1975 	for (i = 0; i < hbq_count; ++i) {
1976 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1977 				&phba->hbqs[i].hbq_buffer_list, list) {
1978 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1979 			list_del(&hbq_buf->dbuf.list);
1980 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1981 		}
1982 		phba->hbqs[i].buffer_count = 0;
1983 	}
1984 
1985 	/* Mark the HBQs not in use */
1986 	phba->hbq_in_use = 0;
1987 	spin_unlock_irqrestore(&phba->hbalock, flags);
1988 }
1989 
1990 /**
1991  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1992  * @phba: Pointer to HBA context object.
1993  * @hbqno: HBQ number.
1994  * @hbq_buf: Pointer to HBQ buffer.
1995  *
1996  * This function is called with the hbalock held to post a
1997  * hbq buffer to the firmware. If the function finds an empty
1998  * slot in the HBQ, it will post the buffer. The function will return
1999  * pointer to the hbq entry if it successfully post the buffer
2000  * else it will return NULL.
2001  **/
2002 static int
2003 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2004 			 struct hbq_dmabuf *hbq_buf)
2005 {
2006 	lockdep_assert_held(&phba->hbalock);
2007 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2008 }
2009 
2010 /**
2011  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2012  * @phba: Pointer to HBA context object.
2013  * @hbqno: HBQ number.
2014  * @hbq_buf: Pointer to HBQ buffer.
2015  *
2016  * This function is called with the hbalock held to post a hbq buffer to the
2017  * firmware. If the function finds an empty slot in the HBQ, it will post the
2018  * buffer and place it on the hbq_buffer_list. The function will return zero if
2019  * it successfully post the buffer else it will return an error.
2020  **/
2021 static int
2022 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2023 			    struct hbq_dmabuf *hbq_buf)
2024 {
2025 	struct lpfc_hbq_entry *hbqe;
2026 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2027 
2028 	lockdep_assert_held(&phba->hbalock);
2029 	/* Get next HBQ entry slot to use */
2030 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2031 	if (hbqe) {
2032 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2033 
2034 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2035 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2036 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2037 		hbqe->bde.tus.f.bdeFlags = 0;
2038 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2039 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2040 				/* Sync SLIM */
2041 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2042 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2043 				/* flush */
2044 		readl(phba->hbq_put + hbqno);
2045 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2046 		return 0;
2047 	} else
2048 		return -ENOMEM;
2049 }
2050 
2051 /**
2052  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2053  * @phba: Pointer to HBA context object.
2054  * @hbqno: HBQ number.
2055  * @hbq_buf: Pointer to HBQ buffer.
2056  *
2057  * This function is called with the hbalock held to post an RQE to the SLI4
2058  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2059  * the hbq_buffer_list and return zero, otherwise it will return an error.
2060  **/
2061 static int
2062 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2063 			    struct hbq_dmabuf *hbq_buf)
2064 {
2065 	int rc;
2066 	struct lpfc_rqe hrqe;
2067 	struct lpfc_rqe drqe;
2068 	struct lpfc_queue *hrq;
2069 	struct lpfc_queue *drq;
2070 
2071 	if (hbqno != LPFC_ELS_HBQ)
2072 		return 1;
2073 	hrq = phba->sli4_hba.hdr_rq;
2074 	drq = phba->sli4_hba.dat_rq;
2075 
2076 	lockdep_assert_held(&phba->hbalock);
2077 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2078 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2079 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2080 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2081 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2082 	if (rc < 0)
2083 		return rc;
2084 	hbq_buf->tag = (rc | (hbqno << 16));
2085 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2086 	return 0;
2087 }
2088 
2089 /* HBQ for ELS and CT traffic. */
2090 static struct lpfc_hbq_init lpfc_els_hbq = {
2091 	.rn = 1,
2092 	.entry_count = 256,
2093 	.mask_count = 0,
2094 	.profile = 0,
2095 	.ring_mask = (1 << LPFC_ELS_RING),
2096 	.buffer_count = 0,
2097 	.init_count = 40,
2098 	.add_count = 40,
2099 };
2100 
2101 /* Array of HBQs */
2102 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2103 	&lpfc_els_hbq,
2104 };
2105 
2106 /**
2107  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2108  * @phba: Pointer to HBA context object.
2109  * @hbqno: HBQ number.
2110  * @count: Number of HBQ buffers to be posted.
2111  *
2112  * This function is called with no lock held to post more hbq buffers to the
2113  * given HBQ. The function returns the number of HBQ buffers successfully
2114  * posted.
2115  **/
2116 static int
2117 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2118 {
2119 	uint32_t i, posted = 0;
2120 	unsigned long flags;
2121 	struct hbq_dmabuf *hbq_buffer;
2122 	LIST_HEAD(hbq_buf_list);
2123 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2124 		return 0;
2125 
2126 	if ((phba->hbqs[hbqno].buffer_count + count) >
2127 	    lpfc_hbq_defs[hbqno]->entry_count)
2128 		count = lpfc_hbq_defs[hbqno]->entry_count -
2129 					phba->hbqs[hbqno].buffer_count;
2130 	if (!count)
2131 		return 0;
2132 	/* Allocate HBQ entries */
2133 	for (i = 0; i < count; i++) {
2134 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2135 		if (!hbq_buffer)
2136 			break;
2137 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2138 	}
2139 	/* Check whether HBQ is still in use */
2140 	spin_lock_irqsave(&phba->hbalock, flags);
2141 	if (!phba->hbq_in_use)
2142 		goto err;
2143 	while (!list_empty(&hbq_buf_list)) {
2144 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2145 				 dbuf.list);
2146 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2147 				      (hbqno << 16));
2148 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2149 			phba->hbqs[hbqno].buffer_count++;
2150 			posted++;
2151 		} else
2152 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2153 	}
2154 	spin_unlock_irqrestore(&phba->hbalock, flags);
2155 	return posted;
2156 err:
2157 	spin_unlock_irqrestore(&phba->hbalock, flags);
2158 	while (!list_empty(&hbq_buf_list)) {
2159 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2160 				 dbuf.list);
2161 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2162 	}
2163 	return 0;
2164 }
2165 
2166 /**
2167  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2168  * @phba: Pointer to HBA context object.
2169  * @qno: HBQ number.
2170  *
2171  * This function posts more buffers to the HBQ. This function
2172  * is called with no lock held. The function returns the number of HBQ entries
2173  * successfully allocated.
2174  **/
2175 int
2176 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2177 {
2178 	if (phba->sli_rev == LPFC_SLI_REV4)
2179 		return 0;
2180 	else
2181 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2182 					 lpfc_hbq_defs[qno]->add_count);
2183 }
2184 
2185 /**
2186  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2187  * @phba: Pointer to HBA context object.
2188  * @qno:  HBQ queue number.
2189  *
2190  * This function is called from SLI initialization code path with
2191  * no lock held to post initial HBQ buffers to firmware. The
2192  * function returns the number of HBQ entries successfully allocated.
2193  **/
2194 static int
2195 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2196 {
2197 	if (phba->sli_rev == LPFC_SLI_REV4)
2198 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2199 					lpfc_hbq_defs[qno]->entry_count);
2200 	else
2201 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2202 					 lpfc_hbq_defs[qno]->init_count);
2203 }
2204 
2205 /**
2206  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2207  * @phba: Pointer to HBA context object.
2208  * @hbqno: HBQ number.
2209  *
2210  * This function removes the first hbq buffer on an hbq list and returns a
2211  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2212  **/
2213 static struct hbq_dmabuf *
2214 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2215 {
2216 	struct lpfc_dmabuf *d_buf;
2217 
2218 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2219 	if (!d_buf)
2220 		return NULL;
2221 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2222 }
2223 
2224 /**
2225  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2226  * @phba: Pointer to HBA context object.
2227  * @hbqno: HBQ number.
2228  *
2229  * This function removes the first RQ buffer on an RQ buffer list and returns a
2230  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2231  **/
2232 static struct rqb_dmabuf *
2233 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2234 {
2235 	struct lpfc_dmabuf *h_buf;
2236 	struct lpfc_rqb *rqbp;
2237 
2238 	rqbp = hrq->rqbp;
2239 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2240 			 struct lpfc_dmabuf, list);
2241 	if (!h_buf)
2242 		return NULL;
2243 	rqbp->buffer_count--;
2244 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2245 }
2246 
2247 /**
2248  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2249  * @phba: Pointer to HBA context object.
2250  * @tag: Tag of the hbq buffer.
2251  *
2252  * This function searches for the hbq buffer associated with the given tag in
2253  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2254  * otherwise it returns NULL.
2255  **/
2256 static struct hbq_dmabuf *
2257 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2258 {
2259 	struct lpfc_dmabuf *d_buf;
2260 	struct hbq_dmabuf *hbq_buf;
2261 	uint32_t hbqno;
2262 
2263 	hbqno = tag >> 16;
2264 	if (hbqno >= LPFC_MAX_HBQS)
2265 		return NULL;
2266 
2267 	spin_lock_irq(&phba->hbalock);
2268 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2269 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2270 		if (hbq_buf->tag == tag) {
2271 			spin_unlock_irq(&phba->hbalock);
2272 			return hbq_buf;
2273 		}
2274 	}
2275 	spin_unlock_irq(&phba->hbalock);
2276 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2277 			"1803 Bad hbq tag. Data: x%x x%x\n",
2278 			tag, phba->hbqs[tag >> 16].buffer_count);
2279 	return NULL;
2280 }
2281 
2282 /**
2283  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2284  * @phba: Pointer to HBA context object.
2285  * @hbq_buffer: Pointer to HBQ buffer.
2286  *
2287  * This function is called with hbalock. This function gives back
2288  * the hbq buffer to firmware. If the HBQ does not have space to
2289  * post the buffer, it will free the buffer.
2290  **/
2291 void
2292 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2293 {
2294 	uint32_t hbqno;
2295 
2296 	if (hbq_buffer) {
2297 		hbqno = hbq_buffer->tag >> 16;
2298 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2299 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2300 	}
2301 }
2302 
2303 /**
2304  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2305  * @mbxCommand: mailbox command code.
2306  *
2307  * This function is called by the mailbox event handler function to verify
2308  * that the completed mailbox command is a legitimate mailbox command. If the
2309  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2310  * and the mailbox event handler will take the HBA offline.
2311  **/
2312 static int
2313 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2314 {
2315 	uint8_t ret;
2316 
2317 	switch (mbxCommand) {
2318 	case MBX_LOAD_SM:
2319 	case MBX_READ_NV:
2320 	case MBX_WRITE_NV:
2321 	case MBX_WRITE_VPARMS:
2322 	case MBX_RUN_BIU_DIAG:
2323 	case MBX_INIT_LINK:
2324 	case MBX_DOWN_LINK:
2325 	case MBX_CONFIG_LINK:
2326 	case MBX_CONFIG_RING:
2327 	case MBX_RESET_RING:
2328 	case MBX_READ_CONFIG:
2329 	case MBX_READ_RCONFIG:
2330 	case MBX_READ_SPARM:
2331 	case MBX_READ_STATUS:
2332 	case MBX_READ_RPI:
2333 	case MBX_READ_XRI:
2334 	case MBX_READ_REV:
2335 	case MBX_READ_LNK_STAT:
2336 	case MBX_REG_LOGIN:
2337 	case MBX_UNREG_LOGIN:
2338 	case MBX_CLEAR_LA:
2339 	case MBX_DUMP_MEMORY:
2340 	case MBX_DUMP_CONTEXT:
2341 	case MBX_RUN_DIAGS:
2342 	case MBX_RESTART:
2343 	case MBX_UPDATE_CFG:
2344 	case MBX_DOWN_LOAD:
2345 	case MBX_DEL_LD_ENTRY:
2346 	case MBX_RUN_PROGRAM:
2347 	case MBX_SET_MASK:
2348 	case MBX_SET_VARIABLE:
2349 	case MBX_UNREG_D_ID:
2350 	case MBX_KILL_BOARD:
2351 	case MBX_CONFIG_FARP:
2352 	case MBX_BEACON:
2353 	case MBX_LOAD_AREA:
2354 	case MBX_RUN_BIU_DIAG64:
2355 	case MBX_CONFIG_PORT:
2356 	case MBX_READ_SPARM64:
2357 	case MBX_READ_RPI64:
2358 	case MBX_REG_LOGIN64:
2359 	case MBX_READ_TOPOLOGY:
2360 	case MBX_WRITE_WWN:
2361 	case MBX_SET_DEBUG:
2362 	case MBX_LOAD_EXP_ROM:
2363 	case MBX_ASYNCEVT_ENABLE:
2364 	case MBX_REG_VPI:
2365 	case MBX_UNREG_VPI:
2366 	case MBX_HEARTBEAT:
2367 	case MBX_PORT_CAPABILITIES:
2368 	case MBX_PORT_IOV_CONTROL:
2369 	case MBX_SLI4_CONFIG:
2370 	case MBX_SLI4_REQ_FTRS:
2371 	case MBX_REG_FCFI:
2372 	case MBX_UNREG_FCFI:
2373 	case MBX_REG_VFI:
2374 	case MBX_UNREG_VFI:
2375 	case MBX_INIT_VPI:
2376 	case MBX_INIT_VFI:
2377 	case MBX_RESUME_RPI:
2378 	case MBX_READ_EVENT_LOG_STATUS:
2379 	case MBX_READ_EVENT_LOG:
2380 	case MBX_SECURITY_MGMT:
2381 	case MBX_AUTH_PORT:
2382 	case MBX_ACCESS_VDATA:
2383 		ret = mbxCommand;
2384 		break;
2385 	default:
2386 		ret = MBX_SHUTDOWN;
2387 		break;
2388 	}
2389 	return ret;
2390 }
2391 
2392 /**
2393  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2394  * @phba: Pointer to HBA context object.
2395  * @pmboxq: Pointer to mailbox command.
2396  *
2397  * This is completion handler function for mailbox commands issued from
2398  * lpfc_sli_issue_mbox_wait function. This function is called by the
2399  * mailbox event handler function with no lock held. This function
2400  * will wake up thread waiting on the wait queue pointed by context1
2401  * of the mailbox.
2402  **/
2403 void
2404 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2405 {
2406 	unsigned long drvr_flag;
2407 	struct completion *pmbox_done;
2408 
2409 	/*
2410 	 * If pmbox_done is empty, the driver thread gave up waiting and
2411 	 * continued running.
2412 	 */
2413 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2414 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2415 	pmbox_done = (struct completion *)pmboxq->context3;
2416 	if (pmbox_done)
2417 		complete(pmbox_done);
2418 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2419 	return;
2420 }
2421 
2422 
2423 /**
2424  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2425  * @phba: Pointer to HBA context object.
2426  * @pmb: Pointer to mailbox object.
2427  *
2428  * This function is the default mailbox completion handler. It
2429  * frees the memory resources associated with the completed mailbox
2430  * command. If the completed command is a REG_LOGIN mailbox command,
2431  * this function will issue a UREG_LOGIN to re-claim the RPI.
2432  **/
2433 void
2434 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2435 {
2436 	struct lpfc_vport  *vport = pmb->vport;
2437 	struct lpfc_dmabuf *mp;
2438 	struct lpfc_nodelist *ndlp;
2439 	struct Scsi_Host *shost;
2440 	uint16_t rpi, vpi;
2441 	int rc;
2442 
2443 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2444 
2445 	if (mp) {
2446 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2447 		kfree(mp);
2448 	}
2449 
2450 	/*
2451 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2452 	 * is in re-discovery driver need to cleanup the RPI.
2453 	 */
2454 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2455 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2456 	    !pmb->u.mb.mbxStatus) {
2457 		rpi = pmb->u.mb.un.varWords[0];
2458 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2459 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2460 		pmb->vport = vport;
2461 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2462 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2463 		if (rc != MBX_NOT_FINISHED)
2464 			return;
2465 	}
2466 
2467 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2468 		!(phba->pport->load_flag & FC_UNLOADING) &&
2469 		!pmb->u.mb.mbxStatus) {
2470 		shost = lpfc_shost_from_vport(vport);
2471 		spin_lock_irq(shost->host_lock);
2472 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2473 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2474 		spin_unlock_irq(shost->host_lock);
2475 	}
2476 
2477 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2478 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2479 		lpfc_nlp_put(ndlp);
2480 		pmb->ctx_buf = NULL;
2481 		pmb->ctx_ndlp = NULL;
2482 	}
2483 
2484 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2485 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2486 
2487 		/* Check to see if there are any deferred events to process */
2488 		if (ndlp) {
2489 			lpfc_printf_vlog(
2490 				vport,
2491 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2492 				"1438 UNREG cmpl deferred mbox x%x "
2493 				"on NPort x%x Data: x%x x%x %p\n",
2494 				ndlp->nlp_rpi, ndlp->nlp_DID,
2495 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2496 
2497 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2498 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2499 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2500 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2501 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2502 			} else {
2503 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2504 			}
2505 		}
2506 		pmb->ctx_ndlp = NULL;
2507 	}
2508 
2509 	/* Check security permission status on INIT_LINK mailbox command */
2510 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2511 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2512 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2513 				"2860 SLI authentication is required "
2514 				"for INIT_LINK but has not done yet\n");
2515 
2516 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2517 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2518 	else
2519 		mempool_free(pmb, phba->mbox_mem_pool);
2520 }
2521  /**
2522  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2523  * @phba: Pointer to HBA context object.
2524  * @pmb: Pointer to mailbox object.
2525  *
2526  * This function is the unreg rpi mailbox completion handler. It
2527  * frees the memory resources associated with the completed mailbox
2528  * command. An additional refrenece is put on the ndlp to prevent
2529  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2530  * the unreg mailbox command completes, this routine puts the
2531  * reference back.
2532  *
2533  **/
2534 void
2535 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2536 {
2537 	struct lpfc_vport  *vport = pmb->vport;
2538 	struct lpfc_nodelist *ndlp;
2539 
2540 	ndlp = pmb->ctx_ndlp;
2541 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2542 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2543 		    (bf_get(lpfc_sli_intf_if_type,
2544 		     &phba->sli4_hba.sli_intf) >=
2545 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2546 			if (ndlp) {
2547 				lpfc_printf_vlog(
2548 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2549 					 "0010 UNREG_LOGIN vpi:%x "
2550 					 "rpi:%x DID:%x defer x%x flg x%x "
2551 					 "map:%x %p\n",
2552 					 vport->vpi, ndlp->nlp_rpi,
2553 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2554 					 ndlp->nlp_flag,
2555 					 ndlp->nlp_usg_map, ndlp);
2556 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2557 				lpfc_nlp_put(ndlp);
2558 
2559 				/* Check to see if there are any deferred
2560 				 * events to process
2561 				 */
2562 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2563 				    (ndlp->nlp_defer_did !=
2564 				    NLP_EVT_NOTHING_PENDING)) {
2565 					lpfc_printf_vlog(
2566 						vport, KERN_INFO, LOG_DISCOVERY,
2567 						"4111 UNREG cmpl deferred "
2568 						"clr x%x on "
2569 						"NPort x%x Data: x%x %p\n",
2570 						ndlp->nlp_rpi, ndlp->nlp_DID,
2571 						ndlp->nlp_defer_did, ndlp);
2572 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2573 					ndlp->nlp_defer_did =
2574 						NLP_EVT_NOTHING_PENDING;
2575 					lpfc_issue_els_plogi(
2576 						vport, ndlp->nlp_DID, 0);
2577 				} else {
2578 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2579 				}
2580 			}
2581 		}
2582 	}
2583 
2584 	mempool_free(pmb, phba->mbox_mem_pool);
2585 }
2586 
2587 /**
2588  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2589  * @phba: Pointer to HBA context object.
2590  *
2591  * This function is called with no lock held. This function processes all
2592  * the completed mailbox commands and gives it to upper layers. The interrupt
2593  * service routine processes mailbox completion interrupt and adds completed
2594  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2595  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2596  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2597  * function returns the mailbox commands to the upper layer by calling the
2598  * completion handler function of each mailbox.
2599  **/
2600 int
2601 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2602 {
2603 	MAILBOX_t *pmbox;
2604 	LPFC_MBOXQ_t *pmb;
2605 	int rc;
2606 	LIST_HEAD(cmplq);
2607 
2608 	phba->sli.slistat.mbox_event++;
2609 
2610 	/* Get all completed mailboxe buffers into the cmplq */
2611 	spin_lock_irq(&phba->hbalock);
2612 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2613 	spin_unlock_irq(&phba->hbalock);
2614 
2615 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2616 	do {
2617 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2618 		if (pmb == NULL)
2619 			break;
2620 
2621 		pmbox = &pmb->u.mb;
2622 
2623 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2624 			if (pmb->vport) {
2625 				lpfc_debugfs_disc_trc(pmb->vport,
2626 					LPFC_DISC_TRC_MBOX_VPORT,
2627 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2628 					(uint32_t)pmbox->mbxCommand,
2629 					pmbox->un.varWords[0],
2630 					pmbox->un.varWords[1]);
2631 			}
2632 			else {
2633 				lpfc_debugfs_disc_trc(phba->pport,
2634 					LPFC_DISC_TRC_MBOX,
2635 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2636 					(uint32_t)pmbox->mbxCommand,
2637 					pmbox->un.varWords[0],
2638 					pmbox->un.varWords[1]);
2639 			}
2640 		}
2641 
2642 		/*
2643 		 * It is a fatal error if unknown mbox command completion.
2644 		 */
2645 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2646 		    MBX_SHUTDOWN) {
2647 			/* Unknown mailbox command compl */
2648 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2649 					"(%d):0323 Unknown Mailbox command "
2650 					"x%x (x%x/x%x) Cmpl\n",
2651 					pmb->vport ? pmb->vport->vpi : 0,
2652 					pmbox->mbxCommand,
2653 					lpfc_sli_config_mbox_subsys_get(phba,
2654 									pmb),
2655 					lpfc_sli_config_mbox_opcode_get(phba,
2656 									pmb));
2657 			phba->link_state = LPFC_HBA_ERROR;
2658 			phba->work_hs = HS_FFER3;
2659 			lpfc_handle_eratt(phba);
2660 			continue;
2661 		}
2662 
2663 		if (pmbox->mbxStatus) {
2664 			phba->sli.slistat.mbox_stat_err++;
2665 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2666 				/* Mbox cmd cmpl error - RETRYing */
2667 				lpfc_printf_log(phba, KERN_INFO,
2668 					LOG_MBOX | LOG_SLI,
2669 					"(%d):0305 Mbox cmd cmpl "
2670 					"error - RETRYing Data: x%x "
2671 					"(x%x/x%x) x%x x%x x%x\n",
2672 					pmb->vport ? pmb->vport->vpi : 0,
2673 					pmbox->mbxCommand,
2674 					lpfc_sli_config_mbox_subsys_get(phba,
2675 									pmb),
2676 					lpfc_sli_config_mbox_opcode_get(phba,
2677 									pmb),
2678 					pmbox->mbxStatus,
2679 					pmbox->un.varWords[0],
2680 					pmb->vport->port_state);
2681 				pmbox->mbxStatus = 0;
2682 				pmbox->mbxOwner = OWN_HOST;
2683 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2684 				if (rc != MBX_NOT_FINISHED)
2685 					continue;
2686 			}
2687 		}
2688 
2689 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2690 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2691 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2692 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2693 				"x%x x%x x%x\n",
2694 				pmb->vport ? pmb->vport->vpi : 0,
2695 				pmbox->mbxCommand,
2696 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2697 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2698 				pmb->mbox_cmpl,
2699 				*((uint32_t *) pmbox),
2700 				pmbox->un.varWords[0],
2701 				pmbox->un.varWords[1],
2702 				pmbox->un.varWords[2],
2703 				pmbox->un.varWords[3],
2704 				pmbox->un.varWords[4],
2705 				pmbox->un.varWords[5],
2706 				pmbox->un.varWords[6],
2707 				pmbox->un.varWords[7],
2708 				pmbox->un.varWords[8],
2709 				pmbox->un.varWords[9],
2710 				pmbox->un.varWords[10]);
2711 
2712 		if (pmb->mbox_cmpl)
2713 			pmb->mbox_cmpl(phba,pmb);
2714 	} while (1);
2715 	return 0;
2716 }
2717 
2718 /**
2719  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2720  * @phba: Pointer to HBA context object.
2721  * @pring: Pointer to driver SLI ring object.
2722  * @tag: buffer tag.
2723  *
2724  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2725  * is set in the tag the buffer is posted for a particular exchange,
2726  * the function will return the buffer without replacing the buffer.
2727  * If the buffer is for unsolicited ELS or CT traffic, this function
2728  * returns the buffer and also posts another buffer to the firmware.
2729  **/
2730 static struct lpfc_dmabuf *
2731 lpfc_sli_get_buff(struct lpfc_hba *phba,
2732 		  struct lpfc_sli_ring *pring,
2733 		  uint32_t tag)
2734 {
2735 	struct hbq_dmabuf *hbq_entry;
2736 
2737 	if (tag & QUE_BUFTAG_BIT)
2738 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2739 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2740 	if (!hbq_entry)
2741 		return NULL;
2742 	return &hbq_entry->dbuf;
2743 }
2744 
2745 /**
2746  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2747  * @phba: Pointer to HBA context object.
2748  * @pring: Pointer to driver SLI ring object.
2749  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2750  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2751  * @fch_type: the type for the first frame of the sequence.
2752  *
2753  * This function is called with no lock held. This function uses the r_ctl and
2754  * type of the received sequence to find the correct callback function to call
2755  * to process the sequence.
2756  **/
2757 static int
2758 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2759 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2760 			 uint32_t fch_type)
2761 {
2762 	int i;
2763 
2764 	switch (fch_type) {
2765 	case FC_TYPE_NVME:
2766 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2767 		return 1;
2768 	default:
2769 		break;
2770 	}
2771 
2772 	/* unSolicited Responses */
2773 	if (pring->prt[0].profile) {
2774 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2775 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2776 									saveq);
2777 		return 1;
2778 	}
2779 	/* We must search, based on rctl / type
2780 	   for the right routine */
2781 	for (i = 0; i < pring->num_mask; i++) {
2782 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2783 		    (pring->prt[i].type == fch_type)) {
2784 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2785 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2786 						(phba, pring, saveq);
2787 			return 1;
2788 		}
2789 	}
2790 	return 0;
2791 }
2792 
2793 /**
2794  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2795  * @phba: Pointer to HBA context object.
2796  * @pring: Pointer to driver SLI ring object.
2797  * @saveq: Pointer to the unsolicited iocb.
2798  *
2799  * This function is called with no lock held by the ring event handler
2800  * when there is an unsolicited iocb posted to the response ring by the
2801  * firmware. This function gets the buffer associated with the iocbs
2802  * and calls the event handler for the ring. This function handles both
2803  * qring buffers and hbq buffers.
2804  * When the function returns 1 the caller can free the iocb object otherwise
2805  * upper layer functions will free the iocb objects.
2806  **/
2807 static int
2808 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2809 			    struct lpfc_iocbq *saveq)
2810 {
2811 	IOCB_t           * irsp;
2812 	WORD5            * w5p;
2813 	uint32_t           Rctl, Type;
2814 	struct lpfc_iocbq *iocbq;
2815 	struct lpfc_dmabuf *dmzbuf;
2816 
2817 	irsp = &(saveq->iocb);
2818 
2819 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2820 		if (pring->lpfc_sli_rcv_async_status)
2821 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2822 		else
2823 			lpfc_printf_log(phba,
2824 					KERN_WARNING,
2825 					LOG_SLI,
2826 					"0316 Ring %d handler: unexpected "
2827 					"ASYNC_STATUS iocb received evt_code "
2828 					"0x%x\n",
2829 					pring->ringno,
2830 					irsp->un.asyncstat.evt_code);
2831 		return 1;
2832 	}
2833 
2834 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2835 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2836 		if (irsp->ulpBdeCount > 0) {
2837 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2838 					irsp->un.ulpWord[3]);
2839 			lpfc_in_buf_free(phba, dmzbuf);
2840 		}
2841 
2842 		if (irsp->ulpBdeCount > 1) {
2843 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2844 					irsp->unsli3.sli3Words[3]);
2845 			lpfc_in_buf_free(phba, dmzbuf);
2846 		}
2847 
2848 		if (irsp->ulpBdeCount > 2) {
2849 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2850 				irsp->unsli3.sli3Words[7]);
2851 			lpfc_in_buf_free(phba, dmzbuf);
2852 		}
2853 
2854 		return 1;
2855 	}
2856 
2857 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2858 		if (irsp->ulpBdeCount != 0) {
2859 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2860 						irsp->un.ulpWord[3]);
2861 			if (!saveq->context2)
2862 				lpfc_printf_log(phba,
2863 					KERN_ERR,
2864 					LOG_SLI,
2865 					"0341 Ring %d Cannot find buffer for "
2866 					"an unsolicited iocb. tag 0x%x\n",
2867 					pring->ringno,
2868 					irsp->un.ulpWord[3]);
2869 		}
2870 		if (irsp->ulpBdeCount == 2) {
2871 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2872 						irsp->unsli3.sli3Words[7]);
2873 			if (!saveq->context3)
2874 				lpfc_printf_log(phba,
2875 					KERN_ERR,
2876 					LOG_SLI,
2877 					"0342 Ring %d Cannot find buffer for an"
2878 					" unsolicited iocb. tag 0x%x\n",
2879 					pring->ringno,
2880 					irsp->unsli3.sli3Words[7]);
2881 		}
2882 		list_for_each_entry(iocbq, &saveq->list, list) {
2883 			irsp = &(iocbq->iocb);
2884 			if (irsp->ulpBdeCount != 0) {
2885 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2886 							irsp->un.ulpWord[3]);
2887 				if (!iocbq->context2)
2888 					lpfc_printf_log(phba,
2889 						KERN_ERR,
2890 						LOG_SLI,
2891 						"0343 Ring %d Cannot find "
2892 						"buffer for an unsolicited iocb"
2893 						". tag 0x%x\n", pring->ringno,
2894 						irsp->un.ulpWord[3]);
2895 			}
2896 			if (irsp->ulpBdeCount == 2) {
2897 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2898 						irsp->unsli3.sli3Words[7]);
2899 				if (!iocbq->context3)
2900 					lpfc_printf_log(phba,
2901 						KERN_ERR,
2902 						LOG_SLI,
2903 						"0344 Ring %d Cannot find "
2904 						"buffer for an unsolicited "
2905 						"iocb. tag 0x%x\n",
2906 						pring->ringno,
2907 						irsp->unsli3.sli3Words[7]);
2908 			}
2909 		}
2910 	}
2911 	if (irsp->ulpBdeCount != 0 &&
2912 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2913 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2914 		int found = 0;
2915 
2916 		/* search continue save q for same XRI */
2917 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2918 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2919 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2920 				list_add_tail(&saveq->list, &iocbq->list);
2921 				found = 1;
2922 				break;
2923 			}
2924 		}
2925 		if (!found)
2926 			list_add_tail(&saveq->clist,
2927 				      &pring->iocb_continue_saveq);
2928 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2929 			list_del_init(&iocbq->clist);
2930 			saveq = iocbq;
2931 			irsp = &(saveq->iocb);
2932 		} else
2933 			return 0;
2934 	}
2935 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2936 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2937 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2938 		Rctl = FC_RCTL_ELS_REQ;
2939 		Type = FC_TYPE_ELS;
2940 	} else {
2941 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2942 		Rctl = w5p->hcsw.Rctl;
2943 		Type = w5p->hcsw.Type;
2944 
2945 		/* Firmware Workaround */
2946 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2947 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2948 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2949 			Rctl = FC_RCTL_ELS_REQ;
2950 			Type = FC_TYPE_ELS;
2951 			w5p->hcsw.Rctl = Rctl;
2952 			w5p->hcsw.Type = Type;
2953 		}
2954 	}
2955 
2956 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2957 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2958 				"0313 Ring %d handler: unexpected Rctl x%x "
2959 				"Type x%x received\n",
2960 				pring->ringno, Rctl, Type);
2961 
2962 	return 1;
2963 }
2964 
2965 /**
2966  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2967  * @phba: Pointer to HBA context object.
2968  * @pring: Pointer to driver SLI ring object.
2969  * @prspiocb: Pointer to response iocb object.
2970  *
2971  * This function looks up the iocb_lookup table to get the command iocb
2972  * corresponding to the given response iocb using the iotag of the
2973  * response iocb. This function is called with the hbalock held
2974  * for sli3 devices or the ring_lock for sli4 devices.
2975  * This function returns the command iocb object if it finds the command
2976  * iocb else returns NULL.
2977  **/
2978 static struct lpfc_iocbq *
2979 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2980 		      struct lpfc_sli_ring *pring,
2981 		      struct lpfc_iocbq *prspiocb)
2982 {
2983 	struct lpfc_iocbq *cmd_iocb = NULL;
2984 	uint16_t iotag;
2985 	lockdep_assert_held(&phba->hbalock);
2986 
2987 	iotag = prspiocb->iocb.ulpIoTag;
2988 
2989 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2990 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2991 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2992 			/* remove from txcmpl queue list */
2993 			list_del_init(&cmd_iocb->list);
2994 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2995 			pring->txcmplq_cnt--;
2996 			return cmd_iocb;
2997 		}
2998 	}
2999 
3000 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3001 			"0317 iotag x%x is out of "
3002 			"range: max iotag x%x wd0 x%x\n",
3003 			iotag, phba->sli.last_iotag,
3004 			*(((uint32_t *) &prspiocb->iocb) + 7));
3005 	return NULL;
3006 }
3007 
3008 /**
3009  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3010  * @phba: Pointer to HBA context object.
3011  * @pring: Pointer to driver SLI ring object.
3012  * @iotag: IOCB tag.
3013  *
3014  * This function looks up the iocb_lookup table to get the command iocb
3015  * corresponding to the given iotag. This function is called with the
3016  * hbalock held.
3017  * This function returns the command iocb object if it finds the command
3018  * iocb else returns NULL.
3019  **/
3020 static struct lpfc_iocbq *
3021 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3022 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3023 {
3024 	struct lpfc_iocbq *cmd_iocb = NULL;
3025 
3026 	lockdep_assert_held(&phba->hbalock);
3027 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3028 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3029 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3030 			/* remove from txcmpl queue list */
3031 			list_del_init(&cmd_iocb->list);
3032 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3033 			pring->txcmplq_cnt--;
3034 			return cmd_iocb;
3035 		}
3036 	}
3037 
3038 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3039 			"0372 iotag x%x lookup error: max iotag (x%x) "
3040 			"iocb_flag x%x\n",
3041 			iotag, phba->sli.last_iotag,
3042 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3043 	return NULL;
3044 }
3045 
3046 /**
3047  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3048  * @phba: Pointer to HBA context object.
3049  * @pring: Pointer to driver SLI ring object.
3050  * @saveq: Pointer to the response iocb to be processed.
3051  *
3052  * This function is called by the ring event handler for non-fcp
3053  * rings when there is a new response iocb in the response ring.
3054  * The caller is not required to hold any locks. This function
3055  * gets the command iocb associated with the response iocb and
3056  * calls the completion handler for the command iocb. If there
3057  * is no completion handler, the function will free the resources
3058  * associated with command iocb. If the response iocb is for
3059  * an already aborted command iocb, the status of the completion
3060  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3061  * This function always returns 1.
3062  **/
3063 static int
3064 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3065 			  struct lpfc_iocbq *saveq)
3066 {
3067 	struct lpfc_iocbq *cmdiocbp;
3068 	int rc = 1;
3069 	unsigned long iflag;
3070 
3071 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
3072 	if (phba->sli_rev == LPFC_SLI_REV4)
3073 		spin_lock_irqsave(&pring->ring_lock, iflag);
3074 	else
3075 		spin_lock_irqsave(&phba->hbalock, iflag);
3076 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3077 	if (phba->sli_rev == LPFC_SLI_REV4)
3078 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3079 	else
3080 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3081 
3082 	if (cmdiocbp) {
3083 		if (cmdiocbp->iocb_cmpl) {
3084 			/*
3085 			 * If an ELS command failed send an event to mgmt
3086 			 * application.
3087 			 */
3088 			if (saveq->iocb.ulpStatus &&
3089 			     (pring->ringno == LPFC_ELS_RING) &&
3090 			     (cmdiocbp->iocb.ulpCommand ==
3091 				CMD_ELS_REQUEST64_CR))
3092 				lpfc_send_els_failure_event(phba,
3093 					cmdiocbp, saveq);
3094 
3095 			/*
3096 			 * Post all ELS completions to the worker thread.
3097 			 * All other are passed to the completion callback.
3098 			 */
3099 			if (pring->ringno == LPFC_ELS_RING) {
3100 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3101 				    (cmdiocbp->iocb_flag &
3102 							LPFC_DRIVER_ABORTED)) {
3103 					spin_lock_irqsave(&phba->hbalock,
3104 							  iflag);
3105 					cmdiocbp->iocb_flag &=
3106 						~LPFC_DRIVER_ABORTED;
3107 					spin_unlock_irqrestore(&phba->hbalock,
3108 							       iflag);
3109 					saveq->iocb.ulpStatus =
3110 						IOSTAT_LOCAL_REJECT;
3111 					saveq->iocb.un.ulpWord[4] =
3112 						IOERR_SLI_ABORTED;
3113 
3114 					/* Firmware could still be in progress
3115 					 * of DMAing payload, so don't free data
3116 					 * buffer till after a hbeat.
3117 					 */
3118 					spin_lock_irqsave(&phba->hbalock,
3119 							  iflag);
3120 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3121 					spin_unlock_irqrestore(&phba->hbalock,
3122 							       iflag);
3123 				}
3124 				if (phba->sli_rev == LPFC_SLI_REV4) {
3125 					if (saveq->iocb_flag &
3126 					    LPFC_EXCHANGE_BUSY) {
3127 						/* Set cmdiocb flag for the
3128 						 * exchange busy so sgl (xri)
3129 						 * will not be released until
3130 						 * the abort xri is received
3131 						 * from hba.
3132 						 */
3133 						spin_lock_irqsave(
3134 							&phba->hbalock, iflag);
3135 						cmdiocbp->iocb_flag |=
3136 							LPFC_EXCHANGE_BUSY;
3137 						spin_unlock_irqrestore(
3138 							&phba->hbalock, iflag);
3139 					}
3140 					if (cmdiocbp->iocb_flag &
3141 					    LPFC_DRIVER_ABORTED) {
3142 						/*
3143 						 * Clear LPFC_DRIVER_ABORTED
3144 						 * bit in case it was driver
3145 						 * initiated abort.
3146 						 */
3147 						spin_lock_irqsave(
3148 							&phba->hbalock, iflag);
3149 						cmdiocbp->iocb_flag &=
3150 							~LPFC_DRIVER_ABORTED;
3151 						spin_unlock_irqrestore(
3152 							&phba->hbalock, iflag);
3153 						cmdiocbp->iocb.ulpStatus =
3154 							IOSTAT_LOCAL_REJECT;
3155 						cmdiocbp->iocb.un.ulpWord[4] =
3156 							IOERR_ABORT_REQUESTED;
3157 						/*
3158 						 * For SLI4, irsiocb contains
3159 						 * NO_XRI in sli_xritag, it
3160 						 * shall not affect releasing
3161 						 * sgl (xri) process.
3162 						 */
3163 						saveq->iocb.ulpStatus =
3164 							IOSTAT_LOCAL_REJECT;
3165 						saveq->iocb.un.ulpWord[4] =
3166 							IOERR_SLI_ABORTED;
3167 						spin_lock_irqsave(
3168 							&phba->hbalock, iflag);
3169 						saveq->iocb_flag |=
3170 							LPFC_DELAY_MEM_FREE;
3171 						spin_unlock_irqrestore(
3172 							&phba->hbalock, iflag);
3173 					}
3174 				}
3175 			}
3176 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3177 		} else
3178 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3179 	} else {
3180 		/*
3181 		 * Unknown initiating command based on the response iotag.
3182 		 * This could be the case on the ELS ring because of
3183 		 * lpfc_els_abort().
3184 		 */
3185 		if (pring->ringno != LPFC_ELS_RING) {
3186 			/*
3187 			 * Ring <ringno> handler: unexpected completion IoTag
3188 			 * <IoTag>
3189 			 */
3190 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3191 					 "0322 Ring %d handler: "
3192 					 "unexpected completion IoTag x%x "
3193 					 "Data: x%x x%x x%x x%x\n",
3194 					 pring->ringno,
3195 					 saveq->iocb.ulpIoTag,
3196 					 saveq->iocb.ulpStatus,
3197 					 saveq->iocb.un.ulpWord[4],
3198 					 saveq->iocb.ulpCommand,
3199 					 saveq->iocb.ulpContext);
3200 		}
3201 	}
3202 
3203 	return rc;
3204 }
3205 
3206 /**
3207  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3208  * @phba: Pointer to HBA context object.
3209  * @pring: Pointer to driver SLI ring object.
3210  *
3211  * This function is called from the iocb ring event handlers when
3212  * put pointer is ahead of the get pointer for a ring. This function signal
3213  * an error attention condition to the worker thread and the worker
3214  * thread will transition the HBA to offline state.
3215  **/
3216 static void
3217 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3218 {
3219 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3220 	/*
3221 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3222 	 * rsp ring <portRspMax>
3223 	 */
3224 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3225 			"0312 Ring %d handler: portRspPut %d "
3226 			"is bigger than rsp ring %d\n",
3227 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3228 			pring->sli.sli3.numRiocb);
3229 
3230 	phba->link_state = LPFC_HBA_ERROR;
3231 
3232 	/*
3233 	 * All error attention handlers are posted to
3234 	 * worker thread
3235 	 */
3236 	phba->work_ha |= HA_ERATT;
3237 	phba->work_hs = HS_FFER3;
3238 
3239 	lpfc_worker_wake_up(phba);
3240 
3241 	return;
3242 }
3243 
3244 /**
3245  * lpfc_poll_eratt - Error attention polling timer timeout handler
3246  * @ptr: Pointer to address of HBA context object.
3247  *
3248  * This function is invoked by the Error Attention polling timer when the
3249  * timer times out. It will check the SLI Error Attention register for
3250  * possible attention events. If so, it will post an Error Attention event
3251  * and wake up worker thread to process it. Otherwise, it will set up the
3252  * Error Attention polling timer for the next poll.
3253  **/
3254 void lpfc_poll_eratt(struct timer_list *t)
3255 {
3256 	struct lpfc_hba *phba;
3257 	uint32_t eratt = 0;
3258 	uint64_t sli_intr, cnt;
3259 
3260 	phba = from_timer(phba, t, eratt_poll);
3261 
3262 	/* Here we will also keep track of interrupts per sec of the hba */
3263 	sli_intr = phba->sli.slistat.sli_intr;
3264 
3265 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3266 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3267 			sli_intr);
3268 	else
3269 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3270 
3271 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3272 	do_div(cnt, phba->eratt_poll_interval);
3273 	phba->sli.slistat.sli_ips = cnt;
3274 
3275 	phba->sli.slistat.sli_prev_intr = sli_intr;
3276 
3277 	/* Check chip HA register for error event */
3278 	eratt = lpfc_sli_check_eratt(phba);
3279 
3280 	if (eratt)
3281 		/* Tell the worker thread there is work to do */
3282 		lpfc_worker_wake_up(phba);
3283 	else
3284 		/* Restart the timer for next eratt poll */
3285 		mod_timer(&phba->eratt_poll,
3286 			  jiffies +
3287 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3288 	return;
3289 }
3290 
3291 
3292 /**
3293  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3294  * @phba: Pointer to HBA context object.
3295  * @pring: Pointer to driver SLI ring object.
3296  * @mask: Host attention register mask for this ring.
3297  *
3298  * This function is called from the interrupt context when there is a ring
3299  * event for the fcp ring. The caller does not hold any lock.
3300  * The function processes each response iocb in the response ring until it
3301  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3302  * LE bit set. The function will call the completion handler of the command iocb
3303  * if the response iocb indicates a completion for a command iocb or it is
3304  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3305  * function if this is an unsolicited iocb.
3306  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3307  * to check it explicitly.
3308  */
3309 int
3310 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3311 				struct lpfc_sli_ring *pring, uint32_t mask)
3312 {
3313 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3314 	IOCB_t *irsp = NULL;
3315 	IOCB_t *entry = NULL;
3316 	struct lpfc_iocbq *cmdiocbq = NULL;
3317 	struct lpfc_iocbq rspiocbq;
3318 	uint32_t status;
3319 	uint32_t portRspPut, portRspMax;
3320 	int rc = 1;
3321 	lpfc_iocb_type type;
3322 	unsigned long iflag;
3323 	uint32_t rsp_cmpl = 0;
3324 
3325 	spin_lock_irqsave(&phba->hbalock, iflag);
3326 	pring->stats.iocb_event++;
3327 
3328 	/*
3329 	 * The next available response entry should never exceed the maximum
3330 	 * entries.  If it does, treat it as an adapter hardware error.
3331 	 */
3332 	portRspMax = pring->sli.sli3.numRiocb;
3333 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3334 	if (unlikely(portRspPut >= portRspMax)) {
3335 		lpfc_sli_rsp_pointers_error(phba, pring);
3336 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3337 		return 1;
3338 	}
3339 	if (phba->fcp_ring_in_use) {
3340 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3341 		return 1;
3342 	} else
3343 		phba->fcp_ring_in_use = 1;
3344 
3345 	rmb();
3346 	while (pring->sli.sli3.rspidx != portRspPut) {
3347 		/*
3348 		 * Fetch an entry off the ring and copy it into a local data
3349 		 * structure.  The copy involves a byte-swap since the
3350 		 * network byte order and pci byte orders are different.
3351 		 */
3352 		entry = lpfc_resp_iocb(phba, pring);
3353 		phba->last_completion_time = jiffies;
3354 
3355 		if (++pring->sli.sli3.rspidx >= portRspMax)
3356 			pring->sli.sli3.rspidx = 0;
3357 
3358 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3359 				      (uint32_t *) &rspiocbq.iocb,
3360 				      phba->iocb_rsp_size);
3361 		INIT_LIST_HEAD(&(rspiocbq.list));
3362 		irsp = &rspiocbq.iocb;
3363 
3364 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3365 		pring->stats.iocb_rsp++;
3366 		rsp_cmpl++;
3367 
3368 		if (unlikely(irsp->ulpStatus)) {
3369 			/*
3370 			 * If resource errors reported from HBA, reduce
3371 			 * queuedepths of the SCSI device.
3372 			 */
3373 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3374 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3375 			     IOERR_NO_RESOURCES)) {
3376 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3377 				phba->lpfc_rampdown_queue_depth(phba);
3378 				spin_lock_irqsave(&phba->hbalock, iflag);
3379 			}
3380 
3381 			/* Rsp ring <ringno> error: IOCB */
3382 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3383 					"0336 Rsp Ring %d error: IOCB Data: "
3384 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3385 					pring->ringno,
3386 					irsp->un.ulpWord[0],
3387 					irsp->un.ulpWord[1],
3388 					irsp->un.ulpWord[2],
3389 					irsp->un.ulpWord[3],
3390 					irsp->un.ulpWord[4],
3391 					irsp->un.ulpWord[5],
3392 					*(uint32_t *)&irsp->un1,
3393 					*((uint32_t *)&irsp->un1 + 1));
3394 		}
3395 
3396 		switch (type) {
3397 		case LPFC_ABORT_IOCB:
3398 		case LPFC_SOL_IOCB:
3399 			/*
3400 			 * Idle exchange closed via ABTS from port.  No iocb
3401 			 * resources need to be recovered.
3402 			 */
3403 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3404 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3405 						"0333 IOCB cmd 0x%x"
3406 						" processed. Skipping"
3407 						" completion\n",
3408 						irsp->ulpCommand);
3409 				break;
3410 			}
3411 
3412 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3413 							 &rspiocbq);
3414 			if (unlikely(!cmdiocbq))
3415 				break;
3416 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3417 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3418 			if (cmdiocbq->iocb_cmpl) {
3419 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3420 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3421 						      &rspiocbq);
3422 				spin_lock_irqsave(&phba->hbalock, iflag);
3423 			}
3424 			break;
3425 		case LPFC_UNSOL_IOCB:
3426 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3427 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3428 			spin_lock_irqsave(&phba->hbalock, iflag);
3429 			break;
3430 		default:
3431 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3432 				char adaptermsg[LPFC_MAX_ADPTMSG];
3433 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3434 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3435 				       MAX_MSG_DATA);
3436 				dev_warn(&((phba->pcidev)->dev),
3437 					 "lpfc%d: %s\n",
3438 					 phba->brd_no, adaptermsg);
3439 			} else {
3440 				/* Unknown IOCB command */
3441 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3442 						"0334 Unknown IOCB command "
3443 						"Data: x%x, x%x x%x x%x x%x\n",
3444 						type, irsp->ulpCommand,
3445 						irsp->ulpStatus,
3446 						irsp->ulpIoTag,
3447 						irsp->ulpContext);
3448 			}
3449 			break;
3450 		}
3451 
3452 		/*
3453 		 * The response IOCB has been processed.  Update the ring
3454 		 * pointer in SLIM.  If the port response put pointer has not
3455 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3456 		 * response put pointer.
3457 		 */
3458 		writel(pring->sli.sli3.rspidx,
3459 			&phba->host_gp[pring->ringno].rspGetInx);
3460 
3461 		if (pring->sli.sli3.rspidx == portRspPut)
3462 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3463 	}
3464 
3465 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3466 		pring->stats.iocb_rsp_full++;
3467 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3468 		writel(status, phba->CAregaddr);
3469 		readl(phba->CAregaddr);
3470 	}
3471 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3472 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3473 		pring->stats.iocb_cmd_empty++;
3474 
3475 		/* Force update of the local copy of cmdGetInx */
3476 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3477 		lpfc_sli_resume_iocb(phba, pring);
3478 
3479 		if ((pring->lpfc_sli_cmd_available))
3480 			(pring->lpfc_sli_cmd_available) (phba, pring);
3481 
3482 	}
3483 
3484 	phba->fcp_ring_in_use = 0;
3485 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3486 	return rc;
3487 }
3488 
3489 /**
3490  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3491  * @phba: Pointer to HBA context object.
3492  * @pring: Pointer to driver SLI ring object.
3493  * @rspiocbp: Pointer to driver response IOCB object.
3494  *
3495  * This function is called from the worker thread when there is a slow-path
3496  * response IOCB to process. This function chains all the response iocbs until
3497  * seeing the iocb with the LE bit set. The function will call
3498  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3499  * completion of a command iocb. The function will call the
3500  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3501  * The function frees the resources or calls the completion handler if this
3502  * iocb is an abort completion. The function returns NULL when the response
3503  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3504  * this function shall chain the iocb on to the iocb_continueq and return the
3505  * response iocb passed in.
3506  **/
3507 static struct lpfc_iocbq *
3508 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3509 			struct lpfc_iocbq *rspiocbp)
3510 {
3511 	struct lpfc_iocbq *saveq;
3512 	struct lpfc_iocbq *cmdiocbp;
3513 	struct lpfc_iocbq *next_iocb;
3514 	IOCB_t *irsp = NULL;
3515 	uint32_t free_saveq;
3516 	uint8_t iocb_cmd_type;
3517 	lpfc_iocb_type type;
3518 	unsigned long iflag;
3519 	int rc;
3520 
3521 	spin_lock_irqsave(&phba->hbalock, iflag);
3522 	/* First add the response iocb to the countinueq list */
3523 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3524 	pring->iocb_continueq_cnt++;
3525 
3526 	/* Now, determine whether the list is completed for processing */
3527 	irsp = &rspiocbp->iocb;
3528 	if (irsp->ulpLe) {
3529 		/*
3530 		 * By default, the driver expects to free all resources
3531 		 * associated with this iocb completion.
3532 		 */
3533 		free_saveq = 1;
3534 		saveq = list_get_first(&pring->iocb_continueq,
3535 				       struct lpfc_iocbq, list);
3536 		irsp = &(saveq->iocb);
3537 		list_del_init(&pring->iocb_continueq);
3538 		pring->iocb_continueq_cnt = 0;
3539 
3540 		pring->stats.iocb_rsp++;
3541 
3542 		/*
3543 		 * If resource errors reported from HBA, reduce
3544 		 * queuedepths of the SCSI device.
3545 		 */
3546 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3547 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3548 		     IOERR_NO_RESOURCES)) {
3549 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3550 			phba->lpfc_rampdown_queue_depth(phba);
3551 			spin_lock_irqsave(&phba->hbalock, iflag);
3552 		}
3553 
3554 		if (irsp->ulpStatus) {
3555 			/* Rsp ring <ringno> error: IOCB */
3556 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3557 					"0328 Rsp Ring %d error: "
3558 					"IOCB Data: "
3559 					"x%x x%x x%x x%x "
3560 					"x%x x%x x%x x%x "
3561 					"x%x x%x x%x x%x "
3562 					"x%x x%x x%x x%x\n",
3563 					pring->ringno,
3564 					irsp->un.ulpWord[0],
3565 					irsp->un.ulpWord[1],
3566 					irsp->un.ulpWord[2],
3567 					irsp->un.ulpWord[3],
3568 					irsp->un.ulpWord[4],
3569 					irsp->un.ulpWord[5],
3570 					*(((uint32_t *) irsp) + 6),
3571 					*(((uint32_t *) irsp) + 7),
3572 					*(((uint32_t *) irsp) + 8),
3573 					*(((uint32_t *) irsp) + 9),
3574 					*(((uint32_t *) irsp) + 10),
3575 					*(((uint32_t *) irsp) + 11),
3576 					*(((uint32_t *) irsp) + 12),
3577 					*(((uint32_t *) irsp) + 13),
3578 					*(((uint32_t *) irsp) + 14),
3579 					*(((uint32_t *) irsp) + 15));
3580 		}
3581 
3582 		/*
3583 		 * Fetch the IOCB command type and call the correct completion
3584 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3585 		 * get freed back to the lpfc_iocb_list by the discovery
3586 		 * kernel thread.
3587 		 */
3588 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3589 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3590 		switch (type) {
3591 		case LPFC_SOL_IOCB:
3592 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3593 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3594 			spin_lock_irqsave(&phba->hbalock, iflag);
3595 			break;
3596 
3597 		case LPFC_UNSOL_IOCB:
3598 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3599 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3600 			spin_lock_irqsave(&phba->hbalock, iflag);
3601 			if (!rc)
3602 				free_saveq = 0;
3603 			break;
3604 
3605 		case LPFC_ABORT_IOCB:
3606 			cmdiocbp = NULL;
3607 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3608 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3609 								 saveq);
3610 			if (cmdiocbp) {
3611 				/* Call the specified completion routine */
3612 				if (cmdiocbp->iocb_cmpl) {
3613 					spin_unlock_irqrestore(&phba->hbalock,
3614 							       iflag);
3615 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3616 							      saveq);
3617 					spin_lock_irqsave(&phba->hbalock,
3618 							  iflag);
3619 				} else
3620 					__lpfc_sli_release_iocbq(phba,
3621 								 cmdiocbp);
3622 			}
3623 			break;
3624 
3625 		case LPFC_UNKNOWN_IOCB:
3626 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3627 				char adaptermsg[LPFC_MAX_ADPTMSG];
3628 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3629 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3630 				       MAX_MSG_DATA);
3631 				dev_warn(&((phba->pcidev)->dev),
3632 					 "lpfc%d: %s\n",
3633 					 phba->brd_no, adaptermsg);
3634 			} else {
3635 				/* Unknown IOCB command */
3636 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3637 						"0335 Unknown IOCB "
3638 						"command Data: x%x "
3639 						"x%x x%x x%x\n",
3640 						irsp->ulpCommand,
3641 						irsp->ulpStatus,
3642 						irsp->ulpIoTag,
3643 						irsp->ulpContext);
3644 			}
3645 			break;
3646 		}
3647 
3648 		if (free_saveq) {
3649 			list_for_each_entry_safe(rspiocbp, next_iocb,
3650 						 &saveq->list, list) {
3651 				list_del_init(&rspiocbp->list);
3652 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3653 			}
3654 			__lpfc_sli_release_iocbq(phba, saveq);
3655 		}
3656 		rspiocbp = NULL;
3657 	}
3658 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3659 	return rspiocbp;
3660 }
3661 
3662 /**
3663  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3664  * @phba: Pointer to HBA context object.
3665  * @pring: Pointer to driver SLI ring object.
3666  * @mask: Host attention register mask for this ring.
3667  *
3668  * This routine wraps the actual slow_ring event process routine from the
3669  * API jump table function pointer from the lpfc_hba struct.
3670  **/
3671 void
3672 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3673 				struct lpfc_sli_ring *pring, uint32_t mask)
3674 {
3675 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3676 }
3677 
3678 /**
3679  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3680  * @phba: Pointer to HBA context object.
3681  * @pring: Pointer to driver SLI ring object.
3682  * @mask: Host attention register mask for this ring.
3683  *
3684  * This function is called from the worker thread when there is a ring event
3685  * for non-fcp rings. The caller does not hold any lock. The function will
3686  * remove each response iocb in the response ring and calls the handle
3687  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3688  **/
3689 static void
3690 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3691 				   struct lpfc_sli_ring *pring, uint32_t mask)
3692 {
3693 	struct lpfc_pgp *pgp;
3694 	IOCB_t *entry;
3695 	IOCB_t *irsp = NULL;
3696 	struct lpfc_iocbq *rspiocbp = NULL;
3697 	uint32_t portRspPut, portRspMax;
3698 	unsigned long iflag;
3699 	uint32_t status;
3700 
3701 	pgp = &phba->port_gp[pring->ringno];
3702 	spin_lock_irqsave(&phba->hbalock, iflag);
3703 	pring->stats.iocb_event++;
3704 
3705 	/*
3706 	 * The next available response entry should never exceed the maximum
3707 	 * entries.  If it does, treat it as an adapter hardware error.
3708 	 */
3709 	portRspMax = pring->sli.sli3.numRiocb;
3710 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3711 	if (portRspPut >= portRspMax) {
3712 		/*
3713 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3714 		 * rsp ring <portRspMax>
3715 		 */
3716 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3717 				"0303 Ring %d handler: portRspPut %d "
3718 				"is bigger than rsp ring %d\n",
3719 				pring->ringno, portRspPut, portRspMax);
3720 
3721 		phba->link_state = LPFC_HBA_ERROR;
3722 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3723 
3724 		phba->work_hs = HS_FFER3;
3725 		lpfc_handle_eratt(phba);
3726 
3727 		return;
3728 	}
3729 
3730 	rmb();
3731 	while (pring->sli.sli3.rspidx != portRspPut) {
3732 		/*
3733 		 * Build a completion list and call the appropriate handler.
3734 		 * The process is to get the next available response iocb, get
3735 		 * a free iocb from the list, copy the response data into the
3736 		 * free iocb, insert to the continuation list, and update the
3737 		 * next response index to slim.  This process makes response
3738 		 * iocb's in the ring available to DMA as fast as possible but
3739 		 * pays a penalty for a copy operation.  Since the iocb is
3740 		 * only 32 bytes, this penalty is considered small relative to
3741 		 * the PCI reads for register values and a slim write.  When
3742 		 * the ulpLe field is set, the entire Command has been
3743 		 * received.
3744 		 */
3745 		entry = lpfc_resp_iocb(phba, pring);
3746 
3747 		phba->last_completion_time = jiffies;
3748 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3749 		if (rspiocbp == NULL) {
3750 			printk(KERN_ERR "%s: out of buffers! Failing "
3751 			       "completion.\n", __func__);
3752 			break;
3753 		}
3754 
3755 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3756 				      phba->iocb_rsp_size);
3757 		irsp = &rspiocbp->iocb;
3758 
3759 		if (++pring->sli.sli3.rspidx >= portRspMax)
3760 			pring->sli.sli3.rspidx = 0;
3761 
3762 		if (pring->ringno == LPFC_ELS_RING) {
3763 			lpfc_debugfs_slow_ring_trc(phba,
3764 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3765 				*(((uint32_t *) irsp) + 4),
3766 				*(((uint32_t *) irsp) + 6),
3767 				*(((uint32_t *) irsp) + 7));
3768 		}
3769 
3770 		writel(pring->sli.sli3.rspidx,
3771 			&phba->host_gp[pring->ringno].rspGetInx);
3772 
3773 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3774 		/* Handle the response IOCB */
3775 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3776 		spin_lock_irqsave(&phba->hbalock, iflag);
3777 
3778 		/*
3779 		 * If the port response put pointer has not been updated, sync
3780 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3781 		 * response put pointer.
3782 		 */
3783 		if (pring->sli.sli3.rspidx == portRspPut) {
3784 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3785 		}
3786 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3787 
3788 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3789 		/* At least one response entry has been freed */
3790 		pring->stats.iocb_rsp_full++;
3791 		/* SET RxRE_RSP in Chip Att register */
3792 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3793 		writel(status, phba->CAregaddr);
3794 		readl(phba->CAregaddr); /* flush */
3795 	}
3796 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3797 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3798 		pring->stats.iocb_cmd_empty++;
3799 
3800 		/* Force update of the local copy of cmdGetInx */
3801 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3802 		lpfc_sli_resume_iocb(phba, pring);
3803 
3804 		if ((pring->lpfc_sli_cmd_available))
3805 			(pring->lpfc_sli_cmd_available) (phba, pring);
3806 
3807 	}
3808 
3809 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3810 	return;
3811 }
3812 
3813 /**
3814  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3815  * @phba: Pointer to HBA context object.
3816  * @pring: Pointer to driver SLI ring object.
3817  * @mask: Host attention register mask for this ring.
3818  *
3819  * This function is called from the worker thread when there is a pending
3820  * ELS response iocb on the driver internal slow-path response iocb worker
3821  * queue. The caller does not hold any lock. The function will remove each
3822  * response iocb from the response worker queue and calls the handle
3823  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3824  **/
3825 static void
3826 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3827 				   struct lpfc_sli_ring *pring, uint32_t mask)
3828 {
3829 	struct lpfc_iocbq *irspiocbq;
3830 	struct hbq_dmabuf *dmabuf;
3831 	struct lpfc_cq_event *cq_event;
3832 	unsigned long iflag;
3833 	int count = 0;
3834 
3835 	spin_lock_irqsave(&phba->hbalock, iflag);
3836 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3837 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3838 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3839 		/* Get the response iocb from the head of work queue */
3840 		spin_lock_irqsave(&phba->hbalock, iflag);
3841 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3842 				 cq_event, struct lpfc_cq_event, list);
3843 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3844 
3845 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3846 		case CQE_CODE_COMPL_WQE:
3847 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3848 						 cq_event);
3849 			/* Translate ELS WCQE to response IOCBQ */
3850 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3851 								   irspiocbq);
3852 			if (irspiocbq)
3853 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3854 							   irspiocbq);
3855 			count++;
3856 			break;
3857 		case CQE_CODE_RECEIVE:
3858 		case CQE_CODE_RECEIVE_V1:
3859 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3860 					      cq_event);
3861 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3862 			count++;
3863 			break;
3864 		default:
3865 			break;
3866 		}
3867 
3868 		/* Limit the number of events to 64 to avoid soft lockups */
3869 		if (count == 64)
3870 			break;
3871 	}
3872 }
3873 
3874 /**
3875  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3876  * @phba: Pointer to HBA context object.
3877  * @pring: Pointer to driver SLI ring object.
3878  *
3879  * This function aborts all iocbs in the given ring and frees all the iocb
3880  * objects in txq. This function issues an abort iocb for all the iocb commands
3881  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3882  * the return of this function. The caller is not required to hold any locks.
3883  **/
3884 void
3885 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3886 {
3887 	LIST_HEAD(completions);
3888 	struct lpfc_iocbq *iocb, *next_iocb;
3889 
3890 	if (pring->ringno == LPFC_ELS_RING) {
3891 		lpfc_fabric_abort_hba(phba);
3892 	}
3893 
3894 	/* Error everything on txq and txcmplq
3895 	 * First do the txq.
3896 	 */
3897 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3898 		spin_lock_irq(&pring->ring_lock);
3899 		list_splice_init(&pring->txq, &completions);
3900 		pring->txq_cnt = 0;
3901 		spin_unlock_irq(&pring->ring_lock);
3902 
3903 		spin_lock_irq(&phba->hbalock);
3904 		/* Next issue ABTS for everything on the txcmplq */
3905 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3906 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3907 		spin_unlock_irq(&phba->hbalock);
3908 	} else {
3909 		spin_lock_irq(&phba->hbalock);
3910 		list_splice_init(&pring->txq, &completions);
3911 		pring->txq_cnt = 0;
3912 
3913 		/* Next issue ABTS for everything on the txcmplq */
3914 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3915 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3916 		spin_unlock_irq(&phba->hbalock);
3917 	}
3918 
3919 	/* Cancel all the IOCBs from the completions list */
3920 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3921 			      IOERR_SLI_ABORTED);
3922 }
3923 
3924 /**
3925  * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3926  * @phba: Pointer to HBA context object.
3927  * @pring: Pointer to driver SLI ring object.
3928  *
3929  * This function aborts all iocbs in the given ring and frees all the iocb
3930  * objects in txq. This function issues an abort iocb for all the iocb commands
3931  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3932  * the return of this function. The caller is not required to hold any locks.
3933  **/
3934 void
3935 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3936 {
3937 	LIST_HEAD(completions);
3938 	struct lpfc_iocbq *iocb, *next_iocb;
3939 
3940 	if (pring->ringno == LPFC_ELS_RING)
3941 		lpfc_fabric_abort_hba(phba);
3942 
3943 	spin_lock_irq(&phba->hbalock);
3944 	/* Next issue ABTS for everything on the txcmplq */
3945 	list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3946 		lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3947 	spin_unlock_irq(&phba->hbalock);
3948 }
3949 
3950 
3951 /**
3952  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3953  * @phba: Pointer to HBA context object.
3954  * @pring: Pointer to driver SLI ring object.
3955  *
3956  * This function aborts all iocbs in FCP rings and frees all the iocb
3957  * objects in txq. This function issues an abort iocb for all the iocb commands
3958  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3959  * the return of this function. The caller is not required to hold any locks.
3960  **/
3961 void
3962 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3963 {
3964 	struct lpfc_sli *psli = &phba->sli;
3965 	struct lpfc_sli_ring  *pring;
3966 	uint32_t i;
3967 
3968 	/* Look on all the FCP Rings for the iotag */
3969 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3970 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
3971 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3972 			lpfc_sli_abort_iocb_ring(phba, pring);
3973 		}
3974 	} else {
3975 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3976 		lpfc_sli_abort_iocb_ring(phba, pring);
3977 	}
3978 }
3979 
3980 /**
3981  * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3982  * @phba: Pointer to HBA context object.
3983  *
3984  * This function aborts all wqes in NVME rings. This function issues an
3985  * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3986  * the txcmplq is not guaranteed to complete before the return of this
3987  * function. The caller is not required to hold any locks.
3988  **/
3989 void
3990 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3991 {
3992 	struct lpfc_sli_ring  *pring;
3993 	uint32_t i;
3994 
3995 	if ((phba->sli_rev < LPFC_SLI_REV4) ||
3996 	    !(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
3997 		return;
3998 
3999 	/* Abort all IO on each NVME ring. */
4000 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
4001 		pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
4002 		lpfc_sli_abort_wqe_ring(phba, pring);
4003 	}
4004 }
4005 
4006 
4007 /**
4008  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
4009  * @phba: Pointer to HBA context object.
4010  *
4011  * This function flushes all iocbs in the fcp ring and frees all the iocb
4012  * objects in txq and txcmplq. This function will not issue abort iocbs
4013  * for all the iocb commands in txcmplq, they will just be returned with
4014  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4015  * slot has been permanently disabled.
4016  **/
4017 void
4018 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
4019 {
4020 	LIST_HEAD(txq);
4021 	LIST_HEAD(txcmplq);
4022 	struct lpfc_sli *psli = &phba->sli;
4023 	struct lpfc_sli_ring  *pring;
4024 	uint32_t i;
4025 	struct lpfc_iocbq *piocb, *next_iocb;
4026 
4027 	spin_lock_irq(&phba->hbalock);
4028 	/* Indicate the I/O queues are flushed */
4029 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
4030 	spin_unlock_irq(&phba->hbalock);
4031 
4032 	/* Look on all the FCP Rings for the iotag */
4033 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4034 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4035 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
4036 
4037 			spin_lock_irq(&pring->ring_lock);
4038 			/* Retrieve everything on txq */
4039 			list_splice_init(&pring->txq, &txq);
4040 			list_for_each_entry_safe(piocb, next_iocb,
4041 						 &pring->txcmplq, list)
4042 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4043 			/* Retrieve everything on the txcmplq */
4044 			list_splice_init(&pring->txcmplq, &txcmplq);
4045 			pring->txq_cnt = 0;
4046 			pring->txcmplq_cnt = 0;
4047 			spin_unlock_irq(&pring->ring_lock);
4048 
4049 			/* Flush the txq */
4050 			lpfc_sli_cancel_iocbs(phba, &txq,
4051 					      IOSTAT_LOCAL_REJECT,
4052 					      IOERR_SLI_DOWN);
4053 			/* Flush the txcmpq */
4054 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4055 					      IOSTAT_LOCAL_REJECT,
4056 					      IOERR_SLI_DOWN);
4057 		}
4058 	} else {
4059 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4060 
4061 		spin_lock_irq(&phba->hbalock);
4062 		/* Retrieve everything on txq */
4063 		list_splice_init(&pring->txq, &txq);
4064 		list_for_each_entry_safe(piocb, next_iocb,
4065 					 &pring->txcmplq, list)
4066 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4067 		/* Retrieve everything on the txcmplq */
4068 		list_splice_init(&pring->txcmplq, &txcmplq);
4069 		pring->txq_cnt = 0;
4070 		pring->txcmplq_cnt = 0;
4071 		spin_unlock_irq(&phba->hbalock);
4072 
4073 		/* Flush the txq */
4074 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4075 				      IOERR_SLI_DOWN);
4076 		/* Flush the txcmpq */
4077 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4078 				      IOERR_SLI_DOWN);
4079 	}
4080 }
4081 
4082 /**
4083  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4084  * @phba: Pointer to HBA context object.
4085  *
4086  * This function flushes all wqes in the nvme rings and frees all resources
4087  * in the txcmplq. This function does not issue abort wqes for the IO
4088  * commands in txcmplq, they will just be returned with
4089  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4090  * slot has been permanently disabled.
4091  **/
4092 void
4093 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4094 {
4095 	LIST_HEAD(txcmplq);
4096 	struct lpfc_sli_ring  *pring;
4097 	uint32_t i;
4098 	struct lpfc_iocbq *piocb, *next_iocb;
4099 
4100 	if ((phba->sli_rev < LPFC_SLI_REV4) ||
4101 	    !(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
4102 		return;
4103 
4104 	/* Hint to other driver operations that a flush is in progress. */
4105 	spin_lock_irq(&phba->hbalock);
4106 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4107 	spin_unlock_irq(&phba->hbalock);
4108 
4109 	/* Cycle through all NVME rings and complete each IO with
4110 	 * a local driver reason code.  This is a flush so no
4111 	 * abort exchange to FW.
4112 	 */
4113 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
4114 		pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
4115 
4116 		spin_lock_irq(&pring->ring_lock);
4117 		list_for_each_entry_safe(piocb, next_iocb,
4118 					 &pring->txcmplq, list)
4119 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4120 		/* Retrieve everything on the txcmplq */
4121 		list_splice_init(&pring->txcmplq, &txcmplq);
4122 		pring->txcmplq_cnt = 0;
4123 		spin_unlock_irq(&pring->ring_lock);
4124 
4125 		/* Flush the txcmpq &&&PAE */
4126 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4127 				      IOSTAT_LOCAL_REJECT,
4128 				      IOERR_SLI_DOWN);
4129 	}
4130 }
4131 
4132 /**
4133  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4134  * @phba: Pointer to HBA context object.
4135  * @mask: Bit mask to be checked.
4136  *
4137  * This function reads the host status register and compares
4138  * with the provided bit mask to check if HBA completed
4139  * the restart. This function will wait in a loop for the
4140  * HBA to complete restart. If the HBA does not restart within
4141  * 15 iterations, the function will reset the HBA again. The
4142  * function returns 1 when HBA fail to restart otherwise returns
4143  * zero.
4144  **/
4145 static int
4146 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4147 {
4148 	uint32_t status;
4149 	int i = 0;
4150 	int retval = 0;
4151 
4152 	/* Read the HBA Host Status Register */
4153 	if (lpfc_readl(phba->HSregaddr, &status))
4154 		return 1;
4155 
4156 	/*
4157 	 * Check status register every 100ms for 5 retries, then every
4158 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4159 	 * every 2.5 sec for 4.
4160 	 * Break our of the loop if errors occurred during init.
4161 	 */
4162 	while (((status & mask) != mask) &&
4163 	       !(status & HS_FFERM) &&
4164 	       i++ < 20) {
4165 
4166 		if (i <= 5)
4167 			msleep(10);
4168 		else if (i <= 10)
4169 			msleep(500);
4170 		else
4171 			msleep(2500);
4172 
4173 		if (i == 15) {
4174 				/* Do post */
4175 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4176 			lpfc_sli_brdrestart(phba);
4177 		}
4178 		/* Read the HBA Host Status Register */
4179 		if (lpfc_readl(phba->HSregaddr, &status)) {
4180 			retval = 1;
4181 			break;
4182 		}
4183 	}
4184 
4185 	/* Check to see if any errors occurred during init */
4186 	if ((status & HS_FFERM) || (i >= 20)) {
4187 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4188 				"2751 Adapter failed to restart, "
4189 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4190 				status,
4191 				readl(phba->MBslimaddr + 0xa8),
4192 				readl(phba->MBslimaddr + 0xac));
4193 		phba->link_state = LPFC_HBA_ERROR;
4194 		retval = 1;
4195 	}
4196 
4197 	return retval;
4198 }
4199 
4200 /**
4201  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4202  * @phba: Pointer to HBA context object.
4203  * @mask: Bit mask to be checked.
4204  *
4205  * This function checks the host status register to check if HBA is
4206  * ready. This function will wait in a loop for the HBA to be ready
4207  * If the HBA is not ready , the function will will reset the HBA PCI
4208  * function again. The function returns 1 when HBA fail to be ready
4209  * otherwise returns zero.
4210  **/
4211 static int
4212 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4213 {
4214 	uint32_t status;
4215 	int retval = 0;
4216 
4217 	/* Read the HBA Host Status Register */
4218 	status = lpfc_sli4_post_status_check(phba);
4219 
4220 	if (status) {
4221 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4222 		lpfc_sli_brdrestart(phba);
4223 		status = lpfc_sli4_post_status_check(phba);
4224 	}
4225 
4226 	/* Check to see if any errors occurred during init */
4227 	if (status) {
4228 		phba->link_state = LPFC_HBA_ERROR;
4229 		retval = 1;
4230 	} else
4231 		phba->sli4_hba.intr_enable = 0;
4232 
4233 	return retval;
4234 }
4235 
4236 /**
4237  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4238  * @phba: Pointer to HBA context object.
4239  * @mask: Bit mask to be checked.
4240  *
4241  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4242  * from the API jump table function pointer from the lpfc_hba struct.
4243  **/
4244 int
4245 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4246 {
4247 	return phba->lpfc_sli_brdready(phba, mask);
4248 }
4249 
4250 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4251 
4252 /**
4253  * lpfc_reset_barrier - Make HBA ready for HBA reset
4254  * @phba: Pointer to HBA context object.
4255  *
4256  * This function is called before resetting an HBA. This function is called
4257  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4258  **/
4259 void lpfc_reset_barrier(struct lpfc_hba *phba)
4260 {
4261 	uint32_t __iomem *resp_buf;
4262 	uint32_t __iomem *mbox_buf;
4263 	volatile uint32_t mbox;
4264 	uint32_t hc_copy, ha_copy, resp_data;
4265 	int  i;
4266 	uint8_t hdrtype;
4267 
4268 	lockdep_assert_held(&phba->hbalock);
4269 
4270 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4271 	if (hdrtype != 0x80 ||
4272 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4273 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4274 		return;
4275 
4276 	/*
4277 	 * Tell the other part of the chip to suspend temporarily all
4278 	 * its DMA activity.
4279 	 */
4280 	resp_buf = phba->MBslimaddr;
4281 
4282 	/* Disable the error attention */
4283 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4284 		return;
4285 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4286 	readl(phba->HCregaddr); /* flush */
4287 	phba->link_flag |= LS_IGNORE_ERATT;
4288 
4289 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4290 		return;
4291 	if (ha_copy & HA_ERATT) {
4292 		/* Clear Chip error bit */
4293 		writel(HA_ERATT, phba->HAregaddr);
4294 		phba->pport->stopped = 1;
4295 	}
4296 
4297 	mbox = 0;
4298 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4299 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4300 
4301 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4302 	mbox_buf = phba->MBslimaddr;
4303 	writel(mbox, mbox_buf);
4304 
4305 	for (i = 0; i < 50; i++) {
4306 		if (lpfc_readl((resp_buf + 1), &resp_data))
4307 			return;
4308 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4309 			mdelay(1);
4310 		else
4311 			break;
4312 	}
4313 	resp_data = 0;
4314 	if (lpfc_readl((resp_buf + 1), &resp_data))
4315 		return;
4316 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4317 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4318 		    phba->pport->stopped)
4319 			goto restore_hc;
4320 		else
4321 			goto clear_errat;
4322 	}
4323 
4324 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4325 	resp_data = 0;
4326 	for (i = 0; i < 500; i++) {
4327 		if (lpfc_readl(resp_buf, &resp_data))
4328 			return;
4329 		if (resp_data != mbox)
4330 			mdelay(1);
4331 		else
4332 			break;
4333 	}
4334 
4335 clear_errat:
4336 
4337 	while (++i < 500) {
4338 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4339 			return;
4340 		if (!(ha_copy & HA_ERATT))
4341 			mdelay(1);
4342 		else
4343 			break;
4344 	}
4345 
4346 	if (readl(phba->HAregaddr) & HA_ERATT) {
4347 		writel(HA_ERATT, phba->HAregaddr);
4348 		phba->pport->stopped = 1;
4349 	}
4350 
4351 restore_hc:
4352 	phba->link_flag &= ~LS_IGNORE_ERATT;
4353 	writel(hc_copy, phba->HCregaddr);
4354 	readl(phba->HCregaddr); /* flush */
4355 }
4356 
4357 /**
4358  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4359  * @phba: Pointer to HBA context object.
4360  *
4361  * This function issues a kill_board mailbox command and waits for
4362  * the error attention interrupt. This function is called for stopping
4363  * the firmware processing. The caller is not required to hold any
4364  * locks. This function calls lpfc_hba_down_post function to free
4365  * any pending commands after the kill. The function will return 1 when it
4366  * fails to kill the board else will return 0.
4367  **/
4368 int
4369 lpfc_sli_brdkill(struct lpfc_hba *phba)
4370 {
4371 	struct lpfc_sli *psli;
4372 	LPFC_MBOXQ_t *pmb;
4373 	uint32_t status;
4374 	uint32_t ha_copy;
4375 	int retval;
4376 	int i = 0;
4377 
4378 	psli = &phba->sli;
4379 
4380 	/* Kill HBA */
4381 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4382 			"0329 Kill HBA Data: x%x x%x\n",
4383 			phba->pport->port_state, psli->sli_flag);
4384 
4385 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4386 	if (!pmb)
4387 		return 1;
4388 
4389 	/* Disable the error attention */
4390 	spin_lock_irq(&phba->hbalock);
4391 	if (lpfc_readl(phba->HCregaddr, &status)) {
4392 		spin_unlock_irq(&phba->hbalock);
4393 		mempool_free(pmb, phba->mbox_mem_pool);
4394 		return 1;
4395 	}
4396 	status &= ~HC_ERINT_ENA;
4397 	writel(status, phba->HCregaddr);
4398 	readl(phba->HCregaddr); /* flush */
4399 	phba->link_flag |= LS_IGNORE_ERATT;
4400 	spin_unlock_irq(&phba->hbalock);
4401 
4402 	lpfc_kill_board(phba, pmb);
4403 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4404 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4405 
4406 	if (retval != MBX_SUCCESS) {
4407 		if (retval != MBX_BUSY)
4408 			mempool_free(pmb, phba->mbox_mem_pool);
4409 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4410 				"2752 KILL_BOARD command failed retval %d\n",
4411 				retval);
4412 		spin_lock_irq(&phba->hbalock);
4413 		phba->link_flag &= ~LS_IGNORE_ERATT;
4414 		spin_unlock_irq(&phba->hbalock);
4415 		return 1;
4416 	}
4417 
4418 	spin_lock_irq(&phba->hbalock);
4419 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4420 	spin_unlock_irq(&phba->hbalock);
4421 
4422 	mempool_free(pmb, phba->mbox_mem_pool);
4423 
4424 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4425 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4426 	 * 3 seconds we still set HBA_ERROR state because the status of the
4427 	 * board is now undefined.
4428 	 */
4429 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4430 		return 1;
4431 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4432 		mdelay(100);
4433 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4434 			return 1;
4435 	}
4436 
4437 	del_timer_sync(&psli->mbox_tmo);
4438 	if (ha_copy & HA_ERATT) {
4439 		writel(HA_ERATT, phba->HAregaddr);
4440 		phba->pport->stopped = 1;
4441 	}
4442 	spin_lock_irq(&phba->hbalock);
4443 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4444 	psli->mbox_active = NULL;
4445 	phba->link_flag &= ~LS_IGNORE_ERATT;
4446 	spin_unlock_irq(&phba->hbalock);
4447 
4448 	lpfc_hba_down_post(phba);
4449 	phba->link_state = LPFC_HBA_ERROR;
4450 
4451 	return ha_copy & HA_ERATT ? 0 : 1;
4452 }
4453 
4454 /**
4455  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4456  * @phba: Pointer to HBA context object.
4457  *
4458  * This function resets the HBA by writing HC_INITFF to the control
4459  * register. After the HBA resets, this function resets all the iocb ring
4460  * indices. This function disables PCI layer parity checking during
4461  * the reset.
4462  * This function returns 0 always.
4463  * The caller is not required to hold any locks.
4464  **/
4465 int
4466 lpfc_sli_brdreset(struct lpfc_hba *phba)
4467 {
4468 	struct lpfc_sli *psli;
4469 	struct lpfc_sli_ring *pring;
4470 	uint16_t cfg_value;
4471 	int i;
4472 
4473 	psli = &phba->sli;
4474 
4475 	/* Reset HBA */
4476 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4477 			"0325 Reset HBA Data: x%x x%x\n",
4478 			(phba->pport) ? phba->pport->port_state : 0,
4479 			psli->sli_flag);
4480 
4481 	/* perform board reset */
4482 	phba->fc_eventTag = 0;
4483 	phba->link_events = 0;
4484 	if (phba->pport) {
4485 		phba->pport->fc_myDID = 0;
4486 		phba->pport->fc_prevDID = 0;
4487 	}
4488 
4489 	/* Turn off parity checking and serr during the physical reset */
4490 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4491 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4492 			      (cfg_value &
4493 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4494 
4495 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4496 
4497 	/* Now toggle INITFF bit in the Host Control Register */
4498 	writel(HC_INITFF, phba->HCregaddr);
4499 	mdelay(1);
4500 	readl(phba->HCregaddr); /* flush */
4501 	writel(0, phba->HCregaddr);
4502 	readl(phba->HCregaddr); /* flush */
4503 
4504 	/* Restore PCI cmd register */
4505 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4506 
4507 	/* Initialize relevant SLI info */
4508 	for (i = 0; i < psli->num_rings; i++) {
4509 		pring = &psli->sli3_ring[i];
4510 		pring->flag = 0;
4511 		pring->sli.sli3.rspidx = 0;
4512 		pring->sli.sli3.next_cmdidx  = 0;
4513 		pring->sli.sli3.local_getidx = 0;
4514 		pring->sli.sli3.cmdidx = 0;
4515 		pring->missbufcnt = 0;
4516 	}
4517 
4518 	phba->link_state = LPFC_WARM_START;
4519 	return 0;
4520 }
4521 
4522 /**
4523  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4524  * @phba: Pointer to HBA context object.
4525  *
4526  * This function resets a SLI4 HBA. This function disables PCI layer parity
4527  * checking during resets the device. The caller is not required to hold
4528  * any locks.
4529  *
4530  * This function returns 0 always.
4531  **/
4532 int
4533 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4534 {
4535 	struct lpfc_sli *psli = &phba->sli;
4536 	uint16_t cfg_value;
4537 	int rc = 0;
4538 
4539 	/* Reset HBA */
4540 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4541 			"0295 Reset HBA Data: x%x x%x x%x\n",
4542 			phba->pport->port_state, psli->sli_flag,
4543 			phba->hba_flag);
4544 
4545 	/* perform board reset */
4546 	phba->fc_eventTag = 0;
4547 	phba->link_events = 0;
4548 	phba->pport->fc_myDID = 0;
4549 	phba->pport->fc_prevDID = 0;
4550 
4551 	spin_lock_irq(&phba->hbalock);
4552 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4553 	phba->fcf.fcf_flag = 0;
4554 	spin_unlock_irq(&phba->hbalock);
4555 
4556 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4557 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4558 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4559 		return rc;
4560 	}
4561 
4562 	/* Now physically reset the device */
4563 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4564 			"0389 Performing PCI function reset!\n");
4565 
4566 	/* Turn off parity checking and serr during the physical reset */
4567 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4568 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4569 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4570 
4571 	/* Perform FCoE PCI function reset before freeing queue memory */
4572 	rc = lpfc_pci_function_reset(phba);
4573 
4574 	/* Restore PCI cmd register */
4575 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4576 
4577 	return rc;
4578 }
4579 
4580 /**
4581  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4582  * @phba: Pointer to HBA context object.
4583  *
4584  * This function is called in the SLI initialization code path to
4585  * restart the HBA. The caller is not required to hold any lock.
4586  * This function writes MBX_RESTART mailbox command to the SLIM and
4587  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4588  * function to free any pending commands. The function enables
4589  * POST only during the first initialization. The function returns zero.
4590  * The function does not guarantee completion of MBX_RESTART mailbox
4591  * command before the return of this function.
4592  **/
4593 static int
4594 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4595 {
4596 	MAILBOX_t *mb;
4597 	struct lpfc_sli *psli;
4598 	volatile uint32_t word0;
4599 	void __iomem *to_slim;
4600 	uint32_t hba_aer_enabled;
4601 
4602 	spin_lock_irq(&phba->hbalock);
4603 
4604 	/* Take PCIe device Advanced Error Reporting (AER) state */
4605 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4606 
4607 	psli = &phba->sli;
4608 
4609 	/* Restart HBA */
4610 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4611 			"0337 Restart HBA Data: x%x x%x\n",
4612 			(phba->pport) ? phba->pport->port_state : 0,
4613 			psli->sli_flag);
4614 
4615 	word0 = 0;
4616 	mb = (MAILBOX_t *) &word0;
4617 	mb->mbxCommand = MBX_RESTART;
4618 	mb->mbxHc = 1;
4619 
4620 	lpfc_reset_barrier(phba);
4621 
4622 	to_slim = phba->MBslimaddr;
4623 	writel(*(uint32_t *) mb, to_slim);
4624 	readl(to_slim); /* flush */
4625 
4626 	/* Only skip post after fc_ffinit is completed */
4627 	if (phba->pport && phba->pport->port_state)
4628 		word0 = 1;	/* This is really setting up word1 */
4629 	else
4630 		word0 = 0;	/* This is really setting up word1 */
4631 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4632 	writel(*(uint32_t *) mb, to_slim);
4633 	readl(to_slim); /* flush */
4634 
4635 	lpfc_sli_brdreset(phba);
4636 	if (phba->pport)
4637 		phba->pport->stopped = 0;
4638 	phba->link_state = LPFC_INIT_START;
4639 	phba->hba_flag = 0;
4640 	spin_unlock_irq(&phba->hbalock);
4641 
4642 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4643 	psli->stats_start = ktime_get_seconds();
4644 
4645 	/* Give the INITFF and Post time to settle. */
4646 	mdelay(100);
4647 
4648 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4649 	if (hba_aer_enabled)
4650 		pci_disable_pcie_error_reporting(phba->pcidev);
4651 
4652 	lpfc_hba_down_post(phba);
4653 
4654 	return 0;
4655 }
4656 
4657 /**
4658  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4659  * @phba: Pointer to HBA context object.
4660  *
4661  * This function is called in the SLI initialization code path to restart
4662  * a SLI4 HBA. The caller is not required to hold any lock.
4663  * At the end of the function, it calls lpfc_hba_down_post function to
4664  * free any pending commands.
4665  **/
4666 static int
4667 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4668 {
4669 	struct lpfc_sli *psli = &phba->sli;
4670 	uint32_t hba_aer_enabled;
4671 	int rc;
4672 
4673 	/* Restart HBA */
4674 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4675 			"0296 Restart HBA Data: x%x x%x\n",
4676 			phba->pport->port_state, psli->sli_flag);
4677 
4678 	/* Take PCIe device Advanced Error Reporting (AER) state */
4679 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4680 
4681 	rc = lpfc_sli4_brdreset(phba);
4682 	if (rc)
4683 		return rc;
4684 
4685 	spin_lock_irq(&phba->hbalock);
4686 	phba->pport->stopped = 0;
4687 	phba->link_state = LPFC_INIT_START;
4688 	phba->hba_flag = 0;
4689 	spin_unlock_irq(&phba->hbalock);
4690 
4691 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4692 	psli->stats_start = ktime_get_seconds();
4693 
4694 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4695 	if (hba_aer_enabled)
4696 		pci_disable_pcie_error_reporting(phba->pcidev);
4697 
4698 	lpfc_hba_down_post(phba);
4699 	lpfc_sli4_queue_destroy(phba);
4700 
4701 	return rc;
4702 }
4703 
4704 /**
4705  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4706  * @phba: Pointer to HBA context object.
4707  *
4708  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4709  * API jump table function pointer from the lpfc_hba struct.
4710 **/
4711 int
4712 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4713 {
4714 	return phba->lpfc_sli_brdrestart(phba);
4715 }
4716 
4717 /**
4718  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4719  * @phba: Pointer to HBA context object.
4720  *
4721  * This function is called after a HBA restart to wait for successful
4722  * restart of the HBA. Successful restart of the HBA is indicated by
4723  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4724  * iteration, the function will restart the HBA again. The function returns
4725  * zero if HBA successfully restarted else returns negative error code.
4726  **/
4727 int
4728 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4729 {
4730 	uint32_t status, i = 0;
4731 
4732 	/* Read the HBA Host Status Register */
4733 	if (lpfc_readl(phba->HSregaddr, &status))
4734 		return -EIO;
4735 
4736 	/* Check status register to see what current state is */
4737 	i = 0;
4738 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4739 
4740 		/* Check every 10ms for 10 retries, then every 100ms for 90
4741 		 * retries, then every 1 sec for 50 retires for a total of
4742 		 * ~60 seconds before reset the board again and check every
4743 		 * 1 sec for 50 retries. The up to 60 seconds before the
4744 		 * board ready is required by the Falcon FIPS zeroization
4745 		 * complete, and any reset the board in between shall cause
4746 		 * restart of zeroization, further delay the board ready.
4747 		 */
4748 		if (i++ >= 200) {
4749 			/* Adapter failed to init, timeout, status reg
4750 			   <status> */
4751 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4752 					"0436 Adapter failed to init, "
4753 					"timeout, status reg x%x, "
4754 					"FW Data: A8 x%x AC x%x\n", status,
4755 					readl(phba->MBslimaddr + 0xa8),
4756 					readl(phba->MBslimaddr + 0xac));
4757 			phba->link_state = LPFC_HBA_ERROR;
4758 			return -ETIMEDOUT;
4759 		}
4760 
4761 		/* Check to see if any errors occurred during init */
4762 		if (status & HS_FFERM) {
4763 			/* ERROR: During chipset initialization */
4764 			/* Adapter failed to init, chipset, status reg
4765 			   <status> */
4766 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4767 					"0437 Adapter failed to init, "
4768 					"chipset, status reg x%x, "
4769 					"FW Data: A8 x%x AC x%x\n", status,
4770 					readl(phba->MBslimaddr + 0xa8),
4771 					readl(phba->MBslimaddr + 0xac));
4772 			phba->link_state = LPFC_HBA_ERROR;
4773 			return -EIO;
4774 		}
4775 
4776 		if (i <= 10)
4777 			msleep(10);
4778 		else if (i <= 100)
4779 			msleep(100);
4780 		else
4781 			msleep(1000);
4782 
4783 		if (i == 150) {
4784 			/* Do post */
4785 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4786 			lpfc_sli_brdrestart(phba);
4787 		}
4788 		/* Read the HBA Host Status Register */
4789 		if (lpfc_readl(phba->HSregaddr, &status))
4790 			return -EIO;
4791 	}
4792 
4793 	/* Check to see if any errors occurred during init */
4794 	if (status & HS_FFERM) {
4795 		/* ERROR: During chipset initialization */
4796 		/* Adapter failed to init, chipset, status reg <status> */
4797 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4798 				"0438 Adapter failed to init, chipset, "
4799 				"status reg x%x, "
4800 				"FW Data: A8 x%x AC x%x\n", status,
4801 				readl(phba->MBslimaddr + 0xa8),
4802 				readl(phba->MBslimaddr + 0xac));
4803 		phba->link_state = LPFC_HBA_ERROR;
4804 		return -EIO;
4805 	}
4806 
4807 	/* Clear all interrupt enable conditions */
4808 	writel(0, phba->HCregaddr);
4809 	readl(phba->HCregaddr); /* flush */
4810 
4811 	/* setup host attn register */
4812 	writel(0xffffffff, phba->HAregaddr);
4813 	readl(phba->HAregaddr); /* flush */
4814 	return 0;
4815 }
4816 
4817 /**
4818  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4819  *
4820  * This function calculates and returns the number of HBQs required to be
4821  * configured.
4822  **/
4823 int
4824 lpfc_sli_hbq_count(void)
4825 {
4826 	return ARRAY_SIZE(lpfc_hbq_defs);
4827 }
4828 
4829 /**
4830  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4831  *
4832  * This function adds the number of hbq entries in every HBQ to get
4833  * the total number of hbq entries required for the HBA and returns
4834  * the total count.
4835  **/
4836 static int
4837 lpfc_sli_hbq_entry_count(void)
4838 {
4839 	int  hbq_count = lpfc_sli_hbq_count();
4840 	int  count = 0;
4841 	int  i;
4842 
4843 	for (i = 0; i < hbq_count; ++i)
4844 		count += lpfc_hbq_defs[i]->entry_count;
4845 	return count;
4846 }
4847 
4848 /**
4849  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4850  *
4851  * This function calculates amount of memory required for all hbq entries
4852  * to be configured and returns the total memory required.
4853  **/
4854 int
4855 lpfc_sli_hbq_size(void)
4856 {
4857 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4858 }
4859 
4860 /**
4861  * lpfc_sli_hbq_setup - configure and initialize HBQs
4862  * @phba: Pointer to HBA context object.
4863  *
4864  * This function is called during the SLI initialization to configure
4865  * all the HBQs and post buffers to the HBQ. The caller is not
4866  * required to hold any locks. This function will return zero if successful
4867  * else it will return negative error code.
4868  **/
4869 static int
4870 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4871 {
4872 	int  hbq_count = lpfc_sli_hbq_count();
4873 	LPFC_MBOXQ_t *pmb;
4874 	MAILBOX_t *pmbox;
4875 	uint32_t hbqno;
4876 	uint32_t hbq_entry_index;
4877 
4878 				/* Get a Mailbox buffer to setup mailbox
4879 				 * commands for HBA initialization
4880 				 */
4881 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4882 
4883 	if (!pmb)
4884 		return -ENOMEM;
4885 
4886 	pmbox = &pmb->u.mb;
4887 
4888 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4889 	phba->link_state = LPFC_INIT_MBX_CMDS;
4890 	phba->hbq_in_use = 1;
4891 
4892 	hbq_entry_index = 0;
4893 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4894 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4895 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4896 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4897 		phba->hbqs[hbqno].entry_count =
4898 			lpfc_hbq_defs[hbqno]->entry_count;
4899 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4900 			hbq_entry_index, pmb);
4901 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4902 
4903 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4904 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4905 			   mbxStatus <status>, ring <num> */
4906 
4907 			lpfc_printf_log(phba, KERN_ERR,
4908 					LOG_SLI | LOG_VPORT,
4909 					"1805 Adapter failed to init. "
4910 					"Data: x%x x%x x%x\n",
4911 					pmbox->mbxCommand,
4912 					pmbox->mbxStatus, hbqno);
4913 
4914 			phba->link_state = LPFC_HBA_ERROR;
4915 			mempool_free(pmb, phba->mbox_mem_pool);
4916 			return -ENXIO;
4917 		}
4918 	}
4919 	phba->hbq_count = hbq_count;
4920 
4921 	mempool_free(pmb, phba->mbox_mem_pool);
4922 
4923 	/* Initially populate or replenish the HBQs */
4924 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4925 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4926 	return 0;
4927 }
4928 
4929 /**
4930  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4931  * @phba: Pointer to HBA context object.
4932  *
4933  * This function is called during the SLI initialization to configure
4934  * all the HBQs and post buffers to the HBQ. The caller is not
4935  * required to hold any locks. This function will return zero if successful
4936  * else it will return negative error code.
4937  **/
4938 static int
4939 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4940 {
4941 	phba->hbq_in_use = 1;
4942 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4943 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4944 	phba->hbq_count = 1;
4945 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4946 	/* Initially populate or replenish the HBQs */
4947 	return 0;
4948 }
4949 
4950 /**
4951  * lpfc_sli_config_port - Issue config port mailbox command
4952  * @phba: Pointer to HBA context object.
4953  * @sli_mode: sli mode - 2/3
4954  *
4955  * This function is called by the sli initialization code path
4956  * to issue config_port mailbox command. This function restarts the
4957  * HBA firmware and issues a config_port mailbox command to configure
4958  * the SLI interface in the sli mode specified by sli_mode
4959  * variable. The caller is not required to hold any locks.
4960  * The function returns 0 if successful, else returns negative error
4961  * code.
4962  **/
4963 int
4964 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4965 {
4966 	LPFC_MBOXQ_t *pmb;
4967 	uint32_t resetcount = 0, rc = 0, done = 0;
4968 
4969 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4970 	if (!pmb) {
4971 		phba->link_state = LPFC_HBA_ERROR;
4972 		return -ENOMEM;
4973 	}
4974 
4975 	phba->sli_rev = sli_mode;
4976 	while (resetcount < 2 && !done) {
4977 		spin_lock_irq(&phba->hbalock);
4978 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4979 		spin_unlock_irq(&phba->hbalock);
4980 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4981 		lpfc_sli_brdrestart(phba);
4982 		rc = lpfc_sli_chipset_init(phba);
4983 		if (rc)
4984 			break;
4985 
4986 		spin_lock_irq(&phba->hbalock);
4987 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4988 		spin_unlock_irq(&phba->hbalock);
4989 		resetcount++;
4990 
4991 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4992 		 * value of 0 means the call was successful.  Any other
4993 		 * nonzero value is a failure, but if ERESTART is returned,
4994 		 * the driver may reset the HBA and try again.
4995 		 */
4996 		rc = lpfc_config_port_prep(phba);
4997 		if (rc == -ERESTART) {
4998 			phba->link_state = LPFC_LINK_UNKNOWN;
4999 			continue;
5000 		} else if (rc)
5001 			break;
5002 
5003 		phba->link_state = LPFC_INIT_MBX_CMDS;
5004 		lpfc_config_port(phba, pmb);
5005 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5006 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5007 					LPFC_SLI3_HBQ_ENABLED |
5008 					LPFC_SLI3_CRP_ENABLED |
5009 					LPFC_SLI3_DSS_ENABLED);
5010 		if (rc != MBX_SUCCESS) {
5011 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5012 				"0442 Adapter failed to init, mbxCmd x%x "
5013 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5014 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5015 			spin_lock_irq(&phba->hbalock);
5016 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5017 			spin_unlock_irq(&phba->hbalock);
5018 			rc = -ENXIO;
5019 		} else {
5020 			/* Allow asynchronous mailbox command to go through */
5021 			spin_lock_irq(&phba->hbalock);
5022 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5023 			spin_unlock_irq(&phba->hbalock);
5024 			done = 1;
5025 
5026 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5027 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5028 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5029 					"3110 Port did not grant ASABT\n");
5030 		}
5031 	}
5032 	if (!done) {
5033 		rc = -EINVAL;
5034 		goto do_prep_failed;
5035 	}
5036 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5037 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5038 			rc = -ENXIO;
5039 			goto do_prep_failed;
5040 		}
5041 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5042 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5043 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5044 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5045 				phba->max_vpi : phba->max_vports;
5046 
5047 		} else
5048 			phba->max_vpi = 0;
5049 		phba->fips_level = 0;
5050 		phba->fips_spec_rev = 0;
5051 		if (pmb->u.mb.un.varCfgPort.gdss) {
5052 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5053 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5054 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5055 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5056 					"2850 Security Crypto Active. FIPS x%d "
5057 					"(Spec Rev: x%d)",
5058 					phba->fips_level, phba->fips_spec_rev);
5059 		}
5060 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5061 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5062 					"2856 Config Port Security Crypto "
5063 					"Error: x%x ",
5064 					pmb->u.mb.un.varCfgPort.sec_err);
5065 		}
5066 		if (pmb->u.mb.un.varCfgPort.gerbm)
5067 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5068 		if (pmb->u.mb.un.varCfgPort.gcrp)
5069 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5070 
5071 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5072 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5073 
5074 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5075 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5076 				phba->cfg_enable_bg = 0;
5077 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5078 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5079 						"0443 Adapter did not grant "
5080 						"BlockGuard\n");
5081 			}
5082 		}
5083 	} else {
5084 		phba->hbq_get = NULL;
5085 		phba->port_gp = phba->mbox->us.s2.port;
5086 		phba->max_vpi = 0;
5087 	}
5088 do_prep_failed:
5089 	mempool_free(pmb, phba->mbox_mem_pool);
5090 	return rc;
5091 }
5092 
5093 
5094 /**
5095  * lpfc_sli_hba_setup - SLI initialization function
5096  * @phba: Pointer to HBA context object.
5097  *
5098  * This function is the main SLI initialization function. This function
5099  * is called by the HBA initialization code, HBA reset code and HBA
5100  * error attention handler code. Caller is not required to hold any
5101  * locks. This function issues config_port mailbox command to configure
5102  * the SLI, setup iocb rings and HBQ rings. In the end the function
5103  * calls the config_port_post function to issue init_link mailbox
5104  * command and to start the discovery. The function will return zero
5105  * if successful, else it will return negative error code.
5106  **/
5107 int
5108 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5109 {
5110 	uint32_t rc;
5111 	int  mode = 3, i;
5112 	int longs;
5113 
5114 	switch (phba->cfg_sli_mode) {
5115 	case 2:
5116 		if (phba->cfg_enable_npiv) {
5117 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5118 				"1824 NPIV enabled: Override sli_mode "
5119 				"parameter (%d) to auto (0).\n",
5120 				phba->cfg_sli_mode);
5121 			break;
5122 		}
5123 		mode = 2;
5124 		break;
5125 	case 0:
5126 	case 3:
5127 		break;
5128 	default:
5129 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5130 				"1819 Unrecognized sli_mode parameter: %d.\n",
5131 				phba->cfg_sli_mode);
5132 
5133 		break;
5134 	}
5135 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5136 
5137 	rc = lpfc_sli_config_port(phba, mode);
5138 
5139 	if (rc && phba->cfg_sli_mode == 3)
5140 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5141 				"1820 Unable to select SLI-3.  "
5142 				"Not supported by adapter.\n");
5143 	if (rc && mode != 2)
5144 		rc = lpfc_sli_config_port(phba, 2);
5145 	else if (rc && mode == 2)
5146 		rc = lpfc_sli_config_port(phba, 3);
5147 	if (rc)
5148 		goto lpfc_sli_hba_setup_error;
5149 
5150 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5151 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5152 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5153 		if (!rc) {
5154 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5155 					"2709 This device supports "
5156 					"Advanced Error Reporting (AER)\n");
5157 			spin_lock_irq(&phba->hbalock);
5158 			phba->hba_flag |= HBA_AER_ENABLED;
5159 			spin_unlock_irq(&phba->hbalock);
5160 		} else {
5161 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5162 					"2708 This device does not support "
5163 					"Advanced Error Reporting (AER): %d\n",
5164 					rc);
5165 			phba->cfg_aer_support = 0;
5166 		}
5167 	}
5168 
5169 	if (phba->sli_rev == 3) {
5170 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5171 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5172 	} else {
5173 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5174 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5175 		phba->sli3_options = 0;
5176 	}
5177 
5178 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5179 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5180 			phba->sli_rev, phba->max_vpi);
5181 	rc = lpfc_sli_ring_map(phba);
5182 
5183 	if (rc)
5184 		goto lpfc_sli_hba_setup_error;
5185 
5186 	/* Initialize VPIs. */
5187 	if (phba->sli_rev == LPFC_SLI_REV3) {
5188 		/*
5189 		 * The VPI bitmask and physical ID array are allocated
5190 		 * and initialized once only - at driver load.  A port
5191 		 * reset doesn't need to reinitialize this memory.
5192 		 */
5193 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5194 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5195 			phba->vpi_bmask = kcalloc(longs,
5196 						  sizeof(unsigned long),
5197 						  GFP_KERNEL);
5198 			if (!phba->vpi_bmask) {
5199 				rc = -ENOMEM;
5200 				goto lpfc_sli_hba_setup_error;
5201 			}
5202 
5203 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5204 						sizeof(uint16_t),
5205 						GFP_KERNEL);
5206 			if (!phba->vpi_ids) {
5207 				kfree(phba->vpi_bmask);
5208 				rc = -ENOMEM;
5209 				goto lpfc_sli_hba_setup_error;
5210 			}
5211 			for (i = 0; i < phba->max_vpi; i++)
5212 				phba->vpi_ids[i] = i;
5213 		}
5214 	}
5215 
5216 	/* Init HBQs */
5217 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5218 		rc = lpfc_sli_hbq_setup(phba);
5219 		if (rc)
5220 			goto lpfc_sli_hba_setup_error;
5221 	}
5222 	spin_lock_irq(&phba->hbalock);
5223 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5224 	spin_unlock_irq(&phba->hbalock);
5225 
5226 	rc = lpfc_config_port_post(phba);
5227 	if (rc)
5228 		goto lpfc_sli_hba_setup_error;
5229 
5230 	return rc;
5231 
5232 lpfc_sli_hba_setup_error:
5233 	phba->link_state = LPFC_HBA_ERROR;
5234 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5235 			"0445 Firmware initialization failed\n");
5236 	return rc;
5237 }
5238 
5239 /**
5240  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5241  * @phba: Pointer to HBA context object.
5242  * @mboxq: mailbox pointer.
5243  * This function issue a dump mailbox command to read config region
5244  * 23 and parse the records in the region and populate driver
5245  * data structure.
5246  **/
5247 static int
5248 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5249 {
5250 	LPFC_MBOXQ_t *mboxq;
5251 	struct lpfc_dmabuf *mp;
5252 	struct lpfc_mqe *mqe;
5253 	uint32_t data_length;
5254 	int rc;
5255 
5256 	/* Program the default value of vlan_id and fc_map */
5257 	phba->valid_vlan = 0;
5258 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5259 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5260 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5261 
5262 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5263 	if (!mboxq)
5264 		return -ENOMEM;
5265 
5266 	mqe = &mboxq->u.mqe;
5267 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5268 		rc = -ENOMEM;
5269 		goto out_free_mboxq;
5270 	}
5271 
5272 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5273 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5274 
5275 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5276 			"(%d):2571 Mailbox cmd x%x Status x%x "
5277 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5278 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5279 			"CQ: x%x x%x x%x x%x\n",
5280 			mboxq->vport ? mboxq->vport->vpi : 0,
5281 			bf_get(lpfc_mqe_command, mqe),
5282 			bf_get(lpfc_mqe_status, mqe),
5283 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5284 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5285 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5286 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5287 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5288 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5289 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5290 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5291 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5292 			mboxq->mcqe.word0,
5293 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5294 			mboxq->mcqe.trailer);
5295 
5296 	if (rc) {
5297 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5298 		kfree(mp);
5299 		rc = -EIO;
5300 		goto out_free_mboxq;
5301 	}
5302 	data_length = mqe->un.mb_words[5];
5303 	if (data_length > DMP_RGN23_SIZE) {
5304 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5305 		kfree(mp);
5306 		rc = -EIO;
5307 		goto out_free_mboxq;
5308 	}
5309 
5310 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5311 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5312 	kfree(mp);
5313 	rc = 0;
5314 
5315 out_free_mboxq:
5316 	mempool_free(mboxq, phba->mbox_mem_pool);
5317 	return rc;
5318 }
5319 
5320 /**
5321  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5322  * @phba: pointer to lpfc hba data structure.
5323  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5324  * @vpd: pointer to the memory to hold resulting port vpd data.
5325  * @vpd_size: On input, the number of bytes allocated to @vpd.
5326  *	      On output, the number of data bytes in @vpd.
5327  *
5328  * This routine executes a READ_REV SLI4 mailbox command.  In
5329  * addition, this routine gets the port vpd data.
5330  *
5331  * Return codes
5332  * 	0 - successful
5333  * 	-ENOMEM - could not allocated memory.
5334  **/
5335 static int
5336 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5337 		    uint8_t *vpd, uint32_t *vpd_size)
5338 {
5339 	int rc = 0;
5340 	uint32_t dma_size;
5341 	struct lpfc_dmabuf *dmabuf;
5342 	struct lpfc_mqe *mqe;
5343 
5344 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5345 	if (!dmabuf)
5346 		return -ENOMEM;
5347 
5348 	/*
5349 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5350 	 * mailbox command.
5351 	 */
5352 	dma_size = *vpd_size;
5353 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5354 					  &dmabuf->phys, GFP_KERNEL);
5355 	if (!dmabuf->virt) {
5356 		kfree(dmabuf);
5357 		return -ENOMEM;
5358 	}
5359 
5360 	/*
5361 	 * The SLI4 implementation of READ_REV conflicts at word1,
5362 	 * bits 31:16 and SLI4 adds vpd functionality not present
5363 	 * in SLI3.  This code corrects the conflicts.
5364 	 */
5365 	lpfc_read_rev(phba, mboxq);
5366 	mqe = &mboxq->u.mqe;
5367 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5368 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5369 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5370 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5371 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5372 
5373 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5374 	if (rc) {
5375 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5376 				  dmabuf->virt, dmabuf->phys);
5377 		kfree(dmabuf);
5378 		return -EIO;
5379 	}
5380 
5381 	/*
5382 	 * The available vpd length cannot be bigger than the
5383 	 * DMA buffer passed to the port.  Catch the less than
5384 	 * case and update the caller's size.
5385 	 */
5386 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5387 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5388 
5389 	memcpy(vpd, dmabuf->virt, *vpd_size);
5390 
5391 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5392 			  dmabuf->virt, dmabuf->phys);
5393 	kfree(dmabuf);
5394 	return 0;
5395 }
5396 
5397 /**
5398  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5399  * @phba: pointer to lpfc hba data structure.
5400  *
5401  * This routine retrieves SLI4 device physical port name this PCI function
5402  * is attached to.
5403  *
5404  * Return codes
5405  *      0 - successful
5406  *      otherwise - failed to retrieve physical port name
5407  **/
5408 static int
5409 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5410 {
5411 	LPFC_MBOXQ_t *mboxq;
5412 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5413 	struct lpfc_controller_attribute *cntl_attr;
5414 	struct lpfc_mbx_get_port_name *get_port_name;
5415 	void *virtaddr = NULL;
5416 	uint32_t alloclen, reqlen;
5417 	uint32_t shdr_status, shdr_add_status;
5418 	union lpfc_sli4_cfg_shdr *shdr;
5419 	char cport_name = 0;
5420 	int rc;
5421 
5422 	/* We assume nothing at this point */
5423 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5424 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5425 
5426 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5427 	if (!mboxq)
5428 		return -ENOMEM;
5429 	/* obtain link type and link number via READ_CONFIG */
5430 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5431 	lpfc_sli4_read_config(phba);
5432 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5433 		goto retrieve_ppname;
5434 
5435 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5436 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5437 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5438 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5439 			LPFC_SLI4_MBX_NEMBED);
5440 	if (alloclen < reqlen) {
5441 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5442 				"3084 Allocated DMA memory size (%d) is "
5443 				"less than the requested DMA memory size "
5444 				"(%d)\n", alloclen, reqlen);
5445 		rc = -ENOMEM;
5446 		goto out_free_mboxq;
5447 	}
5448 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5449 	virtaddr = mboxq->sge_array->addr[0];
5450 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5451 	shdr = &mbx_cntl_attr->cfg_shdr;
5452 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5453 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5454 	if (shdr_status || shdr_add_status || rc) {
5455 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5456 				"3085 Mailbox x%x (x%x/x%x) failed, "
5457 				"rc:x%x, status:x%x, add_status:x%x\n",
5458 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5459 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5460 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5461 				rc, shdr_status, shdr_add_status);
5462 		rc = -ENXIO;
5463 		goto out_free_mboxq;
5464 	}
5465 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5466 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5467 	phba->sli4_hba.lnk_info.lnk_tp =
5468 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5469 	phba->sli4_hba.lnk_info.lnk_no =
5470 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5471 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5472 			"3086 lnk_type:%d, lnk_numb:%d\n",
5473 			phba->sli4_hba.lnk_info.lnk_tp,
5474 			phba->sli4_hba.lnk_info.lnk_no);
5475 
5476 retrieve_ppname:
5477 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5478 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5479 		sizeof(struct lpfc_mbx_get_port_name) -
5480 		sizeof(struct lpfc_sli4_cfg_mhdr),
5481 		LPFC_SLI4_MBX_EMBED);
5482 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5483 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5484 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5485 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5486 		phba->sli4_hba.lnk_info.lnk_tp);
5487 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5488 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5489 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5490 	if (shdr_status || shdr_add_status || rc) {
5491 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5492 				"3087 Mailbox x%x (x%x/x%x) failed: "
5493 				"rc:x%x, status:x%x, add_status:x%x\n",
5494 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5495 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5496 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5497 				rc, shdr_status, shdr_add_status);
5498 		rc = -ENXIO;
5499 		goto out_free_mboxq;
5500 	}
5501 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5502 	case LPFC_LINK_NUMBER_0:
5503 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5504 				&get_port_name->u.response);
5505 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5506 		break;
5507 	case LPFC_LINK_NUMBER_1:
5508 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5509 				&get_port_name->u.response);
5510 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5511 		break;
5512 	case LPFC_LINK_NUMBER_2:
5513 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5514 				&get_port_name->u.response);
5515 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5516 		break;
5517 	case LPFC_LINK_NUMBER_3:
5518 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5519 				&get_port_name->u.response);
5520 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5521 		break;
5522 	default:
5523 		break;
5524 	}
5525 
5526 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5527 		phba->Port[0] = cport_name;
5528 		phba->Port[1] = '\0';
5529 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5530 				"3091 SLI get port name: %s\n", phba->Port);
5531 	}
5532 
5533 out_free_mboxq:
5534 	if (rc != MBX_TIMEOUT) {
5535 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5536 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5537 		else
5538 			mempool_free(mboxq, phba->mbox_mem_pool);
5539 	}
5540 	return rc;
5541 }
5542 
5543 /**
5544  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5545  * @phba: pointer to lpfc hba data structure.
5546  *
5547  * This routine is called to explicitly arm the SLI4 device's completion and
5548  * event queues
5549  **/
5550 static void
5551 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5552 {
5553 	int qidx;
5554 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5555 	struct lpfc_sli4_hdw_queue *qp;
5556 
5557 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5558 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5559 	if (sli4_hba->nvmels_cq)
5560 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5561 					   LPFC_QUEUE_REARM);
5562 
5563 	qp = sli4_hba->hdwq;
5564 	if (sli4_hba->hdwq) {
5565 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5566 			sli4_hba->sli4_write_cq_db(phba, qp[qidx].fcp_cq, 0,
5567 						   LPFC_QUEUE_REARM);
5568 			sli4_hba->sli4_write_cq_db(phba, qp[qidx].nvme_cq, 0,
5569 						   LPFC_QUEUE_REARM);
5570 		}
5571 
5572 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++)
5573 			sli4_hba->sli4_write_eq_db(phba, qp[qidx].hba_eq,
5574 						0, LPFC_QUEUE_REARM);
5575 	}
5576 
5577 	if (phba->nvmet_support) {
5578 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5579 			sli4_hba->sli4_write_cq_db(phba,
5580 				sli4_hba->nvmet_cqset[qidx], 0,
5581 				LPFC_QUEUE_REARM);
5582 		}
5583 	}
5584 }
5585 
5586 /**
5587  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5588  * @phba: Pointer to HBA context object.
5589  * @type: The resource extent type.
5590  * @extnt_count: buffer to hold port available extent count.
5591  * @extnt_size: buffer to hold element count per extent.
5592  *
5593  * This function calls the port and retrievs the number of available
5594  * extents and their size for a particular extent type.
5595  *
5596  * Returns: 0 if successful.  Nonzero otherwise.
5597  **/
5598 int
5599 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5600 			       uint16_t *extnt_count, uint16_t *extnt_size)
5601 {
5602 	int rc = 0;
5603 	uint32_t length;
5604 	uint32_t mbox_tmo;
5605 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5606 	LPFC_MBOXQ_t *mbox;
5607 
5608 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5609 	if (!mbox)
5610 		return -ENOMEM;
5611 
5612 	/* Find out how many extents are available for this resource type */
5613 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5614 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5615 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5616 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5617 			 length, LPFC_SLI4_MBX_EMBED);
5618 
5619 	/* Send an extents count of 0 - the GET doesn't use it. */
5620 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5621 					LPFC_SLI4_MBX_EMBED);
5622 	if (unlikely(rc)) {
5623 		rc = -EIO;
5624 		goto err_exit;
5625 	}
5626 
5627 	if (!phba->sli4_hba.intr_enable)
5628 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5629 	else {
5630 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5631 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5632 	}
5633 	if (unlikely(rc)) {
5634 		rc = -EIO;
5635 		goto err_exit;
5636 	}
5637 
5638 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5639 	if (bf_get(lpfc_mbox_hdr_status,
5640 		   &rsrc_info->header.cfg_shdr.response)) {
5641 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5642 				"2930 Failed to get resource extents "
5643 				"Status 0x%x Add'l Status 0x%x\n",
5644 				bf_get(lpfc_mbox_hdr_status,
5645 				       &rsrc_info->header.cfg_shdr.response),
5646 				bf_get(lpfc_mbox_hdr_add_status,
5647 				       &rsrc_info->header.cfg_shdr.response));
5648 		rc = -EIO;
5649 		goto err_exit;
5650 	}
5651 
5652 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5653 			      &rsrc_info->u.rsp);
5654 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5655 			     &rsrc_info->u.rsp);
5656 
5657 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5658 			"3162 Retrieved extents type-%d from port: count:%d, "
5659 			"size:%d\n", type, *extnt_count, *extnt_size);
5660 
5661 err_exit:
5662 	mempool_free(mbox, phba->mbox_mem_pool);
5663 	return rc;
5664 }
5665 
5666 /**
5667  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5668  * @phba: Pointer to HBA context object.
5669  * @type: The extent type to check.
5670  *
5671  * This function reads the current available extents from the port and checks
5672  * if the extent count or extent size has changed since the last access.
5673  * Callers use this routine post port reset to understand if there is a
5674  * extent reprovisioning requirement.
5675  *
5676  * Returns:
5677  *   -Error: error indicates problem.
5678  *   1: Extent count or size has changed.
5679  *   0: No changes.
5680  **/
5681 static int
5682 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5683 {
5684 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5685 	uint16_t size_diff, rsrc_ext_size;
5686 	int rc = 0;
5687 	struct lpfc_rsrc_blks *rsrc_entry;
5688 	struct list_head *rsrc_blk_list = NULL;
5689 
5690 	size_diff = 0;
5691 	curr_ext_cnt = 0;
5692 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5693 					    &rsrc_ext_cnt,
5694 					    &rsrc_ext_size);
5695 	if (unlikely(rc))
5696 		return -EIO;
5697 
5698 	switch (type) {
5699 	case LPFC_RSC_TYPE_FCOE_RPI:
5700 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5701 		break;
5702 	case LPFC_RSC_TYPE_FCOE_VPI:
5703 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5704 		break;
5705 	case LPFC_RSC_TYPE_FCOE_XRI:
5706 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5707 		break;
5708 	case LPFC_RSC_TYPE_FCOE_VFI:
5709 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5710 		break;
5711 	default:
5712 		break;
5713 	}
5714 
5715 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5716 		curr_ext_cnt++;
5717 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5718 			size_diff++;
5719 	}
5720 
5721 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5722 		rc = 1;
5723 
5724 	return rc;
5725 }
5726 
5727 /**
5728  * lpfc_sli4_cfg_post_extnts -
5729  * @phba: Pointer to HBA context object.
5730  * @extnt_cnt - number of available extents.
5731  * @type - the extent type (rpi, xri, vfi, vpi).
5732  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5733  * @mbox - pointer to the caller's allocated mailbox structure.
5734  *
5735  * This function executes the extents allocation request.  It also
5736  * takes care of the amount of memory needed to allocate or get the
5737  * allocated extents. It is the caller's responsibility to evaluate
5738  * the response.
5739  *
5740  * Returns:
5741  *   -Error:  Error value describes the condition found.
5742  *   0: if successful
5743  **/
5744 static int
5745 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5746 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5747 {
5748 	int rc = 0;
5749 	uint32_t req_len;
5750 	uint32_t emb_len;
5751 	uint32_t alloc_len, mbox_tmo;
5752 
5753 	/* Calculate the total requested length of the dma memory */
5754 	req_len = extnt_cnt * sizeof(uint16_t);
5755 
5756 	/*
5757 	 * Calculate the size of an embedded mailbox.  The uint32_t
5758 	 * accounts for extents-specific word.
5759 	 */
5760 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5761 		sizeof(uint32_t);
5762 
5763 	/*
5764 	 * Presume the allocation and response will fit into an embedded
5765 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5766 	 */
5767 	*emb = LPFC_SLI4_MBX_EMBED;
5768 	if (req_len > emb_len) {
5769 		req_len = extnt_cnt * sizeof(uint16_t) +
5770 			sizeof(union lpfc_sli4_cfg_shdr) +
5771 			sizeof(uint32_t);
5772 		*emb = LPFC_SLI4_MBX_NEMBED;
5773 	}
5774 
5775 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5776 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5777 				     req_len, *emb);
5778 	if (alloc_len < req_len) {
5779 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5780 			"2982 Allocated DMA memory size (x%x) is "
5781 			"less than the requested DMA memory "
5782 			"size (x%x)\n", alloc_len, req_len);
5783 		return -ENOMEM;
5784 	}
5785 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5786 	if (unlikely(rc))
5787 		return -EIO;
5788 
5789 	if (!phba->sli4_hba.intr_enable)
5790 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5791 	else {
5792 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5793 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5794 	}
5795 
5796 	if (unlikely(rc))
5797 		rc = -EIO;
5798 	return rc;
5799 }
5800 
5801 /**
5802  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5803  * @phba: Pointer to HBA context object.
5804  * @type:  The resource extent type to allocate.
5805  *
5806  * This function allocates the number of elements for the specified
5807  * resource type.
5808  **/
5809 static int
5810 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5811 {
5812 	bool emb = false;
5813 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5814 	uint16_t rsrc_id, rsrc_start, j, k;
5815 	uint16_t *ids;
5816 	int i, rc;
5817 	unsigned long longs;
5818 	unsigned long *bmask;
5819 	struct lpfc_rsrc_blks *rsrc_blks;
5820 	LPFC_MBOXQ_t *mbox;
5821 	uint32_t length;
5822 	struct lpfc_id_range *id_array = NULL;
5823 	void *virtaddr = NULL;
5824 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5825 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5826 	struct list_head *ext_blk_list;
5827 
5828 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5829 					    &rsrc_cnt,
5830 					    &rsrc_size);
5831 	if (unlikely(rc))
5832 		return -EIO;
5833 
5834 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5835 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5836 			"3009 No available Resource Extents "
5837 			"for resource type 0x%x: Count: 0x%x, "
5838 			"Size 0x%x\n", type, rsrc_cnt,
5839 			rsrc_size);
5840 		return -ENOMEM;
5841 	}
5842 
5843 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5844 			"2903 Post resource extents type-0x%x: "
5845 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5846 
5847 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5848 	if (!mbox)
5849 		return -ENOMEM;
5850 
5851 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5852 	if (unlikely(rc)) {
5853 		rc = -EIO;
5854 		goto err_exit;
5855 	}
5856 
5857 	/*
5858 	 * Figure out where the response is located.  Then get local pointers
5859 	 * to the response data.  The port does not guarantee to respond to
5860 	 * all extents counts request so update the local variable with the
5861 	 * allocated count from the port.
5862 	 */
5863 	if (emb == LPFC_SLI4_MBX_EMBED) {
5864 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5865 		id_array = &rsrc_ext->u.rsp.id[0];
5866 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5867 	} else {
5868 		virtaddr = mbox->sge_array->addr[0];
5869 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5870 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5871 		id_array = &n_rsrc->id;
5872 	}
5873 
5874 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5875 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5876 
5877 	/*
5878 	 * Based on the resource size and count, correct the base and max
5879 	 * resource values.
5880 	 */
5881 	length = sizeof(struct lpfc_rsrc_blks);
5882 	switch (type) {
5883 	case LPFC_RSC_TYPE_FCOE_RPI:
5884 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5885 						   sizeof(unsigned long),
5886 						   GFP_KERNEL);
5887 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5888 			rc = -ENOMEM;
5889 			goto err_exit;
5890 		}
5891 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5892 						 sizeof(uint16_t),
5893 						 GFP_KERNEL);
5894 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5895 			kfree(phba->sli4_hba.rpi_bmask);
5896 			rc = -ENOMEM;
5897 			goto err_exit;
5898 		}
5899 
5900 		/*
5901 		 * The next_rpi was initialized with the maximum available
5902 		 * count but the port may allocate a smaller number.  Catch
5903 		 * that case and update the next_rpi.
5904 		 */
5905 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5906 
5907 		/* Initialize local ptrs for common extent processing later. */
5908 		bmask = phba->sli4_hba.rpi_bmask;
5909 		ids = phba->sli4_hba.rpi_ids;
5910 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5911 		break;
5912 	case LPFC_RSC_TYPE_FCOE_VPI:
5913 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5914 					  GFP_KERNEL);
5915 		if (unlikely(!phba->vpi_bmask)) {
5916 			rc = -ENOMEM;
5917 			goto err_exit;
5918 		}
5919 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5920 					 GFP_KERNEL);
5921 		if (unlikely(!phba->vpi_ids)) {
5922 			kfree(phba->vpi_bmask);
5923 			rc = -ENOMEM;
5924 			goto err_exit;
5925 		}
5926 
5927 		/* Initialize local ptrs for common extent processing later. */
5928 		bmask = phba->vpi_bmask;
5929 		ids = phba->vpi_ids;
5930 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5931 		break;
5932 	case LPFC_RSC_TYPE_FCOE_XRI:
5933 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5934 						   sizeof(unsigned long),
5935 						   GFP_KERNEL);
5936 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5937 			rc = -ENOMEM;
5938 			goto err_exit;
5939 		}
5940 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5941 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5942 						 sizeof(uint16_t),
5943 						 GFP_KERNEL);
5944 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5945 			kfree(phba->sli4_hba.xri_bmask);
5946 			rc = -ENOMEM;
5947 			goto err_exit;
5948 		}
5949 
5950 		/* Initialize local ptrs for common extent processing later. */
5951 		bmask = phba->sli4_hba.xri_bmask;
5952 		ids = phba->sli4_hba.xri_ids;
5953 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5954 		break;
5955 	case LPFC_RSC_TYPE_FCOE_VFI:
5956 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5957 						   sizeof(unsigned long),
5958 						   GFP_KERNEL);
5959 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5960 			rc = -ENOMEM;
5961 			goto err_exit;
5962 		}
5963 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5964 						 sizeof(uint16_t),
5965 						 GFP_KERNEL);
5966 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5967 			kfree(phba->sli4_hba.vfi_bmask);
5968 			rc = -ENOMEM;
5969 			goto err_exit;
5970 		}
5971 
5972 		/* Initialize local ptrs for common extent processing later. */
5973 		bmask = phba->sli4_hba.vfi_bmask;
5974 		ids = phba->sli4_hba.vfi_ids;
5975 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5976 		break;
5977 	default:
5978 		/* Unsupported Opcode.  Fail call. */
5979 		id_array = NULL;
5980 		bmask = NULL;
5981 		ids = NULL;
5982 		ext_blk_list = NULL;
5983 		goto err_exit;
5984 	}
5985 
5986 	/*
5987 	 * Complete initializing the extent configuration with the
5988 	 * allocated ids assigned to this function.  The bitmask serves
5989 	 * as an index into the array and manages the available ids.  The
5990 	 * array just stores the ids communicated to the port via the wqes.
5991 	 */
5992 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5993 		if ((i % 2) == 0)
5994 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5995 					 &id_array[k]);
5996 		else
5997 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5998 					 &id_array[k]);
5999 
6000 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6001 		if (unlikely(!rsrc_blks)) {
6002 			rc = -ENOMEM;
6003 			kfree(bmask);
6004 			kfree(ids);
6005 			goto err_exit;
6006 		}
6007 		rsrc_blks->rsrc_start = rsrc_id;
6008 		rsrc_blks->rsrc_size = rsrc_size;
6009 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6010 		rsrc_start = rsrc_id;
6011 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6012 			phba->sli4_hba.io_xri_start = rsrc_start +
6013 				lpfc_sli4_get_iocb_cnt(phba);
6014 		}
6015 
6016 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6017 			ids[j] = rsrc_id;
6018 			rsrc_id++;
6019 			j++;
6020 		}
6021 		/* Entire word processed.  Get next word.*/
6022 		if ((i % 2) == 1)
6023 			k++;
6024 	}
6025  err_exit:
6026 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6027 	return rc;
6028 }
6029 
6030 
6031 
6032 /**
6033  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6034  * @phba: Pointer to HBA context object.
6035  * @type: the extent's type.
6036  *
6037  * This function deallocates all extents of a particular resource type.
6038  * SLI4 does not allow for deallocating a particular extent range.  It
6039  * is the caller's responsibility to release all kernel memory resources.
6040  **/
6041 static int
6042 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6043 {
6044 	int rc;
6045 	uint32_t length, mbox_tmo = 0;
6046 	LPFC_MBOXQ_t *mbox;
6047 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6048 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6049 
6050 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6051 	if (!mbox)
6052 		return -ENOMEM;
6053 
6054 	/*
6055 	 * This function sends an embedded mailbox because it only sends the
6056 	 * the resource type.  All extents of this type are released by the
6057 	 * port.
6058 	 */
6059 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6060 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6061 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6062 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6063 			 length, LPFC_SLI4_MBX_EMBED);
6064 
6065 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6066 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6067 					LPFC_SLI4_MBX_EMBED);
6068 	if (unlikely(rc)) {
6069 		rc = -EIO;
6070 		goto out_free_mbox;
6071 	}
6072 	if (!phba->sli4_hba.intr_enable)
6073 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6074 	else {
6075 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6076 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6077 	}
6078 	if (unlikely(rc)) {
6079 		rc = -EIO;
6080 		goto out_free_mbox;
6081 	}
6082 
6083 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6084 	if (bf_get(lpfc_mbox_hdr_status,
6085 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6086 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6087 				"2919 Failed to release resource extents "
6088 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6089 				"Resource memory not released.\n",
6090 				type,
6091 				bf_get(lpfc_mbox_hdr_status,
6092 				    &dealloc_rsrc->header.cfg_shdr.response),
6093 				bf_get(lpfc_mbox_hdr_add_status,
6094 				    &dealloc_rsrc->header.cfg_shdr.response));
6095 		rc = -EIO;
6096 		goto out_free_mbox;
6097 	}
6098 
6099 	/* Release kernel memory resources for the specific type. */
6100 	switch (type) {
6101 	case LPFC_RSC_TYPE_FCOE_VPI:
6102 		kfree(phba->vpi_bmask);
6103 		kfree(phba->vpi_ids);
6104 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6105 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6106 				    &phba->lpfc_vpi_blk_list, list) {
6107 			list_del_init(&rsrc_blk->list);
6108 			kfree(rsrc_blk);
6109 		}
6110 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6111 		break;
6112 	case LPFC_RSC_TYPE_FCOE_XRI:
6113 		kfree(phba->sli4_hba.xri_bmask);
6114 		kfree(phba->sli4_hba.xri_ids);
6115 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6116 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6117 			list_del_init(&rsrc_blk->list);
6118 			kfree(rsrc_blk);
6119 		}
6120 		break;
6121 	case LPFC_RSC_TYPE_FCOE_VFI:
6122 		kfree(phba->sli4_hba.vfi_bmask);
6123 		kfree(phba->sli4_hba.vfi_ids);
6124 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6125 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6126 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6127 			list_del_init(&rsrc_blk->list);
6128 			kfree(rsrc_blk);
6129 		}
6130 		break;
6131 	case LPFC_RSC_TYPE_FCOE_RPI:
6132 		/* RPI bitmask and physical id array are cleaned up earlier. */
6133 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6134 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6135 			list_del_init(&rsrc_blk->list);
6136 			kfree(rsrc_blk);
6137 		}
6138 		break;
6139 	default:
6140 		break;
6141 	}
6142 
6143 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6144 
6145  out_free_mbox:
6146 	mempool_free(mbox, phba->mbox_mem_pool);
6147 	return rc;
6148 }
6149 
6150 static void
6151 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6152 		  uint32_t feature)
6153 {
6154 	uint32_t len;
6155 
6156 	len = sizeof(struct lpfc_mbx_set_feature) -
6157 		sizeof(struct lpfc_sli4_cfg_mhdr);
6158 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6159 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6160 			 LPFC_SLI4_MBX_EMBED);
6161 
6162 	switch (feature) {
6163 	case LPFC_SET_UE_RECOVERY:
6164 		bf_set(lpfc_mbx_set_feature_UER,
6165 		       &mbox->u.mqe.un.set_feature, 1);
6166 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6167 		mbox->u.mqe.un.set_feature.param_len = 8;
6168 		break;
6169 	case LPFC_SET_MDS_DIAGS:
6170 		bf_set(lpfc_mbx_set_feature_mds,
6171 		       &mbox->u.mqe.un.set_feature, 1);
6172 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6173 		       &mbox->u.mqe.un.set_feature, 1);
6174 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6175 		mbox->u.mqe.un.set_feature.param_len = 8;
6176 		break;
6177 	}
6178 
6179 	return;
6180 }
6181 
6182 /**
6183  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6184  * @phba: Pointer to HBA context object.
6185  *
6186  * Disable FW logging into host memory on the adapter. To
6187  * be done before reading logs from the host memory.
6188  **/
6189 void
6190 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6191 {
6192 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6193 
6194 	ras_fwlog->ras_active = false;
6195 
6196 	/* Disable FW logging to host memory */
6197 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6198 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6199 }
6200 
6201 /**
6202  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6203  * @phba: Pointer to HBA context object.
6204  *
6205  * This function is called to free memory allocated for RAS FW logging
6206  * support in the driver.
6207  **/
6208 void
6209 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6210 {
6211 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6212 	struct lpfc_dmabuf *dmabuf, *next;
6213 
6214 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6215 		list_for_each_entry_safe(dmabuf, next,
6216 				    &ras_fwlog->fwlog_buff_list,
6217 				    list) {
6218 			list_del(&dmabuf->list);
6219 			dma_free_coherent(&phba->pcidev->dev,
6220 					  LPFC_RAS_MAX_ENTRY_SIZE,
6221 					  dmabuf->virt, dmabuf->phys);
6222 			kfree(dmabuf);
6223 		}
6224 	}
6225 
6226 	if (ras_fwlog->lwpd.virt) {
6227 		dma_free_coherent(&phba->pcidev->dev,
6228 				  sizeof(uint32_t) * 2,
6229 				  ras_fwlog->lwpd.virt,
6230 				  ras_fwlog->lwpd.phys);
6231 		ras_fwlog->lwpd.virt = NULL;
6232 	}
6233 
6234 	ras_fwlog->ras_active = false;
6235 }
6236 
6237 /**
6238  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6239  * @phba: Pointer to HBA context object.
6240  * @fwlog_buff_count: Count of buffers to be created.
6241  *
6242  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6243  * to update FW log is posted to the adapter.
6244  * Buffer count is calculated based on module param ras_fwlog_buffsize
6245  * Size of each buffer posted to FW is 64K.
6246  **/
6247 
6248 static int
6249 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6250 			uint32_t fwlog_buff_count)
6251 {
6252 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6253 	struct lpfc_dmabuf *dmabuf;
6254 	int rc = 0, i = 0;
6255 
6256 	/* Initialize List */
6257 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6258 
6259 	/* Allocate memory for the LWPD */
6260 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6261 					    sizeof(uint32_t) * 2,
6262 					    &ras_fwlog->lwpd.phys,
6263 					    GFP_KERNEL);
6264 	if (!ras_fwlog->lwpd.virt) {
6265 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6266 				"6185 LWPD Memory Alloc Failed\n");
6267 
6268 		return -ENOMEM;
6269 	}
6270 
6271 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6272 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6273 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6274 				 GFP_KERNEL);
6275 		if (!dmabuf) {
6276 			rc = -ENOMEM;
6277 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6278 					"6186 Memory Alloc failed FW logging");
6279 			goto free_mem;
6280 		}
6281 
6282 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6283 						  LPFC_RAS_MAX_ENTRY_SIZE,
6284 						  &dmabuf->phys, GFP_KERNEL);
6285 		if (!dmabuf->virt) {
6286 			kfree(dmabuf);
6287 			rc = -ENOMEM;
6288 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6289 					"6187 DMA Alloc Failed FW logging");
6290 			goto free_mem;
6291 		}
6292 		dmabuf->buffer_tag = i;
6293 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6294 	}
6295 
6296 free_mem:
6297 	if (rc)
6298 		lpfc_sli4_ras_dma_free(phba);
6299 
6300 	return rc;
6301 }
6302 
6303 /**
6304  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6305  * @phba: pointer to lpfc hba data structure.
6306  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6307  *
6308  * Completion handler for driver's RAS MBX command to the device.
6309  **/
6310 static void
6311 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6312 {
6313 	MAILBOX_t *mb;
6314 	union lpfc_sli4_cfg_shdr *shdr;
6315 	uint32_t shdr_status, shdr_add_status;
6316 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6317 
6318 	mb = &pmb->u.mb;
6319 
6320 	shdr = (union lpfc_sli4_cfg_shdr *)
6321 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6322 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6323 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6324 
6325 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6326 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6327 				"6188 FW LOG mailbox "
6328 				"completed with status x%x add_status x%x,"
6329 				" mbx status x%x\n",
6330 				shdr_status, shdr_add_status, mb->mbxStatus);
6331 
6332 		ras_fwlog->ras_hwsupport = false;
6333 		goto disable_ras;
6334 	}
6335 
6336 	ras_fwlog->ras_active = true;
6337 	mempool_free(pmb, phba->mbox_mem_pool);
6338 
6339 	return;
6340 
6341 disable_ras:
6342 	/* Free RAS DMA memory */
6343 	lpfc_sli4_ras_dma_free(phba);
6344 	mempool_free(pmb, phba->mbox_mem_pool);
6345 }
6346 
6347 /**
6348  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6349  * @phba: pointer to lpfc hba data structure.
6350  * @fwlog_level: Logging verbosity level.
6351  * @fwlog_enable: Enable/Disable logging.
6352  *
6353  * Initialize memory and post mailbox command to enable FW logging in host
6354  * memory.
6355  **/
6356 int
6357 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6358 			 uint32_t fwlog_level,
6359 			 uint32_t fwlog_enable)
6360 {
6361 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6362 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6363 	struct lpfc_dmabuf *dmabuf;
6364 	LPFC_MBOXQ_t *mbox;
6365 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6366 	int rc = 0;
6367 
6368 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6369 			  phba->cfg_ras_fwlog_buffsize);
6370 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6371 
6372 	/*
6373 	 * If re-enabling FW logging support use earlier allocated
6374 	 * DMA buffers while posting MBX command.
6375 	 **/
6376 	if (!ras_fwlog->lwpd.virt) {
6377 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6378 		if (rc) {
6379 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6380 					"6189 FW Log Memory Allocation Failed");
6381 			return rc;
6382 		}
6383 	}
6384 
6385 	/* Setup Mailbox command */
6386 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6387 	if (!mbox) {
6388 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6389 				"6190 RAS MBX Alloc Failed");
6390 		rc = -ENOMEM;
6391 		goto mem_free;
6392 	}
6393 
6394 	ras_fwlog->fw_loglevel = fwlog_level;
6395 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6396 		sizeof(struct lpfc_sli4_cfg_mhdr));
6397 
6398 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6399 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6400 			 len, LPFC_SLI4_MBX_EMBED);
6401 
6402 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6403 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6404 	       fwlog_enable);
6405 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6406 	       ras_fwlog->fw_loglevel);
6407 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6408 	       ras_fwlog->fw_buffcount);
6409 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6410 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6411 
6412 	/* Update DMA buffer address */
6413 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6414 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6415 
6416 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6417 			putPaddrLow(dmabuf->phys);
6418 
6419 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6420 			putPaddrHigh(dmabuf->phys);
6421 	}
6422 
6423 	/* Update LPWD address */
6424 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6425 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6426 
6427 	mbox->vport = phba->pport;
6428 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6429 
6430 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6431 
6432 	if (rc == MBX_NOT_FINISHED) {
6433 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6434 				"6191 FW-Log Mailbox failed. "
6435 				"status %d mbxStatus : x%x", rc,
6436 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6437 		mempool_free(mbox, phba->mbox_mem_pool);
6438 		rc = -EIO;
6439 		goto mem_free;
6440 	} else
6441 		rc = 0;
6442 mem_free:
6443 	if (rc)
6444 		lpfc_sli4_ras_dma_free(phba);
6445 
6446 	return rc;
6447 }
6448 
6449 /**
6450  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6451  * @phba: Pointer to HBA context object.
6452  *
6453  * Check if RAS is supported on the adapter and initialize it.
6454  **/
6455 void
6456 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6457 {
6458 	/* Check RAS FW Log needs to be enabled or not */
6459 	if (lpfc_check_fwlog_support(phba))
6460 		return;
6461 
6462 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6463 				 LPFC_RAS_ENABLE_LOGGING);
6464 }
6465 
6466 /**
6467  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6468  * @phba: Pointer to HBA context object.
6469  *
6470  * This function allocates all SLI4 resource identifiers.
6471  **/
6472 int
6473 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6474 {
6475 	int i, rc, error = 0;
6476 	uint16_t count, base;
6477 	unsigned long longs;
6478 
6479 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6480 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6481 	if (phba->sli4_hba.extents_in_use) {
6482 		/*
6483 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6484 		 * resource extent count must be read and allocated before
6485 		 * provisioning the resource id arrays.
6486 		 */
6487 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6488 		    LPFC_IDX_RSRC_RDY) {
6489 			/*
6490 			 * Extent-based resources are set - the driver could
6491 			 * be in a port reset. Figure out if any corrective
6492 			 * actions need to be taken.
6493 			 */
6494 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6495 						 LPFC_RSC_TYPE_FCOE_VFI);
6496 			if (rc != 0)
6497 				error++;
6498 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6499 						 LPFC_RSC_TYPE_FCOE_VPI);
6500 			if (rc != 0)
6501 				error++;
6502 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6503 						 LPFC_RSC_TYPE_FCOE_XRI);
6504 			if (rc != 0)
6505 				error++;
6506 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6507 						 LPFC_RSC_TYPE_FCOE_RPI);
6508 			if (rc != 0)
6509 				error++;
6510 
6511 			/*
6512 			 * It's possible that the number of resources
6513 			 * provided to this port instance changed between
6514 			 * resets.  Detect this condition and reallocate
6515 			 * resources.  Otherwise, there is no action.
6516 			 */
6517 			if (error) {
6518 				lpfc_printf_log(phba, KERN_INFO,
6519 						LOG_MBOX | LOG_INIT,
6520 						"2931 Detected extent resource "
6521 						"change.  Reallocating all "
6522 						"extents.\n");
6523 				rc = lpfc_sli4_dealloc_extent(phba,
6524 						 LPFC_RSC_TYPE_FCOE_VFI);
6525 				rc = lpfc_sli4_dealloc_extent(phba,
6526 						 LPFC_RSC_TYPE_FCOE_VPI);
6527 				rc = lpfc_sli4_dealloc_extent(phba,
6528 						 LPFC_RSC_TYPE_FCOE_XRI);
6529 				rc = lpfc_sli4_dealloc_extent(phba,
6530 						 LPFC_RSC_TYPE_FCOE_RPI);
6531 			} else
6532 				return 0;
6533 		}
6534 
6535 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6536 		if (unlikely(rc))
6537 			goto err_exit;
6538 
6539 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6540 		if (unlikely(rc))
6541 			goto err_exit;
6542 
6543 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6544 		if (unlikely(rc))
6545 			goto err_exit;
6546 
6547 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6548 		if (unlikely(rc))
6549 			goto err_exit;
6550 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6551 		       LPFC_IDX_RSRC_RDY);
6552 		return rc;
6553 	} else {
6554 		/*
6555 		 * The port does not support resource extents.  The XRI, VPI,
6556 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6557 		 * Just allocate the bitmasks and provision the resource id
6558 		 * arrays.  If a port reset is active, the resources don't
6559 		 * need any action - just exit.
6560 		 */
6561 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6562 		    LPFC_IDX_RSRC_RDY) {
6563 			lpfc_sli4_dealloc_resource_identifiers(phba);
6564 			lpfc_sli4_remove_rpis(phba);
6565 		}
6566 		/* RPIs. */
6567 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6568 		if (count <= 0) {
6569 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6570 					"3279 Invalid provisioning of "
6571 					"rpi:%d\n", count);
6572 			rc = -EINVAL;
6573 			goto err_exit;
6574 		}
6575 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6576 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6577 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6578 						   sizeof(unsigned long),
6579 						   GFP_KERNEL);
6580 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6581 			rc = -ENOMEM;
6582 			goto err_exit;
6583 		}
6584 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6585 						 GFP_KERNEL);
6586 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6587 			rc = -ENOMEM;
6588 			goto free_rpi_bmask;
6589 		}
6590 
6591 		for (i = 0; i < count; i++)
6592 			phba->sli4_hba.rpi_ids[i] = base + i;
6593 
6594 		/* VPIs. */
6595 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6596 		if (count <= 0) {
6597 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6598 					"3280 Invalid provisioning of "
6599 					"vpi:%d\n", count);
6600 			rc = -EINVAL;
6601 			goto free_rpi_ids;
6602 		}
6603 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6604 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6605 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6606 					  GFP_KERNEL);
6607 		if (unlikely(!phba->vpi_bmask)) {
6608 			rc = -ENOMEM;
6609 			goto free_rpi_ids;
6610 		}
6611 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6612 					GFP_KERNEL);
6613 		if (unlikely(!phba->vpi_ids)) {
6614 			rc = -ENOMEM;
6615 			goto free_vpi_bmask;
6616 		}
6617 
6618 		for (i = 0; i < count; i++)
6619 			phba->vpi_ids[i] = base + i;
6620 
6621 		/* XRIs. */
6622 		count = phba->sli4_hba.max_cfg_param.max_xri;
6623 		if (count <= 0) {
6624 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6625 					"3281 Invalid provisioning of "
6626 					"xri:%d\n", count);
6627 			rc = -EINVAL;
6628 			goto free_vpi_ids;
6629 		}
6630 		base = phba->sli4_hba.max_cfg_param.xri_base;
6631 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6632 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6633 						   sizeof(unsigned long),
6634 						   GFP_KERNEL);
6635 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6636 			rc = -ENOMEM;
6637 			goto free_vpi_ids;
6638 		}
6639 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6640 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6641 						 GFP_KERNEL);
6642 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6643 			rc = -ENOMEM;
6644 			goto free_xri_bmask;
6645 		}
6646 
6647 		for (i = 0; i < count; i++)
6648 			phba->sli4_hba.xri_ids[i] = base + i;
6649 
6650 		/* VFIs. */
6651 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6652 		if (count <= 0) {
6653 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6654 					"3282 Invalid provisioning of "
6655 					"vfi:%d\n", count);
6656 			rc = -EINVAL;
6657 			goto free_xri_ids;
6658 		}
6659 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6660 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6661 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6662 						   sizeof(unsigned long),
6663 						   GFP_KERNEL);
6664 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6665 			rc = -ENOMEM;
6666 			goto free_xri_ids;
6667 		}
6668 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6669 						 GFP_KERNEL);
6670 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6671 			rc = -ENOMEM;
6672 			goto free_vfi_bmask;
6673 		}
6674 
6675 		for (i = 0; i < count; i++)
6676 			phba->sli4_hba.vfi_ids[i] = base + i;
6677 
6678 		/*
6679 		 * Mark all resources ready.  An HBA reset doesn't need
6680 		 * to reset the initialization.
6681 		 */
6682 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6683 		       LPFC_IDX_RSRC_RDY);
6684 		return 0;
6685 	}
6686 
6687  free_vfi_bmask:
6688 	kfree(phba->sli4_hba.vfi_bmask);
6689 	phba->sli4_hba.vfi_bmask = NULL;
6690  free_xri_ids:
6691 	kfree(phba->sli4_hba.xri_ids);
6692 	phba->sli4_hba.xri_ids = NULL;
6693  free_xri_bmask:
6694 	kfree(phba->sli4_hba.xri_bmask);
6695 	phba->sli4_hba.xri_bmask = NULL;
6696  free_vpi_ids:
6697 	kfree(phba->vpi_ids);
6698 	phba->vpi_ids = NULL;
6699  free_vpi_bmask:
6700 	kfree(phba->vpi_bmask);
6701 	phba->vpi_bmask = NULL;
6702  free_rpi_ids:
6703 	kfree(phba->sli4_hba.rpi_ids);
6704 	phba->sli4_hba.rpi_ids = NULL;
6705  free_rpi_bmask:
6706 	kfree(phba->sli4_hba.rpi_bmask);
6707 	phba->sli4_hba.rpi_bmask = NULL;
6708  err_exit:
6709 	return rc;
6710 }
6711 
6712 /**
6713  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6714  * @phba: Pointer to HBA context object.
6715  *
6716  * This function allocates the number of elements for the specified
6717  * resource type.
6718  **/
6719 int
6720 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6721 {
6722 	if (phba->sli4_hba.extents_in_use) {
6723 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6724 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6725 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6726 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6727 	} else {
6728 		kfree(phba->vpi_bmask);
6729 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6730 		kfree(phba->vpi_ids);
6731 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6732 		kfree(phba->sli4_hba.xri_bmask);
6733 		kfree(phba->sli4_hba.xri_ids);
6734 		kfree(phba->sli4_hba.vfi_bmask);
6735 		kfree(phba->sli4_hba.vfi_ids);
6736 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6737 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6738 	}
6739 
6740 	return 0;
6741 }
6742 
6743 /**
6744  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6745  * @phba: Pointer to HBA context object.
6746  * @type: The resource extent type.
6747  * @extnt_count: buffer to hold port extent count response
6748  * @extnt_size: buffer to hold port extent size response.
6749  *
6750  * This function calls the port to read the host allocated extents
6751  * for a particular type.
6752  **/
6753 int
6754 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6755 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6756 {
6757 	bool emb;
6758 	int rc = 0;
6759 	uint16_t curr_blks = 0;
6760 	uint32_t req_len, emb_len;
6761 	uint32_t alloc_len, mbox_tmo;
6762 	struct list_head *blk_list_head;
6763 	struct lpfc_rsrc_blks *rsrc_blk;
6764 	LPFC_MBOXQ_t *mbox;
6765 	void *virtaddr = NULL;
6766 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6767 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6768 	union  lpfc_sli4_cfg_shdr *shdr;
6769 
6770 	switch (type) {
6771 	case LPFC_RSC_TYPE_FCOE_VPI:
6772 		blk_list_head = &phba->lpfc_vpi_blk_list;
6773 		break;
6774 	case LPFC_RSC_TYPE_FCOE_XRI:
6775 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6776 		break;
6777 	case LPFC_RSC_TYPE_FCOE_VFI:
6778 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6779 		break;
6780 	case LPFC_RSC_TYPE_FCOE_RPI:
6781 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6782 		break;
6783 	default:
6784 		return -EIO;
6785 	}
6786 
6787 	/* Count the number of extents currently allocatd for this type. */
6788 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6789 		if (curr_blks == 0) {
6790 			/*
6791 			 * The GET_ALLOCATED mailbox does not return the size,
6792 			 * just the count.  The size should be just the size
6793 			 * stored in the current allocated block and all sizes
6794 			 * for an extent type are the same so set the return
6795 			 * value now.
6796 			 */
6797 			*extnt_size = rsrc_blk->rsrc_size;
6798 		}
6799 		curr_blks++;
6800 	}
6801 
6802 	/*
6803 	 * Calculate the size of an embedded mailbox.  The uint32_t
6804 	 * accounts for extents-specific word.
6805 	 */
6806 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6807 		sizeof(uint32_t);
6808 
6809 	/*
6810 	 * Presume the allocation and response will fit into an embedded
6811 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6812 	 */
6813 	emb = LPFC_SLI4_MBX_EMBED;
6814 	req_len = emb_len;
6815 	if (req_len > emb_len) {
6816 		req_len = curr_blks * sizeof(uint16_t) +
6817 			sizeof(union lpfc_sli4_cfg_shdr) +
6818 			sizeof(uint32_t);
6819 		emb = LPFC_SLI4_MBX_NEMBED;
6820 	}
6821 
6822 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6823 	if (!mbox)
6824 		return -ENOMEM;
6825 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6826 
6827 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6828 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6829 				     req_len, emb);
6830 	if (alloc_len < req_len) {
6831 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6832 			"2983 Allocated DMA memory size (x%x) is "
6833 			"less than the requested DMA memory "
6834 			"size (x%x)\n", alloc_len, req_len);
6835 		rc = -ENOMEM;
6836 		goto err_exit;
6837 	}
6838 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6839 	if (unlikely(rc)) {
6840 		rc = -EIO;
6841 		goto err_exit;
6842 	}
6843 
6844 	if (!phba->sli4_hba.intr_enable)
6845 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6846 	else {
6847 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6848 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6849 	}
6850 
6851 	if (unlikely(rc)) {
6852 		rc = -EIO;
6853 		goto err_exit;
6854 	}
6855 
6856 	/*
6857 	 * Figure out where the response is located.  Then get local pointers
6858 	 * to the response data.  The port does not guarantee to respond to
6859 	 * all extents counts request so update the local variable with the
6860 	 * allocated count from the port.
6861 	 */
6862 	if (emb == LPFC_SLI4_MBX_EMBED) {
6863 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6864 		shdr = &rsrc_ext->header.cfg_shdr;
6865 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6866 	} else {
6867 		virtaddr = mbox->sge_array->addr[0];
6868 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6869 		shdr = &n_rsrc->cfg_shdr;
6870 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6871 	}
6872 
6873 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6874 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6875 			"2984 Failed to read allocated resources "
6876 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6877 			type,
6878 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6879 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6880 		rc = -EIO;
6881 		goto err_exit;
6882 	}
6883  err_exit:
6884 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6885 	return rc;
6886 }
6887 
6888 /**
6889  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6890  * @phba: pointer to lpfc hba data structure.
6891  * @pring: Pointer to driver SLI ring object.
6892  * @sgl_list: linked link of sgl buffers to post
6893  * @cnt: number of linked list buffers
6894  *
6895  * This routine walks the list of buffers that have been allocated and
6896  * repost them to the port by using SGL block post. This is needed after a
6897  * pci_function_reset/warm_start or start. It attempts to construct blocks
6898  * of buffer sgls which contains contiguous xris and uses the non-embedded
6899  * SGL block post mailbox commands to post them to the port. For single
6900  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6901  * mailbox command for posting.
6902  *
6903  * Returns: 0 = success, non-zero failure.
6904  **/
6905 static int
6906 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6907 			  struct list_head *sgl_list, int cnt)
6908 {
6909 	struct lpfc_sglq *sglq_entry = NULL;
6910 	struct lpfc_sglq *sglq_entry_next = NULL;
6911 	struct lpfc_sglq *sglq_entry_first = NULL;
6912 	int status, total_cnt;
6913 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6914 	int last_xritag = NO_XRI;
6915 	LIST_HEAD(prep_sgl_list);
6916 	LIST_HEAD(blck_sgl_list);
6917 	LIST_HEAD(allc_sgl_list);
6918 	LIST_HEAD(post_sgl_list);
6919 	LIST_HEAD(free_sgl_list);
6920 
6921 	spin_lock_irq(&phba->hbalock);
6922 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6923 	list_splice_init(sgl_list, &allc_sgl_list);
6924 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6925 	spin_unlock_irq(&phba->hbalock);
6926 
6927 	total_cnt = cnt;
6928 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6929 				 &allc_sgl_list, list) {
6930 		list_del_init(&sglq_entry->list);
6931 		block_cnt++;
6932 		if ((last_xritag != NO_XRI) &&
6933 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6934 			/* a hole in xri block, form a sgl posting block */
6935 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6936 			post_cnt = block_cnt - 1;
6937 			/* prepare list for next posting block */
6938 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6939 			block_cnt = 1;
6940 		} else {
6941 			/* prepare list for next posting block */
6942 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6943 			/* enough sgls for non-embed sgl mbox command */
6944 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6945 				list_splice_init(&prep_sgl_list,
6946 						 &blck_sgl_list);
6947 				post_cnt = block_cnt;
6948 				block_cnt = 0;
6949 			}
6950 		}
6951 		num_posted++;
6952 
6953 		/* keep track of last sgl's xritag */
6954 		last_xritag = sglq_entry->sli4_xritag;
6955 
6956 		/* end of repost sgl list condition for buffers */
6957 		if (num_posted == total_cnt) {
6958 			if (post_cnt == 0) {
6959 				list_splice_init(&prep_sgl_list,
6960 						 &blck_sgl_list);
6961 				post_cnt = block_cnt;
6962 			} else if (block_cnt == 1) {
6963 				status = lpfc_sli4_post_sgl(phba,
6964 						sglq_entry->phys, 0,
6965 						sglq_entry->sli4_xritag);
6966 				if (!status) {
6967 					/* successful, put sgl to posted list */
6968 					list_add_tail(&sglq_entry->list,
6969 						      &post_sgl_list);
6970 				} else {
6971 					/* Failure, put sgl to free list */
6972 					lpfc_printf_log(phba, KERN_WARNING,
6973 						LOG_SLI,
6974 						"3159 Failed to post "
6975 						"sgl, xritag:x%x\n",
6976 						sglq_entry->sli4_xritag);
6977 					list_add_tail(&sglq_entry->list,
6978 						      &free_sgl_list);
6979 					total_cnt--;
6980 				}
6981 			}
6982 		}
6983 
6984 		/* continue until a nembed page worth of sgls */
6985 		if (post_cnt == 0)
6986 			continue;
6987 
6988 		/* post the buffer list sgls as a block */
6989 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6990 						 post_cnt);
6991 
6992 		if (!status) {
6993 			/* success, put sgl list to posted sgl list */
6994 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6995 		} else {
6996 			/* Failure, put sgl list to free sgl list */
6997 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6998 							    struct lpfc_sglq,
6999 							    list);
7000 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7001 					"3160 Failed to post sgl-list, "
7002 					"xritag:x%x-x%x\n",
7003 					sglq_entry_first->sli4_xritag,
7004 					(sglq_entry_first->sli4_xritag +
7005 					 post_cnt - 1));
7006 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7007 			total_cnt -= post_cnt;
7008 		}
7009 
7010 		/* don't reset xirtag due to hole in xri block */
7011 		if (block_cnt == 0)
7012 			last_xritag = NO_XRI;
7013 
7014 		/* reset sgl post count for next round of posting */
7015 		post_cnt = 0;
7016 	}
7017 
7018 	/* free the sgls failed to post */
7019 	lpfc_free_sgl_list(phba, &free_sgl_list);
7020 
7021 	/* push sgls posted to the available list */
7022 	if (!list_empty(&post_sgl_list)) {
7023 		spin_lock_irq(&phba->hbalock);
7024 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7025 		list_splice_init(&post_sgl_list, sgl_list);
7026 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7027 		spin_unlock_irq(&phba->hbalock);
7028 	} else {
7029 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7030 				"3161 Failure to post sgl to port.\n");
7031 		return -EIO;
7032 	}
7033 
7034 	/* return the number of XRIs actually posted */
7035 	return total_cnt;
7036 }
7037 
7038 /**
7039  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7040  * @phba: pointer to lpfc hba data structure.
7041  *
7042  * This routine walks the list of nvme buffers that have been allocated and
7043  * repost them to the port by using SGL block post. This is needed after a
7044  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7045  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7046  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7047  *
7048  * Returns: 0 = success, non-zero failure.
7049  **/
7050 int
7051 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7052 {
7053 	LIST_HEAD(post_nblist);
7054 	int num_posted, rc = 0;
7055 
7056 	/* get all NVME buffers need to repost to a local list */
7057 	lpfc_io_buf_flush(phba, &post_nblist);
7058 
7059 	/* post the list of nvme buffer sgls to port if available */
7060 	if (!list_empty(&post_nblist)) {
7061 		num_posted = lpfc_sli4_post_io_sgl_list(
7062 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7063 		/* failed to post any nvme buffer, return error */
7064 		if (num_posted == 0)
7065 			rc = -EIO;
7066 	}
7067 	return rc;
7068 }
7069 
7070 void
7071 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7072 {
7073 	uint32_t len;
7074 
7075 	len = sizeof(struct lpfc_mbx_set_host_data) -
7076 		sizeof(struct lpfc_sli4_cfg_mhdr);
7077 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7078 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7079 			 LPFC_SLI4_MBX_EMBED);
7080 
7081 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7082 	mbox->u.mqe.un.set_host_data.param_len =
7083 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7084 	snprintf(mbox->u.mqe.un.set_host_data.data,
7085 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7086 		 "Linux %s v"LPFC_DRIVER_VERSION,
7087 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7088 }
7089 
7090 int
7091 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7092 		    struct lpfc_queue *drq, int count, int idx)
7093 {
7094 	int rc, i;
7095 	struct lpfc_rqe hrqe;
7096 	struct lpfc_rqe drqe;
7097 	struct lpfc_rqb *rqbp;
7098 	unsigned long flags;
7099 	struct rqb_dmabuf *rqb_buffer;
7100 	LIST_HEAD(rqb_buf_list);
7101 
7102 	spin_lock_irqsave(&phba->hbalock, flags);
7103 	rqbp = hrq->rqbp;
7104 	for (i = 0; i < count; i++) {
7105 		/* IF RQ is already full, don't bother */
7106 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7107 			break;
7108 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7109 		if (!rqb_buffer)
7110 			break;
7111 		rqb_buffer->hrq = hrq;
7112 		rqb_buffer->drq = drq;
7113 		rqb_buffer->idx = idx;
7114 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7115 	}
7116 	while (!list_empty(&rqb_buf_list)) {
7117 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7118 				 hbuf.list);
7119 
7120 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7121 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7122 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7123 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7124 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7125 		if (rc < 0) {
7126 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7127 					"6421 Cannot post to HRQ %d: %x %x %x "
7128 					"DRQ %x %x\n",
7129 					hrq->queue_id,
7130 					hrq->host_index,
7131 					hrq->hba_index,
7132 					hrq->entry_count,
7133 					drq->host_index,
7134 					drq->hba_index);
7135 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7136 		} else {
7137 			list_add_tail(&rqb_buffer->hbuf.list,
7138 				      &rqbp->rqb_buffer_list);
7139 			rqbp->buffer_count++;
7140 		}
7141 	}
7142 	spin_unlock_irqrestore(&phba->hbalock, flags);
7143 	return 1;
7144 }
7145 
7146 /**
7147  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7148  * @phba: Pointer to HBA context object.
7149  *
7150  * This function is the main SLI4 device initialization PCI function. This
7151  * function is called by the HBA initialization code, HBA reset code and
7152  * HBA error attention handler code. Caller is not required to hold any
7153  * locks.
7154  **/
7155 int
7156 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7157 {
7158 	int rc, i, cnt, len;
7159 	LPFC_MBOXQ_t *mboxq;
7160 	struct lpfc_mqe *mqe;
7161 	uint8_t *vpd;
7162 	uint32_t vpd_size;
7163 	uint32_t ftr_rsp = 0;
7164 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7165 	struct lpfc_vport *vport = phba->pport;
7166 	struct lpfc_dmabuf *mp;
7167 	struct lpfc_rqb *rqbp;
7168 
7169 	/* Perform a PCI function reset to start from clean */
7170 	rc = lpfc_pci_function_reset(phba);
7171 	if (unlikely(rc))
7172 		return -ENODEV;
7173 
7174 	/* Check the HBA Host Status Register for readyness */
7175 	rc = lpfc_sli4_post_status_check(phba);
7176 	if (unlikely(rc))
7177 		return -ENODEV;
7178 	else {
7179 		spin_lock_irq(&phba->hbalock);
7180 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7181 		spin_unlock_irq(&phba->hbalock);
7182 	}
7183 
7184 	/*
7185 	 * Allocate a single mailbox container for initializing the
7186 	 * port.
7187 	 */
7188 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7189 	if (!mboxq)
7190 		return -ENOMEM;
7191 
7192 	/* Issue READ_REV to collect vpd and FW information. */
7193 	vpd_size = SLI4_PAGE_SIZE;
7194 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7195 	if (!vpd) {
7196 		rc = -ENOMEM;
7197 		goto out_free_mbox;
7198 	}
7199 
7200 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7201 	if (unlikely(rc)) {
7202 		kfree(vpd);
7203 		goto out_free_mbox;
7204 	}
7205 
7206 	mqe = &mboxq->u.mqe;
7207 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7208 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7209 		phba->hba_flag |= HBA_FCOE_MODE;
7210 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7211 	} else {
7212 		phba->hba_flag &= ~HBA_FCOE_MODE;
7213 	}
7214 
7215 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7216 		LPFC_DCBX_CEE_MODE)
7217 		phba->hba_flag |= HBA_FIP_SUPPORT;
7218 	else
7219 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7220 
7221 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7222 
7223 	if (phba->sli_rev != LPFC_SLI_REV4) {
7224 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7225 			"0376 READ_REV Error. SLI Level %d "
7226 			"FCoE enabled %d\n",
7227 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7228 		rc = -EIO;
7229 		kfree(vpd);
7230 		goto out_free_mbox;
7231 	}
7232 
7233 	/*
7234 	 * Continue initialization with default values even if driver failed
7235 	 * to read FCoE param config regions, only read parameters if the
7236 	 * board is FCoE
7237 	 */
7238 	if (phba->hba_flag & HBA_FCOE_MODE &&
7239 	    lpfc_sli4_read_fcoe_params(phba))
7240 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7241 			"2570 Failed to read FCoE parameters\n");
7242 
7243 	/*
7244 	 * Retrieve sli4 device physical port name, failure of doing it
7245 	 * is considered as non-fatal.
7246 	 */
7247 	rc = lpfc_sli4_retrieve_pport_name(phba);
7248 	if (!rc)
7249 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7250 				"3080 Successful retrieving SLI4 device "
7251 				"physical port name: %s.\n", phba->Port);
7252 
7253 	/*
7254 	 * Evaluate the read rev and vpd data. Populate the driver
7255 	 * state with the results. If this routine fails, the failure
7256 	 * is not fatal as the driver will use generic values.
7257 	 */
7258 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7259 	if (unlikely(!rc)) {
7260 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7261 				"0377 Error %d parsing vpd. "
7262 				"Using defaults.\n", rc);
7263 		rc = 0;
7264 	}
7265 	kfree(vpd);
7266 
7267 	/* Save information as VPD data */
7268 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7269 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7270 
7271 	/*
7272 	 * This is because first G7 ASIC doesn't support the standard
7273 	 * 0x5a NVME cmd descriptor type/subtype
7274 	 */
7275 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7276 			LPFC_SLI_INTF_IF_TYPE_6) &&
7277 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7278 	    (phba->vpd.rev.smRev == 0) &&
7279 	    (phba->cfg_nvme_embed_cmd == 1))
7280 		phba->cfg_nvme_embed_cmd = 0;
7281 
7282 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7283 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7284 					 &mqe->un.read_rev);
7285 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7286 				       &mqe->un.read_rev);
7287 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7288 					    &mqe->un.read_rev);
7289 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7290 					   &mqe->un.read_rev);
7291 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7292 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7293 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7294 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7295 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7296 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7297 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7298 			"(%d):0380 READ_REV Status x%x "
7299 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7300 			mboxq->vport ? mboxq->vport->vpi : 0,
7301 			bf_get(lpfc_mqe_status, mqe),
7302 			phba->vpd.rev.opFwName,
7303 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7304 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7305 
7306 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7307 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7308 	if (phba->pport->cfg_lun_queue_depth > rc) {
7309 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7310 				"3362 LUN queue depth changed from %d to %d\n",
7311 				phba->pport->cfg_lun_queue_depth, rc);
7312 		phba->pport->cfg_lun_queue_depth = rc;
7313 	}
7314 
7315 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7316 	    LPFC_SLI_INTF_IF_TYPE_0) {
7317 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7318 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7319 		if (rc == MBX_SUCCESS) {
7320 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7321 			/* Set 1Sec interval to detect UE */
7322 			phba->eratt_poll_interval = 1;
7323 			phba->sli4_hba.ue_to_sr = bf_get(
7324 					lpfc_mbx_set_feature_UESR,
7325 					&mboxq->u.mqe.un.set_feature);
7326 			phba->sli4_hba.ue_to_rp = bf_get(
7327 					lpfc_mbx_set_feature_UERP,
7328 					&mboxq->u.mqe.un.set_feature);
7329 		}
7330 	}
7331 
7332 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7333 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7334 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7335 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7336 		if (rc != MBX_SUCCESS)
7337 			phba->mds_diags_support = 0;
7338 	}
7339 
7340 	/*
7341 	 * Discover the port's supported feature set and match it against the
7342 	 * hosts requests.
7343 	 */
7344 	lpfc_request_features(phba, mboxq);
7345 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7346 	if (unlikely(rc)) {
7347 		rc = -EIO;
7348 		goto out_free_mbox;
7349 	}
7350 
7351 	/*
7352 	 * The port must support FCP initiator mode as this is the
7353 	 * only mode running in the host.
7354 	 */
7355 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7356 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7357 				"0378 No support for fcpi mode.\n");
7358 		ftr_rsp++;
7359 	}
7360 
7361 	/* Performance Hints are ONLY for FCoE */
7362 	if (phba->hba_flag & HBA_FCOE_MODE) {
7363 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7364 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7365 		else
7366 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7367 	}
7368 
7369 	/*
7370 	 * If the port cannot support the host's requested features
7371 	 * then turn off the global config parameters to disable the
7372 	 * feature in the driver.  This is not a fatal error.
7373 	 */
7374 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7375 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7376 			phba->cfg_enable_bg = 0;
7377 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7378 			ftr_rsp++;
7379 		}
7380 	}
7381 
7382 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7383 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7384 		ftr_rsp++;
7385 
7386 	if (ftr_rsp) {
7387 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7388 				"0379 Feature Mismatch Data: x%08x %08x "
7389 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7390 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7391 				phba->cfg_enable_npiv, phba->max_vpi);
7392 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7393 			phba->cfg_enable_bg = 0;
7394 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7395 			phba->cfg_enable_npiv = 0;
7396 	}
7397 
7398 	/* These SLI3 features are assumed in SLI4 */
7399 	spin_lock_irq(&phba->hbalock);
7400 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7401 	spin_unlock_irq(&phba->hbalock);
7402 
7403 	/*
7404 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7405 	 * calls depends on these resources to complete port setup.
7406 	 */
7407 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7408 	if (rc) {
7409 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7410 				"2920 Failed to alloc Resource IDs "
7411 				"rc = x%x\n", rc);
7412 		goto out_free_mbox;
7413 	}
7414 
7415 	lpfc_set_host_data(phba, mboxq);
7416 
7417 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7418 	if (rc) {
7419 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7420 				"2134 Failed to set host os driver version %x",
7421 				rc);
7422 	}
7423 
7424 	/* Read the port's service parameters. */
7425 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7426 	if (rc) {
7427 		phba->link_state = LPFC_HBA_ERROR;
7428 		rc = -ENOMEM;
7429 		goto out_free_mbox;
7430 	}
7431 
7432 	mboxq->vport = vport;
7433 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7434 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7435 	if (rc == MBX_SUCCESS) {
7436 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7437 		rc = 0;
7438 	}
7439 
7440 	/*
7441 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7442 	 * it to the mbuf pool.
7443 	 */
7444 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7445 	kfree(mp);
7446 	mboxq->ctx_buf = NULL;
7447 	if (unlikely(rc)) {
7448 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7449 				"0382 READ_SPARAM command failed "
7450 				"status %d, mbxStatus x%x\n",
7451 				rc, bf_get(lpfc_mqe_status, mqe));
7452 		phba->link_state = LPFC_HBA_ERROR;
7453 		rc = -EIO;
7454 		goto out_free_mbox;
7455 	}
7456 
7457 	lpfc_update_vport_wwn(vport);
7458 
7459 	/* Update the fc_host data structures with new wwn. */
7460 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7461 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7462 
7463 	/* Create all the SLI4 queues */
7464 	rc = lpfc_sli4_queue_create(phba);
7465 	if (rc) {
7466 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7467 				"3089 Failed to allocate queues\n");
7468 		rc = -ENODEV;
7469 		goto out_free_mbox;
7470 	}
7471 	/* Set up all the queues to the device */
7472 	rc = lpfc_sli4_queue_setup(phba);
7473 	if (unlikely(rc)) {
7474 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7475 				"0381 Error %d during queue setup.\n ", rc);
7476 		goto out_stop_timers;
7477 	}
7478 	/* Initialize the driver internal SLI layer lists. */
7479 	lpfc_sli4_setup(phba);
7480 	lpfc_sli4_queue_init(phba);
7481 
7482 	/* update host els xri-sgl sizes and mappings */
7483 	rc = lpfc_sli4_els_sgl_update(phba);
7484 	if (unlikely(rc)) {
7485 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7486 				"1400 Failed to update xri-sgl size and "
7487 				"mapping: %d\n", rc);
7488 		goto out_destroy_queue;
7489 	}
7490 
7491 	/* register the els sgl pool to the port */
7492 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7493 				       phba->sli4_hba.els_xri_cnt);
7494 	if (unlikely(rc < 0)) {
7495 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7496 				"0582 Error %d during els sgl post "
7497 				"operation\n", rc);
7498 		rc = -ENODEV;
7499 		goto out_destroy_queue;
7500 	}
7501 	phba->sli4_hba.els_xri_cnt = rc;
7502 
7503 	if (phba->nvmet_support) {
7504 		/* update host nvmet xri-sgl sizes and mappings */
7505 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7506 		if (unlikely(rc)) {
7507 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7508 					"6308 Failed to update nvmet-sgl size "
7509 					"and mapping: %d\n", rc);
7510 			goto out_destroy_queue;
7511 		}
7512 
7513 		/* register the nvmet sgl pool to the port */
7514 		rc = lpfc_sli4_repost_sgl_list(
7515 			phba,
7516 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7517 			phba->sli4_hba.nvmet_xri_cnt);
7518 		if (unlikely(rc < 0)) {
7519 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7520 					"3117 Error %d during nvmet "
7521 					"sgl post\n", rc);
7522 			rc = -ENODEV;
7523 			goto out_destroy_queue;
7524 		}
7525 		phba->sli4_hba.nvmet_xri_cnt = rc;
7526 
7527 		cnt = phba->cfg_iocb_cnt * 1024;
7528 		/* We need 1 iocbq for every SGL, for IO processing */
7529 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7530 	} else {
7531 		/* update host common xri-sgl sizes and mappings */
7532 		rc = lpfc_sli4_io_sgl_update(phba);
7533 		if (unlikely(rc)) {
7534 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7535 					"6082 Failed to update nvme-sgl size "
7536 					"and mapping: %d\n", rc);
7537 			goto out_destroy_queue;
7538 		}
7539 
7540 		/* register the allocated common sgl pool to the port */
7541 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7542 		if (unlikely(rc)) {
7543 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7544 					"6116 Error %d during nvme sgl post "
7545 					"operation\n", rc);
7546 			/* Some NVME buffers were moved to abort nvme list */
7547 			/* A pci function reset will repost them */
7548 			rc = -ENODEV;
7549 			goto out_destroy_queue;
7550 		}
7551 		cnt = phba->cfg_iocb_cnt * 1024;
7552 	}
7553 
7554 	if (!phba->sli.iocbq_lookup) {
7555 		/* Initialize and populate the iocb list per host */
7556 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7557 				"2821 initialize iocb list %d total %d\n",
7558 				phba->cfg_iocb_cnt, cnt);
7559 		rc = lpfc_init_iocb_list(phba, cnt);
7560 		if (rc) {
7561 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7562 					"1413 Failed to init iocb list.\n");
7563 			goto out_destroy_queue;
7564 		}
7565 	}
7566 
7567 	if (phba->nvmet_support)
7568 		lpfc_nvmet_create_targetport(phba);
7569 
7570 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7571 		/* Post initial buffers to all RQs created */
7572 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7573 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7574 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7575 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7576 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7577 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7578 			rqbp->buffer_count = 0;
7579 
7580 			lpfc_post_rq_buffer(
7581 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7582 				phba->sli4_hba.nvmet_mrq_data[i],
7583 				phba->cfg_nvmet_mrq_post, i);
7584 		}
7585 	}
7586 
7587 	/* Post the rpi header region to the device. */
7588 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7589 	if (unlikely(rc)) {
7590 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7591 				"0393 Error %d during rpi post operation\n",
7592 				rc);
7593 		rc = -ENODEV;
7594 		goto out_destroy_queue;
7595 	}
7596 	lpfc_sli4_node_prep(phba);
7597 
7598 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7599 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7600 			/*
7601 			 * The FC Port needs to register FCFI (index 0)
7602 			 */
7603 			lpfc_reg_fcfi(phba, mboxq);
7604 			mboxq->vport = phba->pport;
7605 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7606 			if (rc != MBX_SUCCESS)
7607 				goto out_unset_queue;
7608 			rc = 0;
7609 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7610 						&mboxq->u.mqe.un.reg_fcfi);
7611 		} else {
7612 			/* We are a NVME Target mode with MRQ > 1 */
7613 
7614 			/* First register the FCFI */
7615 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7616 			mboxq->vport = phba->pport;
7617 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7618 			if (rc != MBX_SUCCESS)
7619 				goto out_unset_queue;
7620 			rc = 0;
7621 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7622 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7623 
7624 			/* Next register the MRQs */
7625 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7626 			mboxq->vport = phba->pport;
7627 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7628 			if (rc != MBX_SUCCESS)
7629 				goto out_unset_queue;
7630 			rc = 0;
7631 		}
7632 		/* Check if the port is configured to be disabled */
7633 		lpfc_sli_read_link_ste(phba);
7634 	}
7635 
7636 	/* Don't post more new bufs if repost already recovered
7637 	 * the nvme sgls.
7638 	 */
7639 	if (phba->nvmet_support == 0) {
7640 		if (phba->sli4_hba.io_xri_cnt == 0) {
7641 			len = lpfc_new_io_buf(
7642 					      phba, phba->sli4_hba.io_xri_max);
7643 			if (len == 0) {
7644 				rc = -ENOMEM;
7645 				goto out_unset_queue;
7646 			}
7647 
7648 			if (phba->cfg_xri_rebalancing)
7649 				lpfc_create_multixri_pools(phba);
7650 		}
7651 	} else {
7652 		phba->cfg_xri_rebalancing = 0;
7653 	}
7654 
7655 	/* Arm the CQs and then EQs on device */
7656 	lpfc_sli4_arm_cqeq_intr(phba);
7657 
7658 	/* Indicate device interrupt mode */
7659 	phba->sli4_hba.intr_enable = 1;
7660 
7661 	/* Allow asynchronous mailbox command to go through */
7662 	spin_lock_irq(&phba->hbalock);
7663 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7664 	spin_unlock_irq(&phba->hbalock);
7665 
7666 	/* Post receive buffers to the device */
7667 	lpfc_sli4_rb_setup(phba);
7668 
7669 	/* Reset HBA FCF states after HBA reset */
7670 	phba->fcf.fcf_flag = 0;
7671 	phba->fcf.current_rec.flag = 0;
7672 
7673 	/* Start the ELS watchdog timer */
7674 	mod_timer(&vport->els_tmofunc,
7675 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7676 
7677 	/* Start heart beat timer */
7678 	mod_timer(&phba->hb_tmofunc,
7679 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7680 	phba->hb_outstanding = 0;
7681 	phba->last_completion_time = jiffies;
7682 
7683 	/* start eq_delay heartbeat */
7684 	if (phba->cfg_auto_imax)
7685 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7686 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7687 
7688 	/* Start error attention (ERATT) polling timer */
7689 	mod_timer(&phba->eratt_poll,
7690 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7691 
7692 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7693 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7694 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7695 		if (!rc) {
7696 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7697 					"2829 This device supports "
7698 					"Advanced Error Reporting (AER)\n");
7699 			spin_lock_irq(&phba->hbalock);
7700 			phba->hba_flag |= HBA_AER_ENABLED;
7701 			spin_unlock_irq(&phba->hbalock);
7702 		} else {
7703 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7704 					"2830 This device does not support "
7705 					"Advanced Error Reporting (AER)\n");
7706 			phba->cfg_aer_support = 0;
7707 		}
7708 		rc = 0;
7709 	}
7710 
7711 	/*
7712 	 * The port is ready, set the host's link state to LINK_DOWN
7713 	 * in preparation for link interrupts.
7714 	 */
7715 	spin_lock_irq(&phba->hbalock);
7716 	phba->link_state = LPFC_LINK_DOWN;
7717 
7718 	/* Check if physical ports are trunked */
7719 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7720 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7721 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7722 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7723 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7724 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7725 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7726 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7727 	spin_unlock_irq(&phba->hbalock);
7728 
7729 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7730 	    (phba->hba_flag & LINK_DISABLED)) {
7731 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7732 				"3103 Adapter Link is disabled.\n");
7733 		lpfc_down_link(phba, mboxq);
7734 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7735 		if (rc != MBX_SUCCESS) {
7736 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7737 					"3104 Adapter failed to issue "
7738 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7739 			goto out_io_buff_free;
7740 		}
7741 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7742 		/* don't perform init_link on SLI4 FC port loopback test */
7743 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7744 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7745 			if (rc)
7746 				goto out_io_buff_free;
7747 		}
7748 	}
7749 	mempool_free(mboxq, phba->mbox_mem_pool);
7750 	return rc;
7751 out_io_buff_free:
7752 	/* Free allocated IO Buffers */
7753 	lpfc_io_free(phba);
7754 out_unset_queue:
7755 	/* Unset all the queues set up in this routine when error out */
7756 	lpfc_sli4_queue_unset(phba);
7757 out_destroy_queue:
7758 	lpfc_free_iocb_list(phba);
7759 	lpfc_sli4_queue_destroy(phba);
7760 out_stop_timers:
7761 	lpfc_stop_hba_timers(phba);
7762 out_free_mbox:
7763 	mempool_free(mboxq, phba->mbox_mem_pool);
7764 	return rc;
7765 }
7766 
7767 /**
7768  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7769  * @ptr: context object - pointer to hba structure.
7770  *
7771  * This is the callback function for mailbox timer. The mailbox
7772  * timer is armed when a new mailbox command is issued and the timer
7773  * is deleted when the mailbox complete. The function is called by
7774  * the kernel timer code when a mailbox does not complete within
7775  * expected time. This function wakes up the worker thread to
7776  * process the mailbox timeout and returns. All the processing is
7777  * done by the worker thread function lpfc_mbox_timeout_handler.
7778  **/
7779 void
7780 lpfc_mbox_timeout(struct timer_list *t)
7781 {
7782 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7783 	unsigned long iflag;
7784 	uint32_t tmo_posted;
7785 
7786 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7787 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7788 	if (!tmo_posted)
7789 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7790 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7791 
7792 	if (!tmo_posted)
7793 		lpfc_worker_wake_up(phba);
7794 	return;
7795 }
7796 
7797 /**
7798  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7799  *                                    are pending
7800  * @phba: Pointer to HBA context object.
7801  *
7802  * This function checks if any mailbox completions are present on the mailbox
7803  * completion queue.
7804  **/
7805 static bool
7806 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7807 {
7808 
7809 	uint32_t idx;
7810 	struct lpfc_queue *mcq;
7811 	struct lpfc_mcqe *mcqe;
7812 	bool pending_completions = false;
7813 	uint8_t	qe_valid;
7814 
7815 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7816 		return false;
7817 
7818 	/* Check for completions on mailbox completion queue */
7819 
7820 	mcq = phba->sli4_hba.mbx_cq;
7821 	idx = mcq->hba_index;
7822 	qe_valid = mcq->qe_valid;
7823 	while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) {
7824 		mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7825 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7826 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7827 			pending_completions = true;
7828 			break;
7829 		}
7830 		idx = (idx + 1) % mcq->entry_count;
7831 		if (mcq->hba_index == idx)
7832 			break;
7833 
7834 		/* if the index wrapped around, toggle the valid bit */
7835 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7836 			qe_valid = (qe_valid) ? 0 : 1;
7837 	}
7838 	return pending_completions;
7839 
7840 }
7841 
7842 /**
7843  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7844  *					      that were missed.
7845  * @phba: Pointer to HBA context object.
7846  *
7847  * For sli4, it is possible to miss an interrupt. As such mbox completions
7848  * maybe missed causing erroneous mailbox timeouts to occur. This function
7849  * checks to see if mbox completions are on the mailbox completion queue
7850  * and will process all the completions associated with the eq for the
7851  * mailbox completion queue.
7852  **/
7853 bool
7854 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7855 {
7856 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7857 	uint32_t eqidx;
7858 	struct lpfc_queue *fpeq = NULL;
7859 	bool mbox_pending;
7860 
7861 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7862 		return false;
7863 
7864 	/* Find the eq associated with the mcq */
7865 
7866 	if (sli4_hba->hdwq)
7867 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++)
7868 			if (sli4_hba->hdwq[eqidx].hba_eq->queue_id ==
7869 			    sli4_hba->mbx_cq->assoc_qid) {
7870 				fpeq = sli4_hba->hdwq[eqidx].hba_eq;
7871 				break;
7872 			}
7873 	if (!fpeq)
7874 		return false;
7875 
7876 	/* Turn off interrupts from this EQ */
7877 
7878 	sli4_hba->sli4_eq_clr_intr(fpeq);
7879 
7880 	/* Check to see if a mbox completion is pending */
7881 
7882 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7883 
7884 	/*
7885 	 * If a mbox completion is pending, process all the events on EQ
7886 	 * associated with the mbox completion queue (this could include
7887 	 * mailbox commands, async events, els commands, receive queue data
7888 	 * and fcp commands)
7889 	 */
7890 
7891 	if (mbox_pending)
7892 		/* process and rearm the EQ */
7893 		lpfc_sli4_process_eq(phba, fpeq);
7894 	else
7895 		/* Always clear and re-arm the EQ */
7896 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7897 
7898 	return mbox_pending;
7899 
7900 }
7901 
7902 /**
7903  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7904  * @phba: Pointer to HBA context object.
7905  *
7906  * This function is called from worker thread when a mailbox command times out.
7907  * The caller is not required to hold any locks. This function will reset the
7908  * HBA and recover all the pending commands.
7909  **/
7910 void
7911 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7912 {
7913 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7914 	MAILBOX_t *mb = NULL;
7915 
7916 	struct lpfc_sli *psli = &phba->sli;
7917 
7918 	/* If the mailbox completed, process the completion and return */
7919 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7920 		return;
7921 
7922 	if (pmbox != NULL)
7923 		mb = &pmbox->u.mb;
7924 	/* Check the pmbox pointer first.  There is a race condition
7925 	 * between the mbox timeout handler getting executed in the
7926 	 * worklist and the mailbox actually completing. When this
7927 	 * race condition occurs, the mbox_active will be NULL.
7928 	 */
7929 	spin_lock_irq(&phba->hbalock);
7930 	if (pmbox == NULL) {
7931 		lpfc_printf_log(phba, KERN_WARNING,
7932 				LOG_MBOX | LOG_SLI,
7933 				"0353 Active Mailbox cleared - mailbox timeout "
7934 				"exiting\n");
7935 		spin_unlock_irq(&phba->hbalock);
7936 		return;
7937 	}
7938 
7939 	/* Mbox cmd <mbxCommand> timeout */
7940 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7941 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7942 			mb->mbxCommand,
7943 			phba->pport->port_state,
7944 			phba->sli.sli_flag,
7945 			phba->sli.mbox_active);
7946 	spin_unlock_irq(&phba->hbalock);
7947 
7948 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7949 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7950 	 * it to fail all outstanding SCSI IO.
7951 	 */
7952 	spin_lock_irq(&phba->pport->work_port_lock);
7953 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7954 	spin_unlock_irq(&phba->pport->work_port_lock);
7955 	spin_lock_irq(&phba->hbalock);
7956 	phba->link_state = LPFC_LINK_UNKNOWN;
7957 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7958 	spin_unlock_irq(&phba->hbalock);
7959 
7960 	lpfc_sli_abort_fcp_rings(phba);
7961 
7962 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7963 			"0345 Resetting board due to mailbox timeout\n");
7964 
7965 	/* Reset the HBA device */
7966 	lpfc_reset_hba(phba);
7967 }
7968 
7969 /**
7970  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7971  * @phba: Pointer to HBA context object.
7972  * @pmbox: Pointer to mailbox object.
7973  * @flag: Flag indicating how the mailbox need to be processed.
7974  *
7975  * This function is called by discovery code and HBA management code
7976  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7977  * function gets the hbalock to protect the data structures.
7978  * The mailbox command can be submitted in polling mode, in which case
7979  * this function will wait in a polling loop for the completion of the
7980  * mailbox.
7981  * If the mailbox is submitted in no_wait mode (not polling) the
7982  * function will submit the command and returns immediately without waiting
7983  * for the mailbox completion. The no_wait is supported only when HBA
7984  * is in SLI2/SLI3 mode - interrupts are enabled.
7985  * The SLI interface allows only one mailbox pending at a time. If the
7986  * mailbox is issued in polling mode and there is already a mailbox
7987  * pending, then the function will return an error. If the mailbox is issued
7988  * in NO_WAIT mode and there is a mailbox pending already, the function
7989  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7990  * The sli layer owns the mailbox object until the completion of mailbox
7991  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7992  * return codes the caller owns the mailbox command after the return of
7993  * the function.
7994  **/
7995 static int
7996 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7997 		       uint32_t flag)
7998 {
7999 	MAILBOX_t *mbx;
8000 	struct lpfc_sli *psli = &phba->sli;
8001 	uint32_t status, evtctr;
8002 	uint32_t ha_copy, hc_copy;
8003 	int i;
8004 	unsigned long timeout;
8005 	unsigned long drvr_flag = 0;
8006 	uint32_t word0, ldata;
8007 	void __iomem *to_slim;
8008 	int processing_queue = 0;
8009 
8010 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8011 	if (!pmbox) {
8012 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8013 		/* processing mbox queue from intr_handler */
8014 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8015 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8016 			return MBX_SUCCESS;
8017 		}
8018 		processing_queue = 1;
8019 		pmbox = lpfc_mbox_get(phba);
8020 		if (!pmbox) {
8021 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8022 			return MBX_SUCCESS;
8023 		}
8024 	}
8025 
8026 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8027 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8028 		if(!pmbox->vport) {
8029 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8030 			lpfc_printf_log(phba, KERN_ERR,
8031 					LOG_MBOX | LOG_VPORT,
8032 					"1806 Mbox x%x failed. No vport\n",
8033 					pmbox->u.mb.mbxCommand);
8034 			dump_stack();
8035 			goto out_not_finished;
8036 		}
8037 	}
8038 
8039 	/* If the PCI channel is in offline state, do not post mbox. */
8040 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8041 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8042 		goto out_not_finished;
8043 	}
8044 
8045 	/* If HBA has a deferred error attention, fail the iocb. */
8046 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8047 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8048 		goto out_not_finished;
8049 	}
8050 
8051 	psli = &phba->sli;
8052 
8053 	mbx = &pmbox->u.mb;
8054 	status = MBX_SUCCESS;
8055 
8056 	if (phba->link_state == LPFC_HBA_ERROR) {
8057 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8058 
8059 		/* Mbox command <mbxCommand> cannot issue */
8060 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8061 				"(%d):0311 Mailbox command x%x cannot "
8062 				"issue Data: x%x x%x\n",
8063 				pmbox->vport ? pmbox->vport->vpi : 0,
8064 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8065 		goto out_not_finished;
8066 	}
8067 
8068 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8069 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8070 			!(hc_copy & HC_MBINT_ENA)) {
8071 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8072 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8073 				"(%d):2528 Mailbox command x%x cannot "
8074 				"issue Data: x%x x%x\n",
8075 				pmbox->vport ? pmbox->vport->vpi : 0,
8076 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8077 			goto out_not_finished;
8078 		}
8079 	}
8080 
8081 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8082 		/* Polling for a mbox command when another one is already active
8083 		 * is not allowed in SLI. Also, the driver must have established
8084 		 * SLI2 mode to queue and process multiple mbox commands.
8085 		 */
8086 
8087 		if (flag & MBX_POLL) {
8088 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8089 
8090 			/* Mbox command <mbxCommand> cannot issue */
8091 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8092 					"(%d):2529 Mailbox command x%x "
8093 					"cannot issue Data: x%x x%x\n",
8094 					pmbox->vport ? pmbox->vport->vpi : 0,
8095 					pmbox->u.mb.mbxCommand,
8096 					psli->sli_flag, flag);
8097 			goto out_not_finished;
8098 		}
8099 
8100 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8101 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8102 			/* Mbox command <mbxCommand> cannot issue */
8103 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8104 					"(%d):2530 Mailbox command x%x "
8105 					"cannot issue Data: x%x x%x\n",
8106 					pmbox->vport ? pmbox->vport->vpi : 0,
8107 					pmbox->u.mb.mbxCommand,
8108 					psli->sli_flag, flag);
8109 			goto out_not_finished;
8110 		}
8111 
8112 		/* Another mailbox command is still being processed, queue this
8113 		 * command to be processed later.
8114 		 */
8115 		lpfc_mbox_put(phba, pmbox);
8116 
8117 		/* Mbox cmd issue - BUSY */
8118 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8119 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8120 				"x%x x%x x%x x%x\n",
8121 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8122 				mbx->mbxCommand,
8123 				phba->pport ? phba->pport->port_state : 0xff,
8124 				psli->sli_flag, flag);
8125 
8126 		psli->slistat.mbox_busy++;
8127 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8128 
8129 		if (pmbox->vport) {
8130 			lpfc_debugfs_disc_trc(pmbox->vport,
8131 				LPFC_DISC_TRC_MBOX_VPORT,
8132 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8133 				(uint32_t)mbx->mbxCommand,
8134 				mbx->un.varWords[0], mbx->un.varWords[1]);
8135 		}
8136 		else {
8137 			lpfc_debugfs_disc_trc(phba->pport,
8138 				LPFC_DISC_TRC_MBOX,
8139 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8140 				(uint32_t)mbx->mbxCommand,
8141 				mbx->un.varWords[0], mbx->un.varWords[1]);
8142 		}
8143 
8144 		return MBX_BUSY;
8145 	}
8146 
8147 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8148 
8149 	/* If we are not polling, we MUST be in SLI2 mode */
8150 	if (flag != MBX_POLL) {
8151 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8152 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8153 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8154 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8155 			/* Mbox command <mbxCommand> cannot issue */
8156 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8157 					"(%d):2531 Mailbox command x%x "
8158 					"cannot issue Data: x%x x%x\n",
8159 					pmbox->vport ? pmbox->vport->vpi : 0,
8160 					pmbox->u.mb.mbxCommand,
8161 					psli->sli_flag, flag);
8162 			goto out_not_finished;
8163 		}
8164 		/* timeout active mbox command */
8165 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8166 					   1000);
8167 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8168 	}
8169 
8170 	/* Mailbox cmd <cmd> issue */
8171 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8172 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8173 			"x%x\n",
8174 			pmbox->vport ? pmbox->vport->vpi : 0,
8175 			mbx->mbxCommand,
8176 			phba->pport ? phba->pport->port_state : 0xff,
8177 			psli->sli_flag, flag);
8178 
8179 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8180 		if (pmbox->vport) {
8181 			lpfc_debugfs_disc_trc(pmbox->vport,
8182 				LPFC_DISC_TRC_MBOX_VPORT,
8183 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8184 				(uint32_t)mbx->mbxCommand,
8185 				mbx->un.varWords[0], mbx->un.varWords[1]);
8186 		}
8187 		else {
8188 			lpfc_debugfs_disc_trc(phba->pport,
8189 				LPFC_DISC_TRC_MBOX,
8190 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8191 				(uint32_t)mbx->mbxCommand,
8192 				mbx->un.varWords[0], mbx->un.varWords[1]);
8193 		}
8194 	}
8195 
8196 	psli->slistat.mbox_cmd++;
8197 	evtctr = psli->slistat.mbox_event;
8198 
8199 	/* next set own bit for the adapter and copy over command word */
8200 	mbx->mbxOwner = OWN_CHIP;
8201 
8202 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8203 		/* Populate mbox extension offset word. */
8204 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8205 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8206 				= (uint8_t *)phba->mbox_ext
8207 				  - (uint8_t *)phba->mbox;
8208 		}
8209 
8210 		/* Copy the mailbox extension data */
8211 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8212 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8213 					      (uint8_t *)phba->mbox_ext,
8214 					      pmbox->in_ext_byte_len);
8215 		}
8216 		/* Copy command data to host SLIM area */
8217 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8218 	} else {
8219 		/* Populate mbox extension offset word. */
8220 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8221 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8222 				= MAILBOX_HBA_EXT_OFFSET;
8223 
8224 		/* Copy the mailbox extension data */
8225 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8226 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8227 				MAILBOX_HBA_EXT_OFFSET,
8228 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8229 
8230 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8231 			/* copy command data into host mbox for cmpl */
8232 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8233 					      MAILBOX_CMD_SIZE);
8234 
8235 		/* First copy mbox command data to HBA SLIM, skip past first
8236 		   word */
8237 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8238 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8239 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8240 
8241 		/* Next copy over first word, with mbxOwner set */
8242 		ldata = *((uint32_t *)mbx);
8243 		to_slim = phba->MBslimaddr;
8244 		writel(ldata, to_slim);
8245 		readl(to_slim); /* flush */
8246 
8247 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8248 			/* switch over to host mailbox */
8249 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8250 	}
8251 
8252 	wmb();
8253 
8254 	switch (flag) {
8255 	case MBX_NOWAIT:
8256 		/* Set up reference to mailbox command */
8257 		psli->mbox_active = pmbox;
8258 		/* Interrupt board to do it */
8259 		writel(CA_MBATT, phba->CAregaddr);
8260 		readl(phba->CAregaddr); /* flush */
8261 		/* Don't wait for it to finish, just return */
8262 		break;
8263 
8264 	case MBX_POLL:
8265 		/* Set up null reference to mailbox command */
8266 		psli->mbox_active = NULL;
8267 		/* Interrupt board to do it */
8268 		writel(CA_MBATT, phba->CAregaddr);
8269 		readl(phba->CAregaddr); /* flush */
8270 
8271 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8272 			/* First read mbox status word */
8273 			word0 = *((uint32_t *)phba->mbox);
8274 			word0 = le32_to_cpu(word0);
8275 		} else {
8276 			/* First read mbox status word */
8277 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8278 				spin_unlock_irqrestore(&phba->hbalock,
8279 						       drvr_flag);
8280 				goto out_not_finished;
8281 			}
8282 		}
8283 
8284 		/* Read the HBA Host Attention Register */
8285 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8286 			spin_unlock_irqrestore(&phba->hbalock,
8287 						       drvr_flag);
8288 			goto out_not_finished;
8289 		}
8290 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8291 							1000) + jiffies;
8292 		i = 0;
8293 		/* Wait for command to complete */
8294 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8295 		       (!(ha_copy & HA_MBATT) &&
8296 			(phba->link_state > LPFC_WARM_START))) {
8297 			if (time_after(jiffies, timeout)) {
8298 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8299 				spin_unlock_irqrestore(&phba->hbalock,
8300 						       drvr_flag);
8301 				goto out_not_finished;
8302 			}
8303 
8304 			/* Check if we took a mbox interrupt while we were
8305 			   polling */
8306 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8307 			    && (evtctr != psli->slistat.mbox_event))
8308 				break;
8309 
8310 			if (i++ > 10) {
8311 				spin_unlock_irqrestore(&phba->hbalock,
8312 						       drvr_flag);
8313 				msleep(1);
8314 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8315 			}
8316 
8317 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8318 				/* First copy command data */
8319 				word0 = *((uint32_t *)phba->mbox);
8320 				word0 = le32_to_cpu(word0);
8321 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8322 					MAILBOX_t *slimmb;
8323 					uint32_t slimword0;
8324 					/* Check real SLIM for any errors */
8325 					slimword0 = readl(phba->MBslimaddr);
8326 					slimmb = (MAILBOX_t *) & slimword0;
8327 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8328 					    && slimmb->mbxStatus) {
8329 						psli->sli_flag &=
8330 						    ~LPFC_SLI_ACTIVE;
8331 						word0 = slimword0;
8332 					}
8333 				}
8334 			} else {
8335 				/* First copy command data */
8336 				word0 = readl(phba->MBslimaddr);
8337 			}
8338 			/* Read the HBA Host Attention Register */
8339 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8340 				spin_unlock_irqrestore(&phba->hbalock,
8341 						       drvr_flag);
8342 				goto out_not_finished;
8343 			}
8344 		}
8345 
8346 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8347 			/* copy results back to user */
8348 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8349 						MAILBOX_CMD_SIZE);
8350 			/* Copy the mailbox extension data */
8351 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8352 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8353 						      pmbox->ctx_buf,
8354 						      pmbox->out_ext_byte_len);
8355 			}
8356 		} else {
8357 			/* First copy command data */
8358 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8359 						MAILBOX_CMD_SIZE);
8360 			/* Copy the mailbox extension data */
8361 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8362 				lpfc_memcpy_from_slim(
8363 					pmbox->ctx_buf,
8364 					phba->MBslimaddr +
8365 					MAILBOX_HBA_EXT_OFFSET,
8366 					pmbox->out_ext_byte_len);
8367 			}
8368 		}
8369 
8370 		writel(HA_MBATT, phba->HAregaddr);
8371 		readl(phba->HAregaddr); /* flush */
8372 
8373 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8374 		status = mbx->mbxStatus;
8375 	}
8376 
8377 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8378 	return status;
8379 
8380 out_not_finished:
8381 	if (processing_queue) {
8382 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8383 		lpfc_mbox_cmpl_put(phba, pmbox);
8384 	}
8385 	return MBX_NOT_FINISHED;
8386 }
8387 
8388 /**
8389  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8390  * @phba: Pointer to HBA context object.
8391  *
8392  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8393  * the driver internal pending mailbox queue. It will then try to wait out the
8394  * possible outstanding mailbox command before return.
8395  *
8396  * Returns:
8397  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8398  * 	the outstanding mailbox command timed out.
8399  **/
8400 static int
8401 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8402 {
8403 	struct lpfc_sli *psli = &phba->sli;
8404 	int rc = 0;
8405 	unsigned long timeout = 0;
8406 
8407 	/* Mark the asynchronous mailbox command posting as blocked */
8408 	spin_lock_irq(&phba->hbalock);
8409 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8410 	/* Determine how long we might wait for the active mailbox
8411 	 * command to be gracefully completed by firmware.
8412 	 */
8413 	if (phba->sli.mbox_active)
8414 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8415 						phba->sli.mbox_active) *
8416 						1000) + jiffies;
8417 	spin_unlock_irq(&phba->hbalock);
8418 
8419 	/* Make sure the mailbox is really active */
8420 	if (timeout)
8421 		lpfc_sli4_process_missed_mbox_completions(phba);
8422 
8423 	/* Wait for the outstnading mailbox command to complete */
8424 	while (phba->sli.mbox_active) {
8425 		/* Check active mailbox complete status every 2ms */
8426 		msleep(2);
8427 		if (time_after(jiffies, timeout)) {
8428 			/* Timeout, marked the outstanding cmd not complete */
8429 			rc = 1;
8430 			break;
8431 		}
8432 	}
8433 
8434 	/* Can not cleanly block async mailbox command, fails it */
8435 	if (rc) {
8436 		spin_lock_irq(&phba->hbalock);
8437 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8438 		spin_unlock_irq(&phba->hbalock);
8439 	}
8440 	return rc;
8441 }
8442 
8443 /**
8444  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8445  * @phba: Pointer to HBA context object.
8446  *
8447  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8448  * commands from the driver internal pending mailbox queue. It makes sure
8449  * that there is no outstanding mailbox command before resuming posting
8450  * asynchronous mailbox commands. If, for any reason, there is outstanding
8451  * mailbox command, it will try to wait it out before resuming asynchronous
8452  * mailbox command posting.
8453  **/
8454 static void
8455 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8456 {
8457 	struct lpfc_sli *psli = &phba->sli;
8458 
8459 	spin_lock_irq(&phba->hbalock);
8460 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8461 		/* Asynchronous mailbox posting is not blocked, do nothing */
8462 		spin_unlock_irq(&phba->hbalock);
8463 		return;
8464 	}
8465 
8466 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8467 	 * successful or timeout, after timing-out the outstanding mailbox
8468 	 * command shall always be removed, so just unblock posting async
8469 	 * mailbox command and resume
8470 	 */
8471 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8472 	spin_unlock_irq(&phba->hbalock);
8473 
8474 	/* wake up worker thread to post asynchronlous mailbox command */
8475 	lpfc_worker_wake_up(phba);
8476 }
8477 
8478 /**
8479  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8480  * @phba: Pointer to HBA context object.
8481  * @mboxq: Pointer to mailbox object.
8482  *
8483  * The function waits for the bootstrap mailbox register ready bit from
8484  * port for twice the regular mailbox command timeout value.
8485  *
8486  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8487  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8488  **/
8489 static int
8490 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8491 {
8492 	uint32_t db_ready;
8493 	unsigned long timeout;
8494 	struct lpfc_register bmbx_reg;
8495 
8496 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8497 				   * 1000) + jiffies;
8498 
8499 	do {
8500 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8501 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8502 		if (!db_ready)
8503 			msleep(2);
8504 
8505 		if (time_after(jiffies, timeout))
8506 			return MBXERR_ERROR;
8507 	} while (!db_ready);
8508 
8509 	return 0;
8510 }
8511 
8512 /**
8513  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8514  * @phba: Pointer to HBA context object.
8515  * @mboxq: Pointer to mailbox object.
8516  *
8517  * The function posts a mailbox to the port.  The mailbox is expected
8518  * to be comletely filled in and ready for the port to operate on it.
8519  * This routine executes a synchronous completion operation on the
8520  * mailbox by polling for its completion.
8521  *
8522  * The caller must not be holding any locks when calling this routine.
8523  *
8524  * Returns:
8525  *	MBX_SUCCESS - mailbox posted successfully
8526  *	Any of the MBX error values.
8527  **/
8528 static int
8529 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8530 {
8531 	int rc = MBX_SUCCESS;
8532 	unsigned long iflag;
8533 	uint32_t mcqe_status;
8534 	uint32_t mbx_cmnd;
8535 	struct lpfc_sli *psli = &phba->sli;
8536 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8537 	struct lpfc_bmbx_create *mbox_rgn;
8538 	struct dma_address *dma_address;
8539 
8540 	/*
8541 	 * Only one mailbox can be active to the bootstrap mailbox region
8542 	 * at a time and there is no queueing provided.
8543 	 */
8544 	spin_lock_irqsave(&phba->hbalock, iflag);
8545 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8546 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8547 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8548 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8549 				"cannot issue Data: x%x x%x\n",
8550 				mboxq->vport ? mboxq->vport->vpi : 0,
8551 				mboxq->u.mb.mbxCommand,
8552 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8553 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8554 				psli->sli_flag, MBX_POLL);
8555 		return MBXERR_ERROR;
8556 	}
8557 	/* The server grabs the token and owns it until release */
8558 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8559 	phba->sli.mbox_active = mboxq;
8560 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8561 
8562 	/* wait for bootstrap mbox register for readyness */
8563 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8564 	if (rc)
8565 		goto exit;
8566 	/*
8567 	 * Initialize the bootstrap memory region to avoid stale data areas
8568 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8569 	 * the bmbx mailbox region.
8570 	 */
8571 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8572 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8573 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8574 			       sizeof(struct lpfc_mqe));
8575 
8576 	/* Post the high mailbox dma address to the port and wait for ready. */
8577 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8578 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8579 
8580 	/* wait for bootstrap mbox register for hi-address write done */
8581 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8582 	if (rc)
8583 		goto exit;
8584 
8585 	/* Post the low mailbox dma address to the port. */
8586 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8587 
8588 	/* wait for bootstrap mbox register for low address write done */
8589 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8590 	if (rc)
8591 		goto exit;
8592 
8593 	/*
8594 	 * Read the CQ to ensure the mailbox has completed.
8595 	 * If so, update the mailbox status so that the upper layers
8596 	 * can complete the request normally.
8597 	 */
8598 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8599 			       sizeof(struct lpfc_mqe));
8600 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8601 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8602 			       sizeof(struct lpfc_mcqe));
8603 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8604 	/*
8605 	 * When the CQE status indicates a failure and the mailbox status
8606 	 * indicates success then copy the CQE status into the mailbox status
8607 	 * (and prefix it with x4000).
8608 	 */
8609 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8610 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8611 			bf_set(lpfc_mqe_status, mb,
8612 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8613 		rc = MBXERR_ERROR;
8614 	} else
8615 		lpfc_sli4_swap_str(phba, mboxq);
8616 
8617 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8618 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8619 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8620 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8621 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8622 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8623 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8624 			bf_get(lpfc_mqe_status, mb),
8625 			mb->un.mb_words[0], mb->un.mb_words[1],
8626 			mb->un.mb_words[2], mb->un.mb_words[3],
8627 			mb->un.mb_words[4], mb->un.mb_words[5],
8628 			mb->un.mb_words[6], mb->un.mb_words[7],
8629 			mb->un.mb_words[8], mb->un.mb_words[9],
8630 			mb->un.mb_words[10], mb->un.mb_words[11],
8631 			mb->un.mb_words[12], mboxq->mcqe.word0,
8632 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8633 			mboxq->mcqe.trailer);
8634 exit:
8635 	/* We are holding the token, no needed for lock when release */
8636 	spin_lock_irqsave(&phba->hbalock, iflag);
8637 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8638 	phba->sli.mbox_active = NULL;
8639 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8640 	return rc;
8641 }
8642 
8643 /**
8644  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8645  * @phba: Pointer to HBA context object.
8646  * @pmbox: Pointer to mailbox object.
8647  * @flag: Flag indicating how the mailbox need to be processed.
8648  *
8649  * This function is called by discovery code and HBA management code to submit
8650  * a mailbox command to firmware with SLI-4 interface spec.
8651  *
8652  * Return codes the caller owns the mailbox command after the return of the
8653  * function.
8654  **/
8655 static int
8656 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8657 		       uint32_t flag)
8658 {
8659 	struct lpfc_sli *psli = &phba->sli;
8660 	unsigned long iflags;
8661 	int rc;
8662 
8663 	/* dump from issue mailbox command if setup */
8664 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8665 
8666 	rc = lpfc_mbox_dev_check(phba);
8667 	if (unlikely(rc)) {
8668 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8669 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8670 				"cannot issue Data: x%x x%x\n",
8671 				mboxq->vport ? mboxq->vport->vpi : 0,
8672 				mboxq->u.mb.mbxCommand,
8673 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8674 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8675 				psli->sli_flag, flag);
8676 		goto out_not_finished;
8677 	}
8678 
8679 	/* Detect polling mode and jump to a handler */
8680 	if (!phba->sli4_hba.intr_enable) {
8681 		if (flag == MBX_POLL)
8682 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8683 		else
8684 			rc = -EIO;
8685 		if (rc != MBX_SUCCESS)
8686 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8687 					"(%d):2541 Mailbox command x%x "
8688 					"(x%x/x%x) failure: "
8689 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8690 					"Data: x%x x%x\n,",
8691 					mboxq->vport ? mboxq->vport->vpi : 0,
8692 					mboxq->u.mb.mbxCommand,
8693 					lpfc_sli_config_mbox_subsys_get(phba,
8694 									mboxq),
8695 					lpfc_sli_config_mbox_opcode_get(phba,
8696 									mboxq),
8697 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8698 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8699 					bf_get(lpfc_mcqe_ext_status,
8700 					       &mboxq->mcqe),
8701 					psli->sli_flag, flag);
8702 		return rc;
8703 	} else if (flag == MBX_POLL) {
8704 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8705 				"(%d):2542 Try to issue mailbox command "
8706 				"x%x (x%x/x%x) synchronously ahead of async "
8707 				"mailbox command queue: x%x x%x\n",
8708 				mboxq->vport ? mboxq->vport->vpi : 0,
8709 				mboxq->u.mb.mbxCommand,
8710 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8711 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8712 				psli->sli_flag, flag);
8713 		/* Try to block the asynchronous mailbox posting */
8714 		rc = lpfc_sli4_async_mbox_block(phba);
8715 		if (!rc) {
8716 			/* Successfully blocked, now issue sync mbox cmd */
8717 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8718 			if (rc != MBX_SUCCESS)
8719 				lpfc_printf_log(phba, KERN_WARNING,
8720 					LOG_MBOX | LOG_SLI,
8721 					"(%d):2597 Sync Mailbox command "
8722 					"x%x (x%x/x%x) failure: "
8723 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8724 					"Data: x%x x%x\n,",
8725 					mboxq->vport ? mboxq->vport->vpi : 0,
8726 					mboxq->u.mb.mbxCommand,
8727 					lpfc_sli_config_mbox_subsys_get(phba,
8728 									mboxq),
8729 					lpfc_sli_config_mbox_opcode_get(phba,
8730 									mboxq),
8731 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8732 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8733 					bf_get(lpfc_mcqe_ext_status,
8734 					       &mboxq->mcqe),
8735 					psli->sli_flag, flag);
8736 			/* Unblock the async mailbox posting afterward */
8737 			lpfc_sli4_async_mbox_unblock(phba);
8738 		}
8739 		return rc;
8740 	}
8741 
8742 	/* Now, interrupt mode asynchrous mailbox command */
8743 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8744 	if (rc) {
8745 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8746 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8747 				"cannot issue Data: x%x x%x\n",
8748 				mboxq->vport ? mboxq->vport->vpi : 0,
8749 				mboxq->u.mb.mbxCommand,
8750 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8751 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8752 				psli->sli_flag, flag);
8753 		goto out_not_finished;
8754 	}
8755 
8756 	/* Put the mailbox command to the driver internal FIFO */
8757 	psli->slistat.mbox_busy++;
8758 	spin_lock_irqsave(&phba->hbalock, iflags);
8759 	lpfc_mbox_put(phba, mboxq);
8760 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8761 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8762 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8763 			"x%x (x%x/x%x) x%x x%x x%x\n",
8764 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8765 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8766 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8767 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8768 			phba->pport->port_state,
8769 			psli->sli_flag, MBX_NOWAIT);
8770 	/* Wake up worker thread to transport mailbox command from head */
8771 	lpfc_worker_wake_up(phba);
8772 
8773 	return MBX_BUSY;
8774 
8775 out_not_finished:
8776 	return MBX_NOT_FINISHED;
8777 }
8778 
8779 /**
8780  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8781  * @phba: Pointer to HBA context object.
8782  *
8783  * This function is called by worker thread to send a mailbox command to
8784  * SLI4 HBA firmware.
8785  *
8786  **/
8787 int
8788 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8789 {
8790 	struct lpfc_sli *psli = &phba->sli;
8791 	LPFC_MBOXQ_t *mboxq;
8792 	int rc = MBX_SUCCESS;
8793 	unsigned long iflags;
8794 	struct lpfc_mqe *mqe;
8795 	uint32_t mbx_cmnd;
8796 
8797 	/* Check interrupt mode before post async mailbox command */
8798 	if (unlikely(!phba->sli4_hba.intr_enable))
8799 		return MBX_NOT_FINISHED;
8800 
8801 	/* Check for mailbox command service token */
8802 	spin_lock_irqsave(&phba->hbalock, iflags);
8803 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8804 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8805 		return MBX_NOT_FINISHED;
8806 	}
8807 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8808 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8809 		return MBX_NOT_FINISHED;
8810 	}
8811 	if (unlikely(phba->sli.mbox_active)) {
8812 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8813 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8814 				"0384 There is pending active mailbox cmd\n");
8815 		return MBX_NOT_FINISHED;
8816 	}
8817 	/* Take the mailbox command service token */
8818 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8819 
8820 	/* Get the next mailbox command from head of queue */
8821 	mboxq = lpfc_mbox_get(phba);
8822 
8823 	/* If no more mailbox command waiting for post, we're done */
8824 	if (!mboxq) {
8825 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8826 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8827 		return MBX_SUCCESS;
8828 	}
8829 	phba->sli.mbox_active = mboxq;
8830 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8831 
8832 	/* Check device readiness for posting mailbox command */
8833 	rc = lpfc_mbox_dev_check(phba);
8834 	if (unlikely(rc))
8835 		/* Driver clean routine will clean up pending mailbox */
8836 		goto out_not_finished;
8837 
8838 	/* Prepare the mbox command to be posted */
8839 	mqe = &mboxq->u.mqe;
8840 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8841 
8842 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8843 	mod_timer(&psli->mbox_tmo, (jiffies +
8844 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8845 
8846 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8847 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8848 			"x%x x%x\n",
8849 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8850 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8851 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8852 			phba->pport->port_state, psli->sli_flag);
8853 
8854 	if (mbx_cmnd != MBX_HEARTBEAT) {
8855 		if (mboxq->vport) {
8856 			lpfc_debugfs_disc_trc(mboxq->vport,
8857 				LPFC_DISC_TRC_MBOX_VPORT,
8858 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8859 				mbx_cmnd, mqe->un.mb_words[0],
8860 				mqe->un.mb_words[1]);
8861 		} else {
8862 			lpfc_debugfs_disc_trc(phba->pport,
8863 				LPFC_DISC_TRC_MBOX,
8864 				"MBOX Send: cmd:x%x mb:x%x x%x",
8865 				mbx_cmnd, mqe->un.mb_words[0],
8866 				mqe->un.mb_words[1]);
8867 		}
8868 	}
8869 	psli->slistat.mbox_cmd++;
8870 
8871 	/* Post the mailbox command to the port */
8872 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8873 	if (rc != MBX_SUCCESS) {
8874 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8875 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8876 				"cannot issue Data: x%x x%x\n",
8877 				mboxq->vport ? mboxq->vport->vpi : 0,
8878 				mboxq->u.mb.mbxCommand,
8879 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8880 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8881 				psli->sli_flag, MBX_NOWAIT);
8882 		goto out_not_finished;
8883 	}
8884 
8885 	return rc;
8886 
8887 out_not_finished:
8888 	spin_lock_irqsave(&phba->hbalock, iflags);
8889 	if (phba->sli.mbox_active) {
8890 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8891 		__lpfc_mbox_cmpl_put(phba, mboxq);
8892 		/* Release the token */
8893 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8894 		phba->sli.mbox_active = NULL;
8895 	}
8896 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8897 
8898 	return MBX_NOT_FINISHED;
8899 }
8900 
8901 /**
8902  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8903  * @phba: Pointer to HBA context object.
8904  * @pmbox: Pointer to mailbox object.
8905  * @flag: Flag indicating how the mailbox need to be processed.
8906  *
8907  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8908  * the API jump table function pointer from the lpfc_hba struct.
8909  *
8910  * Return codes the caller owns the mailbox command after the return of the
8911  * function.
8912  **/
8913 int
8914 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8915 {
8916 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8917 }
8918 
8919 /**
8920  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8921  * @phba: The hba struct for which this call is being executed.
8922  * @dev_grp: The HBA PCI-Device group number.
8923  *
8924  * This routine sets up the mbox interface API function jump table in @phba
8925  * struct.
8926  * Returns: 0 - success, -ENODEV - failure.
8927  **/
8928 int
8929 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8930 {
8931 
8932 	switch (dev_grp) {
8933 	case LPFC_PCI_DEV_LP:
8934 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8935 		phba->lpfc_sli_handle_slow_ring_event =
8936 				lpfc_sli_handle_slow_ring_event_s3;
8937 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8938 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8939 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8940 		break;
8941 	case LPFC_PCI_DEV_OC:
8942 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8943 		phba->lpfc_sli_handle_slow_ring_event =
8944 				lpfc_sli_handle_slow_ring_event_s4;
8945 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8946 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8947 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8948 		break;
8949 	default:
8950 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8951 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8952 				dev_grp);
8953 		return -ENODEV;
8954 		break;
8955 	}
8956 	return 0;
8957 }
8958 
8959 /**
8960  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8961  * @phba: Pointer to HBA context object.
8962  * @pring: Pointer to driver SLI ring object.
8963  * @piocb: Pointer to address of newly added command iocb.
8964  *
8965  * This function is called with hbalock held to add a command
8966  * iocb to the txq when SLI layer cannot submit the command iocb
8967  * to the ring.
8968  **/
8969 void
8970 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8971 		    struct lpfc_iocbq *piocb)
8972 {
8973 	lockdep_assert_held(&phba->hbalock);
8974 	/* Insert the caller's iocb in the txq tail for later processing. */
8975 	list_add_tail(&piocb->list, &pring->txq);
8976 }
8977 
8978 /**
8979  * lpfc_sli_next_iocb - Get the next iocb in the txq
8980  * @phba: Pointer to HBA context object.
8981  * @pring: Pointer to driver SLI ring object.
8982  * @piocb: Pointer to address of newly added command iocb.
8983  *
8984  * This function is called with hbalock held before a new
8985  * iocb is submitted to the firmware. This function checks
8986  * txq to flush the iocbs in txq to Firmware before
8987  * submitting new iocbs to the Firmware.
8988  * If there are iocbs in the txq which need to be submitted
8989  * to firmware, lpfc_sli_next_iocb returns the first element
8990  * of the txq after dequeuing it from txq.
8991  * If there is no iocb in the txq then the function will return
8992  * *piocb and *piocb is set to NULL. Caller needs to check
8993  * *piocb to find if there are more commands in the txq.
8994  **/
8995 static struct lpfc_iocbq *
8996 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8997 		   struct lpfc_iocbq **piocb)
8998 {
8999 	struct lpfc_iocbq * nextiocb;
9000 
9001 	lockdep_assert_held(&phba->hbalock);
9002 
9003 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9004 	if (!nextiocb) {
9005 		nextiocb = *piocb;
9006 		*piocb = NULL;
9007 	}
9008 
9009 	return nextiocb;
9010 }
9011 
9012 /**
9013  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9014  * @phba: Pointer to HBA context object.
9015  * @ring_number: SLI ring number to issue iocb on.
9016  * @piocb: Pointer to command iocb.
9017  * @flag: Flag indicating if this command can be put into txq.
9018  *
9019  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9020  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9021  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9022  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9023  * this function allows only iocbs for posting buffers. This function finds
9024  * next available slot in the command ring and posts the command to the
9025  * available slot and writes the port attention register to request HBA start
9026  * processing new iocb. If there is no slot available in the ring and
9027  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9028  * the function returns IOCB_BUSY.
9029  *
9030  * This function is called with hbalock held. The function will return success
9031  * after it successfully submit the iocb to firmware or after adding to the
9032  * txq.
9033  **/
9034 static int
9035 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9036 		    struct lpfc_iocbq *piocb, uint32_t flag)
9037 {
9038 	struct lpfc_iocbq *nextiocb;
9039 	IOCB_t *iocb;
9040 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9041 
9042 	lockdep_assert_held(&phba->hbalock);
9043 
9044 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9045 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9046 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9047 		lpfc_printf_log(phba, KERN_ERR,
9048 				LOG_SLI | LOG_VPORT,
9049 				"1807 IOCB x%x failed. No vport\n",
9050 				piocb->iocb.ulpCommand);
9051 		dump_stack();
9052 		return IOCB_ERROR;
9053 	}
9054 
9055 
9056 	/* If the PCI channel is in offline state, do not post iocbs. */
9057 	if (unlikely(pci_channel_offline(phba->pcidev)))
9058 		return IOCB_ERROR;
9059 
9060 	/* If HBA has a deferred error attention, fail the iocb. */
9061 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9062 		return IOCB_ERROR;
9063 
9064 	/*
9065 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9066 	 */
9067 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9068 		return IOCB_ERROR;
9069 
9070 	/*
9071 	 * Check to see if we are blocking IOCB processing because of a
9072 	 * outstanding event.
9073 	 */
9074 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9075 		goto iocb_busy;
9076 
9077 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9078 		/*
9079 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9080 		 * can be issued if the link is not up.
9081 		 */
9082 		switch (piocb->iocb.ulpCommand) {
9083 		case CMD_GEN_REQUEST64_CR:
9084 		case CMD_GEN_REQUEST64_CX:
9085 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9086 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9087 					FC_RCTL_DD_UNSOL_CMD) ||
9088 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9089 					MENLO_TRANSPORT_TYPE))
9090 
9091 				goto iocb_busy;
9092 			break;
9093 		case CMD_QUE_RING_BUF_CN:
9094 		case CMD_QUE_RING_BUF64_CN:
9095 			/*
9096 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9097 			 * completion, iocb_cmpl MUST be 0.
9098 			 */
9099 			if (piocb->iocb_cmpl)
9100 				piocb->iocb_cmpl = NULL;
9101 			/*FALLTHROUGH*/
9102 		case CMD_CREATE_XRI_CR:
9103 		case CMD_CLOSE_XRI_CN:
9104 		case CMD_CLOSE_XRI_CX:
9105 			break;
9106 		default:
9107 			goto iocb_busy;
9108 		}
9109 
9110 	/*
9111 	 * For FCP commands, we must be in a state where we can process link
9112 	 * attention events.
9113 	 */
9114 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9115 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9116 		goto iocb_busy;
9117 	}
9118 
9119 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9120 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9121 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9122 
9123 	if (iocb)
9124 		lpfc_sli_update_ring(phba, pring);
9125 	else
9126 		lpfc_sli_update_full_ring(phba, pring);
9127 
9128 	if (!piocb)
9129 		return IOCB_SUCCESS;
9130 
9131 	goto out_busy;
9132 
9133  iocb_busy:
9134 	pring->stats.iocb_cmd_delay++;
9135 
9136  out_busy:
9137 
9138 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9139 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9140 		return IOCB_SUCCESS;
9141 	}
9142 
9143 	return IOCB_BUSY;
9144 }
9145 
9146 /**
9147  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9148  * @phba: Pointer to HBA context object.
9149  * @piocb: Pointer to command iocb.
9150  * @sglq: Pointer to the scatter gather queue object.
9151  *
9152  * This routine converts the bpl or bde that is in the IOCB
9153  * to a sgl list for the sli4 hardware. The physical address
9154  * of the bpl/bde is converted back to a virtual address.
9155  * If the IOCB contains a BPL then the list of BDE's is
9156  * converted to sli4_sge's. If the IOCB contains a single
9157  * BDE then it is converted to a single sli_sge.
9158  * The IOCB is still in cpu endianess so the contents of
9159  * the bpl can be used without byte swapping.
9160  *
9161  * Returns valid XRI = Success, NO_XRI = Failure.
9162 **/
9163 static uint16_t
9164 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9165 		struct lpfc_sglq *sglq)
9166 {
9167 	uint16_t xritag = NO_XRI;
9168 	struct ulp_bde64 *bpl = NULL;
9169 	struct ulp_bde64 bde;
9170 	struct sli4_sge *sgl  = NULL;
9171 	struct lpfc_dmabuf *dmabuf;
9172 	IOCB_t *icmd;
9173 	int numBdes = 0;
9174 	int i = 0;
9175 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9176 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9177 
9178 	if (!piocbq || !sglq)
9179 		return xritag;
9180 
9181 	sgl  = (struct sli4_sge *)sglq->sgl;
9182 	icmd = &piocbq->iocb;
9183 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9184 		return sglq->sli4_xritag;
9185 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9186 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9187 				sizeof(struct ulp_bde64);
9188 		/* The addrHigh and addrLow fields within the IOCB
9189 		 * have not been byteswapped yet so there is no
9190 		 * need to swap them back.
9191 		 */
9192 		if (piocbq->context3)
9193 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9194 		else
9195 			return xritag;
9196 
9197 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9198 		if (!bpl)
9199 			return xritag;
9200 
9201 		for (i = 0; i < numBdes; i++) {
9202 			/* Should already be byte swapped. */
9203 			sgl->addr_hi = bpl->addrHigh;
9204 			sgl->addr_lo = bpl->addrLow;
9205 
9206 			sgl->word2 = le32_to_cpu(sgl->word2);
9207 			if ((i+1) == numBdes)
9208 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9209 			else
9210 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9211 			/* swap the size field back to the cpu so we
9212 			 * can assign it to the sgl.
9213 			 */
9214 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9215 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9216 			/* The offsets in the sgl need to be accumulated
9217 			 * separately for the request and reply lists.
9218 			 * The request is always first, the reply follows.
9219 			 */
9220 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9221 				/* add up the reply sg entries */
9222 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9223 					inbound++;
9224 				/* first inbound? reset the offset */
9225 				if (inbound == 1)
9226 					offset = 0;
9227 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9228 				bf_set(lpfc_sli4_sge_type, sgl,
9229 					LPFC_SGE_TYPE_DATA);
9230 				offset += bde.tus.f.bdeSize;
9231 			}
9232 			sgl->word2 = cpu_to_le32(sgl->word2);
9233 			bpl++;
9234 			sgl++;
9235 		}
9236 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9237 			/* The addrHigh and addrLow fields of the BDE have not
9238 			 * been byteswapped yet so they need to be swapped
9239 			 * before putting them in the sgl.
9240 			 */
9241 			sgl->addr_hi =
9242 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9243 			sgl->addr_lo =
9244 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9245 			sgl->word2 = le32_to_cpu(sgl->word2);
9246 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9247 			sgl->word2 = cpu_to_le32(sgl->word2);
9248 			sgl->sge_len =
9249 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9250 	}
9251 	return sglq->sli4_xritag;
9252 }
9253 
9254 /**
9255  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9256  * @phba: Pointer to HBA context object.
9257  * @piocb: Pointer to command iocb.
9258  * @wqe: Pointer to the work queue entry.
9259  *
9260  * This routine converts the iocb command to its Work Queue Entry
9261  * equivalent. The wqe pointer should not have any fields set when
9262  * this routine is called because it will memcpy over them.
9263  * This routine does not set the CQ_ID or the WQEC bits in the
9264  * wqe.
9265  *
9266  * Returns: 0 = Success, IOCB_ERROR = Failure.
9267  **/
9268 static int
9269 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9270 		union lpfc_wqe128 *wqe)
9271 {
9272 	uint32_t xmit_len = 0, total_len = 0;
9273 	uint8_t ct = 0;
9274 	uint32_t fip;
9275 	uint32_t abort_tag;
9276 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9277 	uint8_t cmnd;
9278 	uint16_t xritag;
9279 	uint16_t abrt_iotag;
9280 	struct lpfc_iocbq *abrtiocbq;
9281 	struct ulp_bde64 *bpl = NULL;
9282 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9283 	int numBdes, i;
9284 	struct ulp_bde64 bde;
9285 	struct lpfc_nodelist *ndlp;
9286 	uint32_t *pcmd;
9287 	uint32_t if_type;
9288 
9289 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9290 	/* The fcp commands will set command type */
9291 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9292 		command_type = FCP_COMMAND;
9293 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9294 		command_type = ELS_COMMAND_FIP;
9295 	else
9296 		command_type = ELS_COMMAND_NON_FIP;
9297 
9298 	if (phba->fcp_embed_io)
9299 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9300 	/* Some of the fields are in the right position already */
9301 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9302 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9303 		/* The ct field has moved so reset */
9304 		wqe->generic.wqe_com.word7 = 0;
9305 		wqe->generic.wqe_com.word10 = 0;
9306 	}
9307 
9308 	abort_tag = (uint32_t) iocbq->iotag;
9309 	xritag = iocbq->sli4_xritag;
9310 	/* words0-2 bpl convert bde */
9311 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9312 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9313 				sizeof(struct ulp_bde64);
9314 		bpl  = (struct ulp_bde64 *)
9315 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9316 		if (!bpl)
9317 			return IOCB_ERROR;
9318 
9319 		/* Should already be byte swapped. */
9320 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9321 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9322 		/* swap the size field back to the cpu so we
9323 		 * can assign it to the sgl.
9324 		 */
9325 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9326 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9327 		total_len = 0;
9328 		for (i = 0; i < numBdes; i++) {
9329 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9330 			total_len += bde.tus.f.bdeSize;
9331 		}
9332 	} else
9333 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9334 
9335 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9336 	cmnd = iocbq->iocb.ulpCommand;
9337 
9338 	switch (iocbq->iocb.ulpCommand) {
9339 	case CMD_ELS_REQUEST64_CR:
9340 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9341 			ndlp = iocbq->context_un.ndlp;
9342 		else
9343 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9344 		if (!iocbq->iocb.ulpLe) {
9345 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9346 				"2007 Only Limited Edition cmd Format"
9347 				" supported 0x%x\n",
9348 				iocbq->iocb.ulpCommand);
9349 			return IOCB_ERROR;
9350 		}
9351 
9352 		wqe->els_req.payload_len = xmit_len;
9353 		/* Els_reguest64 has a TMO */
9354 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9355 			iocbq->iocb.ulpTimeout);
9356 		/* Need a VF for word 4 set the vf bit*/
9357 		bf_set(els_req64_vf, &wqe->els_req, 0);
9358 		/* And a VFID for word 12 */
9359 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9360 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9361 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9362 		       iocbq->iocb.ulpContext);
9363 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9364 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9365 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9366 		if (command_type == ELS_COMMAND_FIP)
9367 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9368 					>> LPFC_FIP_ELS_ID_SHIFT);
9369 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9370 					iocbq->context2)->virt);
9371 		if_type = bf_get(lpfc_sli_intf_if_type,
9372 					&phba->sli4_hba.sli_intf);
9373 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9374 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9375 				*pcmd == ELS_CMD_SCR ||
9376 				*pcmd == ELS_CMD_FDISC ||
9377 				*pcmd == ELS_CMD_LOGO ||
9378 				*pcmd == ELS_CMD_PLOGI)) {
9379 				bf_set(els_req64_sp, &wqe->els_req, 1);
9380 				bf_set(els_req64_sid, &wqe->els_req,
9381 					iocbq->vport->fc_myDID);
9382 				if ((*pcmd == ELS_CMD_FLOGI) &&
9383 					!(phba->fc_topology ==
9384 						LPFC_TOPOLOGY_LOOP))
9385 					bf_set(els_req64_sid, &wqe->els_req, 0);
9386 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9387 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9388 					phba->vpi_ids[iocbq->vport->vpi]);
9389 			} else if (pcmd && iocbq->context1) {
9390 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9391 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9392 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9393 			}
9394 		}
9395 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9396 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9397 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9398 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9399 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9400 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9401 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9402 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9403 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9404 		break;
9405 	case CMD_XMIT_SEQUENCE64_CX:
9406 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9407 		       iocbq->iocb.un.ulpWord[3]);
9408 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9409 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9410 		/* The entire sequence is transmitted for this IOCB */
9411 		xmit_len = total_len;
9412 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9413 		if (phba->link_flag & LS_LOOPBACK_MODE)
9414 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9415 		/* fall through */
9416 	case CMD_XMIT_SEQUENCE64_CR:
9417 		/* word3 iocb=io_tag32 wqe=reserved */
9418 		wqe->xmit_sequence.rsvd3 = 0;
9419 		/* word4 relative_offset memcpy */
9420 		/* word5 r_ctl/df_ctl memcpy */
9421 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9422 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9423 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9424 		       LPFC_WQE_IOD_WRITE);
9425 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9426 		       LPFC_WQE_LENLOC_WORD12);
9427 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9428 		wqe->xmit_sequence.xmit_len = xmit_len;
9429 		command_type = OTHER_COMMAND;
9430 		break;
9431 	case CMD_XMIT_BCAST64_CN:
9432 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9433 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9434 		/* word4 iocb=rsvd wqe=rsvd */
9435 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9436 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9437 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9438 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9439 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9440 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9441 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9442 		       LPFC_WQE_LENLOC_WORD3);
9443 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9444 		break;
9445 	case CMD_FCP_IWRITE64_CR:
9446 		command_type = FCP_COMMAND_DATA_OUT;
9447 		/* word3 iocb=iotag wqe=payload_offset_len */
9448 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9449 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9450 		       xmit_len + sizeof(struct fcp_rsp));
9451 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9452 		       0);
9453 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9454 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9455 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9456 		       iocbq->iocb.ulpFCP2Rcvy);
9457 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9458 		/* Always open the exchange */
9459 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9460 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9461 		       LPFC_WQE_LENLOC_WORD4);
9462 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9463 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9464 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9465 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9466 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9467 			if (iocbq->priority) {
9468 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9469 				       (iocbq->priority << 1));
9470 			} else {
9471 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9472 				       (phba->cfg_XLanePriority << 1));
9473 			}
9474 		}
9475 		/* Note, word 10 is already initialized to 0 */
9476 
9477 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9478 		if (phba->cfg_enable_pbde)
9479 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9480 		else
9481 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9482 
9483 		if (phba->fcp_embed_io) {
9484 			struct lpfc_io_buf *lpfc_cmd;
9485 			struct sli4_sge *sgl;
9486 			struct fcp_cmnd *fcp_cmnd;
9487 			uint32_t *ptr;
9488 
9489 			/* 128 byte wqe support here */
9490 
9491 			lpfc_cmd = iocbq->context1;
9492 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9493 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9494 
9495 			/* Word 0-2 - FCP_CMND */
9496 			wqe->generic.bde.tus.f.bdeFlags =
9497 				BUFF_TYPE_BDE_IMMED;
9498 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9499 			wqe->generic.bde.addrHigh = 0;
9500 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9501 
9502 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9503 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9504 
9505 			/* Word 22-29  FCP CMND Payload */
9506 			ptr = &wqe->words[22];
9507 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9508 		}
9509 		break;
9510 	case CMD_FCP_IREAD64_CR:
9511 		/* word3 iocb=iotag wqe=payload_offset_len */
9512 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9513 		bf_set(payload_offset_len, &wqe->fcp_iread,
9514 		       xmit_len + sizeof(struct fcp_rsp));
9515 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9516 		       0);
9517 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9518 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9519 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9520 		       iocbq->iocb.ulpFCP2Rcvy);
9521 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9522 		/* Always open the exchange */
9523 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9524 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9525 		       LPFC_WQE_LENLOC_WORD4);
9526 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9527 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9528 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9529 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9530 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9531 			if (iocbq->priority) {
9532 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9533 				       (iocbq->priority << 1));
9534 			} else {
9535 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9536 				       (phba->cfg_XLanePriority << 1));
9537 			}
9538 		}
9539 		/* Note, word 10 is already initialized to 0 */
9540 
9541 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9542 		if (phba->cfg_enable_pbde)
9543 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9544 		else
9545 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9546 
9547 		if (phba->fcp_embed_io) {
9548 			struct lpfc_io_buf *lpfc_cmd;
9549 			struct sli4_sge *sgl;
9550 			struct fcp_cmnd *fcp_cmnd;
9551 			uint32_t *ptr;
9552 
9553 			/* 128 byte wqe support here */
9554 
9555 			lpfc_cmd = iocbq->context1;
9556 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9557 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9558 
9559 			/* Word 0-2 - FCP_CMND */
9560 			wqe->generic.bde.tus.f.bdeFlags =
9561 				BUFF_TYPE_BDE_IMMED;
9562 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9563 			wqe->generic.bde.addrHigh = 0;
9564 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9565 
9566 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9567 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9568 
9569 			/* Word 22-29  FCP CMND Payload */
9570 			ptr = &wqe->words[22];
9571 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9572 		}
9573 		break;
9574 	case CMD_FCP_ICMND64_CR:
9575 		/* word3 iocb=iotag wqe=payload_offset_len */
9576 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9577 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9578 		       xmit_len + sizeof(struct fcp_rsp));
9579 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9580 		       0);
9581 		/* word3 iocb=IO_TAG wqe=reserved */
9582 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9583 		/* Always open the exchange */
9584 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9585 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9586 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9587 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9588 		       LPFC_WQE_LENLOC_NONE);
9589 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9590 		       iocbq->iocb.ulpFCP2Rcvy);
9591 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9592 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9593 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9594 			if (iocbq->priority) {
9595 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9596 				       (iocbq->priority << 1));
9597 			} else {
9598 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9599 				       (phba->cfg_XLanePriority << 1));
9600 			}
9601 		}
9602 		/* Note, word 10 is already initialized to 0 */
9603 
9604 		if (phba->fcp_embed_io) {
9605 			struct lpfc_io_buf *lpfc_cmd;
9606 			struct sli4_sge *sgl;
9607 			struct fcp_cmnd *fcp_cmnd;
9608 			uint32_t *ptr;
9609 
9610 			/* 128 byte wqe support here */
9611 
9612 			lpfc_cmd = iocbq->context1;
9613 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9614 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9615 
9616 			/* Word 0-2 - FCP_CMND */
9617 			wqe->generic.bde.tus.f.bdeFlags =
9618 				BUFF_TYPE_BDE_IMMED;
9619 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9620 			wqe->generic.bde.addrHigh = 0;
9621 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9622 
9623 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9624 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9625 
9626 			/* Word 22-29  FCP CMND Payload */
9627 			ptr = &wqe->words[22];
9628 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9629 		}
9630 		break;
9631 	case CMD_GEN_REQUEST64_CR:
9632 		/* For this command calculate the xmit length of the
9633 		 * request bde.
9634 		 */
9635 		xmit_len = 0;
9636 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9637 			sizeof(struct ulp_bde64);
9638 		for (i = 0; i < numBdes; i++) {
9639 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9640 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9641 				break;
9642 			xmit_len += bde.tus.f.bdeSize;
9643 		}
9644 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9645 		wqe->gen_req.request_payload_len = xmit_len;
9646 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9647 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9648 		/* word6 context tag copied in memcpy */
9649 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9650 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9651 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9652 				"2015 Invalid CT %x command 0x%x\n",
9653 				ct, iocbq->iocb.ulpCommand);
9654 			return IOCB_ERROR;
9655 		}
9656 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9657 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9658 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9659 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9660 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9661 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9662 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9663 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9664 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9665 		command_type = OTHER_COMMAND;
9666 		break;
9667 	case CMD_XMIT_ELS_RSP64_CX:
9668 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9669 		/* words0-2 BDE memcpy */
9670 		/* word3 iocb=iotag32 wqe=response_payload_len */
9671 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9672 		/* word4 */
9673 		wqe->xmit_els_rsp.word4 = 0;
9674 		/* word5 iocb=rsvd wge=did */
9675 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9676 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9677 
9678 		if_type = bf_get(lpfc_sli_intf_if_type,
9679 					&phba->sli4_hba.sli_intf);
9680 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9681 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9682 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9683 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9684 					iocbq->vport->fc_myDID);
9685 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9686 					bf_set(wqe_els_did,
9687 						&wqe->xmit_els_rsp.wqe_dest, 0);
9688 				}
9689 			}
9690 		}
9691 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9692 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9693 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9694 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9695 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9696 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9697 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9698 			       phba->vpi_ids[iocbq->vport->vpi]);
9699 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9700 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9701 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9702 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9703 		       LPFC_WQE_LENLOC_WORD3);
9704 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9705 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9706 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9707 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9708 					iocbq->context2)->virt);
9709 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9710 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9711 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9712 					iocbq->vport->fc_myDID);
9713 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9714 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9715 					phba->vpi_ids[phba->pport->vpi]);
9716 		}
9717 		command_type = OTHER_COMMAND;
9718 		break;
9719 	case CMD_CLOSE_XRI_CN:
9720 	case CMD_ABORT_XRI_CN:
9721 	case CMD_ABORT_XRI_CX:
9722 		/* words 0-2 memcpy should be 0 rserved */
9723 		/* port will send abts */
9724 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9725 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9726 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9727 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9728 		} else
9729 			fip = 0;
9730 
9731 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9732 			/*
9733 			 * The link is down, or the command was ELS_FIP
9734 			 * so the fw does not need to send abts
9735 			 * on the wire.
9736 			 */
9737 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9738 		else
9739 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9740 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9741 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9742 		wqe->abort_cmd.rsrvd5 = 0;
9743 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9744 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9745 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9746 		/*
9747 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9748 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9749 		 */
9750 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9751 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9752 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9753 		       LPFC_WQE_LENLOC_NONE);
9754 		cmnd = CMD_ABORT_XRI_CX;
9755 		command_type = OTHER_COMMAND;
9756 		xritag = 0;
9757 		break;
9758 	case CMD_XMIT_BLS_RSP64_CX:
9759 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9760 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9761 		 * we re-construct this WQE here based on information in
9762 		 * iocbq from scratch.
9763 		 */
9764 		memset(wqe, 0, sizeof(union lpfc_wqe));
9765 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9766 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9767 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9768 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9769 		    LPFC_ABTS_UNSOL_INT) {
9770 			/* ABTS sent by initiator to CT exchange, the
9771 			 * RX_ID field will be filled with the newly
9772 			 * allocated responder XRI.
9773 			 */
9774 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9775 			       iocbq->sli4_xritag);
9776 		} else {
9777 			/* ABTS sent by responder to CT exchange, the
9778 			 * RX_ID field will be filled with the responder
9779 			 * RX_ID from ABTS.
9780 			 */
9781 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9782 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9783 		}
9784 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9785 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9786 
9787 		/* Use CT=VPI */
9788 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9789 			ndlp->nlp_DID);
9790 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9791 			iocbq->iocb.ulpContext);
9792 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9793 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9794 			phba->vpi_ids[phba->pport->vpi]);
9795 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9796 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9797 		       LPFC_WQE_LENLOC_NONE);
9798 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9799 		command_type = OTHER_COMMAND;
9800 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9801 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9802 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9803 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9804 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9805 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9806 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9807 		}
9808 
9809 		break;
9810 	case CMD_SEND_FRAME:
9811 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9812 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9813 		return 0;
9814 	case CMD_XRI_ABORTED_CX:
9815 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9816 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9817 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9818 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9819 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9820 	default:
9821 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9822 				"2014 Invalid command 0x%x\n",
9823 				iocbq->iocb.ulpCommand);
9824 		return IOCB_ERROR;
9825 		break;
9826 	}
9827 
9828 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9829 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9830 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9831 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9832 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9833 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9834 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9835 			      LPFC_IO_DIF_INSERT);
9836 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9837 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9838 	wqe->generic.wqe_com.abort_tag = abort_tag;
9839 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9840 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9841 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9842 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9843 	return 0;
9844 }
9845 
9846 /**
9847  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9848  * @phba: Pointer to HBA context object.
9849  * @ring_number: SLI ring number to issue iocb on.
9850  * @piocb: Pointer to command iocb.
9851  * @flag: Flag indicating if this command can be put into txq.
9852  *
9853  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9854  * an iocb command to an HBA with SLI-4 interface spec.
9855  *
9856  * This function is called with hbalock held. The function will return success
9857  * after it successfully submit the iocb to firmware or after adding to the
9858  * txq.
9859  **/
9860 static int
9861 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9862 			 struct lpfc_iocbq *piocb, uint32_t flag)
9863 {
9864 	struct lpfc_sglq *sglq;
9865 	union lpfc_wqe128 wqe;
9866 	struct lpfc_queue *wq;
9867 	struct lpfc_sli_ring *pring;
9868 
9869 	/* Get the WQ */
9870 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9871 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9872 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq;
9873 	} else {
9874 		wq = phba->sli4_hba.els_wq;
9875 	}
9876 
9877 	/* Get corresponding ring */
9878 	pring = wq->pring;
9879 
9880 	/*
9881 	 * The WQE can be either 64 or 128 bytes,
9882 	 */
9883 
9884 	lockdep_assert_held(&pring->ring_lock);
9885 
9886 	if (piocb->sli4_xritag == NO_XRI) {
9887 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9888 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9889 			sglq = NULL;
9890 		else {
9891 			if (!list_empty(&pring->txq)) {
9892 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9893 					__lpfc_sli_ringtx_put(phba,
9894 						pring, piocb);
9895 					return IOCB_SUCCESS;
9896 				} else {
9897 					return IOCB_BUSY;
9898 				}
9899 			} else {
9900 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9901 				if (!sglq) {
9902 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9903 						__lpfc_sli_ringtx_put(phba,
9904 								pring,
9905 								piocb);
9906 						return IOCB_SUCCESS;
9907 					} else
9908 						return IOCB_BUSY;
9909 				}
9910 			}
9911 		}
9912 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9913 		/* These IO's already have an XRI and a mapped sgl. */
9914 		sglq = NULL;
9915 	else {
9916 		/*
9917 		 * This is a continuation of a commandi,(CX) so this
9918 		 * sglq is on the active list
9919 		 */
9920 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9921 		if (!sglq)
9922 			return IOCB_ERROR;
9923 	}
9924 
9925 	if (sglq) {
9926 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9927 		piocb->sli4_xritag = sglq->sli4_xritag;
9928 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9929 			return IOCB_ERROR;
9930 	}
9931 
9932 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9933 		return IOCB_ERROR;
9934 
9935 	if (lpfc_sli4_wq_put(wq, &wqe))
9936 		return IOCB_ERROR;
9937 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9938 
9939 	return 0;
9940 }
9941 
9942 /**
9943  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9944  *
9945  * This routine wraps the actual lockless version for issusing IOCB function
9946  * pointer from the lpfc_hba struct.
9947  *
9948  * Return codes:
9949  * IOCB_ERROR - Error
9950  * IOCB_SUCCESS - Success
9951  * IOCB_BUSY - Busy
9952  **/
9953 int
9954 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9955 		struct lpfc_iocbq *piocb, uint32_t flag)
9956 {
9957 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9958 }
9959 
9960 /**
9961  * lpfc_sli_api_table_setup - Set up sli api function jump table
9962  * @phba: The hba struct for which this call is being executed.
9963  * @dev_grp: The HBA PCI-Device group number.
9964  *
9965  * This routine sets up the SLI interface API function jump table in @phba
9966  * struct.
9967  * Returns: 0 - success, -ENODEV - failure.
9968  **/
9969 int
9970 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9971 {
9972 
9973 	switch (dev_grp) {
9974 	case LPFC_PCI_DEV_LP:
9975 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9976 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9977 		break;
9978 	case LPFC_PCI_DEV_OC:
9979 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9980 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9981 		break;
9982 	default:
9983 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9984 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9985 				dev_grp);
9986 		return -ENODEV;
9987 		break;
9988 	}
9989 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9990 	return 0;
9991 }
9992 
9993 /**
9994  * lpfc_sli4_calc_ring - Calculates which ring to use
9995  * @phba: Pointer to HBA context object.
9996  * @piocb: Pointer to command iocb.
9997  *
9998  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9999  * hba_wqidx, thus we need to calculate the corresponding ring.
10000  * Since ABORTS must go on the same WQ of the command they are
10001  * aborting, we use command's hba_wqidx.
10002  */
10003 struct lpfc_sli_ring *
10004 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10005 {
10006 	struct lpfc_io_buf *lpfc_cmd;
10007 
10008 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10009 		if (unlikely(!phba->sli4_hba.hdwq))
10010 			return NULL;
10011 		/*
10012 		 * for abort iocb hba_wqidx should already
10013 		 * be setup based on what work queue we used.
10014 		 */
10015 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10016 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10017 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10018 		}
10019 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq->pring;
10020 	} else {
10021 		if (unlikely(!phba->sli4_hba.els_wq))
10022 			return NULL;
10023 		piocb->hba_wqidx = 0;
10024 		return phba->sli4_hba.els_wq->pring;
10025 	}
10026 }
10027 
10028 /**
10029  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10030  * @phba: Pointer to HBA context object.
10031  * @pring: Pointer to driver SLI ring object.
10032  * @piocb: Pointer to command iocb.
10033  * @flag: Flag indicating if this command can be put into txq.
10034  *
10035  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10036  * function. This function gets the hbalock and calls
10037  * __lpfc_sli_issue_iocb function and will return the error returned
10038  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10039  * functions which do not hold hbalock.
10040  **/
10041 int
10042 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10043 		    struct lpfc_iocbq *piocb, uint32_t flag)
10044 {
10045 	struct lpfc_sli_ring *pring;
10046 	unsigned long iflags;
10047 	int rc;
10048 
10049 	if (phba->sli_rev == LPFC_SLI_REV4) {
10050 		pring = lpfc_sli4_calc_ring(phba, piocb);
10051 		if (unlikely(pring == NULL))
10052 			return IOCB_ERROR;
10053 
10054 		spin_lock_irqsave(&pring->ring_lock, iflags);
10055 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10056 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10057 	} else {
10058 		/* For now, SLI2/3 will still use hbalock */
10059 		spin_lock_irqsave(&phba->hbalock, iflags);
10060 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10061 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10062 	}
10063 	return rc;
10064 }
10065 
10066 /**
10067  * lpfc_extra_ring_setup - Extra ring setup function
10068  * @phba: Pointer to HBA context object.
10069  *
10070  * This function is called while driver attaches with the
10071  * HBA to setup the extra ring. The extra ring is used
10072  * only when driver needs to support target mode functionality
10073  * or IP over FC functionalities.
10074  *
10075  * This function is called with no lock held. SLI3 only.
10076  **/
10077 static int
10078 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10079 {
10080 	struct lpfc_sli *psli;
10081 	struct lpfc_sli_ring *pring;
10082 
10083 	psli = &phba->sli;
10084 
10085 	/* Adjust cmd/rsp ring iocb entries more evenly */
10086 
10087 	/* Take some away from the FCP ring */
10088 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10089 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10090 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10091 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10092 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10093 
10094 	/* and give them to the extra ring */
10095 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10096 
10097 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10098 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10099 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10100 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10101 
10102 	/* Setup default profile for this ring */
10103 	pring->iotag_max = 4096;
10104 	pring->num_mask = 1;
10105 	pring->prt[0].profile = 0;      /* Mask 0 */
10106 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10107 	pring->prt[0].type = phba->cfg_multi_ring_type;
10108 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10109 	return 0;
10110 }
10111 
10112 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10113  * @phba: Pointer to HBA context object.
10114  * @iocbq: Pointer to iocb object.
10115  *
10116  * The async_event handler calls this routine when it receives
10117  * an ASYNC_STATUS_CN event from the port.  The port generates
10118  * this event when an Abort Sequence request to an rport fails
10119  * twice in succession.  The abort could be originated by the
10120  * driver or by the port.  The ABTS could have been for an ELS
10121  * or FCP IO.  The port only generates this event when an ABTS
10122  * fails to complete after one retry.
10123  */
10124 static void
10125 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10126 			  struct lpfc_iocbq *iocbq)
10127 {
10128 	struct lpfc_nodelist *ndlp = NULL;
10129 	uint16_t rpi = 0, vpi = 0;
10130 	struct lpfc_vport *vport = NULL;
10131 
10132 	/* The rpi in the ulpContext is vport-sensitive. */
10133 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10134 	rpi = iocbq->iocb.ulpContext;
10135 
10136 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10137 			"3092 Port generated ABTS async event "
10138 			"on vpi %d rpi %d status 0x%x\n",
10139 			vpi, rpi, iocbq->iocb.ulpStatus);
10140 
10141 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10142 	if (!vport)
10143 		goto err_exit;
10144 	ndlp = lpfc_findnode_rpi(vport, rpi);
10145 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10146 		goto err_exit;
10147 
10148 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10149 		lpfc_sli_abts_recover_port(vport, ndlp);
10150 	return;
10151 
10152  err_exit:
10153 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10154 			"3095 Event Context not found, no "
10155 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10156 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10157 			vpi, rpi);
10158 }
10159 
10160 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10161  * @phba: pointer to HBA context object.
10162  * @ndlp: nodelist pointer for the impacted rport.
10163  * @axri: pointer to the wcqe containing the failed exchange.
10164  *
10165  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10166  * port.  The port generates this event when an abort exchange request to an
10167  * rport fails twice in succession with no reply.  The abort could be originated
10168  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10169  */
10170 void
10171 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10172 			   struct lpfc_nodelist *ndlp,
10173 			   struct sli4_wcqe_xri_aborted *axri)
10174 {
10175 	struct lpfc_vport *vport;
10176 	uint32_t ext_status = 0;
10177 
10178 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10179 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10180 				"3115 Node Context not found, driver "
10181 				"ignoring abts err event\n");
10182 		return;
10183 	}
10184 
10185 	vport = ndlp->vport;
10186 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10187 			"3116 Port generated FCP XRI ABORT event on "
10188 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10189 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10190 			bf_get(lpfc_wcqe_xa_xri, axri),
10191 			bf_get(lpfc_wcqe_xa_status, axri),
10192 			axri->parameter);
10193 
10194 	/*
10195 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10196 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10197 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10198 	 */
10199 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10200 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10201 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10202 		lpfc_sli_abts_recover_port(vport, ndlp);
10203 }
10204 
10205 /**
10206  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10207  * @phba: Pointer to HBA context object.
10208  * @pring: Pointer to driver SLI ring object.
10209  * @iocbq: Pointer to iocb object.
10210  *
10211  * This function is called by the slow ring event handler
10212  * function when there is an ASYNC event iocb in the ring.
10213  * This function is called with no lock held.
10214  * Currently this function handles only temperature related
10215  * ASYNC events. The function decodes the temperature sensor
10216  * event message and posts events for the management applications.
10217  **/
10218 static void
10219 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10220 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10221 {
10222 	IOCB_t *icmd;
10223 	uint16_t evt_code;
10224 	struct temp_event temp_event_data;
10225 	struct Scsi_Host *shost;
10226 	uint32_t *iocb_w;
10227 
10228 	icmd = &iocbq->iocb;
10229 	evt_code = icmd->un.asyncstat.evt_code;
10230 
10231 	switch (evt_code) {
10232 	case ASYNC_TEMP_WARN:
10233 	case ASYNC_TEMP_SAFE:
10234 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10235 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10236 		if (evt_code == ASYNC_TEMP_WARN) {
10237 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10238 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10239 				"0347 Adapter is very hot, please take "
10240 				"corrective action. temperature : %d Celsius\n",
10241 				(uint32_t) icmd->ulpContext);
10242 		} else {
10243 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10244 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10245 				"0340 Adapter temperature is OK now. "
10246 				"temperature : %d Celsius\n",
10247 				(uint32_t) icmd->ulpContext);
10248 		}
10249 
10250 		/* Send temperature change event to applications */
10251 		shost = lpfc_shost_from_vport(phba->pport);
10252 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10253 			sizeof(temp_event_data), (char *) &temp_event_data,
10254 			LPFC_NL_VENDOR_ID);
10255 		break;
10256 	case ASYNC_STATUS_CN:
10257 		lpfc_sli_abts_err_handler(phba, iocbq);
10258 		break;
10259 	default:
10260 		iocb_w = (uint32_t *) icmd;
10261 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10262 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10263 			" evt_code 0x%x\n"
10264 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10265 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10266 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10267 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10268 			pring->ringno, icmd->un.asyncstat.evt_code,
10269 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10270 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10271 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10272 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10273 
10274 		break;
10275 	}
10276 }
10277 
10278 
10279 /**
10280  * lpfc_sli4_setup - SLI ring setup function
10281  * @phba: Pointer to HBA context object.
10282  *
10283  * lpfc_sli_setup sets up rings of the SLI interface with
10284  * number of iocbs per ring and iotags. This function is
10285  * called while driver attach to the HBA and before the
10286  * interrupts are enabled. So there is no need for locking.
10287  *
10288  * This function always returns 0.
10289  **/
10290 int
10291 lpfc_sli4_setup(struct lpfc_hba *phba)
10292 {
10293 	struct lpfc_sli_ring *pring;
10294 
10295 	pring = phba->sli4_hba.els_wq->pring;
10296 	pring->num_mask = LPFC_MAX_RING_MASK;
10297 	pring->prt[0].profile = 0;	/* Mask 0 */
10298 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10299 	pring->prt[0].type = FC_TYPE_ELS;
10300 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10301 	    lpfc_els_unsol_event;
10302 	pring->prt[1].profile = 0;	/* Mask 1 */
10303 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10304 	pring->prt[1].type = FC_TYPE_ELS;
10305 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10306 	    lpfc_els_unsol_event;
10307 	pring->prt[2].profile = 0;	/* Mask 2 */
10308 	/* NameServer Inquiry */
10309 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10310 	/* NameServer */
10311 	pring->prt[2].type = FC_TYPE_CT;
10312 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10313 	    lpfc_ct_unsol_event;
10314 	pring->prt[3].profile = 0;	/* Mask 3 */
10315 	/* NameServer response */
10316 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10317 	/* NameServer */
10318 	pring->prt[3].type = FC_TYPE_CT;
10319 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10320 	    lpfc_ct_unsol_event;
10321 	return 0;
10322 }
10323 
10324 /**
10325  * lpfc_sli_setup - SLI ring setup function
10326  * @phba: Pointer to HBA context object.
10327  *
10328  * lpfc_sli_setup sets up rings of the SLI interface with
10329  * number of iocbs per ring and iotags. This function is
10330  * called while driver attach to the HBA and before the
10331  * interrupts are enabled. So there is no need for locking.
10332  *
10333  * This function always returns 0. SLI3 only.
10334  **/
10335 int
10336 lpfc_sli_setup(struct lpfc_hba *phba)
10337 {
10338 	int i, totiocbsize = 0;
10339 	struct lpfc_sli *psli = &phba->sli;
10340 	struct lpfc_sli_ring *pring;
10341 
10342 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10343 	psli->sli_flag = 0;
10344 
10345 	psli->iocbq_lookup = NULL;
10346 	psli->iocbq_lookup_len = 0;
10347 	psli->last_iotag = 0;
10348 
10349 	for (i = 0; i < psli->num_rings; i++) {
10350 		pring = &psli->sli3_ring[i];
10351 		switch (i) {
10352 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10353 			/* numCiocb and numRiocb are used in config_port */
10354 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10355 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10356 			pring->sli.sli3.numCiocb +=
10357 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10358 			pring->sli.sli3.numRiocb +=
10359 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10360 			pring->sli.sli3.numCiocb +=
10361 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10362 			pring->sli.sli3.numRiocb +=
10363 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10364 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10365 							SLI3_IOCB_CMD_SIZE :
10366 							SLI2_IOCB_CMD_SIZE;
10367 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10368 							SLI3_IOCB_RSP_SIZE :
10369 							SLI2_IOCB_RSP_SIZE;
10370 			pring->iotag_ctr = 0;
10371 			pring->iotag_max =
10372 			    (phba->cfg_hba_queue_depth * 2);
10373 			pring->fast_iotag = pring->iotag_max;
10374 			pring->num_mask = 0;
10375 			break;
10376 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10377 			/* numCiocb and numRiocb are used in config_port */
10378 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10379 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10380 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10381 							SLI3_IOCB_CMD_SIZE :
10382 							SLI2_IOCB_CMD_SIZE;
10383 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10384 							SLI3_IOCB_RSP_SIZE :
10385 							SLI2_IOCB_RSP_SIZE;
10386 			pring->iotag_max = phba->cfg_hba_queue_depth;
10387 			pring->num_mask = 0;
10388 			break;
10389 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10390 			/* numCiocb and numRiocb are used in config_port */
10391 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10392 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10393 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10394 							SLI3_IOCB_CMD_SIZE :
10395 							SLI2_IOCB_CMD_SIZE;
10396 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10397 							SLI3_IOCB_RSP_SIZE :
10398 							SLI2_IOCB_RSP_SIZE;
10399 			pring->fast_iotag = 0;
10400 			pring->iotag_ctr = 0;
10401 			pring->iotag_max = 4096;
10402 			pring->lpfc_sli_rcv_async_status =
10403 				lpfc_sli_async_event_handler;
10404 			pring->num_mask = LPFC_MAX_RING_MASK;
10405 			pring->prt[0].profile = 0;	/* Mask 0 */
10406 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10407 			pring->prt[0].type = FC_TYPE_ELS;
10408 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10409 			    lpfc_els_unsol_event;
10410 			pring->prt[1].profile = 0;	/* Mask 1 */
10411 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10412 			pring->prt[1].type = FC_TYPE_ELS;
10413 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10414 			    lpfc_els_unsol_event;
10415 			pring->prt[2].profile = 0;	/* Mask 2 */
10416 			/* NameServer Inquiry */
10417 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10418 			/* NameServer */
10419 			pring->prt[2].type = FC_TYPE_CT;
10420 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10421 			    lpfc_ct_unsol_event;
10422 			pring->prt[3].profile = 0;	/* Mask 3 */
10423 			/* NameServer response */
10424 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10425 			/* NameServer */
10426 			pring->prt[3].type = FC_TYPE_CT;
10427 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10428 			    lpfc_ct_unsol_event;
10429 			break;
10430 		}
10431 		totiocbsize += (pring->sli.sli3.numCiocb *
10432 			pring->sli.sli3.sizeCiocb) +
10433 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10434 	}
10435 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10436 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10437 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10438 		       "SLI2 SLIM Data: x%x x%lx\n",
10439 		       phba->brd_no, totiocbsize,
10440 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10441 	}
10442 	if (phba->cfg_multi_ring_support == 2)
10443 		lpfc_extra_ring_setup(phba);
10444 
10445 	return 0;
10446 }
10447 
10448 /**
10449  * lpfc_sli4_queue_init - Queue initialization function
10450  * @phba: Pointer to HBA context object.
10451  *
10452  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10453  * ring. This function also initializes ring indices of each ring.
10454  * This function is called during the initialization of the SLI
10455  * interface of an HBA.
10456  * This function is called with no lock held and always returns
10457  * 1.
10458  **/
10459 void
10460 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10461 {
10462 	struct lpfc_sli *psli;
10463 	struct lpfc_sli_ring *pring;
10464 	int i;
10465 
10466 	psli = &phba->sli;
10467 	spin_lock_irq(&phba->hbalock);
10468 	INIT_LIST_HEAD(&psli->mboxq);
10469 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10470 	/* Initialize list headers for txq and txcmplq as double linked lists */
10471 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10472 		pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
10473 		pring->flag = 0;
10474 		pring->ringno = LPFC_FCP_RING;
10475 		pring->txcmplq_cnt = 0;
10476 		INIT_LIST_HEAD(&pring->txq);
10477 		INIT_LIST_HEAD(&pring->txcmplq);
10478 		INIT_LIST_HEAD(&pring->iocb_continueq);
10479 		spin_lock_init(&pring->ring_lock);
10480 	}
10481 	pring = phba->sli4_hba.els_wq->pring;
10482 	pring->flag = 0;
10483 	pring->ringno = LPFC_ELS_RING;
10484 	pring->txcmplq_cnt = 0;
10485 	INIT_LIST_HEAD(&pring->txq);
10486 	INIT_LIST_HEAD(&pring->txcmplq);
10487 	INIT_LIST_HEAD(&pring->iocb_continueq);
10488 	spin_lock_init(&pring->ring_lock);
10489 
10490 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10491 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
10492 			pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
10493 			pring->flag = 0;
10494 			pring->ringno = LPFC_FCP_RING;
10495 			pring->txcmplq_cnt = 0;
10496 			INIT_LIST_HEAD(&pring->txq);
10497 			INIT_LIST_HEAD(&pring->txcmplq);
10498 			INIT_LIST_HEAD(&pring->iocb_continueq);
10499 			spin_lock_init(&pring->ring_lock);
10500 		}
10501 		pring = phba->sli4_hba.nvmels_wq->pring;
10502 		pring->flag = 0;
10503 		pring->ringno = LPFC_ELS_RING;
10504 		pring->txcmplq_cnt = 0;
10505 		INIT_LIST_HEAD(&pring->txq);
10506 		INIT_LIST_HEAD(&pring->txcmplq);
10507 		INIT_LIST_HEAD(&pring->iocb_continueq);
10508 		spin_lock_init(&pring->ring_lock);
10509 	}
10510 
10511 	spin_unlock_irq(&phba->hbalock);
10512 }
10513 
10514 /**
10515  * lpfc_sli_queue_init - Queue initialization function
10516  * @phba: Pointer to HBA context object.
10517  *
10518  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10519  * ring. This function also initializes ring indices of each ring.
10520  * This function is called during the initialization of the SLI
10521  * interface of an HBA.
10522  * This function is called with no lock held and always returns
10523  * 1.
10524  **/
10525 void
10526 lpfc_sli_queue_init(struct lpfc_hba *phba)
10527 {
10528 	struct lpfc_sli *psli;
10529 	struct lpfc_sli_ring *pring;
10530 	int i;
10531 
10532 	psli = &phba->sli;
10533 	spin_lock_irq(&phba->hbalock);
10534 	INIT_LIST_HEAD(&psli->mboxq);
10535 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10536 	/* Initialize list headers for txq and txcmplq as double linked lists */
10537 	for (i = 0; i < psli->num_rings; i++) {
10538 		pring = &psli->sli3_ring[i];
10539 		pring->ringno = i;
10540 		pring->sli.sli3.next_cmdidx  = 0;
10541 		pring->sli.sli3.local_getidx = 0;
10542 		pring->sli.sli3.cmdidx = 0;
10543 		INIT_LIST_HEAD(&pring->iocb_continueq);
10544 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10545 		INIT_LIST_HEAD(&pring->postbufq);
10546 		pring->flag = 0;
10547 		INIT_LIST_HEAD(&pring->txq);
10548 		INIT_LIST_HEAD(&pring->txcmplq);
10549 		spin_lock_init(&pring->ring_lock);
10550 	}
10551 	spin_unlock_irq(&phba->hbalock);
10552 }
10553 
10554 /**
10555  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10556  * @phba: Pointer to HBA context object.
10557  *
10558  * This routine flushes the mailbox command subsystem. It will unconditionally
10559  * flush all the mailbox commands in the three possible stages in the mailbox
10560  * command sub-system: pending mailbox command queue; the outstanding mailbox
10561  * command; and completed mailbox command queue. It is caller's responsibility
10562  * to make sure that the driver is in the proper state to flush the mailbox
10563  * command sub-system. Namely, the posting of mailbox commands into the
10564  * pending mailbox command queue from the various clients must be stopped;
10565  * either the HBA is in a state that it will never works on the outstanding
10566  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10567  * mailbox command has been completed.
10568  **/
10569 static void
10570 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10571 {
10572 	LIST_HEAD(completions);
10573 	struct lpfc_sli *psli = &phba->sli;
10574 	LPFC_MBOXQ_t *pmb;
10575 	unsigned long iflag;
10576 
10577 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10578 	local_bh_disable();
10579 
10580 	/* Flush all the mailbox commands in the mbox system */
10581 	spin_lock_irqsave(&phba->hbalock, iflag);
10582 
10583 	/* The pending mailbox command queue */
10584 	list_splice_init(&phba->sli.mboxq, &completions);
10585 	/* The outstanding active mailbox command */
10586 	if (psli->mbox_active) {
10587 		list_add_tail(&psli->mbox_active->list, &completions);
10588 		psli->mbox_active = NULL;
10589 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10590 	}
10591 	/* The completed mailbox command queue */
10592 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10593 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10594 
10595 	/* Enable softirqs again, done with phba->hbalock */
10596 	local_bh_enable();
10597 
10598 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10599 	while (!list_empty(&completions)) {
10600 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10601 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10602 		if (pmb->mbox_cmpl)
10603 			pmb->mbox_cmpl(phba, pmb);
10604 	}
10605 }
10606 
10607 /**
10608  * lpfc_sli_host_down - Vport cleanup function
10609  * @vport: Pointer to virtual port object.
10610  *
10611  * lpfc_sli_host_down is called to clean up the resources
10612  * associated with a vport before destroying virtual
10613  * port data structures.
10614  * This function does following operations:
10615  * - Free discovery resources associated with this virtual
10616  *   port.
10617  * - Free iocbs associated with this virtual port in
10618  *   the txq.
10619  * - Send abort for all iocb commands associated with this
10620  *   vport in txcmplq.
10621  *
10622  * This function is called with no lock held and always returns 1.
10623  **/
10624 int
10625 lpfc_sli_host_down(struct lpfc_vport *vport)
10626 {
10627 	LIST_HEAD(completions);
10628 	struct lpfc_hba *phba = vport->phba;
10629 	struct lpfc_sli *psli = &phba->sli;
10630 	struct lpfc_queue *qp = NULL;
10631 	struct lpfc_sli_ring *pring;
10632 	struct lpfc_iocbq *iocb, *next_iocb;
10633 	int i;
10634 	unsigned long flags = 0;
10635 	uint16_t prev_pring_flag;
10636 
10637 	lpfc_cleanup_discovery_resources(vport);
10638 
10639 	spin_lock_irqsave(&phba->hbalock, flags);
10640 
10641 	/*
10642 	 * Error everything on the txq since these iocbs
10643 	 * have not been given to the FW yet.
10644 	 * Also issue ABTS for everything on the txcmplq
10645 	 */
10646 	if (phba->sli_rev != LPFC_SLI_REV4) {
10647 		for (i = 0; i < psli->num_rings; i++) {
10648 			pring = &psli->sli3_ring[i];
10649 			prev_pring_flag = pring->flag;
10650 			/* Only slow rings */
10651 			if (pring->ringno == LPFC_ELS_RING) {
10652 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10653 				/* Set the lpfc data pending flag */
10654 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10655 			}
10656 			list_for_each_entry_safe(iocb, next_iocb,
10657 						 &pring->txq, list) {
10658 				if (iocb->vport != vport)
10659 					continue;
10660 				list_move_tail(&iocb->list, &completions);
10661 			}
10662 			list_for_each_entry_safe(iocb, next_iocb,
10663 						 &pring->txcmplq, list) {
10664 				if (iocb->vport != vport)
10665 					continue;
10666 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10667 			}
10668 			pring->flag = prev_pring_flag;
10669 		}
10670 	} else {
10671 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10672 			pring = qp->pring;
10673 			if (!pring)
10674 				continue;
10675 			if (pring == phba->sli4_hba.els_wq->pring) {
10676 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10677 				/* Set the lpfc data pending flag */
10678 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10679 			}
10680 			prev_pring_flag = pring->flag;
10681 			spin_lock_irq(&pring->ring_lock);
10682 			list_for_each_entry_safe(iocb, next_iocb,
10683 						 &pring->txq, list) {
10684 				if (iocb->vport != vport)
10685 					continue;
10686 				list_move_tail(&iocb->list, &completions);
10687 			}
10688 			spin_unlock_irq(&pring->ring_lock);
10689 			list_for_each_entry_safe(iocb, next_iocb,
10690 						 &pring->txcmplq, list) {
10691 				if (iocb->vport != vport)
10692 					continue;
10693 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10694 			}
10695 			pring->flag = prev_pring_flag;
10696 		}
10697 	}
10698 	spin_unlock_irqrestore(&phba->hbalock, flags);
10699 
10700 	/* Cancel all the IOCBs from the completions list */
10701 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10702 			      IOERR_SLI_DOWN);
10703 	return 1;
10704 }
10705 
10706 /**
10707  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10708  * @phba: Pointer to HBA context object.
10709  *
10710  * This function cleans up all iocb, buffers, mailbox commands
10711  * while shutting down the HBA. This function is called with no
10712  * lock held and always returns 1.
10713  * This function does the following to cleanup driver resources:
10714  * - Free discovery resources for each virtual port
10715  * - Cleanup any pending fabric iocbs
10716  * - Iterate through the iocb txq and free each entry
10717  *   in the list.
10718  * - Free up any buffer posted to the HBA
10719  * - Free mailbox commands in the mailbox queue.
10720  **/
10721 int
10722 lpfc_sli_hba_down(struct lpfc_hba *phba)
10723 {
10724 	LIST_HEAD(completions);
10725 	struct lpfc_sli *psli = &phba->sli;
10726 	struct lpfc_queue *qp = NULL;
10727 	struct lpfc_sli_ring *pring;
10728 	struct lpfc_dmabuf *buf_ptr;
10729 	unsigned long flags = 0;
10730 	int i;
10731 
10732 	/* Shutdown the mailbox command sub-system */
10733 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10734 
10735 	lpfc_hba_down_prep(phba);
10736 
10737 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10738 	local_bh_disable();
10739 
10740 	lpfc_fabric_abort_hba(phba);
10741 
10742 	spin_lock_irqsave(&phba->hbalock, flags);
10743 
10744 	/*
10745 	 * Error everything on the txq since these iocbs
10746 	 * have not been given to the FW yet.
10747 	 */
10748 	if (phba->sli_rev != LPFC_SLI_REV4) {
10749 		for (i = 0; i < psli->num_rings; i++) {
10750 			pring = &psli->sli3_ring[i];
10751 			/* Only slow rings */
10752 			if (pring->ringno == LPFC_ELS_RING) {
10753 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10754 				/* Set the lpfc data pending flag */
10755 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10756 			}
10757 			list_splice_init(&pring->txq, &completions);
10758 		}
10759 	} else {
10760 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10761 			pring = qp->pring;
10762 			if (!pring)
10763 				continue;
10764 			spin_lock_irq(&pring->ring_lock);
10765 			list_splice_init(&pring->txq, &completions);
10766 			spin_unlock_irq(&pring->ring_lock);
10767 			if (pring == phba->sli4_hba.els_wq->pring) {
10768 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10769 				/* Set the lpfc data pending flag */
10770 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10771 			}
10772 		}
10773 	}
10774 	spin_unlock_irqrestore(&phba->hbalock, flags);
10775 
10776 	/* Cancel all the IOCBs from the completions list */
10777 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10778 			      IOERR_SLI_DOWN);
10779 
10780 	spin_lock_irqsave(&phba->hbalock, flags);
10781 	list_splice_init(&phba->elsbuf, &completions);
10782 	phba->elsbuf_cnt = 0;
10783 	phba->elsbuf_prev_cnt = 0;
10784 	spin_unlock_irqrestore(&phba->hbalock, flags);
10785 
10786 	while (!list_empty(&completions)) {
10787 		list_remove_head(&completions, buf_ptr,
10788 			struct lpfc_dmabuf, list);
10789 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10790 		kfree(buf_ptr);
10791 	}
10792 
10793 	/* Enable softirqs again, done with phba->hbalock */
10794 	local_bh_enable();
10795 
10796 	/* Return any active mbox cmds */
10797 	del_timer_sync(&psli->mbox_tmo);
10798 
10799 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10800 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10801 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10802 
10803 	return 1;
10804 }
10805 
10806 /**
10807  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10808  * @srcp: Source memory pointer.
10809  * @destp: Destination memory pointer.
10810  * @cnt: Number of words required to be copied.
10811  *
10812  * This function is used for copying data between driver memory
10813  * and the SLI memory. This function also changes the endianness
10814  * of each word if native endianness is different from SLI
10815  * endianness. This function can be called with or without
10816  * lock.
10817  **/
10818 void
10819 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10820 {
10821 	uint32_t *src = srcp;
10822 	uint32_t *dest = destp;
10823 	uint32_t ldata;
10824 	int i;
10825 
10826 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10827 		ldata = *src;
10828 		ldata = le32_to_cpu(ldata);
10829 		*dest = ldata;
10830 		src++;
10831 		dest++;
10832 	}
10833 }
10834 
10835 
10836 /**
10837  * lpfc_sli_bemem_bcopy - SLI memory copy function
10838  * @srcp: Source memory pointer.
10839  * @destp: Destination memory pointer.
10840  * @cnt: Number of words required to be copied.
10841  *
10842  * This function is used for copying data between a data structure
10843  * with big endian representation to local endianness.
10844  * This function can be called with or without lock.
10845  **/
10846 void
10847 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10848 {
10849 	uint32_t *src = srcp;
10850 	uint32_t *dest = destp;
10851 	uint32_t ldata;
10852 	int i;
10853 
10854 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10855 		ldata = *src;
10856 		ldata = be32_to_cpu(ldata);
10857 		*dest = ldata;
10858 		src++;
10859 		dest++;
10860 	}
10861 }
10862 
10863 /**
10864  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10865  * @phba: Pointer to HBA context object.
10866  * @pring: Pointer to driver SLI ring object.
10867  * @mp: Pointer to driver buffer object.
10868  *
10869  * This function is called with no lock held.
10870  * It always return zero after adding the buffer to the postbufq
10871  * buffer list.
10872  **/
10873 int
10874 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10875 			 struct lpfc_dmabuf *mp)
10876 {
10877 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10878 	   later */
10879 	spin_lock_irq(&phba->hbalock);
10880 	list_add_tail(&mp->list, &pring->postbufq);
10881 	pring->postbufq_cnt++;
10882 	spin_unlock_irq(&phba->hbalock);
10883 	return 0;
10884 }
10885 
10886 /**
10887  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10888  * @phba: Pointer to HBA context object.
10889  *
10890  * When HBQ is enabled, buffers are searched based on tags. This function
10891  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10892  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10893  * does not conflict with tags of buffer posted for unsolicited events.
10894  * The function returns the allocated tag. The function is called with
10895  * no locks held.
10896  **/
10897 uint32_t
10898 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10899 {
10900 	spin_lock_irq(&phba->hbalock);
10901 	phba->buffer_tag_count++;
10902 	/*
10903 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10904 	 * a tag assigned by HBQ.
10905 	 */
10906 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10907 	spin_unlock_irq(&phba->hbalock);
10908 	return phba->buffer_tag_count;
10909 }
10910 
10911 /**
10912  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10913  * @phba: Pointer to HBA context object.
10914  * @pring: Pointer to driver SLI ring object.
10915  * @tag: Buffer tag.
10916  *
10917  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10918  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10919  * iocb is posted to the response ring with the tag of the buffer.
10920  * This function searches the pring->postbufq list using the tag
10921  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10922  * iocb. If the buffer is found then lpfc_dmabuf object of the
10923  * buffer is returned to the caller else NULL is returned.
10924  * This function is called with no lock held.
10925  **/
10926 struct lpfc_dmabuf *
10927 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10928 			uint32_t tag)
10929 {
10930 	struct lpfc_dmabuf *mp, *next_mp;
10931 	struct list_head *slp = &pring->postbufq;
10932 
10933 	/* Search postbufq, from the beginning, looking for a match on tag */
10934 	spin_lock_irq(&phba->hbalock);
10935 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10936 		if (mp->buffer_tag == tag) {
10937 			list_del_init(&mp->list);
10938 			pring->postbufq_cnt--;
10939 			spin_unlock_irq(&phba->hbalock);
10940 			return mp;
10941 		}
10942 	}
10943 
10944 	spin_unlock_irq(&phba->hbalock);
10945 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10946 			"0402 Cannot find virtual addr for buffer tag on "
10947 			"ring %d Data x%lx x%p x%p x%x\n",
10948 			pring->ringno, (unsigned long) tag,
10949 			slp->next, slp->prev, pring->postbufq_cnt);
10950 
10951 	return NULL;
10952 }
10953 
10954 /**
10955  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10956  * @phba: Pointer to HBA context object.
10957  * @pring: Pointer to driver SLI ring object.
10958  * @phys: DMA address of the buffer.
10959  *
10960  * This function searches the buffer list using the dma_address
10961  * of unsolicited event to find the driver's lpfc_dmabuf object
10962  * corresponding to the dma_address. The function returns the
10963  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10964  * This function is called by the ct and els unsolicited event
10965  * handlers to get the buffer associated with the unsolicited
10966  * event.
10967  *
10968  * This function is called with no lock held.
10969  **/
10970 struct lpfc_dmabuf *
10971 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10972 			 dma_addr_t phys)
10973 {
10974 	struct lpfc_dmabuf *mp, *next_mp;
10975 	struct list_head *slp = &pring->postbufq;
10976 
10977 	/* Search postbufq, from the beginning, looking for a match on phys */
10978 	spin_lock_irq(&phba->hbalock);
10979 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10980 		if (mp->phys == phys) {
10981 			list_del_init(&mp->list);
10982 			pring->postbufq_cnt--;
10983 			spin_unlock_irq(&phba->hbalock);
10984 			return mp;
10985 		}
10986 	}
10987 
10988 	spin_unlock_irq(&phba->hbalock);
10989 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10990 			"0410 Cannot find virtual addr for mapped buf on "
10991 			"ring %d Data x%llx x%p x%p x%x\n",
10992 			pring->ringno, (unsigned long long)phys,
10993 			slp->next, slp->prev, pring->postbufq_cnt);
10994 	return NULL;
10995 }
10996 
10997 /**
10998  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10999  * @phba: Pointer to HBA context object.
11000  * @cmdiocb: Pointer to driver command iocb object.
11001  * @rspiocb: Pointer to driver response iocb object.
11002  *
11003  * This function is the completion handler for the abort iocbs for
11004  * ELS commands. This function is called from the ELS ring event
11005  * handler with no lock held. This function frees memory resources
11006  * associated with the abort iocb.
11007  **/
11008 static void
11009 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11010 			struct lpfc_iocbq *rspiocb)
11011 {
11012 	IOCB_t *irsp = &rspiocb->iocb;
11013 	uint16_t abort_iotag, abort_context;
11014 	struct lpfc_iocbq *abort_iocb = NULL;
11015 
11016 	if (irsp->ulpStatus) {
11017 
11018 		/*
11019 		 * Assume that the port already completed and returned, or
11020 		 * will return the iocb. Just Log the message.
11021 		 */
11022 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11023 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11024 
11025 		spin_lock_irq(&phba->hbalock);
11026 		if (phba->sli_rev < LPFC_SLI_REV4) {
11027 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11028 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11029 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11030 				spin_unlock_irq(&phba->hbalock);
11031 				goto release_iocb;
11032 			}
11033 			if (abort_iotag != 0 &&
11034 				abort_iotag <= phba->sli.last_iotag)
11035 				abort_iocb =
11036 					phba->sli.iocbq_lookup[abort_iotag];
11037 		} else
11038 			/* For sli4 the abort_tag is the XRI,
11039 			 * so the abort routine puts the iotag  of the iocb
11040 			 * being aborted in the context field of the abort
11041 			 * IOCB.
11042 			 */
11043 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11044 
11045 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11046 				"0327 Cannot abort els iocb %p "
11047 				"with tag %x context %x, abort status %x, "
11048 				"abort code %x\n",
11049 				abort_iocb, abort_iotag, abort_context,
11050 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11051 
11052 		spin_unlock_irq(&phba->hbalock);
11053 	}
11054 release_iocb:
11055 	lpfc_sli_release_iocbq(phba, cmdiocb);
11056 	return;
11057 }
11058 
11059 /**
11060  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11061  * @phba: Pointer to HBA context object.
11062  * @cmdiocb: Pointer to driver command iocb object.
11063  * @rspiocb: Pointer to driver response iocb object.
11064  *
11065  * The function is called from SLI ring event handler with no
11066  * lock held. This function is the completion handler for ELS commands
11067  * which are aborted. The function frees memory resources used for
11068  * the aborted ELS commands.
11069  **/
11070 static void
11071 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11072 		     struct lpfc_iocbq *rspiocb)
11073 {
11074 	IOCB_t *irsp = &rspiocb->iocb;
11075 
11076 	/* ELS cmd tag <ulpIoTag> completes */
11077 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11078 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11079 			"x%x x%x x%x\n",
11080 			irsp->ulpIoTag, irsp->ulpStatus,
11081 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11082 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11083 		lpfc_ct_free_iocb(phba, cmdiocb);
11084 	else
11085 		lpfc_els_free_iocb(phba, cmdiocb);
11086 	return;
11087 }
11088 
11089 /**
11090  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11091  * @phba: Pointer to HBA context object.
11092  * @pring: Pointer to driver SLI ring object.
11093  * @cmdiocb: Pointer to driver command iocb object.
11094  *
11095  * This function issues an abort iocb for the provided command iocb down to
11096  * the port. Other than the case the outstanding command iocb is an abort
11097  * request, this function issues abort out unconditionally. This function is
11098  * called with hbalock held. The function returns 0 when it fails due to
11099  * memory allocation failure or when the command iocb is an abort request.
11100  **/
11101 static int
11102 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11103 			   struct lpfc_iocbq *cmdiocb)
11104 {
11105 	struct lpfc_vport *vport = cmdiocb->vport;
11106 	struct lpfc_iocbq *abtsiocbp;
11107 	IOCB_t *icmd = NULL;
11108 	IOCB_t *iabt = NULL;
11109 	int retval;
11110 	unsigned long iflags;
11111 	struct lpfc_nodelist *ndlp;
11112 
11113 	lockdep_assert_held(&phba->hbalock);
11114 
11115 	/*
11116 	 * There are certain command types we don't want to abort.  And we
11117 	 * don't want to abort commands that are already in the process of
11118 	 * being aborted.
11119 	 */
11120 	icmd = &cmdiocb->iocb;
11121 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11122 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11123 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11124 		return 0;
11125 
11126 	/* issue ABTS for this IOCB based on iotag */
11127 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11128 	if (abtsiocbp == NULL)
11129 		return 0;
11130 
11131 	/* This signals the response to set the correct status
11132 	 * before calling the completion handler
11133 	 */
11134 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11135 
11136 	iabt = &abtsiocbp->iocb;
11137 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11138 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11139 	if (phba->sli_rev == LPFC_SLI_REV4) {
11140 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11141 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11142 	} else {
11143 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11144 		if (pring->ringno == LPFC_ELS_RING) {
11145 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11146 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11147 		}
11148 	}
11149 	iabt->ulpLe = 1;
11150 	iabt->ulpClass = icmd->ulpClass;
11151 
11152 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11153 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11154 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11155 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11156 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11157 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11158 
11159 	if (phba->link_state >= LPFC_LINK_UP)
11160 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11161 	else
11162 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11163 
11164 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11165 	abtsiocbp->vport = vport;
11166 
11167 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11168 			 "0339 Abort xri x%x, original iotag x%x, "
11169 			 "abort cmd iotag x%x\n",
11170 			 iabt->un.acxri.abortIoTag,
11171 			 iabt->un.acxri.abortContextTag,
11172 			 abtsiocbp->iotag);
11173 
11174 	if (phba->sli_rev == LPFC_SLI_REV4) {
11175 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11176 		if (unlikely(pring == NULL))
11177 			return 0;
11178 		/* Note: both hbalock and ring_lock need to be set here */
11179 		spin_lock_irqsave(&pring->ring_lock, iflags);
11180 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11181 			abtsiocbp, 0);
11182 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11183 	} else {
11184 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11185 			abtsiocbp, 0);
11186 	}
11187 
11188 	if (retval)
11189 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11190 
11191 	/*
11192 	 * Caller to this routine should check for IOCB_ERROR
11193 	 * and handle it properly.  This routine no longer removes
11194 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11195 	 */
11196 	return retval;
11197 }
11198 
11199 /**
11200  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11201  * @phba: Pointer to HBA context object.
11202  * @pring: Pointer to driver SLI ring object.
11203  * @cmdiocb: Pointer to driver command iocb object.
11204  *
11205  * This function issues an abort iocb for the provided command iocb. In case
11206  * of unloading, the abort iocb will not be issued to commands on the ELS
11207  * ring. Instead, the callback function shall be changed to those commands
11208  * so that nothing happens when them finishes. This function is called with
11209  * hbalock held. The function returns 0 when the command iocb is an abort
11210  * request.
11211  **/
11212 int
11213 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11214 			   struct lpfc_iocbq *cmdiocb)
11215 {
11216 	struct lpfc_vport *vport = cmdiocb->vport;
11217 	int retval = IOCB_ERROR;
11218 	IOCB_t *icmd = NULL;
11219 
11220 	lockdep_assert_held(&phba->hbalock);
11221 
11222 	/*
11223 	 * There are certain command types we don't want to abort.  And we
11224 	 * don't want to abort commands that are already in the process of
11225 	 * being aborted.
11226 	 */
11227 	icmd = &cmdiocb->iocb;
11228 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11229 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11230 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11231 		return 0;
11232 
11233 	if (!pring) {
11234 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11235 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11236 		else
11237 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11238 		goto abort_iotag_exit;
11239 	}
11240 
11241 	/*
11242 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11243 	 * the callback so that nothing happens when it finishes.
11244 	 */
11245 	if ((vport->load_flag & FC_UNLOADING) &&
11246 	    (pring->ringno == LPFC_ELS_RING)) {
11247 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11248 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11249 		else
11250 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11251 		goto abort_iotag_exit;
11252 	}
11253 
11254 	/* Now, we try to issue the abort to the cmdiocb out */
11255 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11256 
11257 abort_iotag_exit:
11258 	/*
11259 	 * Caller to this routine should check for IOCB_ERROR
11260 	 * and handle it properly.  This routine no longer removes
11261 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11262 	 */
11263 	return retval;
11264 }
11265 
11266 /**
11267  * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
11268  * @phba: Pointer to HBA context object.
11269  * @pring: Pointer to driver SLI ring object.
11270  * @cmdiocb: Pointer to driver command iocb object.
11271  *
11272  * This function issues an abort iocb for the provided command iocb down to
11273  * the port. Other than the case the outstanding command iocb is an abort
11274  * request, this function issues abort out unconditionally. This function is
11275  * called with hbalock held. The function returns 0 when it fails due to
11276  * memory allocation failure or when the command iocb is an abort request.
11277  **/
11278 static int
11279 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11280 			struct lpfc_iocbq *cmdiocb)
11281 {
11282 	struct lpfc_vport *vport = cmdiocb->vport;
11283 	struct lpfc_iocbq *abtsiocbp;
11284 	union lpfc_wqe128 *abts_wqe;
11285 	int retval;
11286 	int idx = cmdiocb->hba_wqidx;
11287 
11288 	/*
11289 	 * There are certain command types we don't want to abort.  And we
11290 	 * don't want to abort commands that are already in the process of
11291 	 * being aborted.
11292 	 */
11293 	if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
11294 	    cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
11295 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11296 		return 0;
11297 
11298 	/* issue ABTS for this io based on iotag */
11299 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11300 	if (abtsiocbp == NULL)
11301 		return 0;
11302 
11303 	/* This signals the response to set the correct status
11304 	 * before calling the completion handler
11305 	 */
11306 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11307 
11308 	/* Complete prepping the abort wqe and issue to the FW. */
11309 	abts_wqe = &abtsiocbp->wqe;
11310 
11311 	/* Clear any stale WQE contents */
11312 	memset(abts_wqe, 0, sizeof(union lpfc_wqe));
11313 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
11314 
11315 	/* word 7 */
11316 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
11317 	bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
11318 	       cmdiocb->iocb.ulpClass);
11319 
11320 	/* word 8 - tell the FW to abort the IO associated with this
11321 	 * outstanding exchange ID.
11322 	 */
11323 	abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
11324 
11325 	/* word 9 - this is the iotag for the abts_wqe completion. */
11326 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
11327 	       abtsiocbp->iotag);
11328 
11329 	/* word 10 */
11330 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
11331 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
11332 
11333 	/* word 11 */
11334 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11335 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
11336 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
11337 
11338 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11339 	abtsiocbp->iocb_flag |= LPFC_IO_NVME;
11340 	abtsiocbp->vport = vport;
11341 	abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
11342 	retval = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[idx],
11343 				     abtsiocbp);
11344 	if (retval) {
11345 		lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11346 				 "6147 Failed abts issue_wqe with status x%x "
11347 				 "for oxid x%x\n",
11348 				 retval, cmdiocb->sli4_xritag);
11349 		lpfc_sli_release_iocbq(phba, abtsiocbp);
11350 		return retval;
11351 	}
11352 
11353 	lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11354 			 "6148 Drv Abort NVME Request Issued for "
11355 			 "ox_id x%x on reqtag x%x\n",
11356 			 cmdiocb->sli4_xritag,
11357 			 abtsiocbp->iotag);
11358 
11359 	return retval;
11360 }
11361 
11362 /**
11363  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11364  * @phba: pointer to lpfc HBA data structure.
11365  *
11366  * This routine will abort all pending and outstanding iocbs to an HBA.
11367  **/
11368 void
11369 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11370 {
11371 	struct lpfc_sli *psli = &phba->sli;
11372 	struct lpfc_sli_ring *pring;
11373 	struct lpfc_queue *qp = NULL;
11374 	int i;
11375 
11376 	if (phba->sli_rev != LPFC_SLI_REV4) {
11377 		for (i = 0; i < psli->num_rings; i++) {
11378 			pring = &psli->sli3_ring[i];
11379 			lpfc_sli_abort_iocb_ring(phba, pring);
11380 		}
11381 		return;
11382 	}
11383 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11384 		pring = qp->pring;
11385 		if (!pring)
11386 			continue;
11387 		lpfc_sli_abort_iocb_ring(phba, pring);
11388 	}
11389 }
11390 
11391 /**
11392  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11393  * @iocbq: Pointer to driver iocb object.
11394  * @vport: Pointer to driver virtual port object.
11395  * @tgt_id: SCSI ID of the target.
11396  * @lun_id: LUN ID of the scsi device.
11397  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11398  *
11399  * This function acts as an iocb filter for functions which abort or count
11400  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11401  * 0 if the filtering criteria is met for the given iocb and will return
11402  * 1 if the filtering criteria is not met.
11403  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11404  * given iocb is for the SCSI device specified by vport, tgt_id and
11405  * lun_id parameter.
11406  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11407  * given iocb is for the SCSI target specified by vport and tgt_id
11408  * parameters.
11409  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11410  * given iocb is for the SCSI host associated with the given vport.
11411  * This function is called with no locks held.
11412  **/
11413 static int
11414 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11415 			   uint16_t tgt_id, uint64_t lun_id,
11416 			   lpfc_ctx_cmd ctx_cmd)
11417 {
11418 	struct lpfc_io_buf *lpfc_cmd;
11419 	int rc = 1;
11420 
11421 	if (iocbq->vport != vport)
11422 		return rc;
11423 
11424 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11425 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11426 		return rc;
11427 
11428 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11429 
11430 	if (lpfc_cmd->pCmd == NULL)
11431 		return rc;
11432 
11433 	switch (ctx_cmd) {
11434 	case LPFC_CTX_LUN:
11435 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11436 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11437 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11438 			rc = 0;
11439 		break;
11440 	case LPFC_CTX_TGT:
11441 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11442 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11443 			rc = 0;
11444 		break;
11445 	case LPFC_CTX_HOST:
11446 		rc = 0;
11447 		break;
11448 	default:
11449 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11450 			__func__, ctx_cmd);
11451 		break;
11452 	}
11453 
11454 	return rc;
11455 }
11456 
11457 /**
11458  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11459  * @vport: Pointer to virtual port.
11460  * @tgt_id: SCSI ID of the target.
11461  * @lun_id: LUN ID of the scsi device.
11462  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11463  *
11464  * This function returns number of FCP commands pending for the vport.
11465  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11466  * commands pending on the vport associated with SCSI device specified
11467  * by tgt_id and lun_id parameters.
11468  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11469  * commands pending on the vport associated with SCSI target specified
11470  * by tgt_id parameter.
11471  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11472  * commands pending on the vport.
11473  * This function returns the number of iocbs which satisfy the filter.
11474  * This function is called without any lock held.
11475  **/
11476 int
11477 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11478 		  lpfc_ctx_cmd ctx_cmd)
11479 {
11480 	struct lpfc_hba *phba = vport->phba;
11481 	struct lpfc_iocbq *iocbq;
11482 	int sum, i;
11483 
11484 	spin_lock_irq(&phba->hbalock);
11485 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11486 		iocbq = phba->sli.iocbq_lookup[i];
11487 
11488 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11489 						ctx_cmd) == 0)
11490 			sum++;
11491 	}
11492 	spin_unlock_irq(&phba->hbalock);
11493 
11494 	return sum;
11495 }
11496 
11497 /**
11498  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11499  * @phba: Pointer to HBA context object
11500  * @cmdiocb: Pointer to command iocb object.
11501  * @rspiocb: Pointer to response iocb object.
11502  *
11503  * This function is called when an aborted FCP iocb completes. This
11504  * function is called by the ring event handler with no lock held.
11505  * This function frees the iocb.
11506  **/
11507 void
11508 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11509 			struct lpfc_iocbq *rspiocb)
11510 {
11511 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11512 			"3096 ABORT_XRI_CN completing on rpi x%x "
11513 			"original iotag x%x, abort cmd iotag x%x "
11514 			"status 0x%x, reason 0x%x\n",
11515 			cmdiocb->iocb.un.acxri.abortContextTag,
11516 			cmdiocb->iocb.un.acxri.abortIoTag,
11517 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11518 			rspiocb->iocb.un.ulpWord[4]);
11519 	lpfc_sli_release_iocbq(phba, cmdiocb);
11520 	return;
11521 }
11522 
11523 /**
11524  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11525  * @vport: Pointer to virtual port.
11526  * @pring: Pointer to driver SLI ring object.
11527  * @tgt_id: SCSI ID of the target.
11528  * @lun_id: LUN ID of the scsi device.
11529  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11530  *
11531  * This function sends an abort command for every SCSI command
11532  * associated with the given virtual port pending on the ring
11533  * filtered by lpfc_sli_validate_fcp_iocb function.
11534  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11535  * FCP iocbs associated with lun specified by tgt_id and lun_id
11536  * parameters
11537  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11538  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11539  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11540  * FCP iocbs associated with virtual port.
11541  * This function returns number of iocbs it failed to abort.
11542  * This function is called with no locks held.
11543  **/
11544 int
11545 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11546 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11547 {
11548 	struct lpfc_hba *phba = vport->phba;
11549 	struct lpfc_iocbq *iocbq;
11550 	struct lpfc_iocbq *abtsiocb;
11551 	struct lpfc_sli_ring *pring_s4;
11552 	IOCB_t *cmd = NULL;
11553 	int errcnt = 0, ret_val = 0;
11554 	int i;
11555 
11556 	/* all I/Os are in process of being flushed */
11557 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11558 		return errcnt;
11559 
11560 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11561 		iocbq = phba->sli.iocbq_lookup[i];
11562 
11563 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11564 					       abort_cmd) != 0)
11565 			continue;
11566 
11567 		/*
11568 		 * If the iocbq is already being aborted, don't take a second
11569 		 * action, but do count it.
11570 		 */
11571 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11572 			continue;
11573 
11574 		/* issue ABTS for this IOCB based on iotag */
11575 		abtsiocb = lpfc_sli_get_iocbq(phba);
11576 		if (abtsiocb == NULL) {
11577 			errcnt++;
11578 			continue;
11579 		}
11580 
11581 		/* indicate the IO is being aborted by the driver. */
11582 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11583 
11584 		cmd = &iocbq->iocb;
11585 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11586 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11587 		if (phba->sli_rev == LPFC_SLI_REV4)
11588 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11589 		else
11590 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11591 		abtsiocb->iocb.ulpLe = 1;
11592 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11593 		abtsiocb->vport = vport;
11594 
11595 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11596 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11597 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11598 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11599 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11600 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11601 
11602 		if (lpfc_is_link_up(phba))
11603 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11604 		else
11605 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11606 
11607 		/* Setup callback routine and issue the command. */
11608 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11609 		if (phba->sli_rev == LPFC_SLI_REV4) {
11610 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11611 			if (!pring_s4)
11612 				continue;
11613 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11614 						      abtsiocb, 0);
11615 		} else
11616 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11617 						      abtsiocb, 0);
11618 		if (ret_val == IOCB_ERROR) {
11619 			lpfc_sli_release_iocbq(phba, abtsiocb);
11620 			errcnt++;
11621 			continue;
11622 		}
11623 	}
11624 
11625 	return errcnt;
11626 }
11627 
11628 /**
11629  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11630  * @vport: Pointer to virtual port.
11631  * @pring: Pointer to driver SLI ring object.
11632  * @tgt_id: SCSI ID of the target.
11633  * @lun_id: LUN ID of the scsi device.
11634  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11635  *
11636  * This function sends an abort command for every SCSI command
11637  * associated with the given virtual port pending on the ring
11638  * filtered by lpfc_sli_validate_fcp_iocb function.
11639  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11640  * FCP iocbs associated with lun specified by tgt_id and lun_id
11641  * parameters
11642  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11643  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11644  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11645  * FCP iocbs associated with virtual port.
11646  * This function returns number of iocbs it aborted .
11647  * This function is called with no locks held right after a taskmgmt
11648  * command is sent.
11649  **/
11650 int
11651 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11652 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11653 {
11654 	struct lpfc_hba *phba = vport->phba;
11655 	struct lpfc_io_buf *lpfc_cmd;
11656 	struct lpfc_iocbq *abtsiocbq;
11657 	struct lpfc_nodelist *ndlp;
11658 	struct lpfc_iocbq *iocbq;
11659 	IOCB_t *icmd;
11660 	int sum, i, ret_val;
11661 	unsigned long iflags;
11662 	struct lpfc_sli_ring *pring_s4 = NULL;
11663 
11664 	spin_lock_irqsave(&phba->hbalock, iflags);
11665 
11666 	/* all I/Os are in process of being flushed */
11667 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11668 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11669 		return 0;
11670 	}
11671 	sum = 0;
11672 
11673 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11674 		iocbq = phba->sli.iocbq_lookup[i];
11675 
11676 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11677 					       cmd) != 0)
11678 			continue;
11679 
11680 		/* Guard against IO completion being called at same time */
11681 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11682 		spin_lock(&lpfc_cmd->buf_lock);
11683 
11684 		if (!lpfc_cmd->pCmd) {
11685 			spin_unlock(&lpfc_cmd->buf_lock);
11686 			continue;
11687 		}
11688 
11689 		if (phba->sli_rev == LPFC_SLI_REV4) {
11690 			pring_s4 =
11691 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].fcp_wq->pring;
11692 			if (!pring_s4) {
11693 				spin_unlock(&lpfc_cmd->buf_lock);
11694 				continue;
11695 			}
11696 			/* Note: both hbalock and ring_lock must be set here */
11697 			spin_lock(&pring_s4->ring_lock);
11698 		}
11699 
11700 		/*
11701 		 * If the iocbq is already being aborted, don't take a second
11702 		 * action, but do count it.
11703 		 */
11704 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11705 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11706 			if (phba->sli_rev == LPFC_SLI_REV4)
11707 				spin_unlock(&pring_s4->ring_lock);
11708 			spin_unlock(&lpfc_cmd->buf_lock);
11709 			continue;
11710 		}
11711 
11712 		/* issue ABTS for this IOCB based on iotag */
11713 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11714 		if (!abtsiocbq) {
11715 			if (phba->sli_rev == LPFC_SLI_REV4)
11716 				spin_unlock(&pring_s4->ring_lock);
11717 			spin_unlock(&lpfc_cmd->buf_lock);
11718 			continue;
11719 		}
11720 
11721 		icmd = &iocbq->iocb;
11722 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11723 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11724 		if (phba->sli_rev == LPFC_SLI_REV4)
11725 			abtsiocbq->iocb.un.acxri.abortIoTag =
11726 							 iocbq->sli4_xritag;
11727 		else
11728 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11729 		abtsiocbq->iocb.ulpLe = 1;
11730 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11731 		abtsiocbq->vport = vport;
11732 
11733 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11734 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11735 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11736 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11737 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11738 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11739 
11740 		ndlp = lpfc_cmd->rdata->pnode;
11741 
11742 		if (lpfc_is_link_up(phba) &&
11743 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11744 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11745 		else
11746 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11747 
11748 		/* Setup callback routine and issue the command. */
11749 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11750 
11751 		/*
11752 		 * Indicate the IO is being aborted by the driver and set
11753 		 * the caller's flag into the aborted IO.
11754 		 */
11755 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11756 
11757 		if (phba->sli_rev == LPFC_SLI_REV4) {
11758 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11759 							abtsiocbq, 0);
11760 			spin_unlock(&pring_s4->ring_lock);
11761 		} else {
11762 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11763 							abtsiocbq, 0);
11764 		}
11765 
11766 		spin_unlock(&lpfc_cmd->buf_lock);
11767 
11768 		if (ret_val == IOCB_ERROR)
11769 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11770 		else
11771 			sum++;
11772 	}
11773 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11774 	return sum;
11775 }
11776 
11777 /**
11778  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11779  * @phba: Pointer to HBA context object.
11780  * @cmdiocbq: Pointer to command iocb.
11781  * @rspiocbq: Pointer to response iocb.
11782  *
11783  * This function is the completion handler for iocbs issued using
11784  * lpfc_sli_issue_iocb_wait function. This function is called by the
11785  * ring event handler function without any lock held. This function
11786  * can be called from both worker thread context and interrupt
11787  * context. This function also can be called from other thread which
11788  * cleans up the SLI layer objects.
11789  * This function copy the contents of the response iocb to the
11790  * response iocb memory object provided by the caller of
11791  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11792  * sleeps for the iocb completion.
11793  **/
11794 static void
11795 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11796 			struct lpfc_iocbq *cmdiocbq,
11797 			struct lpfc_iocbq *rspiocbq)
11798 {
11799 	wait_queue_head_t *pdone_q;
11800 	unsigned long iflags;
11801 	struct lpfc_io_buf *lpfc_cmd;
11802 
11803 	spin_lock_irqsave(&phba->hbalock, iflags);
11804 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11805 
11806 		/*
11807 		 * A time out has occurred for the iocb.  If a time out
11808 		 * completion handler has been supplied, call it.  Otherwise,
11809 		 * just free the iocbq.
11810 		 */
11811 
11812 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11813 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11814 		cmdiocbq->wait_iocb_cmpl = NULL;
11815 		if (cmdiocbq->iocb_cmpl)
11816 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11817 		else
11818 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11819 		return;
11820 	}
11821 
11822 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11823 	if (cmdiocbq->context2 && rspiocbq)
11824 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11825 		       &rspiocbq->iocb, sizeof(IOCB_t));
11826 
11827 	/* Set the exchange busy flag for task management commands */
11828 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11829 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11830 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11831 			cur_iocbq);
11832 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11833 	}
11834 
11835 	pdone_q = cmdiocbq->context_un.wait_queue;
11836 	if (pdone_q)
11837 		wake_up(pdone_q);
11838 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11839 	return;
11840 }
11841 
11842 /**
11843  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11844  * @phba: Pointer to HBA context object..
11845  * @piocbq: Pointer to command iocb.
11846  * @flag: Flag to test.
11847  *
11848  * This routine grabs the hbalock and then test the iocb_flag to
11849  * see if the passed in flag is set.
11850  * Returns:
11851  * 1 if flag is set.
11852  * 0 if flag is not set.
11853  **/
11854 static int
11855 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11856 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11857 {
11858 	unsigned long iflags;
11859 	int ret;
11860 
11861 	spin_lock_irqsave(&phba->hbalock, iflags);
11862 	ret = piocbq->iocb_flag & flag;
11863 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11864 	return ret;
11865 
11866 }
11867 
11868 /**
11869  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11870  * @phba: Pointer to HBA context object..
11871  * @pring: Pointer to sli ring.
11872  * @piocb: Pointer to command iocb.
11873  * @prspiocbq: Pointer to response iocb.
11874  * @timeout: Timeout in number of seconds.
11875  *
11876  * This function issues the iocb to firmware and waits for the
11877  * iocb to complete. The iocb_cmpl field of the shall be used
11878  * to handle iocbs which time out. If the field is NULL, the
11879  * function shall free the iocbq structure.  If more clean up is
11880  * needed, the caller is expected to provide a completion function
11881  * that will provide the needed clean up.  If the iocb command is
11882  * not completed within timeout seconds, the function will either
11883  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11884  * completion function set in the iocb_cmpl field and then return
11885  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11886  * resources if this function returns IOCB_TIMEDOUT.
11887  * The function waits for the iocb completion using an
11888  * non-interruptible wait.
11889  * This function will sleep while waiting for iocb completion.
11890  * So, this function should not be called from any context which
11891  * does not allow sleeping. Due to the same reason, this function
11892  * cannot be called with interrupt disabled.
11893  * This function assumes that the iocb completions occur while
11894  * this function sleep. So, this function cannot be called from
11895  * the thread which process iocb completion for this ring.
11896  * This function clears the iocb_flag of the iocb object before
11897  * issuing the iocb and the iocb completion handler sets this
11898  * flag and wakes this thread when the iocb completes.
11899  * The contents of the response iocb will be copied to prspiocbq
11900  * by the completion handler when the command completes.
11901  * This function returns IOCB_SUCCESS when success.
11902  * This function is called with no lock held.
11903  **/
11904 int
11905 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11906 			 uint32_t ring_number,
11907 			 struct lpfc_iocbq *piocb,
11908 			 struct lpfc_iocbq *prspiocbq,
11909 			 uint32_t timeout)
11910 {
11911 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11912 	long timeleft, timeout_req = 0;
11913 	int retval = IOCB_SUCCESS;
11914 	uint32_t creg_val;
11915 	struct lpfc_iocbq *iocb;
11916 	int txq_cnt = 0;
11917 	int txcmplq_cnt = 0;
11918 	struct lpfc_sli_ring *pring;
11919 	unsigned long iflags;
11920 	bool iocb_completed = true;
11921 
11922 	if (phba->sli_rev >= LPFC_SLI_REV4)
11923 		pring = lpfc_sli4_calc_ring(phba, piocb);
11924 	else
11925 		pring = &phba->sli.sli3_ring[ring_number];
11926 	/*
11927 	 * If the caller has provided a response iocbq buffer, then context2
11928 	 * is NULL or its an error.
11929 	 */
11930 	if (prspiocbq) {
11931 		if (piocb->context2)
11932 			return IOCB_ERROR;
11933 		piocb->context2 = prspiocbq;
11934 	}
11935 
11936 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11937 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11938 	piocb->context_un.wait_queue = &done_q;
11939 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11940 
11941 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11942 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11943 			return IOCB_ERROR;
11944 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11945 		writel(creg_val, phba->HCregaddr);
11946 		readl(phba->HCregaddr); /* flush */
11947 	}
11948 
11949 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11950 				     SLI_IOCB_RET_IOCB);
11951 	if (retval == IOCB_SUCCESS) {
11952 		timeout_req = msecs_to_jiffies(timeout * 1000);
11953 		timeleft = wait_event_timeout(done_q,
11954 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11955 				timeout_req);
11956 		spin_lock_irqsave(&phba->hbalock, iflags);
11957 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11958 
11959 			/*
11960 			 * IOCB timed out.  Inform the wake iocb wait
11961 			 * completion function and set local status
11962 			 */
11963 
11964 			iocb_completed = false;
11965 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11966 		}
11967 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11968 		if (iocb_completed) {
11969 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11970 					"0331 IOCB wake signaled\n");
11971 			/* Note: we are not indicating if the IOCB has a success
11972 			 * status or not - that's for the caller to check.
11973 			 * IOCB_SUCCESS means just that the command was sent and
11974 			 * completed. Not that it completed successfully.
11975 			 * */
11976 		} else if (timeleft == 0) {
11977 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11978 					"0338 IOCB wait timeout error - no "
11979 					"wake response Data x%x\n", timeout);
11980 			retval = IOCB_TIMEDOUT;
11981 		} else {
11982 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11983 					"0330 IOCB wake NOT set, "
11984 					"Data x%x x%lx\n",
11985 					timeout, (timeleft / jiffies));
11986 			retval = IOCB_TIMEDOUT;
11987 		}
11988 	} else if (retval == IOCB_BUSY) {
11989 		if (phba->cfg_log_verbose & LOG_SLI) {
11990 			list_for_each_entry(iocb, &pring->txq, list) {
11991 				txq_cnt++;
11992 			}
11993 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11994 				txcmplq_cnt++;
11995 			}
11996 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11997 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11998 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11999 		}
12000 		return retval;
12001 	} else {
12002 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12003 				"0332 IOCB wait issue failed, Data x%x\n",
12004 				retval);
12005 		retval = IOCB_ERROR;
12006 	}
12007 
12008 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12009 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12010 			return IOCB_ERROR;
12011 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12012 		writel(creg_val, phba->HCregaddr);
12013 		readl(phba->HCregaddr); /* flush */
12014 	}
12015 
12016 	if (prspiocbq)
12017 		piocb->context2 = NULL;
12018 
12019 	piocb->context_un.wait_queue = NULL;
12020 	piocb->iocb_cmpl = NULL;
12021 	return retval;
12022 }
12023 
12024 /**
12025  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12026  * @phba: Pointer to HBA context object.
12027  * @pmboxq: Pointer to driver mailbox object.
12028  * @timeout: Timeout in number of seconds.
12029  *
12030  * This function issues the mailbox to firmware and waits for the
12031  * mailbox command to complete. If the mailbox command is not
12032  * completed within timeout seconds, it returns MBX_TIMEOUT.
12033  * The function waits for the mailbox completion using an
12034  * interruptible wait. If the thread is woken up due to a
12035  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12036  * should not free the mailbox resources, if this function returns
12037  * MBX_TIMEOUT.
12038  * This function will sleep while waiting for mailbox completion.
12039  * So, this function should not be called from any context which
12040  * does not allow sleeping. Due to the same reason, this function
12041  * cannot be called with interrupt disabled.
12042  * This function assumes that the mailbox completion occurs while
12043  * this function sleep. So, this function cannot be called from
12044  * the worker thread which processes mailbox completion.
12045  * This function is called in the context of HBA management
12046  * applications.
12047  * This function returns MBX_SUCCESS when successful.
12048  * This function is called with no lock held.
12049  **/
12050 int
12051 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12052 			 uint32_t timeout)
12053 {
12054 	struct completion mbox_done;
12055 	int retval;
12056 	unsigned long flag;
12057 
12058 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12059 	/* setup wake call as IOCB callback */
12060 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12061 
12062 	/* setup context3 field to pass wait_queue pointer to wake function  */
12063 	init_completion(&mbox_done);
12064 	pmboxq->context3 = &mbox_done;
12065 	/* now issue the command */
12066 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12067 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12068 		wait_for_completion_timeout(&mbox_done,
12069 					    msecs_to_jiffies(timeout * 1000));
12070 
12071 		spin_lock_irqsave(&phba->hbalock, flag);
12072 		pmboxq->context3 = NULL;
12073 		/*
12074 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12075 		 * else do not free the resources.
12076 		 */
12077 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12078 			retval = MBX_SUCCESS;
12079 		} else {
12080 			retval = MBX_TIMEOUT;
12081 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12082 		}
12083 		spin_unlock_irqrestore(&phba->hbalock, flag);
12084 	}
12085 	return retval;
12086 }
12087 
12088 /**
12089  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12090  * @phba: Pointer to HBA context.
12091  *
12092  * This function is called to shutdown the driver's mailbox sub-system.
12093  * It first marks the mailbox sub-system is in a block state to prevent
12094  * the asynchronous mailbox command from issued off the pending mailbox
12095  * command queue. If the mailbox command sub-system shutdown is due to
12096  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12097  * the mailbox sub-system flush routine to forcefully bring down the
12098  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12099  * as with offline or HBA function reset), this routine will wait for the
12100  * outstanding mailbox command to complete before invoking the mailbox
12101  * sub-system flush routine to gracefully bring down mailbox sub-system.
12102  **/
12103 void
12104 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12105 {
12106 	struct lpfc_sli *psli = &phba->sli;
12107 	unsigned long timeout;
12108 
12109 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12110 		/* delay 100ms for port state */
12111 		msleep(100);
12112 		lpfc_sli_mbox_sys_flush(phba);
12113 		return;
12114 	}
12115 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12116 
12117 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12118 	local_bh_disable();
12119 
12120 	spin_lock_irq(&phba->hbalock);
12121 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12122 
12123 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12124 		/* Determine how long we might wait for the active mailbox
12125 		 * command to be gracefully completed by firmware.
12126 		 */
12127 		if (phba->sli.mbox_active)
12128 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12129 						phba->sli.mbox_active) *
12130 						1000) + jiffies;
12131 		spin_unlock_irq(&phba->hbalock);
12132 
12133 		/* Enable softirqs again, done with phba->hbalock */
12134 		local_bh_enable();
12135 
12136 		while (phba->sli.mbox_active) {
12137 			/* Check active mailbox complete status every 2ms */
12138 			msleep(2);
12139 			if (time_after(jiffies, timeout))
12140 				/* Timeout, let the mailbox flush routine to
12141 				 * forcefully release active mailbox command
12142 				 */
12143 				break;
12144 		}
12145 	} else {
12146 		spin_unlock_irq(&phba->hbalock);
12147 
12148 		/* Enable softirqs again, done with phba->hbalock */
12149 		local_bh_enable();
12150 	}
12151 
12152 	lpfc_sli_mbox_sys_flush(phba);
12153 }
12154 
12155 /**
12156  * lpfc_sli_eratt_read - read sli-3 error attention events
12157  * @phba: Pointer to HBA context.
12158  *
12159  * This function is called to read the SLI3 device error attention registers
12160  * for possible error attention events. The caller must hold the hostlock
12161  * with spin_lock_irq().
12162  *
12163  * This function returns 1 when there is Error Attention in the Host Attention
12164  * Register and returns 0 otherwise.
12165  **/
12166 static int
12167 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12168 {
12169 	uint32_t ha_copy;
12170 
12171 	/* Read chip Host Attention (HA) register */
12172 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12173 		goto unplug_err;
12174 
12175 	if (ha_copy & HA_ERATT) {
12176 		/* Read host status register to retrieve error event */
12177 		if (lpfc_sli_read_hs(phba))
12178 			goto unplug_err;
12179 
12180 		/* Check if there is a deferred error condition is active */
12181 		if ((HS_FFER1 & phba->work_hs) &&
12182 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12183 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12184 			phba->hba_flag |= DEFER_ERATT;
12185 			/* Clear all interrupt enable conditions */
12186 			writel(0, phba->HCregaddr);
12187 			readl(phba->HCregaddr);
12188 		}
12189 
12190 		/* Set the driver HA work bitmap */
12191 		phba->work_ha |= HA_ERATT;
12192 		/* Indicate polling handles this ERATT */
12193 		phba->hba_flag |= HBA_ERATT_HANDLED;
12194 		return 1;
12195 	}
12196 	return 0;
12197 
12198 unplug_err:
12199 	/* Set the driver HS work bitmap */
12200 	phba->work_hs |= UNPLUG_ERR;
12201 	/* Set the driver HA work bitmap */
12202 	phba->work_ha |= HA_ERATT;
12203 	/* Indicate polling handles this ERATT */
12204 	phba->hba_flag |= HBA_ERATT_HANDLED;
12205 	return 1;
12206 }
12207 
12208 /**
12209  * lpfc_sli4_eratt_read - read sli-4 error attention events
12210  * @phba: Pointer to HBA context.
12211  *
12212  * This function is called to read the SLI4 device error attention registers
12213  * for possible error attention events. The caller must hold the hostlock
12214  * with spin_lock_irq().
12215  *
12216  * This function returns 1 when there is Error Attention in the Host Attention
12217  * Register and returns 0 otherwise.
12218  **/
12219 static int
12220 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12221 {
12222 	uint32_t uerr_sta_hi, uerr_sta_lo;
12223 	uint32_t if_type, portsmphr;
12224 	struct lpfc_register portstat_reg;
12225 
12226 	/*
12227 	 * For now, use the SLI4 device internal unrecoverable error
12228 	 * registers for error attention. This can be changed later.
12229 	 */
12230 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12231 	switch (if_type) {
12232 	case LPFC_SLI_INTF_IF_TYPE_0:
12233 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12234 			&uerr_sta_lo) ||
12235 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12236 			&uerr_sta_hi)) {
12237 			phba->work_hs |= UNPLUG_ERR;
12238 			phba->work_ha |= HA_ERATT;
12239 			phba->hba_flag |= HBA_ERATT_HANDLED;
12240 			return 1;
12241 		}
12242 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12243 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12244 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12245 					"1423 HBA Unrecoverable error: "
12246 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12247 					"ue_mask_lo_reg=0x%x, "
12248 					"ue_mask_hi_reg=0x%x\n",
12249 					uerr_sta_lo, uerr_sta_hi,
12250 					phba->sli4_hba.ue_mask_lo,
12251 					phba->sli4_hba.ue_mask_hi);
12252 			phba->work_status[0] = uerr_sta_lo;
12253 			phba->work_status[1] = uerr_sta_hi;
12254 			phba->work_ha |= HA_ERATT;
12255 			phba->hba_flag |= HBA_ERATT_HANDLED;
12256 			return 1;
12257 		}
12258 		break;
12259 	case LPFC_SLI_INTF_IF_TYPE_2:
12260 	case LPFC_SLI_INTF_IF_TYPE_6:
12261 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12262 			&portstat_reg.word0) ||
12263 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12264 			&portsmphr)){
12265 			phba->work_hs |= UNPLUG_ERR;
12266 			phba->work_ha |= HA_ERATT;
12267 			phba->hba_flag |= HBA_ERATT_HANDLED;
12268 			return 1;
12269 		}
12270 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12271 			phba->work_status[0] =
12272 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12273 			phba->work_status[1] =
12274 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12275 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12276 					"2885 Port Status Event: "
12277 					"port status reg 0x%x, "
12278 					"port smphr reg 0x%x, "
12279 					"error 1=0x%x, error 2=0x%x\n",
12280 					portstat_reg.word0,
12281 					portsmphr,
12282 					phba->work_status[0],
12283 					phba->work_status[1]);
12284 			phba->work_ha |= HA_ERATT;
12285 			phba->hba_flag |= HBA_ERATT_HANDLED;
12286 			return 1;
12287 		}
12288 		break;
12289 	case LPFC_SLI_INTF_IF_TYPE_1:
12290 	default:
12291 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12292 				"2886 HBA Error Attention on unsupported "
12293 				"if type %d.", if_type);
12294 		return 1;
12295 	}
12296 
12297 	return 0;
12298 }
12299 
12300 /**
12301  * lpfc_sli_check_eratt - check error attention events
12302  * @phba: Pointer to HBA context.
12303  *
12304  * This function is called from timer soft interrupt context to check HBA's
12305  * error attention register bit for error attention events.
12306  *
12307  * This function returns 1 when there is Error Attention in the Host Attention
12308  * Register and returns 0 otherwise.
12309  **/
12310 int
12311 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12312 {
12313 	uint32_t ha_copy;
12314 
12315 	/* If somebody is waiting to handle an eratt, don't process it
12316 	 * here. The brdkill function will do this.
12317 	 */
12318 	if (phba->link_flag & LS_IGNORE_ERATT)
12319 		return 0;
12320 
12321 	/* Check if interrupt handler handles this ERATT */
12322 	spin_lock_irq(&phba->hbalock);
12323 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12324 		/* Interrupt handler has handled ERATT */
12325 		spin_unlock_irq(&phba->hbalock);
12326 		return 0;
12327 	}
12328 
12329 	/*
12330 	 * If there is deferred error attention, do not check for error
12331 	 * attention
12332 	 */
12333 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12334 		spin_unlock_irq(&phba->hbalock);
12335 		return 0;
12336 	}
12337 
12338 	/* If PCI channel is offline, don't process it */
12339 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12340 		spin_unlock_irq(&phba->hbalock);
12341 		return 0;
12342 	}
12343 
12344 	switch (phba->sli_rev) {
12345 	case LPFC_SLI_REV2:
12346 	case LPFC_SLI_REV3:
12347 		/* Read chip Host Attention (HA) register */
12348 		ha_copy = lpfc_sli_eratt_read(phba);
12349 		break;
12350 	case LPFC_SLI_REV4:
12351 		/* Read device Uncoverable Error (UERR) registers */
12352 		ha_copy = lpfc_sli4_eratt_read(phba);
12353 		break;
12354 	default:
12355 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12356 				"0299 Invalid SLI revision (%d)\n",
12357 				phba->sli_rev);
12358 		ha_copy = 0;
12359 		break;
12360 	}
12361 	spin_unlock_irq(&phba->hbalock);
12362 
12363 	return ha_copy;
12364 }
12365 
12366 /**
12367  * lpfc_intr_state_check - Check device state for interrupt handling
12368  * @phba: Pointer to HBA context.
12369  *
12370  * This inline routine checks whether a device or its PCI slot is in a state
12371  * that the interrupt should be handled.
12372  *
12373  * This function returns 0 if the device or the PCI slot is in a state that
12374  * interrupt should be handled, otherwise -EIO.
12375  */
12376 static inline int
12377 lpfc_intr_state_check(struct lpfc_hba *phba)
12378 {
12379 	/* If the pci channel is offline, ignore all the interrupts */
12380 	if (unlikely(pci_channel_offline(phba->pcidev)))
12381 		return -EIO;
12382 
12383 	/* Update device level interrupt statistics */
12384 	phba->sli.slistat.sli_intr++;
12385 
12386 	/* Ignore all interrupts during initialization. */
12387 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12388 		return -EIO;
12389 
12390 	return 0;
12391 }
12392 
12393 /**
12394  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12395  * @irq: Interrupt number.
12396  * @dev_id: The device context pointer.
12397  *
12398  * This function is directly called from the PCI layer as an interrupt
12399  * service routine when device with SLI-3 interface spec is enabled with
12400  * MSI-X multi-message interrupt mode and there are slow-path events in
12401  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12402  * interrupt mode, this function is called as part of the device-level
12403  * interrupt handler. When the PCI slot is in error recovery or the HBA
12404  * is undergoing initialization, the interrupt handler will not process
12405  * the interrupt. The link attention and ELS ring attention events are
12406  * handled by the worker thread. The interrupt handler signals the worker
12407  * thread and returns for these events. This function is called without
12408  * any lock held. It gets the hbalock to access and update SLI data
12409  * structures.
12410  *
12411  * This function returns IRQ_HANDLED when interrupt is handled else it
12412  * returns IRQ_NONE.
12413  **/
12414 irqreturn_t
12415 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12416 {
12417 	struct lpfc_hba  *phba;
12418 	uint32_t ha_copy, hc_copy;
12419 	uint32_t work_ha_copy;
12420 	unsigned long status;
12421 	unsigned long iflag;
12422 	uint32_t control;
12423 
12424 	MAILBOX_t *mbox, *pmbox;
12425 	struct lpfc_vport *vport;
12426 	struct lpfc_nodelist *ndlp;
12427 	struct lpfc_dmabuf *mp;
12428 	LPFC_MBOXQ_t *pmb;
12429 	int rc;
12430 
12431 	/*
12432 	 * Get the driver's phba structure from the dev_id and
12433 	 * assume the HBA is not interrupting.
12434 	 */
12435 	phba = (struct lpfc_hba *)dev_id;
12436 
12437 	if (unlikely(!phba))
12438 		return IRQ_NONE;
12439 
12440 	/*
12441 	 * Stuff needs to be attented to when this function is invoked as an
12442 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12443 	 */
12444 	if (phba->intr_type == MSIX) {
12445 		/* Check device state for handling interrupt */
12446 		if (lpfc_intr_state_check(phba))
12447 			return IRQ_NONE;
12448 		/* Need to read HA REG for slow-path events */
12449 		spin_lock_irqsave(&phba->hbalock, iflag);
12450 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12451 			goto unplug_error;
12452 		/* If somebody is waiting to handle an eratt don't process it
12453 		 * here. The brdkill function will do this.
12454 		 */
12455 		if (phba->link_flag & LS_IGNORE_ERATT)
12456 			ha_copy &= ~HA_ERATT;
12457 		/* Check the need for handling ERATT in interrupt handler */
12458 		if (ha_copy & HA_ERATT) {
12459 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12460 				/* ERATT polling has handled ERATT */
12461 				ha_copy &= ~HA_ERATT;
12462 			else
12463 				/* Indicate interrupt handler handles ERATT */
12464 				phba->hba_flag |= HBA_ERATT_HANDLED;
12465 		}
12466 
12467 		/*
12468 		 * If there is deferred error attention, do not check for any
12469 		 * interrupt.
12470 		 */
12471 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12472 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12473 			return IRQ_NONE;
12474 		}
12475 
12476 		/* Clear up only attention source related to slow-path */
12477 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12478 			goto unplug_error;
12479 
12480 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12481 			HC_LAINT_ENA | HC_ERINT_ENA),
12482 			phba->HCregaddr);
12483 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12484 			phba->HAregaddr);
12485 		writel(hc_copy, phba->HCregaddr);
12486 		readl(phba->HAregaddr); /* flush */
12487 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12488 	} else
12489 		ha_copy = phba->ha_copy;
12490 
12491 	work_ha_copy = ha_copy & phba->work_ha_mask;
12492 
12493 	if (work_ha_copy) {
12494 		if (work_ha_copy & HA_LATT) {
12495 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12496 				/*
12497 				 * Turn off Link Attention interrupts
12498 				 * until CLEAR_LA done
12499 				 */
12500 				spin_lock_irqsave(&phba->hbalock, iflag);
12501 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12502 				if (lpfc_readl(phba->HCregaddr, &control))
12503 					goto unplug_error;
12504 				control &= ~HC_LAINT_ENA;
12505 				writel(control, phba->HCregaddr);
12506 				readl(phba->HCregaddr); /* flush */
12507 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12508 			}
12509 			else
12510 				work_ha_copy &= ~HA_LATT;
12511 		}
12512 
12513 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12514 			/*
12515 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12516 			 * the only slow ring.
12517 			 */
12518 			status = (work_ha_copy &
12519 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12520 			status >>= (4*LPFC_ELS_RING);
12521 			if (status & HA_RXMASK) {
12522 				spin_lock_irqsave(&phba->hbalock, iflag);
12523 				if (lpfc_readl(phba->HCregaddr, &control))
12524 					goto unplug_error;
12525 
12526 				lpfc_debugfs_slow_ring_trc(phba,
12527 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12528 				control, status,
12529 				(uint32_t)phba->sli.slistat.sli_intr);
12530 
12531 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12532 					lpfc_debugfs_slow_ring_trc(phba,
12533 						"ISR Disable ring:"
12534 						"pwork:x%x hawork:x%x wait:x%x",
12535 						phba->work_ha, work_ha_copy,
12536 						(uint32_t)((unsigned long)
12537 						&phba->work_waitq));
12538 
12539 					control &=
12540 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12541 					writel(control, phba->HCregaddr);
12542 					readl(phba->HCregaddr); /* flush */
12543 				}
12544 				else {
12545 					lpfc_debugfs_slow_ring_trc(phba,
12546 						"ISR slow ring:   pwork:"
12547 						"x%x hawork:x%x wait:x%x",
12548 						phba->work_ha, work_ha_copy,
12549 						(uint32_t)((unsigned long)
12550 						&phba->work_waitq));
12551 				}
12552 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12553 			}
12554 		}
12555 		spin_lock_irqsave(&phba->hbalock, iflag);
12556 		if (work_ha_copy & HA_ERATT) {
12557 			if (lpfc_sli_read_hs(phba))
12558 				goto unplug_error;
12559 			/*
12560 			 * Check if there is a deferred error condition
12561 			 * is active
12562 			 */
12563 			if ((HS_FFER1 & phba->work_hs) &&
12564 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12565 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12566 				  phba->work_hs)) {
12567 				phba->hba_flag |= DEFER_ERATT;
12568 				/* Clear all interrupt enable conditions */
12569 				writel(0, phba->HCregaddr);
12570 				readl(phba->HCregaddr);
12571 			}
12572 		}
12573 
12574 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12575 			pmb = phba->sli.mbox_active;
12576 			pmbox = &pmb->u.mb;
12577 			mbox = phba->mbox;
12578 			vport = pmb->vport;
12579 
12580 			/* First check out the status word */
12581 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12582 			if (pmbox->mbxOwner != OWN_HOST) {
12583 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12584 				/*
12585 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12586 				 * mbxStatus <status>
12587 				 */
12588 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12589 						LOG_SLI,
12590 						"(%d):0304 Stray Mailbox "
12591 						"Interrupt mbxCommand x%x "
12592 						"mbxStatus x%x\n",
12593 						(vport ? vport->vpi : 0),
12594 						pmbox->mbxCommand,
12595 						pmbox->mbxStatus);
12596 				/* clear mailbox attention bit */
12597 				work_ha_copy &= ~HA_MBATT;
12598 			} else {
12599 				phba->sli.mbox_active = NULL;
12600 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12601 				phba->last_completion_time = jiffies;
12602 				del_timer(&phba->sli.mbox_tmo);
12603 				if (pmb->mbox_cmpl) {
12604 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12605 							MAILBOX_CMD_SIZE);
12606 					if (pmb->out_ext_byte_len &&
12607 						pmb->ctx_buf)
12608 						lpfc_sli_pcimem_bcopy(
12609 						phba->mbox_ext,
12610 						pmb->ctx_buf,
12611 						pmb->out_ext_byte_len);
12612 				}
12613 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12614 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12615 
12616 					lpfc_debugfs_disc_trc(vport,
12617 						LPFC_DISC_TRC_MBOX_VPORT,
12618 						"MBOX dflt rpi: : "
12619 						"status:x%x rpi:x%x",
12620 						(uint32_t)pmbox->mbxStatus,
12621 						pmbox->un.varWords[0], 0);
12622 
12623 					if (!pmbox->mbxStatus) {
12624 						mp = (struct lpfc_dmabuf *)
12625 							(pmb->ctx_buf);
12626 						ndlp = (struct lpfc_nodelist *)
12627 							pmb->ctx_ndlp;
12628 
12629 						/* Reg_LOGIN of dflt RPI was
12630 						 * successful. new lets get
12631 						 * rid of the RPI using the
12632 						 * same mbox buffer.
12633 						 */
12634 						lpfc_unreg_login(phba,
12635 							vport->vpi,
12636 							pmbox->un.varWords[0],
12637 							pmb);
12638 						pmb->mbox_cmpl =
12639 							lpfc_mbx_cmpl_dflt_rpi;
12640 						pmb->ctx_buf = mp;
12641 						pmb->ctx_ndlp = ndlp;
12642 						pmb->vport = vport;
12643 						rc = lpfc_sli_issue_mbox(phba,
12644 								pmb,
12645 								MBX_NOWAIT);
12646 						if (rc != MBX_BUSY)
12647 							lpfc_printf_log(phba,
12648 							KERN_ERR,
12649 							LOG_MBOX | LOG_SLI,
12650 							"0350 rc should have"
12651 							"been MBX_BUSY\n");
12652 						if (rc != MBX_NOT_FINISHED)
12653 							goto send_current_mbox;
12654 					}
12655 				}
12656 				spin_lock_irqsave(
12657 						&phba->pport->work_port_lock,
12658 						iflag);
12659 				phba->pport->work_port_events &=
12660 					~WORKER_MBOX_TMO;
12661 				spin_unlock_irqrestore(
12662 						&phba->pport->work_port_lock,
12663 						iflag);
12664 				lpfc_mbox_cmpl_put(phba, pmb);
12665 			}
12666 		} else
12667 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12668 
12669 		if ((work_ha_copy & HA_MBATT) &&
12670 		    (phba->sli.mbox_active == NULL)) {
12671 send_current_mbox:
12672 			/* Process next mailbox command if there is one */
12673 			do {
12674 				rc = lpfc_sli_issue_mbox(phba, NULL,
12675 							 MBX_NOWAIT);
12676 			} while (rc == MBX_NOT_FINISHED);
12677 			if (rc != MBX_SUCCESS)
12678 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12679 						LOG_SLI, "0349 rc should be "
12680 						"MBX_SUCCESS\n");
12681 		}
12682 
12683 		spin_lock_irqsave(&phba->hbalock, iflag);
12684 		phba->work_ha |= work_ha_copy;
12685 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12686 		lpfc_worker_wake_up(phba);
12687 	}
12688 	return IRQ_HANDLED;
12689 unplug_error:
12690 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12691 	return IRQ_HANDLED;
12692 
12693 } /* lpfc_sli_sp_intr_handler */
12694 
12695 /**
12696  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12697  * @irq: Interrupt number.
12698  * @dev_id: The device context pointer.
12699  *
12700  * This function is directly called from the PCI layer as an interrupt
12701  * service routine when device with SLI-3 interface spec is enabled with
12702  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12703  * ring event in the HBA. However, when the device is enabled with either
12704  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12705  * device-level interrupt handler. When the PCI slot is in error recovery
12706  * or the HBA is undergoing initialization, the interrupt handler will not
12707  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12708  * the intrrupt context. This function is called without any lock held.
12709  * It gets the hbalock to access and update SLI data structures.
12710  *
12711  * This function returns IRQ_HANDLED when interrupt is handled else it
12712  * returns IRQ_NONE.
12713  **/
12714 irqreturn_t
12715 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12716 {
12717 	struct lpfc_hba  *phba;
12718 	uint32_t ha_copy;
12719 	unsigned long status;
12720 	unsigned long iflag;
12721 	struct lpfc_sli_ring *pring;
12722 
12723 	/* Get the driver's phba structure from the dev_id and
12724 	 * assume the HBA is not interrupting.
12725 	 */
12726 	phba = (struct lpfc_hba *) dev_id;
12727 
12728 	if (unlikely(!phba))
12729 		return IRQ_NONE;
12730 
12731 	/*
12732 	 * Stuff needs to be attented to when this function is invoked as an
12733 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12734 	 */
12735 	if (phba->intr_type == MSIX) {
12736 		/* Check device state for handling interrupt */
12737 		if (lpfc_intr_state_check(phba))
12738 			return IRQ_NONE;
12739 		/* Need to read HA REG for FCP ring and other ring events */
12740 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12741 			return IRQ_HANDLED;
12742 		/* Clear up only attention source related to fast-path */
12743 		spin_lock_irqsave(&phba->hbalock, iflag);
12744 		/*
12745 		 * If there is deferred error attention, do not check for
12746 		 * any interrupt.
12747 		 */
12748 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12749 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12750 			return IRQ_NONE;
12751 		}
12752 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12753 			phba->HAregaddr);
12754 		readl(phba->HAregaddr); /* flush */
12755 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12756 	} else
12757 		ha_copy = phba->ha_copy;
12758 
12759 	/*
12760 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12761 	 */
12762 	ha_copy &= ~(phba->work_ha_mask);
12763 
12764 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12765 	status >>= (4*LPFC_FCP_RING);
12766 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12767 	if (status & HA_RXMASK)
12768 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12769 
12770 	if (phba->cfg_multi_ring_support == 2) {
12771 		/*
12772 		 * Process all events on extra ring. Take the optimized path
12773 		 * for extra ring IO.
12774 		 */
12775 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12776 		status >>= (4*LPFC_EXTRA_RING);
12777 		if (status & HA_RXMASK) {
12778 			lpfc_sli_handle_fast_ring_event(phba,
12779 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12780 					status);
12781 		}
12782 	}
12783 	return IRQ_HANDLED;
12784 }  /* lpfc_sli_fp_intr_handler */
12785 
12786 /**
12787  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12788  * @irq: Interrupt number.
12789  * @dev_id: The device context pointer.
12790  *
12791  * This function is the HBA device-level interrupt handler to device with
12792  * SLI-3 interface spec, called from the PCI layer when either MSI or
12793  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12794  * requires driver attention. This function invokes the slow-path interrupt
12795  * attention handling function and fast-path interrupt attention handling
12796  * function in turn to process the relevant HBA attention events. This
12797  * function is called without any lock held. It gets the hbalock to access
12798  * and update SLI data structures.
12799  *
12800  * This function returns IRQ_HANDLED when interrupt is handled, else it
12801  * returns IRQ_NONE.
12802  **/
12803 irqreturn_t
12804 lpfc_sli_intr_handler(int irq, void *dev_id)
12805 {
12806 	struct lpfc_hba  *phba;
12807 	irqreturn_t sp_irq_rc, fp_irq_rc;
12808 	unsigned long status1, status2;
12809 	uint32_t hc_copy;
12810 
12811 	/*
12812 	 * Get the driver's phba structure from the dev_id and
12813 	 * assume the HBA is not interrupting.
12814 	 */
12815 	phba = (struct lpfc_hba *) dev_id;
12816 
12817 	if (unlikely(!phba))
12818 		return IRQ_NONE;
12819 
12820 	/* Check device state for handling interrupt */
12821 	if (lpfc_intr_state_check(phba))
12822 		return IRQ_NONE;
12823 
12824 	spin_lock(&phba->hbalock);
12825 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12826 		spin_unlock(&phba->hbalock);
12827 		return IRQ_HANDLED;
12828 	}
12829 
12830 	if (unlikely(!phba->ha_copy)) {
12831 		spin_unlock(&phba->hbalock);
12832 		return IRQ_NONE;
12833 	} else if (phba->ha_copy & HA_ERATT) {
12834 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12835 			/* ERATT polling has handled ERATT */
12836 			phba->ha_copy &= ~HA_ERATT;
12837 		else
12838 			/* Indicate interrupt handler handles ERATT */
12839 			phba->hba_flag |= HBA_ERATT_HANDLED;
12840 	}
12841 
12842 	/*
12843 	 * If there is deferred error attention, do not check for any interrupt.
12844 	 */
12845 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12846 		spin_unlock(&phba->hbalock);
12847 		return IRQ_NONE;
12848 	}
12849 
12850 	/* Clear attention sources except link and error attentions */
12851 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12852 		spin_unlock(&phba->hbalock);
12853 		return IRQ_HANDLED;
12854 	}
12855 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12856 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12857 		phba->HCregaddr);
12858 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12859 	writel(hc_copy, phba->HCregaddr);
12860 	readl(phba->HAregaddr); /* flush */
12861 	spin_unlock(&phba->hbalock);
12862 
12863 	/*
12864 	 * Invokes slow-path host attention interrupt handling as appropriate.
12865 	 */
12866 
12867 	/* status of events with mailbox and link attention */
12868 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12869 
12870 	/* status of events with ELS ring */
12871 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12872 	status2 >>= (4*LPFC_ELS_RING);
12873 
12874 	if (status1 || (status2 & HA_RXMASK))
12875 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12876 	else
12877 		sp_irq_rc = IRQ_NONE;
12878 
12879 	/*
12880 	 * Invoke fast-path host attention interrupt handling as appropriate.
12881 	 */
12882 
12883 	/* status of events with FCP ring */
12884 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12885 	status1 >>= (4*LPFC_FCP_RING);
12886 
12887 	/* status of events with extra ring */
12888 	if (phba->cfg_multi_ring_support == 2) {
12889 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12890 		status2 >>= (4*LPFC_EXTRA_RING);
12891 	} else
12892 		status2 = 0;
12893 
12894 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12895 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12896 	else
12897 		fp_irq_rc = IRQ_NONE;
12898 
12899 	/* Return device-level interrupt handling status */
12900 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12901 }  /* lpfc_sli_intr_handler */
12902 
12903 /**
12904  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12905  * @phba: pointer to lpfc hba data structure.
12906  *
12907  * This routine is invoked by the worker thread to process all the pending
12908  * SLI4 els abort xri events.
12909  **/
12910 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12911 {
12912 	struct lpfc_cq_event *cq_event;
12913 
12914 	/* First, declare the els xri abort event has been handled */
12915 	spin_lock_irq(&phba->hbalock);
12916 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12917 	spin_unlock_irq(&phba->hbalock);
12918 	/* Now, handle all the els xri abort events */
12919 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12920 		/* Get the first event from the head of the event queue */
12921 		spin_lock_irq(&phba->hbalock);
12922 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12923 				 cq_event, struct lpfc_cq_event, list);
12924 		spin_unlock_irq(&phba->hbalock);
12925 		/* Notify aborted XRI for ELS work queue */
12926 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12927 		/* Free the event processed back to the free pool */
12928 		lpfc_sli4_cq_event_release(phba, cq_event);
12929 	}
12930 }
12931 
12932 /**
12933  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12934  * @phba: pointer to lpfc hba data structure
12935  * @pIocbIn: pointer to the rspiocbq
12936  * @pIocbOut: pointer to the cmdiocbq
12937  * @wcqe: pointer to the complete wcqe
12938  *
12939  * This routine transfers the fields of a command iocbq to a response iocbq
12940  * by copying all the IOCB fields from command iocbq and transferring the
12941  * completion status information from the complete wcqe.
12942  **/
12943 static void
12944 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12945 			      struct lpfc_iocbq *pIocbIn,
12946 			      struct lpfc_iocbq *pIocbOut,
12947 			      struct lpfc_wcqe_complete *wcqe)
12948 {
12949 	int numBdes, i;
12950 	unsigned long iflags;
12951 	uint32_t status, max_response;
12952 	struct lpfc_dmabuf *dmabuf;
12953 	struct ulp_bde64 *bpl, bde;
12954 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12955 
12956 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12957 	       sizeof(struct lpfc_iocbq) - offset);
12958 	/* Map WCQE parameters into irspiocb parameters */
12959 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12960 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12961 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12962 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12963 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12964 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12965 					wcqe->total_data_placed;
12966 		else
12967 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12968 	else {
12969 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12970 		switch (pIocbOut->iocb.ulpCommand) {
12971 		case CMD_ELS_REQUEST64_CR:
12972 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12973 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12974 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12975 			max_response = bde.tus.f.bdeSize;
12976 			break;
12977 		case CMD_GEN_REQUEST64_CR:
12978 			max_response = 0;
12979 			if (!pIocbOut->context3)
12980 				break;
12981 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12982 					sizeof(struct ulp_bde64);
12983 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12984 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12985 			for (i = 0; i < numBdes; i++) {
12986 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12987 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12988 					max_response += bde.tus.f.bdeSize;
12989 			}
12990 			break;
12991 		default:
12992 			max_response = wcqe->total_data_placed;
12993 			break;
12994 		}
12995 		if (max_response < wcqe->total_data_placed)
12996 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12997 		else
12998 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12999 				wcqe->total_data_placed;
13000 	}
13001 
13002 	/* Convert BG errors for completion status */
13003 	if (status == CQE_STATUS_DI_ERROR) {
13004 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13005 
13006 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13007 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13008 		else
13009 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13010 
13011 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13012 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13013 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13014 				BGS_GUARD_ERR_MASK;
13015 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13016 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13017 				BGS_APPTAG_ERR_MASK;
13018 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13019 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13020 				BGS_REFTAG_ERR_MASK;
13021 
13022 		/* Check to see if there was any good data before the error */
13023 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13024 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13025 				BGS_HI_WATER_MARK_PRESENT_MASK;
13026 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13027 				wcqe->total_data_placed;
13028 		}
13029 
13030 		/*
13031 		* Set ALL the error bits to indicate we don't know what
13032 		* type of error it is.
13033 		*/
13034 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13035 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13036 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13037 				BGS_GUARD_ERR_MASK);
13038 	}
13039 
13040 	/* Pick up HBA exchange busy condition */
13041 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13042 		spin_lock_irqsave(&phba->hbalock, iflags);
13043 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13044 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13045 	}
13046 }
13047 
13048 /**
13049  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13050  * @phba: Pointer to HBA context object.
13051  * @wcqe: Pointer to work-queue completion queue entry.
13052  *
13053  * This routine handles an ELS work-queue completion event and construct
13054  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13055  * discovery engine to handle.
13056  *
13057  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13058  **/
13059 static struct lpfc_iocbq *
13060 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13061 			       struct lpfc_iocbq *irspiocbq)
13062 {
13063 	struct lpfc_sli_ring *pring;
13064 	struct lpfc_iocbq *cmdiocbq;
13065 	struct lpfc_wcqe_complete *wcqe;
13066 	unsigned long iflags;
13067 
13068 	pring = lpfc_phba_elsring(phba);
13069 	if (unlikely(!pring))
13070 		return NULL;
13071 
13072 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13073 	spin_lock_irqsave(&pring->ring_lock, iflags);
13074 	pring->stats.iocb_event++;
13075 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13076 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13077 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13078 	if (unlikely(!cmdiocbq)) {
13079 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
13080 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13081 				"0386 ELS complete with no corresponding "
13082 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13083 				wcqe->word0, wcqe->total_data_placed,
13084 				wcqe->parameter, wcqe->word3);
13085 		lpfc_sli_release_iocbq(phba, irspiocbq);
13086 		return NULL;
13087 	}
13088 
13089 	/* Put the iocb back on the txcmplq */
13090 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13091 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13092 
13093 	/* Fake the irspiocbq and copy necessary response information */
13094 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13095 
13096 	return irspiocbq;
13097 }
13098 
13099 inline struct lpfc_cq_event *
13100 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13101 {
13102 	struct lpfc_cq_event *cq_event;
13103 
13104 	/* Allocate a new internal CQ_EVENT entry */
13105 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13106 	if (!cq_event) {
13107 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13108 				"0602 Failed to alloc CQ_EVENT entry\n");
13109 		return NULL;
13110 	}
13111 
13112 	/* Move the CQE into the event */
13113 	memcpy(&cq_event->cqe, entry, size);
13114 	return cq_event;
13115 }
13116 
13117 /**
13118  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13119  * @phba: Pointer to HBA context object.
13120  * @cqe: Pointer to mailbox completion queue entry.
13121  *
13122  * This routine process a mailbox completion queue entry with asynchrous
13123  * event.
13124  *
13125  * Return: true if work posted to worker thread, otherwise false.
13126  **/
13127 static bool
13128 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13129 {
13130 	struct lpfc_cq_event *cq_event;
13131 	unsigned long iflags;
13132 
13133 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13134 			"0392 Async Event: word0:x%x, word1:x%x, "
13135 			"word2:x%x, word3:x%x\n", mcqe->word0,
13136 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13137 
13138 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13139 	if (!cq_event)
13140 		return false;
13141 	spin_lock_irqsave(&phba->hbalock, iflags);
13142 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13143 	/* Set the async event flag */
13144 	phba->hba_flag |= ASYNC_EVENT;
13145 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13146 
13147 	return true;
13148 }
13149 
13150 /**
13151  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13152  * @phba: Pointer to HBA context object.
13153  * @cqe: Pointer to mailbox completion queue entry.
13154  *
13155  * This routine process a mailbox completion queue entry with mailbox
13156  * completion event.
13157  *
13158  * Return: true if work posted to worker thread, otherwise false.
13159  **/
13160 static bool
13161 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13162 {
13163 	uint32_t mcqe_status;
13164 	MAILBOX_t *mbox, *pmbox;
13165 	struct lpfc_mqe *mqe;
13166 	struct lpfc_vport *vport;
13167 	struct lpfc_nodelist *ndlp;
13168 	struct lpfc_dmabuf *mp;
13169 	unsigned long iflags;
13170 	LPFC_MBOXQ_t *pmb;
13171 	bool workposted = false;
13172 	int rc;
13173 
13174 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13175 	if (!bf_get(lpfc_trailer_completed, mcqe))
13176 		goto out_no_mqe_complete;
13177 
13178 	/* Get the reference to the active mbox command */
13179 	spin_lock_irqsave(&phba->hbalock, iflags);
13180 	pmb = phba->sli.mbox_active;
13181 	if (unlikely(!pmb)) {
13182 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13183 				"1832 No pending MBOX command to handle\n");
13184 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13185 		goto out_no_mqe_complete;
13186 	}
13187 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13188 	mqe = &pmb->u.mqe;
13189 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13190 	mbox = phba->mbox;
13191 	vport = pmb->vport;
13192 
13193 	/* Reset heartbeat timer */
13194 	phba->last_completion_time = jiffies;
13195 	del_timer(&phba->sli.mbox_tmo);
13196 
13197 	/* Move mbox data to caller's mailbox region, do endian swapping */
13198 	if (pmb->mbox_cmpl && mbox)
13199 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13200 
13201 	/*
13202 	 * For mcqe errors, conditionally move a modified error code to
13203 	 * the mbox so that the error will not be missed.
13204 	 */
13205 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13206 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13207 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13208 			bf_set(lpfc_mqe_status, mqe,
13209 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13210 	}
13211 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13212 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13213 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13214 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13215 				      mcqe_status,
13216 				      pmbox->un.varWords[0], 0);
13217 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13218 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13219 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13220 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13221 			 * RID of the PPI using the same mbox buffer.
13222 			 */
13223 			lpfc_unreg_login(phba, vport->vpi,
13224 					 pmbox->un.varWords[0], pmb);
13225 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13226 			pmb->ctx_buf = mp;
13227 			pmb->ctx_ndlp = ndlp;
13228 			pmb->vport = vport;
13229 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13230 			if (rc != MBX_BUSY)
13231 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13232 						LOG_SLI, "0385 rc should "
13233 						"have been MBX_BUSY\n");
13234 			if (rc != MBX_NOT_FINISHED)
13235 				goto send_current_mbox;
13236 		}
13237 	}
13238 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13239 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13240 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13241 
13242 	/* There is mailbox completion work to do */
13243 	spin_lock_irqsave(&phba->hbalock, iflags);
13244 	__lpfc_mbox_cmpl_put(phba, pmb);
13245 	phba->work_ha |= HA_MBATT;
13246 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13247 	workposted = true;
13248 
13249 send_current_mbox:
13250 	spin_lock_irqsave(&phba->hbalock, iflags);
13251 	/* Release the mailbox command posting token */
13252 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13253 	/* Setting active mailbox pointer need to be in sync to flag clear */
13254 	phba->sli.mbox_active = NULL;
13255 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13256 	/* Wake up worker thread to post the next pending mailbox command */
13257 	lpfc_worker_wake_up(phba);
13258 out_no_mqe_complete:
13259 	if (bf_get(lpfc_trailer_consumed, mcqe))
13260 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13261 	return workposted;
13262 }
13263 
13264 /**
13265  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13266  * @phba: Pointer to HBA context object.
13267  * @cqe: Pointer to mailbox completion queue entry.
13268  *
13269  * This routine process a mailbox completion queue entry, it invokes the
13270  * proper mailbox complete handling or asynchrous event handling routine
13271  * according to the MCQE's async bit.
13272  *
13273  * Return: true if work posted to worker thread, otherwise false.
13274  **/
13275 static bool
13276 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13277 			 struct lpfc_cqe *cqe)
13278 {
13279 	struct lpfc_mcqe mcqe;
13280 	bool workposted;
13281 
13282 	cq->CQ_mbox++;
13283 
13284 	/* Copy the mailbox MCQE and convert endian order as needed */
13285 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13286 
13287 	/* Invoke the proper event handling routine */
13288 	if (!bf_get(lpfc_trailer_async, &mcqe))
13289 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13290 	else
13291 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13292 	return workposted;
13293 }
13294 
13295 /**
13296  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13297  * @phba: Pointer to HBA context object.
13298  * @cq: Pointer to associated CQ
13299  * @wcqe: Pointer to work-queue completion queue entry.
13300  *
13301  * This routine handles an ELS work-queue completion event.
13302  *
13303  * Return: true if work posted to worker thread, otherwise false.
13304  **/
13305 static bool
13306 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13307 			     struct lpfc_wcqe_complete *wcqe)
13308 {
13309 	struct lpfc_iocbq *irspiocbq;
13310 	unsigned long iflags;
13311 	struct lpfc_sli_ring *pring = cq->pring;
13312 	int txq_cnt = 0;
13313 	int txcmplq_cnt = 0;
13314 	int fcp_txcmplq_cnt = 0;
13315 
13316 	/* Check for response status */
13317 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13318 		/* Log the error status */
13319 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13320 				"0357 ELS CQE error: status=x%x: "
13321 				"CQE: %08x %08x %08x %08x\n",
13322 				bf_get(lpfc_wcqe_c_status, wcqe),
13323 				wcqe->word0, wcqe->total_data_placed,
13324 				wcqe->parameter, wcqe->word3);
13325 	}
13326 
13327 	/* Get an irspiocbq for later ELS response processing use */
13328 	irspiocbq = lpfc_sli_get_iocbq(phba);
13329 	if (!irspiocbq) {
13330 		if (!list_empty(&pring->txq))
13331 			txq_cnt++;
13332 		if (!list_empty(&pring->txcmplq))
13333 			txcmplq_cnt++;
13334 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13335 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13336 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13337 			txq_cnt, phba->iocb_cnt,
13338 			fcp_txcmplq_cnt,
13339 			txcmplq_cnt);
13340 		return false;
13341 	}
13342 
13343 	/* Save off the slow-path queue event for work thread to process */
13344 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13345 	spin_lock_irqsave(&phba->hbalock, iflags);
13346 	list_add_tail(&irspiocbq->cq_event.list,
13347 		      &phba->sli4_hba.sp_queue_event);
13348 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13349 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13350 
13351 	return true;
13352 }
13353 
13354 /**
13355  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13356  * @phba: Pointer to HBA context object.
13357  * @wcqe: Pointer to work-queue completion queue entry.
13358  *
13359  * This routine handles slow-path WQ entry consumed event by invoking the
13360  * proper WQ release routine to the slow-path WQ.
13361  **/
13362 static void
13363 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13364 			     struct lpfc_wcqe_release *wcqe)
13365 {
13366 	/* sanity check on queue memory */
13367 	if (unlikely(!phba->sli4_hba.els_wq))
13368 		return;
13369 	/* Check for the slow-path ELS work queue */
13370 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13371 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13372 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13373 	else
13374 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13375 				"2579 Slow-path wqe consume event carries "
13376 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13377 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13378 				phba->sli4_hba.els_wq->queue_id);
13379 }
13380 
13381 /**
13382  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13383  * @phba: Pointer to HBA context object.
13384  * @cq: Pointer to a WQ completion queue.
13385  * @wcqe: Pointer to work-queue completion queue entry.
13386  *
13387  * This routine handles an XRI abort event.
13388  *
13389  * Return: true if work posted to worker thread, otherwise false.
13390  **/
13391 static bool
13392 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13393 				   struct lpfc_queue *cq,
13394 				   struct sli4_wcqe_xri_aborted *wcqe)
13395 {
13396 	bool workposted = false;
13397 	struct lpfc_cq_event *cq_event;
13398 	unsigned long iflags;
13399 
13400 	switch (cq->subtype) {
13401 	case LPFC_FCP:
13402 		lpfc_sli4_fcp_xri_aborted(phba, wcqe, cq->hdwq);
13403 		workposted = false;
13404 		break;
13405 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13406 	case LPFC_ELS:
13407 		cq_event = lpfc_cq_event_setup(
13408 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13409 		if (!cq_event)
13410 			return false;
13411 		cq_event->hdwq = cq->hdwq;
13412 		spin_lock_irqsave(&phba->hbalock, iflags);
13413 		list_add_tail(&cq_event->list,
13414 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13415 		/* Set the els xri abort event flag */
13416 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13417 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13418 		workposted = true;
13419 		break;
13420 	case LPFC_NVME:
13421 		/* Notify aborted XRI for NVME work queue */
13422 		if (phba->nvmet_support)
13423 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13424 		else
13425 			lpfc_sli4_nvme_xri_aborted(phba, wcqe, cq->hdwq);
13426 
13427 		workposted = false;
13428 		break;
13429 	default:
13430 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13431 				"0603 Invalid CQ subtype %d: "
13432 				"%08x %08x %08x %08x\n",
13433 				cq->subtype, wcqe->word0, wcqe->parameter,
13434 				wcqe->word2, wcqe->word3);
13435 		workposted = false;
13436 		break;
13437 	}
13438 	return workposted;
13439 }
13440 
13441 #define FC_RCTL_MDS_DIAGS	0xF4
13442 
13443 /**
13444  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13445  * @phba: Pointer to HBA context object.
13446  * @rcqe: Pointer to receive-queue completion queue entry.
13447  *
13448  * This routine process a receive-queue completion queue entry.
13449  *
13450  * Return: true if work posted to worker thread, otherwise false.
13451  **/
13452 static bool
13453 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13454 {
13455 	bool workposted = false;
13456 	struct fc_frame_header *fc_hdr;
13457 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13458 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13459 	struct lpfc_nvmet_tgtport *tgtp;
13460 	struct hbq_dmabuf *dma_buf;
13461 	uint32_t status, rq_id;
13462 	unsigned long iflags;
13463 
13464 	/* sanity check on queue memory */
13465 	if (unlikely(!hrq) || unlikely(!drq))
13466 		return workposted;
13467 
13468 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13469 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13470 	else
13471 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13472 	if (rq_id != hrq->queue_id)
13473 		goto out;
13474 
13475 	status = bf_get(lpfc_rcqe_status, rcqe);
13476 	switch (status) {
13477 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13478 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13479 				"2537 Receive Frame Truncated!!\n");
13480 		/* fall through */
13481 	case FC_STATUS_RQ_SUCCESS:
13482 		spin_lock_irqsave(&phba->hbalock, iflags);
13483 		lpfc_sli4_rq_release(hrq, drq);
13484 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13485 		if (!dma_buf) {
13486 			hrq->RQ_no_buf_found++;
13487 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13488 			goto out;
13489 		}
13490 		hrq->RQ_rcv_buf++;
13491 		hrq->RQ_buf_posted--;
13492 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13493 
13494 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13495 
13496 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13497 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13498 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13499 			/* Handle MDS Loopback frames */
13500 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13501 			break;
13502 		}
13503 
13504 		/* save off the frame for the work thread to process */
13505 		list_add_tail(&dma_buf->cq_event.list,
13506 			      &phba->sli4_hba.sp_queue_event);
13507 		/* Frame received */
13508 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13509 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13510 		workposted = true;
13511 		break;
13512 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13513 		if (phba->nvmet_support) {
13514 			tgtp = phba->targetport->private;
13515 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13516 					"6402 RQE Error x%x, posted %d err_cnt "
13517 					"%d: %x %x %x\n",
13518 					status, hrq->RQ_buf_posted,
13519 					hrq->RQ_no_posted_buf,
13520 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13521 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13522 					atomic_read(&tgtp->xmt_fcp_release));
13523 		}
13524 		/* fallthrough */
13525 
13526 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13527 		hrq->RQ_no_posted_buf++;
13528 		/* Post more buffers if possible */
13529 		spin_lock_irqsave(&phba->hbalock, iflags);
13530 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13531 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13532 		workposted = true;
13533 		break;
13534 	}
13535 out:
13536 	return workposted;
13537 }
13538 
13539 /**
13540  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13541  * @phba: Pointer to HBA context object.
13542  * @cq: Pointer to the completion queue.
13543  * @cqe: Pointer to a completion queue entry.
13544  *
13545  * This routine process a slow-path work-queue or receive queue completion queue
13546  * entry.
13547  *
13548  * Return: true if work posted to worker thread, otherwise false.
13549  **/
13550 static bool
13551 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13552 			 struct lpfc_cqe *cqe)
13553 {
13554 	struct lpfc_cqe cqevt;
13555 	bool workposted = false;
13556 
13557 	/* Copy the work queue CQE and convert endian order if needed */
13558 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13559 
13560 	/* Check and process for different type of WCQE and dispatch */
13561 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13562 	case CQE_CODE_COMPL_WQE:
13563 		/* Process the WQ/RQ complete event */
13564 		phba->last_completion_time = jiffies;
13565 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13566 				(struct lpfc_wcqe_complete *)&cqevt);
13567 		break;
13568 	case CQE_CODE_RELEASE_WQE:
13569 		/* Process the WQ release event */
13570 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13571 				(struct lpfc_wcqe_release *)&cqevt);
13572 		break;
13573 	case CQE_CODE_XRI_ABORTED:
13574 		/* Process the WQ XRI abort event */
13575 		phba->last_completion_time = jiffies;
13576 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13577 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13578 		break;
13579 	case CQE_CODE_RECEIVE:
13580 	case CQE_CODE_RECEIVE_V1:
13581 		/* Process the RQ event */
13582 		phba->last_completion_time = jiffies;
13583 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13584 				(struct lpfc_rcqe *)&cqevt);
13585 		break;
13586 	default:
13587 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13588 				"0388 Not a valid WCQE code: x%x\n",
13589 				bf_get(lpfc_cqe_code, &cqevt));
13590 		break;
13591 	}
13592 	return workposted;
13593 }
13594 
13595 /**
13596  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13597  * @phba: Pointer to HBA context object.
13598  * @eqe: Pointer to fast-path event queue entry.
13599  *
13600  * This routine process a event queue entry from the slow-path event queue.
13601  * It will check the MajorCode and MinorCode to determine this is for a
13602  * completion event on a completion queue, if not, an error shall be logged
13603  * and just return. Otherwise, it will get to the corresponding completion
13604  * queue and process all the entries on that completion queue, rearm the
13605  * completion queue, and then return.
13606  *
13607  **/
13608 static void
13609 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13610 	struct lpfc_queue *speq)
13611 {
13612 	struct lpfc_queue *cq = NULL, *childq;
13613 	uint16_t cqid;
13614 
13615 	/* Get the reference to the corresponding CQ */
13616 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13617 
13618 	list_for_each_entry(childq, &speq->child_list, list) {
13619 		if (childq->queue_id == cqid) {
13620 			cq = childq;
13621 			break;
13622 		}
13623 	}
13624 	if (unlikely(!cq)) {
13625 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13626 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13627 					"0365 Slow-path CQ identifier "
13628 					"(%d) does not exist\n", cqid);
13629 		return;
13630 	}
13631 
13632 	/* Save EQ associated with this CQ */
13633 	cq->assoc_qp = speq;
13634 
13635 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13636 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13637 				"0390 Cannot schedule soft IRQ "
13638 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13639 				cqid, cq->queue_id, smp_processor_id());
13640 }
13641 
13642 /**
13643  * __lpfc_sli4_process_cq - Process elements of a CQ
13644  * @phba: Pointer to HBA context object.
13645  * @cq: Pointer to CQ to be processed
13646  * @handler: Routine to process each cqe
13647  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13648  *
13649  * This routine processes completion queue entries in a CQ. While a valid
13650  * queue element is found, the handler is called. During processing checks
13651  * are made for periodic doorbell writes to let the hardware know of
13652  * element consumption.
13653  *
13654  * If the max limit on cqes to process is hit, or there are no more valid
13655  * entries, the loop stops. If we processed a sufficient number of elements,
13656  * meaning there is sufficient load, rather than rearming and generating
13657  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13658  * indicates no rescheduling.
13659  *
13660  * Returns True if work scheduled, False otherwise.
13661  **/
13662 static bool
13663 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13664 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13665 			struct lpfc_cqe *), unsigned long *delay)
13666 {
13667 	struct lpfc_cqe *cqe;
13668 	bool workposted = false;
13669 	int count = 0, consumed = 0;
13670 	bool arm = true;
13671 
13672 	/* default - no reschedule */
13673 	*delay = 0;
13674 
13675 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13676 		goto rearm_and_exit;
13677 
13678 	/* Process all the entries to the CQ */
13679 	cqe = lpfc_sli4_cq_get(cq);
13680 	while (cqe) {
13681 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) && defined(BUILD_NVME)
13682 		if (phba->ktime_on)
13683 			cq->isr_timestamp = ktime_get_ns();
13684 		else
13685 			cq->isr_timestamp = 0;
13686 #endif
13687 		workposted |= handler(phba, cq, cqe);
13688 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13689 
13690 		consumed++;
13691 		if (!(++count % cq->max_proc_limit))
13692 			break;
13693 
13694 		if (!(count % cq->notify_interval)) {
13695 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13696 						LPFC_QUEUE_NOARM);
13697 			consumed = 0;
13698 		}
13699 
13700 		cqe = lpfc_sli4_cq_get(cq);
13701 	}
13702 	if (count >= phba->cfg_cq_poll_threshold) {
13703 		*delay = 1;
13704 		arm = false;
13705 	}
13706 
13707 	/* Track the max number of CQEs processed in 1 EQ */
13708 	if (count > cq->CQ_max_cqe)
13709 		cq->CQ_max_cqe = count;
13710 
13711 	cq->assoc_qp->EQ_cqe_cnt += count;
13712 
13713 	/* Catch the no cq entry condition */
13714 	if (unlikely(count == 0))
13715 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13716 				"0369 No entry from completion queue "
13717 				"qid=%d\n", cq->queue_id);
13718 
13719 	cq->queue_claimed = 0;
13720 
13721 rearm_and_exit:
13722 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13723 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13724 
13725 	return workposted;
13726 }
13727 
13728 /**
13729  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13730  * @cq: pointer to CQ to process
13731  *
13732  * This routine calls the cq processing routine with a handler specific
13733  * to the type of queue bound to it.
13734  *
13735  * The CQ routine returns two values: the first is the calling status,
13736  * which indicates whether work was queued to the  background discovery
13737  * thread. If true, the routine should wakeup the discovery thread;
13738  * the second is the delay parameter. If non-zero, rather than rearming
13739  * the CQ and yet another interrupt, the CQ handler should be queued so
13740  * that it is processed in a subsequent polling action. The value of
13741  * the delay indicates when to reschedule it.
13742  **/
13743 static void
13744 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13745 {
13746 	struct lpfc_hba *phba = cq->phba;
13747 	unsigned long delay;
13748 	bool workposted = false;
13749 
13750 	/* Process and rearm the CQ */
13751 	switch (cq->type) {
13752 	case LPFC_MCQ:
13753 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13754 						lpfc_sli4_sp_handle_mcqe,
13755 						&delay);
13756 		break;
13757 	case LPFC_WCQ:
13758 		if (cq->subtype == LPFC_FCP || cq->subtype == LPFC_NVME)
13759 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13760 						lpfc_sli4_fp_handle_cqe,
13761 						&delay);
13762 		else
13763 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13764 						lpfc_sli4_sp_handle_cqe,
13765 						&delay);
13766 		break;
13767 	default:
13768 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13769 				"0370 Invalid completion queue type (%d)\n",
13770 				cq->type);
13771 		return;
13772 	}
13773 
13774 	if (delay) {
13775 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13776 					   &cq->sched_spwork, delay))
13777 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13778 				"0394 Cannot schedule soft IRQ "
13779 				"for cqid=%d on CPU %d\n",
13780 				cq->queue_id, cq->chann);
13781 	}
13782 
13783 	/* wake up worker thread if there are works to be done */
13784 	if (workposted)
13785 		lpfc_worker_wake_up(phba);
13786 }
13787 
13788 /**
13789  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13790  *   interrupt
13791  * @work: pointer to work element
13792  *
13793  * translates from the work handler and calls the slow-path handler.
13794  **/
13795 static void
13796 lpfc_sli4_sp_process_cq(struct work_struct *work)
13797 {
13798 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13799 
13800 	__lpfc_sli4_sp_process_cq(cq);
13801 }
13802 
13803 /**
13804  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13805  * @work: pointer to work element
13806  *
13807  * translates from the work handler and calls the slow-path handler.
13808  **/
13809 static void
13810 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13811 {
13812 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13813 					struct lpfc_queue, sched_spwork);
13814 
13815 	__lpfc_sli4_sp_process_cq(cq);
13816 }
13817 
13818 /**
13819  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13820  * @phba: Pointer to HBA context object.
13821  * @cq: Pointer to associated CQ
13822  * @wcqe: Pointer to work-queue completion queue entry.
13823  *
13824  * This routine process a fast-path work queue completion entry from fast-path
13825  * event queue for FCP command response completion.
13826  **/
13827 static void
13828 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13829 			     struct lpfc_wcqe_complete *wcqe)
13830 {
13831 	struct lpfc_sli_ring *pring = cq->pring;
13832 	struct lpfc_iocbq *cmdiocbq;
13833 	struct lpfc_iocbq irspiocbq;
13834 	unsigned long iflags;
13835 
13836 	/* Check for response status */
13837 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13838 		/* If resource errors reported from HBA, reduce queue
13839 		 * depth of the SCSI device.
13840 		 */
13841 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13842 		     IOSTAT_LOCAL_REJECT)) &&
13843 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13844 		     IOERR_NO_RESOURCES))
13845 			phba->lpfc_rampdown_queue_depth(phba);
13846 
13847 		/* Log the error status */
13848 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13849 				"0373 FCP CQE error: status=x%x: "
13850 				"CQE: %08x %08x %08x %08x\n",
13851 				bf_get(lpfc_wcqe_c_status, wcqe),
13852 				wcqe->word0, wcqe->total_data_placed,
13853 				wcqe->parameter, wcqe->word3);
13854 	}
13855 
13856 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13857 	spin_lock_irqsave(&pring->ring_lock, iflags);
13858 	pring->stats.iocb_event++;
13859 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13860 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13861 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13862 	if (unlikely(!cmdiocbq)) {
13863 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13864 				"0374 FCP complete with no corresponding "
13865 				"cmdiocb: iotag (%d)\n",
13866 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13867 		return;
13868 	}
13869 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13870 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13871 #endif
13872 	if (cmdiocbq->iocb_cmpl == NULL) {
13873 		if (cmdiocbq->wqe_cmpl) {
13874 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13875 				spin_lock_irqsave(&phba->hbalock, iflags);
13876 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13877 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13878 			}
13879 
13880 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13881 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13882 			return;
13883 		}
13884 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13885 				"0375 FCP cmdiocb not callback function "
13886 				"iotag: (%d)\n",
13887 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13888 		return;
13889 	}
13890 
13891 	/* Fake the irspiocb and copy necessary response information */
13892 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13893 
13894 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13895 		spin_lock_irqsave(&phba->hbalock, iflags);
13896 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13897 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13898 	}
13899 
13900 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13901 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13902 }
13903 
13904 /**
13905  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13906  * @phba: Pointer to HBA context object.
13907  * @cq: Pointer to completion queue.
13908  * @wcqe: Pointer to work-queue completion queue entry.
13909  *
13910  * This routine handles an fast-path WQ entry consumed event by invoking the
13911  * proper WQ release routine to the slow-path WQ.
13912  **/
13913 static void
13914 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13915 			     struct lpfc_wcqe_release *wcqe)
13916 {
13917 	struct lpfc_queue *childwq;
13918 	bool wqid_matched = false;
13919 	uint16_t hba_wqid;
13920 
13921 	/* Check for fast-path FCP work queue release */
13922 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13923 	list_for_each_entry(childwq, &cq->child_list, list) {
13924 		if (childwq->queue_id == hba_wqid) {
13925 			lpfc_sli4_wq_release(childwq,
13926 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13927 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13928 				lpfc_nvmet_wqfull_process(phba, childwq);
13929 			wqid_matched = true;
13930 			break;
13931 		}
13932 	}
13933 	/* Report warning log message if no match found */
13934 	if (wqid_matched != true)
13935 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13936 				"2580 Fast-path wqe consume event carries "
13937 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13938 }
13939 
13940 /**
13941  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13942  * @phba: Pointer to HBA context object.
13943  * @rcqe: Pointer to receive-queue completion queue entry.
13944  *
13945  * This routine process a receive-queue completion queue entry.
13946  *
13947  * Return: true if work posted to worker thread, otherwise false.
13948  **/
13949 static bool
13950 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13951 			    struct lpfc_rcqe *rcqe)
13952 {
13953 	bool workposted = false;
13954 	struct lpfc_queue *hrq;
13955 	struct lpfc_queue *drq;
13956 	struct rqb_dmabuf *dma_buf;
13957 	struct fc_frame_header *fc_hdr;
13958 	struct lpfc_nvmet_tgtport *tgtp;
13959 	uint32_t status, rq_id;
13960 	unsigned long iflags;
13961 	uint32_t fctl, idx;
13962 
13963 	if ((phba->nvmet_support == 0) ||
13964 	    (phba->sli4_hba.nvmet_cqset == NULL))
13965 		return workposted;
13966 
13967 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13968 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13969 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13970 
13971 	/* sanity check on queue memory */
13972 	if (unlikely(!hrq) || unlikely(!drq))
13973 		return workposted;
13974 
13975 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13976 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13977 	else
13978 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13979 
13980 	if ((phba->nvmet_support == 0) ||
13981 	    (rq_id != hrq->queue_id))
13982 		return workposted;
13983 
13984 	status = bf_get(lpfc_rcqe_status, rcqe);
13985 	switch (status) {
13986 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13987 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13988 				"6126 Receive Frame Truncated!!\n");
13989 		/* fall through */
13990 	case FC_STATUS_RQ_SUCCESS:
13991 		spin_lock_irqsave(&phba->hbalock, iflags);
13992 		lpfc_sli4_rq_release(hrq, drq);
13993 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13994 		if (!dma_buf) {
13995 			hrq->RQ_no_buf_found++;
13996 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13997 			goto out;
13998 		}
13999 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14000 		hrq->RQ_rcv_buf++;
14001 		hrq->RQ_buf_posted--;
14002 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14003 
14004 		/* Just some basic sanity checks on FCP Command frame */
14005 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14006 		fc_hdr->fh_f_ctl[1] << 8 |
14007 		fc_hdr->fh_f_ctl[2]);
14008 		if (((fctl &
14009 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14010 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14011 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14012 			goto drop;
14013 
14014 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14015 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
14016 			lpfc_nvmet_unsol_fcp_event(
14017 				phba, idx, dma_buf,
14018 				cq->isr_timestamp);
14019 			return false;
14020 		}
14021 drop:
14022 		lpfc_in_buf_free(phba, &dma_buf->dbuf);
14023 		break;
14024 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14025 		if (phba->nvmet_support) {
14026 			tgtp = phba->targetport->private;
14027 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
14028 					"6401 RQE Error x%x, posted %d err_cnt "
14029 					"%d: %x %x %x\n",
14030 					status, hrq->RQ_buf_posted,
14031 					hrq->RQ_no_posted_buf,
14032 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14033 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14034 					atomic_read(&tgtp->xmt_fcp_release));
14035 		}
14036 		/* fallthrough */
14037 
14038 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14039 		hrq->RQ_no_posted_buf++;
14040 		/* Post more buffers if possible */
14041 		break;
14042 	}
14043 out:
14044 	return workposted;
14045 }
14046 
14047 /**
14048  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14049  * @phba: adapter with cq
14050  * @cq: Pointer to the completion queue.
14051  * @eqe: Pointer to fast-path completion queue entry.
14052  *
14053  * This routine process a fast-path work queue completion entry from fast-path
14054  * event queue for FCP command response completion.
14055  *
14056  * Return: true if work posted to worker thread, otherwise false.
14057  **/
14058 static bool
14059 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14060 			 struct lpfc_cqe *cqe)
14061 {
14062 	struct lpfc_wcqe_release wcqe;
14063 	bool workposted = false;
14064 
14065 	/* Copy the work queue CQE and convert endian order if needed */
14066 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14067 
14068 	/* Check and process for different type of WCQE and dispatch */
14069 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14070 	case CQE_CODE_COMPL_WQE:
14071 	case CQE_CODE_NVME_ERSP:
14072 		cq->CQ_wq++;
14073 		/* Process the WQ complete event */
14074 		phba->last_completion_time = jiffies;
14075 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
14076 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14077 				(struct lpfc_wcqe_complete *)&wcqe);
14078 		if (cq->subtype == LPFC_NVME_LS)
14079 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14080 				(struct lpfc_wcqe_complete *)&wcqe);
14081 		break;
14082 	case CQE_CODE_RELEASE_WQE:
14083 		cq->CQ_release_wqe++;
14084 		/* Process the WQ release event */
14085 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14086 				(struct lpfc_wcqe_release *)&wcqe);
14087 		break;
14088 	case CQE_CODE_XRI_ABORTED:
14089 		cq->CQ_xri_aborted++;
14090 		/* Process the WQ XRI abort event */
14091 		phba->last_completion_time = jiffies;
14092 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14093 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14094 		break;
14095 	case CQE_CODE_RECEIVE_V1:
14096 	case CQE_CODE_RECEIVE:
14097 		phba->last_completion_time = jiffies;
14098 		if (cq->subtype == LPFC_NVMET) {
14099 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14100 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14101 		}
14102 		break;
14103 	default:
14104 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14105 				"0144 Not a valid CQE code: x%x\n",
14106 				bf_get(lpfc_wcqe_c_code, &wcqe));
14107 		break;
14108 	}
14109 	return workposted;
14110 }
14111 
14112 /**
14113  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14114  * @phba: Pointer to HBA context object.
14115  * @eqe: Pointer to fast-path event queue entry.
14116  *
14117  * This routine process a event queue entry from the fast-path event queue.
14118  * It will check the MajorCode and MinorCode to determine this is for a
14119  * completion event on a completion queue, if not, an error shall be logged
14120  * and just return. Otherwise, it will get to the corresponding completion
14121  * queue and process all the entries on the completion queue, rearm the
14122  * completion queue, and then return.
14123  **/
14124 static void
14125 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14126 			 struct lpfc_eqe *eqe)
14127 {
14128 	struct lpfc_queue *cq = NULL;
14129 	uint32_t qidx = eq->hdwq;
14130 	uint16_t cqid, id;
14131 
14132 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14133 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14134 				"0366 Not a valid completion "
14135 				"event: majorcode=x%x, minorcode=x%x\n",
14136 				bf_get_le32(lpfc_eqe_major_code, eqe),
14137 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14138 		return;
14139 	}
14140 
14141 	/* Get the reference to the corresponding CQ */
14142 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14143 
14144 	/* Use the fast lookup method first */
14145 	if (cqid <= phba->sli4_hba.cq_max) {
14146 		cq = phba->sli4_hba.cq_lookup[cqid];
14147 		if (cq)
14148 			goto  work_cq;
14149 	}
14150 
14151 	/* Next check for NVMET completion */
14152 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14153 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14154 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14155 			/* Process NVMET unsol rcv */
14156 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14157 			goto  process_cq;
14158 		}
14159 	}
14160 
14161 	if (phba->sli4_hba.nvmels_cq &&
14162 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14163 		/* Process NVME unsol rcv */
14164 		cq = phba->sli4_hba.nvmels_cq;
14165 	}
14166 
14167 	/* Otherwise this is a Slow path event */
14168 	if (cq == NULL) {
14169 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14170 					phba->sli4_hba.hdwq[qidx].hba_eq);
14171 		return;
14172 	}
14173 
14174 process_cq:
14175 	if (unlikely(cqid != cq->queue_id)) {
14176 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14177 				"0368 Miss-matched fast-path completion "
14178 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14179 				cqid, cq->queue_id);
14180 		return;
14181 	}
14182 
14183 work_cq:
14184 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14185 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14186 				"0363 Cannot schedule soft IRQ "
14187 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14188 				cqid, cq->queue_id, smp_processor_id());
14189 }
14190 
14191 /**
14192  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14193  * @cq: Pointer to CQ to be processed
14194  *
14195  * This routine calls the cq processing routine with the handler for
14196  * fast path CQEs.
14197  *
14198  * The CQ routine returns two values: the first is the calling status,
14199  * which indicates whether work was queued to the  background discovery
14200  * thread. If true, the routine should wakeup the discovery thread;
14201  * the second is the delay parameter. If non-zero, rather than rearming
14202  * the CQ and yet another interrupt, the CQ handler should be queued so
14203  * that it is processed in a subsequent polling action. The value of
14204  * the delay indicates when to reschedule it.
14205  **/
14206 static void
14207 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14208 {
14209 	struct lpfc_hba *phba = cq->phba;
14210 	unsigned long delay;
14211 	bool workposted = false;
14212 
14213 	/* process and rearm the CQ */
14214 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14215 					     &delay);
14216 
14217 	if (delay) {
14218 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14219 					   &cq->sched_irqwork, delay))
14220 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14221 				"0367 Cannot schedule soft IRQ "
14222 				"for cqid=%d on CPU %d\n",
14223 				cq->queue_id, cq->chann);
14224 	}
14225 
14226 	/* wake up worker thread if there are works to be done */
14227 	if (workposted)
14228 		lpfc_worker_wake_up(phba);
14229 }
14230 
14231 /**
14232  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14233  *   interrupt
14234  * @work: pointer to work element
14235  *
14236  * translates from the work handler and calls the fast-path handler.
14237  **/
14238 static void
14239 lpfc_sli4_hba_process_cq(struct work_struct *work)
14240 {
14241 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14242 
14243 	__lpfc_sli4_hba_process_cq(cq);
14244 }
14245 
14246 /**
14247  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14248  * @work: pointer to work element
14249  *
14250  * translates from the work handler and calls the fast-path handler.
14251  **/
14252 static void
14253 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14254 {
14255 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14256 					struct lpfc_queue, sched_irqwork);
14257 
14258 	__lpfc_sli4_hba_process_cq(cq);
14259 }
14260 
14261 /**
14262  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14263  * @irq: Interrupt number.
14264  * @dev_id: The device context pointer.
14265  *
14266  * This function is directly called from the PCI layer as an interrupt
14267  * service routine when device with SLI-4 interface spec is enabled with
14268  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14269  * ring event in the HBA. However, when the device is enabled with either
14270  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14271  * device-level interrupt handler. When the PCI slot is in error recovery
14272  * or the HBA is undergoing initialization, the interrupt handler will not
14273  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14274  * the intrrupt context. This function is called without any lock held.
14275  * It gets the hbalock to access and update SLI data structures. Note that,
14276  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14277  * equal to that of FCP CQ index.
14278  *
14279  * The link attention and ELS ring attention events are handled
14280  * by the worker thread. The interrupt handler signals the worker thread
14281  * and returns for these events. This function is called without any lock
14282  * held. It gets the hbalock to access and update SLI data structures.
14283  *
14284  * This function returns IRQ_HANDLED when interrupt is handled else it
14285  * returns IRQ_NONE.
14286  **/
14287 irqreturn_t
14288 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14289 {
14290 	struct lpfc_hba *phba;
14291 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14292 	struct lpfc_queue *fpeq;
14293 	unsigned long iflag;
14294 	int ecount = 0;
14295 	int hba_eqidx;
14296 	struct lpfc_eq_intr_info *eqi;
14297 	uint32_t icnt;
14298 
14299 	/* Get the driver's phba structure from the dev_id */
14300 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14301 	phba = hba_eq_hdl->phba;
14302 	hba_eqidx = hba_eq_hdl->idx;
14303 
14304 	if (unlikely(!phba))
14305 		return IRQ_NONE;
14306 	if (unlikely(!phba->sli4_hba.hdwq))
14307 		return IRQ_NONE;
14308 
14309 	/* Get to the EQ struct associated with this vector */
14310 	fpeq = phba->sli4_hba.hdwq[hba_eqidx].hba_eq;
14311 	if (unlikely(!fpeq))
14312 		return IRQ_NONE;
14313 
14314 	/* Check device state for handling interrupt */
14315 	if (unlikely(lpfc_intr_state_check(phba))) {
14316 		/* Check again for link_state with lock held */
14317 		spin_lock_irqsave(&phba->hbalock, iflag);
14318 		if (phba->link_state < LPFC_LINK_DOWN)
14319 			/* Flush, clear interrupt, and rearm the EQ */
14320 			lpfc_sli4_eq_flush(phba, fpeq);
14321 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14322 		return IRQ_NONE;
14323 	}
14324 
14325 	eqi = phba->sli4_hba.eq_info;
14326 	icnt = this_cpu_inc_return(eqi->icnt);
14327 	fpeq->last_cpu = smp_processor_id();
14328 
14329 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14330 	    phba->cfg_irq_chann == 1 &&
14331 	    phba->cfg_auto_imax &&
14332 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14333 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14334 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14335 
14336 	/* process and rearm the EQ */
14337 	ecount = lpfc_sli4_process_eq(phba, fpeq);
14338 
14339 	if (unlikely(ecount == 0)) {
14340 		fpeq->EQ_no_entry++;
14341 		if (phba->intr_type == MSIX)
14342 			/* MSI-X treated interrupt served as no EQ share INT */
14343 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14344 					"0358 MSI-X interrupt with no EQE\n");
14345 		else
14346 			/* Non MSI-X treated on interrupt as EQ share INT */
14347 			return IRQ_NONE;
14348 	}
14349 
14350 	return IRQ_HANDLED;
14351 } /* lpfc_sli4_fp_intr_handler */
14352 
14353 /**
14354  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14355  * @irq: Interrupt number.
14356  * @dev_id: The device context pointer.
14357  *
14358  * This function is the device-level interrupt handler to device with SLI-4
14359  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14360  * interrupt mode is enabled and there is an event in the HBA which requires
14361  * driver attention. This function invokes the slow-path interrupt attention
14362  * handling function and fast-path interrupt attention handling function in
14363  * turn to process the relevant HBA attention events. This function is called
14364  * without any lock held. It gets the hbalock to access and update SLI data
14365  * structures.
14366  *
14367  * This function returns IRQ_HANDLED when interrupt is handled, else it
14368  * returns IRQ_NONE.
14369  **/
14370 irqreturn_t
14371 lpfc_sli4_intr_handler(int irq, void *dev_id)
14372 {
14373 	struct lpfc_hba  *phba;
14374 	irqreturn_t hba_irq_rc;
14375 	bool hba_handled = false;
14376 	int qidx;
14377 
14378 	/* Get the driver's phba structure from the dev_id */
14379 	phba = (struct lpfc_hba *)dev_id;
14380 
14381 	if (unlikely(!phba))
14382 		return IRQ_NONE;
14383 
14384 	/*
14385 	 * Invoke fast-path host attention interrupt handling as appropriate.
14386 	 */
14387 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14388 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14389 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14390 		if (hba_irq_rc == IRQ_HANDLED)
14391 			hba_handled |= true;
14392 	}
14393 
14394 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14395 } /* lpfc_sli4_intr_handler */
14396 
14397 /**
14398  * lpfc_sli4_queue_free - free a queue structure and associated memory
14399  * @queue: The queue structure to free.
14400  *
14401  * This function frees a queue structure and the DMAable memory used for
14402  * the host resident queue. This function must be called after destroying the
14403  * queue on the HBA.
14404  **/
14405 void
14406 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14407 {
14408 	struct lpfc_dmabuf *dmabuf;
14409 
14410 	if (!queue)
14411 		return;
14412 
14413 	while (!list_empty(&queue->page_list)) {
14414 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14415 				 list);
14416 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14417 				  dmabuf->virt, dmabuf->phys);
14418 		kfree(dmabuf);
14419 	}
14420 	if (queue->rqbp) {
14421 		lpfc_free_rq_buffer(queue->phba, queue);
14422 		kfree(queue->rqbp);
14423 	}
14424 
14425 	if (!list_empty(&queue->cpu_list))
14426 		list_del(&queue->cpu_list);
14427 
14428 	if (!list_empty(&queue->wq_list))
14429 		list_del(&queue->wq_list);
14430 
14431 	kfree(queue);
14432 	return;
14433 }
14434 
14435 /**
14436  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14437  * @phba: The HBA that this queue is being created on.
14438  * @page_size: The size of a queue page
14439  * @entry_size: The size of each queue entry for this queue.
14440  * @entry count: The number of entries that this queue will handle.
14441  *
14442  * This function allocates a queue structure and the DMAable memory used for
14443  * the host resident queue. This function must be called before creating the
14444  * queue on the HBA.
14445  **/
14446 struct lpfc_queue *
14447 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14448 		      uint32_t entry_size, uint32_t entry_count)
14449 {
14450 	struct lpfc_queue *queue;
14451 	struct lpfc_dmabuf *dmabuf;
14452 	int x, total_qe_count;
14453 	void *dma_pointer;
14454 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14455 
14456 	if (!phba->sli4_hba.pc_sli4_params.supported)
14457 		hw_page_size = page_size;
14458 
14459 	queue = kzalloc(sizeof(struct lpfc_queue) +
14460 			(sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
14461 	if (!queue)
14462 		return NULL;
14463 	queue->page_count = (ALIGN(entry_size * entry_count,
14464 			hw_page_size))/hw_page_size;
14465 
14466 	/* If needed, Adjust page count to match the max the adapter supports */
14467 	if (phba->sli4_hba.pc_sli4_params.wqpcnt &&
14468 	    (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt))
14469 		queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
14470 
14471 	INIT_LIST_HEAD(&queue->list);
14472 	INIT_LIST_HEAD(&queue->wq_list);
14473 	INIT_LIST_HEAD(&queue->wqfull_list);
14474 	INIT_LIST_HEAD(&queue->page_list);
14475 	INIT_LIST_HEAD(&queue->child_list);
14476 	INIT_LIST_HEAD(&queue->cpu_list);
14477 
14478 	/* Set queue parameters now.  If the system cannot provide memory
14479 	 * resources, the free routine needs to know what was allocated.
14480 	 */
14481 	queue->entry_size = entry_size;
14482 	queue->entry_count = entry_count;
14483 	queue->page_size = hw_page_size;
14484 	queue->phba = phba;
14485 
14486 	for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
14487 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
14488 		if (!dmabuf)
14489 			goto out_fail;
14490 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14491 						  hw_page_size, &dmabuf->phys,
14492 						  GFP_KERNEL);
14493 		if (!dmabuf->virt) {
14494 			kfree(dmabuf);
14495 			goto out_fail;
14496 		}
14497 		dmabuf->buffer_tag = x;
14498 		list_add_tail(&dmabuf->list, &queue->page_list);
14499 		/* initialize queue's entry array */
14500 		dma_pointer = dmabuf->virt;
14501 		for (; total_qe_count < entry_count &&
14502 		     dma_pointer < (hw_page_size + dmabuf->virt);
14503 		     total_qe_count++, dma_pointer += entry_size) {
14504 			queue->qe[total_qe_count].address = dma_pointer;
14505 		}
14506 	}
14507 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14508 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14509 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14510 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14511 
14512 	/* notify_interval will be set during q creation */
14513 
14514 	return queue;
14515 out_fail:
14516 	lpfc_sli4_queue_free(queue);
14517 	return NULL;
14518 }
14519 
14520 /**
14521  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14522  * @phba: HBA structure that indicates port to create a queue on.
14523  * @pci_barset: PCI BAR set flag.
14524  *
14525  * This function shall perform iomap of the specified PCI BAR address to host
14526  * memory address if not already done so and return it. The returned host
14527  * memory address can be NULL.
14528  */
14529 static void __iomem *
14530 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14531 {
14532 	if (!phba->pcidev)
14533 		return NULL;
14534 
14535 	switch (pci_barset) {
14536 	case WQ_PCI_BAR_0_AND_1:
14537 		return phba->pci_bar0_memmap_p;
14538 	case WQ_PCI_BAR_2_AND_3:
14539 		return phba->pci_bar2_memmap_p;
14540 	case WQ_PCI_BAR_4_AND_5:
14541 		return phba->pci_bar4_memmap_p;
14542 	default:
14543 		break;
14544 	}
14545 	return NULL;
14546 }
14547 
14548 /**
14549  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14550  * @phba: HBA structure that EQs are on.
14551  * @startq: The starting EQ index to modify
14552  * @numq: The number of EQs (consecutive indexes) to modify
14553  * @usdelay: amount of delay
14554  *
14555  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14556  * is set either by writing to a register (if supported by the SLI Port)
14557  * or by mailbox command. The mailbox command allows several EQs to be
14558  * updated at once.
14559  *
14560  * The @phba struct is used to send a mailbox command to HBA. The @startq
14561  * is used to get the starting EQ index to change. The @numq value is
14562  * used to specify how many consecutive EQ indexes, starting at EQ index,
14563  * are to be changed. This function is asynchronous and will wait for any
14564  * mailbox commands to finish before returning.
14565  *
14566  * On success this function will return a zero. If unable to allocate
14567  * enough memory this function will return -ENOMEM. If a mailbox command
14568  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14569  * have had their delay multipler changed.
14570  **/
14571 void
14572 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14573 			 uint32_t numq, uint32_t usdelay)
14574 {
14575 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14576 	LPFC_MBOXQ_t *mbox;
14577 	struct lpfc_queue *eq;
14578 	int cnt = 0, rc, length;
14579 	uint32_t shdr_status, shdr_add_status;
14580 	uint32_t dmult;
14581 	int qidx;
14582 	union lpfc_sli4_cfg_shdr *shdr;
14583 
14584 	if (startq >= phba->cfg_irq_chann)
14585 		return;
14586 
14587 	if (usdelay > 0xFFFF) {
14588 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14589 				"6429 usdelay %d too large. Scaled down to "
14590 				"0xFFFF.\n", usdelay);
14591 		usdelay = 0xFFFF;
14592 	}
14593 
14594 	/* set values by EQ_DELAY register if supported */
14595 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14596 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14597 			eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14598 			if (!eq)
14599 				continue;
14600 
14601 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14602 
14603 			if (++cnt >= numq)
14604 				break;
14605 		}
14606 
14607 		return;
14608 	}
14609 
14610 	/* Otherwise, set values by mailbox cmd */
14611 
14612 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14613 	if (!mbox) {
14614 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14615 				"6428 Failed allocating mailbox cmd buffer."
14616 				" EQ delay was not set.\n");
14617 		return;
14618 	}
14619 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14620 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14621 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14622 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14623 			 length, LPFC_SLI4_MBX_EMBED);
14624 	eq_delay = &mbox->u.mqe.un.eq_delay;
14625 
14626 	/* Calculate delay multiper from maximum interrupt per second */
14627 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14628 	if (dmult)
14629 		dmult--;
14630 	if (dmult > LPFC_DMULT_MAX)
14631 		dmult = LPFC_DMULT_MAX;
14632 
14633 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14634 		eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14635 		if (!eq)
14636 			continue;
14637 		eq->q_mode = usdelay;
14638 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14639 		eq_delay->u.request.eq[cnt].phase = 0;
14640 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14641 
14642 		if (++cnt >= numq)
14643 			break;
14644 	}
14645 	eq_delay->u.request.num_eq = cnt;
14646 
14647 	mbox->vport = phba->pport;
14648 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14649 	mbox->ctx_buf = NULL;
14650 	mbox->ctx_ndlp = NULL;
14651 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14652 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14653 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14654 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14655 	if (shdr_status || shdr_add_status || rc) {
14656 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14657 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14658 				"status x%x add_status x%x, mbx status x%x\n",
14659 				shdr_status, shdr_add_status, rc);
14660 	}
14661 	mempool_free(mbox, phba->mbox_mem_pool);
14662 	return;
14663 }
14664 
14665 /**
14666  * lpfc_eq_create - Create an Event Queue on the HBA
14667  * @phba: HBA structure that indicates port to create a queue on.
14668  * @eq: The queue structure to use to create the event queue.
14669  * @imax: The maximum interrupt per second limit.
14670  *
14671  * This function creates an event queue, as detailed in @eq, on a port,
14672  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14673  *
14674  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14675  * is used to get the entry count and entry size that are necessary to
14676  * determine the number of pages to allocate and use for this queue. This
14677  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14678  * event queue. This function is asynchronous and will wait for the mailbox
14679  * command to finish before continuing.
14680  *
14681  * On success this function will return a zero. If unable to allocate enough
14682  * memory this function will return -ENOMEM. If the queue create mailbox command
14683  * fails this function will return -ENXIO.
14684  **/
14685 int
14686 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14687 {
14688 	struct lpfc_mbx_eq_create *eq_create;
14689 	LPFC_MBOXQ_t *mbox;
14690 	int rc, length, status = 0;
14691 	struct lpfc_dmabuf *dmabuf;
14692 	uint32_t shdr_status, shdr_add_status;
14693 	union lpfc_sli4_cfg_shdr *shdr;
14694 	uint16_t dmult;
14695 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14696 
14697 	/* sanity check on queue memory */
14698 	if (!eq)
14699 		return -ENODEV;
14700 	if (!phba->sli4_hba.pc_sli4_params.supported)
14701 		hw_page_size = SLI4_PAGE_SIZE;
14702 
14703 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14704 	if (!mbox)
14705 		return -ENOMEM;
14706 	length = (sizeof(struct lpfc_mbx_eq_create) -
14707 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14708 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14709 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14710 			 length, LPFC_SLI4_MBX_EMBED);
14711 	eq_create = &mbox->u.mqe.un.eq_create;
14712 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14713 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14714 	       eq->page_count);
14715 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14716 	       LPFC_EQE_SIZE);
14717 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14718 
14719 	/* Use version 2 of CREATE_EQ if eqav is set */
14720 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14721 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14722 		       LPFC_Q_CREATE_VERSION_2);
14723 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14724 		       phba->sli4_hba.pc_sli4_params.eqav);
14725 	}
14726 
14727 	/* don't setup delay multiplier using EQ_CREATE */
14728 	dmult = 0;
14729 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14730 	       dmult);
14731 	switch (eq->entry_count) {
14732 	default:
14733 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14734 				"0360 Unsupported EQ count. (%d)\n",
14735 				eq->entry_count);
14736 		if (eq->entry_count < 256)
14737 			return -EINVAL;
14738 		/* fall through - otherwise default to smallest count */
14739 	case 256:
14740 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14741 		       LPFC_EQ_CNT_256);
14742 		break;
14743 	case 512:
14744 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14745 		       LPFC_EQ_CNT_512);
14746 		break;
14747 	case 1024:
14748 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14749 		       LPFC_EQ_CNT_1024);
14750 		break;
14751 	case 2048:
14752 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14753 		       LPFC_EQ_CNT_2048);
14754 		break;
14755 	case 4096:
14756 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14757 		       LPFC_EQ_CNT_4096);
14758 		break;
14759 	}
14760 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14761 		memset(dmabuf->virt, 0, hw_page_size);
14762 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14763 					putPaddrLow(dmabuf->phys);
14764 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14765 					putPaddrHigh(dmabuf->phys);
14766 	}
14767 	mbox->vport = phba->pport;
14768 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14769 	mbox->ctx_buf = NULL;
14770 	mbox->ctx_ndlp = NULL;
14771 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14772 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14773 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14774 	if (shdr_status || shdr_add_status || rc) {
14775 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14776 				"2500 EQ_CREATE mailbox failed with "
14777 				"status x%x add_status x%x, mbx status x%x\n",
14778 				shdr_status, shdr_add_status, rc);
14779 		status = -ENXIO;
14780 	}
14781 	eq->type = LPFC_EQ;
14782 	eq->subtype = LPFC_NONE;
14783 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14784 	if (eq->queue_id == 0xFFFF)
14785 		status = -ENXIO;
14786 	eq->host_index = 0;
14787 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14788 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14789 
14790 	mempool_free(mbox, phba->mbox_mem_pool);
14791 	return status;
14792 }
14793 
14794 /**
14795  * lpfc_cq_create - Create a Completion Queue on the HBA
14796  * @phba: HBA structure that indicates port to create a queue on.
14797  * @cq: The queue structure to use to create the completion queue.
14798  * @eq: The event queue to bind this completion queue to.
14799  *
14800  * This function creates a completion queue, as detailed in @wq, on a port,
14801  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14802  *
14803  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14804  * is used to get the entry count and entry size that are necessary to
14805  * determine the number of pages to allocate and use for this queue. The @eq
14806  * is used to indicate which event queue to bind this completion queue to. This
14807  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14808  * completion queue. This function is asynchronous and will wait for the mailbox
14809  * command to finish before continuing.
14810  *
14811  * On success this function will return a zero. If unable to allocate enough
14812  * memory this function will return -ENOMEM. If the queue create mailbox command
14813  * fails this function will return -ENXIO.
14814  **/
14815 int
14816 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14817 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14818 {
14819 	struct lpfc_mbx_cq_create *cq_create;
14820 	struct lpfc_dmabuf *dmabuf;
14821 	LPFC_MBOXQ_t *mbox;
14822 	int rc, length, status = 0;
14823 	uint32_t shdr_status, shdr_add_status;
14824 	union lpfc_sli4_cfg_shdr *shdr;
14825 
14826 	/* sanity check on queue memory */
14827 	if (!cq || !eq)
14828 		return -ENODEV;
14829 
14830 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14831 	if (!mbox)
14832 		return -ENOMEM;
14833 	length = (sizeof(struct lpfc_mbx_cq_create) -
14834 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14835 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14836 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14837 			 length, LPFC_SLI4_MBX_EMBED);
14838 	cq_create = &mbox->u.mqe.un.cq_create;
14839 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14840 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14841 		    cq->page_count);
14842 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14843 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14844 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14845 	       phba->sli4_hba.pc_sli4_params.cqv);
14846 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14847 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14848 		       (cq->page_size / SLI4_PAGE_SIZE));
14849 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14850 		       eq->queue_id);
14851 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14852 		       phba->sli4_hba.pc_sli4_params.cqav);
14853 	} else {
14854 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14855 		       eq->queue_id);
14856 	}
14857 	switch (cq->entry_count) {
14858 	case 2048:
14859 	case 4096:
14860 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14861 		    LPFC_Q_CREATE_VERSION_2) {
14862 			cq_create->u.request.context.lpfc_cq_context_count =
14863 				cq->entry_count;
14864 			bf_set(lpfc_cq_context_count,
14865 			       &cq_create->u.request.context,
14866 			       LPFC_CQ_CNT_WORD7);
14867 			break;
14868 		}
14869 		/* fall through */
14870 	default:
14871 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14872 				"0361 Unsupported CQ count: "
14873 				"entry cnt %d sz %d pg cnt %d\n",
14874 				cq->entry_count, cq->entry_size,
14875 				cq->page_count);
14876 		if (cq->entry_count < 256) {
14877 			status = -EINVAL;
14878 			goto out;
14879 		}
14880 		/* fall through - otherwise default to smallest count */
14881 	case 256:
14882 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14883 		       LPFC_CQ_CNT_256);
14884 		break;
14885 	case 512:
14886 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14887 		       LPFC_CQ_CNT_512);
14888 		break;
14889 	case 1024:
14890 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14891 		       LPFC_CQ_CNT_1024);
14892 		break;
14893 	}
14894 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14895 		memset(dmabuf->virt, 0, cq->page_size);
14896 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14897 					putPaddrLow(dmabuf->phys);
14898 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14899 					putPaddrHigh(dmabuf->phys);
14900 	}
14901 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14902 
14903 	/* The IOCTL status is embedded in the mailbox subheader. */
14904 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14905 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14906 	if (shdr_status || shdr_add_status || rc) {
14907 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14908 				"2501 CQ_CREATE mailbox failed with "
14909 				"status x%x add_status x%x, mbx status x%x\n",
14910 				shdr_status, shdr_add_status, rc);
14911 		status = -ENXIO;
14912 		goto out;
14913 	}
14914 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14915 	if (cq->queue_id == 0xFFFF) {
14916 		status = -ENXIO;
14917 		goto out;
14918 	}
14919 	/* link the cq onto the parent eq child list */
14920 	list_add_tail(&cq->list, &eq->child_list);
14921 	/* Set up completion queue's type and subtype */
14922 	cq->type = type;
14923 	cq->subtype = subtype;
14924 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14925 	cq->assoc_qid = eq->queue_id;
14926 	cq->assoc_qp = eq;
14927 	cq->host_index = 0;
14928 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14929 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14930 
14931 	if (cq->queue_id > phba->sli4_hba.cq_max)
14932 		phba->sli4_hba.cq_max = cq->queue_id;
14933 out:
14934 	mempool_free(mbox, phba->mbox_mem_pool);
14935 	return status;
14936 }
14937 
14938 /**
14939  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14940  * @phba: HBA structure that indicates port to create a queue on.
14941  * @cqp: The queue structure array to use to create the completion queues.
14942  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
14943  *
14944  * This function creates a set of  completion queue, s to support MRQ
14945  * as detailed in @cqp, on a port,
14946  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14947  *
14948  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14949  * is used to get the entry count and entry size that are necessary to
14950  * determine the number of pages to allocate and use for this queue. The @eq
14951  * is used to indicate which event queue to bind this completion queue to. This
14952  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14953  * completion queue. This function is asynchronous and will wait for the mailbox
14954  * command to finish before continuing.
14955  *
14956  * On success this function will return a zero. If unable to allocate enough
14957  * memory this function will return -ENOMEM. If the queue create mailbox command
14958  * fails this function will return -ENXIO.
14959  **/
14960 int
14961 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14962 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14963 		   uint32_t subtype)
14964 {
14965 	struct lpfc_queue *cq;
14966 	struct lpfc_queue *eq;
14967 	struct lpfc_mbx_cq_create_set *cq_set;
14968 	struct lpfc_dmabuf *dmabuf;
14969 	LPFC_MBOXQ_t *mbox;
14970 	int rc, length, alloclen, status = 0;
14971 	int cnt, idx, numcq, page_idx = 0;
14972 	uint32_t shdr_status, shdr_add_status;
14973 	union lpfc_sli4_cfg_shdr *shdr;
14974 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14975 
14976 	/* sanity check on queue memory */
14977 	numcq = phba->cfg_nvmet_mrq;
14978 	if (!cqp || !hdwq || !numcq)
14979 		return -ENODEV;
14980 
14981 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14982 	if (!mbox)
14983 		return -ENOMEM;
14984 
14985 	length = sizeof(struct lpfc_mbx_cq_create_set);
14986 	length += ((numcq * cqp[0]->page_count) *
14987 		   sizeof(struct dma_address));
14988 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14989 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14990 			LPFC_SLI4_MBX_NEMBED);
14991 	if (alloclen < length) {
14992 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14993 				"3098 Allocated DMA memory size (%d) is "
14994 				"less than the requested DMA memory size "
14995 				"(%d)\n", alloclen, length);
14996 		status = -ENOMEM;
14997 		goto out;
14998 	}
14999 	cq_set = mbox->sge_array->addr[0];
15000 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15001 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15002 
15003 	for (idx = 0; idx < numcq; idx++) {
15004 		cq = cqp[idx];
15005 		eq = hdwq[idx].hba_eq;
15006 		if (!cq || !eq) {
15007 			status = -ENOMEM;
15008 			goto out;
15009 		}
15010 		if (!phba->sli4_hba.pc_sli4_params.supported)
15011 			hw_page_size = cq->page_size;
15012 
15013 		switch (idx) {
15014 		case 0:
15015 			bf_set(lpfc_mbx_cq_create_set_page_size,
15016 			       &cq_set->u.request,
15017 			       (hw_page_size / SLI4_PAGE_SIZE));
15018 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15019 			       &cq_set->u.request, cq->page_count);
15020 			bf_set(lpfc_mbx_cq_create_set_evt,
15021 			       &cq_set->u.request, 1);
15022 			bf_set(lpfc_mbx_cq_create_set_valid,
15023 			       &cq_set->u.request, 1);
15024 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15025 			       &cq_set->u.request, 0);
15026 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15027 			       &cq_set->u.request, numcq);
15028 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15029 			       &cq_set->u.request,
15030 			       phba->sli4_hba.pc_sli4_params.cqav);
15031 			switch (cq->entry_count) {
15032 			case 2048:
15033 			case 4096:
15034 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15035 				    LPFC_Q_CREATE_VERSION_2) {
15036 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15037 					       &cq_set->u.request,
15038 						cq->entry_count);
15039 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15040 					       &cq_set->u.request,
15041 					       LPFC_CQ_CNT_WORD7);
15042 					break;
15043 				}
15044 				/* fall through */
15045 			default:
15046 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15047 						"3118 Bad CQ count. (%d)\n",
15048 						cq->entry_count);
15049 				if (cq->entry_count < 256) {
15050 					status = -EINVAL;
15051 					goto out;
15052 				}
15053 				/* fall through - otherwise default to smallest */
15054 			case 256:
15055 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15056 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15057 				break;
15058 			case 512:
15059 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15060 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15061 				break;
15062 			case 1024:
15063 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15064 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15065 				break;
15066 			}
15067 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15068 			       &cq_set->u.request, eq->queue_id);
15069 			break;
15070 		case 1:
15071 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15072 			       &cq_set->u.request, eq->queue_id);
15073 			break;
15074 		case 2:
15075 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15076 			       &cq_set->u.request, eq->queue_id);
15077 			break;
15078 		case 3:
15079 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15080 			       &cq_set->u.request, eq->queue_id);
15081 			break;
15082 		case 4:
15083 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15084 			       &cq_set->u.request, eq->queue_id);
15085 			break;
15086 		case 5:
15087 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15088 			       &cq_set->u.request, eq->queue_id);
15089 			break;
15090 		case 6:
15091 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15092 			       &cq_set->u.request, eq->queue_id);
15093 			break;
15094 		case 7:
15095 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15096 			       &cq_set->u.request, eq->queue_id);
15097 			break;
15098 		case 8:
15099 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15100 			       &cq_set->u.request, eq->queue_id);
15101 			break;
15102 		case 9:
15103 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15104 			       &cq_set->u.request, eq->queue_id);
15105 			break;
15106 		case 10:
15107 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15108 			       &cq_set->u.request, eq->queue_id);
15109 			break;
15110 		case 11:
15111 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15112 			       &cq_set->u.request, eq->queue_id);
15113 			break;
15114 		case 12:
15115 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15116 			       &cq_set->u.request, eq->queue_id);
15117 			break;
15118 		case 13:
15119 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15120 			       &cq_set->u.request, eq->queue_id);
15121 			break;
15122 		case 14:
15123 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15124 			       &cq_set->u.request, eq->queue_id);
15125 			break;
15126 		case 15:
15127 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15128 			       &cq_set->u.request, eq->queue_id);
15129 			break;
15130 		}
15131 
15132 		/* link the cq onto the parent eq child list */
15133 		list_add_tail(&cq->list, &eq->child_list);
15134 		/* Set up completion queue's type and subtype */
15135 		cq->type = type;
15136 		cq->subtype = subtype;
15137 		cq->assoc_qid = eq->queue_id;
15138 		cq->assoc_qp = eq;
15139 		cq->host_index = 0;
15140 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15141 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15142 					 cq->entry_count);
15143 		cq->chann = idx;
15144 
15145 		rc = 0;
15146 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15147 			memset(dmabuf->virt, 0, hw_page_size);
15148 			cnt = page_idx + dmabuf->buffer_tag;
15149 			cq_set->u.request.page[cnt].addr_lo =
15150 					putPaddrLow(dmabuf->phys);
15151 			cq_set->u.request.page[cnt].addr_hi =
15152 					putPaddrHigh(dmabuf->phys);
15153 			rc++;
15154 		}
15155 		page_idx += rc;
15156 	}
15157 
15158 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15159 
15160 	/* The IOCTL status is embedded in the mailbox subheader. */
15161 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15162 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15163 	if (shdr_status || shdr_add_status || rc) {
15164 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15165 				"3119 CQ_CREATE_SET mailbox failed with "
15166 				"status x%x add_status x%x, mbx status x%x\n",
15167 				shdr_status, shdr_add_status, rc);
15168 		status = -ENXIO;
15169 		goto out;
15170 	}
15171 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15172 	if (rc == 0xFFFF) {
15173 		status = -ENXIO;
15174 		goto out;
15175 	}
15176 
15177 	for (idx = 0; idx < numcq; idx++) {
15178 		cq = cqp[idx];
15179 		cq->queue_id = rc + idx;
15180 		if (cq->queue_id > phba->sli4_hba.cq_max)
15181 			phba->sli4_hba.cq_max = cq->queue_id;
15182 	}
15183 
15184 out:
15185 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15186 	return status;
15187 }
15188 
15189 /**
15190  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15191  * @phba: HBA structure that indicates port to create a queue on.
15192  * @mq: The queue structure to use to create the mailbox queue.
15193  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15194  * @cq: The completion queue to associate with this cq.
15195  *
15196  * This function provides failback (fb) functionality when the
15197  * mq_create_ext fails on older FW generations.  It's purpose is identical
15198  * to mq_create_ext otherwise.
15199  *
15200  * This routine cannot fail as all attributes were previously accessed and
15201  * initialized in mq_create_ext.
15202  **/
15203 static void
15204 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15205 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15206 {
15207 	struct lpfc_mbx_mq_create *mq_create;
15208 	struct lpfc_dmabuf *dmabuf;
15209 	int length;
15210 
15211 	length = (sizeof(struct lpfc_mbx_mq_create) -
15212 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15213 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15214 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15215 			 length, LPFC_SLI4_MBX_EMBED);
15216 	mq_create = &mbox->u.mqe.un.mq_create;
15217 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15218 	       mq->page_count);
15219 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15220 	       cq->queue_id);
15221 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15222 	switch (mq->entry_count) {
15223 	case 16:
15224 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15225 		       LPFC_MQ_RING_SIZE_16);
15226 		break;
15227 	case 32:
15228 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15229 		       LPFC_MQ_RING_SIZE_32);
15230 		break;
15231 	case 64:
15232 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15233 		       LPFC_MQ_RING_SIZE_64);
15234 		break;
15235 	case 128:
15236 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15237 		       LPFC_MQ_RING_SIZE_128);
15238 		break;
15239 	}
15240 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15241 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15242 			putPaddrLow(dmabuf->phys);
15243 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15244 			putPaddrHigh(dmabuf->phys);
15245 	}
15246 }
15247 
15248 /**
15249  * lpfc_mq_create - Create a mailbox Queue on the HBA
15250  * @phba: HBA structure that indicates port to create a queue on.
15251  * @mq: The queue structure to use to create the mailbox queue.
15252  * @cq: The completion queue to associate with this cq.
15253  * @subtype: The queue's subtype.
15254  *
15255  * This function creates a mailbox queue, as detailed in @mq, on a port,
15256  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15257  *
15258  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15259  * is used to get the entry count and entry size that are necessary to
15260  * determine the number of pages to allocate and use for this queue. This
15261  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15262  * mailbox queue. This function is asynchronous and will wait for the mailbox
15263  * command to finish before continuing.
15264  *
15265  * On success this function will return a zero. If unable to allocate enough
15266  * memory this function will return -ENOMEM. If the queue create mailbox command
15267  * fails this function will return -ENXIO.
15268  **/
15269 int32_t
15270 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15271 	       struct lpfc_queue *cq, uint32_t subtype)
15272 {
15273 	struct lpfc_mbx_mq_create *mq_create;
15274 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15275 	struct lpfc_dmabuf *dmabuf;
15276 	LPFC_MBOXQ_t *mbox;
15277 	int rc, length, status = 0;
15278 	uint32_t shdr_status, shdr_add_status;
15279 	union lpfc_sli4_cfg_shdr *shdr;
15280 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15281 
15282 	/* sanity check on queue memory */
15283 	if (!mq || !cq)
15284 		return -ENODEV;
15285 	if (!phba->sli4_hba.pc_sli4_params.supported)
15286 		hw_page_size = SLI4_PAGE_SIZE;
15287 
15288 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15289 	if (!mbox)
15290 		return -ENOMEM;
15291 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15292 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15293 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15294 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15295 			 length, LPFC_SLI4_MBX_EMBED);
15296 
15297 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15298 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15299 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15300 	       &mq_create_ext->u.request, mq->page_count);
15301 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15302 	       &mq_create_ext->u.request, 1);
15303 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15304 	       &mq_create_ext->u.request, 1);
15305 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15306 	       &mq_create_ext->u.request, 1);
15307 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15308 	       &mq_create_ext->u.request, 1);
15309 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15310 	       &mq_create_ext->u.request, 1);
15311 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15312 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15313 	       phba->sli4_hba.pc_sli4_params.mqv);
15314 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15315 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15316 		       cq->queue_id);
15317 	else
15318 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15319 		       cq->queue_id);
15320 	switch (mq->entry_count) {
15321 	default:
15322 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15323 				"0362 Unsupported MQ count. (%d)\n",
15324 				mq->entry_count);
15325 		if (mq->entry_count < 16) {
15326 			status = -EINVAL;
15327 			goto out;
15328 		}
15329 		/* fall through - otherwise default to smallest count */
15330 	case 16:
15331 		bf_set(lpfc_mq_context_ring_size,
15332 		       &mq_create_ext->u.request.context,
15333 		       LPFC_MQ_RING_SIZE_16);
15334 		break;
15335 	case 32:
15336 		bf_set(lpfc_mq_context_ring_size,
15337 		       &mq_create_ext->u.request.context,
15338 		       LPFC_MQ_RING_SIZE_32);
15339 		break;
15340 	case 64:
15341 		bf_set(lpfc_mq_context_ring_size,
15342 		       &mq_create_ext->u.request.context,
15343 		       LPFC_MQ_RING_SIZE_64);
15344 		break;
15345 	case 128:
15346 		bf_set(lpfc_mq_context_ring_size,
15347 		       &mq_create_ext->u.request.context,
15348 		       LPFC_MQ_RING_SIZE_128);
15349 		break;
15350 	}
15351 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15352 		memset(dmabuf->virt, 0, hw_page_size);
15353 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15354 					putPaddrLow(dmabuf->phys);
15355 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15356 					putPaddrHigh(dmabuf->phys);
15357 	}
15358 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15359 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15360 			      &mq_create_ext->u.response);
15361 	if (rc != MBX_SUCCESS) {
15362 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15363 				"2795 MQ_CREATE_EXT failed with "
15364 				"status x%x. Failback to MQ_CREATE.\n",
15365 				rc);
15366 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15367 		mq_create = &mbox->u.mqe.un.mq_create;
15368 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15369 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15370 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15371 				      &mq_create->u.response);
15372 	}
15373 
15374 	/* The IOCTL status is embedded in the mailbox subheader. */
15375 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15376 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15377 	if (shdr_status || shdr_add_status || rc) {
15378 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15379 				"2502 MQ_CREATE mailbox failed with "
15380 				"status x%x add_status x%x, mbx status x%x\n",
15381 				shdr_status, shdr_add_status, rc);
15382 		status = -ENXIO;
15383 		goto out;
15384 	}
15385 	if (mq->queue_id == 0xFFFF) {
15386 		status = -ENXIO;
15387 		goto out;
15388 	}
15389 	mq->type = LPFC_MQ;
15390 	mq->assoc_qid = cq->queue_id;
15391 	mq->subtype = subtype;
15392 	mq->host_index = 0;
15393 	mq->hba_index = 0;
15394 
15395 	/* link the mq onto the parent cq child list */
15396 	list_add_tail(&mq->list, &cq->child_list);
15397 out:
15398 	mempool_free(mbox, phba->mbox_mem_pool);
15399 	return status;
15400 }
15401 
15402 /**
15403  * lpfc_wq_create - Create a Work Queue on the HBA
15404  * @phba: HBA structure that indicates port to create a queue on.
15405  * @wq: The queue structure to use to create the work queue.
15406  * @cq: The completion queue to bind this work queue to.
15407  * @subtype: The subtype of the work queue indicating its functionality.
15408  *
15409  * This function creates a work queue, as detailed in @wq, on a port, described
15410  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15411  *
15412  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15413  * is used to get the entry count and entry size that are necessary to
15414  * determine the number of pages to allocate and use for this queue. The @cq
15415  * is used to indicate which completion queue to bind this work queue to. This
15416  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15417  * work queue. This function is asynchronous and will wait for the mailbox
15418  * command to finish before continuing.
15419  *
15420  * On success this function will return a zero. If unable to allocate enough
15421  * memory this function will return -ENOMEM. If the queue create mailbox command
15422  * fails this function will return -ENXIO.
15423  **/
15424 int
15425 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15426 	       struct lpfc_queue *cq, uint32_t subtype)
15427 {
15428 	struct lpfc_mbx_wq_create *wq_create;
15429 	struct lpfc_dmabuf *dmabuf;
15430 	LPFC_MBOXQ_t *mbox;
15431 	int rc, length, status = 0;
15432 	uint32_t shdr_status, shdr_add_status;
15433 	union lpfc_sli4_cfg_shdr *shdr;
15434 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15435 	struct dma_address *page;
15436 	void __iomem *bar_memmap_p;
15437 	uint32_t db_offset;
15438 	uint16_t pci_barset;
15439 	uint8_t dpp_barset;
15440 	uint32_t dpp_offset;
15441 	unsigned long pg_addr;
15442 	uint8_t wq_create_version;
15443 
15444 	/* sanity check on queue memory */
15445 	if (!wq || !cq)
15446 		return -ENODEV;
15447 	if (!phba->sli4_hba.pc_sli4_params.supported)
15448 		hw_page_size = wq->page_size;
15449 
15450 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15451 	if (!mbox)
15452 		return -ENOMEM;
15453 	length = (sizeof(struct lpfc_mbx_wq_create) -
15454 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15455 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15456 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15457 			 length, LPFC_SLI4_MBX_EMBED);
15458 	wq_create = &mbox->u.mqe.un.wq_create;
15459 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15460 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15461 		    wq->page_count);
15462 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15463 		    cq->queue_id);
15464 
15465 	/* wqv is the earliest version supported, NOT the latest */
15466 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15467 	       phba->sli4_hba.pc_sli4_params.wqv);
15468 
15469 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15470 	    (wq->page_size > SLI4_PAGE_SIZE))
15471 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15472 	else
15473 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15474 
15475 
15476 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15477 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15478 	else
15479 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15480 
15481 	switch (wq_create_version) {
15482 	case LPFC_Q_CREATE_VERSION_1:
15483 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15484 		       wq->entry_count);
15485 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15486 		       LPFC_Q_CREATE_VERSION_1);
15487 
15488 		switch (wq->entry_size) {
15489 		default:
15490 		case 64:
15491 			bf_set(lpfc_mbx_wq_create_wqe_size,
15492 			       &wq_create->u.request_1,
15493 			       LPFC_WQ_WQE_SIZE_64);
15494 			break;
15495 		case 128:
15496 			bf_set(lpfc_mbx_wq_create_wqe_size,
15497 			       &wq_create->u.request_1,
15498 			       LPFC_WQ_WQE_SIZE_128);
15499 			break;
15500 		}
15501 		/* Request DPP by default */
15502 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15503 		bf_set(lpfc_mbx_wq_create_page_size,
15504 		       &wq_create->u.request_1,
15505 		       (wq->page_size / SLI4_PAGE_SIZE));
15506 		page = wq_create->u.request_1.page;
15507 		break;
15508 	default:
15509 		page = wq_create->u.request.page;
15510 		break;
15511 	}
15512 
15513 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15514 		memset(dmabuf->virt, 0, hw_page_size);
15515 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15516 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15517 	}
15518 
15519 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15520 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15521 
15522 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15523 	/* The IOCTL status is embedded in the mailbox subheader. */
15524 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15525 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15526 	if (shdr_status || shdr_add_status || rc) {
15527 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15528 				"2503 WQ_CREATE mailbox failed with "
15529 				"status x%x add_status x%x, mbx status x%x\n",
15530 				shdr_status, shdr_add_status, rc);
15531 		status = -ENXIO;
15532 		goto out;
15533 	}
15534 
15535 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15536 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15537 					&wq_create->u.response);
15538 	else
15539 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15540 					&wq_create->u.response_1);
15541 
15542 	if (wq->queue_id == 0xFFFF) {
15543 		status = -ENXIO;
15544 		goto out;
15545 	}
15546 
15547 	wq->db_format = LPFC_DB_LIST_FORMAT;
15548 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15549 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15550 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15551 					       &wq_create->u.response);
15552 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15553 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15554 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15555 						"3265 WQ[%d] doorbell format "
15556 						"not supported: x%x\n",
15557 						wq->queue_id, wq->db_format);
15558 				status = -EINVAL;
15559 				goto out;
15560 			}
15561 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15562 					    &wq_create->u.response);
15563 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15564 								   pci_barset);
15565 			if (!bar_memmap_p) {
15566 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15567 						"3263 WQ[%d] failed to memmap "
15568 						"pci barset:x%x\n",
15569 						wq->queue_id, pci_barset);
15570 				status = -ENOMEM;
15571 				goto out;
15572 			}
15573 			db_offset = wq_create->u.response.doorbell_offset;
15574 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15575 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15576 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15577 						"3252 WQ[%d] doorbell offset "
15578 						"not supported: x%x\n",
15579 						wq->queue_id, db_offset);
15580 				status = -EINVAL;
15581 				goto out;
15582 			}
15583 			wq->db_regaddr = bar_memmap_p + db_offset;
15584 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15585 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15586 					"format:x%x\n", wq->queue_id,
15587 					pci_barset, db_offset, wq->db_format);
15588 		} else
15589 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15590 	} else {
15591 		/* Check if DPP was honored by the firmware */
15592 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15593 				    &wq_create->u.response_1);
15594 		if (wq->dpp_enable) {
15595 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15596 					    &wq_create->u.response_1);
15597 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15598 								   pci_barset);
15599 			if (!bar_memmap_p) {
15600 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15601 						"3267 WQ[%d] failed to memmap "
15602 						"pci barset:x%x\n",
15603 						wq->queue_id, pci_barset);
15604 				status = -ENOMEM;
15605 				goto out;
15606 			}
15607 			db_offset = wq_create->u.response_1.doorbell_offset;
15608 			wq->db_regaddr = bar_memmap_p + db_offset;
15609 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15610 					    &wq_create->u.response_1);
15611 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15612 					    &wq_create->u.response_1);
15613 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15614 								   dpp_barset);
15615 			if (!bar_memmap_p) {
15616 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15617 						"3268 WQ[%d] failed to memmap "
15618 						"pci barset:x%x\n",
15619 						wq->queue_id, dpp_barset);
15620 				status = -ENOMEM;
15621 				goto out;
15622 			}
15623 			dpp_offset = wq_create->u.response_1.dpp_offset;
15624 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15625 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15626 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15627 					"dpp_id:x%x dpp_barset:x%x "
15628 					"dpp_offset:x%x\n",
15629 					wq->queue_id, pci_barset, db_offset,
15630 					wq->dpp_id, dpp_barset, dpp_offset);
15631 
15632 			/* Enable combined writes for DPP aperture */
15633 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15634 #ifdef CONFIG_X86
15635 			rc = set_memory_wc(pg_addr, 1);
15636 			if (rc) {
15637 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15638 					"3272 Cannot setup Combined "
15639 					"Write on WQ[%d] - disable DPP\n",
15640 					wq->queue_id);
15641 				phba->cfg_enable_dpp = 0;
15642 			}
15643 #else
15644 			phba->cfg_enable_dpp = 0;
15645 #endif
15646 		} else
15647 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15648 	}
15649 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15650 	if (wq->pring == NULL) {
15651 		status = -ENOMEM;
15652 		goto out;
15653 	}
15654 	wq->type = LPFC_WQ;
15655 	wq->assoc_qid = cq->queue_id;
15656 	wq->subtype = subtype;
15657 	wq->host_index = 0;
15658 	wq->hba_index = 0;
15659 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15660 
15661 	/* link the wq onto the parent cq child list */
15662 	list_add_tail(&wq->list, &cq->child_list);
15663 out:
15664 	mempool_free(mbox, phba->mbox_mem_pool);
15665 	return status;
15666 }
15667 
15668 /**
15669  * lpfc_rq_create - Create a Receive Queue on the HBA
15670  * @phba: HBA structure that indicates port to create a queue on.
15671  * @hrq: The queue structure to use to create the header receive queue.
15672  * @drq: The queue structure to use to create the data receive queue.
15673  * @cq: The completion queue to bind this work queue to.
15674  *
15675  * This function creates a receive buffer queue pair , as detailed in @hrq and
15676  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15677  * to the HBA.
15678  *
15679  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15680  * struct is used to get the entry count that is necessary to determine the
15681  * number of pages to use for this queue. The @cq is used to indicate which
15682  * completion queue to bind received buffers that are posted to these queues to.
15683  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15684  * receive queue pair. This function is asynchronous and will wait for the
15685  * mailbox command to finish before continuing.
15686  *
15687  * On success this function will return a zero. If unable to allocate enough
15688  * memory this function will return -ENOMEM. If the queue create mailbox command
15689  * fails this function will return -ENXIO.
15690  **/
15691 int
15692 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15693 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15694 {
15695 	struct lpfc_mbx_rq_create *rq_create;
15696 	struct lpfc_dmabuf *dmabuf;
15697 	LPFC_MBOXQ_t *mbox;
15698 	int rc, length, status = 0;
15699 	uint32_t shdr_status, shdr_add_status;
15700 	union lpfc_sli4_cfg_shdr *shdr;
15701 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15702 	void __iomem *bar_memmap_p;
15703 	uint32_t db_offset;
15704 	uint16_t pci_barset;
15705 
15706 	/* sanity check on queue memory */
15707 	if (!hrq || !drq || !cq)
15708 		return -ENODEV;
15709 	if (!phba->sli4_hba.pc_sli4_params.supported)
15710 		hw_page_size = SLI4_PAGE_SIZE;
15711 
15712 	if (hrq->entry_count != drq->entry_count)
15713 		return -EINVAL;
15714 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15715 	if (!mbox)
15716 		return -ENOMEM;
15717 	length = (sizeof(struct lpfc_mbx_rq_create) -
15718 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15719 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15720 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15721 			 length, LPFC_SLI4_MBX_EMBED);
15722 	rq_create = &mbox->u.mqe.un.rq_create;
15723 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15724 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15725 	       phba->sli4_hba.pc_sli4_params.rqv);
15726 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15727 		bf_set(lpfc_rq_context_rqe_count_1,
15728 		       &rq_create->u.request.context,
15729 		       hrq->entry_count);
15730 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15731 		bf_set(lpfc_rq_context_rqe_size,
15732 		       &rq_create->u.request.context,
15733 		       LPFC_RQE_SIZE_8);
15734 		bf_set(lpfc_rq_context_page_size,
15735 		       &rq_create->u.request.context,
15736 		       LPFC_RQ_PAGE_SIZE_4096);
15737 	} else {
15738 		switch (hrq->entry_count) {
15739 		default:
15740 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15741 					"2535 Unsupported RQ count. (%d)\n",
15742 					hrq->entry_count);
15743 			if (hrq->entry_count < 512) {
15744 				status = -EINVAL;
15745 				goto out;
15746 			}
15747 			/* fall through - otherwise default to smallest count */
15748 		case 512:
15749 			bf_set(lpfc_rq_context_rqe_count,
15750 			       &rq_create->u.request.context,
15751 			       LPFC_RQ_RING_SIZE_512);
15752 			break;
15753 		case 1024:
15754 			bf_set(lpfc_rq_context_rqe_count,
15755 			       &rq_create->u.request.context,
15756 			       LPFC_RQ_RING_SIZE_1024);
15757 			break;
15758 		case 2048:
15759 			bf_set(lpfc_rq_context_rqe_count,
15760 			       &rq_create->u.request.context,
15761 			       LPFC_RQ_RING_SIZE_2048);
15762 			break;
15763 		case 4096:
15764 			bf_set(lpfc_rq_context_rqe_count,
15765 			       &rq_create->u.request.context,
15766 			       LPFC_RQ_RING_SIZE_4096);
15767 			break;
15768 		}
15769 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15770 		       LPFC_HDR_BUF_SIZE);
15771 	}
15772 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15773 	       cq->queue_id);
15774 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15775 	       hrq->page_count);
15776 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15777 		memset(dmabuf->virt, 0, hw_page_size);
15778 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15779 					putPaddrLow(dmabuf->phys);
15780 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15781 					putPaddrHigh(dmabuf->phys);
15782 	}
15783 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15784 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15785 
15786 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15787 	/* The IOCTL status is embedded in the mailbox subheader. */
15788 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15789 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15790 	if (shdr_status || shdr_add_status || rc) {
15791 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15792 				"2504 RQ_CREATE mailbox failed with "
15793 				"status x%x add_status x%x, mbx status x%x\n",
15794 				shdr_status, shdr_add_status, rc);
15795 		status = -ENXIO;
15796 		goto out;
15797 	}
15798 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15799 	if (hrq->queue_id == 0xFFFF) {
15800 		status = -ENXIO;
15801 		goto out;
15802 	}
15803 
15804 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15805 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15806 					&rq_create->u.response);
15807 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15808 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15809 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15810 					"3262 RQ [%d] doorbell format not "
15811 					"supported: x%x\n", hrq->queue_id,
15812 					hrq->db_format);
15813 			status = -EINVAL;
15814 			goto out;
15815 		}
15816 
15817 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15818 				    &rq_create->u.response);
15819 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15820 		if (!bar_memmap_p) {
15821 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15822 					"3269 RQ[%d] failed to memmap pci "
15823 					"barset:x%x\n", hrq->queue_id,
15824 					pci_barset);
15825 			status = -ENOMEM;
15826 			goto out;
15827 		}
15828 
15829 		db_offset = rq_create->u.response.doorbell_offset;
15830 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15831 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15832 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15833 					"3270 RQ[%d] doorbell offset not "
15834 					"supported: x%x\n", hrq->queue_id,
15835 					db_offset);
15836 			status = -EINVAL;
15837 			goto out;
15838 		}
15839 		hrq->db_regaddr = bar_memmap_p + db_offset;
15840 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15841 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15842 				"format:x%x\n", hrq->queue_id, pci_barset,
15843 				db_offset, hrq->db_format);
15844 	} else {
15845 		hrq->db_format = LPFC_DB_RING_FORMAT;
15846 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15847 	}
15848 	hrq->type = LPFC_HRQ;
15849 	hrq->assoc_qid = cq->queue_id;
15850 	hrq->subtype = subtype;
15851 	hrq->host_index = 0;
15852 	hrq->hba_index = 0;
15853 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15854 
15855 	/* now create the data queue */
15856 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15857 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15858 			 length, LPFC_SLI4_MBX_EMBED);
15859 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15860 	       phba->sli4_hba.pc_sli4_params.rqv);
15861 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15862 		bf_set(lpfc_rq_context_rqe_count_1,
15863 		       &rq_create->u.request.context, hrq->entry_count);
15864 		if (subtype == LPFC_NVMET)
15865 			rq_create->u.request.context.buffer_size =
15866 				LPFC_NVMET_DATA_BUF_SIZE;
15867 		else
15868 			rq_create->u.request.context.buffer_size =
15869 				LPFC_DATA_BUF_SIZE;
15870 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15871 		       LPFC_RQE_SIZE_8);
15872 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15873 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15874 	} else {
15875 		switch (drq->entry_count) {
15876 		default:
15877 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15878 					"2536 Unsupported RQ count. (%d)\n",
15879 					drq->entry_count);
15880 			if (drq->entry_count < 512) {
15881 				status = -EINVAL;
15882 				goto out;
15883 			}
15884 			/* fall through - otherwise default to smallest count */
15885 		case 512:
15886 			bf_set(lpfc_rq_context_rqe_count,
15887 			       &rq_create->u.request.context,
15888 			       LPFC_RQ_RING_SIZE_512);
15889 			break;
15890 		case 1024:
15891 			bf_set(lpfc_rq_context_rqe_count,
15892 			       &rq_create->u.request.context,
15893 			       LPFC_RQ_RING_SIZE_1024);
15894 			break;
15895 		case 2048:
15896 			bf_set(lpfc_rq_context_rqe_count,
15897 			       &rq_create->u.request.context,
15898 			       LPFC_RQ_RING_SIZE_2048);
15899 			break;
15900 		case 4096:
15901 			bf_set(lpfc_rq_context_rqe_count,
15902 			       &rq_create->u.request.context,
15903 			       LPFC_RQ_RING_SIZE_4096);
15904 			break;
15905 		}
15906 		if (subtype == LPFC_NVMET)
15907 			bf_set(lpfc_rq_context_buf_size,
15908 			       &rq_create->u.request.context,
15909 			       LPFC_NVMET_DATA_BUF_SIZE);
15910 		else
15911 			bf_set(lpfc_rq_context_buf_size,
15912 			       &rq_create->u.request.context,
15913 			       LPFC_DATA_BUF_SIZE);
15914 	}
15915 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15916 	       cq->queue_id);
15917 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15918 	       drq->page_count);
15919 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15920 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15921 					putPaddrLow(dmabuf->phys);
15922 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15923 					putPaddrHigh(dmabuf->phys);
15924 	}
15925 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15926 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15927 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15928 	/* The IOCTL status is embedded in the mailbox subheader. */
15929 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15930 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15931 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15932 	if (shdr_status || shdr_add_status || rc) {
15933 		status = -ENXIO;
15934 		goto out;
15935 	}
15936 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15937 	if (drq->queue_id == 0xFFFF) {
15938 		status = -ENXIO;
15939 		goto out;
15940 	}
15941 	drq->type = LPFC_DRQ;
15942 	drq->assoc_qid = cq->queue_id;
15943 	drq->subtype = subtype;
15944 	drq->host_index = 0;
15945 	drq->hba_index = 0;
15946 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15947 
15948 	/* link the header and data RQs onto the parent cq child list */
15949 	list_add_tail(&hrq->list, &cq->child_list);
15950 	list_add_tail(&drq->list, &cq->child_list);
15951 
15952 out:
15953 	mempool_free(mbox, phba->mbox_mem_pool);
15954 	return status;
15955 }
15956 
15957 /**
15958  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15959  * @phba: HBA structure that indicates port to create a queue on.
15960  * @hrqp: The queue structure array to use to create the header receive queues.
15961  * @drqp: The queue structure array to use to create the data receive queues.
15962  * @cqp: The completion queue array to bind these receive queues to.
15963  *
15964  * This function creates a receive buffer queue pair , as detailed in @hrq and
15965  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15966  * to the HBA.
15967  *
15968  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15969  * struct is used to get the entry count that is necessary to determine the
15970  * number of pages to use for this queue. The @cq is used to indicate which
15971  * completion queue to bind received buffers that are posted to these queues to.
15972  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15973  * receive queue pair. This function is asynchronous and will wait for the
15974  * mailbox command to finish before continuing.
15975  *
15976  * On success this function will return a zero. If unable to allocate enough
15977  * memory this function will return -ENOMEM. If the queue create mailbox command
15978  * fails this function will return -ENXIO.
15979  **/
15980 int
15981 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15982 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15983 		uint32_t subtype)
15984 {
15985 	struct lpfc_queue *hrq, *drq, *cq;
15986 	struct lpfc_mbx_rq_create_v2 *rq_create;
15987 	struct lpfc_dmabuf *dmabuf;
15988 	LPFC_MBOXQ_t *mbox;
15989 	int rc, length, alloclen, status = 0;
15990 	int cnt, idx, numrq, page_idx = 0;
15991 	uint32_t shdr_status, shdr_add_status;
15992 	union lpfc_sli4_cfg_shdr *shdr;
15993 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15994 
15995 	numrq = phba->cfg_nvmet_mrq;
15996 	/* sanity check on array memory */
15997 	if (!hrqp || !drqp || !cqp || !numrq)
15998 		return -ENODEV;
15999 	if (!phba->sli4_hba.pc_sli4_params.supported)
16000 		hw_page_size = SLI4_PAGE_SIZE;
16001 
16002 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16003 	if (!mbox)
16004 		return -ENOMEM;
16005 
16006 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16007 	length += ((2 * numrq * hrqp[0]->page_count) *
16008 		   sizeof(struct dma_address));
16009 
16010 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16011 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16012 				    LPFC_SLI4_MBX_NEMBED);
16013 	if (alloclen < length) {
16014 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16015 				"3099 Allocated DMA memory size (%d) is "
16016 				"less than the requested DMA memory size "
16017 				"(%d)\n", alloclen, length);
16018 		status = -ENOMEM;
16019 		goto out;
16020 	}
16021 
16022 
16023 
16024 	rq_create = mbox->sge_array->addr[0];
16025 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16026 
16027 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16028 	cnt = 0;
16029 
16030 	for (idx = 0; idx < numrq; idx++) {
16031 		hrq = hrqp[idx];
16032 		drq = drqp[idx];
16033 		cq  = cqp[idx];
16034 
16035 		/* sanity check on queue memory */
16036 		if (!hrq || !drq || !cq) {
16037 			status = -ENODEV;
16038 			goto out;
16039 		}
16040 
16041 		if (hrq->entry_count != drq->entry_count) {
16042 			status = -EINVAL;
16043 			goto out;
16044 		}
16045 
16046 		if (idx == 0) {
16047 			bf_set(lpfc_mbx_rq_create_num_pages,
16048 			       &rq_create->u.request,
16049 			       hrq->page_count);
16050 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16051 			       &rq_create->u.request, (numrq * 2));
16052 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16053 			       1);
16054 			bf_set(lpfc_rq_context_base_cq,
16055 			       &rq_create->u.request.context,
16056 			       cq->queue_id);
16057 			bf_set(lpfc_rq_context_data_size,
16058 			       &rq_create->u.request.context,
16059 			       LPFC_NVMET_DATA_BUF_SIZE);
16060 			bf_set(lpfc_rq_context_hdr_size,
16061 			       &rq_create->u.request.context,
16062 			       LPFC_HDR_BUF_SIZE);
16063 			bf_set(lpfc_rq_context_rqe_count_1,
16064 			       &rq_create->u.request.context,
16065 			       hrq->entry_count);
16066 			bf_set(lpfc_rq_context_rqe_size,
16067 			       &rq_create->u.request.context,
16068 			       LPFC_RQE_SIZE_8);
16069 			bf_set(lpfc_rq_context_page_size,
16070 			       &rq_create->u.request.context,
16071 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16072 		}
16073 		rc = 0;
16074 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16075 			memset(dmabuf->virt, 0, hw_page_size);
16076 			cnt = page_idx + dmabuf->buffer_tag;
16077 			rq_create->u.request.page[cnt].addr_lo =
16078 					putPaddrLow(dmabuf->phys);
16079 			rq_create->u.request.page[cnt].addr_hi =
16080 					putPaddrHigh(dmabuf->phys);
16081 			rc++;
16082 		}
16083 		page_idx += rc;
16084 
16085 		rc = 0;
16086 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16087 			memset(dmabuf->virt, 0, hw_page_size);
16088 			cnt = page_idx + dmabuf->buffer_tag;
16089 			rq_create->u.request.page[cnt].addr_lo =
16090 					putPaddrLow(dmabuf->phys);
16091 			rq_create->u.request.page[cnt].addr_hi =
16092 					putPaddrHigh(dmabuf->phys);
16093 			rc++;
16094 		}
16095 		page_idx += rc;
16096 
16097 		hrq->db_format = LPFC_DB_RING_FORMAT;
16098 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16099 		hrq->type = LPFC_HRQ;
16100 		hrq->assoc_qid = cq->queue_id;
16101 		hrq->subtype = subtype;
16102 		hrq->host_index = 0;
16103 		hrq->hba_index = 0;
16104 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16105 
16106 		drq->db_format = LPFC_DB_RING_FORMAT;
16107 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16108 		drq->type = LPFC_DRQ;
16109 		drq->assoc_qid = cq->queue_id;
16110 		drq->subtype = subtype;
16111 		drq->host_index = 0;
16112 		drq->hba_index = 0;
16113 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16114 
16115 		list_add_tail(&hrq->list, &cq->child_list);
16116 		list_add_tail(&drq->list, &cq->child_list);
16117 	}
16118 
16119 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16120 	/* The IOCTL status is embedded in the mailbox subheader. */
16121 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16122 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16123 	if (shdr_status || shdr_add_status || rc) {
16124 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16125 				"3120 RQ_CREATE mailbox failed with "
16126 				"status x%x add_status x%x, mbx status x%x\n",
16127 				shdr_status, shdr_add_status, rc);
16128 		status = -ENXIO;
16129 		goto out;
16130 	}
16131 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16132 	if (rc == 0xFFFF) {
16133 		status = -ENXIO;
16134 		goto out;
16135 	}
16136 
16137 	/* Initialize all RQs with associated queue id */
16138 	for (idx = 0; idx < numrq; idx++) {
16139 		hrq = hrqp[idx];
16140 		hrq->queue_id = rc + (2 * idx);
16141 		drq = drqp[idx];
16142 		drq->queue_id = rc + (2 * idx) + 1;
16143 	}
16144 
16145 out:
16146 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16147 	return status;
16148 }
16149 
16150 /**
16151  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16152  * @eq: The queue structure associated with the queue to destroy.
16153  *
16154  * This function destroys a queue, as detailed in @eq by sending an mailbox
16155  * command, specific to the type of queue, to the HBA.
16156  *
16157  * The @eq struct is used to get the queue ID of the queue to destroy.
16158  *
16159  * On success this function will return a zero. If the queue destroy mailbox
16160  * command fails this function will return -ENXIO.
16161  **/
16162 int
16163 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16164 {
16165 	LPFC_MBOXQ_t *mbox;
16166 	int rc, length, status = 0;
16167 	uint32_t shdr_status, shdr_add_status;
16168 	union lpfc_sli4_cfg_shdr *shdr;
16169 
16170 	/* sanity check on queue memory */
16171 	if (!eq)
16172 		return -ENODEV;
16173 
16174 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16175 	if (!mbox)
16176 		return -ENOMEM;
16177 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16178 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16179 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16180 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16181 			 length, LPFC_SLI4_MBX_EMBED);
16182 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16183 	       eq->queue_id);
16184 	mbox->vport = eq->phba->pport;
16185 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16186 
16187 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16188 	/* The IOCTL status is embedded in the mailbox subheader. */
16189 	shdr = (union lpfc_sli4_cfg_shdr *)
16190 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16191 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16192 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16193 	if (shdr_status || shdr_add_status || rc) {
16194 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16195 				"2505 EQ_DESTROY mailbox failed with "
16196 				"status x%x add_status x%x, mbx status x%x\n",
16197 				shdr_status, shdr_add_status, rc);
16198 		status = -ENXIO;
16199 	}
16200 
16201 	/* Remove eq from any list */
16202 	list_del_init(&eq->list);
16203 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16204 	return status;
16205 }
16206 
16207 /**
16208  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16209  * @cq: The queue structure associated with the queue to destroy.
16210  *
16211  * This function destroys a queue, as detailed in @cq by sending an mailbox
16212  * command, specific to the type of queue, to the HBA.
16213  *
16214  * The @cq struct is used to get the queue ID of the queue to destroy.
16215  *
16216  * On success this function will return a zero. If the queue destroy mailbox
16217  * command fails this function will return -ENXIO.
16218  **/
16219 int
16220 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16221 {
16222 	LPFC_MBOXQ_t *mbox;
16223 	int rc, length, status = 0;
16224 	uint32_t shdr_status, shdr_add_status;
16225 	union lpfc_sli4_cfg_shdr *shdr;
16226 
16227 	/* sanity check on queue memory */
16228 	if (!cq)
16229 		return -ENODEV;
16230 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16231 	if (!mbox)
16232 		return -ENOMEM;
16233 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16234 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16235 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16236 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16237 			 length, LPFC_SLI4_MBX_EMBED);
16238 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16239 	       cq->queue_id);
16240 	mbox->vport = cq->phba->pport;
16241 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16242 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16243 	/* The IOCTL status is embedded in the mailbox subheader. */
16244 	shdr = (union lpfc_sli4_cfg_shdr *)
16245 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16246 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16247 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16248 	if (shdr_status || shdr_add_status || rc) {
16249 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16250 				"2506 CQ_DESTROY mailbox failed with "
16251 				"status x%x add_status x%x, mbx status x%x\n",
16252 				shdr_status, shdr_add_status, rc);
16253 		status = -ENXIO;
16254 	}
16255 	/* Remove cq from any list */
16256 	list_del_init(&cq->list);
16257 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16258 	return status;
16259 }
16260 
16261 /**
16262  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16263  * @qm: The queue structure associated with the queue to destroy.
16264  *
16265  * This function destroys a queue, as detailed in @mq by sending an mailbox
16266  * command, specific to the type of queue, to the HBA.
16267  *
16268  * The @mq struct is used to get the queue ID of the queue to destroy.
16269  *
16270  * On success this function will return a zero. If the queue destroy mailbox
16271  * command fails this function will return -ENXIO.
16272  **/
16273 int
16274 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16275 {
16276 	LPFC_MBOXQ_t *mbox;
16277 	int rc, length, status = 0;
16278 	uint32_t shdr_status, shdr_add_status;
16279 	union lpfc_sli4_cfg_shdr *shdr;
16280 
16281 	/* sanity check on queue memory */
16282 	if (!mq)
16283 		return -ENODEV;
16284 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16285 	if (!mbox)
16286 		return -ENOMEM;
16287 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16288 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16289 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16290 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16291 			 length, LPFC_SLI4_MBX_EMBED);
16292 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16293 	       mq->queue_id);
16294 	mbox->vport = mq->phba->pport;
16295 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16296 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16297 	/* The IOCTL status is embedded in the mailbox subheader. */
16298 	shdr = (union lpfc_sli4_cfg_shdr *)
16299 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16300 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16301 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16302 	if (shdr_status || shdr_add_status || rc) {
16303 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16304 				"2507 MQ_DESTROY mailbox failed with "
16305 				"status x%x add_status x%x, mbx status x%x\n",
16306 				shdr_status, shdr_add_status, rc);
16307 		status = -ENXIO;
16308 	}
16309 	/* Remove mq from any list */
16310 	list_del_init(&mq->list);
16311 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16312 	return status;
16313 }
16314 
16315 /**
16316  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16317  * @wq: The queue structure associated with the queue to destroy.
16318  *
16319  * This function destroys a queue, as detailed in @wq by sending an mailbox
16320  * command, specific to the type of queue, to the HBA.
16321  *
16322  * The @wq struct is used to get the queue ID of the queue to destroy.
16323  *
16324  * On success this function will return a zero. If the queue destroy mailbox
16325  * command fails this function will return -ENXIO.
16326  **/
16327 int
16328 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16329 {
16330 	LPFC_MBOXQ_t *mbox;
16331 	int rc, length, status = 0;
16332 	uint32_t shdr_status, shdr_add_status;
16333 	union lpfc_sli4_cfg_shdr *shdr;
16334 
16335 	/* sanity check on queue memory */
16336 	if (!wq)
16337 		return -ENODEV;
16338 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16339 	if (!mbox)
16340 		return -ENOMEM;
16341 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16342 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16343 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16344 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16345 			 length, LPFC_SLI4_MBX_EMBED);
16346 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16347 	       wq->queue_id);
16348 	mbox->vport = wq->phba->pport;
16349 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16350 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16351 	shdr = (union lpfc_sli4_cfg_shdr *)
16352 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16353 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16354 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16355 	if (shdr_status || shdr_add_status || rc) {
16356 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16357 				"2508 WQ_DESTROY mailbox failed with "
16358 				"status x%x add_status x%x, mbx status x%x\n",
16359 				shdr_status, shdr_add_status, rc);
16360 		status = -ENXIO;
16361 	}
16362 	/* Remove wq from any list */
16363 	list_del_init(&wq->list);
16364 	kfree(wq->pring);
16365 	wq->pring = NULL;
16366 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16367 	return status;
16368 }
16369 
16370 /**
16371  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16372  * @rq: The queue structure associated with the queue to destroy.
16373  *
16374  * This function destroys a queue, as detailed in @rq by sending an mailbox
16375  * command, specific to the type of queue, to the HBA.
16376  *
16377  * The @rq struct is used to get the queue ID of the queue to destroy.
16378  *
16379  * On success this function will return a zero. If the queue destroy mailbox
16380  * command fails this function will return -ENXIO.
16381  **/
16382 int
16383 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16384 		struct lpfc_queue *drq)
16385 {
16386 	LPFC_MBOXQ_t *mbox;
16387 	int rc, length, status = 0;
16388 	uint32_t shdr_status, shdr_add_status;
16389 	union lpfc_sli4_cfg_shdr *shdr;
16390 
16391 	/* sanity check on queue memory */
16392 	if (!hrq || !drq)
16393 		return -ENODEV;
16394 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16395 	if (!mbox)
16396 		return -ENOMEM;
16397 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16398 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16399 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16400 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16401 			 length, LPFC_SLI4_MBX_EMBED);
16402 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16403 	       hrq->queue_id);
16404 	mbox->vport = hrq->phba->pport;
16405 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16406 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16407 	/* The IOCTL status is embedded in the mailbox subheader. */
16408 	shdr = (union lpfc_sli4_cfg_shdr *)
16409 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16410 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16411 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16412 	if (shdr_status || shdr_add_status || rc) {
16413 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16414 				"2509 RQ_DESTROY mailbox failed with "
16415 				"status x%x add_status x%x, mbx status x%x\n",
16416 				shdr_status, shdr_add_status, rc);
16417 		if (rc != MBX_TIMEOUT)
16418 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16419 		return -ENXIO;
16420 	}
16421 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16422 	       drq->queue_id);
16423 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16424 	shdr = (union lpfc_sli4_cfg_shdr *)
16425 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16426 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16427 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16428 	if (shdr_status || shdr_add_status || rc) {
16429 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16430 				"2510 RQ_DESTROY mailbox failed with "
16431 				"status x%x add_status x%x, mbx status x%x\n",
16432 				shdr_status, shdr_add_status, rc);
16433 		status = -ENXIO;
16434 	}
16435 	list_del_init(&hrq->list);
16436 	list_del_init(&drq->list);
16437 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16438 	return status;
16439 }
16440 
16441 /**
16442  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16443  * @phba: The virtual port for which this call being executed.
16444  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16445  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16446  * @xritag: the xritag that ties this io to the SGL pages.
16447  *
16448  * This routine will post the sgl pages for the IO that has the xritag
16449  * that is in the iocbq structure. The xritag is assigned during iocbq
16450  * creation and persists for as long as the driver is loaded.
16451  * if the caller has fewer than 256 scatter gather segments to map then
16452  * pdma_phys_addr1 should be 0.
16453  * If the caller needs to map more than 256 scatter gather segment then
16454  * pdma_phys_addr1 should be a valid physical address.
16455  * physical address for SGLs must be 64 byte aligned.
16456  * If you are going to map 2 SGL's then the first one must have 256 entries
16457  * the second sgl can have between 1 and 256 entries.
16458  *
16459  * Return codes:
16460  * 	0 - Success
16461  * 	-ENXIO, -ENOMEM - Failure
16462  **/
16463 int
16464 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16465 		dma_addr_t pdma_phys_addr0,
16466 		dma_addr_t pdma_phys_addr1,
16467 		uint16_t xritag)
16468 {
16469 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16470 	LPFC_MBOXQ_t *mbox;
16471 	int rc;
16472 	uint32_t shdr_status, shdr_add_status;
16473 	uint32_t mbox_tmo;
16474 	union lpfc_sli4_cfg_shdr *shdr;
16475 
16476 	if (xritag == NO_XRI) {
16477 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16478 				"0364 Invalid param:\n");
16479 		return -EINVAL;
16480 	}
16481 
16482 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16483 	if (!mbox)
16484 		return -ENOMEM;
16485 
16486 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16487 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16488 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16489 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16490 
16491 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16492 				&mbox->u.mqe.un.post_sgl_pages;
16493 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16494 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16495 
16496 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16497 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16498 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16499 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16500 
16501 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16502 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16503 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16504 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16505 	if (!phba->sli4_hba.intr_enable)
16506 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16507 	else {
16508 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16509 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16510 	}
16511 	/* The IOCTL status is embedded in the mailbox subheader. */
16512 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16513 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16514 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16515 	if (rc != MBX_TIMEOUT)
16516 		mempool_free(mbox, phba->mbox_mem_pool);
16517 	if (shdr_status || shdr_add_status || rc) {
16518 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16519 				"2511 POST_SGL mailbox failed with "
16520 				"status x%x add_status x%x, mbx status x%x\n",
16521 				shdr_status, shdr_add_status, rc);
16522 	}
16523 	return 0;
16524 }
16525 
16526 /**
16527  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16528  * @phba: pointer to lpfc hba data structure.
16529  *
16530  * This routine is invoked to post rpi header templates to the
16531  * HBA consistent with the SLI-4 interface spec.  This routine
16532  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16533  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16534  *
16535  * Returns
16536  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16537  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16538  **/
16539 static uint16_t
16540 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16541 {
16542 	unsigned long xri;
16543 
16544 	/*
16545 	 * Fetch the next logical xri.  Because this index is logical,
16546 	 * the driver starts at 0 each time.
16547 	 */
16548 	spin_lock_irq(&phba->hbalock);
16549 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16550 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16551 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16552 		spin_unlock_irq(&phba->hbalock);
16553 		return NO_XRI;
16554 	} else {
16555 		set_bit(xri, phba->sli4_hba.xri_bmask);
16556 		phba->sli4_hba.max_cfg_param.xri_used++;
16557 	}
16558 	spin_unlock_irq(&phba->hbalock);
16559 	return xri;
16560 }
16561 
16562 /**
16563  * lpfc_sli4_free_xri - Release an xri for reuse.
16564  * @phba: pointer to lpfc hba data structure.
16565  *
16566  * This routine is invoked to release an xri to the pool of
16567  * available rpis maintained by the driver.
16568  **/
16569 static void
16570 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16571 {
16572 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16573 		phba->sli4_hba.max_cfg_param.xri_used--;
16574 	}
16575 }
16576 
16577 /**
16578  * lpfc_sli4_free_xri - Release an xri for reuse.
16579  * @phba: pointer to lpfc hba data structure.
16580  *
16581  * This routine is invoked to release an xri to the pool of
16582  * available rpis maintained by the driver.
16583  **/
16584 void
16585 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16586 {
16587 	spin_lock_irq(&phba->hbalock);
16588 	__lpfc_sli4_free_xri(phba, xri);
16589 	spin_unlock_irq(&phba->hbalock);
16590 }
16591 
16592 /**
16593  * lpfc_sli4_next_xritag - Get an xritag for the io
16594  * @phba: Pointer to HBA context object.
16595  *
16596  * This function gets an xritag for the iocb. If there is no unused xritag
16597  * it will return 0xffff.
16598  * The function returns the allocated xritag if successful, else returns zero.
16599  * Zero is not a valid xritag.
16600  * The caller is not required to hold any lock.
16601  **/
16602 uint16_t
16603 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16604 {
16605 	uint16_t xri_index;
16606 
16607 	xri_index = lpfc_sli4_alloc_xri(phba);
16608 	if (xri_index == NO_XRI)
16609 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16610 				"2004 Failed to allocate XRI.last XRITAG is %d"
16611 				" Max XRI is %d, Used XRI is %d\n",
16612 				xri_index,
16613 				phba->sli4_hba.max_cfg_param.max_xri,
16614 				phba->sli4_hba.max_cfg_param.xri_used);
16615 	return xri_index;
16616 }
16617 
16618 /**
16619  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16620  * @phba: pointer to lpfc hba data structure.
16621  * @post_sgl_list: pointer to els sgl entry list.
16622  * @count: number of els sgl entries on the list.
16623  *
16624  * This routine is invoked to post a block of driver's sgl pages to the
16625  * HBA using non-embedded mailbox command. No Lock is held. This routine
16626  * is only called when the driver is loading and after all IO has been
16627  * stopped.
16628  **/
16629 static int
16630 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16631 			    struct list_head *post_sgl_list,
16632 			    int post_cnt)
16633 {
16634 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16635 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16636 	struct sgl_page_pairs *sgl_pg_pairs;
16637 	void *viraddr;
16638 	LPFC_MBOXQ_t *mbox;
16639 	uint32_t reqlen, alloclen, pg_pairs;
16640 	uint32_t mbox_tmo;
16641 	uint16_t xritag_start = 0;
16642 	int rc = 0;
16643 	uint32_t shdr_status, shdr_add_status;
16644 	union lpfc_sli4_cfg_shdr *shdr;
16645 
16646 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16647 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16648 	if (reqlen > SLI4_PAGE_SIZE) {
16649 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16650 				"2559 Block sgl registration required DMA "
16651 				"size (%d) great than a page\n", reqlen);
16652 		return -ENOMEM;
16653 	}
16654 
16655 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16656 	if (!mbox)
16657 		return -ENOMEM;
16658 
16659 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16660 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16661 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16662 			 LPFC_SLI4_MBX_NEMBED);
16663 
16664 	if (alloclen < reqlen) {
16665 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16666 				"0285 Allocated DMA memory size (%d) is "
16667 				"less than the requested DMA memory "
16668 				"size (%d)\n", alloclen, reqlen);
16669 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16670 		return -ENOMEM;
16671 	}
16672 	/* Set up the SGL pages in the non-embedded DMA pages */
16673 	viraddr = mbox->sge_array->addr[0];
16674 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16675 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16676 
16677 	pg_pairs = 0;
16678 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16679 		/* Set up the sge entry */
16680 		sgl_pg_pairs->sgl_pg0_addr_lo =
16681 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16682 		sgl_pg_pairs->sgl_pg0_addr_hi =
16683 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16684 		sgl_pg_pairs->sgl_pg1_addr_lo =
16685 				cpu_to_le32(putPaddrLow(0));
16686 		sgl_pg_pairs->sgl_pg1_addr_hi =
16687 				cpu_to_le32(putPaddrHigh(0));
16688 
16689 		/* Keep the first xritag on the list */
16690 		if (pg_pairs == 0)
16691 			xritag_start = sglq_entry->sli4_xritag;
16692 		sgl_pg_pairs++;
16693 		pg_pairs++;
16694 	}
16695 
16696 	/* Complete initialization and perform endian conversion. */
16697 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16698 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16699 	sgl->word0 = cpu_to_le32(sgl->word0);
16700 
16701 	if (!phba->sli4_hba.intr_enable)
16702 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16703 	else {
16704 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16705 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16706 	}
16707 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16708 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16709 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16710 	if (rc != MBX_TIMEOUT)
16711 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16712 	if (shdr_status || shdr_add_status || rc) {
16713 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16714 				"2513 POST_SGL_BLOCK mailbox command failed "
16715 				"status x%x add_status x%x mbx status x%x\n",
16716 				shdr_status, shdr_add_status, rc);
16717 		rc = -ENXIO;
16718 	}
16719 	return rc;
16720 }
16721 
16722 /**
16723  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16724  * @phba: pointer to lpfc hba data structure.
16725  * @nblist: pointer to nvme buffer list.
16726  * @count: number of scsi buffers on the list.
16727  *
16728  * This routine is invoked to post a block of @count scsi sgl pages from a
16729  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16730  * No Lock is held.
16731  *
16732  **/
16733 static int
16734 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16735 			    int count)
16736 {
16737 	struct lpfc_io_buf *lpfc_ncmd;
16738 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16739 	struct sgl_page_pairs *sgl_pg_pairs;
16740 	void *viraddr;
16741 	LPFC_MBOXQ_t *mbox;
16742 	uint32_t reqlen, alloclen, pg_pairs;
16743 	uint32_t mbox_tmo;
16744 	uint16_t xritag_start = 0;
16745 	int rc = 0;
16746 	uint32_t shdr_status, shdr_add_status;
16747 	dma_addr_t pdma_phys_bpl1;
16748 	union lpfc_sli4_cfg_shdr *shdr;
16749 
16750 	/* Calculate the requested length of the dma memory */
16751 	reqlen = count * sizeof(struct sgl_page_pairs) +
16752 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16753 	if (reqlen > SLI4_PAGE_SIZE) {
16754 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16755 				"6118 Block sgl registration required DMA "
16756 				"size (%d) great than a page\n", reqlen);
16757 		return -ENOMEM;
16758 	}
16759 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16760 	if (!mbox) {
16761 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16762 				"6119 Failed to allocate mbox cmd memory\n");
16763 		return -ENOMEM;
16764 	}
16765 
16766 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16767 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16768 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16769 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16770 
16771 	if (alloclen < reqlen) {
16772 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16773 				"6120 Allocated DMA memory size (%d) is "
16774 				"less than the requested DMA memory "
16775 				"size (%d)\n", alloclen, reqlen);
16776 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16777 		return -ENOMEM;
16778 	}
16779 
16780 	/* Get the first SGE entry from the non-embedded DMA memory */
16781 	viraddr = mbox->sge_array->addr[0];
16782 
16783 	/* Set up the SGL pages in the non-embedded DMA pages */
16784 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16785 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16786 
16787 	pg_pairs = 0;
16788 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16789 		/* Set up the sge entry */
16790 		sgl_pg_pairs->sgl_pg0_addr_lo =
16791 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16792 		sgl_pg_pairs->sgl_pg0_addr_hi =
16793 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16794 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16795 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16796 						SGL_PAGE_SIZE;
16797 		else
16798 			pdma_phys_bpl1 = 0;
16799 		sgl_pg_pairs->sgl_pg1_addr_lo =
16800 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16801 		sgl_pg_pairs->sgl_pg1_addr_hi =
16802 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16803 		/* Keep the first xritag on the list */
16804 		if (pg_pairs == 0)
16805 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16806 		sgl_pg_pairs++;
16807 		pg_pairs++;
16808 	}
16809 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16810 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16811 	/* Perform endian conversion if necessary */
16812 	sgl->word0 = cpu_to_le32(sgl->word0);
16813 
16814 	if (!phba->sli4_hba.intr_enable) {
16815 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16816 	} else {
16817 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16818 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16819 	}
16820 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16821 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16822 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16823 	if (rc != MBX_TIMEOUT)
16824 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16825 	if (shdr_status || shdr_add_status || rc) {
16826 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16827 				"6125 POST_SGL_BLOCK mailbox command failed "
16828 				"status x%x add_status x%x mbx status x%x\n",
16829 				shdr_status, shdr_add_status, rc);
16830 		rc = -ENXIO;
16831 	}
16832 	return rc;
16833 }
16834 
16835 /**
16836  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16837  * @phba: pointer to lpfc hba data structure.
16838  * @post_nblist: pointer to the nvme buffer list.
16839  *
16840  * This routine walks a list of nvme buffers that was passed in. It attempts
16841  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16842  * uses the non-embedded SGL block post mailbox commands to post to the port.
16843  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16844  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16845  * must be local list, thus no lock is needed when manipulate the list.
16846  *
16847  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16848  **/
16849 int
16850 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16851 			   struct list_head *post_nblist, int sb_count)
16852 {
16853 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16854 	int status, sgl_size;
16855 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16856 	dma_addr_t pdma_phys_sgl1;
16857 	int last_xritag = NO_XRI;
16858 	int cur_xritag;
16859 	LIST_HEAD(prep_nblist);
16860 	LIST_HEAD(blck_nblist);
16861 	LIST_HEAD(nvme_nblist);
16862 
16863 	/* sanity check */
16864 	if (sb_count <= 0)
16865 		return -EINVAL;
16866 
16867 	sgl_size = phba->cfg_sg_dma_buf_size;
16868 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16869 		list_del_init(&lpfc_ncmd->list);
16870 		block_cnt++;
16871 		if ((last_xritag != NO_XRI) &&
16872 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16873 			/* a hole in xri block, form a sgl posting block */
16874 			list_splice_init(&prep_nblist, &blck_nblist);
16875 			post_cnt = block_cnt - 1;
16876 			/* prepare list for next posting block */
16877 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16878 			block_cnt = 1;
16879 		} else {
16880 			/* prepare list for next posting block */
16881 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16882 			/* enough sgls for non-embed sgl mbox command */
16883 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16884 				list_splice_init(&prep_nblist, &blck_nblist);
16885 				post_cnt = block_cnt;
16886 				block_cnt = 0;
16887 			}
16888 		}
16889 		num_posting++;
16890 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16891 
16892 		/* end of repost sgl list condition for NVME buffers */
16893 		if (num_posting == sb_count) {
16894 			if (post_cnt == 0) {
16895 				/* last sgl posting block */
16896 				list_splice_init(&prep_nblist, &blck_nblist);
16897 				post_cnt = block_cnt;
16898 			} else if (block_cnt == 1) {
16899 				/* last single sgl with non-contiguous xri */
16900 				if (sgl_size > SGL_PAGE_SIZE)
16901 					pdma_phys_sgl1 =
16902 						lpfc_ncmd->dma_phys_sgl +
16903 						SGL_PAGE_SIZE;
16904 				else
16905 					pdma_phys_sgl1 = 0;
16906 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16907 				status = lpfc_sli4_post_sgl(
16908 						phba, lpfc_ncmd->dma_phys_sgl,
16909 						pdma_phys_sgl1, cur_xritag);
16910 				if (status) {
16911 					/* Post error.  Buffer unavailable. */
16912 					lpfc_ncmd->flags |=
16913 						LPFC_SBUF_NOT_POSTED;
16914 				} else {
16915 					/* Post success. Bffer available. */
16916 					lpfc_ncmd->flags &=
16917 						~LPFC_SBUF_NOT_POSTED;
16918 					lpfc_ncmd->status = IOSTAT_SUCCESS;
16919 					num_posted++;
16920 				}
16921 				/* success, put on NVME buffer sgl list */
16922 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16923 			}
16924 		}
16925 
16926 		/* continue until a nembed page worth of sgls */
16927 		if (post_cnt == 0)
16928 			continue;
16929 
16930 		/* post block of NVME buffer list sgls */
16931 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16932 						     post_cnt);
16933 
16934 		/* don't reset xirtag due to hole in xri block */
16935 		if (block_cnt == 0)
16936 			last_xritag = NO_XRI;
16937 
16938 		/* reset NVME buffer post count for next round of posting */
16939 		post_cnt = 0;
16940 
16941 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16942 		while (!list_empty(&blck_nblist)) {
16943 			list_remove_head(&blck_nblist, lpfc_ncmd,
16944 					 struct lpfc_io_buf, list);
16945 			if (status) {
16946 				/* Post error.  Mark buffer unavailable. */
16947 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16948 			} else {
16949 				/* Post success, Mark buffer available. */
16950 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16951 				lpfc_ncmd->status = IOSTAT_SUCCESS;
16952 				num_posted++;
16953 			}
16954 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16955 		}
16956 	}
16957 	/* Push NVME buffers with sgl posted to the available list */
16958 	lpfc_io_buf_replenish(phba, &nvme_nblist);
16959 
16960 	return num_posted;
16961 }
16962 
16963 /**
16964  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16965  * @phba: pointer to lpfc_hba struct that the frame was received on
16966  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16967  *
16968  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16969  * valid type of frame that the LPFC driver will handle. This function will
16970  * return a zero if the frame is a valid frame or a non zero value when the
16971  * frame does not pass the check.
16972  **/
16973 static int
16974 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16975 {
16976 	/*  make rctl_names static to save stack space */
16977 	struct fc_vft_header *fc_vft_hdr;
16978 	uint32_t *header = (uint32_t *) fc_hdr;
16979 
16980 	switch (fc_hdr->fh_r_ctl) {
16981 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16982 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16983 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16984 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16985 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16986 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16987 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16988 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16989 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16990 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16991 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16992 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16993 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16994 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16995 	case FC_RCTL_BA_RMC: 	/* remove connection */
16996 	case FC_RCTL_BA_ACC:	/* basic accept */
16997 	case FC_RCTL_BA_RJT:	/* basic reject */
16998 	case FC_RCTL_BA_PRMT:
16999 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17000 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17001 	case FC_RCTL_P_RJT:	/* port reject */
17002 	case FC_RCTL_F_RJT:	/* fabric reject */
17003 	case FC_RCTL_P_BSY:	/* port busy */
17004 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17005 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17006 	case FC_RCTL_LCR:	/* link credit reset */
17007 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17008 	case FC_RCTL_END:	/* end */
17009 		break;
17010 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17011 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17012 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17013 		return lpfc_fc_frame_check(phba, fc_hdr);
17014 	default:
17015 		goto drop;
17016 	}
17017 
17018 	switch (fc_hdr->fh_type) {
17019 	case FC_TYPE_BLS:
17020 	case FC_TYPE_ELS:
17021 	case FC_TYPE_FCP:
17022 	case FC_TYPE_CT:
17023 	case FC_TYPE_NVME:
17024 		break;
17025 	case FC_TYPE_IP:
17026 	case FC_TYPE_ILS:
17027 	default:
17028 		goto drop;
17029 	}
17030 
17031 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17032 			"2538 Received frame rctl:x%x, type:x%x, "
17033 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17034 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17035 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17036 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17037 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17038 			be32_to_cpu(header[6]));
17039 	return 0;
17040 drop:
17041 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17042 			"2539 Dropped frame rctl:x%x type:x%x\n",
17043 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17044 	return 1;
17045 }
17046 
17047 /**
17048  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17049  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17050  *
17051  * This function processes the FC header to retrieve the VFI from the VF
17052  * header, if one exists. This function will return the VFI if one exists
17053  * or 0 if no VSAN Header exists.
17054  **/
17055 static uint32_t
17056 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17057 {
17058 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17059 
17060 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17061 		return 0;
17062 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17063 }
17064 
17065 /**
17066  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17067  * @phba: Pointer to the HBA structure to search for the vport on
17068  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17069  * @fcfi: The FC Fabric ID that the frame came from
17070  *
17071  * This function searches the @phba for a vport that matches the content of the
17072  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17073  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17074  * returns the matching vport pointer or NULL if unable to match frame to a
17075  * vport.
17076  **/
17077 static struct lpfc_vport *
17078 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17079 		       uint16_t fcfi, uint32_t did)
17080 {
17081 	struct lpfc_vport **vports;
17082 	struct lpfc_vport *vport = NULL;
17083 	int i;
17084 
17085 	if (did == Fabric_DID)
17086 		return phba->pport;
17087 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17088 		!(phba->link_state == LPFC_HBA_READY))
17089 		return phba->pport;
17090 
17091 	vports = lpfc_create_vport_work_array(phba);
17092 	if (vports != NULL) {
17093 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17094 			if (phba->fcf.fcfi == fcfi &&
17095 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17096 			    vports[i]->fc_myDID == did) {
17097 				vport = vports[i];
17098 				break;
17099 			}
17100 		}
17101 	}
17102 	lpfc_destroy_vport_work_array(phba, vports);
17103 	return vport;
17104 }
17105 
17106 /**
17107  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17108  * @vport: The vport to work on.
17109  *
17110  * This function updates the receive sequence time stamp for this vport. The
17111  * receive sequence time stamp indicates the time that the last frame of the
17112  * the sequence that has been idle for the longest amount of time was received.
17113  * the driver uses this time stamp to indicate if any received sequences have
17114  * timed out.
17115  **/
17116 static void
17117 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17118 {
17119 	struct lpfc_dmabuf *h_buf;
17120 	struct hbq_dmabuf *dmabuf = NULL;
17121 
17122 	/* get the oldest sequence on the rcv list */
17123 	h_buf = list_get_first(&vport->rcv_buffer_list,
17124 			       struct lpfc_dmabuf, list);
17125 	if (!h_buf)
17126 		return;
17127 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17128 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17129 }
17130 
17131 /**
17132  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17133  * @vport: The vport that the received sequences were sent to.
17134  *
17135  * This function cleans up all outstanding received sequences. This is called
17136  * by the driver when a link event or user action invalidates all the received
17137  * sequences.
17138  **/
17139 void
17140 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17141 {
17142 	struct lpfc_dmabuf *h_buf, *hnext;
17143 	struct lpfc_dmabuf *d_buf, *dnext;
17144 	struct hbq_dmabuf *dmabuf = NULL;
17145 
17146 	/* start with the oldest sequence on the rcv list */
17147 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17148 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17149 		list_del_init(&dmabuf->hbuf.list);
17150 		list_for_each_entry_safe(d_buf, dnext,
17151 					 &dmabuf->dbuf.list, list) {
17152 			list_del_init(&d_buf->list);
17153 			lpfc_in_buf_free(vport->phba, d_buf);
17154 		}
17155 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17156 	}
17157 }
17158 
17159 /**
17160  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17161  * @vport: The vport that the received sequences were sent to.
17162  *
17163  * This function determines whether any received sequences have timed out by
17164  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17165  * indicates that there is at least one timed out sequence this routine will
17166  * go through the received sequences one at a time from most inactive to most
17167  * active to determine which ones need to be cleaned up. Once it has determined
17168  * that a sequence needs to be cleaned up it will simply free up the resources
17169  * without sending an abort.
17170  **/
17171 void
17172 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17173 {
17174 	struct lpfc_dmabuf *h_buf, *hnext;
17175 	struct lpfc_dmabuf *d_buf, *dnext;
17176 	struct hbq_dmabuf *dmabuf = NULL;
17177 	unsigned long timeout;
17178 	int abort_count = 0;
17179 
17180 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17181 		   vport->rcv_buffer_time_stamp);
17182 	if (list_empty(&vport->rcv_buffer_list) ||
17183 	    time_before(jiffies, timeout))
17184 		return;
17185 	/* start with the oldest sequence on the rcv list */
17186 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17187 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17188 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17189 			   dmabuf->time_stamp);
17190 		if (time_before(jiffies, timeout))
17191 			break;
17192 		abort_count++;
17193 		list_del_init(&dmabuf->hbuf.list);
17194 		list_for_each_entry_safe(d_buf, dnext,
17195 					 &dmabuf->dbuf.list, list) {
17196 			list_del_init(&d_buf->list);
17197 			lpfc_in_buf_free(vport->phba, d_buf);
17198 		}
17199 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17200 	}
17201 	if (abort_count)
17202 		lpfc_update_rcv_time_stamp(vport);
17203 }
17204 
17205 /**
17206  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17207  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17208  *
17209  * This function searches through the existing incomplete sequences that have
17210  * been sent to this @vport. If the frame matches one of the incomplete
17211  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17212  * make up that sequence. If no sequence is found that matches this frame then
17213  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17214  * This function returns a pointer to the first dmabuf in the sequence list that
17215  * the frame was linked to.
17216  **/
17217 static struct hbq_dmabuf *
17218 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17219 {
17220 	struct fc_frame_header *new_hdr;
17221 	struct fc_frame_header *temp_hdr;
17222 	struct lpfc_dmabuf *d_buf;
17223 	struct lpfc_dmabuf *h_buf;
17224 	struct hbq_dmabuf *seq_dmabuf = NULL;
17225 	struct hbq_dmabuf *temp_dmabuf = NULL;
17226 	uint8_t	found = 0;
17227 
17228 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17229 	dmabuf->time_stamp = jiffies;
17230 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17231 
17232 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17233 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17234 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17235 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17236 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17237 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17238 			continue;
17239 		/* found a pending sequence that matches this frame */
17240 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17241 		break;
17242 	}
17243 	if (!seq_dmabuf) {
17244 		/*
17245 		 * This indicates first frame received for this sequence.
17246 		 * Queue the buffer on the vport's rcv_buffer_list.
17247 		 */
17248 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17249 		lpfc_update_rcv_time_stamp(vport);
17250 		return dmabuf;
17251 	}
17252 	temp_hdr = seq_dmabuf->hbuf.virt;
17253 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17254 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17255 		list_del_init(&seq_dmabuf->hbuf.list);
17256 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17257 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17258 		lpfc_update_rcv_time_stamp(vport);
17259 		return dmabuf;
17260 	}
17261 	/* move this sequence to the tail to indicate a young sequence */
17262 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17263 	seq_dmabuf->time_stamp = jiffies;
17264 	lpfc_update_rcv_time_stamp(vport);
17265 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17266 		temp_hdr = dmabuf->hbuf.virt;
17267 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17268 		return seq_dmabuf;
17269 	}
17270 	/* find the correct place in the sequence to insert this frame */
17271 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17272 	while (!found) {
17273 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17274 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17275 		/*
17276 		 * If the frame's sequence count is greater than the frame on
17277 		 * the list then insert the frame right after this frame
17278 		 */
17279 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17280 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17281 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17282 			found = 1;
17283 			break;
17284 		}
17285 
17286 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17287 			break;
17288 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17289 	}
17290 
17291 	if (found)
17292 		return seq_dmabuf;
17293 	return NULL;
17294 }
17295 
17296 /**
17297  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17298  * @vport: pointer to a vitural port
17299  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17300  *
17301  * This function tries to abort from the partially assembed sequence, described
17302  * by the information from basic abbort @dmabuf. It checks to see whether such
17303  * partially assembled sequence held by the driver. If so, it shall free up all
17304  * the frames from the partially assembled sequence.
17305  *
17306  * Return
17307  * true  -- if there is matching partially assembled sequence present and all
17308  *          the frames freed with the sequence;
17309  * false -- if there is no matching partially assembled sequence present so
17310  *          nothing got aborted in the lower layer driver
17311  **/
17312 static bool
17313 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17314 			    struct hbq_dmabuf *dmabuf)
17315 {
17316 	struct fc_frame_header *new_hdr;
17317 	struct fc_frame_header *temp_hdr;
17318 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17319 	struct hbq_dmabuf *seq_dmabuf = NULL;
17320 
17321 	/* Use the hdr_buf to find the sequence that matches this frame */
17322 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17323 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17324 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17325 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17326 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17327 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17328 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17329 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17330 			continue;
17331 		/* found a pending sequence that matches this frame */
17332 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17333 		break;
17334 	}
17335 
17336 	/* Free up all the frames from the partially assembled sequence */
17337 	if (seq_dmabuf) {
17338 		list_for_each_entry_safe(d_buf, n_buf,
17339 					 &seq_dmabuf->dbuf.list, list) {
17340 			list_del_init(&d_buf->list);
17341 			lpfc_in_buf_free(vport->phba, d_buf);
17342 		}
17343 		return true;
17344 	}
17345 	return false;
17346 }
17347 
17348 /**
17349  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17350  * @vport: pointer to a vitural port
17351  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17352  *
17353  * This function tries to abort from the assembed sequence from upper level
17354  * protocol, described by the information from basic abbort @dmabuf. It
17355  * checks to see whether such pending context exists at upper level protocol.
17356  * If so, it shall clean up the pending context.
17357  *
17358  * Return
17359  * true  -- if there is matching pending context of the sequence cleaned
17360  *          at ulp;
17361  * false -- if there is no matching pending context of the sequence present
17362  *          at ulp.
17363  **/
17364 static bool
17365 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17366 {
17367 	struct lpfc_hba *phba = vport->phba;
17368 	int handled;
17369 
17370 	/* Accepting abort at ulp with SLI4 only */
17371 	if (phba->sli_rev < LPFC_SLI_REV4)
17372 		return false;
17373 
17374 	/* Register all caring upper level protocols to attend abort */
17375 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17376 	if (handled)
17377 		return true;
17378 
17379 	return false;
17380 }
17381 
17382 /**
17383  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17384  * @phba: Pointer to HBA context object.
17385  * @cmd_iocbq: pointer to the command iocbq structure.
17386  * @rsp_iocbq: pointer to the response iocbq structure.
17387  *
17388  * This function handles the sequence abort response iocb command complete
17389  * event. It properly releases the memory allocated to the sequence abort
17390  * accept iocb.
17391  **/
17392 static void
17393 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17394 			     struct lpfc_iocbq *cmd_iocbq,
17395 			     struct lpfc_iocbq *rsp_iocbq)
17396 {
17397 	struct lpfc_nodelist *ndlp;
17398 
17399 	if (cmd_iocbq) {
17400 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17401 		lpfc_nlp_put(ndlp);
17402 		lpfc_nlp_not_used(ndlp);
17403 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17404 	}
17405 
17406 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17407 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17408 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17409 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17410 			rsp_iocbq->iocb.ulpStatus,
17411 			rsp_iocbq->iocb.un.ulpWord[4]);
17412 }
17413 
17414 /**
17415  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17416  * @phba: Pointer to HBA context object.
17417  * @xri: xri id in transaction.
17418  *
17419  * This function validates the xri maps to the known range of XRIs allocated an
17420  * used by the driver.
17421  **/
17422 uint16_t
17423 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17424 		      uint16_t xri)
17425 {
17426 	uint16_t i;
17427 
17428 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17429 		if (xri == phba->sli4_hba.xri_ids[i])
17430 			return i;
17431 	}
17432 	return NO_XRI;
17433 }
17434 
17435 /**
17436  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17437  * @phba: Pointer to HBA context object.
17438  * @fc_hdr: pointer to a FC frame header.
17439  *
17440  * This function sends a basic response to a previous unsol sequence abort
17441  * event after aborting the sequence handling.
17442  **/
17443 void
17444 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17445 			struct fc_frame_header *fc_hdr, bool aborted)
17446 {
17447 	struct lpfc_hba *phba = vport->phba;
17448 	struct lpfc_iocbq *ctiocb = NULL;
17449 	struct lpfc_nodelist *ndlp;
17450 	uint16_t oxid, rxid, xri, lxri;
17451 	uint32_t sid, fctl;
17452 	IOCB_t *icmd;
17453 	int rc;
17454 
17455 	if (!lpfc_is_link_up(phba))
17456 		return;
17457 
17458 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17459 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17460 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17461 
17462 	ndlp = lpfc_findnode_did(vport, sid);
17463 	if (!ndlp) {
17464 		ndlp = lpfc_nlp_init(vport, sid);
17465 		if (!ndlp) {
17466 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17467 					 "1268 Failed to allocate ndlp for "
17468 					 "oxid:x%x SID:x%x\n", oxid, sid);
17469 			return;
17470 		}
17471 		/* Put ndlp onto pport node list */
17472 		lpfc_enqueue_node(vport, ndlp);
17473 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17474 		/* re-setup ndlp without removing from node list */
17475 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17476 		if (!ndlp) {
17477 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17478 					 "3275 Failed to active ndlp found "
17479 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17480 			return;
17481 		}
17482 	}
17483 
17484 	/* Allocate buffer for rsp iocb */
17485 	ctiocb = lpfc_sli_get_iocbq(phba);
17486 	if (!ctiocb)
17487 		return;
17488 
17489 	/* Extract the F_CTL field from FC_HDR */
17490 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17491 
17492 	icmd = &ctiocb->iocb;
17493 	icmd->un.xseq64.bdl.bdeSize = 0;
17494 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17495 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17496 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17497 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17498 
17499 	/* Fill in the rest of iocb fields */
17500 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17501 	icmd->ulpBdeCount = 0;
17502 	icmd->ulpLe = 1;
17503 	icmd->ulpClass = CLASS3;
17504 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17505 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17506 
17507 	ctiocb->iocb_cmpl = NULL;
17508 	ctiocb->vport = phba->pport;
17509 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17510 	ctiocb->sli4_lxritag = NO_XRI;
17511 	ctiocb->sli4_xritag = NO_XRI;
17512 
17513 	if (fctl & FC_FC_EX_CTX)
17514 		/* Exchange responder sent the abort so we
17515 		 * own the oxid.
17516 		 */
17517 		xri = oxid;
17518 	else
17519 		xri = rxid;
17520 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17521 	if (lxri != NO_XRI)
17522 		lpfc_set_rrq_active(phba, ndlp, lxri,
17523 			(xri == oxid) ? rxid : oxid, 0);
17524 	/* For BA_ABTS from exchange responder, if the logical xri with
17525 	 * the oxid maps to the FCP XRI range, the port no longer has
17526 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17527 	 * a BA_RJT.
17528 	 */
17529 	if ((fctl & FC_FC_EX_CTX) &&
17530 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17531 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17532 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17533 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17534 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17535 	}
17536 
17537 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17538 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17539 	 * the IOCB for a BA_RJT.
17540 	 */
17541 	if (aborted == false) {
17542 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17543 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17544 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17545 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17546 	}
17547 
17548 	if (fctl & FC_FC_EX_CTX) {
17549 		/* ABTS sent by responder to CT exchange, construction
17550 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17551 		 * field and RX_ID from ABTS for RX_ID field.
17552 		 */
17553 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17554 	} else {
17555 		/* ABTS sent by initiator to CT exchange, construction
17556 		 * of BA_ACC will need to allocate a new XRI as for the
17557 		 * XRI_TAG field.
17558 		 */
17559 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17560 	}
17561 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17562 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17563 
17564 	/* Xmit CT abts response on exchange <xid> */
17565 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17566 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17567 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17568 
17569 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17570 	if (rc == IOCB_ERROR) {
17571 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17572 				 "2925 Failed to issue CT ABTS RSP x%x on "
17573 				 "xri x%x, Data x%x\n",
17574 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17575 				 phba->link_state);
17576 		lpfc_nlp_put(ndlp);
17577 		ctiocb->context1 = NULL;
17578 		lpfc_sli_release_iocbq(phba, ctiocb);
17579 	}
17580 }
17581 
17582 /**
17583  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17584  * @vport: Pointer to the vport on which this sequence was received
17585  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17586  *
17587  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17588  * receive sequence is only partially assembed by the driver, it shall abort
17589  * the partially assembled frames for the sequence. Otherwise, if the
17590  * unsolicited receive sequence has been completely assembled and passed to
17591  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17592  * unsolicited sequence has been aborted. After that, it will issue a basic
17593  * accept to accept the abort.
17594  **/
17595 static void
17596 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17597 			     struct hbq_dmabuf *dmabuf)
17598 {
17599 	struct lpfc_hba *phba = vport->phba;
17600 	struct fc_frame_header fc_hdr;
17601 	uint32_t fctl;
17602 	bool aborted;
17603 
17604 	/* Make a copy of fc_hdr before the dmabuf being released */
17605 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17606 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17607 
17608 	if (fctl & FC_FC_EX_CTX) {
17609 		/* ABTS by responder to exchange, no cleanup needed */
17610 		aborted = true;
17611 	} else {
17612 		/* ABTS by initiator to exchange, need to do cleanup */
17613 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17614 		if (aborted == false)
17615 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17616 	}
17617 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17618 
17619 	if (phba->nvmet_support) {
17620 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17621 		return;
17622 	}
17623 
17624 	/* Respond with BA_ACC or BA_RJT accordingly */
17625 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17626 }
17627 
17628 /**
17629  * lpfc_seq_complete - Indicates if a sequence is complete
17630  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17631  *
17632  * This function checks the sequence, starting with the frame described by
17633  * @dmabuf, to see if all the frames associated with this sequence are present.
17634  * the frames associated with this sequence are linked to the @dmabuf using the
17635  * dbuf list. This function looks for two major things. 1) That the first frame
17636  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17637  * set. 3) That there are no holes in the sequence count. The function will
17638  * return 1 when the sequence is complete, otherwise it will return 0.
17639  **/
17640 static int
17641 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17642 {
17643 	struct fc_frame_header *hdr;
17644 	struct lpfc_dmabuf *d_buf;
17645 	struct hbq_dmabuf *seq_dmabuf;
17646 	uint32_t fctl;
17647 	int seq_count = 0;
17648 
17649 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17650 	/* make sure first fame of sequence has a sequence count of zero */
17651 	if (hdr->fh_seq_cnt != seq_count)
17652 		return 0;
17653 	fctl = (hdr->fh_f_ctl[0] << 16 |
17654 		hdr->fh_f_ctl[1] << 8 |
17655 		hdr->fh_f_ctl[2]);
17656 	/* If last frame of sequence we can return success. */
17657 	if (fctl & FC_FC_END_SEQ)
17658 		return 1;
17659 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17660 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17661 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17662 		/* If there is a hole in the sequence count then fail. */
17663 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17664 			return 0;
17665 		fctl = (hdr->fh_f_ctl[0] << 16 |
17666 			hdr->fh_f_ctl[1] << 8 |
17667 			hdr->fh_f_ctl[2]);
17668 		/* If last frame of sequence we can return success. */
17669 		if (fctl & FC_FC_END_SEQ)
17670 			return 1;
17671 	}
17672 	return 0;
17673 }
17674 
17675 /**
17676  * lpfc_prep_seq - Prep sequence for ULP processing
17677  * @vport: Pointer to the vport on which this sequence was received
17678  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17679  *
17680  * This function takes a sequence, described by a list of frames, and creates
17681  * a list of iocbq structures to describe the sequence. This iocbq list will be
17682  * used to issue to the generic unsolicited sequence handler. This routine
17683  * returns a pointer to the first iocbq in the list. If the function is unable
17684  * to allocate an iocbq then it throw out the received frames that were not
17685  * able to be described and return a pointer to the first iocbq. If unable to
17686  * allocate any iocbqs (including the first) this function will return NULL.
17687  **/
17688 static struct lpfc_iocbq *
17689 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17690 {
17691 	struct hbq_dmabuf *hbq_buf;
17692 	struct lpfc_dmabuf *d_buf, *n_buf;
17693 	struct lpfc_iocbq *first_iocbq, *iocbq;
17694 	struct fc_frame_header *fc_hdr;
17695 	uint32_t sid;
17696 	uint32_t len, tot_len;
17697 	struct ulp_bde64 *pbde;
17698 
17699 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17700 	/* remove from receive buffer list */
17701 	list_del_init(&seq_dmabuf->hbuf.list);
17702 	lpfc_update_rcv_time_stamp(vport);
17703 	/* get the Remote Port's SID */
17704 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17705 	tot_len = 0;
17706 	/* Get an iocbq struct to fill in. */
17707 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17708 	if (first_iocbq) {
17709 		/* Initialize the first IOCB. */
17710 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17711 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17712 		first_iocbq->vport = vport;
17713 
17714 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17715 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17716 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17717 			first_iocbq->iocb.un.rcvels.parmRo =
17718 				sli4_did_from_fc_hdr(fc_hdr);
17719 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17720 		} else
17721 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17722 		first_iocbq->iocb.ulpContext = NO_XRI;
17723 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17724 			be16_to_cpu(fc_hdr->fh_ox_id);
17725 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17726 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17727 			vport->phba->vpi_ids[vport->vpi];
17728 		/* put the first buffer into the first IOCBq */
17729 		tot_len = bf_get(lpfc_rcqe_length,
17730 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17731 
17732 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17733 		first_iocbq->context3 = NULL;
17734 		first_iocbq->iocb.ulpBdeCount = 1;
17735 		if (tot_len > LPFC_DATA_BUF_SIZE)
17736 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17737 							LPFC_DATA_BUF_SIZE;
17738 		else
17739 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17740 
17741 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17742 
17743 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17744 	}
17745 	iocbq = first_iocbq;
17746 	/*
17747 	 * Each IOCBq can have two Buffers assigned, so go through the list
17748 	 * of buffers for this sequence and save two buffers in each IOCBq
17749 	 */
17750 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17751 		if (!iocbq) {
17752 			lpfc_in_buf_free(vport->phba, d_buf);
17753 			continue;
17754 		}
17755 		if (!iocbq->context3) {
17756 			iocbq->context3 = d_buf;
17757 			iocbq->iocb.ulpBdeCount++;
17758 			/* We need to get the size out of the right CQE */
17759 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17760 			len = bf_get(lpfc_rcqe_length,
17761 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17762 			pbde = (struct ulp_bde64 *)
17763 					&iocbq->iocb.unsli3.sli3Words[4];
17764 			if (len > LPFC_DATA_BUF_SIZE)
17765 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17766 			else
17767 				pbde->tus.f.bdeSize = len;
17768 
17769 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17770 			tot_len += len;
17771 		} else {
17772 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17773 			if (!iocbq) {
17774 				if (first_iocbq) {
17775 					first_iocbq->iocb.ulpStatus =
17776 							IOSTAT_FCP_RSP_ERROR;
17777 					first_iocbq->iocb.un.ulpWord[4] =
17778 							IOERR_NO_RESOURCES;
17779 				}
17780 				lpfc_in_buf_free(vport->phba, d_buf);
17781 				continue;
17782 			}
17783 			/* We need to get the size out of the right CQE */
17784 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17785 			len = bf_get(lpfc_rcqe_length,
17786 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17787 			iocbq->context2 = d_buf;
17788 			iocbq->context3 = NULL;
17789 			iocbq->iocb.ulpBdeCount = 1;
17790 			if (len > LPFC_DATA_BUF_SIZE)
17791 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17792 							LPFC_DATA_BUF_SIZE;
17793 			else
17794 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17795 
17796 			tot_len += len;
17797 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17798 
17799 			iocbq->iocb.un.rcvels.remoteID = sid;
17800 			list_add_tail(&iocbq->list, &first_iocbq->list);
17801 		}
17802 	}
17803 	return first_iocbq;
17804 }
17805 
17806 static void
17807 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17808 			  struct hbq_dmabuf *seq_dmabuf)
17809 {
17810 	struct fc_frame_header *fc_hdr;
17811 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17812 	struct lpfc_hba *phba = vport->phba;
17813 
17814 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17815 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17816 	if (!iocbq) {
17817 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17818 				"2707 Ring %d handler: Failed to allocate "
17819 				"iocb Rctl x%x Type x%x received\n",
17820 				LPFC_ELS_RING,
17821 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17822 		return;
17823 	}
17824 	if (!lpfc_complete_unsol_iocb(phba,
17825 				      phba->sli4_hba.els_wq->pring,
17826 				      iocbq, fc_hdr->fh_r_ctl,
17827 				      fc_hdr->fh_type))
17828 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17829 				"2540 Ring %d handler: unexpected Rctl "
17830 				"x%x Type x%x received\n",
17831 				LPFC_ELS_RING,
17832 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17833 
17834 	/* Free iocb created in lpfc_prep_seq */
17835 	list_for_each_entry_safe(curr_iocb, next_iocb,
17836 		&iocbq->list, list) {
17837 		list_del_init(&curr_iocb->list);
17838 		lpfc_sli_release_iocbq(phba, curr_iocb);
17839 	}
17840 	lpfc_sli_release_iocbq(phba, iocbq);
17841 }
17842 
17843 static void
17844 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17845 			    struct lpfc_iocbq *rspiocb)
17846 {
17847 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17848 
17849 	if (pcmd && pcmd->virt)
17850 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17851 	kfree(pcmd);
17852 	lpfc_sli_release_iocbq(phba, cmdiocb);
17853 	lpfc_drain_txq(phba);
17854 }
17855 
17856 static void
17857 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17858 			      struct hbq_dmabuf *dmabuf)
17859 {
17860 	struct fc_frame_header *fc_hdr;
17861 	struct lpfc_hba *phba = vport->phba;
17862 	struct lpfc_iocbq *iocbq = NULL;
17863 	union  lpfc_wqe *wqe;
17864 	struct lpfc_dmabuf *pcmd = NULL;
17865 	uint32_t frame_len;
17866 	int rc;
17867 	unsigned long iflags;
17868 
17869 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17870 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17871 
17872 	/* Send the received frame back */
17873 	iocbq = lpfc_sli_get_iocbq(phba);
17874 	if (!iocbq) {
17875 		/* Queue cq event and wakeup worker thread to process it */
17876 		spin_lock_irqsave(&phba->hbalock, iflags);
17877 		list_add_tail(&dmabuf->cq_event.list,
17878 			      &phba->sli4_hba.sp_queue_event);
17879 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
17880 		spin_unlock_irqrestore(&phba->hbalock, iflags);
17881 		lpfc_worker_wake_up(phba);
17882 		return;
17883 	}
17884 
17885 	/* Allocate buffer for command payload */
17886 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17887 	if (pcmd)
17888 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17889 					    &pcmd->phys);
17890 	if (!pcmd || !pcmd->virt)
17891 		goto exit;
17892 
17893 	INIT_LIST_HEAD(&pcmd->list);
17894 
17895 	/* copyin the payload */
17896 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17897 
17898 	/* fill in BDE's for command */
17899 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17900 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17901 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17902 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17903 
17904 	iocbq->context2 = pcmd;
17905 	iocbq->vport = vport;
17906 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17907 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17908 
17909 	/*
17910 	 * Setup rest of the iocb as though it were a WQE
17911 	 * Build the SEND_FRAME WQE
17912 	 */
17913 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17914 
17915 	wqe->send_frame.frame_len = frame_len;
17916 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17917 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17918 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17919 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17920 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17921 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17922 
17923 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17924 	iocbq->iocb.ulpLe = 1;
17925 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17926 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17927 	if (rc == IOCB_ERROR)
17928 		goto exit;
17929 
17930 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17931 	return;
17932 
17933 exit:
17934 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17935 			"2023 Unable to process MDS loopback frame\n");
17936 	if (pcmd && pcmd->virt)
17937 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17938 	kfree(pcmd);
17939 	if (iocbq)
17940 		lpfc_sli_release_iocbq(phba, iocbq);
17941 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17942 }
17943 
17944 /**
17945  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17946  * @phba: Pointer to HBA context object.
17947  *
17948  * This function is called with no lock held. This function processes all
17949  * the received buffers and gives it to upper layers when a received buffer
17950  * indicates that it is the final frame in the sequence. The interrupt
17951  * service routine processes received buffers at interrupt contexts.
17952  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17953  * appropriate receive function when the final frame in a sequence is received.
17954  **/
17955 void
17956 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17957 				 struct hbq_dmabuf *dmabuf)
17958 {
17959 	struct hbq_dmabuf *seq_dmabuf;
17960 	struct fc_frame_header *fc_hdr;
17961 	struct lpfc_vport *vport;
17962 	uint32_t fcfi;
17963 	uint32_t did;
17964 
17965 	/* Process each received buffer */
17966 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17967 
17968 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17969 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17970 		vport = phba->pport;
17971 		/* Handle MDS Loopback frames */
17972 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17973 		return;
17974 	}
17975 
17976 	/* check to see if this a valid type of frame */
17977 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17978 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17979 		return;
17980 	}
17981 
17982 	if ((bf_get(lpfc_cqe_code,
17983 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17984 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17985 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17986 	else
17987 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17988 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17989 
17990 	/* d_id this frame is directed to */
17991 	did = sli4_did_from_fc_hdr(fc_hdr);
17992 
17993 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17994 	if (!vport) {
17995 		/* throw out the frame */
17996 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17997 		return;
17998 	}
17999 
18000 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18001 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18002 		(did != Fabric_DID)) {
18003 		/*
18004 		 * Throw out the frame if we are not pt2pt.
18005 		 * The pt2pt protocol allows for discovery frames
18006 		 * to be received without a registered VPI.
18007 		 */
18008 		if (!(vport->fc_flag & FC_PT2PT) ||
18009 			(phba->link_state == LPFC_HBA_READY)) {
18010 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18011 			return;
18012 		}
18013 	}
18014 
18015 	/* Handle the basic abort sequence (BA_ABTS) event */
18016 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18017 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18018 		return;
18019 	}
18020 
18021 	/* Link this frame */
18022 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18023 	if (!seq_dmabuf) {
18024 		/* unable to add frame to vport - throw it out */
18025 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18026 		return;
18027 	}
18028 	/* If not last frame in sequence continue processing frames. */
18029 	if (!lpfc_seq_complete(seq_dmabuf))
18030 		return;
18031 
18032 	/* Send the complete sequence to the upper layer protocol */
18033 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18034 }
18035 
18036 /**
18037  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18038  * @phba: pointer to lpfc hba data structure.
18039  *
18040  * This routine is invoked to post rpi header templates to the
18041  * HBA consistent with the SLI-4 interface spec.  This routine
18042  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18043  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18044  *
18045  * This routine does not require any locks.  It's usage is expected
18046  * to be driver load or reset recovery when the driver is
18047  * sequential.
18048  *
18049  * Return codes
18050  * 	0 - successful
18051  *      -EIO - The mailbox failed to complete successfully.
18052  * 	When this error occurs, the driver is not guaranteed
18053  *	to have any rpi regions posted to the device and
18054  *	must either attempt to repost the regions or take a
18055  *	fatal error.
18056  **/
18057 int
18058 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18059 {
18060 	struct lpfc_rpi_hdr *rpi_page;
18061 	uint32_t rc = 0;
18062 	uint16_t lrpi = 0;
18063 
18064 	/* SLI4 ports that support extents do not require RPI headers. */
18065 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18066 		goto exit;
18067 	if (phba->sli4_hba.extents_in_use)
18068 		return -EIO;
18069 
18070 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18071 		/*
18072 		 * Assign the rpi headers a physical rpi only if the driver
18073 		 * has not initialized those resources.  A port reset only
18074 		 * needs the headers posted.
18075 		 */
18076 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18077 		    LPFC_RPI_RSRC_RDY)
18078 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18079 
18080 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18081 		if (rc != MBX_SUCCESS) {
18082 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18083 					"2008 Error %d posting all rpi "
18084 					"headers\n", rc);
18085 			rc = -EIO;
18086 			break;
18087 		}
18088 	}
18089 
18090  exit:
18091 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18092 	       LPFC_RPI_RSRC_RDY);
18093 	return rc;
18094 }
18095 
18096 /**
18097  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18098  * @phba: pointer to lpfc hba data structure.
18099  * @rpi_page:  pointer to the rpi memory region.
18100  *
18101  * This routine is invoked to post a single rpi header to the
18102  * HBA consistent with the SLI-4 interface spec.  This memory region
18103  * maps up to 64 rpi context regions.
18104  *
18105  * Return codes
18106  * 	0 - successful
18107  * 	-ENOMEM - No available memory
18108  *      -EIO - The mailbox failed to complete successfully.
18109  **/
18110 int
18111 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18112 {
18113 	LPFC_MBOXQ_t *mboxq;
18114 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18115 	uint32_t rc = 0;
18116 	uint32_t shdr_status, shdr_add_status;
18117 	union lpfc_sli4_cfg_shdr *shdr;
18118 
18119 	/* SLI4 ports that support extents do not require RPI headers. */
18120 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18121 		return rc;
18122 	if (phba->sli4_hba.extents_in_use)
18123 		return -EIO;
18124 
18125 	/* The port is notified of the header region via a mailbox command. */
18126 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18127 	if (!mboxq) {
18128 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18129 				"2001 Unable to allocate memory for issuing "
18130 				"SLI_CONFIG_SPECIAL mailbox command\n");
18131 		return -ENOMEM;
18132 	}
18133 
18134 	/* Post all rpi memory regions to the port. */
18135 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18136 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18137 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18138 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18139 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18140 			 LPFC_SLI4_MBX_EMBED);
18141 
18142 
18143 	/* Post the physical rpi to the port for this rpi header. */
18144 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18145 	       rpi_page->start_rpi);
18146 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18147 	       hdr_tmpl, rpi_page->page_count);
18148 
18149 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18150 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18151 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18152 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18153 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18154 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18155 	if (rc != MBX_TIMEOUT)
18156 		mempool_free(mboxq, phba->mbox_mem_pool);
18157 	if (shdr_status || shdr_add_status || rc) {
18158 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18159 				"2514 POST_RPI_HDR mailbox failed with "
18160 				"status x%x add_status x%x, mbx status x%x\n",
18161 				shdr_status, shdr_add_status, rc);
18162 		rc = -ENXIO;
18163 	} else {
18164 		/*
18165 		 * The next_rpi stores the next logical module-64 rpi value used
18166 		 * to post physical rpis in subsequent rpi postings.
18167 		 */
18168 		spin_lock_irq(&phba->hbalock);
18169 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18170 		spin_unlock_irq(&phba->hbalock);
18171 	}
18172 	return rc;
18173 }
18174 
18175 /**
18176  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18177  * @phba: pointer to lpfc hba data structure.
18178  *
18179  * This routine is invoked to post rpi header templates to the
18180  * HBA consistent with the SLI-4 interface spec.  This routine
18181  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18182  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18183  *
18184  * Returns
18185  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18186  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18187  **/
18188 int
18189 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18190 {
18191 	unsigned long rpi;
18192 	uint16_t max_rpi, rpi_limit;
18193 	uint16_t rpi_remaining, lrpi = 0;
18194 	struct lpfc_rpi_hdr *rpi_hdr;
18195 	unsigned long iflag;
18196 
18197 	/*
18198 	 * Fetch the next logical rpi.  Because this index is logical,
18199 	 * the  driver starts at 0 each time.
18200 	 */
18201 	spin_lock_irqsave(&phba->hbalock, iflag);
18202 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18203 	rpi_limit = phba->sli4_hba.next_rpi;
18204 
18205 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18206 	if (rpi >= rpi_limit)
18207 		rpi = LPFC_RPI_ALLOC_ERROR;
18208 	else {
18209 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18210 		phba->sli4_hba.max_cfg_param.rpi_used++;
18211 		phba->sli4_hba.rpi_count++;
18212 	}
18213 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18214 			"0001 rpi:%x max:%x lim:%x\n",
18215 			(int) rpi, max_rpi, rpi_limit);
18216 
18217 	/*
18218 	 * Don't try to allocate more rpi header regions if the device limit
18219 	 * has been exhausted.
18220 	 */
18221 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18222 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18223 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18224 		return rpi;
18225 	}
18226 
18227 	/*
18228 	 * RPI header postings are not required for SLI4 ports capable of
18229 	 * extents.
18230 	 */
18231 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18232 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18233 		return rpi;
18234 	}
18235 
18236 	/*
18237 	 * If the driver is running low on rpi resources, allocate another
18238 	 * page now.  Note that the next_rpi value is used because
18239 	 * it represents how many are actually in use whereas max_rpi notes
18240 	 * how many are supported max by the device.
18241 	 */
18242 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18243 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18244 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18245 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18246 		if (!rpi_hdr) {
18247 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18248 					"2002 Error Could not grow rpi "
18249 					"count\n");
18250 		} else {
18251 			lrpi = rpi_hdr->start_rpi;
18252 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18253 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18254 		}
18255 	}
18256 
18257 	return rpi;
18258 }
18259 
18260 /**
18261  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18262  * @phba: pointer to lpfc hba data structure.
18263  *
18264  * This routine is invoked to release an rpi to the pool of
18265  * available rpis maintained by the driver.
18266  **/
18267 static void
18268 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18269 {
18270 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18271 		phba->sli4_hba.rpi_count--;
18272 		phba->sli4_hba.max_cfg_param.rpi_used--;
18273 	}
18274 }
18275 
18276 /**
18277  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18278  * @phba: pointer to lpfc hba data structure.
18279  *
18280  * This routine is invoked to release an rpi to the pool of
18281  * available rpis maintained by the driver.
18282  **/
18283 void
18284 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18285 {
18286 	spin_lock_irq(&phba->hbalock);
18287 	__lpfc_sli4_free_rpi(phba, rpi);
18288 	spin_unlock_irq(&phba->hbalock);
18289 }
18290 
18291 /**
18292  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18293  * @phba: pointer to lpfc hba data structure.
18294  *
18295  * This routine is invoked to remove the memory region that
18296  * provided rpi via a bitmask.
18297  **/
18298 void
18299 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18300 {
18301 	kfree(phba->sli4_hba.rpi_bmask);
18302 	kfree(phba->sli4_hba.rpi_ids);
18303 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18304 }
18305 
18306 /**
18307  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18308  * @phba: pointer to lpfc hba data structure.
18309  *
18310  * This routine is invoked to remove the memory region that
18311  * provided rpi via a bitmask.
18312  **/
18313 int
18314 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18315 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18316 {
18317 	LPFC_MBOXQ_t *mboxq;
18318 	struct lpfc_hba *phba = ndlp->phba;
18319 	int rc;
18320 
18321 	/* The port is notified of the header region via a mailbox command. */
18322 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18323 	if (!mboxq)
18324 		return -ENOMEM;
18325 
18326 	/* Post all rpi memory regions to the port. */
18327 	lpfc_resume_rpi(mboxq, ndlp);
18328 	if (cmpl) {
18329 		mboxq->mbox_cmpl = cmpl;
18330 		mboxq->ctx_buf = arg;
18331 		mboxq->ctx_ndlp = ndlp;
18332 	} else
18333 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18334 	mboxq->vport = ndlp->vport;
18335 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18336 	if (rc == MBX_NOT_FINISHED) {
18337 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18338 				"2010 Resume RPI Mailbox failed "
18339 				"status %d, mbxStatus x%x\n", rc,
18340 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18341 		mempool_free(mboxq, phba->mbox_mem_pool);
18342 		return -EIO;
18343 	}
18344 	return 0;
18345 }
18346 
18347 /**
18348  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18349  * @vport: Pointer to the vport for which the vpi is being initialized
18350  *
18351  * This routine is invoked to activate a vpi with the port.
18352  *
18353  * Returns:
18354  *    0 success
18355  *    -Evalue otherwise
18356  **/
18357 int
18358 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18359 {
18360 	LPFC_MBOXQ_t *mboxq;
18361 	int rc = 0;
18362 	int retval = MBX_SUCCESS;
18363 	uint32_t mbox_tmo;
18364 	struct lpfc_hba *phba = vport->phba;
18365 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18366 	if (!mboxq)
18367 		return -ENOMEM;
18368 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18369 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18370 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18371 	if (rc != MBX_SUCCESS) {
18372 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18373 				"2022 INIT VPI Mailbox failed "
18374 				"status %d, mbxStatus x%x\n", rc,
18375 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18376 		retval = -EIO;
18377 	}
18378 	if (rc != MBX_TIMEOUT)
18379 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18380 
18381 	return retval;
18382 }
18383 
18384 /**
18385  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18386  * @phba: pointer to lpfc hba data structure.
18387  * @mboxq: Pointer to mailbox object.
18388  *
18389  * This routine is invoked to manually add a single FCF record. The caller
18390  * must pass a completely initialized FCF_Record.  This routine takes
18391  * care of the nonembedded mailbox operations.
18392  **/
18393 static void
18394 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18395 {
18396 	void *virt_addr;
18397 	union lpfc_sli4_cfg_shdr *shdr;
18398 	uint32_t shdr_status, shdr_add_status;
18399 
18400 	virt_addr = mboxq->sge_array->addr[0];
18401 	/* The IOCTL status is embedded in the mailbox subheader. */
18402 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18403 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18404 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18405 
18406 	if ((shdr_status || shdr_add_status) &&
18407 		(shdr_status != STATUS_FCF_IN_USE))
18408 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18409 			"2558 ADD_FCF_RECORD mailbox failed with "
18410 			"status x%x add_status x%x\n",
18411 			shdr_status, shdr_add_status);
18412 
18413 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18414 }
18415 
18416 /**
18417  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18418  * @phba: pointer to lpfc hba data structure.
18419  * @fcf_record:  pointer to the initialized fcf record to add.
18420  *
18421  * This routine is invoked to manually add a single FCF record. The caller
18422  * must pass a completely initialized FCF_Record.  This routine takes
18423  * care of the nonembedded mailbox operations.
18424  **/
18425 int
18426 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18427 {
18428 	int rc = 0;
18429 	LPFC_MBOXQ_t *mboxq;
18430 	uint8_t *bytep;
18431 	void *virt_addr;
18432 	struct lpfc_mbx_sge sge;
18433 	uint32_t alloc_len, req_len;
18434 	uint32_t fcfindex;
18435 
18436 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18437 	if (!mboxq) {
18438 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18439 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18440 		return -ENOMEM;
18441 	}
18442 
18443 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18444 		  sizeof(uint32_t);
18445 
18446 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18447 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18448 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18449 				     req_len, LPFC_SLI4_MBX_NEMBED);
18450 	if (alloc_len < req_len) {
18451 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18452 			"2523 Allocated DMA memory size (x%x) is "
18453 			"less than the requested DMA memory "
18454 			"size (x%x)\n", alloc_len, req_len);
18455 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18456 		return -ENOMEM;
18457 	}
18458 
18459 	/*
18460 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18461 	 * routine only uses a single SGE.
18462 	 */
18463 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18464 	virt_addr = mboxq->sge_array->addr[0];
18465 	/*
18466 	 * Configure the FCF record for FCFI 0.  This is the driver's
18467 	 * hardcoded default and gets used in nonFIP mode.
18468 	 */
18469 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18470 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18471 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18472 
18473 	/*
18474 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18475 	 * the FCoE header plus word10. The data copy needs to be endian
18476 	 * correct.
18477 	 */
18478 	bytep += sizeof(uint32_t);
18479 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18480 	mboxq->vport = phba->pport;
18481 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18482 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18483 	if (rc == MBX_NOT_FINISHED) {
18484 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18485 			"2515 ADD_FCF_RECORD mailbox failed with "
18486 			"status 0x%x\n", rc);
18487 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18488 		rc = -EIO;
18489 	} else
18490 		rc = 0;
18491 
18492 	return rc;
18493 }
18494 
18495 /**
18496  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18497  * @phba: pointer to lpfc hba data structure.
18498  * @fcf_record:  pointer to the fcf record to write the default data.
18499  * @fcf_index: FCF table entry index.
18500  *
18501  * This routine is invoked to build the driver's default FCF record.  The
18502  * values used are hardcoded.  This routine handles memory initialization.
18503  *
18504  **/
18505 void
18506 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18507 				struct fcf_record *fcf_record,
18508 				uint16_t fcf_index)
18509 {
18510 	memset(fcf_record, 0, sizeof(struct fcf_record));
18511 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18512 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18513 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18514 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18515 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18516 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18517 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18518 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18519 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18520 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18521 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18522 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18523 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18524 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18525 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18526 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18527 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18528 	/* Set the VLAN bit map */
18529 	if (phba->valid_vlan) {
18530 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18531 			= 1 << (phba->vlan_id % 8);
18532 	}
18533 }
18534 
18535 /**
18536  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18537  * @phba: pointer to lpfc hba data structure.
18538  * @fcf_index: FCF table entry offset.
18539  *
18540  * This routine is invoked to scan the entire FCF table by reading FCF
18541  * record and processing it one at a time starting from the @fcf_index
18542  * for initial FCF discovery or fast FCF failover rediscovery.
18543  *
18544  * Return 0 if the mailbox command is submitted successfully, none 0
18545  * otherwise.
18546  **/
18547 int
18548 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18549 {
18550 	int rc = 0, error;
18551 	LPFC_MBOXQ_t *mboxq;
18552 
18553 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18554 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18555 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18556 	if (!mboxq) {
18557 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18558 				"2000 Failed to allocate mbox for "
18559 				"READ_FCF cmd\n");
18560 		error = -ENOMEM;
18561 		goto fail_fcf_scan;
18562 	}
18563 	/* Construct the read FCF record mailbox command */
18564 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18565 	if (rc) {
18566 		error = -EINVAL;
18567 		goto fail_fcf_scan;
18568 	}
18569 	/* Issue the mailbox command asynchronously */
18570 	mboxq->vport = phba->pport;
18571 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18572 
18573 	spin_lock_irq(&phba->hbalock);
18574 	phba->hba_flag |= FCF_TS_INPROG;
18575 	spin_unlock_irq(&phba->hbalock);
18576 
18577 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18578 	if (rc == MBX_NOT_FINISHED)
18579 		error = -EIO;
18580 	else {
18581 		/* Reset eligible FCF count for new scan */
18582 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18583 			phba->fcf.eligible_fcf_cnt = 0;
18584 		error = 0;
18585 	}
18586 fail_fcf_scan:
18587 	if (error) {
18588 		if (mboxq)
18589 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18590 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18591 		spin_lock_irq(&phba->hbalock);
18592 		phba->hba_flag &= ~FCF_TS_INPROG;
18593 		spin_unlock_irq(&phba->hbalock);
18594 	}
18595 	return error;
18596 }
18597 
18598 /**
18599  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18600  * @phba: pointer to lpfc hba data structure.
18601  * @fcf_index: FCF table entry offset.
18602  *
18603  * This routine is invoked to read an FCF record indicated by @fcf_index
18604  * and to use it for FLOGI roundrobin FCF failover.
18605  *
18606  * Return 0 if the mailbox command is submitted successfully, none 0
18607  * otherwise.
18608  **/
18609 int
18610 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18611 {
18612 	int rc = 0, error;
18613 	LPFC_MBOXQ_t *mboxq;
18614 
18615 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18616 	if (!mboxq) {
18617 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18618 				"2763 Failed to allocate mbox for "
18619 				"READ_FCF cmd\n");
18620 		error = -ENOMEM;
18621 		goto fail_fcf_read;
18622 	}
18623 	/* Construct the read FCF record mailbox command */
18624 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18625 	if (rc) {
18626 		error = -EINVAL;
18627 		goto fail_fcf_read;
18628 	}
18629 	/* Issue the mailbox command asynchronously */
18630 	mboxq->vport = phba->pport;
18631 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18632 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18633 	if (rc == MBX_NOT_FINISHED)
18634 		error = -EIO;
18635 	else
18636 		error = 0;
18637 
18638 fail_fcf_read:
18639 	if (error && mboxq)
18640 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18641 	return error;
18642 }
18643 
18644 /**
18645  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18646  * @phba: pointer to lpfc hba data structure.
18647  * @fcf_index: FCF table entry offset.
18648  *
18649  * This routine is invoked to read an FCF record indicated by @fcf_index to
18650  * determine whether it's eligible for FLOGI roundrobin failover list.
18651  *
18652  * Return 0 if the mailbox command is submitted successfully, none 0
18653  * otherwise.
18654  **/
18655 int
18656 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18657 {
18658 	int rc = 0, error;
18659 	LPFC_MBOXQ_t *mboxq;
18660 
18661 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18662 	if (!mboxq) {
18663 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18664 				"2758 Failed to allocate mbox for "
18665 				"READ_FCF cmd\n");
18666 				error = -ENOMEM;
18667 				goto fail_fcf_read;
18668 	}
18669 	/* Construct the read FCF record mailbox command */
18670 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18671 	if (rc) {
18672 		error = -EINVAL;
18673 		goto fail_fcf_read;
18674 	}
18675 	/* Issue the mailbox command asynchronously */
18676 	mboxq->vport = phba->pport;
18677 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18678 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18679 	if (rc == MBX_NOT_FINISHED)
18680 		error = -EIO;
18681 	else
18682 		error = 0;
18683 
18684 fail_fcf_read:
18685 	if (error && mboxq)
18686 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18687 	return error;
18688 }
18689 
18690 /**
18691  * lpfc_check_next_fcf_pri_level
18692  * phba pointer to the lpfc_hba struct for this port.
18693  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18694  * routine when the rr_bmask is empty. The FCF indecies are put into the
18695  * rr_bmask based on their priority level. Starting from the highest priority
18696  * to the lowest. The most likely FCF candidate will be in the highest
18697  * priority group. When this routine is called it searches the fcf_pri list for
18698  * next lowest priority group and repopulates the rr_bmask with only those
18699  * fcf_indexes.
18700  * returns:
18701  * 1=success 0=failure
18702  **/
18703 static int
18704 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18705 {
18706 	uint16_t next_fcf_pri;
18707 	uint16_t last_index;
18708 	struct lpfc_fcf_pri *fcf_pri;
18709 	int rc;
18710 	int ret = 0;
18711 
18712 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18713 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18714 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18715 			"3060 Last IDX %d\n", last_index);
18716 
18717 	/* Verify the priority list has 2 or more entries */
18718 	spin_lock_irq(&phba->hbalock);
18719 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18720 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18721 		spin_unlock_irq(&phba->hbalock);
18722 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18723 			"3061 Last IDX %d\n", last_index);
18724 		return 0; /* Empty rr list */
18725 	}
18726 	spin_unlock_irq(&phba->hbalock);
18727 
18728 	next_fcf_pri = 0;
18729 	/*
18730 	 * Clear the rr_bmask and set all of the bits that are at this
18731 	 * priority.
18732 	 */
18733 	memset(phba->fcf.fcf_rr_bmask, 0,
18734 			sizeof(*phba->fcf.fcf_rr_bmask));
18735 	spin_lock_irq(&phba->hbalock);
18736 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18737 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18738 			continue;
18739 		/*
18740 		 * the 1st priority that has not FLOGI failed
18741 		 * will be the highest.
18742 		 */
18743 		if (!next_fcf_pri)
18744 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18745 		spin_unlock_irq(&phba->hbalock);
18746 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18747 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18748 						fcf_pri->fcf_rec.fcf_index);
18749 			if (rc)
18750 				return 0;
18751 		}
18752 		spin_lock_irq(&phba->hbalock);
18753 	}
18754 	/*
18755 	 * if next_fcf_pri was not set above and the list is not empty then
18756 	 * we have failed flogis on all of them. So reset flogi failed
18757 	 * and start at the beginning.
18758 	 */
18759 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18760 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18761 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18762 			/*
18763 			 * the 1st priority that has not FLOGI failed
18764 			 * will be the highest.
18765 			 */
18766 			if (!next_fcf_pri)
18767 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18768 			spin_unlock_irq(&phba->hbalock);
18769 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18770 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18771 						fcf_pri->fcf_rec.fcf_index);
18772 				if (rc)
18773 					return 0;
18774 			}
18775 			spin_lock_irq(&phba->hbalock);
18776 		}
18777 	} else
18778 		ret = 1;
18779 	spin_unlock_irq(&phba->hbalock);
18780 
18781 	return ret;
18782 }
18783 /**
18784  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18785  * @phba: pointer to lpfc hba data structure.
18786  *
18787  * This routine is to get the next eligible FCF record index in a round
18788  * robin fashion. If the next eligible FCF record index equals to the
18789  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18790  * shall be returned, otherwise, the next eligible FCF record's index
18791  * shall be returned.
18792  **/
18793 uint16_t
18794 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18795 {
18796 	uint16_t next_fcf_index;
18797 
18798 initial_priority:
18799 	/* Search start from next bit of currently registered FCF index */
18800 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18801 
18802 next_priority:
18803 	/* Determine the next fcf index to check */
18804 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18805 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18806 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18807 				       next_fcf_index);
18808 
18809 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18810 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18811 		/*
18812 		 * If we have wrapped then we need to clear the bits that
18813 		 * have been tested so that we can detect when we should
18814 		 * change the priority level.
18815 		 */
18816 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18817 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18818 	}
18819 
18820 
18821 	/* Check roundrobin failover list empty condition */
18822 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18823 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18824 		/*
18825 		 * If next fcf index is not found check if there are lower
18826 		 * Priority level fcf's in the fcf_priority list.
18827 		 * Set up the rr_bmask with all of the avaiable fcf bits
18828 		 * at that level and continue the selection process.
18829 		 */
18830 		if (lpfc_check_next_fcf_pri_level(phba))
18831 			goto initial_priority;
18832 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18833 				"2844 No roundrobin failover FCF available\n");
18834 
18835 		return LPFC_FCOE_FCF_NEXT_NONE;
18836 	}
18837 
18838 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18839 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18840 		LPFC_FCF_FLOGI_FAILED) {
18841 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18842 			return LPFC_FCOE_FCF_NEXT_NONE;
18843 
18844 		goto next_priority;
18845 	}
18846 
18847 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18848 			"2845 Get next roundrobin failover FCF (x%x)\n",
18849 			next_fcf_index);
18850 
18851 	return next_fcf_index;
18852 }
18853 
18854 /**
18855  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18856  * @phba: pointer to lpfc hba data structure.
18857  *
18858  * This routine sets the FCF record index in to the eligible bmask for
18859  * roundrobin failover search. It checks to make sure that the index
18860  * does not go beyond the range of the driver allocated bmask dimension
18861  * before setting the bit.
18862  *
18863  * Returns 0 if the index bit successfully set, otherwise, it returns
18864  * -EINVAL.
18865  **/
18866 int
18867 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18868 {
18869 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18870 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18871 				"2610 FCF (x%x) reached driver's book "
18872 				"keeping dimension:x%x\n",
18873 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18874 		return -EINVAL;
18875 	}
18876 	/* Set the eligible FCF record index bmask */
18877 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18878 
18879 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18880 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18881 			"bmask\n", fcf_index);
18882 
18883 	return 0;
18884 }
18885 
18886 /**
18887  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18888  * @phba: pointer to lpfc hba data structure.
18889  *
18890  * This routine clears the FCF record index from the eligible bmask for
18891  * roundrobin failover search. It checks to make sure that the index
18892  * does not go beyond the range of the driver allocated bmask dimension
18893  * before clearing the bit.
18894  **/
18895 void
18896 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18897 {
18898 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18899 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18900 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18901 				"2762 FCF (x%x) reached driver's book "
18902 				"keeping dimension:x%x\n",
18903 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18904 		return;
18905 	}
18906 	/* Clear the eligible FCF record index bmask */
18907 	spin_lock_irq(&phba->hbalock);
18908 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18909 				 list) {
18910 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18911 			list_del_init(&fcf_pri->list);
18912 			break;
18913 		}
18914 	}
18915 	spin_unlock_irq(&phba->hbalock);
18916 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18917 
18918 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18919 			"2791 Clear FCF (x%x) from roundrobin failover "
18920 			"bmask\n", fcf_index);
18921 }
18922 
18923 /**
18924  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18925  * @phba: pointer to lpfc hba data structure.
18926  *
18927  * This routine is the completion routine for the rediscover FCF table mailbox
18928  * command. If the mailbox command returned failure, it will try to stop the
18929  * FCF rediscover wait timer.
18930  **/
18931 static void
18932 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18933 {
18934 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18935 	uint32_t shdr_status, shdr_add_status;
18936 
18937 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18938 
18939 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18940 			     &redisc_fcf->header.cfg_shdr.response);
18941 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18942 			     &redisc_fcf->header.cfg_shdr.response);
18943 	if (shdr_status || shdr_add_status) {
18944 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18945 				"2746 Requesting for FCF rediscovery failed "
18946 				"status x%x add_status x%x\n",
18947 				shdr_status, shdr_add_status);
18948 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18949 			spin_lock_irq(&phba->hbalock);
18950 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18951 			spin_unlock_irq(&phba->hbalock);
18952 			/*
18953 			 * CVL event triggered FCF rediscover request failed,
18954 			 * last resort to re-try current registered FCF entry.
18955 			 */
18956 			lpfc_retry_pport_discovery(phba);
18957 		} else {
18958 			spin_lock_irq(&phba->hbalock);
18959 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18960 			spin_unlock_irq(&phba->hbalock);
18961 			/*
18962 			 * DEAD FCF event triggered FCF rediscover request
18963 			 * failed, last resort to fail over as a link down
18964 			 * to FCF registration.
18965 			 */
18966 			lpfc_sli4_fcf_dead_failthrough(phba);
18967 		}
18968 	} else {
18969 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18970 				"2775 Start FCF rediscover quiescent timer\n");
18971 		/*
18972 		 * Start FCF rediscovery wait timer for pending FCF
18973 		 * before rescan FCF record table.
18974 		 */
18975 		lpfc_fcf_redisc_wait_start_timer(phba);
18976 	}
18977 
18978 	mempool_free(mbox, phba->mbox_mem_pool);
18979 }
18980 
18981 /**
18982  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18983  * @phba: pointer to lpfc hba data structure.
18984  *
18985  * This routine is invoked to request for rediscovery of the entire FCF table
18986  * by the port.
18987  **/
18988 int
18989 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18990 {
18991 	LPFC_MBOXQ_t *mbox;
18992 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18993 	int rc, length;
18994 
18995 	/* Cancel retry delay timers to all vports before FCF rediscover */
18996 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18997 
18998 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18999 	if (!mbox) {
19000 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19001 				"2745 Failed to allocate mbox for "
19002 				"requesting FCF rediscover.\n");
19003 		return -ENOMEM;
19004 	}
19005 
19006 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19007 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19008 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19009 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19010 			 length, LPFC_SLI4_MBX_EMBED);
19011 
19012 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19013 	/* Set count to 0 for invalidating the entire FCF database */
19014 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19015 
19016 	/* Issue the mailbox command asynchronously */
19017 	mbox->vport = phba->pport;
19018 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19019 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19020 
19021 	if (rc == MBX_NOT_FINISHED) {
19022 		mempool_free(mbox, phba->mbox_mem_pool);
19023 		return -EIO;
19024 	}
19025 	return 0;
19026 }
19027 
19028 /**
19029  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19030  * @phba: pointer to lpfc hba data structure.
19031  *
19032  * This function is the failover routine as a last resort to the FCF DEAD
19033  * event when driver failed to perform fast FCF failover.
19034  **/
19035 void
19036 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19037 {
19038 	uint32_t link_state;
19039 
19040 	/*
19041 	 * Last resort as FCF DEAD event failover will treat this as
19042 	 * a link down, but save the link state because we don't want
19043 	 * it to be changed to Link Down unless it is already down.
19044 	 */
19045 	link_state = phba->link_state;
19046 	lpfc_linkdown(phba);
19047 	phba->link_state = link_state;
19048 
19049 	/* Unregister FCF if no devices connected to it */
19050 	lpfc_unregister_unused_fcf(phba);
19051 }
19052 
19053 /**
19054  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19055  * @phba: pointer to lpfc hba data structure.
19056  * @rgn23_data: pointer to configure region 23 data.
19057  *
19058  * This function gets SLI3 port configure region 23 data through memory dump
19059  * mailbox command. When it successfully retrieves data, the size of the data
19060  * will be returned, otherwise, 0 will be returned.
19061  **/
19062 static uint32_t
19063 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19064 {
19065 	LPFC_MBOXQ_t *pmb = NULL;
19066 	MAILBOX_t *mb;
19067 	uint32_t offset = 0;
19068 	int rc;
19069 
19070 	if (!rgn23_data)
19071 		return 0;
19072 
19073 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19074 	if (!pmb) {
19075 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19076 				"2600 failed to allocate mailbox memory\n");
19077 		return 0;
19078 	}
19079 	mb = &pmb->u.mb;
19080 
19081 	do {
19082 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19083 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19084 
19085 		if (rc != MBX_SUCCESS) {
19086 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19087 					"2601 failed to read config "
19088 					"region 23, rc 0x%x Status 0x%x\n",
19089 					rc, mb->mbxStatus);
19090 			mb->un.varDmp.word_cnt = 0;
19091 		}
19092 		/*
19093 		 * dump mem may return a zero when finished or we got a
19094 		 * mailbox error, either way we are done.
19095 		 */
19096 		if (mb->un.varDmp.word_cnt == 0)
19097 			break;
19098 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19099 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19100 
19101 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19102 				       rgn23_data + offset,
19103 				       mb->un.varDmp.word_cnt);
19104 		offset += mb->un.varDmp.word_cnt;
19105 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19106 
19107 	mempool_free(pmb, phba->mbox_mem_pool);
19108 	return offset;
19109 }
19110 
19111 /**
19112  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19113  * @phba: pointer to lpfc hba data structure.
19114  * @rgn23_data: pointer to configure region 23 data.
19115  *
19116  * This function gets SLI4 port configure region 23 data through memory dump
19117  * mailbox command. When it successfully retrieves data, the size of the data
19118  * will be returned, otherwise, 0 will be returned.
19119  **/
19120 static uint32_t
19121 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19122 {
19123 	LPFC_MBOXQ_t *mboxq = NULL;
19124 	struct lpfc_dmabuf *mp = NULL;
19125 	struct lpfc_mqe *mqe;
19126 	uint32_t data_length = 0;
19127 	int rc;
19128 
19129 	if (!rgn23_data)
19130 		return 0;
19131 
19132 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19133 	if (!mboxq) {
19134 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19135 				"3105 failed to allocate mailbox memory\n");
19136 		return 0;
19137 	}
19138 
19139 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19140 		goto out;
19141 	mqe = &mboxq->u.mqe;
19142 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19143 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19144 	if (rc)
19145 		goto out;
19146 	data_length = mqe->un.mb_words[5];
19147 	if (data_length == 0)
19148 		goto out;
19149 	if (data_length > DMP_RGN23_SIZE) {
19150 		data_length = 0;
19151 		goto out;
19152 	}
19153 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19154 out:
19155 	mempool_free(mboxq, phba->mbox_mem_pool);
19156 	if (mp) {
19157 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19158 		kfree(mp);
19159 	}
19160 	return data_length;
19161 }
19162 
19163 /**
19164  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19165  * @phba: pointer to lpfc hba data structure.
19166  *
19167  * This function read region 23 and parse TLV for port status to
19168  * decide if the user disaled the port. If the TLV indicates the
19169  * port is disabled, the hba_flag is set accordingly.
19170  **/
19171 void
19172 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19173 {
19174 	uint8_t *rgn23_data = NULL;
19175 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19176 	uint32_t offset = 0;
19177 
19178 	/* Get adapter Region 23 data */
19179 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19180 	if (!rgn23_data)
19181 		goto out;
19182 
19183 	if (phba->sli_rev < LPFC_SLI_REV4)
19184 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19185 	else {
19186 		if_type = bf_get(lpfc_sli_intf_if_type,
19187 				 &phba->sli4_hba.sli_intf);
19188 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19189 			goto out;
19190 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19191 	}
19192 
19193 	if (!data_size)
19194 		goto out;
19195 
19196 	/* Check the region signature first */
19197 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19198 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19199 			"2619 Config region 23 has bad signature\n");
19200 			goto out;
19201 	}
19202 	offset += 4;
19203 
19204 	/* Check the data structure version */
19205 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19206 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19207 			"2620 Config region 23 has bad version\n");
19208 		goto out;
19209 	}
19210 	offset += 4;
19211 
19212 	/* Parse TLV entries in the region */
19213 	while (offset < data_size) {
19214 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19215 			break;
19216 		/*
19217 		 * If the TLV is not driver specific TLV or driver id is
19218 		 * not linux driver id, skip the record.
19219 		 */
19220 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19221 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19222 		    (rgn23_data[offset + 3] != 0)) {
19223 			offset += rgn23_data[offset + 1] * 4 + 4;
19224 			continue;
19225 		}
19226 
19227 		/* Driver found a driver specific TLV in the config region */
19228 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19229 		offset += 4;
19230 		tlv_offset = 0;
19231 
19232 		/*
19233 		 * Search for configured port state sub-TLV.
19234 		 */
19235 		while ((offset < data_size) &&
19236 			(tlv_offset < sub_tlv_len)) {
19237 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19238 				offset += 4;
19239 				tlv_offset += 4;
19240 				break;
19241 			}
19242 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19243 				offset += rgn23_data[offset + 1] * 4 + 4;
19244 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19245 				continue;
19246 			}
19247 
19248 			/* This HBA contains PORT_STE configured */
19249 			if (!rgn23_data[offset + 2])
19250 				phba->hba_flag |= LINK_DISABLED;
19251 
19252 			goto out;
19253 		}
19254 	}
19255 
19256 out:
19257 	kfree(rgn23_data);
19258 	return;
19259 }
19260 
19261 /**
19262  * lpfc_wr_object - write an object to the firmware
19263  * @phba: HBA structure that indicates port to create a queue on.
19264  * @dmabuf_list: list of dmabufs to write to the port.
19265  * @size: the total byte value of the objects to write to the port.
19266  * @offset: the current offset to be used to start the transfer.
19267  *
19268  * This routine will create a wr_object mailbox command to send to the port.
19269  * the mailbox command will be constructed using the dma buffers described in
19270  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19271  * BDEs that the imbedded mailbox can support. The @offset variable will be
19272  * used to indicate the starting offset of the transfer and will also return
19273  * the offset after the write object mailbox has completed. @size is used to
19274  * determine the end of the object and whether the eof bit should be set.
19275  *
19276  * Return 0 is successful and offset will contain the the new offset to use
19277  * for the next write.
19278  * Return negative value for error cases.
19279  **/
19280 int
19281 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19282 	       uint32_t size, uint32_t *offset)
19283 {
19284 	struct lpfc_mbx_wr_object *wr_object;
19285 	LPFC_MBOXQ_t *mbox;
19286 	int rc = 0, i = 0;
19287 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19288 	uint32_t mbox_tmo;
19289 	struct lpfc_dmabuf *dmabuf;
19290 	uint32_t written = 0;
19291 	bool check_change_status = false;
19292 
19293 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19294 	if (!mbox)
19295 		return -ENOMEM;
19296 
19297 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19298 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19299 			sizeof(struct lpfc_mbx_wr_object) -
19300 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19301 
19302 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19303 	wr_object->u.request.write_offset = *offset;
19304 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19305 	wr_object->u.request.object_name[0] =
19306 		cpu_to_le32(wr_object->u.request.object_name[0]);
19307 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19308 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19309 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19310 			break;
19311 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19312 		wr_object->u.request.bde[i].addrHigh =
19313 			putPaddrHigh(dmabuf->phys);
19314 		if (written + SLI4_PAGE_SIZE >= size) {
19315 			wr_object->u.request.bde[i].tus.f.bdeSize =
19316 				(size - written);
19317 			written += (size - written);
19318 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19319 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19320 			check_change_status = true;
19321 		} else {
19322 			wr_object->u.request.bde[i].tus.f.bdeSize =
19323 				SLI4_PAGE_SIZE;
19324 			written += SLI4_PAGE_SIZE;
19325 		}
19326 		i++;
19327 	}
19328 	wr_object->u.request.bde_count = i;
19329 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19330 	if (!phba->sli4_hba.intr_enable)
19331 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19332 	else {
19333 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19334 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19335 	}
19336 	/* The IOCTL status is embedded in the mailbox subheader. */
19337 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19338 			     &wr_object->header.cfg_shdr.response);
19339 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19340 				 &wr_object->header.cfg_shdr.response);
19341 	if (check_change_status) {
19342 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19343 					    &wr_object->u.response);
19344 		switch (shdr_change_status) {
19345 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19346 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19347 					"3198 Firmware write complete: System "
19348 					"reboot required to instantiate\n");
19349 			break;
19350 		case (LPFC_CHANGE_STATUS_FW_RESET):
19351 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19352 					"3199 Firmware write complete: Firmware"
19353 					" reset required to instantiate\n");
19354 			break;
19355 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19356 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19357 					"3200 Firmware write complete: Port "
19358 					"Migration or PCI Reset required to "
19359 					"instantiate\n");
19360 			break;
19361 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19362 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19363 					"3201 Firmware write complete: PCI "
19364 					"Reset required to instantiate\n");
19365 			break;
19366 		default:
19367 			break;
19368 		}
19369 	}
19370 	if (rc != MBX_TIMEOUT)
19371 		mempool_free(mbox, phba->mbox_mem_pool);
19372 	if (shdr_status || shdr_add_status || rc) {
19373 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19374 				"3025 Write Object mailbox failed with "
19375 				"status x%x add_status x%x, mbx status x%x\n",
19376 				shdr_status, shdr_add_status, rc);
19377 		rc = -ENXIO;
19378 		*offset = shdr_add_status;
19379 	} else
19380 		*offset += wr_object->u.response.actual_write_length;
19381 	return rc;
19382 }
19383 
19384 /**
19385  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19386  * @vport: pointer to vport data structure.
19387  *
19388  * This function iterate through the mailboxq and clean up all REG_LOGIN
19389  * and REG_VPI mailbox commands associated with the vport. This function
19390  * is called when driver want to restart discovery of the vport due to
19391  * a Clear Virtual Link event.
19392  **/
19393 void
19394 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19395 {
19396 	struct lpfc_hba *phba = vport->phba;
19397 	LPFC_MBOXQ_t *mb, *nextmb;
19398 	struct lpfc_dmabuf *mp;
19399 	struct lpfc_nodelist *ndlp;
19400 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19401 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19402 	LIST_HEAD(mbox_cmd_list);
19403 	uint8_t restart_loop;
19404 
19405 	/* Clean up internally queued mailbox commands with the vport */
19406 	spin_lock_irq(&phba->hbalock);
19407 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19408 		if (mb->vport != vport)
19409 			continue;
19410 
19411 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19412 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19413 			continue;
19414 
19415 		list_del(&mb->list);
19416 		list_add_tail(&mb->list, &mbox_cmd_list);
19417 	}
19418 	/* Clean up active mailbox command with the vport */
19419 	mb = phba->sli.mbox_active;
19420 	if (mb && (mb->vport == vport)) {
19421 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19422 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19423 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19424 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19425 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19426 			/* Put reference count for delayed processing */
19427 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19428 			/* Unregister the RPI when mailbox complete */
19429 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19430 		}
19431 	}
19432 	/* Cleanup any mailbox completions which are not yet processed */
19433 	do {
19434 		restart_loop = 0;
19435 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19436 			/*
19437 			 * If this mailox is already processed or it is
19438 			 * for another vport ignore it.
19439 			 */
19440 			if ((mb->vport != vport) ||
19441 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19442 				continue;
19443 
19444 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19445 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19446 				continue;
19447 
19448 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19449 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19450 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19451 				/* Unregister the RPI when mailbox complete */
19452 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19453 				restart_loop = 1;
19454 				spin_unlock_irq(&phba->hbalock);
19455 				spin_lock(shost->host_lock);
19456 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19457 				spin_unlock(shost->host_lock);
19458 				spin_lock_irq(&phba->hbalock);
19459 				break;
19460 			}
19461 		}
19462 	} while (restart_loop);
19463 
19464 	spin_unlock_irq(&phba->hbalock);
19465 
19466 	/* Release the cleaned-up mailbox commands */
19467 	while (!list_empty(&mbox_cmd_list)) {
19468 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19469 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19470 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19471 			if (mp) {
19472 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19473 				kfree(mp);
19474 			}
19475 			mb->ctx_buf = NULL;
19476 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19477 			mb->ctx_ndlp = NULL;
19478 			if (ndlp) {
19479 				spin_lock(shost->host_lock);
19480 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19481 				spin_unlock(shost->host_lock);
19482 				lpfc_nlp_put(ndlp);
19483 			}
19484 		}
19485 		mempool_free(mb, phba->mbox_mem_pool);
19486 	}
19487 
19488 	/* Release the ndlp with the cleaned-up active mailbox command */
19489 	if (act_mbx_ndlp) {
19490 		spin_lock(shost->host_lock);
19491 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19492 		spin_unlock(shost->host_lock);
19493 		lpfc_nlp_put(act_mbx_ndlp);
19494 	}
19495 }
19496 
19497 /**
19498  * lpfc_drain_txq - Drain the txq
19499  * @phba: Pointer to HBA context object.
19500  *
19501  * This function attempt to submit IOCBs on the txq
19502  * to the adapter.  For SLI4 adapters, the txq contains
19503  * ELS IOCBs that have been deferred because the there
19504  * are no SGLs.  This congestion can occur with large
19505  * vport counts during node discovery.
19506  **/
19507 
19508 uint32_t
19509 lpfc_drain_txq(struct lpfc_hba *phba)
19510 {
19511 	LIST_HEAD(completions);
19512 	struct lpfc_sli_ring *pring;
19513 	struct lpfc_iocbq *piocbq = NULL;
19514 	unsigned long iflags = 0;
19515 	char *fail_msg = NULL;
19516 	struct lpfc_sglq *sglq;
19517 	union lpfc_wqe128 wqe;
19518 	uint32_t txq_cnt = 0;
19519 	struct lpfc_queue *wq;
19520 
19521 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19522 		/* MDS WQE are posted only to first WQ*/
19523 		wq = phba->sli4_hba.hdwq[0].fcp_wq;
19524 		if (unlikely(!wq))
19525 			return 0;
19526 		pring = wq->pring;
19527 	} else {
19528 		wq = phba->sli4_hba.els_wq;
19529 		if (unlikely(!wq))
19530 			return 0;
19531 		pring = lpfc_phba_elsring(phba);
19532 	}
19533 
19534 	if (unlikely(!pring) || list_empty(&pring->txq))
19535 		return 0;
19536 
19537 	spin_lock_irqsave(&pring->ring_lock, iflags);
19538 	list_for_each_entry(piocbq, &pring->txq, list) {
19539 		txq_cnt++;
19540 	}
19541 
19542 	if (txq_cnt > pring->txq_max)
19543 		pring->txq_max = txq_cnt;
19544 
19545 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19546 
19547 	while (!list_empty(&pring->txq)) {
19548 		spin_lock_irqsave(&pring->ring_lock, iflags);
19549 
19550 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19551 		if (!piocbq) {
19552 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19553 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19554 				"2823 txq empty and txq_cnt is %d\n ",
19555 				txq_cnt);
19556 			break;
19557 		}
19558 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19559 		if (!sglq) {
19560 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19561 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19562 			break;
19563 		}
19564 		txq_cnt--;
19565 
19566 		/* The xri and iocb resources secured,
19567 		 * attempt to issue request
19568 		 */
19569 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19570 		piocbq->sli4_xritag = sglq->sli4_xritag;
19571 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19572 			fail_msg = "to convert bpl to sgl";
19573 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19574 			fail_msg = "to convert iocb to wqe";
19575 		else if (lpfc_sli4_wq_put(wq, &wqe))
19576 			fail_msg = " - Wq is full";
19577 		else
19578 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19579 
19580 		if (fail_msg) {
19581 			/* Failed means we can't issue and need to cancel */
19582 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19583 					"2822 IOCB failed %s iotag 0x%x "
19584 					"xri 0x%x\n",
19585 					fail_msg,
19586 					piocbq->iotag, piocbq->sli4_xritag);
19587 			list_add_tail(&piocbq->list, &completions);
19588 		}
19589 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19590 	}
19591 
19592 	/* Cancel all the IOCBs that cannot be issued */
19593 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19594 				IOERR_SLI_ABORTED);
19595 
19596 	return txq_cnt;
19597 }
19598 
19599 /**
19600  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19601  * @phba: Pointer to HBA context object.
19602  * @pwqe: Pointer to command WQE.
19603  * @sglq: Pointer to the scatter gather queue object.
19604  *
19605  * This routine converts the bpl or bde that is in the WQE
19606  * to a sgl list for the sli4 hardware. The physical address
19607  * of the bpl/bde is converted back to a virtual address.
19608  * If the WQE contains a BPL then the list of BDE's is
19609  * converted to sli4_sge's. If the WQE contains a single
19610  * BDE then it is converted to a single sli_sge.
19611  * The WQE is still in cpu endianness so the contents of
19612  * the bpl can be used without byte swapping.
19613  *
19614  * Returns valid XRI = Success, NO_XRI = Failure.
19615  */
19616 static uint16_t
19617 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19618 		 struct lpfc_sglq *sglq)
19619 {
19620 	uint16_t xritag = NO_XRI;
19621 	struct ulp_bde64 *bpl = NULL;
19622 	struct ulp_bde64 bde;
19623 	struct sli4_sge *sgl  = NULL;
19624 	struct lpfc_dmabuf *dmabuf;
19625 	union lpfc_wqe128 *wqe;
19626 	int numBdes = 0;
19627 	int i = 0;
19628 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19629 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19630 	uint32_t cmd;
19631 
19632 	if (!pwqeq || !sglq)
19633 		return xritag;
19634 
19635 	sgl  = (struct sli4_sge *)sglq->sgl;
19636 	wqe = &pwqeq->wqe;
19637 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19638 
19639 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19640 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19641 		return sglq->sli4_xritag;
19642 	numBdes = pwqeq->rsvd2;
19643 	if (numBdes) {
19644 		/* The addrHigh and addrLow fields within the WQE
19645 		 * have not been byteswapped yet so there is no
19646 		 * need to swap them back.
19647 		 */
19648 		if (pwqeq->context3)
19649 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19650 		else
19651 			return xritag;
19652 
19653 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19654 		if (!bpl)
19655 			return xritag;
19656 
19657 		for (i = 0; i < numBdes; i++) {
19658 			/* Should already be byte swapped. */
19659 			sgl->addr_hi = bpl->addrHigh;
19660 			sgl->addr_lo = bpl->addrLow;
19661 
19662 			sgl->word2 = le32_to_cpu(sgl->word2);
19663 			if ((i+1) == numBdes)
19664 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19665 			else
19666 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19667 			/* swap the size field back to the cpu so we
19668 			 * can assign it to the sgl.
19669 			 */
19670 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19671 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19672 			/* The offsets in the sgl need to be accumulated
19673 			 * separately for the request and reply lists.
19674 			 * The request is always first, the reply follows.
19675 			 */
19676 			switch (cmd) {
19677 			case CMD_GEN_REQUEST64_WQE:
19678 				/* add up the reply sg entries */
19679 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19680 					inbound++;
19681 				/* first inbound? reset the offset */
19682 				if (inbound == 1)
19683 					offset = 0;
19684 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19685 				bf_set(lpfc_sli4_sge_type, sgl,
19686 					LPFC_SGE_TYPE_DATA);
19687 				offset += bde.tus.f.bdeSize;
19688 				break;
19689 			case CMD_FCP_TRSP64_WQE:
19690 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19691 				bf_set(lpfc_sli4_sge_type, sgl,
19692 					LPFC_SGE_TYPE_DATA);
19693 				break;
19694 			case CMD_FCP_TSEND64_WQE:
19695 			case CMD_FCP_TRECEIVE64_WQE:
19696 				bf_set(lpfc_sli4_sge_type, sgl,
19697 					bpl->tus.f.bdeFlags);
19698 				if (i < 3)
19699 					offset = 0;
19700 				else
19701 					offset += bde.tus.f.bdeSize;
19702 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19703 				break;
19704 			}
19705 			sgl->word2 = cpu_to_le32(sgl->word2);
19706 			bpl++;
19707 			sgl++;
19708 		}
19709 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19710 		/* The addrHigh and addrLow fields of the BDE have not
19711 		 * been byteswapped yet so they need to be swapped
19712 		 * before putting them in the sgl.
19713 		 */
19714 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19715 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19716 		sgl->word2 = le32_to_cpu(sgl->word2);
19717 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19718 		sgl->word2 = cpu_to_le32(sgl->word2);
19719 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19720 	}
19721 	return sglq->sli4_xritag;
19722 }
19723 
19724 /**
19725  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19726  * @phba: Pointer to HBA context object.
19727  * @ring_number: Base sli ring number
19728  * @pwqe: Pointer to command WQE.
19729  **/
19730 int
19731 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19732 		    struct lpfc_iocbq *pwqe)
19733 {
19734 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19735 	struct lpfc_nvmet_rcv_ctx *ctxp;
19736 	struct lpfc_queue *wq;
19737 	struct lpfc_sglq *sglq;
19738 	struct lpfc_sli_ring *pring;
19739 	unsigned long iflags;
19740 	uint32_t ret = 0;
19741 
19742 	/* NVME_LS and NVME_LS ABTS requests. */
19743 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19744 		pring =  phba->sli4_hba.nvmels_wq->pring;
19745 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19746 					  qp, wq_access);
19747 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19748 		if (!sglq) {
19749 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19750 			return WQE_BUSY;
19751 		}
19752 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19753 		pwqe->sli4_xritag = sglq->sli4_xritag;
19754 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19755 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19756 			return WQE_ERROR;
19757 		}
19758 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19759 		       pwqe->sli4_xritag);
19760 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19761 		if (ret) {
19762 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19763 			return ret;
19764 		}
19765 
19766 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19767 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19768 		return 0;
19769 	}
19770 
19771 	/* NVME_FCREQ and NVME_ABTS requests */
19772 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19773 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19774 		wq = qp->nvme_wq;
19775 		pring = wq->pring;
19776 
19777 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19778 
19779 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19780 					  qp, wq_access);
19781 		ret = lpfc_sli4_wq_put(wq, wqe);
19782 		if (ret) {
19783 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19784 			return ret;
19785 		}
19786 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19787 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19788 		return 0;
19789 	}
19790 
19791 	/* NVMET requests */
19792 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19793 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19794 		wq = qp->nvme_wq;
19795 		pring = wq->pring;
19796 
19797 		ctxp = pwqe->context2;
19798 		sglq = ctxp->ctxbuf->sglq;
19799 		if (pwqe->sli4_xritag ==  NO_XRI) {
19800 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19801 			pwqe->sli4_xritag = sglq->sli4_xritag;
19802 		}
19803 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19804 		       pwqe->sli4_xritag);
19805 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19806 
19807 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19808 					  qp, wq_access);
19809 		ret = lpfc_sli4_wq_put(wq, wqe);
19810 		if (ret) {
19811 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19812 			return ret;
19813 		}
19814 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19815 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19816 		return 0;
19817 	}
19818 	return WQE_ERROR;
19819 }
19820 
19821 #ifdef LPFC_MXP_STAT
19822 /**
19823  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19824  * @phba: pointer to lpfc hba data structure.
19825  * @hwqid: belong to which HWQ.
19826  *
19827  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19828  * 15 seconds after a test case is running.
19829  *
19830  * The user should call lpfc_debugfs_multixripools_write before running a test
19831  * case to clear stat_snapshot_taken. Then the user starts a test case. During
19832  * test case is running, stat_snapshot_taken is incremented by 1 every time when
19833  * this routine is called from heartbeat timer. When stat_snapshot_taken is
19834  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19835  **/
19836 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19837 {
19838 	struct lpfc_sli4_hdw_queue *qp;
19839 	struct lpfc_multixri_pool *multixri_pool;
19840 	struct lpfc_pvt_pool *pvt_pool;
19841 	struct lpfc_pbl_pool *pbl_pool;
19842 	u32 txcmplq_cnt;
19843 
19844 	qp = &phba->sli4_hba.hdwq[hwqid];
19845 	multixri_pool = qp->p_multixri_pool;
19846 	if (!multixri_pool)
19847 		return;
19848 
19849 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19850 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
19851 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
19852 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19853 		if (qp->nvme_wq)
19854 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19855 
19856 		multixri_pool->stat_pbl_count = pbl_pool->count;
19857 		multixri_pool->stat_pvt_count = pvt_pool->count;
19858 		multixri_pool->stat_busy_count = txcmplq_cnt;
19859 	}
19860 
19861 	multixri_pool->stat_snapshot_taken++;
19862 }
19863 #endif
19864 
19865 /**
19866  * lpfc_adjust_pvt_pool_count - Adjust private pool count
19867  * @phba: pointer to lpfc hba data structure.
19868  * @hwqid: belong to which HWQ.
19869  *
19870  * This routine moves some XRIs from private to public pool when private pool
19871  * is not busy.
19872  **/
19873 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19874 {
19875 	struct lpfc_multixri_pool *multixri_pool;
19876 	u32 io_req_count;
19877 	u32 prev_io_req_count;
19878 
19879 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19880 	if (!multixri_pool)
19881 		return;
19882 	io_req_count = multixri_pool->io_req_count;
19883 	prev_io_req_count = multixri_pool->prev_io_req_count;
19884 
19885 	if (prev_io_req_count != io_req_count) {
19886 		/* Private pool is busy */
19887 		multixri_pool->prev_io_req_count = io_req_count;
19888 	} else {
19889 		/* Private pool is not busy.
19890 		 * Move XRIs from private to public pool.
19891 		 */
19892 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19893 	}
19894 }
19895 
19896 /**
19897  * lpfc_adjust_high_watermark - Adjust high watermark
19898  * @phba: pointer to lpfc hba data structure.
19899  * @hwqid: belong to which HWQ.
19900  *
19901  * This routine sets high watermark as number of outstanding XRIs,
19902  * but make sure the new value is between xri_limit/2 and xri_limit.
19903  **/
19904 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19905 {
19906 	u32 new_watermark;
19907 	u32 watermark_max;
19908 	u32 watermark_min;
19909 	u32 xri_limit;
19910 	u32 txcmplq_cnt;
19911 	u32 abts_io_bufs;
19912 	struct lpfc_multixri_pool *multixri_pool;
19913 	struct lpfc_sli4_hdw_queue *qp;
19914 
19915 	qp = &phba->sli4_hba.hdwq[hwqid];
19916 	multixri_pool = qp->p_multixri_pool;
19917 	if (!multixri_pool)
19918 		return;
19919 	xri_limit = multixri_pool->xri_limit;
19920 
19921 	watermark_max = xri_limit;
19922 	watermark_min = xri_limit / 2;
19923 
19924 	txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19925 	abts_io_bufs = qp->abts_scsi_io_bufs;
19926 	if (qp->nvme_wq) {
19927 		txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19928 		abts_io_bufs += qp->abts_nvme_io_bufs;
19929 	}
19930 
19931 	new_watermark = txcmplq_cnt + abts_io_bufs;
19932 	new_watermark = min(watermark_max, new_watermark);
19933 	new_watermark = max(watermark_min, new_watermark);
19934 	multixri_pool->pvt_pool.high_watermark = new_watermark;
19935 
19936 #ifdef LPFC_MXP_STAT
19937 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19938 					  new_watermark);
19939 #endif
19940 }
19941 
19942 /**
19943  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19944  * @phba: pointer to lpfc hba data structure.
19945  * @hwqid: belong to which HWQ.
19946  *
19947  * This routine is called from hearbeat timer when pvt_pool is idle.
19948  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19949  * The first step moves (all - low_watermark) amount of XRIs.
19950  * The second step moves the rest of XRIs.
19951  **/
19952 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19953 {
19954 	struct lpfc_pbl_pool *pbl_pool;
19955 	struct lpfc_pvt_pool *pvt_pool;
19956 	struct lpfc_sli4_hdw_queue *qp;
19957 	struct lpfc_io_buf *lpfc_ncmd;
19958 	struct lpfc_io_buf *lpfc_ncmd_next;
19959 	unsigned long iflag;
19960 	struct list_head tmp_list;
19961 	u32 tmp_count;
19962 
19963 	qp = &phba->sli4_hba.hdwq[hwqid];
19964 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
19965 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
19966 	tmp_count = 0;
19967 
19968 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19969 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19970 
19971 	if (pvt_pool->count > pvt_pool->low_watermark) {
19972 		/* Step 1: move (all - low_watermark) from pvt_pool
19973 		 * to pbl_pool
19974 		 */
19975 
19976 		/* Move low watermark of bufs from pvt_pool to tmp_list */
19977 		INIT_LIST_HEAD(&tmp_list);
19978 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19979 					 &pvt_pool->list, list) {
19980 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
19981 			tmp_count++;
19982 			if (tmp_count >= pvt_pool->low_watermark)
19983 				break;
19984 		}
19985 
19986 		/* Move all bufs from pvt_pool to pbl_pool */
19987 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19988 
19989 		/* Move all bufs from tmp_list to pvt_pool */
19990 		list_splice(&tmp_list, &pvt_pool->list);
19991 
19992 		pbl_pool->count += (pvt_pool->count - tmp_count);
19993 		pvt_pool->count = tmp_count;
19994 	} else {
19995 		/* Step 2: move the rest from pvt_pool to pbl_pool */
19996 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19997 		pbl_pool->count += pvt_pool->count;
19998 		pvt_pool->count = 0;
19999 	}
20000 
20001 	spin_unlock(&pvt_pool->lock);
20002 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20003 }
20004 
20005 /**
20006  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20007  * @phba: pointer to lpfc hba data structure
20008  * @pbl_pool: specified public free XRI pool
20009  * @pvt_pool: specified private free XRI pool
20010  * @count: number of XRIs to move
20011  *
20012  * This routine tries to move some free common bufs from the specified pbl_pool
20013  * to the specified pvt_pool. It might move less than count XRIs if there's not
20014  * enough in public pool.
20015  *
20016  * Return:
20017  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20018  *          specified pvt_pool
20019  *   false - if the specified pbl_pool is empty or locked by someone else
20020  **/
20021 static bool
20022 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20023 			  struct lpfc_pbl_pool *pbl_pool,
20024 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20025 {
20026 	struct lpfc_io_buf *lpfc_ncmd;
20027 	struct lpfc_io_buf *lpfc_ncmd_next;
20028 	unsigned long iflag;
20029 	int ret;
20030 
20031 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20032 	if (ret) {
20033 		if (pbl_pool->count) {
20034 			/* Move a batch of XRIs from public to private pool */
20035 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20036 			list_for_each_entry_safe(lpfc_ncmd,
20037 						 lpfc_ncmd_next,
20038 						 &pbl_pool->list,
20039 						 list) {
20040 				list_move_tail(&lpfc_ncmd->list,
20041 					       &pvt_pool->list);
20042 				pvt_pool->count++;
20043 				pbl_pool->count--;
20044 				count--;
20045 				if (count == 0)
20046 					break;
20047 			}
20048 
20049 			spin_unlock(&pvt_pool->lock);
20050 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20051 			return true;
20052 		}
20053 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20054 	}
20055 
20056 	return false;
20057 }
20058 
20059 /**
20060  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20061  * @phba: pointer to lpfc hba data structure.
20062  * @hwqid: belong to which HWQ.
20063  * @count: number of XRIs to move
20064  *
20065  * This routine tries to find some free common bufs in one of public pools with
20066  * Round Robin method. The search always starts from local hwqid, then the next
20067  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20068  * a batch of free common bufs are moved to private pool on hwqid.
20069  * It might move less than count XRIs if there's not enough in public pool.
20070  **/
20071 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20072 {
20073 	struct lpfc_multixri_pool *multixri_pool;
20074 	struct lpfc_multixri_pool *next_multixri_pool;
20075 	struct lpfc_pvt_pool *pvt_pool;
20076 	struct lpfc_pbl_pool *pbl_pool;
20077 	struct lpfc_sli4_hdw_queue *qp;
20078 	u32 next_hwqid;
20079 	u32 hwq_count;
20080 	int ret;
20081 
20082 	qp = &phba->sli4_hba.hdwq[hwqid];
20083 	multixri_pool = qp->p_multixri_pool;
20084 	pvt_pool = &multixri_pool->pvt_pool;
20085 	pbl_pool = &multixri_pool->pbl_pool;
20086 
20087 	/* Check if local pbl_pool is available */
20088 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20089 	if (ret) {
20090 #ifdef LPFC_MXP_STAT
20091 		multixri_pool->local_pbl_hit_count++;
20092 #endif
20093 		return;
20094 	}
20095 
20096 	hwq_count = phba->cfg_hdw_queue;
20097 
20098 	/* Get the next hwqid which was found last time */
20099 	next_hwqid = multixri_pool->rrb_next_hwqid;
20100 
20101 	do {
20102 		/* Go to next hwq */
20103 		next_hwqid = (next_hwqid + 1) % hwq_count;
20104 
20105 		next_multixri_pool =
20106 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20107 		pbl_pool = &next_multixri_pool->pbl_pool;
20108 
20109 		/* Check if the public free xri pool is available */
20110 		ret = _lpfc_move_xri_pbl_to_pvt(
20111 			phba, qp, pbl_pool, pvt_pool, count);
20112 
20113 		/* Exit while-loop if success or all hwqid are checked */
20114 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20115 
20116 	/* Starting point for the next time */
20117 	multixri_pool->rrb_next_hwqid = next_hwqid;
20118 
20119 	if (!ret) {
20120 		/* stats: all public pools are empty*/
20121 		multixri_pool->pbl_empty_count++;
20122 	}
20123 
20124 #ifdef LPFC_MXP_STAT
20125 	if (ret) {
20126 		if (next_hwqid == hwqid)
20127 			multixri_pool->local_pbl_hit_count++;
20128 		else
20129 			multixri_pool->other_pbl_hit_count++;
20130 	}
20131 #endif
20132 }
20133 
20134 /**
20135  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20136  * @phba: pointer to lpfc hba data structure.
20137  * @qp: belong to which HWQ.
20138  *
20139  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20140  * low watermark.
20141  **/
20142 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20143 {
20144 	struct lpfc_multixri_pool *multixri_pool;
20145 	struct lpfc_pvt_pool *pvt_pool;
20146 
20147 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20148 	pvt_pool = &multixri_pool->pvt_pool;
20149 
20150 	if (pvt_pool->count < pvt_pool->low_watermark)
20151 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20152 }
20153 
20154 /**
20155  * lpfc_release_io_buf - Return one IO buf back to free pool
20156  * @phba: pointer to lpfc hba data structure.
20157  * @lpfc_ncmd: IO buf to be returned.
20158  * @qp: belong to which HWQ.
20159  *
20160  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20161  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20162  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20163  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20164  * lpfc_io_buf_list_put.
20165  **/
20166 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20167 			 struct lpfc_sli4_hdw_queue *qp)
20168 {
20169 	unsigned long iflag;
20170 	struct lpfc_pbl_pool *pbl_pool;
20171 	struct lpfc_pvt_pool *pvt_pool;
20172 	struct lpfc_epd_pool *epd_pool;
20173 	u32 txcmplq_cnt;
20174 	u32 xri_owned;
20175 	u32 xri_limit;
20176 	u32 abts_io_bufs;
20177 
20178 	/* MUST zero fields if buffer is reused by another protocol */
20179 	lpfc_ncmd->nvmeCmd = NULL;
20180 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20181 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20182 
20183 	if (phba->cfg_xri_rebalancing) {
20184 		if (lpfc_ncmd->expedite) {
20185 			/* Return to expedite pool */
20186 			epd_pool = &phba->epd_pool;
20187 			spin_lock_irqsave(&epd_pool->lock, iflag);
20188 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20189 			epd_pool->count++;
20190 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20191 			return;
20192 		}
20193 
20194 		/* Avoid invalid access if an IO sneaks in and is being rejected
20195 		 * just _after_ xri pools are destroyed in lpfc_offline.
20196 		 * Nothing much can be done at this point.
20197 		 */
20198 		if (!qp->p_multixri_pool)
20199 			return;
20200 
20201 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20202 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20203 
20204 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
20205 		abts_io_bufs = qp->abts_scsi_io_bufs;
20206 		if (qp->nvme_wq) {
20207 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
20208 			abts_io_bufs += qp->abts_nvme_io_bufs;
20209 		}
20210 
20211 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20212 		xri_limit = qp->p_multixri_pool->xri_limit;
20213 
20214 #ifdef LPFC_MXP_STAT
20215 		if (xri_owned <= xri_limit)
20216 			qp->p_multixri_pool->below_limit_count++;
20217 		else
20218 			qp->p_multixri_pool->above_limit_count++;
20219 #endif
20220 
20221 		/* XRI goes to either public or private free xri pool
20222 		 *     based on watermark and xri_limit
20223 		 */
20224 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20225 		    (xri_owned < xri_limit &&
20226 		     pvt_pool->count < pvt_pool->high_watermark)) {
20227 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20228 						  qp, free_pvt_pool);
20229 			list_add_tail(&lpfc_ncmd->list,
20230 				      &pvt_pool->list);
20231 			pvt_pool->count++;
20232 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20233 		} else {
20234 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20235 						  qp, free_pub_pool);
20236 			list_add_tail(&lpfc_ncmd->list,
20237 				      &pbl_pool->list);
20238 			pbl_pool->count++;
20239 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20240 		}
20241 	} else {
20242 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20243 					  qp, free_xri);
20244 		list_add_tail(&lpfc_ncmd->list,
20245 			      &qp->lpfc_io_buf_list_put);
20246 		qp->put_io_bufs++;
20247 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20248 				       iflag);
20249 	}
20250 }
20251 
20252 /**
20253  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20254  * @phba: pointer to lpfc hba data structure.
20255  * @pvt_pool: pointer to private pool data structure.
20256  * @ndlp: pointer to lpfc nodelist data structure.
20257  *
20258  * This routine tries to get one free IO buf from private pool.
20259  *
20260  * Return:
20261  *   pointer to one free IO buf - if private pool is not empty
20262  *   NULL - if private pool is empty
20263  **/
20264 static struct lpfc_io_buf *
20265 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20266 				  struct lpfc_sli4_hdw_queue *qp,
20267 				  struct lpfc_pvt_pool *pvt_pool,
20268 				  struct lpfc_nodelist *ndlp)
20269 {
20270 	struct lpfc_io_buf *lpfc_ncmd;
20271 	struct lpfc_io_buf *lpfc_ncmd_next;
20272 	unsigned long iflag;
20273 
20274 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20275 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20276 				 &pvt_pool->list, list) {
20277 		if (lpfc_test_rrq_active(
20278 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20279 			continue;
20280 		list_del(&lpfc_ncmd->list);
20281 		pvt_pool->count--;
20282 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20283 		return lpfc_ncmd;
20284 	}
20285 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20286 
20287 	return NULL;
20288 }
20289 
20290 /**
20291  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20292  * @phba: pointer to lpfc hba data structure.
20293  *
20294  * This routine tries to get one free IO buf from expedite pool.
20295  *
20296  * Return:
20297  *   pointer to one free IO buf - if expedite pool is not empty
20298  *   NULL - if expedite pool is empty
20299  **/
20300 static struct lpfc_io_buf *
20301 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20302 {
20303 	struct lpfc_io_buf *lpfc_ncmd;
20304 	struct lpfc_io_buf *lpfc_ncmd_next;
20305 	unsigned long iflag;
20306 	struct lpfc_epd_pool *epd_pool;
20307 
20308 	epd_pool = &phba->epd_pool;
20309 	lpfc_ncmd = NULL;
20310 
20311 	spin_lock_irqsave(&epd_pool->lock, iflag);
20312 	if (epd_pool->count > 0) {
20313 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20314 					 &epd_pool->list, list) {
20315 			list_del(&lpfc_ncmd->list);
20316 			epd_pool->count--;
20317 			break;
20318 		}
20319 	}
20320 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20321 
20322 	return lpfc_ncmd;
20323 }
20324 
20325 /**
20326  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20327  * @phba: pointer to lpfc hba data structure.
20328  * @ndlp: pointer to lpfc nodelist data structure.
20329  * @hwqid: belong to which HWQ
20330  * @expedite: 1 means this request is urgent.
20331  *
20332  * This routine will do the following actions and then return a pointer to
20333  * one free IO buf.
20334  *
20335  * 1. If private free xri count is empty, move some XRIs from public to
20336  *    private pool.
20337  * 2. Get one XRI from private free xri pool.
20338  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20339  *    get one free xri from expedite pool.
20340  *
20341  * Note: ndlp is only used on SCSI side for RRQ testing.
20342  *       The caller should pass NULL for ndlp on NVME side.
20343  *
20344  * Return:
20345  *   pointer to one free IO buf - if private pool is not empty
20346  *   NULL - if private pool is empty
20347  **/
20348 static struct lpfc_io_buf *
20349 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20350 				    struct lpfc_nodelist *ndlp,
20351 				    int hwqid, int expedite)
20352 {
20353 	struct lpfc_sli4_hdw_queue *qp;
20354 	struct lpfc_multixri_pool *multixri_pool;
20355 	struct lpfc_pvt_pool *pvt_pool;
20356 	struct lpfc_io_buf *lpfc_ncmd;
20357 
20358 	qp = &phba->sli4_hba.hdwq[hwqid];
20359 	lpfc_ncmd = NULL;
20360 	multixri_pool = qp->p_multixri_pool;
20361 	pvt_pool = &multixri_pool->pvt_pool;
20362 	multixri_pool->io_req_count++;
20363 
20364 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20365 	if (pvt_pool->count == 0)
20366 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20367 
20368 	/* Get one XRI from private free xri pool */
20369 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20370 
20371 	if (lpfc_ncmd) {
20372 		lpfc_ncmd->hdwq = qp;
20373 		lpfc_ncmd->hdwq_no = hwqid;
20374 	} else if (expedite) {
20375 		/* If we fail to get one from pvt_pool and this is an expedite
20376 		 * request, get one free xri from expedite pool.
20377 		 */
20378 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20379 	}
20380 
20381 	return lpfc_ncmd;
20382 }
20383 
20384 static inline struct lpfc_io_buf *
20385 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20386 {
20387 	struct lpfc_sli4_hdw_queue *qp;
20388 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20389 
20390 	qp = &phba->sli4_hba.hdwq[idx];
20391 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20392 				 &qp->lpfc_io_buf_list_get, list) {
20393 		if (lpfc_test_rrq_active(phba, ndlp,
20394 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20395 			continue;
20396 
20397 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20398 			continue;
20399 
20400 		list_del_init(&lpfc_cmd->list);
20401 		qp->get_io_bufs--;
20402 		lpfc_cmd->hdwq = qp;
20403 		lpfc_cmd->hdwq_no = idx;
20404 		return lpfc_cmd;
20405 	}
20406 	return NULL;
20407 }
20408 
20409 /**
20410  * lpfc_get_io_buf - Get one IO buffer from free pool
20411  * @phba: The HBA for which this call is being executed.
20412  * @ndlp: pointer to lpfc nodelist data structure.
20413  * @hwqid: belong to which HWQ
20414  * @expedite: 1 means this request is urgent.
20415  *
20416  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20417  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20418  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20419  *
20420  * Note: ndlp is only used on SCSI side for RRQ testing.
20421  *       The caller should pass NULL for ndlp on NVME side.
20422  *
20423  * Return codes:
20424  *   NULL - Error
20425  *   Pointer to lpfc_io_buf - Success
20426  **/
20427 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20428 				    struct lpfc_nodelist *ndlp,
20429 				    u32 hwqid, int expedite)
20430 {
20431 	struct lpfc_sli4_hdw_queue *qp;
20432 	unsigned long iflag;
20433 	struct lpfc_io_buf *lpfc_cmd;
20434 
20435 	qp = &phba->sli4_hba.hdwq[hwqid];
20436 	lpfc_cmd = NULL;
20437 
20438 	if (phba->cfg_xri_rebalancing)
20439 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20440 			phba, ndlp, hwqid, expedite);
20441 	else {
20442 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20443 					  qp, alloc_xri_get);
20444 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20445 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20446 		if (!lpfc_cmd) {
20447 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20448 					  qp, alloc_xri_put);
20449 			list_splice(&qp->lpfc_io_buf_list_put,
20450 				    &qp->lpfc_io_buf_list_get);
20451 			qp->get_io_bufs += qp->put_io_bufs;
20452 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20453 			qp->put_io_bufs = 0;
20454 			spin_unlock(&qp->io_buf_list_put_lock);
20455 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20456 			    expedite)
20457 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20458 		}
20459 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20460 	}
20461 
20462 	return lpfc_cmd;
20463 }
20464