1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 if (!(phba->hba_flag & HBA_SETUP)) 3939 return; 3940 3941 /* Here we will also keep track of interrupts per sec of the hba */ 3942 sli_intr = phba->sli.slistat.sli_intr; 3943 3944 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3945 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3946 sli_intr); 3947 else 3948 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3949 3950 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3951 do_div(cnt, phba->eratt_poll_interval); 3952 phba->sli.slistat.sli_ips = cnt; 3953 3954 phba->sli.slistat.sli_prev_intr = sli_intr; 3955 3956 /* Check chip HA register for error event */ 3957 eratt = lpfc_sli_check_eratt(phba); 3958 3959 if (eratt) 3960 /* Tell the worker thread there is work to do */ 3961 lpfc_worker_wake_up(phba); 3962 else 3963 /* Restart the timer for next eratt poll */ 3964 mod_timer(&phba->eratt_poll, 3965 jiffies + 3966 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3967 return; 3968 } 3969 3970 3971 /** 3972 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3973 * @phba: Pointer to HBA context object. 3974 * @pring: Pointer to driver SLI ring object. 3975 * @mask: Host attention register mask for this ring. 3976 * 3977 * This function is called from the interrupt context when there is a ring 3978 * event for the fcp ring. The caller does not hold any lock. 3979 * The function processes each response iocb in the response ring until it 3980 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3981 * LE bit set. The function will call the completion handler of the command iocb 3982 * if the response iocb indicates a completion for a command iocb or it is 3983 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3984 * function if this is an unsolicited iocb. 3985 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3986 * to check it explicitly. 3987 */ 3988 int 3989 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3990 struct lpfc_sli_ring *pring, uint32_t mask) 3991 { 3992 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3993 IOCB_t *irsp = NULL; 3994 IOCB_t *entry = NULL; 3995 struct lpfc_iocbq *cmdiocbq = NULL; 3996 struct lpfc_iocbq rspiocbq; 3997 uint32_t status; 3998 uint32_t portRspPut, portRspMax; 3999 int rc = 1; 4000 lpfc_iocb_type type; 4001 unsigned long iflag; 4002 uint32_t rsp_cmpl = 0; 4003 4004 spin_lock_irqsave(&phba->hbalock, iflag); 4005 pring->stats.iocb_event++; 4006 4007 /* 4008 * The next available response entry should never exceed the maximum 4009 * entries. If it does, treat it as an adapter hardware error. 4010 */ 4011 portRspMax = pring->sli.sli3.numRiocb; 4012 portRspPut = le32_to_cpu(pgp->rspPutInx); 4013 if (unlikely(portRspPut >= portRspMax)) { 4014 lpfc_sli_rsp_pointers_error(phba, pring); 4015 spin_unlock_irqrestore(&phba->hbalock, iflag); 4016 return 1; 4017 } 4018 if (phba->fcp_ring_in_use) { 4019 spin_unlock_irqrestore(&phba->hbalock, iflag); 4020 return 1; 4021 } else 4022 phba->fcp_ring_in_use = 1; 4023 4024 rmb(); 4025 while (pring->sli.sli3.rspidx != portRspPut) { 4026 /* 4027 * Fetch an entry off the ring and copy it into a local data 4028 * structure. The copy involves a byte-swap since the 4029 * network byte order and pci byte orders are different. 4030 */ 4031 entry = lpfc_resp_iocb(phba, pring); 4032 phba->last_completion_time = jiffies; 4033 4034 if (++pring->sli.sli3.rspidx >= portRspMax) 4035 pring->sli.sli3.rspidx = 0; 4036 4037 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4038 (uint32_t *) &rspiocbq.iocb, 4039 phba->iocb_rsp_size); 4040 INIT_LIST_HEAD(&(rspiocbq.list)); 4041 irsp = &rspiocbq.iocb; 4042 4043 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4044 pring->stats.iocb_rsp++; 4045 rsp_cmpl++; 4046 4047 if (unlikely(irsp->ulpStatus)) { 4048 /* 4049 * If resource errors reported from HBA, reduce 4050 * queuedepths of the SCSI device. 4051 */ 4052 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4053 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4054 IOERR_NO_RESOURCES)) { 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 phba->lpfc_rampdown_queue_depth(phba); 4057 spin_lock_irqsave(&phba->hbalock, iflag); 4058 } 4059 4060 /* Rsp ring <ringno> error: IOCB */ 4061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4062 "0336 Rsp Ring %d error: IOCB Data: " 4063 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4064 pring->ringno, 4065 irsp->un.ulpWord[0], 4066 irsp->un.ulpWord[1], 4067 irsp->un.ulpWord[2], 4068 irsp->un.ulpWord[3], 4069 irsp->un.ulpWord[4], 4070 irsp->un.ulpWord[5], 4071 *(uint32_t *)&irsp->un1, 4072 *((uint32_t *)&irsp->un1 + 1)); 4073 } 4074 4075 switch (type) { 4076 case LPFC_ABORT_IOCB: 4077 case LPFC_SOL_IOCB: 4078 /* 4079 * Idle exchange closed via ABTS from port. No iocb 4080 * resources need to be recovered. 4081 */ 4082 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4084 "0333 IOCB cmd 0x%x" 4085 " processed. Skipping" 4086 " completion\n", 4087 irsp->ulpCommand); 4088 break; 4089 } 4090 4091 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4092 &rspiocbq); 4093 if (unlikely(!cmdiocbq)) 4094 break; 4095 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4096 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4097 if (cmdiocbq->cmd_cmpl) { 4098 spin_unlock_irqrestore(&phba->hbalock, iflag); 4099 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 } 4102 break; 4103 case LPFC_UNSOL_IOCB: 4104 spin_unlock_irqrestore(&phba->hbalock, iflag); 4105 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4106 spin_lock_irqsave(&phba->hbalock, iflag); 4107 break; 4108 default: 4109 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4110 char adaptermsg[LPFC_MAX_ADPTMSG]; 4111 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4112 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4113 MAX_MSG_DATA); 4114 dev_warn(&((phba->pcidev)->dev), 4115 "lpfc%d: %s\n", 4116 phba->brd_no, adaptermsg); 4117 } else { 4118 /* Unknown IOCB command */ 4119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4120 "0334 Unknown IOCB command " 4121 "Data: x%x, x%x x%x x%x x%x\n", 4122 type, irsp->ulpCommand, 4123 irsp->ulpStatus, 4124 irsp->ulpIoTag, 4125 irsp->ulpContext); 4126 } 4127 break; 4128 } 4129 4130 /* 4131 * The response IOCB has been processed. Update the ring 4132 * pointer in SLIM. If the port response put pointer has not 4133 * been updated, sync the pgp->rspPutInx and fetch the new port 4134 * response put pointer. 4135 */ 4136 writel(pring->sli.sli3.rspidx, 4137 &phba->host_gp[pring->ringno].rspGetInx); 4138 4139 if (pring->sli.sli3.rspidx == portRspPut) 4140 portRspPut = le32_to_cpu(pgp->rspPutInx); 4141 } 4142 4143 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4144 pring->stats.iocb_rsp_full++; 4145 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4146 writel(status, phba->CAregaddr); 4147 readl(phba->CAregaddr); 4148 } 4149 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4150 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4151 pring->stats.iocb_cmd_empty++; 4152 4153 /* Force update of the local copy of cmdGetInx */ 4154 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4155 lpfc_sli_resume_iocb(phba, pring); 4156 4157 if ((pring->lpfc_sli_cmd_available)) 4158 (pring->lpfc_sli_cmd_available) (phba, pring); 4159 4160 } 4161 4162 phba->fcp_ring_in_use = 0; 4163 spin_unlock_irqrestore(&phba->hbalock, iflag); 4164 return rc; 4165 } 4166 4167 /** 4168 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4169 * @phba: Pointer to HBA context object. 4170 * @pring: Pointer to driver SLI ring object. 4171 * @rspiocbp: Pointer to driver response IOCB object. 4172 * 4173 * This function is called from the worker thread when there is a slow-path 4174 * response IOCB to process. This function chains all the response iocbs until 4175 * seeing the iocb with the LE bit set. The function will call 4176 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4177 * completion of a command iocb. The function will call the 4178 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4179 * The function frees the resources or calls the completion handler if this 4180 * iocb is an abort completion. The function returns NULL when the response 4181 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4182 * this function shall chain the iocb on to the iocb_continueq and return the 4183 * response iocb passed in. 4184 **/ 4185 static struct lpfc_iocbq * 4186 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4187 struct lpfc_iocbq *rspiocbp) 4188 { 4189 struct lpfc_iocbq *saveq; 4190 struct lpfc_iocbq *cmdiocb; 4191 struct lpfc_iocbq *next_iocb; 4192 IOCB_t *irsp; 4193 uint32_t free_saveq; 4194 u8 cmd_type; 4195 lpfc_iocb_type type; 4196 unsigned long iflag; 4197 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4198 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4199 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4200 int rc; 4201 4202 spin_lock_irqsave(&phba->hbalock, iflag); 4203 /* First add the response iocb to the countinueq list */ 4204 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4205 pring->iocb_continueq_cnt++; 4206 4207 /* 4208 * By default, the driver expects to free all resources 4209 * associated with this iocb completion. 4210 */ 4211 free_saveq = 1; 4212 saveq = list_get_first(&pring->iocb_continueq, 4213 struct lpfc_iocbq, list); 4214 list_del_init(&pring->iocb_continueq); 4215 pring->iocb_continueq_cnt = 0; 4216 4217 pring->stats.iocb_rsp++; 4218 4219 /* 4220 * If resource errors reported from HBA, reduce 4221 * queuedepths of the SCSI device. 4222 */ 4223 if (ulp_status == IOSTAT_LOCAL_REJECT && 4224 ((ulp_word4 & IOERR_PARAM_MASK) == 4225 IOERR_NO_RESOURCES)) { 4226 spin_unlock_irqrestore(&phba->hbalock, iflag); 4227 phba->lpfc_rampdown_queue_depth(phba); 4228 spin_lock_irqsave(&phba->hbalock, iflag); 4229 } 4230 4231 if (ulp_status) { 4232 /* Rsp ring <ringno> error: IOCB */ 4233 if (phba->sli_rev < LPFC_SLI_REV4) { 4234 irsp = &rspiocbp->iocb; 4235 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4236 "0328 Rsp Ring %d error: ulp_status x%x " 4237 "IOCB Data: " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x " 4240 "x%08x x%08x x%08x x%08x " 4241 "x%08x x%08x x%08x x%08x\n", 4242 pring->ringno, ulp_status, 4243 get_job_ulpword(rspiocbp, 0), 4244 get_job_ulpword(rspiocbp, 1), 4245 get_job_ulpword(rspiocbp, 2), 4246 get_job_ulpword(rspiocbp, 3), 4247 get_job_ulpword(rspiocbp, 4), 4248 get_job_ulpword(rspiocbp, 5), 4249 *(((uint32_t *)irsp) + 6), 4250 *(((uint32_t *)irsp) + 7), 4251 *(((uint32_t *)irsp) + 8), 4252 *(((uint32_t *)irsp) + 9), 4253 *(((uint32_t *)irsp) + 10), 4254 *(((uint32_t *)irsp) + 11), 4255 *(((uint32_t *)irsp) + 12), 4256 *(((uint32_t *)irsp) + 13), 4257 *(((uint32_t *)irsp) + 14), 4258 *(((uint32_t *)irsp) + 15)); 4259 } else { 4260 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4261 "0321 Rsp Ring %d error: " 4262 "IOCB Data: " 4263 "x%x x%x x%x x%x\n", 4264 pring->ringno, 4265 rspiocbp->wcqe_cmpl.word0, 4266 rspiocbp->wcqe_cmpl.total_data_placed, 4267 rspiocbp->wcqe_cmpl.parameter, 4268 rspiocbp->wcqe_cmpl.word3); 4269 } 4270 } 4271 4272 4273 /* 4274 * Fetch the iocb command type and call the correct completion 4275 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4276 * get freed back to the lpfc_iocb_list by the discovery 4277 * kernel thread. 4278 */ 4279 cmd_type = ulp_command & CMD_IOCB_MASK; 4280 type = lpfc_sli_iocb_cmd_type(cmd_type); 4281 switch (type) { 4282 case LPFC_SOL_IOCB: 4283 spin_unlock_irqrestore(&phba->hbalock, iflag); 4284 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4285 spin_lock_irqsave(&phba->hbalock, iflag); 4286 break; 4287 case LPFC_UNSOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 if (!rc) 4292 free_saveq = 0; 4293 break; 4294 case LPFC_ABORT_IOCB: 4295 cmdiocb = NULL; 4296 if (ulp_command != CMD_XRI_ABORTED_CX) 4297 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4298 saveq); 4299 if (cmdiocb) { 4300 /* Call the specified completion routine */ 4301 if (cmdiocb->cmd_cmpl) { 4302 spin_unlock_irqrestore(&phba->hbalock, iflag); 4303 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4304 spin_lock_irqsave(&phba->hbalock, iflag); 4305 } else { 4306 __lpfc_sli_release_iocbq(phba, cmdiocb); 4307 } 4308 } 4309 break; 4310 case LPFC_UNKNOWN_IOCB: 4311 if (ulp_command == CMD_ADAPTER_MSG) { 4312 char adaptermsg[LPFC_MAX_ADPTMSG]; 4313 4314 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4315 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4316 MAX_MSG_DATA); 4317 dev_warn(&((phba->pcidev)->dev), 4318 "lpfc%d: %s\n", 4319 phba->brd_no, adaptermsg); 4320 } else { 4321 /* Unknown command */ 4322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4323 "0335 Unknown IOCB " 4324 "command Data: x%x " 4325 "x%x x%x x%x\n", 4326 ulp_command, 4327 ulp_status, 4328 get_wqe_reqtag(rspiocbp), 4329 get_job_ulpcontext(phba, rspiocbp)); 4330 } 4331 break; 4332 } 4333 4334 if (free_saveq) { 4335 list_for_each_entry_safe(rspiocbp, next_iocb, 4336 &saveq->list, list) { 4337 list_del_init(&rspiocbp->list); 4338 __lpfc_sli_release_iocbq(phba, rspiocbp); 4339 } 4340 __lpfc_sli_release_iocbq(phba, saveq); 4341 } 4342 rspiocbp = NULL; 4343 spin_unlock_irqrestore(&phba->hbalock, iflag); 4344 return rspiocbp; 4345 } 4346 4347 /** 4348 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4349 * @phba: Pointer to HBA context object. 4350 * @pring: Pointer to driver SLI ring object. 4351 * @mask: Host attention register mask for this ring. 4352 * 4353 * This routine wraps the actual slow_ring event process routine from the 4354 * API jump table function pointer from the lpfc_hba struct. 4355 **/ 4356 void 4357 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4358 struct lpfc_sli_ring *pring, uint32_t mask) 4359 { 4360 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4361 } 4362 4363 /** 4364 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4365 * @phba: Pointer to HBA context object. 4366 * @pring: Pointer to driver SLI ring object. 4367 * @mask: Host attention register mask for this ring. 4368 * 4369 * This function is called from the worker thread when there is a ring event 4370 * for non-fcp rings. The caller does not hold any lock. The function will 4371 * remove each response iocb in the response ring and calls the handle 4372 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4373 **/ 4374 static void 4375 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4376 struct lpfc_sli_ring *pring, uint32_t mask) 4377 { 4378 struct lpfc_pgp *pgp; 4379 IOCB_t *entry; 4380 IOCB_t *irsp = NULL; 4381 struct lpfc_iocbq *rspiocbp = NULL; 4382 uint32_t portRspPut, portRspMax; 4383 unsigned long iflag; 4384 uint32_t status; 4385 4386 pgp = &phba->port_gp[pring->ringno]; 4387 spin_lock_irqsave(&phba->hbalock, iflag); 4388 pring->stats.iocb_event++; 4389 4390 /* 4391 * The next available response entry should never exceed the maximum 4392 * entries. If it does, treat it as an adapter hardware error. 4393 */ 4394 portRspMax = pring->sli.sli3.numRiocb; 4395 portRspPut = le32_to_cpu(pgp->rspPutInx); 4396 if (portRspPut >= portRspMax) { 4397 /* 4398 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4399 * rsp ring <portRspMax> 4400 */ 4401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4402 "0303 Ring %d handler: portRspPut %d " 4403 "is bigger than rsp ring %d\n", 4404 pring->ringno, portRspPut, portRspMax); 4405 4406 phba->link_state = LPFC_HBA_ERROR; 4407 spin_unlock_irqrestore(&phba->hbalock, iflag); 4408 4409 phba->work_hs = HS_FFER3; 4410 lpfc_handle_eratt(phba); 4411 4412 return; 4413 } 4414 4415 rmb(); 4416 while (pring->sli.sli3.rspidx != portRspPut) { 4417 /* 4418 * Build a completion list and call the appropriate handler. 4419 * The process is to get the next available response iocb, get 4420 * a free iocb from the list, copy the response data into the 4421 * free iocb, insert to the continuation list, and update the 4422 * next response index to slim. This process makes response 4423 * iocb's in the ring available to DMA as fast as possible but 4424 * pays a penalty for a copy operation. Since the iocb is 4425 * only 32 bytes, this penalty is considered small relative to 4426 * the PCI reads for register values and a slim write. When 4427 * the ulpLe field is set, the entire Command has been 4428 * received. 4429 */ 4430 entry = lpfc_resp_iocb(phba, pring); 4431 4432 phba->last_completion_time = jiffies; 4433 rspiocbp = __lpfc_sli_get_iocbq(phba); 4434 if (rspiocbp == NULL) { 4435 printk(KERN_ERR "%s: out of buffers! Failing " 4436 "completion.\n", __func__); 4437 break; 4438 } 4439 4440 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4441 phba->iocb_rsp_size); 4442 irsp = &rspiocbp->iocb; 4443 4444 if (++pring->sli.sli3.rspidx >= portRspMax) 4445 pring->sli.sli3.rspidx = 0; 4446 4447 if (pring->ringno == LPFC_ELS_RING) { 4448 lpfc_debugfs_slow_ring_trc(phba, 4449 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4450 *(((uint32_t *) irsp) + 4), 4451 *(((uint32_t *) irsp) + 6), 4452 *(((uint32_t *) irsp) + 7)); 4453 } 4454 4455 writel(pring->sli.sli3.rspidx, 4456 &phba->host_gp[pring->ringno].rspGetInx); 4457 4458 spin_unlock_irqrestore(&phba->hbalock, iflag); 4459 /* Handle the response IOCB */ 4460 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4461 spin_lock_irqsave(&phba->hbalock, iflag); 4462 4463 /* 4464 * If the port response put pointer has not been updated, sync 4465 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4466 * response put pointer. 4467 */ 4468 if (pring->sli.sli3.rspidx == portRspPut) { 4469 portRspPut = le32_to_cpu(pgp->rspPutInx); 4470 } 4471 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4472 4473 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4474 /* At least one response entry has been freed */ 4475 pring->stats.iocb_rsp_full++; 4476 /* SET RxRE_RSP in Chip Att register */ 4477 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4478 writel(status, phba->CAregaddr); 4479 readl(phba->CAregaddr); /* flush */ 4480 } 4481 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4482 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4483 pring->stats.iocb_cmd_empty++; 4484 4485 /* Force update of the local copy of cmdGetInx */ 4486 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4487 lpfc_sli_resume_iocb(phba, pring); 4488 4489 if ((pring->lpfc_sli_cmd_available)) 4490 (pring->lpfc_sli_cmd_available) (phba, pring); 4491 4492 } 4493 4494 spin_unlock_irqrestore(&phba->hbalock, iflag); 4495 return; 4496 } 4497 4498 /** 4499 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4500 * @phba: Pointer to HBA context object. 4501 * @pring: Pointer to driver SLI ring object. 4502 * @mask: Host attention register mask for this ring. 4503 * 4504 * This function is called from the worker thread when there is a pending 4505 * ELS response iocb on the driver internal slow-path response iocb worker 4506 * queue. The caller does not hold any lock. The function will remove each 4507 * response iocb from the response worker queue and calls the handle 4508 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4509 **/ 4510 static void 4511 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4512 struct lpfc_sli_ring *pring, uint32_t mask) 4513 { 4514 struct lpfc_iocbq *irspiocbq; 4515 struct hbq_dmabuf *dmabuf; 4516 struct lpfc_cq_event *cq_event; 4517 unsigned long iflag; 4518 int count = 0; 4519 4520 spin_lock_irqsave(&phba->hbalock, iflag); 4521 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4522 spin_unlock_irqrestore(&phba->hbalock, iflag); 4523 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4524 /* Get the response iocb from the head of work queue */ 4525 spin_lock_irqsave(&phba->hbalock, iflag); 4526 list_remove_head(&phba->sli4_hba.sp_queue_event, 4527 cq_event, struct lpfc_cq_event, list); 4528 spin_unlock_irqrestore(&phba->hbalock, iflag); 4529 4530 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4531 case CQE_CODE_COMPL_WQE: 4532 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4533 cq_event); 4534 /* Translate ELS WCQE to response IOCBQ */ 4535 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4536 irspiocbq); 4537 if (irspiocbq) 4538 lpfc_sli_sp_handle_rspiocb(phba, pring, 4539 irspiocbq); 4540 count++; 4541 break; 4542 case CQE_CODE_RECEIVE: 4543 case CQE_CODE_RECEIVE_V1: 4544 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4545 cq_event); 4546 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4547 count++; 4548 break; 4549 default: 4550 break; 4551 } 4552 4553 /* Limit the number of events to 64 to avoid soft lockups */ 4554 if (count == 64) 4555 break; 4556 } 4557 } 4558 4559 /** 4560 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4561 * @phba: Pointer to HBA context object. 4562 * @pring: Pointer to driver SLI ring object. 4563 * 4564 * This function aborts all iocbs in the given ring and frees all the iocb 4565 * objects in txq. This function issues an abort iocb for all the iocb commands 4566 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4567 * the return of this function. The caller is not required to hold any locks. 4568 **/ 4569 void 4570 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4571 { 4572 LIST_HEAD(tx_completions); 4573 LIST_HEAD(txcmplq_completions); 4574 struct lpfc_iocbq *iocb, *next_iocb; 4575 int offline; 4576 4577 if (pring->ringno == LPFC_ELS_RING) { 4578 lpfc_fabric_abort_hba(phba); 4579 } 4580 offline = pci_channel_offline(phba->pcidev); 4581 4582 /* Error everything on txq and txcmplq 4583 * First do the txq. 4584 */ 4585 if (phba->sli_rev >= LPFC_SLI_REV4) { 4586 spin_lock_irq(&pring->ring_lock); 4587 list_splice_init(&pring->txq, &tx_completions); 4588 pring->txq_cnt = 0; 4589 4590 if (offline) { 4591 list_splice_init(&pring->txcmplq, 4592 &txcmplq_completions); 4593 } else { 4594 /* Next issue ABTS for everything on the txcmplq */ 4595 list_for_each_entry_safe(iocb, next_iocb, 4596 &pring->txcmplq, list) 4597 lpfc_sli_issue_abort_iotag(phba, pring, 4598 iocb, NULL); 4599 } 4600 spin_unlock_irq(&pring->ring_lock); 4601 } else { 4602 spin_lock_irq(&phba->hbalock); 4603 list_splice_init(&pring->txq, &tx_completions); 4604 pring->txq_cnt = 0; 4605 4606 if (offline) { 4607 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4608 } else { 4609 /* Next issue ABTS for everything on the txcmplq */ 4610 list_for_each_entry_safe(iocb, next_iocb, 4611 &pring->txcmplq, list) 4612 lpfc_sli_issue_abort_iotag(phba, pring, 4613 iocb, NULL); 4614 } 4615 spin_unlock_irq(&phba->hbalock); 4616 } 4617 4618 if (offline) { 4619 /* Cancel all the IOCBs from the completions list */ 4620 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4621 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4622 } else { 4623 /* Make sure HBA is alive */ 4624 lpfc_issue_hb_tmo(phba); 4625 } 4626 /* Cancel all the IOCBs from the completions list */ 4627 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4628 IOERR_SLI_ABORTED); 4629 } 4630 4631 /** 4632 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4633 * @phba: Pointer to HBA context object. 4634 * 4635 * This function aborts all iocbs in FCP rings and frees all the iocb 4636 * objects in txq. This function issues an abort iocb for all the iocb commands 4637 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4638 * the return of this function. The caller is not required to hold any locks. 4639 **/ 4640 void 4641 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4642 { 4643 struct lpfc_sli *psli = &phba->sli; 4644 struct lpfc_sli_ring *pring; 4645 uint32_t i; 4646 4647 /* Look on all the FCP Rings for the iotag */ 4648 if (phba->sli_rev >= LPFC_SLI_REV4) { 4649 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4650 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4651 lpfc_sli_abort_iocb_ring(phba, pring); 4652 } 4653 } else { 4654 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4655 lpfc_sli_abort_iocb_ring(phba, pring); 4656 } 4657 } 4658 4659 /** 4660 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4661 * @phba: Pointer to HBA context object. 4662 * 4663 * This function flushes all iocbs in the IO ring and frees all the iocb 4664 * objects in txq and txcmplq. This function will not issue abort iocbs 4665 * for all the iocb commands in txcmplq, they will just be returned with 4666 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4667 * slot has been permanently disabled. 4668 **/ 4669 void 4670 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4671 { 4672 LIST_HEAD(txq); 4673 LIST_HEAD(txcmplq); 4674 struct lpfc_sli *psli = &phba->sli; 4675 struct lpfc_sli_ring *pring; 4676 uint32_t i; 4677 struct lpfc_iocbq *piocb, *next_iocb; 4678 4679 spin_lock_irq(&phba->hbalock); 4680 /* Indicate the I/O queues are flushed */ 4681 phba->hba_flag |= HBA_IOQ_FLUSH; 4682 spin_unlock_irq(&phba->hbalock); 4683 4684 /* Look on all the FCP Rings for the iotag */ 4685 if (phba->sli_rev >= LPFC_SLI_REV4) { 4686 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4687 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4688 4689 spin_lock_irq(&pring->ring_lock); 4690 /* Retrieve everything on txq */ 4691 list_splice_init(&pring->txq, &txq); 4692 list_for_each_entry_safe(piocb, next_iocb, 4693 &pring->txcmplq, list) 4694 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4695 /* Retrieve everything on the txcmplq */ 4696 list_splice_init(&pring->txcmplq, &txcmplq); 4697 pring->txq_cnt = 0; 4698 pring->txcmplq_cnt = 0; 4699 spin_unlock_irq(&pring->ring_lock); 4700 4701 /* Flush the txq */ 4702 lpfc_sli_cancel_iocbs(phba, &txq, 4703 IOSTAT_LOCAL_REJECT, 4704 IOERR_SLI_DOWN); 4705 /* Flush the txcmplq */ 4706 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4707 IOSTAT_LOCAL_REJECT, 4708 IOERR_SLI_DOWN); 4709 if (unlikely(pci_channel_offline(phba->pcidev))) 4710 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4711 } 4712 } else { 4713 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4714 4715 spin_lock_irq(&phba->hbalock); 4716 /* Retrieve everything on txq */ 4717 list_splice_init(&pring->txq, &txq); 4718 list_for_each_entry_safe(piocb, next_iocb, 4719 &pring->txcmplq, list) 4720 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4721 /* Retrieve everything on the txcmplq */ 4722 list_splice_init(&pring->txcmplq, &txcmplq); 4723 pring->txq_cnt = 0; 4724 pring->txcmplq_cnt = 0; 4725 spin_unlock_irq(&phba->hbalock); 4726 4727 /* Flush the txq */ 4728 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4729 IOERR_SLI_DOWN); 4730 /* Flush the txcmpq */ 4731 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4732 IOERR_SLI_DOWN); 4733 } 4734 } 4735 4736 /** 4737 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4738 * @phba: Pointer to HBA context object. 4739 * @mask: Bit mask to be checked. 4740 * 4741 * This function reads the host status register and compares 4742 * with the provided bit mask to check if HBA completed 4743 * the restart. This function will wait in a loop for the 4744 * HBA to complete restart. If the HBA does not restart within 4745 * 15 iterations, the function will reset the HBA again. The 4746 * function returns 1 when HBA fail to restart otherwise returns 4747 * zero. 4748 **/ 4749 static int 4750 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4751 { 4752 uint32_t status; 4753 int i = 0; 4754 int retval = 0; 4755 4756 /* Read the HBA Host Status Register */ 4757 if (lpfc_readl(phba->HSregaddr, &status)) 4758 return 1; 4759 4760 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4761 4762 /* 4763 * Check status register every 100ms for 5 retries, then every 4764 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4765 * every 2.5 sec for 4. 4766 * Break our of the loop if errors occurred during init. 4767 */ 4768 while (((status & mask) != mask) && 4769 !(status & HS_FFERM) && 4770 i++ < 20) { 4771 4772 if (i <= 5) 4773 msleep(10); 4774 else if (i <= 10) 4775 msleep(500); 4776 else 4777 msleep(2500); 4778 4779 if (i == 15) { 4780 /* Do post */ 4781 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4782 lpfc_sli_brdrestart(phba); 4783 } 4784 /* Read the HBA Host Status Register */ 4785 if (lpfc_readl(phba->HSregaddr, &status)) { 4786 retval = 1; 4787 break; 4788 } 4789 } 4790 4791 /* Check to see if any errors occurred during init */ 4792 if ((status & HS_FFERM) || (i >= 20)) { 4793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4794 "2751 Adapter failed to restart, " 4795 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4796 status, 4797 readl(phba->MBslimaddr + 0xa8), 4798 readl(phba->MBslimaddr + 0xac)); 4799 phba->link_state = LPFC_HBA_ERROR; 4800 retval = 1; 4801 } 4802 4803 return retval; 4804 } 4805 4806 /** 4807 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4808 * @phba: Pointer to HBA context object. 4809 * @mask: Bit mask to be checked. 4810 * 4811 * This function checks the host status register to check if HBA is 4812 * ready. This function will wait in a loop for the HBA to be ready 4813 * If the HBA is not ready , the function will will reset the HBA PCI 4814 * function again. The function returns 1 when HBA fail to be ready 4815 * otherwise returns zero. 4816 **/ 4817 static int 4818 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4819 { 4820 uint32_t status; 4821 int retval = 0; 4822 4823 /* Read the HBA Host Status Register */ 4824 status = lpfc_sli4_post_status_check(phba); 4825 4826 if (status) { 4827 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4828 lpfc_sli_brdrestart(phba); 4829 status = lpfc_sli4_post_status_check(phba); 4830 } 4831 4832 /* Check to see if any errors occurred during init */ 4833 if (status) { 4834 phba->link_state = LPFC_HBA_ERROR; 4835 retval = 1; 4836 } else 4837 phba->sli4_hba.intr_enable = 0; 4838 4839 phba->hba_flag &= ~HBA_SETUP; 4840 return retval; 4841 } 4842 4843 /** 4844 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4845 * @phba: Pointer to HBA context object. 4846 * @mask: Bit mask to be checked. 4847 * 4848 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4849 * from the API jump table function pointer from the lpfc_hba struct. 4850 **/ 4851 int 4852 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4853 { 4854 return phba->lpfc_sli_brdready(phba, mask); 4855 } 4856 4857 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4858 4859 /** 4860 * lpfc_reset_barrier - Make HBA ready for HBA reset 4861 * @phba: Pointer to HBA context object. 4862 * 4863 * This function is called before resetting an HBA. This function is called 4864 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4865 **/ 4866 void lpfc_reset_barrier(struct lpfc_hba *phba) 4867 { 4868 uint32_t __iomem *resp_buf; 4869 uint32_t __iomem *mbox_buf; 4870 volatile struct MAILBOX_word0 mbox; 4871 uint32_t hc_copy, ha_copy, resp_data; 4872 int i; 4873 uint8_t hdrtype; 4874 4875 lockdep_assert_held(&phba->hbalock); 4876 4877 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4878 if (hdrtype != 0x80 || 4879 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4880 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4881 return; 4882 4883 /* 4884 * Tell the other part of the chip to suspend temporarily all 4885 * its DMA activity. 4886 */ 4887 resp_buf = phba->MBslimaddr; 4888 4889 /* Disable the error attention */ 4890 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4891 return; 4892 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4893 readl(phba->HCregaddr); /* flush */ 4894 phba->link_flag |= LS_IGNORE_ERATT; 4895 4896 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4897 return; 4898 if (ha_copy & HA_ERATT) { 4899 /* Clear Chip error bit */ 4900 writel(HA_ERATT, phba->HAregaddr); 4901 phba->pport->stopped = 1; 4902 } 4903 4904 mbox.word0 = 0; 4905 mbox.mbxCommand = MBX_KILL_BOARD; 4906 mbox.mbxOwner = OWN_CHIP; 4907 4908 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4909 mbox_buf = phba->MBslimaddr; 4910 writel(mbox.word0, mbox_buf); 4911 4912 for (i = 0; i < 50; i++) { 4913 if (lpfc_readl((resp_buf + 1), &resp_data)) 4914 return; 4915 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4916 mdelay(1); 4917 else 4918 break; 4919 } 4920 resp_data = 0; 4921 if (lpfc_readl((resp_buf + 1), &resp_data)) 4922 return; 4923 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4924 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4925 phba->pport->stopped) 4926 goto restore_hc; 4927 else 4928 goto clear_errat; 4929 } 4930 4931 mbox.mbxOwner = OWN_HOST; 4932 resp_data = 0; 4933 for (i = 0; i < 500; i++) { 4934 if (lpfc_readl(resp_buf, &resp_data)) 4935 return; 4936 if (resp_data != mbox.word0) 4937 mdelay(1); 4938 else 4939 break; 4940 } 4941 4942 clear_errat: 4943 4944 while (++i < 500) { 4945 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4946 return; 4947 if (!(ha_copy & HA_ERATT)) 4948 mdelay(1); 4949 else 4950 break; 4951 } 4952 4953 if (readl(phba->HAregaddr) & HA_ERATT) { 4954 writel(HA_ERATT, phba->HAregaddr); 4955 phba->pport->stopped = 1; 4956 } 4957 4958 restore_hc: 4959 phba->link_flag &= ~LS_IGNORE_ERATT; 4960 writel(hc_copy, phba->HCregaddr); 4961 readl(phba->HCregaddr); /* flush */ 4962 } 4963 4964 /** 4965 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4966 * @phba: Pointer to HBA context object. 4967 * 4968 * This function issues a kill_board mailbox command and waits for 4969 * the error attention interrupt. This function is called for stopping 4970 * the firmware processing. The caller is not required to hold any 4971 * locks. This function calls lpfc_hba_down_post function to free 4972 * any pending commands after the kill. The function will return 1 when it 4973 * fails to kill the board else will return 0. 4974 **/ 4975 int 4976 lpfc_sli_brdkill(struct lpfc_hba *phba) 4977 { 4978 struct lpfc_sli *psli; 4979 LPFC_MBOXQ_t *pmb; 4980 uint32_t status; 4981 uint32_t ha_copy; 4982 int retval; 4983 int i = 0; 4984 4985 psli = &phba->sli; 4986 4987 /* Kill HBA */ 4988 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4989 "0329 Kill HBA Data: x%x x%x\n", 4990 phba->pport->port_state, psli->sli_flag); 4991 4992 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4993 if (!pmb) 4994 return 1; 4995 4996 /* Disable the error attention */ 4997 spin_lock_irq(&phba->hbalock); 4998 if (lpfc_readl(phba->HCregaddr, &status)) { 4999 spin_unlock_irq(&phba->hbalock); 5000 mempool_free(pmb, phba->mbox_mem_pool); 5001 return 1; 5002 } 5003 status &= ~HC_ERINT_ENA; 5004 writel(status, phba->HCregaddr); 5005 readl(phba->HCregaddr); /* flush */ 5006 phba->link_flag |= LS_IGNORE_ERATT; 5007 spin_unlock_irq(&phba->hbalock); 5008 5009 lpfc_kill_board(phba, pmb); 5010 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5011 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5012 5013 if (retval != MBX_SUCCESS) { 5014 if (retval != MBX_BUSY) 5015 mempool_free(pmb, phba->mbox_mem_pool); 5016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5017 "2752 KILL_BOARD command failed retval %d\n", 5018 retval); 5019 spin_lock_irq(&phba->hbalock); 5020 phba->link_flag &= ~LS_IGNORE_ERATT; 5021 spin_unlock_irq(&phba->hbalock); 5022 return 1; 5023 } 5024 5025 spin_lock_irq(&phba->hbalock); 5026 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5027 spin_unlock_irq(&phba->hbalock); 5028 5029 mempool_free(pmb, phba->mbox_mem_pool); 5030 5031 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5032 * attention every 100ms for 3 seconds. If we don't get ERATT after 5033 * 3 seconds we still set HBA_ERROR state because the status of the 5034 * board is now undefined. 5035 */ 5036 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5037 return 1; 5038 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5039 mdelay(100); 5040 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5041 return 1; 5042 } 5043 5044 del_timer_sync(&psli->mbox_tmo); 5045 if (ha_copy & HA_ERATT) { 5046 writel(HA_ERATT, phba->HAregaddr); 5047 phba->pport->stopped = 1; 5048 } 5049 spin_lock_irq(&phba->hbalock); 5050 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5051 psli->mbox_active = NULL; 5052 phba->link_flag &= ~LS_IGNORE_ERATT; 5053 spin_unlock_irq(&phba->hbalock); 5054 5055 lpfc_hba_down_post(phba); 5056 phba->link_state = LPFC_HBA_ERROR; 5057 5058 return ha_copy & HA_ERATT ? 0 : 1; 5059 } 5060 5061 /** 5062 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5063 * @phba: Pointer to HBA context object. 5064 * 5065 * This function resets the HBA by writing HC_INITFF to the control 5066 * register. After the HBA resets, this function resets all the iocb ring 5067 * indices. This function disables PCI layer parity checking during 5068 * the reset. 5069 * This function returns 0 always. 5070 * The caller is not required to hold any locks. 5071 **/ 5072 int 5073 lpfc_sli_brdreset(struct lpfc_hba *phba) 5074 { 5075 struct lpfc_sli *psli; 5076 struct lpfc_sli_ring *pring; 5077 uint16_t cfg_value; 5078 int i; 5079 5080 psli = &phba->sli; 5081 5082 /* Reset HBA */ 5083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5084 "0325 Reset HBA Data: x%x x%x\n", 5085 (phba->pport) ? phba->pport->port_state : 0, 5086 psli->sli_flag); 5087 5088 /* perform board reset */ 5089 phba->fc_eventTag = 0; 5090 phba->link_events = 0; 5091 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5092 if (phba->pport) { 5093 phba->pport->fc_myDID = 0; 5094 phba->pport->fc_prevDID = 0; 5095 } 5096 5097 /* Turn off parity checking and serr during the physical reset */ 5098 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5099 return -EIO; 5100 5101 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5102 (cfg_value & 5103 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5104 5105 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5106 5107 /* Now toggle INITFF bit in the Host Control Register */ 5108 writel(HC_INITFF, phba->HCregaddr); 5109 mdelay(1); 5110 readl(phba->HCregaddr); /* flush */ 5111 writel(0, phba->HCregaddr); 5112 readl(phba->HCregaddr); /* flush */ 5113 5114 /* Restore PCI cmd register */ 5115 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5116 5117 /* Initialize relevant SLI info */ 5118 for (i = 0; i < psli->num_rings; i++) { 5119 pring = &psli->sli3_ring[i]; 5120 pring->flag = 0; 5121 pring->sli.sli3.rspidx = 0; 5122 pring->sli.sli3.next_cmdidx = 0; 5123 pring->sli.sli3.local_getidx = 0; 5124 pring->sli.sli3.cmdidx = 0; 5125 pring->missbufcnt = 0; 5126 } 5127 5128 phba->link_state = LPFC_WARM_START; 5129 return 0; 5130 } 5131 5132 /** 5133 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5134 * @phba: Pointer to HBA context object. 5135 * 5136 * This function resets a SLI4 HBA. This function disables PCI layer parity 5137 * checking during resets the device. The caller is not required to hold 5138 * any locks. 5139 * 5140 * This function returns 0 on success else returns negative error code. 5141 **/ 5142 int 5143 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5144 { 5145 struct lpfc_sli *psli = &phba->sli; 5146 uint16_t cfg_value; 5147 int rc = 0; 5148 5149 /* Reset HBA */ 5150 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5151 "0295 Reset HBA Data: x%x x%x x%x\n", 5152 phba->pport->port_state, psli->sli_flag, 5153 phba->hba_flag); 5154 5155 /* perform board reset */ 5156 phba->fc_eventTag = 0; 5157 phba->link_events = 0; 5158 phba->pport->fc_myDID = 0; 5159 phba->pport->fc_prevDID = 0; 5160 phba->hba_flag &= ~HBA_SETUP; 5161 5162 spin_lock_irq(&phba->hbalock); 5163 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5164 phba->fcf.fcf_flag = 0; 5165 spin_unlock_irq(&phba->hbalock); 5166 5167 /* Now physically reset the device */ 5168 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5169 "0389 Performing PCI function reset!\n"); 5170 5171 /* Turn off parity checking and serr during the physical reset */ 5172 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "3205 PCI read Config failed\n"); 5175 return -EIO; 5176 } 5177 5178 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5179 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5180 5181 /* Perform FCoE PCI function reset before freeing queue memory */ 5182 rc = lpfc_pci_function_reset(phba); 5183 5184 /* Restore PCI cmd register */ 5185 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5186 5187 return rc; 5188 } 5189 5190 /** 5191 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5192 * @phba: Pointer to HBA context object. 5193 * 5194 * This function is called in the SLI initialization code path to 5195 * restart the HBA. The caller is not required to hold any lock. 5196 * This function writes MBX_RESTART mailbox command to the SLIM and 5197 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5198 * function to free any pending commands. The function enables 5199 * POST only during the first initialization. The function returns zero. 5200 * The function does not guarantee completion of MBX_RESTART mailbox 5201 * command before the return of this function. 5202 **/ 5203 static int 5204 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5205 { 5206 volatile struct MAILBOX_word0 mb; 5207 struct lpfc_sli *psli; 5208 void __iomem *to_slim; 5209 5210 spin_lock_irq(&phba->hbalock); 5211 5212 psli = &phba->sli; 5213 5214 /* Restart HBA */ 5215 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5216 "0337 Restart HBA Data: x%x x%x\n", 5217 (phba->pport) ? phba->pport->port_state : 0, 5218 psli->sli_flag); 5219 5220 mb.word0 = 0; 5221 mb.mbxCommand = MBX_RESTART; 5222 mb.mbxHc = 1; 5223 5224 lpfc_reset_barrier(phba); 5225 5226 to_slim = phba->MBslimaddr; 5227 writel(mb.word0, to_slim); 5228 readl(to_slim); /* flush */ 5229 5230 /* Only skip post after fc_ffinit is completed */ 5231 if (phba->pport && phba->pport->port_state) 5232 mb.word0 = 1; /* This is really setting up word1 */ 5233 else 5234 mb.word0 = 0; /* This is really setting up word1 */ 5235 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5236 writel(mb.word0, to_slim); 5237 readl(to_slim); /* flush */ 5238 5239 lpfc_sli_brdreset(phba); 5240 if (phba->pport) 5241 phba->pport->stopped = 0; 5242 phba->link_state = LPFC_INIT_START; 5243 phba->hba_flag = 0; 5244 spin_unlock_irq(&phba->hbalock); 5245 5246 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5247 psli->stats_start = ktime_get_seconds(); 5248 5249 /* Give the INITFF and Post time to settle. */ 5250 mdelay(100); 5251 5252 lpfc_hba_down_post(phba); 5253 5254 return 0; 5255 } 5256 5257 /** 5258 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5259 * @phba: Pointer to HBA context object. 5260 * 5261 * This function is called in the SLI initialization code path to restart 5262 * a SLI4 HBA. The caller is not required to hold any lock. 5263 * At the end of the function, it calls lpfc_hba_down_post function to 5264 * free any pending commands. 5265 **/ 5266 static int 5267 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5268 { 5269 struct lpfc_sli *psli = &phba->sli; 5270 int rc; 5271 5272 /* Restart HBA */ 5273 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5274 "0296 Restart HBA Data: x%x x%x\n", 5275 phba->pport->port_state, psli->sli_flag); 5276 5277 rc = lpfc_sli4_brdreset(phba); 5278 if (rc) { 5279 phba->link_state = LPFC_HBA_ERROR; 5280 goto hba_down_queue; 5281 } 5282 5283 spin_lock_irq(&phba->hbalock); 5284 phba->pport->stopped = 0; 5285 phba->link_state = LPFC_INIT_START; 5286 phba->hba_flag = 0; 5287 /* Preserve FA-PWWN expectation */ 5288 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5289 spin_unlock_irq(&phba->hbalock); 5290 5291 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5292 psli->stats_start = ktime_get_seconds(); 5293 5294 hba_down_queue: 5295 lpfc_hba_down_post(phba); 5296 lpfc_sli4_queue_destroy(phba); 5297 5298 return rc; 5299 } 5300 5301 /** 5302 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5303 * @phba: Pointer to HBA context object. 5304 * 5305 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5306 * API jump table function pointer from the lpfc_hba struct. 5307 **/ 5308 int 5309 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5310 { 5311 return phba->lpfc_sli_brdrestart(phba); 5312 } 5313 5314 /** 5315 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5316 * @phba: Pointer to HBA context object. 5317 * 5318 * This function is called after a HBA restart to wait for successful 5319 * restart of the HBA. Successful restart of the HBA is indicated by 5320 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5321 * iteration, the function will restart the HBA again. The function returns 5322 * zero if HBA successfully restarted else returns negative error code. 5323 **/ 5324 int 5325 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5326 { 5327 uint32_t status, i = 0; 5328 5329 /* Read the HBA Host Status Register */ 5330 if (lpfc_readl(phba->HSregaddr, &status)) 5331 return -EIO; 5332 5333 /* Check status register to see what current state is */ 5334 i = 0; 5335 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5336 5337 /* Check every 10ms for 10 retries, then every 100ms for 90 5338 * retries, then every 1 sec for 50 retires for a total of 5339 * ~60 seconds before reset the board again and check every 5340 * 1 sec for 50 retries. The up to 60 seconds before the 5341 * board ready is required by the Falcon FIPS zeroization 5342 * complete, and any reset the board in between shall cause 5343 * restart of zeroization, further delay the board ready. 5344 */ 5345 if (i++ >= 200) { 5346 /* Adapter failed to init, timeout, status reg 5347 <status> */ 5348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5349 "0436 Adapter failed to init, " 5350 "timeout, status reg x%x, " 5351 "FW Data: A8 x%x AC x%x\n", status, 5352 readl(phba->MBslimaddr + 0xa8), 5353 readl(phba->MBslimaddr + 0xac)); 5354 phba->link_state = LPFC_HBA_ERROR; 5355 return -ETIMEDOUT; 5356 } 5357 5358 /* Check to see if any errors occurred during init */ 5359 if (status & HS_FFERM) { 5360 /* ERROR: During chipset initialization */ 5361 /* Adapter failed to init, chipset, status reg 5362 <status> */ 5363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5364 "0437 Adapter failed to init, " 5365 "chipset, status reg x%x, " 5366 "FW Data: A8 x%x AC x%x\n", status, 5367 readl(phba->MBslimaddr + 0xa8), 5368 readl(phba->MBslimaddr + 0xac)); 5369 phba->link_state = LPFC_HBA_ERROR; 5370 return -EIO; 5371 } 5372 5373 if (i <= 10) 5374 msleep(10); 5375 else if (i <= 100) 5376 msleep(100); 5377 else 5378 msleep(1000); 5379 5380 if (i == 150) { 5381 /* Do post */ 5382 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5383 lpfc_sli_brdrestart(phba); 5384 } 5385 /* Read the HBA Host Status Register */ 5386 if (lpfc_readl(phba->HSregaddr, &status)) 5387 return -EIO; 5388 } 5389 5390 /* Check to see if any errors occurred during init */ 5391 if (status & HS_FFERM) { 5392 /* ERROR: During chipset initialization */ 5393 /* Adapter failed to init, chipset, status reg <status> */ 5394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5395 "0438 Adapter failed to init, chipset, " 5396 "status reg x%x, " 5397 "FW Data: A8 x%x AC x%x\n", status, 5398 readl(phba->MBslimaddr + 0xa8), 5399 readl(phba->MBslimaddr + 0xac)); 5400 phba->link_state = LPFC_HBA_ERROR; 5401 return -EIO; 5402 } 5403 5404 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5405 5406 /* Clear all interrupt enable conditions */ 5407 writel(0, phba->HCregaddr); 5408 readl(phba->HCregaddr); /* flush */ 5409 5410 /* setup host attn register */ 5411 writel(0xffffffff, phba->HAregaddr); 5412 readl(phba->HAregaddr); /* flush */ 5413 return 0; 5414 } 5415 5416 /** 5417 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5418 * 5419 * This function calculates and returns the number of HBQs required to be 5420 * configured. 5421 **/ 5422 int 5423 lpfc_sli_hbq_count(void) 5424 { 5425 return ARRAY_SIZE(lpfc_hbq_defs); 5426 } 5427 5428 /** 5429 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5430 * 5431 * This function adds the number of hbq entries in every HBQ to get 5432 * the total number of hbq entries required for the HBA and returns 5433 * the total count. 5434 **/ 5435 static int 5436 lpfc_sli_hbq_entry_count(void) 5437 { 5438 int hbq_count = lpfc_sli_hbq_count(); 5439 int count = 0; 5440 int i; 5441 5442 for (i = 0; i < hbq_count; ++i) 5443 count += lpfc_hbq_defs[i]->entry_count; 5444 return count; 5445 } 5446 5447 /** 5448 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5449 * 5450 * This function calculates amount of memory required for all hbq entries 5451 * to be configured and returns the total memory required. 5452 **/ 5453 int 5454 lpfc_sli_hbq_size(void) 5455 { 5456 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5457 } 5458 5459 /** 5460 * lpfc_sli_hbq_setup - configure and initialize HBQs 5461 * @phba: Pointer to HBA context object. 5462 * 5463 * This function is called during the SLI initialization to configure 5464 * all the HBQs and post buffers to the HBQ. The caller is not 5465 * required to hold any locks. This function will return zero if successful 5466 * else it will return negative error code. 5467 **/ 5468 static int 5469 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5470 { 5471 int hbq_count = lpfc_sli_hbq_count(); 5472 LPFC_MBOXQ_t *pmb; 5473 MAILBOX_t *pmbox; 5474 uint32_t hbqno; 5475 uint32_t hbq_entry_index; 5476 5477 /* Get a Mailbox buffer to setup mailbox 5478 * commands for HBA initialization 5479 */ 5480 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5481 5482 if (!pmb) 5483 return -ENOMEM; 5484 5485 pmbox = &pmb->u.mb; 5486 5487 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5488 phba->link_state = LPFC_INIT_MBX_CMDS; 5489 phba->hbq_in_use = 1; 5490 5491 hbq_entry_index = 0; 5492 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5493 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5494 phba->hbqs[hbqno].hbqPutIdx = 0; 5495 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5496 phba->hbqs[hbqno].entry_count = 5497 lpfc_hbq_defs[hbqno]->entry_count; 5498 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5499 hbq_entry_index, pmb); 5500 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5501 5502 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5503 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5504 mbxStatus <status>, ring <num> */ 5505 5506 lpfc_printf_log(phba, KERN_ERR, 5507 LOG_SLI | LOG_VPORT, 5508 "1805 Adapter failed to init. " 5509 "Data: x%x x%x x%x\n", 5510 pmbox->mbxCommand, 5511 pmbox->mbxStatus, hbqno); 5512 5513 phba->link_state = LPFC_HBA_ERROR; 5514 mempool_free(pmb, phba->mbox_mem_pool); 5515 return -ENXIO; 5516 } 5517 } 5518 phba->hbq_count = hbq_count; 5519 5520 mempool_free(pmb, phba->mbox_mem_pool); 5521 5522 /* Initially populate or replenish the HBQs */ 5523 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5524 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5525 return 0; 5526 } 5527 5528 /** 5529 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5530 * @phba: Pointer to HBA context object. 5531 * 5532 * This function is called during the SLI initialization to configure 5533 * all the HBQs and post buffers to the HBQ. The caller is not 5534 * required to hold any locks. This function will return zero if successful 5535 * else it will return negative error code. 5536 **/ 5537 static int 5538 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5539 { 5540 phba->hbq_in_use = 1; 5541 /** 5542 * Specific case when the MDS diagnostics is enabled and supported. 5543 * The receive buffer count is truncated to manage the incoming 5544 * traffic. 5545 **/ 5546 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5547 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5548 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5549 else 5550 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5551 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5552 phba->hbq_count = 1; 5553 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5554 /* Initially populate or replenish the HBQs */ 5555 return 0; 5556 } 5557 5558 /** 5559 * lpfc_sli_config_port - Issue config port mailbox command 5560 * @phba: Pointer to HBA context object. 5561 * @sli_mode: sli mode - 2/3 5562 * 5563 * This function is called by the sli initialization code path 5564 * to issue config_port mailbox command. This function restarts the 5565 * HBA firmware and issues a config_port mailbox command to configure 5566 * the SLI interface in the sli mode specified by sli_mode 5567 * variable. The caller is not required to hold any locks. 5568 * The function returns 0 if successful, else returns negative error 5569 * code. 5570 **/ 5571 int 5572 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5573 { 5574 LPFC_MBOXQ_t *pmb; 5575 uint32_t resetcount = 0, rc = 0, done = 0; 5576 5577 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5578 if (!pmb) { 5579 phba->link_state = LPFC_HBA_ERROR; 5580 return -ENOMEM; 5581 } 5582 5583 phba->sli_rev = sli_mode; 5584 while (resetcount < 2 && !done) { 5585 spin_lock_irq(&phba->hbalock); 5586 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5587 spin_unlock_irq(&phba->hbalock); 5588 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5589 lpfc_sli_brdrestart(phba); 5590 rc = lpfc_sli_chipset_init(phba); 5591 if (rc) 5592 break; 5593 5594 spin_lock_irq(&phba->hbalock); 5595 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5596 spin_unlock_irq(&phba->hbalock); 5597 resetcount++; 5598 5599 /* Call pre CONFIG_PORT mailbox command initialization. A 5600 * value of 0 means the call was successful. Any other 5601 * nonzero value is a failure, but if ERESTART is returned, 5602 * the driver may reset the HBA and try again. 5603 */ 5604 rc = lpfc_config_port_prep(phba); 5605 if (rc == -ERESTART) { 5606 phba->link_state = LPFC_LINK_UNKNOWN; 5607 continue; 5608 } else if (rc) 5609 break; 5610 5611 phba->link_state = LPFC_INIT_MBX_CMDS; 5612 lpfc_config_port(phba, pmb); 5613 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5614 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5615 LPFC_SLI3_HBQ_ENABLED | 5616 LPFC_SLI3_CRP_ENABLED | 5617 LPFC_SLI3_DSS_ENABLED); 5618 if (rc != MBX_SUCCESS) { 5619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5620 "0442 Adapter failed to init, mbxCmd x%x " 5621 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5622 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5623 spin_lock_irq(&phba->hbalock); 5624 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5625 spin_unlock_irq(&phba->hbalock); 5626 rc = -ENXIO; 5627 } else { 5628 /* Allow asynchronous mailbox command to go through */ 5629 spin_lock_irq(&phba->hbalock); 5630 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5631 spin_unlock_irq(&phba->hbalock); 5632 done = 1; 5633 5634 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5635 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5636 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5637 "3110 Port did not grant ASABT\n"); 5638 } 5639 } 5640 if (!done) { 5641 rc = -EINVAL; 5642 goto do_prep_failed; 5643 } 5644 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5645 if (!pmb->u.mb.un.varCfgPort.cMA) { 5646 rc = -ENXIO; 5647 goto do_prep_failed; 5648 } 5649 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5650 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5651 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5652 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5653 phba->max_vpi : phba->max_vports; 5654 5655 } else 5656 phba->max_vpi = 0; 5657 if (pmb->u.mb.un.varCfgPort.gerbm) 5658 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5659 if (pmb->u.mb.un.varCfgPort.gcrp) 5660 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5661 5662 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5663 phba->port_gp = phba->mbox->us.s3_pgp.port; 5664 5665 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5666 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5667 phba->cfg_enable_bg = 0; 5668 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5670 "0443 Adapter did not grant " 5671 "BlockGuard\n"); 5672 } 5673 } 5674 } else { 5675 phba->hbq_get = NULL; 5676 phba->port_gp = phba->mbox->us.s2.port; 5677 phba->max_vpi = 0; 5678 } 5679 do_prep_failed: 5680 mempool_free(pmb, phba->mbox_mem_pool); 5681 return rc; 5682 } 5683 5684 5685 /** 5686 * lpfc_sli_hba_setup - SLI initialization function 5687 * @phba: Pointer to HBA context object. 5688 * 5689 * This function is the main SLI initialization function. This function 5690 * is called by the HBA initialization code, HBA reset code and HBA 5691 * error attention handler code. Caller is not required to hold any 5692 * locks. This function issues config_port mailbox command to configure 5693 * the SLI, setup iocb rings and HBQ rings. In the end the function 5694 * calls the config_port_post function to issue init_link mailbox 5695 * command and to start the discovery. The function will return zero 5696 * if successful, else it will return negative error code. 5697 **/ 5698 int 5699 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5700 { 5701 uint32_t rc; 5702 int i; 5703 int longs; 5704 5705 /* Enable ISR already does config_port because of config_msi mbx */ 5706 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5707 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5708 if (rc) 5709 return -EIO; 5710 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5711 } 5712 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5713 5714 if (phba->sli_rev == 3) { 5715 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5716 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5717 } else { 5718 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5719 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5720 phba->sli3_options = 0; 5721 } 5722 5723 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5724 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5725 phba->sli_rev, phba->max_vpi); 5726 rc = lpfc_sli_ring_map(phba); 5727 5728 if (rc) 5729 goto lpfc_sli_hba_setup_error; 5730 5731 /* Initialize VPIs. */ 5732 if (phba->sli_rev == LPFC_SLI_REV3) { 5733 /* 5734 * The VPI bitmask and physical ID array are allocated 5735 * and initialized once only - at driver load. A port 5736 * reset doesn't need to reinitialize this memory. 5737 */ 5738 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5739 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5740 phba->vpi_bmask = kcalloc(longs, 5741 sizeof(unsigned long), 5742 GFP_KERNEL); 5743 if (!phba->vpi_bmask) { 5744 rc = -ENOMEM; 5745 goto lpfc_sli_hba_setup_error; 5746 } 5747 5748 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5749 sizeof(uint16_t), 5750 GFP_KERNEL); 5751 if (!phba->vpi_ids) { 5752 kfree(phba->vpi_bmask); 5753 rc = -ENOMEM; 5754 goto lpfc_sli_hba_setup_error; 5755 } 5756 for (i = 0; i < phba->max_vpi; i++) 5757 phba->vpi_ids[i] = i; 5758 } 5759 } 5760 5761 /* Init HBQs */ 5762 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5763 rc = lpfc_sli_hbq_setup(phba); 5764 if (rc) 5765 goto lpfc_sli_hba_setup_error; 5766 } 5767 spin_lock_irq(&phba->hbalock); 5768 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5769 spin_unlock_irq(&phba->hbalock); 5770 5771 rc = lpfc_config_port_post(phba); 5772 if (rc) 5773 goto lpfc_sli_hba_setup_error; 5774 5775 return rc; 5776 5777 lpfc_sli_hba_setup_error: 5778 phba->link_state = LPFC_HBA_ERROR; 5779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5780 "0445 Firmware initialization failed\n"); 5781 return rc; 5782 } 5783 5784 /** 5785 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5786 * @phba: Pointer to HBA context object. 5787 * 5788 * This function issue a dump mailbox command to read config region 5789 * 23 and parse the records in the region and populate driver 5790 * data structure. 5791 **/ 5792 static int 5793 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5794 { 5795 LPFC_MBOXQ_t *mboxq; 5796 struct lpfc_dmabuf *mp; 5797 struct lpfc_mqe *mqe; 5798 uint32_t data_length; 5799 int rc; 5800 5801 /* Program the default value of vlan_id and fc_map */ 5802 phba->valid_vlan = 0; 5803 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5804 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5805 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5806 5807 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5808 if (!mboxq) 5809 return -ENOMEM; 5810 5811 mqe = &mboxq->u.mqe; 5812 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5813 rc = -ENOMEM; 5814 goto out_free_mboxq; 5815 } 5816 5817 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5818 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5819 5820 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5821 "(%d):2571 Mailbox cmd x%x Status x%x " 5822 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5823 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5824 "CQ: x%x x%x x%x x%x\n", 5825 mboxq->vport ? mboxq->vport->vpi : 0, 5826 bf_get(lpfc_mqe_command, mqe), 5827 bf_get(lpfc_mqe_status, mqe), 5828 mqe->un.mb_words[0], mqe->un.mb_words[1], 5829 mqe->un.mb_words[2], mqe->un.mb_words[3], 5830 mqe->un.mb_words[4], mqe->un.mb_words[5], 5831 mqe->un.mb_words[6], mqe->un.mb_words[7], 5832 mqe->un.mb_words[8], mqe->un.mb_words[9], 5833 mqe->un.mb_words[10], mqe->un.mb_words[11], 5834 mqe->un.mb_words[12], mqe->un.mb_words[13], 5835 mqe->un.mb_words[14], mqe->un.mb_words[15], 5836 mqe->un.mb_words[16], mqe->un.mb_words[50], 5837 mboxq->mcqe.word0, 5838 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5839 mboxq->mcqe.trailer); 5840 5841 if (rc) { 5842 rc = -EIO; 5843 goto out_free_mboxq; 5844 } 5845 data_length = mqe->un.mb_words[5]; 5846 if (data_length > DMP_RGN23_SIZE) { 5847 rc = -EIO; 5848 goto out_free_mboxq; 5849 } 5850 5851 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5852 rc = 0; 5853 5854 out_free_mboxq: 5855 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5856 return rc; 5857 } 5858 5859 /** 5860 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5861 * @phba: pointer to lpfc hba data structure. 5862 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5863 * @vpd: pointer to the memory to hold resulting port vpd data. 5864 * @vpd_size: On input, the number of bytes allocated to @vpd. 5865 * On output, the number of data bytes in @vpd. 5866 * 5867 * This routine executes a READ_REV SLI4 mailbox command. In 5868 * addition, this routine gets the port vpd data. 5869 * 5870 * Return codes 5871 * 0 - successful 5872 * -ENOMEM - could not allocated memory. 5873 **/ 5874 static int 5875 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5876 uint8_t *vpd, uint32_t *vpd_size) 5877 { 5878 int rc = 0; 5879 uint32_t dma_size; 5880 struct lpfc_dmabuf *dmabuf; 5881 struct lpfc_mqe *mqe; 5882 5883 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5884 if (!dmabuf) 5885 return -ENOMEM; 5886 5887 /* 5888 * Get a DMA buffer for the vpd data resulting from the READ_REV 5889 * mailbox command. 5890 */ 5891 dma_size = *vpd_size; 5892 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5893 &dmabuf->phys, GFP_KERNEL); 5894 if (!dmabuf->virt) { 5895 kfree(dmabuf); 5896 return -ENOMEM; 5897 } 5898 5899 /* 5900 * The SLI4 implementation of READ_REV conflicts at word1, 5901 * bits 31:16 and SLI4 adds vpd functionality not present 5902 * in SLI3. This code corrects the conflicts. 5903 */ 5904 lpfc_read_rev(phba, mboxq); 5905 mqe = &mboxq->u.mqe; 5906 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5907 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5908 mqe->un.read_rev.word1 &= 0x0000FFFF; 5909 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5910 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5911 5912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5913 if (rc) { 5914 dma_free_coherent(&phba->pcidev->dev, dma_size, 5915 dmabuf->virt, dmabuf->phys); 5916 kfree(dmabuf); 5917 return -EIO; 5918 } 5919 5920 /* 5921 * The available vpd length cannot be bigger than the 5922 * DMA buffer passed to the port. Catch the less than 5923 * case and update the caller's size. 5924 */ 5925 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5926 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5927 5928 memcpy(vpd, dmabuf->virt, *vpd_size); 5929 5930 dma_free_coherent(&phba->pcidev->dev, dma_size, 5931 dmabuf->virt, dmabuf->phys); 5932 kfree(dmabuf); 5933 return 0; 5934 } 5935 5936 /** 5937 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5938 * @phba: pointer to lpfc hba data structure. 5939 * 5940 * This routine retrieves SLI4 device physical port name this PCI function 5941 * is attached to. 5942 * 5943 * Return codes 5944 * 0 - successful 5945 * otherwise - failed to retrieve controller attributes 5946 **/ 5947 static int 5948 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5949 { 5950 LPFC_MBOXQ_t *mboxq; 5951 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5952 struct lpfc_controller_attribute *cntl_attr; 5953 void *virtaddr = NULL; 5954 uint32_t alloclen, reqlen; 5955 uint32_t shdr_status, shdr_add_status; 5956 union lpfc_sli4_cfg_shdr *shdr; 5957 int rc; 5958 5959 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5960 if (!mboxq) 5961 return -ENOMEM; 5962 5963 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5964 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5965 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5966 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5967 LPFC_SLI4_MBX_NEMBED); 5968 5969 if (alloclen < reqlen) { 5970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5971 "3084 Allocated DMA memory size (%d) is " 5972 "less than the requested DMA memory size " 5973 "(%d)\n", alloclen, reqlen); 5974 rc = -ENOMEM; 5975 goto out_free_mboxq; 5976 } 5977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5978 virtaddr = mboxq->sge_array->addr[0]; 5979 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5980 shdr = &mbx_cntl_attr->cfg_shdr; 5981 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5982 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5983 if (shdr_status || shdr_add_status || rc) { 5984 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5985 "3085 Mailbox x%x (x%x/x%x) failed, " 5986 "rc:x%x, status:x%x, add_status:x%x\n", 5987 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5988 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5989 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5990 rc, shdr_status, shdr_add_status); 5991 rc = -ENXIO; 5992 goto out_free_mboxq; 5993 } 5994 5995 cntl_attr = &mbx_cntl_attr->cntl_attr; 5996 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5997 phba->sli4_hba.lnk_info.lnk_tp = 5998 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5999 phba->sli4_hba.lnk_info.lnk_no = 6000 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6001 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6002 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6003 6004 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6005 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6006 sizeof(phba->BIOSVersion)); 6007 6008 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6009 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6010 "flash_id: x%02x, asic_rev: x%02x\n", 6011 phba->sli4_hba.lnk_info.lnk_tp, 6012 phba->sli4_hba.lnk_info.lnk_no, 6013 phba->BIOSVersion, phba->sli4_hba.flash_id, 6014 phba->sli4_hba.asic_rev); 6015 out_free_mboxq: 6016 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6017 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6018 else 6019 mempool_free(mboxq, phba->mbox_mem_pool); 6020 return rc; 6021 } 6022 6023 /** 6024 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6025 * @phba: pointer to lpfc hba data structure. 6026 * 6027 * This routine retrieves SLI4 device physical port name this PCI function 6028 * is attached to. 6029 * 6030 * Return codes 6031 * 0 - successful 6032 * otherwise - failed to retrieve physical port name 6033 **/ 6034 static int 6035 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6036 { 6037 LPFC_MBOXQ_t *mboxq; 6038 struct lpfc_mbx_get_port_name *get_port_name; 6039 uint32_t shdr_status, shdr_add_status; 6040 union lpfc_sli4_cfg_shdr *shdr; 6041 char cport_name = 0; 6042 int rc; 6043 6044 /* We assume nothing at this point */ 6045 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6046 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6047 6048 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6049 if (!mboxq) 6050 return -ENOMEM; 6051 /* obtain link type and link number via READ_CONFIG */ 6052 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6053 lpfc_sli4_read_config(phba); 6054 6055 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6056 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6057 6058 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6059 goto retrieve_ppname; 6060 6061 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6062 rc = lpfc_sli4_get_ctl_attr(phba); 6063 if (rc) 6064 goto out_free_mboxq; 6065 6066 retrieve_ppname: 6067 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6068 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6069 sizeof(struct lpfc_mbx_get_port_name) - 6070 sizeof(struct lpfc_sli4_cfg_mhdr), 6071 LPFC_SLI4_MBX_EMBED); 6072 get_port_name = &mboxq->u.mqe.un.get_port_name; 6073 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6074 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6075 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6076 phba->sli4_hba.lnk_info.lnk_tp); 6077 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6078 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6079 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6080 if (shdr_status || shdr_add_status || rc) { 6081 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6082 "3087 Mailbox x%x (x%x/x%x) failed: " 6083 "rc:x%x, status:x%x, add_status:x%x\n", 6084 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6085 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6086 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6087 rc, shdr_status, shdr_add_status); 6088 rc = -ENXIO; 6089 goto out_free_mboxq; 6090 } 6091 switch (phba->sli4_hba.lnk_info.lnk_no) { 6092 case LPFC_LINK_NUMBER_0: 6093 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6094 &get_port_name->u.response); 6095 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6096 break; 6097 case LPFC_LINK_NUMBER_1: 6098 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6099 &get_port_name->u.response); 6100 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6101 break; 6102 case LPFC_LINK_NUMBER_2: 6103 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6104 &get_port_name->u.response); 6105 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6106 break; 6107 case LPFC_LINK_NUMBER_3: 6108 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6109 &get_port_name->u.response); 6110 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6111 break; 6112 default: 6113 break; 6114 } 6115 6116 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6117 phba->Port[0] = cport_name; 6118 phba->Port[1] = '\0'; 6119 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6120 "3091 SLI get port name: %s\n", phba->Port); 6121 } 6122 6123 out_free_mboxq: 6124 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6125 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6126 else 6127 mempool_free(mboxq, phba->mbox_mem_pool); 6128 return rc; 6129 } 6130 6131 /** 6132 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6133 * @phba: pointer to lpfc hba data structure. 6134 * 6135 * This routine is called to explicitly arm the SLI4 device's completion and 6136 * event queues 6137 **/ 6138 static void 6139 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6140 { 6141 int qidx; 6142 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6143 struct lpfc_sli4_hdw_queue *qp; 6144 struct lpfc_queue *eq; 6145 6146 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6147 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6148 if (sli4_hba->nvmels_cq) 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6150 LPFC_QUEUE_REARM); 6151 6152 if (sli4_hba->hdwq) { 6153 /* Loop thru all Hardware Queues */ 6154 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6155 qp = &sli4_hba->hdwq[qidx]; 6156 /* ARM the corresponding CQ */ 6157 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6158 LPFC_QUEUE_REARM); 6159 } 6160 6161 /* Loop thru all IRQ vectors */ 6162 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6163 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6164 /* ARM the corresponding EQ */ 6165 sli4_hba->sli4_write_eq_db(phba, eq, 6166 0, LPFC_QUEUE_REARM); 6167 } 6168 } 6169 6170 if (phba->nvmet_support) { 6171 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6172 sli4_hba->sli4_write_cq_db(phba, 6173 sli4_hba->nvmet_cqset[qidx], 0, 6174 LPFC_QUEUE_REARM); 6175 } 6176 } 6177 } 6178 6179 /** 6180 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6181 * @phba: Pointer to HBA context object. 6182 * @type: The resource extent type. 6183 * @extnt_count: buffer to hold port available extent count. 6184 * @extnt_size: buffer to hold element count per extent. 6185 * 6186 * This function calls the port and retrievs the number of available 6187 * extents and their size for a particular extent type. 6188 * 6189 * Returns: 0 if successful. Nonzero otherwise. 6190 **/ 6191 int 6192 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6193 uint16_t *extnt_count, uint16_t *extnt_size) 6194 { 6195 int rc = 0; 6196 uint32_t length; 6197 uint32_t mbox_tmo; 6198 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6199 LPFC_MBOXQ_t *mbox; 6200 6201 *extnt_count = 0; 6202 *extnt_size = 0; 6203 6204 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6205 if (!mbox) 6206 return -ENOMEM; 6207 6208 /* Find out how many extents are available for this resource type */ 6209 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6210 sizeof(struct lpfc_sli4_cfg_mhdr)); 6211 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6212 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6213 length, LPFC_SLI4_MBX_EMBED); 6214 6215 /* Send an extents count of 0 - the GET doesn't use it. */ 6216 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6217 LPFC_SLI4_MBX_EMBED); 6218 if (unlikely(rc)) { 6219 rc = -EIO; 6220 goto err_exit; 6221 } 6222 6223 if (!phba->sli4_hba.intr_enable) 6224 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6225 else { 6226 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6227 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6228 } 6229 if (unlikely(rc)) { 6230 rc = -EIO; 6231 goto err_exit; 6232 } 6233 6234 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6235 if (bf_get(lpfc_mbox_hdr_status, 6236 &rsrc_info->header.cfg_shdr.response)) { 6237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6238 "2930 Failed to get resource extents " 6239 "Status 0x%x Add'l Status 0x%x\n", 6240 bf_get(lpfc_mbox_hdr_status, 6241 &rsrc_info->header.cfg_shdr.response), 6242 bf_get(lpfc_mbox_hdr_add_status, 6243 &rsrc_info->header.cfg_shdr.response)); 6244 rc = -EIO; 6245 goto err_exit; 6246 } 6247 6248 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6249 &rsrc_info->u.rsp); 6250 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6251 &rsrc_info->u.rsp); 6252 6253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6254 "3162 Retrieved extents type-%d from port: count:%d, " 6255 "size:%d\n", type, *extnt_count, *extnt_size); 6256 6257 err_exit: 6258 mempool_free(mbox, phba->mbox_mem_pool); 6259 return rc; 6260 } 6261 6262 /** 6263 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6264 * @phba: Pointer to HBA context object. 6265 * @type: The extent type to check. 6266 * 6267 * This function reads the current available extents from the port and checks 6268 * if the extent count or extent size has changed since the last access. 6269 * Callers use this routine post port reset to understand if there is a 6270 * extent reprovisioning requirement. 6271 * 6272 * Returns: 6273 * -Error: error indicates problem. 6274 * 1: Extent count or size has changed. 6275 * 0: No changes. 6276 **/ 6277 static int 6278 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6279 { 6280 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6281 uint16_t size_diff, rsrc_ext_size; 6282 int rc = 0; 6283 struct lpfc_rsrc_blks *rsrc_entry; 6284 struct list_head *rsrc_blk_list = NULL; 6285 6286 size_diff = 0; 6287 curr_ext_cnt = 0; 6288 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6289 &rsrc_ext_cnt, 6290 &rsrc_ext_size); 6291 if (unlikely(rc)) 6292 return -EIO; 6293 6294 switch (type) { 6295 case LPFC_RSC_TYPE_FCOE_RPI: 6296 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6297 break; 6298 case LPFC_RSC_TYPE_FCOE_VPI: 6299 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_XRI: 6302 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6303 break; 6304 case LPFC_RSC_TYPE_FCOE_VFI: 6305 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6306 break; 6307 default: 6308 break; 6309 } 6310 6311 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6312 curr_ext_cnt++; 6313 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6314 size_diff++; 6315 } 6316 6317 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6318 rc = 1; 6319 6320 return rc; 6321 } 6322 6323 /** 6324 * lpfc_sli4_cfg_post_extnts - 6325 * @phba: Pointer to HBA context object. 6326 * @extnt_cnt: number of available extents. 6327 * @type: the extent type (rpi, xri, vfi, vpi). 6328 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6329 * @mbox: pointer to the caller's allocated mailbox structure. 6330 * 6331 * This function executes the extents allocation request. It also 6332 * takes care of the amount of memory needed to allocate or get the 6333 * allocated extents. It is the caller's responsibility to evaluate 6334 * the response. 6335 * 6336 * Returns: 6337 * -Error: Error value describes the condition found. 6338 * 0: if successful 6339 **/ 6340 static int 6341 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6342 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6343 { 6344 int rc = 0; 6345 uint32_t req_len; 6346 uint32_t emb_len; 6347 uint32_t alloc_len, mbox_tmo; 6348 6349 /* Calculate the total requested length of the dma memory */ 6350 req_len = extnt_cnt * sizeof(uint16_t); 6351 6352 /* 6353 * Calculate the size of an embedded mailbox. The uint32_t 6354 * accounts for extents-specific word. 6355 */ 6356 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6357 sizeof(uint32_t); 6358 6359 /* 6360 * Presume the allocation and response will fit into an embedded 6361 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6362 */ 6363 *emb = LPFC_SLI4_MBX_EMBED; 6364 if (req_len > emb_len) { 6365 req_len = extnt_cnt * sizeof(uint16_t) + 6366 sizeof(union lpfc_sli4_cfg_shdr) + 6367 sizeof(uint32_t); 6368 *emb = LPFC_SLI4_MBX_NEMBED; 6369 } 6370 6371 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6372 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6373 req_len, *emb); 6374 if (alloc_len < req_len) { 6375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6376 "2982 Allocated DMA memory size (x%x) is " 6377 "less than the requested DMA memory " 6378 "size (x%x)\n", alloc_len, req_len); 6379 return -ENOMEM; 6380 } 6381 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6382 if (unlikely(rc)) 6383 return -EIO; 6384 6385 if (!phba->sli4_hba.intr_enable) 6386 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6387 else { 6388 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6389 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6390 } 6391 6392 if (unlikely(rc)) 6393 rc = -EIO; 6394 return rc; 6395 } 6396 6397 /** 6398 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6399 * @phba: Pointer to HBA context object. 6400 * @type: The resource extent type to allocate. 6401 * 6402 * This function allocates the number of elements for the specified 6403 * resource type. 6404 **/ 6405 static int 6406 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6407 { 6408 bool emb = false; 6409 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6410 uint16_t rsrc_id, rsrc_start, j, k; 6411 uint16_t *ids; 6412 int i, rc; 6413 unsigned long longs; 6414 unsigned long *bmask; 6415 struct lpfc_rsrc_blks *rsrc_blks; 6416 LPFC_MBOXQ_t *mbox; 6417 uint32_t length; 6418 struct lpfc_id_range *id_array = NULL; 6419 void *virtaddr = NULL; 6420 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6421 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6422 struct list_head *ext_blk_list; 6423 6424 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6425 &rsrc_cnt, 6426 &rsrc_size); 6427 if (unlikely(rc)) 6428 return -EIO; 6429 6430 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6432 "3009 No available Resource Extents " 6433 "for resource type 0x%x: Count: 0x%x, " 6434 "Size 0x%x\n", type, rsrc_cnt, 6435 rsrc_size); 6436 return -ENOMEM; 6437 } 6438 6439 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6440 "2903 Post resource extents type-0x%x: " 6441 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6442 6443 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6444 if (!mbox) 6445 return -ENOMEM; 6446 6447 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6448 if (unlikely(rc)) { 6449 rc = -EIO; 6450 goto err_exit; 6451 } 6452 6453 /* 6454 * Figure out where the response is located. Then get local pointers 6455 * to the response data. The port does not guarantee to respond to 6456 * all extents counts request so update the local variable with the 6457 * allocated count from the port. 6458 */ 6459 if (emb == LPFC_SLI4_MBX_EMBED) { 6460 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6461 id_array = &rsrc_ext->u.rsp.id[0]; 6462 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6463 } else { 6464 virtaddr = mbox->sge_array->addr[0]; 6465 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6466 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6467 id_array = &n_rsrc->id; 6468 } 6469 6470 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6471 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6472 6473 /* 6474 * Based on the resource size and count, correct the base and max 6475 * resource values. 6476 */ 6477 length = sizeof(struct lpfc_rsrc_blks); 6478 switch (type) { 6479 case LPFC_RSC_TYPE_FCOE_RPI: 6480 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6481 sizeof(unsigned long), 6482 GFP_KERNEL); 6483 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6484 rc = -ENOMEM; 6485 goto err_exit; 6486 } 6487 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6488 sizeof(uint16_t), 6489 GFP_KERNEL); 6490 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6491 kfree(phba->sli4_hba.rpi_bmask); 6492 rc = -ENOMEM; 6493 goto err_exit; 6494 } 6495 6496 /* 6497 * The next_rpi was initialized with the maximum available 6498 * count but the port may allocate a smaller number. Catch 6499 * that case and update the next_rpi. 6500 */ 6501 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6502 6503 /* Initialize local ptrs for common extent processing later. */ 6504 bmask = phba->sli4_hba.rpi_bmask; 6505 ids = phba->sli4_hba.rpi_ids; 6506 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6507 break; 6508 case LPFC_RSC_TYPE_FCOE_VPI: 6509 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6510 GFP_KERNEL); 6511 if (unlikely(!phba->vpi_bmask)) { 6512 rc = -ENOMEM; 6513 goto err_exit; 6514 } 6515 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6516 GFP_KERNEL); 6517 if (unlikely(!phba->vpi_ids)) { 6518 kfree(phba->vpi_bmask); 6519 rc = -ENOMEM; 6520 goto err_exit; 6521 } 6522 6523 /* Initialize local ptrs for common extent processing later. */ 6524 bmask = phba->vpi_bmask; 6525 ids = phba->vpi_ids; 6526 ext_blk_list = &phba->lpfc_vpi_blk_list; 6527 break; 6528 case LPFC_RSC_TYPE_FCOE_XRI: 6529 phba->sli4_hba.xri_bmask = kcalloc(longs, 6530 sizeof(unsigned long), 6531 GFP_KERNEL); 6532 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6533 rc = -ENOMEM; 6534 goto err_exit; 6535 } 6536 phba->sli4_hba.max_cfg_param.xri_used = 0; 6537 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6538 sizeof(uint16_t), 6539 GFP_KERNEL); 6540 if (unlikely(!phba->sli4_hba.xri_ids)) { 6541 kfree(phba->sli4_hba.xri_bmask); 6542 rc = -ENOMEM; 6543 goto err_exit; 6544 } 6545 6546 /* Initialize local ptrs for common extent processing later. */ 6547 bmask = phba->sli4_hba.xri_bmask; 6548 ids = phba->sli4_hba.xri_ids; 6549 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6550 break; 6551 case LPFC_RSC_TYPE_FCOE_VFI: 6552 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6553 sizeof(unsigned long), 6554 GFP_KERNEL); 6555 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6556 rc = -ENOMEM; 6557 goto err_exit; 6558 } 6559 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6560 sizeof(uint16_t), 6561 GFP_KERNEL); 6562 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6563 kfree(phba->sli4_hba.vfi_bmask); 6564 rc = -ENOMEM; 6565 goto err_exit; 6566 } 6567 6568 /* Initialize local ptrs for common extent processing later. */ 6569 bmask = phba->sli4_hba.vfi_bmask; 6570 ids = phba->sli4_hba.vfi_ids; 6571 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6572 break; 6573 default: 6574 /* Unsupported Opcode. Fail call. */ 6575 id_array = NULL; 6576 bmask = NULL; 6577 ids = NULL; 6578 ext_blk_list = NULL; 6579 goto err_exit; 6580 } 6581 6582 /* 6583 * Complete initializing the extent configuration with the 6584 * allocated ids assigned to this function. The bitmask serves 6585 * as an index into the array and manages the available ids. The 6586 * array just stores the ids communicated to the port via the wqes. 6587 */ 6588 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6589 if ((i % 2) == 0) 6590 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6591 &id_array[k]); 6592 else 6593 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6594 &id_array[k]); 6595 6596 rsrc_blks = kzalloc(length, GFP_KERNEL); 6597 if (unlikely(!rsrc_blks)) { 6598 rc = -ENOMEM; 6599 kfree(bmask); 6600 kfree(ids); 6601 goto err_exit; 6602 } 6603 rsrc_blks->rsrc_start = rsrc_id; 6604 rsrc_blks->rsrc_size = rsrc_size; 6605 list_add_tail(&rsrc_blks->list, ext_blk_list); 6606 rsrc_start = rsrc_id; 6607 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6608 phba->sli4_hba.io_xri_start = rsrc_start + 6609 lpfc_sli4_get_iocb_cnt(phba); 6610 } 6611 6612 while (rsrc_id < (rsrc_start + rsrc_size)) { 6613 ids[j] = rsrc_id; 6614 rsrc_id++; 6615 j++; 6616 } 6617 /* Entire word processed. Get next word.*/ 6618 if ((i % 2) == 1) 6619 k++; 6620 } 6621 err_exit: 6622 lpfc_sli4_mbox_cmd_free(phba, mbox); 6623 return rc; 6624 } 6625 6626 6627 6628 /** 6629 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6630 * @phba: Pointer to HBA context object. 6631 * @type: the extent's type. 6632 * 6633 * This function deallocates all extents of a particular resource type. 6634 * SLI4 does not allow for deallocating a particular extent range. It 6635 * is the caller's responsibility to release all kernel memory resources. 6636 **/ 6637 static int 6638 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6639 { 6640 int rc; 6641 uint32_t length, mbox_tmo = 0; 6642 LPFC_MBOXQ_t *mbox; 6643 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6644 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6645 6646 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6647 if (!mbox) 6648 return -ENOMEM; 6649 6650 /* 6651 * This function sends an embedded mailbox because it only sends the 6652 * the resource type. All extents of this type are released by the 6653 * port. 6654 */ 6655 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6656 sizeof(struct lpfc_sli4_cfg_mhdr)); 6657 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6658 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6659 length, LPFC_SLI4_MBX_EMBED); 6660 6661 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6662 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6663 LPFC_SLI4_MBX_EMBED); 6664 if (unlikely(rc)) { 6665 rc = -EIO; 6666 goto out_free_mbox; 6667 } 6668 if (!phba->sli4_hba.intr_enable) 6669 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6670 else { 6671 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6672 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6673 } 6674 if (unlikely(rc)) { 6675 rc = -EIO; 6676 goto out_free_mbox; 6677 } 6678 6679 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6680 if (bf_get(lpfc_mbox_hdr_status, 6681 &dealloc_rsrc->header.cfg_shdr.response)) { 6682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6683 "2919 Failed to release resource extents " 6684 "for type %d - Status 0x%x Add'l Status 0x%x. " 6685 "Resource memory not released.\n", 6686 type, 6687 bf_get(lpfc_mbox_hdr_status, 6688 &dealloc_rsrc->header.cfg_shdr.response), 6689 bf_get(lpfc_mbox_hdr_add_status, 6690 &dealloc_rsrc->header.cfg_shdr.response)); 6691 rc = -EIO; 6692 goto out_free_mbox; 6693 } 6694 6695 /* Release kernel memory resources for the specific type. */ 6696 switch (type) { 6697 case LPFC_RSC_TYPE_FCOE_VPI: 6698 kfree(phba->vpi_bmask); 6699 kfree(phba->vpi_ids); 6700 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6701 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6702 &phba->lpfc_vpi_blk_list, list) { 6703 list_del_init(&rsrc_blk->list); 6704 kfree(rsrc_blk); 6705 } 6706 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6707 break; 6708 case LPFC_RSC_TYPE_FCOE_XRI: 6709 kfree(phba->sli4_hba.xri_bmask); 6710 kfree(phba->sli4_hba.xri_ids); 6711 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6712 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6713 list_del_init(&rsrc_blk->list); 6714 kfree(rsrc_blk); 6715 } 6716 break; 6717 case LPFC_RSC_TYPE_FCOE_VFI: 6718 kfree(phba->sli4_hba.vfi_bmask); 6719 kfree(phba->sli4_hba.vfi_ids); 6720 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6721 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6722 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6723 list_del_init(&rsrc_blk->list); 6724 kfree(rsrc_blk); 6725 } 6726 break; 6727 case LPFC_RSC_TYPE_FCOE_RPI: 6728 /* RPI bitmask and physical id array are cleaned up earlier. */ 6729 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6730 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6731 list_del_init(&rsrc_blk->list); 6732 kfree(rsrc_blk); 6733 } 6734 break; 6735 default: 6736 break; 6737 } 6738 6739 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6740 6741 out_free_mbox: 6742 mempool_free(mbox, phba->mbox_mem_pool); 6743 return rc; 6744 } 6745 6746 static void 6747 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6748 uint32_t feature) 6749 { 6750 uint32_t len; 6751 u32 sig_freq = 0; 6752 6753 len = sizeof(struct lpfc_mbx_set_feature) - 6754 sizeof(struct lpfc_sli4_cfg_mhdr); 6755 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6756 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6757 LPFC_SLI4_MBX_EMBED); 6758 6759 switch (feature) { 6760 case LPFC_SET_UE_RECOVERY: 6761 bf_set(lpfc_mbx_set_feature_UER, 6762 &mbox->u.mqe.un.set_feature, 1); 6763 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6764 mbox->u.mqe.un.set_feature.param_len = 8; 6765 break; 6766 case LPFC_SET_MDS_DIAGS: 6767 bf_set(lpfc_mbx_set_feature_mds, 6768 &mbox->u.mqe.un.set_feature, 1); 6769 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6770 &mbox->u.mqe.un.set_feature, 1); 6771 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6772 mbox->u.mqe.un.set_feature.param_len = 8; 6773 break; 6774 case LPFC_SET_CGN_SIGNAL: 6775 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6776 sig_freq = 0; 6777 else 6778 sig_freq = phba->cgn_sig_freq; 6779 6780 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6781 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6782 &mbox->u.mqe.un.set_feature, sig_freq); 6783 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6784 &mbox->u.mqe.un.set_feature, sig_freq); 6785 } 6786 6787 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6788 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6789 &mbox->u.mqe.un.set_feature, sig_freq); 6790 6791 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6792 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6793 sig_freq = 0; 6794 else 6795 sig_freq = lpfc_acqe_cgn_frequency; 6796 6797 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6798 &mbox->u.mqe.un.set_feature, sig_freq); 6799 6800 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6801 mbox->u.mqe.un.set_feature.param_len = 12; 6802 break; 6803 case LPFC_SET_DUAL_DUMP: 6804 bf_set(lpfc_mbx_set_feature_dd, 6805 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6806 bf_set(lpfc_mbx_set_feature_ddquery, 6807 &mbox->u.mqe.un.set_feature, 0); 6808 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6809 mbox->u.mqe.un.set_feature.param_len = 4; 6810 break; 6811 case LPFC_SET_ENABLE_MI: 6812 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6813 mbox->u.mqe.un.set_feature.param_len = 4; 6814 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6815 phba->pport->cfg_lun_queue_depth); 6816 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6817 phba->sli4_hba.pc_sli4_params.mi_ver); 6818 break; 6819 case LPFC_SET_LD_SIGNAL: 6820 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6821 mbox->u.mqe.un.set_feature.param_len = 16; 6822 bf_set(lpfc_mbx_set_feature_lds_qry, 6823 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6824 break; 6825 case LPFC_SET_ENABLE_CMF: 6826 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6827 mbox->u.mqe.un.set_feature.param_len = 4; 6828 bf_set(lpfc_mbx_set_feature_cmf, 6829 &mbox->u.mqe.un.set_feature, 1); 6830 break; 6831 } 6832 return; 6833 } 6834 6835 /** 6836 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6837 * @phba: Pointer to HBA context object. 6838 * 6839 * Disable FW logging into host memory on the adapter. To 6840 * be done before reading logs from the host memory. 6841 **/ 6842 void 6843 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6844 { 6845 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6846 6847 spin_lock_irq(&phba->hbalock); 6848 ras_fwlog->state = INACTIVE; 6849 spin_unlock_irq(&phba->hbalock); 6850 6851 /* Disable FW logging to host memory */ 6852 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6853 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6854 6855 /* Wait 10ms for firmware to stop using DMA buffer */ 6856 usleep_range(10 * 1000, 20 * 1000); 6857 } 6858 6859 /** 6860 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6861 * @phba: Pointer to HBA context object. 6862 * 6863 * This function is called to free memory allocated for RAS FW logging 6864 * support in the driver. 6865 **/ 6866 void 6867 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6868 { 6869 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6870 struct lpfc_dmabuf *dmabuf, *next; 6871 6872 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6873 list_for_each_entry_safe(dmabuf, next, 6874 &ras_fwlog->fwlog_buff_list, 6875 list) { 6876 list_del(&dmabuf->list); 6877 dma_free_coherent(&phba->pcidev->dev, 6878 LPFC_RAS_MAX_ENTRY_SIZE, 6879 dmabuf->virt, dmabuf->phys); 6880 kfree(dmabuf); 6881 } 6882 } 6883 6884 if (ras_fwlog->lwpd.virt) { 6885 dma_free_coherent(&phba->pcidev->dev, 6886 sizeof(uint32_t) * 2, 6887 ras_fwlog->lwpd.virt, 6888 ras_fwlog->lwpd.phys); 6889 ras_fwlog->lwpd.virt = NULL; 6890 } 6891 6892 spin_lock_irq(&phba->hbalock); 6893 ras_fwlog->state = INACTIVE; 6894 spin_unlock_irq(&phba->hbalock); 6895 } 6896 6897 /** 6898 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6899 * @phba: Pointer to HBA context object. 6900 * @fwlog_buff_count: Count of buffers to be created. 6901 * 6902 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6903 * to update FW log is posted to the adapter. 6904 * Buffer count is calculated based on module param ras_fwlog_buffsize 6905 * Size of each buffer posted to FW is 64K. 6906 **/ 6907 6908 static int 6909 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6910 uint32_t fwlog_buff_count) 6911 { 6912 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6913 struct lpfc_dmabuf *dmabuf; 6914 int rc = 0, i = 0; 6915 6916 /* Initialize List */ 6917 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6918 6919 /* Allocate memory for the LWPD */ 6920 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6921 sizeof(uint32_t) * 2, 6922 &ras_fwlog->lwpd.phys, 6923 GFP_KERNEL); 6924 if (!ras_fwlog->lwpd.virt) { 6925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6926 "6185 LWPD Memory Alloc Failed\n"); 6927 6928 return -ENOMEM; 6929 } 6930 6931 ras_fwlog->fw_buffcount = fwlog_buff_count; 6932 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6933 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6934 GFP_KERNEL); 6935 if (!dmabuf) { 6936 rc = -ENOMEM; 6937 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6938 "6186 Memory Alloc failed FW logging"); 6939 goto free_mem; 6940 } 6941 6942 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6943 LPFC_RAS_MAX_ENTRY_SIZE, 6944 &dmabuf->phys, GFP_KERNEL); 6945 if (!dmabuf->virt) { 6946 kfree(dmabuf); 6947 rc = -ENOMEM; 6948 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6949 "6187 DMA Alloc Failed FW logging"); 6950 goto free_mem; 6951 } 6952 dmabuf->buffer_tag = i; 6953 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6954 } 6955 6956 free_mem: 6957 if (rc) 6958 lpfc_sli4_ras_dma_free(phba); 6959 6960 return rc; 6961 } 6962 6963 /** 6964 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6965 * @phba: pointer to lpfc hba data structure. 6966 * @pmb: pointer to the driver internal queue element for mailbox command. 6967 * 6968 * Completion handler for driver's RAS MBX command to the device. 6969 **/ 6970 static void 6971 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6972 { 6973 MAILBOX_t *mb; 6974 union lpfc_sli4_cfg_shdr *shdr; 6975 uint32_t shdr_status, shdr_add_status; 6976 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6977 6978 mb = &pmb->u.mb; 6979 6980 shdr = (union lpfc_sli4_cfg_shdr *) 6981 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6984 6985 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6987 "6188 FW LOG mailbox " 6988 "completed with status x%x add_status x%x," 6989 " mbx status x%x\n", 6990 shdr_status, shdr_add_status, mb->mbxStatus); 6991 6992 ras_fwlog->ras_hwsupport = false; 6993 goto disable_ras; 6994 } 6995 6996 spin_lock_irq(&phba->hbalock); 6997 ras_fwlog->state = ACTIVE; 6998 spin_unlock_irq(&phba->hbalock); 6999 mempool_free(pmb, phba->mbox_mem_pool); 7000 7001 return; 7002 7003 disable_ras: 7004 /* Free RAS DMA memory */ 7005 lpfc_sli4_ras_dma_free(phba); 7006 mempool_free(pmb, phba->mbox_mem_pool); 7007 } 7008 7009 /** 7010 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7011 * @phba: pointer to lpfc hba data structure. 7012 * @fwlog_level: Logging verbosity level. 7013 * @fwlog_enable: Enable/Disable logging. 7014 * 7015 * Initialize memory and post mailbox command to enable FW logging in host 7016 * memory. 7017 **/ 7018 int 7019 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7020 uint32_t fwlog_level, 7021 uint32_t fwlog_enable) 7022 { 7023 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7024 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7025 struct lpfc_dmabuf *dmabuf; 7026 LPFC_MBOXQ_t *mbox; 7027 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7028 int rc = 0; 7029 7030 spin_lock_irq(&phba->hbalock); 7031 ras_fwlog->state = INACTIVE; 7032 spin_unlock_irq(&phba->hbalock); 7033 7034 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7035 phba->cfg_ras_fwlog_buffsize); 7036 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7037 7038 /* 7039 * If re-enabling FW logging support use earlier allocated 7040 * DMA buffers while posting MBX command. 7041 **/ 7042 if (!ras_fwlog->lwpd.virt) { 7043 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7044 if (rc) { 7045 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7046 "6189 FW Log Memory Allocation Failed"); 7047 return rc; 7048 } 7049 } 7050 7051 /* Setup Mailbox command */ 7052 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7053 if (!mbox) { 7054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7055 "6190 RAS MBX Alloc Failed"); 7056 rc = -ENOMEM; 7057 goto mem_free; 7058 } 7059 7060 ras_fwlog->fw_loglevel = fwlog_level; 7061 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7062 sizeof(struct lpfc_sli4_cfg_mhdr)); 7063 7064 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7065 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7066 len, LPFC_SLI4_MBX_EMBED); 7067 7068 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7069 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7070 fwlog_enable); 7071 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7072 ras_fwlog->fw_loglevel); 7073 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7074 ras_fwlog->fw_buffcount); 7075 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7076 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7077 7078 /* Update DMA buffer address */ 7079 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7080 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7081 7082 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7083 putPaddrLow(dmabuf->phys); 7084 7085 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7086 putPaddrHigh(dmabuf->phys); 7087 } 7088 7089 /* Update LPWD address */ 7090 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7091 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7092 7093 spin_lock_irq(&phba->hbalock); 7094 ras_fwlog->state = REG_INPROGRESS; 7095 spin_unlock_irq(&phba->hbalock); 7096 mbox->vport = phba->pport; 7097 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7098 7099 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7100 7101 if (rc == MBX_NOT_FINISHED) { 7102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7103 "6191 FW-Log Mailbox failed. " 7104 "status %d mbxStatus : x%x", rc, 7105 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7106 mempool_free(mbox, phba->mbox_mem_pool); 7107 rc = -EIO; 7108 goto mem_free; 7109 } else 7110 rc = 0; 7111 mem_free: 7112 if (rc) 7113 lpfc_sli4_ras_dma_free(phba); 7114 7115 return rc; 7116 } 7117 7118 /** 7119 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7120 * @phba: Pointer to HBA context object. 7121 * 7122 * Check if RAS is supported on the adapter and initialize it. 7123 **/ 7124 void 7125 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7126 { 7127 /* Check RAS FW Log needs to be enabled or not */ 7128 if (lpfc_check_fwlog_support(phba)) 7129 return; 7130 7131 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7132 LPFC_RAS_ENABLE_LOGGING); 7133 } 7134 7135 /** 7136 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7137 * @phba: Pointer to HBA context object. 7138 * 7139 * This function allocates all SLI4 resource identifiers. 7140 **/ 7141 int 7142 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7143 { 7144 int i, rc, error = 0; 7145 uint16_t count, base; 7146 unsigned long longs; 7147 7148 if (!phba->sli4_hba.rpi_hdrs_in_use) 7149 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7150 if (phba->sli4_hba.extents_in_use) { 7151 /* 7152 * The port supports resource extents. The XRI, VPI, VFI, RPI 7153 * resource extent count must be read and allocated before 7154 * provisioning the resource id arrays. 7155 */ 7156 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7157 LPFC_IDX_RSRC_RDY) { 7158 /* 7159 * Extent-based resources are set - the driver could 7160 * be in a port reset. Figure out if any corrective 7161 * actions need to be taken. 7162 */ 7163 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7164 LPFC_RSC_TYPE_FCOE_VFI); 7165 if (rc != 0) 7166 error++; 7167 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7168 LPFC_RSC_TYPE_FCOE_VPI); 7169 if (rc != 0) 7170 error++; 7171 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7172 LPFC_RSC_TYPE_FCOE_XRI); 7173 if (rc != 0) 7174 error++; 7175 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7176 LPFC_RSC_TYPE_FCOE_RPI); 7177 if (rc != 0) 7178 error++; 7179 7180 /* 7181 * It's possible that the number of resources 7182 * provided to this port instance changed between 7183 * resets. Detect this condition and reallocate 7184 * resources. Otherwise, there is no action. 7185 */ 7186 if (error) { 7187 lpfc_printf_log(phba, KERN_INFO, 7188 LOG_MBOX | LOG_INIT, 7189 "2931 Detected extent resource " 7190 "change. Reallocating all " 7191 "extents.\n"); 7192 rc = lpfc_sli4_dealloc_extent(phba, 7193 LPFC_RSC_TYPE_FCOE_VFI); 7194 rc = lpfc_sli4_dealloc_extent(phba, 7195 LPFC_RSC_TYPE_FCOE_VPI); 7196 rc = lpfc_sli4_dealloc_extent(phba, 7197 LPFC_RSC_TYPE_FCOE_XRI); 7198 rc = lpfc_sli4_dealloc_extent(phba, 7199 LPFC_RSC_TYPE_FCOE_RPI); 7200 } else 7201 return 0; 7202 } 7203 7204 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7205 if (unlikely(rc)) 7206 goto err_exit; 7207 7208 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7209 if (unlikely(rc)) 7210 goto err_exit; 7211 7212 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7213 if (unlikely(rc)) 7214 goto err_exit; 7215 7216 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7217 if (unlikely(rc)) 7218 goto err_exit; 7219 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7220 LPFC_IDX_RSRC_RDY); 7221 return rc; 7222 } else { 7223 /* 7224 * The port does not support resource extents. The XRI, VPI, 7225 * VFI, RPI resource ids were determined from READ_CONFIG. 7226 * Just allocate the bitmasks and provision the resource id 7227 * arrays. If a port reset is active, the resources don't 7228 * need any action - just exit. 7229 */ 7230 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7231 LPFC_IDX_RSRC_RDY) { 7232 lpfc_sli4_dealloc_resource_identifiers(phba); 7233 lpfc_sli4_remove_rpis(phba); 7234 } 7235 /* RPIs. */ 7236 count = phba->sli4_hba.max_cfg_param.max_rpi; 7237 if (count <= 0) { 7238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7239 "3279 Invalid provisioning of " 7240 "rpi:%d\n", count); 7241 rc = -EINVAL; 7242 goto err_exit; 7243 } 7244 base = phba->sli4_hba.max_cfg_param.rpi_base; 7245 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7246 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7247 sizeof(unsigned long), 7248 GFP_KERNEL); 7249 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7250 rc = -ENOMEM; 7251 goto err_exit; 7252 } 7253 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7254 GFP_KERNEL); 7255 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7256 rc = -ENOMEM; 7257 goto free_rpi_bmask; 7258 } 7259 7260 for (i = 0; i < count; i++) 7261 phba->sli4_hba.rpi_ids[i] = base + i; 7262 7263 /* VPIs. */ 7264 count = phba->sli4_hba.max_cfg_param.max_vpi; 7265 if (count <= 0) { 7266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7267 "3280 Invalid provisioning of " 7268 "vpi:%d\n", count); 7269 rc = -EINVAL; 7270 goto free_rpi_ids; 7271 } 7272 base = phba->sli4_hba.max_cfg_param.vpi_base; 7273 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7274 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7275 GFP_KERNEL); 7276 if (unlikely(!phba->vpi_bmask)) { 7277 rc = -ENOMEM; 7278 goto free_rpi_ids; 7279 } 7280 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7281 GFP_KERNEL); 7282 if (unlikely(!phba->vpi_ids)) { 7283 rc = -ENOMEM; 7284 goto free_vpi_bmask; 7285 } 7286 7287 for (i = 0; i < count; i++) 7288 phba->vpi_ids[i] = base + i; 7289 7290 /* XRIs. */ 7291 count = phba->sli4_hba.max_cfg_param.max_xri; 7292 if (count <= 0) { 7293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7294 "3281 Invalid provisioning of " 7295 "xri:%d\n", count); 7296 rc = -EINVAL; 7297 goto free_vpi_ids; 7298 } 7299 base = phba->sli4_hba.max_cfg_param.xri_base; 7300 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7301 phba->sli4_hba.xri_bmask = kcalloc(longs, 7302 sizeof(unsigned long), 7303 GFP_KERNEL); 7304 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7305 rc = -ENOMEM; 7306 goto free_vpi_ids; 7307 } 7308 phba->sli4_hba.max_cfg_param.xri_used = 0; 7309 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7310 GFP_KERNEL); 7311 if (unlikely(!phba->sli4_hba.xri_ids)) { 7312 rc = -ENOMEM; 7313 goto free_xri_bmask; 7314 } 7315 7316 for (i = 0; i < count; i++) 7317 phba->sli4_hba.xri_ids[i] = base + i; 7318 7319 /* VFIs. */ 7320 count = phba->sli4_hba.max_cfg_param.max_vfi; 7321 if (count <= 0) { 7322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7323 "3282 Invalid provisioning of " 7324 "vfi:%d\n", count); 7325 rc = -EINVAL; 7326 goto free_xri_ids; 7327 } 7328 base = phba->sli4_hba.max_cfg_param.vfi_base; 7329 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7330 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7331 sizeof(unsigned long), 7332 GFP_KERNEL); 7333 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7334 rc = -ENOMEM; 7335 goto free_xri_ids; 7336 } 7337 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7338 GFP_KERNEL); 7339 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7340 rc = -ENOMEM; 7341 goto free_vfi_bmask; 7342 } 7343 7344 for (i = 0; i < count; i++) 7345 phba->sli4_hba.vfi_ids[i] = base + i; 7346 7347 /* 7348 * Mark all resources ready. An HBA reset doesn't need 7349 * to reset the initialization. 7350 */ 7351 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7352 LPFC_IDX_RSRC_RDY); 7353 return 0; 7354 } 7355 7356 free_vfi_bmask: 7357 kfree(phba->sli4_hba.vfi_bmask); 7358 phba->sli4_hba.vfi_bmask = NULL; 7359 free_xri_ids: 7360 kfree(phba->sli4_hba.xri_ids); 7361 phba->sli4_hba.xri_ids = NULL; 7362 free_xri_bmask: 7363 kfree(phba->sli4_hba.xri_bmask); 7364 phba->sli4_hba.xri_bmask = NULL; 7365 free_vpi_ids: 7366 kfree(phba->vpi_ids); 7367 phba->vpi_ids = NULL; 7368 free_vpi_bmask: 7369 kfree(phba->vpi_bmask); 7370 phba->vpi_bmask = NULL; 7371 free_rpi_ids: 7372 kfree(phba->sli4_hba.rpi_ids); 7373 phba->sli4_hba.rpi_ids = NULL; 7374 free_rpi_bmask: 7375 kfree(phba->sli4_hba.rpi_bmask); 7376 phba->sli4_hba.rpi_bmask = NULL; 7377 err_exit: 7378 return rc; 7379 } 7380 7381 /** 7382 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7383 * @phba: Pointer to HBA context object. 7384 * 7385 * This function allocates the number of elements for the specified 7386 * resource type. 7387 **/ 7388 int 7389 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7390 { 7391 if (phba->sli4_hba.extents_in_use) { 7392 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7393 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7394 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7396 } else { 7397 kfree(phba->vpi_bmask); 7398 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7399 kfree(phba->vpi_ids); 7400 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7401 kfree(phba->sli4_hba.xri_bmask); 7402 kfree(phba->sli4_hba.xri_ids); 7403 kfree(phba->sli4_hba.vfi_bmask); 7404 kfree(phba->sli4_hba.vfi_ids); 7405 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7406 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7407 } 7408 7409 return 0; 7410 } 7411 7412 /** 7413 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7414 * @phba: Pointer to HBA context object. 7415 * @type: The resource extent type. 7416 * @extnt_cnt: buffer to hold port extent count response 7417 * @extnt_size: buffer to hold port extent size response. 7418 * 7419 * This function calls the port to read the host allocated extents 7420 * for a particular type. 7421 **/ 7422 int 7423 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7424 uint16_t *extnt_cnt, uint16_t *extnt_size) 7425 { 7426 bool emb; 7427 int rc = 0; 7428 uint16_t curr_blks = 0; 7429 uint32_t req_len, emb_len; 7430 uint32_t alloc_len, mbox_tmo; 7431 struct list_head *blk_list_head; 7432 struct lpfc_rsrc_blks *rsrc_blk; 7433 LPFC_MBOXQ_t *mbox; 7434 void *virtaddr = NULL; 7435 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7436 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7437 union lpfc_sli4_cfg_shdr *shdr; 7438 7439 switch (type) { 7440 case LPFC_RSC_TYPE_FCOE_VPI: 7441 blk_list_head = &phba->lpfc_vpi_blk_list; 7442 break; 7443 case LPFC_RSC_TYPE_FCOE_XRI: 7444 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_VFI: 7447 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_RPI: 7450 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7451 break; 7452 default: 7453 return -EIO; 7454 } 7455 7456 /* Count the number of extents currently allocatd for this type. */ 7457 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7458 if (curr_blks == 0) { 7459 /* 7460 * The GET_ALLOCATED mailbox does not return the size, 7461 * just the count. The size should be just the size 7462 * stored in the current allocated block and all sizes 7463 * for an extent type are the same so set the return 7464 * value now. 7465 */ 7466 *extnt_size = rsrc_blk->rsrc_size; 7467 } 7468 curr_blks++; 7469 } 7470 7471 /* 7472 * Calculate the size of an embedded mailbox. The uint32_t 7473 * accounts for extents-specific word. 7474 */ 7475 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7476 sizeof(uint32_t); 7477 7478 /* 7479 * Presume the allocation and response will fit into an embedded 7480 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7481 */ 7482 emb = LPFC_SLI4_MBX_EMBED; 7483 req_len = emb_len; 7484 if (req_len > emb_len) { 7485 req_len = curr_blks * sizeof(uint16_t) + 7486 sizeof(union lpfc_sli4_cfg_shdr) + 7487 sizeof(uint32_t); 7488 emb = LPFC_SLI4_MBX_NEMBED; 7489 } 7490 7491 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7492 if (!mbox) 7493 return -ENOMEM; 7494 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7495 7496 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7497 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7498 req_len, emb); 7499 if (alloc_len < req_len) { 7500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7501 "2983 Allocated DMA memory size (x%x) is " 7502 "less than the requested DMA memory " 7503 "size (x%x)\n", alloc_len, req_len); 7504 rc = -ENOMEM; 7505 goto err_exit; 7506 } 7507 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7508 if (unlikely(rc)) { 7509 rc = -EIO; 7510 goto err_exit; 7511 } 7512 7513 if (!phba->sli4_hba.intr_enable) 7514 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7515 else { 7516 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7517 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7518 } 7519 7520 if (unlikely(rc)) { 7521 rc = -EIO; 7522 goto err_exit; 7523 } 7524 7525 /* 7526 * Figure out where the response is located. Then get local pointers 7527 * to the response data. The port does not guarantee to respond to 7528 * all extents counts request so update the local variable with the 7529 * allocated count from the port. 7530 */ 7531 if (emb == LPFC_SLI4_MBX_EMBED) { 7532 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7533 shdr = &rsrc_ext->header.cfg_shdr; 7534 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7535 } else { 7536 virtaddr = mbox->sge_array->addr[0]; 7537 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7538 shdr = &n_rsrc->cfg_shdr; 7539 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7540 } 7541 7542 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7544 "2984 Failed to read allocated resources " 7545 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7546 type, 7547 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7548 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7549 rc = -EIO; 7550 goto err_exit; 7551 } 7552 err_exit: 7553 lpfc_sli4_mbox_cmd_free(phba, mbox); 7554 return rc; 7555 } 7556 7557 /** 7558 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7559 * @phba: pointer to lpfc hba data structure. 7560 * @sgl_list: linked link of sgl buffers to post 7561 * @cnt: number of linked list buffers 7562 * 7563 * This routine walks the list of buffers that have been allocated and 7564 * repost them to the port by using SGL block post. This is needed after a 7565 * pci_function_reset/warm_start or start. It attempts to construct blocks 7566 * of buffer sgls which contains contiguous xris and uses the non-embedded 7567 * SGL block post mailbox commands to post them to the port. For single 7568 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7569 * mailbox command for posting. 7570 * 7571 * Returns: 0 = success, non-zero failure. 7572 **/ 7573 static int 7574 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7575 struct list_head *sgl_list, int cnt) 7576 { 7577 struct lpfc_sglq *sglq_entry = NULL; 7578 struct lpfc_sglq *sglq_entry_next = NULL; 7579 struct lpfc_sglq *sglq_entry_first = NULL; 7580 int status, total_cnt; 7581 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7582 int last_xritag = NO_XRI; 7583 LIST_HEAD(prep_sgl_list); 7584 LIST_HEAD(blck_sgl_list); 7585 LIST_HEAD(allc_sgl_list); 7586 LIST_HEAD(post_sgl_list); 7587 LIST_HEAD(free_sgl_list); 7588 7589 spin_lock_irq(&phba->hbalock); 7590 spin_lock(&phba->sli4_hba.sgl_list_lock); 7591 list_splice_init(sgl_list, &allc_sgl_list); 7592 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7593 spin_unlock_irq(&phba->hbalock); 7594 7595 total_cnt = cnt; 7596 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7597 &allc_sgl_list, list) { 7598 list_del_init(&sglq_entry->list); 7599 block_cnt++; 7600 if ((last_xritag != NO_XRI) && 7601 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7602 /* a hole in xri block, form a sgl posting block */ 7603 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7604 post_cnt = block_cnt - 1; 7605 /* prepare list for next posting block */ 7606 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7607 block_cnt = 1; 7608 } else { 7609 /* prepare list for next posting block */ 7610 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7611 /* enough sgls for non-embed sgl mbox command */ 7612 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7613 list_splice_init(&prep_sgl_list, 7614 &blck_sgl_list); 7615 post_cnt = block_cnt; 7616 block_cnt = 0; 7617 } 7618 } 7619 num_posted++; 7620 7621 /* keep track of last sgl's xritag */ 7622 last_xritag = sglq_entry->sli4_xritag; 7623 7624 /* end of repost sgl list condition for buffers */ 7625 if (num_posted == total_cnt) { 7626 if (post_cnt == 0) { 7627 list_splice_init(&prep_sgl_list, 7628 &blck_sgl_list); 7629 post_cnt = block_cnt; 7630 } else if (block_cnt == 1) { 7631 status = lpfc_sli4_post_sgl(phba, 7632 sglq_entry->phys, 0, 7633 sglq_entry->sli4_xritag); 7634 if (!status) { 7635 /* successful, put sgl to posted list */ 7636 list_add_tail(&sglq_entry->list, 7637 &post_sgl_list); 7638 } else { 7639 /* Failure, put sgl to free list */ 7640 lpfc_printf_log(phba, KERN_WARNING, 7641 LOG_SLI, 7642 "3159 Failed to post " 7643 "sgl, xritag:x%x\n", 7644 sglq_entry->sli4_xritag); 7645 list_add_tail(&sglq_entry->list, 7646 &free_sgl_list); 7647 total_cnt--; 7648 } 7649 } 7650 } 7651 7652 /* continue until a nembed page worth of sgls */ 7653 if (post_cnt == 0) 7654 continue; 7655 7656 /* post the buffer list sgls as a block */ 7657 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7658 post_cnt); 7659 7660 if (!status) { 7661 /* success, put sgl list to posted sgl list */ 7662 list_splice_init(&blck_sgl_list, &post_sgl_list); 7663 } else { 7664 /* Failure, put sgl list to free sgl list */ 7665 sglq_entry_first = list_first_entry(&blck_sgl_list, 7666 struct lpfc_sglq, 7667 list); 7668 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7669 "3160 Failed to post sgl-list, " 7670 "xritag:x%x-x%x\n", 7671 sglq_entry_first->sli4_xritag, 7672 (sglq_entry_first->sli4_xritag + 7673 post_cnt - 1)); 7674 list_splice_init(&blck_sgl_list, &free_sgl_list); 7675 total_cnt -= post_cnt; 7676 } 7677 7678 /* don't reset xirtag due to hole in xri block */ 7679 if (block_cnt == 0) 7680 last_xritag = NO_XRI; 7681 7682 /* reset sgl post count for next round of posting */ 7683 post_cnt = 0; 7684 } 7685 7686 /* free the sgls failed to post */ 7687 lpfc_free_sgl_list(phba, &free_sgl_list); 7688 7689 /* push sgls posted to the available list */ 7690 if (!list_empty(&post_sgl_list)) { 7691 spin_lock_irq(&phba->hbalock); 7692 spin_lock(&phba->sli4_hba.sgl_list_lock); 7693 list_splice_init(&post_sgl_list, sgl_list); 7694 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7695 spin_unlock_irq(&phba->hbalock); 7696 } else { 7697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7698 "3161 Failure to post sgl to port,status %x " 7699 "blkcnt %d totalcnt %d postcnt %d\n", 7700 status, block_cnt, total_cnt, post_cnt); 7701 return -EIO; 7702 } 7703 7704 /* return the number of XRIs actually posted */ 7705 return total_cnt; 7706 } 7707 7708 /** 7709 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7710 * @phba: pointer to lpfc hba data structure. 7711 * 7712 * This routine walks the list of nvme buffers that have been allocated and 7713 * repost them to the port by using SGL block post. This is needed after a 7714 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7715 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7716 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7717 * 7718 * Returns: 0 = success, non-zero failure. 7719 **/ 7720 static int 7721 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7722 { 7723 LIST_HEAD(post_nblist); 7724 int num_posted, rc = 0; 7725 7726 /* get all NVME buffers need to repost to a local list */ 7727 lpfc_io_buf_flush(phba, &post_nblist); 7728 7729 /* post the list of nvme buffer sgls to port if available */ 7730 if (!list_empty(&post_nblist)) { 7731 num_posted = lpfc_sli4_post_io_sgl_list( 7732 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7733 /* failed to post any nvme buffer, return error */ 7734 if (num_posted == 0) 7735 rc = -EIO; 7736 } 7737 return rc; 7738 } 7739 7740 static void 7741 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7742 { 7743 uint32_t len; 7744 7745 len = sizeof(struct lpfc_mbx_set_host_data) - 7746 sizeof(struct lpfc_sli4_cfg_mhdr); 7747 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7748 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7749 LPFC_SLI4_MBX_EMBED); 7750 7751 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7752 mbox->u.mqe.un.set_host_data.param_len = 7753 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7754 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7755 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7756 "Linux %s v"LPFC_DRIVER_VERSION, 7757 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7758 } 7759 7760 int 7761 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7762 struct lpfc_queue *drq, int count, int idx) 7763 { 7764 int rc, i; 7765 struct lpfc_rqe hrqe; 7766 struct lpfc_rqe drqe; 7767 struct lpfc_rqb *rqbp; 7768 unsigned long flags; 7769 struct rqb_dmabuf *rqb_buffer; 7770 LIST_HEAD(rqb_buf_list); 7771 7772 rqbp = hrq->rqbp; 7773 for (i = 0; i < count; i++) { 7774 spin_lock_irqsave(&phba->hbalock, flags); 7775 /* IF RQ is already full, don't bother */ 7776 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7777 spin_unlock_irqrestore(&phba->hbalock, flags); 7778 break; 7779 } 7780 spin_unlock_irqrestore(&phba->hbalock, flags); 7781 7782 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7783 if (!rqb_buffer) 7784 break; 7785 rqb_buffer->hrq = hrq; 7786 rqb_buffer->drq = drq; 7787 rqb_buffer->idx = idx; 7788 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7789 } 7790 7791 spin_lock_irqsave(&phba->hbalock, flags); 7792 while (!list_empty(&rqb_buf_list)) { 7793 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7794 hbuf.list); 7795 7796 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7797 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7798 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7799 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7800 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7801 if (rc < 0) { 7802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7803 "6421 Cannot post to HRQ %d: %x %x %x " 7804 "DRQ %x %x\n", 7805 hrq->queue_id, 7806 hrq->host_index, 7807 hrq->hba_index, 7808 hrq->entry_count, 7809 drq->host_index, 7810 drq->hba_index); 7811 rqbp->rqb_free_buffer(phba, rqb_buffer); 7812 } else { 7813 list_add_tail(&rqb_buffer->hbuf.list, 7814 &rqbp->rqb_buffer_list); 7815 rqbp->buffer_count++; 7816 } 7817 } 7818 spin_unlock_irqrestore(&phba->hbalock, flags); 7819 return 1; 7820 } 7821 7822 static void 7823 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7824 { 7825 union lpfc_sli4_cfg_shdr *shdr; 7826 u32 shdr_status, shdr_add_status; 7827 7828 shdr = (union lpfc_sli4_cfg_shdr *) 7829 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7830 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7831 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7832 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7833 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7834 "4622 SET_FEATURE (x%x) mbox failed, " 7835 "status x%x add_status x%x, mbx status x%x\n", 7836 LPFC_SET_LD_SIGNAL, shdr_status, 7837 shdr_add_status, pmb->u.mb.mbxStatus); 7838 phba->degrade_activate_threshold = 0; 7839 phba->degrade_deactivate_threshold = 0; 7840 phba->fec_degrade_interval = 0; 7841 goto out; 7842 } 7843 7844 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7845 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7846 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7847 7848 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7849 "4624 Success: da x%x dd x%x interval x%x\n", 7850 phba->degrade_activate_threshold, 7851 phba->degrade_deactivate_threshold, 7852 phba->fec_degrade_interval); 7853 out: 7854 mempool_free(pmb, phba->mbox_mem_pool); 7855 } 7856 7857 int 7858 lpfc_read_lds_params(struct lpfc_hba *phba) 7859 { 7860 LPFC_MBOXQ_t *mboxq; 7861 int rc; 7862 7863 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7864 if (!mboxq) 7865 return -ENOMEM; 7866 7867 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7868 mboxq->vport = phba->pport; 7869 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7870 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7871 if (rc == MBX_NOT_FINISHED) { 7872 mempool_free(mboxq, phba->mbox_mem_pool); 7873 return -EIO; 7874 } 7875 return 0; 7876 } 7877 7878 static void 7879 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7880 { 7881 struct lpfc_vport *vport = pmb->vport; 7882 union lpfc_sli4_cfg_shdr *shdr; 7883 u32 shdr_status, shdr_add_status; 7884 u32 sig, acqe; 7885 7886 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7887 * is done. (2) Mailbox failed and send FPIN support only. 7888 */ 7889 shdr = (union lpfc_sli4_cfg_shdr *) 7890 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7891 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7892 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7893 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7894 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7895 "2516 CGN SET_FEATURE mbox failed with " 7896 "status x%x add_status x%x, mbx status x%x " 7897 "Reset Congestion to FPINs only\n", 7898 shdr_status, shdr_add_status, 7899 pmb->u.mb.mbxStatus); 7900 /* If there is a mbox error, move on to RDF */ 7901 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7902 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7903 goto out; 7904 } 7905 7906 /* Zero out Congestion Signal ACQE counter */ 7907 phba->cgn_acqe_cnt = 0; 7908 7909 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7910 &pmb->u.mqe.un.set_feature); 7911 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7912 &pmb->u.mqe.un.set_feature); 7913 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7914 "4620 SET_FEATURES Success: Freq: %ds %dms " 7915 " Reg: x%x x%x\n", acqe, sig, 7916 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7917 out: 7918 mempool_free(pmb, phba->mbox_mem_pool); 7919 7920 /* Register for FPIN events from the fabric now that the 7921 * EDC common_set_features has completed. 7922 */ 7923 lpfc_issue_els_rdf(vport, 0); 7924 } 7925 7926 int 7927 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7928 { 7929 LPFC_MBOXQ_t *mboxq; 7930 u32 rc; 7931 7932 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7933 if (!mboxq) 7934 goto out_rdf; 7935 7936 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7937 mboxq->vport = phba->pport; 7938 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7939 7940 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7941 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7942 "Reg: x%x x%x\n", 7943 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7944 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7945 7946 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7947 if (rc == MBX_NOT_FINISHED) 7948 goto out; 7949 return 0; 7950 7951 out: 7952 mempool_free(mboxq, phba->mbox_mem_pool); 7953 out_rdf: 7954 /* If there is a mbox error, move on to RDF */ 7955 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7956 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7957 lpfc_issue_els_rdf(phba->pport, 0); 7958 return -EIO; 7959 } 7960 7961 /** 7962 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7963 * @phba: pointer to lpfc hba data structure. 7964 * 7965 * This routine initializes the per-eq idle_stat to dynamically dictate 7966 * polling decisions. 7967 * 7968 * Return codes: 7969 * None 7970 **/ 7971 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7972 { 7973 int i; 7974 struct lpfc_sli4_hdw_queue *hdwq; 7975 struct lpfc_queue *eq; 7976 struct lpfc_idle_stat *idle_stat; 7977 u64 wall; 7978 7979 for_each_present_cpu(i) { 7980 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7981 eq = hdwq->hba_eq; 7982 7983 /* Skip if we've already handled this eq's primary CPU */ 7984 if (eq->chann != i) 7985 continue; 7986 7987 idle_stat = &phba->sli4_hba.idle_stat[i]; 7988 7989 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7990 idle_stat->prev_wall = wall; 7991 7992 if (phba->nvmet_support || 7993 phba->cmf_active_mode != LPFC_CFG_OFF || 7994 phba->intr_type != MSIX) 7995 eq->poll_mode = LPFC_QUEUE_WORK; 7996 else 7997 eq->poll_mode = LPFC_THREADED_IRQ; 7998 } 7999 8000 if (!phba->nvmet_support && phba->intr_type == MSIX) 8001 schedule_delayed_work(&phba->idle_stat_delay_work, 8002 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8003 } 8004 8005 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8006 { 8007 uint32_t if_type; 8008 8009 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8010 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8011 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8012 struct lpfc_register reg_data; 8013 8014 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8015 ®_data.word0)) 8016 return; 8017 8018 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8019 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8020 "2904 Firmware Dump Image Present" 8021 " on Adapter"); 8022 } 8023 } 8024 8025 /** 8026 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8027 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8028 * @entries: Number of rx_info_entry objects to allocate in ring 8029 * 8030 * Return: 8031 * 0 - Success 8032 * ENOMEM - Failure to kmalloc 8033 **/ 8034 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8035 u32 entries) 8036 { 8037 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8038 GFP_KERNEL); 8039 if (!rx_monitor->ring) 8040 return -ENOMEM; 8041 8042 rx_monitor->head_idx = 0; 8043 rx_monitor->tail_idx = 0; 8044 spin_lock_init(&rx_monitor->lock); 8045 rx_monitor->entries = entries; 8046 8047 return 0; 8048 } 8049 8050 /** 8051 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8052 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8053 * 8054 * Called after cancellation of cmf_timer. 8055 **/ 8056 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8057 { 8058 kfree(rx_monitor->ring); 8059 rx_monitor->ring = NULL; 8060 rx_monitor->entries = 0; 8061 rx_monitor->head_idx = 0; 8062 rx_monitor->tail_idx = 0; 8063 } 8064 8065 /** 8066 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8067 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8068 * @entry: Pointer to rx_info_entry 8069 * 8070 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8071 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8072 * 8073 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8074 * 8075 * In cases of old data overflow, we do a best effort of FIFO order. 8076 **/ 8077 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8078 struct rx_info_entry *entry) 8079 { 8080 struct rx_info_entry *ring = rx_monitor->ring; 8081 u32 *head_idx = &rx_monitor->head_idx; 8082 u32 *tail_idx = &rx_monitor->tail_idx; 8083 spinlock_t *ring_lock = &rx_monitor->lock; 8084 u32 ring_size = rx_monitor->entries; 8085 8086 spin_lock(ring_lock); 8087 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8088 *tail_idx = (*tail_idx + 1) % ring_size; 8089 8090 /* Best effort of FIFO saved data */ 8091 if (*tail_idx == *head_idx) 8092 *head_idx = (*head_idx + 1) % ring_size; 8093 8094 spin_unlock(ring_lock); 8095 } 8096 8097 /** 8098 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8099 * @phba: Pointer to lpfc_hba object 8100 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8101 * @buf: Pointer to char buffer that will contain rx monitor info data 8102 * @buf_len: Length buf including null char 8103 * @max_read_entries: Maximum number of entries to read out of ring 8104 * 8105 * Used to dump/read what's in rx_monitor's ring buffer. 8106 * 8107 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8108 * information to kmsg instead of filling out buf. 8109 * 8110 * Return: 8111 * Number of entries read out of the ring 8112 **/ 8113 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8114 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8115 u32 buf_len, u32 max_read_entries) 8116 { 8117 struct rx_info_entry *ring = rx_monitor->ring; 8118 struct rx_info_entry *entry; 8119 u32 *head_idx = &rx_monitor->head_idx; 8120 u32 *tail_idx = &rx_monitor->tail_idx; 8121 spinlock_t *ring_lock = &rx_monitor->lock; 8122 u32 ring_size = rx_monitor->entries; 8123 u32 cnt = 0; 8124 char tmp[DBG_LOG_STR_SZ] = {0}; 8125 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8126 8127 if (!log_to_kmsg) { 8128 /* clear the buffer to be sure */ 8129 memset(buf, 0, buf_len); 8130 8131 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8132 "%-8s%-8s%-8s%-16s\n", 8133 "MaxBPI", "Tot_Data_CMF", 8134 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8135 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8136 "IO_cnt", "Info", "BWutil(ms)"); 8137 } 8138 8139 /* Needs to be _irq because record is called from timer interrupt 8140 * context 8141 */ 8142 spin_lock_irq(ring_lock); 8143 while (*head_idx != *tail_idx) { 8144 entry = &ring[*head_idx]; 8145 8146 /* Read out this entry's data. */ 8147 if (!log_to_kmsg) { 8148 /* If !log_to_kmsg, then store to buf. */ 8149 scnprintf(tmp, sizeof(tmp), 8150 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8151 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8152 *head_idx, entry->max_bytes_per_interval, 8153 entry->cmf_bytes, entry->total_bytes, 8154 entry->rcv_bytes, entry->avg_io_latency, 8155 entry->avg_io_size, entry->max_read_cnt, 8156 entry->cmf_busy, entry->io_cnt, 8157 entry->cmf_info, entry->timer_utilization, 8158 entry->timer_interval); 8159 8160 /* Check for buffer overflow */ 8161 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8162 break; 8163 8164 /* Append entry's data to buffer */ 8165 strlcat(buf, tmp, buf_len); 8166 } else { 8167 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8168 "4410 %02u: MBPI %llu Xmit %llu " 8169 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8170 "BWUtil %u Int %u slot %u\n", 8171 cnt, entry->max_bytes_per_interval, 8172 entry->total_bytes, entry->rcv_bytes, 8173 entry->avg_io_latency, 8174 entry->avg_io_size, entry->cmf_info, 8175 entry->timer_utilization, 8176 entry->timer_interval, *head_idx); 8177 } 8178 8179 *head_idx = (*head_idx + 1) % ring_size; 8180 8181 /* Don't feed more than max_read_entries */ 8182 cnt++; 8183 if (cnt >= max_read_entries) 8184 break; 8185 } 8186 spin_unlock_irq(ring_lock); 8187 8188 return cnt; 8189 } 8190 8191 /** 8192 * lpfc_cmf_setup - Initialize idle_stat tracking 8193 * @phba: Pointer to HBA context object. 8194 * 8195 * This is called from HBA setup during driver load or when the HBA 8196 * comes online. this does all the initialization to support CMF and MI. 8197 **/ 8198 static int 8199 lpfc_cmf_setup(struct lpfc_hba *phba) 8200 { 8201 LPFC_MBOXQ_t *mboxq; 8202 struct lpfc_dmabuf *mp; 8203 struct lpfc_pc_sli4_params *sli4_params; 8204 int rc, cmf, mi_ver; 8205 8206 rc = lpfc_sli4_refresh_params(phba); 8207 if (unlikely(rc)) 8208 return rc; 8209 8210 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8211 if (!mboxq) 8212 return -ENOMEM; 8213 8214 sli4_params = &phba->sli4_hba.pc_sli4_params; 8215 8216 /* Always try to enable MI feature if we can */ 8217 if (sli4_params->mi_ver) { 8218 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8219 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8220 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8221 &mboxq->u.mqe.un.set_feature); 8222 8223 if (rc == MBX_SUCCESS) { 8224 if (mi_ver) { 8225 lpfc_printf_log(phba, 8226 KERN_WARNING, LOG_CGN_MGMT, 8227 "6215 MI is enabled\n"); 8228 sli4_params->mi_ver = mi_ver; 8229 } else { 8230 lpfc_printf_log(phba, 8231 KERN_WARNING, LOG_CGN_MGMT, 8232 "6338 MI is disabled\n"); 8233 sli4_params->mi_ver = 0; 8234 } 8235 } else { 8236 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8237 lpfc_printf_log(phba, KERN_INFO, 8238 LOG_CGN_MGMT | LOG_INIT, 8239 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8240 "failed, rc:x%x mi:x%x\n", 8241 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8242 lpfc_sli_config_mbox_subsys_get 8243 (phba, mboxq), 8244 lpfc_sli_config_mbox_opcode_get 8245 (phba, mboxq), 8246 rc, sli4_params->mi_ver); 8247 } 8248 } else { 8249 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8250 "6217 MI is disabled\n"); 8251 } 8252 8253 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8254 if (sli4_params->mi_ver) 8255 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8256 8257 /* Always try to enable CMF feature if we can */ 8258 if (sli4_params->cmf) { 8259 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8260 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8261 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8262 &mboxq->u.mqe.un.set_feature); 8263 if (rc == MBX_SUCCESS && cmf) { 8264 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8265 "6218 CMF is enabled: mode %d\n", 8266 phba->cmf_active_mode); 8267 } else { 8268 lpfc_printf_log(phba, KERN_WARNING, 8269 LOG_CGN_MGMT | LOG_INIT, 8270 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8271 "failed, rc:x%x dd:x%x\n", 8272 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8273 lpfc_sli_config_mbox_subsys_get 8274 (phba, mboxq), 8275 lpfc_sli_config_mbox_opcode_get 8276 (phba, mboxq), 8277 rc, cmf); 8278 sli4_params->cmf = 0; 8279 phba->cmf_active_mode = LPFC_CFG_OFF; 8280 goto no_cmf; 8281 } 8282 8283 /* Allocate Congestion Information Buffer */ 8284 if (!phba->cgn_i) { 8285 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8286 if (mp) 8287 mp->virt = dma_alloc_coherent 8288 (&phba->pcidev->dev, 8289 sizeof(struct lpfc_cgn_info), 8290 &mp->phys, GFP_KERNEL); 8291 if (!mp || !mp->virt) { 8292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8293 "2640 Failed to alloc memory " 8294 "for Congestion Info\n"); 8295 kfree(mp); 8296 sli4_params->cmf = 0; 8297 phba->cmf_active_mode = LPFC_CFG_OFF; 8298 goto no_cmf; 8299 } 8300 phba->cgn_i = mp; 8301 8302 /* initialize congestion buffer info */ 8303 lpfc_init_congestion_buf(phba); 8304 lpfc_init_congestion_stat(phba); 8305 8306 /* Zero out Congestion Signal counters */ 8307 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8308 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8309 } 8310 8311 rc = lpfc_sli4_cgn_params_read(phba); 8312 if (rc < 0) { 8313 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8314 "6242 Error reading Cgn Params (%d)\n", 8315 rc); 8316 /* Ensure CGN Mode is off */ 8317 sli4_params->cmf = 0; 8318 } else if (!rc) { 8319 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8320 "6243 CGN Event empty object.\n"); 8321 /* Ensure CGN Mode is off */ 8322 sli4_params->cmf = 0; 8323 } 8324 } else { 8325 no_cmf: 8326 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8327 "6220 CMF is disabled\n"); 8328 } 8329 8330 /* Only register congestion buffer with firmware if BOTH 8331 * CMF and E2E are enabled. 8332 */ 8333 if (sli4_params->cmf && sli4_params->mi_ver) { 8334 rc = lpfc_reg_congestion_buf(phba); 8335 if (rc) { 8336 dma_free_coherent(&phba->pcidev->dev, 8337 sizeof(struct lpfc_cgn_info), 8338 phba->cgn_i->virt, phba->cgn_i->phys); 8339 kfree(phba->cgn_i); 8340 phba->cgn_i = NULL; 8341 /* Ensure CGN Mode is off */ 8342 phba->cmf_active_mode = LPFC_CFG_OFF; 8343 sli4_params->cmf = 0; 8344 return 0; 8345 } 8346 } 8347 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8348 "6470 Setup MI version %d CMF %d mode %d\n", 8349 sli4_params->mi_ver, sli4_params->cmf, 8350 phba->cmf_active_mode); 8351 8352 mempool_free(mboxq, phba->mbox_mem_pool); 8353 8354 /* Initialize atomic counters */ 8355 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8356 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8357 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8358 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8359 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8360 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8361 atomic64_set(&phba->cgn_latency_evt, 0); 8362 8363 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8364 8365 /* Allocate RX Monitor Buffer */ 8366 if (!phba->rx_monitor) { 8367 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8368 GFP_KERNEL); 8369 8370 if (!phba->rx_monitor) { 8371 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8372 "2644 Failed to alloc memory " 8373 "for RX Monitor Buffer\n"); 8374 return -ENOMEM; 8375 } 8376 8377 /* Instruct the rx_monitor object to instantiate its ring */ 8378 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8379 LPFC_MAX_RXMONITOR_ENTRY)) { 8380 kfree(phba->rx_monitor); 8381 phba->rx_monitor = NULL; 8382 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8383 "2645 Failed to alloc memory " 8384 "for RX Monitor's Ring\n"); 8385 return -ENOMEM; 8386 } 8387 } 8388 8389 return 0; 8390 } 8391 8392 static int 8393 lpfc_set_host_tm(struct lpfc_hba *phba) 8394 { 8395 LPFC_MBOXQ_t *mboxq; 8396 uint32_t len, rc; 8397 struct timespec64 cur_time; 8398 struct tm broken; 8399 uint32_t month, day, year; 8400 uint32_t hour, minute, second; 8401 struct lpfc_mbx_set_host_date_time *tm; 8402 8403 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8404 if (!mboxq) 8405 return -ENOMEM; 8406 8407 len = sizeof(struct lpfc_mbx_set_host_data) - 8408 sizeof(struct lpfc_sli4_cfg_mhdr); 8409 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8410 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8411 LPFC_SLI4_MBX_EMBED); 8412 8413 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8414 mboxq->u.mqe.un.set_host_data.param_len = 8415 sizeof(struct lpfc_mbx_set_host_date_time); 8416 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8417 ktime_get_real_ts64(&cur_time); 8418 time64_to_tm(cur_time.tv_sec, 0, &broken); 8419 month = broken.tm_mon + 1; 8420 day = broken.tm_mday; 8421 year = broken.tm_year - 100; 8422 hour = broken.tm_hour; 8423 minute = broken.tm_min; 8424 second = broken.tm_sec; 8425 bf_set(lpfc_mbx_set_host_month, tm, month); 8426 bf_set(lpfc_mbx_set_host_day, tm, day); 8427 bf_set(lpfc_mbx_set_host_year, tm, year); 8428 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8429 bf_set(lpfc_mbx_set_host_min, tm, minute); 8430 bf_set(lpfc_mbx_set_host_sec, tm, second); 8431 8432 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8433 mempool_free(mboxq, phba->mbox_mem_pool); 8434 return rc; 8435 } 8436 8437 /** 8438 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8439 * @phba: Pointer to HBA context object. 8440 * 8441 * This function is the main SLI4 device initialization PCI function. This 8442 * function is called by the HBA initialization code, HBA reset code and 8443 * HBA error attention handler code. Caller is not required to hold any 8444 * locks. 8445 **/ 8446 int 8447 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8448 { 8449 int rc, i, cnt, len, dd; 8450 LPFC_MBOXQ_t *mboxq; 8451 struct lpfc_mqe *mqe; 8452 uint8_t *vpd; 8453 uint32_t vpd_size; 8454 uint32_t ftr_rsp = 0; 8455 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8456 struct lpfc_vport *vport = phba->pport; 8457 struct lpfc_dmabuf *mp; 8458 struct lpfc_rqb *rqbp; 8459 u32 flg; 8460 8461 /* Perform a PCI function reset to start from clean */ 8462 rc = lpfc_pci_function_reset(phba); 8463 if (unlikely(rc)) 8464 return -ENODEV; 8465 8466 /* Check the HBA Host Status Register for readyness */ 8467 rc = lpfc_sli4_post_status_check(phba); 8468 if (unlikely(rc)) 8469 return -ENODEV; 8470 else { 8471 spin_lock_irq(&phba->hbalock); 8472 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8473 flg = phba->sli.sli_flag; 8474 spin_unlock_irq(&phba->hbalock); 8475 /* Allow a little time after setting SLI_ACTIVE for any polled 8476 * MBX commands to complete via BSG. 8477 */ 8478 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8479 msleep(20); 8480 spin_lock_irq(&phba->hbalock); 8481 flg = phba->sli.sli_flag; 8482 spin_unlock_irq(&phba->hbalock); 8483 } 8484 } 8485 phba->hba_flag &= ~HBA_SETUP; 8486 8487 lpfc_sli4_dip(phba); 8488 8489 /* 8490 * Allocate a single mailbox container for initializing the 8491 * port. 8492 */ 8493 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8494 if (!mboxq) 8495 return -ENOMEM; 8496 8497 /* Issue READ_REV to collect vpd and FW information. */ 8498 vpd_size = SLI4_PAGE_SIZE; 8499 vpd = kzalloc(vpd_size, GFP_KERNEL); 8500 if (!vpd) { 8501 rc = -ENOMEM; 8502 goto out_free_mbox; 8503 } 8504 8505 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8506 if (unlikely(rc)) { 8507 kfree(vpd); 8508 goto out_free_mbox; 8509 } 8510 8511 mqe = &mboxq->u.mqe; 8512 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8513 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8514 phba->hba_flag |= HBA_FCOE_MODE; 8515 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8516 } else { 8517 phba->hba_flag &= ~HBA_FCOE_MODE; 8518 } 8519 8520 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8521 LPFC_DCBX_CEE_MODE) 8522 phba->hba_flag |= HBA_FIP_SUPPORT; 8523 else 8524 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8525 8526 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8527 8528 if (phba->sli_rev != LPFC_SLI_REV4) { 8529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8530 "0376 READ_REV Error. SLI Level %d " 8531 "FCoE enabled %d\n", 8532 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8533 rc = -EIO; 8534 kfree(vpd); 8535 goto out_free_mbox; 8536 } 8537 8538 rc = lpfc_set_host_tm(phba); 8539 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8540 "6468 Set host date / time: Status x%x:\n", rc); 8541 8542 /* 8543 * Continue initialization with default values even if driver failed 8544 * to read FCoE param config regions, only read parameters if the 8545 * board is FCoE 8546 */ 8547 if (phba->hba_flag & HBA_FCOE_MODE && 8548 lpfc_sli4_read_fcoe_params(phba)) 8549 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8550 "2570 Failed to read FCoE parameters\n"); 8551 8552 /* 8553 * Retrieve sli4 device physical port name, failure of doing it 8554 * is considered as non-fatal. 8555 */ 8556 rc = lpfc_sli4_retrieve_pport_name(phba); 8557 if (!rc) 8558 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8559 "3080 Successful retrieving SLI4 device " 8560 "physical port name: %s.\n", phba->Port); 8561 8562 rc = lpfc_sli4_get_ctl_attr(phba); 8563 if (!rc) 8564 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8565 "8351 Successful retrieving SLI4 device " 8566 "CTL ATTR\n"); 8567 8568 /* 8569 * Evaluate the read rev and vpd data. Populate the driver 8570 * state with the results. If this routine fails, the failure 8571 * is not fatal as the driver will use generic values. 8572 */ 8573 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8574 if (unlikely(!rc)) 8575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8576 "0377 Error %d parsing vpd. " 8577 "Using defaults.\n", rc); 8578 kfree(vpd); 8579 8580 /* Save information as VPD data */ 8581 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8582 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8583 8584 /* 8585 * This is because first G7 ASIC doesn't support the standard 8586 * 0x5a NVME cmd descriptor type/subtype 8587 */ 8588 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8589 LPFC_SLI_INTF_IF_TYPE_6) && 8590 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8591 (phba->vpd.rev.smRev == 0) && 8592 (phba->cfg_nvme_embed_cmd == 1)) 8593 phba->cfg_nvme_embed_cmd = 0; 8594 8595 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8596 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8597 &mqe->un.read_rev); 8598 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8599 &mqe->un.read_rev); 8600 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8601 &mqe->un.read_rev); 8602 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8603 &mqe->un.read_rev); 8604 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8605 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8606 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8607 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8608 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8609 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8610 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8611 "(%d):0380 READ_REV Status x%x " 8612 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8613 mboxq->vport ? mboxq->vport->vpi : 0, 8614 bf_get(lpfc_mqe_status, mqe), 8615 phba->vpd.rev.opFwName, 8616 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8617 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8618 8619 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8620 LPFC_SLI_INTF_IF_TYPE_0) { 8621 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8622 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8623 if (rc == MBX_SUCCESS) { 8624 phba->hba_flag |= HBA_RECOVERABLE_UE; 8625 /* Set 1Sec interval to detect UE */ 8626 phba->eratt_poll_interval = 1; 8627 phba->sli4_hba.ue_to_sr = bf_get( 8628 lpfc_mbx_set_feature_UESR, 8629 &mboxq->u.mqe.un.set_feature); 8630 phba->sli4_hba.ue_to_rp = bf_get( 8631 lpfc_mbx_set_feature_UERP, 8632 &mboxq->u.mqe.un.set_feature); 8633 } 8634 } 8635 8636 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8637 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8638 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8640 if (rc != MBX_SUCCESS) 8641 phba->mds_diags_support = 0; 8642 } 8643 8644 /* 8645 * Discover the port's supported feature set and match it against the 8646 * hosts requests. 8647 */ 8648 lpfc_request_features(phba, mboxq); 8649 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8650 if (unlikely(rc)) { 8651 rc = -EIO; 8652 goto out_free_mbox; 8653 } 8654 8655 /* Disable VMID if app header is not supported */ 8656 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8657 &mqe->un.req_ftrs))) { 8658 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8659 phba->cfg_vmid_app_header = 0; 8660 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8661 "1242 vmid feature not supported\n"); 8662 } 8663 8664 /* 8665 * The port must support FCP initiator mode as this is the 8666 * only mode running in the host. 8667 */ 8668 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8669 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8670 "0378 No support for fcpi mode.\n"); 8671 ftr_rsp++; 8672 } 8673 8674 /* Performance Hints are ONLY for FCoE */ 8675 if (phba->hba_flag & HBA_FCOE_MODE) { 8676 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8677 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8678 else 8679 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8680 } 8681 8682 /* 8683 * If the port cannot support the host's requested features 8684 * then turn off the global config parameters to disable the 8685 * feature in the driver. This is not a fatal error. 8686 */ 8687 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8688 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8689 phba->cfg_enable_bg = 0; 8690 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8691 ftr_rsp++; 8692 } 8693 } 8694 8695 if (phba->max_vpi && phba->cfg_enable_npiv && 8696 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8697 ftr_rsp++; 8698 8699 if (ftr_rsp) { 8700 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8701 "0379 Feature Mismatch Data: x%08x %08x " 8702 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8703 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8704 phba->cfg_enable_npiv, phba->max_vpi); 8705 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8706 phba->cfg_enable_bg = 0; 8707 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8708 phba->cfg_enable_npiv = 0; 8709 } 8710 8711 /* These SLI3 features are assumed in SLI4 */ 8712 spin_lock_irq(&phba->hbalock); 8713 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8714 spin_unlock_irq(&phba->hbalock); 8715 8716 /* Always try to enable dual dump feature if we can */ 8717 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8718 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8719 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8720 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8721 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8722 "6448 Dual Dump is enabled\n"); 8723 else 8724 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8725 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8726 "rc:x%x dd:x%x\n", 8727 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8728 lpfc_sli_config_mbox_subsys_get( 8729 phba, mboxq), 8730 lpfc_sli_config_mbox_opcode_get( 8731 phba, mboxq), 8732 rc, dd); 8733 /* 8734 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8735 * calls depends on these resources to complete port setup. 8736 */ 8737 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8738 if (rc) { 8739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8740 "2920 Failed to alloc Resource IDs " 8741 "rc = x%x\n", rc); 8742 goto out_free_mbox; 8743 } 8744 8745 lpfc_set_host_data(phba, mboxq); 8746 8747 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8748 if (rc) { 8749 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8750 "2134 Failed to set host os driver version %x", 8751 rc); 8752 } 8753 8754 /* Read the port's service parameters. */ 8755 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8756 if (rc) { 8757 phba->link_state = LPFC_HBA_ERROR; 8758 rc = -ENOMEM; 8759 goto out_free_mbox; 8760 } 8761 8762 mboxq->vport = vport; 8763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8764 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8765 if (rc == MBX_SUCCESS) { 8766 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8767 rc = 0; 8768 } 8769 8770 /* 8771 * This memory was allocated by the lpfc_read_sparam routine but is 8772 * no longer needed. It is released and ctx_buf NULLed to prevent 8773 * unintended pointer access as the mbox is reused. 8774 */ 8775 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8776 kfree(mp); 8777 mboxq->ctx_buf = NULL; 8778 if (unlikely(rc)) { 8779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8780 "0382 READ_SPARAM command failed " 8781 "status %d, mbxStatus x%x\n", 8782 rc, bf_get(lpfc_mqe_status, mqe)); 8783 phba->link_state = LPFC_HBA_ERROR; 8784 rc = -EIO; 8785 goto out_free_mbox; 8786 } 8787 8788 lpfc_update_vport_wwn(vport); 8789 8790 /* Update the fc_host data structures with new wwn. */ 8791 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8792 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8793 8794 /* Create all the SLI4 queues */ 8795 rc = lpfc_sli4_queue_create(phba); 8796 if (rc) { 8797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8798 "3089 Failed to allocate queues\n"); 8799 rc = -ENODEV; 8800 goto out_free_mbox; 8801 } 8802 /* Set up all the queues to the device */ 8803 rc = lpfc_sli4_queue_setup(phba); 8804 if (unlikely(rc)) { 8805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8806 "0381 Error %d during queue setup.\n ", rc); 8807 goto out_stop_timers; 8808 } 8809 /* Initialize the driver internal SLI layer lists. */ 8810 lpfc_sli4_setup(phba); 8811 lpfc_sli4_queue_init(phba); 8812 8813 /* update host els xri-sgl sizes and mappings */ 8814 rc = lpfc_sli4_els_sgl_update(phba); 8815 if (unlikely(rc)) { 8816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8817 "1400 Failed to update xri-sgl size and " 8818 "mapping: %d\n", rc); 8819 goto out_destroy_queue; 8820 } 8821 8822 /* register the els sgl pool to the port */ 8823 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8824 phba->sli4_hba.els_xri_cnt); 8825 if (unlikely(rc < 0)) { 8826 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8827 "0582 Error %d during els sgl post " 8828 "operation\n", rc); 8829 rc = -ENODEV; 8830 goto out_destroy_queue; 8831 } 8832 phba->sli4_hba.els_xri_cnt = rc; 8833 8834 if (phba->nvmet_support) { 8835 /* update host nvmet xri-sgl sizes and mappings */ 8836 rc = lpfc_sli4_nvmet_sgl_update(phba); 8837 if (unlikely(rc)) { 8838 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8839 "6308 Failed to update nvmet-sgl size " 8840 "and mapping: %d\n", rc); 8841 goto out_destroy_queue; 8842 } 8843 8844 /* register the nvmet sgl pool to the port */ 8845 rc = lpfc_sli4_repost_sgl_list( 8846 phba, 8847 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8848 phba->sli4_hba.nvmet_xri_cnt); 8849 if (unlikely(rc < 0)) { 8850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8851 "3117 Error %d during nvmet " 8852 "sgl post\n", rc); 8853 rc = -ENODEV; 8854 goto out_destroy_queue; 8855 } 8856 phba->sli4_hba.nvmet_xri_cnt = rc; 8857 8858 /* We allocate an iocbq for every receive context SGL. 8859 * The additional allocation is for abort and ls handling. 8860 */ 8861 cnt = phba->sli4_hba.nvmet_xri_cnt + 8862 phba->sli4_hba.max_cfg_param.max_xri; 8863 } else { 8864 /* update host common xri-sgl sizes and mappings */ 8865 rc = lpfc_sli4_io_sgl_update(phba); 8866 if (unlikely(rc)) { 8867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8868 "6082 Failed to update nvme-sgl size " 8869 "and mapping: %d\n", rc); 8870 goto out_destroy_queue; 8871 } 8872 8873 /* register the allocated common sgl pool to the port */ 8874 rc = lpfc_sli4_repost_io_sgl_list(phba); 8875 if (unlikely(rc)) { 8876 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8877 "6116 Error %d during nvme sgl post " 8878 "operation\n", rc); 8879 /* Some NVME buffers were moved to abort nvme list */ 8880 /* A pci function reset will repost them */ 8881 rc = -ENODEV; 8882 goto out_destroy_queue; 8883 } 8884 /* Each lpfc_io_buf job structure has an iocbq element. 8885 * This cnt provides for abort, els, ct and ls requests. 8886 */ 8887 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8888 } 8889 8890 if (!phba->sli.iocbq_lookup) { 8891 /* Initialize and populate the iocb list per host */ 8892 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8893 "2821 initialize iocb list with %d entries\n", 8894 cnt); 8895 rc = lpfc_init_iocb_list(phba, cnt); 8896 if (rc) { 8897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8898 "1413 Failed to init iocb list.\n"); 8899 goto out_destroy_queue; 8900 } 8901 } 8902 8903 if (phba->nvmet_support) 8904 lpfc_nvmet_create_targetport(phba); 8905 8906 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8907 /* Post initial buffers to all RQs created */ 8908 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8909 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8910 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8911 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8912 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8913 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8914 rqbp->buffer_count = 0; 8915 8916 lpfc_post_rq_buffer( 8917 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8918 phba->sli4_hba.nvmet_mrq_data[i], 8919 phba->cfg_nvmet_mrq_post, i); 8920 } 8921 } 8922 8923 /* Post the rpi header region to the device. */ 8924 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8925 if (unlikely(rc)) { 8926 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8927 "0393 Error %d during rpi post operation\n", 8928 rc); 8929 rc = -ENODEV; 8930 goto out_free_iocblist; 8931 } 8932 lpfc_sli4_node_prep(phba); 8933 8934 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8935 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8936 /* 8937 * The FC Port needs to register FCFI (index 0) 8938 */ 8939 lpfc_reg_fcfi(phba, mboxq); 8940 mboxq->vport = phba->pport; 8941 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8942 if (rc != MBX_SUCCESS) 8943 goto out_unset_queue; 8944 rc = 0; 8945 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8946 &mboxq->u.mqe.un.reg_fcfi); 8947 } else { 8948 /* We are a NVME Target mode with MRQ > 1 */ 8949 8950 /* First register the FCFI */ 8951 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8952 mboxq->vport = phba->pport; 8953 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8954 if (rc != MBX_SUCCESS) 8955 goto out_unset_queue; 8956 rc = 0; 8957 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8958 &mboxq->u.mqe.un.reg_fcfi_mrq); 8959 8960 /* Next register the MRQs */ 8961 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8962 mboxq->vport = phba->pport; 8963 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8964 if (rc != MBX_SUCCESS) 8965 goto out_unset_queue; 8966 rc = 0; 8967 } 8968 /* Check if the port is configured to be disabled */ 8969 lpfc_sli_read_link_ste(phba); 8970 } 8971 8972 /* Don't post more new bufs if repost already recovered 8973 * the nvme sgls. 8974 */ 8975 if (phba->nvmet_support == 0) { 8976 if (phba->sli4_hba.io_xri_cnt == 0) { 8977 len = lpfc_new_io_buf( 8978 phba, phba->sli4_hba.io_xri_max); 8979 if (len == 0) { 8980 rc = -ENOMEM; 8981 goto out_unset_queue; 8982 } 8983 8984 if (phba->cfg_xri_rebalancing) 8985 lpfc_create_multixri_pools(phba); 8986 } 8987 } else { 8988 phba->cfg_xri_rebalancing = 0; 8989 } 8990 8991 /* Allow asynchronous mailbox command to go through */ 8992 spin_lock_irq(&phba->hbalock); 8993 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8994 spin_unlock_irq(&phba->hbalock); 8995 8996 /* Post receive buffers to the device */ 8997 lpfc_sli4_rb_setup(phba); 8998 8999 /* Reset HBA FCF states after HBA reset */ 9000 phba->fcf.fcf_flag = 0; 9001 phba->fcf.current_rec.flag = 0; 9002 9003 /* Start the ELS watchdog timer */ 9004 mod_timer(&vport->els_tmofunc, 9005 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9006 9007 /* Start heart beat timer */ 9008 mod_timer(&phba->hb_tmofunc, 9009 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9010 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9011 phba->last_completion_time = jiffies; 9012 9013 /* start eq_delay heartbeat */ 9014 if (phba->cfg_auto_imax) 9015 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9016 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9017 9018 /* start per phba idle_stat_delay heartbeat */ 9019 lpfc_init_idle_stat_hb(phba); 9020 9021 /* Start error attention (ERATT) polling timer */ 9022 mod_timer(&phba->eratt_poll, 9023 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9024 9025 /* 9026 * The port is ready, set the host's link state to LINK_DOWN 9027 * in preparation for link interrupts. 9028 */ 9029 spin_lock_irq(&phba->hbalock); 9030 phba->link_state = LPFC_LINK_DOWN; 9031 9032 /* Check if physical ports are trunked */ 9033 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9034 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9035 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9036 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9037 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9038 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9039 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9040 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9041 spin_unlock_irq(&phba->hbalock); 9042 9043 /* Arm the CQs and then EQs on device */ 9044 lpfc_sli4_arm_cqeq_intr(phba); 9045 9046 /* Indicate device interrupt mode */ 9047 phba->sli4_hba.intr_enable = 1; 9048 9049 /* Setup CMF after HBA is initialized */ 9050 lpfc_cmf_setup(phba); 9051 9052 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9053 (phba->hba_flag & LINK_DISABLED)) { 9054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9055 "3103 Adapter Link is disabled.\n"); 9056 lpfc_down_link(phba, mboxq); 9057 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9058 if (rc != MBX_SUCCESS) { 9059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9060 "3104 Adapter failed to issue " 9061 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9062 goto out_io_buff_free; 9063 } 9064 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9065 /* don't perform init_link on SLI4 FC port loopback test */ 9066 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9067 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9068 if (rc) 9069 goto out_io_buff_free; 9070 } 9071 } 9072 mempool_free(mboxq, phba->mbox_mem_pool); 9073 9074 /* Enable RAS FW log support */ 9075 lpfc_sli4_ras_setup(phba); 9076 9077 phba->hba_flag |= HBA_SETUP; 9078 return rc; 9079 9080 out_io_buff_free: 9081 /* Free allocated IO Buffers */ 9082 lpfc_io_free(phba); 9083 out_unset_queue: 9084 /* Unset all the queues set up in this routine when error out */ 9085 lpfc_sli4_queue_unset(phba); 9086 out_free_iocblist: 9087 lpfc_free_iocb_list(phba); 9088 out_destroy_queue: 9089 lpfc_sli4_queue_destroy(phba); 9090 out_stop_timers: 9091 lpfc_stop_hba_timers(phba); 9092 out_free_mbox: 9093 mempool_free(mboxq, phba->mbox_mem_pool); 9094 return rc; 9095 } 9096 9097 /** 9098 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9099 * @t: Context to fetch pointer to hba structure from. 9100 * 9101 * This is the callback function for mailbox timer. The mailbox 9102 * timer is armed when a new mailbox command is issued and the timer 9103 * is deleted when the mailbox complete. The function is called by 9104 * the kernel timer code when a mailbox does not complete within 9105 * expected time. This function wakes up the worker thread to 9106 * process the mailbox timeout and returns. All the processing is 9107 * done by the worker thread function lpfc_mbox_timeout_handler. 9108 **/ 9109 void 9110 lpfc_mbox_timeout(struct timer_list *t) 9111 { 9112 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9113 unsigned long iflag; 9114 uint32_t tmo_posted; 9115 9116 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9117 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9118 if (!tmo_posted) 9119 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9120 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9121 9122 if (!tmo_posted) 9123 lpfc_worker_wake_up(phba); 9124 return; 9125 } 9126 9127 /** 9128 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9129 * are pending 9130 * @phba: Pointer to HBA context object. 9131 * 9132 * This function checks if any mailbox completions are present on the mailbox 9133 * completion queue. 9134 **/ 9135 static bool 9136 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9137 { 9138 9139 uint32_t idx; 9140 struct lpfc_queue *mcq; 9141 struct lpfc_mcqe *mcqe; 9142 bool pending_completions = false; 9143 uint8_t qe_valid; 9144 9145 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9146 return false; 9147 9148 /* Check for completions on mailbox completion queue */ 9149 9150 mcq = phba->sli4_hba.mbx_cq; 9151 idx = mcq->hba_index; 9152 qe_valid = mcq->qe_valid; 9153 while (bf_get_le32(lpfc_cqe_valid, 9154 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9155 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9156 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9157 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9158 pending_completions = true; 9159 break; 9160 } 9161 idx = (idx + 1) % mcq->entry_count; 9162 if (mcq->hba_index == idx) 9163 break; 9164 9165 /* if the index wrapped around, toggle the valid bit */ 9166 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9167 qe_valid = (qe_valid) ? 0 : 1; 9168 } 9169 return pending_completions; 9170 9171 } 9172 9173 /** 9174 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9175 * that were missed. 9176 * @phba: Pointer to HBA context object. 9177 * 9178 * For sli4, it is possible to miss an interrupt. As such mbox completions 9179 * maybe missed causing erroneous mailbox timeouts to occur. This function 9180 * checks to see if mbox completions are on the mailbox completion queue 9181 * and will process all the completions associated with the eq for the 9182 * mailbox completion queue. 9183 **/ 9184 static bool 9185 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9186 { 9187 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9188 uint32_t eqidx; 9189 struct lpfc_queue *fpeq = NULL; 9190 struct lpfc_queue *eq; 9191 bool mbox_pending; 9192 9193 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9194 return false; 9195 9196 /* Find the EQ associated with the mbox CQ */ 9197 if (sli4_hba->hdwq) { 9198 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9199 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9200 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9201 fpeq = eq; 9202 break; 9203 } 9204 } 9205 } 9206 if (!fpeq) 9207 return false; 9208 9209 /* Turn off interrupts from this EQ */ 9210 9211 sli4_hba->sli4_eq_clr_intr(fpeq); 9212 9213 /* Check to see if a mbox completion is pending */ 9214 9215 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9216 9217 /* 9218 * If a mbox completion is pending, process all the events on EQ 9219 * associated with the mbox completion queue (this could include 9220 * mailbox commands, async events, els commands, receive queue data 9221 * and fcp commands) 9222 */ 9223 9224 if (mbox_pending) 9225 /* process and rearm the EQ */ 9226 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9227 LPFC_QUEUE_WORK); 9228 else 9229 /* Always clear and re-arm the EQ */ 9230 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9231 9232 return mbox_pending; 9233 9234 } 9235 9236 /** 9237 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9238 * @phba: Pointer to HBA context object. 9239 * 9240 * This function is called from worker thread when a mailbox command times out. 9241 * The caller is not required to hold any locks. This function will reset the 9242 * HBA and recover all the pending commands. 9243 **/ 9244 void 9245 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9246 { 9247 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9248 MAILBOX_t *mb = NULL; 9249 9250 struct lpfc_sli *psli = &phba->sli; 9251 9252 /* If the mailbox completed, process the completion */ 9253 lpfc_sli4_process_missed_mbox_completions(phba); 9254 9255 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9256 return; 9257 9258 if (pmbox != NULL) 9259 mb = &pmbox->u.mb; 9260 /* Check the pmbox pointer first. There is a race condition 9261 * between the mbox timeout handler getting executed in the 9262 * worklist and the mailbox actually completing. When this 9263 * race condition occurs, the mbox_active will be NULL. 9264 */ 9265 spin_lock_irq(&phba->hbalock); 9266 if (pmbox == NULL) { 9267 lpfc_printf_log(phba, KERN_WARNING, 9268 LOG_MBOX | LOG_SLI, 9269 "0353 Active Mailbox cleared - mailbox timeout " 9270 "exiting\n"); 9271 spin_unlock_irq(&phba->hbalock); 9272 return; 9273 } 9274 9275 /* Mbox cmd <mbxCommand> timeout */ 9276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9277 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9278 mb->mbxCommand, 9279 phba->pport->port_state, 9280 phba->sli.sli_flag, 9281 phba->sli.mbox_active); 9282 spin_unlock_irq(&phba->hbalock); 9283 9284 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9285 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9286 * it to fail all outstanding SCSI IO. 9287 */ 9288 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9289 spin_lock_irq(&phba->pport->work_port_lock); 9290 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9291 spin_unlock_irq(&phba->pport->work_port_lock); 9292 spin_lock_irq(&phba->hbalock); 9293 phba->link_state = LPFC_LINK_UNKNOWN; 9294 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9295 spin_unlock_irq(&phba->hbalock); 9296 9297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9298 "0345 Resetting board due to mailbox timeout\n"); 9299 9300 /* Reset the HBA device */ 9301 lpfc_reset_hba(phba); 9302 } 9303 9304 /** 9305 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9306 * @phba: Pointer to HBA context object. 9307 * @pmbox: Pointer to mailbox object. 9308 * @flag: Flag indicating how the mailbox need to be processed. 9309 * 9310 * This function is called by discovery code and HBA management code 9311 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9312 * function gets the hbalock to protect the data structures. 9313 * The mailbox command can be submitted in polling mode, in which case 9314 * this function will wait in a polling loop for the completion of the 9315 * mailbox. 9316 * If the mailbox is submitted in no_wait mode (not polling) the 9317 * function will submit the command and returns immediately without waiting 9318 * for the mailbox completion. The no_wait is supported only when HBA 9319 * is in SLI2/SLI3 mode - interrupts are enabled. 9320 * The SLI interface allows only one mailbox pending at a time. If the 9321 * mailbox is issued in polling mode and there is already a mailbox 9322 * pending, then the function will return an error. If the mailbox is issued 9323 * in NO_WAIT mode and there is a mailbox pending already, the function 9324 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9325 * The sli layer owns the mailbox object until the completion of mailbox 9326 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9327 * return codes the caller owns the mailbox command after the return of 9328 * the function. 9329 **/ 9330 static int 9331 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9332 uint32_t flag) 9333 { 9334 MAILBOX_t *mbx; 9335 struct lpfc_sli *psli = &phba->sli; 9336 uint32_t status, evtctr; 9337 uint32_t ha_copy, hc_copy; 9338 int i; 9339 unsigned long timeout; 9340 unsigned long drvr_flag = 0; 9341 uint32_t word0, ldata; 9342 void __iomem *to_slim; 9343 int processing_queue = 0; 9344 9345 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9346 if (!pmbox) { 9347 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9348 /* processing mbox queue from intr_handler */ 9349 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9350 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9351 return MBX_SUCCESS; 9352 } 9353 processing_queue = 1; 9354 pmbox = lpfc_mbox_get(phba); 9355 if (!pmbox) { 9356 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9357 return MBX_SUCCESS; 9358 } 9359 } 9360 9361 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9362 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9363 if(!pmbox->vport) { 9364 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9365 lpfc_printf_log(phba, KERN_ERR, 9366 LOG_MBOX | LOG_VPORT, 9367 "1806 Mbox x%x failed. No vport\n", 9368 pmbox->u.mb.mbxCommand); 9369 dump_stack(); 9370 goto out_not_finished; 9371 } 9372 } 9373 9374 /* If the PCI channel is in offline state, do not post mbox. */ 9375 if (unlikely(pci_channel_offline(phba->pcidev))) { 9376 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9377 goto out_not_finished; 9378 } 9379 9380 /* If HBA has a deferred error attention, fail the iocb. */ 9381 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9382 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9383 goto out_not_finished; 9384 } 9385 9386 psli = &phba->sli; 9387 9388 mbx = &pmbox->u.mb; 9389 status = MBX_SUCCESS; 9390 9391 if (phba->link_state == LPFC_HBA_ERROR) { 9392 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9393 9394 /* Mbox command <mbxCommand> cannot issue */ 9395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9396 "(%d):0311 Mailbox command x%x cannot " 9397 "issue Data: x%x x%x\n", 9398 pmbox->vport ? pmbox->vport->vpi : 0, 9399 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9400 goto out_not_finished; 9401 } 9402 9403 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9404 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9405 !(hc_copy & HC_MBINT_ENA)) { 9406 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9408 "(%d):2528 Mailbox command x%x cannot " 9409 "issue Data: x%x x%x\n", 9410 pmbox->vport ? pmbox->vport->vpi : 0, 9411 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9412 goto out_not_finished; 9413 } 9414 } 9415 9416 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9417 /* Polling for a mbox command when another one is already active 9418 * is not allowed in SLI. Also, the driver must have established 9419 * SLI2 mode to queue and process multiple mbox commands. 9420 */ 9421 9422 if (flag & MBX_POLL) { 9423 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9424 9425 /* Mbox command <mbxCommand> cannot issue */ 9426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9427 "(%d):2529 Mailbox command x%x " 9428 "cannot issue Data: x%x x%x\n", 9429 pmbox->vport ? pmbox->vport->vpi : 0, 9430 pmbox->u.mb.mbxCommand, 9431 psli->sli_flag, flag); 9432 goto out_not_finished; 9433 } 9434 9435 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9436 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9437 /* Mbox command <mbxCommand> cannot issue */ 9438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9439 "(%d):2530 Mailbox command x%x " 9440 "cannot issue Data: x%x x%x\n", 9441 pmbox->vport ? pmbox->vport->vpi : 0, 9442 pmbox->u.mb.mbxCommand, 9443 psli->sli_flag, flag); 9444 goto out_not_finished; 9445 } 9446 9447 /* Another mailbox command is still being processed, queue this 9448 * command to be processed later. 9449 */ 9450 lpfc_mbox_put(phba, pmbox); 9451 9452 /* Mbox cmd issue - BUSY */ 9453 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9454 "(%d):0308 Mbox cmd issue - BUSY Data: " 9455 "x%x x%x x%x x%x\n", 9456 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9457 mbx->mbxCommand, 9458 phba->pport ? phba->pport->port_state : 0xff, 9459 psli->sli_flag, flag); 9460 9461 psli->slistat.mbox_busy++; 9462 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9463 9464 if (pmbox->vport) { 9465 lpfc_debugfs_disc_trc(pmbox->vport, 9466 LPFC_DISC_TRC_MBOX_VPORT, 9467 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9468 (uint32_t)mbx->mbxCommand, 9469 mbx->un.varWords[0], mbx->un.varWords[1]); 9470 } 9471 else { 9472 lpfc_debugfs_disc_trc(phba->pport, 9473 LPFC_DISC_TRC_MBOX, 9474 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9475 (uint32_t)mbx->mbxCommand, 9476 mbx->un.varWords[0], mbx->un.varWords[1]); 9477 } 9478 9479 return MBX_BUSY; 9480 } 9481 9482 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9483 9484 /* If we are not polling, we MUST be in SLI2 mode */ 9485 if (flag != MBX_POLL) { 9486 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9487 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9488 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9489 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9490 /* Mbox command <mbxCommand> cannot issue */ 9491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9492 "(%d):2531 Mailbox command x%x " 9493 "cannot issue Data: x%x x%x\n", 9494 pmbox->vport ? pmbox->vport->vpi : 0, 9495 pmbox->u.mb.mbxCommand, 9496 psli->sli_flag, flag); 9497 goto out_not_finished; 9498 } 9499 /* timeout active mbox command */ 9500 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9501 1000); 9502 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9503 } 9504 9505 /* Mailbox cmd <cmd> issue */ 9506 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9507 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9508 "x%x\n", 9509 pmbox->vport ? pmbox->vport->vpi : 0, 9510 mbx->mbxCommand, 9511 phba->pport ? phba->pport->port_state : 0xff, 9512 psli->sli_flag, flag); 9513 9514 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9515 if (pmbox->vport) { 9516 lpfc_debugfs_disc_trc(pmbox->vport, 9517 LPFC_DISC_TRC_MBOX_VPORT, 9518 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9519 (uint32_t)mbx->mbxCommand, 9520 mbx->un.varWords[0], mbx->un.varWords[1]); 9521 } 9522 else { 9523 lpfc_debugfs_disc_trc(phba->pport, 9524 LPFC_DISC_TRC_MBOX, 9525 "MBOX Send: cmd:x%x mb:x%x x%x", 9526 (uint32_t)mbx->mbxCommand, 9527 mbx->un.varWords[0], mbx->un.varWords[1]); 9528 } 9529 } 9530 9531 psli->slistat.mbox_cmd++; 9532 evtctr = psli->slistat.mbox_event; 9533 9534 /* next set own bit for the adapter and copy over command word */ 9535 mbx->mbxOwner = OWN_CHIP; 9536 9537 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9538 /* Populate mbox extension offset word. */ 9539 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9540 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9541 = (uint8_t *)phba->mbox_ext 9542 - (uint8_t *)phba->mbox; 9543 } 9544 9545 /* Copy the mailbox extension data */ 9546 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9547 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9548 (uint8_t *)phba->mbox_ext, 9549 pmbox->in_ext_byte_len); 9550 } 9551 /* Copy command data to host SLIM area */ 9552 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9553 } else { 9554 /* Populate mbox extension offset word. */ 9555 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9556 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9557 = MAILBOX_HBA_EXT_OFFSET; 9558 9559 /* Copy the mailbox extension data */ 9560 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9561 lpfc_memcpy_to_slim(phba->MBslimaddr + 9562 MAILBOX_HBA_EXT_OFFSET, 9563 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9564 9565 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9566 /* copy command data into host mbox for cmpl */ 9567 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9568 MAILBOX_CMD_SIZE); 9569 9570 /* First copy mbox command data to HBA SLIM, skip past first 9571 word */ 9572 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9573 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9574 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9575 9576 /* Next copy over first word, with mbxOwner set */ 9577 ldata = *((uint32_t *)mbx); 9578 to_slim = phba->MBslimaddr; 9579 writel(ldata, to_slim); 9580 readl(to_slim); /* flush */ 9581 9582 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9583 /* switch over to host mailbox */ 9584 psli->sli_flag |= LPFC_SLI_ACTIVE; 9585 } 9586 9587 wmb(); 9588 9589 switch (flag) { 9590 case MBX_NOWAIT: 9591 /* Set up reference to mailbox command */ 9592 psli->mbox_active = pmbox; 9593 /* Interrupt board to do it */ 9594 writel(CA_MBATT, phba->CAregaddr); 9595 readl(phba->CAregaddr); /* flush */ 9596 /* Don't wait for it to finish, just return */ 9597 break; 9598 9599 case MBX_POLL: 9600 /* Set up null reference to mailbox command */ 9601 psli->mbox_active = NULL; 9602 /* Interrupt board to do it */ 9603 writel(CA_MBATT, phba->CAregaddr); 9604 readl(phba->CAregaddr); /* flush */ 9605 9606 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9607 /* First read mbox status word */ 9608 word0 = *((uint32_t *)phba->mbox); 9609 word0 = le32_to_cpu(word0); 9610 } else { 9611 /* First read mbox status word */ 9612 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9613 spin_unlock_irqrestore(&phba->hbalock, 9614 drvr_flag); 9615 goto out_not_finished; 9616 } 9617 } 9618 9619 /* Read the HBA Host Attention Register */ 9620 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9621 spin_unlock_irqrestore(&phba->hbalock, 9622 drvr_flag); 9623 goto out_not_finished; 9624 } 9625 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9626 1000) + jiffies; 9627 i = 0; 9628 /* Wait for command to complete */ 9629 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9630 (!(ha_copy & HA_MBATT) && 9631 (phba->link_state > LPFC_WARM_START))) { 9632 if (time_after(jiffies, timeout)) { 9633 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9634 spin_unlock_irqrestore(&phba->hbalock, 9635 drvr_flag); 9636 goto out_not_finished; 9637 } 9638 9639 /* Check if we took a mbox interrupt while we were 9640 polling */ 9641 if (((word0 & OWN_CHIP) != OWN_CHIP) 9642 && (evtctr != psli->slistat.mbox_event)) 9643 break; 9644 9645 if (i++ > 10) { 9646 spin_unlock_irqrestore(&phba->hbalock, 9647 drvr_flag); 9648 msleep(1); 9649 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9650 } 9651 9652 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9653 /* First copy command data */ 9654 word0 = *((uint32_t *)phba->mbox); 9655 word0 = le32_to_cpu(word0); 9656 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9657 MAILBOX_t *slimmb; 9658 uint32_t slimword0; 9659 /* Check real SLIM for any errors */ 9660 slimword0 = readl(phba->MBslimaddr); 9661 slimmb = (MAILBOX_t *) & slimword0; 9662 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9663 && slimmb->mbxStatus) { 9664 psli->sli_flag &= 9665 ~LPFC_SLI_ACTIVE; 9666 word0 = slimword0; 9667 } 9668 } 9669 } else { 9670 /* First copy command data */ 9671 word0 = readl(phba->MBslimaddr); 9672 } 9673 /* Read the HBA Host Attention Register */ 9674 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9675 spin_unlock_irqrestore(&phba->hbalock, 9676 drvr_flag); 9677 goto out_not_finished; 9678 } 9679 } 9680 9681 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9682 /* copy results back to user */ 9683 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9684 MAILBOX_CMD_SIZE); 9685 /* Copy the mailbox extension data */ 9686 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9687 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9688 pmbox->ctx_buf, 9689 pmbox->out_ext_byte_len); 9690 } 9691 } else { 9692 /* First copy command data */ 9693 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9694 MAILBOX_CMD_SIZE); 9695 /* Copy the mailbox extension data */ 9696 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9697 lpfc_memcpy_from_slim( 9698 pmbox->ctx_buf, 9699 phba->MBslimaddr + 9700 MAILBOX_HBA_EXT_OFFSET, 9701 pmbox->out_ext_byte_len); 9702 } 9703 } 9704 9705 writel(HA_MBATT, phba->HAregaddr); 9706 readl(phba->HAregaddr); /* flush */ 9707 9708 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9709 status = mbx->mbxStatus; 9710 } 9711 9712 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9713 return status; 9714 9715 out_not_finished: 9716 if (processing_queue) { 9717 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9718 lpfc_mbox_cmpl_put(phba, pmbox); 9719 } 9720 return MBX_NOT_FINISHED; 9721 } 9722 9723 /** 9724 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9725 * @phba: Pointer to HBA context object. 9726 * 9727 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9728 * the driver internal pending mailbox queue. It will then try to wait out the 9729 * possible outstanding mailbox command before return. 9730 * 9731 * Returns: 9732 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9733 * the outstanding mailbox command timed out. 9734 **/ 9735 static int 9736 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9737 { 9738 struct lpfc_sli *psli = &phba->sli; 9739 LPFC_MBOXQ_t *mboxq; 9740 int rc = 0; 9741 unsigned long timeout = 0; 9742 u32 sli_flag; 9743 u8 cmd, subsys, opcode; 9744 9745 /* Mark the asynchronous mailbox command posting as blocked */ 9746 spin_lock_irq(&phba->hbalock); 9747 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9748 /* Determine how long we might wait for the active mailbox 9749 * command to be gracefully completed by firmware. 9750 */ 9751 if (phba->sli.mbox_active) 9752 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9753 phba->sli.mbox_active) * 9754 1000) + jiffies; 9755 spin_unlock_irq(&phba->hbalock); 9756 9757 /* Make sure the mailbox is really active */ 9758 if (timeout) 9759 lpfc_sli4_process_missed_mbox_completions(phba); 9760 9761 /* Wait for the outstanding mailbox command to complete */ 9762 while (phba->sli.mbox_active) { 9763 /* Check active mailbox complete status every 2ms */ 9764 msleep(2); 9765 if (time_after(jiffies, timeout)) { 9766 /* Timeout, mark the outstanding cmd not complete */ 9767 9768 /* Sanity check sli.mbox_active has not completed or 9769 * cancelled from another context during last 2ms sleep, 9770 * so take hbalock to be sure before logging. 9771 */ 9772 spin_lock_irq(&phba->hbalock); 9773 if (phba->sli.mbox_active) { 9774 mboxq = phba->sli.mbox_active; 9775 cmd = mboxq->u.mb.mbxCommand; 9776 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9777 mboxq); 9778 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9779 mboxq); 9780 sli_flag = psli->sli_flag; 9781 spin_unlock_irq(&phba->hbalock); 9782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9783 "2352 Mailbox command x%x " 9784 "(x%x/x%x) sli_flag x%x could " 9785 "not complete\n", 9786 cmd, subsys, opcode, 9787 sli_flag); 9788 } else { 9789 spin_unlock_irq(&phba->hbalock); 9790 } 9791 9792 rc = 1; 9793 break; 9794 } 9795 } 9796 9797 /* Can not cleanly block async mailbox command, fails it */ 9798 if (rc) { 9799 spin_lock_irq(&phba->hbalock); 9800 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9801 spin_unlock_irq(&phba->hbalock); 9802 } 9803 return rc; 9804 } 9805 9806 /** 9807 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9808 * @phba: Pointer to HBA context object. 9809 * 9810 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9811 * commands from the driver internal pending mailbox queue. It makes sure 9812 * that there is no outstanding mailbox command before resuming posting 9813 * asynchronous mailbox commands. If, for any reason, there is outstanding 9814 * mailbox command, it will try to wait it out before resuming asynchronous 9815 * mailbox command posting. 9816 **/ 9817 static void 9818 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9819 { 9820 struct lpfc_sli *psli = &phba->sli; 9821 9822 spin_lock_irq(&phba->hbalock); 9823 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9824 /* Asynchronous mailbox posting is not blocked, do nothing */ 9825 spin_unlock_irq(&phba->hbalock); 9826 return; 9827 } 9828 9829 /* Outstanding synchronous mailbox command is guaranteed to be done, 9830 * successful or timeout, after timing-out the outstanding mailbox 9831 * command shall always be removed, so just unblock posting async 9832 * mailbox command and resume 9833 */ 9834 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9835 spin_unlock_irq(&phba->hbalock); 9836 9837 /* wake up worker thread to post asynchronous mailbox command */ 9838 lpfc_worker_wake_up(phba); 9839 } 9840 9841 /** 9842 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9843 * @phba: Pointer to HBA context object. 9844 * @mboxq: Pointer to mailbox object. 9845 * 9846 * The function waits for the bootstrap mailbox register ready bit from 9847 * port for twice the regular mailbox command timeout value. 9848 * 9849 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9850 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9851 * is in an unrecoverable state. 9852 **/ 9853 static int 9854 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9855 { 9856 uint32_t db_ready; 9857 unsigned long timeout; 9858 struct lpfc_register bmbx_reg; 9859 struct lpfc_register portstat_reg = {-1}; 9860 9861 /* Sanity check - there is no point to wait if the port is in an 9862 * unrecoverable state. 9863 */ 9864 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9865 LPFC_SLI_INTF_IF_TYPE_2) { 9866 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9867 &portstat_reg.word0) || 9868 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9869 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9870 "3858 Skipping bmbx ready because " 9871 "Port Status x%x\n", 9872 portstat_reg.word0); 9873 return MBXERR_ERROR; 9874 } 9875 } 9876 9877 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9878 * 1000) + jiffies; 9879 9880 do { 9881 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9882 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9883 if (!db_ready) 9884 mdelay(2); 9885 9886 if (time_after(jiffies, timeout)) 9887 return MBXERR_ERROR; 9888 } while (!db_ready); 9889 9890 return 0; 9891 } 9892 9893 /** 9894 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9895 * @phba: Pointer to HBA context object. 9896 * @mboxq: Pointer to mailbox object. 9897 * 9898 * The function posts a mailbox to the port. The mailbox is expected 9899 * to be comletely filled in and ready for the port to operate on it. 9900 * This routine executes a synchronous completion operation on the 9901 * mailbox by polling for its completion. 9902 * 9903 * The caller must not be holding any locks when calling this routine. 9904 * 9905 * Returns: 9906 * MBX_SUCCESS - mailbox posted successfully 9907 * Any of the MBX error values. 9908 **/ 9909 static int 9910 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9911 { 9912 int rc = MBX_SUCCESS; 9913 unsigned long iflag; 9914 uint32_t mcqe_status; 9915 uint32_t mbx_cmnd; 9916 struct lpfc_sli *psli = &phba->sli; 9917 struct lpfc_mqe *mb = &mboxq->u.mqe; 9918 struct lpfc_bmbx_create *mbox_rgn; 9919 struct dma_address *dma_address; 9920 9921 /* 9922 * Only one mailbox can be active to the bootstrap mailbox region 9923 * at a time and there is no queueing provided. 9924 */ 9925 spin_lock_irqsave(&phba->hbalock, iflag); 9926 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9927 spin_unlock_irqrestore(&phba->hbalock, iflag); 9928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9929 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9930 "cannot issue Data: x%x x%x\n", 9931 mboxq->vport ? mboxq->vport->vpi : 0, 9932 mboxq->u.mb.mbxCommand, 9933 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9934 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9935 psli->sli_flag, MBX_POLL); 9936 return MBXERR_ERROR; 9937 } 9938 /* The server grabs the token and owns it until release */ 9939 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9940 phba->sli.mbox_active = mboxq; 9941 spin_unlock_irqrestore(&phba->hbalock, iflag); 9942 9943 /* wait for bootstrap mbox register for readyness */ 9944 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9945 if (rc) 9946 goto exit; 9947 /* 9948 * Initialize the bootstrap memory region to avoid stale data areas 9949 * in the mailbox post. Then copy the caller's mailbox contents to 9950 * the bmbx mailbox region. 9951 */ 9952 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9953 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9954 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9955 sizeof(struct lpfc_mqe)); 9956 9957 /* Post the high mailbox dma address to the port and wait for ready. */ 9958 dma_address = &phba->sli4_hba.bmbx.dma_address; 9959 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9960 9961 /* wait for bootstrap mbox register for hi-address write done */ 9962 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9963 if (rc) 9964 goto exit; 9965 9966 /* Post the low mailbox dma address to the port. */ 9967 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9968 9969 /* wait for bootstrap mbox register for low address write done */ 9970 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9971 if (rc) 9972 goto exit; 9973 9974 /* 9975 * Read the CQ to ensure the mailbox has completed. 9976 * If so, update the mailbox status so that the upper layers 9977 * can complete the request normally. 9978 */ 9979 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9980 sizeof(struct lpfc_mqe)); 9981 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9982 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9983 sizeof(struct lpfc_mcqe)); 9984 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9985 /* 9986 * When the CQE status indicates a failure and the mailbox status 9987 * indicates success then copy the CQE status into the mailbox status 9988 * (and prefix it with x4000). 9989 */ 9990 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9991 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9992 bf_set(lpfc_mqe_status, mb, 9993 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9994 rc = MBXERR_ERROR; 9995 } else 9996 lpfc_sli4_swap_str(phba, mboxq); 9997 9998 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9999 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10000 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10001 " x%x x%x CQ: x%x x%x x%x x%x\n", 10002 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10003 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10004 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10005 bf_get(lpfc_mqe_status, mb), 10006 mb->un.mb_words[0], mb->un.mb_words[1], 10007 mb->un.mb_words[2], mb->un.mb_words[3], 10008 mb->un.mb_words[4], mb->un.mb_words[5], 10009 mb->un.mb_words[6], mb->un.mb_words[7], 10010 mb->un.mb_words[8], mb->un.mb_words[9], 10011 mb->un.mb_words[10], mb->un.mb_words[11], 10012 mb->un.mb_words[12], mboxq->mcqe.word0, 10013 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10014 mboxq->mcqe.trailer); 10015 exit: 10016 /* We are holding the token, no needed for lock when release */ 10017 spin_lock_irqsave(&phba->hbalock, iflag); 10018 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10019 phba->sli.mbox_active = NULL; 10020 spin_unlock_irqrestore(&phba->hbalock, iflag); 10021 return rc; 10022 } 10023 10024 /** 10025 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10026 * @phba: Pointer to HBA context object. 10027 * @mboxq: Pointer to mailbox object. 10028 * @flag: Flag indicating how the mailbox need to be processed. 10029 * 10030 * This function is called by discovery code and HBA management code to submit 10031 * a mailbox command to firmware with SLI-4 interface spec. 10032 * 10033 * Return codes the caller owns the mailbox command after the return of the 10034 * function. 10035 **/ 10036 static int 10037 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10038 uint32_t flag) 10039 { 10040 struct lpfc_sli *psli = &phba->sli; 10041 unsigned long iflags; 10042 int rc; 10043 10044 /* dump from issue mailbox command if setup */ 10045 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10046 10047 rc = lpfc_mbox_dev_check(phba); 10048 if (unlikely(rc)) { 10049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10050 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10051 "cannot issue Data: x%x x%x\n", 10052 mboxq->vport ? mboxq->vport->vpi : 0, 10053 mboxq->u.mb.mbxCommand, 10054 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10055 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10056 psli->sli_flag, flag); 10057 goto out_not_finished; 10058 } 10059 10060 /* Detect polling mode and jump to a handler */ 10061 if (!phba->sli4_hba.intr_enable) { 10062 if (flag == MBX_POLL) 10063 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10064 else 10065 rc = -EIO; 10066 if (rc != MBX_SUCCESS) 10067 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10068 "(%d):2541 Mailbox command x%x " 10069 "(x%x/x%x) failure: " 10070 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10071 "Data: x%x x%x\n", 10072 mboxq->vport ? mboxq->vport->vpi : 0, 10073 mboxq->u.mb.mbxCommand, 10074 lpfc_sli_config_mbox_subsys_get(phba, 10075 mboxq), 10076 lpfc_sli_config_mbox_opcode_get(phba, 10077 mboxq), 10078 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10079 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10080 bf_get(lpfc_mcqe_ext_status, 10081 &mboxq->mcqe), 10082 psli->sli_flag, flag); 10083 return rc; 10084 } else if (flag == MBX_POLL) { 10085 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10086 "(%d):2542 Try to issue mailbox command " 10087 "x%x (x%x/x%x) synchronously ahead of async " 10088 "mailbox command queue: x%x x%x\n", 10089 mboxq->vport ? mboxq->vport->vpi : 0, 10090 mboxq->u.mb.mbxCommand, 10091 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10092 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10093 psli->sli_flag, flag); 10094 /* Try to block the asynchronous mailbox posting */ 10095 rc = lpfc_sli4_async_mbox_block(phba); 10096 if (!rc) { 10097 /* Successfully blocked, now issue sync mbox cmd */ 10098 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10099 if (rc != MBX_SUCCESS) 10100 lpfc_printf_log(phba, KERN_WARNING, 10101 LOG_MBOX | LOG_SLI, 10102 "(%d):2597 Sync Mailbox command " 10103 "x%x (x%x/x%x) failure: " 10104 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10105 "Data: x%x x%x\n", 10106 mboxq->vport ? mboxq->vport->vpi : 0, 10107 mboxq->u.mb.mbxCommand, 10108 lpfc_sli_config_mbox_subsys_get(phba, 10109 mboxq), 10110 lpfc_sli_config_mbox_opcode_get(phba, 10111 mboxq), 10112 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10113 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10114 bf_get(lpfc_mcqe_ext_status, 10115 &mboxq->mcqe), 10116 psli->sli_flag, flag); 10117 /* Unblock the async mailbox posting afterward */ 10118 lpfc_sli4_async_mbox_unblock(phba); 10119 } 10120 return rc; 10121 } 10122 10123 /* Now, interrupt mode asynchronous mailbox command */ 10124 rc = lpfc_mbox_cmd_check(phba, mboxq); 10125 if (rc) { 10126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10127 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10128 "cannot issue Data: x%x x%x\n", 10129 mboxq->vport ? mboxq->vport->vpi : 0, 10130 mboxq->u.mb.mbxCommand, 10131 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10132 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10133 psli->sli_flag, flag); 10134 goto out_not_finished; 10135 } 10136 10137 /* Put the mailbox command to the driver internal FIFO */ 10138 psli->slistat.mbox_busy++; 10139 spin_lock_irqsave(&phba->hbalock, iflags); 10140 lpfc_mbox_put(phba, mboxq); 10141 spin_unlock_irqrestore(&phba->hbalock, iflags); 10142 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10143 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10144 "x%x (x%x/x%x) x%x x%x x%x\n", 10145 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10146 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10147 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10148 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10149 phba->pport->port_state, 10150 psli->sli_flag, MBX_NOWAIT); 10151 /* Wake up worker thread to transport mailbox command from head */ 10152 lpfc_worker_wake_up(phba); 10153 10154 return MBX_BUSY; 10155 10156 out_not_finished: 10157 return MBX_NOT_FINISHED; 10158 } 10159 10160 /** 10161 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10162 * @phba: Pointer to HBA context object. 10163 * 10164 * This function is called by worker thread to send a mailbox command to 10165 * SLI4 HBA firmware. 10166 * 10167 **/ 10168 int 10169 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10170 { 10171 struct lpfc_sli *psli = &phba->sli; 10172 LPFC_MBOXQ_t *mboxq; 10173 int rc = MBX_SUCCESS; 10174 unsigned long iflags; 10175 struct lpfc_mqe *mqe; 10176 uint32_t mbx_cmnd; 10177 10178 /* Check interrupt mode before post async mailbox command */ 10179 if (unlikely(!phba->sli4_hba.intr_enable)) 10180 return MBX_NOT_FINISHED; 10181 10182 /* Check for mailbox command service token */ 10183 spin_lock_irqsave(&phba->hbalock, iflags); 10184 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10185 spin_unlock_irqrestore(&phba->hbalock, iflags); 10186 return MBX_NOT_FINISHED; 10187 } 10188 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10189 spin_unlock_irqrestore(&phba->hbalock, iflags); 10190 return MBX_NOT_FINISHED; 10191 } 10192 if (unlikely(phba->sli.mbox_active)) { 10193 spin_unlock_irqrestore(&phba->hbalock, iflags); 10194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10195 "0384 There is pending active mailbox cmd\n"); 10196 return MBX_NOT_FINISHED; 10197 } 10198 /* Take the mailbox command service token */ 10199 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10200 10201 /* Get the next mailbox command from head of queue */ 10202 mboxq = lpfc_mbox_get(phba); 10203 10204 /* If no more mailbox command waiting for post, we're done */ 10205 if (!mboxq) { 10206 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10207 spin_unlock_irqrestore(&phba->hbalock, iflags); 10208 return MBX_SUCCESS; 10209 } 10210 phba->sli.mbox_active = mboxq; 10211 spin_unlock_irqrestore(&phba->hbalock, iflags); 10212 10213 /* Check device readiness for posting mailbox command */ 10214 rc = lpfc_mbox_dev_check(phba); 10215 if (unlikely(rc)) 10216 /* Driver clean routine will clean up pending mailbox */ 10217 goto out_not_finished; 10218 10219 /* Prepare the mbox command to be posted */ 10220 mqe = &mboxq->u.mqe; 10221 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10222 10223 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10224 mod_timer(&psli->mbox_tmo, (jiffies + 10225 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10226 10227 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10228 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10229 "x%x x%x\n", 10230 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10231 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10232 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10233 phba->pport->port_state, psli->sli_flag); 10234 10235 if (mbx_cmnd != MBX_HEARTBEAT) { 10236 if (mboxq->vport) { 10237 lpfc_debugfs_disc_trc(mboxq->vport, 10238 LPFC_DISC_TRC_MBOX_VPORT, 10239 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10240 mbx_cmnd, mqe->un.mb_words[0], 10241 mqe->un.mb_words[1]); 10242 } else { 10243 lpfc_debugfs_disc_trc(phba->pport, 10244 LPFC_DISC_TRC_MBOX, 10245 "MBOX Send: cmd:x%x mb:x%x x%x", 10246 mbx_cmnd, mqe->un.mb_words[0], 10247 mqe->un.mb_words[1]); 10248 } 10249 } 10250 psli->slistat.mbox_cmd++; 10251 10252 /* Post the mailbox command to the port */ 10253 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10254 if (rc != MBX_SUCCESS) { 10255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10256 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10257 "cannot issue Data: x%x x%x\n", 10258 mboxq->vport ? mboxq->vport->vpi : 0, 10259 mboxq->u.mb.mbxCommand, 10260 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10261 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10262 psli->sli_flag, MBX_NOWAIT); 10263 goto out_not_finished; 10264 } 10265 10266 return rc; 10267 10268 out_not_finished: 10269 spin_lock_irqsave(&phba->hbalock, iflags); 10270 if (phba->sli.mbox_active) { 10271 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10272 __lpfc_mbox_cmpl_put(phba, mboxq); 10273 /* Release the token */ 10274 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10275 phba->sli.mbox_active = NULL; 10276 } 10277 spin_unlock_irqrestore(&phba->hbalock, iflags); 10278 10279 return MBX_NOT_FINISHED; 10280 } 10281 10282 /** 10283 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10284 * @phba: Pointer to HBA context object. 10285 * @pmbox: Pointer to mailbox object. 10286 * @flag: Flag indicating how the mailbox need to be processed. 10287 * 10288 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10289 * the API jump table function pointer from the lpfc_hba struct. 10290 * 10291 * Return codes the caller owns the mailbox command after the return of the 10292 * function. 10293 **/ 10294 int 10295 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10296 { 10297 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10298 } 10299 10300 /** 10301 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10302 * @phba: The hba struct for which this call is being executed. 10303 * @dev_grp: The HBA PCI-Device group number. 10304 * 10305 * This routine sets up the mbox interface API function jump table in @phba 10306 * struct. 10307 * Returns: 0 - success, -ENODEV - failure. 10308 **/ 10309 int 10310 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10311 { 10312 10313 switch (dev_grp) { 10314 case LPFC_PCI_DEV_LP: 10315 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10316 phba->lpfc_sli_handle_slow_ring_event = 10317 lpfc_sli_handle_slow_ring_event_s3; 10318 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10319 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10320 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10321 break; 10322 case LPFC_PCI_DEV_OC: 10323 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10324 phba->lpfc_sli_handle_slow_ring_event = 10325 lpfc_sli_handle_slow_ring_event_s4; 10326 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10327 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10328 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10329 break; 10330 default: 10331 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10332 "1420 Invalid HBA PCI-device group: 0x%x\n", 10333 dev_grp); 10334 return -ENODEV; 10335 } 10336 return 0; 10337 } 10338 10339 /** 10340 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10341 * @phba: Pointer to HBA context object. 10342 * @pring: Pointer to driver SLI ring object. 10343 * @piocb: Pointer to address of newly added command iocb. 10344 * 10345 * This function is called with hbalock held for SLI3 ports or 10346 * the ring lock held for SLI4 ports to add a command 10347 * iocb to the txq when SLI layer cannot submit the command iocb 10348 * to the ring. 10349 **/ 10350 void 10351 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10352 struct lpfc_iocbq *piocb) 10353 { 10354 if (phba->sli_rev == LPFC_SLI_REV4) 10355 lockdep_assert_held(&pring->ring_lock); 10356 else 10357 lockdep_assert_held(&phba->hbalock); 10358 /* Insert the caller's iocb in the txq tail for later processing. */ 10359 list_add_tail(&piocb->list, &pring->txq); 10360 } 10361 10362 /** 10363 * lpfc_sli_next_iocb - Get the next iocb in the txq 10364 * @phba: Pointer to HBA context object. 10365 * @pring: Pointer to driver SLI ring object. 10366 * @piocb: Pointer to address of newly added command iocb. 10367 * 10368 * This function is called with hbalock held before a new 10369 * iocb is submitted to the firmware. This function checks 10370 * txq to flush the iocbs in txq to Firmware before 10371 * submitting new iocbs to the Firmware. 10372 * If there are iocbs in the txq which need to be submitted 10373 * to firmware, lpfc_sli_next_iocb returns the first element 10374 * of the txq after dequeuing it from txq. 10375 * If there is no iocb in the txq then the function will return 10376 * *piocb and *piocb is set to NULL. Caller needs to check 10377 * *piocb to find if there are more commands in the txq. 10378 **/ 10379 static struct lpfc_iocbq * 10380 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10381 struct lpfc_iocbq **piocb) 10382 { 10383 struct lpfc_iocbq * nextiocb; 10384 10385 lockdep_assert_held(&phba->hbalock); 10386 10387 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10388 if (!nextiocb) { 10389 nextiocb = *piocb; 10390 *piocb = NULL; 10391 } 10392 10393 return nextiocb; 10394 } 10395 10396 /** 10397 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10398 * @phba: Pointer to HBA context object. 10399 * @ring_number: SLI ring number to issue iocb on. 10400 * @piocb: Pointer to command iocb. 10401 * @flag: Flag indicating if this command can be put into txq. 10402 * 10403 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10404 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10405 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10406 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10407 * this function allows only iocbs for posting buffers. This function finds 10408 * next available slot in the command ring and posts the command to the 10409 * available slot and writes the port attention register to request HBA start 10410 * processing new iocb. If there is no slot available in the ring and 10411 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10412 * the function returns IOCB_BUSY. 10413 * 10414 * This function is called with hbalock held. The function will return success 10415 * after it successfully submit the iocb to firmware or after adding to the 10416 * txq. 10417 **/ 10418 static int 10419 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10420 struct lpfc_iocbq *piocb, uint32_t flag) 10421 { 10422 struct lpfc_iocbq *nextiocb; 10423 IOCB_t *iocb; 10424 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10425 10426 lockdep_assert_held(&phba->hbalock); 10427 10428 if (piocb->cmd_cmpl && (!piocb->vport) && 10429 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10430 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10432 "1807 IOCB x%x failed. No vport\n", 10433 piocb->iocb.ulpCommand); 10434 dump_stack(); 10435 return IOCB_ERROR; 10436 } 10437 10438 10439 /* If the PCI channel is in offline state, do not post iocbs. */ 10440 if (unlikely(pci_channel_offline(phba->pcidev))) 10441 return IOCB_ERROR; 10442 10443 /* If HBA has a deferred error attention, fail the iocb. */ 10444 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10445 return IOCB_ERROR; 10446 10447 /* 10448 * We should never get an IOCB if we are in a < LINK_DOWN state 10449 */ 10450 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10451 return IOCB_ERROR; 10452 10453 /* 10454 * Check to see if we are blocking IOCB processing because of a 10455 * outstanding event. 10456 */ 10457 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10458 goto iocb_busy; 10459 10460 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10461 /* 10462 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10463 * can be issued if the link is not up. 10464 */ 10465 switch (piocb->iocb.ulpCommand) { 10466 case CMD_QUE_RING_BUF_CN: 10467 case CMD_QUE_RING_BUF64_CN: 10468 /* 10469 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10470 * completion, cmd_cmpl MUST be 0. 10471 */ 10472 if (piocb->cmd_cmpl) 10473 piocb->cmd_cmpl = NULL; 10474 fallthrough; 10475 case CMD_CREATE_XRI_CR: 10476 case CMD_CLOSE_XRI_CN: 10477 case CMD_CLOSE_XRI_CX: 10478 break; 10479 default: 10480 goto iocb_busy; 10481 } 10482 10483 /* 10484 * For FCP commands, we must be in a state where we can process link 10485 * attention events. 10486 */ 10487 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10488 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10489 goto iocb_busy; 10490 } 10491 10492 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10493 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10494 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10495 10496 if (iocb) 10497 lpfc_sli_update_ring(phba, pring); 10498 else 10499 lpfc_sli_update_full_ring(phba, pring); 10500 10501 if (!piocb) 10502 return IOCB_SUCCESS; 10503 10504 goto out_busy; 10505 10506 iocb_busy: 10507 pring->stats.iocb_cmd_delay++; 10508 10509 out_busy: 10510 10511 if (!(flag & SLI_IOCB_RET_IOCB)) { 10512 __lpfc_sli_ringtx_put(phba, pring, piocb); 10513 return IOCB_SUCCESS; 10514 } 10515 10516 return IOCB_BUSY; 10517 } 10518 10519 /** 10520 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10521 * @phba: Pointer to HBA context object. 10522 * @ring_number: SLI ring number to issue wqe on. 10523 * @piocb: Pointer to command iocb. 10524 * @flag: Flag indicating if this command can be put into txq. 10525 * 10526 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10527 * send an iocb command to an HBA with SLI-3 interface spec. 10528 * 10529 * This function takes the hbalock before invoking the lockless version. 10530 * The function will return success after it successfully submit the wqe to 10531 * firmware or after adding to the txq. 10532 **/ 10533 static int 10534 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10535 struct lpfc_iocbq *piocb, uint32_t flag) 10536 { 10537 unsigned long iflags; 10538 int rc; 10539 10540 spin_lock_irqsave(&phba->hbalock, iflags); 10541 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10542 spin_unlock_irqrestore(&phba->hbalock, iflags); 10543 10544 return rc; 10545 } 10546 10547 /** 10548 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10549 * @phba: Pointer to HBA context object. 10550 * @ring_number: SLI ring number to issue wqe on. 10551 * @piocb: Pointer to command iocb. 10552 * @flag: Flag indicating if this command can be put into txq. 10553 * 10554 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10555 * an wqe command to an HBA with SLI-4 interface spec. 10556 * 10557 * This function is a lockless version. The function will return success 10558 * after it successfully submit the wqe to firmware or after adding to the 10559 * txq. 10560 **/ 10561 static int 10562 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10563 struct lpfc_iocbq *piocb, uint32_t flag) 10564 { 10565 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10566 10567 lpfc_prep_embed_io(phba, lpfc_cmd); 10568 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10569 } 10570 10571 void 10572 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10573 { 10574 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10575 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10576 struct sli4_sge *sgl; 10577 10578 /* 128 byte wqe support here */ 10579 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10580 10581 if (phba->fcp_embed_io) { 10582 struct fcp_cmnd *fcp_cmnd; 10583 u32 *ptr; 10584 10585 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10586 10587 /* Word 0-2 - FCP_CMND */ 10588 wqe->generic.bde.tus.f.bdeFlags = 10589 BUFF_TYPE_BDE_IMMED; 10590 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10591 wqe->generic.bde.addrHigh = 0; 10592 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10593 10594 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10595 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10596 10597 /* Word 22-29 FCP CMND Payload */ 10598 ptr = &wqe->words[22]; 10599 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10600 } else { 10601 /* Word 0-2 - Inline BDE */ 10602 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10603 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10604 wqe->generic.bde.addrHigh = sgl->addr_hi; 10605 wqe->generic.bde.addrLow = sgl->addr_lo; 10606 10607 /* Word 10 */ 10608 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10609 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10610 } 10611 10612 /* add the VMID tags as per switch response */ 10613 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10614 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10615 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10616 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10617 (piocb->vmid_tag.cs_ctl_vmid)); 10618 } else if (phba->cfg_vmid_app_header) { 10619 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10620 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10621 wqe->words[31] = piocb->vmid_tag.app_id; 10622 } 10623 } 10624 } 10625 10626 /** 10627 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10628 * @phba: Pointer to HBA context object. 10629 * @ring_number: SLI ring number to issue iocb on. 10630 * @piocb: Pointer to command iocb. 10631 * @flag: Flag indicating if this command can be put into txq. 10632 * 10633 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10634 * an iocb command to an HBA with SLI-4 interface spec. 10635 * 10636 * This function is called with ringlock held. The function will return success 10637 * after it successfully submit the iocb to firmware or after adding to the 10638 * txq. 10639 **/ 10640 static int 10641 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10642 struct lpfc_iocbq *piocb, uint32_t flag) 10643 { 10644 struct lpfc_sglq *sglq; 10645 union lpfc_wqe128 *wqe; 10646 struct lpfc_queue *wq; 10647 struct lpfc_sli_ring *pring; 10648 u32 ulp_command = get_job_cmnd(phba, piocb); 10649 10650 /* Get the WQ */ 10651 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10652 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10653 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10654 } else { 10655 wq = phba->sli4_hba.els_wq; 10656 } 10657 10658 /* Get corresponding ring */ 10659 pring = wq->pring; 10660 10661 /* 10662 * The WQE can be either 64 or 128 bytes, 10663 */ 10664 10665 lockdep_assert_held(&pring->ring_lock); 10666 wqe = &piocb->wqe; 10667 if (piocb->sli4_xritag == NO_XRI) { 10668 if (ulp_command == CMD_ABORT_XRI_CX) 10669 sglq = NULL; 10670 else { 10671 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10672 if (!sglq) { 10673 if (!(flag & SLI_IOCB_RET_IOCB)) { 10674 __lpfc_sli_ringtx_put(phba, 10675 pring, 10676 piocb); 10677 return IOCB_SUCCESS; 10678 } else { 10679 return IOCB_BUSY; 10680 } 10681 } 10682 } 10683 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10684 /* These IO's already have an XRI and a mapped sgl. */ 10685 sglq = NULL; 10686 } 10687 else { 10688 /* 10689 * This is a continuation of a commandi,(CX) so this 10690 * sglq is on the active list 10691 */ 10692 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10693 if (!sglq) 10694 return IOCB_ERROR; 10695 } 10696 10697 if (sglq) { 10698 piocb->sli4_lxritag = sglq->sli4_lxritag; 10699 piocb->sli4_xritag = sglq->sli4_xritag; 10700 10701 /* ABTS sent by initiator to CT exchange, the 10702 * RX_ID field will be filled with the newly 10703 * allocated responder XRI. 10704 */ 10705 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10706 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10707 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10708 piocb->sli4_xritag); 10709 10710 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10711 piocb->sli4_xritag); 10712 10713 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10714 return IOCB_ERROR; 10715 } 10716 10717 if (lpfc_sli4_wq_put(wq, wqe)) 10718 return IOCB_ERROR; 10719 10720 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10721 10722 return 0; 10723 } 10724 10725 /* 10726 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10727 * 10728 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10729 * or IOCB for sli-3 function. 10730 * pointer from the lpfc_hba struct. 10731 * 10732 * Return codes: 10733 * IOCB_ERROR - Error 10734 * IOCB_SUCCESS - Success 10735 * IOCB_BUSY - Busy 10736 **/ 10737 int 10738 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10739 struct lpfc_iocbq *piocb, uint32_t flag) 10740 { 10741 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10742 } 10743 10744 /* 10745 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10746 * 10747 * This routine wraps the actual lockless version for issusing IOCB function 10748 * pointer from the lpfc_hba struct. 10749 * 10750 * Return codes: 10751 * IOCB_ERROR - Error 10752 * IOCB_SUCCESS - Success 10753 * IOCB_BUSY - Busy 10754 **/ 10755 int 10756 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10757 struct lpfc_iocbq *piocb, uint32_t flag) 10758 { 10759 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10760 } 10761 10762 static void 10763 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10764 struct lpfc_vport *vport, 10765 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10766 u32 elscmd, u8 tmo, u8 expect_rsp) 10767 { 10768 struct lpfc_hba *phba = vport->phba; 10769 IOCB_t *cmd; 10770 10771 cmd = &cmdiocbq->iocb; 10772 memset(cmd, 0, sizeof(*cmd)); 10773 10774 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10775 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10776 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10777 10778 if (expect_rsp) { 10779 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10780 cmd->un.elsreq64.remoteID = did; /* DID */ 10781 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10782 cmd->ulpTimeout = tmo; 10783 } else { 10784 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10785 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10786 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10787 cmd->ulpPU = PARM_NPIV_DID; 10788 } 10789 cmd->ulpBdeCount = 1; 10790 cmd->ulpLe = 1; 10791 cmd->ulpClass = CLASS3; 10792 10793 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10794 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10795 if (expect_rsp) { 10796 cmd->un.elsreq64.myID = vport->fc_myDID; 10797 10798 /* For ELS_REQUEST64_CR, use the VPI by default */ 10799 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10800 } 10801 10802 cmd->ulpCt_h = 0; 10803 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10804 if (elscmd == ELS_CMD_ECHO) 10805 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10806 else 10807 cmd->ulpCt_l = 1; /* context = VPI */ 10808 } 10809 } 10810 10811 static void 10812 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10813 struct lpfc_vport *vport, 10814 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10815 u32 elscmd, u8 tmo, u8 expect_rsp) 10816 { 10817 struct lpfc_hba *phba = vport->phba; 10818 union lpfc_wqe128 *wqe; 10819 struct ulp_bde64_le *bde; 10820 u8 els_id; 10821 10822 wqe = &cmdiocbq->wqe; 10823 memset(wqe, 0, sizeof(*wqe)); 10824 10825 /* Word 0 - 2 BDE */ 10826 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10827 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10828 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10829 bde->type_size = cpu_to_le32(cmd_size); 10830 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10831 10832 if (expect_rsp) { 10833 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10834 10835 /* Transfer length */ 10836 wqe->els_req.payload_len = cmd_size; 10837 wqe->els_req.max_response_payload_len = FCELSSIZE; 10838 10839 /* DID */ 10840 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10841 10842 /* Word 11 - ELS_ID */ 10843 switch (elscmd) { 10844 case ELS_CMD_PLOGI: 10845 els_id = LPFC_ELS_ID_PLOGI; 10846 break; 10847 case ELS_CMD_FLOGI: 10848 els_id = LPFC_ELS_ID_FLOGI; 10849 break; 10850 case ELS_CMD_LOGO: 10851 els_id = LPFC_ELS_ID_LOGO; 10852 break; 10853 case ELS_CMD_FDISC: 10854 if (!vport->fc_myDID) { 10855 els_id = LPFC_ELS_ID_FDISC; 10856 break; 10857 } 10858 fallthrough; 10859 default: 10860 els_id = LPFC_ELS_ID_DEFAULT; 10861 break; 10862 } 10863 10864 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10865 } else { 10866 /* DID */ 10867 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10868 10869 /* Transfer length */ 10870 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10871 10872 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10873 CMD_XMIT_ELS_RSP64_WQE); 10874 } 10875 10876 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10877 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10878 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10879 10880 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10881 * For SLI4, since the driver controls VPIs we also want to include 10882 * all ELS pt2pt protocol traffic as well. 10883 */ 10884 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10885 (vport->fc_flag & FC_PT2PT)) { 10886 if (expect_rsp) { 10887 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10888 10889 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10890 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10891 phba->vpi_ids[vport->vpi]); 10892 } 10893 10894 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10895 if (elscmd == ELS_CMD_ECHO) 10896 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10897 else 10898 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10899 } 10900 } 10901 10902 void 10903 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10904 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10905 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10906 u8 expect_rsp) 10907 { 10908 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10909 elscmd, tmo, expect_rsp); 10910 } 10911 10912 static void 10913 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10914 u16 rpi, u32 num_entry, u8 tmo) 10915 { 10916 IOCB_t *cmd; 10917 10918 cmd = &cmdiocbq->iocb; 10919 memset(cmd, 0, sizeof(*cmd)); 10920 10921 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10922 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10923 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10924 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10925 10926 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10927 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10928 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10929 10930 cmd->ulpContext = rpi; 10931 cmd->ulpClass = CLASS3; 10932 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10933 cmd->ulpBdeCount = 1; 10934 cmd->ulpLe = 1; 10935 cmd->ulpOwner = OWN_CHIP; 10936 cmd->ulpTimeout = tmo; 10937 } 10938 10939 static void 10940 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10941 u16 rpi, u32 num_entry, u8 tmo) 10942 { 10943 union lpfc_wqe128 *cmdwqe; 10944 struct ulp_bde64_le *bde, *bpl; 10945 u32 xmit_len = 0, total_len = 0, size, type, i; 10946 10947 cmdwqe = &cmdiocbq->wqe; 10948 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10949 10950 /* Calculate total_len and xmit_len */ 10951 bpl = (struct ulp_bde64_le *)bmp->virt; 10952 for (i = 0; i < num_entry; i++) { 10953 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10954 total_len += size; 10955 } 10956 for (i = 0; i < num_entry; i++) { 10957 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10958 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10959 if (type != ULP_BDE64_TYPE_BDE_64) 10960 break; 10961 xmit_len += size; 10962 } 10963 10964 /* Words 0 - 2 */ 10965 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10966 bde->addr_low = bpl->addr_low; 10967 bde->addr_high = bpl->addr_high; 10968 bde->type_size = cpu_to_le32(xmit_len); 10969 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10970 10971 /* Word 3 */ 10972 cmdwqe->gen_req.request_payload_len = xmit_len; 10973 10974 /* Word 5 */ 10975 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10976 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10977 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10978 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10979 10980 /* Word 6 */ 10981 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10982 10983 /* Word 7 */ 10984 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10985 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10986 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10987 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10988 10989 /* Word 12 */ 10990 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10991 } 10992 10993 void 10994 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10995 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10996 { 10997 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10998 } 10999 11000 static void 11001 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11002 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11003 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11004 { 11005 IOCB_t *icmd; 11006 11007 icmd = &cmdiocbq->iocb; 11008 memset(icmd, 0, sizeof(*icmd)); 11009 11010 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11011 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11012 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11013 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11014 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11015 if (last_seq) 11016 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11017 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11018 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11019 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11020 11021 icmd->ulpBdeCount = 1; 11022 icmd->ulpLe = 1; 11023 icmd->ulpClass = CLASS3; 11024 11025 switch (cr_cx_cmd) { 11026 case CMD_XMIT_SEQUENCE64_CR: 11027 icmd->ulpContext = rpi; 11028 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11029 break; 11030 case CMD_XMIT_SEQUENCE64_CX: 11031 icmd->ulpContext = ox_id; 11032 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11033 break; 11034 default: 11035 break; 11036 } 11037 } 11038 11039 static void 11040 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11041 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11042 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11043 { 11044 union lpfc_wqe128 *wqe; 11045 struct ulp_bde64 *bpl; 11046 11047 wqe = &cmdiocbq->wqe; 11048 memset(wqe, 0, sizeof(*wqe)); 11049 11050 /* Words 0 - 2 */ 11051 bpl = (struct ulp_bde64 *)bmp->virt; 11052 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11053 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11054 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11055 11056 /* Word 5 */ 11057 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11058 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11059 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11060 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11061 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11062 11063 /* Word 6 */ 11064 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11065 11066 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11067 CMD_XMIT_SEQUENCE64_WQE); 11068 11069 /* Word 7 */ 11070 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11071 11072 /* Word 9 */ 11073 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11074 11075 /* Word 12 */ 11076 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11077 wqe->xmit_sequence.xmit_len = full_size; 11078 else 11079 wqe->xmit_sequence.xmit_len = 11080 wqe->xmit_sequence.bde.tus.f.bdeSize; 11081 } 11082 11083 void 11084 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11085 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11086 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11087 { 11088 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11089 rctl, last_seq, cr_cx_cmd); 11090 } 11091 11092 static void 11093 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11094 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11095 bool wqec) 11096 { 11097 IOCB_t *icmd = NULL; 11098 11099 icmd = &cmdiocbq->iocb; 11100 memset(icmd, 0, sizeof(*icmd)); 11101 11102 /* Word 5 */ 11103 icmd->un.acxri.abortContextTag = ulp_context; 11104 icmd->un.acxri.abortIoTag = iotag; 11105 11106 if (ia) { 11107 /* Word 7 */ 11108 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11109 } else { 11110 /* Word 3 */ 11111 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11112 11113 /* Word 7 */ 11114 icmd->ulpClass = ulp_class; 11115 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11116 } 11117 11118 /* Word 7 */ 11119 icmd->ulpLe = 1; 11120 } 11121 11122 static void 11123 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11124 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11125 bool wqec) 11126 { 11127 union lpfc_wqe128 *wqe; 11128 11129 wqe = &cmdiocbq->wqe; 11130 memset(wqe, 0, sizeof(*wqe)); 11131 11132 /* Word 3 */ 11133 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11134 if (ia) 11135 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11136 else 11137 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11138 11139 /* Word 7 */ 11140 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11141 11142 /* Word 8 */ 11143 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11144 11145 /* Word 9 */ 11146 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11147 11148 /* Word 10 */ 11149 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11150 11151 /* Word 11 */ 11152 if (wqec) 11153 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11154 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11155 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11156 } 11157 11158 void 11159 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11160 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11161 bool ia, bool wqec) 11162 { 11163 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11164 cqid, ia, wqec); 11165 } 11166 11167 /** 11168 * lpfc_sli_api_table_setup - Set up sli api function jump table 11169 * @phba: The hba struct for which this call is being executed. 11170 * @dev_grp: The HBA PCI-Device group number. 11171 * 11172 * This routine sets up the SLI interface API function jump table in @phba 11173 * struct. 11174 * Returns: 0 - success, -ENODEV - failure. 11175 **/ 11176 int 11177 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11178 { 11179 11180 switch (dev_grp) { 11181 case LPFC_PCI_DEV_LP: 11182 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11183 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11184 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11185 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11186 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11187 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11188 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11189 break; 11190 case LPFC_PCI_DEV_OC: 11191 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11192 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11193 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11194 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11195 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11196 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11197 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11198 break; 11199 default: 11200 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11201 "1419 Invalid HBA PCI-device group: 0x%x\n", 11202 dev_grp); 11203 return -ENODEV; 11204 } 11205 return 0; 11206 } 11207 11208 /** 11209 * lpfc_sli4_calc_ring - Calculates which ring to use 11210 * @phba: Pointer to HBA context object. 11211 * @piocb: Pointer to command iocb. 11212 * 11213 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11214 * hba_wqidx, thus we need to calculate the corresponding ring. 11215 * Since ABORTS must go on the same WQ of the command they are 11216 * aborting, we use command's hba_wqidx. 11217 */ 11218 struct lpfc_sli_ring * 11219 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11220 { 11221 struct lpfc_io_buf *lpfc_cmd; 11222 11223 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11224 if (unlikely(!phba->sli4_hba.hdwq)) 11225 return NULL; 11226 /* 11227 * for abort iocb hba_wqidx should already 11228 * be setup based on what work queue we used. 11229 */ 11230 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11231 lpfc_cmd = piocb->io_buf; 11232 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11233 } 11234 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11235 } else { 11236 if (unlikely(!phba->sli4_hba.els_wq)) 11237 return NULL; 11238 piocb->hba_wqidx = 0; 11239 return phba->sli4_hba.els_wq->pring; 11240 } 11241 } 11242 11243 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11244 { 11245 struct lpfc_hba *phba = eq->phba; 11246 11247 /* 11248 * Unlocking an irq is one of the entry point to check 11249 * for re-schedule, but we are good for io submission 11250 * path as midlayer does a get_cpu to glue us in. Flush 11251 * out the invalidate queue so we can see the updated 11252 * value for flag. 11253 */ 11254 smp_rmb(); 11255 11256 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11257 /* We will not likely get the completion for the caller 11258 * during this iteration but i guess that's fine. 11259 * Future io's coming on this eq should be able to 11260 * pick it up. As for the case of single io's, they 11261 * will be handled through a sched from polling timer 11262 * function which is currently triggered every 1msec. 11263 */ 11264 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11265 LPFC_QUEUE_WORK); 11266 } 11267 11268 /** 11269 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11270 * @phba: Pointer to HBA context object. 11271 * @ring_number: Ring number 11272 * @piocb: Pointer to command iocb. 11273 * @flag: Flag indicating if this command can be put into txq. 11274 * 11275 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11276 * function. This function gets the hbalock and calls 11277 * __lpfc_sli_issue_iocb function and will return the error returned 11278 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11279 * functions which do not hold hbalock. 11280 **/ 11281 int 11282 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11283 struct lpfc_iocbq *piocb, uint32_t flag) 11284 { 11285 struct lpfc_sli_ring *pring; 11286 struct lpfc_queue *eq; 11287 unsigned long iflags; 11288 int rc; 11289 11290 /* If the PCI channel is in offline state, do not post iocbs. */ 11291 if (unlikely(pci_channel_offline(phba->pcidev))) 11292 return IOCB_ERROR; 11293 11294 if (phba->sli_rev == LPFC_SLI_REV4) { 11295 lpfc_sli_prep_wqe(phba, piocb); 11296 11297 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11298 11299 pring = lpfc_sli4_calc_ring(phba, piocb); 11300 if (unlikely(pring == NULL)) 11301 return IOCB_ERROR; 11302 11303 spin_lock_irqsave(&pring->ring_lock, iflags); 11304 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11305 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11306 11307 lpfc_sli4_poll_eq(eq); 11308 } else { 11309 /* For now, SLI2/3 will still use hbalock */ 11310 spin_lock_irqsave(&phba->hbalock, iflags); 11311 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11312 spin_unlock_irqrestore(&phba->hbalock, iflags); 11313 } 11314 return rc; 11315 } 11316 11317 /** 11318 * lpfc_extra_ring_setup - Extra ring setup function 11319 * @phba: Pointer to HBA context object. 11320 * 11321 * This function is called while driver attaches with the 11322 * HBA to setup the extra ring. The extra ring is used 11323 * only when driver needs to support target mode functionality 11324 * or IP over FC functionalities. 11325 * 11326 * This function is called with no lock held. SLI3 only. 11327 **/ 11328 static int 11329 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11330 { 11331 struct lpfc_sli *psli; 11332 struct lpfc_sli_ring *pring; 11333 11334 psli = &phba->sli; 11335 11336 /* Adjust cmd/rsp ring iocb entries more evenly */ 11337 11338 /* Take some away from the FCP ring */ 11339 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11340 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11341 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11342 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11343 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11344 11345 /* and give them to the extra ring */ 11346 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11347 11348 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11349 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11350 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11351 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11352 11353 /* Setup default profile for this ring */ 11354 pring->iotag_max = 4096; 11355 pring->num_mask = 1; 11356 pring->prt[0].profile = 0; /* Mask 0 */ 11357 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11358 pring->prt[0].type = phba->cfg_multi_ring_type; 11359 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11360 return 0; 11361 } 11362 11363 static void 11364 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11365 struct lpfc_nodelist *ndlp) 11366 { 11367 unsigned long iflags; 11368 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11369 11370 spin_lock_irqsave(&phba->hbalock, iflags); 11371 if (!list_empty(&evtp->evt_listp)) { 11372 spin_unlock_irqrestore(&phba->hbalock, iflags); 11373 return; 11374 } 11375 11376 /* Incrementing the reference count until the queued work is done. */ 11377 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11378 if (!evtp->evt_arg1) { 11379 spin_unlock_irqrestore(&phba->hbalock, iflags); 11380 return; 11381 } 11382 evtp->evt = LPFC_EVT_RECOVER_PORT; 11383 list_add_tail(&evtp->evt_listp, &phba->work_list); 11384 spin_unlock_irqrestore(&phba->hbalock, iflags); 11385 11386 lpfc_worker_wake_up(phba); 11387 } 11388 11389 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11390 * @phba: Pointer to HBA context object. 11391 * @iocbq: Pointer to iocb object. 11392 * 11393 * The async_event handler calls this routine when it receives 11394 * an ASYNC_STATUS_CN event from the port. The port generates 11395 * this event when an Abort Sequence request to an rport fails 11396 * twice in succession. The abort could be originated by the 11397 * driver or by the port. The ABTS could have been for an ELS 11398 * or FCP IO. The port only generates this event when an ABTS 11399 * fails to complete after one retry. 11400 */ 11401 static void 11402 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11403 struct lpfc_iocbq *iocbq) 11404 { 11405 struct lpfc_nodelist *ndlp = NULL; 11406 uint16_t rpi = 0, vpi = 0; 11407 struct lpfc_vport *vport = NULL; 11408 11409 /* The rpi in the ulpContext is vport-sensitive. */ 11410 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11411 rpi = iocbq->iocb.ulpContext; 11412 11413 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11414 "3092 Port generated ABTS async event " 11415 "on vpi %d rpi %d status 0x%x\n", 11416 vpi, rpi, iocbq->iocb.ulpStatus); 11417 11418 vport = lpfc_find_vport_by_vpid(phba, vpi); 11419 if (!vport) 11420 goto err_exit; 11421 ndlp = lpfc_findnode_rpi(vport, rpi); 11422 if (!ndlp) 11423 goto err_exit; 11424 11425 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11426 lpfc_sli_abts_recover_port(vport, ndlp); 11427 return; 11428 11429 err_exit: 11430 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11431 "3095 Event Context not found, no " 11432 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11433 vpi, rpi, iocbq->iocb.ulpStatus, 11434 iocbq->iocb.ulpContext); 11435 } 11436 11437 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11438 * @phba: pointer to HBA context object. 11439 * @ndlp: nodelist pointer for the impacted rport. 11440 * @axri: pointer to the wcqe containing the failed exchange. 11441 * 11442 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11443 * port. The port generates this event when an abort exchange request to an 11444 * rport fails twice in succession with no reply. The abort could be originated 11445 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11446 */ 11447 void 11448 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11449 struct lpfc_nodelist *ndlp, 11450 struct sli4_wcqe_xri_aborted *axri) 11451 { 11452 uint32_t ext_status = 0; 11453 11454 if (!ndlp) { 11455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11456 "3115 Node Context not found, driver " 11457 "ignoring abts err event\n"); 11458 return; 11459 } 11460 11461 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11462 "3116 Port generated FCP XRI ABORT event on " 11463 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11464 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11465 bf_get(lpfc_wcqe_xa_xri, axri), 11466 bf_get(lpfc_wcqe_xa_status, axri), 11467 axri->parameter); 11468 11469 /* 11470 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11471 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11472 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11473 */ 11474 ext_status = axri->parameter & IOERR_PARAM_MASK; 11475 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11476 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11477 lpfc_sli_post_recovery_event(phba, ndlp); 11478 } 11479 11480 /** 11481 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11482 * @phba: Pointer to HBA context object. 11483 * @pring: Pointer to driver SLI ring object. 11484 * @iocbq: Pointer to iocb object. 11485 * 11486 * This function is called by the slow ring event handler 11487 * function when there is an ASYNC event iocb in the ring. 11488 * This function is called with no lock held. 11489 * Currently this function handles only temperature related 11490 * ASYNC events. The function decodes the temperature sensor 11491 * event message and posts events for the management applications. 11492 **/ 11493 static void 11494 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11495 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11496 { 11497 IOCB_t *icmd; 11498 uint16_t evt_code; 11499 struct temp_event temp_event_data; 11500 struct Scsi_Host *shost; 11501 uint32_t *iocb_w; 11502 11503 icmd = &iocbq->iocb; 11504 evt_code = icmd->un.asyncstat.evt_code; 11505 11506 switch (evt_code) { 11507 case ASYNC_TEMP_WARN: 11508 case ASYNC_TEMP_SAFE: 11509 temp_event_data.data = (uint32_t) icmd->ulpContext; 11510 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11511 if (evt_code == ASYNC_TEMP_WARN) { 11512 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11514 "0347 Adapter is very hot, please take " 11515 "corrective action. temperature : %d Celsius\n", 11516 (uint32_t) icmd->ulpContext); 11517 } else { 11518 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11520 "0340 Adapter temperature is OK now. " 11521 "temperature : %d Celsius\n", 11522 (uint32_t) icmd->ulpContext); 11523 } 11524 11525 /* Send temperature change event to applications */ 11526 shost = lpfc_shost_from_vport(phba->pport); 11527 fc_host_post_vendor_event(shost, fc_get_event_number(), 11528 sizeof(temp_event_data), (char *) &temp_event_data, 11529 LPFC_NL_VENDOR_ID); 11530 break; 11531 case ASYNC_STATUS_CN: 11532 lpfc_sli_abts_err_handler(phba, iocbq); 11533 break; 11534 default: 11535 iocb_w = (uint32_t *) icmd; 11536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11537 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11538 " evt_code 0x%x\n" 11539 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11540 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11541 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11542 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11543 pring->ringno, icmd->un.asyncstat.evt_code, 11544 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11545 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11546 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11547 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11548 11549 break; 11550 } 11551 } 11552 11553 11554 /** 11555 * lpfc_sli4_setup - SLI ring setup function 11556 * @phba: Pointer to HBA context object. 11557 * 11558 * lpfc_sli_setup sets up rings of the SLI interface with 11559 * number of iocbs per ring and iotags. This function is 11560 * called while driver attach to the HBA and before the 11561 * interrupts are enabled. So there is no need for locking. 11562 * 11563 * This function always returns 0. 11564 **/ 11565 int 11566 lpfc_sli4_setup(struct lpfc_hba *phba) 11567 { 11568 struct lpfc_sli_ring *pring; 11569 11570 pring = phba->sli4_hba.els_wq->pring; 11571 pring->num_mask = LPFC_MAX_RING_MASK; 11572 pring->prt[0].profile = 0; /* Mask 0 */ 11573 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11574 pring->prt[0].type = FC_TYPE_ELS; 11575 pring->prt[0].lpfc_sli_rcv_unsol_event = 11576 lpfc_els_unsol_event; 11577 pring->prt[1].profile = 0; /* Mask 1 */ 11578 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11579 pring->prt[1].type = FC_TYPE_ELS; 11580 pring->prt[1].lpfc_sli_rcv_unsol_event = 11581 lpfc_els_unsol_event; 11582 pring->prt[2].profile = 0; /* Mask 2 */ 11583 /* NameServer Inquiry */ 11584 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11585 /* NameServer */ 11586 pring->prt[2].type = FC_TYPE_CT; 11587 pring->prt[2].lpfc_sli_rcv_unsol_event = 11588 lpfc_ct_unsol_event; 11589 pring->prt[3].profile = 0; /* Mask 3 */ 11590 /* NameServer response */ 11591 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11592 /* NameServer */ 11593 pring->prt[3].type = FC_TYPE_CT; 11594 pring->prt[3].lpfc_sli_rcv_unsol_event = 11595 lpfc_ct_unsol_event; 11596 return 0; 11597 } 11598 11599 /** 11600 * lpfc_sli_setup - SLI ring setup function 11601 * @phba: Pointer to HBA context object. 11602 * 11603 * lpfc_sli_setup sets up rings of the SLI interface with 11604 * number of iocbs per ring and iotags. This function is 11605 * called while driver attach to the HBA and before the 11606 * interrupts are enabled. So there is no need for locking. 11607 * 11608 * This function always returns 0. SLI3 only. 11609 **/ 11610 int 11611 lpfc_sli_setup(struct lpfc_hba *phba) 11612 { 11613 int i, totiocbsize = 0; 11614 struct lpfc_sli *psli = &phba->sli; 11615 struct lpfc_sli_ring *pring; 11616 11617 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11618 psli->sli_flag = 0; 11619 11620 psli->iocbq_lookup = NULL; 11621 psli->iocbq_lookup_len = 0; 11622 psli->last_iotag = 0; 11623 11624 for (i = 0; i < psli->num_rings; i++) { 11625 pring = &psli->sli3_ring[i]; 11626 switch (i) { 11627 case LPFC_FCP_RING: /* ring 0 - FCP */ 11628 /* numCiocb and numRiocb are used in config_port */ 11629 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11630 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11631 pring->sli.sli3.numCiocb += 11632 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11633 pring->sli.sli3.numRiocb += 11634 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11635 pring->sli.sli3.numCiocb += 11636 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11637 pring->sli.sli3.numRiocb += 11638 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11639 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11640 SLI3_IOCB_CMD_SIZE : 11641 SLI2_IOCB_CMD_SIZE; 11642 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11643 SLI3_IOCB_RSP_SIZE : 11644 SLI2_IOCB_RSP_SIZE; 11645 pring->iotag_ctr = 0; 11646 pring->iotag_max = 11647 (phba->cfg_hba_queue_depth * 2); 11648 pring->fast_iotag = pring->iotag_max; 11649 pring->num_mask = 0; 11650 break; 11651 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11652 /* numCiocb and numRiocb are used in config_port */ 11653 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11654 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11655 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11656 SLI3_IOCB_CMD_SIZE : 11657 SLI2_IOCB_CMD_SIZE; 11658 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11659 SLI3_IOCB_RSP_SIZE : 11660 SLI2_IOCB_RSP_SIZE; 11661 pring->iotag_max = phba->cfg_hba_queue_depth; 11662 pring->num_mask = 0; 11663 break; 11664 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11665 /* numCiocb and numRiocb are used in config_port */ 11666 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11667 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11668 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11669 SLI3_IOCB_CMD_SIZE : 11670 SLI2_IOCB_CMD_SIZE; 11671 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11672 SLI3_IOCB_RSP_SIZE : 11673 SLI2_IOCB_RSP_SIZE; 11674 pring->fast_iotag = 0; 11675 pring->iotag_ctr = 0; 11676 pring->iotag_max = 4096; 11677 pring->lpfc_sli_rcv_async_status = 11678 lpfc_sli_async_event_handler; 11679 pring->num_mask = LPFC_MAX_RING_MASK; 11680 pring->prt[0].profile = 0; /* Mask 0 */ 11681 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11682 pring->prt[0].type = FC_TYPE_ELS; 11683 pring->prt[0].lpfc_sli_rcv_unsol_event = 11684 lpfc_els_unsol_event; 11685 pring->prt[1].profile = 0; /* Mask 1 */ 11686 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11687 pring->prt[1].type = FC_TYPE_ELS; 11688 pring->prt[1].lpfc_sli_rcv_unsol_event = 11689 lpfc_els_unsol_event; 11690 pring->prt[2].profile = 0; /* Mask 2 */ 11691 /* NameServer Inquiry */ 11692 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11693 /* NameServer */ 11694 pring->prt[2].type = FC_TYPE_CT; 11695 pring->prt[2].lpfc_sli_rcv_unsol_event = 11696 lpfc_ct_unsol_event; 11697 pring->prt[3].profile = 0; /* Mask 3 */ 11698 /* NameServer response */ 11699 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11700 /* NameServer */ 11701 pring->prt[3].type = FC_TYPE_CT; 11702 pring->prt[3].lpfc_sli_rcv_unsol_event = 11703 lpfc_ct_unsol_event; 11704 break; 11705 } 11706 totiocbsize += (pring->sli.sli3.numCiocb * 11707 pring->sli.sli3.sizeCiocb) + 11708 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11709 } 11710 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11711 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11712 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11713 "SLI2 SLIM Data: x%x x%lx\n", 11714 phba->brd_no, totiocbsize, 11715 (unsigned long) MAX_SLIM_IOCB_SIZE); 11716 } 11717 if (phba->cfg_multi_ring_support == 2) 11718 lpfc_extra_ring_setup(phba); 11719 11720 return 0; 11721 } 11722 11723 /** 11724 * lpfc_sli4_queue_init - Queue initialization function 11725 * @phba: Pointer to HBA context object. 11726 * 11727 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11728 * ring. This function also initializes ring indices of each ring. 11729 * This function is called during the initialization of the SLI 11730 * interface of an HBA. 11731 * This function is called with no lock held and always returns 11732 * 1. 11733 **/ 11734 void 11735 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11736 { 11737 struct lpfc_sli *psli; 11738 struct lpfc_sli_ring *pring; 11739 int i; 11740 11741 psli = &phba->sli; 11742 spin_lock_irq(&phba->hbalock); 11743 INIT_LIST_HEAD(&psli->mboxq); 11744 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11745 /* Initialize list headers for txq and txcmplq as double linked lists */ 11746 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11747 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11748 pring->flag = 0; 11749 pring->ringno = LPFC_FCP_RING; 11750 pring->txcmplq_cnt = 0; 11751 INIT_LIST_HEAD(&pring->txq); 11752 INIT_LIST_HEAD(&pring->txcmplq); 11753 INIT_LIST_HEAD(&pring->iocb_continueq); 11754 spin_lock_init(&pring->ring_lock); 11755 } 11756 pring = phba->sli4_hba.els_wq->pring; 11757 pring->flag = 0; 11758 pring->ringno = LPFC_ELS_RING; 11759 pring->txcmplq_cnt = 0; 11760 INIT_LIST_HEAD(&pring->txq); 11761 INIT_LIST_HEAD(&pring->txcmplq); 11762 INIT_LIST_HEAD(&pring->iocb_continueq); 11763 spin_lock_init(&pring->ring_lock); 11764 11765 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11766 pring = phba->sli4_hba.nvmels_wq->pring; 11767 pring->flag = 0; 11768 pring->ringno = LPFC_ELS_RING; 11769 pring->txcmplq_cnt = 0; 11770 INIT_LIST_HEAD(&pring->txq); 11771 INIT_LIST_HEAD(&pring->txcmplq); 11772 INIT_LIST_HEAD(&pring->iocb_continueq); 11773 spin_lock_init(&pring->ring_lock); 11774 } 11775 11776 spin_unlock_irq(&phba->hbalock); 11777 } 11778 11779 /** 11780 * lpfc_sli_queue_init - Queue initialization function 11781 * @phba: Pointer to HBA context object. 11782 * 11783 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11784 * ring. This function also initializes ring indices of each ring. 11785 * This function is called during the initialization of the SLI 11786 * interface of an HBA. 11787 * This function is called with no lock held and always returns 11788 * 1. 11789 **/ 11790 void 11791 lpfc_sli_queue_init(struct lpfc_hba *phba) 11792 { 11793 struct lpfc_sli *psli; 11794 struct lpfc_sli_ring *pring; 11795 int i; 11796 11797 psli = &phba->sli; 11798 spin_lock_irq(&phba->hbalock); 11799 INIT_LIST_HEAD(&psli->mboxq); 11800 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11801 /* Initialize list headers for txq and txcmplq as double linked lists */ 11802 for (i = 0; i < psli->num_rings; i++) { 11803 pring = &psli->sli3_ring[i]; 11804 pring->ringno = i; 11805 pring->sli.sli3.next_cmdidx = 0; 11806 pring->sli.sli3.local_getidx = 0; 11807 pring->sli.sli3.cmdidx = 0; 11808 INIT_LIST_HEAD(&pring->iocb_continueq); 11809 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11810 INIT_LIST_HEAD(&pring->postbufq); 11811 pring->flag = 0; 11812 INIT_LIST_HEAD(&pring->txq); 11813 INIT_LIST_HEAD(&pring->txcmplq); 11814 spin_lock_init(&pring->ring_lock); 11815 } 11816 spin_unlock_irq(&phba->hbalock); 11817 } 11818 11819 /** 11820 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11821 * @phba: Pointer to HBA context object. 11822 * 11823 * This routine flushes the mailbox command subsystem. It will unconditionally 11824 * flush all the mailbox commands in the three possible stages in the mailbox 11825 * command sub-system: pending mailbox command queue; the outstanding mailbox 11826 * command; and completed mailbox command queue. It is caller's responsibility 11827 * to make sure that the driver is in the proper state to flush the mailbox 11828 * command sub-system. Namely, the posting of mailbox commands into the 11829 * pending mailbox command queue from the various clients must be stopped; 11830 * either the HBA is in a state that it will never works on the outstanding 11831 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11832 * mailbox command has been completed. 11833 **/ 11834 static void 11835 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11836 { 11837 LIST_HEAD(completions); 11838 struct lpfc_sli *psli = &phba->sli; 11839 LPFC_MBOXQ_t *pmb; 11840 unsigned long iflag; 11841 11842 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11843 local_bh_disable(); 11844 11845 /* Flush all the mailbox commands in the mbox system */ 11846 spin_lock_irqsave(&phba->hbalock, iflag); 11847 11848 /* The pending mailbox command queue */ 11849 list_splice_init(&phba->sli.mboxq, &completions); 11850 /* The outstanding active mailbox command */ 11851 if (psli->mbox_active) { 11852 list_add_tail(&psli->mbox_active->list, &completions); 11853 psli->mbox_active = NULL; 11854 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11855 } 11856 /* The completed mailbox command queue */ 11857 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11858 spin_unlock_irqrestore(&phba->hbalock, iflag); 11859 11860 /* Enable softirqs again, done with phba->hbalock */ 11861 local_bh_enable(); 11862 11863 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11864 while (!list_empty(&completions)) { 11865 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11866 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11867 if (pmb->mbox_cmpl) 11868 pmb->mbox_cmpl(phba, pmb); 11869 } 11870 } 11871 11872 /** 11873 * lpfc_sli_host_down - Vport cleanup function 11874 * @vport: Pointer to virtual port object. 11875 * 11876 * lpfc_sli_host_down is called to clean up the resources 11877 * associated with a vport before destroying virtual 11878 * port data structures. 11879 * This function does following operations: 11880 * - Free discovery resources associated with this virtual 11881 * port. 11882 * - Free iocbs associated with this virtual port in 11883 * the txq. 11884 * - Send abort for all iocb commands associated with this 11885 * vport in txcmplq. 11886 * 11887 * This function is called with no lock held and always returns 1. 11888 **/ 11889 int 11890 lpfc_sli_host_down(struct lpfc_vport *vport) 11891 { 11892 LIST_HEAD(completions); 11893 struct lpfc_hba *phba = vport->phba; 11894 struct lpfc_sli *psli = &phba->sli; 11895 struct lpfc_queue *qp = NULL; 11896 struct lpfc_sli_ring *pring; 11897 struct lpfc_iocbq *iocb, *next_iocb; 11898 int i; 11899 unsigned long flags = 0; 11900 uint16_t prev_pring_flag; 11901 11902 lpfc_cleanup_discovery_resources(vport); 11903 11904 spin_lock_irqsave(&phba->hbalock, flags); 11905 11906 /* 11907 * Error everything on the txq since these iocbs 11908 * have not been given to the FW yet. 11909 * Also issue ABTS for everything on the txcmplq 11910 */ 11911 if (phba->sli_rev != LPFC_SLI_REV4) { 11912 for (i = 0; i < psli->num_rings; i++) { 11913 pring = &psli->sli3_ring[i]; 11914 prev_pring_flag = pring->flag; 11915 /* Only slow rings */ 11916 if (pring->ringno == LPFC_ELS_RING) { 11917 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11918 /* Set the lpfc data pending flag */ 11919 set_bit(LPFC_DATA_READY, &phba->data_flags); 11920 } 11921 list_for_each_entry_safe(iocb, next_iocb, 11922 &pring->txq, list) { 11923 if (iocb->vport != vport) 11924 continue; 11925 list_move_tail(&iocb->list, &completions); 11926 } 11927 list_for_each_entry_safe(iocb, next_iocb, 11928 &pring->txcmplq, list) { 11929 if (iocb->vport != vport) 11930 continue; 11931 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11932 NULL); 11933 } 11934 pring->flag = prev_pring_flag; 11935 } 11936 } else { 11937 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11938 pring = qp->pring; 11939 if (!pring) 11940 continue; 11941 if (pring == phba->sli4_hba.els_wq->pring) { 11942 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11943 /* Set the lpfc data pending flag */ 11944 set_bit(LPFC_DATA_READY, &phba->data_flags); 11945 } 11946 prev_pring_flag = pring->flag; 11947 spin_lock(&pring->ring_lock); 11948 list_for_each_entry_safe(iocb, next_iocb, 11949 &pring->txq, list) { 11950 if (iocb->vport != vport) 11951 continue; 11952 list_move_tail(&iocb->list, &completions); 11953 } 11954 spin_unlock(&pring->ring_lock); 11955 list_for_each_entry_safe(iocb, next_iocb, 11956 &pring->txcmplq, list) { 11957 if (iocb->vport != vport) 11958 continue; 11959 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11960 NULL); 11961 } 11962 pring->flag = prev_pring_flag; 11963 } 11964 } 11965 spin_unlock_irqrestore(&phba->hbalock, flags); 11966 11967 /* Make sure HBA is alive */ 11968 lpfc_issue_hb_tmo(phba); 11969 11970 /* Cancel all the IOCBs from the completions list */ 11971 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11972 IOERR_SLI_DOWN); 11973 return 1; 11974 } 11975 11976 /** 11977 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11978 * @phba: Pointer to HBA context object. 11979 * 11980 * This function cleans up all iocb, buffers, mailbox commands 11981 * while shutting down the HBA. This function is called with no 11982 * lock held and always returns 1. 11983 * This function does the following to cleanup driver resources: 11984 * - Free discovery resources for each virtual port 11985 * - Cleanup any pending fabric iocbs 11986 * - Iterate through the iocb txq and free each entry 11987 * in the list. 11988 * - Free up any buffer posted to the HBA 11989 * - Free mailbox commands in the mailbox queue. 11990 **/ 11991 int 11992 lpfc_sli_hba_down(struct lpfc_hba *phba) 11993 { 11994 LIST_HEAD(completions); 11995 struct lpfc_sli *psli = &phba->sli; 11996 struct lpfc_queue *qp = NULL; 11997 struct lpfc_sli_ring *pring; 11998 struct lpfc_dmabuf *buf_ptr; 11999 unsigned long flags = 0; 12000 int i; 12001 12002 /* Shutdown the mailbox command sub-system */ 12003 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12004 12005 lpfc_hba_down_prep(phba); 12006 12007 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12008 local_bh_disable(); 12009 12010 lpfc_fabric_abort_hba(phba); 12011 12012 spin_lock_irqsave(&phba->hbalock, flags); 12013 12014 /* 12015 * Error everything on the txq since these iocbs 12016 * have not been given to the FW yet. 12017 */ 12018 if (phba->sli_rev != LPFC_SLI_REV4) { 12019 for (i = 0; i < psli->num_rings; i++) { 12020 pring = &psli->sli3_ring[i]; 12021 /* Only slow rings */ 12022 if (pring->ringno == LPFC_ELS_RING) { 12023 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12024 /* Set the lpfc data pending flag */ 12025 set_bit(LPFC_DATA_READY, &phba->data_flags); 12026 } 12027 list_splice_init(&pring->txq, &completions); 12028 } 12029 } else { 12030 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12031 pring = qp->pring; 12032 if (!pring) 12033 continue; 12034 spin_lock(&pring->ring_lock); 12035 list_splice_init(&pring->txq, &completions); 12036 spin_unlock(&pring->ring_lock); 12037 if (pring == phba->sli4_hba.els_wq->pring) { 12038 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12039 /* Set the lpfc data pending flag */ 12040 set_bit(LPFC_DATA_READY, &phba->data_flags); 12041 } 12042 } 12043 } 12044 spin_unlock_irqrestore(&phba->hbalock, flags); 12045 12046 /* Cancel all the IOCBs from the completions list */ 12047 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12048 IOERR_SLI_DOWN); 12049 12050 spin_lock_irqsave(&phba->hbalock, flags); 12051 list_splice_init(&phba->elsbuf, &completions); 12052 phba->elsbuf_cnt = 0; 12053 phba->elsbuf_prev_cnt = 0; 12054 spin_unlock_irqrestore(&phba->hbalock, flags); 12055 12056 while (!list_empty(&completions)) { 12057 list_remove_head(&completions, buf_ptr, 12058 struct lpfc_dmabuf, list); 12059 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12060 kfree(buf_ptr); 12061 } 12062 12063 /* Enable softirqs again, done with phba->hbalock */ 12064 local_bh_enable(); 12065 12066 /* Return any active mbox cmds */ 12067 del_timer_sync(&psli->mbox_tmo); 12068 12069 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12070 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12071 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12072 12073 return 1; 12074 } 12075 12076 /** 12077 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12078 * @srcp: Source memory pointer. 12079 * @destp: Destination memory pointer. 12080 * @cnt: Number of words required to be copied. 12081 * 12082 * This function is used for copying data between driver memory 12083 * and the SLI memory. This function also changes the endianness 12084 * of each word if native endianness is different from SLI 12085 * endianness. This function can be called with or without 12086 * lock. 12087 **/ 12088 void 12089 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12090 { 12091 uint32_t *src = srcp; 12092 uint32_t *dest = destp; 12093 uint32_t ldata; 12094 int i; 12095 12096 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12097 ldata = *src; 12098 ldata = le32_to_cpu(ldata); 12099 *dest = ldata; 12100 src++; 12101 dest++; 12102 } 12103 } 12104 12105 12106 /** 12107 * lpfc_sli_bemem_bcopy - SLI memory copy function 12108 * @srcp: Source memory pointer. 12109 * @destp: Destination memory pointer. 12110 * @cnt: Number of words required to be copied. 12111 * 12112 * This function is used for copying data between a data structure 12113 * with big endian representation to local endianness. 12114 * This function can be called with or without lock. 12115 **/ 12116 void 12117 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12118 { 12119 uint32_t *src = srcp; 12120 uint32_t *dest = destp; 12121 uint32_t ldata; 12122 int i; 12123 12124 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12125 ldata = *src; 12126 ldata = be32_to_cpu(ldata); 12127 *dest = ldata; 12128 src++; 12129 dest++; 12130 } 12131 } 12132 12133 /** 12134 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12135 * @phba: Pointer to HBA context object. 12136 * @pring: Pointer to driver SLI ring object. 12137 * @mp: Pointer to driver buffer object. 12138 * 12139 * This function is called with no lock held. 12140 * It always return zero after adding the buffer to the postbufq 12141 * buffer list. 12142 **/ 12143 int 12144 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12145 struct lpfc_dmabuf *mp) 12146 { 12147 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12148 later */ 12149 spin_lock_irq(&phba->hbalock); 12150 list_add_tail(&mp->list, &pring->postbufq); 12151 pring->postbufq_cnt++; 12152 spin_unlock_irq(&phba->hbalock); 12153 return 0; 12154 } 12155 12156 /** 12157 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12158 * @phba: Pointer to HBA context object. 12159 * 12160 * When HBQ is enabled, buffers are searched based on tags. This function 12161 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12162 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12163 * does not conflict with tags of buffer posted for unsolicited events. 12164 * The function returns the allocated tag. The function is called with 12165 * no locks held. 12166 **/ 12167 uint32_t 12168 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12169 { 12170 spin_lock_irq(&phba->hbalock); 12171 phba->buffer_tag_count++; 12172 /* 12173 * Always set the QUE_BUFTAG_BIT to distiguish between 12174 * a tag assigned by HBQ. 12175 */ 12176 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12177 spin_unlock_irq(&phba->hbalock); 12178 return phba->buffer_tag_count; 12179 } 12180 12181 /** 12182 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12183 * @phba: Pointer to HBA context object. 12184 * @pring: Pointer to driver SLI ring object. 12185 * @tag: Buffer tag. 12186 * 12187 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12188 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12189 * iocb is posted to the response ring with the tag of the buffer. 12190 * This function searches the pring->postbufq list using the tag 12191 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12192 * iocb. If the buffer is found then lpfc_dmabuf object of the 12193 * buffer is returned to the caller else NULL is returned. 12194 * This function is called with no lock held. 12195 **/ 12196 struct lpfc_dmabuf * 12197 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12198 uint32_t tag) 12199 { 12200 struct lpfc_dmabuf *mp, *next_mp; 12201 struct list_head *slp = &pring->postbufq; 12202 12203 /* Search postbufq, from the beginning, looking for a match on tag */ 12204 spin_lock_irq(&phba->hbalock); 12205 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12206 if (mp->buffer_tag == tag) { 12207 list_del_init(&mp->list); 12208 pring->postbufq_cnt--; 12209 spin_unlock_irq(&phba->hbalock); 12210 return mp; 12211 } 12212 } 12213 12214 spin_unlock_irq(&phba->hbalock); 12215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12216 "0402 Cannot find virtual addr for buffer tag on " 12217 "ring %d Data x%lx x%px x%px x%x\n", 12218 pring->ringno, (unsigned long) tag, 12219 slp->next, slp->prev, pring->postbufq_cnt); 12220 12221 return NULL; 12222 } 12223 12224 /** 12225 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12226 * @phba: Pointer to HBA context object. 12227 * @pring: Pointer to driver SLI ring object. 12228 * @phys: DMA address of the buffer. 12229 * 12230 * This function searches the buffer list using the dma_address 12231 * of unsolicited event to find the driver's lpfc_dmabuf object 12232 * corresponding to the dma_address. The function returns the 12233 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12234 * This function is called by the ct and els unsolicited event 12235 * handlers to get the buffer associated with the unsolicited 12236 * event. 12237 * 12238 * This function is called with no lock held. 12239 **/ 12240 struct lpfc_dmabuf * 12241 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12242 dma_addr_t phys) 12243 { 12244 struct lpfc_dmabuf *mp, *next_mp; 12245 struct list_head *slp = &pring->postbufq; 12246 12247 /* Search postbufq, from the beginning, looking for a match on phys */ 12248 spin_lock_irq(&phba->hbalock); 12249 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12250 if (mp->phys == phys) { 12251 list_del_init(&mp->list); 12252 pring->postbufq_cnt--; 12253 spin_unlock_irq(&phba->hbalock); 12254 return mp; 12255 } 12256 } 12257 12258 spin_unlock_irq(&phba->hbalock); 12259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12260 "0410 Cannot find virtual addr for mapped buf on " 12261 "ring %d Data x%llx x%px x%px x%x\n", 12262 pring->ringno, (unsigned long long)phys, 12263 slp->next, slp->prev, pring->postbufq_cnt); 12264 return NULL; 12265 } 12266 12267 /** 12268 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12269 * @phba: Pointer to HBA context object. 12270 * @cmdiocb: Pointer to driver command iocb object. 12271 * @rspiocb: Pointer to driver response iocb object. 12272 * 12273 * This function is the completion handler for the abort iocbs for 12274 * ELS commands. This function is called from the ELS ring event 12275 * handler with no lock held. This function frees memory resources 12276 * associated with the abort iocb. 12277 **/ 12278 static void 12279 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12280 struct lpfc_iocbq *rspiocb) 12281 { 12282 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12283 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12284 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12285 12286 if (ulp_status) { 12287 /* 12288 * Assume that the port already completed and returned, or 12289 * will return the iocb. Just Log the message. 12290 */ 12291 if (phba->sli_rev < LPFC_SLI_REV4) { 12292 if (cmnd == CMD_ABORT_XRI_CX && 12293 ulp_status == IOSTAT_LOCAL_REJECT && 12294 ulp_word4 == IOERR_ABORT_REQUESTED) { 12295 goto release_iocb; 12296 } 12297 } 12298 12299 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12300 "0327 Cannot abort els iocb x%px " 12301 "with io cmd xri %x abort tag : x%x, " 12302 "abort status %x abort code %x\n", 12303 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12304 (phba->sli_rev == LPFC_SLI_REV4) ? 12305 get_wqe_reqtag(cmdiocb) : 12306 cmdiocb->iocb.un.acxri.abortContextTag, 12307 ulp_status, ulp_word4); 12308 12309 } 12310 release_iocb: 12311 lpfc_sli_release_iocbq(phba, cmdiocb); 12312 return; 12313 } 12314 12315 /** 12316 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12317 * @phba: Pointer to HBA context object. 12318 * @cmdiocb: Pointer to driver command iocb object. 12319 * @rspiocb: Pointer to driver response iocb object. 12320 * 12321 * The function is called from SLI ring event handler with no 12322 * lock held. This function is the completion handler for ELS commands 12323 * which are aborted. The function frees memory resources used for 12324 * the aborted ELS commands. 12325 **/ 12326 void 12327 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12328 struct lpfc_iocbq *rspiocb) 12329 { 12330 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12331 IOCB_t *irsp; 12332 LPFC_MBOXQ_t *mbox; 12333 u32 ulp_command, ulp_status, ulp_word4, iotag; 12334 12335 ulp_command = get_job_cmnd(phba, cmdiocb); 12336 ulp_status = get_job_ulpstatus(phba, rspiocb); 12337 ulp_word4 = get_job_word4(phba, rspiocb); 12338 12339 if (phba->sli_rev == LPFC_SLI_REV4) { 12340 iotag = get_wqe_reqtag(cmdiocb); 12341 } else { 12342 irsp = &rspiocb->iocb; 12343 iotag = irsp->ulpIoTag; 12344 12345 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12346 * The MBX_REG_LOGIN64 mbox command is freed back to the 12347 * mbox_mem_pool here. 12348 */ 12349 if (cmdiocb->context_un.mbox) { 12350 mbox = cmdiocb->context_un.mbox; 12351 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12352 cmdiocb->context_un.mbox = NULL; 12353 } 12354 } 12355 12356 /* ELS cmd tag <ulpIoTag> completes */ 12357 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12358 "0139 Ignoring ELS cmd code x%x completion Data: " 12359 "x%x x%x x%x x%px\n", 12360 ulp_command, ulp_status, ulp_word4, iotag, 12361 cmdiocb->ndlp); 12362 /* 12363 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12364 * if exchange is busy. 12365 */ 12366 if (ulp_command == CMD_GEN_REQUEST64_CR) 12367 lpfc_ct_free_iocb(phba, cmdiocb); 12368 else 12369 lpfc_els_free_iocb(phba, cmdiocb); 12370 12371 lpfc_nlp_put(ndlp); 12372 } 12373 12374 /** 12375 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12376 * @phba: Pointer to HBA context object. 12377 * @pring: Pointer to driver SLI ring object. 12378 * @cmdiocb: Pointer to driver command iocb object. 12379 * @cmpl: completion function. 12380 * 12381 * This function issues an abort iocb for the provided command iocb. In case 12382 * of unloading, the abort iocb will not be issued to commands on the ELS 12383 * ring. Instead, the callback function shall be changed to those commands 12384 * so that nothing happens when them finishes. This function is called with 12385 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12386 * when the command iocb is an abort request. 12387 * 12388 **/ 12389 int 12390 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12391 struct lpfc_iocbq *cmdiocb, void *cmpl) 12392 { 12393 struct lpfc_vport *vport = cmdiocb->vport; 12394 struct lpfc_iocbq *abtsiocbp; 12395 int retval = IOCB_ERROR; 12396 unsigned long iflags; 12397 struct lpfc_nodelist *ndlp = NULL; 12398 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12399 u16 ulp_context, iotag; 12400 bool ia; 12401 12402 /* 12403 * There are certain command types we don't want to abort. And we 12404 * don't want to abort commands that are already in the process of 12405 * being aborted. 12406 */ 12407 if (ulp_command == CMD_ABORT_XRI_WQE || 12408 ulp_command == CMD_ABORT_XRI_CN || 12409 ulp_command == CMD_CLOSE_XRI_CN || 12410 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12411 return IOCB_ABORTING; 12412 12413 if (!pring) { 12414 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12415 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12416 else 12417 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12418 return retval; 12419 } 12420 12421 /* 12422 * If we're unloading, don't abort iocb on the ELS ring, but change 12423 * the callback so that nothing happens when it finishes. 12424 */ 12425 if ((vport->load_flag & FC_UNLOADING) && 12426 pring->ringno == LPFC_ELS_RING) { 12427 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12428 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12429 else 12430 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12431 return retval; 12432 } 12433 12434 /* issue ABTS for this IOCB based on iotag */ 12435 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12436 if (abtsiocbp == NULL) 12437 return IOCB_NORESOURCE; 12438 12439 /* This signals the response to set the correct status 12440 * before calling the completion handler 12441 */ 12442 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12443 12444 if (phba->sli_rev == LPFC_SLI_REV4) { 12445 ulp_context = cmdiocb->sli4_xritag; 12446 iotag = abtsiocbp->iotag; 12447 } else { 12448 iotag = cmdiocb->iocb.ulpIoTag; 12449 if (pring->ringno == LPFC_ELS_RING) { 12450 ndlp = cmdiocb->ndlp; 12451 ulp_context = ndlp->nlp_rpi; 12452 } else { 12453 ulp_context = cmdiocb->iocb.ulpContext; 12454 } 12455 } 12456 12457 if (phba->link_state < LPFC_LINK_UP || 12458 (phba->sli_rev == LPFC_SLI_REV4 && 12459 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12460 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12461 ia = true; 12462 else 12463 ia = false; 12464 12465 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12466 cmdiocb->iocb.ulpClass, 12467 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12468 12469 abtsiocbp->vport = vport; 12470 12471 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12472 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12473 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12474 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12475 12476 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12477 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12478 12479 if (cmpl) 12480 abtsiocbp->cmd_cmpl = cmpl; 12481 else 12482 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12483 abtsiocbp->vport = vport; 12484 12485 if (phba->sli_rev == LPFC_SLI_REV4) { 12486 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12487 if (unlikely(pring == NULL)) 12488 goto abort_iotag_exit; 12489 /* Note: both hbalock and ring_lock need to be set here */ 12490 spin_lock_irqsave(&pring->ring_lock, iflags); 12491 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12492 abtsiocbp, 0); 12493 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12494 } else { 12495 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12496 abtsiocbp, 0); 12497 } 12498 12499 abort_iotag_exit: 12500 12501 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12502 "0339 Abort IO XRI x%x, Original iotag x%x, " 12503 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12504 "retval x%x\n", 12505 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12506 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12507 retval); 12508 if (retval) { 12509 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12510 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12511 } 12512 12513 /* 12514 * Caller to this routine should check for IOCB_ERROR 12515 * and handle it properly. This routine no longer removes 12516 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12517 */ 12518 return retval; 12519 } 12520 12521 /** 12522 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12523 * @phba: pointer to lpfc HBA data structure. 12524 * 12525 * This routine will abort all pending and outstanding iocbs to an HBA. 12526 **/ 12527 void 12528 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12529 { 12530 struct lpfc_sli *psli = &phba->sli; 12531 struct lpfc_sli_ring *pring; 12532 struct lpfc_queue *qp = NULL; 12533 int i; 12534 12535 if (phba->sli_rev != LPFC_SLI_REV4) { 12536 for (i = 0; i < psli->num_rings; i++) { 12537 pring = &psli->sli3_ring[i]; 12538 lpfc_sli_abort_iocb_ring(phba, pring); 12539 } 12540 return; 12541 } 12542 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12543 pring = qp->pring; 12544 if (!pring) 12545 continue; 12546 lpfc_sli_abort_iocb_ring(phba, pring); 12547 } 12548 } 12549 12550 /** 12551 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12552 * @iocbq: Pointer to iocb object. 12553 * @vport: Pointer to driver virtual port object. 12554 * 12555 * This function acts as an iocb filter for functions which abort FCP iocbs. 12556 * 12557 * Return values 12558 * -ENODEV, if a null iocb or vport ptr is encountered 12559 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12560 * driver already started the abort process, or is an abort iocb itself 12561 * 0, passes criteria for aborting the FCP I/O iocb 12562 **/ 12563 static int 12564 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12565 struct lpfc_vport *vport) 12566 { 12567 u8 ulp_command; 12568 12569 /* No null ptr vports */ 12570 if (!iocbq || iocbq->vport != vport) 12571 return -ENODEV; 12572 12573 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12574 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12575 */ 12576 ulp_command = get_job_cmnd(vport->phba, iocbq); 12577 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12578 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12579 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12580 (ulp_command == CMD_ABORT_XRI_CN || 12581 ulp_command == CMD_CLOSE_XRI_CN || 12582 ulp_command == CMD_ABORT_XRI_WQE)) 12583 return -EINVAL; 12584 12585 return 0; 12586 } 12587 12588 /** 12589 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12590 * @iocbq: Pointer to driver iocb object. 12591 * @vport: Pointer to driver virtual port object. 12592 * @tgt_id: SCSI ID of the target. 12593 * @lun_id: LUN ID of the scsi device. 12594 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12595 * 12596 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12597 * host. 12598 * 12599 * It will return 12600 * 0 if the filtering criteria is met for the given iocb and will return 12601 * 1 if the filtering criteria is not met. 12602 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12603 * given iocb is for the SCSI device specified by vport, tgt_id and 12604 * lun_id parameter. 12605 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12606 * given iocb is for the SCSI target specified by vport and tgt_id 12607 * parameters. 12608 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12609 * given iocb is for the SCSI host associated with the given vport. 12610 * This function is called with no locks held. 12611 **/ 12612 static int 12613 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12614 uint16_t tgt_id, uint64_t lun_id, 12615 lpfc_ctx_cmd ctx_cmd) 12616 { 12617 struct lpfc_io_buf *lpfc_cmd; 12618 int rc = 1; 12619 12620 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12621 12622 if (lpfc_cmd->pCmd == NULL) 12623 return rc; 12624 12625 switch (ctx_cmd) { 12626 case LPFC_CTX_LUN: 12627 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12628 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12629 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12630 rc = 0; 12631 break; 12632 case LPFC_CTX_TGT: 12633 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12634 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12635 rc = 0; 12636 break; 12637 case LPFC_CTX_HOST: 12638 rc = 0; 12639 break; 12640 default: 12641 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12642 __func__, ctx_cmd); 12643 break; 12644 } 12645 12646 return rc; 12647 } 12648 12649 /** 12650 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12651 * @vport: Pointer to virtual port. 12652 * @tgt_id: SCSI ID of the target. 12653 * @lun_id: LUN ID of the scsi device. 12654 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12655 * 12656 * This function returns number of FCP commands pending for the vport. 12657 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12658 * commands pending on the vport associated with SCSI device specified 12659 * by tgt_id and lun_id parameters. 12660 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12661 * commands pending on the vport associated with SCSI target specified 12662 * by tgt_id parameter. 12663 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12664 * commands pending on the vport. 12665 * This function returns the number of iocbs which satisfy the filter. 12666 * This function is called without any lock held. 12667 **/ 12668 int 12669 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12670 lpfc_ctx_cmd ctx_cmd) 12671 { 12672 struct lpfc_hba *phba = vport->phba; 12673 struct lpfc_iocbq *iocbq; 12674 int sum, i; 12675 unsigned long iflags; 12676 u8 ulp_command; 12677 12678 spin_lock_irqsave(&phba->hbalock, iflags); 12679 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12680 iocbq = phba->sli.iocbq_lookup[i]; 12681 12682 if (!iocbq || iocbq->vport != vport) 12683 continue; 12684 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12685 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12686 continue; 12687 12688 /* Include counting outstanding aborts */ 12689 ulp_command = get_job_cmnd(phba, iocbq); 12690 if (ulp_command == CMD_ABORT_XRI_CN || 12691 ulp_command == CMD_CLOSE_XRI_CN || 12692 ulp_command == CMD_ABORT_XRI_WQE) { 12693 sum++; 12694 continue; 12695 } 12696 12697 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12698 ctx_cmd) == 0) 12699 sum++; 12700 } 12701 spin_unlock_irqrestore(&phba->hbalock, iflags); 12702 12703 return sum; 12704 } 12705 12706 /** 12707 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12708 * @phba: Pointer to HBA context object 12709 * @cmdiocb: Pointer to command iocb object. 12710 * @rspiocb: Pointer to response iocb object. 12711 * 12712 * This function is called when an aborted FCP iocb completes. This 12713 * function is called by the ring event handler with no lock held. 12714 * This function frees the iocb. 12715 **/ 12716 void 12717 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12718 struct lpfc_iocbq *rspiocb) 12719 { 12720 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12721 "3096 ABORT_XRI_CX completing on rpi x%x " 12722 "original iotag x%x, abort cmd iotag x%x " 12723 "status 0x%x, reason 0x%x\n", 12724 (phba->sli_rev == LPFC_SLI_REV4) ? 12725 cmdiocb->sli4_xritag : 12726 cmdiocb->iocb.un.acxri.abortContextTag, 12727 get_job_abtsiotag(phba, cmdiocb), 12728 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12729 get_job_word4(phba, rspiocb)); 12730 lpfc_sli_release_iocbq(phba, cmdiocb); 12731 return; 12732 } 12733 12734 /** 12735 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12736 * @vport: Pointer to virtual port. 12737 * @tgt_id: SCSI ID of the target. 12738 * @lun_id: LUN ID of the scsi device. 12739 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12740 * 12741 * This function sends an abort command for every SCSI command 12742 * associated with the given virtual port pending on the ring 12743 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12744 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12745 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12746 * followed by lpfc_sli_validate_fcp_iocb. 12747 * 12748 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12749 * FCP iocbs associated with lun specified by tgt_id and lun_id 12750 * parameters 12751 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12752 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12753 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12754 * FCP iocbs associated with virtual port. 12755 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12756 * lpfc_sli4_calc_ring is used. 12757 * This function returns number of iocbs it failed to abort. 12758 * This function is called with no locks held. 12759 **/ 12760 int 12761 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12762 lpfc_ctx_cmd abort_cmd) 12763 { 12764 struct lpfc_hba *phba = vport->phba; 12765 struct lpfc_sli_ring *pring = NULL; 12766 struct lpfc_iocbq *iocbq; 12767 int errcnt = 0, ret_val = 0; 12768 unsigned long iflags; 12769 int i; 12770 12771 /* all I/Os are in process of being flushed */ 12772 if (phba->hba_flag & HBA_IOQ_FLUSH) 12773 return errcnt; 12774 12775 for (i = 1; i <= phba->sli.last_iotag; i++) { 12776 iocbq = phba->sli.iocbq_lookup[i]; 12777 12778 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12779 continue; 12780 12781 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12782 abort_cmd) != 0) 12783 continue; 12784 12785 spin_lock_irqsave(&phba->hbalock, iflags); 12786 if (phba->sli_rev == LPFC_SLI_REV3) { 12787 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12788 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12789 pring = lpfc_sli4_calc_ring(phba, iocbq); 12790 } 12791 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12792 lpfc_sli_abort_fcp_cmpl); 12793 spin_unlock_irqrestore(&phba->hbalock, iflags); 12794 if (ret_val != IOCB_SUCCESS) 12795 errcnt++; 12796 } 12797 12798 return errcnt; 12799 } 12800 12801 /** 12802 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12803 * @vport: Pointer to virtual port. 12804 * @pring: Pointer to driver SLI ring object. 12805 * @tgt_id: SCSI ID of the target. 12806 * @lun_id: LUN ID of the scsi device. 12807 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12808 * 12809 * This function sends an abort command for every SCSI command 12810 * associated with the given virtual port pending on the ring 12811 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12812 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12813 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12814 * followed by lpfc_sli_validate_fcp_iocb. 12815 * 12816 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12817 * FCP iocbs associated with lun specified by tgt_id and lun_id 12818 * parameters 12819 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12820 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12821 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12822 * FCP iocbs associated with virtual port. 12823 * This function returns number of iocbs it aborted . 12824 * This function is called with no locks held right after a taskmgmt 12825 * command is sent. 12826 **/ 12827 int 12828 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12829 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12830 { 12831 struct lpfc_hba *phba = vport->phba; 12832 struct lpfc_io_buf *lpfc_cmd; 12833 struct lpfc_iocbq *abtsiocbq; 12834 struct lpfc_nodelist *ndlp = NULL; 12835 struct lpfc_iocbq *iocbq; 12836 int sum, i, ret_val; 12837 unsigned long iflags; 12838 struct lpfc_sli_ring *pring_s4 = NULL; 12839 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12840 bool ia; 12841 12842 spin_lock_irqsave(&phba->hbalock, iflags); 12843 12844 /* all I/Os are in process of being flushed */ 12845 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12846 spin_unlock_irqrestore(&phba->hbalock, iflags); 12847 return 0; 12848 } 12849 sum = 0; 12850 12851 for (i = 1; i <= phba->sli.last_iotag; i++) { 12852 iocbq = phba->sli.iocbq_lookup[i]; 12853 12854 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12855 continue; 12856 12857 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12858 cmd) != 0) 12859 continue; 12860 12861 /* Guard against IO completion being called at same time */ 12862 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12863 spin_lock(&lpfc_cmd->buf_lock); 12864 12865 if (!lpfc_cmd->pCmd) { 12866 spin_unlock(&lpfc_cmd->buf_lock); 12867 continue; 12868 } 12869 12870 if (phba->sli_rev == LPFC_SLI_REV4) { 12871 pring_s4 = 12872 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12873 if (!pring_s4) { 12874 spin_unlock(&lpfc_cmd->buf_lock); 12875 continue; 12876 } 12877 /* Note: both hbalock and ring_lock must be set here */ 12878 spin_lock(&pring_s4->ring_lock); 12879 } 12880 12881 /* 12882 * If the iocbq is already being aborted, don't take a second 12883 * action, but do count it. 12884 */ 12885 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12886 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12887 if (phba->sli_rev == LPFC_SLI_REV4) 12888 spin_unlock(&pring_s4->ring_lock); 12889 spin_unlock(&lpfc_cmd->buf_lock); 12890 continue; 12891 } 12892 12893 /* issue ABTS for this IOCB based on iotag */ 12894 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12895 if (!abtsiocbq) { 12896 if (phba->sli_rev == LPFC_SLI_REV4) 12897 spin_unlock(&pring_s4->ring_lock); 12898 spin_unlock(&lpfc_cmd->buf_lock); 12899 continue; 12900 } 12901 12902 if (phba->sli_rev == LPFC_SLI_REV4) { 12903 iotag = abtsiocbq->iotag; 12904 ulp_context = iocbq->sli4_xritag; 12905 cqid = lpfc_cmd->hdwq->io_cq_map; 12906 } else { 12907 iotag = iocbq->iocb.ulpIoTag; 12908 if (pring->ringno == LPFC_ELS_RING) { 12909 ndlp = iocbq->ndlp; 12910 ulp_context = ndlp->nlp_rpi; 12911 } else { 12912 ulp_context = iocbq->iocb.ulpContext; 12913 } 12914 } 12915 12916 ndlp = lpfc_cmd->rdata->pnode; 12917 12918 if (lpfc_is_link_up(phba) && 12919 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12920 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12921 ia = false; 12922 else 12923 ia = true; 12924 12925 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12926 iocbq->iocb.ulpClass, cqid, 12927 ia, false); 12928 12929 abtsiocbq->vport = vport; 12930 12931 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12932 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12933 if (iocbq->cmd_flag & LPFC_IO_FCP) 12934 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12935 if (iocbq->cmd_flag & LPFC_IO_FOF) 12936 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12937 12938 /* Setup callback routine and issue the command. */ 12939 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12940 12941 /* 12942 * Indicate the IO is being aborted by the driver and set 12943 * the caller's flag into the aborted IO. 12944 */ 12945 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12946 12947 if (phba->sli_rev == LPFC_SLI_REV4) { 12948 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12949 abtsiocbq, 0); 12950 spin_unlock(&pring_s4->ring_lock); 12951 } else { 12952 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12953 abtsiocbq, 0); 12954 } 12955 12956 spin_unlock(&lpfc_cmd->buf_lock); 12957 12958 if (ret_val == IOCB_ERROR) 12959 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12960 else 12961 sum++; 12962 } 12963 spin_unlock_irqrestore(&phba->hbalock, iflags); 12964 return sum; 12965 } 12966 12967 /** 12968 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12969 * @phba: Pointer to HBA context object. 12970 * @cmdiocbq: Pointer to command iocb. 12971 * @rspiocbq: Pointer to response iocb. 12972 * 12973 * This function is the completion handler for iocbs issued using 12974 * lpfc_sli_issue_iocb_wait function. This function is called by the 12975 * ring event handler function without any lock held. This function 12976 * can be called from both worker thread context and interrupt 12977 * context. This function also can be called from other thread which 12978 * cleans up the SLI layer objects. 12979 * This function copy the contents of the response iocb to the 12980 * response iocb memory object provided by the caller of 12981 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12982 * sleeps for the iocb completion. 12983 **/ 12984 static void 12985 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12986 struct lpfc_iocbq *cmdiocbq, 12987 struct lpfc_iocbq *rspiocbq) 12988 { 12989 wait_queue_head_t *pdone_q; 12990 unsigned long iflags; 12991 struct lpfc_io_buf *lpfc_cmd; 12992 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12993 12994 spin_lock_irqsave(&phba->hbalock, iflags); 12995 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12996 12997 /* 12998 * A time out has occurred for the iocb. If a time out 12999 * completion handler has been supplied, call it. Otherwise, 13000 * just free the iocbq. 13001 */ 13002 13003 spin_unlock_irqrestore(&phba->hbalock, iflags); 13004 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13005 cmdiocbq->wait_cmd_cmpl = NULL; 13006 if (cmdiocbq->cmd_cmpl) 13007 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13008 else 13009 lpfc_sli_release_iocbq(phba, cmdiocbq); 13010 return; 13011 } 13012 13013 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13014 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13015 if (cmdiocbq->rsp_iocb && rspiocbq) 13016 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13017 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13018 13019 /* Set the exchange busy flag for task management commands */ 13020 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13021 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13022 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13023 cur_iocbq); 13024 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13025 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13026 else 13027 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13028 } 13029 13030 pdone_q = cmdiocbq->context_un.wait_queue; 13031 if (pdone_q) 13032 wake_up(pdone_q); 13033 spin_unlock_irqrestore(&phba->hbalock, iflags); 13034 return; 13035 } 13036 13037 /** 13038 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13039 * @phba: Pointer to HBA context object.. 13040 * @piocbq: Pointer to command iocb. 13041 * @flag: Flag to test. 13042 * 13043 * This routine grabs the hbalock and then test the cmd_flag to 13044 * see if the passed in flag is set. 13045 * Returns: 13046 * 1 if flag is set. 13047 * 0 if flag is not set. 13048 **/ 13049 static int 13050 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13051 struct lpfc_iocbq *piocbq, uint32_t flag) 13052 { 13053 unsigned long iflags; 13054 int ret; 13055 13056 spin_lock_irqsave(&phba->hbalock, iflags); 13057 ret = piocbq->cmd_flag & flag; 13058 spin_unlock_irqrestore(&phba->hbalock, iflags); 13059 return ret; 13060 13061 } 13062 13063 /** 13064 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13065 * @phba: Pointer to HBA context object.. 13066 * @ring_number: Ring number 13067 * @piocb: Pointer to command iocb. 13068 * @prspiocbq: Pointer to response iocb. 13069 * @timeout: Timeout in number of seconds. 13070 * 13071 * This function issues the iocb to firmware and waits for the 13072 * iocb to complete. The cmd_cmpl field of the shall be used 13073 * to handle iocbs which time out. If the field is NULL, the 13074 * function shall free the iocbq structure. If more clean up is 13075 * needed, the caller is expected to provide a completion function 13076 * that will provide the needed clean up. If the iocb command is 13077 * not completed within timeout seconds, the function will either 13078 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13079 * completion function set in the cmd_cmpl field and then return 13080 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13081 * resources if this function returns IOCB_TIMEDOUT. 13082 * The function waits for the iocb completion using an 13083 * non-interruptible wait. 13084 * This function will sleep while waiting for iocb completion. 13085 * So, this function should not be called from any context which 13086 * does not allow sleeping. Due to the same reason, this function 13087 * cannot be called with interrupt disabled. 13088 * This function assumes that the iocb completions occur while 13089 * this function sleep. So, this function cannot be called from 13090 * the thread which process iocb completion for this ring. 13091 * This function clears the cmd_flag of the iocb object before 13092 * issuing the iocb and the iocb completion handler sets this 13093 * flag and wakes this thread when the iocb completes. 13094 * The contents of the response iocb will be copied to prspiocbq 13095 * by the completion handler when the command completes. 13096 * This function returns IOCB_SUCCESS when success. 13097 * This function is called with no lock held. 13098 **/ 13099 int 13100 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13101 uint32_t ring_number, 13102 struct lpfc_iocbq *piocb, 13103 struct lpfc_iocbq *prspiocbq, 13104 uint32_t timeout) 13105 { 13106 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13107 long timeleft, timeout_req = 0; 13108 int retval = IOCB_SUCCESS; 13109 uint32_t creg_val; 13110 struct lpfc_iocbq *iocb; 13111 int txq_cnt = 0; 13112 int txcmplq_cnt = 0; 13113 struct lpfc_sli_ring *pring; 13114 unsigned long iflags; 13115 bool iocb_completed = true; 13116 13117 if (phba->sli_rev >= LPFC_SLI_REV4) { 13118 lpfc_sli_prep_wqe(phba, piocb); 13119 13120 pring = lpfc_sli4_calc_ring(phba, piocb); 13121 } else 13122 pring = &phba->sli.sli3_ring[ring_number]; 13123 /* 13124 * If the caller has provided a response iocbq buffer, then rsp_iocb 13125 * is NULL or its an error. 13126 */ 13127 if (prspiocbq) { 13128 if (piocb->rsp_iocb) 13129 return IOCB_ERROR; 13130 piocb->rsp_iocb = prspiocbq; 13131 } 13132 13133 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13134 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13135 piocb->context_un.wait_queue = &done_q; 13136 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13137 13138 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13139 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13140 return IOCB_ERROR; 13141 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13142 writel(creg_val, phba->HCregaddr); 13143 readl(phba->HCregaddr); /* flush */ 13144 } 13145 13146 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13147 SLI_IOCB_RET_IOCB); 13148 if (retval == IOCB_SUCCESS) { 13149 timeout_req = msecs_to_jiffies(timeout * 1000); 13150 timeleft = wait_event_timeout(done_q, 13151 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13152 timeout_req); 13153 spin_lock_irqsave(&phba->hbalock, iflags); 13154 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13155 13156 /* 13157 * IOCB timed out. Inform the wake iocb wait 13158 * completion function and set local status 13159 */ 13160 13161 iocb_completed = false; 13162 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13163 } 13164 spin_unlock_irqrestore(&phba->hbalock, iflags); 13165 if (iocb_completed) { 13166 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13167 "0331 IOCB wake signaled\n"); 13168 /* Note: we are not indicating if the IOCB has a success 13169 * status or not - that's for the caller to check. 13170 * IOCB_SUCCESS means just that the command was sent and 13171 * completed. Not that it completed successfully. 13172 * */ 13173 } else if (timeleft == 0) { 13174 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13175 "0338 IOCB wait timeout error - no " 13176 "wake response Data x%x\n", timeout); 13177 retval = IOCB_TIMEDOUT; 13178 } else { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13180 "0330 IOCB wake NOT set, " 13181 "Data x%x x%lx\n", 13182 timeout, (timeleft / jiffies)); 13183 retval = IOCB_TIMEDOUT; 13184 } 13185 } else if (retval == IOCB_BUSY) { 13186 if (phba->cfg_log_verbose & LOG_SLI) { 13187 list_for_each_entry(iocb, &pring->txq, list) { 13188 txq_cnt++; 13189 } 13190 list_for_each_entry(iocb, &pring->txcmplq, list) { 13191 txcmplq_cnt++; 13192 } 13193 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13194 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13195 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13196 } 13197 return retval; 13198 } else { 13199 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13200 "0332 IOCB wait issue failed, Data x%x\n", 13201 retval); 13202 retval = IOCB_ERROR; 13203 } 13204 13205 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13206 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13207 return IOCB_ERROR; 13208 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13209 writel(creg_val, phba->HCregaddr); 13210 readl(phba->HCregaddr); /* flush */ 13211 } 13212 13213 if (prspiocbq) 13214 piocb->rsp_iocb = NULL; 13215 13216 piocb->context_un.wait_queue = NULL; 13217 piocb->cmd_cmpl = NULL; 13218 return retval; 13219 } 13220 13221 /** 13222 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13223 * @phba: Pointer to HBA context object. 13224 * @pmboxq: Pointer to driver mailbox object. 13225 * @timeout: Timeout in number of seconds. 13226 * 13227 * This function issues the mailbox to firmware and waits for the 13228 * mailbox command to complete. If the mailbox command is not 13229 * completed within timeout seconds, it returns MBX_TIMEOUT. 13230 * The function waits for the mailbox completion using an 13231 * interruptible wait. If the thread is woken up due to a 13232 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13233 * should not free the mailbox resources, if this function returns 13234 * MBX_TIMEOUT. 13235 * This function will sleep while waiting for mailbox completion. 13236 * So, this function should not be called from any context which 13237 * does not allow sleeping. Due to the same reason, this function 13238 * cannot be called with interrupt disabled. 13239 * This function assumes that the mailbox completion occurs while 13240 * this function sleep. So, this function cannot be called from 13241 * the worker thread which processes mailbox completion. 13242 * This function is called in the context of HBA management 13243 * applications. 13244 * This function returns MBX_SUCCESS when successful. 13245 * This function is called with no lock held. 13246 **/ 13247 int 13248 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13249 uint32_t timeout) 13250 { 13251 struct completion mbox_done; 13252 int retval; 13253 unsigned long flag; 13254 13255 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13256 /* setup wake call as IOCB callback */ 13257 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13258 13259 /* setup context3 field to pass wait_queue pointer to wake function */ 13260 init_completion(&mbox_done); 13261 pmboxq->context3 = &mbox_done; 13262 /* now issue the command */ 13263 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13264 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13265 wait_for_completion_timeout(&mbox_done, 13266 msecs_to_jiffies(timeout * 1000)); 13267 13268 spin_lock_irqsave(&phba->hbalock, flag); 13269 pmboxq->context3 = NULL; 13270 /* 13271 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13272 * else do not free the resources. 13273 */ 13274 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13275 retval = MBX_SUCCESS; 13276 } else { 13277 retval = MBX_TIMEOUT; 13278 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13279 } 13280 spin_unlock_irqrestore(&phba->hbalock, flag); 13281 } 13282 return retval; 13283 } 13284 13285 /** 13286 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13287 * @phba: Pointer to HBA context. 13288 * @mbx_action: Mailbox shutdown options. 13289 * 13290 * This function is called to shutdown the driver's mailbox sub-system. 13291 * It first marks the mailbox sub-system is in a block state to prevent 13292 * the asynchronous mailbox command from issued off the pending mailbox 13293 * command queue. If the mailbox command sub-system shutdown is due to 13294 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13295 * the mailbox sub-system flush routine to forcefully bring down the 13296 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13297 * as with offline or HBA function reset), this routine will wait for the 13298 * outstanding mailbox command to complete before invoking the mailbox 13299 * sub-system flush routine to gracefully bring down mailbox sub-system. 13300 **/ 13301 void 13302 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13303 { 13304 struct lpfc_sli *psli = &phba->sli; 13305 unsigned long timeout; 13306 13307 if (mbx_action == LPFC_MBX_NO_WAIT) { 13308 /* delay 100ms for port state */ 13309 msleep(100); 13310 lpfc_sli_mbox_sys_flush(phba); 13311 return; 13312 } 13313 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13314 13315 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13316 local_bh_disable(); 13317 13318 spin_lock_irq(&phba->hbalock); 13319 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13320 13321 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13322 /* Determine how long we might wait for the active mailbox 13323 * command to be gracefully completed by firmware. 13324 */ 13325 if (phba->sli.mbox_active) 13326 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13327 phba->sli.mbox_active) * 13328 1000) + jiffies; 13329 spin_unlock_irq(&phba->hbalock); 13330 13331 /* Enable softirqs again, done with phba->hbalock */ 13332 local_bh_enable(); 13333 13334 while (phba->sli.mbox_active) { 13335 /* Check active mailbox complete status every 2ms */ 13336 msleep(2); 13337 if (time_after(jiffies, timeout)) 13338 /* Timeout, let the mailbox flush routine to 13339 * forcefully release active mailbox command 13340 */ 13341 break; 13342 } 13343 } else { 13344 spin_unlock_irq(&phba->hbalock); 13345 13346 /* Enable softirqs again, done with phba->hbalock */ 13347 local_bh_enable(); 13348 } 13349 13350 lpfc_sli_mbox_sys_flush(phba); 13351 } 13352 13353 /** 13354 * lpfc_sli_eratt_read - read sli-3 error attention events 13355 * @phba: Pointer to HBA context. 13356 * 13357 * This function is called to read the SLI3 device error attention registers 13358 * for possible error attention events. The caller must hold the hostlock 13359 * with spin_lock_irq(). 13360 * 13361 * This function returns 1 when there is Error Attention in the Host Attention 13362 * Register and returns 0 otherwise. 13363 **/ 13364 static int 13365 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13366 { 13367 uint32_t ha_copy; 13368 13369 /* Read chip Host Attention (HA) register */ 13370 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13371 goto unplug_err; 13372 13373 if (ha_copy & HA_ERATT) { 13374 /* Read host status register to retrieve error event */ 13375 if (lpfc_sli_read_hs(phba)) 13376 goto unplug_err; 13377 13378 /* Check if there is a deferred error condition is active */ 13379 if ((HS_FFER1 & phba->work_hs) && 13380 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13381 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13382 phba->hba_flag |= DEFER_ERATT; 13383 /* Clear all interrupt enable conditions */ 13384 writel(0, phba->HCregaddr); 13385 readl(phba->HCregaddr); 13386 } 13387 13388 /* Set the driver HA work bitmap */ 13389 phba->work_ha |= HA_ERATT; 13390 /* Indicate polling handles this ERATT */ 13391 phba->hba_flag |= HBA_ERATT_HANDLED; 13392 return 1; 13393 } 13394 return 0; 13395 13396 unplug_err: 13397 /* Set the driver HS work bitmap */ 13398 phba->work_hs |= UNPLUG_ERR; 13399 /* Set the driver HA work bitmap */ 13400 phba->work_ha |= HA_ERATT; 13401 /* Indicate polling handles this ERATT */ 13402 phba->hba_flag |= HBA_ERATT_HANDLED; 13403 return 1; 13404 } 13405 13406 /** 13407 * lpfc_sli4_eratt_read - read sli-4 error attention events 13408 * @phba: Pointer to HBA context. 13409 * 13410 * This function is called to read the SLI4 device error attention registers 13411 * for possible error attention events. The caller must hold the hostlock 13412 * with spin_lock_irq(). 13413 * 13414 * This function returns 1 when there is Error Attention in the Host Attention 13415 * Register and returns 0 otherwise. 13416 **/ 13417 static int 13418 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13419 { 13420 uint32_t uerr_sta_hi, uerr_sta_lo; 13421 uint32_t if_type, portsmphr; 13422 struct lpfc_register portstat_reg; 13423 u32 logmask; 13424 13425 /* 13426 * For now, use the SLI4 device internal unrecoverable error 13427 * registers for error attention. This can be changed later. 13428 */ 13429 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13430 switch (if_type) { 13431 case LPFC_SLI_INTF_IF_TYPE_0: 13432 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13433 &uerr_sta_lo) || 13434 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13435 &uerr_sta_hi)) { 13436 phba->work_hs |= UNPLUG_ERR; 13437 phba->work_ha |= HA_ERATT; 13438 phba->hba_flag |= HBA_ERATT_HANDLED; 13439 return 1; 13440 } 13441 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13442 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13444 "1423 HBA Unrecoverable error: " 13445 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13446 "ue_mask_lo_reg=0x%x, " 13447 "ue_mask_hi_reg=0x%x\n", 13448 uerr_sta_lo, uerr_sta_hi, 13449 phba->sli4_hba.ue_mask_lo, 13450 phba->sli4_hba.ue_mask_hi); 13451 phba->work_status[0] = uerr_sta_lo; 13452 phba->work_status[1] = uerr_sta_hi; 13453 phba->work_ha |= HA_ERATT; 13454 phba->hba_flag |= HBA_ERATT_HANDLED; 13455 return 1; 13456 } 13457 break; 13458 case LPFC_SLI_INTF_IF_TYPE_2: 13459 case LPFC_SLI_INTF_IF_TYPE_6: 13460 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13461 &portstat_reg.word0) || 13462 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13463 &portsmphr)){ 13464 phba->work_hs |= UNPLUG_ERR; 13465 phba->work_ha |= HA_ERATT; 13466 phba->hba_flag |= HBA_ERATT_HANDLED; 13467 return 1; 13468 } 13469 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13470 phba->work_status[0] = 13471 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13472 phba->work_status[1] = 13473 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13474 logmask = LOG_TRACE_EVENT; 13475 if (phba->work_status[0] == 13476 SLIPORT_ERR1_REG_ERR_CODE_2 && 13477 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13478 logmask = LOG_SLI; 13479 lpfc_printf_log(phba, KERN_ERR, logmask, 13480 "2885 Port Status Event: " 13481 "port status reg 0x%x, " 13482 "port smphr reg 0x%x, " 13483 "error 1=0x%x, error 2=0x%x\n", 13484 portstat_reg.word0, 13485 portsmphr, 13486 phba->work_status[0], 13487 phba->work_status[1]); 13488 phba->work_ha |= HA_ERATT; 13489 phba->hba_flag |= HBA_ERATT_HANDLED; 13490 return 1; 13491 } 13492 break; 13493 case LPFC_SLI_INTF_IF_TYPE_1: 13494 default: 13495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13496 "2886 HBA Error Attention on unsupported " 13497 "if type %d.", if_type); 13498 return 1; 13499 } 13500 13501 return 0; 13502 } 13503 13504 /** 13505 * lpfc_sli_check_eratt - check error attention events 13506 * @phba: Pointer to HBA context. 13507 * 13508 * This function is called from timer soft interrupt context to check HBA's 13509 * error attention register bit for error attention events. 13510 * 13511 * This function returns 1 when there is Error Attention in the Host Attention 13512 * Register and returns 0 otherwise. 13513 **/ 13514 int 13515 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13516 { 13517 uint32_t ha_copy; 13518 13519 /* If somebody is waiting to handle an eratt, don't process it 13520 * here. The brdkill function will do this. 13521 */ 13522 if (phba->link_flag & LS_IGNORE_ERATT) 13523 return 0; 13524 13525 /* Check if interrupt handler handles this ERATT */ 13526 spin_lock_irq(&phba->hbalock); 13527 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13528 /* Interrupt handler has handled ERATT */ 13529 spin_unlock_irq(&phba->hbalock); 13530 return 0; 13531 } 13532 13533 /* 13534 * If there is deferred error attention, do not check for error 13535 * attention 13536 */ 13537 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13538 spin_unlock_irq(&phba->hbalock); 13539 return 0; 13540 } 13541 13542 /* If PCI channel is offline, don't process it */ 13543 if (unlikely(pci_channel_offline(phba->pcidev))) { 13544 spin_unlock_irq(&phba->hbalock); 13545 return 0; 13546 } 13547 13548 switch (phba->sli_rev) { 13549 case LPFC_SLI_REV2: 13550 case LPFC_SLI_REV3: 13551 /* Read chip Host Attention (HA) register */ 13552 ha_copy = lpfc_sli_eratt_read(phba); 13553 break; 13554 case LPFC_SLI_REV4: 13555 /* Read device Uncoverable Error (UERR) registers */ 13556 ha_copy = lpfc_sli4_eratt_read(phba); 13557 break; 13558 default: 13559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13560 "0299 Invalid SLI revision (%d)\n", 13561 phba->sli_rev); 13562 ha_copy = 0; 13563 break; 13564 } 13565 spin_unlock_irq(&phba->hbalock); 13566 13567 return ha_copy; 13568 } 13569 13570 /** 13571 * lpfc_intr_state_check - Check device state for interrupt handling 13572 * @phba: Pointer to HBA context. 13573 * 13574 * This inline routine checks whether a device or its PCI slot is in a state 13575 * that the interrupt should be handled. 13576 * 13577 * This function returns 0 if the device or the PCI slot is in a state that 13578 * interrupt should be handled, otherwise -EIO. 13579 */ 13580 static inline int 13581 lpfc_intr_state_check(struct lpfc_hba *phba) 13582 { 13583 /* If the pci channel is offline, ignore all the interrupts */ 13584 if (unlikely(pci_channel_offline(phba->pcidev))) 13585 return -EIO; 13586 13587 /* Update device level interrupt statistics */ 13588 phba->sli.slistat.sli_intr++; 13589 13590 /* Ignore all interrupts during initialization. */ 13591 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13592 return -EIO; 13593 13594 return 0; 13595 } 13596 13597 /** 13598 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13599 * @irq: Interrupt number. 13600 * @dev_id: The device context pointer. 13601 * 13602 * This function is directly called from the PCI layer as an interrupt 13603 * service routine when device with SLI-3 interface spec is enabled with 13604 * MSI-X multi-message interrupt mode and there are slow-path events in 13605 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13606 * interrupt mode, this function is called as part of the device-level 13607 * interrupt handler. When the PCI slot is in error recovery or the HBA 13608 * is undergoing initialization, the interrupt handler will not process 13609 * the interrupt. The link attention and ELS ring attention events are 13610 * handled by the worker thread. The interrupt handler signals the worker 13611 * thread and returns for these events. This function is called without 13612 * any lock held. It gets the hbalock to access and update SLI data 13613 * structures. 13614 * 13615 * This function returns IRQ_HANDLED when interrupt is handled else it 13616 * returns IRQ_NONE. 13617 **/ 13618 irqreturn_t 13619 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13620 { 13621 struct lpfc_hba *phba; 13622 uint32_t ha_copy, hc_copy; 13623 uint32_t work_ha_copy; 13624 unsigned long status; 13625 unsigned long iflag; 13626 uint32_t control; 13627 13628 MAILBOX_t *mbox, *pmbox; 13629 struct lpfc_vport *vport; 13630 struct lpfc_nodelist *ndlp; 13631 struct lpfc_dmabuf *mp; 13632 LPFC_MBOXQ_t *pmb; 13633 int rc; 13634 13635 /* 13636 * Get the driver's phba structure from the dev_id and 13637 * assume the HBA is not interrupting. 13638 */ 13639 phba = (struct lpfc_hba *)dev_id; 13640 13641 if (unlikely(!phba)) 13642 return IRQ_NONE; 13643 13644 /* 13645 * Stuff needs to be attented to when this function is invoked as an 13646 * individual interrupt handler in MSI-X multi-message interrupt mode 13647 */ 13648 if (phba->intr_type == MSIX) { 13649 /* Check device state for handling interrupt */ 13650 if (lpfc_intr_state_check(phba)) 13651 return IRQ_NONE; 13652 /* Need to read HA REG for slow-path events */ 13653 spin_lock_irqsave(&phba->hbalock, iflag); 13654 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13655 goto unplug_error; 13656 /* If somebody is waiting to handle an eratt don't process it 13657 * here. The brdkill function will do this. 13658 */ 13659 if (phba->link_flag & LS_IGNORE_ERATT) 13660 ha_copy &= ~HA_ERATT; 13661 /* Check the need for handling ERATT in interrupt handler */ 13662 if (ha_copy & HA_ERATT) { 13663 if (phba->hba_flag & HBA_ERATT_HANDLED) 13664 /* ERATT polling has handled ERATT */ 13665 ha_copy &= ~HA_ERATT; 13666 else 13667 /* Indicate interrupt handler handles ERATT */ 13668 phba->hba_flag |= HBA_ERATT_HANDLED; 13669 } 13670 13671 /* 13672 * If there is deferred error attention, do not check for any 13673 * interrupt. 13674 */ 13675 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13676 spin_unlock_irqrestore(&phba->hbalock, iflag); 13677 return IRQ_NONE; 13678 } 13679 13680 /* Clear up only attention source related to slow-path */ 13681 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13682 goto unplug_error; 13683 13684 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13685 HC_LAINT_ENA | HC_ERINT_ENA), 13686 phba->HCregaddr); 13687 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13688 phba->HAregaddr); 13689 writel(hc_copy, phba->HCregaddr); 13690 readl(phba->HAregaddr); /* flush */ 13691 spin_unlock_irqrestore(&phba->hbalock, iflag); 13692 } else 13693 ha_copy = phba->ha_copy; 13694 13695 work_ha_copy = ha_copy & phba->work_ha_mask; 13696 13697 if (work_ha_copy) { 13698 if (work_ha_copy & HA_LATT) { 13699 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13700 /* 13701 * Turn off Link Attention interrupts 13702 * until CLEAR_LA done 13703 */ 13704 spin_lock_irqsave(&phba->hbalock, iflag); 13705 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13706 if (lpfc_readl(phba->HCregaddr, &control)) 13707 goto unplug_error; 13708 control &= ~HC_LAINT_ENA; 13709 writel(control, phba->HCregaddr); 13710 readl(phba->HCregaddr); /* flush */ 13711 spin_unlock_irqrestore(&phba->hbalock, iflag); 13712 } 13713 else 13714 work_ha_copy &= ~HA_LATT; 13715 } 13716 13717 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13718 /* 13719 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13720 * the only slow ring. 13721 */ 13722 status = (work_ha_copy & 13723 (HA_RXMASK << (4*LPFC_ELS_RING))); 13724 status >>= (4*LPFC_ELS_RING); 13725 if (status & HA_RXMASK) { 13726 spin_lock_irqsave(&phba->hbalock, iflag); 13727 if (lpfc_readl(phba->HCregaddr, &control)) 13728 goto unplug_error; 13729 13730 lpfc_debugfs_slow_ring_trc(phba, 13731 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13732 control, status, 13733 (uint32_t)phba->sli.slistat.sli_intr); 13734 13735 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13736 lpfc_debugfs_slow_ring_trc(phba, 13737 "ISR Disable ring:" 13738 "pwork:x%x hawork:x%x wait:x%x", 13739 phba->work_ha, work_ha_copy, 13740 (uint32_t)((unsigned long) 13741 &phba->work_waitq)); 13742 13743 control &= 13744 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13745 writel(control, phba->HCregaddr); 13746 readl(phba->HCregaddr); /* flush */ 13747 } 13748 else { 13749 lpfc_debugfs_slow_ring_trc(phba, 13750 "ISR slow ring: pwork:" 13751 "x%x hawork:x%x wait:x%x", 13752 phba->work_ha, work_ha_copy, 13753 (uint32_t)((unsigned long) 13754 &phba->work_waitq)); 13755 } 13756 spin_unlock_irqrestore(&phba->hbalock, iflag); 13757 } 13758 } 13759 spin_lock_irqsave(&phba->hbalock, iflag); 13760 if (work_ha_copy & HA_ERATT) { 13761 if (lpfc_sli_read_hs(phba)) 13762 goto unplug_error; 13763 /* 13764 * Check if there is a deferred error condition 13765 * is active 13766 */ 13767 if ((HS_FFER1 & phba->work_hs) && 13768 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13769 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13770 phba->work_hs)) { 13771 phba->hba_flag |= DEFER_ERATT; 13772 /* Clear all interrupt enable conditions */ 13773 writel(0, phba->HCregaddr); 13774 readl(phba->HCregaddr); 13775 } 13776 } 13777 13778 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13779 pmb = phba->sli.mbox_active; 13780 pmbox = &pmb->u.mb; 13781 mbox = phba->mbox; 13782 vport = pmb->vport; 13783 13784 /* First check out the status word */ 13785 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13786 if (pmbox->mbxOwner != OWN_HOST) { 13787 spin_unlock_irqrestore(&phba->hbalock, iflag); 13788 /* 13789 * Stray Mailbox Interrupt, mbxCommand <cmd> 13790 * mbxStatus <status> 13791 */ 13792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13793 "(%d):0304 Stray Mailbox " 13794 "Interrupt mbxCommand x%x " 13795 "mbxStatus x%x\n", 13796 (vport ? vport->vpi : 0), 13797 pmbox->mbxCommand, 13798 pmbox->mbxStatus); 13799 /* clear mailbox attention bit */ 13800 work_ha_copy &= ~HA_MBATT; 13801 } else { 13802 phba->sli.mbox_active = NULL; 13803 spin_unlock_irqrestore(&phba->hbalock, iflag); 13804 phba->last_completion_time = jiffies; 13805 del_timer(&phba->sli.mbox_tmo); 13806 if (pmb->mbox_cmpl) { 13807 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13808 MAILBOX_CMD_SIZE); 13809 if (pmb->out_ext_byte_len && 13810 pmb->ctx_buf) 13811 lpfc_sli_pcimem_bcopy( 13812 phba->mbox_ext, 13813 pmb->ctx_buf, 13814 pmb->out_ext_byte_len); 13815 } 13816 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13817 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13818 13819 lpfc_debugfs_disc_trc(vport, 13820 LPFC_DISC_TRC_MBOX_VPORT, 13821 "MBOX dflt rpi: : " 13822 "status:x%x rpi:x%x", 13823 (uint32_t)pmbox->mbxStatus, 13824 pmbox->un.varWords[0], 0); 13825 13826 if (!pmbox->mbxStatus) { 13827 mp = (struct lpfc_dmabuf *) 13828 (pmb->ctx_buf); 13829 ndlp = (struct lpfc_nodelist *) 13830 pmb->ctx_ndlp; 13831 13832 /* Reg_LOGIN of dflt RPI was 13833 * successful. new lets get 13834 * rid of the RPI using the 13835 * same mbox buffer. 13836 */ 13837 lpfc_unreg_login(phba, 13838 vport->vpi, 13839 pmbox->un.varWords[0], 13840 pmb); 13841 pmb->mbox_cmpl = 13842 lpfc_mbx_cmpl_dflt_rpi; 13843 pmb->ctx_buf = mp; 13844 pmb->ctx_ndlp = ndlp; 13845 pmb->vport = vport; 13846 rc = lpfc_sli_issue_mbox(phba, 13847 pmb, 13848 MBX_NOWAIT); 13849 if (rc != MBX_BUSY) 13850 lpfc_printf_log(phba, 13851 KERN_ERR, 13852 LOG_TRACE_EVENT, 13853 "0350 rc should have" 13854 "been MBX_BUSY\n"); 13855 if (rc != MBX_NOT_FINISHED) 13856 goto send_current_mbox; 13857 } 13858 } 13859 spin_lock_irqsave( 13860 &phba->pport->work_port_lock, 13861 iflag); 13862 phba->pport->work_port_events &= 13863 ~WORKER_MBOX_TMO; 13864 spin_unlock_irqrestore( 13865 &phba->pport->work_port_lock, 13866 iflag); 13867 13868 /* Do NOT queue MBX_HEARTBEAT to the worker 13869 * thread for processing. 13870 */ 13871 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13872 /* Process mbox now */ 13873 phba->sli.mbox_active = NULL; 13874 phba->sli.sli_flag &= 13875 ~LPFC_SLI_MBOX_ACTIVE; 13876 if (pmb->mbox_cmpl) 13877 pmb->mbox_cmpl(phba, pmb); 13878 } else { 13879 /* Queue to worker thread to process */ 13880 lpfc_mbox_cmpl_put(phba, pmb); 13881 } 13882 } 13883 } else 13884 spin_unlock_irqrestore(&phba->hbalock, iflag); 13885 13886 if ((work_ha_copy & HA_MBATT) && 13887 (phba->sli.mbox_active == NULL)) { 13888 send_current_mbox: 13889 /* Process next mailbox command if there is one */ 13890 do { 13891 rc = lpfc_sli_issue_mbox(phba, NULL, 13892 MBX_NOWAIT); 13893 } while (rc == MBX_NOT_FINISHED); 13894 if (rc != MBX_SUCCESS) 13895 lpfc_printf_log(phba, KERN_ERR, 13896 LOG_TRACE_EVENT, 13897 "0349 rc should be " 13898 "MBX_SUCCESS\n"); 13899 } 13900 13901 spin_lock_irqsave(&phba->hbalock, iflag); 13902 phba->work_ha |= work_ha_copy; 13903 spin_unlock_irqrestore(&phba->hbalock, iflag); 13904 lpfc_worker_wake_up(phba); 13905 } 13906 return IRQ_HANDLED; 13907 unplug_error: 13908 spin_unlock_irqrestore(&phba->hbalock, iflag); 13909 return IRQ_HANDLED; 13910 13911 } /* lpfc_sli_sp_intr_handler */ 13912 13913 /** 13914 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13915 * @irq: Interrupt number. 13916 * @dev_id: The device context pointer. 13917 * 13918 * This function is directly called from the PCI layer as an interrupt 13919 * service routine when device with SLI-3 interface spec is enabled with 13920 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13921 * ring event in the HBA. However, when the device is enabled with either 13922 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13923 * device-level interrupt handler. When the PCI slot is in error recovery 13924 * or the HBA is undergoing initialization, the interrupt handler will not 13925 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13926 * the intrrupt context. This function is called without any lock held. 13927 * It gets the hbalock to access and update SLI data structures. 13928 * 13929 * This function returns IRQ_HANDLED when interrupt is handled else it 13930 * returns IRQ_NONE. 13931 **/ 13932 irqreturn_t 13933 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13934 { 13935 struct lpfc_hba *phba; 13936 uint32_t ha_copy; 13937 unsigned long status; 13938 unsigned long iflag; 13939 struct lpfc_sli_ring *pring; 13940 13941 /* Get the driver's phba structure from the dev_id and 13942 * assume the HBA is not interrupting. 13943 */ 13944 phba = (struct lpfc_hba *) dev_id; 13945 13946 if (unlikely(!phba)) 13947 return IRQ_NONE; 13948 13949 /* 13950 * Stuff needs to be attented to when this function is invoked as an 13951 * individual interrupt handler in MSI-X multi-message interrupt mode 13952 */ 13953 if (phba->intr_type == MSIX) { 13954 /* Check device state for handling interrupt */ 13955 if (lpfc_intr_state_check(phba)) 13956 return IRQ_NONE; 13957 /* Need to read HA REG for FCP ring and other ring events */ 13958 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13959 return IRQ_HANDLED; 13960 /* Clear up only attention source related to fast-path */ 13961 spin_lock_irqsave(&phba->hbalock, iflag); 13962 /* 13963 * If there is deferred error attention, do not check for 13964 * any interrupt. 13965 */ 13966 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13967 spin_unlock_irqrestore(&phba->hbalock, iflag); 13968 return IRQ_NONE; 13969 } 13970 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13971 phba->HAregaddr); 13972 readl(phba->HAregaddr); /* flush */ 13973 spin_unlock_irqrestore(&phba->hbalock, iflag); 13974 } else 13975 ha_copy = phba->ha_copy; 13976 13977 /* 13978 * Process all events on FCP ring. Take the optimized path for FCP IO. 13979 */ 13980 ha_copy &= ~(phba->work_ha_mask); 13981 13982 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13983 status >>= (4*LPFC_FCP_RING); 13984 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13985 if (status & HA_RXMASK) 13986 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13987 13988 if (phba->cfg_multi_ring_support == 2) { 13989 /* 13990 * Process all events on extra ring. Take the optimized path 13991 * for extra ring IO. 13992 */ 13993 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13994 status >>= (4*LPFC_EXTRA_RING); 13995 if (status & HA_RXMASK) { 13996 lpfc_sli_handle_fast_ring_event(phba, 13997 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13998 status); 13999 } 14000 } 14001 return IRQ_HANDLED; 14002 } /* lpfc_sli_fp_intr_handler */ 14003 14004 /** 14005 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14006 * @irq: Interrupt number. 14007 * @dev_id: The device context pointer. 14008 * 14009 * This function is the HBA device-level interrupt handler to device with 14010 * SLI-3 interface spec, called from the PCI layer when either MSI or 14011 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14012 * requires driver attention. This function invokes the slow-path interrupt 14013 * attention handling function and fast-path interrupt attention handling 14014 * function in turn to process the relevant HBA attention events. This 14015 * function is called without any lock held. It gets the hbalock to access 14016 * and update SLI data structures. 14017 * 14018 * This function returns IRQ_HANDLED when interrupt is handled, else it 14019 * returns IRQ_NONE. 14020 **/ 14021 irqreturn_t 14022 lpfc_sli_intr_handler(int irq, void *dev_id) 14023 { 14024 struct lpfc_hba *phba; 14025 irqreturn_t sp_irq_rc, fp_irq_rc; 14026 unsigned long status1, status2; 14027 uint32_t hc_copy; 14028 14029 /* 14030 * Get the driver's phba structure from the dev_id and 14031 * assume the HBA is not interrupting. 14032 */ 14033 phba = (struct lpfc_hba *) dev_id; 14034 14035 if (unlikely(!phba)) 14036 return IRQ_NONE; 14037 14038 /* Check device state for handling interrupt */ 14039 if (lpfc_intr_state_check(phba)) 14040 return IRQ_NONE; 14041 14042 spin_lock(&phba->hbalock); 14043 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14044 spin_unlock(&phba->hbalock); 14045 return IRQ_HANDLED; 14046 } 14047 14048 if (unlikely(!phba->ha_copy)) { 14049 spin_unlock(&phba->hbalock); 14050 return IRQ_NONE; 14051 } else if (phba->ha_copy & HA_ERATT) { 14052 if (phba->hba_flag & HBA_ERATT_HANDLED) 14053 /* ERATT polling has handled ERATT */ 14054 phba->ha_copy &= ~HA_ERATT; 14055 else 14056 /* Indicate interrupt handler handles ERATT */ 14057 phba->hba_flag |= HBA_ERATT_HANDLED; 14058 } 14059 14060 /* 14061 * If there is deferred error attention, do not check for any interrupt. 14062 */ 14063 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14064 spin_unlock(&phba->hbalock); 14065 return IRQ_NONE; 14066 } 14067 14068 /* Clear attention sources except link and error attentions */ 14069 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14070 spin_unlock(&phba->hbalock); 14071 return IRQ_HANDLED; 14072 } 14073 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14074 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14075 phba->HCregaddr); 14076 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14077 writel(hc_copy, phba->HCregaddr); 14078 readl(phba->HAregaddr); /* flush */ 14079 spin_unlock(&phba->hbalock); 14080 14081 /* 14082 * Invokes slow-path host attention interrupt handling as appropriate. 14083 */ 14084 14085 /* status of events with mailbox and link attention */ 14086 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14087 14088 /* status of events with ELS ring */ 14089 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14090 status2 >>= (4*LPFC_ELS_RING); 14091 14092 if (status1 || (status2 & HA_RXMASK)) 14093 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14094 else 14095 sp_irq_rc = IRQ_NONE; 14096 14097 /* 14098 * Invoke fast-path host attention interrupt handling as appropriate. 14099 */ 14100 14101 /* status of events with FCP ring */ 14102 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14103 status1 >>= (4*LPFC_FCP_RING); 14104 14105 /* status of events with extra ring */ 14106 if (phba->cfg_multi_ring_support == 2) { 14107 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14108 status2 >>= (4*LPFC_EXTRA_RING); 14109 } else 14110 status2 = 0; 14111 14112 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14113 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14114 else 14115 fp_irq_rc = IRQ_NONE; 14116 14117 /* Return device-level interrupt handling status */ 14118 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14119 } /* lpfc_sli_intr_handler */ 14120 14121 /** 14122 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14123 * @phba: pointer to lpfc hba data structure. 14124 * 14125 * This routine is invoked by the worker thread to process all the pending 14126 * SLI4 els abort xri events. 14127 **/ 14128 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14129 { 14130 struct lpfc_cq_event *cq_event; 14131 unsigned long iflags; 14132 14133 /* First, declare the els xri abort event has been handled */ 14134 spin_lock_irqsave(&phba->hbalock, iflags); 14135 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14136 spin_unlock_irqrestore(&phba->hbalock, iflags); 14137 14138 /* Now, handle all the els xri abort events */ 14139 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14140 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14141 /* Get the first event from the head of the event queue */ 14142 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14143 cq_event, struct lpfc_cq_event, list); 14144 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14145 iflags); 14146 /* Notify aborted XRI for ELS work queue */ 14147 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14148 14149 /* Free the event processed back to the free pool */ 14150 lpfc_sli4_cq_event_release(phba, cq_event); 14151 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14152 iflags); 14153 } 14154 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14155 } 14156 14157 /** 14158 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14159 * @phba: Pointer to HBA context object. 14160 * @irspiocbq: Pointer to work-queue completion queue entry. 14161 * 14162 * This routine handles an ELS work-queue completion event and construct 14163 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14164 * discovery engine to handle. 14165 * 14166 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14167 **/ 14168 static struct lpfc_iocbq * 14169 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14170 struct lpfc_iocbq *irspiocbq) 14171 { 14172 struct lpfc_sli_ring *pring; 14173 struct lpfc_iocbq *cmdiocbq; 14174 struct lpfc_wcqe_complete *wcqe; 14175 unsigned long iflags; 14176 14177 pring = lpfc_phba_elsring(phba); 14178 if (unlikely(!pring)) 14179 return NULL; 14180 14181 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14182 spin_lock_irqsave(&pring->ring_lock, iflags); 14183 pring->stats.iocb_event++; 14184 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14185 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14186 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14187 if (unlikely(!cmdiocbq)) { 14188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14189 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14190 "0386 ELS complete with no corresponding " 14191 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14192 wcqe->word0, wcqe->total_data_placed, 14193 wcqe->parameter, wcqe->word3); 14194 lpfc_sli_release_iocbq(phba, irspiocbq); 14195 return NULL; 14196 } 14197 14198 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14199 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14200 14201 /* Put the iocb back on the txcmplq */ 14202 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14203 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14204 14205 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14206 spin_lock_irqsave(&phba->hbalock, iflags); 14207 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14208 spin_unlock_irqrestore(&phba->hbalock, iflags); 14209 } 14210 14211 return irspiocbq; 14212 } 14213 14214 inline struct lpfc_cq_event * 14215 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14216 { 14217 struct lpfc_cq_event *cq_event; 14218 14219 /* Allocate a new internal CQ_EVENT entry */ 14220 cq_event = lpfc_sli4_cq_event_alloc(phba); 14221 if (!cq_event) { 14222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14223 "0602 Failed to alloc CQ_EVENT entry\n"); 14224 return NULL; 14225 } 14226 14227 /* Move the CQE into the event */ 14228 memcpy(&cq_event->cqe, entry, size); 14229 return cq_event; 14230 } 14231 14232 /** 14233 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14234 * @phba: Pointer to HBA context object. 14235 * @mcqe: Pointer to mailbox completion queue entry. 14236 * 14237 * This routine process a mailbox completion queue entry with asynchronous 14238 * event. 14239 * 14240 * Return: true if work posted to worker thread, otherwise false. 14241 **/ 14242 static bool 14243 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14244 { 14245 struct lpfc_cq_event *cq_event; 14246 unsigned long iflags; 14247 14248 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14249 "0392 Async Event: word0:x%x, word1:x%x, " 14250 "word2:x%x, word3:x%x\n", mcqe->word0, 14251 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14252 14253 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14254 if (!cq_event) 14255 return false; 14256 14257 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14258 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14259 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14260 14261 /* Set the async event flag */ 14262 spin_lock_irqsave(&phba->hbalock, iflags); 14263 phba->hba_flag |= ASYNC_EVENT; 14264 spin_unlock_irqrestore(&phba->hbalock, iflags); 14265 14266 return true; 14267 } 14268 14269 /** 14270 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14271 * @phba: Pointer to HBA context object. 14272 * @mcqe: Pointer to mailbox completion queue entry. 14273 * 14274 * This routine process a mailbox completion queue entry with mailbox 14275 * completion event. 14276 * 14277 * Return: true if work posted to worker thread, otherwise false. 14278 **/ 14279 static bool 14280 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14281 { 14282 uint32_t mcqe_status; 14283 MAILBOX_t *mbox, *pmbox; 14284 struct lpfc_mqe *mqe; 14285 struct lpfc_vport *vport; 14286 struct lpfc_nodelist *ndlp; 14287 struct lpfc_dmabuf *mp; 14288 unsigned long iflags; 14289 LPFC_MBOXQ_t *pmb; 14290 bool workposted = false; 14291 int rc; 14292 14293 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14294 if (!bf_get(lpfc_trailer_completed, mcqe)) 14295 goto out_no_mqe_complete; 14296 14297 /* Get the reference to the active mbox command */ 14298 spin_lock_irqsave(&phba->hbalock, iflags); 14299 pmb = phba->sli.mbox_active; 14300 if (unlikely(!pmb)) { 14301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14302 "1832 No pending MBOX command to handle\n"); 14303 spin_unlock_irqrestore(&phba->hbalock, iflags); 14304 goto out_no_mqe_complete; 14305 } 14306 spin_unlock_irqrestore(&phba->hbalock, iflags); 14307 mqe = &pmb->u.mqe; 14308 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14309 mbox = phba->mbox; 14310 vport = pmb->vport; 14311 14312 /* Reset heartbeat timer */ 14313 phba->last_completion_time = jiffies; 14314 del_timer(&phba->sli.mbox_tmo); 14315 14316 /* Move mbox data to caller's mailbox region, do endian swapping */ 14317 if (pmb->mbox_cmpl && mbox) 14318 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14319 14320 /* 14321 * For mcqe errors, conditionally move a modified error code to 14322 * the mbox so that the error will not be missed. 14323 */ 14324 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14325 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14326 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14327 bf_set(lpfc_mqe_status, mqe, 14328 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14329 } 14330 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14331 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14332 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14333 "MBOX dflt rpi: status:x%x rpi:x%x", 14334 mcqe_status, 14335 pmbox->un.varWords[0], 0); 14336 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14337 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14338 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14339 14340 /* Reg_LOGIN of dflt RPI was successful. Mark the 14341 * node as having an UNREG_LOGIN in progress to stop 14342 * an unsolicited PLOGI from the same NPortId from 14343 * starting another mailbox transaction. 14344 */ 14345 spin_lock_irqsave(&ndlp->lock, iflags); 14346 ndlp->nlp_flag |= NLP_UNREG_INP; 14347 spin_unlock_irqrestore(&ndlp->lock, iflags); 14348 lpfc_unreg_login(phba, vport->vpi, 14349 pmbox->un.varWords[0], pmb); 14350 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14351 pmb->ctx_buf = mp; 14352 14353 /* No reference taken here. This is a default 14354 * RPI reg/immediate unreg cycle. The reference was 14355 * taken in the reg rpi path and is released when 14356 * this mailbox completes. 14357 */ 14358 pmb->ctx_ndlp = ndlp; 14359 pmb->vport = vport; 14360 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14361 if (rc != MBX_BUSY) 14362 lpfc_printf_log(phba, KERN_ERR, 14363 LOG_TRACE_EVENT, 14364 "0385 rc should " 14365 "have been MBX_BUSY\n"); 14366 if (rc != MBX_NOT_FINISHED) 14367 goto send_current_mbox; 14368 } 14369 } 14370 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14371 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14372 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14373 14374 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14375 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14376 spin_lock_irqsave(&phba->hbalock, iflags); 14377 /* Release the mailbox command posting token */ 14378 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14379 phba->sli.mbox_active = NULL; 14380 if (bf_get(lpfc_trailer_consumed, mcqe)) 14381 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14382 spin_unlock_irqrestore(&phba->hbalock, iflags); 14383 14384 /* Post the next mbox command, if there is one */ 14385 lpfc_sli4_post_async_mbox(phba); 14386 14387 /* Process cmpl now */ 14388 if (pmb->mbox_cmpl) 14389 pmb->mbox_cmpl(phba, pmb); 14390 return false; 14391 } 14392 14393 /* There is mailbox completion work to queue to the worker thread */ 14394 spin_lock_irqsave(&phba->hbalock, iflags); 14395 __lpfc_mbox_cmpl_put(phba, pmb); 14396 phba->work_ha |= HA_MBATT; 14397 spin_unlock_irqrestore(&phba->hbalock, iflags); 14398 workposted = true; 14399 14400 send_current_mbox: 14401 spin_lock_irqsave(&phba->hbalock, iflags); 14402 /* Release the mailbox command posting token */ 14403 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14404 /* Setting active mailbox pointer need to be in sync to flag clear */ 14405 phba->sli.mbox_active = NULL; 14406 if (bf_get(lpfc_trailer_consumed, mcqe)) 14407 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14408 spin_unlock_irqrestore(&phba->hbalock, iflags); 14409 /* Wake up worker thread to post the next pending mailbox command */ 14410 lpfc_worker_wake_up(phba); 14411 return workposted; 14412 14413 out_no_mqe_complete: 14414 spin_lock_irqsave(&phba->hbalock, iflags); 14415 if (bf_get(lpfc_trailer_consumed, mcqe)) 14416 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14417 spin_unlock_irqrestore(&phba->hbalock, iflags); 14418 return false; 14419 } 14420 14421 /** 14422 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14423 * @phba: Pointer to HBA context object. 14424 * @cq: Pointer to associated CQ 14425 * @cqe: Pointer to mailbox completion queue entry. 14426 * 14427 * This routine process a mailbox completion queue entry, it invokes the 14428 * proper mailbox complete handling or asynchronous event handling routine 14429 * according to the MCQE's async bit. 14430 * 14431 * Return: true if work posted to worker thread, otherwise false. 14432 **/ 14433 static bool 14434 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14435 struct lpfc_cqe *cqe) 14436 { 14437 struct lpfc_mcqe mcqe; 14438 bool workposted; 14439 14440 cq->CQ_mbox++; 14441 14442 /* Copy the mailbox MCQE and convert endian order as needed */ 14443 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14444 14445 /* Invoke the proper event handling routine */ 14446 if (!bf_get(lpfc_trailer_async, &mcqe)) 14447 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14448 else 14449 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14450 return workposted; 14451 } 14452 14453 /** 14454 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14455 * @phba: Pointer to HBA context object. 14456 * @cq: Pointer to associated CQ 14457 * @wcqe: Pointer to work-queue completion queue entry. 14458 * 14459 * This routine handles an ELS work-queue completion event. 14460 * 14461 * Return: true if work posted to worker thread, otherwise false. 14462 **/ 14463 static bool 14464 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14465 struct lpfc_wcqe_complete *wcqe) 14466 { 14467 struct lpfc_iocbq *irspiocbq; 14468 unsigned long iflags; 14469 struct lpfc_sli_ring *pring = cq->pring; 14470 int txq_cnt = 0; 14471 int txcmplq_cnt = 0; 14472 14473 /* Check for response status */ 14474 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14475 /* Log the error status */ 14476 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14477 "0357 ELS CQE error: status=x%x: " 14478 "CQE: %08x %08x %08x %08x\n", 14479 bf_get(lpfc_wcqe_c_status, wcqe), 14480 wcqe->word0, wcqe->total_data_placed, 14481 wcqe->parameter, wcqe->word3); 14482 } 14483 14484 /* Get an irspiocbq for later ELS response processing use */ 14485 irspiocbq = lpfc_sli_get_iocbq(phba); 14486 if (!irspiocbq) { 14487 if (!list_empty(&pring->txq)) 14488 txq_cnt++; 14489 if (!list_empty(&pring->txcmplq)) 14490 txcmplq_cnt++; 14491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14492 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14493 "els_txcmplq_cnt=%d\n", 14494 txq_cnt, phba->iocb_cnt, 14495 txcmplq_cnt); 14496 return false; 14497 } 14498 14499 /* Save off the slow-path queue event for work thread to process */ 14500 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14501 spin_lock_irqsave(&phba->hbalock, iflags); 14502 list_add_tail(&irspiocbq->cq_event.list, 14503 &phba->sli4_hba.sp_queue_event); 14504 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14505 spin_unlock_irqrestore(&phba->hbalock, iflags); 14506 14507 return true; 14508 } 14509 14510 /** 14511 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14512 * @phba: Pointer to HBA context object. 14513 * @wcqe: Pointer to work-queue completion queue entry. 14514 * 14515 * This routine handles slow-path WQ entry consumed event by invoking the 14516 * proper WQ release routine to the slow-path WQ. 14517 **/ 14518 static void 14519 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14520 struct lpfc_wcqe_release *wcqe) 14521 { 14522 /* sanity check on queue memory */ 14523 if (unlikely(!phba->sli4_hba.els_wq)) 14524 return; 14525 /* Check for the slow-path ELS work queue */ 14526 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14527 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14528 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14529 else 14530 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14531 "2579 Slow-path wqe consume event carries " 14532 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14533 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14534 phba->sli4_hba.els_wq->queue_id); 14535 } 14536 14537 /** 14538 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14539 * @phba: Pointer to HBA context object. 14540 * @cq: Pointer to a WQ completion queue. 14541 * @wcqe: Pointer to work-queue completion queue entry. 14542 * 14543 * This routine handles an XRI abort event. 14544 * 14545 * Return: true if work posted to worker thread, otherwise false. 14546 **/ 14547 static bool 14548 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14549 struct lpfc_queue *cq, 14550 struct sli4_wcqe_xri_aborted *wcqe) 14551 { 14552 bool workposted = false; 14553 struct lpfc_cq_event *cq_event; 14554 unsigned long iflags; 14555 14556 switch (cq->subtype) { 14557 case LPFC_IO: 14558 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14559 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14560 /* Notify aborted XRI for NVME work queue */ 14561 if (phba->nvmet_support) 14562 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14563 } 14564 workposted = false; 14565 break; 14566 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14567 case LPFC_ELS: 14568 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14569 if (!cq_event) { 14570 workposted = false; 14571 break; 14572 } 14573 cq_event->hdwq = cq->hdwq; 14574 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14575 iflags); 14576 list_add_tail(&cq_event->list, 14577 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14578 /* Set the els xri abort event flag */ 14579 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14580 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14581 iflags); 14582 workposted = true; 14583 break; 14584 default: 14585 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14586 "0603 Invalid CQ subtype %d: " 14587 "%08x %08x %08x %08x\n", 14588 cq->subtype, wcqe->word0, wcqe->parameter, 14589 wcqe->word2, wcqe->word3); 14590 workposted = false; 14591 break; 14592 } 14593 return workposted; 14594 } 14595 14596 #define FC_RCTL_MDS_DIAGS 0xF4 14597 14598 /** 14599 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14600 * @phba: Pointer to HBA context object. 14601 * @rcqe: Pointer to receive-queue completion queue entry. 14602 * 14603 * This routine process a receive-queue completion queue entry. 14604 * 14605 * Return: true if work posted to worker thread, otherwise false. 14606 **/ 14607 static bool 14608 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14609 { 14610 bool workposted = false; 14611 struct fc_frame_header *fc_hdr; 14612 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14613 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14614 struct lpfc_nvmet_tgtport *tgtp; 14615 struct hbq_dmabuf *dma_buf; 14616 uint32_t status, rq_id; 14617 unsigned long iflags; 14618 14619 /* sanity check on queue memory */ 14620 if (unlikely(!hrq) || unlikely(!drq)) 14621 return workposted; 14622 14623 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14624 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14625 else 14626 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14627 if (rq_id != hrq->queue_id) 14628 goto out; 14629 14630 status = bf_get(lpfc_rcqe_status, rcqe); 14631 switch (status) { 14632 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14634 "2537 Receive Frame Truncated!!\n"); 14635 fallthrough; 14636 case FC_STATUS_RQ_SUCCESS: 14637 spin_lock_irqsave(&phba->hbalock, iflags); 14638 lpfc_sli4_rq_release(hrq, drq); 14639 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14640 if (!dma_buf) { 14641 hrq->RQ_no_buf_found++; 14642 spin_unlock_irqrestore(&phba->hbalock, iflags); 14643 goto out; 14644 } 14645 hrq->RQ_rcv_buf++; 14646 hrq->RQ_buf_posted--; 14647 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14648 14649 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14650 14651 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14652 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14653 spin_unlock_irqrestore(&phba->hbalock, iflags); 14654 /* Handle MDS Loopback frames */ 14655 if (!(phba->pport->load_flag & FC_UNLOADING)) 14656 lpfc_sli4_handle_mds_loopback(phba->pport, 14657 dma_buf); 14658 else 14659 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14660 break; 14661 } 14662 14663 /* save off the frame for the work thread to process */ 14664 list_add_tail(&dma_buf->cq_event.list, 14665 &phba->sli4_hba.sp_queue_event); 14666 /* Frame received */ 14667 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14668 spin_unlock_irqrestore(&phba->hbalock, iflags); 14669 workposted = true; 14670 break; 14671 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14672 if (phba->nvmet_support) { 14673 tgtp = phba->targetport->private; 14674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14675 "6402 RQE Error x%x, posted %d err_cnt " 14676 "%d: %x %x %x\n", 14677 status, hrq->RQ_buf_posted, 14678 hrq->RQ_no_posted_buf, 14679 atomic_read(&tgtp->rcv_fcp_cmd_in), 14680 atomic_read(&tgtp->rcv_fcp_cmd_out), 14681 atomic_read(&tgtp->xmt_fcp_release)); 14682 } 14683 fallthrough; 14684 14685 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14686 hrq->RQ_no_posted_buf++; 14687 /* Post more buffers if possible */ 14688 spin_lock_irqsave(&phba->hbalock, iflags); 14689 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14690 spin_unlock_irqrestore(&phba->hbalock, iflags); 14691 workposted = true; 14692 break; 14693 case FC_STATUS_RQ_DMA_FAILURE: 14694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14695 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14696 "x%08x\n", 14697 status, rcqe->word0, rcqe->word1, 14698 rcqe->word2, rcqe->word3); 14699 14700 /* If IV set, no further recovery */ 14701 if (bf_get(lpfc_rcqe_iv, rcqe)) 14702 break; 14703 14704 /* recycle consumed resource */ 14705 spin_lock_irqsave(&phba->hbalock, iflags); 14706 lpfc_sli4_rq_release(hrq, drq); 14707 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14708 if (!dma_buf) { 14709 hrq->RQ_no_buf_found++; 14710 spin_unlock_irqrestore(&phba->hbalock, iflags); 14711 break; 14712 } 14713 hrq->RQ_rcv_buf++; 14714 hrq->RQ_buf_posted--; 14715 spin_unlock_irqrestore(&phba->hbalock, iflags); 14716 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14717 break; 14718 default: 14719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14720 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14721 "x%08x x%08x x%08x\n", 14722 status, rcqe->word0, rcqe->word1, 14723 rcqe->word2, rcqe->word3); 14724 break; 14725 } 14726 out: 14727 return workposted; 14728 } 14729 14730 /** 14731 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14732 * @phba: Pointer to HBA context object. 14733 * @cq: Pointer to the completion queue. 14734 * @cqe: Pointer to a completion queue entry. 14735 * 14736 * This routine process a slow-path work-queue or receive queue completion queue 14737 * entry. 14738 * 14739 * Return: true if work posted to worker thread, otherwise false. 14740 **/ 14741 static bool 14742 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14743 struct lpfc_cqe *cqe) 14744 { 14745 struct lpfc_cqe cqevt; 14746 bool workposted = false; 14747 14748 /* Copy the work queue CQE and convert endian order if needed */ 14749 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14750 14751 /* Check and process for different type of WCQE and dispatch */ 14752 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14753 case CQE_CODE_COMPL_WQE: 14754 /* Process the WQ/RQ complete event */ 14755 phba->last_completion_time = jiffies; 14756 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14757 (struct lpfc_wcqe_complete *)&cqevt); 14758 break; 14759 case CQE_CODE_RELEASE_WQE: 14760 /* Process the WQ release event */ 14761 lpfc_sli4_sp_handle_rel_wcqe(phba, 14762 (struct lpfc_wcqe_release *)&cqevt); 14763 break; 14764 case CQE_CODE_XRI_ABORTED: 14765 /* Process the WQ XRI abort event */ 14766 phba->last_completion_time = jiffies; 14767 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14768 (struct sli4_wcqe_xri_aborted *)&cqevt); 14769 break; 14770 case CQE_CODE_RECEIVE: 14771 case CQE_CODE_RECEIVE_V1: 14772 /* Process the RQ event */ 14773 phba->last_completion_time = jiffies; 14774 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14775 (struct lpfc_rcqe *)&cqevt); 14776 break; 14777 default: 14778 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14779 "0388 Not a valid WCQE code: x%x\n", 14780 bf_get(lpfc_cqe_code, &cqevt)); 14781 break; 14782 } 14783 return workposted; 14784 } 14785 14786 /** 14787 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14788 * @phba: Pointer to HBA context object. 14789 * @eqe: Pointer to fast-path event queue entry. 14790 * @speq: Pointer to slow-path event queue. 14791 * 14792 * This routine process a event queue entry from the slow-path event queue. 14793 * It will check the MajorCode and MinorCode to determine this is for a 14794 * completion event on a completion queue, if not, an error shall be logged 14795 * and just return. Otherwise, it will get to the corresponding completion 14796 * queue and process all the entries on that completion queue, rearm the 14797 * completion queue, and then return. 14798 * 14799 **/ 14800 static void 14801 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14802 struct lpfc_queue *speq) 14803 { 14804 struct lpfc_queue *cq = NULL, *childq; 14805 uint16_t cqid; 14806 int ret = 0; 14807 14808 /* Get the reference to the corresponding CQ */ 14809 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14810 14811 list_for_each_entry(childq, &speq->child_list, list) { 14812 if (childq->queue_id == cqid) { 14813 cq = childq; 14814 break; 14815 } 14816 } 14817 if (unlikely(!cq)) { 14818 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14820 "0365 Slow-path CQ identifier " 14821 "(%d) does not exist\n", cqid); 14822 return; 14823 } 14824 14825 /* Save EQ associated with this CQ */ 14826 cq->assoc_qp = speq; 14827 14828 if (is_kdump_kernel()) 14829 ret = queue_work(phba->wq, &cq->spwork); 14830 else 14831 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14832 14833 if (!ret) 14834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14835 "0390 Cannot schedule queue work " 14836 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14837 cqid, cq->queue_id, raw_smp_processor_id()); 14838 } 14839 14840 /** 14841 * __lpfc_sli4_process_cq - Process elements of a CQ 14842 * @phba: Pointer to HBA context object. 14843 * @cq: Pointer to CQ to be processed 14844 * @handler: Routine to process each cqe 14845 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14846 * 14847 * This routine processes completion queue entries in a CQ. While a valid 14848 * queue element is found, the handler is called. During processing checks 14849 * are made for periodic doorbell writes to let the hardware know of 14850 * element consumption. 14851 * 14852 * If the max limit on cqes to process is hit, or there are no more valid 14853 * entries, the loop stops. If we processed a sufficient number of elements, 14854 * meaning there is sufficient load, rather than rearming and generating 14855 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14856 * indicates no rescheduling. 14857 * 14858 * Returns True if work scheduled, False otherwise. 14859 **/ 14860 static bool 14861 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14862 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14863 struct lpfc_cqe *), unsigned long *delay) 14864 { 14865 struct lpfc_cqe *cqe; 14866 bool workposted = false; 14867 int count = 0, consumed = 0; 14868 bool arm = true; 14869 14870 /* default - no reschedule */ 14871 *delay = 0; 14872 14873 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14874 goto rearm_and_exit; 14875 14876 /* Process all the entries to the CQ */ 14877 cq->q_flag = 0; 14878 cqe = lpfc_sli4_cq_get(cq); 14879 while (cqe) { 14880 workposted |= handler(phba, cq, cqe); 14881 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14882 14883 consumed++; 14884 if (!(++count % cq->max_proc_limit)) 14885 break; 14886 14887 if (!(count % cq->notify_interval)) { 14888 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14889 LPFC_QUEUE_NOARM); 14890 consumed = 0; 14891 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14892 } 14893 14894 if (count == LPFC_NVMET_CQ_NOTIFY) 14895 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14896 14897 cqe = lpfc_sli4_cq_get(cq); 14898 } 14899 if (count >= phba->cfg_cq_poll_threshold) { 14900 *delay = 1; 14901 arm = false; 14902 } 14903 14904 /* Track the max number of CQEs processed in 1 EQ */ 14905 if (count > cq->CQ_max_cqe) 14906 cq->CQ_max_cqe = count; 14907 14908 cq->assoc_qp->EQ_cqe_cnt += count; 14909 14910 /* Catch the no cq entry condition */ 14911 if (unlikely(count == 0)) 14912 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14913 "0369 No entry from completion queue " 14914 "qid=%d\n", cq->queue_id); 14915 14916 xchg(&cq->queue_claimed, 0); 14917 14918 rearm_and_exit: 14919 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14920 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14921 14922 return workposted; 14923 } 14924 14925 /** 14926 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14927 * @cq: pointer to CQ to process 14928 * 14929 * This routine calls the cq processing routine with a handler specific 14930 * to the type of queue bound to it. 14931 * 14932 * The CQ routine returns two values: the first is the calling status, 14933 * which indicates whether work was queued to the background discovery 14934 * thread. If true, the routine should wakeup the discovery thread; 14935 * the second is the delay parameter. If non-zero, rather than rearming 14936 * the CQ and yet another interrupt, the CQ handler should be queued so 14937 * that it is processed in a subsequent polling action. The value of 14938 * the delay indicates when to reschedule it. 14939 **/ 14940 static void 14941 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14942 { 14943 struct lpfc_hba *phba = cq->phba; 14944 unsigned long delay; 14945 bool workposted = false; 14946 int ret = 0; 14947 14948 /* Process and rearm the CQ */ 14949 switch (cq->type) { 14950 case LPFC_MCQ: 14951 workposted |= __lpfc_sli4_process_cq(phba, cq, 14952 lpfc_sli4_sp_handle_mcqe, 14953 &delay); 14954 break; 14955 case LPFC_WCQ: 14956 if (cq->subtype == LPFC_IO) 14957 workposted |= __lpfc_sli4_process_cq(phba, cq, 14958 lpfc_sli4_fp_handle_cqe, 14959 &delay); 14960 else 14961 workposted |= __lpfc_sli4_process_cq(phba, cq, 14962 lpfc_sli4_sp_handle_cqe, 14963 &delay); 14964 break; 14965 default: 14966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14967 "0370 Invalid completion queue type (%d)\n", 14968 cq->type); 14969 return; 14970 } 14971 14972 if (delay) { 14973 if (is_kdump_kernel()) 14974 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14975 delay); 14976 else 14977 ret = queue_delayed_work_on(cq->chann, phba->wq, 14978 &cq->sched_spwork, delay); 14979 if (!ret) 14980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14981 "0394 Cannot schedule queue work " 14982 "for cqid=%d on CPU %d\n", 14983 cq->queue_id, cq->chann); 14984 } 14985 14986 /* wake up worker thread if there are works to be done */ 14987 if (workposted) 14988 lpfc_worker_wake_up(phba); 14989 } 14990 14991 /** 14992 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14993 * interrupt 14994 * @work: pointer to work element 14995 * 14996 * translates from the work handler and calls the slow-path handler. 14997 **/ 14998 static void 14999 lpfc_sli4_sp_process_cq(struct work_struct *work) 15000 { 15001 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15002 15003 __lpfc_sli4_sp_process_cq(cq); 15004 } 15005 15006 /** 15007 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15008 * @work: pointer to work element 15009 * 15010 * translates from the work handler and calls the slow-path handler. 15011 **/ 15012 static void 15013 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15014 { 15015 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15016 struct lpfc_queue, sched_spwork); 15017 15018 __lpfc_sli4_sp_process_cq(cq); 15019 } 15020 15021 /** 15022 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15023 * @phba: Pointer to HBA context object. 15024 * @cq: Pointer to associated CQ 15025 * @wcqe: Pointer to work-queue completion queue entry. 15026 * 15027 * This routine process a fast-path work queue completion entry from fast-path 15028 * event queue for FCP command response completion. 15029 **/ 15030 static void 15031 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15032 struct lpfc_wcqe_complete *wcqe) 15033 { 15034 struct lpfc_sli_ring *pring = cq->pring; 15035 struct lpfc_iocbq *cmdiocbq; 15036 unsigned long iflags; 15037 15038 /* Check for response status */ 15039 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15040 /* If resource errors reported from HBA, reduce queue 15041 * depth of the SCSI device. 15042 */ 15043 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15044 IOSTAT_LOCAL_REJECT)) && 15045 ((wcqe->parameter & IOERR_PARAM_MASK) == 15046 IOERR_NO_RESOURCES)) 15047 phba->lpfc_rampdown_queue_depth(phba); 15048 15049 /* Log the cmpl status */ 15050 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15051 "0373 FCP CQE cmpl: status=x%x: " 15052 "CQE: %08x %08x %08x %08x\n", 15053 bf_get(lpfc_wcqe_c_status, wcqe), 15054 wcqe->word0, wcqe->total_data_placed, 15055 wcqe->parameter, wcqe->word3); 15056 } 15057 15058 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15059 spin_lock_irqsave(&pring->ring_lock, iflags); 15060 pring->stats.iocb_event++; 15061 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15062 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15063 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15064 if (unlikely(!cmdiocbq)) { 15065 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15066 "0374 FCP complete with no corresponding " 15067 "cmdiocb: iotag (%d)\n", 15068 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15069 return; 15070 } 15071 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15072 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15073 #endif 15074 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15075 spin_lock_irqsave(&phba->hbalock, iflags); 15076 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15077 spin_unlock_irqrestore(&phba->hbalock, iflags); 15078 } 15079 15080 if (cmdiocbq->cmd_cmpl) { 15081 /* For FCP the flag is cleared in cmd_cmpl */ 15082 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15083 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15084 spin_lock_irqsave(&phba->hbalock, iflags); 15085 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15086 spin_unlock_irqrestore(&phba->hbalock, iflags); 15087 } 15088 15089 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15090 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15091 sizeof(struct lpfc_wcqe_complete)); 15092 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15093 } else { 15094 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15095 "0375 FCP cmdiocb not callback function " 15096 "iotag: (%d)\n", 15097 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15098 } 15099 } 15100 15101 /** 15102 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15103 * @phba: Pointer to HBA context object. 15104 * @cq: Pointer to completion queue. 15105 * @wcqe: Pointer to work-queue completion queue entry. 15106 * 15107 * This routine handles an fast-path WQ entry consumed event by invoking the 15108 * proper WQ release routine to the slow-path WQ. 15109 **/ 15110 static void 15111 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15112 struct lpfc_wcqe_release *wcqe) 15113 { 15114 struct lpfc_queue *childwq; 15115 bool wqid_matched = false; 15116 uint16_t hba_wqid; 15117 15118 /* Check for fast-path FCP work queue release */ 15119 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15120 list_for_each_entry(childwq, &cq->child_list, list) { 15121 if (childwq->queue_id == hba_wqid) { 15122 lpfc_sli4_wq_release(childwq, 15123 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15124 if (childwq->q_flag & HBA_NVMET_WQFULL) 15125 lpfc_nvmet_wqfull_process(phba, childwq); 15126 wqid_matched = true; 15127 break; 15128 } 15129 } 15130 /* Report warning log message if no match found */ 15131 if (wqid_matched != true) 15132 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15133 "2580 Fast-path wqe consume event carries " 15134 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15135 } 15136 15137 /** 15138 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15139 * @phba: Pointer to HBA context object. 15140 * @cq: Pointer to completion queue. 15141 * @rcqe: Pointer to receive-queue completion queue entry. 15142 * 15143 * This routine process a receive-queue completion queue entry. 15144 * 15145 * Return: true if work posted to worker thread, otherwise false. 15146 **/ 15147 static bool 15148 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15149 struct lpfc_rcqe *rcqe) 15150 { 15151 bool workposted = false; 15152 struct lpfc_queue *hrq; 15153 struct lpfc_queue *drq; 15154 struct rqb_dmabuf *dma_buf; 15155 struct fc_frame_header *fc_hdr; 15156 struct lpfc_nvmet_tgtport *tgtp; 15157 uint32_t status, rq_id; 15158 unsigned long iflags; 15159 uint32_t fctl, idx; 15160 15161 if ((phba->nvmet_support == 0) || 15162 (phba->sli4_hba.nvmet_cqset == NULL)) 15163 return workposted; 15164 15165 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15166 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15167 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15168 15169 /* sanity check on queue memory */ 15170 if (unlikely(!hrq) || unlikely(!drq)) 15171 return workposted; 15172 15173 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15174 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15175 else 15176 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15177 15178 if ((phba->nvmet_support == 0) || 15179 (rq_id != hrq->queue_id)) 15180 return workposted; 15181 15182 status = bf_get(lpfc_rcqe_status, rcqe); 15183 switch (status) { 15184 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15186 "6126 Receive Frame Truncated!!\n"); 15187 fallthrough; 15188 case FC_STATUS_RQ_SUCCESS: 15189 spin_lock_irqsave(&phba->hbalock, iflags); 15190 lpfc_sli4_rq_release(hrq, drq); 15191 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15192 if (!dma_buf) { 15193 hrq->RQ_no_buf_found++; 15194 spin_unlock_irqrestore(&phba->hbalock, iflags); 15195 goto out; 15196 } 15197 spin_unlock_irqrestore(&phba->hbalock, iflags); 15198 hrq->RQ_rcv_buf++; 15199 hrq->RQ_buf_posted--; 15200 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15201 15202 /* Just some basic sanity checks on FCP Command frame */ 15203 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15204 fc_hdr->fh_f_ctl[1] << 8 | 15205 fc_hdr->fh_f_ctl[2]); 15206 if (((fctl & 15207 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15208 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15209 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15210 goto drop; 15211 15212 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15213 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15214 lpfc_nvmet_unsol_fcp_event( 15215 phba, idx, dma_buf, cq->isr_timestamp, 15216 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15217 return false; 15218 } 15219 drop: 15220 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15221 break; 15222 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15223 if (phba->nvmet_support) { 15224 tgtp = phba->targetport->private; 15225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15226 "6401 RQE Error x%x, posted %d err_cnt " 15227 "%d: %x %x %x\n", 15228 status, hrq->RQ_buf_posted, 15229 hrq->RQ_no_posted_buf, 15230 atomic_read(&tgtp->rcv_fcp_cmd_in), 15231 atomic_read(&tgtp->rcv_fcp_cmd_out), 15232 atomic_read(&tgtp->xmt_fcp_release)); 15233 } 15234 fallthrough; 15235 15236 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15237 hrq->RQ_no_posted_buf++; 15238 /* Post more buffers if possible */ 15239 break; 15240 case FC_STATUS_RQ_DMA_FAILURE: 15241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15242 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15243 "x%08x\n", 15244 status, rcqe->word0, rcqe->word1, 15245 rcqe->word2, rcqe->word3); 15246 15247 /* If IV set, no further recovery */ 15248 if (bf_get(lpfc_rcqe_iv, rcqe)) 15249 break; 15250 15251 /* recycle consumed resource */ 15252 spin_lock_irqsave(&phba->hbalock, iflags); 15253 lpfc_sli4_rq_release(hrq, drq); 15254 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15255 if (!dma_buf) { 15256 hrq->RQ_no_buf_found++; 15257 spin_unlock_irqrestore(&phba->hbalock, iflags); 15258 break; 15259 } 15260 hrq->RQ_rcv_buf++; 15261 hrq->RQ_buf_posted--; 15262 spin_unlock_irqrestore(&phba->hbalock, iflags); 15263 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15264 break; 15265 default: 15266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15267 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15268 "x%08x x%08x x%08x\n", 15269 status, rcqe->word0, rcqe->word1, 15270 rcqe->word2, rcqe->word3); 15271 break; 15272 } 15273 out: 15274 return workposted; 15275 } 15276 15277 /** 15278 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15279 * @phba: adapter with cq 15280 * @cq: Pointer to the completion queue. 15281 * @cqe: Pointer to fast-path completion queue entry. 15282 * 15283 * This routine process a fast-path work queue completion entry from fast-path 15284 * event queue for FCP command response completion. 15285 * 15286 * Return: true if work posted to worker thread, otherwise false. 15287 **/ 15288 static bool 15289 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15290 struct lpfc_cqe *cqe) 15291 { 15292 struct lpfc_wcqe_release wcqe; 15293 bool workposted = false; 15294 15295 /* Copy the work queue CQE and convert endian order if needed */ 15296 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15297 15298 /* Check and process for different type of WCQE and dispatch */ 15299 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15300 case CQE_CODE_COMPL_WQE: 15301 case CQE_CODE_NVME_ERSP: 15302 cq->CQ_wq++; 15303 /* Process the WQ complete event */ 15304 phba->last_completion_time = jiffies; 15305 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15306 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15307 (struct lpfc_wcqe_complete *)&wcqe); 15308 break; 15309 case CQE_CODE_RELEASE_WQE: 15310 cq->CQ_release_wqe++; 15311 /* Process the WQ release event */ 15312 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15313 (struct lpfc_wcqe_release *)&wcqe); 15314 break; 15315 case CQE_CODE_XRI_ABORTED: 15316 cq->CQ_xri_aborted++; 15317 /* Process the WQ XRI abort event */ 15318 phba->last_completion_time = jiffies; 15319 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15320 (struct sli4_wcqe_xri_aborted *)&wcqe); 15321 break; 15322 case CQE_CODE_RECEIVE_V1: 15323 case CQE_CODE_RECEIVE: 15324 phba->last_completion_time = jiffies; 15325 if (cq->subtype == LPFC_NVMET) { 15326 workposted = lpfc_sli4_nvmet_handle_rcqe( 15327 phba, cq, (struct lpfc_rcqe *)&wcqe); 15328 } 15329 break; 15330 default: 15331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15332 "0144 Not a valid CQE code: x%x\n", 15333 bf_get(lpfc_wcqe_c_code, &wcqe)); 15334 break; 15335 } 15336 return workposted; 15337 } 15338 15339 /** 15340 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15341 * @cq: Pointer to CQ to be processed 15342 * 15343 * This routine calls the cq processing routine with the handler for 15344 * fast path CQEs. 15345 * 15346 * The CQ routine returns two values: the first is the calling status, 15347 * which indicates whether work was queued to the background discovery 15348 * thread. If true, the routine should wakeup the discovery thread; 15349 * the second is the delay parameter. If non-zero, rather than rearming 15350 * the CQ and yet another interrupt, the CQ handler should be queued so 15351 * that it is processed in a subsequent polling action. The value of 15352 * the delay indicates when to reschedule it. 15353 **/ 15354 static void 15355 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15356 { 15357 struct lpfc_hba *phba = cq->phba; 15358 unsigned long delay; 15359 bool workposted = false; 15360 int ret; 15361 15362 /* process and rearm the CQ */ 15363 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15364 &delay); 15365 15366 if (delay) { 15367 if (is_kdump_kernel()) 15368 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15369 delay); 15370 else 15371 ret = queue_delayed_work_on(cq->chann, phba->wq, 15372 &cq->sched_irqwork, delay); 15373 if (!ret) 15374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15375 "0367 Cannot schedule queue work " 15376 "for cqid=%d on CPU %d\n", 15377 cq->queue_id, cq->chann); 15378 } 15379 15380 /* wake up worker thread if there are works to be done */ 15381 if (workposted) 15382 lpfc_worker_wake_up(phba); 15383 } 15384 15385 /** 15386 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15387 * interrupt 15388 * @work: pointer to work element 15389 * 15390 * translates from the work handler and calls the fast-path handler. 15391 **/ 15392 static void 15393 lpfc_sli4_hba_process_cq(struct work_struct *work) 15394 { 15395 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15396 15397 __lpfc_sli4_hba_process_cq(cq); 15398 } 15399 15400 /** 15401 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15402 * @phba: Pointer to HBA context object. 15403 * @eq: Pointer to the queue structure. 15404 * @eqe: Pointer to fast-path event queue entry. 15405 * @poll_mode: poll_mode to execute processing the cq. 15406 * 15407 * This routine process a event queue entry from the fast-path event queue. 15408 * It will check the MajorCode and MinorCode to determine this is for a 15409 * completion event on a completion queue, if not, an error shall be logged 15410 * and just return. Otherwise, it will get to the corresponding completion 15411 * queue and process all the entries on the completion queue, rearm the 15412 * completion queue, and then return. 15413 **/ 15414 static void 15415 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15416 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15417 { 15418 struct lpfc_queue *cq = NULL; 15419 uint32_t qidx = eq->hdwq; 15420 uint16_t cqid, id; 15421 int ret; 15422 15423 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15425 "0366 Not a valid completion " 15426 "event: majorcode=x%x, minorcode=x%x\n", 15427 bf_get_le32(lpfc_eqe_major_code, eqe), 15428 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15429 return; 15430 } 15431 15432 /* Get the reference to the corresponding CQ */ 15433 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15434 15435 /* Use the fast lookup method first */ 15436 if (cqid <= phba->sli4_hba.cq_max) { 15437 cq = phba->sli4_hba.cq_lookup[cqid]; 15438 if (cq) 15439 goto work_cq; 15440 } 15441 15442 /* Next check for NVMET completion */ 15443 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15444 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15445 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15446 /* Process NVMET unsol rcv */ 15447 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15448 goto process_cq; 15449 } 15450 } 15451 15452 if (phba->sli4_hba.nvmels_cq && 15453 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15454 /* Process NVME unsol rcv */ 15455 cq = phba->sli4_hba.nvmels_cq; 15456 } 15457 15458 /* Otherwise this is a Slow path event */ 15459 if (cq == NULL) { 15460 lpfc_sli4_sp_handle_eqe(phba, eqe, 15461 phba->sli4_hba.hdwq[qidx].hba_eq); 15462 return; 15463 } 15464 15465 process_cq: 15466 if (unlikely(cqid != cq->queue_id)) { 15467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15468 "0368 Miss-matched fast-path completion " 15469 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15470 cqid, cq->queue_id); 15471 return; 15472 } 15473 15474 work_cq: 15475 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15476 if (phba->ktime_on) 15477 cq->isr_timestamp = ktime_get_ns(); 15478 else 15479 cq->isr_timestamp = 0; 15480 #endif 15481 15482 switch (poll_mode) { 15483 case LPFC_THREADED_IRQ: 15484 __lpfc_sli4_hba_process_cq(cq); 15485 break; 15486 case LPFC_QUEUE_WORK: 15487 default: 15488 if (is_kdump_kernel()) 15489 ret = queue_work(phba->wq, &cq->irqwork); 15490 else 15491 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15492 if (!ret) 15493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15494 "0383 Cannot schedule queue work " 15495 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15496 cqid, cq->queue_id, 15497 raw_smp_processor_id()); 15498 break; 15499 } 15500 } 15501 15502 /** 15503 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15504 * @work: pointer to work element 15505 * 15506 * translates from the work handler and calls the fast-path handler. 15507 **/ 15508 static void 15509 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15510 { 15511 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15512 struct lpfc_queue, sched_irqwork); 15513 15514 __lpfc_sli4_hba_process_cq(cq); 15515 } 15516 15517 /** 15518 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15519 * @irq: Interrupt number. 15520 * @dev_id: The device context pointer. 15521 * 15522 * This function is directly called from the PCI layer as an interrupt 15523 * service routine when device with SLI-4 interface spec is enabled with 15524 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15525 * ring event in the HBA. However, when the device is enabled with either 15526 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15527 * device-level interrupt handler. When the PCI slot is in error recovery 15528 * or the HBA is undergoing initialization, the interrupt handler will not 15529 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15530 * the intrrupt context. This function is called without any lock held. 15531 * It gets the hbalock to access and update SLI data structures. Note that, 15532 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15533 * equal to that of FCP CQ index. 15534 * 15535 * The link attention and ELS ring attention events are handled 15536 * by the worker thread. The interrupt handler signals the worker thread 15537 * and returns for these events. This function is called without any lock 15538 * held. It gets the hbalock to access and update SLI data structures. 15539 * 15540 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15541 * when interrupt is scheduled to be handled from a threaded irq context, or 15542 * else returns IRQ_NONE. 15543 **/ 15544 irqreturn_t 15545 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15546 { 15547 struct lpfc_hba *phba; 15548 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15549 struct lpfc_queue *fpeq; 15550 unsigned long iflag; 15551 int hba_eqidx; 15552 int ecount = 0; 15553 struct lpfc_eq_intr_info *eqi; 15554 15555 /* Get the driver's phba structure from the dev_id */ 15556 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15557 phba = hba_eq_hdl->phba; 15558 hba_eqidx = hba_eq_hdl->idx; 15559 15560 if (unlikely(!phba)) 15561 return IRQ_NONE; 15562 if (unlikely(!phba->sli4_hba.hdwq)) 15563 return IRQ_NONE; 15564 15565 /* Get to the EQ struct associated with this vector */ 15566 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15567 if (unlikely(!fpeq)) 15568 return IRQ_NONE; 15569 15570 /* Check device state for handling interrupt */ 15571 if (unlikely(lpfc_intr_state_check(phba))) { 15572 /* Check again for link_state with lock held */ 15573 spin_lock_irqsave(&phba->hbalock, iflag); 15574 if (phba->link_state < LPFC_LINK_DOWN) 15575 /* Flush, clear interrupt, and rearm the EQ */ 15576 lpfc_sli4_eqcq_flush(phba, fpeq); 15577 spin_unlock_irqrestore(&phba->hbalock, iflag); 15578 return IRQ_NONE; 15579 } 15580 15581 switch (fpeq->poll_mode) { 15582 case LPFC_THREADED_IRQ: 15583 /* CGN mgmt is mutually exclusive from irq processing */ 15584 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15585 return IRQ_WAKE_THREAD; 15586 fallthrough; 15587 case LPFC_QUEUE_WORK: 15588 default: 15589 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15590 eqi->icnt++; 15591 15592 fpeq->last_cpu = raw_smp_processor_id(); 15593 15594 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15595 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15596 phba->cfg_auto_imax && 15597 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15598 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15599 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15600 LPFC_MAX_AUTO_EQ_DELAY); 15601 15602 /* process and rearm the EQ */ 15603 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15604 LPFC_QUEUE_WORK); 15605 15606 if (unlikely(ecount == 0)) { 15607 fpeq->EQ_no_entry++; 15608 if (phba->intr_type == MSIX) 15609 /* MSI-X treated interrupt served as no EQ share INT */ 15610 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15611 "0358 MSI-X interrupt with no EQE\n"); 15612 else 15613 /* Non MSI-X treated on interrupt as EQ share INT */ 15614 return IRQ_NONE; 15615 } 15616 } 15617 15618 return IRQ_HANDLED; 15619 } /* lpfc_sli4_hba_intr_handler */ 15620 15621 /** 15622 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15623 * @irq: Interrupt number. 15624 * @dev_id: The device context pointer. 15625 * 15626 * This function is the device-level interrupt handler to device with SLI-4 15627 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15628 * interrupt mode is enabled and there is an event in the HBA which requires 15629 * driver attention. This function invokes the slow-path interrupt attention 15630 * handling function and fast-path interrupt attention handling function in 15631 * turn to process the relevant HBA attention events. This function is called 15632 * without any lock held. It gets the hbalock to access and update SLI data 15633 * structures. 15634 * 15635 * This function returns IRQ_HANDLED when interrupt is handled, else it 15636 * returns IRQ_NONE. 15637 **/ 15638 irqreturn_t 15639 lpfc_sli4_intr_handler(int irq, void *dev_id) 15640 { 15641 struct lpfc_hba *phba; 15642 irqreturn_t hba_irq_rc; 15643 bool hba_handled = false; 15644 int qidx; 15645 15646 /* Get the driver's phba structure from the dev_id */ 15647 phba = (struct lpfc_hba *)dev_id; 15648 15649 if (unlikely(!phba)) 15650 return IRQ_NONE; 15651 15652 /* 15653 * Invoke fast-path host attention interrupt handling as appropriate. 15654 */ 15655 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15656 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15657 &phba->sli4_hba.hba_eq_hdl[qidx]); 15658 if (hba_irq_rc == IRQ_HANDLED) 15659 hba_handled |= true; 15660 } 15661 15662 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15663 } /* lpfc_sli4_intr_handler */ 15664 15665 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15666 { 15667 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15668 struct lpfc_queue *eq; 15669 15670 rcu_read_lock(); 15671 15672 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15673 lpfc_sli4_poll_eq(eq); 15674 if (!list_empty(&phba->poll_list)) 15675 mod_timer(&phba->cpuhp_poll_timer, 15676 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15677 15678 rcu_read_unlock(); 15679 } 15680 15681 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15682 { 15683 struct lpfc_hba *phba = eq->phba; 15684 15685 /* kickstart slowpath processing if needed */ 15686 if (list_empty(&phba->poll_list)) 15687 mod_timer(&phba->cpuhp_poll_timer, 15688 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15689 15690 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15691 synchronize_rcu(); 15692 } 15693 15694 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15695 { 15696 struct lpfc_hba *phba = eq->phba; 15697 15698 /* Disable slowpath processing for this eq. Kick start the eq 15699 * by RE-ARMING the eq's ASAP 15700 */ 15701 list_del_rcu(&eq->_poll_list); 15702 synchronize_rcu(); 15703 15704 if (list_empty(&phba->poll_list)) 15705 del_timer_sync(&phba->cpuhp_poll_timer); 15706 } 15707 15708 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15709 { 15710 struct lpfc_queue *eq, *next; 15711 15712 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15713 list_del(&eq->_poll_list); 15714 15715 INIT_LIST_HEAD(&phba->poll_list); 15716 synchronize_rcu(); 15717 } 15718 15719 static inline void 15720 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15721 { 15722 if (mode == eq->mode) 15723 return; 15724 /* 15725 * currently this function is only called during a hotplug 15726 * event and the cpu on which this function is executing 15727 * is going offline. By now the hotplug has instructed 15728 * the scheduler to remove this cpu from cpu active mask. 15729 * So we don't need to work about being put aside by the 15730 * scheduler for a high priority process. Yes, the inte- 15731 * rrupts could come but they are known to retire ASAP. 15732 */ 15733 15734 /* Disable polling in the fastpath */ 15735 WRITE_ONCE(eq->mode, mode); 15736 /* flush out the store buffer */ 15737 smp_wmb(); 15738 15739 /* 15740 * Add this eq to the polling list and start polling. For 15741 * a grace period both interrupt handler and poller will 15742 * try to process the eq _but_ that's fine. We have a 15743 * synchronization mechanism in place (queue_claimed) to 15744 * deal with it. This is just a draining phase for int- 15745 * errupt handler (not eq's) as we have guranteed through 15746 * barrier that all the CPUs have seen the new CQ_POLLED 15747 * state. which will effectively disable the REARMING of 15748 * the EQ. The whole idea is eq's die off eventually as 15749 * we are not rearming EQ's anymore. 15750 */ 15751 mode ? lpfc_sli4_add_to_poll_list(eq) : 15752 lpfc_sli4_remove_from_poll_list(eq); 15753 } 15754 15755 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15756 { 15757 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15758 } 15759 15760 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15761 { 15762 struct lpfc_hba *phba = eq->phba; 15763 15764 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15765 15766 /* Kick start for the pending io's in h/w. 15767 * Once we switch back to interrupt processing on a eq 15768 * the io path completion will only arm eq's when it 15769 * receives a completion. But since eq's are in disa- 15770 * rmed state it doesn't receive a completion. This 15771 * creates a deadlock scenaro. 15772 */ 15773 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15774 } 15775 15776 /** 15777 * lpfc_sli4_queue_free - free a queue structure and associated memory 15778 * @queue: The queue structure to free. 15779 * 15780 * This function frees a queue structure and the DMAable memory used for 15781 * the host resident queue. This function must be called after destroying the 15782 * queue on the HBA. 15783 **/ 15784 void 15785 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15786 { 15787 struct lpfc_dmabuf *dmabuf; 15788 15789 if (!queue) 15790 return; 15791 15792 if (!list_empty(&queue->wq_list)) 15793 list_del(&queue->wq_list); 15794 15795 while (!list_empty(&queue->page_list)) { 15796 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15797 list); 15798 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15799 dmabuf->virt, dmabuf->phys); 15800 kfree(dmabuf); 15801 } 15802 if (queue->rqbp) { 15803 lpfc_free_rq_buffer(queue->phba, queue); 15804 kfree(queue->rqbp); 15805 } 15806 15807 if (!list_empty(&queue->cpu_list)) 15808 list_del(&queue->cpu_list); 15809 15810 kfree(queue); 15811 return; 15812 } 15813 15814 /** 15815 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15816 * @phba: The HBA that this queue is being created on. 15817 * @page_size: The size of a queue page 15818 * @entry_size: The size of each queue entry for this queue. 15819 * @entry_count: The number of entries that this queue will handle. 15820 * @cpu: The cpu that will primarily utilize this queue. 15821 * 15822 * This function allocates a queue structure and the DMAable memory used for 15823 * the host resident queue. This function must be called before creating the 15824 * queue on the HBA. 15825 **/ 15826 struct lpfc_queue * 15827 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15828 uint32_t entry_size, uint32_t entry_count, int cpu) 15829 { 15830 struct lpfc_queue *queue; 15831 struct lpfc_dmabuf *dmabuf; 15832 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15833 uint16_t x, pgcnt; 15834 15835 if (!phba->sli4_hba.pc_sli4_params.supported) 15836 hw_page_size = page_size; 15837 15838 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15839 15840 /* If needed, Adjust page count to match the max the adapter supports */ 15841 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15842 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15843 15844 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15845 GFP_KERNEL, cpu_to_node(cpu)); 15846 if (!queue) 15847 return NULL; 15848 15849 INIT_LIST_HEAD(&queue->list); 15850 INIT_LIST_HEAD(&queue->_poll_list); 15851 INIT_LIST_HEAD(&queue->wq_list); 15852 INIT_LIST_HEAD(&queue->wqfull_list); 15853 INIT_LIST_HEAD(&queue->page_list); 15854 INIT_LIST_HEAD(&queue->child_list); 15855 INIT_LIST_HEAD(&queue->cpu_list); 15856 15857 /* Set queue parameters now. If the system cannot provide memory 15858 * resources, the free routine needs to know what was allocated. 15859 */ 15860 queue->page_count = pgcnt; 15861 queue->q_pgs = (void **)&queue[1]; 15862 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15863 queue->entry_size = entry_size; 15864 queue->entry_count = entry_count; 15865 queue->page_size = hw_page_size; 15866 queue->phba = phba; 15867 15868 for (x = 0; x < queue->page_count; x++) { 15869 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15870 dev_to_node(&phba->pcidev->dev)); 15871 if (!dmabuf) 15872 goto out_fail; 15873 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15874 hw_page_size, &dmabuf->phys, 15875 GFP_KERNEL); 15876 if (!dmabuf->virt) { 15877 kfree(dmabuf); 15878 goto out_fail; 15879 } 15880 dmabuf->buffer_tag = x; 15881 list_add_tail(&dmabuf->list, &queue->page_list); 15882 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15883 queue->q_pgs[x] = dmabuf->virt; 15884 } 15885 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15886 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15887 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15888 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15889 15890 /* notify_interval will be set during q creation */ 15891 15892 return queue; 15893 out_fail: 15894 lpfc_sli4_queue_free(queue); 15895 return NULL; 15896 } 15897 15898 /** 15899 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15900 * @phba: HBA structure that indicates port to create a queue on. 15901 * @pci_barset: PCI BAR set flag. 15902 * 15903 * This function shall perform iomap of the specified PCI BAR address to host 15904 * memory address if not already done so and return it. The returned host 15905 * memory address can be NULL. 15906 */ 15907 static void __iomem * 15908 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15909 { 15910 if (!phba->pcidev) 15911 return NULL; 15912 15913 switch (pci_barset) { 15914 case WQ_PCI_BAR_0_AND_1: 15915 return phba->pci_bar0_memmap_p; 15916 case WQ_PCI_BAR_2_AND_3: 15917 return phba->pci_bar2_memmap_p; 15918 case WQ_PCI_BAR_4_AND_5: 15919 return phba->pci_bar4_memmap_p; 15920 default: 15921 break; 15922 } 15923 return NULL; 15924 } 15925 15926 /** 15927 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15928 * @phba: HBA structure that EQs are on. 15929 * @startq: The starting EQ index to modify 15930 * @numq: The number of EQs (consecutive indexes) to modify 15931 * @usdelay: amount of delay 15932 * 15933 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15934 * is set either by writing to a register (if supported by the SLI Port) 15935 * or by mailbox command. The mailbox command allows several EQs to be 15936 * updated at once. 15937 * 15938 * The @phba struct is used to send a mailbox command to HBA. The @startq 15939 * is used to get the starting EQ index to change. The @numq value is 15940 * used to specify how many consecutive EQ indexes, starting at EQ index, 15941 * are to be changed. This function is asynchronous and will wait for any 15942 * mailbox commands to finish before returning. 15943 * 15944 * On success this function will return a zero. If unable to allocate 15945 * enough memory this function will return -ENOMEM. If a mailbox command 15946 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15947 * have had their delay multipler changed. 15948 **/ 15949 void 15950 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15951 uint32_t numq, uint32_t usdelay) 15952 { 15953 struct lpfc_mbx_modify_eq_delay *eq_delay; 15954 LPFC_MBOXQ_t *mbox; 15955 struct lpfc_queue *eq; 15956 int cnt = 0, rc, length; 15957 uint32_t shdr_status, shdr_add_status; 15958 uint32_t dmult; 15959 int qidx; 15960 union lpfc_sli4_cfg_shdr *shdr; 15961 15962 if (startq >= phba->cfg_irq_chann) 15963 return; 15964 15965 if (usdelay > 0xFFFF) { 15966 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15967 "6429 usdelay %d too large. Scaled down to " 15968 "0xFFFF.\n", usdelay); 15969 usdelay = 0xFFFF; 15970 } 15971 15972 /* set values by EQ_DELAY register if supported */ 15973 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15974 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15975 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15976 if (!eq) 15977 continue; 15978 15979 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15980 15981 if (++cnt >= numq) 15982 break; 15983 } 15984 return; 15985 } 15986 15987 /* Otherwise, set values by mailbox cmd */ 15988 15989 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15990 if (!mbox) { 15991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15992 "6428 Failed allocating mailbox cmd buffer." 15993 " EQ delay was not set.\n"); 15994 return; 15995 } 15996 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15997 sizeof(struct lpfc_sli4_cfg_mhdr)); 15998 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15999 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16000 length, LPFC_SLI4_MBX_EMBED); 16001 eq_delay = &mbox->u.mqe.un.eq_delay; 16002 16003 /* Calculate delay multiper from maximum interrupt per second */ 16004 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16005 if (dmult) 16006 dmult--; 16007 if (dmult > LPFC_DMULT_MAX) 16008 dmult = LPFC_DMULT_MAX; 16009 16010 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16011 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16012 if (!eq) 16013 continue; 16014 eq->q_mode = usdelay; 16015 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16016 eq_delay->u.request.eq[cnt].phase = 0; 16017 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16018 16019 if (++cnt >= numq) 16020 break; 16021 } 16022 eq_delay->u.request.num_eq = cnt; 16023 16024 mbox->vport = phba->pport; 16025 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16026 mbox->ctx_ndlp = NULL; 16027 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16028 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16029 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16030 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16031 if (shdr_status || shdr_add_status || rc) { 16032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16033 "2512 MODIFY_EQ_DELAY mailbox failed with " 16034 "status x%x add_status x%x, mbx status x%x\n", 16035 shdr_status, shdr_add_status, rc); 16036 } 16037 mempool_free(mbox, phba->mbox_mem_pool); 16038 return; 16039 } 16040 16041 /** 16042 * lpfc_eq_create - Create an Event Queue on the HBA 16043 * @phba: HBA structure that indicates port to create a queue on. 16044 * @eq: The queue structure to use to create the event queue. 16045 * @imax: The maximum interrupt per second limit. 16046 * 16047 * This function creates an event queue, as detailed in @eq, on a port, 16048 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16049 * 16050 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16051 * is used to get the entry count and entry size that are necessary to 16052 * determine the number of pages to allocate and use for this queue. This 16053 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16054 * event queue. This function is asynchronous and will wait for the mailbox 16055 * command to finish before continuing. 16056 * 16057 * On success this function will return a zero. If unable to allocate enough 16058 * memory this function will return -ENOMEM. If the queue create mailbox command 16059 * fails this function will return -ENXIO. 16060 **/ 16061 int 16062 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16063 { 16064 struct lpfc_mbx_eq_create *eq_create; 16065 LPFC_MBOXQ_t *mbox; 16066 int rc, length, status = 0; 16067 struct lpfc_dmabuf *dmabuf; 16068 uint32_t shdr_status, shdr_add_status; 16069 union lpfc_sli4_cfg_shdr *shdr; 16070 uint16_t dmult; 16071 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16072 16073 /* sanity check on queue memory */ 16074 if (!eq) 16075 return -ENODEV; 16076 if (!phba->sli4_hba.pc_sli4_params.supported) 16077 hw_page_size = SLI4_PAGE_SIZE; 16078 16079 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16080 if (!mbox) 16081 return -ENOMEM; 16082 length = (sizeof(struct lpfc_mbx_eq_create) - 16083 sizeof(struct lpfc_sli4_cfg_mhdr)); 16084 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16085 LPFC_MBOX_OPCODE_EQ_CREATE, 16086 length, LPFC_SLI4_MBX_EMBED); 16087 eq_create = &mbox->u.mqe.un.eq_create; 16088 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16089 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16090 eq->page_count); 16091 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16092 LPFC_EQE_SIZE); 16093 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16094 16095 /* Use version 2 of CREATE_EQ if eqav is set */ 16096 if (phba->sli4_hba.pc_sli4_params.eqav) { 16097 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16098 LPFC_Q_CREATE_VERSION_2); 16099 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16100 phba->sli4_hba.pc_sli4_params.eqav); 16101 } 16102 16103 /* don't setup delay multiplier using EQ_CREATE */ 16104 dmult = 0; 16105 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16106 dmult); 16107 switch (eq->entry_count) { 16108 default: 16109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16110 "0360 Unsupported EQ count. (%d)\n", 16111 eq->entry_count); 16112 if (eq->entry_count < 256) { 16113 status = -EINVAL; 16114 goto out; 16115 } 16116 fallthrough; /* otherwise default to smallest count */ 16117 case 256: 16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16119 LPFC_EQ_CNT_256); 16120 break; 16121 case 512: 16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16123 LPFC_EQ_CNT_512); 16124 break; 16125 case 1024: 16126 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16127 LPFC_EQ_CNT_1024); 16128 break; 16129 case 2048: 16130 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16131 LPFC_EQ_CNT_2048); 16132 break; 16133 case 4096: 16134 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16135 LPFC_EQ_CNT_4096); 16136 break; 16137 } 16138 list_for_each_entry(dmabuf, &eq->page_list, list) { 16139 memset(dmabuf->virt, 0, hw_page_size); 16140 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16141 putPaddrLow(dmabuf->phys); 16142 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16143 putPaddrHigh(dmabuf->phys); 16144 } 16145 mbox->vport = phba->pport; 16146 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16147 mbox->ctx_buf = NULL; 16148 mbox->ctx_ndlp = NULL; 16149 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16150 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16151 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16152 if (shdr_status || shdr_add_status || rc) { 16153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16154 "2500 EQ_CREATE mailbox failed with " 16155 "status x%x add_status x%x, mbx status x%x\n", 16156 shdr_status, shdr_add_status, rc); 16157 status = -ENXIO; 16158 } 16159 eq->type = LPFC_EQ; 16160 eq->subtype = LPFC_NONE; 16161 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16162 if (eq->queue_id == 0xFFFF) 16163 status = -ENXIO; 16164 eq->host_index = 0; 16165 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16166 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16167 out: 16168 mempool_free(mbox, phba->mbox_mem_pool); 16169 return status; 16170 } 16171 16172 /** 16173 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16174 * @irq: Interrupt number. 16175 * @dev_id: The device context pointer. 16176 * 16177 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16178 * threaded irq context. 16179 * 16180 * Returns 16181 * IRQ_HANDLED - interrupt is handled 16182 * IRQ_NONE - otherwise 16183 **/ 16184 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16185 { 16186 struct lpfc_hba *phba; 16187 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16188 struct lpfc_queue *fpeq; 16189 int ecount = 0; 16190 int hba_eqidx; 16191 struct lpfc_eq_intr_info *eqi; 16192 16193 /* Get the driver's phba structure from the dev_id */ 16194 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16195 phba = hba_eq_hdl->phba; 16196 hba_eqidx = hba_eq_hdl->idx; 16197 16198 if (unlikely(!phba)) 16199 return IRQ_NONE; 16200 if (unlikely(!phba->sli4_hba.hdwq)) 16201 return IRQ_NONE; 16202 16203 /* Get to the EQ struct associated with this vector */ 16204 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16205 if (unlikely(!fpeq)) 16206 return IRQ_NONE; 16207 16208 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16209 eqi->icnt++; 16210 16211 fpeq->last_cpu = raw_smp_processor_id(); 16212 16213 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16214 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16215 phba->cfg_auto_imax && 16216 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16217 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16218 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16219 16220 /* process and rearm the EQ */ 16221 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16222 LPFC_THREADED_IRQ); 16223 16224 if (unlikely(ecount == 0)) { 16225 fpeq->EQ_no_entry++; 16226 if (phba->intr_type == MSIX) 16227 /* MSI-X treated interrupt served as no EQ share INT */ 16228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16229 "3358 MSI-X interrupt with no EQE\n"); 16230 else 16231 /* Non MSI-X treated on interrupt as EQ share INT */ 16232 return IRQ_NONE; 16233 } 16234 return IRQ_HANDLED; 16235 } 16236 16237 /** 16238 * lpfc_cq_create - Create a Completion Queue on the HBA 16239 * @phba: HBA structure that indicates port to create a queue on. 16240 * @cq: The queue structure to use to create the completion queue. 16241 * @eq: The event queue to bind this completion queue to. 16242 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16243 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16244 * 16245 * This function creates a completion queue, as detailed in @wq, on a port, 16246 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16247 * 16248 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16249 * is used to get the entry count and entry size that are necessary to 16250 * determine the number of pages to allocate and use for this queue. The @eq 16251 * is used to indicate which event queue to bind this completion queue to. This 16252 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16253 * completion queue. This function is asynchronous and will wait for the mailbox 16254 * command to finish before continuing. 16255 * 16256 * On success this function will return a zero. If unable to allocate enough 16257 * memory this function will return -ENOMEM. If the queue create mailbox command 16258 * fails this function will return -ENXIO. 16259 **/ 16260 int 16261 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16262 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16263 { 16264 struct lpfc_mbx_cq_create *cq_create; 16265 struct lpfc_dmabuf *dmabuf; 16266 LPFC_MBOXQ_t *mbox; 16267 int rc, length, status = 0; 16268 uint32_t shdr_status, shdr_add_status; 16269 union lpfc_sli4_cfg_shdr *shdr; 16270 16271 /* sanity check on queue memory */ 16272 if (!cq || !eq) 16273 return -ENODEV; 16274 16275 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16276 if (!mbox) 16277 return -ENOMEM; 16278 length = (sizeof(struct lpfc_mbx_cq_create) - 16279 sizeof(struct lpfc_sli4_cfg_mhdr)); 16280 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16281 LPFC_MBOX_OPCODE_CQ_CREATE, 16282 length, LPFC_SLI4_MBX_EMBED); 16283 cq_create = &mbox->u.mqe.un.cq_create; 16284 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16285 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16286 cq->page_count); 16287 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16288 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16289 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16290 phba->sli4_hba.pc_sli4_params.cqv); 16291 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16292 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16293 (cq->page_size / SLI4_PAGE_SIZE)); 16294 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16295 eq->queue_id); 16296 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16297 phba->sli4_hba.pc_sli4_params.cqav); 16298 } else { 16299 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16300 eq->queue_id); 16301 } 16302 switch (cq->entry_count) { 16303 case 2048: 16304 case 4096: 16305 if (phba->sli4_hba.pc_sli4_params.cqv == 16306 LPFC_Q_CREATE_VERSION_2) { 16307 cq_create->u.request.context.lpfc_cq_context_count = 16308 cq->entry_count; 16309 bf_set(lpfc_cq_context_count, 16310 &cq_create->u.request.context, 16311 LPFC_CQ_CNT_WORD7); 16312 break; 16313 } 16314 fallthrough; 16315 default: 16316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16317 "0361 Unsupported CQ count: " 16318 "entry cnt %d sz %d pg cnt %d\n", 16319 cq->entry_count, cq->entry_size, 16320 cq->page_count); 16321 if (cq->entry_count < 256) { 16322 status = -EINVAL; 16323 goto out; 16324 } 16325 fallthrough; /* otherwise default to smallest count */ 16326 case 256: 16327 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16328 LPFC_CQ_CNT_256); 16329 break; 16330 case 512: 16331 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16332 LPFC_CQ_CNT_512); 16333 break; 16334 case 1024: 16335 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16336 LPFC_CQ_CNT_1024); 16337 break; 16338 } 16339 list_for_each_entry(dmabuf, &cq->page_list, list) { 16340 memset(dmabuf->virt, 0, cq->page_size); 16341 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16342 putPaddrLow(dmabuf->phys); 16343 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16344 putPaddrHigh(dmabuf->phys); 16345 } 16346 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16347 16348 /* The IOCTL status is embedded in the mailbox subheader. */ 16349 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16350 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16351 if (shdr_status || shdr_add_status || rc) { 16352 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16353 "2501 CQ_CREATE mailbox failed with " 16354 "status x%x add_status x%x, mbx status x%x\n", 16355 shdr_status, shdr_add_status, rc); 16356 status = -ENXIO; 16357 goto out; 16358 } 16359 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16360 if (cq->queue_id == 0xFFFF) { 16361 status = -ENXIO; 16362 goto out; 16363 } 16364 /* link the cq onto the parent eq child list */ 16365 list_add_tail(&cq->list, &eq->child_list); 16366 /* Set up completion queue's type and subtype */ 16367 cq->type = type; 16368 cq->subtype = subtype; 16369 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16370 cq->assoc_qid = eq->queue_id; 16371 cq->assoc_qp = eq; 16372 cq->host_index = 0; 16373 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16374 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16375 16376 if (cq->queue_id > phba->sli4_hba.cq_max) 16377 phba->sli4_hba.cq_max = cq->queue_id; 16378 out: 16379 mempool_free(mbox, phba->mbox_mem_pool); 16380 return status; 16381 } 16382 16383 /** 16384 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16385 * @phba: HBA structure that indicates port to create a queue on. 16386 * @cqp: The queue structure array to use to create the completion queues. 16387 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16388 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16389 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16390 * 16391 * This function creates a set of completion queue, s to support MRQ 16392 * as detailed in @cqp, on a port, 16393 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16394 * 16395 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16396 * is used to get the entry count and entry size that are necessary to 16397 * determine the number of pages to allocate and use for this queue. The @eq 16398 * is used to indicate which event queue to bind this completion queue to. This 16399 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16400 * completion queue. This function is asynchronous and will wait for the mailbox 16401 * command to finish before continuing. 16402 * 16403 * On success this function will return a zero. If unable to allocate enough 16404 * memory this function will return -ENOMEM. If the queue create mailbox command 16405 * fails this function will return -ENXIO. 16406 **/ 16407 int 16408 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16409 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16410 uint32_t subtype) 16411 { 16412 struct lpfc_queue *cq; 16413 struct lpfc_queue *eq; 16414 struct lpfc_mbx_cq_create_set *cq_set; 16415 struct lpfc_dmabuf *dmabuf; 16416 LPFC_MBOXQ_t *mbox; 16417 int rc, length, alloclen, status = 0; 16418 int cnt, idx, numcq, page_idx = 0; 16419 uint32_t shdr_status, shdr_add_status; 16420 union lpfc_sli4_cfg_shdr *shdr; 16421 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16422 16423 /* sanity check on queue memory */ 16424 numcq = phba->cfg_nvmet_mrq; 16425 if (!cqp || !hdwq || !numcq) 16426 return -ENODEV; 16427 16428 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16429 if (!mbox) 16430 return -ENOMEM; 16431 16432 length = sizeof(struct lpfc_mbx_cq_create_set); 16433 length += ((numcq * cqp[0]->page_count) * 16434 sizeof(struct dma_address)); 16435 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16436 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16437 LPFC_SLI4_MBX_NEMBED); 16438 if (alloclen < length) { 16439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16440 "3098 Allocated DMA memory size (%d) is " 16441 "less than the requested DMA memory size " 16442 "(%d)\n", alloclen, length); 16443 status = -ENOMEM; 16444 goto out; 16445 } 16446 cq_set = mbox->sge_array->addr[0]; 16447 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16448 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16449 16450 for (idx = 0; idx < numcq; idx++) { 16451 cq = cqp[idx]; 16452 eq = hdwq[idx].hba_eq; 16453 if (!cq || !eq) { 16454 status = -ENOMEM; 16455 goto out; 16456 } 16457 if (!phba->sli4_hba.pc_sli4_params.supported) 16458 hw_page_size = cq->page_size; 16459 16460 switch (idx) { 16461 case 0: 16462 bf_set(lpfc_mbx_cq_create_set_page_size, 16463 &cq_set->u.request, 16464 (hw_page_size / SLI4_PAGE_SIZE)); 16465 bf_set(lpfc_mbx_cq_create_set_num_pages, 16466 &cq_set->u.request, cq->page_count); 16467 bf_set(lpfc_mbx_cq_create_set_evt, 16468 &cq_set->u.request, 1); 16469 bf_set(lpfc_mbx_cq_create_set_valid, 16470 &cq_set->u.request, 1); 16471 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16472 &cq_set->u.request, 0); 16473 bf_set(lpfc_mbx_cq_create_set_num_cq, 16474 &cq_set->u.request, numcq); 16475 bf_set(lpfc_mbx_cq_create_set_autovalid, 16476 &cq_set->u.request, 16477 phba->sli4_hba.pc_sli4_params.cqav); 16478 switch (cq->entry_count) { 16479 case 2048: 16480 case 4096: 16481 if (phba->sli4_hba.pc_sli4_params.cqv == 16482 LPFC_Q_CREATE_VERSION_2) { 16483 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16484 &cq_set->u.request, 16485 cq->entry_count); 16486 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16487 &cq_set->u.request, 16488 LPFC_CQ_CNT_WORD7); 16489 break; 16490 } 16491 fallthrough; 16492 default: 16493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16494 "3118 Bad CQ count. (%d)\n", 16495 cq->entry_count); 16496 if (cq->entry_count < 256) { 16497 status = -EINVAL; 16498 goto out; 16499 } 16500 fallthrough; /* otherwise default to smallest */ 16501 case 256: 16502 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16503 &cq_set->u.request, LPFC_CQ_CNT_256); 16504 break; 16505 case 512: 16506 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16507 &cq_set->u.request, LPFC_CQ_CNT_512); 16508 break; 16509 case 1024: 16510 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16511 &cq_set->u.request, LPFC_CQ_CNT_1024); 16512 break; 16513 } 16514 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 1: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 2: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 3: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 4: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 5: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 6: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 7: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 8: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 9: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 10: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 11: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 12: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 case 13: 16566 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16567 &cq_set->u.request, eq->queue_id); 16568 break; 16569 case 14: 16570 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16571 &cq_set->u.request, eq->queue_id); 16572 break; 16573 case 15: 16574 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16575 &cq_set->u.request, eq->queue_id); 16576 break; 16577 } 16578 16579 /* link the cq onto the parent eq child list */ 16580 list_add_tail(&cq->list, &eq->child_list); 16581 /* Set up completion queue's type and subtype */ 16582 cq->type = type; 16583 cq->subtype = subtype; 16584 cq->assoc_qid = eq->queue_id; 16585 cq->assoc_qp = eq; 16586 cq->host_index = 0; 16587 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16588 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16589 cq->entry_count); 16590 cq->chann = idx; 16591 16592 rc = 0; 16593 list_for_each_entry(dmabuf, &cq->page_list, list) { 16594 memset(dmabuf->virt, 0, hw_page_size); 16595 cnt = page_idx + dmabuf->buffer_tag; 16596 cq_set->u.request.page[cnt].addr_lo = 16597 putPaddrLow(dmabuf->phys); 16598 cq_set->u.request.page[cnt].addr_hi = 16599 putPaddrHigh(dmabuf->phys); 16600 rc++; 16601 } 16602 page_idx += rc; 16603 } 16604 16605 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16606 16607 /* The IOCTL status is embedded in the mailbox subheader. */ 16608 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16609 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16610 if (shdr_status || shdr_add_status || rc) { 16611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16612 "3119 CQ_CREATE_SET mailbox failed with " 16613 "status x%x add_status x%x, mbx status x%x\n", 16614 shdr_status, shdr_add_status, rc); 16615 status = -ENXIO; 16616 goto out; 16617 } 16618 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16619 if (rc == 0xFFFF) { 16620 status = -ENXIO; 16621 goto out; 16622 } 16623 16624 for (idx = 0; idx < numcq; idx++) { 16625 cq = cqp[idx]; 16626 cq->queue_id = rc + idx; 16627 if (cq->queue_id > phba->sli4_hba.cq_max) 16628 phba->sli4_hba.cq_max = cq->queue_id; 16629 } 16630 16631 out: 16632 lpfc_sli4_mbox_cmd_free(phba, mbox); 16633 return status; 16634 } 16635 16636 /** 16637 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16638 * @phba: HBA structure that indicates port to create a queue on. 16639 * @mq: The queue structure to use to create the mailbox queue. 16640 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16641 * @cq: The completion queue to associate with this cq. 16642 * 16643 * This function provides failback (fb) functionality when the 16644 * mq_create_ext fails on older FW generations. It's purpose is identical 16645 * to mq_create_ext otherwise. 16646 * 16647 * This routine cannot fail as all attributes were previously accessed and 16648 * initialized in mq_create_ext. 16649 **/ 16650 static void 16651 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16652 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16653 { 16654 struct lpfc_mbx_mq_create *mq_create; 16655 struct lpfc_dmabuf *dmabuf; 16656 int length; 16657 16658 length = (sizeof(struct lpfc_mbx_mq_create) - 16659 sizeof(struct lpfc_sli4_cfg_mhdr)); 16660 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16661 LPFC_MBOX_OPCODE_MQ_CREATE, 16662 length, LPFC_SLI4_MBX_EMBED); 16663 mq_create = &mbox->u.mqe.un.mq_create; 16664 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16665 mq->page_count); 16666 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16667 cq->queue_id); 16668 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16669 switch (mq->entry_count) { 16670 case 16: 16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16672 LPFC_MQ_RING_SIZE_16); 16673 break; 16674 case 32: 16675 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16676 LPFC_MQ_RING_SIZE_32); 16677 break; 16678 case 64: 16679 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16680 LPFC_MQ_RING_SIZE_64); 16681 break; 16682 case 128: 16683 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16684 LPFC_MQ_RING_SIZE_128); 16685 break; 16686 } 16687 list_for_each_entry(dmabuf, &mq->page_list, list) { 16688 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16689 putPaddrLow(dmabuf->phys); 16690 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16691 putPaddrHigh(dmabuf->phys); 16692 } 16693 } 16694 16695 /** 16696 * lpfc_mq_create - Create a mailbox Queue on the HBA 16697 * @phba: HBA structure that indicates port to create a queue on. 16698 * @mq: The queue structure to use to create the mailbox queue. 16699 * @cq: The completion queue to associate with this cq. 16700 * @subtype: The queue's subtype. 16701 * 16702 * This function creates a mailbox queue, as detailed in @mq, on a port, 16703 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16704 * 16705 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16706 * is used to get the entry count and entry size that are necessary to 16707 * determine the number of pages to allocate and use for this queue. This 16708 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16709 * mailbox queue. This function is asynchronous and will wait for the mailbox 16710 * command to finish before continuing. 16711 * 16712 * On success this function will return a zero. If unable to allocate enough 16713 * memory this function will return -ENOMEM. If the queue create mailbox command 16714 * fails this function will return -ENXIO. 16715 **/ 16716 int32_t 16717 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16718 struct lpfc_queue *cq, uint32_t subtype) 16719 { 16720 struct lpfc_mbx_mq_create *mq_create; 16721 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16722 struct lpfc_dmabuf *dmabuf; 16723 LPFC_MBOXQ_t *mbox; 16724 int rc, length, status = 0; 16725 uint32_t shdr_status, shdr_add_status; 16726 union lpfc_sli4_cfg_shdr *shdr; 16727 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16728 16729 /* sanity check on queue memory */ 16730 if (!mq || !cq) 16731 return -ENODEV; 16732 if (!phba->sli4_hba.pc_sli4_params.supported) 16733 hw_page_size = SLI4_PAGE_SIZE; 16734 16735 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16736 if (!mbox) 16737 return -ENOMEM; 16738 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16739 sizeof(struct lpfc_sli4_cfg_mhdr)); 16740 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16741 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16742 length, LPFC_SLI4_MBX_EMBED); 16743 16744 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16745 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16746 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16747 &mq_create_ext->u.request, mq->page_count); 16748 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16749 &mq_create_ext->u.request, 1); 16750 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16751 &mq_create_ext->u.request, 1); 16752 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16753 &mq_create_ext->u.request, 1); 16754 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16755 &mq_create_ext->u.request, 1); 16756 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16757 &mq_create_ext->u.request, 1); 16758 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16759 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16760 phba->sli4_hba.pc_sli4_params.mqv); 16761 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16762 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16763 cq->queue_id); 16764 else 16765 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16766 cq->queue_id); 16767 switch (mq->entry_count) { 16768 default: 16769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16770 "0362 Unsupported MQ count. (%d)\n", 16771 mq->entry_count); 16772 if (mq->entry_count < 16) { 16773 status = -EINVAL; 16774 goto out; 16775 } 16776 fallthrough; /* otherwise default to smallest count */ 16777 case 16: 16778 bf_set(lpfc_mq_context_ring_size, 16779 &mq_create_ext->u.request.context, 16780 LPFC_MQ_RING_SIZE_16); 16781 break; 16782 case 32: 16783 bf_set(lpfc_mq_context_ring_size, 16784 &mq_create_ext->u.request.context, 16785 LPFC_MQ_RING_SIZE_32); 16786 break; 16787 case 64: 16788 bf_set(lpfc_mq_context_ring_size, 16789 &mq_create_ext->u.request.context, 16790 LPFC_MQ_RING_SIZE_64); 16791 break; 16792 case 128: 16793 bf_set(lpfc_mq_context_ring_size, 16794 &mq_create_ext->u.request.context, 16795 LPFC_MQ_RING_SIZE_128); 16796 break; 16797 } 16798 list_for_each_entry(dmabuf, &mq->page_list, list) { 16799 memset(dmabuf->virt, 0, hw_page_size); 16800 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16801 putPaddrLow(dmabuf->phys); 16802 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16803 putPaddrHigh(dmabuf->phys); 16804 } 16805 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16806 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16807 &mq_create_ext->u.response); 16808 if (rc != MBX_SUCCESS) { 16809 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16810 "2795 MQ_CREATE_EXT failed with " 16811 "status x%x. Failback to MQ_CREATE.\n", 16812 rc); 16813 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16814 mq_create = &mbox->u.mqe.un.mq_create; 16815 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16816 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16817 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16818 &mq_create->u.response); 16819 } 16820 16821 /* The IOCTL status is embedded in the mailbox subheader. */ 16822 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16823 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16824 if (shdr_status || shdr_add_status || rc) { 16825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16826 "2502 MQ_CREATE mailbox failed with " 16827 "status x%x add_status x%x, mbx status x%x\n", 16828 shdr_status, shdr_add_status, rc); 16829 status = -ENXIO; 16830 goto out; 16831 } 16832 if (mq->queue_id == 0xFFFF) { 16833 status = -ENXIO; 16834 goto out; 16835 } 16836 mq->type = LPFC_MQ; 16837 mq->assoc_qid = cq->queue_id; 16838 mq->subtype = subtype; 16839 mq->host_index = 0; 16840 mq->hba_index = 0; 16841 16842 /* link the mq onto the parent cq child list */ 16843 list_add_tail(&mq->list, &cq->child_list); 16844 out: 16845 mempool_free(mbox, phba->mbox_mem_pool); 16846 return status; 16847 } 16848 16849 /** 16850 * lpfc_wq_create - Create a Work Queue on the HBA 16851 * @phba: HBA structure that indicates port to create a queue on. 16852 * @wq: The queue structure to use to create the work queue. 16853 * @cq: The completion queue to bind this work queue to. 16854 * @subtype: The subtype of the work queue indicating its functionality. 16855 * 16856 * This function creates a work queue, as detailed in @wq, on a port, described 16857 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16858 * 16859 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16860 * is used to get the entry count and entry size that are necessary to 16861 * determine the number of pages to allocate and use for this queue. The @cq 16862 * is used to indicate which completion queue to bind this work queue to. This 16863 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16864 * work queue. This function is asynchronous and will wait for the mailbox 16865 * command to finish before continuing. 16866 * 16867 * On success this function will return a zero. If unable to allocate enough 16868 * memory this function will return -ENOMEM. If the queue create mailbox command 16869 * fails this function will return -ENXIO. 16870 **/ 16871 int 16872 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16873 struct lpfc_queue *cq, uint32_t subtype) 16874 { 16875 struct lpfc_mbx_wq_create *wq_create; 16876 struct lpfc_dmabuf *dmabuf; 16877 LPFC_MBOXQ_t *mbox; 16878 int rc, length, status = 0; 16879 uint32_t shdr_status, shdr_add_status; 16880 union lpfc_sli4_cfg_shdr *shdr; 16881 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16882 struct dma_address *page; 16883 void __iomem *bar_memmap_p; 16884 uint32_t db_offset; 16885 uint16_t pci_barset; 16886 uint8_t dpp_barset; 16887 uint32_t dpp_offset; 16888 uint8_t wq_create_version; 16889 #ifdef CONFIG_X86 16890 unsigned long pg_addr; 16891 #endif 16892 16893 /* sanity check on queue memory */ 16894 if (!wq || !cq) 16895 return -ENODEV; 16896 if (!phba->sli4_hba.pc_sli4_params.supported) 16897 hw_page_size = wq->page_size; 16898 16899 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16900 if (!mbox) 16901 return -ENOMEM; 16902 length = (sizeof(struct lpfc_mbx_wq_create) - 16903 sizeof(struct lpfc_sli4_cfg_mhdr)); 16904 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16905 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16906 length, LPFC_SLI4_MBX_EMBED); 16907 wq_create = &mbox->u.mqe.un.wq_create; 16908 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16909 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16910 wq->page_count); 16911 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16912 cq->queue_id); 16913 16914 /* wqv is the earliest version supported, NOT the latest */ 16915 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16916 phba->sli4_hba.pc_sli4_params.wqv); 16917 16918 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16919 (wq->page_size > SLI4_PAGE_SIZE)) 16920 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16921 else 16922 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16923 16924 switch (wq_create_version) { 16925 case LPFC_Q_CREATE_VERSION_1: 16926 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16927 wq->entry_count); 16928 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16929 LPFC_Q_CREATE_VERSION_1); 16930 16931 switch (wq->entry_size) { 16932 default: 16933 case 64: 16934 bf_set(lpfc_mbx_wq_create_wqe_size, 16935 &wq_create->u.request_1, 16936 LPFC_WQ_WQE_SIZE_64); 16937 break; 16938 case 128: 16939 bf_set(lpfc_mbx_wq_create_wqe_size, 16940 &wq_create->u.request_1, 16941 LPFC_WQ_WQE_SIZE_128); 16942 break; 16943 } 16944 /* Request DPP by default */ 16945 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16946 bf_set(lpfc_mbx_wq_create_page_size, 16947 &wq_create->u.request_1, 16948 (wq->page_size / SLI4_PAGE_SIZE)); 16949 page = wq_create->u.request_1.page; 16950 break; 16951 default: 16952 page = wq_create->u.request.page; 16953 break; 16954 } 16955 16956 list_for_each_entry(dmabuf, &wq->page_list, list) { 16957 memset(dmabuf->virt, 0, hw_page_size); 16958 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16959 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16960 } 16961 16962 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16963 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16964 16965 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16966 /* The IOCTL status is embedded in the mailbox subheader. */ 16967 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16968 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16969 if (shdr_status || shdr_add_status || rc) { 16970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16971 "2503 WQ_CREATE mailbox failed with " 16972 "status x%x add_status x%x, mbx status x%x\n", 16973 shdr_status, shdr_add_status, rc); 16974 status = -ENXIO; 16975 goto out; 16976 } 16977 16978 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16979 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16980 &wq_create->u.response); 16981 else 16982 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16983 &wq_create->u.response_1); 16984 16985 if (wq->queue_id == 0xFFFF) { 16986 status = -ENXIO; 16987 goto out; 16988 } 16989 16990 wq->db_format = LPFC_DB_LIST_FORMAT; 16991 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16992 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16993 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16994 &wq_create->u.response); 16995 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16996 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16998 "3265 WQ[%d] doorbell format " 16999 "not supported: x%x\n", 17000 wq->queue_id, wq->db_format); 17001 status = -EINVAL; 17002 goto out; 17003 } 17004 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17005 &wq_create->u.response); 17006 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17007 pci_barset); 17008 if (!bar_memmap_p) { 17009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17010 "3263 WQ[%d] failed to memmap " 17011 "pci barset:x%x\n", 17012 wq->queue_id, pci_barset); 17013 status = -ENOMEM; 17014 goto out; 17015 } 17016 db_offset = wq_create->u.response.doorbell_offset; 17017 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17018 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17020 "3252 WQ[%d] doorbell offset " 17021 "not supported: x%x\n", 17022 wq->queue_id, db_offset); 17023 status = -EINVAL; 17024 goto out; 17025 } 17026 wq->db_regaddr = bar_memmap_p + db_offset; 17027 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17028 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17029 "format:x%x\n", wq->queue_id, 17030 pci_barset, db_offset, wq->db_format); 17031 } else 17032 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17033 } else { 17034 /* Check if DPP was honored by the firmware */ 17035 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17036 &wq_create->u.response_1); 17037 if (wq->dpp_enable) { 17038 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17039 &wq_create->u.response_1); 17040 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17041 pci_barset); 17042 if (!bar_memmap_p) { 17043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17044 "3267 WQ[%d] failed to memmap " 17045 "pci barset:x%x\n", 17046 wq->queue_id, pci_barset); 17047 status = -ENOMEM; 17048 goto out; 17049 } 17050 db_offset = wq_create->u.response_1.doorbell_offset; 17051 wq->db_regaddr = bar_memmap_p + db_offset; 17052 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17053 &wq_create->u.response_1); 17054 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17055 &wq_create->u.response_1); 17056 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17057 dpp_barset); 17058 if (!bar_memmap_p) { 17059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17060 "3268 WQ[%d] failed to memmap " 17061 "pci barset:x%x\n", 17062 wq->queue_id, dpp_barset); 17063 status = -ENOMEM; 17064 goto out; 17065 } 17066 dpp_offset = wq_create->u.response_1.dpp_offset; 17067 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17068 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17069 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17070 "dpp_id:x%x dpp_barset:x%x " 17071 "dpp_offset:x%x\n", 17072 wq->queue_id, pci_barset, db_offset, 17073 wq->dpp_id, dpp_barset, dpp_offset); 17074 17075 #ifdef CONFIG_X86 17076 /* Enable combined writes for DPP aperture */ 17077 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17078 rc = set_memory_wc(pg_addr, 1); 17079 if (rc) { 17080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17081 "3272 Cannot setup Combined " 17082 "Write on WQ[%d] - disable DPP\n", 17083 wq->queue_id); 17084 phba->cfg_enable_dpp = 0; 17085 } 17086 #else 17087 phba->cfg_enable_dpp = 0; 17088 #endif 17089 } else 17090 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17091 } 17092 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17093 if (wq->pring == NULL) { 17094 status = -ENOMEM; 17095 goto out; 17096 } 17097 wq->type = LPFC_WQ; 17098 wq->assoc_qid = cq->queue_id; 17099 wq->subtype = subtype; 17100 wq->host_index = 0; 17101 wq->hba_index = 0; 17102 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17103 17104 /* link the wq onto the parent cq child list */ 17105 list_add_tail(&wq->list, &cq->child_list); 17106 out: 17107 mempool_free(mbox, phba->mbox_mem_pool); 17108 return status; 17109 } 17110 17111 /** 17112 * lpfc_rq_create - Create a Receive Queue on the HBA 17113 * @phba: HBA structure that indicates port to create a queue on. 17114 * @hrq: The queue structure to use to create the header receive queue. 17115 * @drq: The queue structure to use to create the data receive queue. 17116 * @cq: The completion queue to bind this work queue to. 17117 * @subtype: The subtype of the work queue indicating its functionality. 17118 * 17119 * This function creates a receive buffer queue pair , as detailed in @hrq and 17120 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17121 * to the HBA. 17122 * 17123 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17124 * struct is used to get the entry count that is necessary to determine the 17125 * number of pages to use for this queue. The @cq is used to indicate which 17126 * completion queue to bind received buffers that are posted to these queues to. 17127 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17128 * receive queue pair. This function is asynchronous and will wait for the 17129 * mailbox command to finish before continuing. 17130 * 17131 * On success this function will return a zero. If unable to allocate enough 17132 * memory this function will return -ENOMEM. If the queue create mailbox command 17133 * fails this function will return -ENXIO. 17134 **/ 17135 int 17136 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17137 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17138 { 17139 struct lpfc_mbx_rq_create *rq_create; 17140 struct lpfc_dmabuf *dmabuf; 17141 LPFC_MBOXQ_t *mbox; 17142 int rc, length, status = 0; 17143 uint32_t shdr_status, shdr_add_status; 17144 union lpfc_sli4_cfg_shdr *shdr; 17145 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17146 void __iomem *bar_memmap_p; 17147 uint32_t db_offset; 17148 uint16_t pci_barset; 17149 17150 /* sanity check on queue memory */ 17151 if (!hrq || !drq || !cq) 17152 return -ENODEV; 17153 if (!phba->sli4_hba.pc_sli4_params.supported) 17154 hw_page_size = SLI4_PAGE_SIZE; 17155 17156 if (hrq->entry_count != drq->entry_count) 17157 return -EINVAL; 17158 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17159 if (!mbox) 17160 return -ENOMEM; 17161 length = (sizeof(struct lpfc_mbx_rq_create) - 17162 sizeof(struct lpfc_sli4_cfg_mhdr)); 17163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17164 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17165 length, LPFC_SLI4_MBX_EMBED); 17166 rq_create = &mbox->u.mqe.un.rq_create; 17167 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17168 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17169 phba->sli4_hba.pc_sli4_params.rqv); 17170 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17171 bf_set(lpfc_rq_context_rqe_count_1, 17172 &rq_create->u.request.context, 17173 hrq->entry_count); 17174 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17175 bf_set(lpfc_rq_context_rqe_size, 17176 &rq_create->u.request.context, 17177 LPFC_RQE_SIZE_8); 17178 bf_set(lpfc_rq_context_page_size, 17179 &rq_create->u.request.context, 17180 LPFC_RQ_PAGE_SIZE_4096); 17181 } else { 17182 switch (hrq->entry_count) { 17183 default: 17184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17185 "2535 Unsupported RQ count. (%d)\n", 17186 hrq->entry_count); 17187 if (hrq->entry_count < 512) { 17188 status = -EINVAL; 17189 goto out; 17190 } 17191 fallthrough; /* otherwise default to smallest count */ 17192 case 512: 17193 bf_set(lpfc_rq_context_rqe_count, 17194 &rq_create->u.request.context, 17195 LPFC_RQ_RING_SIZE_512); 17196 break; 17197 case 1024: 17198 bf_set(lpfc_rq_context_rqe_count, 17199 &rq_create->u.request.context, 17200 LPFC_RQ_RING_SIZE_1024); 17201 break; 17202 case 2048: 17203 bf_set(lpfc_rq_context_rqe_count, 17204 &rq_create->u.request.context, 17205 LPFC_RQ_RING_SIZE_2048); 17206 break; 17207 case 4096: 17208 bf_set(lpfc_rq_context_rqe_count, 17209 &rq_create->u.request.context, 17210 LPFC_RQ_RING_SIZE_4096); 17211 break; 17212 } 17213 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17214 LPFC_HDR_BUF_SIZE); 17215 } 17216 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17217 cq->queue_id); 17218 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17219 hrq->page_count); 17220 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17221 memset(dmabuf->virt, 0, hw_page_size); 17222 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17223 putPaddrLow(dmabuf->phys); 17224 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17225 putPaddrHigh(dmabuf->phys); 17226 } 17227 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17228 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17229 17230 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17231 /* The IOCTL status is embedded in the mailbox subheader. */ 17232 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17233 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17234 if (shdr_status || shdr_add_status || rc) { 17235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17236 "2504 RQ_CREATE mailbox failed with " 17237 "status x%x add_status x%x, mbx status x%x\n", 17238 shdr_status, shdr_add_status, rc); 17239 status = -ENXIO; 17240 goto out; 17241 } 17242 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17243 if (hrq->queue_id == 0xFFFF) { 17244 status = -ENXIO; 17245 goto out; 17246 } 17247 17248 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17249 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17250 &rq_create->u.response); 17251 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17252 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17254 "3262 RQ [%d] doorbell format not " 17255 "supported: x%x\n", hrq->queue_id, 17256 hrq->db_format); 17257 status = -EINVAL; 17258 goto out; 17259 } 17260 17261 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17262 &rq_create->u.response); 17263 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17264 if (!bar_memmap_p) { 17265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17266 "3269 RQ[%d] failed to memmap pci " 17267 "barset:x%x\n", hrq->queue_id, 17268 pci_barset); 17269 status = -ENOMEM; 17270 goto out; 17271 } 17272 17273 db_offset = rq_create->u.response.doorbell_offset; 17274 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17275 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17277 "3270 RQ[%d] doorbell offset not " 17278 "supported: x%x\n", hrq->queue_id, 17279 db_offset); 17280 status = -EINVAL; 17281 goto out; 17282 } 17283 hrq->db_regaddr = bar_memmap_p + db_offset; 17284 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17285 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17286 "format:x%x\n", hrq->queue_id, pci_barset, 17287 db_offset, hrq->db_format); 17288 } else { 17289 hrq->db_format = LPFC_DB_RING_FORMAT; 17290 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17291 } 17292 hrq->type = LPFC_HRQ; 17293 hrq->assoc_qid = cq->queue_id; 17294 hrq->subtype = subtype; 17295 hrq->host_index = 0; 17296 hrq->hba_index = 0; 17297 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17298 17299 /* now create the data queue */ 17300 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17301 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17302 length, LPFC_SLI4_MBX_EMBED); 17303 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17304 phba->sli4_hba.pc_sli4_params.rqv); 17305 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17306 bf_set(lpfc_rq_context_rqe_count_1, 17307 &rq_create->u.request.context, hrq->entry_count); 17308 if (subtype == LPFC_NVMET) 17309 rq_create->u.request.context.buffer_size = 17310 LPFC_NVMET_DATA_BUF_SIZE; 17311 else 17312 rq_create->u.request.context.buffer_size = 17313 LPFC_DATA_BUF_SIZE; 17314 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17315 LPFC_RQE_SIZE_8); 17316 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17317 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17318 } else { 17319 switch (drq->entry_count) { 17320 default: 17321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17322 "2536 Unsupported RQ count. (%d)\n", 17323 drq->entry_count); 17324 if (drq->entry_count < 512) { 17325 status = -EINVAL; 17326 goto out; 17327 } 17328 fallthrough; /* otherwise default to smallest count */ 17329 case 512: 17330 bf_set(lpfc_rq_context_rqe_count, 17331 &rq_create->u.request.context, 17332 LPFC_RQ_RING_SIZE_512); 17333 break; 17334 case 1024: 17335 bf_set(lpfc_rq_context_rqe_count, 17336 &rq_create->u.request.context, 17337 LPFC_RQ_RING_SIZE_1024); 17338 break; 17339 case 2048: 17340 bf_set(lpfc_rq_context_rqe_count, 17341 &rq_create->u.request.context, 17342 LPFC_RQ_RING_SIZE_2048); 17343 break; 17344 case 4096: 17345 bf_set(lpfc_rq_context_rqe_count, 17346 &rq_create->u.request.context, 17347 LPFC_RQ_RING_SIZE_4096); 17348 break; 17349 } 17350 if (subtype == LPFC_NVMET) 17351 bf_set(lpfc_rq_context_buf_size, 17352 &rq_create->u.request.context, 17353 LPFC_NVMET_DATA_BUF_SIZE); 17354 else 17355 bf_set(lpfc_rq_context_buf_size, 17356 &rq_create->u.request.context, 17357 LPFC_DATA_BUF_SIZE); 17358 } 17359 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17360 cq->queue_id); 17361 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17362 drq->page_count); 17363 list_for_each_entry(dmabuf, &drq->page_list, list) { 17364 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17365 putPaddrLow(dmabuf->phys); 17366 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17367 putPaddrHigh(dmabuf->phys); 17368 } 17369 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17370 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17371 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17372 /* The IOCTL status is embedded in the mailbox subheader. */ 17373 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17374 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17375 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17376 if (shdr_status || shdr_add_status || rc) { 17377 status = -ENXIO; 17378 goto out; 17379 } 17380 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17381 if (drq->queue_id == 0xFFFF) { 17382 status = -ENXIO; 17383 goto out; 17384 } 17385 drq->type = LPFC_DRQ; 17386 drq->assoc_qid = cq->queue_id; 17387 drq->subtype = subtype; 17388 drq->host_index = 0; 17389 drq->hba_index = 0; 17390 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17391 17392 /* link the header and data RQs onto the parent cq child list */ 17393 list_add_tail(&hrq->list, &cq->child_list); 17394 list_add_tail(&drq->list, &cq->child_list); 17395 17396 out: 17397 mempool_free(mbox, phba->mbox_mem_pool); 17398 return status; 17399 } 17400 17401 /** 17402 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17403 * @phba: HBA structure that indicates port to create a queue on. 17404 * @hrqp: The queue structure array to use to create the header receive queues. 17405 * @drqp: The queue structure array to use to create the data receive queues. 17406 * @cqp: The completion queue array to bind these receive queues to. 17407 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17408 * 17409 * This function creates a receive buffer queue pair , as detailed in @hrq and 17410 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17411 * to the HBA. 17412 * 17413 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17414 * struct is used to get the entry count that is necessary to determine the 17415 * number of pages to use for this queue. The @cq is used to indicate which 17416 * completion queue to bind received buffers that are posted to these queues to. 17417 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17418 * receive queue pair. This function is asynchronous and will wait for the 17419 * mailbox command to finish before continuing. 17420 * 17421 * On success this function will return a zero. If unable to allocate enough 17422 * memory this function will return -ENOMEM. If the queue create mailbox command 17423 * fails this function will return -ENXIO. 17424 **/ 17425 int 17426 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17427 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17428 uint32_t subtype) 17429 { 17430 struct lpfc_queue *hrq, *drq, *cq; 17431 struct lpfc_mbx_rq_create_v2 *rq_create; 17432 struct lpfc_dmabuf *dmabuf; 17433 LPFC_MBOXQ_t *mbox; 17434 int rc, length, alloclen, status = 0; 17435 int cnt, idx, numrq, page_idx = 0; 17436 uint32_t shdr_status, shdr_add_status; 17437 union lpfc_sli4_cfg_shdr *shdr; 17438 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17439 17440 numrq = phba->cfg_nvmet_mrq; 17441 /* sanity check on array memory */ 17442 if (!hrqp || !drqp || !cqp || !numrq) 17443 return -ENODEV; 17444 if (!phba->sli4_hba.pc_sli4_params.supported) 17445 hw_page_size = SLI4_PAGE_SIZE; 17446 17447 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17448 if (!mbox) 17449 return -ENOMEM; 17450 17451 length = sizeof(struct lpfc_mbx_rq_create_v2); 17452 length += ((2 * numrq * hrqp[0]->page_count) * 17453 sizeof(struct dma_address)); 17454 17455 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17456 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17457 LPFC_SLI4_MBX_NEMBED); 17458 if (alloclen < length) { 17459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17460 "3099 Allocated DMA memory size (%d) is " 17461 "less than the requested DMA memory size " 17462 "(%d)\n", alloclen, length); 17463 status = -ENOMEM; 17464 goto out; 17465 } 17466 17467 17468 17469 rq_create = mbox->sge_array->addr[0]; 17470 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17471 17472 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17473 cnt = 0; 17474 17475 for (idx = 0; idx < numrq; idx++) { 17476 hrq = hrqp[idx]; 17477 drq = drqp[idx]; 17478 cq = cqp[idx]; 17479 17480 /* sanity check on queue memory */ 17481 if (!hrq || !drq || !cq) { 17482 status = -ENODEV; 17483 goto out; 17484 } 17485 17486 if (hrq->entry_count != drq->entry_count) { 17487 status = -EINVAL; 17488 goto out; 17489 } 17490 17491 if (idx == 0) { 17492 bf_set(lpfc_mbx_rq_create_num_pages, 17493 &rq_create->u.request, 17494 hrq->page_count); 17495 bf_set(lpfc_mbx_rq_create_rq_cnt, 17496 &rq_create->u.request, (numrq * 2)); 17497 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17498 1); 17499 bf_set(lpfc_rq_context_base_cq, 17500 &rq_create->u.request.context, 17501 cq->queue_id); 17502 bf_set(lpfc_rq_context_data_size, 17503 &rq_create->u.request.context, 17504 LPFC_NVMET_DATA_BUF_SIZE); 17505 bf_set(lpfc_rq_context_hdr_size, 17506 &rq_create->u.request.context, 17507 LPFC_HDR_BUF_SIZE); 17508 bf_set(lpfc_rq_context_rqe_count_1, 17509 &rq_create->u.request.context, 17510 hrq->entry_count); 17511 bf_set(lpfc_rq_context_rqe_size, 17512 &rq_create->u.request.context, 17513 LPFC_RQE_SIZE_8); 17514 bf_set(lpfc_rq_context_page_size, 17515 &rq_create->u.request.context, 17516 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17517 } 17518 rc = 0; 17519 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17520 memset(dmabuf->virt, 0, hw_page_size); 17521 cnt = page_idx + dmabuf->buffer_tag; 17522 rq_create->u.request.page[cnt].addr_lo = 17523 putPaddrLow(dmabuf->phys); 17524 rq_create->u.request.page[cnt].addr_hi = 17525 putPaddrHigh(dmabuf->phys); 17526 rc++; 17527 } 17528 page_idx += rc; 17529 17530 rc = 0; 17531 list_for_each_entry(dmabuf, &drq->page_list, list) { 17532 memset(dmabuf->virt, 0, hw_page_size); 17533 cnt = page_idx + dmabuf->buffer_tag; 17534 rq_create->u.request.page[cnt].addr_lo = 17535 putPaddrLow(dmabuf->phys); 17536 rq_create->u.request.page[cnt].addr_hi = 17537 putPaddrHigh(dmabuf->phys); 17538 rc++; 17539 } 17540 page_idx += rc; 17541 17542 hrq->db_format = LPFC_DB_RING_FORMAT; 17543 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17544 hrq->type = LPFC_HRQ; 17545 hrq->assoc_qid = cq->queue_id; 17546 hrq->subtype = subtype; 17547 hrq->host_index = 0; 17548 hrq->hba_index = 0; 17549 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17550 17551 drq->db_format = LPFC_DB_RING_FORMAT; 17552 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17553 drq->type = LPFC_DRQ; 17554 drq->assoc_qid = cq->queue_id; 17555 drq->subtype = subtype; 17556 drq->host_index = 0; 17557 drq->hba_index = 0; 17558 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17559 17560 list_add_tail(&hrq->list, &cq->child_list); 17561 list_add_tail(&drq->list, &cq->child_list); 17562 } 17563 17564 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17565 /* The IOCTL status is embedded in the mailbox subheader. */ 17566 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17567 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17568 if (shdr_status || shdr_add_status || rc) { 17569 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17570 "3120 RQ_CREATE mailbox failed with " 17571 "status x%x add_status x%x, mbx status x%x\n", 17572 shdr_status, shdr_add_status, rc); 17573 status = -ENXIO; 17574 goto out; 17575 } 17576 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17577 if (rc == 0xFFFF) { 17578 status = -ENXIO; 17579 goto out; 17580 } 17581 17582 /* Initialize all RQs with associated queue id */ 17583 for (idx = 0; idx < numrq; idx++) { 17584 hrq = hrqp[idx]; 17585 hrq->queue_id = rc + (2 * idx); 17586 drq = drqp[idx]; 17587 drq->queue_id = rc + (2 * idx) + 1; 17588 } 17589 17590 out: 17591 lpfc_sli4_mbox_cmd_free(phba, mbox); 17592 return status; 17593 } 17594 17595 /** 17596 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17597 * @phba: HBA structure that indicates port to destroy a queue on. 17598 * @eq: The queue structure associated with the queue to destroy. 17599 * 17600 * This function destroys a queue, as detailed in @eq by sending an mailbox 17601 * command, specific to the type of queue, to the HBA. 17602 * 17603 * The @eq struct is used to get the queue ID of the queue to destroy. 17604 * 17605 * On success this function will return a zero. If the queue destroy mailbox 17606 * command fails this function will return -ENXIO. 17607 **/ 17608 int 17609 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17610 { 17611 LPFC_MBOXQ_t *mbox; 17612 int rc, length, status = 0; 17613 uint32_t shdr_status, shdr_add_status; 17614 union lpfc_sli4_cfg_shdr *shdr; 17615 17616 /* sanity check on queue memory */ 17617 if (!eq) 17618 return -ENODEV; 17619 17620 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17621 if (!mbox) 17622 return -ENOMEM; 17623 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17624 sizeof(struct lpfc_sli4_cfg_mhdr)); 17625 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17626 LPFC_MBOX_OPCODE_EQ_DESTROY, 17627 length, LPFC_SLI4_MBX_EMBED); 17628 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17629 eq->queue_id); 17630 mbox->vport = eq->phba->pport; 17631 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17632 17633 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17634 /* The IOCTL status is embedded in the mailbox subheader. */ 17635 shdr = (union lpfc_sli4_cfg_shdr *) 17636 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17639 if (shdr_status || shdr_add_status || rc) { 17640 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17641 "2505 EQ_DESTROY mailbox failed with " 17642 "status x%x add_status x%x, mbx status x%x\n", 17643 shdr_status, shdr_add_status, rc); 17644 status = -ENXIO; 17645 } 17646 17647 /* Remove eq from any list */ 17648 list_del_init(&eq->list); 17649 mempool_free(mbox, eq->phba->mbox_mem_pool); 17650 return status; 17651 } 17652 17653 /** 17654 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17655 * @phba: HBA structure that indicates port to destroy a queue on. 17656 * @cq: The queue structure associated with the queue to destroy. 17657 * 17658 * This function destroys a queue, as detailed in @cq by sending an mailbox 17659 * command, specific to the type of queue, to the HBA. 17660 * 17661 * The @cq struct is used to get the queue ID of the queue to destroy. 17662 * 17663 * On success this function will return a zero. If the queue destroy mailbox 17664 * command fails this function will return -ENXIO. 17665 **/ 17666 int 17667 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17668 { 17669 LPFC_MBOXQ_t *mbox; 17670 int rc, length, status = 0; 17671 uint32_t shdr_status, shdr_add_status; 17672 union lpfc_sli4_cfg_shdr *shdr; 17673 17674 /* sanity check on queue memory */ 17675 if (!cq) 17676 return -ENODEV; 17677 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17678 if (!mbox) 17679 return -ENOMEM; 17680 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17681 sizeof(struct lpfc_sli4_cfg_mhdr)); 17682 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17683 LPFC_MBOX_OPCODE_CQ_DESTROY, 17684 length, LPFC_SLI4_MBX_EMBED); 17685 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17686 cq->queue_id); 17687 mbox->vport = cq->phba->pport; 17688 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17689 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17690 /* The IOCTL status is embedded in the mailbox subheader. */ 17691 shdr = (union lpfc_sli4_cfg_shdr *) 17692 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17693 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17694 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17695 if (shdr_status || shdr_add_status || rc) { 17696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17697 "2506 CQ_DESTROY mailbox failed with " 17698 "status x%x add_status x%x, mbx status x%x\n", 17699 shdr_status, shdr_add_status, rc); 17700 status = -ENXIO; 17701 } 17702 /* Remove cq from any list */ 17703 list_del_init(&cq->list); 17704 mempool_free(mbox, cq->phba->mbox_mem_pool); 17705 return status; 17706 } 17707 17708 /** 17709 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17710 * @phba: HBA structure that indicates port to destroy a queue on. 17711 * @mq: The queue structure associated with the queue to destroy. 17712 * 17713 * This function destroys a queue, as detailed in @mq by sending an mailbox 17714 * command, specific to the type of queue, to the HBA. 17715 * 17716 * The @mq struct is used to get the queue ID of the queue to destroy. 17717 * 17718 * On success this function will return a zero. If the queue destroy mailbox 17719 * command fails this function will return -ENXIO. 17720 **/ 17721 int 17722 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17723 { 17724 LPFC_MBOXQ_t *mbox; 17725 int rc, length, status = 0; 17726 uint32_t shdr_status, shdr_add_status; 17727 union lpfc_sli4_cfg_shdr *shdr; 17728 17729 /* sanity check on queue memory */ 17730 if (!mq) 17731 return -ENODEV; 17732 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17733 if (!mbox) 17734 return -ENOMEM; 17735 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17736 sizeof(struct lpfc_sli4_cfg_mhdr)); 17737 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17738 LPFC_MBOX_OPCODE_MQ_DESTROY, 17739 length, LPFC_SLI4_MBX_EMBED); 17740 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17741 mq->queue_id); 17742 mbox->vport = mq->phba->pport; 17743 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17744 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17745 /* The IOCTL status is embedded in the mailbox subheader. */ 17746 shdr = (union lpfc_sli4_cfg_shdr *) 17747 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17748 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17749 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17750 if (shdr_status || shdr_add_status || rc) { 17751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17752 "2507 MQ_DESTROY mailbox failed with " 17753 "status x%x add_status x%x, mbx status x%x\n", 17754 shdr_status, shdr_add_status, rc); 17755 status = -ENXIO; 17756 } 17757 /* Remove mq from any list */ 17758 list_del_init(&mq->list); 17759 mempool_free(mbox, mq->phba->mbox_mem_pool); 17760 return status; 17761 } 17762 17763 /** 17764 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17765 * @phba: HBA structure that indicates port to destroy a queue on. 17766 * @wq: The queue structure associated with the queue to destroy. 17767 * 17768 * This function destroys a queue, as detailed in @wq by sending an mailbox 17769 * command, specific to the type of queue, to the HBA. 17770 * 17771 * The @wq struct is used to get the queue ID of the queue to destroy. 17772 * 17773 * On success this function will return a zero. If the queue destroy mailbox 17774 * command fails this function will return -ENXIO. 17775 **/ 17776 int 17777 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17778 { 17779 LPFC_MBOXQ_t *mbox; 17780 int rc, length, status = 0; 17781 uint32_t shdr_status, shdr_add_status; 17782 union lpfc_sli4_cfg_shdr *shdr; 17783 17784 /* sanity check on queue memory */ 17785 if (!wq) 17786 return -ENODEV; 17787 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17788 if (!mbox) 17789 return -ENOMEM; 17790 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17791 sizeof(struct lpfc_sli4_cfg_mhdr)); 17792 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17793 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17794 length, LPFC_SLI4_MBX_EMBED); 17795 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17796 wq->queue_id); 17797 mbox->vport = wq->phba->pport; 17798 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17799 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17800 shdr = (union lpfc_sli4_cfg_shdr *) 17801 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17802 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17803 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17804 if (shdr_status || shdr_add_status || rc) { 17805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17806 "2508 WQ_DESTROY mailbox failed with " 17807 "status x%x add_status x%x, mbx status x%x\n", 17808 shdr_status, shdr_add_status, rc); 17809 status = -ENXIO; 17810 } 17811 /* Remove wq from any list */ 17812 list_del_init(&wq->list); 17813 kfree(wq->pring); 17814 wq->pring = NULL; 17815 mempool_free(mbox, wq->phba->mbox_mem_pool); 17816 return status; 17817 } 17818 17819 /** 17820 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17821 * @phba: HBA structure that indicates port to destroy a queue on. 17822 * @hrq: The queue structure associated with the queue to destroy. 17823 * @drq: The queue structure associated with the queue to destroy. 17824 * 17825 * This function destroys a queue, as detailed in @rq by sending an mailbox 17826 * command, specific to the type of queue, to the HBA. 17827 * 17828 * The @rq struct is used to get the queue ID of the queue to destroy. 17829 * 17830 * On success this function will return a zero. If the queue destroy mailbox 17831 * command fails this function will return -ENXIO. 17832 **/ 17833 int 17834 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17835 struct lpfc_queue *drq) 17836 { 17837 LPFC_MBOXQ_t *mbox; 17838 int rc, length, status = 0; 17839 uint32_t shdr_status, shdr_add_status; 17840 union lpfc_sli4_cfg_shdr *shdr; 17841 17842 /* sanity check on queue memory */ 17843 if (!hrq || !drq) 17844 return -ENODEV; 17845 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17846 if (!mbox) 17847 return -ENOMEM; 17848 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17849 sizeof(struct lpfc_sli4_cfg_mhdr)); 17850 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17851 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17852 length, LPFC_SLI4_MBX_EMBED); 17853 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17854 hrq->queue_id); 17855 mbox->vport = hrq->phba->pport; 17856 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17857 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17858 /* The IOCTL status is embedded in the mailbox subheader. */ 17859 shdr = (union lpfc_sli4_cfg_shdr *) 17860 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17861 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17862 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17863 if (shdr_status || shdr_add_status || rc) { 17864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17865 "2509 RQ_DESTROY mailbox failed with " 17866 "status x%x add_status x%x, mbx status x%x\n", 17867 shdr_status, shdr_add_status, rc); 17868 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17869 return -ENXIO; 17870 } 17871 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17872 drq->queue_id); 17873 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17874 shdr = (union lpfc_sli4_cfg_shdr *) 17875 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17876 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17877 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17878 if (shdr_status || shdr_add_status || rc) { 17879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17880 "2510 RQ_DESTROY mailbox failed with " 17881 "status x%x add_status x%x, mbx status x%x\n", 17882 shdr_status, shdr_add_status, rc); 17883 status = -ENXIO; 17884 } 17885 list_del_init(&hrq->list); 17886 list_del_init(&drq->list); 17887 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17888 return status; 17889 } 17890 17891 /** 17892 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17893 * @phba: The virtual port for which this call being executed. 17894 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17895 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17896 * @xritag: the xritag that ties this io to the SGL pages. 17897 * 17898 * This routine will post the sgl pages for the IO that has the xritag 17899 * that is in the iocbq structure. The xritag is assigned during iocbq 17900 * creation and persists for as long as the driver is loaded. 17901 * if the caller has fewer than 256 scatter gather segments to map then 17902 * pdma_phys_addr1 should be 0. 17903 * If the caller needs to map more than 256 scatter gather segment then 17904 * pdma_phys_addr1 should be a valid physical address. 17905 * physical address for SGLs must be 64 byte aligned. 17906 * If you are going to map 2 SGL's then the first one must have 256 entries 17907 * the second sgl can have between 1 and 256 entries. 17908 * 17909 * Return codes: 17910 * 0 - Success 17911 * -ENXIO, -ENOMEM - Failure 17912 **/ 17913 int 17914 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17915 dma_addr_t pdma_phys_addr0, 17916 dma_addr_t pdma_phys_addr1, 17917 uint16_t xritag) 17918 { 17919 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17920 LPFC_MBOXQ_t *mbox; 17921 int rc; 17922 uint32_t shdr_status, shdr_add_status; 17923 uint32_t mbox_tmo; 17924 union lpfc_sli4_cfg_shdr *shdr; 17925 17926 if (xritag == NO_XRI) { 17927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17928 "0364 Invalid param:\n"); 17929 return -EINVAL; 17930 } 17931 17932 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17933 if (!mbox) 17934 return -ENOMEM; 17935 17936 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17937 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17938 sizeof(struct lpfc_mbx_post_sgl_pages) - 17939 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17940 17941 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17942 &mbox->u.mqe.un.post_sgl_pages; 17943 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17944 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17945 17946 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17947 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17948 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17949 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17950 17951 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17952 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17953 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17954 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17955 if (!phba->sli4_hba.intr_enable) 17956 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17957 else { 17958 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17959 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17960 } 17961 /* The IOCTL status is embedded in the mailbox subheader. */ 17962 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17963 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17964 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17965 if (!phba->sli4_hba.intr_enable) 17966 mempool_free(mbox, phba->mbox_mem_pool); 17967 else if (rc != MBX_TIMEOUT) 17968 mempool_free(mbox, phba->mbox_mem_pool); 17969 if (shdr_status || shdr_add_status || rc) { 17970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17971 "2511 POST_SGL mailbox failed with " 17972 "status x%x add_status x%x, mbx status x%x\n", 17973 shdr_status, shdr_add_status, rc); 17974 } 17975 return 0; 17976 } 17977 17978 /** 17979 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17980 * @phba: pointer to lpfc hba data structure. 17981 * 17982 * This routine is invoked to post rpi header templates to the 17983 * HBA consistent with the SLI-4 interface spec. This routine 17984 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17985 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17986 * 17987 * Returns 17988 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17989 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17990 **/ 17991 static uint16_t 17992 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17993 { 17994 unsigned long xri; 17995 17996 /* 17997 * Fetch the next logical xri. Because this index is logical, 17998 * the driver starts at 0 each time. 17999 */ 18000 spin_lock_irq(&phba->hbalock); 18001 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18002 phba->sli4_hba.max_cfg_param.max_xri); 18003 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18004 spin_unlock_irq(&phba->hbalock); 18005 return NO_XRI; 18006 } else { 18007 set_bit(xri, phba->sli4_hba.xri_bmask); 18008 phba->sli4_hba.max_cfg_param.xri_used++; 18009 } 18010 spin_unlock_irq(&phba->hbalock); 18011 return xri; 18012 } 18013 18014 /** 18015 * __lpfc_sli4_free_xri - Release an xri for reuse. 18016 * @phba: pointer to lpfc hba data structure. 18017 * @xri: xri to release. 18018 * 18019 * This routine is invoked to release an xri to the pool of 18020 * available rpis maintained by the driver. 18021 **/ 18022 static void 18023 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18024 { 18025 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18026 phba->sli4_hba.max_cfg_param.xri_used--; 18027 } 18028 } 18029 18030 /** 18031 * lpfc_sli4_free_xri - Release an xri for reuse. 18032 * @phba: pointer to lpfc hba data structure. 18033 * @xri: xri to release. 18034 * 18035 * This routine is invoked to release an xri to the pool of 18036 * available rpis maintained by the driver. 18037 **/ 18038 void 18039 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18040 { 18041 spin_lock_irq(&phba->hbalock); 18042 __lpfc_sli4_free_xri(phba, xri); 18043 spin_unlock_irq(&phba->hbalock); 18044 } 18045 18046 /** 18047 * lpfc_sli4_next_xritag - Get an xritag for the io 18048 * @phba: Pointer to HBA context object. 18049 * 18050 * This function gets an xritag for the iocb. If there is no unused xritag 18051 * it will return 0xffff. 18052 * The function returns the allocated xritag if successful, else returns zero. 18053 * Zero is not a valid xritag. 18054 * The caller is not required to hold any lock. 18055 **/ 18056 uint16_t 18057 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18058 { 18059 uint16_t xri_index; 18060 18061 xri_index = lpfc_sli4_alloc_xri(phba); 18062 if (xri_index == NO_XRI) 18063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18064 "2004 Failed to allocate XRI.last XRITAG is %d" 18065 " Max XRI is %d, Used XRI is %d\n", 18066 xri_index, 18067 phba->sli4_hba.max_cfg_param.max_xri, 18068 phba->sli4_hba.max_cfg_param.xri_used); 18069 return xri_index; 18070 } 18071 18072 /** 18073 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18074 * @phba: pointer to lpfc hba data structure. 18075 * @post_sgl_list: pointer to els sgl entry list. 18076 * @post_cnt: number of els sgl entries on the list. 18077 * 18078 * This routine is invoked to post a block of driver's sgl pages to the 18079 * HBA using non-embedded mailbox command. No Lock is held. This routine 18080 * is only called when the driver is loading and after all IO has been 18081 * stopped. 18082 **/ 18083 static int 18084 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18085 struct list_head *post_sgl_list, 18086 int post_cnt) 18087 { 18088 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18089 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18090 struct sgl_page_pairs *sgl_pg_pairs; 18091 void *viraddr; 18092 LPFC_MBOXQ_t *mbox; 18093 uint32_t reqlen, alloclen, pg_pairs; 18094 uint32_t mbox_tmo; 18095 uint16_t xritag_start = 0; 18096 int rc = 0; 18097 uint32_t shdr_status, shdr_add_status; 18098 union lpfc_sli4_cfg_shdr *shdr; 18099 18100 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18101 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18102 if (reqlen > SLI4_PAGE_SIZE) { 18103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18104 "2559 Block sgl registration required DMA " 18105 "size (%d) great than a page\n", reqlen); 18106 return -ENOMEM; 18107 } 18108 18109 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18110 if (!mbox) 18111 return -ENOMEM; 18112 18113 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18114 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18115 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18116 LPFC_SLI4_MBX_NEMBED); 18117 18118 if (alloclen < reqlen) { 18119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18120 "0285 Allocated DMA memory size (%d) is " 18121 "less than the requested DMA memory " 18122 "size (%d)\n", alloclen, reqlen); 18123 lpfc_sli4_mbox_cmd_free(phba, mbox); 18124 return -ENOMEM; 18125 } 18126 /* Set up the SGL pages in the non-embedded DMA pages */ 18127 viraddr = mbox->sge_array->addr[0]; 18128 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18129 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18130 18131 pg_pairs = 0; 18132 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18133 /* Set up the sge entry */ 18134 sgl_pg_pairs->sgl_pg0_addr_lo = 18135 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18136 sgl_pg_pairs->sgl_pg0_addr_hi = 18137 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18138 sgl_pg_pairs->sgl_pg1_addr_lo = 18139 cpu_to_le32(putPaddrLow(0)); 18140 sgl_pg_pairs->sgl_pg1_addr_hi = 18141 cpu_to_le32(putPaddrHigh(0)); 18142 18143 /* Keep the first xritag on the list */ 18144 if (pg_pairs == 0) 18145 xritag_start = sglq_entry->sli4_xritag; 18146 sgl_pg_pairs++; 18147 pg_pairs++; 18148 } 18149 18150 /* Complete initialization and perform endian conversion. */ 18151 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18152 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18153 sgl->word0 = cpu_to_le32(sgl->word0); 18154 18155 if (!phba->sli4_hba.intr_enable) 18156 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18157 else { 18158 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18159 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18160 } 18161 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18162 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18163 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18164 if (!phba->sli4_hba.intr_enable) 18165 lpfc_sli4_mbox_cmd_free(phba, mbox); 18166 else if (rc != MBX_TIMEOUT) 18167 lpfc_sli4_mbox_cmd_free(phba, mbox); 18168 if (shdr_status || shdr_add_status || rc) { 18169 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18170 "2513 POST_SGL_BLOCK mailbox command failed " 18171 "status x%x add_status x%x mbx status x%x\n", 18172 shdr_status, shdr_add_status, rc); 18173 rc = -ENXIO; 18174 } 18175 return rc; 18176 } 18177 18178 /** 18179 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18180 * @phba: pointer to lpfc hba data structure. 18181 * @nblist: pointer to nvme buffer list. 18182 * @count: number of scsi buffers on the list. 18183 * 18184 * This routine is invoked to post a block of @count scsi sgl pages from a 18185 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18186 * No Lock is held. 18187 * 18188 **/ 18189 static int 18190 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18191 int count) 18192 { 18193 struct lpfc_io_buf *lpfc_ncmd; 18194 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18195 struct sgl_page_pairs *sgl_pg_pairs; 18196 void *viraddr; 18197 LPFC_MBOXQ_t *mbox; 18198 uint32_t reqlen, alloclen, pg_pairs; 18199 uint32_t mbox_tmo; 18200 uint16_t xritag_start = 0; 18201 int rc = 0; 18202 uint32_t shdr_status, shdr_add_status; 18203 dma_addr_t pdma_phys_bpl1; 18204 union lpfc_sli4_cfg_shdr *shdr; 18205 18206 /* Calculate the requested length of the dma memory */ 18207 reqlen = count * sizeof(struct sgl_page_pairs) + 18208 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18209 if (reqlen > SLI4_PAGE_SIZE) { 18210 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18211 "6118 Block sgl registration required DMA " 18212 "size (%d) great than a page\n", reqlen); 18213 return -ENOMEM; 18214 } 18215 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18216 if (!mbox) { 18217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18218 "6119 Failed to allocate mbox cmd memory\n"); 18219 return -ENOMEM; 18220 } 18221 18222 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18223 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18224 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18225 reqlen, LPFC_SLI4_MBX_NEMBED); 18226 18227 if (alloclen < reqlen) { 18228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18229 "6120 Allocated DMA memory size (%d) is " 18230 "less than the requested DMA memory " 18231 "size (%d)\n", alloclen, reqlen); 18232 lpfc_sli4_mbox_cmd_free(phba, mbox); 18233 return -ENOMEM; 18234 } 18235 18236 /* Get the first SGE entry from the non-embedded DMA memory */ 18237 viraddr = mbox->sge_array->addr[0]; 18238 18239 /* Set up the SGL pages in the non-embedded DMA pages */ 18240 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18241 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18242 18243 pg_pairs = 0; 18244 list_for_each_entry(lpfc_ncmd, nblist, list) { 18245 /* Set up the sge entry */ 18246 sgl_pg_pairs->sgl_pg0_addr_lo = 18247 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18248 sgl_pg_pairs->sgl_pg0_addr_hi = 18249 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18250 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18251 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18252 SGL_PAGE_SIZE; 18253 else 18254 pdma_phys_bpl1 = 0; 18255 sgl_pg_pairs->sgl_pg1_addr_lo = 18256 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18257 sgl_pg_pairs->sgl_pg1_addr_hi = 18258 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18259 /* Keep the first xritag on the list */ 18260 if (pg_pairs == 0) 18261 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18262 sgl_pg_pairs++; 18263 pg_pairs++; 18264 } 18265 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18266 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18267 /* Perform endian conversion if necessary */ 18268 sgl->word0 = cpu_to_le32(sgl->word0); 18269 18270 if (!phba->sli4_hba.intr_enable) { 18271 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18272 } else { 18273 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18274 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18275 } 18276 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18277 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18278 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18279 if (!phba->sli4_hba.intr_enable) 18280 lpfc_sli4_mbox_cmd_free(phba, mbox); 18281 else if (rc != MBX_TIMEOUT) 18282 lpfc_sli4_mbox_cmd_free(phba, mbox); 18283 if (shdr_status || shdr_add_status || rc) { 18284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18285 "6125 POST_SGL_BLOCK mailbox command failed " 18286 "status x%x add_status x%x mbx status x%x\n", 18287 shdr_status, shdr_add_status, rc); 18288 rc = -ENXIO; 18289 } 18290 return rc; 18291 } 18292 18293 /** 18294 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18295 * @phba: pointer to lpfc hba data structure. 18296 * @post_nblist: pointer to the nvme buffer list. 18297 * @sb_count: number of nvme buffers. 18298 * 18299 * This routine walks a list of nvme buffers that was passed in. It attempts 18300 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18301 * uses the non-embedded SGL block post mailbox commands to post to the port. 18302 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18303 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18304 * must be local list, thus no lock is needed when manipulate the list. 18305 * 18306 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18307 **/ 18308 int 18309 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18310 struct list_head *post_nblist, int sb_count) 18311 { 18312 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18313 int status, sgl_size; 18314 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18315 dma_addr_t pdma_phys_sgl1; 18316 int last_xritag = NO_XRI; 18317 int cur_xritag; 18318 LIST_HEAD(prep_nblist); 18319 LIST_HEAD(blck_nblist); 18320 LIST_HEAD(nvme_nblist); 18321 18322 /* sanity check */ 18323 if (sb_count <= 0) 18324 return -EINVAL; 18325 18326 sgl_size = phba->cfg_sg_dma_buf_size; 18327 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18328 list_del_init(&lpfc_ncmd->list); 18329 block_cnt++; 18330 if ((last_xritag != NO_XRI) && 18331 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18332 /* a hole in xri block, form a sgl posting block */ 18333 list_splice_init(&prep_nblist, &blck_nblist); 18334 post_cnt = block_cnt - 1; 18335 /* prepare list for next posting block */ 18336 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18337 block_cnt = 1; 18338 } else { 18339 /* prepare list for next posting block */ 18340 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18341 /* enough sgls for non-embed sgl mbox command */ 18342 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18343 list_splice_init(&prep_nblist, &blck_nblist); 18344 post_cnt = block_cnt; 18345 block_cnt = 0; 18346 } 18347 } 18348 num_posting++; 18349 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18350 18351 /* end of repost sgl list condition for NVME buffers */ 18352 if (num_posting == sb_count) { 18353 if (post_cnt == 0) { 18354 /* last sgl posting block */ 18355 list_splice_init(&prep_nblist, &blck_nblist); 18356 post_cnt = block_cnt; 18357 } else if (block_cnt == 1) { 18358 /* last single sgl with non-contiguous xri */ 18359 if (sgl_size > SGL_PAGE_SIZE) 18360 pdma_phys_sgl1 = 18361 lpfc_ncmd->dma_phys_sgl + 18362 SGL_PAGE_SIZE; 18363 else 18364 pdma_phys_sgl1 = 0; 18365 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18366 status = lpfc_sli4_post_sgl( 18367 phba, lpfc_ncmd->dma_phys_sgl, 18368 pdma_phys_sgl1, cur_xritag); 18369 if (status) { 18370 /* Post error. Buffer unavailable. */ 18371 lpfc_ncmd->flags |= 18372 LPFC_SBUF_NOT_POSTED; 18373 } else { 18374 /* Post success. Bffer available. */ 18375 lpfc_ncmd->flags &= 18376 ~LPFC_SBUF_NOT_POSTED; 18377 lpfc_ncmd->status = IOSTAT_SUCCESS; 18378 num_posted++; 18379 } 18380 /* success, put on NVME buffer sgl list */ 18381 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18382 } 18383 } 18384 18385 /* continue until a nembed page worth of sgls */ 18386 if (post_cnt == 0) 18387 continue; 18388 18389 /* post block of NVME buffer list sgls */ 18390 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18391 post_cnt); 18392 18393 /* don't reset xirtag due to hole in xri block */ 18394 if (block_cnt == 0) 18395 last_xritag = NO_XRI; 18396 18397 /* reset NVME buffer post count for next round of posting */ 18398 post_cnt = 0; 18399 18400 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18401 while (!list_empty(&blck_nblist)) { 18402 list_remove_head(&blck_nblist, lpfc_ncmd, 18403 struct lpfc_io_buf, list); 18404 if (status) { 18405 /* Post error. Mark buffer unavailable. */ 18406 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18407 } else { 18408 /* Post success, Mark buffer available. */ 18409 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18410 lpfc_ncmd->status = IOSTAT_SUCCESS; 18411 num_posted++; 18412 } 18413 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18414 } 18415 } 18416 /* Push NVME buffers with sgl posted to the available list */ 18417 lpfc_io_buf_replenish(phba, &nvme_nblist); 18418 18419 return num_posted; 18420 } 18421 18422 /** 18423 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18424 * @phba: pointer to lpfc_hba struct that the frame was received on 18425 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18426 * 18427 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18428 * valid type of frame that the LPFC driver will handle. This function will 18429 * return a zero if the frame is a valid frame or a non zero value when the 18430 * frame does not pass the check. 18431 **/ 18432 static int 18433 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18434 { 18435 /* make rctl_names static to save stack space */ 18436 struct fc_vft_header *fc_vft_hdr; 18437 uint32_t *header = (uint32_t *) fc_hdr; 18438 18439 #define FC_RCTL_MDS_DIAGS 0xF4 18440 18441 switch (fc_hdr->fh_r_ctl) { 18442 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18443 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18444 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18445 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18446 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18447 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18448 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18449 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18450 case FC_RCTL_ELS_REQ: /* extended link services request */ 18451 case FC_RCTL_ELS_REP: /* extended link services reply */ 18452 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18453 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18454 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18455 case FC_RCTL_BA_RMC: /* remove connection */ 18456 case FC_RCTL_BA_ACC: /* basic accept */ 18457 case FC_RCTL_BA_RJT: /* basic reject */ 18458 case FC_RCTL_BA_PRMT: 18459 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18460 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18461 case FC_RCTL_P_RJT: /* port reject */ 18462 case FC_RCTL_F_RJT: /* fabric reject */ 18463 case FC_RCTL_P_BSY: /* port busy */ 18464 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18465 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18466 case FC_RCTL_LCR: /* link credit reset */ 18467 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18468 case FC_RCTL_END: /* end */ 18469 break; 18470 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18471 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18472 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18473 return lpfc_fc_frame_check(phba, fc_hdr); 18474 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18475 default: 18476 goto drop; 18477 } 18478 18479 switch (fc_hdr->fh_type) { 18480 case FC_TYPE_BLS: 18481 case FC_TYPE_ELS: 18482 case FC_TYPE_FCP: 18483 case FC_TYPE_CT: 18484 case FC_TYPE_NVME: 18485 break; 18486 case FC_TYPE_IP: 18487 case FC_TYPE_ILS: 18488 default: 18489 goto drop; 18490 } 18491 18492 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18493 "2538 Received frame rctl:x%x, type:x%x, " 18494 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18495 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18496 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18497 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18498 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18499 be32_to_cpu(header[6])); 18500 return 0; 18501 drop: 18502 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18503 "2539 Dropped frame rctl:x%x type:x%x\n", 18504 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18505 return 1; 18506 } 18507 18508 /** 18509 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18510 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18511 * 18512 * This function processes the FC header to retrieve the VFI from the VF 18513 * header, if one exists. This function will return the VFI if one exists 18514 * or 0 if no VSAN Header exists. 18515 **/ 18516 static uint32_t 18517 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18518 { 18519 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18520 18521 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18522 return 0; 18523 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18524 } 18525 18526 /** 18527 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18528 * @phba: Pointer to the HBA structure to search for the vport on 18529 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18530 * @fcfi: The FC Fabric ID that the frame came from 18531 * @did: Destination ID to match against 18532 * 18533 * This function searches the @phba for a vport that matches the content of the 18534 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18535 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18536 * returns the matching vport pointer or NULL if unable to match frame to a 18537 * vport. 18538 **/ 18539 static struct lpfc_vport * 18540 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18541 uint16_t fcfi, uint32_t did) 18542 { 18543 struct lpfc_vport **vports; 18544 struct lpfc_vport *vport = NULL; 18545 int i; 18546 18547 if (did == Fabric_DID) 18548 return phba->pport; 18549 if ((phba->pport->fc_flag & FC_PT2PT) && 18550 !(phba->link_state == LPFC_HBA_READY)) 18551 return phba->pport; 18552 18553 vports = lpfc_create_vport_work_array(phba); 18554 if (vports != NULL) { 18555 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18556 if (phba->fcf.fcfi == fcfi && 18557 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18558 vports[i]->fc_myDID == did) { 18559 vport = vports[i]; 18560 break; 18561 } 18562 } 18563 } 18564 lpfc_destroy_vport_work_array(phba, vports); 18565 return vport; 18566 } 18567 18568 /** 18569 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18570 * @vport: The vport to work on. 18571 * 18572 * This function updates the receive sequence time stamp for this vport. The 18573 * receive sequence time stamp indicates the time that the last frame of the 18574 * the sequence that has been idle for the longest amount of time was received. 18575 * the driver uses this time stamp to indicate if any received sequences have 18576 * timed out. 18577 **/ 18578 static void 18579 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18580 { 18581 struct lpfc_dmabuf *h_buf; 18582 struct hbq_dmabuf *dmabuf = NULL; 18583 18584 /* get the oldest sequence on the rcv list */ 18585 h_buf = list_get_first(&vport->rcv_buffer_list, 18586 struct lpfc_dmabuf, list); 18587 if (!h_buf) 18588 return; 18589 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18590 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18591 } 18592 18593 /** 18594 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18595 * @vport: The vport that the received sequences were sent to. 18596 * 18597 * This function cleans up all outstanding received sequences. This is called 18598 * by the driver when a link event or user action invalidates all the received 18599 * sequences. 18600 **/ 18601 void 18602 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18603 { 18604 struct lpfc_dmabuf *h_buf, *hnext; 18605 struct lpfc_dmabuf *d_buf, *dnext; 18606 struct hbq_dmabuf *dmabuf = NULL; 18607 18608 /* start with the oldest sequence on the rcv list */ 18609 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18610 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18611 list_del_init(&dmabuf->hbuf.list); 18612 list_for_each_entry_safe(d_buf, dnext, 18613 &dmabuf->dbuf.list, list) { 18614 list_del_init(&d_buf->list); 18615 lpfc_in_buf_free(vport->phba, d_buf); 18616 } 18617 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18618 } 18619 } 18620 18621 /** 18622 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18623 * @vport: The vport that the received sequences were sent to. 18624 * 18625 * This function determines whether any received sequences have timed out by 18626 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18627 * indicates that there is at least one timed out sequence this routine will 18628 * go through the received sequences one at a time from most inactive to most 18629 * active to determine which ones need to be cleaned up. Once it has determined 18630 * that a sequence needs to be cleaned up it will simply free up the resources 18631 * without sending an abort. 18632 **/ 18633 void 18634 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18635 { 18636 struct lpfc_dmabuf *h_buf, *hnext; 18637 struct lpfc_dmabuf *d_buf, *dnext; 18638 struct hbq_dmabuf *dmabuf = NULL; 18639 unsigned long timeout; 18640 int abort_count = 0; 18641 18642 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18643 vport->rcv_buffer_time_stamp); 18644 if (list_empty(&vport->rcv_buffer_list) || 18645 time_before(jiffies, timeout)) 18646 return; 18647 /* start with the oldest sequence on the rcv list */ 18648 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18649 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18650 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18651 dmabuf->time_stamp); 18652 if (time_before(jiffies, timeout)) 18653 break; 18654 abort_count++; 18655 list_del_init(&dmabuf->hbuf.list); 18656 list_for_each_entry_safe(d_buf, dnext, 18657 &dmabuf->dbuf.list, list) { 18658 list_del_init(&d_buf->list); 18659 lpfc_in_buf_free(vport->phba, d_buf); 18660 } 18661 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18662 } 18663 if (abort_count) 18664 lpfc_update_rcv_time_stamp(vport); 18665 } 18666 18667 /** 18668 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18669 * @vport: pointer to a vitural port 18670 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18671 * 18672 * This function searches through the existing incomplete sequences that have 18673 * been sent to this @vport. If the frame matches one of the incomplete 18674 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18675 * make up that sequence. If no sequence is found that matches this frame then 18676 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18677 * This function returns a pointer to the first dmabuf in the sequence list that 18678 * the frame was linked to. 18679 **/ 18680 static struct hbq_dmabuf * 18681 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18682 { 18683 struct fc_frame_header *new_hdr; 18684 struct fc_frame_header *temp_hdr; 18685 struct lpfc_dmabuf *d_buf; 18686 struct lpfc_dmabuf *h_buf; 18687 struct hbq_dmabuf *seq_dmabuf = NULL; 18688 struct hbq_dmabuf *temp_dmabuf = NULL; 18689 uint8_t found = 0; 18690 18691 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18692 dmabuf->time_stamp = jiffies; 18693 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18694 18695 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18696 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18697 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18698 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18699 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18700 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18701 continue; 18702 /* found a pending sequence that matches this frame */ 18703 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18704 break; 18705 } 18706 if (!seq_dmabuf) { 18707 /* 18708 * This indicates first frame received for this sequence. 18709 * Queue the buffer on the vport's rcv_buffer_list. 18710 */ 18711 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18712 lpfc_update_rcv_time_stamp(vport); 18713 return dmabuf; 18714 } 18715 temp_hdr = seq_dmabuf->hbuf.virt; 18716 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18717 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18718 list_del_init(&seq_dmabuf->hbuf.list); 18719 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18720 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18721 lpfc_update_rcv_time_stamp(vport); 18722 return dmabuf; 18723 } 18724 /* move this sequence to the tail to indicate a young sequence */ 18725 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18726 seq_dmabuf->time_stamp = jiffies; 18727 lpfc_update_rcv_time_stamp(vport); 18728 if (list_empty(&seq_dmabuf->dbuf.list)) { 18729 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18730 return seq_dmabuf; 18731 } 18732 /* find the correct place in the sequence to insert this frame */ 18733 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18734 while (!found) { 18735 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18736 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18737 /* 18738 * If the frame's sequence count is greater than the frame on 18739 * the list then insert the frame right after this frame 18740 */ 18741 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18742 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18743 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18744 found = 1; 18745 break; 18746 } 18747 18748 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18749 break; 18750 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18751 } 18752 18753 if (found) 18754 return seq_dmabuf; 18755 return NULL; 18756 } 18757 18758 /** 18759 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18760 * @vport: pointer to a vitural port 18761 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18762 * 18763 * This function tries to abort from the partially assembed sequence, described 18764 * by the information from basic abbort @dmabuf. It checks to see whether such 18765 * partially assembled sequence held by the driver. If so, it shall free up all 18766 * the frames from the partially assembled sequence. 18767 * 18768 * Return 18769 * true -- if there is matching partially assembled sequence present and all 18770 * the frames freed with the sequence; 18771 * false -- if there is no matching partially assembled sequence present so 18772 * nothing got aborted in the lower layer driver 18773 **/ 18774 static bool 18775 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18776 struct hbq_dmabuf *dmabuf) 18777 { 18778 struct fc_frame_header *new_hdr; 18779 struct fc_frame_header *temp_hdr; 18780 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18781 struct hbq_dmabuf *seq_dmabuf = NULL; 18782 18783 /* Use the hdr_buf to find the sequence that matches this frame */ 18784 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18785 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18786 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18787 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18788 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18789 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18790 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18791 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18792 continue; 18793 /* found a pending sequence that matches this frame */ 18794 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18795 break; 18796 } 18797 18798 /* Free up all the frames from the partially assembled sequence */ 18799 if (seq_dmabuf) { 18800 list_for_each_entry_safe(d_buf, n_buf, 18801 &seq_dmabuf->dbuf.list, list) { 18802 list_del_init(&d_buf->list); 18803 lpfc_in_buf_free(vport->phba, d_buf); 18804 } 18805 return true; 18806 } 18807 return false; 18808 } 18809 18810 /** 18811 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18812 * @vport: pointer to a vitural port 18813 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18814 * 18815 * This function tries to abort from the assembed sequence from upper level 18816 * protocol, described by the information from basic abbort @dmabuf. It 18817 * checks to see whether such pending context exists at upper level protocol. 18818 * If so, it shall clean up the pending context. 18819 * 18820 * Return 18821 * true -- if there is matching pending context of the sequence cleaned 18822 * at ulp; 18823 * false -- if there is no matching pending context of the sequence present 18824 * at ulp. 18825 **/ 18826 static bool 18827 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18828 { 18829 struct lpfc_hba *phba = vport->phba; 18830 int handled; 18831 18832 /* Accepting abort at ulp with SLI4 only */ 18833 if (phba->sli_rev < LPFC_SLI_REV4) 18834 return false; 18835 18836 /* Register all caring upper level protocols to attend abort */ 18837 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18838 if (handled) 18839 return true; 18840 18841 return false; 18842 } 18843 18844 /** 18845 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18846 * @phba: Pointer to HBA context object. 18847 * @cmd_iocbq: pointer to the command iocbq structure. 18848 * @rsp_iocbq: pointer to the response iocbq structure. 18849 * 18850 * This function handles the sequence abort response iocb command complete 18851 * event. It properly releases the memory allocated to the sequence abort 18852 * accept iocb. 18853 **/ 18854 static void 18855 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18856 struct lpfc_iocbq *cmd_iocbq, 18857 struct lpfc_iocbq *rsp_iocbq) 18858 { 18859 if (cmd_iocbq) { 18860 lpfc_nlp_put(cmd_iocbq->ndlp); 18861 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18862 } 18863 18864 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18865 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18867 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18868 get_job_ulpstatus(phba, rsp_iocbq), 18869 get_job_word4(phba, rsp_iocbq)); 18870 } 18871 18872 /** 18873 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18874 * @phba: Pointer to HBA context object. 18875 * @xri: xri id in transaction. 18876 * 18877 * This function validates the xri maps to the known range of XRIs allocated an 18878 * used by the driver. 18879 **/ 18880 uint16_t 18881 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18882 uint16_t xri) 18883 { 18884 uint16_t i; 18885 18886 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18887 if (xri == phba->sli4_hba.xri_ids[i]) 18888 return i; 18889 } 18890 return NO_XRI; 18891 } 18892 18893 /** 18894 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18895 * @vport: pointer to a virtual port. 18896 * @fc_hdr: pointer to a FC frame header. 18897 * @aborted: was the partially assembled receive sequence successfully aborted 18898 * 18899 * This function sends a basic response to a previous unsol sequence abort 18900 * event after aborting the sequence handling. 18901 **/ 18902 void 18903 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18904 struct fc_frame_header *fc_hdr, bool aborted) 18905 { 18906 struct lpfc_hba *phba = vport->phba; 18907 struct lpfc_iocbq *ctiocb = NULL; 18908 struct lpfc_nodelist *ndlp; 18909 uint16_t oxid, rxid, xri, lxri; 18910 uint32_t sid, fctl; 18911 union lpfc_wqe128 *icmd; 18912 int rc; 18913 18914 if (!lpfc_is_link_up(phba)) 18915 return; 18916 18917 sid = sli4_sid_from_fc_hdr(fc_hdr); 18918 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18919 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18920 18921 ndlp = lpfc_findnode_did(vport, sid); 18922 if (!ndlp) { 18923 ndlp = lpfc_nlp_init(vport, sid); 18924 if (!ndlp) { 18925 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18926 "1268 Failed to allocate ndlp for " 18927 "oxid:x%x SID:x%x\n", oxid, sid); 18928 return; 18929 } 18930 /* Put ndlp onto pport node list */ 18931 lpfc_enqueue_node(vport, ndlp); 18932 } 18933 18934 /* Allocate buffer for rsp iocb */ 18935 ctiocb = lpfc_sli_get_iocbq(phba); 18936 if (!ctiocb) 18937 return; 18938 18939 icmd = &ctiocb->wqe; 18940 18941 /* Extract the F_CTL field from FC_HDR */ 18942 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18943 18944 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18945 if (!ctiocb->ndlp) { 18946 lpfc_sli_release_iocbq(phba, ctiocb); 18947 return; 18948 } 18949 18950 ctiocb->vport = phba->pport; 18951 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18952 ctiocb->sli4_lxritag = NO_XRI; 18953 ctiocb->sli4_xritag = NO_XRI; 18954 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18955 18956 if (fctl & FC_FC_EX_CTX) 18957 /* Exchange responder sent the abort so we 18958 * own the oxid. 18959 */ 18960 xri = oxid; 18961 else 18962 xri = rxid; 18963 lxri = lpfc_sli4_xri_inrange(phba, xri); 18964 if (lxri != NO_XRI) 18965 lpfc_set_rrq_active(phba, ndlp, lxri, 18966 (xri == oxid) ? rxid : oxid, 0); 18967 /* For BA_ABTS from exchange responder, if the logical xri with 18968 * the oxid maps to the FCP XRI range, the port no longer has 18969 * that exchange context, send a BLS_RJT. Override the IOCB for 18970 * a BA_RJT. 18971 */ 18972 if ((fctl & FC_FC_EX_CTX) && 18973 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18974 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18975 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18976 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18977 FC_BA_RJT_INV_XID); 18978 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18979 FC_BA_RJT_UNABLE); 18980 } 18981 18982 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18983 * the driver no longer has that exchange, send a BLS_RJT. Override 18984 * the IOCB for a BA_RJT. 18985 */ 18986 if (aborted == false) { 18987 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18988 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18989 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18990 FC_BA_RJT_INV_XID); 18991 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18992 FC_BA_RJT_UNABLE); 18993 } 18994 18995 if (fctl & FC_FC_EX_CTX) { 18996 /* ABTS sent by responder to CT exchange, construction 18997 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18998 * field and RX_ID from ABTS for RX_ID field. 18999 */ 19000 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19001 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19002 } else { 19003 /* ABTS sent by initiator to CT exchange, construction 19004 * of BA_ACC will need to allocate a new XRI as for the 19005 * XRI_TAG field. 19006 */ 19007 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19008 } 19009 19010 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19011 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19012 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19013 19014 /* Use CT=VPI */ 19015 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19016 ndlp->nlp_DID); 19017 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19018 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19019 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19020 19021 /* Xmit CT abts response on exchange <xid> */ 19022 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19023 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19024 ctiocb->abort_rctl, oxid, phba->link_state); 19025 19026 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19027 if (rc == IOCB_ERROR) { 19028 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19029 "2925 Failed to issue CT ABTS RSP x%x on " 19030 "xri x%x, Data x%x\n", 19031 ctiocb->abort_rctl, oxid, 19032 phba->link_state); 19033 lpfc_nlp_put(ndlp); 19034 ctiocb->ndlp = NULL; 19035 lpfc_sli_release_iocbq(phba, ctiocb); 19036 } 19037 } 19038 19039 /** 19040 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19041 * @vport: Pointer to the vport on which this sequence was received 19042 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19043 * 19044 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19045 * receive sequence is only partially assembed by the driver, it shall abort 19046 * the partially assembled frames for the sequence. Otherwise, if the 19047 * unsolicited receive sequence has been completely assembled and passed to 19048 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19049 * unsolicited sequence has been aborted. After that, it will issue a basic 19050 * accept to accept the abort. 19051 **/ 19052 static void 19053 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19054 struct hbq_dmabuf *dmabuf) 19055 { 19056 struct lpfc_hba *phba = vport->phba; 19057 struct fc_frame_header fc_hdr; 19058 uint32_t fctl; 19059 bool aborted; 19060 19061 /* Make a copy of fc_hdr before the dmabuf being released */ 19062 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19063 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19064 19065 if (fctl & FC_FC_EX_CTX) { 19066 /* ABTS by responder to exchange, no cleanup needed */ 19067 aborted = true; 19068 } else { 19069 /* ABTS by initiator to exchange, need to do cleanup */ 19070 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19071 if (aborted == false) 19072 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19073 } 19074 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19075 19076 if (phba->nvmet_support) { 19077 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19078 return; 19079 } 19080 19081 /* Respond with BA_ACC or BA_RJT accordingly */ 19082 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19083 } 19084 19085 /** 19086 * lpfc_seq_complete - Indicates if a sequence is complete 19087 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19088 * 19089 * This function checks the sequence, starting with the frame described by 19090 * @dmabuf, to see if all the frames associated with this sequence are present. 19091 * the frames associated with this sequence are linked to the @dmabuf using the 19092 * dbuf list. This function looks for two major things. 1) That the first frame 19093 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19094 * set. 3) That there are no holes in the sequence count. The function will 19095 * return 1 when the sequence is complete, otherwise it will return 0. 19096 **/ 19097 static int 19098 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19099 { 19100 struct fc_frame_header *hdr; 19101 struct lpfc_dmabuf *d_buf; 19102 struct hbq_dmabuf *seq_dmabuf; 19103 uint32_t fctl; 19104 int seq_count = 0; 19105 19106 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19107 /* make sure first fame of sequence has a sequence count of zero */ 19108 if (hdr->fh_seq_cnt != seq_count) 19109 return 0; 19110 fctl = (hdr->fh_f_ctl[0] << 16 | 19111 hdr->fh_f_ctl[1] << 8 | 19112 hdr->fh_f_ctl[2]); 19113 /* If last frame of sequence we can return success. */ 19114 if (fctl & FC_FC_END_SEQ) 19115 return 1; 19116 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19117 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19118 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19119 /* If there is a hole in the sequence count then fail. */ 19120 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19121 return 0; 19122 fctl = (hdr->fh_f_ctl[0] << 16 | 19123 hdr->fh_f_ctl[1] << 8 | 19124 hdr->fh_f_ctl[2]); 19125 /* If last frame of sequence we can return success. */ 19126 if (fctl & FC_FC_END_SEQ) 19127 return 1; 19128 } 19129 return 0; 19130 } 19131 19132 /** 19133 * lpfc_prep_seq - Prep sequence for ULP processing 19134 * @vport: Pointer to the vport on which this sequence was received 19135 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19136 * 19137 * This function takes a sequence, described by a list of frames, and creates 19138 * a list of iocbq structures to describe the sequence. This iocbq list will be 19139 * used to issue to the generic unsolicited sequence handler. This routine 19140 * returns a pointer to the first iocbq in the list. If the function is unable 19141 * to allocate an iocbq then it throw out the received frames that were not 19142 * able to be described and return a pointer to the first iocbq. If unable to 19143 * allocate any iocbqs (including the first) this function will return NULL. 19144 **/ 19145 static struct lpfc_iocbq * 19146 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19147 { 19148 struct hbq_dmabuf *hbq_buf; 19149 struct lpfc_dmabuf *d_buf, *n_buf; 19150 struct lpfc_iocbq *first_iocbq, *iocbq; 19151 struct fc_frame_header *fc_hdr; 19152 uint32_t sid; 19153 uint32_t len, tot_len; 19154 19155 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19156 /* remove from receive buffer list */ 19157 list_del_init(&seq_dmabuf->hbuf.list); 19158 lpfc_update_rcv_time_stamp(vport); 19159 /* get the Remote Port's SID */ 19160 sid = sli4_sid_from_fc_hdr(fc_hdr); 19161 tot_len = 0; 19162 /* Get an iocbq struct to fill in. */ 19163 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19164 if (first_iocbq) { 19165 /* Initialize the first IOCB. */ 19166 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19167 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19168 IOSTAT_SUCCESS); 19169 first_iocbq->vport = vport; 19170 19171 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19172 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19173 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19174 sli4_did_from_fc_hdr(fc_hdr)); 19175 } 19176 19177 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19178 NO_XRI); 19179 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19180 be16_to_cpu(fc_hdr->fh_ox_id)); 19181 19182 /* put the first buffer into the first iocb */ 19183 tot_len = bf_get(lpfc_rcqe_length, 19184 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19185 19186 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19187 first_iocbq->bpl_dmabuf = NULL; 19188 /* Keep track of the BDE count */ 19189 first_iocbq->wcqe_cmpl.word3 = 1; 19190 19191 if (tot_len > LPFC_DATA_BUF_SIZE) 19192 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19193 LPFC_DATA_BUF_SIZE; 19194 else 19195 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19196 19197 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19198 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19199 sid); 19200 } 19201 iocbq = first_iocbq; 19202 /* 19203 * Each IOCBq can have two Buffers assigned, so go through the list 19204 * of buffers for this sequence and save two buffers in each IOCBq 19205 */ 19206 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19207 if (!iocbq) { 19208 lpfc_in_buf_free(vport->phba, d_buf); 19209 continue; 19210 } 19211 if (!iocbq->bpl_dmabuf) { 19212 iocbq->bpl_dmabuf = d_buf; 19213 iocbq->wcqe_cmpl.word3++; 19214 /* We need to get the size out of the right CQE */ 19215 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19216 len = bf_get(lpfc_rcqe_length, 19217 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19218 iocbq->unsol_rcv_len = len; 19219 iocbq->wcqe_cmpl.total_data_placed += len; 19220 tot_len += len; 19221 } else { 19222 iocbq = lpfc_sli_get_iocbq(vport->phba); 19223 if (!iocbq) { 19224 if (first_iocbq) { 19225 bf_set(lpfc_wcqe_c_status, 19226 &first_iocbq->wcqe_cmpl, 19227 IOSTAT_SUCCESS); 19228 first_iocbq->wcqe_cmpl.parameter = 19229 IOERR_NO_RESOURCES; 19230 } 19231 lpfc_in_buf_free(vport->phba, d_buf); 19232 continue; 19233 } 19234 /* We need to get the size out of the right CQE */ 19235 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19236 len = bf_get(lpfc_rcqe_length, 19237 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19238 iocbq->cmd_dmabuf = d_buf; 19239 iocbq->bpl_dmabuf = NULL; 19240 iocbq->wcqe_cmpl.word3 = 1; 19241 19242 if (len > LPFC_DATA_BUF_SIZE) 19243 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19244 LPFC_DATA_BUF_SIZE; 19245 else 19246 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19247 len; 19248 19249 tot_len += len; 19250 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19251 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19252 sid); 19253 list_add_tail(&iocbq->list, &first_iocbq->list); 19254 } 19255 } 19256 /* Free the sequence's header buffer */ 19257 if (!first_iocbq) 19258 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19259 19260 return first_iocbq; 19261 } 19262 19263 static void 19264 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19265 struct hbq_dmabuf *seq_dmabuf) 19266 { 19267 struct fc_frame_header *fc_hdr; 19268 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19269 struct lpfc_hba *phba = vport->phba; 19270 19271 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19272 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19273 if (!iocbq) { 19274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19275 "2707 Ring %d handler: Failed to allocate " 19276 "iocb Rctl x%x Type x%x received\n", 19277 LPFC_ELS_RING, 19278 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19279 return; 19280 } 19281 if (!lpfc_complete_unsol_iocb(phba, 19282 phba->sli4_hba.els_wq->pring, 19283 iocbq, fc_hdr->fh_r_ctl, 19284 fc_hdr->fh_type)) { 19285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19286 "2540 Ring %d handler: unexpected Rctl " 19287 "x%x Type x%x received\n", 19288 LPFC_ELS_RING, 19289 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19290 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19291 } 19292 19293 /* Free iocb created in lpfc_prep_seq */ 19294 list_for_each_entry_safe(curr_iocb, next_iocb, 19295 &iocbq->list, list) { 19296 list_del_init(&curr_iocb->list); 19297 lpfc_sli_release_iocbq(phba, curr_iocb); 19298 } 19299 lpfc_sli_release_iocbq(phba, iocbq); 19300 } 19301 19302 static void 19303 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19304 struct lpfc_iocbq *rspiocb) 19305 { 19306 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19307 19308 if (pcmd && pcmd->virt) 19309 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19310 kfree(pcmd); 19311 lpfc_sli_release_iocbq(phba, cmdiocb); 19312 lpfc_drain_txq(phba); 19313 } 19314 19315 static void 19316 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19317 struct hbq_dmabuf *dmabuf) 19318 { 19319 struct fc_frame_header *fc_hdr; 19320 struct lpfc_hba *phba = vport->phba; 19321 struct lpfc_iocbq *iocbq = NULL; 19322 union lpfc_wqe128 *pwqe; 19323 struct lpfc_dmabuf *pcmd = NULL; 19324 uint32_t frame_len; 19325 int rc; 19326 unsigned long iflags; 19327 19328 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19329 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19330 19331 /* Send the received frame back */ 19332 iocbq = lpfc_sli_get_iocbq(phba); 19333 if (!iocbq) { 19334 /* Queue cq event and wakeup worker thread to process it */ 19335 spin_lock_irqsave(&phba->hbalock, iflags); 19336 list_add_tail(&dmabuf->cq_event.list, 19337 &phba->sli4_hba.sp_queue_event); 19338 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19339 spin_unlock_irqrestore(&phba->hbalock, iflags); 19340 lpfc_worker_wake_up(phba); 19341 return; 19342 } 19343 19344 /* Allocate buffer for command payload */ 19345 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19346 if (pcmd) 19347 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19348 &pcmd->phys); 19349 if (!pcmd || !pcmd->virt) 19350 goto exit; 19351 19352 INIT_LIST_HEAD(&pcmd->list); 19353 19354 /* copyin the payload */ 19355 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19356 19357 iocbq->cmd_dmabuf = pcmd; 19358 iocbq->vport = vport; 19359 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19360 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19361 iocbq->num_bdes = 0; 19362 19363 pwqe = &iocbq->wqe; 19364 /* fill in BDE's for command */ 19365 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19366 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19367 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19368 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19369 19370 pwqe->send_frame.frame_len = frame_len; 19371 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19372 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19373 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19374 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19375 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19376 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19377 19378 pwqe->generic.wqe_com.word7 = 0; 19379 pwqe->generic.wqe_com.word10 = 0; 19380 19381 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19382 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19383 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19384 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19385 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19386 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19387 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19388 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19389 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19390 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19391 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19392 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19393 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19394 19395 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19396 19397 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19398 if (rc == IOCB_ERROR) 19399 goto exit; 19400 19401 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19402 return; 19403 19404 exit: 19405 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19406 "2023 Unable to process MDS loopback frame\n"); 19407 if (pcmd && pcmd->virt) 19408 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19409 kfree(pcmd); 19410 if (iocbq) 19411 lpfc_sli_release_iocbq(phba, iocbq); 19412 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19413 } 19414 19415 /** 19416 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19417 * @phba: Pointer to HBA context object. 19418 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19419 * 19420 * This function is called with no lock held. This function processes all 19421 * the received buffers and gives it to upper layers when a received buffer 19422 * indicates that it is the final frame in the sequence. The interrupt 19423 * service routine processes received buffers at interrupt contexts. 19424 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19425 * appropriate receive function when the final frame in a sequence is received. 19426 **/ 19427 void 19428 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19429 struct hbq_dmabuf *dmabuf) 19430 { 19431 struct hbq_dmabuf *seq_dmabuf; 19432 struct fc_frame_header *fc_hdr; 19433 struct lpfc_vport *vport; 19434 uint32_t fcfi; 19435 uint32_t did; 19436 19437 /* Process each received buffer */ 19438 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19439 19440 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19441 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19442 vport = phba->pport; 19443 /* Handle MDS Loopback frames */ 19444 if (!(phba->pport->load_flag & FC_UNLOADING)) 19445 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19446 else 19447 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19448 return; 19449 } 19450 19451 /* check to see if this a valid type of frame */ 19452 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19453 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19454 return; 19455 } 19456 19457 if ((bf_get(lpfc_cqe_code, 19458 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19459 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19460 &dmabuf->cq_event.cqe.rcqe_cmpl); 19461 else 19462 fcfi = bf_get(lpfc_rcqe_fcf_id, 19463 &dmabuf->cq_event.cqe.rcqe_cmpl); 19464 19465 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19466 vport = phba->pport; 19467 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19468 "2023 MDS Loopback %d bytes\n", 19469 bf_get(lpfc_rcqe_length, 19470 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19471 /* Handle MDS Loopback frames */ 19472 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19473 return; 19474 } 19475 19476 /* d_id this frame is directed to */ 19477 did = sli4_did_from_fc_hdr(fc_hdr); 19478 19479 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19480 if (!vport) { 19481 /* throw out the frame */ 19482 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19483 return; 19484 } 19485 19486 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19487 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19488 (did != Fabric_DID)) { 19489 /* 19490 * Throw out the frame if we are not pt2pt. 19491 * The pt2pt protocol allows for discovery frames 19492 * to be received without a registered VPI. 19493 */ 19494 if (!(vport->fc_flag & FC_PT2PT) || 19495 (phba->link_state == LPFC_HBA_READY)) { 19496 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19497 return; 19498 } 19499 } 19500 19501 /* Handle the basic abort sequence (BA_ABTS) event */ 19502 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19503 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19504 return; 19505 } 19506 19507 /* Link this frame */ 19508 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19509 if (!seq_dmabuf) { 19510 /* unable to add frame to vport - throw it out */ 19511 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19512 return; 19513 } 19514 /* If not last frame in sequence continue processing frames. */ 19515 if (!lpfc_seq_complete(seq_dmabuf)) 19516 return; 19517 19518 /* Send the complete sequence to the upper layer protocol */ 19519 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19520 } 19521 19522 /** 19523 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19524 * @phba: pointer to lpfc hba data structure. 19525 * 19526 * This routine is invoked to post rpi header templates to the 19527 * HBA consistent with the SLI-4 interface spec. This routine 19528 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19529 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19530 * 19531 * This routine does not require any locks. It's usage is expected 19532 * to be driver load or reset recovery when the driver is 19533 * sequential. 19534 * 19535 * Return codes 19536 * 0 - successful 19537 * -EIO - The mailbox failed to complete successfully. 19538 * When this error occurs, the driver is not guaranteed 19539 * to have any rpi regions posted to the device and 19540 * must either attempt to repost the regions or take a 19541 * fatal error. 19542 **/ 19543 int 19544 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19545 { 19546 struct lpfc_rpi_hdr *rpi_page; 19547 uint32_t rc = 0; 19548 uint16_t lrpi = 0; 19549 19550 /* SLI4 ports that support extents do not require RPI headers. */ 19551 if (!phba->sli4_hba.rpi_hdrs_in_use) 19552 goto exit; 19553 if (phba->sli4_hba.extents_in_use) 19554 return -EIO; 19555 19556 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19557 /* 19558 * Assign the rpi headers a physical rpi only if the driver 19559 * has not initialized those resources. A port reset only 19560 * needs the headers posted. 19561 */ 19562 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19563 LPFC_RPI_RSRC_RDY) 19564 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19565 19566 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19567 if (rc != MBX_SUCCESS) { 19568 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19569 "2008 Error %d posting all rpi " 19570 "headers\n", rc); 19571 rc = -EIO; 19572 break; 19573 } 19574 } 19575 19576 exit: 19577 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19578 LPFC_RPI_RSRC_RDY); 19579 return rc; 19580 } 19581 19582 /** 19583 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19584 * @phba: pointer to lpfc hba data structure. 19585 * @rpi_page: pointer to the rpi memory region. 19586 * 19587 * This routine is invoked to post a single rpi header to the 19588 * HBA consistent with the SLI-4 interface spec. This memory region 19589 * maps up to 64 rpi context regions. 19590 * 19591 * Return codes 19592 * 0 - successful 19593 * -ENOMEM - No available memory 19594 * -EIO - The mailbox failed to complete successfully. 19595 **/ 19596 int 19597 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19598 { 19599 LPFC_MBOXQ_t *mboxq; 19600 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19601 uint32_t rc = 0; 19602 uint32_t shdr_status, shdr_add_status; 19603 union lpfc_sli4_cfg_shdr *shdr; 19604 19605 /* SLI4 ports that support extents do not require RPI headers. */ 19606 if (!phba->sli4_hba.rpi_hdrs_in_use) 19607 return rc; 19608 if (phba->sli4_hba.extents_in_use) 19609 return -EIO; 19610 19611 /* The port is notified of the header region via a mailbox command. */ 19612 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19613 if (!mboxq) { 19614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19615 "2001 Unable to allocate memory for issuing " 19616 "SLI_CONFIG_SPECIAL mailbox command\n"); 19617 return -ENOMEM; 19618 } 19619 19620 /* Post all rpi memory regions to the port. */ 19621 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19622 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19623 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19624 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19625 sizeof(struct lpfc_sli4_cfg_mhdr), 19626 LPFC_SLI4_MBX_EMBED); 19627 19628 19629 /* Post the physical rpi to the port for this rpi header. */ 19630 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19631 rpi_page->start_rpi); 19632 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19633 hdr_tmpl, rpi_page->page_count); 19634 19635 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19636 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19637 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19638 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19639 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19640 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19641 mempool_free(mboxq, phba->mbox_mem_pool); 19642 if (shdr_status || shdr_add_status || rc) { 19643 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19644 "2514 POST_RPI_HDR mailbox failed with " 19645 "status x%x add_status x%x, mbx status x%x\n", 19646 shdr_status, shdr_add_status, rc); 19647 rc = -ENXIO; 19648 } else { 19649 /* 19650 * The next_rpi stores the next logical module-64 rpi value used 19651 * to post physical rpis in subsequent rpi postings. 19652 */ 19653 spin_lock_irq(&phba->hbalock); 19654 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19655 spin_unlock_irq(&phba->hbalock); 19656 } 19657 return rc; 19658 } 19659 19660 /** 19661 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19662 * @phba: pointer to lpfc hba data structure. 19663 * 19664 * This routine is invoked to post rpi header templates to the 19665 * HBA consistent with the SLI-4 interface spec. This routine 19666 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19667 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19668 * 19669 * Returns 19670 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19671 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19672 **/ 19673 int 19674 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19675 { 19676 unsigned long rpi; 19677 uint16_t max_rpi, rpi_limit; 19678 uint16_t rpi_remaining, lrpi = 0; 19679 struct lpfc_rpi_hdr *rpi_hdr; 19680 unsigned long iflag; 19681 19682 /* 19683 * Fetch the next logical rpi. Because this index is logical, 19684 * the driver starts at 0 each time. 19685 */ 19686 spin_lock_irqsave(&phba->hbalock, iflag); 19687 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19688 rpi_limit = phba->sli4_hba.next_rpi; 19689 19690 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19691 if (rpi >= rpi_limit) 19692 rpi = LPFC_RPI_ALLOC_ERROR; 19693 else { 19694 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19695 phba->sli4_hba.max_cfg_param.rpi_used++; 19696 phba->sli4_hba.rpi_count++; 19697 } 19698 lpfc_printf_log(phba, KERN_INFO, 19699 LOG_NODE | LOG_DISCOVERY, 19700 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19701 (int) rpi, max_rpi, rpi_limit); 19702 19703 /* 19704 * Don't try to allocate more rpi header regions if the device limit 19705 * has been exhausted. 19706 */ 19707 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19708 (phba->sli4_hba.rpi_count >= max_rpi)) { 19709 spin_unlock_irqrestore(&phba->hbalock, iflag); 19710 return rpi; 19711 } 19712 19713 /* 19714 * RPI header postings are not required for SLI4 ports capable of 19715 * extents. 19716 */ 19717 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19718 spin_unlock_irqrestore(&phba->hbalock, iflag); 19719 return rpi; 19720 } 19721 19722 /* 19723 * If the driver is running low on rpi resources, allocate another 19724 * page now. Note that the next_rpi value is used because 19725 * it represents how many are actually in use whereas max_rpi notes 19726 * how many are supported max by the device. 19727 */ 19728 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19729 spin_unlock_irqrestore(&phba->hbalock, iflag); 19730 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19731 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19732 if (!rpi_hdr) { 19733 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19734 "2002 Error Could not grow rpi " 19735 "count\n"); 19736 } else { 19737 lrpi = rpi_hdr->start_rpi; 19738 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19739 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19740 } 19741 } 19742 19743 return rpi; 19744 } 19745 19746 /** 19747 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19748 * @phba: pointer to lpfc hba data structure. 19749 * @rpi: rpi to free 19750 * 19751 * This routine is invoked to release an rpi to the pool of 19752 * available rpis maintained by the driver. 19753 **/ 19754 static void 19755 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19756 { 19757 /* 19758 * if the rpi value indicates a prior unreg has already 19759 * been done, skip the unreg. 19760 */ 19761 if (rpi == LPFC_RPI_ALLOC_ERROR) 19762 return; 19763 19764 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19765 phba->sli4_hba.rpi_count--; 19766 phba->sli4_hba.max_cfg_param.rpi_used--; 19767 } else { 19768 lpfc_printf_log(phba, KERN_INFO, 19769 LOG_NODE | LOG_DISCOVERY, 19770 "2016 rpi %x not inuse\n", 19771 rpi); 19772 } 19773 } 19774 19775 /** 19776 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19777 * @phba: pointer to lpfc hba data structure. 19778 * @rpi: rpi to free 19779 * 19780 * This routine is invoked to release an rpi to the pool of 19781 * available rpis maintained by the driver. 19782 **/ 19783 void 19784 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19785 { 19786 spin_lock_irq(&phba->hbalock); 19787 __lpfc_sli4_free_rpi(phba, rpi); 19788 spin_unlock_irq(&phba->hbalock); 19789 } 19790 19791 /** 19792 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19793 * @phba: pointer to lpfc hba data structure. 19794 * 19795 * This routine is invoked to remove the memory region that 19796 * provided rpi via a bitmask. 19797 **/ 19798 void 19799 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19800 { 19801 kfree(phba->sli4_hba.rpi_bmask); 19802 kfree(phba->sli4_hba.rpi_ids); 19803 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19804 } 19805 19806 /** 19807 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19808 * @ndlp: pointer to lpfc nodelist data structure. 19809 * @cmpl: completion call-back. 19810 * @arg: data to load as MBox 'caller buffer information' 19811 * 19812 * This routine is invoked to remove the memory region that 19813 * provided rpi via a bitmask. 19814 **/ 19815 int 19816 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19817 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19818 { 19819 LPFC_MBOXQ_t *mboxq; 19820 struct lpfc_hba *phba = ndlp->phba; 19821 int rc; 19822 19823 /* The port is notified of the header region via a mailbox command. */ 19824 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19825 if (!mboxq) 19826 return -ENOMEM; 19827 19828 /* If cmpl assigned, then this nlp_get pairs with 19829 * lpfc_mbx_cmpl_resume_rpi. 19830 * 19831 * Else cmpl is NULL, then this nlp_get pairs with 19832 * lpfc_sli_def_mbox_cmpl. 19833 */ 19834 if (!lpfc_nlp_get(ndlp)) { 19835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19836 "2122 %s: Failed to get nlp ref\n", 19837 __func__); 19838 mempool_free(mboxq, phba->mbox_mem_pool); 19839 return -EIO; 19840 } 19841 19842 /* Post all rpi memory regions to the port. */ 19843 lpfc_resume_rpi(mboxq, ndlp); 19844 if (cmpl) { 19845 mboxq->mbox_cmpl = cmpl; 19846 mboxq->ctx_buf = arg; 19847 } else 19848 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19849 mboxq->ctx_ndlp = ndlp; 19850 mboxq->vport = ndlp->vport; 19851 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19852 if (rc == MBX_NOT_FINISHED) { 19853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19854 "2010 Resume RPI Mailbox failed " 19855 "status %d, mbxStatus x%x\n", rc, 19856 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19857 lpfc_nlp_put(ndlp); 19858 mempool_free(mboxq, phba->mbox_mem_pool); 19859 return -EIO; 19860 } 19861 return 0; 19862 } 19863 19864 /** 19865 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19866 * @vport: Pointer to the vport for which the vpi is being initialized 19867 * 19868 * This routine is invoked to activate a vpi with the port. 19869 * 19870 * Returns: 19871 * 0 success 19872 * -Evalue otherwise 19873 **/ 19874 int 19875 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19876 { 19877 LPFC_MBOXQ_t *mboxq; 19878 int rc = 0; 19879 int retval = MBX_SUCCESS; 19880 uint32_t mbox_tmo; 19881 struct lpfc_hba *phba = vport->phba; 19882 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19883 if (!mboxq) 19884 return -ENOMEM; 19885 lpfc_init_vpi(phba, mboxq, vport->vpi); 19886 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19887 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19888 if (rc != MBX_SUCCESS) { 19889 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19890 "2022 INIT VPI Mailbox failed " 19891 "status %d, mbxStatus x%x\n", rc, 19892 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19893 retval = -EIO; 19894 } 19895 if (rc != MBX_TIMEOUT) 19896 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19897 19898 return retval; 19899 } 19900 19901 /** 19902 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19903 * @phba: pointer to lpfc hba data structure. 19904 * @mboxq: Pointer to mailbox object. 19905 * 19906 * This routine is invoked to manually add a single FCF record. The caller 19907 * must pass a completely initialized FCF_Record. This routine takes 19908 * care of the nonembedded mailbox operations. 19909 **/ 19910 static void 19911 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19912 { 19913 void *virt_addr; 19914 union lpfc_sli4_cfg_shdr *shdr; 19915 uint32_t shdr_status, shdr_add_status; 19916 19917 virt_addr = mboxq->sge_array->addr[0]; 19918 /* The IOCTL status is embedded in the mailbox subheader. */ 19919 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19920 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19921 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19922 19923 if ((shdr_status || shdr_add_status) && 19924 (shdr_status != STATUS_FCF_IN_USE)) 19925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19926 "2558 ADD_FCF_RECORD mailbox failed with " 19927 "status x%x add_status x%x\n", 19928 shdr_status, shdr_add_status); 19929 19930 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19931 } 19932 19933 /** 19934 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19935 * @phba: pointer to lpfc hba data structure. 19936 * @fcf_record: pointer to the initialized fcf record to add. 19937 * 19938 * This routine is invoked to manually add a single FCF record. The caller 19939 * must pass a completely initialized FCF_Record. This routine takes 19940 * care of the nonembedded mailbox operations. 19941 **/ 19942 int 19943 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19944 { 19945 int rc = 0; 19946 LPFC_MBOXQ_t *mboxq; 19947 uint8_t *bytep; 19948 void *virt_addr; 19949 struct lpfc_mbx_sge sge; 19950 uint32_t alloc_len, req_len; 19951 uint32_t fcfindex; 19952 19953 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19954 if (!mboxq) { 19955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19956 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19957 return -ENOMEM; 19958 } 19959 19960 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19961 sizeof(uint32_t); 19962 19963 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19964 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19965 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19966 req_len, LPFC_SLI4_MBX_NEMBED); 19967 if (alloc_len < req_len) { 19968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19969 "2523 Allocated DMA memory size (x%x) is " 19970 "less than the requested DMA memory " 19971 "size (x%x)\n", alloc_len, req_len); 19972 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19973 return -ENOMEM; 19974 } 19975 19976 /* 19977 * Get the first SGE entry from the non-embedded DMA memory. This 19978 * routine only uses a single SGE. 19979 */ 19980 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19981 virt_addr = mboxq->sge_array->addr[0]; 19982 /* 19983 * Configure the FCF record for FCFI 0. This is the driver's 19984 * hardcoded default and gets used in nonFIP mode. 19985 */ 19986 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19987 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19988 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19989 19990 /* 19991 * Copy the fcf_index and the FCF Record Data. The data starts after 19992 * the FCoE header plus word10. The data copy needs to be endian 19993 * correct. 19994 */ 19995 bytep += sizeof(uint32_t); 19996 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19997 mboxq->vport = phba->pport; 19998 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20000 if (rc == MBX_NOT_FINISHED) { 20001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20002 "2515 ADD_FCF_RECORD mailbox failed with " 20003 "status 0x%x\n", rc); 20004 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20005 rc = -EIO; 20006 } else 20007 rc = 0; 20008 20009 return rc; 20010 } 20011 20012 /** 20013 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20014 * @phba: pointer to lpfc hba data structure. 20015 * @fcf_record: pointer to the fcf record to write the default data. 20016 * @fcf_index: FCF table entry index. 20017 * 20018 * This routine is invoked to build the driver's default FCF record. The 20019 * values used are hardcoded. This routine handles memory initialization. 20020 * 20021 **/ 20022 void 20023 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20024 struct fcf_record *fcf_record, 20025 uint16_t fcf_index) 20026 { 20027 memset(fcf_record, 0, sizeof(struct fcf_record)); 20028 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20029 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20030 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20031 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20032 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20033 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20034 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20035 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20036 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20037 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20038 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20039 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20040 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20041 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20042 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20043 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20044 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20045 /* Set the VLAN bit map */ 20046 if (phba->valid_vlan) { 20047 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20048 = 1 << (phba->vlan_id % 8); 20049 } 20050 } 20051 20052 /** 20053 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20054 * @phba: pointer to lpfc hba data structure. 20055 * @fcf_index: FCF table entry offset. 20056 * 20057 * This routine is invoked to scan the entire FCF table by reading FCF 20058 * record and processing it one at a time starting from the @fcf_index 20059 * for initial FCF discovery or fast FCF failover rediscovery. 20060 * 20061 * Return 0 if the mailbox command is submitted successfully, none 0 20062 * otherwise. 20063 **/ 20064 int 20065 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20066 { 20067 int rc = 0, error; 20068 LPFC_MBOXQ_t *mboxq; 20069 20070 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20071 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20072 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20073 if (!mboxq) { 20074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20075 "2000 Failed to allocate mbox for " 20076 "READ_FCF cmd\n"); 20077 error = -ENOMEM; 20078 goto fail_fcf_scan; 20079 } 20080 /* Construct the read FCF record mailbox command */ 20081 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20082 if (rc) { 20083 error = -EINVAL; 20084 goto fail_fcf_scan; 20085 } 20086 /* Issue the mailbox command asynchronously */ 20087 mboxq->vport = phba->pport; 20088 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20089 20090 spin_lock_irq(&phba->hbalock); 20091 phba->hba_flag |= FCF_TS_INPROG; 20092 spin_unlock_irq(&phba->hbalock); 20093 20094 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20095 if (rc == MBX_NOT_FINISHED) 20096 error = -EIO; 20097 else { 20098 /* Reset eligible FCF count for new scan */ 20099 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20100 phba->fcf.eligible_fcf_cnt = 0; 20101 error = 0; 20102 } 20103 fail_fcf_scan: 20104 if (error) { 20105 if (mboxq) 20106 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20107 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20108 spin_lock_irq(&phba->hbalock); 20109 phba->hba_flag &= ~FCF_TS_INPROG; 20110 spin_unlock_irq(&phba->hbalock); 20111 } 20112 return error; 20113 } 20114 20115 /** 20116 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20117 * @phba: pointer to lpfc hba data structure. 20118 * @fcf_index: FCF table entry offset. 20119 * 20120 * This routine is invoked to read an FCF record indicated by @fcf_index 20121 * and to use it for FLOGI roundrobin FCF failover. 20122 * 20123 * Return 0 if the mailbox command is submitted successfully, none 0 20124 * otherwise. 20125 **/ 20126 int 20127 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20128 { 20129 int rc = 0, error; 20130 LPFC_MBOXQ_t *mboxq; 20131 20132 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20133 if (!mboxq) { 20134 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20135 "2763 Failed to allocate mbox for " 20136 "READ_FCF cmd\n"); 20137 error = -ENOMEM; 20138 goto fail_fcf_read; 20139 } 20140 /* Construct the read FCF record mailbox command */ 20141 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20142 if (rc) { 20143 error = -EINVAL; 20144 goto fail_fcf_read; 20145 } 20146 /* Issue the mailbox command asynchronously */ 20147 mboxq->vport = phba->pport; 20148 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20149 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20150 if (rc == MBX_NOT_FINISHED) 20151 error = -EIO; 20152 else 20153 error = 0; 20154 20155 fail_fcf_read: 20156 if (error && mboxq) 20157 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20158 return error; 20159 } 20160 20161 /** 20162 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20163 * @phba: pointer to lpfc hba data structure. 20164 * @fcf_index: FCF table entry offset. 20165 * 20166 * This routine is invoked to read an FCF record indicated by @fcf_index to 20167 * determine whether it's eligible for FLOGI roundrobin failover list. 20168 * 20169 * Return 0 if the mailbox command is submitted successfully, none 0 20170 * otherwise. 20171 **/ 20172 int 20173 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20174 { 20175 int rc = 0, error; 20176 LPFC_MBOXQ_t *mboxq; 20177 20178 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20179 if (!mboxq) { 20180 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20181 "2758 Failed to allocate mbox for " 20182 "READ_FCF cmd\n"); 20183 error = -ENOMEM; 20184 goto fail_fcf_read; 20185 } 20186 /* Construct the read FCF record mailbox command */ 20187 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20188 if (rc) { 20189 error = -EINVAL; 20190 goto fail_fcf_read; 20191 } 20192 /* Issue the mailbox command asynchronously */ 20193 mboxq->vport = phba->pport; 20194 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20195 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20196 if (rc == MBX_NOT_FINISHED) 20197 error = -EIO; 20198 else 20199 error = 0; 20200 20201 fail_fcf_read: 20202 if (error && mboxq) 20203 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20204 return error; 20205 } 20206 20207 /** 20208 * lpfc_check_next_fcf_pri_level 20209 * @phba: pointer to the lpfc_hba struct for this port. 20210 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20211 * routine when the rr_bmask is empty. The FCF indecies are put into the 20212 * rr_bmask based on their priority level. Starting from the highest priority 20213 * to the lowest. The most likely FCF candidate will be in the highest 20214 * priority group. When this routine is called it searches the fcf_pri list for 20215 * next lowest priority group and repopulates the rr_bmask with only those 20216 * fcf_indexes. 20217 * returns: 20218 * 1=success 0=failure 20219 **/ 20220 static int 20221 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20222 { 20223 uint16_t next_fcf_pri; 20224 uint16_t last_index; 20225 struct lpfc_fcf_pri *fcf_pri; 20226 int rc; 20227 int ret = 0; 20228 20229 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20230 LPFC_SLI4_FCF_TBL_INDX_MAX); 20231 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20232 "3060 Last IDX %d\n", last_index); 20233 20234 /* Verify the priority list has 2 or more entries */ 20235 spin_lock_irq(&phba->hbalock); 20236 if (list_empty(&phba->fcf.fcf_pri_list) || 20237 list_is_singular(&phba->fcf.fcf_pri_list)) { 20238 spin_unlock_irq(&phba->hbalock); 20239 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20240 "3061 Last IDX %d\n", last_index); 20241 return 0; /* Empty rr list */ 20242 } 20243 spin_unlock_irq(&phba->hbalock); 20244 20245 next_fcf_pri = 0; 20246 /* 20247 * Clear the rr_bmask and set all of the bits that are at this 20248 * priority. 20249 */ 20250 memset(phba->fcf.fcf_rr_bmask, 0, 20251 sizeof(*phba->fcf.fcf_rr_bmask)); 20252 spin_lock_irq(&phba->hbalock); 20253 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20254 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20255 continue; 20256 /* 20257 * the 1st priority that has not FLOGI failed 20258 * will be the highest. 20259 */ 20260 if (!next_fcf_pri) 20261 next_fcf_pri = fcf_pri->fcf_rec.priority; 20262 spin_unlock_irq(&phba->hbalock); 20263 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20264 rc = lpfc_sli4_fcf_rr_index_set(phba, 20265 fcf_pri->fcf_rec.fcf_index); 20266 if (rc) 20267 return 0; 20268 } 20269 spin_lock_irq(&phba->hbalock); 20270 } 20271 /* 20272 * if next_fcf_pri was not set above and the list is not empty then 20273 * we have failed flogis on all of them. So reset flogi failed 20274 * and start at the beginning. 20275 */ 20276 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20277 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20278 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20279 /* 20280 * the 1st priority that has not FLOGI failed 20281 * will be the highest. 20282 */ 20283 if (!next_fcf_pri) 20284 next_fcf_pri = fcf_pri->fcf_rec.priority; 20285 spin_unlock_irq(&phba->hbalock); 20286 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20287 rc = lpfc_sli4_fcf_rr_index_set(phba, 20288 fcf_pri->fcf_rec.fcf_index); 20289 if (rc) 20290 return 0; 20291 } 20292 spin_lock_irq(&phba->hbalock); 20293 } 20294 } else 20295 ret = 1; 20296 spin_unlock_irq(&phba->hbalock); 20297 20298 return ret; 20299 } 20300 /** 20301 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20302 * @phba: pointer to lpfc hba data structure. 20303 * 20304 * This routine is to get the next eligible FCF record index in a round 20305 * robin fashion. If the next eligible FCF record index equals to the 20306 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20307 * shall be returned, otherwise, the next eligible FCF record's index 20308 * shall be returned. 20309 **/ 20310 uint16_t 20311 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20312 { 20313 uint16_t next_fcf_index; 20314 20315 initial_priority: 20316 /* Search start from next bit of currently registered FCF index */ 20317 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20318 20319 next_priority: 20320 /* Determine the next fcf index to check */ 20321 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20322 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20323 LPFC_SLI4_FCF_TBL_INDX_MAX, 20324 next_fcf_index); 20325 20326 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20327 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20328 /* 20329 * If we have wrapped then we need to clear the bits that 20330 * have been tested so that we can detect when we should 20331 * change the priority level. 20332 */ 20333 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20334 LPFC_SLI4_FCF_TBL_INDX_MAX); 20335 } 20336 20337 20338 /* Check roundrobin failover list empty condition */ 20339 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20340 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20341 /* 20342 * If next fcf index is not found check if there are lower 20343 * Priority level fcf's in the fcf_priority list. 20344 * Set up the rr_bmask with all of the avaiable fcf bits 20345 * at that level and continue the selection process. 20346 */ 20347 if (lpfc_check_next_fcf_pri_level(phba)) 20348 goto initial_priority; 20349 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20350 "2844 No roundrobin failover FCF available\n"); 20351 20352 return LPFC_FCOE_FCF_NEXT_NONE; 20353 } 20354 20355 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20356 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20357 LPFC_FCF_FLOGI_FAILED) { 20358 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20359 return LPFC_FCOE_FCF_NEXT_NONE; 20360 20361 goto next_priority; 20362 } 20363 20364 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20365 "2845 Get next roundrobin failover FCF (x%x)\n", 20366 next_fcf_index); 20367 20368 return next_fcf_index; 20369 } 20370 20371 /** 20372 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20373 * @phba: pointer to lpfc hba data structure. 20374 * @fcf_index: index into the FCF table to 'set' 20375 * 20376 * This routine sets the FCF record index in to the eligible bmask for 20377 * roundrobin failover search. It checks to make sure that the index 20378 * does not go beyond the range of the driver allocated bmask dimension 20379 * before setting the bit. 20380 * 20381 * Returns 0 if the index bit successfully set, otherwise, it returns 20382 * -EINVAL. 20383 **/ 20384 int 20385 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20386 { 20387 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20388 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20389 "2610 FCF (x%x) reached driver's book " 20390 "keeping dimension:x%x\n", 20391 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20392 return -EINVAL; 20393 } 20394 /* Set the eligible FCF record index bmask */ 20395 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20396 20397 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20398 "2790 Set FCF (x%x) to roundrobin FCF failover " 20399 "bmask\n", fcf_index); 20400 20401 return 0; 20402 } 20403 20404 /** 20405 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20406 * @phba: pointer to lpfc hba data structure. 20407 * @fcf_index: index into the FCF table to 'clear' 20408 * 20409 * This routine clears the FCF record index from the eligible bmask for 20410 * roundrobin failover search. It checks to make sure that the index 20411 * does not go beyond the range of the driver allocated bmask dimension 20412 * before clearing the bit. 20413 **/ 20414 void 20415 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20416 { 20417 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20418 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20419 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20420 "2762 FCF (x%x) reached driver's book " 20421 "keeping dimension:x%x\n", 20422 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20423 return; 20424 } 20425 /* Clear the eligible FCF record index bmask */ 20426 spin_lock_irq(&phba->hbalock); 20427 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20428 list) { 20429 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20430 list_del_init(&fcf_pri->list); 20431 break; 20432 } 20433 } 20434 spin_unlock_irq(&phba->hbalock); 20435 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20436 20437 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20438 "2791 Clear FCF (x%x) from roundrobin failover " 20439 "bmask\n", fcf_index); 20440 } 20441 20442 /** 20443 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20444 * @phba: pointer to lpfc hba data structure. 20445 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20446 * 20447 * This routine is the completion routine for the rediscover FCF table mailbox 20448 * command. If the mailbox command returned failure, it will try to stop the 20449 * FCF rediscover wait timer. 20450 **/ 20451 static void 20452 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20453 { 20454 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20455 uint32_t shdr_status, shdr_add_status; 20456 20457 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20458 20459 shdr_status = bf_get(lpfc_mbox_hdr_status, 20460 &redisc_fcf->header.cfg_shdr.response); 20461 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20462 &redisc_fcf->header.cfg_shdr.response); 20463 if (shdr_status || shdr_add_status) { 20464 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20465 "2746 Requesting for FCF rediscovery failed " 20466 "status x%x add_status x%x\n", 20467 shdr_status, shdr_add_status); 20468 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20469 spin_lock_irq(&phba->hbalock); 20470 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20471 spin_unlock_irq(&phba->hbalock); 20472 /* 20473 * CVL event triggered FCF rediscover request failed, 20474 * last resort to re-try current registered FCF entry. 20475 */ 20476 lpfc_retry_pport_discovery(phba); 20477 } else { 20478 spin_lock_irq(&phba->hbalock); 20479 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20480 spin_unlock_irq(&phba->hbalock); 20481 /* 20482 * DEAD FCF event triggered FCF rediscover request 20483 * failed, last resort to fail over as a link down 20484 * to FCF registration. 20485 */ 20486 lpfc_sli4_fcf_dead_failthrough(phba); 20487 } 20488 } else { 20489 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20490 "2775 Start FCF rediscover quiescent timer\n"); 20491 /* 20492 * Start FCF rediscovery wait timer for pending FCF 20493 * before rescan FCF record table. 20494 */ 20495 lpfc_fcf_redisc_wait_start_timer(phba); 20496 } 20497 20498 mempool_free(mbox, phba->mbox_mem_pool); 20499 } 20500 20501 /** 20502 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20503 * @phba: pointer to lpfc hba data structure. 20504 * 20505 * This routine is invoked to request for rediscovery of the entire FCF table 20506 * by the port. 20507 **/ 20508 int 20509 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20510 { 20511 LPFC_MBOXQ_t *mbox; 20512 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20513 int rc, length; 20514 20515 /* Cancel retry delay timers to all vports before FCF rediscover */ 20516 lpfc_cancel_all_vport_retry_delay_timer(phba); 20517 20518 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20519 if (!mbox) { 20520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20521 "2745 Failed to allocate mbox for " 20522 "requesting FCF rediscover.\n"); 20523 return -ENOMEM; 20524 } 20525 20526 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20527 sizeof(struct lpfc_sli4_cfg_mhdr)); 20528 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20529 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20530 length, LPFC_SLI4_MBX_EMBED); 20531 20532 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20533 /* Set count to 0 for invalidating the entire FCF database */ 20534 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20535 20536 /* Issue the mailbox command asynchronously */ 20537 mbox->vport = phba->pport; 20538 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20539 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20540 20541 if (rc == MBX_NOT_FINISHED) { 20542 mempool_free(mbox, phba->mbox_mem_pool); 20543 return -EIO; 20544 } 20545 return 0; 20546 } 20547 20548 /** 20549 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20550 * @phba: pointer to lpfc hba data structure. 20551 * 20552 * This function is the failover routine as a last resort to the FCF DEAD 20553 * event when driver failed to perform fast FCF failover. 20554 **/ 20555 void 20556 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20557 { 20558 uint32_t link_state; 20559 20560 /* 20561 * Last resort as FCF DEAD event failover will treat this as 20562 * a link down, but save the link state because we don't want 20563 * it to be changed to Link Down unless it is already down. 20564 */ 20565 link_state = phba->link_state; 20566 lpfc_linkdown(phba); 20567 phba->link_state = link_state; 20568 20569 /* Unregister FCF if no devices connected to it */ 20570 lpfc_unregister_unused_fcf(phba); 20571 } 20572 20573 /** 20574 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20575 * @phba: pointer to lpfc hba data structure. 20576 * @rgn23_data: pointer to configure region 23 data. 20577 * 20578 * This function gets SLI3 port configure region 23 data through memory dump 20579 * mailbox command. When it successfully retrieves data, the size of the data 20580 * will be returned, otherwise, 0 will be returned. 20581 **/ 20582 static uint32_t 20583 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20584 { 20585 LPFC_MBOXQ_t *pmb = NULL; 20586 MAILBOX_t *mb; 20587 uint32_t offset = 0; 20588 int rc; 20589 20590 if (!rgn23_data) 20591 return 0; 20592 20593 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20594 if (!pmb) { 20595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20596 "2600 failed to allocate mailbox memory\n"); 20597 return 0; 20598 } 20599 mb = &pmb->u.mb; 20600 20601 do { 20602 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20603 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20604 20605 if (rc != MBX_SUCCESS) { 20606 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20607 "2601 failed to read config " 20608 "region 23, rc 0x%x Status 0x%x\n", 20609 rc, mb->mbxStatus); 20610 mb->un.varDmp.word_cnt = 0; 20611 } 20612 /* 20613 * dump mem may return a zero when finished or we got a 20614 * mailbox error, either way we are done. 20615 */ 20616 if (mb->un.varDmp.word_cnt == 0) 20617 break; 20618 20619 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20620 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20621 20622 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20623 rgn23_data + offset, 20624 mb->un.varDmp.word_cnt); 20625 offset += mb->un.varDmp.word_cnt; 20626 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20627 20628 mempool_free(pmb, phba->mbox_mem_pool); 20629 return offset; 20630 } 20631 20632 /** 20633 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20634 * @phba: pointer to lpfc hba data structure. 20635 * @rgn23_data: pointer to configure region 23 data. 20636 * 20637 * This function gets SLI4 port configure region 23 data through memory dump 20638 * mailbox command. When it successfully retrieves data, the size of the data 20639 * will be returned, otherwise, 0 will be returned. 20640 **/ 20641 static uint32_t 20642 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20643 { 20644 LPFC_MBOXQ_t *mboxq = NULL; 20645 struct lpfc_dmabuf *mp = NULL; 20646 struct lpfc_mqe *mqe; 20647 uint32_t data_length = 0; 20648 int rc; 20649 20650 if (!rgn23_data) 20651 return 0; 20652 20653 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20654 if (!mboxq) { 20655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20656 "3105 failed to allocate mailbox memory\n"); 20657 return 0; 20658 } 20659 20660 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20661 goto out; 20662 mqe = &mboxq->u.mqe; 20663 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20665 if (rc) 20666 goto out; 20667 data_length = mqe->un.mb_words[5]; 20668 if (data_length == 0) 20669 goto out; 20670 if (data_length > DMP_RGN23_SIZE) { 20671 data_length = 0; 20672 goto out; 20673 } 20674 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20675 out: 20676 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20677 return data_length; 20678 } 20679 20680 /** 20681 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20682 * @phba: pointer to lpfc hba data structure. 20683 * 20684 * This function read region 23 and parse TLV for port status to 20685 * decide if the user disaled the port. If the TLV indicates the 20686 * port is disabled, the hba_flag is set accordingly. 20687 **/ 20688 void 20689 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20690 { 20691 uint8_t *rgn23_data = NULL; 20692 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20693 uint32_t offset = 0; 20694 20695 /* Get adapter Region 23 data */ 20696 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20697 if (!rgn23_data) 20698 goto out; 20699 20700 if (phba->sli_rev < LPFC_SLI_REV4) 20701 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20702 else { 20703 if_type = bf_get(lpfc_sli_intf_if_type, 20704 &phba->sli4_hba.sli_intf); 20705 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20706 goto out; 20707 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20708 } 20709 20710 if (!data_size) 20711 goto out; 20712 20713 /* Check the region signature first */ 20714 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20716 "2619 Config region 23 has bad signature\n"); 20717 goto out; 20718 } 20719 offset += 4; 20720 20721 /* Check the data structure version */ 20722 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20724 "2620 Config region 23 has bad version\n"); 20725 goto out; 20726 } 20727 offset += 4; 20728 20729 /* Parse TLV entries in the region */ 20730 while (offset < data_size) { 20731 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20732 break; 20733 /* 20734 * If the TLV is not driver specific TLV or driver id is 20735 * not linux driver id, skip the record. 20736 */ 20737 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20738 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20739 (rgn23_data[offset + 3] != 0)) { 20740 offset += rgn23_data[offset + 1] * 4 + 4; 20741 continue; 20742 } 20743 20744 /* Driver found a driver specific TLV in the config region */ 20745 sub_tlv_len = rgn23_data[offset + 1] * 4; 20746 offset += 4; 20747 tlv_offset = 0; 20748 20749 /* 20750 * Search for configured port state sub-TLV. 20751 */ 20752 while ((offset < data_size) && 20753 (tlv_offset < sub_tlv_len)) { 20754 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20755 offset += 4; 20756 tlv_offset += 4; 20757 break; 20758 } 20759 if (rgn23_data[offset] != PORT_STE_TYPE) { 20760 offset += rgn23_data[offset + 1] * 4 + 4; 20761 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20762 continue; 20763 } 20764 20765 /* This HBA contains PORT_STE configured */ 20766 if (!rgn23_data[offset + 2]) 20767 phba->hba_flag |= LINK_DISABLED; 20768 20769 goto out; 20770 } 20771 } 20772 20773 out: 20774 kfree(rgn23_data); 20775 return; 20776 } 20777 20778 /** 20779 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20780 * @phba: pointer to lpfc hba data structure 20781 * @shdr_status: wr_object rsp's status field 20782 * @shdr_add_status: wr_object rsp's add_status field 20783 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20784 * @shdr_change_status: wr_object rsp's change_status field 20785 * @shdr_csf: wr_object rsp's csf bit 20786 * 20787 * This routine is intended to be called after a firmware write completes. 20788 * It will log next action items to be performed by the user to instantiate 20789 * the newly downloaded firmware or reason for incompatibility. 20790 **/ 20791 static void 20792 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20793 u32 shdr_add_status, u32 shdr_add_status_2, 20794 u32 shdr_change_status, u32 shdr_csf) 20795 { 20796 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20797 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20798 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20799 "change_status x%02x, csf %01x\n", __func__, 20800 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20801 shdr_status, shdr_add_status, shdr_add_status_2, 20802 shdr_change_status, shdr_csf); 20803 20804 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20805 switch (shdr_add_status_2) { 20806 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20807 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20808 "4199 Firmware write failed: " 20809 "image incompatible with flash x%02x\n", 20810 phba->sli4_hba.flash_id); 20811 break; 20812 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20813 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20814 "4200 Firmware write failed: " 20815 "image incompatible with ASIC " 20816 "architecture x%02x\n", 20817 phba->sli4_hba.asic_rev); 20818 break; 20819 default: 20820 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20821 "4210 Firmware write failed: " 20822 "add_status_2 x%02x\n", 20823 shdr_add_status_2); 20824 break; 20825 } 20826 } else if (!shdr_status && !shdr_add_status) { 20827 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20828 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20829 if (shdr_csf) 20830 shdr_change_status = 20831 LPFC_CHANGE_STATUS_PCI_RESET; 20832 } 20833 20834 switch (shdr_change_status) { 20835 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20836 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20837 "3198 Firmware write complete: System " 20838 "reboot required to instantiate\n"); 20839 break; 20840 case (LPFC_CHANGE_STATUS_FW_RESET): 20841 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20842 "3199 Firmware write complete: " 20843 "Firmware reset required to " 20844 "instantiate\n"); 20845 break; 20846 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20847 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20848 "3200 Firmware write complete: Port " 20849 "Migration or PCI Reset required to " 20850 "instantiate\n"); 20851 break; 20852 case (LPFC_CHANGE_STATUS_PCI_RESET): 20853 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20854 "3201 Firmware write complete: PCI " 20855 "Reset required to instantiate\n"); 20856 break; 20857 default: 20858 break; 20859 } 20860 } 20861 } 20862 20863 /** 20864 * lpfc_wr_object - write an object to the firmware 20865 * @phba: HBA structure that indicates port to create a queue on. 20866 * @dmabuf_list: list of dmabufs to write to the port. 20867 * @size: the total byte value of the objects to write to the port. 20868 * @offset: the current offset to be used to start the transfer. 20869 * 20870 * This routine will create a wr_object mailbox command to send to the port. 20871 * the mailbox command will be constructed using the dma buffers described in 20872 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20873 * BDEs that the imbedded mailbox can support. The @offset variable will be 20874 * used to indicate the starting offset of the transfer and will also return 20875 * the offset after the write object mailbox has completed. @size is used to 20876 * determine the end of the object and whether the eof bit should be set. 20877 * 20878 * Return 0 is successful and offset will contain the new offset to use 20879 * for the next write. 20880 * Return negative value for error cases. 20881 **/ 20882 int 20883 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20884 uint32_t size, uint32_t *offset) 20885 { 20886 struct lpfc_mbx_wr_object *wr_object; 20887 LPFC_MBOXQ_t *mbox; 20888 int rc = 0, i = 0; 20889 int mbox_status = 0; 20890 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20891 uint32_t shdr_change_status = 0, shdr_csf = 0; 20892 uint32_t mbox_tmo; 20893 struct lpfc_dmabuf *dmabuf; 20894 uint32_t written = 0; 20895 bool check_change_status = false; 20896 20897 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20898 if (!mbox) 20899 return -ENOMEM; 20900 20901 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20902 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20903 sizeof(struct lpfc_mbx_wr_object) - 20904 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20905 20906 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20907 wr_object->u.request.write_offset = *offset; 20908 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20909 wr_object->u.request.object_name[0] = 20910 cpu_to_le32(wr_object->u.request.object_name[0]); 20911 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20912 list_for_each_entry(dmabuf, dmabuf_list, list) { 20913 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20914 break; 20915 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20916 wr_object->u.request.bde[i].addrHigh = 20917 putPaddrHigh(dmabuf->phys); 20918 if (written + SLI4_PAGE_SIZE >= size) { 20919 wr_object->u.request.bde[i].tus.f.bdeSize = 20920 (size - written); 20921 written += (size - written); 20922 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20923 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20924 check_change_status = true; 20925 } else { 20926 wr_object->u.request.bde[i].tus.f.bdeSize = 20927 SLI4_PAGE_SIZE; 20928 written += SLI4_PAGE_SIZE; 20929 } 20930 i++; 20931 } 20932 wr_object->u.request.bde_count = i; 20933 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20934 if (!phba->sli4_hba.intr_enable) 20935 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20936 else { 20937 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20938 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20939 } 20940 20941 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20942 rc = mbox_status; 20943 20944 /* The IOCTL status is embedded in the mailbox subheader. */ 20945 shdr_status = bf_get(lpfc_mbox_hdr_status, 20946 &wr_object->header.cfg_shdr.response); 20947 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20948 &wr_object->header.cfg_shdr.response); 20949 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20950 &wr_object->header.cfg_shdr.response); 20951 if (check_change_status) { 20952 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20953 &wr_object->u.response); 20954 shdr_csf = bf_get(lpfc_wr_object_csf, 20955 &wr_object->u.response); 20956 } 20957 20958 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20960 "3025 Write Object mailbox failed with " 20961 "status x%x add_status x%x, add_status_2 x%x, " 20962 "mbx status x%x\n", 20963 shdr_status, shdr_add_status, shdr_add_status_2, 20964 rc); 20965 rc = -ENXIO; 20966 *offset = shdr_add_status; 20967 } else { 20968 *offset += wr_object->u.response.actual_write_length; 20969 } 20970 20971 if (rc || check_change_status) 20972 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20973 shdr_add_status_2, shdr_change_status, 20974 shdr_csf); 20975 20976 if (!phba->sli4_hba.intr_enable) 20977 mempool_free(mbox, phba->mbox_mem_pool); 20978 else if (mbox_status != MBX_TIMEOUT) 20979 mempool_free(mbox, phba->mbox_mem_pool); 20980 20981 return rc; 20982 } 20983 20984 /** 20985 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20986 * @vport: pointer to vport data structure. 20987 * 20988 * This function iterate through the mailboxq and clean up all REG_LOGIN 20989 * and REG_VPI mailbox commands associated with the vport. This function 20990 * is called when driver want to restart discovery of the vport due to 20991 * a Clear Virtual Link event. 20992 **/ 20993 void 20994 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20995 { 20996 struct lpfc_hba *phba = vport->phba; 20997 LPFC_MBOXQ_t *mb, *nextmb; 20998 struct lpfc_nodelist *ndlp; 20999 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21000 LIST_HEAD(mbox_cmd_list); 21001 uint8_t restart_loop; 21002 21003 /* Clean up internally queued mailbox commands with the vport */ 21004 spin_lock_irq(&phba->hbalock); 21005 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21006 if (mb->vport != vport) 21007 continue; 21008 21009 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21010 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21011 continue; 21012 21013 list_move_tail(&mb->list, &mbox_cmd_list); 21014 } 21015 /* Clean up active mailbox command with the vport */ 21016 mb = phba->sli.mbox_active; 21017 if (mb && (mb->vport == vport)) { 21018 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21019 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21020 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21021 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21022 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21023 21024 /* This reference is local to this routine. The 21025 * reference is removed at routine exit. 21026 */ 21027 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21028 21029 /* Unregister the RPI when mailbox complete */ 21030 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21031 } 21032 } 21033 /* Cleanup any mailbox completions which are not yet processed */ 21034 do { 21035 restart_loop = 0; 21036 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21037 /* 21038 * If this mailox is already processed or it is 21039 * for another vport ignore it. 21040 */ 21041 if ((mb->vport != vport) || 21042 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21043 continue; 21044 21045 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21046 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21047 continue; 21048 21049 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21050 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21051 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21052 /* Unregister the RPI when mailbox complete */ 21053 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21054 restart_loop = 1; 21055 spin_unlock_irq(&phba->hbalock); 21056 spin_lock(&ndlp->lock); 21057 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21058 spin_unlock(&ndlp->lock); 21059 spin_lock_irq(&phba->hbalock); 21060 break; 21061 } 21062 } 21063 } while (restart_loop); 21064 21065 spin_unlock_irq(&phba->hbalock); 21066 21067 /* Release the cleaned-up mailbox commands */ 21068 while (!list_empty(&mbox_cmd_list)) { 21069 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21070 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21071 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21072 mb->ctx_ndlp = NULL; 21073 if (ndlp) { 21074 spin_lock(&ndlp->lock); 21075 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21076 spin_unlock(&ndlp->lock); 21077 lpfc_nlp_put(ndlp); 21078 } 21079 } 21080 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21081 } 21082 21083 /* Release the ndlp with the cleaned-up active mailbox command */ 21084 if (act_mbx_ndlp) { 21085 spin_lock(&act_mbx_ndlp->lock); 21086 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21087 spin_unlock(&act_mbx_ndlp->lock); 21088 lpfc_nlp_put(act_mbx_ndlp); 21089 } 21090 } 21091 21092 /** 21093 * lpfc_drain_txq - Drain the txq 21094 * @phba: Pointer to HBA context object. 21095 * 21096 * This function attempt to submit IOCBs on the txq 21097 * to the adapter. For SLI4 adapters, the txq contains 21098 * ELS IOCBs that have been deferred because the there 21099 * are no SGLs. This congestion can occur with large 21100 * vport counts during node discovery. 21101 **/ 21102 21103 uint32_t 21104 lpfc_drain_txq(struct lpfc_hba *phba) 21105 { 21106 LIST_HEAD(completions); 21107 struct lpfc_sli_ring *pring; 21108 struct lpfc_iocbq *piocbq = NULL; 21109 unsigned long iflags = 0; 21110 char *fail_msg = NULL; 21111 uint32_t txq_cnt = 0; 21112 struct lpfc_queue *wq; 21113 int ret = 0; 21114 21115 if (phba->link_flag & LS_MDS_LOOPBACK) { 21116 /* MDS WQE are posted only to first WQ*/ 21117 wq = phba->sli4_hba.hdwq[0].io_wq; 21118 if (unlikely(!wq)) 21119 return 0; 21120 pring = wq->pring; 21121 } else { 21122 wq = phba->sli4_hba.els_wq; 21123 if (unlikely(!wq)) 21124 return 0; 21125 pring = lpfc_phba_elsring(phba); 21126 } 21127 21128 if (unlikely(!pring) || list_empty(&pring->txq)) 21129 return 0; 21130 21131 spin_lock_irqsave(&pring->ring_lock, iflags); 21132 list_for_each_entry(piocbq, &pring->txq, list) { 21133 txq_cnt++; 21134 } 21135 21136 if (txq_cnt > pring->txq_max) 21137 pring->txq_max = txq_cnt; 21138 21139 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21140 21141 while (!list_empty(&pring->txq)) { 21142 spin_lock_irqsave(&pring->ring_lock, iflags); 21143 21144 piocbq = lpfc_sli_ringtx_get(phba, pring); 21145 if (!piocbq) { 21146 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21148 "2823 txq empty and txq_cnt is %d\n ", 21149 txq_cnt); 21150 break; 21151 } 21152 txq_cnt--; 21153 21154 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21155 21156 if (ret && ret != IOCB_BUSY) { 21157 fail_msg = " - Cannot send IO "; 21158 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21159 } 21160 if (fail_msg) { 21161 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21162 /* Failed means we can't issue and need to cancel */ 21163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21164 "2822 IOCB failed %s iotag 0x%x " 21165 "xri 0x%x %d flg x%x\n", 21166 fail_msg, piocbq->iotag, 21167 piocbq->sli4_xritag, ret, 21168 piocbq->cmd_flag); 21169 list_add_tail(&piocbq->list, &completions); 21170 fail_msg = NULL; 21171 } 21172 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21173 if (txq_cnt == 0 || ret == IOCB_BUSY) 21174 break; 21175 } 21176 /* Cancel all the IOCBs that cannot be issued */ 21177 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21178 IOERR_SLI_ABORTED); 21179 21180 return txq_cnt; 21181 } 21182 21183 /** 21184 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21185 * @phba: Pointer to HBA context object. 21186 * @pwqeq: Pointer to command WQE. 21187 * @sglq: Pointer to the scatter gather queue object. 21188 * 21189 * This routine converts the bpl or bde that is in the WQE 21190 * to a sgl list for the sli4 hardware. The physical address 21191 * of the bpl/bde is converted back to a virtual address. 21192 * If the WQE contains a BPL then the list of BDE's is 21193 * converted to sli4_sge's. If the WQE contains a single 21194 * BDE then it is converted to a single sli_sge. 21195 * The WQE is still in cpu endianness so the contents of 21196 * the bpl can be used without byte swapping. 21197 * 21198 * Returns valid XRI = Success, NO_XRI = Failure. 21199 */ 21200 static uint16_t 21201 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21202 struct lpfc_sglq *sglq) 21203 { 21204 uint16_t xritag = NO_XRI; 21205 struct ulp_bde64 *bpl = NULL; 21206 struct ulp_bde64 bde; 21207 struct sli4_sge *sgl = NULL; 21208 struct lpfc_dmabuf *dmabuf; 21209 union lpfc_wqe128 *wqe; 21210 int numBdes = 0; 21211 int i = 0; 21212 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21213 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21214 uint32_t cmd; 21215 21216 if (!pwqeq || !sglq) 21217 return xritag; 21218 21219 sgl = (struct sli4_sge *)sglq->sgl; 21220 wqe = &pwqeq->wqe; 21221 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21222 21223 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21224 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21225 return sglq->sli4_xritag; 21226 numBdes = pwqeq->num_bdes; 21227 if (numBdes) { 21228 /* The addrHigh and addrLow fields within the WQE 21229 * have not been byteswapped yet so there is no 21230 * need to swap them back. 21231 */ 21232 if (pwqeq->bpl_dmabuf) 21233 dmabuf = pwqeq->bpl_dmabuf; 21234 else 21235 return xritag; 21236 21237 bpl = (struct ulp_bde64 *)dmabuf->virt; 21238 if (!bpl) 21239 return xritag; 21240 21241 for (i = 0; i < numBdes; i++) { 21242 /* Should already be byte swapped. */ 21243 sgl->addr_hi = bpl->addrHigh; 21244 sgl->addr_lo = bpl->addrLow; 21245 21246 sgl->word2 = le32_to_cpu(sgl->word2); 21247 if ((i+1) == numBdes) 21248 bf_set(lpfc_sli4_sge_last, sgl, 1); 21249 else 21250 bf_set(lpfc_sli4_sge_last, sgl, 0); 21251 /* swap the size field back to the cpu so we 21252 * can assign it to the sgl. 21253 */ 21254 bde.tus.w = le32_to_cpu(bpl->tus.w); 21255 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21256 /* The offsets in the sgl need to be accumulated 21257 * separately for the request and reply lists. 21258 * The request is always first, the reply follows. 21259 */ 21260 switch (cmd) { 21261 case CMD_GEN_REQUEST64_WQE: 21262 /* add up the reply sg entries */ 21263 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21264 inbound++; 21265 /* first inbound? reset the offset */ 21266 if (inbound == 1) 21267 offset = 0; 21268 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21269 bf_set(lpfc_sli4_sge_type, sgl, 21270 LPFC_SGE_TYPE_DATA); 21271 offset += bde.tus.f.bdeSize; 21272 break; 21273 case CMD_FCP_TRSP64_WQE: 21274 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21275 bf_set(lpfc_sli4_sge_type, sgl, 21276 LPFC_SGE_TYPE_DATA); 21277 break; 21278 case CMD_FCP_TSEND64_WQE: 21279 case CMD_FCP_TRECEIVE64_WQE: 21280 bf_set(lpfc_sli4_sge_type, sgl, 21281 bpl->tus.f.bdeFlags); 21282 if (i < 3) 21283 offset = 0; 21284 else 21285 offset += bde.tus.f.bdeSize; 21286 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21287 break; 21288 } 21289 sgl->word2 = cpu_to_le32(sgl->word2); 21290 bpl++; 21291 sgl++; 21292 } 21293 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21294 /* The addrHigh and addrLow fields of the BDE have not 21295 * been byteswapped yet so they need to be swapped 21296 * before putting them in the sgl. 21297 */ 21298 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21299 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21300 sgl->word2 = le32_to_cpu(sgl->word2); 21301 bf_set(lpfc_sli4_sge_last, sgl, 1); 21302 sgl->word2 = cpu_to_le32(sgl->word2); 21303 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21304 } 21305 return sglq->sli4_xritag; 21306 } 21307 21308 /** 21309 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21310 * @phba: Pointer to HBA context object. 21311 * @qp: Pointer to HDW queue. 21312 * @pwqe: Pointer to command WQE. 21313 **/ 21314 int 21315 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21316 struct lpfc_iocbq *pwqe) 21317 { 21318 union lpfc_wqe128 *wqe = &pwqe->wqe; 21319 struct lpfc_async_xchg_ctx *ctxp; 21320 struct lpfc_queue *wq; 21321 struct lpfc_sglq *sglq; 21322 struct lpfc_sli_ring *pring; 21323 unsigned long iflags; 21324 uint32_t ret = 0; 21325 21326 /* NVME_LS and NVME_LS ABTS requests. */ 21327 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21328 pring = phba->sli4_hba.nvmels_wq->pring; 21329 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21330 qp, wq_access); 21331 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21332 if (!sglq) { 21333 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21334 return WQE_BUSY; 21335 } 21336 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21337 pwqe->sli4_xritag = sglq->sli4_xritag; 21338 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21339 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21340 return WQE_ERROR; 21341 } 21342 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21343 pwqe->sli4_xritag); 21344 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21345 if (ret) { 21346 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21347 return ret; 21348 } 21349 21350 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21351 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21352 21353 lpfc_sli4_poll_eq(qp->hba_eq); 21354 return 0; 21355 } 21356 21357 /* NVME_FCREQ and NVME_ABTS requests */ 21358 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21359 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21360 wq = qp->io_wq; 21361 pring = wq->pring; 21362 21363 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21364 21365 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21366 qp, wq_access); 21367 ret = lpfc_sli4_wq_put(wq, wqe); 21368 if (ret) { 21369 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21370 return ret; 21371 } 21372 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21373 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21374 21375 lpfc_sli4_poll_eq(qp->hba_eq); 21376 return 0; 21377 } 21378 21379 /* NVMET requests */ 21380 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21381 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21382 wq = qp->io_wq; 21383 pring = wq->pring; 21384 21385 ctxp = pwqe->context_un.axchg; 21386 sglq = ctxp->ctxbuf->sglq; 21387 if (pwqe->sli4_xritag == NO_XRI) { 21388 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21389 pwqe->sli4_xritag = sglq->sli4_xritag; 21390 } 21391 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21392 pwqe->sli4_xritag); 21393 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21394 21395 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21396 qp, wq_access); 21397 ret = lpfc_sli4_wq_put(wq, wqe); 21398 if (ret) { 21399 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21400 return ret; 21401 } 21402 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21403 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21404 21405 lpfc_sli4_poll_eq(qp->hba_eq); 21406 return 0; 21407 } 21408 return WQE_ERROR; 21409 } 21410 21411 /** 21412 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21413 * @phba: Pointer to HBA context object. 21414 * @cmdiocb: Pointer to driver command iocb object. 21415 * @cmpl: completion function. 21416 * 21417 * Fill the appropriate fields for the abort WQE and call 21418 * internal routine lpfc_sli4_issue_wqe to send the WQE 21419 * This function is called with hbalock held and no ring_lock held. 21420 * 21421 * RETURNS 0 - SUCCESS 21422 **/ 21423 21424 int 21425 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21426 void *cmpl) 21427 { 21428 struct lpfc_vport *vport = cmdiocb->vport; 21429 struct lpfc_iocbq *abtsiocb = NULL; 21430 union lpfc_wqe128 *abtswqe; 21431 struct lpfc_io_buf *lpfc_cmd; 21432 int retval = IOCB_ERROR; 21433 u16 xritag = cmdiocb->sli4_xritag; 21434 21435 /* 21436 * The scsi command can not be in txq and it is in flight because the 21437 * pCmd is still pointing at the SCSI command we have to abort. There 21438 * is no need to search the txcmplq. Just send an abort to the FW. 21439 */ 21440 21441 abtsiocb = __lpfc_sli_get_iocbq(phba); 21442 if (!abtsiocb) 21443 return WQE_NORESOURCE; 21444 21445 /* Indicate the IO is being aborted by the driver. */ 21446 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21447 21448 abtswqe = &abtsiocb->wqe; 21449 memset(abtswqe, 0, sizeof(*abtswqe)); 21450 21451 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21452 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21453 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21454 abtswqe->abort_cmd.rsrvd5 = 0; 21455 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21456 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21457 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21458 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21459 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21460 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21461 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21462 21463 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21464 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21465 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21466 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21467 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21468 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21469 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21470 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21471 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21472 abtsiocb->vport = vport; 21473 abtsiocb->cmd_cmpl = cmpl; 21474 21475 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21476 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21477 21478 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21479 "0359 Abort xri x%x, original iotag x%x, " 21480 "abort cmd iotag x%x retval x%x\n", 21481 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21482 21483 if (retval) { 21484 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21485 __lpfc_sli_release_iocbq(phba, abtsiocb); 21486 } 21487 21488 return retval; 21489 } 21490 21491 #ifdef LPFC_MXP_STAT 21492 /** 21493 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21494 * @phba: pointer to lpfc hba data structure. 21495 * @hwqid: belong to which HWQ. 21496 * 21497 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21498 * 15 seconds after a test case is running. 21499 * 21500 * The user should call lpfc_debugfs_multixripools_write before running a test 21501 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21502 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21503 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21504 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21505 **/ 21506 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21507 { 21508 struct lpfc_sli4_hdw_queue *qp; 21509 struct lpfc_multixri_pool *multixri_pool; 21510 struct lpfc_pvt_pool *pvt_pool; 21511 struct lpfc_pbl_pool *pbl_pool; 21512 u32 txcmplq_cnt; 21513 21514 qp = &phba->sli4_hba.hdwq[hwqid]; 21515 multixri_pool = qp->p_multixri_pool; 21516 if (!multixri_pool) 21517 return; 21518 21519 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21520 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21521 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21522 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21523 21524 multixri_pool->stat_pbl_count = pbl_pool->count; 21525 multixri_pool->stat_pvt_count = pvt_pool->count; 21526 multixri_pool->stat_busy_count = txcmplq_cnt; 21527 } 21528 21529 multixri_pool->stat_snapshot_taken++; 21530 } 21531 #endif 21532 21533 /** 21534 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21535 * @phba: pointer to lpfc hba data structure. 21536 * @hwqid: belong to which HWQ. 21537 * 21538 * This routine moves some XRIs from private to public pool when private pool 21539 * is not busy. 21540 **/ 21541 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21542 { 21543 struct lpfc_multixri_pool *multixri_pool; 21544 u32 io_req_count; 21545 u32 prev_io_req_count; 21546 21547 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21548 if (!multixri_pool) 21549 return; 21550 io_req_count = multixri_pool->io_req_count; 21551 prev_io_req_count = multixri_pool->prev_io_req_count; 21552 21553 if (prev_io_req_count != io_req_count) { 21554 /* Private pool is busy */ 21555 multixri_pool->prev_io_req_count = io_req_count; 21556 } else { 21557 /* Private pool is not busy. 21558 * Move XRIs from private to public pool. 21559 */ 21560 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21561 } 21562 } 21563 21564 /** 21565 * lpfc_adjust_high_watermark - Adjust high watermark 21566 * @phba: pointer to lpfc hba data structure. 21567 * @hwqid: belong to which HWQ. 21568 * 21569 * This routine sets high watermark as number of outstanding XRIs, 21570 * but make sure the new value is between xri_limit/2 and xri_limit. 21571 **/ 21572 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21573 { 21574 u32 new_watermark; 21575 u32 watermark_max; 21576 u32 watermark_min; 21577 u32 xri_limit; 21578 u32 txcmplq_cnt; 21579 u32 abts_io_bufs; 21580 struct lpfc_multixri_pool *multixri_pool; 21581 struct lpfc_sli4_hdw_queue *qp; 21582 21583 qp = &phba->sli4_hba.hdwq[hwqid]; 21584 multixri_pool = qp->p_multixri_pool; 21585 if (!multixri_pool) 21586 return; 21587 xri_limit = multixri_pool->xri_limit; 21588 21589 watermark_max = xri_limit; 21590 watermark_min = xri_limit / 2; 21591 21592 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21593 abts_io_bufs = qp->abts_scsi_io_bufs; 21594 abts_io_bufs += qp->abts_nvme_io_bufs; 21595 21596 new_watermark = txcmplq_cnt + abts_io_bufs; 21597 new_watermark = min(watermark_max, new_watermark); 21598 new_watermark = max(watermark_min, new_watermark); 21599 multixri_pool->pvt_pool.high_watermark = new_watermark; 21600 21601 #ifdef LPFC_MXP_STAT 21602 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21603 new_watermark); 21604 #endif 21605 } 21606 21607 /** 21608 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21609 * @phba: pointer to lpfc hba data structure. 21610 * @hwqid: belong to which HWQ. 21611 * 21612 * This routine is called from hearbeat timer when pvt_pool is idle. 21613 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21614 * The first step moves (all - low_watermark) amount of XRIs. 21615 * The second step moves the rest of XRIs. 21616 **/ 21617 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21618 { 21619 struct lpfc_pbl_pool *pbl_pool; 21620 struct lpfc_pvt_pool *pvt_pool; 21621 struct lpfc_sli4_hdw_queue *qp; 21622 struct lpfc_io_buf *lpfc_ncmd; 21623 struct lpfc_io_buf *lpfc_ncmd_next; 21624 unsigned long iflag; 21625 struct list_head tmp_list; 21626 u32 tmp_count; 21627 21628 qp = &phba->sli4_hba.hdwq[hwqid]; 21629 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21630 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21631 tmp_count = 0; 21632 21633 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21634 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21635 21636 if (pvt_pool->count > pvt_pool->low_watermark) { 21637 /* Step 1: move (all - low_watermark) from pvt_pool 21638 * to pbl_pool 21639 */ 21640 21641 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21642 INIT_LIST_HEAD(&tmp_list); 21643 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21644 &pvt_pool->list, list) { 21645 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21646 tmp_count++; 21647 if (tmp_count >= pvt_pool->low_watermark) 21648 break; 21649 } 21650 21651 /* Move all bufs from pvt_pool to pbl_pool */ 21652 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21653 21654 /* Move all bufs from tmp_list to pvt_pool */ 21655 list_splice(&tmp_list, &pvt_pool->list); 21656 21657 pbl_pool->count += (pvt_pool->count - tmp_count); 21658 pvt_pool->count = tmp_count; 21659 } else { 21660 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21661 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21662 pbl_pool->count += pvt_pool->count; 21663 pvt_pool->count = 0; 21664 } 21665 21666 spin_unlock(&pvt_pool->lock); 21667 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21668 } 21669 21670 /** 21671 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21672 * @phba: pointer to lpfc hba data structure 21673 * @qp: pointer to HDW queue 21674 * @pbl_pool: specified public free XRI pool 21675 * @pvt_pool: specified private free XRI pool 21676 * @count: number of XRIs to move 21677 * 21678 * This routine tries to move some free common bufs from the specified pbl_pool 21679 * to the specified pvt_pool. It might move less than count XRIs if there's not 21680 * enough in public pool. 21681 * 21682 * Return: 21683 * true - if XRIs are successfully moved from the specified pbl_pool to the 21684 * specified pvt_pool 21685 * false - if the specified pbl_pool is empty or locked by someone else 21686 **/ 21687 static bool 21688 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21689 struct lpfc_pbl_pool *pbl_pool, 21690 struct lpfc_pvt_pool *pvt_pool, u32 count) 21691 { 21692 struct lpfc_io_buf *lpfc_ncmd; 21693 struct lpfc_io_buf *lpfc_ncmd_next; 21694 unsigned long iflag; 21695 int ret; 21696 21697 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21698 if (ret) { 21699 if (pbl_pool->count) { 21700 /* Move a batch of XRIs from public to private pool */ 21701 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21702 list_for_each_entry_safe(lpfc_ncmd, 21703 lpfc_ncmd_next, 21704 &pbl_pool->list, 21705 list) { 21706 list_move_tail(&lpfc_ncmd->list, 21707 &pvt_pool->list); 21708 pvt_pool->count++; 21709 pbl_pool->count--; 21710 count--; 21711 if (count == 0) 21712 break; 21713 } 21714 21715 spin_unlock(&pvt_pool->lock); 21716 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21717 return true; 21718 } 21719 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21720 } 21721 21722 return false; 21723 } 21724 21725 /** 21726 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21727 * @phba: pointer to lpfc hba data structure. 21728 * @hwqid: belong to which HWQ. 21729 * @count: number of XRIs to move 21730 * 21731 * This routine tries to find some free common bufs in one of public pools with 21732 * Round Robin method. The search always starts from local hwqid, then the next 21733 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21734 * a batch of free common bufs are moved to private pool on hwqid. 21735 * It might move less than count XRIs if there's not enough in public pool. 21736 **/ 21737 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21738 { 21739 struct lpfc_multixri_pool *multixri_pool; 21740 struct lpfc_multixri_pool *next_multixri_pool; 21741 struct lpfc_pvt_pool *pvt_pool; 21742 struct lpfc_pbl_pool *pbl_pool; 21743 struct lpfc_sli4_hdw_queue *qp; 21744 u32 next_hwqid; 21745 u32 hwq_count; 21746 int ret; 21747 21748 qp = &phba->sli4_hba.hdwq[hwqid]; 21749 multixri_pool = qp->p_multixri_pool; 21750 pvt_pool = &multixri_pool->pvt_pool; 21751 pbl_pool = &multixri_pool->pbl_pool; 21752 21753 /* Check if local pbl_pool is available */ 21754 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21755 if (ret) { 21756 #ifdef LPFC_MXP_STAT 21757 multixri_pool->local_pbl_hit_count++; 21758 #endif 21759 return; 21760 } 21761 21762 hwq_count = phba->cfg_hdw_queue; 21763 21764 /* Get the next hwqid which was found last time */ 21765 next_hwqid = multixri_pool->rrb_next_hwqid; 21766 21767 do { 21768 /* Go to next hwq */ 21769 next_hwqid = (next_hwqid + 1) % hwq_count; 21770 21771 next_multixri_pool = 21772 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21773 pbl_pool = &next_multixri_pool->pbl_pool; 21774 21775 /* Check if the public free xri pool is available */ 21776 ret = _lpfc_move_xri_pbl_to_pvt( 21777 phba, qp, pbl_pool, pvt_pool, count); 21778 21779 /* Exit while-loop if success or all hwqid are checked */ 21780 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21781 21782 /* Starting point for the next time */ 21783 multixri_pool->rrb_next_hwqid = next_hwqid; 21784 21785 if (!ret) { 21786 /* stats: all public pools are empty*/ 21787 multixri_pool->pbl_empty_count++; 21788 } 21789 21790 #ifdef LPFC_MXP_STAT 21791 if (ret) { 21792 if (next_hwqid == hwqid) 21793 multixri_pool->local_pbl_hit_count++; 21794 else 21795 multixri_pool->other_pbl_hit_count++; 21796 } 21797 #endif 21798 } 21799 21800 /** 21801 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21802 * @phba: pointer to lpfc hba data structure. 21803 * @hwqid: belong to which HWQ. 21804 * 21805 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21806 * low watermark. 21807 **/ 21808 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21809 { 21810 struct lpfc_multixri_pool *multixri_pool; 21811 struct lpfc_pvt_pool *pvt_pool; 21812 21813 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21814 pvt_pool = &multixri_pool->pvt_pool; 21815 21816 if (pvt_pool->count < pvt_pool->low_watermark) 21817 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21818 } 21819 21820 /** 21821 * lpfc_release_io_buf - Return one IO buf back to free pool 21822 * @phba: pointer to lpfc hba data structure. 21823 * @lpfc_ncmd: IO buf to be returned. 21824 * @qp: belong to which HWQ. 21825 * 21826 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21827 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21828 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21829 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21830 * lpfc_io_buf_list_put. 21831 **/ 21832 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21833 struct lpfc_sli4_hdw_queue *qp) 21834 { 21835 unsigned long iflag; 21836 struct lpfc_pbl_pool *pbl_pool; 21837 struct lpfc_pvt_pool *pvt_pool; 21838 struct lpfc_epd_pool *epd_pool; 21839 u32 txcmplq_cnt; 21840 u32 xri_owned; 21841 u32 xri_limit; 21842 u32 abts_io_bufs; 21843 21844 /* MUST zero fields if buffer is reused by another protocol */ 21845 lpfc_ncmd->nvmeCmd = NULL; 21846 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21847 21848 if (phba->cfg_xpsgl && !phba->nvmet_support && 21849 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21850 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21851 21852 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21853 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21854 21855 if (phba->cfg_xri_rebalancing) { 21856 if (lpfc_ncmd->expedite) { 21857 /* Return to expedite pool */ 21858 epd_pool = &phba->epd_pool; 21859 spin_lock_irqsave(&epd_pool->lock, iflag); 21860 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21861 epd_pool->count++; 21862 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21863 return; 21864 } 21865 21866 /* Avoid invalid access if an IO sneaks in and is being rejected 21867 * just _after_ xri pools are destroyed in lpfc_offline. 21868 * Nothing much can be done at this point. 21869 */ 21870 if (!qp->p_multixri_pool) 21871 return; 21872 21873 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21874 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21875 21876 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21877 abts_io_bufs = qp->abts_scsi_io_bufs; 21878 abts_io_bufs += qp->abts_nvme_io_bufs; 21879 21880 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21881 xri_limit = qp->p_multixri_pool->xri_limit; 21882 21883 #ifdef LPFC_MXP_STAT 21884 if (xri_owned <= xri_limit) 21885 qp->p_multixri_pool->below_limit_count++; 21886 else 21887 qp->p_multixri_pool->above_limit_count++; 21888 #endif 21889 21890 /* XRI goes to either public or private free xri pool 21891 * based on watermark and xri_limit 21892 */ 21893 if ((pvt_pool->count < pvt_pool->low_watermark) || 21894 (xri_owned < xri_limit && 21895 pvt_pool->count < pvt_pool->high_watermark)) { 21896 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21897 qp, free_pvt_pool); 21898 list_add_tail(&lpfc_ncmd->list, 21899 &pvt_pool->list); 21900 pvt_pool->count++; 21901 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21902 } else { 21903 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21904 qp, free_pub_pool); 21905 list_add_tail(&lpfc_ncmd->list, 21906 &pbl_pool->list); 21907 pbl_pool->count++; 21908 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21909 } 21910 } else { 21911 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21912 qp, free_xri); 21913 list_add_tail(&lpfc_ncmd->list, 21914 &qp->lpfc_io_buf_list_put); 21915 qp->put_io_bufs++; 21916 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21917 iflag); 21918 } 21919 } 21920 21921 /** 21922 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21923 * @phba: pointer to lpfc hba data structure. 21924 * @qp: pointer to HDW queue 21925 * @pvt_pool: pointer to private pool data structure. 21926 * @ndlp: pointer to lpfc nodelist data structure. 21927 * 21928 * This routine tries to get one free IO buf from private pool. 21929 * 21930 * Return: 21931 * pointer to one free IO buf - if private pool is not empty 21932 * NULL - if private pool is empty 21933 **/ 21934 static struct lpfc_io_buf * 21935 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21936 struct lpfc_sli4_hdw_queue *qp, 21937 struct lpfc_pvt_pool *pvt_pool, 21938 struct lpfc_nodelist *ndlp) 21939 { 21940 struct lpfc_io_buf *lpfc_ncmd; 21941 struct lpfc_io_buf *lpfc_ncmd_next; 21942 unsigned long iflag; 21943 21944 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21945 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21946 &pvt_pool->list, list) { 21947 if (lpfc_test_rrq_active( 21948 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21949 continue; 21950 list_del(&lpfc_ncmd->list); 21951 pvt_pool->count--; 21952 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21953 return lpfc_ncmd; 21954 } 21955 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21956 21957 return NULL; 21958 } 21959 21960 /** 21961 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21962 * @phba: pointer to lpfc hba data structure. 21963 * 21964 * This routine tries to get one free IO buf from expedite pool. 21965 * 21966 * Return: 21967 * pointer to one free IO buf - if expedite pool is not empty 21968 * NULL - if expedite pool is empty 21969 **/ 21970 static struct lpfc_io_buf * 21971 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21972 { 21973 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21974 struct lpfc_io_buf *lpfc_ncmd_next; 21975 unsigned long iflag; 21976 struct lpfc_epd_pool *epd_pool; 21977 21978 epd_pool = &phba->epd_pool; 21979 21980 spin_lock_irqsave(&epd_pool->lock, iflag); 21981 if (epd_pool->count > 0) { 21982 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21983 &epd_pool->list, list) { 21984 list_del(&iter->list); 21985 epd_pool->count--; 21986 lpfc_ncmd = iter; 21987 break; 21988 } 21989 } 21990 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21991 21992 return lpfc_ncmd; 21993 } 21994 21995 /** 21996 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21997 * @phba: pointer to lpfc hba data structure. 21998 * @ndlp: pointer to lpfc nodelist data structure. 21999 * @hwqid: belong to which HWQ 22000 * @expedite: 1 means this request is urgent. 22001 * 22002 * This routine will do the following actions and then return a pointer to 22003 * one free IO buf. 22004 * 22005 * 1. If private free xri count is empty, move some XRIs from public to 22006 * private pool. 22007 * 2. Get one XRI from private free xri pool. 22008 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22009 * get one free xri from expedite pool. 22010 * 22011 * Note: ndlp is only used on SCSI side for RRQ testing. 22012 * The caller should pass NULL for ndlp on NVME side. 22013 * 22014 * Return: 22015 * pointer to one free IO buf - if private pool is not empty 22016 * NULL - if private pool is empty 22017 **/ 22018 static struct lpfc_io_buf * 22019 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22020 struct lpfc_nodelist *ndlp, 22021 int hwqid, int expedite) 22022 { 22023 struct lpfc_sli4_hdw_queue *qp; 22024 struct lpfc_multixri_pool *multixri_pool; 22025 struct lpfc_pvt_pool *pvt_pool; 22026 struct lpfc_io_buf *lpfc_ncmd; 22027 22028 qp = &phba->sli4_hba.hdwq[hwqid]; 22029 lpfc_ncmd = NULL; 22030 if (!qp) { 22031 lpfc_printf_log(phba, KERN_INFO, 22032 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22033 "5556 NULL qp for hwqid x%x\n", hwqid); 22034 return lpfc_ncmd; 22035 } 22036 multixri_pool = qp->p_multixri_pool; 22037 if (!multixri_pool) { 22038 lpfc_printf_log(phba, KERN_INFO, 22039 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22040 "5557 NULL multixri for hwqid x%x\n", hwqid); 22041 return lpfc_ncmd; 22042 } 22043 pvt_pool = &multixri_pool->pvt_pool; 22044 if (!pvt_pool) { 22045 lpfc_printf_log(phba, KERN_INFO, 22046 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22047 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22048 return lpfc_ncmd; 22049 } 22050 multixri_pool->io_req_count++; 22051 22052 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22053 if (pvt_pool->count == 0) 22054 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22055 22056 /* Get one XRI from private free xri pool */ 22057 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22058 22059 if (lpfc_ncmd) { 22060 lpfc_ncmd->hdwq = qp; 22061 lpfc_ncmd->hdwq_no = hwqid; 22062 } else if (expedite) { 22063 /* If we fail to get one from pvt_pool and this is an expedite 22064 * request, get one free xri from expedite pool. 22065 */ 22066 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22067 } 22068 22069 return lpfc_ncmd; 22070 } 22071 22072 static inline struct lpfc_io_buf * 22073 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22074 { 22075 struct lpfc_sli4_hdw_queue *qp; 22076 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22077 22078 qp = &phba->sli4_hba.hdwq[idx]; 22079 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22080 &qp->lpfc_io_buf_list_get, list) { 22081 if (lpfc_test_rrq_active(phba, ndlp, 22082 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22083 continue; 22084 22085 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22086 continue; 22087 22088 list_del_init(&lpfc_cmd->list); 22089 qp->get_io_bufs--; 22090 lpfc_cmd->hdwq = qp; 22091 lpfc_cmd->hdwq_no = idx; 22092 return lpfc_cmd; 22093 } 22094 return NULL; 22095 } 22096 22097 /** 22098 * lpfc_get_io_buf - Get one IO buffer from free pool 22099 * @phba: The HBA for which this call is being executed. 22100 * @ndlp: pointer to lpfc nodelist data structure. 22101 * @hwqid: belong to which HWQ 22102 * @expedite: 1 means this request is urgent. 22103 * 22104 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22105 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22106 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22107 * 22108 * Note: ndlp is only used on SCSI side for RRQ testing. 22109 * The caller should pass NULL for ndlp on NVME side. 22110 * 22111 * Return codes: 22112 * NULL - Error 22113 * Pointer to lpfc_io_buf - Success 22114 **/ 22115 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22116 struct lpfc_nodelist *ndlp, 22117 u32 hwqid, int expedite) 22118 { 22119 struct lpfc_sli4_hdw_queue *qp; 22120 unsigned long iflag; 22121 struct lpfc_io_buf *lpfc_cmd; 22122 22123 qp = &phba->sli4_hba.hdwq[hwqid]; 22124 lpfc_cmd = NULL; 22125 if (!qp) { 22126 lpfc_printf_log(phba, KERN_WARNING, 22127 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22128 "5555 NULL qp for hwqid x%x\n", hwqid); 22129 return lpfc_cmd; 22130 } 22131 22132 if (phba->cfg_xri_rebalancing) 22133 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22134 phba, ndlp, hwqid, expedite); 22135 else { 22136 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22137 qp, alloc_xri_get); 22138 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22139 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22140 if (!lpfc_cmd) { 22141 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22142 qp, alloc_xri_put); 22143 list_splice(&qp->lpfc_io_buf_list_put, 22144 &qp->lpfc_io_buf_list_get); 22145 qp->get_io_bufs += qp->put_io_bufs; 22146 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22147 qp->put_io_bufs = 0; 22148 spin_unlock(&qp->io_buf_list_put_lock); 22149 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22150 expedite) 22151 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22152 } 22153 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22154 } 22155 22156 return lpfc_cmd; 22157 } 22158 22159 /** 22160 * lpfc_read_object - Retrieve object data from HBA 22161 * @phba: The HBA for which this call is being executed. 22162 * @rdobject: Pathname of object data we want to read. 22163 * @datap: Pointer to where data will be copied to. 22164 * @datasz: size of data area 22165 * 22166 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22167 * The data will be truncated if datasz is not large enough. 22168 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22169 * Returns the actual bytes read from the object. 22170 */ 22171 int 22172 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22173 uint32_t datasz) 22174 { 22175 struct lpfc_mbx_read_object *read_object; 22176 LPFC_MBOXQ_t *mbox; 22177 int rc, length, eof, j, byte_cnt = 0; 22178 uint32_t shdr_status, shdr_add_status; 22179 union lpfc_sli4_cfg_shdr *shdr; 22180 struct lpfc_dmabuf *pcmd; 22181 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22182 22183 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22184 if (!mbox) 22185 return -ENOMEM; 22186 length = (sizeof(struct lpfc_mbx_read_object) - 22187 sizeof(struct lpfc_sli4_cfg_mhdr)); 22188 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22189 LPFC_MBOX_OPCODE_READ_OBJECT, 22190 length, LPFC_SLI4_MBX_EMBED); 22191 read_object = &mbox->u.mqe.un.read_object; 22192 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22193 22194 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22195 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22196 read_object->u.request.rd_object_offset = 0; 22197 read_object->u.request.rd_object_cnt = 1; 22198 22199 memset((void *)read_object->u.request.rd_object_name, 0, 22200 LPFC_OBJ_NAME_SZ); 22201 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22202 for (j = 0; j < strlen(rdobject); j++) 22203 read_object->u.request.rd_object_name[j] = 22204 cpu_to_le32(rd_object_name[j]); 22205 22206 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22207 if (pcmd) 22208 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22209 if (!pcmd || !pcmd->virt) { 22210 kfree(pcmd); 22211 mempool_free(mbox, phba->mbox_mem_pool); 22212 return -ENOMEM; 22213 } 22214 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22215 read_object->u.request.rd_object_hbuf[0].pa_lo = 22216 putPaddrLow(pcmd->phys); 22217 read_object->u.request.rd_object_hbuf[0].pa_hi = 22218 putPaddrHigh(pcmd->phys); 22219 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22220 22221 mbox->vport = phba->pport; 22222 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22223 mbox->ctx_ndlp = NULL; 22224 22225 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22226 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22227 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22228 22229 if (shdr_status == STATUS_FAILED && 22230 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22231 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22232 "4674 No port cfg file in FW.\n"); 22233 byte_cnt = -ENOENT; 22234 } else if (shdr_status || shdr_add_status || rc) { 22235 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22236 "2625 READ_OBJECT mailbox failed with " 22237 "status x%x add_status x%x, mbx status x%x\n", 22238 shdr_status, shdr_add_status, rc); 22239 byte_cnt = -ENXIO; 22240 } else { 22241 /* Success */ 22242 length = read_object->u.response.rd_object_actual_rlen; 22243 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22244 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22245 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22246 length, datasz, eof); 22247 22248 /* Detect the port config file exists but is empty */ 22249 if (!length && eof) { 22250 byte_cnt = 0; 22251 goto exit; 22252 } 22253 22254 byte_cnt = length; 22255 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22256 } 22257 22258 exit: 22259 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22260 * Free the pcmd and then cleanup with the correct routine. 22261 */ 22262 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22263 kfree(pcmd); 22264 lpfc_sli4_mbox_cmd_free(phba, mbox); 22265 return byte_cnt; 22266 } 22267 22268 /** 22269 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22270 * @phba: The HBA for which this call is being executed. 22271 * @lpfc_buf: IO buf structure to append the SGL chunk 22272 * 22273 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22274 * and will allocate an SGL chunk if the pool is empty. 22275 * 22276 * Return codes: 22277 * NULL - Error 22278 * Pointer to sli4_hybrid_sgl - Success 22279 **/ 22280 struct sli4_hybrid_sgl * 22281 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22282 { 22283 struct sli4_hybrid_sgl *list_entry = NULL; 22284 struct sli4_hybrid_sgl *tmp = NULL; 22285 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22286 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22287 struct list_head *buf_list = &hdwq->sgl_list; 22288 unsigned long iflags; 22289 22290 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22291 22292 if (likely(!list_empty(buf_list))) { 22293 /* break off 1 chunk from the sgl_list */ 22294 list_for_each_entry_safe(list_entry, tmp, 22295 buf_list, list_node) { 22296 list_move_tail(&list_entry->list_node, 22297 &lpfc_buf->dma_sgl_xtra_list); 22298 break; 22299 } 22300 } else { 22301 /* allocate more */ 22302 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22303 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22304 cpu_to_node(hdwq->io_wq->chann)); 22305 if (!tmp) { 22306 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22307 "8353 error kmalloc memory for HDWQ " 22308 "%d %s\n", 22309 lpfc_buf->hdwq_no, __func__); 22310 return NULL; 22311 } 22312 22313 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22314 GFP_ATOMIC, &tmp->dma_phys_sgl); 22315 if (!tmp->dma_sgl) { 22316 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22317 "8354 error pool_alloc memory for HDWQ " 22318 "%d %s\n", 22319 lpfc_buf->hdwq_no, __func__); 22320 kfree(tmp); 22321 return NULL; 22322 } 22323 22324 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22325 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22326 } 22327 22328 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22329 struct sli4_hybrid_sgl, 22330 list_node); 22331 22332 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22333 22334 return allocated_sgl; 22335 } 22336 22337 /** 22338 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22339 * @phba: The HBA for which this call is being executed. 22340 * @lpfc_buf: IO buf structure with the SGL chunk 22341 * 22342 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22343 * 22344 * Return codes: 22345 * 0 - Success 22346 * -EINVAL - Error 22347 **/ 22348 int 22349 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22350 { 22351 int rc = 0; 22352 struct sli4_hybrid_sgl *list_entry = NULL; 22353 struct sli4_hybrid_sgl *tmp = NULL; 22354 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22355 struct list_head *buf_list = &hdwq->sgl_list; 22356 unsigned long iflags; 22357 22358 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22359 22360 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22361 list_for_each_entry_safe(list_entry, tmp, 22362 &lpfc_buf->dma_sgl_xtra_list, 22363 list_node) { 22364 list_move_tail(&list_entry->list_node, 22365 buf_list); 22366 } 22367 } else { 22368 rc = -EINVAL; 22369 } 22370 22371 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22372 return rc; 22373 } 22374 22375 /** 22376 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22377 * @phba: phba object 22378 * @hdwq: hdwq to cleanup sgl buff resources on 22379 * 22380 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22381 * 22382 * Return codes: 22383 * None 22384 **/ 22385 void 22386 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22387 struct lpfc_sli4_hdw_queue *hdwq) 22388 { 22389 struct list_head *buf_list = &hdwq->sgl_list; 22390 struct sli4_hybrid_sgl *list_entry = NULL; 22391 struct sli4_hybrid_sgl *tmp = NULL; 22392 unsigned long iflags; 22393 22394 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22395 22396 /* Free sgl pool */ 22397 list_for_each_entry_safe(list_entry, tmp, 22398 buf_list, list_node) { 22399 list_del(&list_entry->list_node); 22400 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22401 list_entry->dma_sgl, 22402 list_entry->dma_phys_sgl); 22403 kfree(list_entry); 22404 } 22405 22406 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22407 } 22408 22409 /** 22410 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22411 * @phba: The HBA for which this call is being executed. 22412 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22413 * 22414 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22415 * and will allocate an CMD/RSP buffer if the pool is empty. 22416 * 22417 * Return codes: 22418 * NULL - Error 22419 * Pointer to fcp_cmd_rsp_buf - Success 22420 **/ 22421 struct fcp_cmd_rsp_buf * 22422 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22423 struct lpfc_io_buf *lpfc_buf) 22424 { 22425 struct fcp_cmd_rsp_buf *list_entry = NULL; 22426 struct fcp_cmd_rsp_buf *tmp = NULL; 22427 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22428 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22429 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22430 unsigned long iflags; 22431 22432 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22433 22434 if (likely(!list_empty(buf_list))) { 22435 /* break off 1 chunk from the list */ 22436 list_for_each_entry_safe(list_entry, tmp, 22437 buf_list, 22438 list_node) { 22439 list_move_tail(&list_entry->list_node, 22440 &lpfc_buf->dma_cmd_rsp_list); 22441 break; 22442 } 22443 } else { 22444 /* allocate more */ 22445 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22446 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22447 cpu_to_node(hdwq->io_wq->chann)); 22448 if (!tmp) { 22449 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22450 "8355 error kmalloc memory for HDWQ " 22451 "%d %s\n", 22452 lpfc_buf->hdwq_no, __func__); 22453 return NULL; 22454 } 22455 22456 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22457 GFP_ATOMIC, 22458 &tmp->fcp_cmd_rsp_dma_handle); 22459 22460 if (!tmp->fcp_cmnd) { 22461 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22462 "8356 error pool_alloc memory for HDWQ " 22463 "%d %s\n", 22464 lpfc_buf->hdwq_no, __func__); 22465 kfree(tmp); 22466 return NULL; 22467 } 22468 22469 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22470 sizeof(struct fcp_cmnd)); 22471 22472 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22473 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22474 } 22475 22476 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22477 struct fcp_cmd_rsp_buf, 22478 list_node); 22479 22480 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22481 22482 return allocated_buf; 22483 } 22484 22485 /** 22486 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22487 * @phba: The HBA for which this call is being executed. 22488 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22489 * 22490 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22491 * 22492 * Return codes: 22493 * 0 - Success 22494 * -EINVAL - Error 22495 **/ 22496 int 22497 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22498 struct lpfc_io_buf *lpfc_buf) 22499 { 22500 int rc = 0; 22501 struct fcp_cmd_rsp_buf *list_entry = NULL; 22502 struct fcp_cmd_rsp_buf *tmp = NULL; 22503 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22504 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22505 unsigned long iflags; 22506 22507 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22508 22509 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22510 list_for_each_entry_safe(list_entry, tmp, 22511 &lpfc_buf->dma_cmd_rsp_list, 22512 list_node) { 22513 list_move_tail(&list_entry->list_node, 22514 buf_list); 22515 } 22516 } else { 22517 rc = -EINVAL; 22518 } 22519 22520 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22521 return rc; 22522 } 22523 22524 /** 22525 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22526 * @phba: phba object 22527 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22528 * 22529 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22530 * 22531 * Return codes: 22532 * None 22533 **/ 22534 void 22535 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22536 struct lpfc_sli4_hdw_queue *hdwq) 22537 { 22538 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22539 struct fcp_cmd_rsp_buf *list_entry = NULL; 22540 struct fcp_cmd_rsp_buf *tmp = NULL; 22541 unsigned long iflags; 22542 22543 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22544 22545 /* Free cmd_rsp buf pool */ 22546 list_for_each_entry_safe(list_entry, tmp, 22547 buf_list, 22548 list_node) { 22549 list_del(&list_entry->list_node); 22550 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22551 list_entry->fcp_cmnd, 22552 list_entry->fcp_cmd_rsp_dma_handle); 22553 kfree(list_entry); 22554 } 22555 22556 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22557 } 22558 22559 /** 22560 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22561 * @phba: phba object 22562 * @job: job entry of the command to be posted. 22563 * 22564 * Fill the common fields of the wqe for each of the command. 22565 * 22566 * Return codes: 22567 * None 22568 **/ 22569 void 22570 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22571 { 22572 u8 cmnd; 22573 u32 *pcmd; 22574 u32 if_type = 0; 22575 u32 fip, abort_tag; 22576 struct lpfc_nodelist *ndlp = NULL; 22577 union lpfc_wqe128 *wqe = &job->wqe; 22578 u8 command_type = ELS_COMMAND_NON_FIP; 22579 22580 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22581 /* The fcp commands will set command type */ 22582 if (job->cmd_flag & LPFC_IO_FCP) 22583 command_type = FCP_COMMAND; 22584 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22585 command_type = ELS_COMMAND_FIP; 22586 else 22587 command_type = ELS_COMMAND_NON_FIP; 22588 22589 abort_tag = job->iotag; 22590 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22591 22592 switch (cmnd) { 22593 case CMD_ELS_REQUEST64_WQE: 22594 ndlp = job->ndlp; 22595 22596 if_type = bf_get(lpfc_sli_intf_if_type, 22597 &phba->sli4_hba.sli_intf); 22598 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22599 pcmd = (u32 *)job->cmd_dmabuf->virt; 22600 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22601 *pcmd == ELS_CMD_SCR || 22602 *pcmd == ELS_CMD_RDF || 22603 *pcmd == ELS_CMD_EDC || 22604 *pcmd == ELS_CMD_RSCN_XMT || 22605 *pcmd == ELS_CMD_FDISC || 22606 *pcmd == ELS_CMD_LOGO || 22607 *pcmd == ELS_CMD_QFPA || 22608 *pcmd == ELS_CMD_UVEM || 22609 *pcmd == ELS_CMD_PLOGI)) { 22610 bf_set(els_req64_sp, &wqe->els_req, 1); 22611 bf_set(els_req64_sid, &wqe->els_req, 22612 job->vport->fc_myDID); 22613 22614 if ((*pcmd == ELS_CMD_FLOGI) && 22615 !(phba->fc_topology == 22616 LPFC_TOPOLOGY_LOOP)) 22617 bf_set(els_req64_sid, &wqe->els_req, 0); 22618 22619 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22620 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22621 phba->vpi_ids[job->vport->vpi]); 22622 } else if (pcmd) { 22623 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22624 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22625 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22626 } 22627 } 22628 22629 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22630 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22631 22632 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22633 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22634 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22635 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22636 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22637 break; 22638 case CMD_XMIT_ELS_RSP64_WQE: 22639 ndlp = job->ndlp; 22640 22641 /* word4 */ 22642 wqe->xmit_els_rsp.word4 = 0; 22643 22644 if_type = bf_get(lpfc_sli_intf_if_type, 22645 &phba->sli4_hba.sli_intf); 22646 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22647 if (job->vport->fc_flag & FC_PT2PT) { 22648 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22649 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22650 job->vport->fc_myDID); 22651 if (job->vport->fc_myDID == Fabric_DID) { 22652 bf_set(wqe_els_did, 22653 &wqe->xmit_els_rsp.wqe_dest, 0); 22654 } 22655 } 22656 } 22657 22658 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22659 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22660 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22661 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22662 LPFC_WQE_LENLOC_WORD3); 22663 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22664 22665 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22666 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22667 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22668 job->vport->fc_myDID); 22669 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22670 } 22671 22672 if (phba->sli_rev == LPFC_SLI_REV4) { 22673 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22674 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22675 22676 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22677 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22678 phba->vpi_ids[job->vport->vpi]); 22679 } 22680 command_type = OTHER_COMMAND; 22681 break; 22682 case CMD_GEN_REQUEST64_WQE: 22683 /* Word 10 */ 22684 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22685 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22686 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22687 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22688 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22689 command_type = OTHER_COMMAND; 22690 break; 22691 case CMD_XMIT_SEQUENCE64_WQE: 22692 if (phba->link_flag & LS_LOOPBACK_MODE) 22693 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22694 22695 wqe->xmit_sequence.rsvd3 = 0; 22696 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22697 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22698 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22699 LPFC_WQE_IOD_WRITE); 22700 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22701 LPFC_WQE_LENLOC_WORD12); 22702 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22703 command_type = OTHER_COMMAND; 22704 break; 22705 case CMD_XMIT_BLS_RSP64_WQE: 22706 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22707 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22708 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22709 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22710 phba->vpi_ids[phba->pport->vpi]); 22711 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22712 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22713 LPFC_WQE_LENLOC_NONE); 22714 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22715 command_type = OTHER_COMMAND; 22716 break; 22717 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22718 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22719 case CMD_SEND_FRAME: /* mds loopback */ 22720 /* cases already formatted for sli4 wqe - no chgs necessary */ 22721 return; 22722 default: 22723 dump_stack(); 22724 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22725 "6207 Invalid command 0x%x\n", 22726 cmnd); 22727 break; 22728 } 22729 22730 wqe->generic.wqe_com.abort_tag = abort_tag; 22731 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22732 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22733 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22734 } 22735