1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2015 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <linux/lockdep.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport_fc.h> 34 #include <scsi/fc/fc_fs.h> 35 #include <linux/aer.h> 36 37 #include "lpfc_hw4.h" 38 #include "lpfc_hw.h" 39 #include "lpfc_sli.h" 40 #include "lpfc_sli4.h" 41 #include "lpfc_nl.h" 42 #include "lpfc_disc.h" 43 #include "lpfc_scsi.h" 44 #include "lpfc.h" 45 #include "lpfc_crtn.h" 46 #include "lpfc_logmsg.h" 47 #include "lpfc_compat.h" 48 #include "lpfc_debugfs.h" 49 #include "lpfc_vport.h" 50 51 /* There are only four IOCB completion types. */ 52 typedef enum _lpfc_iocb_type { 53 LPFC_UNKNOWN_IOCB, 54 LPFC_UNSOL_IOCB, 55 LPFC_SOL_IOCB, 56 LPFC_ABORT_IOCB 57 } lpfc_iocb_type; 58 59 60 /* Provide function prototypes local to this module. */ 61 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 62 uint32_t); 63 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 64 uint8_t *, uint32_t *); 65 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 66 struct lpfc_iocbq *); 67 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 68 struct hbq_dmabuf *); 69 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 70 struct lpfc_cqe *); 71 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 72 int); 73 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 74 uint32_t); 75 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 76 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 77 78 static IOCB_t * 79 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 80 { 81 return &iocbq->iocb; 82 } 83 84 /** 85 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 86 * @q: The Work Queue to operate on. 87 * @wqe: The work Queue Entry to put on the Work queue. 88 * 89 * This routine will copy the contents of @wqe to the next available entry on 90 * the @q. This function will then ring the Work Queue Doorbell to signal the 91 * HBA to start processing the Work Queue Entry. This function returns 0 if 92 * successful. If no entries are available on @q then this function will return 93 * -ENOMEM. 94 * The caller is expected to hold the hbalock when calling this routine. 95 **/ 96 static uint32_t 97 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 98 { 99 union lpfc_wqe *temp_wqe; 100 struct lpfc_register doorbell; 101 uint32_t host_index; 102 uint32_t idx; 103 104 /* sanity check on queue memory */ 105 if (unlikely(!q)) 106 return -ENOMEM; 107 temp_wqe = q->qe[q->host_index].wqe; 108 109 /* If the host has not yet processed the next entry then we are done */ 110 idx = ((q->host_index + 1) % q->entry_count); 111 if (idx == q->hba_index) { 112 q->WQ_overflow++; 113 return -ENOMEM; 114 } 115 q->WQ_posted++; 116 /* set consumption flag every once in a while */ 117 if (!((q->host_index + 1) % q->entry_repost)) 118 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 119 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 120 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 121 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 122 123 /* Update the host index before invoking device */ 124 host_index = q->host_index; 125 126 q->host_index = idx; 127 128 /* Ring Doorbell */ 129 doorbell.word0 = 0; 130 if (q->db_format == LPFC_DB_LIST_FORMAT) { 131 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 132 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 133 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 134 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 135 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 136 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 137 } else { 138 return -EINVAL; 139 } 140 writel(doorbell.word0, q->db_regaddr); 141 142 return 0; 143 } 144 145 /** 146 * lpfc_sli4_wq_release - Updates internal hba index for WQ 147 * @q: The Work Queue to operate on. 148 * @index: The index to advance the hba index to. 149 * 150 * This routine will update the HBA index of a queue to reflect consumption of 151 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 152 * an entry the host calls this function to update the queue's internal 153 * pointers. This routine returns the number of entries that were consumed by 154 * the HBA. 155 **/ 156 static uint32_t 157 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 158 { 159 uint32_t released = 0; 160 161 /* sanity check on queue memory */ 162 if (unlikely(!q)) 163 return 0; 164 165 if (q->hba_index == index) 166 return 0; 167 do { 168 q->hba_index = ((q->hba_index + 1) % q->entry_count); 169 released++; 170 } while (q->hba_index != index); 171 return released; 172 } 173 174 /** 175 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 176 * @q: The Mailbox Queue to operate on. 177 * @wqe: The Mailbox Queue Entry to put on the Work queue. 178 * 179 * This routine will copy the contents of @mqe to the next available entry on 180 * the @q. This function will then ring the Work Queue Doorbell to signal the 181 * HBA to start processing the Work Queue Entry. This function returns 0 if 182 * successful. If no entries are available on @q then this function will return 183 * -ENOMEM. 184 * The caller is expected to hold the hbalock when calling this routine. 185 **/ 186 static uint32_t 187 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 188 { 189 struct lpfc_mqe *temp_mqe; 190 struct lpfc_register doorbell; 191 192 /* sanity check on queue memory */ 193 if (unlikely(!q)) 194 return -ENOMEM; 195 temp_mqe = q->qe[q->host_index].mqe; 196 197 /* If the host has not yet processed the next entry then we are done */ 198 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 199 return -ENOMEM; 200 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 201 /* Save off the mailbox pointer for completion */ 202 q->phba->mbox = (MAILBOX_t *)temp_mqe; 203 204 /* Update the host index before invoking device */ 205 q->host_index = ((q->host_index + 1) % q->entry_count); 206 207 /* Ring Doorbell */ 208 doorbell.word0 = 0; 209 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 210 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 211 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 212 return 0; 213 } 214 215 /** 216 * lpfc_sli4_mq_release - Updates internal hba index for MQ 217 * @q: The Mailbox Queue to operate on. 218 * 219 * This routine will update the HBA index of a queue to reflect consumption of 220 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 221 * an entry the host calls this function to update the queue's internal 222 * pointers. This routine returns the number of entries that were consumed by 223 * the HBA. 224 **/ 225 static uint32_t 226 lpfc_sli4_mq_release(struct lpfc_queue *q) 227 { 228 /* sanity check on queue memory */ 229 if (unlikely(!q)) 230 return 0; 231 232 /* Clear the mailbox pointer for completion */ 233 q->phba->mbox = NULL; 234 q->hba_index = ((q->hba_index + 1) % q->entry_count); 235 return 1; 236 } 237 238 /** 239 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 240 * @q: The Event Queue to get the first valid EQE from 241 * 242 * This routine will get the first valid Event Queue Entry from @q, update 243 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 244 * the Queue (no more work to do), or the Queue is full of EQEs that have been 245 * processed, but not popped back to the HBA then this routine will return NULL. 246 **/ 247 static struct lpfc_eqe * 248 lpfc_sli4_eq_get(struct lpfc_queue *q) 249 { 250 struct lpfc_eqe *eqe; 251 uint32_t idx; 252 253 /* sanity check on queue memory */ 254 if (unlikely(!q)) 255 return NULL; 256 eqe = q->qe[q->hba_index].eqe; 257 258 /* If the next EQE is not valid then we are done */ 259 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 260 return NULL; 261 /* If the host has not yet processed the next entry then we are done */ 262 idx = ((q->hba_index + 1) % q->entry_count); 263 if (idx == q->host_index) 264 return NULL; 265 266 q->hba_index = idx; 267 268 /* 269 * insert barrier for instruction interlock : data from the hardware 270 * must have the valid bit checked before it can be copied and acted 271 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 272 * instructions allowing action on content before valid bit checked, 273 * add barrier here as well. May not be needed as "content" is a 274 * single 32-bit entity here (vs multi word structure for cq's). 275 */ 276 mb(); 277 return eqe; 278 } 279 280 /** 281 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 282 * @q: The Event Queue to disable interrupts 283 * 284 **/ 285 static inline void 286 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 287 { 288 struct lpfc_register doorbell; 289 290 doorbell.word0 = 0; 291 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 292 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 293 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 294 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 295 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 296 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 297 } 298 299 /** 300 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 301 * @q: The Event Queue that the host has completed processing for. 302 * @arm: Indicates whether the host wants to arms this CQ. 303 * 304 * This routine will mark all Event Queue Entries on @q, from the last 305 * known completed entry to the last entry that was processed, as completed 306 * by clearing the valid bit for each completion queue entry. Then it will 307 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 308 * The internal host index in the @q will be updated by this routine to indicate 309 * that the host has finished processing the entries. The @arm parameter 310 * indicates that the queue should be rearmed when ringing the doorbell. 311 * 312 * This function will return the number of EQEs that were popped. 313 **/ 314 uint32_t 315 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 316 { 317 uint32_t released = 0; 318 struct lpfc_eqe *temp_eqe; 319 struct lpfc_register doorbell; 320 321 /* sanity check on queue memory */ 322 if (unlikely(!q)) 323 return 0; 324 325 /* while there are valid entries */ 326 while (q->hba_index != q->host_index) { 327 temp_eqe = q->qe[q->host_index].eqe; 328 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 329 released++; 330 q->host_index = ((q->host_index + 1) % q->entry_count); 331 } 332 if (unlikely(released == 0 && !arm)) 333 return 0; 334 335 /* ring doorbell for number popped */ 336 doorbell.word0 = 0; 337 if (arm) { 338 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 339 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 340 } 341 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 342 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 343 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 344 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 345 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 346 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 347 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 348 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 349 readl(q->phba->sli4_hba.EQCQDBregaddr); 350 return released; 351 } 352 353 /** 354 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 355 * @q: The Completion Queue to get the first valid CQE from 356 * 357 * This routine will get the first valid Completion Queue Entry from @q, update 358 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 359 * the Queue (no more work to do), or the Queue is full of CQEs that have been 360 * processed, but not popped back to the HBA then this routine will return NULL. 361 **/ 362 static struct lpfc_cqe * 363 lpfc_sli4_cq_get(struct lpfc_queue *q) 364 { 365 struct lpfc_cqe *cqe; 366 uint32_t idx; 367 368 /* sanity check on queue memory */ 369 if (unlikely(!q)) 370 return NULL; 371 372 /* If the next CQE is not valid then we are done */ 373 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 374 return NULL; 375 /* If the host has not yet processed the next entry then we are done */ 376 idx = ((q->hba_index + 1) % q->entry_count); 377 if (idx == q->host_index) 378 return NULL; 379 380 cqe = q->qe[q->hba_index].cqe; 381 q->hba_index = idx; 382 383 /* 384 * insert barrier for instruction interlock : data from the hardware 385 * must have the valid bit checked before it can be copied and acted 386 * upon. Speculative instructions were allowing a bcopy at the start 387 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 388 * after our return, to copy data before the valid bit check above 389 * was done. As such, some of the copied data was stale. The barrier 390 * ensures the check is before any data is copied. 391 */ 392 mb(); 393 return cqe; 394 } 395 396 /** 397 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 398 * @q: The Completion Queue that the host has completed processing for. 399 * @arm: Indicates whether the host wants to arms this CQ. 400 * 401 * This routine will mark all Completion queue entries on @q, from the last 402 * known completed entry to the last entry that was processed, as completed 403 * by clearing the valid bit for each completion queue entry. Then it will 404 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 405 * The internal host index in the @q will be updated by this routine to indicate 406 * that the host has finished processing the entries. The @arm parameter 407 * indicates that the queue should be rearmed when ringing the doorbell. 408 * 409 * This function will return the number of CQEs that were released. 410 **/ 411 uint32_t 412 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 413 { 414 uint32_t released = 0; 415 struct lpfc_cqe *temp_qe; 416 struct lpfc_register doorbell; 417 418 /* sanity check on queue memory */ 419 if (unlikely(!q)) 420 return 0; 421 /* while there are valid entries */ 422 while (q->hba_index != q->host_index) { 423 temp_qe = q->qe[q->host_index].cqe; 424 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 425 released++; 426 q->host_index = ((q->host_index + 1) % q->entry_count); 427 } 428 if (unlikely(released == 0 && !arm)) 429 return 0; 430 431 /* ring doorbell for number popped */ 432 doorbell.word0 = 0; 433 if (arm) 434 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 435 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 436 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 437 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 438 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 439 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 440 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 441 return released; 442 } 443 444 /** 445 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 446 * @q: The Header Receive Queue to operate on. 447 * @wqe: The Receive Queue Entry to put on the Receive queue. 448 * 449 * This routine will copy the contents of @wqe to the next available entry on 450 * the @q. This function will then ring the Receive Queue Doorbell to signal the 451 * HBA to start processing the Receive Queue Entry. This function returns the 452 * index that the rqe was copied to if successful. If no entries are available 453 * on @q then this function will return -ENOMEM. 454 * The caller is expected to hold the hbalock when calling this routine. 455 **/ 456 static int 457 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 458 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 459 { 460 struct lpfc_rqe *temp_hrqe; 461 struct lpfc_rqe *temp_drqe; 462 struct lpfc_register doorbell; 463 int put_index; 464 465 /* sanity check on queue memory */ 466 if (unlikely(!hq) || unlikely(!dq)) 467 return -ENOMEM; 468 put_index = hq->host_index; 469 temp_hrqe = hq->qe[hq->host_index].rqe; 470 temp_drqe = dq->qe[dq->host_index].rqe; 471 472 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 473 return -EINVAL; 474 if (hq->host_index != dq->host_index) 475 return -EINVAL; 476 /* If the host has not yet processed the next entry then we are done */ 477 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 478 return -EBUSY; 479 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 480 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 481 482 /* Update the host index to point to the next slot */ 483 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 484 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 485 486 /* Ring The Header Receive Queue Doorbell */ 487 if (!(hq->host_index % hq->entry_repost)) { 488 doorbell.word0 = 0; 489 if (hq->db_format == LPFC_DB_RING_FORMAT) { 490 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 491 hq->entry_repost); 492 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 493 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 494 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 495 hq->entry_repost); 496 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 497 hq->host_index); 498 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 499 } else { 500 return -EINVAL; 501 } 502 writel(doorbell.word0, hq->db_regaddr); 503 } 504 return put_index; 505 } 506 507 /** 508 * lpfc_sli4_rq_release - Updates internal hba index for RQ 509 * @q: The Header Receive Queue to operate on. 510 * 511 * This routine will update the HBA index of a queue to reflect consumption of 512 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 513 * consumed an entry the host calls this function to update the queue's 514 * internal pointers. This routine returns the number of entries that were 515 * consumed by the HBA. 516 **/ 517 static uint32_t 518 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 519 { 520 /* sanity check on queue memory */ 521 if (unlikely(!hq) || unlikely(!dq)) 522 return 0; 523 524 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 525 return 0; 526 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 527 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 528 return 1; 529 } 530 531 /** 532 * lpfc_cmd_iocb - Get next command iocb entry in the ring 533 * @phba: Pointer to HBA context object. 534 * @pring: Pointer to driver SLI ring object. 535 * 536 * This function returns pointer to next command iocb entry 537 * in the command ring. The caller must hold hbalock to prevent 538 * other threads consume the next command iocb. 539 * SLI-2/SLI-3 provide different sized iocbs. 540 **/ 541 static inline IOCB_t * 542 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 543 { 544 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 545 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 546 } 547 548 /** 549 * lpfc_resp_iocb - Get next response iocb entry in the ring 550 * @phba: Pointer to HBA context object. 551 * @pring: Pointer to driver SLI ring object. 552 * 553 * This function returns pointer to next response iocb entry 554 * in the response ring. The caller must hold hbalock to make sure 555 * that no other thread consume the next response iocb. 556 * SLI-2/SLI-3 provide different sized iocbs. 557 **/ 558 static inline IOCB_t * 559 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 560 { 561 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 562 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 563 } 564 565 /** 566 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 567 * @phba: Pointer to HBA context object. 568 * 569 * This function is called with hbalock held. This function 570 * allocates a new driver iocb object from the iocb pool. If the 571 * allocation is successful, it returns pointer to the newly 572 * allocated iocb object else it returns NULL. 573 **/ 574 struct lpfc_iocbq * 575 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 576 { 577 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 578 struct lpfc_iocbq * iocbq = NULL; 579 580 lockdep_assert_held(&phba->hbalock); 581 582 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 583 if (iocbq) 584 phba->iocb_cnt++; 585 if (phba->iocb_cnt > phba->iocb_max) 586 phba->iocb_max = phba->iocb_cnt; 587 return iocbq; 588 } 589 590 /** 591 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 592 * @phba: Pointer to HBA context object. 593 * @xritag: XRI value. 594 * 595 * This function clears the sglq pointer from the array of acive 596 * sglq's. The xritag that is passed in is used to index into the 597 * array. Before the xritag can be used it needs to be adjusted 598 * by subtracting the xribase. 599 * 600 * Returns sglq ponter = success, NULL = Failure. 601 **/ 602 static struct lpfc_sglq * 603 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 604 { 605 struct lpfc_sglq *sglq; 606 607 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 608 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 609 return sglq; 610 } 611 612 /** 613 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 614 * @phba: Pointer to HBA context object. 615 * @xritag: XRI value. 616 * 617 * This function returns the sglq pointer from the array of acive 618 * sglq's. The xritag that is passed in is used to index into the 619 * array. Before the xritag can be used it needs to be adjusted 620 * by subtracting the xribase. 621 * 622 * Returns sglq ponter = success, NULL = Failure. 623 **/ 624 struct lpfc_sglq * 625 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 626 { 627 struct lpfc_sglq *sglq; 628 629 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 630 return sglq; 631 } 632 633 /** 634 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 635 * @phba: Pointer to HBA context object. 636 * @xritag: xri used in this exchange. 637 * @rrq: The RRQ to be cleared. 638 * 639 **/ 640 void 641 lpfc_clr_rrq_active(struct lpfc_hba *phba, 642 uint16_t xritag, 643 struct lpfc_node_rrq *rrq) 644 { 645 struct lpfc_nodelist *ndlp = NULL; 646 647 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 648 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 649 650 /* The target DID could have been swapped (cable swap) 651 * we should use the ndlp from the findnode if it is 652 * available. 653 */ 654 if ((!ndlp) && rrq->ndlp) 655 ndlp = rrq->ndlp; 656 657 if (!ndlp) 658 goto out; 659 660 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 661 rrq->send_rrq = 0; 662 rrq->xritag = 0; 663 rrq->rrq_stop_time = 0; 664 } 665 out: 666 mempool_free(rrq, phba->rrq_pool); 667 } 668 669 /** 670 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 671 * @phba: Pointer to HBA context object. 672 * 673 * This function is called with hbalock held. This function 674 * Checks if stop_time (ratov from setting rrq active) has 675 * been reached, if it has and the send_rrq flag is set then 676 * it will call lpfc_send_rrq. If the send_rrq flag is not set 677 * then it will just call the routine to clear the rrq and 678 * free the rrq resource. 679 * The timer is set to the next rrq that is going to expire before 680 * leaving the routine. 681 * 682 **/ 683 void 684 lpfc_handle_rrq_active(struct lpfc_hba *phba) 685 { 686 struct lpfc_node_rrq *rrq; 687 struct lpfc_node_rrq *nextrrq; 688 unsigned long next_time; 689 unsigned long iflags; 690 LIST_HEAD(send_rrq); 691 692 spin_lock_irqsave(&phba->hbalock, iflags); 693 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 694 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 695 list_for_each_entry_safe(rrq, nextrrq, 696 &phba->active_rrq_list, list) { 697 if (time_after(jiffies, rrq->rrq_stop_time)) 698 list_move(&rrq->list, &send_rrq); 699 else if (time_before(rrq->rrq_stop_time, next_time)) 700 next_time = rrq->rrq_stop_time; 701 } 702 spin_unlock_irqrestore(&phba->hbalock, iflags); 703 if ((!list_empty(&phba->active_rrq_list)) && 704 (!(phba->pport->load_flag & FC_UNLOADING))) 705 mod_timer(&phba->rrq_tmr, next_time); 706 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 707 list_del(&rrq->list); 708 if (!rrq->send_rrq) 709 /* this call will free the rrq */ 710 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 711 else if (lpfc_send_rrq(phba, rrq)) { 712 /* if we send the rrq then the completion handler 713 * will clear the bit in the xribitmap. 714 */ 715 lpfc_clr_rrq_active(phba, rrq->xritag, 716 rrq); 717 } 718 } 719 } 720 721 /** 722 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 723 * @vport: Pointer to vport context object. 724 * @xri: The xri used in the exchange. 725 * @did: The targets DID for this exchange. 726 * 727 * returns NULL = rrq not found in the phba->active_rrq_list. 728 * rrq = rrq for this xri and target. 729 **/ 730 struct lpfc_node_rrq * 731 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 732 { 733 struct lpfc_hba *phba = vport->phba; 734 struct lpfc_node_rrq *rrq; 735 struct lpfc_node_rrq *nextrrq; 736 unsigned long iflags; 737 738 if (phba->sli_rev != LPFC_SLI_REV4) 739 return NULL; 740 spin_lock_irqsave(&phba->hbalock, iflags); 741 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 742 if (rrq->vport == vport && rrq->xritag == xri && 743 rrq->nlp_DID == did){ 744 list_del(&rrq->list); 745 spin_unlock_irqrestore(&phba->hbalock, iflags); 746 return rrq; 747 } 748 } 749 spin_unlock_irqrestore(&phba->hbalock, iflags); 750 return NULL; 751 } 752 753 /** 754 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 755 * @vport: Pointer to vport context object. 756 * @ndlp: Pointer to the lpfc_node_list structure. 757 * If ndlp is NULL Remove all active RRQs for this vport from the 758 * phba->active_rrq_list and clear the rrq. 759 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 760 **/ 761 void 762 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 763 764 { 765 struct lpfc_hba *phba = vport->phba; 766 struct lpfc_node_rrq *rrq; 767 struct lpfc_node_rrq *nextrrq; 768 unsigned long iflags; 769 LIST_HEAD(rrq_list); 770 771 if (phba->sli_rev != LPFC_SLI_REV4) 772 return; 773 if (!ndlp) { 774 lpfc_sli4_vport_delete_els_xri_aborted(vport); 775 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 776 } 777 spin_lock_irqsave(&phba->hbalock, iflags); 778 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 779 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 780 list_move(&rrq->list, &rrq_list); 781 spin_unlock_irqrestore(&phba->hbalock, iflags); 782 783 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 784 list_del(&rrq->list); 785 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 786 } 787 } 788 789 /** 790 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 791 * @phba: Pointer to HBA context object. 792 * @ndlp: Targets nodelist pointer for this exchange. 793 * @xritag the xri in the bitmap to test. 794 * 795 * This function is called with hbalock held. This function 796 * returns 0 = rrq not active for this xri 797 * 1 = rrq is valid for this xri. 798 **/ 799 int 800 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 801 uint16_t xritag) 802 { 803 lockdep_assert_held(&phba->hbalock); 804 if (!ndlp) 805 return 0; 806 if (!ndlp->active_rrqs_xri_bitmap) 807 return 0; 808 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 809 return 1; 810 else 811 return 0; 812 } 813 814 /** 815 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 816 * @phba: Pointer to HBA context object. 817 * @ndlp: nodelist pointer for this target. 818 * @xritag: xri used in this exchange. 819 * @rxid: Remote Exchange ID. 820 * @send_rrq: Flag used to determine if we should send rrq els cmd. 821 * 822 * This function takes the hbalock. 823 * The active bit is always set in the active rrq xri_bitmap even 824 * if there is no slot avaiable for the other rrq information. 825 * 826 * returns 0 rrq actived for this xri 827 * < 0 No memory or invalid ndlp. 828 **/ 829 int 830 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 831 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 832 { 833 unsigned long iflags; 834 struct lpfc_node_rrq *rrq; 835 int empty; 836 837 if (!ndlp) 838 return -EINVAL; 839 840 if (!phba->cfg_enable_rrq) 841 return -EINVAL; 842 843 spin_lock_irqsave(&phba->hbalock, iflags); 844 if (phba->pport->load_flag & FC_UNLOADING) { 845 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 846 goto out; 847 } 848 849 /* 850 * set the active bit even if there is no mem available. 851 */ 852 if (NLP_CHK_FREE_REQ(ndlp)) 853 goto out; 854 855 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 856 goto out; 857 858 if (!ndlp->active_rrqs_xri_bitmap) 859 goto out; 860 861 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 862 goto out; 863 864 spin_unlock_irqrestore(&phba->hbalock, iflags); 865 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 866 if (!rrq) { 867 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 868 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 869 " DID:0x%x Send:%d\n", 870 xritag, rxid, ndlp->nlp_DID, send_rrq); 871 return -EINVAL; 872 } 873 if (phba->cfg_enable_rrq == 1) 874 rrq->send_rrq = send_rrq; 875 else 876 rrq->send_rrq = 0; 877 rrq->xritag = xritag; 878 rrq->rrq_stop_time = jiffies + 879 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 880 rrq->ndlp = ndlp; 881 rrq->nlp_DID = ndlp->nlp_DID; 882 rrq->vport = ndlp->vport; 883 rrq->rxid = rxid; 884 spin_lock_irqsave(&phba->hbalock, iflags); 885 empty = list_empty(&phba->active_rrq_list); 886 list_add_tail(&rrq->list, &phba->active_rrq_list); 887 phba->hba_flag |= HBA_RRQ_ACTIVE; 888 if (empty) 889 lpfc_worker_wake_up(phba); 890 spin_unlock_irqrestore(&phba->hbalock, iflags); 891 return 0; 892 out: 893 spin_unlock_irqrestore(&phba->hbalock, iflags); 894 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 895 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 896 " DID:0x%x Send:%d\n", 897 xritag, rxid, ndlp->nlp_DID, send_rrq); 898 return -EINVAL; 899 } 900 901 /** 902 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 903 * @phba: Pointer to HBA context object. 904 * @piocb: Pointer to the iocbq. 905 * 906 * This function is called with the ring lock held. This function 907 * gets a new driver sglq object from the sglq list. If the 908 * list is not empty then it is successful, it returns pointer to the newly 909 * allocated sglq object else it returns NULL. 910 **/ 911 static struct lpfc_sglq * 912 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 913 { 914 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 915 struct lpfc_sglq *sglq = NULL; 916 struct lpfc_sglq *start_sglq = NULL; 917 struct lpfc_scsi_buf *lpfc_cmd; 918 struct lpfc_nodelist *ndlp; 919 int found = 0; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 if (piocbq->iocb_flag & LPFC_IO_FCP) { 924 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 925 ndlp = lpfc_cmd->rdata->pnode; 926 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 927 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 928 ndlp = piocbq->context_un.ndlp; 929 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 930 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 931 ndlp = NULL; 932 else 933 ndlp = piocbq->context_un.ndlp; 934 } else { 935 ndlp = piocbq->context1; 936 } 937 938 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 939 start_sglq = sglq; 940 while (!found) { 941 if (!sglq) 942 return NULL; 943 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 944 /* This xri has an rrq outstanding for this DID. 945 * put it back in the list and get another xri. 946 */ 947 list_add_tail(&sglq->list, lpfc_sgl_list); 948 sglq = NULL; 949 list_remove_head(lpfc_sgl_list, sglq, 950 struct lpfc_sglq, list); 951 if (sglq == start_sglq) { 952 sglq = NULL; 953 break; 954 } else 955 continue; 956 } 957 sglq->ndlp = ndlp; 958 found = 1; 959 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 960 sglq->state = SGL_ALLOCATED; 961 } 962 return sglq; 963 } 964 965 /** 966 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 967 * @phba: Pointer to HBA context object. 968 * 969 * This function is called with no lock held. This function 970 * allocates a new driver iocb object from the iocb pool. If the 971 * allocation is successful, it returns pointer to the newly 972 * allocated iocb object else it returns NULL. 973 **/ 974 struct lpfc_iocbq * 975 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 976 { 977 struct lpfc_iocbq * iocbq = NULL; 978 unsigned long iflags; 979 980 spin_lock_irqsave(&phba->hbalock, iflags); 981 iocbq = __lpfc_sli_get_iocbq(phba); 982 spin_unlock_irqrestore(&phba->hbalock, iflags); 983 return iocbq; 984 } 985 986 /** 987 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 988 * @phba: Pointer to HBA context object. 989 * @iocbq: Pointer to driver iocb object. 990 * 991 * This function is called with hbalock held to release driver 992 * iocb object to the iocb pool. The iotag in the iocb object 993 * does not change for each use of the iocb object. This function 994 * clears all other fields of the iocb object when it is freed. 995 * The sqlq structure that holds the xritag and phys and virtual 996 * mappings for the scatter gather list is retrieved from the 997 * active array of sglq. The get of the sglq pointer also clears 998 * the entry in the array. If the status of the IO indiactes that 999 * this IO was aborted then the sglq entry it put on the 1000 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1001 * IO has good status or fails for any other reason then the sglq 1002 * entry is added to the free list (lpfc_sgl_list). 1003 **/ 1004 static void 1005 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1006 { 1007 struct lpfc_sglq *sglq; 1008 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1009 unsigned long iflag = 0; 1010 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1011 1012 lockdep_assert_held(&phba->hbalock); 1013 1014 if (iocbq->sli4_xritag == NO_XRI) 1015 sglq = NULL; 1016 else 1017 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1018 1019 1020 if (sglq) { 1021 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1022 (sglq->state != SGL_XRI_ABORTED)) { 1023 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1024 iflag); 1025 list_add(&sglq->list, 1026 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1027 spin_unlock_irqrestore( 1028 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1029 } else { 1030 spin_lock_irqsave(&pring->ring_lock, iflag); 1031 sglq->state = SGL_FREED; 1032 sglq->ndlp = NULL; 1033 list_add_tail(&sglq->list, 1034 &phba->sli4_hba.lpfc_sgl_list); 1035 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1036 1037 /* Check if TXQ queue needs to be serviced */ 1038 if (!list_empty(&pring->txq)) 1039 lpfc_worker_wake_up(phba); 1040 } 1041 } 1042 1043 1044 /* 1045 * Clean all volatile data fields, preserve iotag and node struct. 1046 */ 1047 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1048 iocbq->sli4_lxritag = NO_XRI; 1049 iocbq->sli4_xritag = NO_XRI; 1050 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1051 } 1052 1053 1054 /** 1055 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1056 * @phba: Pointer to HBA context object. 1057 * @iocbq: Pointer to driver iocb object. 1058 * 1059 * This function is called with hbalock held to release driver 1060 * iocb object to the iocb pool. The iotag in the iocb object 1061 * does not change for each use of the iocb object. This function 1062 * clears all other fields of the iocb object when it is freed. 1063 **/ 1064 static void 1065 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1066 { 1067 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1068 1069 lockdep_assert_held(&phba->hbalock); 1070 1071 /* 1072 * Clean all volatile data fields, preserve iotag and node struct. 1073 */ 1074 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1075 iocbq->sli4_xritag = NO_XRI; 1076 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1077 } 1078 1079 /** 1080 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1081 * @phba: Pointer to HBA context object. 1082 * @iocbq: Pointer to driver iocb object. 1083 * 1084 * This function is called with hbalock held to release driver 1085 * iocb object to the iocb pool. The iotag in the iocb object 1086 * does not change for each use of the iocb object. This function 1087 * clears all other fields of the iocb object when it is freed. 1088 **/ 1089 static void 1090 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1091 { 1092 lockdep_assert_held(&phba->hbalock); 1093 1094 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1095 phba->iocb_cnt--; 1096 } 1097 1098 /** 1099 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1100 * @phba: Pointer to HBA context object. 1101 * @iocbq: Pointer to driver iocb object. 1102 * 1103 * This function is called with no lock held to release the iocb to 1104 * iocb pool. 1105 **/ 1106 void 1107 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1108 { 1109 unsigned long iflags; 1110 1111 /* 1112 * Clean all volatile data fields, preserve iotag and node struct. 1113 */ 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 __lpfc_sli_release_iocbq(phba, iocbq); 1116 spin_unlock_irqrestore(&phba->hbalock, iflags); 1117 } 1118 1119 /** 1120 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1121 * @phba: Pointer to HBA context object. 1122 * @iocblist: List of IOCBs. 1123 * @ulpstatus: ULP status in IOCB command field. 1124 * @ulpWord4: ULP word-4 in IOCB command field. 1125 * 1126 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1127 * on the list by invoking the complete callback function associated with the 1128 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1129 * fields. 1130 **/ 1131 void 1132 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1133 uint32_t ulpstatus, uint32_t ulpWord4) 1134 { 1135 struct lpfc_iocbq *piocb; 1136 1137 while (!list_empty(iocblist)) { 1138 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1139 if (!piocb->iocb_cmpl) 1140 lpfc_sli_release_iocbq(phba, piocb); 1141 else { 1142 piocb->iocb.ulpStatus = ulpstatus; 1143 piocb->iocb.un.ulpWord[4] = ulpWord4; 1144 (piocb->iocb_cmpl) (phba, piocb, piocb); 1145 } 1146 } 1147 return; 1148 } 1149 1150 /** 1151 * lpfc_sli_iocb_cmd_type - Get the iocb type 1152 * @iocb_cmnd: iocb command code. 1153 * 1154 * This function is called by ring event handler function to get the iocb type. 1155 * This function translates the iocb command to an iocb command type used to 1156 * decide the final disposition of each completed IOCB. 1157 * The function returns 1158 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1159 * LPFC_SOL_IOCB if it is a solicited iocb completion 1160 * LPFC_ABORT_IOCB if it is an abort iocb 1161 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1162 * 1163 * The caller is not required to hold any lock. 1164 **/ 1165 static lpfc_iocb_type 1166 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1167 { 1168 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1169 1170 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1171 return 0; 1172 1173 switch (iocb_cmnd) { 1174 case CMD_XMIT_SEQUENCE_CR: 1175 case CMD_XMIT_SEQUENCE_CX: 1176 case CMD_XMIT_BCAST_CN: 1177 case CMD_XMIT_BCAST_CX: 1178 case CMD_ELS_REQUEST_CR: 1179 case CMD_ELS_REQUEST_CX: 1180 case CMD_CREATE_XRI_CR: 1181 case CMD_CREATE_XRI_CX: 1182 case CMD_GET_RPI_CN: 1183 case CMD_XMIT_ELS_RSP_CX: 1184 case CMD_GET_RPI_CR: 1185 case CMD_FCP_IWRITE_CR: 1186 case CMD_FCP_IWRITE_CX: 1187 case CMD_FCP_IREAD_CR: 1188 case CMD_FCP_IREAD_CX: 1189 case CMD_FCP_ICMND_CR: 1190 case CMD_FCP_ICMND_CX: 1191 case CMD_FCP_TSEND_CX: 1192 case CMD_FCP_TRSP_CX: 1193 case CMD_FCP_TRECEIVE_CX: 1194 case CMD_FCP_AUTO_TRSP_CX: 1195 case CMD_ADAPTER_MSG: 1196 case CMD_ADAPTER_DUMP: 1197 case CMD_XMIT_SEQUENCE64_CR: 1198 case CMD_XMIT_SEQUENCE64_CX: 1199 case CMD_XMIT_BCAST64_CN: 1200 case CMD_XMIT_BCAST64_CX: 1201 case CMD_ELS_REQUEST64_CR: 1202 case CMD_ELS_REQUEST64_CX: 1203 case CMD_FCP_IWRITE64_CR: 1204 case CMD_FCP_IWRITE64_CX: 1205 case CMD_FCP_IREAD64_CR: 1206 case CMD_FCP_IREAD64_CX: 1207 case CMD_FCP_ICMND64_CR: 1208 case CMD_FCP_ICMND64_CX: 1209 case CMD_FCP_TSEND64_CX: 1210 case CMD_FCP_TRSP64_CX: 1211 case CMD_FCP_TRECEIVE64_CX: 1212 case CMD_GEN_REQUEST64_CR: 1213 case CMD_GEN_REQUEST64_CX: 1214 case CMD_XMIT_ELS_RSP64_CX: 1215 case DSSCMD_IWRITE64_CR: 1216 case DSSCMD_IWRITE64_CX: 1217 case DSSCMD_IREAD64_CR: 1218 case DSSCMD_IREAD64_CX: 1219 type = LPFC_SOL_IOCB; 1220 break; 1221 case CMD_ABORT_XRI_CN: 1222 case CMD_ABORT_XRI_CX: 1223 case CMD_CLOSE_XRI_CN: 1224 case CMD_CLOSE_XRI_CX: 1225 case CMD_XRI_ABORTED_CX: 1226 case CMD_ABORT_MXRI64_CN: 1227 case CMD_XMIT_BLS_RSP64_CX: 1228 type = LPFC_ABORT_IOCB; 1229 break; 1230 case CMD_RCV_SEQUENCE_CX: 1231 case CMD_RCV_ELS_REQ_CX: 1232 case CMD_RCV_SEQUENCE64_CX: 1233 case CMD_RCV_ELS_REQ64_CX: 1234 case CMD_ASYNC_STATUS: 1235 case CMD_IOCB_RCV_SEQ64_CX: 1236 case CMD_IOCB_RCV_ELS64_CX: 1237 case CMD_IOCB_RCV_CONT64_CX: 1238 case CMD_IOCB_RET_XRI64_CX: 1239 type = LPFC_UNSOL_IOCB; 1240 break; 1241 case CMD_IOCB_XMIT_MSEQ64_CR: 1242 case CMD_IOCB_XMIT_MSEQ64_CX: 1243 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1244 case CMD_IOCB_RCV_ELS_LIST64_CX: 1245 case CMD_IOCB_CLOSE_EXTENDED_CN: 1246 case CMD_IOCB_ABORT_EXTENDED_CN: 1247 case CMD_IOCB_RET_HBQE64_CN: 1248 case CMD_IOCB_FCP_IBIDIR64_CR: 1249 case CMD_IOCB_FCP_IBIDIR64_CX: 1250 case CMD_IOCB_FCP_ITASKMGT64_CX: 1251 case CMD_IOCB_LOGENTRY_CN: 1252 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1253 printk("%s - Unhandled SLI-3 Command x%x\n", 1254 __func__, iocb_cmnd); 1255 type = LPFC_UNKNOWN_IOCB; 1256 break; 1257 default: 1258 type = LPFC_UNKNOWN_IOCB; 1259 break; 1260 } 1261 1262 return type; 1263 } 1264 1265 /** 1266 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1267 * @phba: Pointer to HBA context object. 1268 * 1269 * This function is called from SLI initialization code 1270 * to configure every ring of the HBA's SLI interface. The 1271 * caller is not required to hold any lock. This function issues 1272 * a config_ring mailbox command for each ring. 1273 * This function returns zero if successful else returns a negative 1274 * error code. 1275 **/ 1276 static int 1277 lpfc_sli_ring_map(struct lpfc_hba *phba) 1278 { 1279 struct lpfc_sli *psli = &phba->sli; 1280 LPFC_MBOXQ_t *pmb; 1281 MAILBOX_t *pmbox; 1282 int i, rc, ret = 0; 1283 1284 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1285 if (!pmb) 1286 return -ENOMEM; 1287 pmbox = &pmb->u.mb; 1288 phba->link_state = LPFC_INIT_MBX_CMDS; 1289 for (i = 0; i < psli->num_rings; i++) { 1290 lpfc_config_ring(phba, i, pmb); 1291 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1292 if (rc != MBX_SUCCESS) { 1293 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1294 "0446 Adapter failed to init (%d), " 1295 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1296 "ring %d\n", 1297 rc, pmbox->mbxCommand, 1298 pmbox->mbxStatus, i); 1299 phba->link_state = LPFC_HBA_ERROR; 1300 ret = -ENXIO; 1301 break; 1302 } 1303 } 1304 mempool_free(pmb, phba->mbox_mem_pool); 1305 return ret; 1306 } 1307 1308 /** 1309 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1310 * @phba: Pointer to HBA context object. 1311 * @pring: Pointer to driver SLI ring object. 1312 * @piocb: Pointer to the driver iocb object. 1313 * 1314 * This function is called with hbalock held. The function adds the 1315 * new iocb to txcmplq of the given ring. This function always returns 1316 * 0. If this function is called for ELS ring, this function checks if 1317 * there is a vport associated with the ELS command. This function also 1318 * starts els_tmofunc timer if this is an ELS command. 1319 **/ 1320 static int 1321 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1322 struct lpfc_iocbq *piocb) 1323 { 1324 lockdep_assert_held(&phba->hbalock); 1325 1326 list_add_tail(&piocb->list, &pring->txcmplq); 1327 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1328 1329 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1330 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1331 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN) && 1332 (!(piocb->vport->load_flag & FC_UNLOADING))) { 1333 if (!piocb->vport) 1334 BUG(); 1335 else 1336 mod_timer(&piocb->vport->els_tmofunc, 1337 jiffies + 1338 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1339 } 1340 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * lpfc_sli_ringtx_get - Get first element of the txq 1347 * @phba: Pointer to HBA context object. 1348 * @pring: Pointer to driver SLI ring object. 1349 * 1350 * This function is called with hbalock held to get next 1351 * iocb in txq of the given ring. If there is any iocb in 1352 * the txq, the function returns first iocb in the list after 1353 * removing the iocb from the list, else it returns NULL. 1354 **/ 1355 struct lpfc_iocbq * 1356 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1357 { 1358 struct lpfc_iocbq *cmd_iocb; 1359 1360 lockdep_assert_held(&phba->hbalock); 1361 1362 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1363 return cmd_iocb; 1364 } 1365 1366 /** 1367 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1368 * @phba: Pointer to HBA context object. 1369 * @pring: Pointer to driver SLI ring object. 1370 * 1371 * This function is called with hbalock held and the caller must post the 1372 * iocb without releasing the lock. If the caller releases the lock, 1373 * iocb slot returned by the function is not guaranteed to be available. 1374 * The function returns pointer to the next available iocb slot if there 1375 * is available slot in the ring, else it returns NULL. 1376 * If the get index of the ring is ahead of the put index, the function 1377 * will post an error attention event to the worker thread to take the 1378 * HBA to offline state. 1379 **/ 1380 static IOCB_t * 1381 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1382 { 1383 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1384 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1385 1386 lockdep_assert_held(&phba->hbalock); 1387 1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1390 pring->sli.sli3.next_cmdidx = 0; 1391 1392 if (unlikely(pring->sli.sli3.local_getidx == 1393 pring->sli.sli3.next_cmdidx)) { 1394 1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1396 1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1399 "0315 Ring %d issue: portCmdGet %d " 1400 "is bigger than cmd ring %d\n", 1401 pring->ringno, 1402 pring->sli.sli3.local_getidx, 1403 max_cmd_idx); 1404 1405 phba->link_state = LPFC_HBA_ERROR; 1406 /* 1407 * All error attention handlers are posted to 1408 * worker thread 1409 */ 1410 phba->work_ha |= HA_ERATT; 1411 phba->work_hs = HS_FFER3; 1412 1413 lpfc_worker_wake_up(phba); 1414 1415 return NULL; 1416 } 1417 1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1419 return NULL; 1420 } 1421 1422 return lpfc_cmd_iocb(phba, pring); 1423 } 1424 1425 /** 1426 * lpfc_sli_next_iotag - Get an iotag for the iocb 1427 * @phba: Pointer to HBA context object. 1428 * @iocbq: Pointer to driver iocb object. 1429 * 1430 * This function gets an iotag for the iocb. If there is no unused iotag and 1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1432 * array and assigns a new iotag. 1433 * The function returns the allocated iotag if successful, else returns zero. 1434 * Zero is not a valid iotag. 1435 * The caller is not required to hold any lock. 1436 **/ 1437 uint16_t 1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1439 { 1440 struct lpfc_iocbq **new_arr; 1441 struct lpfc_iocbq **old_arr; 1442 size_t new_len; 1443 struct lpfc_sli *psli = &phba->sli; 1444 uint16_t iotag; 1445 1446 spin_lock_irq(&phba->hbalock); 1447 iotag = psli->last_iotag; 1448 if(++iotag < psli->iocbq_lookup_len) { 1449 psli->last_iotag = iotag; 1450 psli->iocbq_lookup[iotag] = iocbq; 1451 spin_unlock_irq(&phba->hbalock); 1452 iocbq->iotag = iotag; 1453 return iotag; 1454 } else if (psli->iocbq_lookup_len < (0xffff 1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1457 spin_unlock_irq(&phba->hbalock); 1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1459 GFP_KERNEL); 1460 if (new_arr) { 1461 spin_lock_irq(&phba->hbalock); 1462 old_arr = psli->iocbq_lookup; 1463 if (new_len <= psli->iocbq_lookup_len) { 1464 /* highly unprobable case */ 1465 kfree(new_arr); 1466 iotag = psli->last_iotag; 1467 if(++iotag < psli->iocbq_lookup_len) { 1468 psli->last_iotag = iotag; 1469 psli->iocbq_lookup[iotag] = iocbq; 1470 spin_unlock_irq(&phba->hbalock); 1471 iocbq->iotag = iotag; 1472 return iotag; 1473 } 1474 spin_unlock_irq(&phba->hbalock); 1475 return 0; 1476 } 1477 if (psli->iocbq_lookup) 1478 memcpy(new_arr, old_arr, 1479 ((psli->last_iotag + 1) * 1480 sizeof (struct lpfc_iocbq *))); 1481 psli->iocbq_lookup = new_arr; 1482 psli->iocbq_lookup_len = new_len; 1483 psli->last_iotag = iotag; 1484 psli->iocbq_lookup[iotag] = iocbq; 1485 spin_unlock_irq(&phba->hbalock); 1486 iocbq->iotag = iotag; 1487 kfree(old_arr); 1488 return iotag; 1489 } 1490 } else 1491 spin_unlock_irq(&phba->hbalock); 1492 1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1495 psli->last_iotag); 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1502 * @phba: Pointer to HBA context object. 1503 * @pring: Pointer to driver SLI ring object. 1504 * @iocb: Pointer to iocb slot in the ring. 1505 * @nextiocb: Pointer to driver iocb object which need to be 1506 * posted to firmware. 1507 * 1508 * This function is called with hbalock held to post a new iocb to 1509 * the firmware. This function copies the new iocb to ring iocb slot and 1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1511 * a completion call back for this iocb else the function will free the 1512 * iocb object. 1513 **/ 1514 static void 1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1517 { 1518 lockdep_assert_held(&phba->hbalock); 1519 /* 1520 * Set up an iotag 1521 */ 1522 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1523 1524 1525 if (pring->ringno == LPFC_ELS_RING) { 1526 lpfc_debugfs_slow_ring_trc(phba, 1527 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1528 *(((uint32_t *) &nextiocb->iocb) + 4), 1529 *(((uint32_t *) &nextiocb->iocb) + 6), 1530 *(((uint32_t *) &nextiocb->iocb) + 7)); 1531 } 1532 1533 /* 1534 * Issue iocb command to adapter 1535 */ 1536 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1537 wmb(); 1538 pring->stats.iocb_cmd++; 1539 1540 /* 1541 * If there is no completion routine to call, we can release the 1542 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1543 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1544 */ 1545 if (nextiocb->iocb_cmpl) 1546 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1547 else 1548 __lpfc_sli_release_iocbq(phba, nextiocb); 1549 1550 /* 1551 * Let the HBA know what IOCB slot will be the next one the 1552 * driver will put a command into. 1553 */ 1554 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1555 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1556 } 1557 1558 /** 1559 * lpfc_sli_update_full_ring - Update the chip attention register 1560 * @phba: Pointer to HBA context object. 1561 * @pring: Pointer to driver SLI ring object. 1562 * 1563 * The caller is not required to hold any lock for calling this function. 1564 * This function updates the chip attention bits for the ring to inform firmware 1565 * that there are pending work to be done for this ring and requests an 1566 * interrupt when there is space available in the ring. This function is 1567 * called when the driver is unable to post more iocbs to the ring due 1568 * to unavailability of space in the ring. 1569 **/ 1570 static void 1571 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1572 { 1573 int ringno = pring->ringno; 1574 1575 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1576 1577 wmb(); 1578 1579 /* 1580 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1581 * The HBA will tell us when an IOCB entry is available. 1582 */ 1583 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1584 readl(phba->CAregaddr); /* flush */ 1585 1586 pring->stats.iocb_cmd_full++; 1587 } 1588 1589 /** 1590 * lpfc_sli_update_ring - Update chip attention register 1591 * @phba: Pointer to HBA context object. 1592 * @pring: Pointer to driver SLI ring object. 1593 * 1594 * This function updates the chip attention register bit for the 1595 * given ring to inform HBA that there is more work to be done 1596 * in this ring. The caller is not required to hold any lock. 1597 **/ 1598 static void 1599 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1600 { 1601 int ringno = pring->ringno; 1602 1603 /* 1604 * Tell the HBA that there is work to do in this ring. 1605 */ 1606 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1607 wmb(); 1608 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1609 readl(phba->CAregaddr); /* flush */ 1610 } 1611 } 1612 1613 /** 1614 * lpfc_sli_resume_iocb - Process iocbs in the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to post pending iocbs 1619 * in the txq to the firmware. This function is called when driver 1620 * detects space available in the ring. 1621 **/ 1622 static void 1623 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1624 { 1625 IOCB_t *iocb; 1626 struct lpfc_iocbq *nextiocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 /* 1631 * Check to see if: 1632 * (a) there is anything on the txq to send 1633 * (b) link is up 1634 * (c) link attention events can be processed (fcp ring only) 1635 * (d) IOCB processing is not blocked by the outstanding mbox command. 1636 */ 1637 1638 if (lpfc_is_link_up(phba) && 1639 (!list_empty(&pring->txq)) && 1640 (pring->ringno != phba->sli.fcp_ring || 1641 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1642 1643 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1644 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1645 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1646 1647 if (iocb) 1648 lpfc_sli_update_ring(phba, pring); 1649 else 1650 lpfc_sli_update_full_ring(phba, pring); 1651 } 1652 1653 return; 1654 } 1655 1656 /** 1657 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1658 * @phba: Pointer to HBA context object. 1659 * @hbqno: HBQ number. 1660 * 1661 * This function is called with hbalock held to get the next 1662 * available slot for the given HBQ. If there is free slot 1663 * available for the HBQ it will return pointer to the next available 1664 * HBQ entry else it will return NULL. 1665 **/ 1666 static struct lpfc_hbq_entry * 1667 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1668 { 1669 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1670 1671 lockdep_assert_held(&phba->hbalock); 1672 1673 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1674 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1675 hbqp->next_hbqPutIdx = 0; 1676 1677 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1678 uint32_t raw_index = phba->hbq_get[hbqno]; 1679 uint32_t getidx = le32_to_cpu(raw_index); 1680 1681 hbqp->local_hbqGetIdx = getidx; 1682 1683 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1684 lpfc_printf_log(phba, KERN_ERR, 1685 LOG_SLI | LOG_VPORT, 1686 "1802 HBQ %d: local_hbqGetIdx " 1687 "%u is > than hbqp->entry_count %u\n", 1688 hbqno, hbqp->local_hbqGetIdx, 1689 hbqp->entry_count); 1690 1691 phba->link_state = LPFC_HBA_ERROR; 1692 return NULL; 1693 } 1694 1695 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1696 return NULL; 1697 } 1698 1699 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1700 hbqp->hbqPutIdx; 1701 } 1702 1703 /** 1704 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1705 * @phba: Pointer to HBA context object. 1706 * 1707 * This function is called with no lock held to free all the 1708 * hbq buffers while uninitializing the SLI interface. It also 1709 * frees the HBQ buffers returned by the firmware but not yet 1710 * processed by the upper layers. 1711 **/ 1712 void 1713 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1714 { 1715 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1716 struct hbq_dmabuf *hbq_buf; 1717 unsigned long flags; 1718 int i, hbq_count; 1719 uint32_t hbqno; 1720 1721 hbq_count = lpfc_sli_hbq_count(); 1722 /* Return all memory used by all HBQs */ 1723 spin_lock_irqsave(&phba->hbalock, flags); 1724 for (i = 0; i < hbq_count; ++i) { 1725 list_for_each_entry_safe(dmabuf, next_dmabuf, 1726 &phba->hbqs[i].hbq_buffer_list, list) { 1727 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1728 list_del(&hbq_buf->dbuf.list); 1729 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1730 } 1731 phba->hbqs[i].buffer_count = 0; 1732 } 1733 /* Return all HBQ buffer that are in-fly */ 1734 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1735 list) { 1736 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1737 list_del(&hbq_buf->dbuf.list); 1738 if (hbq_buf->tag == -1) { 1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1740 (phba, hbq_buf); 1741 } else { 1742 hbqno = hbq_buf->tag >> 16; 1743 if (hbqno >= LPFC_MAX_HBQS) 1744 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1745 (phba, hbq_buf); 1746 else 1747 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1748 hbq_buf); 1749 } 1750 } 1751 1752 /* Mark the HBQs not in use */ 1753 phba->hbq_in_use = 0; 1754 spin_unlock_irqrestore(&phba->hbalock, flags); 1755 } 1756 1757 /** 1758 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1759 * @phba: Pointer to HBA context object. 1760 * @hbqno: HBQ number. 1761 * @hbq_buf: Pointer to HBQ buffer. 1762 * 1763 * This function is called with the hbalock held to post a 1764 * hbq buffer to the firmware. If the function finds an empty 1765 * slot in the HBQ, it will post the buffer. The function will return 1766 * pointer to the hbq entry if it successfully post the buffer 1767 * else it will return NULL. 1768 **/ 1769 static int 1770 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1771 struct hbq_dmabuf *hbq_buf) 1772 { 1773 lockdep_assert_held(&phba->hbalock); 1774 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1775 } 1776 1777 /** 1778 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1779 * @phba: Pointer to HBA context object. 1780 * @hbqno: HBQ number. 1781 * @hbq_buf: Pointer to HBQ buffer. 1782 * 1783 * This function is called with the hbalock held to post a hbq buffer to the 1784 * firmware. If the function finds an empty slot in the HBQ, it will post the 1785 * buffer and place it on the hbq_buffer_list. The function will return zero if 1786 * it successfully post the buffer else it will return an error. 1787 **/ 1788 static int 1789 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1790 struct hbq_dmabuf *hbq_buf) 1791 { 1792 struct lpfc_hbq_entry *hbqe; 1793 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1794 1795 lockdep_assert_held(&phba->hbalock); 1796 /* Get next HBQ entry slot to use */ 1797 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1798 if (hbqe) { 1799 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1800 1801 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1802 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1803 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1804 hbqe->bde.tus.f.bdeFlags = 0; 1805 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1806 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1807 /* Sync SLIM */ 1808 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1809 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1810 /* flush */ 1811 readl(phba->hbq_put + hbqno); 1812 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1813 return 0; 1814 } else 1815 return -ENOMEM; 1816 } 1817 1818 /** 1819 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1820 * @phba: Pointer to HBA context object. 1821 * @hbqno: HBQ number. 1822 * @hbq_buf: Pointer to HBQ buffer. 1823 * 1824 * This function is called with the hbalock held to post an RQE to the SLI4 1825 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1826 * the hbq_buffer_list and return zero, otherwise it will return an error. 1827 **/ 1828 static int 1829 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1830 struct hbq_dmabuf *hbq_buf) 1831 { 1832 int rc; 1833 struct lpfc_rqe hrqe; 1834 struct lpfc_rqe drqe; 1835 1836 lockdep_assert_held(&phba->hbalock); 1837 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1838 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1839 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1840 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1841 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1842 &hrqe, &drqe); 1843 if (rc < 0) 1844 return rc; 1845 hbq_buf->tag = rc; 1846 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1847 return 0; 1848 } 1849 1850 /* HBQ for ELS and CT traffic. */ 1851 static struct lpfc_hbq_init lpfc_els_hbq = { 1852 .rn = 1, 1853 .entry_count = 256, 1854 .mask_count = 0, 1855 .profile = 0, 1856 .ring_mask = (1 << LPFC_ELS_RING), 1857 .buffer_count = 0, 1858 .init_count = 40, 1859 .add_count = 40, 1860 }; 1861 1862 /* HBQ for the extra ring if needed */ 1863 static struct lpfc_hbq_init lpfc_extra_hbq = { 1864 .rn = 1, 1865 .entry_count = 200, 1866 .mask_count = 0, 1867 .profile = 0, 1868 .ring_mask = (1 << LPFC_EXTRA_RING), 1869 .buffer_count = 0, 1870 .init_count = 0, 1871 .add_count = 5, 1872 }; 1873 1874 /* Array of HBQs */ 1875 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1876 &lpfc_els_hbq, 1877 &lpfc_extra_hbq, 1878 }; 1879 1880 /** 1881 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1882 * @phba: Pointer to HBA context object. 1883 * @hbqno: HBQ number. 1884 * @count: Number of HBQ buffers to be posted. 1885 * 1886 * This function is called with no lock held to post more hbq buffers to the 1887 * given HBQ. The function returns the number of HBQ buffers successfully 1888 * posted. 1889 **/ 1890 static int 1891 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1892 { 1893 uint32_t i, posted = 0; 1894 unsigned long flags; 1895 struct hbq_dmabuf *hbq_buffer; 1896 LIST_HEAD(hbq_buf_list); 1897 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1898 return 0; 1899 1900 if ((phba->hbqs[hbqno].buffer_count + count) > 1901 lpfc_hbq_defs[hbqno]->entry_count) 1902 count = lpfc_hbq_defs[hbqno]->entry_count - 1903 phba->hbqs[hbqno].buffer_count; 1904 if (!count) 1905 return 0; 1906 /* Allocate HBQ entries */ 1907 for (i = 0; i < count; i++) { 1908 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1909 if (!hbq_buffer) 1910 break; 1911 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1912 } 1913 /* Check whether HBQ is still in use */ 1914 spin_lock_irqsave(&phba->hbalock, flags); 1915 if (!phba->hbq_in_use) 1916 goto err; 1917 while (!list_empty(&hbq_buf_list)) { 1918 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1919 dbuf.list); 1920 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1921 (hbqno << 16)); 1922 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1923 phba->hbqs[hbqno].buffer_count++; 1924 posted++; 1925 } else 1926 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1927 } 1928 spin_unlock_irqrestore(&phba->hbalock, flags); 1929 return posted; 1930 err: 1931 spin_unlock_irqrestore(&phba->hbalock, flags); 1932 while (!list_empty(&hbq_buf_list)) { 1933 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1934 dbuf.list); 1935 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1936 } 1937 return 0; 1938 } 1939 1940 /** 1941 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1942 * @phba: Pointer to HBA context object. 1943 * @qno: HBQ number. 1944 * 1945 * This function posts more buffers to the HBQ. This function 1946 * is called with no lock held. The function returns the number of HBQ entries 1947 * successfully allocated. 1948 **/ 1949 int 1950 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1951 { 1952 if (phba->sli_rev == LPFC_SLI_REV4) 1953 return 0; 1954 else 1955 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1956 lpfc_hbq_defs[qno]->add_count); 1957 } 1958 1959 /** 1960 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1961 * @phba: Pointer to HBA context object. 1962 * @qno: HBQ queue number. 1963 * 1964 * This function is called from SLI initialization code path with 1965 * no lock held to post initial HBQ buffers to firmware. The 1966 * function returns the number of HBQ entries successfully allocated. 1967 **/ 1968 static int 1969 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1970 { 1971 if (phba->sli_rev == LPFC_SLI_REV4) 1972 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1973 lpfc_hbq_defs[qno]->entry_count); 1974 else 1975 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1976 lpfc_hbq_defs[qno]->init_count); 1977 } 1978 1979 /** 1980 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1981 * @phba: Pointer to HBA context object. 1982 * @hbqno: HBQ number. 1983 * 1984 * This function removes the first hbq buffer on an hbq list and returns a 1985 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1986 **/ 1987 static struct hbq_dmabuf * 1988 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1989 { 1990 struct lpfc_dmabuf *d_buf; 1991 1992 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1993 if (!d_buf) 1994 return NULL; 1995 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1996 } 1997 1998 /** 1999 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2000 * @phba: Pointer to HBA context object. 2001 * @tag: Tag of the hbq buffer. 2002 * 2003 * This function is called with hbalock held. This function searches 2004 * for the hbq buffer associated with the given tag in the hbq buffer 2005 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise 2006 * it returns NULL. 2007 **/ 2008 static struct hbq_dmabuf * 2009 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2010 { 2011 struct lpfc_dmabuf *d_buf; 2012 struct hbq_dmabuf *hbq_buf; 2013 uint32_t hbqno; 2014 2015 lockdep_assert_held(&phba->hbalock); 2016 2017 hbqno = tag >> 16; 2018 if (hbqno >= LPFC_MAX_HBQS) 2019 return NULL; 2020 2021 spin_lock_irq(&phba->hbalock); 2022 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2023 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2024 if (hbq_buf->tag == tag) { 2025 spin_unlock_irq(&phba->hbalock); 2026 return hbq_buf; 2027 } 2028 } 2029 spin_unlock_irq(&phba->hbalock); 2030 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2031 "1803 Bad hbq tag. Data: x%x x%x\n", 2032 tag, phba->hbqs[tag >> 16].buffer_count); 2033 return NULL; 2034 } 2035 2036 /** 2037 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2038 * @phba: Pointer to HBA context object. 2039 * @hbq_buffer: Pointer to HBQ buffer. 2040 * 2041 * This function is called with hbalock. This function gives back 2042 * the hbq buffer to firmware. If the HBQ does not have space to 2043 * post the buffer, it will free the buffer. 2044 **/ 2045 void 2046 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2047 { 2048 uint32_t hbqno; 2049 2050 if (hbq_buffer) { 2051 hbqno = hbq_buffer->tag >> 16; 2052 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2053 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2054 } 2055 } 2056 2057 /** 2058 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2059 * @mbxCommand: mailbox command code. 2060 * 2061 * This function is called by the mailbox event handler function to verify 2062 * that the completed mailbox command is a legitimate mailbox command. If the 2063 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2064 * and the mailbox event handler will take the HBA offline. 2065 **/ 2066 static int 2067 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2068 { 2069 uint8_t ret; 2070 2071 switch (mbxCommand) { 2072 case MBX_LOAD_SM: 2073 case MBX_READ_NV: 2074 case MBX_WRITE_NV: 2075 case MBX_WRITE_VPARMS: 2076 case MBX_RUN_BIU_DIAG: 2077 case MBX_INIT_LINK: 2078 case MBX_DOWN_LINK: 2079 case MBX_CONFIG_LINK: 2080 case MBX_CONFIG_RING: 2081 case MBX_RESET_RING: 2082 case MBX_READ_CONFIG: 2083 case MBX_READ_RCONFIG: 2084 case MBX_READ_SPARM: 2085 case MBX_READ_STATUS: 2086 case MBX_READ_RPI: 2087 case MBX_READ_XRI: 2088 case MBX_READ_REV: 2089 case MBX_READ_LNK_STAT: 2090 case MBX_REG_LOGIN: 2091 case MBX_UNREG_LOGIN: 2092 case MBX_CLEAR_LA: 2093 case MBX_DUMP_MEMORY: 2094 case MBX_DUMP_CONTEXT: 2095 case MBX_RUN_DIAGS: 2096 case MBX_RESTART: 2097 case MBX_UPDATE_CFG: 2098 case MBX_DOWN_LOAD: 2099 case MBX_DEL_LD_ENTRY: 2100 case MBX_RUN_PROGRAM: 2101 case MBX_SET_MASK: 2102 case MBX_SET_VARIABLE: 2103 case MBX_UNREG_D_ID: 2104 case MBX_KILL_BOARD: 2105 case MBX_CONFIG_FARP: 2106 case MBX_BEACON: 2107 case MBX_LOAD_AREA: 2108 case MBX_RUN_BIU_DIAG64: 2109 case MBX_CONFIG_PORT: 2110 case MBX_READ_SPARM64: 2111 case MBX_READ_RPI64: 2112 case MBX_REG_LOGIN64: 2113 case MBX_READ_TOPOLOGY: 2114 case MBX_WRITE_WWN: 2115 case MBX_SET_DEBUG: 2116 case MBX_LOAD_EXP_ROM: 2117 case MBX_ASYNCEVT_ENABLE: 2118 case MBX_REG_VPI: 2119 case MBX_UNREG_VPI: 2120 case MBX_HEARTBEAT: 2121 case MBX_PORT_CAPABILITIES: 2122 case MBX_PORT_IOV_CONTROL: 2123 case MBX_SLI4_CONFIG: 2124 case MBX_SLI4_REQ_FTRS: 2125 case MBX_REG_FCFI: 2126 case MBX_UNREG_FCFI: 2127 case MBX_REG_VFI: 2128 case MBX_UNREG_VFI: 2129 case MBX_INIT_VPI: 2130 case MBX_INIT_VFI: 2131 case MBX_RESUME_RPI: 2132 case MBX_READ_EVENT_LOG_STATUS: 2133 case MBX_READ_EVENT_LOG: 2134 case MBX_SECURITY_MGMT: 2135 case MBX_AUTH_PORT: 2136 case MBX_ACCESS_VDATA: 2137 ret = mbxCommand; 2138 break; 2139 default: 2140 ret = MBX_SHUTDOWN; 2141 break; 2142 } 2143 return ret; 2144 } 2145 2146 /** 2147 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2148 * @phba: Pointer to HBA context object. 2149 * @pmboxq: Pointer to mailbox command. 2150 * 2151 * This is completion handler function for mailbox commands issued from 2152 * lpfc_sli_issue_mbox_wait function. This function is called by the 2153 * mailbox event handler function with no lock held. This function 2154 * will wake up thread waiting on the wait queue pointed by context1 2155 * of the mailbox. 2156 **/ 2157 void 2158 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2159 { 2160 wait_queue_head_t *pdone_q; 2161 unsigned long drvr_flag; 2162 2163 /* 2164 * If pdone_q is empty, the driver thread gave up waiting and 2165 * continued running. 2166 */ 2167 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2168 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2169 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2170 if (pdone_q) 2171 wake_up_interruptible(pdone_q); 2172 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2173 return; 2174 } 2175 2176 2177 /** 2178 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2179 * @phba: Pointer to HBA context object. 2180 * @pmb: Pointer to mailbox object. 2181 * 2182 * This function is the default mailbox completion handler. It 2183 * frees the memory resources associated with the completed mailbox 2184 * command. If the completed command is a REG_LOGIN mailbox command, 2185 * this function will issue a UREG_LOGIN to re-claim the RPI. 2186 **/ 2187 void 2188 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2189 { 2190 struct lpfc_vport *vport = pmb->vport; 2191 struct lpfc_dmabuf *mp; 2192 struct lpfc_nodelist *ndlp; 2193 struct Scsi_Host *shost; 2194 uint16_t rpi, vpi; 2195 int rc; 2196 2197 mp = (struct lpfc_dmabuf *) (pmb->context1); 2198 2199 if (mp) { 2200 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2201 kfree(mp); 2202 } 2203 2204 /* 2205 * If a REG_LOGIN succeeded after node is destroyed or node 2206 * is in re-discovery driver need to cleanup the RPI. 2207 */ 2208 if (!(phba->pport->load_flag & FC_UNLOADING) && 2209 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2210 !pmb->u.mb.mbxStatus) { 2211 rpi = pmb->u.mb.un.varWords[0]; 2212 vpi = pmb->u.mb.un.varRegLogin.vpi; 2213 lpfc_unreg_login(phba, vpi, rpi, pmb); 2214 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2215 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2216 if (rc != MBX_NOT_FINISHED) 2217 return; 2218 } 2219 2220 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2221 !(phba->pport->load_flag & FC_UNLOADING) && 2222 !pmb->u.mb.mbxStatus) { 2223 shost = lpfc_shost_from_vport(vport); 2224 spin_lock_irq(shost->host_lock); 2225 vport->vpi_state |= LPFC_VPI_REGISTERED; 2226 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2227 spin_unlock_irq(shost->host_lock); 2228 } 2229 2230 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2231 ndlp = (struct lpfc_nodelist *)pmb->context2; 2232 lpfc_nlp_put(ndlp); 2233 pmb->context2 = NULL; 2234 } 2235 2236 /* Check security permission status on INIT_LINK mailbox command */ 2237 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2238 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2240 "2860 SLI authentication is required " 2241 "for INIT_LINK but has not done yet\n"); 2242 2243 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2244 lpfc_sli4_mbox_cmd_free(phba, pmb); 2245 else 2246 mempool_free(pmb, phba->mbox_mem_pool); 2247 } 2248 /** 2249 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2250 * @phba: Pointer to HBA context object. 2251 * @pmb: Pointer to mailbox object. 2252 * 2253 * This function is the unreg rpi mailbox completion handler. It 2254 * frees the memory resources associated with the completed mailbox 2255 * command. An additional refrenece is put on the ndlp to prevent 2256 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2257 * the unreg mailbox command completes, this routine puts the 2258 * reference back. 2259 * 2260 **/ 2261 void 2262 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2263 { 2264 struct lpfc_vport *vport = pmb->vport; 2265 struct lpfc_nodelist *ndlp; 2266 2267 ndlp = pmb->context1; 2268 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2269 if (phba->sli_rev == LPFC_SLI_REV4 && 2270 (bf_get(lpfc_sli_intf_if_type, 2271 &phba->sli4_hba.sli_intf) == 2272 LPFC_SLI_INTF_IF_TYPE_2)) { 2273 if (ndlp) { 2274 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2275 "0010 UNREG_LOGIN vpi:%x " 2276 "rpi:%x DID:%x map:%x %p\n", 2277 vport->vpi, ndlp->nlp_rpi, 2278 ndlp->nlp_DID, 2279 ndlp->nlp_usg_map, ndlp); 2280 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2281 lpfc_nlp_put(ndlp); 2282 } 2283 } 2284 } 2285 2286 mempool_free(pmb, phba->mbox_mem_pool); 2287 } 2288 2289 /** 2290 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2291 * @phba: Pointer to HBA context object. 2292 * 2293 * This function is called with no lock held. This function processes all 2294 * the completed mailbox commands and gives it to upper layers. The interrupt 2295 * service routine processes mailbox completion interrupt and adds completed 2296 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2297 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2298 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2299 * function returns the mailbox commands to the upper layer by calling the 2300 * completion handler function of each mailbox. 2301 **/ 2302 int 2303 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2304 { 2305 MAILBOX_t *pmbox; 2306 LPFC_MBOXQ_t *pmb; 2307 int rc; 2308 LIST_HEAD(cmplq); 2309 2310 phba->sli.slistat.mbox_event++; 2311 2312 /* Get all completed mailboxe buffers into the cmplq */ 2313 spin_lock_irq(&phba->hbalock); 2314 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2315 spin_unlock_irq(&phba->hbalock); 2316 2317 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2318 do { 2319 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2320 if (pmb == NULL) 2321 break; 2322 2323 pmbox = &pmb->u.mb; 2324 2325 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2326 if (pmb->vport) { 2327 lpfc_debugfs_disc_trc(pmb->vport, 2328 LPFC_DISC_TRC_MBOX_VPORT, 2329 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2330 (uint32_t)pmbox->mbxCommand, 2331 pmbox->un.varWords[0], 2332 pmbox->un.varWords[1]); 2333 } 2334 else { 2335 lpfc_debugfs_disc_trc(phba->pport, 2336 LPFC_DISC_TRC_MBOX, 2337 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2338 (uint32_t)pmbox->mbxCommand, 2339 pmbox->un.varWords[0], 2340 pmbox->un.varWords[1]); 2341 } 2342 } 2343 2344 /* 2345 * It is a fatal error if unknown mbox command completion. 2346 */ 2347 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2348 MBX_SHUTDOWN) { 2349 /* Unknown mailbox command compl */ 2350 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2351 "(%d):0323 Unknown Mailbox command " 2352 "x%x (x%x/x%x) Cmpl\n", 2353 pmb->vport ? pmb->vport->vpi : 0, 2354 pmbox->mbxCommand, 2355 lpfc_sli_config_mbox_subsys_get(phba, 2356 pmb), 2357 lpfc_sli_config_mbox_opcode_get(phba, 2358 pmb)); 2359 phba->link_state = LPFC_HBA_ERROR; 2360 phba->work_hs = HS_FFER3; 2361 lpfc_handle_eratt(phba); 2362 continue; 2363 } 2364 2365 if (pmbox->mbxStatus) { 2366 phba->sli.slistat.mbox_stat_err++; 2367 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2368 /* Mbox cmd cmpl error - RETRYing */ 2369 lpfc_printf_log(phba, KERN_INFO, 2370 LOG_MBOX | LOG_SLI, 2371 "(%d):0305 Mbox cmd cmpl " 2372 "error - RETRYing Data: x%x " 2373 "(x%x/x%x) x%x x%x x%x\n", 2374 pmb->vport ? pmb->vport->vpi : 0, 2375 pmbox->mbxCommand, 2376 lpfc_sli_config_mbox_subsys_get(phba, 2377 pmb), 2378 lpfc_sli_config_mbox_opcode_get(phba, 2379 pmb), 2380 pmbox->mbxStatus, 2381 pmbox->un.varWords[0], 2382 pmb->vport->port_state); 2383 pmbox->mbxStatus = 0; 2384 pmbox->mbxOwner = OWN_HOST; 2385 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2386 if (rc != MBX_NOT_FINISHED) 2387 continue; 2388 } 2389 } 2390 2391 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2392 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2393 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2394 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2395 "x%x x%x x%x\n", 2396 pmb->vport ? pmb->vport->vpi : 0, 2397 pmbox->mbxCommand, 2398 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2399 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2400 pmb->mbox_cmpl, 2401 *((uint32_t *) pmbox), 2402 pmbox->un.varWords[0], 2403 pmbox->un.varWords[1], 2404 pmbox->un.varWords[2], 2405 pmbox->un.varWords[3], 2406 pmbox->un.varWords[4], 2407 pmbox->un.varWords[5], 2408 pmbox->un.varWords[6], 2409 pmbox->un.varWords[7], 2410 pmbox->un.varWords[8], 2411 pmbox->un.varWords[9], 2412 pmbox->un.varWords[10]); 2413 2414 if (pmb->mbox_cmpl) 2415 pmb->mbox_cmpl(phba,pmb); 2416 } while (1); 2417 return 0; 2418 } 2419 2420 /** 2421 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2422 * @phba: Pointer to HBA context object. 2423 * @pring: Pointer to driver SLI ring object. 2424 * @tag: buffer tag. 2425 * 2426 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2427 * is set in the tag the buffer is posted for a particular exchange, 2428 * the function will return the buffer without replacing the buffer. 2429 * If the buffer is for unsolicited ELS or CT traffic, this function 2430 * returns the buffer and also posts another buffer to the firmware. 2431 **/ 2432 static struct lpfc_dmabuf * 2433 lpfc_sli_get_buff(struct lpfc_hba *phba, 2434 struct lpfc_sli_ring *pring, 2435 uint32_t tag) 2436 { 2437 struct hbq_dmabuf *hbq_entry; 2438 2439 if (tag & QUE_BUFTAG_BIT) 2440 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2441 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2442 if (!hbq_entry) 2443 return NULL; 2444 return &hbq_entry->dbuf; 2445 } 2446 2447 /** 2448 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2449 * @phba: Pointer to HBA context object. 2450 * @pring: Pointer to driver SLI ring object. 2451 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2452 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2453 * @fch_type: the type for the first frame of the sequence. 2454 * 2455 * This function is called with no lock held. This function uses the r_ctl and 2456 * type of the received sequence to find the correct callback function to call 2457 * to process the sequence. 2458 **/ 2459 static int 2460 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2461 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2462 uint32_t fch_type) 2463 { 2464 int i; 2465 2466 /* unSolicited Responses */ 2467 if (pring->prt[0].profile) { 2468 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2469 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2470 saveq); 2471 return 1; 2472 } 2473 /* We must search, based on rctl / type 2474 for the right routine */ 2475 for (i = 0; i < pring->num_mask; i++) { 2476 if ((pring->prt[i].rctl == fch_r_ctl) && 2477 (pring->prt[i].type == fch_type)) { 2478 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2479 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2480 (phba, pring, saveq); 2481 return 1; 2482 } 2483 } 2484 return 0; 2485 } 2486 2487 /** 2488 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2489 * @phba: Pointer to HBA context object. 2490 * @pring: Pointer to driver SLI ring object. 2491 * @saveq: Pointer to the unsolicited iocb. 2492 * 2493 * This function is called with no lock held by the ring event handler 2494 * when there is an unsolicited iocb posted to the response ring by the 2495 * firmware. This function gets the buffer associated with the iocbs 2496 * and calls the event handler for the ring. This function handles both 2497 * qring buffers and hbq buffers. 2498 * When the function returns 1 the caller can free the iocb object otherwise 2499 * upper layer functions will free the iocb objects. 2500 **/ 2501 static int 2502 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2503 struct lpfc_iocbq *saveq) 2504 { 2505 IOCB_t * irsp; 2506 WORD5 * w5p; 2507 uint32_t Rctl, Type; 2508 struct lpfc_iocbq *iocbq; 2509 struct lpfc_dmabuf *dmzbuf; 2510 2511 irsp = &(saveq->iocb); 2512 2513 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2514 if (pring->lpfc_sli_rcv_async_status) 2515 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2516 else 2517 lpfc_printf_log(phba, 2518 KERN_WARNING, 2519 LOG_SLI, 2520 "0316 Ring %d handler: unexpected " 2521 "ASYNC_STATUS iocb received evt_code " 2522 "0x%x\n", 2523 pring->ringno, 2524 irsp->un.asyncstat.evt_code); 2525 return 1; 2526 } 2527 2528 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2529 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2530 if (irsp->ulpBdeCount > 0) { 2531 dmzbuf = lpfc_sli_get_buff(phba, pring, 2532 irsp->un.ulpWord[3]); 2533 lpfc_in_buf_free(phba, dmzbuf); 2534 } 2535 2536 if (irsp->ulpBdeCount > 1) { 2537 dmzbuf = lpfc_sli_get_buff(phba, pring, 2538 irsp->unsli3.sli3Words[3]); 2539 lpfc_in_buf_free(phba, dmzbuf); 2540 } 2541 2542 if (irsp->ulpBdeCount > 2) { 2543 dmzbuf = lpfc_sli_get_buff(phba, pring, 2544 irsp->unsli3.sli3Words[7]); 2545 lpfc_in_buf_free(phba, dmzbuf); 2546 } 2547 2548 return 1; 2549 } 2550 2551 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2552 if (irsp->ulpBdeCount != 0) { 2553 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2554 irsp->un.ulpWord[3]); 2555 if (!saveq->context2) 2556 lpfc_printf_log(phba, 2557 KERN_ERR, 2558 LOG_SLI, 2559 "0341 Ring %d Cannot find buffer for " 2560 "an unsolicited iocb. tag 0x%x\n", 2561 pring->ringno, 2562 irsp->un.ulpWord[3]); 2563 } 2564 if (irsp->ulpBdeCount == 2) { 2565 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2566 irsp->unsli3.sli3Words[7]); 2567 if (!saveq->context3) 2568 lpfc_printf_log(phba, 2569 KERN_ERR, 2570 LOG_SLI, 2571 "0342 Ring %d Cannot find buffer for an" 2572 " unsolicited iocb. tag 0x%x\n", 2573 pring->ringno, 2574 irsp->unsli3.sli3Words[7]); 2575 } 2576 list_for_each_entry(iocbq, &saveq->list, list) { 2577 irsp = &(iocbq->iocb); 2578 if (irsp->ulpBdeCount != 0) { 2579 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2580 irsp->un.ulpWord[3]); 2581 if (!iocbq->context2) 2582 lpfc_printf_log(phba, 2583 KERN_ERR, 2584 LOG_SLI, 2585 "0343 Ring %d Cannot find " 2586 "buffer for an unsolicited iocb" 2587 ". tag 0x%x\n", pring->ringno, 2588 irsp->un.ulpWord[3]); 2589 } 2590 if (irsp->ulpBdeCount == 2) { 2591 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2592 irsp->unsli3.sli3Words[7]); 2593 if (!iocbq->context3) 2594 lpfc_printf_log(phba, 2595 KERN_ERR, 2596 LOG_SLI, 2597 "0344 Ring %d Cannot find " 2598 "buffer for an unsolicited " 2599 "iocb. tag 0x%x\n", 2600 pring->ringno, 2601 irsp->unsli3.sli3Words[7]); 2602 } 2603 } 2604 } 2605 if (irsp->ulpBdeCount != 0 && 2606 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2607 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2608 int found = 0; 2609 2610 /* search continue save q for same XRI */ 2611 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2612 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2613 saveq->iocb.unsli3.rcvsli3.ox_id) { 2614 list_add_tail(&saveq->list, &iocbq->list); 2615 found = 1; 2616 break; 2617 } 2618 } 2619 if (!found) 2620 list_add_tail(&saveq->clist, 2621 &pring->iocb_continue_saveq); 2622 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2623 list_del_init(&iocbq->clist); 2624 saveq = iocbq; 2625 irsp = &(saveq->iocb); 2626 } else 2627 return 0; 2628 } 2629 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2630 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2631 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2632 Rctl = FC_RCTL_ELS_REQ; 2633 Type = FC_TYPE_ELS; 2634 } else { 2635 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2636 Rctl = w5p->hcsw.Rctl; 2637 Type = w5p->hcsw.Type; 2638 2639 /* Firmware Workaround */ 2640 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2641 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2642 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2643 Rctl = FC_RCTL_ELS_REQ; 2644 Type = FC_TYPE_ELS; 2645 w5p->hcsw.Rctl = Rctl; 2646 w5p->hcsw.Type = Type; 2647 } 2648 } 2649 2650 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2651 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2652 "0313 Ring %d handler: unexpected Rctl x%x " 2653 "Type x%x received\n", 2654 pring->ringno, Rctl, Type); 2655 2656 return 1; 2657 } 2658 2659 /** 2660 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2661 * @phba: Pointer to HBA context object. 2662 * @pring: Pointer to driver SLI ring object. 2663 * @prspiocb: Pointer to response iocb object. 2664 * 2665 * This function looks up the iocb_lookup table to get the command iocb 2666 * corresponding to the given response iocb using the iotag of the 2667 * response iocb. This function is called with the hbalock held. 2668 * This function returns the command iocb object if it finds the command 2669 * iocb else returns NULL. 2670 **/ 2671 static struct lpfc_iocbq * 2672 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2673 struct lpfc_sli_ring *pring, 2674 struct lpfc_iocbq *prspiocb) 2675 { 2676 struct lpfc_iocbq *cmd_iocb = NULL; 2677 uint16_t iotag; 2678 lockdep_assert_held(&phba->hbalock); 2679 2680 iotag = prspiocb->iocb.ulpIoTag; 2681 2682 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2683 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2684 list_del_init(&cmd_iocb->list); 2685 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2686 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2687 } 2688 return cmd_iocb; 2689 } 2690 2691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2692 "0317 iotag x%x is out off " 2693 "range: max iotag x%x wd0 x%x\n", 2694 iotag, phba->sli.last_iotag, 2695 *(((uint32_t *) &prspiocb->iocb) + 7)); 2696 return NULL; 2697 } 2698 2699 /** 2700 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2701 * @phba: Pointer to HBA context object. 2702 * @pring: Pointer to driver SLI ring object. 2703 * @iotag: IOCB tag. 2704 * 2705 * This function looks up the iocb_lookup table to get the command iocb 2706 * corresponding to the given iotag. This function is called with the 2707 * hbalock held. 2708 * This function returns the command iocb object if it finds the command 2709 * iocb else returns NULL. 2710 **/ 2711 static struct lpfc_iocbq * 2712 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2713 struct lpfc_sli_ring *pring, uint16_t iotag) 2714 { 2715 struct lpfc_iocbq *cmd_iocb; 2716 2717 lockdep_assert_held(&phba->hbalock); 2718 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2719 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2720 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2721 /* remove from txcmpl queue list */ 2722 list_del_init(&cmd_iocb->list); 2723 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2724 return cmd_iocb; 2725 } 2726 } 2727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2728 "0372 iotag x%x is out off range: max iotag (x%x)\n", 2729 iotag, phba->sli.last_iotag); 2730 return NULL; 2731 } 2732 2733 /** 2734 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2735 * @phba: Pointer to HBA context object. 2736 * @pring: Pointer to driver SLI ring object. 2737 * @saveq: Pointer to the response iocb to be processed. 2738 * 2739 * This function is called by the ring event handler for non-fcp 2740 * rings when there is a new response iocb in the response ring. 2741 * The caller is not required to hold any locks. This function 2742 * gets the command iocb associated with the response iocb and 2743 * calls the completion handler for the command iocb. If there 2744 * is no completion handler, the function will free the resources 2745 * associated with command iocb. If the response iocb is for 2746 * an already aborted command iocb, the status of the completion 2747 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2748 * This function always returns 1. 2749 **/ 2750 static int 2751 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2752 struct lpfc_iocbq *saveq) 2753 { 2754 struct lpfc_iocbq *cmdiocbp; 2755 int rc = 1; 2756 unsigned long iflag; 2757 2758 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2759 spin_lock_irqsave(&phba->hbalock, iflag); 2760 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2761 spin_unlock_irqrestore(&phba->hbalock, iflag); 2762 2763 if (cmdiocbp) { 2764 if (cmdiocbp->iocb_cmpl) { 2765 /* 2766 * If an ELS command failed send an event to mgmt 2767 * application. 2768 */ 2769 if (saveq->iocb.ulpStatus && 2770 (pring->ringno == LPFC_ELS_RING) && 2771 (cmdiocbp->iocb.ulpCommand == 2772 CMD_ELS_REQUEST64_CR)) 2773 lpfc_send_els_failure_event(phba, 2774 cmdiocbp, saveq); 2775 2776 /* 2777 * Post all ELS completions to the worker thread. 2778 * All other are passed to the completion callback. 2779 */ 2780 if (pring->ringno == LPFC_ELS_RING) { 2781 if ((phba->sli_rev < LPFC_SLI_REV4) && 2782 (cmdiocbp->iocb_flag & 2783 LPFC_DRIVER_ABORTED)) { 2784 spin_lock_irqsave(&phba->hbalock, 2785 iflag); 2786 cmdiocbp->iocb_flag &= 2787 ~LPFC_DRIVER_ABORTED; 2788 spin_unlock_irqrestore(&phba->hbalock, 2789 iflag); 2790 saveq->iocb.ulpStatus = 2791 IOSTAT_LOCAL_REJECT; 2792 saveq->iocb.un.ulpWord[4] = 2793 IOERR_SLI_ABORTED; 2794 2795 /* Firmware could still be in progress 2796 * of DMAing payload, so don't free data 2797 * buffer till after a hbeat. 2798 */ 2799 spin_lock_irqsave(&phba->hbalock, 2800 iflag); 2801 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2802 spin_unlock_irqrestore(&phba->hbalock, 2803 iflag); 2804 } 2805 if (phba->sli_rev == LPFC_SLI_REV4) { 2806 if (saveq->iocb_flag & 2807 LPFC_EXCHANGE_BUSY) { 2808 /* Set cmdiocb flag for the 2809 * exchange busy so sgl (xri) 2810 * will not be released until 2811 * the abort xri is received 2812 * from hba. 2813 */ 2814 spin_lock_irqsave( 2815 &phba->hbalock, iflag); 2816 cmdiocbp->iocb_flag |= 2817 LPFC_EXCHANGE_BUSY; 2818 spin_unlock_irqrestore( 2819 &phba->hbalock, iflag); 2820 } 2821 if (cmdiocbp->iocb_flag & 2822 LPFC_DRIVER_ABORTED) { 2823 /* 2824 * Clear LPFC_DRIVER_ABORTED 2825 * bit in case it was driver 2826 * initiated abort. 2827 */ 2828 spin_lock_irqsave( 2829 &phba->hbalock, iflag); 2830 cmdiocbp->iocb_flag &= 2831 ~LPFC_DRIVER_ABORTED; 2832 spin_unlock_irqrestore( 2833 &phba->hbalock, iflag); 2834 cmdiocbp->iocb.ulpStatus = 2835 IOSTAT_LOCAL_REJECT; 2836 cmdiocbp->iocb.un.ulpWord[4] = 2837 IOERR_ABORT_REQUESTED; 2838 /* 2839 * For SLI4, irsiocb contains 2840 * NO_XRI in sli_xritag, it 2841 * shall not affect releasing 2842 * sgl (xri) process. 2843 */ 2844 saveq->iocb.ulpStatus = 2845 IOSTAT_LOCAL_REJECT; 2846 saveq->iocb.un.ulpWord[4] = 2847 IOERR_SLI_ABORTED; 2848 spin_lock_irqsave( 2849 &phba->hbalock, iflag); 2850 saveq->iocb_flag |= 2851 LPFC_DELAY_MEM_FREE; 2852 spin_unlock_irqrestore( 2853 &phba->hbalock, iflag); 2854 } 2855 } 2856 } 2857 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2858 } else 2859 lpfc_sli_release_iocbq(phba, cmdiocbp); 2860 } else { 2861 /* 2862 * Unknown initiating command based on the response iotag. 2863 * This could be the case on the ELS ring because of 2864 * lpfc_els_abort(). 2865 */ 2866 if (pring->ringno != LPFC_ELS_RING) { 2867 /* 2868 * Ring <ringno> handler: unexpected completion IoTag 2869 * <IoTag> 2870 */ 2871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2872 "0322 Ring %d handler: " 2873 "unexpected completion IoTag x%x " 2874 "Data: x%x x%x x%x x%x\n", 2875 pring->ringno, 2876 saveq->iocb.ulpIoTag, 2877 saveq->iocb.ulpStatus, 2878 saveq->iocb.un.ulpWord[4], 2879 saveq->iocb.ulpCommand, 2880 saveq->iocb.ulpContext); 2881 } 2882 } 2883 2884 return rc; 2885 } 2886 2887 /** 2888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2889 * @phba: Pointer to HBA context object. 2890 * @pring: Pointer to driver SLI ring object. 2891 * 2892 * This function is called from the iocb ring event handlers when 2893 * put pointer is ahead of the get pointer for a ring. This function signal 2894 * an error attention condition to the worker thread and the worker 2895 * thread will transition the HBA to offline state. 2896 **/ 2897 static void 2898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2899 { 2900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2901 /* 2902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2903 * rsp ring <portRspMax> 2904 */ 2905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2906 "0312 Ring %d handler: portRspPut %d " 2907 "is bigger than rsp ring %d\n", 2908 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2909 pring->sli.sli3.numRiocb); 2910 2911 phba->link_state = LPFC_HBA_ERROR; 2912 2913 /* 2914 * All error attention handlers are posted to 2915 * worker thread 2916 */ 2917 phba->work_ha |= HA_ERATT; 2918 phba->work_hs = HS_FFER3; 2919 2920 lpfc_worker_wake_up(phba); 2921 2922 return; 2923 } 2924 2925 /** 2926 * lpfc_poll_eratt - Error attention polling timer timeout handler 2927 * @ptr: Pointer to address of HBA context object. 2928 * 2929 * This function is invoked by the Error Attention polling timer when the 2930 * timer times out. It will check the SLI Error Attention register for 2931 * possible attention events. If so, it will post an Error Attention event 2932 * and wake up worker thread to process it. Otherwise, it will set up the 2933 * Error Attention polling timer for the next poll. 2934 **/ 2935 void lpfc_poll_eratt(unsigned long ptr) 2936 { 2937 struct lpfc_hba *phba; 2938 uint32_t eratt = 0; 2939 uint64_t sli_intr, cnt; 2940 2941 phba = (struct lpfc_hba *)ptr; 2942 2943 /* Here we will also keep track of interrupts per sec of the hba */ 2944 sli_intr = phba->sli.slistat.sli_intr; 2945 2946 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2947 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2948 sli_intr); 2949 else 2950 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2951 2952 /* 64-bit integer division not supporte on 32-bit x86 - use do_div */ 2953 do_div(cnt, LPFC_ERATT_POLL_INTERVAL); 2954 phba->sli.slistat.sli_ips = cnt; 2955 2956 phba->sli.slistat.sli_prev_intr = sli_intr; 2957 2958 /* Check chip HA register for error event */ 2959 eratt = lpfc_sli_check_eratt(phba); 2960 2961 if (eratt) 2962 /* Tell the worker thread there is work to do */ 2963 lpfc_worker_wake_up(phba); 2964 else 2965 /* Restart the timer for next eratt poll */ 2966 mod_timer(&phba->eratt_poll, 2967 jiffies + 2968 msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 2969 return; 2970 } 2971 2972 2973 /** 2974 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2975 * @phba: Pointer to HBA context object. 2976 * @pring: Pointer to driver SLI ring object. 2977 * @mask: Host attention register mask for this ring. 2978 * 2979 * This function is called from the interrupt context when there is a ring 2980 * event for the fcp ring. The caller does not hold any lock. 2981 * The function processes each response iocb in the response ring until it 2982 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2983 * LE bit set. The function will call the completion handler of the command iocb 2984 * if the response iocb indicates a completion for a command iocb or it is 2985 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2986 * function if this is an unsolicited iocb. 2987 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2988 * to check it explicitly. 2989 */ 2990 int 2991 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2992 struct lpfc_sli_ring *pring, uint32_t mask) 2993 { 2994 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2995 IOCB_t *irsp = NULL; 2996 IOCB_t *entry = NULL; 2997 struct lpfc_iocbq *cmdiocbq = NULL; 2998 struct lpfc_iocbq rspiocbq; 2999 uint32_t status; 3000 uint32_t portRspPut, portRspMax; 3001 int rc = 1; 3002 lpfc_iocb_type type; 3003 unsigned long iflag; 3004 uint32_t rsp_cmpl = 0; 3005 3006 spin_lock_irqsave(&phba->hbalock, iflag); 3007 pring->stats.iocb_event++; 3008 3009 /* 3010 * The next available response entry should never exceed the maximum 3011 * entries. If it does, treat it as an adapter hardware error. 3012 */ 3013 portRspMax = pring->sli.sli3.numRiocb; 3014 portRspPut = le32_to_cpu(pgp->rspPutInx); 3015 if (unlikely(portRspPut >= portRspMax)) { 3016 lpfc_sli_rsp_pointers_error(phba, pring); 3017 spin_unlock_irqrestore(&phba->hbalock, iflag); 3018 return 1; 3019 } 3020 if (phba->fcp_ring_in_use) { 3021 spin_unlock_irqrestore(&phba->hbalock, iflag); 3022 return 1; 3023 } else 3024 phba->fcp_ring_in_use = 1; 3025 3026 rmb(); 3027 while (pring->sli.sli3.rspidx != portRspPut) { 3028 /* 3029 * Fetch an entry off the ring and copy it into a local data 3030 * structure. The copy involves a byte-swap since the 3031 * network byte order and pci byte orders are different. 3032 */ 3033 entry = lpfc_resp_iocb(phba, pring); 3034 phba->last_completion_time = jiffies; 3035 3036 if (++pring->sli.sli3.rspidx >= portRspMax) 3037 pring->sli.sli3.rspidx = 0; 3038 3039 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3040 (uint32_t *) &rspiocbq.iocb, 3041 phba->iocb_rsp_size); 3042 INIT_LIST_HEAD(&(rspiocbq.list)); 3043 irsp = &rspiocbq.iocb; 3044 3045 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3046 pring->stats.iocb_rsp++; 3047 rsp_cmpl++; 3048 3049 if (unlikely(irsp->ulpStatus)) { 3050 /* 3051 * If resource errors reported from HBA, reduce 3052 * queuedepths of the SCSI device. 3053 */ 3054 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3055 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3056 IOERR_NO_RESOURCES)) { 3057 spin_unlock_irqrestore(&phba->hbalock, iflag); 3058 phba->lpfc_rampdown_queue_depth(phba); 3059 spin_lock_irqsave(&phba->hbalock, iflag); 3060 } 3061 3062 /* Rsp ring <ringno> error: IOCB */ 3063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3064 "0336 Rsp Ring %d error: IOCB Data: " 3065 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3066 pring->ringno, 3067 irsp->un.ulpWord[0], 3068 irsp->un.ulpWord[1], 3069 irsp->un.ulpWord[2], 3070 irsp->un.ulpWord[3], 3071 irsp->un.ulpWord[4], 3072 irsp->un.ulpWord[5], 3073 *(uint32_t *)&irsp->un1, 3074 *((uint32_t *)&irsp->un1 + 1)); 3075 } 3076 3077 switch (type) { 3078 case LPFC_ABORT_IOCB: 3079 case LPFC_SOL_IOCB: 3080 /* 3081 * Idle exchange closed via ABTS from port. No iocb 3082 * resources need to be recovered. 3083 */ 3084 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3086 "0333 IOCB cmd 0x%x" 3087 " processed. Skipping" 3088 " completion\n", 3089 irsp->ulpCommand); 3090 break; 3091 } 3092 3093 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3094 &rspiocbq); 3095 if (unlikely(!cmdiocbq)) 3096 break; 3097 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3098 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3099 if (cmdiocbq->iocb_cmpl) { 3100 spin_unlock_irqrestore(&phba->hbalock, iflag); 3101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3102 &rspiocbq); 3103 spin_lock_irqsave(&phba->hbalock, iflag); 3104 } 3105 break; 3106 case LPFC_UNSOL_IOCB: 3107 spin_unlock_irqrestore(&phba->hbalock, iflag); 3108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3109 spin_lock_irqsave(&phba->hbalock, iflag); 3110 break; 3111 default: 3112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3113 char adaptermsg[LPFC_MAX_ADPTMSG]; 3114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3115 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3116 MAX_MSG_DATA); 3117 dev_warn(&((phba->pcidev)->dev), 3118 "lpfc%d: %s\n", 3119 phba->brd_no, adaptermsg); 3120 } else { 3121 /* Unknown IOCB command */ 3122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3123 "0334 Unknown IOCB command " 3124 "Data: x%x, x%x x%x x%x x%x\n", 3125 type, irsp->ulpCommand, 3126 irsp->ulpStatus, 3127 irsp->ulpIoTag, 3128 irsp->ulpContext); 3129 } 3130 break; 3131 } 3132 3133 /* 3134 * The response IOCB has been processed. Update the ring 3135 * pointer in SLIM. If the port response put pointer has not 3136 * been updated, sync the pgp->rspPutInx and fetch the new port 3137 * response put pointer. 3138 */ 3139 writel(pring->sli.sli3.rspidx, 3140 &phba->host_gp[pring->ringno].rspGetInx); 3141 3142 if (pring->sli.sli3.rspidx == portRspPut) 3143 portRspPut = le32_to_cpu(pgp->rspPutInx); 3144 } 3145 3146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3147 pring->stats.iocb_rsp_full++; 3148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3149 writel(status, phba->CAregaddr); 3150 readl(phba->CAregaddr); 3151 } 3152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3154 pring->stats.iocb_cmd_empty++; 3155 3156 /* Force update of the local copy of cmdGetInx */ 3157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3158 lpfc_sli_resume_iocb(phba, pring); 3159 3160 if ((pring->lpfc_sli_cmd_available)) 3161 (pring->lpfc_sli_cmd_available) (phba, pring); 3162 3163 } 3164 3165 phba->fcp_ring_in_use = 0; 3166 spin_unlock_irqrestore(&phba->hbalock, iflag); 3167 return rc; 3168 } 3169 3170 /** 3171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3172 * @phba: Pointer to HBA context object. 3173 * @pring: Pointer to driver SLI ring object. 3174 * @rspiocbp: Pointer to driver response IOCB object. 3175 * 3176 * This function is called from the worker thread when there is a slow-path 3177 * response IOCB to process. This function chains all the response iocbs until 3178 * seeing the iocb with the LE bit set. The function will call 3179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3180 * completion of a command iocb. The function will call the 3181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3182 * The function frees the resources or calls the completion handler if this 3183 * iocb is an abort completion. The function returns NULL when the response 3184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3185 * this function shall chain the iocb on to the iocb_continueq and return the 3186 * response iocb passed in. 3187 **/ 3188 static struct lpfc_iocbq * 3189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3190 struct lpfc_iocbq *rspiocbp) 3191 { 3192 struct lpfc_iocbq *saveq; 3193 struct lpfc_iocbq *cmdiocbp; 3194 struct lpfc_iocbq *next_iocb; 3195 IOCB_t *irsp = NULL; 3196 uint32_t free_saveq; 3197 uint8_t iocb_cmd_type; 3198 lpfc_iocb_type type; 3199 unsigned long iflag; 3200 int rc; 3201 3202 spin_lock_irqsave(&phba->hbalock, iflag); 3203 /* First add the response iocb to the countinueq list */ 3204 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3205 pring->iocb_continueq_cnt++; 3206 3207 /* Now, determine whether the list is completed for processing */ 3208 irsp = &rspiocbp->iocb; 3209 if (irsp->ulpLe) { 3210 /* 3211 * By default, the driver expects to free all resources 3212 * associated with this iocb completion. 3213 */ 3214 free_saveq = 1; 3215 saveq = list_get_first(&pring->iocb_continueq, 3216 struct lpfc_iocbq, list); 3217 irsp = &(saveq->iocb); 3218 list_del_init(&pring->iocb_continueq); 3219 pring->iocb_continueq_cnt = 0; 3220 3221 pring->stats.iocb_rsp++; 3222 3223 /* 3224 * If resource errors reported from HBA, reduce 3225 * queuedepths of the SCSI device. 3226 */ 3227 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3228 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3229 IOERR_NO_RESOURCES)) { 3230 spin_unlock_irqrestore(&phba->hbalock, iflag); 3231 phba->lpfc_rampdown_queue_depth(phba); 3232 spin_lock_irqsave(&phba->hbalock, iflag); 3233 } 3234 3235 if (irsp->ulpStatus) { 3236 /* Rsp ring <ringno> error: IOCB */ 3237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3238 "0328 Rsp Ring %d error: " 3239 "IOCB Data: " 3240 "x%x x%x x%x x%x " 3241 "x%x x%x x%x x%x " 3242 "x%x x%x x%x x%x " 3243 "x%x x%x x%x x%x\n", 3244 pring->ringno, 3245 irsp->un.ulpWord[0], 3246 irsp->un.ulpWord[1], 3247 irsp->un.ulpWord[2], 3248 irsp->un.ulpWord[3], 3249 irsp->un.ulpWord[4], 3250 irsp->un.ulpWord[5], 3251 *(((uint32_t *) irsp) + 6), 3252 *(((uint32_t *) irsp) + 7), 3253 *(((uint32_t *) irsp) + 8), 3254 *(((uint32_t *) irsp) + 9), 3255 *(((uint32_t *) irsp) + 10), 3256 *(((uint32_t *) irsp) + 11), 3257 *(((uint32_t *) irsp) + 12), 3258 *(((uint32_t *) irsp) + 13), 3259 *(((uint32_t *) irsp) + 14), 3260 *(((uint32_t *) irsp) + 15)); 3261 } 3262 3263 /* 3264 * Fetch the IOCB command type and call the correct completion 3265 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3266 * get freed back to the lpfc_iocb_list by the discovery 3267 * kernel thread. 3268 */ 3269 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3270 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3271 switch (type) { 3272 case LPFC_SOL_IOCB: 3273 spin_unlock_irqrestore(&phba->hbalock, iflag); 3274 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3275 spin_lock_irqsave(&phba->hbalock, iflag); 3276 break; 3277 3278 case LPFC_UNSOL_IOCB: 3279 spin_unlock_irqrestore(&phba->hbalock, iflag); 3280 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3281 spin_lock_irqsave(&phba->hbalock, iflag); 3282 if (!rc) 3283 free_saveq = 0; 3284 break; 3285 3286 case LPFC_ABORT_IOCB: 3287 cmdiocbp = NULL; 3288 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3289 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3290 saveq); 3291 if (cmdiocbp) { 3292 /* Call the specified completion routine */ 3293 if (cmdiocbp->iocb_cmpl) { 3294 spin_unlock_irqrestore(&phba->hbalock, 3295 iflag); 3296 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3297 saveq); 3298 spin_lock_irqsave(&phba->hbalock, 3299 iflag); 3300 } else 3301 __lpfc_sli_release_iocbq(phba, 3302 cmdiocbp); 3303 } 3304 break; 3305 3306 case LPFC_UNKNOWN_IOCB: 3307 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3308 char adaptermsg[LPFC_MAX_ADPTMSG]; 3309 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3310 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3311 MAX_MSG_DATA); 3312 dev_warn(&((phba->pcidev)->dev), 3313 "lpfc%d: %s\n", 3314 phba->brd_no, adaptermsg); 3315 } else { 3316 /* Unknown IOCB command */ 3317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3318 "0335 Unknown IOCB " 3319 "command Data: x%x " 3320 "x%x x%x x%x\n", 3321 irsp->ulpCommand, 3322 irsp->ulpStatus, 3323 irsp->ulpIoTag, 3324 irsp->ulpContext); 3325 } 3326 break; 3327 } 3328 3329 if (free_saveq) { 3330 list_for_each_entry_safe(rspiocbp, next_iocb, 3331 &saveq->list, list) { 3332 list_del_init(&rspiocbp->list); 3333 __lpfc_sli_release_iocbq(phba, rspiocbp); 3334 } 3335 __lpfc_sli_release_iocbq(phba, saveq); 3336 } 3337 rspiocbp = NULL; 3338 } 3339 spin_unlock_irqrestore(&phba->hbalock, iflag); 3340 return rspiocbp; 3341 } 3342 3343 /** 3344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3345 * @phba: Pointer to HBA context object. 3346 * @pring: Pointer to driver SLI ring object. 3347 * @mask: Host attention register mask for this ring. 3348 * 3349 * This routine wraps the actual slow_ring event process routine from the 3350 * API jump table function pointer from the lpfc_hba struct. 3351 **/ 3352 void 3353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3354 struct lpfc_sli_ring *pring, uint32_t mask) 3355 { 3356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3357 } 3358 3359 /** 3360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3361 * @phba: Pointer to HBA context object. 3362 * @pring: Pointer to driver SLI ring object. 3363 * @mask: Host attention register mask for this ring. 3364 * 3365 * This function is called from the worker thread when there is a ring event 3366 * for non-fcp rings. The caller does not hold any lock. The function will 3367 * remove each response iocb in the response ring and calls the handle 3368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3369 **/ 3370 static void 3371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3372 struct lpfc_sli_ring *pring, uint32_t mask) 3373 { 3374 struct lpfc_pgp *pgp; 3375 IOCB_t *entry; 3376 IOCB_t *irsp = NULL; 3377 struct lpfc_iocbq *rspiocbp = NULL; 3378 uint32_t portRspPut, portRspMax; 3379 unsigned long iflag; 3380 uint32_t status; 3381 3382 pgp = &phba->port_gp[pring->ringno]; 3383 spin_lock_irqsave(&phba->hbalock, iflag); 3384 pring->stats.iocb_event++; 3385 3386 /* 3387 * The next available response entry should never exceed the maximum 3388 * entries. If it does, treat it as an adapter hardware error. 3389 */ 3390 portRspMax = pring->sli.sli3.numRiocb; 3391 portRspPut = le32_to_cpu(pgp->rspPutInx); 3392 if (portRspPut >= portRspMax) { 3393 /* 3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3395 * rsp ring <portRspMax> 3396 */ 3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3398 "0303 Ring %d handler: portRspPut %d " 3399 "is bigger than rsp ring %d\n", 3400 pring->ringno, portRspPut, portRspMax); 3401 3402 phba->link_state = LPFC_HBA_ERROR; 3403 spin_unlock_irqrestore(&phba->hbalock, iflag); 3404 3405 phba->work_hs = HS_FFER3; 3406 lpfc_handle_eratt(phba); 3407 3408 return; 3409 } 3410 3411 rmb(); 3412 while (pring->sli.sli3.rspidx != portRspPut) { 3413 /* 3414 * Build a completion list and call the appropriate handler. 3415 * The process is to get the next available response iocb, get 3416 * a free iocb from the list, copy the response data into the 3417 * free iocb, insert to the continuation list, and update the 3418 * next response index to slim. This process makes response 3419 * iocb's in the ring available to DMA as fast as possible but 3420 * pays a penalty for a copy operation. Since the iocb is 3421 * only 32 bytes, this penalty is considered small relative to 3422 * the PCI reads for register values and a slim write. When 3423 * the ulpLe field is set, the entire Command has been 3424 * received. 3425 */ 3426 entry = lpfc_resp_iocb(phba, pring); 3427 3428 phba->last_completion_time = jiffies; 3429 rspiocbp = __lpfc_sli_get_iocbq(phba); 3430 if (rspiocbp == NULL) { 3431 printk(KERN_ERR "%s: out of buffers! Failing " 3432 "completion.\n", __func__); 3433 break; 3434 } 3435 3436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3437 phba->iocb_rsp_size); 3438 irsp = &rspiocbp->iocb; 3439 3440 if (++pring->sli.sli3.rspidx >= portRspMax) 3441 pring->sli.sli3.rspidx = 0; 3442 3443 if (pring->ringno == LPFC_ELS_RING) { 3444 lpfc_debugfs_slow_ring_trc(phba, 3445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3446 *(((uint32_t *) irsp) + 4), 3447 *(((uint32_t *) irsp) + 6), 3448 *(((uint32_t *) irsp) + 7)); 3449 } 3450 3451 writel(pring->sli.sli3.rspidx, 3452 &phba->host_gp[pring->ringno].rspGetInx); 3453 3454 spin_unlock_irqrestore(&phba->hbalock, iflag); 3455 /* Handle the response IOCB */ 3456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3457 spin_lock_irqsave(&phba->hbalock, iflag); 3458 3459 /* 3460 * If the port response put pointer has not been updated, sync 3461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3462 * response put pointer. 3463 */ 3464 if (pring->sli.sli3.rspidx == portRspPut) { 3465 portRspPut = le32_to_cpu(pgp->rspPutInx); 3466 } 3467 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3468 3469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3470 /* At least one response entry has been freed */ 3471 pring->stats.iocb_rsp_full++; 3472 /* SET RxRE_RSP in Chip Att register */ 3473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3474 writel(status, phba->CAregaddr); 3475 readl(phba->CAregaddr); /* flush */ 3476 } 3477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3479 pring->stats.iocb_cmd_empty++; 3480 3481 /* Force update of the local copy of cmdGetInx */ 3482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3483 lpfc_sli_resume_iocb(phba, pring); 3484 3485 if ((pring->lpfc_sli_cmd_available)) 3486 (pring->lpfc_sli_cmd_available) (phba, pring); 3487 3488 } 3489 3490 spin_unlock_irqrestore(&phba->hbalock, iflag); 3491 return; 3492 } 3493 3494 /** 3495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3496 * @phba: Pointer to HBA context object. 3497 * @pring: Pointer to driver SLI ring object. 3498 * @mask: Host attention register mask for this ring. 3499 * 3500 * This function is called from the worker thread when there is a pending 3501 * ELS response iocb on the driver internal slow-path response iocb worker 3502 * queue. The caller does not hold any lock. The function will remove each 3503 * response iocb from the response worker queue and calls the handle 3504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3505 **/ 3506 static void 3507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3508 struct lpfc_sli_ring *pring, uint32_t mask) 3509 { 3510 struct lpfc_iocbq *irspiocbq; 3511 struct hbq_dmabuf *dmabuf; 3512 struct lpfc_cq_event *cq_event; 3513 unsigned long iflag; 3514 3515 spin_lock_irqsave(&phba->hbalock, iflag); 3516 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3517 spin_unlock_irqrestore(&phba->hbalock, iflag); 3518 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3519 /* Get the response iocb from the head of work queue */ 3520 spin_lock_irqsave(&phba->hbalock, iflag); 3521 list_remove_head(&phba->sli4_hba.sp_queue_event, 3522 cq_event, struct lpfc_cq_event, list); 3523 spin_unlock_irqrestore(&phba->hbalock, iflag); 3524 3525 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3526 case CQE_CODE_COMPL_WQE: 3527 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3528 cq_event); 3529 /* Translate ELS WCQE to response IOCBQ */ 3530 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3531 irspiocbq); 3532 if (irspiocbq) 3533 lpfc_sli_sp_handle_rspiocb(phba, pring, 3534 irspiocbq); 3535 break; 3536 case CQE_CODE_RECEIVE: 3537 case CQE_CODE_RECEIVE_V1: 3538 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3539 cq_event); 3540 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3541 break; 3542 default: 3543 break; 3544 } 3545 } 3546 } 3547 3548 /** 3549 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3550 * @phba: Pointer to HBA context object. 3551 * @pring: Pointer to driver SLI ring object. 3552 * 3553 * This function aborts all iocbs in the given ring and frees all the iocb 3554 * objects in txq. This function issues an abort iocb for all the iocb commands 3555 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3556 * the return of this function. The caller is not required to hold any locks. 3557 **/ 3558 void 3559 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3560 { 3561 LIST_HEAD(completions); 3562 struct lpfc_iocbq *iocb, *next_iocb; 3563 3564 if (pring->ringno == LPFC_ELS_RING) { 3565 lpfc_fabric_abort_hba(phba); 3566 } 3567 3568 /* Error everything on txq and txcmplq 3569 * First do the txq. 3570 */ 3571 if (phba->sli_rev >= LPFC_SLI_REV4) { 3572 spin_lock_irq(&pring->ring_lock); 3573 list_splice_init(&pring->txq, &completions); 3574 pring->txq_cnt = 0; 3575 spin_unlock_irq(&pring->ring_lock); 3576 3577 spin_lock_irq(&phba->hbalock); 3578 /* Next issue ABTS for everything on the txcmplq */ 3579 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3580 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3581 spin_unlock_irq(&phba->hbalock); 3582 } else { 3583 spin_lock_irq(&phba->hbalock); 3584 list_splice_init(&pring->txq, &completions); 3585 pring->txq_cnt = 0; 3586 3587 /* Next issue ABTS for everything on the txcmplq */ 3588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3589 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3590 spin_unlock_irq(&phba->hbalock); 3591 } 3592 3593 /* Cancel all the IOCBs from the completions list */ 3594 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3595 IOERR_SLI_ABORTED); 3596 } 3597 3598 /** 3599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3600 * @phba: Pointer to HBA context object. 3601 * @pring: Pointer to driver SLI ring object. 3602 * 3603 * This function aborts all iocbs in FCP rings and frees all the iocb 3604 * objects in txq. This function issues an abort iocb for all the iocb commands 3605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3606 * the return of this function. The caller is not required to hold any locks. 3607 **/ 3608 void 3609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3610 { 3611 struct lpfc_sli *psli = &phba->sli; 3612 struct lpfc_sli_ring *pring; 3613 uint32_t i; 3614 3615 /* Look on all the FCP Rings for the iotag */ 3616 if (phba->sli_rev >= LPFC_SLI_REV4) { 3617 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3618 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3619 lpfc_sli_abort_iocb_ring(phba, pring); 3620 } 3621 } else { 3622 pring = &psli->ring[psli->fcp_ring]; 3623 lpfc_sli_abort_iocb_ring(phba, pring); 3624 } 3625 } 3626 3627 3628 /** 3629 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3630 * @phba: Pointer to HBA context object. 3631 * 3632 * This function flushes all iocbs in the fcp ring and frees all the iocb 3633 * objects in txq and txcmplq. This function will not issue abort iocbs 3634 * for all the iocb commands in txcmplq, they will just be returned with 3635 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3636 * slot has been permanently disabled. 3637 **/ 3638 void 3639 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3640 { 3641 LIST_HEAD(txq); 3642 LIST_HEAD(txcmplq); 3643 struct lpfc_sli *psli = &phba->sli; 3644 struct lpfc_sli_ring *pring; 3645 uint32_t i; 3646 3647 spin_lock_irq(&phba->hbalock); 3648 /* Indicate the I/O queues are flushed */ 3649 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3650 spin_unlock_irq(&phba->hbalock); 3651 3652 /* Look on all the FCP Rings for the iotag */ 3653 if (phba->sli_rev >= LPFC_SLI_REV4) { 3654 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3655 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3656 3657 spin_lock_irq(&pring->ring_lock); 3658 /* Retrieve everything on txq */ 3659 list_splice_init(&pring->txq, &txq); 3660 /* Retrieve everything on the txcmplq */ 3661 list_splice_init(&pring->txcmplq, &txcmplq); 3662 pring->txq_cnt = 0; 3663 pring->txcmplq_cnt = 0; 3664 spin_unlock_irq(&pring->ring_lock); 3665 3666 /* Flush the txq */ 3667 lpfc_sli_cancel_iocbs(phba, &txq, 3668 IOSTAT_LOCAL_REJECT, 3669 IOERR_SLI_DOWN); 3670 /* Flush the txcmpq */ 3671 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3672 IOSTAT_LOCAL_REJECT, 3673 IOERR_SLI_DOWN); 3674 } 3675 } else { 3676 pring = &psli->ring[psli->fcp_ring]; 3677 3678 spin_lock_irq(&phba->hbalock); 3679 /* Retrieve everything on txq */ 3680 list_splice_init(&pring->txq, &txq); 3681 /* Retrieve everything on the txcmplq */ 3682 list_splice_init(&pring->txcmplq, &txcmplq); 3683 pring->txq_cnt = 0; 3684 pring->txcmplq_cnt = 0; 3685 spin_unlock_irq(&phba->hbalock); 3686 3687 /* Flush the txq */ 3688 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3689 IOERR_SLI_DOWN); 3690 /* Flush the txcmpq */ 3691 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3692 IOERR_SLI_DOWN); 3693 } 3694 } 3695 3696 /** 3697 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3698 * @phba: Pointer to HBA context object. 3699 * @mask: Bit mask to be checked. 3700 * 3701 * This function reads the host status register and compares 3702 * with the provided bit mask to check if HBA completed 3703 * the restart. This function will wait in a loop for the 3704 * HBA to complete restart. If the HBA does not restart within 3705 * 15 iterations, the function will reset the HBA again. The 3706 * function returns 1 when HBA fail to restart otherwise returns 3707 * zero. 3708 **/ 3709 static int 3710 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3711 { 3712 uint32_t status; 3713 int i = 0; 3714 int retval = 0; 3715 3716 /* Read the HBA Host Status Register */ 3717 if (lpfc_readl(phba->HSregaddr, &status)) 3718 return 1; 3719 3720 /* 3721 * Check status register every 100ms for 5 retries, then every 3722 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3723 * every 2.5 sec for 4. 3724 * Break our of the loop if errors occurred during init. 3725 */ 3726 while (((status & mask) != mask) && 3727 !(status & HS_FFERM) && 3728 i++ < 20) { 3729 3730 if (i <= 5) 3731 msleep(10); 3732 else if (i <= 10) 3733 msleep(500); 3734 else 3735 msleep(2500); 3736 3737 if (i == 15) { 3738 /* Do post */ 3739 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3740 lpfc_sli_brdrestart(phba); 3741 } 3742 /* Read the HBA Host Status Register */ 3743 if (lpfc_readl(phba->HSregaddr, &status)) { 3744 retval = 1; 3745 break; 3746 } 3747 } 3748 3749 /* Check to see if any errors occurred during init */ 3750 if ((status & HS_FFERM) || (i >= 20)) { 3751 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3752 "2751 Adapter failed to restart, " 3753 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3754 status, 3755 readl(phba->MBslimaddr + 0xa8), 3756 readl(phba->MBslimaddr + 0xac)); 3757 phba->link_state = LPFC_HBA_ERROR; 3758 retval = 1; 3759 } 3760 3761 return retval; 3762 } 3763 3764 /** 3765 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3766 * @phba: Pointer to HBA context object. 3767 * @mask: Bit mask to be checked. 3768 * 3769 * This function checks the host status register to check if HBA is 3770 * ready. This function will wait in a loop for the HBA to be ready 3771 * If the HBA is not ready , the function will will reset the HBA PCI 3772 * function again. The function returns 1 when HBA fail to be ready 3773 * otherwise returns zero. 3774 **/ 3775 static int 3776 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3777 { 3778 uint32_t status; 3779 int retval = 0; 3780 3781 /* Read the HBA Host Status Register */ 3782 status = lpfc_sli4_post_status_check(phba); 3783 3784 if (status) { 3785 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3786 lpfc_sli_brdrestart(phba); 3787 status = lpfc_sli4_post_status_check(phba); 3788 } 3789 3790 /* Check to see if any errors occurred during init */ 3791 if (status) { 3792 phba->link_state = LPFC_HBA_ERROR; 3793 retval = 1; 3794 } else 3795 phba->sli4_hba.intr_enable = 0; 3796 3797 return retval; 3798 } 3799 3800 /** 3801 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3802 * @phba: Pointer to HBA context object. 3803 * @mask: Bit mask to be checked. 3804 * 3805 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3806 * from the API jump table function pointer from the lpfc_hba struct. 3807 **/ 3808 int 3809 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3810 { 3811 return phba->lpfc_sli_brdready(phba, mask); 3812 } 3813 3814 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3815 3816 /** 3817 * lpfc_reset_barrier - Make HBA ready for HBA reset 3818 * @phba: Pointer to HBA context object. 3819 * 3820 * This function is called before resetting an HBA. This function is called 3821 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3822 **/ 3823 void lpfc_reset_barrier(struct lpfc_hba *phba) 3824 { 3825 uint32_t __iomem *resp_buf; 3826 uint32_t __iomem *mbox_buf; 3827 volatile uint32_t mbox; 3828 uint32_t hc_copy, ha_copy, resp_data; 3829 int i; 3830 uint8_t hdrtype; 3831 3832 lockdep_assert_held(&phba->hbalock); 3833 3834 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3835 if (hdrtype != 0x80 || 3836 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3837 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3838 return; 3839 3840 /* 3841 * Tell the other part of the chip to suspend temporarily all 3842 * its DMA activity. 3843 */ 3844 resp_buf = phba->MBslimaddr; 3845 3846 /* Disable the error attention */ 3847 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3848 return; 3849 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3850 readl(phba->HCregaddr); /* flush */ 3851 phba->link_flag |= LS_IGNORE_ERATT; 3852 3853 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3854 return; 3855 if (ha_copy & HA_ERATT) { 3856 /* Clear Chip error bit */ 3857 writel(HA_ERATT, phba->HAregaddr); 3858 phba->pport->stopped = 1; 3859 } 3860 3861 mbox = 0; 3862 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3863 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3864 3865 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3866 mbox_buf = phba->MBslimaddr; 3867 writel(mbox, mbox_buf); 3868 3869 for (i = 0; i < 50; i++) { 3870 if (lpfc_readl((resp_buf + 1), &resp_data)) 3871 return; 3872 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3873 mdelay(1); 3874 else 3875 break; 3876 } 3877 resp_data = 0; 3878 if (lpfc_readl((resp_buf + 1), &resp_data)) 3879 return; 3880 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3881 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3882 phba->pport->stopped) 3883 goto restore_hc; 3884 else 3885 goto clear_errat; 3886 } 3887 3888 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3889 resp_data = 0; 3890 for (i = 0; i < 500; i++) { 3891 if (lpfc_readl(resp_buf, &resp_data)) 3892 return; 3893 if (resp_data != mbox) 3894 mdelay(1); 3895 else 3896 break; 3897 } 3898 3899 clear_errat: 3900 3901 while (++i < 500) { 3902 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3903 return; 3904 if (!(ha_copy & HA_ERATT)) 3905 mdelay(1); 3906 else 3907 break; 3908 } 3909 3910 if (readl(phba->HAregaddr) & HA_ERATT) { 3911 writel(HA_ERATT, phba->HAregaddr); 3912 phba->pport->stopped = 1; 3913 } 3914 3915 restore_hc: 3916 phba->link_flag &= ~LS_IGNORE_ERATT; 3917 writel(hc_copy, phba->HCregaddr); 3918 readl(phba->HCregaddr); /* flush */ 3919 } 3920 3921 /** 3922 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3923 * @phba: Pointer to HBA context object. 3924 * 3925 * This function issues a kill_board mailbox command and waits for 3926 * the error attention interrupt. This function is called for stopping 3927 * the firmware processing. The caller is not required to hold any 3928 * locks. This function calls lpfc_hba_down_post function to free 3929 * any pending commands after the kill. The function will return 1 when it 3930 * fails to kill the board else will return 0. 3931 **/ 3932 int 3933 lpfc_sli_brdkill(struct lpfc_hba *phba) 3934 { 3935 struct lpfc_sli *psli; 3936 LPFC_MBOXQ_t *pmb; 3937 uint32_t status; 3938 uint32_t ha_copy; 3939 int retval; 3940 int i = 0; 3941 3942 psli = &phba->sli; 3943 3944 /* Kill HBA */ 3945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3946 "0329 Kill HBA Data: x%x x%x\n", 3947 phba->pport->port_state, psli->sli_flag); 3948 3949 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3950 if (!pmb) 3951 return 1; 3952 3953 /* Disable the error attention */ 3954 spin_lock_irq(&phba->hbalock); 3955 if (lpfc_readl(phba->HCregaddr, &status)) { 3956 spin_unlock_irq(&phba->hbalock); 3957 mempool_free(pmb, phba->mbox_mem_pool); 3958 return 1; 3959 } 3960 status &= ~HC_ERINT_ENA; 3961 writel(status, phba->HCregaddr); 3962 readl(phba->HCregaddr); /* flush */ 3963 phba->link_flag |= LS_IGNORE_ERATT; 3964 spin_unlock_irq(&phba->hbalock); 3965 3966 lpfc_kill_board(phba, pmb); 3967 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3968 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3969 3970 if (retval != MBX_SUCCESS) { 3971 if (retval != MBX_BUSY) 3972 mempool_free(pmb, phba->mbox_mem_pool); 3973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3974 "2752 KILL_BOARD command failed retval %d\n", 3975 retval); 3976 spin_lock_irq(&phba->hbalock); 3977 phba->link_flag &= ~LS_IGNORE_ERATT; 3978 spin_unlock_irq(&phba->hbalock); 3979 return 1; 3980 } 3981 3982 spin_lock_irq(&phba->hbalock); 3983 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3984 spin_unlock_irq(&phba->hbalock); 3985 3986 mempool_free(pmb, phba->mbox_mem_pool); 3987 3988 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3989 * attention every 100ms for 3 seconds. If we don't get ERATT after 3990 * 3 seconds we still set HBA_ERROR state because the status of the 3991 * board is now undefined. 3992 */ 3993 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3994 return 1; 3995 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3996 mdelay(100); 3997 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3998 return 1; 3999 } 4000 4001 del_timer_sync(&psli->mbox_tmo); 4002 if (ha_copy & HA_ERATT) { 4003 writel(HA_ERATT, phba->HAregaddr); 4004 phba->pport->stopped = 1; 4005 } 4006 spin_lock_irq(&phba->hbalock); 4007 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4008 psli->mbox_active = NULL; 4009 phba->link_flag &= ~LS_IGNORE_ERATT; 4010 spin_unlock_irq(&phba->hbalock); 4011 4012 lpfc_hba_down_post(phba); 4013 phba->link_state = LPFC_HBA_ERROR; 4014 4015 return ha_copy & HA_ERATT ? 0 : 1; 4016 } 4017 4018 /** 4019 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4020 * @phba: Pointer to HBA context object. 4021 * 4022 * This function resets the HBA by writing HC_INITFF to the control 4023 * register. After the HBA resets, this function resets all the iocb ring 4024 * indices. This function disables PCI layer parity checking during 4025 * the reset. 4026 * This function returns 0 always. 4027 * The caller is not required to hold any locks. 4028 **/ 4029 int 4030 lpfc_sli_brdreset(struct lpfc_hba *phba) 4031 { 4032 struct lpfc_sli *psli; 4033 struct lpfc_sli_ring *pring; 4034 uint16_t cfg_value; 4035 int i; 4036 4037 psli = &phba->sli; 4038 4039 /* Reset HBA */ 4040 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4041 "0325 Reset HBA Data: x%x x%x\n", 4042 phba->pport->port_state, psli->sli_flag); 4043 4044 /* perform board reset */ 4045 phba->fc_eventTag = 0; 4046 phba->link_events = 0; 4047 phba->pport->fc_myDID = 0; 4048 phba->pport->fc_prevDID = 0; 4049 4050 /* Turn off parity checking and serr during the physical reset */ 4051 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4052 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4053 (cfg_value & 4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4055 4056 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4057 4058 /* Now toggle INITFF bit in the Host Control Register */ 4059 writel(HC_INITFF, phba->HCregaddr); 4060 mdelay(1); 4061 readl(phba->HCregaddr); /* flush */ 4062 writel(0, phba->HCregaddr); 4063 readl(phba->HCregaddr); /* flush */ 4064 4065 /* Restore PCI cmd register */ 4066 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4067 4068 /* Initialize relevant SLI info */ 4069 for (i = 0; i < psli->num_rings; i++) { 4070 pring = &psli->ring[i]; 4071 pring->flag = 0; 4072 pring->sli.sli3.rspidx = 0; 4073 pring->sli.sli3.next_cmdidx = 0; 4074 pring->sli.sli3.local_getidx = 0; 4075 pring->sli.sli3.cmdidx = 0; 4076 pring->missbufcnt = 0; 4077 } 4078 4079 phba->link_state = LPFC_WARM_START; 4080 return 0; 4081 } 4082 4083 /** 4084 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4085 * @phba: Pointer to HBA context object. 4086 * 4087 * This function resets a SLI4 HBA. This function disables PCI layer parity 4088 * checking during resets the device. The caller is not required to hold 4089 * any locks. 4090 * 4091 * This function returns 0 always. 4092 **/ 4093 int 4094 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4095 { 4096 struct lpfc_sli *psli = &phba->sli; 4097 uint16_t cfg_value; 4098 int rc = 0; 4099 4100 /* Reset HBA */ 4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4102 "0295 Reset HBA Data: x%x x%x x%x\n", 4103 phba->pport->port_state, psli->sli_flag, 4104 phba->hba_flag); 4105 4106 /* perform board reset */ 4107 phba->fc_eventTag = 0; 4108 phba->link_events = 0; 4109 phba->pport->fc_myDID = 0; 4110 phba->pport->fc_prevDID = 0; 4111 4112 spin_lock_irq(&phba->hbalock); 4113 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4114 phba->fcf.fcf_flag = 0; 4115 spin_unlock_irq(&phba->hbalock); 4116 4117 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4118 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4119 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4120 return rc; 4121 } 4122 4123 /* Now physically reset the device */ 4124 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4125 "0389 Performing PCI function reset!\n"); 4126 4127 /* Turn off parity checking and serr during the physical reset */ 4128 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4129 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4130 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4131 4132 /* Perform FCoE PCI function reset before freeing queue memory */ 4133 rc = lpfc_pci_function_reset(phba); 4134 lpfc_sli4_queue_destroy(phba); 4135 4136 /* Restore PCI cmd register */ 4137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4138 4139 return rc; 4140 } 4141 4142 /** 4143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4144 * @phba: Pointer to HBA context object. 4145 * 4146 * This function is called in the SLI initialization code path to 4147 * restart the HBA. The caller is not required to hold any lock. 4148 * This function writes MBX_RESTART mailbox command to the SLIM and 4149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4150 * function to free any pending commands. The function enables 4151 * POST only during the first initialization. The function returns zero. 4152 * The function does not guarantee completion of MBX_RESTART mailbox 4153 * command before the return of this function. 4154 **/ 4155 static int 4156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4157 { 4158 MAILBOX_t *mb; 4159 struct lpfc_sli *psli; 4160 volatile uint32_t word0; 4161 void __iomem *to_slim; 4162 uint32_t hba_aer_enabled; 4163 4164 spin_lock_irq(&phba->hbalock); 4165 4166 /* Take PCIe device Advanced Error Reporting (AER) state */ 4167 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4168 4169 psli = &phba->sli; 4170 4171 /* Restart HBA */ 4172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4173 "0337 Restart HBA Data: x%x x%x\n", 4174 phba->pport->port_state, psli->sli_flag); 4175 4176 word0 = 0; 4177 mb = (MAILBOX_t *) &word0; 4178 mb->mbxCommand = MBX_RESTART; 4179 mb->mbxHc = 1; 4180 4181 lpfc_reset_barrier(phba); 4182 4183 to_slim = phba->MBslimaddr; 4184 writel(*(uint32_t *) mb, to_slim); 4185 readl(to_slim); /* flush */ 4186 4187 /* Only skip post after fc_ffinit is completed */ 4188 if (phba->pport->port_state) 4189 word0 = 1; /* This is really setting up word1 */ 4190 else 4191 word0 = 0; /* This is really setting up word1 */ 4192 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4193 writel(*(uint32_t *) mb, to_slim); 4194 readl(to_slim); /* flush */ 4195 4196 lpfc_sli_brdreset(phba); 4197 phba->pport->stopped = 0; 4198 phba->link_state = LPFC_INIT_START; 4199 phba->hba_flag = 0; 4200 spin_unlock_irq(&phba->hbalock); 4201 4202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4203 psli->stats_start = get_seconds(); 4204 4205 /* Give the INITFF and Post time to settle. */ 4206 mdelay(100); 4207 4208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4209 if (hba_aer_enabled) 4210 pci_disable_pcie_error_reporting(phba->pcidev); 4211 4212 lpfc_hba_down_post(phba); 4213 4214 return 0; 4215 } 4216 4217 /** 4218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4219 * @phba: Pointer to HBA context object. 4220 * 4221 * This function is called in the SLI initialization code path to restart 4222 * a SLI4 HBA. The caller is not required to hold any lock. 4223 * At the end of the function, it calls lpfc_hba_down_post function to 4224 * free any pending commands. 4225 **/ 4226 static int 4227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4228 { 4229 struct lpfc_sli *psli = &phba->sli; 4230 uint32_t hba_aer_enabled; 4231 int rc; 4232 4233 /* Restart HBA */ 4234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4235 "0296 Restart HBA Data: x%x x%x\n", 4236 phba->pport->port_state, psli->sli_flag); 4237 4238 /* Take PCIe device Advanced Error Reporting (AER) state */ 4239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4240 4241 rc = lpfc_sli4_brdreset(phba); 4242 4243 spin_lock_irq(&phba->hbalock); 4244 phba->pport->stopped = 0; 4245 phba->link_state = LPFC_INIT_START; 4246 phba->hba_flag = 0; 4247 spin_unlock_irq(&phba->hbalock); 4248 4249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4250 psli->stats_start = get_seconds(); 4251 4252 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4253 if (hba_aer_enabled) 4254 pci_disable_pcie_error_reporting(phba->pcidev); 4255 4256 lpfc_hba_down_post(phba); 4257 4258 return rc; 4259 } 4260 4261 /** 4262 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4263 * @phba: Pointer to HBA context object. 4264 * 4265 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4266 * API jump table function pointer from the lpfc_hba struct. 4267 **/ 4268 int 4269 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4270 { 4271 return phba->lpfc_sli_brdrestart(phba); 4272 } 4273 4274 /** 4275 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4276 * @phba: Pointer to HBA context object. 4277 * 4278 * This function is called after a HBA restart to wait for successful 4279 * restart of the HBA. Successful restart of the HBA is indicated by 4280 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4281 * iteration, the function will restart the HBA again. The function returns 4282 * zero if HBA successfully restarted else returns negative error code. 4283 **/ 4284 static int 4285 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4286 { 4287 uint32_t status, i = 0; 4288 4289 /* Read the HBA Host Status Register */ 4290 if (lpfc_readl(phba->HSregaddr, &status)) 4291 return -EIO; 4292 4293 /* Check status register to see what current state is */ 4294 i = 0; 4295 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4296 4297 /* Check every 10ms for 10 retries, then every 100ms for 90 4298 * retries, then every 1 sec for 50 retires for a total of 4299 * ~60 seconds before reset the board again and check every 4300 * 1 sec for 50 retries. The up to 60 seconds before the 4301 * board ready is required by the Falcon FIPS zeroization 4302 * complete, and any reset the board in between shall cause 4303 * restart of zeroization, further delay the board ready. 4304 */ 4305 if (i++ >= 200) { 4306 /* Adapter failed to init, timeout, status reg 4307 <status> */ 4308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4309 "0436 Adapter failed to init, " 4310 "timeout, status reg x%x, " 4311 "FW Data: A8 x%x AC x%x\n", status, 4312 readl(phba->MBslimaddr + 0xa8), 4313 readl(phba->MBslimaddr + 0xac)); 4314 phba->link_state = LPFC_HBA_ERROR; 4315 return -ETIMEDOUT; 4316 } 4317 4318 /* Check to see if any errors occurred during init */ 4319 if (status & HS_FFERM) { 4320 /* ERROR: During chipset initialization */ 4321 /* Adapter failed to init, chipset, status reg 4322 <status> */ 4323 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4324 "0437 Adapter failed to init, " 4325 "chipset, status reg x%x, " 4326 "FW Data: A8 x%x AC x%x\n", status, 4327 readl(phba->MBslimaddr + 0xa8), 4328 readl(phba->MBslimaddr + 0xac)); 4329 phba->link_state = LPFC_HBA_ERROR; 4330 return -EIO; 4331 } 4332 4333 if (i <= 10) 4334 msleep(10); 4335 else if (i <= 100) 4336 msleep(100); 4337 else 4338 msleep(1000); 4339 4340 if (i == 150) { 4341 /* Do post */ 4342 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4343 lpfc_sli_brdrestart(phba); 4344 } 4345 /* Read the HBA Host Status Register */ 4346 if (lpfc_readl(phba->HSregaddr, &status)) 4347 return -EIO; 4348 } 4349 4350 /* Check to see if any errors occurred during init */ 4351 if (status & HS_FFERM) { 4352 /* ERROR: During chipset initialization */ 4353 /* Adapter failed to init, chipset, status reg <status> */ 4354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4355 "0438 Adapter failed to init, chipset, " 4356 "status reg x%x, " 4357 "FW Data: A8 x%x AC x%x\n", status, 4358 readl(phba->MBslimaddr + 0xa8), 4359 readl(phba->MBslimaddr + 0xac)); 4360 phba->link_state = LPFC_HBA_ERROR; 4361 return -EIO; 4362 } 4363 4364 /* Clear all interrupt enable conditions */ 4365 writel(0, phba->HCregaddr); 4366 readl(phba->HCregaddr); /* flush */ 4367 4368 /* setup host attn register */ 4369 writel(0xffffffff, phba->HAregaddr); 4370 readl(phba->HAregaddr); /* flush */ 4371 return 0; 4372 } 4373 4374 /** 4375 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4376 * 4377 * This function calculates and returns the number of HBQs required to be 4378 * configured. 4379 **/ 4380 int 4381 lpfc_sli_hbq_count(void) 4382 { 4383 return ARRAY_SIZE(lpfc_hbq_defs); 4384 } 4385 4386 /** 4387 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4388 * 4389 * This function adds the number of hbq entries in every HBQ to get 4390 * the total number of hbq entries required for the HBA and returns 4391 * the total count. 4392 **/ 4393 static int 4394 lpfc_sli_hbq_entry_count(void) 4395 { 4396 int hbq_count = lpfc_sli_hbq_count(); 4397 int count = 0; 4398 int i; 4399 4400 for (i = 0; i < hbq_count; ++i) 4401 count += lpfc_hbq_defs[i]->entry_count; 4402 return count; 4403 } 4404 4405 /** 4406 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4407 * 4408 * This function calculates amount of memory required for all hbq entries 4409 * to be configured and returns the total memory required. 4410 **/ 4411 int 4412 lpfc_sli_hbq_size(void) 4413 { 4414 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4415 } 4416 4417 /** 4418 * lpfc_sli_hbq_setup - configure and initialize HBQs 4419 * @phba: Pointer to HBA context object. 4420 * 4421 * This function is called during the SLI initialization to configure 4422 * all the HBQs and post buffers to the HBQ. The caller is not 4423 * required to hold any locks. This function will return zero if successful 4424 * else it will return negative error code. 4425 **/ 4426 static int 4427 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4428 { 4429 int hbq_count = lpfc_sli_hbq_count(); 4430 LPFC_MBOXQ_t *pmb; 4431 MAILBOX_t *pmbox; 4432 uint32_t hbqno; 4433 uint32_t hbq_entry_index; 4434 4435 /* Get a Mailbox buffer to setup mailbox 4436 * commands for HBA initialization 4437 */ 4438 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4439 4440 if (!pmb) 4441 return -ENOMEM; 4442 4443 pmbox = &pmb->u.mb; 4444 4445 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4446 phba->link_state = LPFC_INIT_MBX_CMDS; 4447 phba->hbq_in_use = 1; 4448 4449 hbq_entry_index = 0; 4450 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4451 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4452 phba->hbqs[hbqno].hbqPutIdx = 0; 4453 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4454 phba->hbqs[hbqno].entry_count = 4455 lpfc_hbq_defs[hbqno]->entry_count; 4456 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4457 hbq_entry_index, pmb); 4458 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4459 4460 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4461 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4462 mbxStatus <status>, ring <num> */ 4463 4464 lpfc_printf_log(phba, KERN_ERR, 4465 LOG_SLI | LOG_VPORT, 4466 "1805 Adapter failed to init. " 4467 "Data: x%x x%x x%x\n", 4468 pmbox->mbxCommand, 4469 pmbox->mbxStatus, hbqno); 4470 4471 phba->link_state = LPFC_HBA_ERROR; 4472 mempool_free(pmb, phba->mbox_mem_pool); 4473 return -ENXIO; 4474 } 4475 } 4476 phba->hbq_count = hbq_count; 4477 4478 mempool_free(pmb, phba->mbox_mem_pool); 4479 4480 /* Initially populate or replenish the HBQs */ 4481 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4482 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4483 return 0; 4484 } 4485 4486 /** 4487 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4488 * @phba: Pointer to HBA context object. 4489 * 4490 * This function is called during the SLI initialization to configure 4491 * all the HBQs and post buffers to the HBQ. The caller is not 4492 * required to hold any locks. This function will return zero if successful 4493 * else it will return negative error code. 4494 **/ 4495 static int 4496 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4497 { 4498 phba->hbq_in_use = 1; 4499 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4500 phba->hbq_count = 1; 4501 /* Initially populate or replenish the HBQs */ 4502 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4503 return 0; 4504 } 4505 4506 /** 4507 * lpfc_sli_config_port - Issue config port mailbox command 4508 * @phba: Pointer to HBA context object. 4509 * @sli_mode: sli mode - 2/3 4510 * 4511 * This function is called by the sli intialization code path 4512 * to issue config_port mailbox command. This function restarts the 4513 * HBA firmware and issues a config_port mailbox command to configure 4514 * the SLI interface in the sli mode specified by sli_mode 4515 * variable. The caller is not required to hold any locks. 4516 * The function returns 0 if successful, else returns negative error 4517 * code. 4518 **/ 4519 int 4520 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4521 { 4522 LPFC_MBOXQ_t *pmb; 4523 uint32_t resetcount = 0, rc = 0, done = 0; 4524 4525 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4526 if (!pmb) { 4527 phba->link_state = LPFC_HBA_ERROR; 4528 return -ENOMEM; 4529 } 4530 4531 phba->sli_rev = sli_mode; 4532 while (resetcount < 2 && !done) { 4533 spin_lock_irq(&phba->hbalock); 4534 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4535 spin_unlock_irq(&phba->hbalock); 4536 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4537 lpfc_sli_brdrestart(phba); 4538 rc = lpfc_sli_chipset_init(phba); 4539 if (rc) 4540 break; 4541 4542 spin_lock_irq(&phba->hbalock); 4543 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4544 spin_unlock_irq(&phba->hbalock); 4545 resetcount++; 4546 4547 /* Call pre CONFIG_PORT mailbox command initialization. A 4548 * value of 0 means the call was successful. Any other 4549 * nonzero value is a failure, but if ERESTART is returned, 4550 * the driver may reset the HBA and try again. 4551 */ 4552 rc = lpfc_config_port_prep(phba); 4553 if (rc == -ERESTART) { 4554 phba->link_state = LPFC_LINK_UNKNOWN; 4555 continue; 4556 } else if (rc) 4557 break; 4558 4559 phba->link_state = LPFC_INIT_MBX_CMDS; 4560 lpfc_config_port(phba, pmb); 4561 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4562 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4563 LPFC_SLI3_HBQ_ENABLED | 4564 LPFC_SLI3_CRP_ENABLED | 4565 LPFC_SLI3_BG_ENABLED | 4566 LPFC_SLI3_DSS_ENABLED); 4567 if (rc != MBX_SUCCESS) { 4568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4569 "0442 Adapter failed to init, mbxCmd x%x " 4570 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4571 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4572 spin_lock_irq(&phba->hbalock); 4573 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4574 spin_unlock_irq(&phba->hbalock); 4575 rc = -ENXIO; 4576 } else { 4577 /* Allow asynchronous mailbox command to go through */ 4578 spin_lock_irq(&phba->hbalock); 4579 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4580 spin_unlock_irq(&phba->hbalock); 4581 done = 1; 4582 4583 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4584 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4586 "3110 Port did not grant ASABT\n"); 4587 } 4588 } 4589 if (!done) { 4590 rc = -EINVAL; 4591 goto do_prep_failed; 4592 } 4593 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4594 if (!pmb->u.mb.un.varCfgPort.cMA) { 4595 rc = -ENXIO; 4596 goto do_prep_failed; 4597 } 4598 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4599 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4600 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4601 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4602 phba->max_vpi : phba->max_vports; 4603 4604 } else 4605 phba->max_vpi = 0; 4606 phba->fips_level = 0; 4607 phba->fips_spec_rev = 0; 4608 if (pmb->u.mb.un.varCfgPort.gdss) { 4609 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4610 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4611 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4612 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4613 "2850 Security Crypto Active. FIPS x%d " 4614 "(Spec Rev: x%d)", 4615 phba->fips_level, phba->fips_spec_rev); 4616 } 4617 if (pmb->u.mb.un.varCfgPort.sec_err) { 4618 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4619 "2856 Config Port Security Crypto " 4620 "Error: x%x ", 4621 pmb->u.mb.un.varCfgPort.sec_err); 4622 } 4623 if (pmb->u.mb.un.varCfgPort.gerbm) 4624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4625 if (pmb->u.mb.un.varCfgPort.gcrp) 4626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4627 4628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4629 phba->port_gp = phba->mbox->us.s3_pgp.port; 4630 4631 if (phba->cfg_enable_bg) { 4632 if (pmb->u.mb.un.varCfgPort.gbg) 4633 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4634 else 4635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4636 "0443 Adapter did not grant " 4637 "BlockGuard\n"); 4638 } 4639 } else { 4640 phba->hbq_get = NULL; 4641 phba->port_gp = phba->mbox->us.s2.port; 4642 phba->max_vpi = 0; 4643 } 4644 do_prep_failed: 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 return rc; 4647 } 4648 4649 4650 /** 4651 * lpfc_sli_hba_setup - SLI intialization function 4652 * @phba: Pointer to HBA context object. 4653 * 4654 * This function is the main SLI intialization function. This function 4655 * is called by the HBA intialization code, HBA reset code and HBA 4656 * error attention handler code. Caller is not required to hold any 4657 * locks. This function issues config_port mailbox command to configure 4658 * the SLI, setup iocb rings and HBQ rings. In the end the function 4659 * calls the config_port_post function to issue init_link mailbox 4660 * command and to start the discovery. The function will return zero 4661 * if successful, else it will return negative error code. 4662 **/ 4663 int 4664 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4665 { 4666 uint32_t rc; 4667 int mode = 3, i; 4668 int longs; 4669 4670 switch (lpfc_sli_mode) { 4671 case 2: 4672 if (phba->cfg_enable_npiv) { 4673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4674 "1824 NPIV enabled: Override lpfc_sli_mode " 4675 "parameter (%d) to auto (0).\n", 4676 lpfc_sli_mode); 4677 break; 4678 } 4679 mode = 2; 4680 break; 4681 case 0: 4682 case 3: 4683 break; 4684 default: 4685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4686 "1819 Unrecognized lpfc_sli_mode " 4687 "parameter: %d.\n", lpfc_sli_mode); 4688 4689 break; 4690 } 4691 4692 rc = lpfc_sli_config_port(phba, mode); 4693 4694 if (rc && lpfc_sli_mode == 3) 4695 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4696 "1820 Unable to select SLI-3. " 4697 "Not supported by adapter.\n"); 4698 if (rc && mode != 2) 4699 rc = lpfc_sli_config_port(phba, 2); 4700 if (rc) 4701 goto lpfc_sli_hba_setup_error; 4702 4703 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4704 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4705 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4706 if (!rc) { 4707 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4708 "2709 This device supports " 4709 "Advanced Error Reporting (AER)\n"); 4710 spin_lock_irq(&phba->hbalock); 4711 phba->hba_flag |= HBA_AER_ENABLED; 4712 spin_unlock_irq(&phba->hbalock); 4713 } else { 4714 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4715 "2708 This device does not support " 4716 "Advanced Error Reporting (AER): %d\n", 4717 rc); 4718 phba->cfg_aer_support = 0; 4719 } 4720 } 4721 4722 if (phba->sli_rev == 3) { 4723 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4724 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4725 } else { 4726 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4727 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4728 phba->sli3_options = 0; 4729 } 4730 4731 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4732 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4733 phba->sli_rev, phba->max_vpi); 4734 rc = lpfc_sli_ring_map(phba); 4735 4736 if (rc) 4737 goto lpfc_sli_hba_setup_error; 4738 4739 /* Initialize VPIs. */ 4740 if (phba->sli_rev == LPFC_SLI_REV3) { 4741 /* 4742 * The VPI bitmask and physical ID array are allocated 4743 * and initialized once only - at driver load. A port 4744 * reset doesn't need to reinitialize this memory. 4745 */ 4746 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4747 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4748 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4749 GFP_KERNEL); 4750 if (!phba->vpi_bmask) { 4751 rc = -ENOMEM; 4752 goto lpfc_sli_hba_setup_error; 4753 } 4754 4755 phba->vpi_ids = kzalloc( 4756 (phba->max_vpi+1) * sizeof(uint16_t), 4757 GFP_KERNEL); 4758 if (!phba->vpi_ids) { 4759 kfree(phba->vpi_bmask); 4760 rc = -ENOMEM; 4761 goto lpfc_sli_hba_setup_error; 4762 } 4763 for (i = 0; i < phba->max_vpi; i++) 4764 phba->vpi_ids[i] = i; 4765 } 4766 } 4767 4768 /* Init HBQs */ 4769 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4770 rc = lpfc_sli_hbq_setup(phba); 4771 if (rc) 4772 goto lpfc_sli_hba_setup_error; 4773 } 4774 spin_lock_irq(&phba->hbalock); 4775 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4776 spin_unlock_irq(&phba->hbalock); 4777 4778 rc = lpfc_config_port_post(phba); 4779 if (rc) 4780 goto lpfc_sli_hba_setup_error; 4781 4782 return rc; 4783 4784 lpfc_sli_hba_setup_error: 4785 phba->link_state = LPFC_HBA_ERROR; 4786 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4787 "0445 Firmware initialization failed\n"); 4788 return rc; 4789 } 4790 4791 /** 4792 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4793 * @phba: Pointer to HBA context object. 4794 * @mboxq: mailbox pointer. 4795 * This function issue a dump mailbox command to read config region 4796 * 23 and parse the records in the region and populate driver 4797 * data structure. 4798 **/ 4799 static int 4800 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4801 { 4802 LPFC_MBOXQ_t *mboxq; 4803 struct lpfc_dmabuf *mp; 4804 struct lpfc_mqe *mqe; 4805 uint32_t data_length; 4806 int rc; 4807 4808 /* Program the default value of vlan_id and fc_map */ 4809 phba->valid_vlan = 0; 4810 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4811 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4812 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4813 4814 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4815 if (!mboxq) 4816 return -ENOMEM; 4817 4818 mqe = &mboxq->u.mqe; 4819 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4820 rc = -ENOMEM; 4821 goto out_free_mboxq; 4822 } 4823 4824 mp = (struct lpfc_dmabuf *) mboxq->context1; 4825 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4826 4827 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4828 "(%d):2571 Mailbox cmd x%x Status x%x " 4829 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4830 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4831 "CQ: x%x x%x x%x x%x\n", 4832 mboxq->vport ? mboxq->vport->vpi : 0, 4833 bf_get(lpfc_mqe_command, mqe), 4834 bf_get(lpfc_mqe_status, mqe), 4835 mqe->un.mb_words[0], mqe->un.mb_words[1], 4836 mqe->un.mb_words[2], mqe->un.mb_words[3], 4837 mqe->un.mb_words[4], mqe->un.mb_words[5], 4838 mqe->un.mb_words[6], mqe->un.mb_words[7], 4839 mqe->un.mb_words[8], mqe->un.mb_words[9], 4840 mqe->un.mb_words[10], mqe->un.mb_words[11], 4841 mqe->un.mb_words[12], mqe->un.mb_words[13], 4842 mqe->un.mb_words[14], mqe->un.mb_words[15], 4843 mqe->un.mb_words[16], mqe->un.mb_words[50], 4844 mboxq->mcqe.word0, 4845 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4846 mboxq->mcqe.trailer); 4847 4848 if (rc) { 4849 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4850 kfree(mp); 4851 rc = -EIO; 4852 goto out_free_mboxq; 4853 } 4854 data_length = mqe->un.mb_words[5]; 4855 if (data_length > DMP_RGN23_SIZE) { 4856 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4857 kfree(mp); 4858 rc = -EIO; 4859 goto out_free_mboxq; 4860 } 4861 4862 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4863 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4864 kfree(mp); 4865 rc = 0; 4866 4867 out_free_mboxq: 4868 mempool_free(mboxq, phba->mbox_mem_pool); 4869 return rc; 4870 } 4871 4872 /** 4873 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4874 * @phba: pointer to lpfc hba data structure. 4875 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4876 * @vpd: pointer to the memory to hold resulting port vpd data. 4877 * @vpd_size: On input, the number of bytes allocated to @vpd. 4878 * On output, the number of data bytes in @vpd. 4879 * 4880 * This routine executes a READ_REV SLI4 mailbox command. In 4881 * addition, this routine gets the port vpd data. 4882 * 4883 * Return codes 4884 * 0 - successful 4885 * -ENOMEM - could not allocated memory. 4886 **/ 4887 static int 4888 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4889 uint8_t *vpd, uint32_t *vpd_size) 4890 { 4891 int rc = 0; 4892 uint32_t dma_size; 4893 struct lpfc_dmabuf *dmabuf; 4894 struct lpfc_mqe *mqe; 4895 4896 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4897 if (!dmabuf) 4898 return -ENOMEM; 4899 4900 /* 4901 * Get a DMA buffer for the vpd data resulting from the READ_REV 4902 * mailbox command. 4903 */ 4904 dma_size = *vpd_size; 4905 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4906 &dmabuf->phys, GFP_KERNEL); 4907 if (!dmabuf->virt) { 4908 kfree(dmabuf); 4909 return -ENOMEM; 4910 } 4911 4912 /* 4913 * The SLI4 implementation of READ_REV conflicts at word1, 4914 * bits 31:16 and SLI4 adds vpd functionality not present 4915 * in SLI3. This code corrects the conflicts. 4916 */ 4917 lpfc_read_rev(phba, mboxq); 4918 mqe = &mboxq->u.mqe; 4919 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4920 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4921 mqe->un.read_rev.word1 &= 0x0000FFFF; 4922 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4923 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4924 4925 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4926 if (rc) { 4927 dma_free_coherent(&phba->pcidev->dev, dma_size, 4928 dmabuf->virt, dmabuf->phys); 4929 kfree(dmabuf); 4930 return -EIO; 4931 } 4932 4933 /* 4934 * The available vpd length cannot be bigger than the 4935 * DMA buffer passed to the port. Catch the less than 4936 * case and update the caller's size. 4937 */ 4938 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4939 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4940 4941 memcpy(vpd, dmabuf->virt, *vpd_size); 4942 4943 dma_free_coherent(&phba->pcidev->dev, dma_size, 4944 dmabuf->virt, dmabuf->phys); 4945 kfree(dmabuf); 4946 return 0; 4947 } 4948 4949 /** 4950 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4951 * @phba: pointer to lpfc hba data structure. 4952 * 4953 * This routine retrieves SLI4 device physical port name this PCI function 4954 * is attached to. 4955 * 4956 * Return codes 4957 * 0 - successful 4958 * otherwise - failed to retrieve physical port name 4959 **/ 4960 static int 4961 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4962 { 4963 LPFC_MBOXQ_t *mboxq; 4964 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4965 struct lpfc_controller_attribute *cntl_attr; 4966 struct lpfc_mbx_get_port_name *get_port_name; 4967 void *virtaddr = NULL; 4968 uint32_t alloclen, reqlen; 4969 uint32_t shdr_status, shdr_add_status; 4970 union lpfc_sli4_cfg_shdr *shdr; 4971 char cport_name = 0; 4972 int rc; 4973 4974 /* We assume nothing at this point */ 4975 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4976 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4977 4978 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4979 if (!mboxq) 4980 return -ENOMEM; 4981 /* obtain link type and link number via READ_CONFIG */ 4982 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4983 lpfc_sli4_read_config(phba); 4984 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4985 goto retrieve_ppname; 4986 4987 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4988 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4989 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4990 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4991 LPFC_SLI4_MBX_NEMBED); 4992 if (alloclen < reqlen) { 4993 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4994 "3084 Allocated DMA memory size (%d) is " 4995 "less than the requested DMA memory size " 4996 "(%d)\n", alloclen, reqlen); 4997 rc = -ENOMEM; 4998 goto out_free_mboxq; 4999 } 5000 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5001 virtaddr = mboxq->sge_array->addr[0]; 5002 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5003 shdr = &mbx_cntl_attr->cfg_shdr; 5004 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5005 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5006 if (shdr_status || shdr_add_status || rc) { 5007 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5008 "3085 Mailbox x%x (x%x/x%x) failed, " 5009 "rc:x%x, status:x%x, add_status:x%x\n", 5010 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5011 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5012 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5013 rc, shdr_status, shdr_add_status); 5014 rc = -ENXIO; 5015 goto out_free_mboxq; 5016 } 5017 cntl_attr = &mbx_cntl_attr->cntl_attr; 5018 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5019 phba->sli4_hba.lnk_info.lnk_tp = 5020 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5021 phba->sli4_hba.lnk_info.lnk_no = 5022 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5023 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5024 "3086 lnk_type:%d, lnk_numb:%d\n", 5025 phba->sli4_hba.lnk_info.lnk_tp, 5026 phba->sli4_hba.lnk_info.lnk_no); 5027 5028 retrieve_ppname: 5029 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5030 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5031 sizeof(struct lpfc_mbx_get_port_name) - 5032 sizeof(struct lpfc_sli4_cfg_mhdr), 5033 LPFC_SLI4_MBX_EMBED); 5034 get_port_name = &mboxq->u.mqe.un.get_port_name; 5035 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5036 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5037 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5038 phba->sli4_hba.lnk_info.lnk_tp); 5039 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5040 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5041 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5042 if (shdr_status || shdr_add_status || rc) { 5043 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5044 "3087 Mailbox x%x (x%x/x%x) failed: " 5045 "rc:x%x, status:x%x, add_status:x%x\n", 5046 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5047 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5048 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5049 rc, shdr_status, shdr_add_status); 5050 rc = -ENXIO; 5051 goto out_free_mboxq; 5052 } 5053 switch (phba->sli4_hba.lnk_info.lnk_no) { 5054 case LPFC_LINK_NUMBER_0: 5055 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5056 &get_port_name->u.response); 5057 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5058 break; 5059 case LPFC_LINK_NUMBER_1: 5060 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5061 &get_port_name->u.response); 5062 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5063 break; 5064 case LPFC_LINK_NUMBER_2: 5065 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5066 &get_port_name->u.response); 5067 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5068 break; 5069 case LPFC_LINK_NUMBER_3: 5070 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5071 &get_port_name->u.response); 5072 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5073 break; 5074 default: 5075 break; 5076 } 5077 5078 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5079 phba->Port[0] = cport_name; 5080 phba->Port[1] = '\0'; 5081 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5082 "3091 SLI get port name: %s\n", phba->Port); 5083 } 5084 5085 out_free_mboxq: 5086 if (rc != MBX_TIMEOUT) { 5087 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5088 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5089 else 5090 mempool_free(mboxq, phba->mbox_mem_pool); 5091 } 5092 return rc; 5093 } 5094 5095 /** 5096 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5097 * @phba: pointer to lpfc hba data structure. 5098 * 5099 * This routine is called to explicitly arm the SLI4 device's completion and 5100 * event queues 5101 **/ 5102 static void 5103 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5104 { 5105 int fcp_eqidx; 5106 5107 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5108 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5109 fcp_eqidx = 0; 5110 if (phba->sli4_hba.fcp_cq) { 5111 do { 5112 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5113 LPFC_QUEUE_REARM); 5114 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5115 } 5116 5117 if (phba->cfg_fof) 5118 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5119 5120 if (phba->sli4_hba.hba_eq) { 5121 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5122 fcp_eqidx++) 5123 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5124 LPFC_QUEUE_REARM); 5125 } 5126 5127 if (phba->cfg_fof) 5128 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5129 } 5130 5131 /** 5132 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5133 * @phba: Pointer to HBA context object. 5134 * @type: The resource extent type. 5135 * @extnt_count: buffer to hold port available extent count. 5136 * @extnt_size: buffer to hold element count per extent. 5137 * 5138 * This function calls the port and retrievs the number of available 5139 * extents and their size for a particular extent type. 5140 * 5141 * Returns: 0 if successful. Nonzero otherwise. 5142 **/ 5143 int 5144 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5145 uint16_t *extnt_count, uint16_t *extnt_size) 5146 { 5147 int rc = 0; 5148 uint32_t length; 5149 uint32_t mbox_tmo; 5150 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5151 LPFC_MBOXQ_t *mbox; 5152 5153 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5154 if (!mbox) 5155 return -ENOMEM; 5156 5157 /* Find out how many extents are available for this resource type */ 5158 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5159 sizeof(struct lpfc_sli4_cfg_mhdr)); 5160 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5161 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5162 length, LPFC_SLI4_MBX_EMBED); 5163 5164 /* Send an extents count of 0 - the GET doesn't use it. */ 5165 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5166 LPFC_SLI4_MBX_EMBED); 5167 if (unlikely(rc)) { 5168 rc = -EIO; 5169 goto err_exit; 5170 } 5171 5172 if (!phba->sli4_hba.intr_enable) 5173 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5174 else { 5175 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5176 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5177 } 5178 if (unlikely(rc)) { 5179 rc = -EIO; 5180 goto err_exit; 5181 } 5182 5183 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5184 if (bf_get(lpfc_mbox_hdr_status, 5185 &rsrc_info->header.cfg_shdr.response)) { 5186 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5187 "2930 Failed to get resource extents " 5188 "Status 0x%x Add'l Status 0x%x\n", 5189 bf_get(lpfc_mbox_hdr_status, 5190 &rsrc_info->header.cfg_shdr.response), 5191 bf_get(lpfc_mbox_hdr_add_status, 5192 &rsrc_info->header.cfg_shdr.response)); 5193 rc = -EIO; 5194 goto err_exit; 5195 } 5196 5197 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5198 &rsrc_info->u.rsp); 5199 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5200 &rsrc_info->u.rsp); 5201 5202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5203 "3162 Retrieved extents type-%d from port: count:%d, " 5204 "size:%d\n", type, *extnt_count, *extnt_size); 5205 5206 err_exit: 5207 mempool_free(mbox, phba->mbox_mem_pool); 5208 return rc; 5209 } 5210 5211 /** 5212 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5213 * @phba: Pointer to HBA context object. 5214 * @type: The extent type to check. 5215 * 5216 * This function reads the current available extents from the port and checks 5217 * if the extent count or extent size has changed since the last access. 5218 * Callers use this routine post port reset to understand if there is a 5219 * extent reprovisioning requirement. 5220 * 5221 * Returns: 5222 * -Error: error indicates problem. 5223 * 1: Extent count or size has changed. 5224 * 0: No changes. 5225 **/ 5226 static int 5227 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5228 { 5229 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5230 uint16_t size_diff, rsrc_ext_size; 5231 int rc = 0; 5232 struct lpfc_rsrc_blks *rsrc_entry; 5233 struct list_head *rsrc_blk_list = NULL; 5234 5235 size_diff = 0; 5236 curr_ext_cnt = 0; 5237 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5238 &rsrc_ext_cnt, 5239 &rsrc_ext_size); 5240 if (unlikely(rc)) 5241 return -EIO; 5242 5243 switch (type) { 5244 case LPFC_RSC_TYPE_FCOE_RPI: 5245 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5246 break; 5247 case LPFC_RSC_TYPE_FCOE_VPI: 5248 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5249 break; 5250 case LPFC_RSC_TYPE_FCOE_XRI: 5251 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5252 break; 5253 case LPFC_RSC_TYPE_FCOE_VFI: 5254 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5255 break; 5256 default: 5257 break; 5258 } 5259 5260 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5261 curr_ext_cnt++; 5262 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5263 size_diff++; 5264 } 5265 5266 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5267 rc = 1; 5268 5269 return rc; 5270 } 5271 5272 /** 5273 * lpfc_sli4_cfg_post_extnts - 5274 * @phba: Pointer to HBA context object. 5275 * @extnt_cnt - number of available extents. 5276 * @type - the extent type (rpi, xri, vfi, vpi). 5277 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5278 * @mbox - pointer to the caller's allocated mailbox structure. 5279 * 5280 * This function executes the extents allocation request. It also 5281 * takes care of the amount of memory needed to allocate or get the 5282 * allocated extents. It is the caller's responsibility to evaluate 5283 * the response. 5284 * 5285 * Returns: 5286 * -Error: Error value describes the condition found. 5287 * 0: if successful 5288 **/ 5289 static int 5290 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5291 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5292 { 5293 int rc = 0; 5294 uint32_t req_len; 5295 uint32_t emb_len; 5296 uint32_t alloc_len, mbox_tmo; 5297 5298 /* Calculate the total requested length of the dma memory */ 5299 req_len = extnt_cnt * sizeof(uint16_t); 5300 5301 /* 5302 * Calculate the size of an embedded mailbox. The uint32_t 5303 * accounts for extents-specific word. 5304 */ 5305 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5306 sizeof(uint32_t); 5307 5308 /* 5309 * Presume the allocation and response will fit into an embedded 5310 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5311 */ 5312 *emb = LPFC_SLI4_MBX_EMBED; 5313 if (req_len > emb_len) { 5314 req_len = extnt_cnt * sizeof(uint16_t) + 5315 sizeof(union lpfc_sli4_cfg_shdr) + 5316 sizeof(uint32_t); 5317 *emb = LPFC_SLI4_MBX_NEMBED; 5318 } 5319 5320 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5321 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5322 req_len, *emb); 5323 if (alloc_len < req_len) { 5324 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5325 "2982 Allocated DMA memory size (x%x) is " 5326 "less than the requested DMA memory " 5327 "size (x%x)\n", alloc_len, req_len); 5328 return -ENOMEM; 5329 } 5330 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5331 if (unlikely(rc)) 5332 return -EIO; 5333 5334 if (!phba->sli4_hba.intr_enable) 5335 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5336 else { 5337 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5338 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5339 } 5340 5341 if (unlikely(rc)) 5342 rc = -EIO; 5343 return rc; 5344 } 5345 5346 /** 5347 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5348 * @phba: Pointer to HBA context object. 5349 * @type: The resource extent type to allocate. 5350 * 5351 * This function allocates the number of elements for the specified 5352 * resource type. 5353 **/ 5354 static int 5355 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5356 { 5357 bool emb = false; 5358 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5359 uint16_t rsrc_id, rsrc_start, j, k; 5360 uint16_t *ids; 5361 int i, rc; 5362 unsigned long longs; 5363 unsigned long *bmask; 5364 struct lpfc_rsrc_blks *rsrc_blks; 5365 LPFC_MBOXQ_t *mbox; 5366 uint32_t length; 5367 struct lpfc_id_range *id_array = NULL; 5368 void *virtaddr = NULL; 5369 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5370 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5371 struct list_head *ext_blk_list; 5372 5373 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5374 &rsrc_cnt, 5375 &rsrc_size); 5376 if (unlikely(rc)) 5377 return -EIO; 5378 5379 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5380 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5381 "3009 No available Resource Extents " 5382 "for resource type 0x%x: Count: 0x%x, " 5383 "Size 0x%x\n", type, rsrc_cnt, 5384 rsrc_size); 5385 return -ENOMEM; 5386 } 5387 5388 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5389 "2903 Post resource extents type-0x%x: " 5390 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5391 5392 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5393 if (!mbox) 5394 return -ENOMEM; 5395 5396 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5397 if (unlikely(rc)) { 5398 rc = -EIO; 5399 goto err_exit; 5400 } 5401 5402 /* 5403 * Figure out where the response is located. Then get local pointers 5404 * to the response data. The port does not guarantee to respond to 5405 * all extents counts request so update the local variable with the 5406 * allocated count from the port. 5407 */ 5408 if (emb == LPFC_SLI4_MBX_EMBED) { 5409 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5410 id_array = &rsrc_ext->u.rsp.id[0]; 5411 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5412 } else { 5413 virtaddr = mbox->sge_array->addr[0]; 5414 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5415 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5416 id_array = &n_rsrc->id; 5417 } 5418 5419 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5420 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5421 5422 /* 5423 * Based on the resource size and count, correct the base and max 5424 * resource values. 5425 */ 5426 length = sizeof(struct lpfc_rsrc_blks); 5427 switch (type) { 5428 case LPFC_RSC_TYPE_FCOE_RPI: 5429 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5430 sizeof(unsigned long), 5431 GFP_KERNEL); 5432 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5433 rc = -ENOMEM; 5434 goto err_exit; 5435 } 5436 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5437 sizeof(uint16_t), 5438 GFP_KERNEL); 5439 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5440 kfree(phba->sli4_hba.rpi_bmask); 5441 rc = -ENOMEM; 5442 goto err_exit; 5443 } 5444 5445 /* 5446 * The next_rpi was initialized with the maximum available 5447 * count but the port may allocate a smaller number. Catch 5448 * that case and update the next_rpi. 5449 */ 5450 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5451 5452 /* Initialize local ptrs for common extent processing later. */ 5453 bmask = phba->sli4_hba.rpi_bmask; 5454 ids = phba->sli4_hba.rpi_ids; 5455 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5456 break; 5457 case LPFC_RSC_TYPE_FCOE_VPI: 5458 phba->vpi_bmask = kzalloc(longs * 5459 sizeof(unsigned long), 5460 GFP_KERNEL); 5461 if (unlikely(!phba->vpi_bmask)) { 5462 rc = -ENOMEM; 5463 goto err_exit; 5464 } 5465 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5466 sizeof(uint16_t), 5467 GFP_KERNEL); 5468 if (unlikely(!phba->vpi_ids)) { 5469 kfree(phba->vpi_bmask); 5470 rc = -ENOMEM; 5471 goto err_exit; 5472 } 5473 5474 /* Initialize local ptrs for common extent processing later. */ 5475 bmask = phba->vpi_bmask; 5476 ids = phba->vpi_ids; 5477 ext_blk_list = &phba->lpfc_vpi_blk_list; 5478 break; 5479 case LPFC_RSC_TYPE_FCOE_XRI: 5480 phba->sli4_hba.xri_bmask = kzalloc(longs * 5481 sizeof(unsigned long), 5482 GFP_KERNEL); 5483 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5484 rc = -ENOMEM; 5485 goto err_exit; 5486 } 5487 phba->sli4_hba.max_cfg_param.xri_used = 0; 5488 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5489 sizeof(uint16_t), 5490 GFP_KERNEL); 5491 if (unlikely(!phba->sli4_hba.xri_ids)) { 5492 kfree(phba->sli4_hba.xri_bmask); 5493 rc = -ENOMEM; 5494 goto err_exit; 5495 } 5496 5497 /* Initialize local ptrs for common extent processing later. */ 5498 bmask = phba->sli4_hba.xri_bmask; 5499 ids = phba->sli4_hba.xri_ids; 5500 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5501 break; 5502 case LPFC_RSC_TYPE_FCOE_VFI: 5503 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5504 sizeof(unsigned long), 5505 GFP_KERNEL); 5506 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5507 rc = -ENOMEM; 5508 goto err_exit; 5509 } 5510 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5511 sizeof(uint16_t), 5512 GFP_KERNEL); 5513 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5514 kfree(phba->sli4_hba.vfi_bmask); 5515 rc = -ENOMEM; 5516 goto err_exit; 5517 } 5518 5519 /* Initialize local ptrs for common extent processing later. */ 5520 bmask = phba->sli4_hba.vfi_bmask; 5521 ids = phba->sli4_hba.vfi_ids; 5522 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5523 break; 5524 default: 5525 /* Unsupported Opcode. Fail call. */ 5526 id_array = NULL; 5527 bmask = NULL; 5528 ids = NULL; 5529 ext_blk_list = NULL; 5530 goto err_exit; 5531 } 5532 5533 /* 5534 * Complete initializing the extent configuration with the 5535 * allocated ids assigned to this function. The bitmask serves 5536 * as an index into the array and manages the available ids. The 5537 * array just stores the ids communicated to the port via the wqes. 5538 */ 5539 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5540 if ((i % 2) == 0) 5541 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5542 &id_array[k]); 5543 else 5544 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5545 &id_array[k]); 5546 5547 rsrc_blks = kzalloc(length, GFP_KERNEL); 5548 if (unlikely(!rsrc_blks)) { 5549 rc = -ENOMEM; 5550 kfree(bmask); 5551 kfree(ids); 5552 goto err_exit; 5553 } 5554 rsrc_blks->rsrc_start = rsrc_id; 5555 rsrc_blks->rsrc_size = rsrc_size; 5556 list_add_tail(&rsrc_blks->list, ext_blk_list); 5557 rsrc_start = rsrc_id; 5558 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5559 phba->sli4_hba.scsi_xri_start = rsrc_start + 5560 lpfc_sli4_get_els_iocb_cnt(phba); 5561 5562 while (rsrc_id < (rsrc_start + rsrc_size)) { 5563 ids[j] = rsrc_id; 5564 rsrc_id++; 5565 j++; 5566 } 5567 /* Entire word processed. Get next word.*/ 5568 if ((i % 2) == 1) 5569 k++; 5570 } 5571 err_exit: 5572 lpfc_sli4_mbox_cmd_free(phba, mbox); 5573 return rc; 5574 } 5575 5576 /** 5577 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5578 * @phba: Pointer to HBA context object. 5579 * @type: the extent's type. 5580 * 5581 * This function deallocates all extents of a particular resource type. 5582 * SLI4 does not allow for deallocating a particular extent range. It 5583 * is the caller's responsibility to release all kernel memory resources. 5584 **/ 5585 static int 5586 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5587 { 5588 int rc; 5589 uint32_t length, mbox_tmo = 0; 5590 LPFC_MBOXQ_t *mbox; 5591 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5592 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5593 5594 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5595 if (!mbox) 5596 return -ENOMEM; 5597 5598 /* 5599 * This function sends an embedded mailbox because it only sends the 5600 * the resource type. All extents of this type are released by the 5601 * port. 5602 */ 5603 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5604 sizeof(struct lpfc_sli4_cfg_mhdr)); 5605 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5606 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5607 length, LPFC_SLI4_MBX_EMBED); 5608 5609 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5610 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5611 LPFC_SLI4_MBX_EMBED); 5612 if (unlikely(rc)) { 5613 rc = -EIO; 5614 goto out_free_mbox; 5615 } 5616 if (!phba->sli4_hba.intr_enable) 5617 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5618 else { 5619 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5620 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5621 } 5622 if (unlikely(rc)) { 5623 rc = -EIO; 5624 goto out_free_mbox; 5625 } 5626 5627 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5628 if (bf_get(lpfc_mbox_hdr_status, 5629 &dealloc_rsrc->header.cfg_shdr.response)) { 5630 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5631 "2919 Failed to release resource extents " 5632 "for type %d - Status 0x%x Add'l Status 0x%x. " 5633 "Resource memory not released.\n", 5634 type, 5635 bf_get(lpfc_mbox_hdr_status, 5636 &dealloc_rsrc->header.cfg_shdr.response), 5637 bf_get(lpfc_mbox_hdr_add_status, 5638 &dealloc_rsrc->header.cfg_shdr.response)); 5639 rc = -EIO; 5640 goto out_free_mbox; 5641 } 5642 5643 /* Release kernel memory resources for the specific type. */ 5644 switch (type) { 5645 case LPFC_RSC_TYPE_FCOE_VPI: 5646 kfree(phba->vpi_bmask); 5647 kfree(phba->vpi_ids); 5648 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5649 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5650 &phba->lpfc_vpi_blk_list, list) { 5651 list_del_init(&rsrc_blk->list); 5652 kfree(rsrc_blk); 5653 } 5654 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5655 break; 5656 case LPFC_RSC_TYPE_FCOE_XRI: 5657 kfree(phba->sli4_hba.xri_bmask); 5658 kfree(phba->sli4_hba.xri_ids); 5659 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5660 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5661 list_del_init(&rsrc_blk->list); 5662 kfree(rsrc_blk); 5663 } 5664 break; 5665 case LPFC_RSC_TYPE_FCOE_VFI: 5666 kfree(phba->sli4_hba.vfi_bmask); 5667 kfree(phba->sli4_hba.vfi_ids); 5668 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5669 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5670 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5671 list_del_init(&rsrc_blk->list); 5672 kfree(rsrc_blk); 5673 } 5674 break; 5675 case LPFC_RSC_TYPE_FCOE_RPI: 5676 /* RPI bitmask and physical id array are cleaned up earlier. */ 5677 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5678 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5679 list_del_init(&rsrc_blk->list); 5680 kfree(rsrc_blk); 5681 } 5682 break; 5683 default: 5684 break; 5685 } 5686 5687 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5688 5689 out_free_mbox: 5690 mempool_free(mbox, phba->mbox_mem_pool); 5691 return rc; 5692 } 5693 5694 /** 5695 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5696 * @phba: Pointer to HBA context object. 5697 * 5698 * This function allocates all SLI4 resource identifiers. 5699 **/ 5700 int 5701 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5702 { 5703 int i, rc, error = 0; 5704 uint16_t count, base; 5705 unsigned long longs; 5706 5707 if (!phba->sli4_hba.rpi_hdrs_in_use) 5708 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5709 if (phba->sli4_hba.extents_in_use) { 5710 /* 5711 * The port supports resource extents. The XRI, VPI, VFI, RPI 5712 * resource extent count must be read and allocated before 5713 * provisioning the resource id arrays. 5714 */ 5715 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5716 LPFC_IDX_RSRC_RDY) { 5717 /* 5718 * Extent-based resources are set - the driver could 5719 * be in a port reset. Figure out if any corrective 5720 * actions need to be taken. 5721 */ 5722 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5723 LPFC_RSC_TYPE_FCOE_VFI); 5724 if (rc != 0) 5725 error++; 5726 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5727 LPFC_RSC_TYPE_FCOE_VPI); 5728 if (rc != 0) 5729 error++; 5730 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5731 LPFC_RSC_TYPE_FCOE_XRI); 5732 if (rc != 0) 5733 error++; 5734 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5735 LPFC_RSC_TYPE_FCOE_RPI); 5736 if (rc != 0) 5737 error++; 5738 5739 /* 5740 * It's possible that the number of resources 5741 * provided to this port instance changed between 5742 * resets. Detect this condition and reallocate 5743 * resources. Otherwise, there is no action. 5744 */ 5745 if (error) { 5746 lpfc_printf_log(phba, KERN_INFO, 5747 LOG_MBOX | LOG_INIT, 5748 "2931 Detected extent resource " 5749 "change. Reallocating all " 5750 "extents.\n"); 5751 rc = lpfc_sli4_dealloc_extent(phba, 5752 LPFC_RSC_TYPE_FCOE_VFI); 5753 rc = lpfc_sli4_dealloc_extent(phba, 5754 LPFC_RSC_TYPE_FCOE_VPI); 5755 rc = lpfc_sli4_dealloc_extent(phba, 5756 LPFC_RSC_TYPE_FCOE_XRI); 5757 rc = lpfc_sli4_dealloc_extent(phba, 5758 LPFC_RSC_TYPE_FCOE_RPI); 5759 } else 5760 return 0; 5761 } 5762 5763 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5764 if (unlikely(rc)) 5765 goto err_exit; 5766 5767 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5768 if (unlikely(rc)) 5769 goto err_exit; 5770 5771 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5772 if (unlikely(rc)) 5773 goto err_exit; 5774 5775 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5776 if (unlikely(rc)) 5777 goto err_exit; 5778 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5779 LPFC_IDX_RSRC_RDY); 5780 return rc; 5781 } else { 5782 /* 5783 * The port does not support resource extents. The XRI, VPI, 5784 * VFI, RPI resource ids were determined from READ_CONFIG. 5785 * Just allocate the bitmasks and provision the resource id 5786 * arrays. If a port reset is active, the resources don't 5787 * need any action - just exit. 5788 */ 5789 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5790 LPFC_IDX_RSRC_RDY) { 5791 lpfc_sli4_dealloc_resource_identifiers(phba); 5792 lpfc_sli4_remove_rpis(phba); 5793 } 5794 /* RPIs. */ 5795 count = phba->sli4_hba.max_cfg_param.max_rpi; 5796 if (count <= 0) { 5797 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5798 "3279 Invalid provisioning of " 5799 "rpi:%d\n", count); 5800 rc = -EINVAL; 5801 goto err_exit; 5802 } 5803 base = phba->sli4_hba.max_cfg_param.rpi_base; 5804 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5805 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5806 sizeof(unsigned long), 5807 GFP_KERNEL); 5808 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5809 rc = -ENOMEM; 5810 goto err_exit; 5811 } 5812 phba->sli4_hba.rpi_ids = kzalloc(count * 5813 sizeof(uint16_t), 5814 GFP_KERNEL); 5815 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5816 rc = -ENOMEM; 5817 goto free_rpi_bmask; 5818 } 5819 5820 for (i = 0; i < count; i++) 5821 phba->sli4_hba.rpi_ids[i] = base + i; 5822 5823 /* VPIs. */ 5824 count = phba->sli4_hba.max_cfg_param.max_vpi; 5825 if (count <= 0) { 5826 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5827 "3280 Invalid provisioning of " 5828 "vpi:%d\n", count); 5829 rc = -EINVAL; 5830 goto free_rpi_ids; 5831 } 5832 base = phba->sli4_hba.max_cfg_param.vpi_base; 5833 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5834 phba->vpi_bmask = kzalloc(longs * 5835 sizeof(unsigned long), 5836 GFP_KERNEL); 5837 if (unlikely(!phba->vpi_bmask)) { 5838 rc = -ENOMEM; 5839 goto free_rpi_ids; 5840 } 5841 phba->vpi_ids = kzalloc(count * 5842 sizeof(uint16_t), 5843 GFP_KERNEL); 5844 if (unlikely(!phba->vpi_ids)) { 5845 rc = -ENOMEM; 5846 goto free_vpi_bmask; 5847 } 5848 5849 for (i = 0; i < count; i++) 5850 phba->vpi_ids[i] = base + i; 5851 5852 /* XRIs. */ 5853 count = phba->sli4_hba.max_cfg_param.max_xri; 5854 if (count <= 0) { 5855 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5856 "3281 Invalid provisioning of " 5857 "xri:%d\n", count); 5858 rc = -EINVAL; 5859 goto free_vpi_ids; 5860 } 5861 base = phba->sli4_hba.max_cfg_param.xri_base; 5862 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5863 phba->sli4_hba.xri_bmask = kzalloc(longs * 5864 sizeof(unsigned long), 5865 GFP_KERNEL); 5866 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5867 rc = -ENOMEM; 5868 goto free_vpi_ids; 5869 } 5870 phba->sli4_hba.max_cfg_param.xri_used = 0; 5871 phba->sli4_hba.xri_ids = kzalloc(count * 5872 sizeof(uint16_t), 5873 GFP_KERNEL); 5874 if (unlikely(!phba->sli4_hba.xri_ids)) { 5875 rc = -ENOMEM; 5876 goto free_xri_bmask; 5877 } 5878 5879 for (i = 0; i < count; i++) 5880 phba->sli4_hba.xri_ids[i] = base + i; 5881 5882 /* VFIs. */ 5883 count = phba->sli4_hba.max_cfg_param.max_vfi; 5884 if (count <= 0) { 5885 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5886 "3282 Invalid provisioning of " 5887 "vfi:%d\n", count); 5888 rc = -EINVAL; 5889 goto free_xri_ids; 5890 } 5891 base = phba->sli4_hba.max_cfg_param.vfi_base; 5892 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5893 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5894 sizeof(unsigned long), 5895 GFP_KERNEL); 5896 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5897 rc = -ENOMEM; 5898 goto free_xri_ids; 5899 } 5900 phba->sli4_hba.vfi_ids = kzalloc(count * 5901 sizeof(uint16_t), 5902 GFP_KERNEL); 5903 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5904 rc = -ENOMEM; 5905 goto free_vfi_bmask; 5906 } 5907 5908 for (i = 0; i < count; i++) 5909 phba->sli4_hba.vfi_ids[i] = base + i; 5910 5911 /* 5912 * Mark all resources ready. An HBA reset doesn't need 5913 * to reset the initialization. 5914 */ 5915 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5916 LPFC_IDX_RSRC_RDY); 5917 return 0; 5918 } 5919 5920 free_vfi_bmask: 5921 kfree(phba->sli4_hba.vfi_bmask); 5922 free_xri_ids: 5923 kfree(phba->sli4_hba.xri_ids); 5924 free_xri_bmask: 5925 kfree(phba->sli4_hba.xri_bmask); 5926 free_vpi_ids: 5927 kfree(phba->vpi_ids); 5928 free_vpi_bmask: 5929 kfree(phba->vpi_bmask); 5930 free_rpi_ids: 5931 kfree(phba->sli4_hba.rpi_ids); 5932 free_rpi_bmask: 5933 kfree(phba->sli4_hba.rpi_bmask); 5934 err_exit: 5935 return rc; 5936 } 5937 5938 /** 5939 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5940 * @phba: Pointer to HBA context object. 5941 * 5942 * This function allocates the number of elements for the specified 5943 * resource type. 5944 **/ 5945 int 5946 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5947 { 5948 if (phba->sli4_hba.extents_in_use) { 5949 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5950 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5951 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5952 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5953 } else { 5954 kfree(phba->vpi_bmask); 5955 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5956 kfree(phba->vpi_ids); 5957 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5958 kfree(phba->sli4_hba.xri_bmask); 5959 kfree(phba->sli4_hba.xri_ids); 5960 kfree(phba->sli4_hba.vfi_bmask); 5961 kfree(phba->sli4_hba.vfi_ids); 5962 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5963 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5964 } 5965 5966 return 0; 5967 } 5968 5969 /** 5970 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 5971 * @phba: Pointer to HBA context object. 5972 * @type: The resource extent type. 5973 * @extnt_count: buffer to hold port extent count response 5974 * @extnt_size: buffer to hold port extent size response. 5975 * 5976 * This function calls the port to read the host allocated extents 5977 * for a particular type. 5978 **/ 5979 int 5980 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 5981 uint16_t *extnt_cnt, uint16_t *extnt_size) 5982 { 5983 bool emb; 5984 int rc = 0; 5985 uint16_t curr_blks = 0; 5986 uint32_t req_len, emb_len; 5987 uint32_t alloc_len, mbox_tmo; 5988 struct list_head *blk_list_head; 5989 struct lpfc_rsrc_blks *rsrc_blk; 5990 LPFC_MBOXQ_t *mbox; 5991 void *virtaddr = NULL; 5992 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5993 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5994 union lpfc_sli4_cfg_shdr *shdr; 5995 5996 switch (type) { 5997 case LPFC_RSC_TYPE_FCOE_VPI: 5998 blk_list_head = &phba->lpfc_vpi_blk_list; 5999 break; 6000 case LPFC_RSC_TYPE_FCOE_XRI: 6001 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6002 break; 6003 case LPFC_RSC_TYPE_FCOE_VFI: 6004 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6005 break; 6006 case LPFC_RSC_TYPE_FCOE_RPI: 6007 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6008 break; 6009 default: 6010 return -EIO; 6011 } 6012 6013 /* Count the number of extents currently allocatd for this type. */ 6014 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6015 if (curr_blks == 0) { 6016 /* 6017 * The GET_ALLOCATED mailbox does not return the size, 6018 * just the count. The size should be just the size 6019 * stored in the current allocated block and all sizes 6020 * for an extent type are the same so set the return 6021 * value now. 6022 */ 6023 *extnt_size = rsrc_blk->rsrc_size; 6024 } 6025 curr_blks++; 6026 } 6027 6028 /* 6029 * Calculate the size of an embedded mailbox. The uint32_t 6030 * accounts for extents-specific word. 6031 */ 6032 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6033 sizeof(uint32_t); 6034 6035 /* 6036 * Presume the allocation and response will fit into an embedded 6037 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6038 */ 6039 emb = LPFC_SLI4_MBX_EMBED; 6040 req_len = emb_len; 6041 if (req_len > emb_len) { 6042 req_len = curr_blks * sizeof(uint16_t) + 6043 sizeof(union lpfc_sli4_cfg_shdr) + 6044 sizeof(uint32_t); 6045 emb = LPFC_SLI4_MBX_NEMBED; 6046 } 6047 6048 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6049 if (!mbox) 6050 return -ENOMEM; 6051 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6052 6053 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6054 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6055 req_len, emb); 6056 if (alloc_len < req_len) { 6057 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6058 "2983 Allocated DMA memory size (x%x) is " 6059 "less than the requested DMA memory " 6060 "size (x%x)\n", alloc_len, req_len); 6061 rc = -ENOMEM; 6062 goto err_exit; 6063 } 6064 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6065 if (unlikely(rc)) { 6066 rc = -EIO; 6067 goto err_exit; 6068 } 6069 6070 if (!phba->sli4_hba.intr_enable) 6071 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6072 else { 6073 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6074 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6075 } 6076 6077 if (unlikely(rc)) { 6078 rc = -EIO; 6079 goto err_exit; 6080 } 6081 6082 /* 6083 * Figure out where the response is located. Then get local pointers 6084 * to the response data. The port does not guarantee to respond to 6085 * all extents counts request so update the local variable with the 6086 * allocated count from the port. 6087 */ 6088 if (emb == LPFC_SLI4_MBX_EMBED) { 6089 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6090 shdr = &rsrc_ext->header.cfg_shdr; 6091 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6092 } else { 6093 virtaddr = mbox->sge_array->addr[0]; 6094 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6095 shdr = &n_rsrc->cfg_shdr; 6096 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6097 } 6098 6099 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6100 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6101 "2984 Failed to read allocated resources " 6102 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6103 type, 6104 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6105 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6106 rc = -EIO; 6107 goto err_exit; 6108 } 6109 err_exit: 6110 lpfc_sli4_mbox_cmd_free(phba, mbox); 6111 return rc; 6112 } 6113 6114 /** 6115 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6116 * @phba: pointer to lpfc hba data structure. 6117 * 6118 * This routine walks the list of els buffers that have been allocated and 6119 * repost them to the port by using SGL block post. This is needed after a 6120 * pci_function_reset/warm_start or start. It attempts to construct blocks 6121 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6122 * SGL block post mailbox commands to post them to the port. For single els 6123 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6124 * mailbox command for posting. 6125 * 6126 * Returns: 0 = success, non-zero failure. 6127 **/ 6128 static int 6129 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6130 { 6131 struct lpfc_sglq *sglq_entry = NULL; 6132 struct lpfc_sglq *sglq_entry_next = NULL; 6133 struct lpfc_sglq *sglq_entry_first = NULL; 6134 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6135 int last_xritag = NO_XRI; 6136 struct lpfc_sli_ring *pring; 6137 LIST_HEAD(prep_sgl_list); 6138 LIST_HEAD(blck_sgl_list); 6139 LIST_HEAD(allc_sgl_list); 6140 LIST_HEAD(post_sgl_list); 6141 LIST_HEAD(free_sgl_list); 6142 6143 pring = &phba->sli.ring[LPFC_ELS_RING]; 6144 spin_lock_irq(&phba->hbalock); 6145 spin_lock(&pring->ring_lock); 6146 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6147 spin_unlock(&pring->ring_lock); 6148 spin_unlock_irq(&phba->hbalock); 6149 6150 total_cnt = phba->sli4_hba.els_xri_cnt; 6151 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6152 &allc_sgl_list, list) { 6153 list_del_init(&sglq_entry->list); 6154 block_cnt++; 6155 if ((last_xritag != NO_XRI) && 6156 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6157 /* a hole in xri block, form a sgl posting block */ 6158 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6159 post_cnt = block_cnt - 1; 6160 /* prepare list for next posting block */ 6161 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6162 block_cnt = 1; 6163 } else { 6164 /* prepare list for next posting block */ 6165 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6166 /* enough sgls for non-embed sgl mbox command */ 6167 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6168 list_splice_init(&prep_sgl_list, 6169 &blck_sgl_list); 6170 post_cnt = block_cnt; 6171 block_cnt = 0; 6172 } 6173 } 6174 num_posted++; 6175 6176 /* keep track of last sgl's xritag */ 6177 last_xritag = sglq_entry->sli4_xritag; 6178 6179 /* end of repost sgl list condition for els buffers */ 6180 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6181 if (post_cnt == 0) { 6182 list_splice_init(&prep_sgl_list, 6183 &blck_sgl_list); 6184 post_cnt = block_cnt; 6185 } else if (block_cnt == 1) { 6186 status = lpfc_sli4_post_sgl(phba, 6187 sglq_entry->phys, 0, 6188 sglq_entry->sli4_xritag); 6189 if (!status) { 6190 /* successful, put sgl to posted list */ 6191 list_add_tail(&sglq_entry->list, 6192 &post_sgl_list); 6193 } else { 6194 /* Failure, put sgl to free list */ 6195 lpfc_printf_log(phba, KERN_WARNING, 6196 LOG_SLI, 6197 "3159 Failed to post els " 6198 "sgl, xritag:x%x\n", 6199 sglq_entry->sli4_xritag); 6200 list_add_tail(&sglq_entry->list, 6201 &free_sgl_list); 6202 total_cnt--; 6203 } 6204 } 6205 } 6206 6207 /* continue until a nembed page worth of sgls */ 6208 if (post_cnt == 0) 6209 continue; 6210 6211 /* post the els buffer list sgls as a block */ 6212 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6213 post_cnt); 6214 6215 if (!status) { 6216 /* success, put sgl list to posted sgl list */ 6217 list_splice_init(&blck_sgl_list, &post_sgl_list); 6218 } else { 6219 /* Failure, put sgl list to free sgl list */ 6220 sglq_entry_first = list_first_entry(&blck_sgl_list, 6221 struct lpfc_sglq, 6222 list); 6223 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6224 "3160 Failed to post els sgl-list, " 6225 "xritag:x%x-x%x\n", 6226 sglq_entry_first->sli4_xritag, 6227 (sglq_entry_first->sli4_xritag + 6228 post_cnt - 1)); 6229 list_splice_init(&blck_sgl_list, &free_sgl_list); 6230 total_cnt -= post_cnt; 6231 } 6232 6233 /* don't reset xirtag due to hole in xri block */ 6234 if (block_cnt == 0) 6235 last_xritag = NO_XRI; 6236 6237 /* reset els sgl post count for next round of posting */ 6238 post_cnt = 0; 6239 } 6240 /* update the number of XRIs posted for ELS */ 6241 phba->sli4_hba.els_xri_cnt = total_cnt; 6242 6243 /* free the els sgls failed to post */ 6244 lpfc_free_sgl_list(phba, &free_sgl_list); 6245 6246 /* push els sgls posted to the availble list */ 6247 if (!list_empty(&post_sgl_list)) { 6248 spin_lock_irq(&phba->hbalock); 6249 spin_lock(&pring->ring_lock); 6250 list_splice_init(&post_sgl_list, 6251 &phba->sli4_hba.lpfc_sgl_list); 6252 spin_unlock(&pring->ring_lock); 6253 spin_unlock_irq(&phba->hbalock); 6254 } else { 6255 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6256 "3161 Failure to post els sgl to port.\n"); 6257 return -EIO; 6258 } 6259 return 0; 6260 } 6261 6262 /** 6263 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6264 * @phba: Pointer to HBA context object. 6265 * 6266 * This function is the main SLI4 device intialization PCI function. This 6267 * function is called by the HBA intialization code, HBA reset code and 6268 * HBA error attention handler code. Caller is not required to hold any 6269 * locks. 6270 **/ 6271 int 6272 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6273 { 6274 int rc; 6275 LPFC_MBOXQ_t *mboxq; 6276 struct lpfc_mqe *mqe; 6277 uint8_t *vpd; 6278 uint32_t vpd_size; 6279 uint32_t ftr_rsp = 0; 6280 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6281 struct lpfc_vport *vport = phba->pport; 6282 struct lpfc_dmabuf *mp; 6283 6284 /* Perform a PCI function reset to start from clean */ 6285 rc = lpfc_pci_function_reset(phba); 6286 if (unlikely(rc)) 6287 return -ENODEV; 6288 6289 /* Check the HBA Host Status Register for readyness */ 6290 rc = lpfc_sli4_post_status_check(phba); 6291 if (unlikely(rc)) 6292 return -ENODEV; 6293 else { 6294 spin_lock_irq(&phba->hbalock); 6295 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6296 spin_unlock_irq(&phba->hbalock); 6297 } 6298 6299 /* 6300 * Allocate a single mailbox container for initializing the 6301 * port. 6302 */ 6303 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6304 if (!mboxq) 6305 return -ENOMEM; 6306 6307 /* Issue READ_REV to collect vpd and FW information. */ 6308 vpd_size = SLI4_PAGE_SIZE; 6309 vpd = kzalloc(vpd_size, GFP_KERNEL); 6310 if (!vpd) { 6311 rc = -ENOMEM; 6312 goto out_free_mbox; 6313 } 6314 6315 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6316 if (unlikely(rc)) { 6317 kfree(vpd); 6318 goto out_free_mbox; 6319 } 6320 6321 mqe = &mboxq->u.mqe; 6322 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6323 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) 6324 phba->hba_flag |= HBA_FCOE_MODE; 6325 else 6326 phba->hba_flag &= ~HBA_FCOE_MODE; 6327 6328 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6329 LPFC_DCBX_CEE_MODE) 6330 phba->hba_flag |= HBA_FIP_SUPPORT; 6331 else 6332 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6333 6334 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6335 6336 if (phba->sli_rev != LPFC_SLI_REV4) { 6337 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6338 "0376 READ_REV Error. SLI Level %d " 6339 "FCoE enabled %d\n", 6340 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6341 rc = -EIO; 6342 kfree(vpd); 6343 goto out_free_mbox; 6344 } 6345 6346 /* 6347 * Continue initialization with default values even if driver failed 6348 * to read FCoE param config regions, only read parameters if the 6349 * board is FCoE 6350 */ 6351 if (phba->hba_flag & HBA_FCOE_MODE && 6352 lpfc_sli4_read_fcoe_params(phba)) 6353 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6354 "2570 Failed to read FCoE parameters\n"); 6355 6356 /* 6357 * Retrieve sli4 device physical port name, failure of doing it 6358 * is considered as non-fatal. 6359 */ 6360 rc = lpfc_sli4_retrieve_pport_name(phba); 6361 if (!rc) 6362 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6363 "3080 Successful retrieving SLI4 device " 6364 "physical port name: %s.\n", phba->Port); 6365 6366 /* 6367 * Evaluate the read rev and vpd data. Populate the driver 6368 * state with the results. If this routine fails, the failure 6369 * is not fatal as the driver will use generic values. 6370 */ 6371 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6372 if (unlikely(!rc)) { 6373 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6374 "0377 Error %d parsing vpd. " 6375 "Using defaults.\n", rc); 6376 rc = 0; 6377 } 6378 kfree(vpd); 6379 6380 /* Save information as VPD data */ 6381 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6382 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6383 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6384 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6385 &mqe->un.read_rev); 6386 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6387 &mqe->un.read_rev); 6388 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6389 &mqe->un.read_rev); 6390 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6391 &mqe->un.read_rev); 6392 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6393 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6394 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6395 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6396 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6397 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6398 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6399 "(%d):0380 READ_REV Status x%x " 6400 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6401 mboxq->vport ? mboxq->vport->vpi : 0, 6402 bf_get(lpfc_mqe_status, mqe), 6403 phba->vpd.rev.opFwName, 6404 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6405 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6406 6407 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6408 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6409 if (phba->pport->cfg_lun_queue_depth > rc) { 6410 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6411 "3362 LUN queue depth changed from %d to %d\n", 6412 phba->pport->cfg_lun_queue_depth, rc); 6413 phba->pport->cfg_lun_queue_depth = rc; 6414 } 6415 6416 6417 /* 6418 * Discover the port's supported feature set and match it against the 6419 * hosts requests. 6420 */ 6421 lpfc_request_features(phba, mboxq); 6422 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6423 if (unlikely(rc)) { 6424 rc = -EIO; 6425 goto out_free_mbox; 6426 } 6427 6428 /* 6429 * The port must support FCP initiator mode as this is the 6430 * only mode running in the host. 6431 */ 6432 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6433 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6434 "0378 No support for fcpi mode.\n"); 6435 ftr_rsp++; 6436 } 6437 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6438 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6439 else 6440 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6441 /* 6442 * If the port cannot support the host's requested features 6443 * then turn off the global config parameters to disable the 6444 * feature in the driver. This is not a fatal error. 6445 */ 6446 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6447 if (phba->cfg_enable_bg) { 6448 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6449 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6450 else 6451 ftr_rsp++; 6452 } 6453 6454 if (phba->max_vpi && phba->cfg_enable_npiv && 6455 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6456 ftr_rsp++; 6457 6458 if (ftr_rsp) { 6459 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6460 "0379 Feature Mismatch Data: x%08x %08x " 6461 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6462 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6463 phba->cfg_enable_npiv, phba->max_vpi); 6464 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6465 phba->cfg_enable_bg = 0; 6466 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6467 phba->cfg_enable_npiv = 0; 6468 } 6469 6470 /* These SLI3 features are assumed in SLI4 */ 6471 spin_lock_irq(&phba->hbalock); 6472 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6473 spin_unlock_irq(&phba->hbalock); 6474 6475 /* 6476 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6477 * calls depends on these resources to complete port setup. 6478 */ 6479 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6480 if (rc) { 6481 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6482 "2920 Failed to alloc Resource IDs " 6483 "rc = x%x\n", rc); 6484 goto out_free_mbox; 6485 } 6486 6487 /* Read the port's service parameters. */ 6488 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6489 if (rc) { 6490 phba->link_state = LPFC_HBA_ERROR; 6491 rc = -ENOMEM; 6492 goto out_free_mbox; 6493 } 6494 6495 mboxq->vport = vport; 6496 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6497 mp = (struct lpfc_dmabuf *) mboxq->context1; 6498 if (rc == MBX_SUCCESS) { 6499 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6500 rc = 0; 6501 } 6502 6503 /* 6504 * This memory was allocated by the lpfc_read_sparam routine. Release 6505 * it to the mbuf pool. 6506 */ 6507 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6508 kfree(mp); 6509 mboxq->context1 = NULL; 6510 if (unlikely(rc)) { 6511 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6512 "0382 READ_SPARAM command failed " 6513 "status %d, mbxStatus x%x\n", 6514 rc, bf_get(lpfc_mqe_status, mqe)); 6515 phba->link_state = LPFC_HBA_ERROR; 6516 rc = -EIO; 6517 goto out_free_mbox; 6518 } 6519 6520 lpfc_update_vport_wwn(vport); 6521 6522 /* Update the fc_host data structures with new wwn. */ 6523 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6524 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6525 6526 /* update host els and scsi xri-sgl sizes and mappings */ 6527 rc = lpfc_sli4_xri_sgl_update(phba); 6528 if (unlikely(rc)) { 6529 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6530 "1400 Failed to update xri-sgl size and " 6531 "mapping: %d\n", rc); 6532 goto out_free_mbox; 6533 } 6534 6535 /* register the els sgl pool to the port */ 6536 rc = lpfc_sli4_repost_els_sgl_list(phba); 6537 if (unlikely(rc)) { 6538 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6539 "0582 Error %d during els sgl post " 6540 "operation\n", rc); 6541 rc = -ENODEV; 6542 goto out_free_mbox; 6543 } 6544 6545 /* register the allocated scsi sgl pool to the port */ 6546 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6547 if (unlikely(rc)) { 6548 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6549 "0383 Error %d during scsi sgl post " 6550 "operation\n", rc); 6551 /* Some Scsi buffers were moved to the abort scsi list */ 6552 /* A pci function reset will repost them */ 6553 rc = -ENODEV; 6554 goto out_free_mbox; 6555 } 6556 6557 /* Post the rpi header region to the device. */ 6558 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6559 if (unlikely(rc)) { 6560 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6561 "0393 Error %d during rpi post operation\n", 6562 rc); 6563 rc = -ENODEV; 6564 goto out_free_mbox; 6565 } 6566 lpfc_sli4_node_prep(phba); 6567 6568 /* Create all the SLI4 queues */ 6569 rc = lpfc_sli4_queue_create(phba); 6570 if (rc) { 6571 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6572 "3089 Failed to allocate queues\n"); 6573 rc = -ENODEV; 6574 goto out_stop_timers; 6575 } 6576 /* Set up all the queues to the device */ 6577 rc = lpfc_sli4_queue_setup(phba); 6578 if (unlikely(rc)) { 6579 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6580 "0381 Error %d during queue setup.\n ", rc); 6581 goto out_destroy_queue; 6582 } 6583 6584 /* Arm the CQs and then EQs on device */ 6585 lpfc_sli4_arm_cqeq_intr(phba); 6586 6587 /* Indicate device interrupt mode */ 6588 phba->sli4_hba.intr_enable = 1; 6589 6590 /* Allow asynchronous mailbox command to go through */ 6591 spin_lock_irq(&phba->hbalock); 6592 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6593 spin_unlock_irq(&phba->hbalock); 6594 6595 /* Post receive buffers to the device */ 6596 lpfc_sli4_rb_setup(phba); 6597 6598 /* Reset HBA FCF states after HBA reset */ 6599 phba->fcf.fcf_flag = 0; 6600 phba->fcf.current_rec.flag = 0; 6601 6602 /* Start the ELS watchdog timer */ 6603 mod_timer(&vport->els_tmofunc, 6604 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6605 6606 /* Start heart beat timer */ 6607 mod_timer(&phba->hb_tmofunc, 6608 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6609 phba->hb_outstanding = 0; 6610 phba->last_completion_time = jiffies; 6611 6612 /* Start error attention (ERATT) polling timer */ 6613 mod_timer(&phba->eratt_poll, 6614 jiffies + msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 6615 6616 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6617 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6618 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6619 if (!rc) { 6620 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6621 "2829 This device supports " 6622 "Advanced Error Reporting (AER)\n"); 6623 spin_lock_irq(&phba->hbalock); 6624 phba->hba_flag |= HBA_AER_ENABLED; 6625 spin_unlock_irq(&phba->hbalock); 6626 } else { 6627 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6628 "2830 This device does not support " 6629 "Advanced Error Reporting (AER)\n"); 6630 phba->cfg_aer_support = 0; 6631 } 6632 rc = 0; 6633 } 6634 6635 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6636 /* 6637 * The FC Port needs to register FCFI (index 0) 6638 */ 6639 lpfc_reg_fcfi(phba, mboxq); 6640 mboxq->vport = phba->pport; 6641 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6642 if (rc != MBX_SUCCESS) 6643 goto out_unset_queue; 6644 rc = 0; 6645 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6646 &mboxq->u.mqe.un.reg_fcfi); 6647 6648 /* Check if the port is configured to be disabled */ 6649 lpfc_sli_read_link_ste(phba); 6650 } 6651 6652 /* 6653 * The port is ready, set the host's link state to LINK_DOWN 6654 * in preparation for link interrupts. 6655 */ 6656 spin_lock_irq(&phba->hbalock); 6657 phba->link_state = LPFC_LINK_DOWN; 6658 spin_unlock_irq(&phba->hbalock); 6659 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6660 (phba->hba_flag & LINK_DISABLED)) { 6661 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6662 "3103 Adapter Link is disabled.\n"); 6663 lpfc_down_link(phba, mboxq); 6664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6665 if (rc != MBX_SUCCESS) { 6666 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6667 "3104 Adapter failed to issue " 6668 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6669 goto out_unset_queue; 6670 } 6671 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6672 /* don't perform init_link on SLI4 FC port loopback test */ 6673 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6674 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6675 if (rc) 6676 goto out_unset_queue; 6677 } 6678 } 6679 mempool_free(mboxq, phba->mbox_mem_pool); 6680 return rc; 6681 out_unset_queue: 6682 /* Unset all the queues set up in this routine when error out */ 6683 lpfc_sli4_queue_unset(phba); 6684 out_destroy_queue: 6685 lpfc_sli4_queue_destroy(phba); 6686 out_stop_timers: 6687 lpfc_stop_hba_timers(phba); 6688 out_free_mbox: 6689 mempool_free(mboxq, phba->mbox_mem_pool); 6690 return rc; 6691 } 6692 6693 /** 6694 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6695 * @ptr: context object - pointer to hba structure. 6696 * 6697 * This is the callback function for mailbox timer. The mailbox 6698 * timer is armed when a new mailbox command is issued and the timer 6699 * is deleted when the mailbox complete. The function is called by 6700 * the kernel timer code when a mailbox does not complete within 6701 * expected time. This function wakes up the worker thread to 6702 * process the mailbox timeout and returns. All the processing is 6703 * done by the worker thread function lpfc_mbox_timeout_handler. 6704 **/ 6705 void 6706 lpfc_mbox_timeout(unsigned long ptr) 6707 { 6708 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6709 unsigned long iflag; 6710 uint32_t tmo_posted; 6711 6712 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6713 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6714 if (!tmo_posted) 6715 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6716 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6717 6718 if (!tmo_posted) 6719 lpfc_worker_wake_up(phba); 6720 return; 6721 } 6722 6723 /** 6724 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6725 * are pending 6726 * @phba: Pointer to HBA context object. 6727 * 6728 * This function checks if any mailbox completions are present on the mailbox 6729 * completion queue. 6730 **/ 6731 static bool 6732 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6733 { 6734 6735 uint32_t idx; 6736 struct lpfc_queue *mcq; 6737 struct lpfc_mcqe *mcqe; 6738 bool pending_completions = false; 6739 6740 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6741 return false; 6742 6743 /* Check for completions on mailbox completion queue */ 6744 6745 mcq = phba->sli4_hba.mbx_cq; 6746 idx = mcq->hba_index; 6747 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6748 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6749 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6750 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6751 pending_completions = true; 6752 break; 6753 } 6754 idx = (idx + 1) % mcq->entry_count; 6755 if (mcq->hba_index == idx) 6756 break; 6757 } 6758 return pending_completions; 6759 6760 } 6761 6762 /** 6763 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6764 * that were missed. 6765 * @phba: Pointer to HBA context object. 6766 * 6767 * For sli4, it is possible to miss an interrupt. As such mbox completions 6768 * maybe missed causing erroneous mailbox timeouts to occur. This function 6769 * checks to see if mbox completions are on the mailbox completion queue 6770 * and will process all the completions associated with the eq for the 6771 * mailbox completion queue. 6772 **/ 6773 bool 6774 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6775 { 6776 6777 uint32_t eqidx; 6778 struct lpfc_queue *fpeq = NULL; 6779 struct lpfc_eqe *eqe; 6780 bool mbox_pending; 6781 6782 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6783 return false; 6784 6785 /* Find the eq associated with the mcq */ 6786 6787 if (phba->sli4_hba.hba_eq) 6788 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6789 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6790 phba->sli4_hba.mbx_cq->assoc_qid) { 6791 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6792 break; 6793 } 6794 if (!fpeq) 6795 return false; 6796 6797 /* Turn off interrupts from this EQ */ 6798 6799 lpfc_sli4_eq_clr_intr(fpeq); 6800 6801 /* Check to see if a mbox completion is pending */ 6802 6803 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6804 6805 /* 6806 * If a mbox completion is pending, process all the events on EQ 6807 * associated with the mbox completion queue (this could include 6808 * mailbox commands, async events, els commands, receive queue data 6809 * and fcp commands) 6810 */ 6811 6812 if (mbox_pending) 6813 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6814 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6815 fpeq->EQ_processed++; 6816 } 6817 6818 /* Always clear and re-arm the EQ */ 6819 6820 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6821 6822 return mbox_pending; 6823 6824 } 6825 6826 /** 6827 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6828 * @phba: Pointer to HBA context object. 6829 * 6830 * This function is called from worker thread when a mailbox command times out. 6831 * The caller is not required to hold any locks. This function will reset the 6832 * HBA and recover all the pending commands. 6833 **/ 6834 void 6835 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6836 { 6837 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6838 MAILBOX_t *mb = NULL; 6839 6840 struct lpfc_sli *psli = &phba->sli; 6841 6842 /* If the mailbox completed, process the completion and return */ 6843 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6844 return; 6845 6846 if (pmbox != NULL) 6847 mb = &pmbox->u.mb; 6848 /* Check the pmbox pointer first. There is a race condition 6849 * between the mbox timeout handler getting executed in the 6850 * worklist and the mailbox actually completing. When this 6851 * race condition occurs, the mbox_active will be NULL. 6852 */ 6853 spin_lock_irq(&phba->hbalock); 6854 if (pmbox == NULL) { 6855 lpfc_printf_log(phba, KERN_WARNING, 6856 LOG_MBOX | LOG_SLI, 6857 "0353 Active Mailbox cleared - mailbox timeout " 6858 "exiting\n"); 6859 spin_unlock_irq(&phba->hbalock); 6860 return; 6861 } 6862 6863 /* Mbox cmd <mbxCommand> timeout */ 6864 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6865 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6866 mb->mbxCommand, 6867 phba->pport->port_state, 6868 phba->sli.sli_flag, 6869 phba->sli.mbox_active); 6870 spin_unlock_irq(&phba->hbalock); 6871 6872 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6873 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6874 * it to fail all outstanding SCSI IO. 6875 */ 6876 spin_lock_irq(&phba->pport->work_port_lock); 6877 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6878 spin_unlock_irq(&phba->pport->work_port_lock); 6879 spin_lock_irq(&phba->hbalock); 6880 phba->link_state = LPFC_LINK_UNKNOWN; 6881 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6882 spin_unlock_irq(&phba->hbalock); 6883 6884 lpfc_sli_abort_fcp_rings(phba); 6885 6886 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6887 "0345 Resetting board due to mailbox timeout\n"); 6888 6889 /* Reset the HBA device */ 6890 lpfc_reset_hba(phba); 6891 } 6892 6893 /** 6894 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6895 * @phba: Pointer to HBA context object. 6896 * @pmbox: Pointer to mailbox object. 6897 * @flag: Flag indicating how the mailbox need to be processed. 6898 * 6899 * This function is called by discovery code and HBA management code 6900 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6901 * function gets the hbalock to protect the data structures. 6902 * The mailbox command can be submitted in polling mode, in which case 6903 * this function will wait in a polling loop for the completion of the 6904 * mailbox. 6905 * If the mailbox is submitted in no_wait mode (not polling) the 6906 * function will submit the command and returns immediately without waiting 6907 * for the mailbox completion. The no_wait is supported only when HBA 6908 * is in SLI2/SLI3 mode - interrupts are enabled. 6909 * The SLI interface allows only one mailbox pending at a time. If the 6910 * mailbox is issued in polling mode and there is already a mailbox 6911 * pending, then the function will return an error. If the mailbox is issued 6912 * in NO_WAIT mode and there is a mailbox pending already, the function 6913 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 6914 * The sli layer owns the mailbox object until the completion of mailbox 6915 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 6916 * return codes the caller owns the mailbox command after the return of 6917 * the function. 6918 **/ 6919 static int 6920 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 6921 uint32_t flag) 6922 { 6923 MAILBOX_t *mbx; 6924 struct lpfc_sli *psli = &phba->sli; 6925 uint32_t status, evtctr; 6926 uint32_t ha_copy, hc_copy; 6927 int i; 6928 unsigned long timeout; 6929 unsigned long drvr_flag = 0; 6930 uint32_t word0, ldata; 6931 void __iomem *to_slim; 6932 int processing_queue = 0; 6933 6934 spin_lock_irqsave(&phba->hbalock, drvr_flag); 6935 if (!pmbox) { 6936 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6937 /* processing mbox queue from intr_handler */ 6938 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 6939 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6940 return MBX_SUCCESS; 6941 } 6942 processing_queue = 1; 6943 pmbox = lpfc_mbox_get(phba); 6944 if (!pmbox) { 6945 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6946 return MBX_SUCCESS; 6947 } 6948 } 6949 6950 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 6951 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 6952 if(!pmbox->vport) { 6953 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6954 lpfc_printf_log(phba, KERN_ERR, 6955 LOG_MBOX | LOG_VPORT, 6956 "1806 Mbox x%x failed. No vport\n", 6957 pmbox->u.mb.mbxCommand); 6958 dump_stack(); 6959 goto out_not_finished; 6960 } 6961 } 6962 6963 /* If the PCI channel is in offline state, do not post mbox. */ 6964 if (unlikely(pci_channel_offline(phba->pcidev))) { 6965 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6966 goto out_not_finished; 6967 } 6968 6969 /* If HBA has a deferred error attention, fail the iocb. */ 6970 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 6971 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6972 goto out_not_finished; 6973 } 6974 6975 psli = &phba->sli; 6976 6977 mbx = &pmbox->u.mb; 6978 status = MBX_SUCCESS; 6979 6980 if (phba->link_state == LPFC_HBA_ERROR) { 6981 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6982 6983 /* Mbox command <mbxCommand> cannot issue */ 6984 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6985 "(%d):0311 Mailbox command x%x cannot " 6986 "issue Data: x%x x%x\n", 6987 pmbox->vport ? pmbox->vport->vpi : 0, 6988 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6989 goto out_not_finished; 6990 } 6991 6992 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 6993 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 6994 !(hc_copy & HC_MBINT_ENA)) { 6995 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6996 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6997 "(%d):2528 Mailbox command x%x cannot " 6998 "issue Data: x%x x%x\n", 6999 pmbox->vport ? pmbox->vport->vpi : 0, 7000 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7001 goto out_not_finished; 7002 } 7003 } 7004 7005 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7006 /* Polling for a mbox command when another one is already active 7007 * is not allowed in SLI. Also, the driver must have established 7008 * SLI2 mode to queue and process multiple mbox commands. 7009 */ 7010 7011 if (flag & MBX_POLL) { 7012 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7013 7014 /* Mbox command <mbxCommand> cannot issue */ 7015 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7016 "(%d):2529 Mailbox command x%x " 7017 "cannot issue Data: x%x x%x\n", 7018 pmbox->vport ? pmbox->vport->vpi : 0, 7019 pmbox->u.mb.mbxCommand, 7020 psli->sli_flag, flag); 7021 goto out_not_finished; 7022 } 7023 7024 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7025 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7026 /* Mbox command <mbxCommand> cannot issue */ 7027 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7028 "(%d):2530 Mailbox command x%x " 7029 "cannot issue Data: x%x x%x\n", 7030 pmbox->vport ? pmbox->vport->vpi : 0, 7031 pmbox->u.mb.mbxCommand, 7032 psli->sli_flag, flag); 7033 goto out_not_finished; 7034 } 7035 7036 /* Another mailbox command is still being processed, queue this 7037 * command to be processed later. 7038 */ 7039 lpfc_mbox_put(phba, pmbox); 7040 7041 /* Mbox cmd issue - BUSY */ 7042 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7043 "(%d):0308 Mbox cmd issue - BUSY Data: " 7044 "x%x x%x x%x x%x\n", 7045 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7046 mbx->mbxCommand, phba->pport->port_state, 7047 psli->sli_flag, flag); 7048 7049 psli->slistat.mbox_busy++; 7050 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7051 7052 if (pmbox->vport) { 7053 lpfc_debugfs_disc_trc(pmbox->vport, 7054 LPFC_DISC_TRC_MBOX_VPORT, 7055 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7056 (uint32_t)mbx->mbxCommand, 7057 mbx->un.varWords[0], mbx->un.varWords[1]); 7058 } 7059 else { 7060 lpfc_debugfs_disc_trc(phba->pport, 7061 LPFC_DISC_TRC_MBOX, 7062 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7063 (uint32_t)mbx->mbxCommand, 7064 mbx->un.varWords[0], mbx->un.varWords[1]); 7065 } 7066 7067 return MBX_BUSY; 7068 } 7069 7070 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7071 7072 /* If we are not polling, we MUST be in SLI2 mode */ 7073 if (flag != MBX_POLL) { 7074 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7075 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7076 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7077 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7078 /* Mbox command <mbxCommand> cannot issue */ 7079 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7080 "(%d):2531 Mailbox command x%x " 7081 "cannot issue Data: x%x x%x\n", 7082 pmbox->vport ? pmbox->vport->vpi : 0, 7083 pmbox->u.mb.mbxCommand, 7084 psli->sli_flag, flag); 7085 goto out_not_finished; 7086 } 7087 /* timeout active mbox command */ 7088 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7089 1000); 7090 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7091 } 7092 7093 /* Mailbox cmd <cmd> issue */ 7094 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7095 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7096 "x%x\n", 7097 pmbox->vport ? pmbox->vport->vpi : 0, 7098 mbx->mbxCommand, phba->pport->port_state, 7099 psli->sli_flag, flag); 7100 7101 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7102 if (pmbox->vport) { 7103 lpfc_debugfs_disc_trc(pmbox->vport, 7104 LPFC_DISC_TRC_MBOX_VPORT, 7105 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7106 (uint32_t)mbx->mbxCommand, 7107 mbx->un.varWords[0], mbx->un.varWords[1]); 7108 } 7109 else { 7110 lpfc_debugfs_disc_trc(phba->pport, 7111 LPFC_DISC_TRC_MBOX, 7112 "MBOX Send: cmd:x%x mb:x%x x%x", 7113 (uint32_t)mbx->mbxCommand, 7114 mbx->un.varWords[0], mbx->un.varWords[1]); 7115 } 7116 } 7117 7118 psli->slistat.mbox_cmd++; 7119 evtctr = psli->slistat.mbox_event; 7120 7121 /* next set own bit for the adapter and copy over command word */ 7122 mbx->mbxOwner = OWN_CHIP; 7123 7124 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7125 /* Populate mbox extension offset word. */ 7126 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7127 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7128 = (uint8_t *)phba->mbox_ext 7129 - (uint8_t *)phba->mbox; 7130 } 7131 7132 /* Copy the mailbox extension data */ 7133 if (pmbox->in_ext_byte_len && pmbox->context2) { 7134 lpfc_sli_pcimem_bcopy(pmbox->context2, 7135 (uint8_t *)phba->mbox_ext, 7136 pmbox->in_ext_byte_len); 7137 } 7138 /* Copy command data to host SLIM area */ 7139 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7140 } else { 7141 /* Populate mbox extension offset word. */ 7142 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7143 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7144 = MAILBOX_HBA_EXT_OFFSET; 7145 7146 /* Copy the mailbox extension data */ 7147 if (pmbox->in_ext_byte_len && pmbox->context2) { 7148 lpfc_memcpy_to_slim(phba->MBslimaddr + 7149 MAILBOX_HBA_EXT_OFFSET, 7150 pmbox->context2, pmbox->in_ext_byte_len); 7151 7152 } 7153 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7154 /* copy command data into host mbox for cmpl */ 7155 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7156 } 7157 7158 /* First copy mbox command data to HBA SLIM, skip past first 7159 word */ 7160 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7161 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7162 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7163 7164 /* Next copy over first word, with mbxOwner set */ 7165 ldata = *((uint32_t *)mbx); 7166 to_slim = phba->MBslimaddr; 7167 writel(ldata, to_slim); 7168 readl(to_slim); /* flush */ 7169 7170 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7171 /* switch over to host mailbox */ 7172 psli->sli_flag |= LPFC_SLI_ACTIVE; 7173 } 7174 } 7175 7176 wmb(); 7177 7178 switch (flag) { 7179 case MBX_NOWAIT: 7180 /* Set up reference to mailbox command */ 7181 psli->mbox_active = pmbox; 7182 /* Interrupt board to do it */ 7183 writel(CA_MBATT, phba->CAregaddr); 7184 readl(phba->CAregaddr); /* flush */ 7185 /* Don't wait for it to finish, just return */ 7186 break; 7187 7188 case MBX_POLL: 7189 /* Set up null reference to mailbox command */ 7190 psli->mbox_active = NULL; 7191 /* Interrupt board to do it */ 7192 writel(CA_MBATT, phba->CAregaddr); 7193 readl(phba->CAregaddr); /* flush */ 7194 7195 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7196 /* First read mbox status word */ 7197 word0 = *((uint32_t *)phba->mbox); 7198 word0 = le32_to_cpu(word0); 7199 } else { 7200 /* First read mbox status word */ 7201 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7202 spin_unlock_irqrestore(&phba->hbalock, 7203 drvr_flag); 7204 goto out_not_finished; 7205 } 7206 } 7207 7208 /* Read the HBA Host Attention Register */ 7209 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7210 spin_unlock_irqrestore(&phba->hbalock, 7211 drvr_flag); 7212 goto out_not_finished; 7213 } 7214 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7215 1000) + jiffies; 7216 i = 0; 7217 /* Wait for command to complete */ 7218 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7219 (!(ha_copy & HA_MBATT) && 7220 (phba->link_state > LPFC_WARM_START))) { 7221 if (time_after(jiffies, timeout)) { 7222 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7223 spin_unlock_irqrestore(&phba->hbalock, 7224 drvr_flag); 7225 goto out_not_finished; 7226 } 7227 7228 /* Check if we took a mbox interrupt while we were 7229 polling */ 7230 if (((word0 & OWN_CHIP) != OWN_CHIP) 7231 && (evtctr != psli->slistat.mbox_event)) 7232 break; 7233 7234 if (i++ > 10) { 7235 spin_unlock_irqrestore(&phba->hbalock, 7236 drvr_flag); 7237 msleep(1); 7238 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7239 } 7240 7241 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7242 /* First copy command data */ 7243 word0 = *((uint32_t *)phba->mbox); 7244 word0 = le32_to_cpu(word0); 7245 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7246 MAILBOX_t *slimmb; 7247 uint32_t slimword0; 7248 /* Check real SLIM for any errors */ 7249 slimword0 = readl(phba->MBslimaddr); 7250 slimmb = (MAILBOX_t *) & slimword0; 7251 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7252 && slimmb->mbxStatus) { 7253 psli->sli_flag &= 7254 ~LPFC_SLI_ACTIVE; 7255 word0 = slimword0; 7256 } 7257 } 7258 } else { 7259 /* First copy command data */ 7260 word0 = readl(phba->MBslimaddr); 7261 } 7262 /* Read the HBA Host Attention Register */ 7263 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7264 spin_unlock_irqrestore(&phba->hbalock, 7265 drvr_flag); 7266 goto out_not_finished; 7267 } 7268 } 7269 7270 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7271 /* copy results back to user */ 7272 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7273 /* Copy the mailbox extension data */ 7274 if (pmbox->out_ext_byte_len && pmbox->context2) { 7275 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7276 pmbox->context2, 7277 pmbox->out_ext_byte_len); 7278 } 7279 } else { 7280 /* First copy command data */ 7281 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7282 MAILBOX_CMD_SIZE); 7283 /* Copy the mailbox extension data */ 7284 if (pmbox->out_ext_byte_len && pmbox->context2) { 7285 lpfc_memcpy_from_slim(pmbox->context2, 7286 phba->MBslimaddr + 7287 MAILBOX_HBA_EXT_OFFSET, 7288 pmbox->out_ext_byte_len); 7289 } 7290 } 7291 7292 writel(HA_MBATT, phba->HAregaddr); 7293 readl(phba->HAregaddr); /* flush */ 7294 7295 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7296 status = mbx->mbxStatus; 7297 } 7298 7299 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7300 return status; 7301 7302 out_not_finished: 7303 if (processing_queue) { 7304 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7305 lpfc_mbox_cmpl_put(phba, pmbox); 7306 } 7307 return MBX_NOT_FINISHED; 7308 } 7309 7310 /** 7311 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7312 * @phba: Pointer to HBA context object. 7313 * 7314 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7315 * the driver internal pending mailbox queue. It will then try to wait out the 7316 * possible outstanding mailbox command before return. 7317 * 7318 * Returns: 7319 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7320 * the outstanding mailbox command timed out. 7321 **/ 7322 static int 7323 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7324 { 7325 struct lpfc_sli *psli = &phba->sli; 7326 int rc = 0; 7327 unsigned long timeout = 0; 7328 7329 /* Mark the asynchronous mailbox command posting as blocked */ 7330 spin_lock_irq(&phba->hbalock); 7331 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7332 /* Determine how long we might wait for the active mailbox 7333 * command to be gracefully completed by firmware. 7334 */ 7335 if (phba->sli.mbox_active) 7336 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7337 phba->sli.mbox_active) * 7338 1000) + jiffies; 7339 spin_unlock_irq(&phba->hbalock); 7340 7341 /* Make sure the mailbox is really active */ 7342 if (timeout) 7343 lpfc_sli4_process_missed_mbox_completions(phba); 7344 7345 /* Wait for the outstnading mailbox command to complete */ 7346 while (phba->sli.mbox_active) { 7347 /* Check active mailbox complete status every 2ms */ 7348 msleep(2); 7349 if (time_after(jiffies, timeout)) { 7350 /* Timeout, marked the outstanding cmd not complete */ 7351 rc = 1; 7352 break; 7353 } 7354 } 7355 7356 /* Can not cleanly block async mailbox command, fails it */ 7357 if (rc) { 7358 spin_lock_irq(&phba->hbalock); 7359 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7360 spin_unlock_irq(&phba->hbalock); 7361 } 7362 return rc; 7363 } 7364 7365 /** 7366 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7367 * @phba: Pointer to HBA context object. 7368 * 7369 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7370 * commands from the driver internal pending mailbox queue. It makes sure 7371 * that there is no outstanding mailbox command before resuming posting 7372 * asynchronous mailbox commands. If, for any reason, there is outstanding 7373 * mailbox command, it will try to wait it out before resuming asynchronous 7374 * mailbox command posting. 7375 **/ 7376 static void 7377 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7378 { 7379 struct lpfc_sli *psli = &phba->sli; 7380 7381 spin_lock_irq(&phba->hbalock); 7382 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7383 /* Asynchronous mailbox posting is not blocked, do nothing */ 7384 spin_unlock_irq(&phba->hbalock); 7385 return; 7386 } 7387 7388 /* Outstanding synchronous mailbox command is guaranteed to be done, 7389 * successful or timeout, after timing-out the outstanding mailbox 7390 * command shall always be removed, so just unblock posting async 7391 * mailbox command and resume 7392 */ 7393 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7394 spin_unlock_irq(&phba->hbalock); 7395 7396 /* wake up worker thread to post asynchronlous mailbox command */ 7397 lpfc_worker_wake_up(phba); 7398 } 7399 7400 /** 7401 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7402 * @phba: Pointer to HBA context object. 7403 * @mboxq: Pointer to mailbox object. 7404 * 7405 * The function waits for the bootstrap mailbox register ready bit from 7406 * port for twice the regular mailbox command timeout value. 7407 * 7408 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7409 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7410 **/ 7411 static int 7412 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7413 { 7414 uint32_t db_ready; 7415 unsigned long timeout; 7416 struct lpfc_register bmbx_reg; 7417 7418 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7419 * 1000) + jiffies; 7420 7421 do { 7422 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7423 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7424 if (!db_ready) 7425 msleep(2); 7426 7427 if (time_after(jiffies, timeout)) 7428 return MBXERR_ERROR; 7429 } while (!db_ready); 7430 7431 return 0; 7432 } 7433 7434 /** 7435 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7436 * @phba: Pointer to HBA context object. 7437 * @mboxq: Pointer to mailbox object. 7438 * 7439 * The function posts a mailbox to the port. The mailbox is expected 7440 * to be comletely filled in and ready for the port to operate on it. 7441 * This routine executes a synchronous completion operation on the 7442 * mailbox by polling for its completion. 7443 * 7444 * The caller must not be holding any locks when calling this routine. 7445 * 7446 * Returns: 7447 * MBX_SUCCESS - mailbox posted successfully 7448 * Any of the MBX error values. 7449 **/ 7450 static int 7451 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7452 { 7453 int rc = MBX_SUCCESS; 7454 unsigned long iflag; 7455 uint32_t mcqe_status; 7456 uint32_t mbx_cmnd; 7457 struct lpfc_sli *psli = &phba->sli; 7458 struct lpfc_mqe *mb = &mboxq->u.mqe; 7459 struct lpfc_bmbx_create *mbox_rgn; 7460 struct dma_address *dma_address; 7461 7462 /* 7463 * Only one mailbox can be active to the bootstrap mailbox region 7464 * at a time and there is no queueing provided. 7465 */ 7466 spin_lock_irqsave(&phba->hbalock, iflag); 7467 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7468 spin_unlock_irqrestore(&phba->hbalock, iflag); 7469 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7470 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7471 "cannot issue Data: x%x x%x\n", 7472 mboxq->vport ? mboxq->vport->vpi : 0, 7473 mboxq->u.mb.mbxCommand, 7474 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7475 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7476 psli->sli_flag, MBX_POLL); 7477 return MBXERR_ERROR; 7478 } 7479 /* The server grabs the token and owns it until release */ 7480 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7481 phba->sli.mbox_active = mboxq; 7482 spin_unlock_irqrestore(&phba->hbalock, iflag); 7483 7484 /* wait for bootstrap mbox register for readyness */ 7485 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7486 if (rc) 7487 goto exit; 7488 7489 /* 7490 * Initialize the bootstrap memory region to avoid stale data areas 7491 * in the mailbox post. Then copy the caller's mailbox contents to 7492 * the bmbx mailbox region. 7493 */ 7494 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7495 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7496 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7497 sizeof(struct lpfc_mqe)); 7498 7499 /* Post the high mailbox dma address to the port and wait for ready. */ 7500 dma_address = &phba->sli4_hba.bmbx.dma_address; 7501 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7502 7503 /* wait for bootstrap mbox register for hi-address write done */ 7504 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7505 if (rc) 7506 goto exit; 7507 7508 /* Post the low mailbox dma address to the port. */ 7509 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7510 7511 /* wait for bootstrap mbox register for low address write done */ 7512 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7513 if (rc) 7514 goto exit; 7515 7516 /* 7517 * Read the CQ to ensure the mailbox has completed. 7518 * If so, update the mailbox status so that the upper layers 7519 * can complete the request normally. 7520 */ 7521 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7522 sizeof(struct lpfc_mqe)); 7523 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7524 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7525 sizeof(struct lpfc_mcqe)); 7526 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7527 /* 7528 * When the CQE status indicates a failure and the mailbox status 7529 * indicates success then copy the CQE status into the mailbox status 7530 * (and prefix it with x4000). 7531 */ 7532 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7533 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7534 bf_set(lpfc_mqe_status, mb, 7535 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7536 rc = MBXERR_ERROR; 7537 } else 7538 lpfc_sli4_swap_str(phba, mboxq); 7539 7540 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7541 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7542 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7543 " x%x x%x CQ: x%x x%x x%x x%x\n", 7544 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7545 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7546 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7547 bf_get(lpfc_mqe_status, mb), 7548 mb->un.mb_words[0], mb->un.mb_words[1], 7549 mb->un.mb_words[2], mb->un.mb_words[3], 7550 mb->un.mb_words[4], mb->un.mb_words[5], 7551 mb->un.mb_words[6], mb->un.mb_words[7], 7552 mb->un.mb_words[8], mb->un.mb_words[9], 7553 mb->un.mb_words[10], mb->un.mb_words[11], 7554 mb->un.mb_words[12], mboxq->mcqe.word0, 7555 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7556 mboxq->mcqe.trailer); 7557 exit: 7558 /* We are holding the token, no needed for lock when release */ 7559 spin_lock_irqsave(&phba->hbalock, iflag); 7560 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7561 phba->sli.mbox_active = NULL; 7562 spin_unlock_irqrestore(&phba->hbalock, iflag); 7563 return rc; 7564 } 7565 7566 /** 7567 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7568 * @phba: Pointer to HBA context object. 7569 * @pmbox: Pointer to mailbox object. 7570 * @flag: Flag indicating how the mailbox need to be processed. 7571 * 7572 * This function is called by discovery code and HBA management code to submit 7573 * a mailbox command to firmware with SLI-4 interface spec. 7574 * 7575 * Return codes the caller owns the mailbox command after the return of the 7576 * function. 7577 **/ 7578 static int 7579 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7580 uint32_t flag) 7581 { 7582 struct lpfc_sli *psli = &phba->sli; 7583 unsigned long iflags; 7584 int rc; 7585 7586 /* dump from issue mailbox command if setup */ 7587 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7588 7589 rc = lpfc_mbox_dev_check(phba); 7590 if (unlikely(rc)) { 7591 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7592 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7593 "cannot issue Data: x%x x%x\n", 7594 mboxq->vport ? mboxq->vport->vpi : 0, 7595 mboxq->u.mb.mbxCommand, 7596 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7597 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7598 psli->sli_flag, flag); 7599 goto out_not_finished; 7600 } 7601 7602 /* Detect polling mode and jump to a handler */ 7603 if (!phba->sli4_hba.intr_enable) { 7604 if (flag == MBX_POLL) 7605 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7606 else 7607 rc = -EIO; 7608 if (rc != MBX_SUCCESS) 7609 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7610 "(%d):2541 Mailbox command x%x " 7611 "(x%x/x%x) failure: " 7612 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7613 "Data: x%x x%x\n,", 7614 mboxq->vport ? mboxq->vport->vpi : 0, 7615 mboxq->u.mb.mbxCommand, 7616 lpfc_sli_config_mbox_subsys_get(phba, 7617 mboxq), 7618 lpfc_sli_config_mbox_opcode_get(phba, 7619 mboxq), 7620 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7621 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7622 bf_get(lpfc_mcqe_ext_status, 7623 &mboxq->mcqe), 7624 psli->sli_flag, flag); 7625 return rc; 7626 } else if (flag == MBX_POLL) { 7627 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7628 "(%d):2542 Try to issue mailbox command " 7629 "x%x (x%x/x%x) synchronously ahead of async" 7630 "mailbox command queue: x%x x%x\n", 7631 mboxq->vport ? mboxq->vport->vpi : 0, 7632 mboxq->u.mb.mbxCommand, 7633 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7634 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7635 psli->sli_flag, flag); 7636 /* Try to block the asynchronous mailbox posting */ 7637 rc = lpfc_sli4_async_mbox_block(phba); 7638 if (!rc) { 7639 /* Successfully blocked, now issue sync mbox cmd */ 7640 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7641 if (rc != MBX_SUCCESS) 7642 lpfc_printf_log(phba, KERN_WARNING, 7643 LOG_MBOX | LOG_SLI, 7644 "(%d):2597 Sync Mailbox command " 7645 "x%x (x%x/x%x) failure: " 7646 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7647 "Data: x%x x%x\n,", 7648 mboxq->vport ? mboxq->vport->vpi : 0, 7649 mboxq->u.mb.mbxCommand, 7650 lpfc_sli_config_mbox_subsys_get(phba, 7651 mboxq), 7652 lpfc_sli_config_mbox_opcode_get(phba, 7653 mboxq), 7654 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7655 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7656 bf_get(lpfc_mcqe_ext_status, 7657 &mboxq->mcqe), 7658 psli->sli_flag, flag); 7659 /* Unblock the async mailbox posting afterward */ 7660 lpfc_sli4_async_mbox_unblock(phba); 7661 } 7662 return rc; 7663 } 7664 7665 /* Now, interrupt mode asynchrous mailbox command */ 7666 rc = lpfc_mbox_cmd_check(phba, mboxq); 7667 if (rc) { 7668 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7669 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7670 "cannot issue Data: x%x x%x\n", 7671 mboxq->vport ? mboxq->vport->vpi : 0, 7672 mboxq->u.mb.mbxCommand, 7673 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7674 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7675 psli->sli_flag, flag); 7676 goto out_not_finished; 7677 } 7678 7679 /* Put the mailbox command to the driver internal FIFO */ 7680 psli->slistat.mbox_busy++; 7681 spin_lock_irqsave(&phba->hbalock, iflags); 7682 lpfc_mbox_put(phba, mboxq); 7683 spin_unlock_irqrestore(&phba->hbalock, iflags); 7684 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7685 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7686 "x%x (x%x/x%x) x%x x%x x%x\n", 7687 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7688 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7689 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7690 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7691 phba->pport->port_state, 7692 psli->sli_flag, MBX_NOWAIT); 7693 /* Wake up worker thread to transport mailbox command from head */ 7694 lpfc_worker_wake_up(phba); 7695 7696 return MBX_BUSY; 7697 7698 out_not_finished: 7699 return MBX_NOT_FINISHED; 7700 } 7701 7702 /** 7703 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7704 * @phba: Pointer to HBA context object. 7705 * 7706 * This function is called by worker thread to send a mailbox command to 7707 * SLI4 HBA firmware. 7708 * 7709 **/ 7710 int 7711 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7712 { 7713 struct lpfc_sli *psli = &phba->sli; 7714 LPFC_MBOXQ_t *mboxq; 7715 int rc = MBX_SUCCESS; 7716 unsigned long iflags; 7717 struct lpfc_mqe *mqe; 7718 uint32_t mbx_cmnd; 7719 7720 /* Check interrupt mode before post async mailbox command */ 7721 if (unlikely(!phba->sli4_hba.intr_enable)) 7722 return MBX_NOT_FINISHED; 7723 7724 /* Check for mailbox command service token */ 7725 spin_lock_irqsave(&phba->hbalock, iflags); 7726 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7727 spin_unlock_irqrestore(&phba->hbalock, iflags); 7728 return MBX_NOT_FINISHED; 7729 } 7730 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7731 spin_unlock_irqrestore(&phba->hbalock, iflags); 7732 return MBX_NOT_FINISHED; 7733 } 7734 if (unlikely(phba->sli.mbox_active)) { 7735 spin_unlock_irqrestore(&phba->hbalock, iflags); 7736 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7737 "0384 There is pending active mailbox cmd\n"); 7738 return MBX_NOT_FINISHED; 7739 } 7740 /* Take the mailbox command service token */ 7741 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7742 7743 /* Get the next mailbox command from head of queue */ 7744 mboxq = lpfc_mbox_get(phba); 7745 7746 /* If no more mailbox command waiting for post, we're done */ 7747 if (!mboxq) { 7748 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7749 spin_unlock_irqrestore(&phba->hbalock, iflags); 7750 return MBX_SUCCESS; 7751 } 7752 phba->sli.mbox_active = mboxq; 7753 spin_unlock_irqrestore(&phba->hbalock, iflags); 7754 7755 /* Check device readiness for posting mailbox command */ 7756 rc = lpfc_mbox_dev_check(phba); 7757 if (unlikely(rc)) 7758 /* Driver clean routine will clean up pending mailbox */ 7759 goto out_not_finished; 7760 7761 /* Prepare the mbox command to be posted */ 7762 mqe = &mboxq->u.mqe; 7763 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7764 7765 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7766 mod_timer(&psli->mbox_tmo, (jiffies + 7767 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7768 7769 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7770 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7771 "x%x x%x\n", 7772 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7773 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7774 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7775 phba->pport->port_state, psli->sli_flag); 7776 7777 if (mbx_cmnd != MBX_HEARTBEAT) { 7778 if (mboxq->vport) { 7779 lpfc_debugfs_disc_trc(mboxq->vport, 7780 LPFC_DISC_TRC_MBOX_VPORT, 7781 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7782 mbx_cmnd, mqe->un.mb_words[0], 7783 mqe->un.mb_words[1]); 7784 } else { 7785 lpfc_debugfs_disc_trc(phba->pport, 7786 LPFC_DISC_TRC_MBOX, 7787 "MBOX Send: cmd:x%x mb:x%x x%x", 7788 mbx_cmnd, mqe->un.mb_words[0], 7789 mqe->un.mb_words[1]); 7790 } 7791 } 7792 psli->slistat.mbox_cmd++; 7793 7794 /* Post the mailbox command to the port */ 7795 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7796 if (rc != MBX_SUCCESS) { 7797 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7798 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7799 "cannot issue Data: x%x x%x\n", 7800 mboxq->vport ? mboxq->vport->vpi : 0, 7801 mboxq->u.mb.mbxCommand, 7802 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7803 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7804 psli->sli_flag, MBX_NOWAIT); 7805 goto out_not_finished; 7806 } 7807 7808 return rc; 7809 7810 out_not_finished: 7811 spin_lock_irqsave(&phba->hbalock, iflags); 7812 if (phba->sli.mbox_active) { 7813 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7814 __lpfc_mbox_cmpl_put(phba, mboxq); 7815 /* Release the token */ 7816 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7817 phba->sli.mbox_active = NULL; 7818 } 7819 spin_unlock_irqrestore(&phba->hbalock, iflags); 7820 7821 return MBX_NOT_FINISHED; 7822 } 7823 7824 /** 7825 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7826 * @phba: Pointer to HBA context object. 7827 * @pmbox: Pointer to mailbox object. 7828 * @flag: Flag indicating how the mailbox need to be processed. 7829 * 7830 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7831 * the API jump table function pointer from the lpfc_hba struct. 7832 * 7833 * Return codes the caller owns the mailbox command after the return of the 7834 * function. 7835 **/ 7836 int 7837 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7838 { 7839 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7840 } 7841 7842 /** 7843 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7844 * @phba: The hba struct for which this call is being executed. 7845 * @dev_grp: The HBA PCI-Device group number. 7846 * 7847 * This routine sets up the mbox interface API function jump table in @phba 7848 * struct. 7849 * Returns: 0 - success, -ENODEV - failure. 7850 **/ 7851 int 7852 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7853 { 7854 7855 switch (dev_grp) { 7856 case LPFC_PCI_DEV_LP: 7857 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7858 phba->lpfc_sli_handle_slow_ring_event = 7859 lpfc_sli_handle_slow_ring_event_s3; 7860 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7861 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7862 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7863 break; 7864 case LPFC_PCI_DEV_OC: 7865 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7866 phba->lpfc_sli_handle_slow_ring_event = 7867 lpfc_sli_handle_slow_ring_event_s4; 7868 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7869 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7870 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7871 break; 7872 default: 7873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7874 "1420 Invalid HBA PCI-device group: 0x%x\n", 7875 dev_grp); 7876 return -ENODEV; 7877 break; 7878 } 7879 return 0; 7880 } 7881 7882 /** 7883 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7884 * @phba: Pointer to HBA context object. 7885 * @pring: Pointer to driver SLI ring object. 7886 * @piocb: Pointer to address of newly added command iocb. 7887 * 7888 * This function is called with hbalock held to add a command 7889 * iocb to the txq when SLI layer cannot submit the command iocb 7890 * to the ring. 7891 **/ 7892 void 7893 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7894 struct lpfc_iocbq *piocb) 7895 { 7896 lockdep_assert_held(&phba->hbalock); 7897 /* Insert the caller's iocb in the txq tail for later processing. */ 7898 list_add_tail(&piocb->list, &pring->txq); 7899 } 7900 7901 /** 7902 * lpfc_sli_next_iocb - Get the next iocb in the txq 7903 * @phba: Pointer to HBA context object. 7904 * @pring: Pointer to driver SLI ring object. 7905 * @piocb: Pointer to address of newly added command iocb. 7906 * 7907 * This function is called with hbalock held before a new 7908 * iocb is submitted to the firmware. This function checks 7909 * txq to flush the iocbs in txq to Firmware before 7910 * submitting new iocbs to the Firmware. 7911 * If there are iocbs in the txq which need to be submitted 7912 * to firmware, lpfc_sli_next_iocb returns the first element 7913 * of the txq after dequeuing it from txq. 7914 * If there is no iocb in the txq then the function will return 7915 * *piocb and *piocb is set to NULL. Caller needs to check 7916 * *piocb to find if there are more commands in the txq. 7917 **/ 7918 static struct lpfc_iocbq * 7919 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7920 struct lpfc_iocbq **piocb) 7921 { 7922 struct lpfc_iocbq * nextiocb; 7923 7924 lockdep_assert_held(&phba->hbalock); 7925 7926 nextiocb = lpfc_sli_ringtx_get(phba, pring); 7927 if (!nextiocb) { 7928 nextiocb = *piocb; 7929 *piocb = NULL; 7930 } 7931 7932 return nextiocb; 7933 } 7934 7935 /** 7936 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 7937 * @phba: Pointer to HBA context object. 7938 * @ring_number: SLI ring number to issue iocb on. 7939 * @piocb: Pointer to command iocb. 7940 * @flag: Flag indicating if this command can be put into txq. 7941 * 7942 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 7943 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 7944 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 7945 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 7946 * this function allows only iocbs for posting buffers. This function finds 7947 * next available slot in the command ring and posts the command to the 7948 * available slot and writes the port attention register to request HBA start 7949 * processing new iocb. If there is no slot available in the ring and 7950 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 7951 * the function returns IOCB_BUSY. 7952 * 7953 * This function is called with hbalock held. The function will return success 7954 * after it successfully submit the iocb to firmware or after adding to the 7955 * txq. 7956 **/ 7957 static int 7958 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 7959 struct lpfc_iocbq *piocb, uint32_t flag) 7960 { 7961 struct lpfc_iocbq *nextiocb; 7962 IOCB_t *iocb; 7963 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 7964 7965 lockdep_assert_held(&phba->hbalock); 7966 7967 if (piocb->iocb_cmpl && (!piocb->vport) && 7968 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 7969 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 7970 lpfc_printf_log(phba, KERN_ERR, 7971 LOG_SLI | LOG_VPORT, 7972 "1807 IOCB x%x failed. No vport\n", 7973 piocb->iocb.ulpCommand); 7974 dump_stack(); 7975 return IOCB_ERROR; 7976 } 7977 7978 7979 /* If the PCI channel is in offline state, do not post iocbs. */ 7980 if (unlikely(pci_channel_offline(phba->pcidev))) 7981 return IOCB_ERROR; 7982 7983 /* If HBA has a deferred error attention, fail the iocb. */ 7984 if (unlikely(phba->hba_flag & DEFER_ERATT)) 7985 return IOCB_ERROR; 7986 7987 /* 7988 * We should never get an IOCB if we are in a < LINK_DOWN state 7989 */ 7990 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 7991 return IOCB_ERROR; 7992 7993 /* 7994 * Check to see if we are blocking IOCB processing because of a 7995 * outstanding event. 7996 */ 7997 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 7998 goto iocb_busy; 7999 8000 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8001 /* 8002 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8003 * can be issued if the link is not up. 8004 */ 8005 switch (piocb->iocb.ulpCommand) { 8006 case CMD_GEN_REQUEST64_CR: 8007 case CMD_GEN_REQUEST64_CX: 8008 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8009 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8010 FC_RCTL_DD_UNSOL_CMD) || 8011 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8012 MENLO_TRANSPORT_TYPE)) 8013 8014 goto iocb_busy; 8015 break; 8016 case CMD_QUE_RING_BUF_CN: 8017 case CMD_QUE_RING_BUF64_CN: 8018 /* 8019 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8020 * completion, iocb_cmpl MUST be 0. 8021 */ 8022 if (piocb->iocb_cmpl) 8023 piocb->iocb_cmpl = NULL; 8024 /*FALLTHROUGH*/ 8025 case CMD_CREATE_XRI_CR: 8026 case CMD_CLOSE_XRI_CN: 8027 case CMD_CLOSE_XRI_CX: 8028 break; 8029 default: 8030 goto iocb_busy; 8031 } 8032 8033 /* 8034 * For FCP commands, we must be in a state where we can process link 8035 * attention events. 8036 */ 8037 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 8038 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8039 goto iocb_busy; 8040 } 8041 8042 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8043 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8044 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8045 8046 if (iocb) 8047 lpfc_sli_update_ring(phba, pring); 8048 else 8049 lpfc_sli_update_full_ring(phba, pring); 8050 8051 if (!piocb) 8052 return IOCB_SUCCESS; 8053 8054 goto out_busy; 8055 8056 iocb_busy: 8057 pring->stats.iocb_cmd_delay++; 8058 8059 out_busy: 8060 8061 if (!(flag & SLI_IOCB_RET_IOCB)) { 8062 __lpfc_sli_ringtx_put(phba, pring, piocb); 8063 return IOCB_SUCCESS; 8064 } 8065 8066 return IOCB_BUSY; 8067 } 8068 8069 /** 8070 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8071 * @phba: Pointer to HBA context object. 8072 * @piocb: Pointer to command iocb. 8073 * @sglq: Pointer to the scatter gather queue object. 8074 * 8075 * This routine converts the bpl or bde that is in the IOCB 8076 * to a sgl list for the sli4 hardware. The physical address 8077 * of the bpl/bde is converted back to a virtual address. 8078 * If the IOCB contains a BPL then the list of BDE's is 8079 * converted to sli4_sge's. If the IOCB contains a single 8080 * BDE then it is converted to a single sli_sge. 8081 * The IOCB is still in cpu endianess so the contents of 8082 * the bpl can be used without byte swapping. 8083 * 8084 * Returns valid XRI = Success, NO_XRI = Failure. 8085 **/ 8086 static uint16_t 8087 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8088 struct lpfc_sglq *sglq) 8089 { 8090 uint16_t xritag = NO_XRI; 8091 struct ulp_bde64 *bpl = NULL; 8092 struct ulp_bde64 bde; 8093 struct sli4_sge *sgl = NULL; 8094 struct lpfc_dmabuf *dmabuf; 8095 IOCB_t *icmd; 8096 int numBdes = 0; 8097 int i = 0; 8098 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8099 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8100 8101 if (!piocbq || !sglq) 8102 return xritag; 8103 8104 sgl = (struct sli4_sge *)sglq->sgl; 8105 icmd = &piocbq->iocb; 8106 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8107 return sglq->sli4_xritag; 8108 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8109 numBdes = icmd->un.genreq64.bdl.bdeSize / 8110 sizeof(struct ulp_bde64); 8111 /* The addrHigh and addrLow fields within the IOCB 8112 * have not been byteswapped yet so there is no 8113 * need to swap them back. 8114 */ 8115 if (piocbq->context3) 8116 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8117 else 8118 return xritag; 8119 8120 bpl = (struct ulp_bde64 *)dmabuf->virt; 8121 if (!bpl) 8122 return xritag; 8123 8124 for (i = 0; i < numBdes; i++) { 8125 /* Should already be byte swapped. */ 8126 sgl->addr_hi = bpl->addrHigh; 8127 sgl->addr_lo = bpl->addrLow; 8128 8129 sgl->word2 = le32_to_cpu(sgl->word2); 8130 if ((i+1) == numBdes) 8131 bf_set(lpfc_sli4_sge_last, sgl, 1); 8132 else 8133 bf_set(lpfc_sli4_sge_last, sgl, 0); 8134 /* swap the size field back to the cpu so we 8135 * can assign it to the sgl. 8136 */ 8137 bde.tus.w = le32_to_cpu(bpl->tus.w); 8138 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8139 /* The offsets in the sgl need to be accumulated 8140 * separately for the request and reply lists. 8141 * The request is always first, the reply follows. 8142 */ 8143 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8144 /* add up the reply sg entries */ 8145 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8146 inbound++; 8147 /* first inbound? reset the offset */ 8148 if (inbound == 1) 8149 offset = 0; 8150 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8151 bf_set(lpfc_sli4_sge_type, sgl, 8152 LPFC_SGE_TYPE_DATA); 8153 offset += bde.tus.f.bdeSize; 8154 } 8155 sgl->word2 = cpu_to_le32(sgl->word2); 8156 bpl++; 8157 sgl++; 8158 } 8159 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8160 /* The addrHigh and addrLow fields of the BDE have not 8161 * been byteswapped yet so they need to be swapped 8162 * before putting them in the sgl. 8163 */ 8164 sgl->addr_hi = 8165 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8166 sgl->addr_lo = 8167 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8168 sgl->word2 = le32_to_cpu(sgl->word2); 8169 bf_set(lpfc_sli4_sge_last, sgl, 1); 8170 sgl->word2 = cpu_to_le32(sgl->word2); 8171 sgl->sge_len = 8172 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8173 } 8174 return sglq->sli4_xritag; 8175 } 8176 8177 /** 8178 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8179 * @phba: Pointer to HBA context object. 8180 * @piocb: Pointer to command iocb. 8181 * @wqe: Pointer to the work queue entry. 8182 * 8183 * This routine converts the iocb command to its Work Queue Entry 8184 * equivalent. The wqe pointer should not have any fields set when 8185 * this routine is called because it will memcpy over them. 8186 * This routine does not set the CQ_ID or the WQEC bits in the 8187 * wqe. 8188 * 8189 * Returns: 0 = Success, IOCB_ERROR = Failure. 8190 **/ 8191 static int 8192 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8193 union lpfc_wqe *wqe) 8194 { 8195 uint32_t xmit_len = 0, total_len = 0; 8196 uint8_t ct = 0; 8197 uint32_t fip; 8198 uint32_t abort_tag; 8199 uint8_t command_type = ELS_COMMAND_NON_FIP; 8200 uint8_t cmnd; 8201 uint16_t xritag; 8202 uint16_t abrt_iotag; 8203 struct lpfc_iocbq *abrtiocbq; 8204 struct ulp_bde64 *bpl = NULL; 8205 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8206 int numBdes, i; 8207 struct ulp_bde64 bde; 8208 struct lpfc_nodelist *ndlp; 8209 uint32_t *pcmd; 8210 uint32_t if_type; 8211 8212 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8213 /* The fcp commands will set command type */ 8214 if (iocbq->iocb_flag & LPFC_IO_FCP) 8215 command_type = FCP_COMMAND; 8216 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8217 command_type = ELS_COMMAND_FIP; 8218 else 8219 command_type = ELS_COMMAND_NON_FIP; 8220 8221 /* Some of the fields are in the right position already */ 8222 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8223 abort_tag = (uint32_t) iocbq->iotag; 8224 xritag = iocbq->sli4_xritag; 8225 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8226 wqe->generic.wqe_com.word10 = 0; 8227 /* words0-2 bpl convert bde */ 8228 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8229 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8230 sizeof(struct ulp_bde64); 8231 bpl = (struct ulp_bde64 *) 8232 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8233 if (!bpl) 8234 return IOCB_ERROR; 8235 8236 /* Should already be byte swapped. */ 8237 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8238 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8239 /* swap the size field back to the cpu so we 8240 * can assign it to the sgl. 8241 */ 8242 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8243 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8244 total_len = 0; 8245 for (i = 0; i < numBdes; i++) { 8246 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8247 total_len += bde.tus.f.bdeSize; 8248 } 8249 } else 8250 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8251 8252 iocbq->iocb.ulpIoTag = iocbq->iotag; 8253 cmnd = iocbq->iocb.ulpCommand; 8254 8255 switch (iocbq->iocb.ulpCommand) { 8256 case CMD_ELS_REQUEST64_CR: 8257 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8258 ndlp = iocbq->context_un.ndlp; 8259 else 8260 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8261 if (!iocbq->iocb.ulpLe) { 8262 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8263 "2007 Only Limited Edition cmd Format" 8264 " supported 0x%x\n", 8265 iocbq->iocb.ulpCommand); 8266 return IOCB_ERROR; 8267 } 8268 8269 wqe->els_req.payload_len = xmit_len; 8270 /* Els_reguest64 has a TMO */ 8271 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8272 iocbq->iocb.ulpTimeout); 8273 /* Need a VF for word 4 set the vf bit*/ 8274 bf_set(els_req64_vf, &wqe->els_req, 0); 8275 /* And a VFID for word 12 */ 8276 bf_set(els_req64_vfid, &wqe->els_req, 0); 8277 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8278 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8279 iocbq->iocb.ulpContext); 8280 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8281 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8282 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8283 if (command_type == ELS_COMMAND_FIP) 8284 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8285 >> LPFC_FIP_ELS_ID_SHIFT); 8286 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8287 iocbq->context2)->virt); 8288 if_type = bf_get(lpfc_sli_intf_if_type, 8289 &phba->sli4_hba.sli_intf); 8290 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8291 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8292 *pcmd == ELS_CMD_SCR || 8293 *pcmd == ELS_CMD_FDISC || 8294 *pcmd == ELS_CMD_LOGO || 8295 *pcmd == ELS_CMD_PLOGI)) { 8296 bf_set(els_req64_sp, &wqe->els_req, 1); 8297 bf_set(els_req64_sid, &wqe->els_req, 8298 iocbq->vport->fc_myDID); 8299 if ((*pcmd == ELS_CMD_FLOGI) && 8300 !(phba->fc_topology == 8301 LPFC_TOPOLOGY_LOOP)) 8302 bf_set(els_req64_sid, &wqe->els_req, 0); 8303 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8304 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8305 phba->vpi_ids[iocbq->vport->vpi]); 8306 } else if (pcmd && iocbq->context1) { 8307 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8308 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8309 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8310 } 8311 } 8312 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8313 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8314 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8315 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8316 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8317 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8318 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8319 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8320 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8321 break; 8322 case CMD_XMIT_SEQUENCE64_CX: 8323 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8324 iocbq->iocb.un.ulpWord[3]); 8325 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8326 iocbq->iocb.unsli3.rcvsli3.ox_id); 8327 /* The entire sequence is transmitted for this IOCB */ 8328 xmit_len = total_len; 8329 cmnd = CMD_XMIT_SEQUENCE64_CR; 8330 if (phba->link_flag & LS_LOOPBACK_MODE) 8331 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8332 case CMD_XMIT_SEQUENCE64_CR: 8333 /* word3 iocb=io_tag32 wqe=reserved */ 8334 wqe->xmit_sequence.rsvd3 = 0; 8335 /* word4 relative_offset memcpy */ 8336 /* word5 r_ctl/df_ctl memcpy */ 8337 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8338 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8339 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8340 LPFC_WQE_IOD_WRITE); 8341 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8342 LPFC_WQE_LENLOC_WORD12); 8343 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8344 wqe->xmit_sequence.xmit_len = xmit_len; 8345 command_type = OTHER_COMMAND; 8346 break; 8347 case CMD_XMIT_BCAST64_CN: 8348 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8349 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8350 /* word4 iocb=rsvd wqe=rsvd */ 8351 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8352 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8353 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8354 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8355 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8356 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8357 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8358 LPFC_WQE_LENLOC_WORD3); 8359 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8360 break; 8361 case CMD_FCP_IWRITE64_CR: 8362 command_type = FCP_COMMAND_DATA_OUT; 8363 /* word3 iocb=iotag wqe=payload_offset_len */ 8364 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8365 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8366 xmit_len + sizeof(struct fcp_rsp)); 8367 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8368 0); 8369 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8370 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8371 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8372 iocbq->iocb.ulpFCP2Rcvy); 8373 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8374 /* Always open the exchange */ 8375 bf_set(wqe_xc, &wqe->fcp_iwrite.wqe_com, 0); 8376 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8377 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8378 LPFC_WQE_LENLOC_WORD4); 8379 bf_set(wqe_ebde_cnt, &wqe->fcp_iwrite.wqe_com, 0); 8380 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8381 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8382 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8383 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8384 if (phba->cfg_XLanePriority) { 8385 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8386 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8387 (phba->cfg_XLanePriority << 1)); 8388 } 8389 } 8390 break; 8391 case CMD_FCP_IREAD64_CR: 8392 /* word3 iocb=iotag wqe=payload_offset_len */ 8393 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8394 bf_set(payload_offset_len, &wqe->fcp_iread, 8395 xmit_len + sizeof(struct fcp_rsp)); 8396 bf_set(cmd_buff_len, &wqe->fcp_iread, 8397 0); 8398 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8399 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8400 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8401 iocbq->iocb.ulpFCP2Rcvy); 8402 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8403 /* Always open the exchange */ 8404 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0); 8405 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8406 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8407 LPFC_WQE_LENLOC_WORD4); 8408 bf_set(wqe_ebde_cnt, &wqe->fcp_iread.wqe_com, 0); 8409 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8410 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8411 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8412 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8413 if (phba->cfg_XLanePriority) { 8414 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8415 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8416 (phba->cfg_XLanePriority << 1)); 8417 } 8418 } 8419 break; 8420 case CMD_FCP_ICMND64_CR: 8421 /* word3 iocb=iotag wqe=payload_offset_len */ 8422 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8423 bf_set(payload_offset_len, &wqe->fcp_icmd, 8424 xmit_len + sizeof(struct fcp_rsp)); 8425 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8426 0); 8427 /* word3 iocb=IO_TAG wqe=reserved */ 8428 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8429 /* Always open the exchange */ 8430 bf_set(wqe_xc, &wqe->fcp_icmd.wqe_com, 0); 8431 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8432 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8433 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8434 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8435 LPFC_WQE_LENLOC_NONE); 8436 bf_set(wqe_ebde_cnt, &wqe->fcp_icmd.wqe_com, 0); 8437 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8438 iocbq->iocb.ulpFCP2Rcvy); 8439 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8440 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8441 if (phba->cfg_XLanePriority) { 8442 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8443 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8444 (phba->cfg_XLanePriority << 1)); 8445 } 8446 } 8447 break; 8448 case CMD_GEN_REQUEST64_CR: 8449 /* For this command calculate the xmit length of the 8450 * request bde. 8451 */ 8452 xmit_len = 0; 8453 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8454 sizeof(struct ulp_bde64); 8455 for (i = 0; i < numBdes; i++) { 8456 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8457 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8458 break; 8459 xmit_len += bde.tus.f.bdeSize; 8460 } 8461 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8462 wqe->gen_req.request_payload_len = xmit_len; 8463 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8464 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8465 /* word6 context tag copied in memcpy */ 8466 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8467 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8468 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8469 "2015 Invalid CT %x command 0x%x\n", 8470 ct, iocbq->iocb.ulpCommand); 8471 return IOCB_ERROR; 8472 } 8473 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8474 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8475 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8476 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8477 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8478 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8479 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8480 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8481 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8482 command_type = OTHER_COMMAND; 8483 break; 8484 case CMD_XMIT_ELS_RSP64_CX: 8485 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8486 /* words0-2 BDE memcpy */ 8487 /* word3 iocb=iotag32 wqe=response_payload_len */ 8488 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8489 /* word4 */ 8490 wqe->xmit_els_rsp.word4 = 0; 8491 /* word5 iocb=rsvd wge=did */ 8492 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8493 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8494 8495 if_type = bf_get(lpfc_sli_intf_if_type, 8496 &phba->sli4_hba.sli_intf); 8497 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8498 if (iocbq->vport->fc_flag & FC_PT2PT) { 8499 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8500 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8501 iocbq->vport->fc_myDID); 8502 if (iocbq->vport->fc_myDID == Fabric_DID) { 8503 bf_set(wqe_els_did, 8504 &wqe->xmit_els_rsp.wqe_dest, 0); 8505 } 8506 } 8507 } 8508 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8509 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8510 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8511 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8512 iocbq->iocb.unsli3.rcvsli3.ox_id); 8513 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8514 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8515 phba->vpi_ids[iocbq->vport->vpi]); 8516 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8517 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8518 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8519 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8520 LPFC_WQE_LENLOC_WORD3); 8521 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8522 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8523 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8524 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8525 iocbq->context2)->virt); 8526 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8527 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8528 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8529 iocbq->vport->fc_myDID); 8530 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8531 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8532 phba->vpi_ids[phba->pport->vpi]); 8533 } 8534 command_type = OTHER_COMMAND; 8535 break; 8536 case CMD_CLOSE_XRI_CN: 8537 case CMD_ABORT_XRI_CN: 8538 case CMD_ABORT_XRI_CX: 8539 /* words 0-2 memcpy should be 0 rserved */ 8540 /* port will send abts */ 8541 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8542 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8543 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8544 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8545 } else 8546 fip = 0; 8547 8548 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8549 /* 8550 * The link is down, or the command was ELS_FIP 8551 * so the fw does not need to send abts 8552 * on the wire. 8553 */ 8554 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8555 else 8556 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8557 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8558 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8559 wqe->abort_cmd.rsrvd5 = 0; 8560 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8561 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8562 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8563 /* 8564 * The abort handler will send us CMD_ABORT_XRI_CN or 8565 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8566 */ 8567 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8568 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8569 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8570 LPFC_WQE_LENLOC_NONE); 8571 cmnd = CMD_ABORT_XRI_CX; 8572 command_type = OTHER_COMMAND; 8573 xritag = 0; 8574 break; 8575 case CMD_XMIT_BLS_RSP64_CX: 8576 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8577 /* As BLS ABTS RSP WQE is very different from other WQEs, 8578 * we re-construct this WQE here based on information in 8579 * iocbq from scratch. 8580 */ 8581 memset(wqe, 0, sizeof(union lpfc_wqe)); 8582 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8583 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8584 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8585 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8586 LPFC_ABTS_UNSOL_INT) { 8587 /* ABTS sent by initiator to CT exchange, the 8588 * RX_ID field will be filled with the newly 8589 * allocated responder XRI. 8590 */ 8591 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8592 iocbq->sli4_xritag); 8593 } else { 8594 /* ABTS sent by responder to CT exchange, the 8595 * RX_ID field will be filled with the responder 8596 * RX_ID from ABTS. 8597 */ 8598 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8599 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8600 } 8601 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8602 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8603 8604 /* Use CT=VPI */ 8605 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8606 ndlp->nlp_DID); 8607 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8608 iocbq->iocb.ulpContext); 8609 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8610 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8611 phba->vpi_ids[phba->pport->vpi]); 8612 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8613 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8614 LPFC_WQE_LENLOC_NONE); 8615 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8616 command_type = OTHER_COMMAND; 8617 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8618 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8619 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8620 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8621 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8622 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8623 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8624 } 8625 8626 break; 8627 case CMD_XRI_ABORTED_CX: 8628 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8629 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8630 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8631 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8632 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8633 default: 8634 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8635 "2014 Invalid command 0x%x\n", 8636 iocbq->iocb.ulpCommand); 8637 return IOCB_ERROR; 8638 break; 8639 } 8640 8641 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8642 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8643 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8644 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8645 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8646 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8647 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8648 LPFC_IO_DIF_INSERT); 8649 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8650 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8651 wqe->generic.wqe_com.abort_tag = abort_tag; 8652 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8653 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8654 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8655 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8656 return 0; 8657 } 8658 8659 /** 8660 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8661 * @phba: Pointer to HBA context object. 8662 * @ring_number: SLI ring number to issue iocb on. 8663 * @piocb: Pointer to command iocb. 8664 * @flag: Flag indicating if this command can be put into txq. 8665 * 8666 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8667 * an iocb command to an HBA with SLI-4 interface spec. 8668 * 8669 * This function is called with hbalock held. The function will return success 8670 * after it successfully submit the iocb to firmware or after adding to the 8671 * txq. 8672 **/ 8673 static int 8674 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8675 struct lpfc_iocbq *piocb, uint32_t flag) 8676 { 8677 struct lpfc_sglq *sglq; 8678 union lpfc_wqe wqe; 8679 struct lpfc_queue *wq; 8680 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8681 8682 lockdep_assert_held(&phba->hbalock); 8683 8684 if (piocb->sli4_xritag == NO_XRI) { 8685 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8686 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8687 sglq = NULL; 8688 else { 8689 if (!list_empty(&pring->txq)) { 8690 if (!(flag & SLI_IOCB_RET_IOCB)) { 8691 __lpfc_sli_ringtx_put(phba, 8692 pring, piocb); 8693 return IOCB_SUCCESS; 8694 } else { 8695 return IOCB_BUSY; 8696 } 8697 } else { 8698 sglq = __lpfc_sli_get_sglq(phba, piocb); 8699 if (!sglq) { 8700 if (!(flag & SLI_IOCB_RET_IOCB)) { 8701 __lpfc_sli_ringtx_put(phba, 8702 pring, 8703 piocb); 8704 return IOCB_SUCCESS; 8705 } else 8706 return IOCB_BUSY; 8707 } 8708 } 8709 } 8710 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8711 /* These IO's already have an XRI and a mapped sgl. */ 8712 sglq = NULL; 8713 } else { 8714 /* 8715 * This is a continuation of a commandi,(CX) so this 8716 * sglq is on the active list 8717 */ 8718 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8719 if (!sglq) 8720 return IOCB_ERROR; 8721 } 8722 8723 if (sglq) { 8724 piocb->sli4_lxritag = sglq->sli4_lxritag; 8725 piocb->sli4_xritag = sglq->sli4_xritag; 8726 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8727 return IOCB_ERROR; 8728 } 8729 8730 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 8731 return IOCB_ERROR; 8732 8733 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8734 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8735 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8736 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8737 } else { 8738 wq = phba->sli4_hba.oas_wq; 8739 } 8740 if (lpfc_sli4_wq_put(wq, &wqe)) 8741 return IOCB_ERROR; 8742 } else { 8743 if (unlikely(!phba->sli4_hba.els_wq)) 8744 return IOCB_ERROR; 8745 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 8746 return IOCB_ERROR; 8747 } 8748 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8749 8750 return 0; 8751 } 8752 8753 /** 8754 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8755 * 8756 * This routine wraps the actual lockless version for issusing IOCB function 8757 * pointer from the lpfc_hba struct. 8758 * 8759 * Return codes: 8760 * IOCB_ERROR - Error 8761 * IOCB_SUCCESS - Success 8762 * IOCB_BUSY - Busy 8763 **/ 8764 int 8765 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8766 struct lpfc_iocbq *piocb, uint32_t flag) 8767 { 8768 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8769 } 8770 8771 /** 8772 * lpfc_sli_api_table_setup - Set up sli api function jump table 8773 * @phba: The hba struct for which this call is being executed. 8774 * @dev_grp: The HBA PCI-Device group number. 8775 * 8776 * This routine sets up the SLI interface API function jump table in @phba 8777 * struct. 8778 * Returns: 0 - success, -ENODEV - failure. 8779 **/ 8780 int 8781 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8782 { 8783 8784 switch (dev_grp) { 8785 case LPFC_PCI_DEV_LP: 8786 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8787 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8788 break; 8789 case LPFC_PCI_DEV_OC: 8790 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8791 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8792 break; 8793 default: 8794 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8795 "1419 Invalid HBA PCI-device group: 0x%x\n", 8796 dev_grp); 8797 return -ENODEV; 8798 break; 8799 } 8800 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8801 return 0; 8802 } 8803 8804 /** 8805 * lpfc_sli_calc_ring - Calculates which ring to use 8806 * @phba: Pointer to HBA context object. 8807 * @ring_number: Initial ring 8808 * @piocb: Pointer to command iocb. 8809 * 8810 * For SLI4, FCP IO can deferred to one fo many WQs, based on 8811 * fcp_wqidx, thus we need to calculate the corresponding ring. 8812 * Since ABORTS must go on the same WQ of the command they are 8813 * aborting, we use command's fcp_wqidx. 8814 */ 8815 int 8816 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 8817 struct lpfc_iocbq *piocb) 8818 { 8819 if (phba->sli_rev < LPFC_SLI_REV4) 8820 return ring_number; 8821 8822 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 8823 if (!(phba->cfg_fof) || 8824 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 8825 if (unlikely(!phba->sli4_hba.fcp_wq)) 8826 return LPFC_HBA_ERROR; 8827 /* 8828 * for abort iocb fcp_wqidx should already 8829 * be setup based on what work queue we used. 8830 */ 8831 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 8832 piocb->fcp_wqidx = 8833 lpfc_sli4_scmd_to_wqidx_distr(phba, 8834 piocb->context1); 8835 ring_number = MAX_SLI3_CONFIGURED_RINGS + 8836 piocb->fcp_wqidx; 8837 } else { 8838 if (unlikely(!phba->sli4_hba.oas_wq)) 8839 return LPFC_HBA_ERROR; 8840 piocb->fcp_wqidx = 0; 8841 ring_number = LPFC_FCP_OAS_RING; 8842 } 8843 } 8844 return ring_number; 8845 } 8846 8847 /** 8848 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 8849 * @phba: Pointer to HBA context object. 8850 * @pring: Pointer to driver SLI ring object. 8851 * @piocb: Pointer to command iocb. 8852 * @flag: Flag indicating if this command can be put into txq. 8853 * 8854 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 8855 * function. This function gets the hbalock and calls 8856 * __lpfc_sli_issue_iocb function and will return the error returned 8857 * by __lpfc_sli_issue_iocb function. This wrapper is used by 8858 * functions which do not hold hbalock. 8859 **/ 8860 int 8861 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8862 struct lpfc_iocbq *piocb, uint32_t flag) 8863 { 8864 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 8865 struct lpfc_sli_ring *pring; 8866 struct lpfc_queue *fpeq; 8867 struct lpfc_eqe *eqe; 8868 unsigned long iflags; 8869 int rc, idx; 8870 8871 if (phba->sli_rev == LPFC_SLI_REV4) { 8872 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 8873 if (unlikely(ring_number == LPFC_HBA_ERROR)) 8874 return IOCB_ERROR; 8875 idx = piocb->fcp_wqidx; 8876 8877 pring = &phba->sli.ring[ring_number]; 8878 spin_lock_irqsave(&pring->ring_lock, iflags); 8879 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8880 spin_unlock_irqrestore(&pring->ring_lock, iflags); 8881 8882 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 8883 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 8884 8885 if (atomic_dec_and_test(&fcp_eq_hdl-> 8886 fcp_eq_in_use)) { 8887 8888 /* Get associated EQ with this index */ 8889 fpeq = phba->sli4_hba.hba_eq[idx]; 8890 8891 /* Turn off interrupts from this EQ */ 8892 lpfc_sli4_eq_clr_intr(fpeq); 8893 8894 /* 8895 * Process all the events on FCP EQ 8896 */ 8897 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 8898 lpfc_sli4_hba_handle_eqe(phba, 8899 eqe, idx); 8900 fpeq->EQ_processed++; 8901 } 8902 8903 /* Always clear and re-arm the EQ */ 8904 lpfc_sli4_eq_release(fpeq, 8905 LPFC_QUEUE_REARM); 8906 } 8907 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 8908 } 8909 } else { 8910 /* For now, SLI2/3 will still use hbalock */ 8911 spin_lock_irqsave(&phba->hbalock, iflags); 8912 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8913 spin_unlock_irqrestore(&phba->hbalock, iflags); 8914 } 8915 return rc; 8916 } 8917 8918 /** 8919 * lpfc_extra_ring_setup - Extra ring setup function 8920 * @phba: Pointer to HBA context object. 8921 * 8922 * This function is called while driver attaches with the 8923 * HBA to setup the extra ring. The extra ring is used 8924 * only when driver needs to support target mode functionality 8925 * or IP over FC functionalities. 8926 * 8927 * This function is called with no lock held. 8928 **/ 8929 static int 8930 lpfc_extra_ring_setup( struct lpfc_hba *phba) 8931 { 8932 struct lpfc_sli *psli; 8933 struct lpfc_sli_ring *pring; 8934 8935 psli = &phba->sli; 8936 8937 /* Adjust cmd/rsp ring iocb entries more evenly */ 8938 8939 /* Take some away from the FCP ring */ 8940 pring = &psli->ring[psli->fcp_ring]; 8941 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8942 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8943 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8944 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8945 8946 /* and give them to the extra ring */ 8947 pring = &psli->ring[psli->extra_ring]; 8948 8949 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8950 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8951 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8952 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8953 8954 /* Setup default profile for this ring */ 8955 pring->iotag_max = 4096; 8956 pring->num_mask = 1; 8957 pring->prt[0].profile = 0; /* Mask 0 */ 8958 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 8959 pring->prt[0].type = phba->cfg_multi_ring_type; 8960 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 8961 return 0; 8962 } 8963 8964 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 8965 * @phba: Pointer to HBA context object. 8966 * @iocbq: Pointer to iocb object. 8967 * 8968 * The async_event handler calls this routine when it receives 8969 * an ASYNC_STATUS_CN event from the port. The port generates 8970 * this event when an Abort Sequence request to an rport fails 8971 * twice in succession. The abort could be originated by the 8972 * driver or by the port. The ABTS could have been for an ELS 8973 * or FCP IO. The port only generates this event when an ABTS 8974 * fails to complete after one retry. 8975 */ 8976 static void 8977 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 8978 struct lpfc_iocbq *iocbq) 8979 { 8980 struct lpfc_nodelist *ndlp = NULL; 8981 uint16_t rpi = 0, vpi = 0; 8982 struct lpfc_vport *vport = NULL; 8983 8984 /* The rpi in the ulpContext is vport-sensitive. */ 8985 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 8986 rpi = iocbq->iocb.ulpContext; 8987 8988 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8989 "3092 Port generated ABTS async event " 8990 "on vpi %d rpi %d status 0x%x\n", 8991 vpi, rpi, iocbq->iocb.ulpStatus); 8992 8993 vport = lpfc_find_vport_by_vpid(phba, vpi); 8994 if (!vport) 8995 goto err_exit; 8996 ndlp = lpfc_findnode_rpi(vport, rpi); 8997 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 8998 goto err_exit; 8999 9000 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9001 lpfc_sli_abts_recover_port(vport, ndlp); 9002 return; 9003 9004 err_exit: 9005 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9006 "3095 Event Context not found, no " 9007 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9008 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9009 vpi, rpi); 9010 } 9011 9012 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9013 * @phba: pointer to HBA context object. 9014 * @ndlp: nodelist pointer for the impacted rport. 9015 * @axri: pointer to the wcqe containing the failed exchange. 9016 * 9017 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9018 * port. The port generates this event when an abort exchange request to an 9019 * rport fails twice in succession with no reply. The abort could be originated 9020 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9021 */ 9022 void 9023 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9024 struct lpfc_nodelist *ndlp, 9025 struct sli4_wcqe_xri_aborted *axri) 9026 { 9027 struct lpfc_vport *vport; 9028 uint32_t ext_status = 0; 9029 9030 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9031 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9032 "3115 Node Context not found, driver " 9033 "ignoring abts err event\n"); 9034 return; 9035 } 9036 9037 vport = ndlp->vport; 9038 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9039 "3116 Port generated FCP XRI ABORT event on " 9040 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9041 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9042 bf_get(lpfc_wcqe_xa_xri, axri), 9043 bf_get(lpfc_wcqe_xa_status, axri), 9044 axri->parameter); 9045 9046 /* 9047 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9048 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9049 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9050 */ 9051 ext_status = axri->parameter & IOERR_PARAM_MASK; 9052 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9053 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9054 lpfc_sli_abts_recover_port(vport, ndlp); 9055 } 9056 9057 /** 9058 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9059 * @phba: Pointer to HBA context object. 9060 * @pring: Pointer to driver SLI ring object. 9061 * @iocbq: Pointer to iocb object. 9062 * 9063 * This function is called by the slow ring event handler 9064 * function when there is an ASYNC event iocb in the ring. 9065 * This function is called with no lock held. 9066 * Currently this function handles only temperature related 9067 * ASYNC events. The function decodes the temperature sensor 9068 * event message and posts events for the management applications. 9069 **/ 9070 static void 9071 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9072 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9073 { 9074 IOCB_t *icmd; 9075 uint16_t evt_code; 9076 struct temp_event temp_event_data; 9077 struct Scsi_Host *shost; 9078 uint32_t *iocb_w; 9079 9080 icmd = &iocbq->iocb; 9081 evt_code = icmd->un.asyncstat.evt_code; 9082 9083 switch (evt_code) { 9084 case ASYNC_TEMP_WARN: 9085 case ASYNC_TEMP_SAFE: 9086 temp_event_data.data = (uint32_t) icmd->ulpContext; 9087 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9088 if (evt_code == ASYNC_TEMP_WARN) { 9089 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9090 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9091 "0347 Adapter is very hot, please take " 9092 "corrective action. temperature : %d Celsius\n", 9093 (uint32_t) icmd->ulpContext); 9094 } else { 9095 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9096 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9097 "0340 Adapter temperature is OK now. " 9098 "temperature : %d Celsius\n", 9099 (uint32_t) icmd->ulpContext); 9100 } 9101 9102 /* Send temperature change event to applications */ 9103 shost = lpfc_shost_from_vport(phba->pport); 9104 fc_host_post_vendor_event(shost, fc_get_event_number(), 9105 sizeof(temp_event_data), (char *) &temp_event_data, 9106 LPFC_NL_VENDOR_ID); 9107 break; 9108 case ASYNC_STATUS_CN: 9109 lpfc_sli_abts_err_handler(phba, iocbq); 9110 break; 9111 default: 9112 iocb_w = (uint32_t *) icmd; 9113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9114 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9115 " evt_code 0x%x\n" 9116 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9117 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9118 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9119 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9120 pring->ringno, icmd->un.asyncstat.evt_code, 9121 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9122 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9123 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9124 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9125 9126 break; 9127 } 9128 } 9129 9130 9131 /** 9132 * lpfc_sli_setup - SLI ring setup function 9133 * @phba: Pointer to HBA context object. 9134 * 9135 * lpfc_sli_setup sets up rings of the SLI interface with 9136 * number of iocbs per ring and iotags. This function is 9137 * called while driver attach to the HBA and before the 9138 * interrupts are enabled. So there is no need for locking. 9139 * 9140 * This function always returns 0. 9141 **/ 9142 int 9143 lpfc_sli_setup(struct lpfc_hba *phba) 9144 { 9145 int i, totiocbsize = 0; 9146 struct lpfc_sli *psli = &phba->sli; 9147 struct lpfc_sli_ring *pring; 9148 9149 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9150 if (phba->sli_rev == LPFC_SLI_REV4) 9151 psli->num_rings += phba->cfg_fcp_io_channel; 9152 psli->sli_flag = 0; 9153 psli->fcp_ring = LPFC_FCP_RING; 9154 psli->next_ring = LPFC_FCP_NEXT_RING; 9155 psli->extra_ring = LPFC_EXTRA_RING; 9156 9157 psli->iocbq_lookup = NULL; 9158 psli->iocbq_lookup_len = 0; 9159 psli->last_iotag = 0; 9160 9161 for (i = 0; i < psli->num_rings; i++) { 9162 pring = &psli->ring[i]; 9163 switch (i) { 9164 case LPFC_FCP_RING: /* ring 0 - FCP */ 9165 /* numCiocb and numRiocb are used in config_port */ 9166 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9167 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9168 pring->sli.sli3.numCiocb += 9169 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9170 pring->sli.sli3.numRiocb += 9171 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9172 pring->sli.sli3.numCiocb += 9173 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9174 pring->sli.sli3.numRiocb += 9175 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9176 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9177 SLI3_IOCB_CMD_SIZE : 9178 SLI2_IOCB_CMD_SIZE; 9179 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9180 SLI3_IOCB_RSP_SIZE : 9181 SLI2_IOCB_RSP_SIZE; 9182 pring->iotag_ctr = 0; 9183 pring->iotag_max = 9184 (phba->cfg_hba_queue_depth * 2); 9185 pring->fast_iotag = pring->iotag_max; 9186 pring->num_mask = 0; 9187 break; 9188 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9189 /* numCiocb and numRiocb are used in config_port */ 9190 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9191 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9192 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9193 SLI3_IOCB_CMD_SIZE : 9194 SLI2_IOCB_CMD_SIZE; 9195 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9196 SLI3_IOCB_RSP_SIZE : 9197 SLI2_IOCB_RSP_SIZE; 9198 pring->iotag_max = phba->cfg_hba_queue_depth; 9199 pring->num_mask = 0; 9200 break; 9201 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9202 /* numCiocb and numRiocb are used in config_port */ 9203 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9204 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9205 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9206 SLI3_IOCB_CMD_SIZE : 9207 SLI2_IOCB_CMD_SIZE; 9208 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9209 SLI3_IOCB_RSP_SIZE : 9210 SLI2_IOCB_RSP_SIZE; 9211 pring->fast_iotag = 0; 9212 pring->iotag_ctr = 0; 9213 pring->iotag_max = 4096; 9214 pring->lpfc_sli_rcv_async_status = 9215 lpfc_sli_async_event_handler; 9216 pring->num_mask = LPFC_MAX_RING_MASK; 9217 pring->prt[0].profile = 0; /* Mask 0 */ 9218 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9219 pring->prt[0].type = FC_TYPE_ELS; 9220 pring->prt[0].lpfc_sli_rcv_unsol_event = 9221 lpfc_els_unsol_event; 9222 pring->prt[1].profile = 0; /* Mask 1 */ 9223 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9224 pring->prt[1].type = FC_TYPE_ELS; 9225 pring->prt[1].lpfc_sli_rcv_unsol_event = 9226 lpfc_els_unsol_event; 9227 pring->prt[2].profile = 0; /* Mask 2 */ 9228 /* NameServer Inquiry */ 9229 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9230 /* NameServer */ 9231 pring->prt[2].type = FC_TYPE_CT; 9232 pring->prt[2].lpfc_sli_rcv_unsol_event = 9233 lpfc_ct_unsol_event; 9234 pring->prt[3].profile = 0; /* Mask 3 */ 9235 /* NameServer response */ 9236 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9237 /* NameServer */ 9238 pring->prt[3].type = FC_TYPE_CT; 9239 pring->prt[3].lpfc_sli_rcv_unsol_event = 9240 lpfc_ct_unsol_event; 9241 break; 9242 } 9243 totiocbsize += (pring->sli.sli3.numCiocb * 9244 pring->sli.sli3.sizeCiocb) + 9245 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9246 } 9247 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9248 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9249 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9250 "SLI2 SLIM Data: x%x x%lx\n", 9251 phba->brd_no, totiocbsize, 9252 (unsigned long) MAX_SLIM_IOCB_SIZE); 9253 } 9254 if (phba->cfg_multi_ring_support == 2) 9255 lpfc_extra_ring_setup(phba); 9256 9257 return 0; 9258 } 9259 9260 /** 9261 * lpfc_sli_queue_setup - Queue initialization function 9262 * @phba: Pointer to HBA context object. 9263 * 9264 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9265 * ring. This function also initializes ring indices of each ring. 9266 * This function is called during the initialization of the SLI 9267 * interface of an HBA. 9268 * This function is called with no lock held and always returns 9269 * 1. 9270 **/ 9271 int 9272 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9273 { 9274 struct lpfc_sli *psli; 9275 struct lpfc_sli_ring *pring; 9276 int i; 9277 9278 psli = &phba->sli; 9279 spin_lock_irq(&phba->hbalock); 9280 INIT_LIST_HEAD(&psli->mboxq); 9281 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9282 /* Initialize list headers for txq and txcmplq as double linked lists */ 9283 for (i = 0; i < psli->num_rings; i++) { 9284 pring = &psli->ring[i]; 9285 pring->ringno = i; 9286 pring->sli.sli3.next_cmdidx = 0; 9287 pring->sli.sli3.local_getidx = 0; 9288 pring->sli.sli3.cmdidx = 0; 9289 pring->flag = 0; 9290 INIT_LIST_HEAD(&pring->txq); 9291 INIT_LIST_HEAD(&pring->txcmplq); 9292 INIT_LIST_HEAD(&pring->iocb_continueq); 9293 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9294 INIT_LIST_HEAD(&pring->postbufq); 9295 spin_lock_init(&pring->ring_lock); 9296 } 9297 spin_unlock_irq(&phba->hbalock); 9298 return 1; 9299 } 9300 9301 /** 9302 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9303 * @phba: Pointer to HBA context object. 9304 * 9305 * This routine flushes the mailbox command subsystem. It will unconditionally 9306 * flush all the mailbox commands in the three possible stages in the mailbox 9307 * command sub-system: pending mailbox command queue; the outstanding mailbox 9308 * command; and completed mailbox command queue. It is caller's responsibility 9309 * to make sure that the driver is in the proper state to flush the mailbox 9310 * command sub-system. Namely, the posting of mailbox commands into the 9311 * pending mailbox command queue from the various clients must be stopped; 9312 * either the HBA is in a state that it will never works on the outstanding 9313 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9314 * mailbox command has been completed. 9315 **/ 9316 static void 9317 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9318 { 9319 LIST_HEAD(completions); 9320 struct lpfc_sli *psli = &phba->sli; 9321 LPFC_MBOXQ_t *pmb; 9322 unsigned long iflag; 9323 9324 /* Flush all the mailbox commands in the mbox system */ 9325 spin_lock_irqsave(&phba->hbalock, iflag); 9326 /* The pending mailbox command queue */ 9327 list_splice_init(&phba->sli.mboxq, &completions); 9328 /* The outstanding active mailbox command */ 9329 if (psli->mbox_active) { 9330 list_add_tail(&psli->mbox_active->list, &completions); 9331 psli->mbox_active = NULL; 9332 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9333 } 9334 /* The completed mailbox command queue */ 9335 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9336 spin_unlock_irqrestore(&phba->hbalock, iflag); 9337 9338 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9339 while (!list_empty(&completions)) { 9340 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9341 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9342 if (pmb->mbox_cmpl) 9343 pmb->mbox_cmpl(phba, pmb); 9344 } 9345 } 9346 9347 /** 9348 * lpfc_sli_host_down - Vport cleanup function 9349 * @vport: Pointer to virtual port object. 9350 * 9351 * lpfc_sli_host_down is called to clean up the resources 9352 * associated with a vport before destroying virtual 9353 * port data structures. 9354 * This function does following operations: 9355 * - Free discovery resources associated with this virtual 9356 * port. 9357 * - Free iocbs associated with this virtual port in 9358 * the txq. 9359 * - Send abort for all iocb commands associated with this 9360 * vport in txcmplq. 9361 * 9362 * This function is called with no lock held and always returns 1. 9363 **/ 9364 int 9365 lpfc_sli_host_down(struct lpfc_vport *vport) 9366 { 9367 LIST_HEAD(completions); 9368 struct lpfc_hba *phba = vport->phba; 9369 struct lpfc_sli *psli = &phba->sli; 9370 struct lpfc_sli_ring *pring; 9371 struct lpfc_iocbq *iocb, *next_iocb; 9372 int i; 9373 unsigned long flags = 0; 9374 uint16_t prev_pring_flag; 9375 9376 lpfc_cleanup_discovery_resources(vport); 9377 9378 spin_lock_irqsave(&phba->hbalock, flags); 9379 for (i = 0; i < psli->num_rings; i++) { 9380 pring = &psli->ring[i]; 9381 prev_pring_flag = pring->flag; 9382 /* Only slow rings */ 9383 if (pring->ringno == LPFC_ELS_RING) { 9384 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9385 /* Set the lpfc data pending flag */ 9386 set_bit(LPFC_DATA_READY, &phba->data_flags); 9387 } 9388 /* 9389 * Error everything on the txq since these iocbs have not been 9390 * given to the FW yet. 9391 */ 9392 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9393 if (iocb->vport != vport) 9394 continue; 9395 list_move_tail(&iocb->list, &completions); 9396 } 9397 9398 /* Next issue ABTS for everything on the txcmplq */ 9399 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9400 list) { 9401 if (iocb->vport != vport) 9402 continue; 9403 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9404 } 9405 9406 pring->flag = prev_pring_flag; 9407 } 9408 9409 spin_unlock_irqrestore(&phba->hbalock, flags); 9410 9411 /* Cancel all the IOCBs from the completions list */ 9412 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9413 IOERR_SLI_DOWN); 9414 return 1; 9415 } 9416 9417 /** 9418 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9419 * @phba: Pointer to HBA context object. 9420 * 9421 * This function cleans up all iocb, buffers, mailbox commands 9422 * while shutting down the HBA. This function is called with no 9423 * lock held and always returns 1. 9424 * This function does the following to cleanup driver resources: 9425 * - Free discovery resources for each virtual port 9426 * - Cleanup any pending fabric iocbs 9427 * - Iterate through the iocb txq and free each entry 9428 * in the list. 9429 * - Free up any buffer posted to the HBA 9430 * - Free mailbox commands in the mailbox queue. 9431 **/ 9432 int 9433 lpfc_sli_hba_down(struct lpfc_hba *phba) 9434 { 9435 LIST_HEAD(completions); 9436 struct lpfc_sli *psli = &phba->sli; 9437 struct lpfc_sli_ring *pring; 9438 struct lpfc_dmabuf *buf_ptr; 9439 unsigned long flags = 0; 9440 int i; 9441 9442 /* Shutdown the mailbox command sub-system */ 9443 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9444 9445 lpfc_hba_down_prep(phba); 9446 9447 lpfc_fabric_abort_hba(phba); 9448 9449 spin_lock_irqsave(&phba->hbalock, flags); 9450 for (i = 0; i < psli->num_rings; i++) { 9451 pring = &psli->ring[i]; 9452 /* Only slow rings */ 9453 if (pring->ringno == LPFC_ELS_RING) { 9454 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9455 /* Set the lpfc data pending flag */ 9456 set_bit(LPFC_DATA_READY, &phba->data_flags); 9457 } 9458 9459 /* 9460 * Error everything on the txq since these iocbs have not been 9461 * given to the FW yet. 9462 */ 9463 list_splice_init(&pring->txq, &completions); 9464 } 9465 spin_unlock_irqrestore(&phba->hbalock, flags); 9466 9467 /* Cancel all the IOCBs from the completions list */ 9468 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9469 IOERR_SLI_DOWN); 9470 9471 spin_lock_irqsave(&phba->hbalock, flags); 9472 list_splice_init(&phba->elsbuf, &completions); 9473 phba->elsbuf_cnt = 0; 9474 phba->elsbuf_prev_cnt = 0; 9475 spin_unlock_irqrestore(&phba->hbalock, flags); 9476 9477 while (!list_empty(&completions)) { 9478 list_remove_head(&completions, buf_ptr, 9479 struct lpfc_dmabuf, list); 9480 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9481 kfree(buf_ptr); 9482 } 9483 9484 /* Return any active mbox cmds */ 9485 del_timer_sync(&psli->mbox_tmo); 9486 9487 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9488 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9489 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9490 9491 return 1; 9492 } 9493 9494 /** 9495 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9496 * @srcp: Source memory pointer. 9497 * @destp: Destination memory pointer. 9498 * @cnt: Number of words required to be copied. 9499 * 9500 * This function is used for copying data between driver memory 9501 * and the SLI memory. This function also changes the endianness 9502 * of each word if native endianness is different from SLI 9503 * endianness. This function can be called with or without 9504 * lock. 9505 **/ 9506 void 9507 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9508 { 9509 uint32_t *src = srcp; 9510 uint32_t *dest = destp; 9511 uint32_t ldata; 9512 int i; 9513 9514 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9515 ldata = *src; 9516 ldata = le32_to_cpu(ldata); 9517 *dest = ldata; 9518 src++; 9519 dest++; 9520 } 9521 } 9522 9523 9524 /** 9525 * lpfc_sli_bemem_bcopy - SLI memory copy function 9526 * @srcp: Source memory pointer. 9527 * @destp: Destination memory pointer. 9528 * @cnt: Number of words required to be copied. 9529 * 9530 * This function is used for copying data between a data structure 9531 * with big endian representation to local endianness. 9532 * This function can be called with or without lock. 9533 **/ 9534 void 9535 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9536 { 9537 uint32_t *src = srcp; 9538 uint32_t *dest = destp; 9539 uint32_t ldata; 9540 int i; 9541 9542 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9543 ldata = *src; 9544 ldata = be32_to_cpu(ldata); 9545 *dest = ldata; 9546 src++; 9547 dest++; 9548 } 9549 } 9550 9551 /** 9552 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9553 * @phba: Pointer to HBA context object. 9554 * @pring: Pointer to driver SLI ring object. 9555 * @mp: Pointer to driver buffer object. 9556 * 9557 * This function is called with no lock held. 9558 * It always return zero after adding the buffer to the postbufq 9559 * buffer list. 9560 **/ 9561 int 9562 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9563 struct lpfc_dmabuf *mp) 9564 { 9565 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9566 later */ 9567 spin_lock_irq(&phba->hbalock); 9568 list_add_tail(&mp->list, &pring->postbufq); 9569 pring->postbufq_cnt++; 9570 spin_unlock_irq(&phba->hbalock); 9571 return 0; 9572 } 9573 9574 /** 9575 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9576 * @phba: Pointer to HBA context object. 9577 * 9578 * When HBQ is enabled, buffers are searched based on tags. This function 9579 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9580 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9581 * does not conflict with tags of buffer posted for unsolicited events. 9582 * The function returns the allocated tag. The function is called with 9583 * no locks held. 9584 **/ 9585 uint32_t 9586 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9587 { 9588 spin_lock_irq(&phba->hbalock); 9589 phba->buffer_tag_count++; 9590 /* 9591 * Always set the QUE_BUFTAG_BIT to distiguish between 9592 * a tag assigned by HBQ. 9593 */ 9594 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9595 spin_unlock_irq(&phba->hbalock); 9596 return phba->buffer_tag_count; 9597 } 9598 9599 /** 9600 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9601 * @phba: Pointer to HBA context object. 9602 * @pring: Pointer to driver SLI ring object. 9603 * @tag: Buffer tag. 9604 * 9605 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9606 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9607 * iocb is posted to the response ring with the tag of the buffer. 9608 * This function searches the pring->postbufq list using the tag 9609 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9610 * iocb. If the buffer is found then lpfc_dmabuf object of the 9611 * buffer is returned to the caller else NULL is returned. 9612 * This function is called with no lock held. 9613 **/ 9614 struct lpfc_dmabuf * 9615 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9616 uint32_t tag) 9617 { 9618 struct lpfc_dmabuf *mp, *next_mp; 9619 struct list_head *slp = &pring->postbufq; 9620 9621 /* Search postbufq, from the beginning, looking for a match on tag */ 9622 spin_lock_irq(&phba->hbalock); 9623 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9624 if (mp->buffer_tag == tag) { 9625 list_del_init(&mp->list); 9626 pring->postbufq_cnt--; 9627 spin_unlock_irq(&phba->hbalock); 9628 return mp; 9629 } 9630 } 9631 9632 spin_unlock_irq(&phba->hbalock); 9633 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9634 "0402 Cannot find virtual addr for buffer tag on " 9635 "ring %d Data x%lx x%p x%p x%x\n", 9636 pring->ringno, (unsigned long) tag, 9637 slp->next, slp->prev, pring->postbufq_cnt); 9638 9639 return NULL; 9640 } 9641 9642 /** 9643 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9644 * @phba: Pointer to HBA context object. 9645 * @pring: Pointer to driver SLI ring object. 9646 * @phys: DMA address of the buffer. 9647 * 9648 * This function searches the buffer list using the dma_address 9649 * of unsolicited event to find the driver's lpfc_dmabuf object 9650 * corresponding to the dma_address. The function returns the 9651 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9652 * This function is called by the ct and els unsolicited event 9653 * handlers to get the buffer associated with the unsolicited 9654 * event. 9655 * 9656 * This function is called with no lock held. 9657 **/ 9658 struct lpfc_dmabuf * 9659 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9660 dma_addr_t phys) 9661 { 9662 struct lpfc_dmabuf *mp, *next_mp; 9663 struct list_head *slp = &pring->postbufq; 9664 9665 /* Search postbufq, from the beginning, looking for a match on phys */ 9666 spin_lock_irq(&phba->hbalock); 9667 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9668 if (mp->phys == phys) { 9669 list_del_init(&mp->list); 9670 pring->postbufq_cnt--; 9671 spin_unlock_irq(&phba->hbalock); 9672 return mp; 9673 } 9674 } 9675 9676 spin_unlock_irq(&phba->hbalock); 9677 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9678 "0410 Cannot find virtual addr for mapped buf on " 9679 "ring %d Data x%llx x%p x%p x%x\n", 9680 pring->ringno, (unsigned long long)phys, 9681 slp->next, slp->prev, pring->postbufq_cnt); 9682 return NULL; 9683 } 9684 9685 /** 9686 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9687 * @phba: Pointer to HBA context object. 9688 * @cmdiocb: Pointer to driver command iocb object. 9689 * @rspiocb: Pointer to driver response iocb object. 9690 * 9691 * This function is the completion handler for the abort iocbs for 9692 * ELS commands. This function is called from the ELS ring event 9693 * handler with no lock held. This function frees memory resources 9694 * associated with the abort iocb. 9695 **/ 9696 static void 9697 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9698 struct lpfc_iocbq *rspiocb) 9699 { 9700 IOCB_t *irsp = &rspiocb->iocb; 9701 uint16_t abort_iotag, abort_context; 9702 struct lpfc_iocbq *abort_iocb = NULL; 9703 9704 if (irsp->ulpStatus) { 9705 9706 /* 9707 * Assume that the port already completed and returned, or 9708 * will return the iocb. Just Log the message. 9709 */ 9710 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9711 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9712 9713 spin_lock_irq(&phba->hbalock); 9714 if (phba->sli_rev < LPFC_SLI_REV4) { 9715 if (abort_iotag != 0 && 9716 abort_iotag <= phba->sli.last_iotag) 9717 abort_iocb = 9718 phba->sli.iocbq_lookup[abort_iotag]; 9719 } else 9720 /* For sli4 the abort_tag is the XRI, 9721 * so the abort routine puts the iotag of the iocb 9722 * being aborted in the context field of the abort 9723 * IOCB. 9724 */ 9725 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9726 9727 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9728 "0327 Cannot abort els iocb %p " 9729 "with tag %x context %x, abort status %x, " 9730 "abort code %x\n", 9731 abort_iocb, abort_iotag, abort_context, 9732 irsp->ulpStatus, irsp->un.ulpWord[4]); 9733 9734 spin_unlock_irq(&phba->hbalock); 9735 } 9736 lpfc_sli_release_iocbq(phba, cmdiocb); 9737 return; 9738 } 9739 9740 /** 9741 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9742 * @phba: Pointer to HBA context object. 9743 * @cmdiocb: Pointer to driver command iocb object. 9744 * @rspiocb: Pointer to driver response iocb object. 9745 * 9746 * The function is called from SLI ring event handler with no 9747 * lock held. This function is the completion handler for ELS commands 9748 * which are aborted. The function frees memory resources used for 9749 * the aborted ELS commands. 9750 **/ 9751 static void 9752 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9753 struct lpfc_iocbq *rspiocb) 9754 { 9755 IOCB_t *irsp = &rspiocb->iocb; 9756 9757 /* ELS cmd tag <ulpIoTag> completes */ 9758 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9759 "0139 Ignoring ELS cmd tag x%x completion Data: " 9760 "x%x x%x x%x\n", 9761 irsp->ulpIoTag, irsp->ulpStatus, 9762 irsp->un.ulpWord[4], irsp->ulpTimeout); 9763 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9764 lpfc_ct_free_iocb(phba, cmdiocb); 9765 else 9766 lpfc_els_free_iocb(phba, cmdiocb); 9767 return; 9768 } 9769 9770 /** 9771 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9772 * @phba: Pointer to HBA context object. 9773 * @pring: Pointer to driver SLI ring object. 9774 * @cmdiocb: Pointer to driver command iocb object. 9775 * 9776 * This function issues an abort iocb for the provided command iocb down to 9777 * the port. Other than the case the outstanding command iocb is an abort 9778 * request, this function issues abort out unconditionally. This function is 9779 * called with hbalock held. The function returns 0 when it fails due to 9780 * memory allocation failure or when the command iocb is an abort request. 9781 **/ 9782 static int 9783 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9784 struct lpfc_iocbq *cmdiocb) 9785 { 9786 struct lpfc_vport *vport = cmdiocb->vport; 9787 struct lpfc_iocbq *abtsiocbp; 9788 IOCB_t *icmd = NULL; 9789 IOCB_t *iabt = NULL; 9790 int ring_number; 9791 int retval; 9792 unsigned long iflags; 9793 9794 lockdep_assert_held(&phba->hbalock); 9795 9796 /* 9797 * There are certain command types we don't want to abort. And we 9798 * don't want to abort commands that are already in the process of 9799 * being aborted. 9800 */ 9801 icmd = &cmdiocb->iocb; 9802 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9803 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9804 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9805 return 0; 9806 9807 /* issue ABTS for this IOCB based on iotag */ 9808 abtsiocbp = __lpfc_sli_get_iocbq(phba); 9809 if (abtsiocbp == NULL) 9810 return 0; 9811 9812 /* This signals the response to set the correct status 9813 * before calling the completion handler 9814 */ 9815 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 9816 9817 iabt = &abtsiocbp->iocb; 9818 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 9819 iabt->un.acxri.abortContextTag = icmd->ulpContext; 9820 if (phba->sli_rev == LPFC_SLI_REV4) { 9821 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 9822 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 9823 } 9824 else 9825 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 9826 iabt->ulpLe = 1; 9827 iabt->ulpClass = icmd->ulpClass; 9828 9829 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 9830 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 9831 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 9832 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 9833 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 9834 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 9835 9836 if (phba->link_state >= LPFC_LINK_UP) 9837 iabt->ulpCommand = CMD_ABORT_XRI_CN; 9838 else 9839 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 9840 9841 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 9842 9843 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 9844 "0339 Abort xri x%x, original iotag x%x, " 9845 "abort cmd iotag x%x\n", 9846 iabt->un.acxri.abortIoTag, 9847 iabt->un.acxri.abortContextTag, 9848 abtsiocbp->iotag); 9849 9850 if (phba->sli_rev == LPFC_SLI_REV4) { 9851 ring_number = 9852 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 9853 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9854 return 0; 9855 pring = &phba->sli.ring[ring_number]; 9856 /* Note: both hbalock and ring_lock need to be set here */ 9857 spin_lock_irqsave(&pring->ring_lock, iflags); 9858 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9859 abtsiocbp, 0); 9860 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9861 } else { 9862 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9863 abtsiocbp, 0); 9864 } 9865 9866 if (retval) 9867 __lpfc_sli_release_iocbq(phba, abtsiocbp); 9868 9869 /* 9870 * Caller to this routine should check for IOCB_ERROR 9871 * and handle it properly. This routine no longer removes 9872 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9873 */ 9874 return retval; 9875 } 9876 9877 /** 9878 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 9879 * @phba: Pointer to HBA context object. 9880 * @pring: Pointer to driver SLI ring object. 9881 * @cmdiocb: Pointer to driver command iocb object. 9882 * 9883 * This function issues an abort iocb for the provided command iocb. In case 9884 * of unloading, the abort iocb will not be issued to commands on the ELS 9885 * ring. Instead, the callback function shall be changed to those commands 9886 * so that nothing happens when them finishes. This function is called with 9887 * hbalock held. The function returns 0 when the command iocb is an abort 9888 * request. 9889 **/ 9890 int 9891 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9892 struct lpfc_iocbq *cmdiocb) 9893 { 9894 struct lpfc_vport *vport = cmdiocb->vport; 9895 int retval = IOCB_ERROR; 9896 IOCB_t *icmd = NULL; 9897 9898 lockdep_assert_held(&phba->hbalock); 9899 9900 /* 9901 * There are certain command types we don't want to abort. And we 9902 * don't want to abort commands that are already in the process of 9903 * being aborted. 9904 */ 9905 icmd = &cmdiocb->iocb; 9906 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9907 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9908 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9909 return 0; 9910 9911 /* 9912 * If we're unloading, don't abort iocb on the ELS ring, but change 9913 * the callback so that nothing happens when it finishes. 9914 */ 9915 if ((vport->load_flag & FC_UNLOADING) && 9916 (pring->ringno == LPFC_ELS_RING)) { 9917 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 9918 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 9919 else 9920 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 9921 goto abort_iotag_exit; 9922 } 9923 9924 /* Now, we try to issue the abort to the cmdiocb out */ 9925 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 9926 9927 abort_iotag_exit: 9928 /* 9929 * Caller to this routine should check for IOCB_ERROR 9930 * and handle it properly. This routine no longer removes 9931 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9932 */ 9933 return retval; 9934 } 9935 9936 /** 9937 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 9938 * @phba: pointer to lpfc HBA data structure. 9939 * 9940 * This routine will abort all pending and outstanding iocbs to an HBA. 9941 **/ 9942 void 9943 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 9944 { 9945 struct lpfc_sli *psli = &phba->sli; 9946 struct lpfc_sli_ring *pring; 9947 int i; 9948 9949 for (i = 0; i < psli->num_rings; i++) { 9950 pring = &psli->ring[i]; 9951 lpfc_sli_abort_iocb_ring(phba, pring); 9952 } 9953 } 9954 9955 /** 9956 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 9957 * @iocbq: Pointer to driver iocb object. 9958 * @vport: Pointer to driver virtual port object. 9959 * @tgt_id: SCSI ID of the target. 9960 * @lun_id: LUN ID of the scsi device. 9961 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 9962 * 9963 * This function acts as an iocb filter for functions which abort or count 9964 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 9965 * 0 if the filtering criteria is met for the given iocb and will return 9966 * 1 if the filtering criteria is not met. 9967 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 9968 * given iocb is for the SCSI device specified by vport, tgt_id and 9969 * lun_id parameter. 9970 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 9971 * given iocb is for the SCSI target specified by vport and tgt_id 9972 * parameters. 9973 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 9974 * given iocb is for the SCSI host associated with the given vport. 9975 * This function is called with no locks held. 9976 **/ 9977 static int 9978 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 9979 uint16_t tgt_id, uint64_t lun_id, 9980 lpfc_ctx_cmd ctx_cmd) 9981 { 9982 struct lpfc_scsi_buf *lpfc_cmd; 9983 int rc = 1; 9984 9985 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 9986 return rc; 9987 9988 if (iocbq->vport != vport) 9989 return rc; 9990 9991 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 9992 9993 if (lpfc_cmd->pCmd == NULL) 9994 return rc; 9995 9996 switch (ctx_cmd) { 9997 case LPFC_CTX_LUN: 9998 if ((lpfc_cmd->rdata->pnode) && 9999 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10000 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10001 rc = 0; 10002 break; 10003 case LPFC_CTX_TGT: 10004 if ((lpfc_cmd->rdata->pnode) && 10005 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10006 rc = 0; 10007 break; 10008 case LPFC_CTX_HOST: 10009 rc = 0; 10010 break; 10011 default: 10012 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10013 __func__, ctx_cmd); 10014 break; 10015 } 10016 10017 return rc; 10018 } 10019 10020 /** 10021 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10022 * @vport: Pointer to virtual port. 10023 * @tgt_id: SCSI ID of the target. 10024 * @lun_id: LUN ID of the scsi device. 10025 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10026 * 10027 * This function returns number of FCP commands pending for the vport. 10028 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10029 * commands pending on the vport associated with SCSI device specified 10030 * by tgt_id and lun_id parameters. 10031 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10032 * commands pending on the vport associated with SCSI target specified 10033 * by tgt_id parameter. 10034 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10035 * commands pending on the vport. 10036 * This function returns the number of iocbs which satisfy the filter. 10037 * This function is called without any lock held. 10038 **/ 10039 int 10040 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10041 lpfc_ctx_cmd ctx_cmd) 10042 { 10043 struct lpfc_hba *phba = vport->phba; 10044 struct lpfc_iocbq *iocbq; 10045 int sum, i; 10046 10047 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10048 iocbq = phba->sli.iocbq_lookup[i]; 10049 10050 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10051 ctx_cmd) == 0) 10052 sum++; 10053 } 10054 10055 return sum; 10056 } 10057 10058 /** 10059 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10060 * @phba: Pointer to HBA context object 10061 * @cmdiocb: Pointer to command iocb object. 10062 * @rspiocb: Pointer to response iocb object. 10063 * 10064 * This function is called when an aborted FCP iocb completes. This 10065 * function is called by the ring event handler with no lock held. 10066 * This function frees the iocb. 10067 **/ 10068 void 10069 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10070 struct lpfc_iocbq *rspiocb) 10071 { 10072 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10073 "3096 ABORT_XRI_CN completing on rpi x%x " 10074 "original iotag x%x, abort cmd iotag x%x " 10075 "status 0x%x, reason 0x%x\n", 10076 cmdiocb->iocb.un.acxri.abortContextTag, 10077 cmdiocb->iocb.un.acxri.abortIoTag, 10078 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10079 rspiocb->iocb.un.ulpWord[4]); 10080 lpfc_sli_release_iocbq(phba, cmdiocb); 10081 return; 10082 } 10083 10084 /** 10085 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10086 * @vport: Pointer to virtual port. 10087 * @pring: Pointer to driver SLI ring object. 10088 * @tgt_id: SCSI ID of the target. 10089 * @lun_id: LUN ID of the scsi device. 10090 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10091 * 10092 * This function sends an abort command for every SCSI command 10093 * associated with the given virtual port pending on the ring 10094 * filtered by lpfc_sli_validate_fcp_iocb function. 10095 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10096 * FCP iocbs associated with lun specified by tgt_id and lun_id 10097 * parameters 10098 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10099 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10100 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10101 * FCP iocbs associated with virtual port. 10102 * This function returns number of iocbs it failed to abort. 10103 * This function is called with no locks held. 10104 **/ 10105 int 10106 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10107 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10108 { 10109 struct lpfc_hba *phba = vport->phba; 10110 struct lpfc_iocbq *iocbq; 10111 struct lpfc_iocbq *abtsiocb; 10112 IOCB_t *cmd = NULL; 10113 int errcnt = 0, ret_val = 0; 10114 int i; 10115 10116 for (i = 1; i <= phba->sli.last_iotag; i++) { 10117 iocbq = phba->sli.iocbq_lookup[i]; 10118 10119 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10120 abort_cmd) != 0) 10121 continue; 10122 10123 /* 10124 * If the iocbq is already being aborted, don't take a second 10125 * action, but do count it. 10126 */ 10127 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10128 continue; 10129 10130 /* issue ABTS for this IOCB based on iotag */ 10131 abtsiocb = lpfc_sli_get_iocbq(phba); 10132 if (abtsiocb == NULL) { 10133 errcnt++; 10134 continue; 10135 } 10136 10137 /* indicate the IO is being aborted by the driver. */ 10138 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10139 10140 cmd = &iocbq->iocb; 10141 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10142 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10143 if (phba->sli_rev == LPFC_SLI_REV4) 10144 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10145 else 10146 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10147 abtsiocb->iocb.ulpLe = 1; 10148 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10149 abtsiocb->vport = vport; 10150 10151 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10152 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10153 if (iocbq->iocb_flag & LPFC_IO_FCP) 10154 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10155 if (iocbq->iocb_flag & LPFC_IO_FOF) 10156 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10157 10158 if (lpfc_is_link_up(phba)) 10159 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10160 else 10161 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10162 10163 /* Setup callback routine and issue the command. */ 10164 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10165 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10166 abtsiocb, 0); 10167 if (ret_val == IOCB_ERROR) { 10168 lpfc_sli_release_iocbq(phba, abtsiocb); 10169 errcnt++; 10170 continue; 10171 } 10172 } 10173 10174 return errcnt; 10175 } 10176 10177 /** 10178 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10179 * @vport: Pointer to virtual port. 10180 * @pring: Pointer to driver SLI ring object. 10181 * @tgt_id: SCSI ID of the target. 10182 * @lun_id: LUN ID of the scsi device. 10183 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10184 * 10185 * This function sends an abort command for every SCSI command 10186 * associated with the given virtual port pending on the ring 10187 * filtered by lpfc_sli_validate_fcp_iocb function. 10188 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10189 * FCP iocbs associated with lun specified by tgt_id and lun_id 10190 * parameters 10191 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10192 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10193 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10194 * FCP iocbs associated with virtual port. 10195 * This function returns number of iocbs it aborted . 10196 * This function is called with no locks held right after a taskmgmt 10197 * command is sent. 10198 **/ 10199 int 10200 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10201 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10202 { 10203 struct lpfc_hba *phba = vport->phba; 10204 struct lpfc_scsi_buf *lpfc_cmd; 10205 struct lpfc_iocbq *abtsiocbq; 10206 struct lpfc_nodelist *ndlp; 10207 struct lpfc_iocbq *iocbq; 10208 IOCB_t *icmd; 10209 int sum, i, ret_val; 10210 unsigned long iflags; 10211 struct lpfc_sli_ring *pring_s4; 10212 uint32_t ring_number; 10213 10214 spin_lock_irq(&phba->hbalock); 10215 10216 /* all I/Os are in process of being flushed */ 10217 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10218 spin_unlock_irq(&phba->hbalock); 10219 return 0; 10220 } 10221 sum = 0; 10222 10223 for (i = 1; i <= phba->sli.last_iotag; i++) { 10224 iocbq = phba->sli.iocbq_lookup[i]; 10225 10226 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10227 cmd) != 0) 10228 continue; 10229 10230 /* 10231 * If the iocbq is already being aborted, don't take a second 10232 * action, but do count it. 10233 */ 10234 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10235 continue; 10236 10237 /* issue ABTS for this IOCB based on iotag */ 10238 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10239 if (abtsiocbq == NULL) 10240 continue; 10241 10242 icmd = &iocbq->iocb; 10243 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10244 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10245 if (phba->sli_rev == LPFC_SLI_REV4) 10246 abtsiocbq->iocb.un.acxri.abortIoTag = 10247 iocbq->sli4_xritag; 10248 else 10249 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10250 abtsiocbq->iocb.ulpLe = 1; 10251 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10252 abtsiocbq->vport = vport; 10253 10254 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10255 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10256 if (iocbq->iocb_flag & LPFC_IO_FCP) 10257 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10258 if (iocbq->iocb_flag & LPFC_IO_FOF) 10259 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10260 10261 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10262 ndlp = lpfc_cmd->rdata->pnode; 10263 10264 if (lpfc_is_link_up(phba) && 10265 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10266 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10267 else 10268 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10269 10270 /* Setup callback routine and issue the command. */ 10271 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10272 10273 /* 10274 * Indicate the IO is being aborted by the driver and set 10275 * the caller's flag into the aborted IO. 10276 */ 10277 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10278 10279 if (phba->sli_rev == LPFC_SLI_REV4) { 10280 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10281 iocbq->fcp_wqidx; 10282 pring_s4 = &phba->sli.ring[ring_number]; 10283 /* Note: both hbalock and ring_lock must be set here */ 10284 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10285 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10286 abtsiocbq, 0); 10287 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10288 } else { 10289 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10290 abtsiocbq, 0); 10291 } 10292 10293 10294 if (ret_val == IOCB_ERROR) 10295 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10296 else 10297 sum++; 10298 } 10299 spin_unlock_irq(&phba->hbalock); 10300 return sum; 10301 } 10302 10303 /** 10304 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10305 * @phba: Pointer to HBA context object. 10306 * @cmdiocbq: Pointer to command iocb. 10307 * @rspiocbq: Pointer to response iocb. 10308 * 10309 * This function is the completion handler for iocbs issued using 10310 * lpfc_sli_issue_iocb_wait function. This function is called by the 10311 * ring event handler function without any lock held. This function 10312 * can be called from both worker thread context and interrupt 10313 * context. This function also can be called from other thread which 10314 * cleans up the SLI layer objects. 10315 * This function copy the contents of the response iocb to the 10316 * response iocb memory object provided by the caller of 10317 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10318 * sleeps for the iocb completion. 10319 **/ 10320 static void 10321 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10322 struct lpfc_iocbq *cmdiocbq, 10323 struct lpfc_iocbq *rspiocbq) 10324 { 10325 wait_queue_head_t *pdone_q; 10326 unsigned long iflags; 10327 struct lpfc_scsi_buf *lpfc_cmd; 10328 10329 spin_lock_irqsave(&phba->hbalock, iflags); 10330 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10331 10332 /* 10333 * A time out has occurred for the iocb. If a time out 10334 * completion handler has been supplied, call it. Otherwise, 10335 * just free the iocbq. 10336 */ 10337 10338 spin_unlock_irqrestore(&phba->hbalock, iflags); 10339 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10340 cmdiocbq->wait_iocb_cmpl = NULL; 10341 if (cmdiocbq->iocb_cmpl) 10342 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10343 else 10344 lpfc_sli_release_iocbq(phba, cmdiocbq); 10345 return; 10346 } 10347 10348 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10349 if (cmdiocbq->context2 && rspiocbq) 10350 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10351 &rspiocbq->iocb, sizeof(IOCB_t)); 10352 10353 /* Set the exchange busy flag for task management commands */ 10354 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10355 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10356 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10357 cur_iocbq); 10358 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10359 } 10360 10361 pdone_q = cmdiocbq->context_un.wait_queue; 10362 if (pdone_q) 10363 wake_up(pdone_q); 10364 spin_unlock_irqrestore(&phba->hbalock, iflags); 10365 return; 10366 } 10367 10368 /** 10369 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10370 * @phba: Pointer to HBA context object.. 10371 * @piocbq: Pointer to command iocb. 10372 * @flag: Flag to test. 10373 * 10374 * This routine grabs the hbalock and then test the iocb_flag to 10375 * see if the passed in flag is set. 10376 * Returns: 10377 * 1 if flag is set. 10378 * 0 if flag is not set. 10379 **/ 10380 static int 10381 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10382 struct lpfc_iocbq *piocbq, uint32_t flag) 10383 { 10384 unsigned long iflags; 10385 int ret; 10386 10387 spin_lock_irqsave(&phba->hbalock, iflags); 10388 ret = piocbq->iocb_flag & flag; 10389 spin_unlock_irqrestore(&phba->hbalock, iflags); 10390 return ret; 10391 10392 } 10393 10394 /** 10395 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10396 * @phba: Pointer to HBA context object.. 10397 * @pring: Pointer to sli ring. 10398 * @piocb: Pointer to command iocb. 10399 * @prspiocbq: Pointer to response iocb. 10400 * @timeout: Timeout in number of seconds. 10401 * 10402 * This function issues the iocb to firmware and waits for the 10403 * iocb to complete. The iocb_cmpl field of the shall be used 10404 * to handle iocbs which time out. If the field is NULL, the 10405 * function shall free the iocbq structure. If more clean up is 10406 * needed, the caller is expected to provide a completion function 10407 * that will provide the needed clean up. If the iocb command is 10408 * not completed within timeout seconds, the function will either 10409 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10410 * completion function set in the iocb_cmpl field and then return 10411 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10412 * resources if this function returns IOCB_TIMEDOUT. 10413 * The function waits for the iocb completion using an 10414 * non-interruptible wait. 10415 * This function will sleep while waiting for iocb completion. 10416 * So, this function should not be called from any context which 10417 * does not allow sleeping. Due to the same reason, this function 10418 * cannot be called with interrupt disabled. 10419 * This function assumes that the iocb completions occur while 10420 * this function sleep. So, this function cannot be called from 10421 * the thread which process iocb completion for this ring. 10422 * This function clears the iocb_flag of the iocb object before 10423 * issuing the iocb and the iocb completion handler sets this 10424 * flag and wakes this thread when the iocb completes. 10425 * The contents of the response iocb will be copied to prspiocbq 10426 * by the completion handler when the command completes. 10427 * This function returns IOCB_SUCCESS when success. 10428 * This function is called with no lock held. 10429 **/ 10430 int 10431 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10432 uint32_t ring_number, 10433 struct lpfc_iocbq *piocb, 10434 struct lpfc_iocbq *prspiocbq, 10435 uint32_t timeout) 10436 { 10437 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10438 long timeleft, timeout_req = 0; 10439 int retval = IOCB_SUCCESS; 10440 uint32_t creg_val; 10441 struct lpfc_iocbq *iocb; 10442 int txq_cnt = 0; 10443 int txcmplq_cnt = 0; 10444 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10445 unsigned long iflags; 10446 bool iocb_completed = true; 10447 10448 /* 10449 * If the caller has provided a response iocbq buffer, then context2 10450 * is NULL or its an error. 10451 */ 10452 if (prspiocbq) { 10453 if (piocb->context2) 10454 return IOCB_ERROR; 10455 piocb->context2 = prspiocbq; 10456 } 10457 10458 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10459 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10460 piocb->context_un.wait_queue = &done_q; 10461 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10462 10463 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10464 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10465 return IOCB_ERROR; 10466 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10467 writel(creg_val, phba->HCregaddr); 10468 readl(phba->HCregaddr); /* flush */ 10469 } 10470 10471 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10472 SLI_IOCB_RET_IOCB); 10473 if (retval == IOCB_SUCCESS) { 10474 timeout_req = msecs_to_jiffies(timeout * 1000); 10475 timeleft = wait_event_timeout(done_q, 10476 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10477 timeout_req); 10478 spin_lock_irqsave(&phba->hbalock, iflags); 10479 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10480 10481 /* 10482 * IOCB timed out. Inform the wake iocb wait 10483 * completion function and set local status 10484 */ 10485 10486 iocb_completed = false; 10487 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10488 } 10489 spin_unlock_irqrestore(&phba->hbalock, iflags); 10490 if (iocb_completed) { 10491 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10492 "0331 IOCB wake signaled\n"); 10493 /* Note: we are not indicating if the IOCB has a success 10494 * status or not - that's for the caller to check. 10495 * IOCB_SUCCESS means just that the command was sent and 10496 * completed. Not that it completed successfully. 10497 * */ 10498 } else if (timeleft == 0) { 10499 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10500 "0338 IOCB wait timeout error - no " 10501 "wake response Data x%x\n", timeout); 10502 retval = IOCB_TIMEDOUT; 10503 } else { 10504 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10505 "0330 IOCB wake NOT set, " 10506 "Data x%x x%lx\n", 10507 timeout, (timeleft / jiffies)); 10508 retval = IOCB_TIMEDOUT; 10509 } 10510 } else if (retval == IOCB_BUSY) { 10511 if (phba->cfg_log_verbose & LOG_SLI) { 10512 list_for_each_entry(iocb, &pring->txq, list) { 10513 txq_cnt++; 10514 } 10515 list_for_each_entry(iocb, &pring->txcmplq, list) { 10516 txcmplq_cnt++; 10517 } 10518 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10519 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10520 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10521 } 10522 return retval; 10523 } else { 10524 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10525 "0332 IOCB wait issue failed, Data x%x\n", 10526 retval); 10527 retval = IOCB_ERROR; 10528 } 10529 10530 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10531 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10532 return IOCB_ERROR; 10533 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10534 writel(creg_val, phba->HCregaddr); 10535 readl(phba->HCregaddr); /* flush */ 10536 } 10537 10538 if (prspiocbq) 10539 piocb->context2 = NULL; 10540 10541 piocb->context_un.wait_queue = NULL; 10542 piocb->iocb_cmpl = NULL; 10543 return retval; 10544 } 10545 10546 /** 10547 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10548 * @phba: Pointer to HBA context object. 10549 * @pmboxq: Pointer to driver mailbox object. 10550 * @timeout: Timeout in number of seconds. 10551 * 10552 * This function issues the mailbox to firmware and waits for the 10553 * mailbox command to complete. If the mailbox command is not 10554 * completed within timeout seconds, it returns MBX_TIMEOUT. 10555 * The function waits for the mailbox completion using an 10556 * interruptible wait. If the thread is woken up due to a 10557 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10558 * should not free the mailbox resources, if this function returns 10559 * MBX_TIMEOUT. 10560 * This function will sleep while waiting for mailbox completion. 10561 * So, this function should not be called from any context which 10562 * does not allow sleeping. Due to the same reason, this function 10563 * cannot be called with interrupt disabled. 10564 * This function assumes that the mailbox completion occurs while 10565 * this function sleep. So, this function cannot be called from 10566 * the worker thread which processes mailbox completion. 10567 * This function is called in the context of HBA management 10568 * applications. 10569 * This function returns MBX_SUCCESS when successful. 10570 * This function is called with no lock held. 10571 **/ 10572 int 10573 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10574 uint32_t timeout) 10575 { 10576 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10577 MAILBOX_t *mb = NULL; 10578 int retval; 10579 unsigned long flag; 10580 10581 /* The caller might set context1 for extended buffer */ 10582 if (pmboxq->context1) 10583 mb = (MAILBOX_t *)pmboxq->context1; 10584 10585 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10586 /* setup wake call as IOCB callback */ 10587 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10588 /* setup context field to pass wait_queue pointer to wake function */ 10589 pmboxq->context1 = &done_q; 10590 10591 /* now issue the command */ 10592 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10593 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10594 wait_event_interruptible_timeout(done_q, 10595 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10596 msecs_to_jiffies(timeout * 1000)); 10597 10598 spin_lock_irqsave(&phba->hbalock, flag); 10599 /* restore the possible extended buffer for free resource */ 10600 pmboxq->context1 = (uint8_t *)mb; 10601 /* 10602 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10603 * else do not free the resources. 10604 */ 10605 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10606 retval = MBX_SUCCESS; 10607 } else { 10608 retval = MBX_TIMEOUT; 10609 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10610 } 10611 spin_unlock_irqrestore(&phba->hbalock, flag); 10612 } else { 10613 /* restore the possible extended buffer for free resource */ 10614 pmboxq->context1 = (uint8_t *)mb; 10615 } 10616 10617 return retval; 10618 } 10619 10620 /** 10621 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10622 * @phba: Pointer to HBA context. 10623 * 10624 * This function is called to shutdown the driver's mailbox sub-system. 10625 * It first marks the mailbox sub-system is in a block state to prevent 10626 * the asynchronous mailbox command from issued off the pending mailbox 10627 * command queue. If the mailbox command sub-system shutdown is due to 10628 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10629 * the mailbox sub-system flush routine to forcefully bring down the 10630 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10631 * as with offline or HBA function reset), this routine will wait for the 10632 * outstanding mailbox command to complete before invoking the mailbox 10633 * sub-system flush routine to gracefully bring down mailbox sub-system. 10634 **/ 10635 void 10636 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10637 { 10638 struct lpfc_sli *psli = &phba->sli; 10639 unsigned long timeout; 10640 10641 if (mbx_action == LPFC_MBX_NO_WAIT) { 10642 /* delay 100ms for port state */ 10643 msleep(100); 10644 lpfc_sli_mbox_sys_flush(phba); 10645 return; 10646 } 10647 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10648 10649 spin_lock_irq(&phba->hbalock); 10650 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10651 10652 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10653 /* Determine how long we might wait for the active mailbox 10654 * command to be gracefully completed by firmware. 10655 */ 10656 if (phba->sli.mbox_active) 10657 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10658 phba->sli.mbox_active) * 10659 1000) + jiffies; 10660 spin_unlock_irq(&phba->hbalock); 10661 10662 while (phba->sli.mbox_active) { 10663 /* Check active mailbox complete status every 2ms */ 10664 msleep(2); 10665 if (time_after(jiffies, timeout)) 10666 /* Timeout, let the mailbox flush routine to 10667 * forcefully release active mailbox command 10668 */ 10669 break; 10670 } 10671 } else 10672 spin_unlock_irq(&phba->hbalock); 10673 10674 lpfc_sli_mbox_sys_flush(phba); 10675 } 10676 10677 /** 10678 * lpfc_sli_eratt_read - read sli-3 error attention events 10679 * @phba: Pointer to HBA context. 10680 * 10681 * This function is called to read the SLI3 device error attention registers 10682 * for possible error attention events. The caller must hold the hostlock 10683 * with spin_lock_irq(). 10684 * 10685 * This function returns 1 when there is Error Attention in the Host Attention 10686 * Register and returns 0 otherwise. 10687 **/ 10688 static int 10689 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10690 { 10691 uint32_t ha_copy; 10692 10693 /* Read chip Host Attention (HA) register */ 10694 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10695 goto unplug_err; 10696 10697 if (ha_copy & HA_ERATT) { 10698 /* Read host status register to retrieve error event */ 10699 if (lpfc_sli_read_hs(phba)) 10700 goto unplug_err; 10701 10702 /* Check if there is a deferred error condition is active */ 10703 if ((HS_FFER1 & phba->work_hs) && 10704 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10705 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10706 phba->hba_flag |= DEFER_ERATT; 10707 /* Clear all interrupt enable conditions */ 10708 writel(0, phba->HCregaddr); 10709 readl(phba->HCregaddr); 10710 } 10711 10712 /* Set the driver HA work bitmap */ 10713 phba->work_ha |= HA_ERATT; 10714 /* Indicate polling handles this ERATT */ 10715 phba->hba_flag |= HBA_ERATT_HANDLED; 10716 return 1; 10717 } 10718 return 0; 10719 10720 unplug_err: 10721 /* Set the driver HS work bitmap */ 10722 phba->work_hs |= UNPLUG_ERR; 10723 /* Set the driver HA work bitmap */ 10724 phba->work_ha |= HA_ERATT; 10725 /* Indicate polling handles this ERATT */ 10726 phba->hba_flag |= HBA_ERATT_HANDLED; 10727 return 1; 10728 } 10729 10730 /** 10731 * lpfc_sli4_eratt_read - read sli-4 error attention events 10732 * @phba: Pointer to HBA context. 10733 * 10734 * This function is called to read the SLI4 device error attention registers 10735 * for possible error attention events. The caller must hold the hostlock 10736 * with spin_lock_irq(). 10737 * 10738 * This function returns 1 when there is Error Attention in the Host Attention 10739 * Register and returns 0 otherwise. 10740 **/ 10741 static int 10742 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10743 { 10744 uint32_t uerr_sta_hi, uerr_sta_lo; 10745 uint32_t if_type, portsmphr; 10746 struct lpfc_register portstat_reg; 10747 10748 /* 10749 * For now, use the SLI4 device internal unrecoverable error 10750 * registers for error attention. This can be changed later. 10751 */ 10752 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10753 switch (if_type) { 10754 case LPFC_SLI_INTF_IF_TYPE_0: 10755 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10756 &uerr_sta_lo) || 10757 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10758 &uerr_sta_hi)) { 10759 phba->work_hs |= UNPLUG_ERR; 10760 phba->work_ha |= HA_ERATT; 10761 phba->hba_flag |= HBA_ERATT_HANDLED; 10762 return 1; 10763 } 10764 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10765 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10766 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10767 "1423 HBA Unrecoverable error: " 10768 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10769 "ue_mask_lo_reg=0x%x, " 10770 "ue_mask_hi_reg=0x%x\n", 10771 uerr_sta_lo, uerr_sta_hi, 10772 phba->sli4_hba.ue_mask_lo, 10773 phba->sli4_hba.ue_mask_hi); 10774 phba->work_status[0] = uerr_sta_lo; 10775 phba->work_status[1] = uerr_sta_hi; 10776 phba->work_ha |= HA_ERATT; 10777 phba->hba_flag |= HBA_ERATT_HANDLED; 10778 return 1; 10779 } 10780 break; 10781 case LPFC_SLI_INTF_IF_TYPE_2: 10782 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10783 &portstat_reg.word0) || 10784 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10785 &portsmphr)){ 10786 phba->work_hs |= UNPLUG_ERR; 10787 phba->work_ha |= HA_ERATT; 10788 phba->hba_flag |= HBA_ERATT_HANDLED; 10789 return 1; 10790 } 10791 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10792 phba->work_status[0] = 10793 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10794 phba->work_status[1] = 10795 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10796 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10797 "2885 Port Status Event: " 10798 "port status reg 0x%x, " 10799 "port smphr reg 0x%x, " 10800 "error 1=0x%x, error 2=0x%x\n", 10801 portstat_reg.word0, 10802 portsmphr, 10803 phba->work_status[0], 10804 phba->work_status[1]); 10805 phba->work_ha |= HA_ERATT; 10806 phba->hba_flag |= HBA_ERATT_HANDLED; 10807 return 1; 10808 } 10809 break; 10810 case LPFC_SLI_INTF_IF_TYPE_1: 10811 default: 10812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10813 "2886 HBA Error Attention on unsupported " 10814 "if type %d.", if_type); 10815 return 1; 10816 } 10817 10818 return 0; 10819 } 10820 10821 /** 10822 * lpfc_sli_check_eratt - check error attention events 10823 * @phba: Pointer to HBA context. 10824 * 10825 * This function is called from timer soft interrupt context to check HBA's 10826 * error attention register bit for error attention events. 10827 * 10828 * This function returns 1 when there is Error Attention in the Host Attention 10829 * Register and returns 0 otherwise. 10830 **/ 10831 int 10832 lpfc_sli_check_eratt(struct lpfc_hba *phba) 10833 { 10834 uint32_t ha_copy; 10835 10836 /* If somebody is waiting to handle an eratt, don't process it 10837 * here. The brdkill function will do this. 10838 */ 10839 if (phba->link_flag & LS_IGNORE_ERATT) 10840 return 0; 10841 10842 /* Check if interrupt handler handles this ERATT */ 10843 spin_lock_irq(&phba->hbalock); 10844 if (phba->hba_flag & HBA_ERATT_HANDLED) { 10845 /* Interrupt handler has handled ERATT */ 10846 spin_unlock_irq(&phba->hbalock); 10847 return 0; 10848 } 10849 10850 /* 10851 * If there is deferred error attention, do not check for error 10852 * attention 10853 */ 10854 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10855 spin_unlock_irq(&phba->hbalock); 10856 return 0; 10857 } 10858 10859 /* If PCI channel is offline, don't process it */ 10860 if (unlikely(pci_channel_offline(phba->pcidev))) { 10861 spin_unlock_irq(&phba->hbalock); 10862 return 0; 10863 } 10864 10865 switch (phba->sli_rev) { 10866 case LPFC_SLI_REV2: 10867 case LPFC_SLI_REV3: 10868 /* Read chip Host Attention (HA) register */ 10869 ha_copy = lpfc_sli_eratt_read(phba); 10870 break; 10871 case LPFC_SLI_REV4: 10872 /* Read device Uncoverable Error (UERR) registers */ 10873 ha_copy = lpfc_sli4_eratt_read(phba); 10874 break; 10875 default: 10876 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10877 "0299 Invalid SLI revision (%d)\n", 10878 phba->sli_rev); 10879 ha_copy = 0; 10880 break; 10881 } 10882 spin_unlock_irq(&phba->hbalock); 10883 10884 return ha_copy; 10885 } 10886 10887 /** 10888 * lpfc_intr_state_check - Check device state for interrupt handling 10889 * @phba: Pointer to HBA context. 10890 * 10891 * This inline routine checks whether a device or its PCI slot is in a state 10892 * that the interrupt should be handled. 10893 * 10894 * This function returns 0 if the device or the PCI slot is in a state that 10895 * interrupt should be handled, otherwise -EIO. 10896 */ 10897 static inline int 10898 lpfc_intr_state_check(struct lpfc_hba *phba) 10899 { 10900 /* If the pci channel is offline, ignore all the interrupts */ 10901 if (unlikely(pci_channel_offline(phba->pcidev))) 10902 return -EIO; 10903 10904 /* Update device level interrupt statistics */ 10905 phba->sli.slistat.sli_intr++; 10906 10907 /* Ignore all interrupts during initialization. */ 10908 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10909 return -EIO; 10910 10911 return 0; 10912 } 10913 10914 /** 10915 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 10916 * @irq: Interrupt number. 10917 * @dev_id: The device context pointer. 10918 * 10919 * This function is directly called from the PCI layer as an interrupt 10920 * service routine when device with SLI-3 interface spec is enabled with 10921 * MSI-X multi-message interrupt mode and there are slow-path events in 10922 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 10923 * interrupt mode, this function is called as part of the device-level 10924 * interrupt handler. When the PCI slot is in error recovery or the HBA 10925 * is undergoing initialization, the interrupt handler will not process 10926 * the interrupt. The link attention and ELS ring attention events are 10927 * handled by the worker thread. The interrupt handler signals the worker 10928 * thread and returns for these events. This function is called without 10929 * any lock held. It gets the hbalock to access and update SLI data 10930 * structures. 10931 * 10932 * This function returns IRQ_HANDLED when interrupt is handled else it 10933 * returns IRQ_NONE. 10934 **/ 10935 irqreturn_t 10936 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 10937 { 10938 struct lpfc_hba *phba; 10939 uint32_t ha_copy, hc_copy; 10940 uint32_t work_ha_copy; 10941 unsigned long status; 10942 unsigned long iflag; 10943 uint32_t control; 10944 10945 MAILBOX_t *mbox, *pmbox; 10946 struct lpfc_vport *vport; 10947 struct lpfc_nodelist *ndlp; 10948 struct lpfc_dmabuf *mp; 10949 LPFC_MBOXQ_t *pmb; 10950 int rc; 10951 10952 /* 10953 * Get the driver's phba structure from the dev_id and 10954 * assume the HBA is not interrupting. 10955 */ 10956 phba = (struct lpfc_hba *)dev_id; 10957 10958 if (unlikely(!phba)) 10959 return IRQ_NONE; 10960 10961 /* 10962 * Stuff needs to be attented to when this function is invoked as an 10963 * individual interrupt handler in MSI-X multi-message interrupt mode 10964 */ 10965 if (phba->intr_type == MSIX) { 10966 /* Check device state for handling interrupt */ 10967 if (lpfc_intr_state_check(phba)) 10968 return IRQ_NONE; 10969 /* Need to read HA REG for slow-path events */ 10970 spin_lock_irqsave(&phba->hbalock, iflag); 10971 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10972 goto unplug_error; 10973 /* If somebody is waiting to handle an eratt don't process it 10974 * here. The brdkill function will do this. 10975 */ 10976 if (phba->link_flag & LS_IGNORE_ERATT) 10977 ha_copy &= ~HA_ERATT; 10978 /* Check the need for handling ERATT in interrupt handler */ 10979 if (ha_copy & HA_ERATT) { 10980 if (phba->hba_flag & HBA_ERATT_HANDLED) 10981 /* ERATT polling has handled ERATT */ 10982 ha_copy &= ~HA_ERATT; 10983 else 10984 /* Indicate interrupt handler handles ERATT */ 10985 phba->hba_flag |= HBA_ERATT_HANDLED; 10986 } 10987 10988 /* 10989 * If there is deferred error attention, do not check for any 10990 * interrupt. 10991 */ 10992 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10993 spin_unlock_irqrestore(&phba->hbalock, iflag); 10994 return IRQ_NONE; 10995 } 10996 10997 /* Clear up only attention source related to slow-path */ 10998 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 10999 goto unplug_error; 11000 11001 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11002 HC_LAINT_ENA | HC_ERINT_ENA), 11003 phba->HCregaddr); 11004 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11005 phba->HAregaddr); 11006 writel(hc_copy, phba->HCregaddr); 11007 readl(phba->HAregaddr); /* flush */ 11008 spin_unlock_irqrestore(&phba->hbalock, iflag); 11009 } else 11010 ha_copy = phba->ha_copy; 11011 11012 work_ha_copy = ha_copy & phba->work_ha_mask; 11013 11014 if (work_ha_copy) { 11015 if (work_ha_copy & HA_LATT) { 11016 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11017 /* 11018 * Turn off Link Attention interrupts 11019 * until CLEAR_LA done 11020 */ 11021 spin_lock_irqsave(&phba->hbalock, iflag); 11022 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11023 if (lpfc_readl(phba->HCregaddr, &control)) 11024 goto unplug_error; 11025 control &= ~HC_LAINT_ENA; 11026 writel(control, phba->HCregaddr); 11027 readl(phba->HCregaddr); /* flush */ 11028 spin_unlock_irqrestore(&phba->hbalock, iflag); 11029 } 11030 else 11031 work_ha_copy &= ~HA_LATT; 11032 } 11033 11034 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11035 /* 11036 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11037 * the only slow ring. 11038 */ 11039 status = (work_ha_copy & 11040 (HA_RXMASK << (4*LPFC_ELS_RING))); 11041 status >>= (4*LPFC_ELS_RING); 11042 if (status & HA_RXMASK) { 11043 spin_lock_irqsave(&phba->hbalock, iflag); 11044 if (lpfc_readl(phba->HCregaddr, &control)) 11045 goto unplug_error; 11046 11047 lpfc_debugfs_slow_ring_trc(phba, 11048 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11049 control, status, 11050 (uint32_t)phba->sli.slistat.sli_intr); 11051 11052 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11053 lpfc_debugfs_slow_ring_trc(phba, 11054 "ISR Disable ring:" 11055 "pwork:x%x hawork:x%x wait:x%x", 11056 phba->work_ha, work_ha_copy, 11057 (uint32_t)((unsigned long) 11058 &phba->work_waitq)); 11059 11060 control &= 11061 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11062 writel(control, phba->HCregaddr); 11063 readl(phba->HCregaddr); /* flush */ 11064 } 11065 else { 11066 lpfc_debugfs_slow_ring_trc(phba, 11067 "ISR slow ring: pwork:" 11068 "x%x hawork:x%x wait:x%x", 11069 phba->work_ha, work_ha_copy, 11070 (uint32_t)((unsigned long) 11071 &phba->work_waitq)); 11072 } 11073 spin_unlock_irqrestore(&phba->hbalock, iflag); 11074 } 11075 } 11076 spin_lock_irqsave(&phba->hbalock, iflag); 11077 if (work_ha_copy & HA_ERATT) { 11078 if (lpfc_sli_read_hs(phba)) 11079 goto unplug_error; 11080 /* 11081 * Check if there is a deferred error condition 11082 * is active 11083 */ 11084 if ((HS_FFER1 & phba->work_hs) && 11085 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11086 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11087 phba->work_hs)) { 11088 phba->hba_flag |= DEFER_ERATT; 11089 /* Clear all interrupt enable conditions */ 11090 writel(0, phba->HCregaddr); 11091 readl(phba->HCregaddr); 11092 } 11093 } 11094 11095 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11096 pmb = phba->sli.mbox_active; 11097 pmbox = &pmb->u.mb; 11098 mbox = phba->mbox; 11099 vport = pmb->vport; 11100 11101 /* First check out the status word */ 11102 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11103 if (pmbox->mbxOwner != OWN_HOST) { 11104 spin_unlock_irqrestore(&phba->hbalock, iflag); 11105 /* 11106 * Stray Mailbox Interrupt, mbxCommand <cmd> 11107 * mbxStatus <status> 11108 */ 11109 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11110 LOG_SLI, 11111 "(%d):0304 Stray Mailbox " 11112 "Interrupt mbxCommand x%x " 11113 "mbxStatus x%x\n", 11114 (vport ? vport->vpi : 0), 11115 pmbox->mbxCommand, 11116 pmbox->mbxStatus); 11117 /* clear mailbox attention bit */ 11118 work_ha_copy &= ~HA_MBATT; 11119 } else { 11120 phba->sli.mbox_active = NULL; 11121 spin_unlock_irqrestore(&phba->hbalock, iflag); 11122 phba->last_completion_time = jiffies; 11123 del_timer(&phba->sli.mbox_tmo); 11124 if (pmb->mbox_cmpl) { 11125 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11126 MAILBOX_CMD_SIZE); 11127 if (pmb->out_ext_byte_len && 11128 pmb->context2) 11129 lpfc_sli_pcimem_bcopy( 11130 phba->mbox_ext, 11131 pmb->context2, 11132 pmb->out_ext_byte_len); 11133 } 11134 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11135 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11136 11137 lpfc_debugfs_disc_trc(vport, 11138 LPFC_DISC_TRC_MBOX_VPORT, 11139 "MBOX dflt rpi: : " 11140 "status:x%x rpi:x%x", 11141 (uint32_t)pmbox->mbxStatus, 11142 pmbox->un.varWords[0], 0); 11143 11144 if (!pmbox->mbxStatus) { 11145 mp = (struct lpfc_dmabuf *) 11146 (pmb->context1); 11147 ndlp = (struct lpfc_nodelist *) 11148 pmb->context2; 11149 11150 /* Reg_LOGIN of dflt RPI was 11151 * successful. new lets get 11152 * rid of the RPI using the 11153 * same mbox buffer. 11154 */ 11155 lpfc_unreg_login(phba, 11156 vport->vpi, 11157 pmbox->un.varWords[0], 11158 pmb); 11159 pmb->mbox_cmpl = 11160 lpfc_mbx_cmpl_dflt_rpi; 11161 pmb->context1 = mp; 11162 pmb->context2 = ndlp; 11163 pmb->vport = vport; 11164 rc = lpfc_sli_issue_mbox(phba, 11165 pmb, 11166 MBX_NOWAIT); 11167 if (rc != MBX_BUSY) 11168 lpfc_printf_log(phba, 11169 KERN_ERR, 11170 LOG_MBOX | LOG_SLI, 11171 "0350 rc should have" 11172 "been MBX_BUSY\n"); 11173 if (rc != MBX_NOT_FINISHED) 11174 goto send_current_mbox; 11175 } 11176 } 11177 spin_lock_irqsave( 11178 &phba->pport->work_port_lock, 11179 iflag); 11180 phba->pport->work_port_events &= 11181 ~WORKER_MBOX_TMO; 11182 spin_unlock_irqrestore( 11183 &phba->pport->work_port_lock, 11184 iflag); 11185 lpfc_mbox_cmpl_put(phba, pmb); 11186 } 11187 } else 11188 spin_unlock_irqrestore(&phba->hbalock, iflag); 11189 11190 if ((work_ha_copy & HA_MBATT) && 11191 (phba->sli.mbox_active == NULL)) { 11192 send_current_mbox: 11193 /* Process next mailbox command if there is one */ 11194 do { 11195 rc = lpfc_sli_issue_mbox(phba, NULL, 11196 MBX_NOWAIT); 11197 } while (rc == MBX_NOT_FINISHED); 11198 if (rc != MBX_SUCCESS) 11199 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11200 LOG_SLI, "0349 rc should be " 11201 "MBX_SUCCESS\n"); 11202 } 11203 11204 spin_lock_irqsave(&phba->hbalock, iflag); 11205 phba->work_ha |= work_ha_copy; 11206 spin_unlock_irqrestore(&phba->hbalock, iflag); 11207 lpfc_worker_wake_up(phba); 11208 } 11209 return IRQ_HANDLED; 11210 unplug_error: 11211 spin_unlock_irqrestore(&phba->hbalock, iflag); 11212 return IRQ_HANDLED; 11213 11214 } /* lpfc_sli_sp_intr_handler */ 11215 11216 /** 11217 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11218 * @irq: Interrupt number. 11219 * @dev_id: The device context pointer. 11220 * 11221 * This function is directly called from the PCI layer as an interrupt 11222 * service routine when device with SLI-3 interface spec is enabled with 11223 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11224 * ring event in the HBA. However, when the device is enabled with either 11225 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11226 * device-level interrupt handler. When the PCI slot is in error recovery 11227 * or the HBA is undergoing initialization, the interrupt handler will not 11228 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11229 * the intrrupt context. This function is called without any lock held. 11230 * It gets the hbalock to access and update SLI data structures. 11231 * 11232 * This function returns IRQ_HANDLED when interrupt is handled else it 11233 * returns IRQ_NONE. 11234 **/ 11235 irqreturn_t 11236 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11237 { 11238 struct lpfc_hba *phba; 11239 uint32_t ha_copy; 11240 unsigned long status; 11241 unsigned long iflag; 11242 11243 /* Get the driver's phba structure from the dev_id and 11244 * assume the HBA is not interrupting. 11245 */ 11246 phba = (struct lpfc_hba *) dev_id; 11247 11248 if (unlikely(!phba)) 11249 return IRQ_NONE; 11250 11251 /* 11252 * Stuff needs to be attented to when this function is invoked as an 11253 * individual interrupt handler in MSI-X multi-message interrupt mode 11254 */ 11255 if (phba->intr_type == MSIX) { 11256 /* Check device state for handling interrupt */ 11257 if (lpfc_intr_state_check(phba)) 11258 return IRQ_NONE; 11259 /* Need to read HA REG for FCP ring and other ring events */ 11260 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11261 return IRQ_HANDLED; 11262 /* Clear up only attention source related to fast-path */ 11263 spin_lock_irqsave(&phba->hbalock, iflag); 11264 /* 11265 * If there is deferred error attention, do not check for 11266 * any interrupt. 11267 */ 11268 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11269 spin_unlock_irqrestore(&phba->hbalock, iflag); 11270 return IRQ_NONE; 11271 } 11272 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11273 phba->HAregaddr); 11274 readl(phba->HAregaddr); /* flush */ 11275 spin_unlock_irqrestore(&phba->hbalock, iflag); 11276 } else 11277 ha_copy = phba->ha_copy; 11278 11279 /* 11280 * Process all events on FCP ring. Take the optimized path for FCP IO. 11281 */ 11282 ha_copy &= ~(phba->work_ha_mask); 11283 11284 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11285 status >>= (4*LPFC_FCP_RING); 11286 if (status & HA_RXMASK) 11287 lpfc_sli_handle_fast_ring_event(phba, 11288 &phba->sli.ring[LPFC_FCP_RING], 11289 status); 11290 11291 if (phba->cfg_multi_ring_support == 2) { 11292 /* 11293 * Process all events on extra ring. Take the optimized path 11294 * for extra ring IO. 11295 */ 11296 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11297 status >>= (4*LPFC_EXTRA_RING); 11298 if (status & HA_RXMASK) { 11299 lpfc_sli_handle_fast_ring_event(phba, 11300 &phba->sli.ring[LPFC_EXTRA_RING], 11301 status); 11302 } 11303 } 11304 return IRQ_HANDLED; 11305 } /* lpfc_sli_fp_intr_handler */ 11306 11307 /** 11308 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11309 * @irq: Interrupt number. 11310 * @dev_id: The device context pointer. 11311 * 11312 * This function is the HBA device-level interrupt handler to device with 11313 * SLI-3 interface spec, called from the PCI layer when either MSI or 11314 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11315 * requires driver attention. This function invokes the slow-path interrupt 11316 * attention handling function and fast-path interrupt attention handling 11317 * function in turn to process the relevant HBA attention events. This 11318 * function is called without any lock held. It gets the hbalock to access 11319 * and update SLI data structures. 11320 * 11321 * This function returns IRQ_HANDLED when interrupt is handled, else it 11322 * returns IRQ_NONE. 11323 **/ 11324 irqreturn_t 11325 lpfc_sli_intr_handler(int irq, void *dev_id) 11326 { 11327 struct lpfc_hba *phba; 11328 irqreturn_t sp_irq_rc, fp_irq_rc; 11329 unsigned long status1, status2; 11330 uint32_t hc_copy; 11331 11332 /* 11333 * Get the driver's phba structure from the dev_id and 11334 * assume the HBA is not interrupting. 11335 */ 11336 phba = (struct lpfc_hba *) dev_id; 11337 11338 if (unlikely(!phba)) 11339 return IRQ_NONE; 11340 11341 /* Check device state for handling interrupt */ 11342 if (lpfc_intr_state_check(phba)) 11343 return IRQ_NONE; 11344 11345 spin_lock(&phba->hbalock); 11346 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11347 spin_unlock(&phba->hbalock); 11348 return IRQ_HANDLED; 11349 } 11350 11351 if (unlikely(!phba->ha_copy)) { 11352 spin_unlock(&phba->hbalock); 11353 return IRQ_NONE; 11354 } else if (phba->ha_copy & HA_ERATT) { 11355 if (phba->hba_flag & HBA_ERATT_HANDLED) 11356 /* ERATT polling has handled ERATT */ 11357 phba->ha_copy &= ~HA_ERATT; 11358 else 11359 /* Indicate interrupt handler handles ERATT */ 11360 phba->hba_flag |= HBA_ERATT_HANDLED; 11361 } 11362 11363 /* 11364 * If there is deferred error attention, do not check for any interrupt. 11365 */ 11366 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11367 spin_unlock(&phba->hbalock); 11368 return IRQ_NONE; 11369 } 11370 11371 /* Clear attention sources except link and error attentions */ 11372 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11373 spin_unlock(&phba->hbalock); 11374 return IRQ_HANDLED; 11375 } 11376 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11377 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11378 phba->HCregaddr); 11379 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11380 writel(hc_copy, phba->HCregaddr); 11381 readl(phba->HAregaddr); /* flush */ 11382 spin_unlock(&phba->hbalock); 11383 11384 /* 11385 * Invokes slow-path host attention interrupt handling as appropriate. 11386 */ 11387 11388 /* status of events with mailbox and link attention */ 11389 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11390 11391 /* status of events with ELS ring */ 11392 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11393 status2 >>= (4*LPFC_ELS_RING); 11394 11395 if (status1 || (status2 & HA_RXMASK)) 11396 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11397 else 11398 sp_irq_rc = IRQ_NONE; 11399 11400 /* 11401 * Invoke fast-path host attention interrupt handling as appropriate. 11402 */ 11403 11404 /* status of events with FCP ring */ 11405 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11406 status1 >>= (4*LPFC_FCP_RING); 11407 11408 /* status of events with extra ring */ 11409 if (phba->cfg_multi_ring_support == 2) { 11410 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11411 status2 >>= (4*LPFC_EXTRA_RING); 11412 } else 11413 status2 = 0; 11414 11415 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11416 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11417 else 11418 fp_irq_rc = IRQ_NONE; 11419 11420 /* Return device-level interrupt handling status */ 11421 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11422 } /* lpfc_sli_intr_handler */ 11423 11424 /** 11425 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11426 * @phba: pointer to lpfc hba data structure. 11427 * 11428 * This routine is invoked by the worker thread to process all the pending 11429 * SLI4 FCP abort XRI events. 11430 **/ 11431 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11432 { 11433 struct lpfc_cq_event *cq_event; 11434 11435 /* First, declare the fcp xri abort event has been handled */ 11436 spin_lock_irq(&phba->hbalock); 11437 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11438 spin_unlock_irq(&phba->hbalock); 11439 /* Now, handle all the fcp xri abort events */ 11440 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11441 /* Get the first event from the head of the event queue */ 11442 spin_lock_irq(&phba->hbalock); 11443 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11444 cq_event, struct lpfc_cq_event, list); 11445 spin_unlock_irq(&phba->hbalock); 11446 /* Notify aborted XRI for FCP work queue */ 11447 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11448 /* Free the event processed back to the free pool */ 11449 lpfc_sli4_cq_event_release(phba, cq_event); 11450 } 11451 } 11452 11453 /** 11454 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11455 * @phba: pointer to lpfc hba data structure. 11456 * 11457 * This routine is invoked by the worker thread to process all the pending 11458 * SLI4 els abort xri events. 11459 **/ 11460 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11461 { 11462 struct lpfc_cq_event *cq_event; 11463 11464 /* First, declare the els xri abort event has been handled */ 11465 spin_lock_irq(&phba->hbalock); 11466 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11467 spin_unlock_irq(&phba->hbalock); 11468 /* Now, handle all the els xri abort events */ 11469 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11470 /* Get the first event from the head of the event queue */ 11471 spin_lock_irq(&phba->hbalock); 11472 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11473 cq_event, struct lpfc_cq_event, list); 11474 spin_unlock_irq(&phba->hbalock); 11475 /* Notify aborted XRI for ELS work queue */ 11476 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11477 /* Free the event processed back to the free pool */ 11478 lpfc_sli4_cq_event_release(phba, cq_event); 11479 } 11480 } 11481 11482 /** 11483 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11484 * @phba: pointer to lpfc hba data structure 11485 * @pIocbIn: pointer to the rspiocbq 11486 * @pIocbOut: pointer to the cmdiocbq 11487 * @wcqe: pointer to the complete wcqe 11488 * 11489 * This routine transfers the fields of a command iocbq to a response iocbq 11490 * by copying all the IOCB fields from command iocbq and transferring the 11491 * completion status information from the complete wcqe. 11492 **/ 11493 static void 11494 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11495 struct lpfc_iocbq *pIocbIn, 11496 struct lpfc_iocbq *pIocbOut, 11497 struct lpfc_wcqe_complete *wcqe) 11498 { 11499 int numBdes, i; 11500 unsigned long iflags; 11501 uint32_t status, max_response; 11502 struct lpfc_dmabuf *dmabuf; 11503 struct ulp_bde64 *bpl, bde; 11504 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11505 11506 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11507 sizeof(struct lpfc_iocbq) - offset); 11508 /* Map WCQE parameters into irspiocb parameters */ 11509 status = bf_get(lpfc_wcqe_c_status, wcqe); 11510 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11511 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11512 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11513 pIocbIn->iocb.un.fcpi.fcpi_parm = 11514 pIocbOut->iocb.un.fcpi.fcpi_parm - 11515 wcqe->total_data_placed; 11516 else 11517 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11518 else { 11519 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11520 switch (pIocbOut->iocb.ulpCommand) { 11521 case CMD_ELS_REQUEST64_CR: 11522 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11523 bpl = (struct ulp_bde64 *)dmabuf->virt; 11524 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11525 max_response = bde.tus.f.bdeSize; 11526 break; 11527 case CMD_GEN_REQUEST64_CR: 11528 max_response = 0; 11529 if (!pIocbOut->context3) 11530 break; 11531 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11532 sizeof(struct ulp_bde64); 11533 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11534 bpl = (struct ulp_bde64 *)dmabuf->virt; 11535 for (i = 0; i < numBdes; i++) { 11536 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11537 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11538 max_response += bde.tus.f.bdeSize; 11539 } 11540 break; 11541 default: 11542 max_response = wcqe->total_data_placed; 11543 break; 11544 } 11545 if (max_response < wcqe->total_data_placed) 11546 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11547 else 11548 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11549 wcqe->total_data_placed; 11550 } 11551 11552 /* Convert BG errors for completion status */ 11553 if (status == CQE_STATUS_DI_ERROR) { 11554 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11555 11556 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11557 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11558 else 11559 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11560 11561 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11562 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11563 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11564 BGS_GUARD_ERR_MASK; 11565 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11566 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11567 BGS_APPTAG_ERR_MASK; 11568 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11569 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11570 BGS_REFTAG_ERR_MASK; 11571 11572 /* Check to see if there was any good data before the error */ 11573 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11574 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11575 BGS_HI_WATER_MARK_PRESENT_MASK; 11576 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11577 wcqe->total_data_placed; 11578 } 11579 11580 /* 11581 * Set ALL the error bits to indicate we don't know what 11582 * type of error it is. 11583 */ 11584 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11585 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11586 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11587 BGS_GUARD_ERR_MASK); 11588 } 11589 11590 /* Pick up HBA exchange busy condition */ 11591 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11592 spin_lock_irqsave(&phba->hbalock, iflags); 11593 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11594 spin_unlock_irqrestore(&phba->hbalock, iflags); 11595 } 11596 } 11597 11598 /** 11599 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11600 * @phba: Pointer to HBA context object. 11601 * @wcqe: Pointer to work-queue completion queue entry. 11602 * 11603 * This routine handles an ELS work-queue completion event and construct 11604 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11605 * discovery engine to handle. 11606 * 11607 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11608 **/ 11609 static struct lpfc_iocbq * 11610 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11611 struct lpfc_iocbq *irspiocbq) 11612 { 11613 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11614 struct lpfc_iocbq *cmdiocbq; 11615 struct lpfc_wcqe_complete *wcqe; 11616 unsigned long iflags; 11617 11618 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11619 spin_lock_irqsave(&pring->ring_lock, iflags); 11620 pring->stats.iocb_event++; 11621 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11622 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11623 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11624 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11625 11626 if (unlikely(!cmdiocbq)) { 11627 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11628 "0386 ELS complete with no corresponding " 11629 "cmdiocb: iotag (%d)\n", 11630 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11631 lpfc_sli_release_iocbq(phba, irspiocbq); 11632 return NULL; 11633 } 11634 11635 /* Fake the irspiocbq and copy necessary response information */ 11636 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11637 11638 return irspiocbq; 11639 } 11640 11641 /** 11642 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11643 * @phba: Pointer to HBA context object. 11644 * @cqe: Pointer to mailbox completion queue entry. 11645 * 11646 * This routine process a mailbox completion queue entry with asynchrous 11647 * event. 11648 * 11649 * Return: true if work posted to worker thread, otherwise false. 11650 **/ 11651 static bool 11652 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11653 { 11654 struct lpfc_cq_event *cq_event; 11655 unsigned long iflags; 11656 11657 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11658 "0392 Async Event: word0:x%x, word1:x%x, " 11659 "word2:x%x, word3:x%x\n", mcqe->word0, 11660 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11661 11662 /* Allocate a new internal CQ_EVENT entry */ 11663 cq_event = lpfc_sli4_cq_event_alloc(phba); 11664 if (!cq_event) { 11665 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11666 "0394 Failed to allocate CQ_EVENT entry\n"); 11667 return false; 11668 } 11669 11670 /* Move the CQE into an asynchronous event entry */ 11671 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11672 spin_lock_irqsave(&phba->hbalock, iflags); 11673 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11674 /* Set the async event flag */ 11675 phba->hba_flag |= ASYNC_EVENT; 11676 spin_unlock_irqrestore(&phba->hbalock, iflags); 11677 11678 return true; 11679 } 11680 11681 /** 11682 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11683 * @phba: Pointer to HBA context object. 11684 * @cqe: Pointer to mailbox completion queue entry. 11685 * 11686 * This routine process a mailbox completion queue entry with mailbox 11687 * completion event. 11688 * 11689 * Return: true if work posted to worker thread, otherwise false. 11690 **/ 11691 static bool 11692 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11693 { 11694 uint32_t mcqe_status; 11695 MAILBOX_t *mbox, *pmbox; 11696 struct lpfc_mqe *mqe; 11697 struct lpfc_vport *vport; 11698 struct lpfc_nodelist *ndlp; 11699 struct lpfc_dmabuf *mp; 11700 unsigned long iflags; 11701 LPFC_MBOXQ_t *pmb; 11702 bool workposted = false; 11703 int rc; 11704 11705 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11706 if (!bf_get(lpfc_trailer_completed, mcqe)) 11707 goto out_no_mqe_complete; 11708 11709 /* Get the reference to the active mbox command */ 11710 spin_lock_irqsave(&phba->hbalock, iflags); 11711 pmb = phba->sli.mbox_active; 11712 if (unlikely(!pmb)) { 11713 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11714 "1832 No pending MBOX command to handle\n"); 11715 spin_unlock_irqrestore(&phba->hbalock, iflags); 11716 goto out_no_mqe_complete; 11717 } 11718 spin_unlock_irqrestore(&phba->hbalock, iflags); 11719 mqe = &pmb->u.mqe; 11720 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11721 mbox = phba->mbox; 11722 vport = pmb->vport; 11723 11724 /* Reset heartbeat timer */ 11725 phba->last_completion_time = jiffies; 11726 del_timer(&phba->sli.mbox_tmo); 11727 11728 /* Move mbox data to caller's mailbox region, do endian swapping */ 11729 if (pmb->mbox_cmpl && mbox) 11730 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11731 11732 /* 11733 * For mcqe errors, conditionally move a modified error code to 11734 * the mbox so that the error will not be missed. 11735 */ 11736 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11737 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11738 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11739 bf_set(lpfc_mqe_status, mqe, 11740 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11741 } 11742 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11743 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11744 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11745 "MBOX dflt rpi: status:x%x rpi:x%x", 11746 mcqe_status, 11747 pmbox->un.varWords[0], 0); 11748 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11749 mp = (struct lpfc_dmabuf *)(pmb->context1); 11750 ndlp = (struct lpfc_nodelist *)pmb->context2; 11751 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11752 * RID of the PPI using the same mbox buffer. 11753 */ 11754 lpfc_unreg_login(phba, vport->vpi, 11755 pmbox->un.varWords[0], pmb); 11756 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11757 pmb->context1 = mp; 11758 pmb->context2 = ndlp; 11759 pmb->vport = vport; 11760 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11761 if (rc != MBX_BUSY) 11762 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11763 LOG_SLI, "0385 rc should " 11764 "have been MBX_BUSY\n"); 11765 if (rc != MBX_NOT_FINISHED) 11766 goto send_current_mbox; 11767 } 11768 } 11769 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11770 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11771 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11772 11773 /* There is mailbox completion work to do */ 11774 spin_lock_irqsave(&phba->hbalock, iflags); 11775 __lpfc_mbox_cmpl_put(phba, pmb); 11776 phba->work_ha |= HA_MBATT; 11777 spin_unlock_irqrestore(&phba->hbalock, iflags); 11778 workposted = true; 11779 11780 send_current_mbox: 11781 spin_lock_irqsave(&phba->hbalock, iflags); 11782 /* Release the mailbox command posting token */ 11783 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11784 /* Setting active mailbox pointer need to be in sync to flag clear */ 11785 phba->sli.mbox_active = NULL; 11786 spin_unlock_irqrestore(&phba->hbalock, iflags); 11787 /* Wake up worker thread to post the next pending mailbox command */ 11788 lpfc_worker_wake_up(phba); 11789 out_no_mqe_complete: 11790 if (bf_get(lpfc_trailer_consumed, mcqe)) 11791 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11792 return workposted; 11793 } 11794 11795 /** 11796 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11797 * @phba: Pointer to HBA context object. 11798 * @cqe: Pointer to mailbox completion queue entry. 11799 * 11800 * This routine process a mailbox completion queue entry, it invokes the 11801 * proper mailbox complete handling or asynchrous event handling routine 11802 * according to the MCQE's async bit. 11803 * 11804 * Return: true if work posted to worker thread, otherwise false. 11805 **/ 11806 static bool 11807 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 11808 { 11809 struct lpfc_mcqe mcqe; 11810 bool workposted; 11811 11812 /* Copy the mailbox MCQE and convert endian order as needed */ 11813 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 11814 11815 /* Invoke the proper event handling routine */ 11816 if (!bf_get(lpfc_trailer_async, &mcqe)) 11817 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 11818 else 11819 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 11820 return workposted; 11821 } 11822 11823 /** 11824 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 11825 * @phba: Pointer to HBA context object. 11826 * @cq: Pointer to associated CQ 11827 * @wcqe: Pointer to work-queue completion queue entry. 11828 * 11829 * This routine handles an ELS work-queue completion event. 11830 * 11831 * Return: true if work posted to worker thread, otherwise false. 11832 **/ 11833 static bool 11834 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11835 struct lpfc_wcqe_complete *wcqe) 11836 { 11837 struct lpfc_iocbq *irspiocbq; 11838 unsigned long iflags; 11839 struct lpfc_sli_ring *pring = cq->pring; 11840 int txq_cnt = 0; 11841 int txcmplq_cnt = 0; 11842 int fcp_txcmplq_cnt = 0; 11843 11844 /* Get an irspiocbq for later ELS response processing use */ 11845 irspiocbq = lpfc_sli_get_iocbq(phba); 11846 if (!irspiocbq) { 11847 if (!list_empty(&pring->txq)) 11848 txq_cnt++; 11849 if (!list_empty(&pring->txcmplq)) 11850 txcmplq_cnt++; 11851 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 11852 fcp_txcmplq_cnt++; 11853 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11854 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 11855 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 11856 txq_cnt, phba->iocb_cnt, 11857 fcp_txcmplq_cnt, 11858 txcmplq_cnt); 11859 return false; 11860 } 11861 11862 /* Save off the slow-path queue event for work thread to process */ 11863 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 11864 spin_lock_irqsave(&phba->hbalock, iflags); 11865 list_add_tail(&irspiocbq->cq_event.list, 11866 &phba->sli4_hba.sp_queue_event); 11867 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11868 spin_unlock_irqrestore(&phba->hbalock, iflags); 11869 11870 return true; 11871 } 11872 11873 /** 11874 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 11875 * @phba: Pointer to HBA context object. 11876 * @wcqe: Pointer to work-queue completion queue entry. 11877 * 11878 * This routine handles slow-path WQ entry comsumed event by invoking the 11879 * proper WQ release routine to the slow-path WQ. 11880 **/ 11881 static void 11882 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 11883 struct lpfc_wcqe_release *wcqe) 11884 { 11885 /* sanity check on queue memory */ 11886 if (unlikely(!phba->sli4_hba.els_wq)) 11887 return; 11888 /* Check for the slow-path ELS work queue */ 11889 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 11890 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 11891 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 11892 else 11893 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11894 "2579 Slow-path wqe consume event carries " 11895 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 11896 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 11897 phba->sli4_hba.els_wq->queue_id); 11898 } 11899 11900 /** 11901 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 11902 * @phba: Pointer to HBA context object. 11903 * @cq: Pointer to a WQ completion queue. 11904 * @wcqe: Pointer to work-queue completion queue entry. 11905 * 11906 * This routine handles an XRI abort event. 11907 * 11908 * Return: true if work posted to worker thread, otherwise false. 11909 **/ 11910 static bool 11911 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 11912 struct lpfc_queue *cq, 11913 struct sli4_wcqe_xri_aborted *wcqe) 11914 { 11915 bool workposted = false; 11916 struct lpfc_cq_event *cq_event; 11917 unsigned long iflags; 11918 11919 /* Allocate a new internal CQ_EVENT entry */ 11920 cq_event = lpfc_sli4_cq_event_alloc(phba); 11921 if (!cq_event) { 11922 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11923 "0602 Failed to allocate CQ_EVENT entry\n"); 11924 return false; 11925 } 11926 11927 /* Move the CQE into the proper xri abort event list */ 11928 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 11929 switch (cq->subtype) { 11930 case LPFC_FCP: 11931 spin_lock_irqsave(&phba->hbalock, iflags); 11932 list_add_tail(&cq_event->list, 11933 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 11934 /* Set the fcp xri abort event flag */ 11935 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 11936 spin_unlock_irqrestore(&phba->hbalock, iflags); 11937 workposted = true; 11938 break; 11939 case LPFC_ELS: 11940 spin_lock_irqsave(&phba->hbalock, iflags); 11941 list_add_tail(&cq_event->list, 11942 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 11943 /* Set the els xri abort event flag */ 11944 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 11945 spin_unlock_irqrestore(&phba->hbalock, iflags); 11946 workposted = true; 11947 break; 11948 default: 11949 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11950 "0603 Invalid work queue CQE subtype (x%x)\n", 11951 cq->subtype); 11952 workposted = false; 11953 break; 11954 } 11955 return workposted; 11956 } 11957 11958 /** 11959 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 11960 * @phba: Pointer to HBA context object. 11961 * @rcqe: Pointer to receive-queue completion queue entry. 11962 * 11963 * This routine process a receive-queue completion queue entry. 11964 * 11965 * Return: true if work posted to worker thread, otherwise false. 11966 **/ 11967 static bool 11968 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 11969 { 11970 bool workposted = false; 11971 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 11972 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 11973 struct hbq_dmabuf *dma_buf; 11974 uint32_t status, rq_id; 11975 unsigned long iflags; 11976 11977 /* sanity check on queue memory */ 11978 if (unlikely(!hrq) || unlikely(!drq)) 11979 return workposted; 11980 11981 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 11982 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 11983 else 11984 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 11985 if (rq_id != hrq->queue_id) 11986 goto out; 11987 11988 status = bf_get(lpfc_rcqe_status, rcqe); 11989 switch (status) { 11990 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 11991 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11992 "2537 Receive Frame Truncated!!\n"); 11993 hrq->RQ_buf_trunc++; 11994 case FC_STATUS_RQ_SUCCESS: 11995 lpfc_sli4_rq_release(hrq, drq); 11996 spin_lock_irqsave(&phba->hbalock, iflags); 11997 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 11998 if (!dma_buf) { 11999 hrq->RQ_no_buf_found++; 12000 spin_unlock_irqrestore(&phba->hbalock, iflags); 12001 goto out; 12002 } 12003 hrq->RQ_rcv_buf++; 12004 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12005 /* save off the frame for the word thread to process */ 12006 list_add_tail(&dma_buf->cq_event.list, 12007 &phba->sli4_hba.sp_queue_event); 12008 /* Frame received */ 12009 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12010 spin_unlock_irqrestore(&phba->hbalock, iflags); 12011 workposted = true; 12012 break; 12013 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12014 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12015 hrq->RQ_no_posted_buf++; 12016 /* Post more buffers if possible */ 12017 spin_lock_irqsave(&phba->hbalock, iflags); 12018 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12019 spin_unlock_irqrestore(&phba->hbalock, iflags); 12020 workposted = true; 12021 break; 12022 } 12023 out: 12024 return workposted; 12025 } 12026 12027 /** 12028 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12029 * @phba: Pointer to HBA context object. 12030 * @cq: Pointer to the completion queue. 12031 * @wcqe: Pointer to a completion queue entry. 12032 * 12033 * This routine process a slow-path work-queue or receive queue completion queue 12034 * entry. 12035 * 12036 * Return: true if work posted to worker thread, otherwise false. 12037 **/ 12038 static bool 12039 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12040 struct lpfc_cqe *cqe) 12041 { 12042 struct lpfc_cqe cqevt; 12043 bool workposted = false; 12044 12045 /* Copy the work queue CQE and convert endian order if needed */ 12046 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12047 12048 /* Check and process for different type of WCQE and dispatch */ 12049 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12050 case CQE_CODE_COMPL_WQE: 12051 /* Process the WQ/RQ complete event */ 12052 phba->last_completion_time = jiffies; 12053 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12054 (struct lpfc_wcqe_complete *)&cqevt); 12055 break; 12056 case CQE_CODE_RELEASE_WQE: 12057 /* Process the WQ release event */ 12058 lpfc_sli4_sp_handle_rel_wcqe(phba, 12059 (struct lpfc_wcqe_release *)&cqevt); 12060 break; 12061 case CQE_CODE_XRI_ABORTED: 12062 /* Process the WQ XRI abort event */ 12063 phba->last_completion_time = jiffies; 12064 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12065 (struct sli4_wcqe_xri_aborted *)&cqevt); 12066 break; 12067 case CQE_CODE_RECEIVE: 12068 case CQE_CODE_RECEIVE_V1: 12069 /* Process the RQ event */ 12070 phba->last_completion_time = jiffies; 12071 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12072 (struct lpfc_rcqe *)&cqevt); 12073 break; 12074 default: 12075 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12076 "0388 Not a valid WCQE code: x%x\n", 12077 bf_get(lpfc_cqe_code, &cqevt)); 12078 break; 12079 } 12080 return workposted; 12081 } 12082 12083 /** 12084 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12085 * @phba: Pointer to HBA context object. 12086 * @eqe: Pointer to fast-path event queue entry. 12087 * 12088 * This routine process a event queue entry from the slow-path event queue. 12089 * It will check the MajorCode and MinorCode to determine this is for a 12090 * completion event on a completion queue, if not, an error shall be logged 12091 * and just return. Otherwise, it will get to the corresponding completion 12092 * queue and process all the entries on that completion queue, rearm the 12093 * completion queue, and then return. 12094 * 12095 **/ 12096 static void 12097 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12098 struct lpfc_queue *speq) 12099 { 12100 struct lpfc_queue *cq = NULL, *childq; 12101 struct lpfc_cqe *cqe; 12102 bool workposted = false; 12103 int ecount = 0; 12104 uint16_t cqid; 12105 12106 /* Get the reference to the corresponding CQ */ 12107 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12108 12109 list_for_each_entry(childq, &speq->child_list, list) { 12110 if (childq->queue_id == cqid) { 12111 cq = childq; 12112 break; 12113 } 12114 } 12115 if (unlikely(!cq)) { 12116 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12117 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12118 "0365 Slow-path CQ identifier " 12119 "(%d) does not exist\n", cqid); 12120 return; 12121 } 12122 12123 /* Process all the entries to the CQ */ 12124 switch (cq->type) { 12125 case LPFC_MCQ: 12126 while ((cqe = lpfc_sli4_cq_get(cq))) { 12127 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12128 if (!(++ecount % cq->entry_repost)) 12129 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12130 cq->CQ_mbox++; 12131 } 12132 break; 12133 case LPFC_WCQ: 12134 while ((cqe = lpfc_sli4_cq_get(cq))) { 12135 if (cq->subtype == LPFC_FCP) 12136 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12137 cqe); 12138 else 12139 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12140 cqe); 12141 if (!(++ecount % cq->entry_repost)) 12142 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12143 } 12144 12145 /* Track the max number of CQEs processed in 1 EQ */ 12146 if (ecount > cq->CQ_max_cqe) 12147 cq->CQ_max_cqe = ecount; 12148 break; 12149 default: 12150 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12151 "0370 Invalid completion queue type (%d)\n", 12152 cq->type); 12153 return; 12154 } 12155 12156 /* Catch the no cq entry condition, log an error */ 12157 if (unlikely(ecount == 0)) 12158 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12159 "0371 No entry from the CQ: identifier " 12160 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12161 12162 /* In any case, flash and re-arm the RCQ */ 12163 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12164 12165 /* wake up worker thread if there are works to be done */ 12166 if (workposted) 12167 lpfc_worker_wake_up(phba); 12168 } 12169 12170 /** 12171 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12172 * @phba: Pointer to HBA context object. 12173 * @cq: Pointer to associated CQ 12174 * @wcqe: Pointer to work-queue completion queue entry. 12175 * 12176 * This routine process a fast-path work queue completion entry from fast-path 12177 * event queue for FCP command response completion. 12178 **/ 12179 static void 12180 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12181 struct lpfc_wcqe_complete *wcqe) 12182 { 12183 struct lpfc_sli_ring *pring = cq->pring; 12184 struct lpfc_iocbq *cmdiocbq; 12185 struct lpfc_iocbq irspiocbq; 12186 unsigned long iflags; 12187 12188 /* Check for response status */ 12189 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12190 /* If resource errors reported from HBA, reduce queue 12191 * depth of the SCSI device. 12192 */ 12193 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12194 IOSTAT_LOCAL_REJECT)) && 12195 ((wcqe->parameter & IOERR_PARAM_MASK) == 12196 IOERR_NO_RESOURCES)) 12197 phba->lpfc_rampdown_queue_depth(phba); 12198 12199 /* Log the error status */ 12200 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12201 "0373 FCP complete error: status=x%x, " 12202 "hw_status=x%x, total_data_specified=%d, " 12203 "parameter=x%x, word3=x%x\n", 12204 bf_get(lpfc_wcqe_c_status, wcqe), 12205 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12206 wcqe->total_data_placed, wcqe->parameter, 12207 wcqe->word3); 12208 } 12209 12210 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12211 spin_lock_irqsave(&pring->ring_lock, iflags); 12212 pring->stats.iocb_event++; 12213 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12214 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12215 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12216 if (unlikely(!cmdiocbq)) { 12217 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12218 "0374 FCP complete with no corresponding " 12219 "cmdiocb: iotag (%d)\n", 12220 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12221 return; 12222 } 12223 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12224 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12225 "0375 FCP cmdiocb not callback function " 12226 "iotag: (%d)\n", 12227 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12228 return; 12229 } 12230 12231 /* Fake the irspiocb and copy necessary response information */ 12232 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12233 12234 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12235 spin_lock_irqsave(&phba->hbalock, iflags); 12236 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12237 spin_unlock_irqrestore(&phba->hbalock, iflags); 12238 } 12239 12240 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12241 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12242 } 12243 12244 /** 12245 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12246 * @phba: Pointer to HBA context object. 12247 * @cq: Pointer to completion queue. 12248 * @wcqe: Pointer to work-queue completion queue entry. 12249 * 12250 * This routine handles an fast-path WQ entry comsumed event by invoking the 12251 * proper WQ release routine to the slow-path WQ. 12252 **/ 12253 static void 12254 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12255 struct lpfc_wcqe_release *wcqe) 12256 { 12257 struct lpfc_queue *childwq; 12258 bool wqid_matched = false; 12259 uint16_t fcp_wqid; 12260 12261 /* Check for fast-path FCP work queue release */ 12262 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12263 list_for_each_entry(childwq, &cq->child_list, list) { 12264 if (childwq->queue_id == fcp_wqid) { 12265 lpfc_sli4_wq_release(childwq, 12266 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12267 wqid_matched = true; 12268 break; 12269 } 12270 } 12271 /* Report warning log message if no match found */ 12272 if (wqid_matched != true) 12273 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12274 "2580 Fast-path wqe consume event carries " 12275 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12276 } 12277 12278 /** 12279 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12280 * @cq: Pointer to the completion queue. 12281 * @eqe: Pointer to fast-path completion queue entry. 12282 * 12283 * This routine process a fast-path work queue completion entry from fast-path 12284 * event queue for FCP command response completion. 12285 **/ 12286 static int 12287 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12288 struct lpfc_cqe *cqe) 12289 { 12290 struct lpfc_wcqe_release wcqe; 12291 bool workposted = false; 12292 12293 /* Copy the work queue CQE and convert endian order if needed */ 12294 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12295 12296 /* Check and process for different type of WCQE and dispatch */ 12297 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12298 case CQE_CODE_COMPL_WQE: 12299 cq->CQ_wq++; 12300 /* Process the WQ complete event */ 12301 phba->last_completion_time = jiffies; 12302 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12303 (struct lpfc_wcqe_complete *)&wcqe); 12304 break; 12305 case CQE_CODE_RELEASE_WQE: 12306 cq->CQ_release_wqe++; 12307 /* Process the WQ release event */ 12308 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12309 (struct lpfc_wcqe_release *)&wcqe); 12310 break; 12311 case CQE_CODE_XRI_ABORTED: 12312 cq->CQ_xri_aborted++; 12313 /* Process the WQ XRI abort event */ 12314 phba->last_completion_time = jiffies; 12315 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12316 (struct sli4_wcqe_xri_aborted *)&wcqe); 12317 break; 12318 default: 12319 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12320 "0144 Not a valid WCQE code: x%x\n", 12321 bf_get(lpfc_wcqe_c_code, &wcqe)); 12322 break; 12323 } 12324 return workposted; 12325 } 12326 12327 /** 12328 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12329 * @phba: Pointer to HBA context object. 12330 * @eqe: Pointer to fast-path event queue entry. 12331 * 12332 * This routine process a event queue entry from the fast-path event queue. 12333 * It will check the MajorCode and MinorCode to determine this is for a 12334 * completion event on a completion queue, if not, an error shall be logged 12335 * and just return. Otherwise, it will get to the corresponding completion 12336 * queue and process all the entries on the completion queue, rearm the 12337 * completion queue, and then return. 12338 **/ 12339 static void 12340 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12341 uint32_t qidx) 12342 { 12343 struct lpfc_queue *cq; 12344 struct lpfc_cqe *cqe; 12345 bool workposted = false; 12346 uint16_t cqid; 12347 int ecount = 0; 12348 12349 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12351 "0366 Not a valid completion " 12352 "event: majorcode=x%x, minorcode=x%x\n", 12353 bf_get_le32(lpfc_eqe_major_code, eqe), 12354 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12355 return; 12356 } 12357 12358 /* Get the reference to the corresponding CQ */ 12359 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12360 12361 /* Check if this is a Slow path event */ 12362 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12363 lpfc_sli4_sp_handle_eqe(phba, eqe, 12364 phba->sli4_hba.hba_eq[qidx]); 12365 return; 12366 } 12367 12368 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12369 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12370 "3146 Fast-path completion queues " 12371 "does not exist\n"); 12372 return; 12373 } 12374 cq = phba->sli4_hba.fcp_cq[qidx]; 12375 if (unlikely(!cq)) { 12376 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12377 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12378 "0367 Fast-path completion queue " 12379 "(%d) does not exist\n", qidx); 12380 return; 12381 } 12382 12383 if (unlikely(cqid != cq->queue_id)) { 12384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12385 "0368 Miss-matched fast-path completion " 12386 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12387 cqid, cq->queue_id); 12388 return; 12389 } 12390 12391 /* Process all the entries to the CQ */ 12392 while ((cqe = lpfc_sli4_cq_get(cq))) { 12393 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12394 if (!(++ecount % cq->entry_repost)) 12395 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12396 } 12397 12398 /* Track the max number of CQEs processed in 1 EQ */ 12399 if (ecount > cq->CQ_max_cqe) 12400 cq->CQ_max_cqe = ecount; 12401 12402 /* Catch the no cq entry condition */ 12403 if (unlikely(ecount == 0)) 12404 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12405 "0369 No entry from fast-path completion " 12406 "queue fcpcqid=%d\n", cq->queue_id); 12407 12408 /* In any case, flash and re-arm the CQ */ 12409 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12410 12411 /* wake up worker thread if there are works to be done */ 12412 if (workposted) 12413 lpfc_worker_wake_up(phba); 12414 } 12415 12416 static void 12417 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12418 { 12419 struct lpfc_eqe *eqe; 12420 12421 /* walk all the EQ entries and drop on the floor */ 12422 while ((eqe = lpfc_sli4_eq_get(eq))) 12423 ; 12424 12425 /* Clear and re-arm the EQ */ 12426 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12427 } 12428 12429 12430 /** 12431 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12432 * entry 12433 * @phba: Pointer to HBA context object. 12434 * @eqe: Pointer to fast-path event queue entry. 12435 * 12436 * This routine process a event queue entry from the Flash Optimized Fabric 12437 * event queue. It will check the MajorCode and MinorCode to determine this 12438 * is for a completion event on a completion queue, if not, an error shall be 12439 * logged and just return. Otherwise, it will get to the corresponding 12440 * completion queue and process all the entries on the completion queue, rearm 12441 * the completion queue, and then return. 12442 **/ 12443 static void 12444 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12445 { 12446 struct lpfc_queue *cq; 12447 struct lpfc_cqe *cqe; 12448 bool workposted = false; 12449 uint16_t cqid; 12450 int ecount = 0; 12451 12452 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12453 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12454 "9147 Not a valid completion " 12455 "event: majorcode=x%x, minorcode=x%x\n", 12456 bf_get_le32(lpfc_eqe_major_code, eqe), 12457 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12458 return; 12459 } 12460 12461 /* Get the reference to the corresponding CQ */ 12462 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12463 12464 /* Next check for OAS */ 12465 cq = phba->sli4_hba.oas_cq; 12466 if (unlikely(!cq)) { 12467 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12468 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12469 "9148 OAS completion queue " 12470 "does not exist\n"); 12471 return; 12472 } 12473 12474 if (unlikely(cqid != cq->queue_id)) { 12475 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12476 "9149 Miss-matched fast-path compl " 12477 "queue id: eqcqid=%d, fcpcqid=%d\n", 12478 cqid, cq->queue_id); 12479 return; 12480 } 12481 12482 /* Process all the entries to the OAS CQ */ 12483 while ((cqe = lpfc_sli4_cq_get(cq))) { 12484 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12485 if (!(++ecount % cq->entry_repost)) 12486 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12487 } 12488 12489 /* Track the max number of CQEs processed in 1 EQ */ 12490 if (ecount > cq->CQ_max_cqe) 12491 cq->CQ_max_cqe = ecount; 12492 12493 /* Catch the no cq entry condition */ 12494 if (unlikely(ecount == 0)) 12495 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12496 "9153 No entry from fast-path completion " 12497 "queue fcpcqid=%d\n", cq->queue_id); 12498 12499 /* In any case, flash and re-arm the CQ */ 12500 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12501 12502 /* wake up worker thread if there are works to be done */ 12503 if (workposted) 12504 lpfc_worker_wake_up(phba); 12505 } 12506 12507 /** 12508 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12509 * @irq: Interrupt number. 12510 * @dev_id: The device context pointer. 12511 * 12512 * This function is directly called from the PCI layer as an interrupt 12513 * service routine when device with SLI-4 interface spec is enabled with 12514 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12515 * IOCB ring event in the HBA. However, when the device is enabled with either 12516 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12517 * device-level interrupt handler. When the PCI slot is in error recovery 12518 * or the HBA is undergoing initialization, the interrupt handler will not 12519 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12520 * the intrrupt context. This function is called without any lock held. 12521 * It gets the hbalock to access and update SLI data structures. Note that, 12522 * the EQ to CQ are one-to-one map such that the EQ index is 12523 * equal to that of CQ index. 12524 * 12525 * This function returns IRQ_HANDLED when interrupt is handled else it 12526 * returns IRQ_NONE. 12527 **/ 12528 irqreturn_t 12529 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12530 { 12531 struct lpfc_hba *phba; 12532 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12533 struct lpfc_queue *eq; 12534 struct lpfc_eqe *eqe; 12535 unsigned long iflag; 12536 int ecount = 0; 12537 12538 /* Get the driver's phba structure from the dev_id */ 12539 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12540 phba = fcp_eq_hdl->phba; 12541 12542 if (unlikely(!phba)) 12543 return IRQ_NONE; 12544 12545 /* Get to the EQ struct associated with this vector */ 12546 eq = phba->sli4_hba.fof_eq; 12547 if (unlikely(!eq)) 12548 return IRQ_NONE; 12549 12550 /* Check device state for handling interrupt */ 12551 if (unlikely(lpfc_intr_state_check(phba))) { 12552 eq->EQ_badstate++; 12553 /* Check again for link_state with lock held */ 12554 spin_lock_irqsave(&phba->hbalock, iflag); 12555 if (phba->link_state < LPFC_LINK_DOWN) 12556 /* Flush, clear interrupt, and rearm the EQ */ 12557 lpfc_sli4_eq_flush(phba, eq); 12558 spin_unlock_irqrestore(&phba->hbalock, iflag); 12559 return IRQ_NONE; 12560 } 12561 12562 /* 12563 * Process all the event on FCP fast-path EQ 12564 */ 12565 while ((eqe = lpfc_sli4_eq_get(eq))) { 12566 lpfc_sli4_fof_handle_eqe(phba, eqe); 12567 if (!(++ecount % eq->entry_repost)) 12568 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12569 eq->EQ_processed++; 12570 } 12571 12572 /* Track the max number of EQEs processed in 1 intr */ 12573 if (ecount > eq->EQ_max_eqe) 12574 eq->EQ_max_eqe = ecount; 12575 12576 12577 if (unlikely(ecount == 0)) { 12578 eq->EQ_no_entry++; 12579 12580 if (phba->intr_type == MSIX) 12581 /* MSI-X treated interrupt served as no EQ share INT */ 12582 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12583 "9145 MSI-X interrupt with no EQE\n"); 12584 else { 12585 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12586 "9146 ISR interrupt with no EQE\n"); 12587 /* Non MSI-X treated on interrupt as EQ share INT */ 12588 return IRQ_NONE; 12589 } 12590 } 12591 /* Always clear and re-arm the fast-path EQ */ 12592 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12593 return IRQ_HANDLED; 12594 } 12595 12596 /** 12597 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12598 * @irq: Interrupt number. 12599 * @dev_id: The device context pointer. 12600 * 12601 * This function is directly called from the PCI layer as an interrupt 12602 * service routine when device with SLI-4 interface spec is enabled with 12603 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12604 * ring event in the HBA. However, when the device is enabled with either 12605 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12606 * device-level interrupt handler. When the PCI slot is in error recovery 12607 * or the HBA is undergoing initialization, the interrupt handler will not 12608 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12609 * the intrrupt context. This function is called without any lock held. 12610 * It gets the hbalock to access and update SLI data structures. Note that, 12611 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12612 * equal to that of FCP CQ index. 12613 * 12614 * The link attention and ELS ring attention events are handled 12615 * by the worker thread. The interrupt handler signals the worker thread 12616 * and returns for these events. This function is called without any lock 12617 * held. It gets the hbalock to access and update SLI data structures. 12618 * 12619 * This function returns IRQ_HANDLED when interrupt is handled else it 12620 * returns IRQ_NONE. 12621 **/ 12622 irqreturn_t 12623 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12624 { 12625 struct lpfc_hba *phba; 12626 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12627 struct lpfc_queue *fpeq; 12628 struct lpfc_eqe *eqe; 12629 unsigned long iflag; 12630 int ecount = 0; 12631 int fcp_eqidx; 12632 12633 /* Get the driver's phba structure from the dev_id */ 12634 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12635 phba = fcp_eq_hdl->phba; 12636 fcp_eqidx = fcp_eq_hdl->idx; 12637 12638 if (unlikely(!phba)) 12639 return IRQ_NONE; 12640 if (unlikely(!phba->sli4_hba.hba_eq)) 12641 return IRQ_NONE; 12642 12643 /* Get to the EQ struct associated with this vector */ 12644 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12645 if (unlikely(!fpeq)) 12646 return IRQ_NONE; 12647 12648 if (lpfc_fcp_look_ahead) { 12649 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12650 lpfc_sli4_eq_clr_intr(fpeq); 12651 else { 12652 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12653 return IRQ_NONE; 12654 } 12655 } 12656 12657 /* Check device state for handling interrupt */ 12658 if (unlikely(lpfc_intr_state_check(phba))) { 12659 fpeq->EQ_badstate++; 12660 /* Check again for link_state with lock held */ 12661 spin_lock_irqsave(&phba->hbalock, iflag); 12662 if (phba->link_state < LPFC_LINK_DOWN) 12663 /* Flush, clear interrupt, and rearm the EQ */ 12664 lpfc_sli4_eq_flush(phba, fpeq); 12665 spin_unlock_irqrestore(&phba->hbalock, iflag); 12666 if (lpfc_fcp_look_ahead) 12667 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12668 return IRQ_NONE; 12669 } 12670 12671 /* 12672 * Process all the event on FCP fast-path EQ 12673 */ 12674 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12675 if (eqe == NULL) 12676 break; 12677 12678 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12679 if (!(++ecount % fpeq->entry_repost)) 12680 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12681 fpeq->EQ_processed++; 12682 } 12683 12684 /* Track the max number of EQEs processed in 1 intr */ 12685 if (ecount > fpeq->EQ_max_eqe) 12686 fpeq->EQ_max_eqe = ecount; 12687 12688 /* Always clear and re-arm the fast-path EQ */ 12689 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12690 12691 if (unlikely(ecount == 0)) { 12692 fpeq->EQ_no_entry++; 12693 12694 if (lpfc_fcp_look_ahead) { 12695 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12696 return IRQ_NONE; 12697 } 12698 12699 if (phba->intr_type == MSIX) 12700 /* MSI-X treated interrupt served as no EQ share INT */ 12701 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12702 "0358 MSI-X interrupt with no EQE\n"); 12703 else 12704 /* Non MSI-X treated on interrupt as EQ share INT */ 12705 return IRQ_NONE; 12706 } 12707 12708 if (lpfc_fcp_look_ahead) 12709 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12710 return IRQ_HANDLED; 12711 } /* lpfc_sli4_fp_intr_handler */ 12712 12713 /** 12714 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12715 * @irq: Interrupt number. 12716 * @dev_id: The device context pointer. 12717 * 12718 * This function is the device-level interrupt handler to device with SLI-4 12719 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12720 * interrupt mode is enabled and there is an event in the HBA which requires 12721 * driver attention. This function invokes the slow-path interrupt attention 12722 * handling function and fast-path interrupt attention handling function in 12723 * turn to process the relevant HBA attention events. This function is called 12724 * without any lock held. It gets the hbalock to access and update SLI data 12725 * structures. 12726 * 12727 * This function returns IRQ_HANDLED when interrupt is handled, else it 12728 * returns IRQ_NONE. 12729 **/ 12730 irqreturn_t 12731 lpfc_sli4_intr_handler(int irq, void *dev_id) 12732 { 12733 struct lpfc_hba *phba; 12734 irqreturn_t hba_irq_rc; 12735 bool hba_handled = false; 12736 int fcp_eqidx; 12737 12738 /* Get the driver's phba structure from the dev_id */ 12739 phba = (struct lpfc_hba *)dev_id; 12740 12741 if (unlikely(!phba)) 12742 return IRQ_NONE; 12743 12744 /* 12745 * Invoke fast-path host attention interrupt handling as appropriate. 12746 */ 12747 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12748 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12749 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12750 if (hba_irq_rc == IRQ_HANDLED) 12751 hba_handled |= true; 12752 } 12753 12754 if (phba->cfg_fof) { 12755 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12756 &phba->sli4_hba.fcp_eq_hdl[0]); 12757 if (hba_irq_rc == IRQ_HANDLED) 12758 hba_handled |= true; 12759 } 12760 12761 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12762 } /* lpfc_sli4_intr_handler */ 12763 12764 /** 12765 * lpfc_sli4_queue_free - free a queue structure and associated memory 12766 * @queue: The queue structure to free. 12767 * 12768 * This function frees a queue structure and the DMAable memory used for 12769 * the host resident queue. This function must be called after destroying the 12770 * queue on the HBA. 12771 **/ 12772 void 12773 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12774 { 12775 struct lpfc_dmabuf *dmabuf; 12776 12777 if (!queue) 12778 return; 12779 12780 while (!list_empty(&queue->page_list)) { 12781 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12782 list); 12783 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12784 dmabuf->virt, dmabuf->phys); 12785 kfree(dmabuf); 12786 } 12787 kfree(queue); 12788 return; 12789 } 12790 12791 /** 12792 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12793 * @phba: The HBA that this queue is being created on. 12794 * @entry_size: The size of each queue entry for this queue. 12795 * @entry count: The number of entries that this queue will handle. 12796 * 12797 * This function allocates a queue structure and the DMAable memory used for 12798 * the host resident queue. This function must be called before creating the 12799 * queue on the HBA. 12800 **/ 12801 struct lpfc_queue * 12802 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 12803 uint32_t entry_count) 12804 { 12805 struct lpfc_queue *queue; 12806 struct lpfc_dmabuf *dmabuf; 12807 int x, total_qe_count; 12808 void *dma_pointer; 12809 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12810 12811 if (!phba->sli4_hba.pc_sli4_params.supported) 12812 hw_page_size = SLI4_PAGE_SIZE; 12813 12814 queue = kzalloc(sizeof(struct lpfc_queue) + 12815 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 12816 if (!queue) 12817 return NULL; 12818 queue->page_count = (ALIGN(entry_size * entry_count, 12819 hw_page_size))/hw_page_size; 12820 INIT_LIST_HEAD(&queue->list); 12821 INIT_LIST_HEAD(&queue->page_list); 12822 INIT_LIST_HEAD(&queue->child_list); 12823 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 12824 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 12825 if (!dmabuf) 12826 goto out_fail; 12827 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 12828 hw_page_size, &dmabuf->phys, 12829 GFP_KERNEL); 12830 if (!dmabuf->virt) { 12831 kfree(dmabuf); 12832 goto out_fail; 12833 } 12834 dmabuf->buffer_tag = x; 12835 list_add_tail(&dmabuf->list, &queue->page_list); 12836 /* initialize queue's entry array */ 12837 dma_pointer = dmabuf->virt; 12838 for (; total_qe_count < entry_count && 12839 dma_pointer < (hw_page_size + dmabuf->virt); 12840 total_qe_count++, dma_pointer += entry_size) { 12841 queue->qe[total_qe_count].address = dma_pointer; 12842 } 12843 } 12844 queue->entry_size = entry_size; 12845 queue->entry_count = entry_count; 12846 12847 /* 12848 * entry_repost is calculated based on the number of entries in the 12849 * queue. This works out except for RQs. If buffers are NOT initially 12850 * posted for every RQE, entry_repost should be adjusted accordingly. 12851 */ 12852 queue->entry_repost = (entry_count >> 3); 12853 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 12854 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 12855 queue->phba = phba; 12856 12857 return queue; 12858 out_fail: 12859 lpfc_sli4_queue_free(queue); 12860 return NULL; 12861 } 12862 12863 /** 12864 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 12865 * @phba: HBA structure that indicates port to create a queue on. 12866 * @pci_barset: PCI BAR set flag. 12867 * 12868 * This function shall perform iomap of the specified PCI BAR address to host 12869 * memory address if not already done so and return it. The returned host 12870 * memory address can be NULL. 12871 */ 12872 static void __iomem * 12873 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 12874 { 12875 if (!phba->pcidev) 12876 return NULL; 12877 12878 switch (pci_barset) { 12879 case WQ_PCI_BAR_0_AND_1: 12880 return phba->pci_bar0_memmap_p; 12881 case WQ_PCI_BAR_2_AND_3: 12882 return phba->pci_bar2_memmap_p; 12883 case WQ_PCI_BAR_4_AND_5: 12884 return phba->pci_bar4_memmap_p; 12885 default: 12886 break; 12887 } 12888 return NULL; 12889 } 12890 12891 /** 12892 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 12893 * @phba: HBA structure that indicates port to create a queue on. 12894 * @startq: The starting FCP EQ to modify 12895 * 12896 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 12897 * 12898 * The @phba struct is used to send mailbox command to HBA. The @startq 12899 * is used to get the starting FCP EQ to change. 12900 * This function is asynchronous and will wait for the mailbox 12901 * command to finish before continuing. 12902 * 12903 * On success this function will return a zero. If unable to allocate enough 12904 * memory this function will return -ENOMEM. If the queue create mailbox command 12905 * fails this function will return -ENXIO. 12906 **/ 12907 int 12908 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq) 12909 { 12910 struct lpfc_mbx_modify_eq_delay *eq_delay; 12911 LPFC_MBOXQ_t *mbox; 12912 struct lpfc_queue *eq; 12913 int cnt, rc, length, status = 0; 12914 uint32_t shdr_status, shdr_add_status; 12915 uint32_t result; 12916 int fcp_eqidx; 12917 union lpfc_sli4_cfg_shdr *shdr; 12918 uint16_t dmult; 12919 12920 if (startq >= phba->cfg_fcp_io_channel) 12921 return 0; 12922 12923 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12924 if (!mbox) 12925 return -ENOMEM; 12926 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 12927 sizeof(struct lpfc_sli4_cfg_mhdr)); 12928 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12929 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 12930 length, LPFC_SLI4_MBX_EMBED); 12931 eq_delay = &mbox->u.mqe.un.eq_delay; 12932 12933 /* Calculate delay multiper from maximum interrupt per second */ 12934 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 12935 if (result > LPFC_DMULT_CONST) 12936 dmult = 0; 12937 else 12938 dmult = LPFC_DMULT_CONST/result - 1; 12939 12940 cnt = 0; 12941 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 12942 fcp_eqidx++) { 12943 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12944 if (!eq) 12945 continue; 12946 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 12947 eq_delay->u.request.eq[cnt].phase = 0; 12948 eq_delay->u.request.eq[cnt].delay_multi = dmult; 12949 cnt++; 12950 if (cnt >= LPFC_MAX_EQ_DELAY) 12951 break; 12952 } 12953 eq_delay->u.request.num_eq = cnt; 12954 12955 mbox->vport = phba->pport; 12956 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12957 mbox->context1 = NULL; 12958 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12959 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 12960 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12961 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12962 if (shdr_status || shdr_add_status || rc) { 12963 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12964 "2512 MODIFY_EQ_DELAY mailbox failed with " 12965 "status x%x add_status x%x, mbx status x%x\n", 12966 shdr_status, shdr_add_status, rc); 12967 status = -ENXIO; 12968 } 12969 mempool_free(mbox, phba->mbox_mem_pool); 12970 return status; 12971 } 12972 12973 /** 12974 * lpfc_eq_create - Create an Event Queue on the HBA 12975 * @phba: HBA structure that indicates port to create a queue on. 12976 * @eq: The queue structure to use to create the event queue. 12977 * @imax: The maximum interrupt per second limit. 12978 * 12979 * This function creates an event queue, as detailed in @eq, on a port, 12980 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 12981 * 12982 * The @phba struct is used to send mailbox command to HBA. The @eq struct 12983 * is used to get the entry count and entry size that are necessary to 12984 * determine the number of pages to allocate and use for this queue. This 12985 * function will send the EQ_CREATE mailbox command to the HBA to setup the 12986 * event queue. This function is asynchronous and will wait for the mailbox 12987 * command to finish before continuing. 12988 * 12989 * On success this function will return a zero. If unable to allocate enough 12990 * memory this function will return -ENOMEM. If the queue create mailbox command 12991 * fails this function will return -ENXIO. 12992 **/ 12993 int 12994 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 12995 { 12996 struct lpfc_mbx_eq_create *eq_create; 12997 LPFC_MBOXQ_t *mbox; 12998 int rc, length, status = 0; 12999 struct lpfc_dmabuf *dmabuf; 13000 uint32_t shdr_status, shdr_add_status; 13001 union lpfc_sli4_cfg_shdr *shdr; 13002 uint16_t dmult; 13003 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13004 13005 /* sanity check on queue memory */ 13006 if (!eq) 13007 return -ENODEV; 13008 if (!phba->sli4_hba.pc_sli4_params.supported) 13009 hw_page_size = SLI4_PAGE_SIZE; 13010 13011 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13012 if (!mbox) 13013 return -ENOMEM; 13014 length = (sizeof(struct lpfc_mbx_eq_create) - 13015 sizeof(struct lpfc_sli4_cfg_mhdr)); 13016 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13017 LPFC_MBOX_OPCODE_EQ_CREATE, 13018 length, LPFC_SLI4_MBX_EMBED); 13019 eq_create = &mbox->u.mqe.un.eq_create; 13020 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 13021 eq->page_count); 13022 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 13023 LPFC_EQE_SIZE); 13024 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 13025 /* don't setup delay multiplier using EQ_CREATE */ 13026 dmult = 0; 13027 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 13028 dmult); 13029 switch (eq->entry_count) { 13030 default: 13031 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13032 "0360 Unsupported EQ count. (%d)\n", 13033 eq->entry_count); 13034 if (eq->entry_count < 256) 13035 return -EINVAL; 13036 /* otherwise default to smallest count (drop through) */ 13037 case 256: 13038 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13039 LPFC_EQ_CNT_256); 13040 break; 13041 case 512: 13042 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13043 LPFC_EQ_CNT_512); 13044 break; 13045 case 1024: 13046 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13047 LPFC_EQ_CNT_1024); 13048 break; 13049 case 2048: 13050 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13051 LPFC_EQ_CNT_2048); 13052 break; 13053 case 4096: 13054 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13055 LPFC_EQ_CNT_4096); 13056 break; 13057 } 13058 list_for_each_entry(dmabuf, &eq->page_list, list) { 13059 memset(dmabuf->virt, 0, hw_page_size); 13060 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13061 putPaddrLow(dmabuf->phys); 13062 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13063 putPaddrHigh(dmabuf->phys); 13064 } 13065 mbox->vport = phba->pport; 13066 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13067 mbox->context1 = NULL; 13068 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13069 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13070 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13071 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13072 if (shdr_status || shdr_add_status || rc) { 13073 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13074 "2500 EQ_CREATE mailbox failed with " 13075 "status x%x add_status x%x, mbx status x%x\n", 13076 shdr_status, shdr_add_status, rc); 13077 status = -ENXIO; 13078 } 13079 eq->type = LPFC_EQ; 13080 eq->subtype = LPFC_NONE; 13081 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13082 if (eq->queue_id == 0xFFFF) 13083 status = -ENXIO; 13084 eq->host_index = 0; 13085 eq->hba_index = 0; 13086 13087 mempool_free(mbox, phba->mbox_mem_pool); 13088 return status; 13089 } 13090 13091 /** 13092 * lpfc_cq_create - Create a Completion Queue on the HBA 13093 * @phba: HBA structure that indicates port to create a queue on. 13094 * @cq: The queue structure to use to create the completion queue. 13095 * @eq: The event queue to bind this completion queue to. 13096 * 13097 * This function creates a completion queue, as detailed in @wq, on a port, 13098 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13099 * 13100 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13101 * is used to get the entry count and entry size that are necessary to 13102 * determine the number of pages to allocate and use for this queue. The @eq 13103 * is used to indicate which event queue to bind this completion queue to. This 13104 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13105 * completion queue. This function is asynchronous and will wait for the mailbox 13106 * command to finish before continuing. 13107 * 13108 * On success this function will return a zero. If unable to allocate enough 13109 * memory this function will return -ENOMEM. If the queue create mailbox command 13110 * fails this function will return -ENXIO. 13111 **/ 13112 int 13113 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13114 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13115 { 13116 struct lpfc_mbx_cq_create *cq_create; 13117 struct lpfc_dmabuf *dmabuf; 13118 LPFC_MBOXQ_t *mbox; 13119 int rc, length, status = 0; 13120 uint32_t shdr_status, shdr_add_status; 13121 union lpfc_sli4_cfg_shdr *shdr; 13122 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13123 13124 /* sanity check on queue memory */ 13125 if (!cq || !eq) 13126 return -ENODEV; 13127 if (!phba->sli4_hba.pc_sli4_params.supported) 13128 hw_page_size = SLI4_PAGE_SIZE; 13129 13130 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13131 if (!mbox) 13132 return -ENOMEM; 13133 length = (sizeof(struct lpfc_mbx_cq_create) - 13134 sizeof(struct lpfc_sli4_cfg_mhdr)); 13135 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13136 LPFC_MBOX_OPCODE_CQ_CREATE, 13137 length, LPFC_SLI4_MBX_EMBED); 13138 cq_create = &mbox->u.mqe.un.cq_create; 13139 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13140 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13141 cq->page_count); 13142 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13143 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13144 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13145 phba->sli4_hba.pc_sli4_params.cqv); 13146 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13147 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13148 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13149 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13150 eq->queue_id); 13151 } else { 13152 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13153 eq->queue_id); 13154 } 13155 switch (cq->entry_count) { 13156 default: 13157 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13158 "0361 Unsupported CQ count. (%d)\n", 13159 cq->entry_count); 13160 if (cq->entry_count < 256) { 13161 status = -EINVAL; 13162 goto out; 13163 } 13164 /* otherwise default to smallest count (drop through) */ 13165 case 256: 13166 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13167 LPFC_CQ_CNT_256); 13168 break; 13169 case 512: 13170 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13171 LPFC_CQ_CNT_512); 13172 break; 13173 case 1024: 13174 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13175 LPFC_CQ_CNT_1024); 13176 break; 13177 } 13178 list_for_each_entry(dmabuf, &cq->page_list, list) { 13179 memset(dmabuf->virt, 0, hw_page_size); 13180 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13181 putPaddrLow(dmabuf->phys); 13182 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13183 putPaddrHigh(dmabuf->phys); 13184 } 13185 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13186 13187 /* The IOCTL status is embedded in the mailbox subheader. */ 13188 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13189 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13190 if (shdr_status || shdr_add_status || rc) { 13191 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13192 "2501 CQ_CREATE mailbox failed with " 13193 "status x%x add_status x%x, mbx status x%x\n", 13194 shdr_status, shdr_add_status, rc); 13195 status = -ENXIO; 13196 goto out; 13197 } 13198 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13199 if (cq->queue_id == 0xFFFF) { 13200 status = -ENXIO; 13201 goto out; 13202 } 13203 /* link the cq onto the parent eq child list */ 13204 list_add_tail(&cq->list, &eq->child_list); 13205 /* Set up completion queue's type and subtype */ 13206 cq->type = type; 13207 cq->subtype = subtype; 13208 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13209 cq->assoc_qid = eq->queue_id; 13210 cq->host_index = 0; 13211 cq->hba_index = 0; 13212 13213 out: 13214 mempool_free(mbox, phba->mbox_mem_pool); 13215 return status; 13216 } 13217 13218 /** 13219 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13220 * @phba: HBA structure that indicates port to create a queue on. 13221 * @mq: The queue structure to use to create the mailbox queue. 13222 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13223 * @cq: The completion queue to associate with this cq. 13224 * 13225 * This function provides failback (fb) functionality when the 13226 * mq_create_ext fails on older FW generations. It's purpose is identical 13227 * to mq_create_ext otherwise. 13228 * 13229 * This routine cannot fail as all attributes were previously accessed and 13230 * initialized in mq_create_ext. 13231 **/ 13232 static void 13233 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13234 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13235 { 13236 struct lpfc_mbx_mq_create *mq_create; 13237 struct lpfc_dmabuf *dmabuf; 13238 int length; 13239 13240 length = (sizeof(struct lpfc_mbx_mq_create) - 13241 sizeof(struct lpfc_sli4_cfg_mhdr)); 13242 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13243 LPFC_MBOX_OPCODE_MQ_CREATE, 13244 length, LPFC_SLI4_MBX_EMBED); 13245 mq_create = &mbox->u.mqe.un.mq_create; 13246 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13247 mq->page_count); 13248 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13249 cq->queue_id); 13250 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13251 switch (mq->entry_count) { 13252 case 16: 13253 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13254 LPFC_MQ_RING_SIZE_16); 13255 break; 13256 case 32: 13257 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13258 LPFC_MQ_RING_SIZE_32); 13259 break; 13260 case 64: 13261 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13262 LPFC_MQ_RING_SIZE_64); 13263 break; 13264 case 128: 13265 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13266 LPFC_MQ_RING_SIZE_128); 13267 break; 13268 } 13269 list_for_each_entry(dmabuf, &mq->page_list, list) { 13270 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13271 putPaddrLow(dmabuf->phys); 13272 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13273 putPaddrHigh(dmabuf->phys); 13274 } 13275 } 13276 13277 /** 13278 * lpfc_mq_create - Create a mailbox Queue on the HBA 13279 * @phba: HBA structure that indicates port to create a queue on. 13280 * @mq: The queue structure to use to create the mailbox queue. 13281 * @cq: The completion queue to associate with this cq. 13282 * @subtype: The queue's subtype. 13283 * 13284 * This function creates a mailbox queue, as detailed in @mq, on a port, 13285 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13286 * 13287 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13288 * is used to get the entry count and entry size that are necessary to 13289 * determine the number of pages to allocate and use for this queue. This 13290 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13291 * mailbox queue. This function is asynchronous and will wait for the mailbox 13292 * command to finish before continuing. 13293 * 13294 * On success this function will return a zero. If unable to allocate enough 13295 * memory this function will return -ENOMEM. If the queue create mailbox command 13296 * fails this function will return -ENXIO. 13297 **/ 13298 int32_t 13299 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13300 struct lpfc_queue *cq, uint32_t subtype) 13301 { 13302 struct lpfc_mbx_mq_create *mq_create; 13303 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13304 struct lpfc_dmabuf *dmabuf; 13305 LPFC_MBOXQ_t *mbox; 13306 int rc, length, status = 0; 13307 uint32_t shdr_status, shdr_add_status; 13308 union lpfc_sli4_cfg_shdr *shdr; 13309 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13310 13311 /* sanity check on queue memory */ 13312 if (!mq || !cq) 13313 return -ENODEV; 13314 if (!phba->sli4_hba.pc_sli4_params.supported) 13315 hw_page_size = SLI4_PAGE_SIZE; 13316 13317 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13318 if (!mbox) 13319 return -ENOMEM; 13320 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13321 sizeof(struct lpfc_sli4_cfg_mhdr)); 13322 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13323 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13324 length, LPFC_SLI4_MBX_EMBED); 13325 13326 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13327 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13328 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13329 &mq_create_ext->u.request, mq->page_count); 13330 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13331 &mq_create_ext->u.request, 1); 13332 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13333 &mq_create_ext->u.request, 1); 13334 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13335 &mq_create_ext->u.request, 1); 13336 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13337 &mq_create_ext->u.request, 1); 13338 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13339 &mq_create_ext->u.request, 1); 13340 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13341 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13342 phba->sli4_hba.pc_sli4_params.mqv); 13343 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13344 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13345 cq->queue_id); 13346 else 13347 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13348 cq->queue_id); 13349 switch (mq->entry_count) { 13350 default: 13351 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13352 "0362 Unsupported MQ count. (%d)\n", 13353 mq->entry_count); 13354 if (mq->entry_count < 16) { 13355 status = -EINVAL; 13356 goto out; 13357 } 13358 /* otherwise default to smallest count (drop through) */ 13359 case 16: 13360 bf_set(lpfc_mq_context_ring_size, 13361 &mq_create_ext->u.request.context, 13362 LPFC_MQ_RING_SIZE_16); 13363 break; 13364 case 32: 13365 bf_set(lpfc_mq_context_ring_size, 13366 &mq_create_ext->u.request.context, 13367 LPFC_MQ_RING_SIZE_32); 13368 break; 13369 case 64: 13370 bf_set(lpfc_mq_context_ring_size, 13371 &mq_create_ext->u.request.context, 13372 LPFC_MQ_RING_SIZE_64); 13373 break; 13374 case 128: 13375 bf_set(lpfc_mq_context_ring_size, 13376 &mq_create_ext->u.request.context, 13377 LPFC_MQ_RING_SIZE_128); 13378 break; 13379 } 13380 list_for_each_entry(dmabuf, &mq->page_list, list) { 13381 memset(dmabuf->virt, 0, hw_page_size); 13382 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13383 putPaddrLow(dmabuf->phys); 13384 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13385 putPaddrHigh(dmabuf->phys); 13386 } 13387 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13388 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13389 &mq_create_ext->u.response); 13390 if (rc != MBX_SUCCESS) { 13391 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13392 "2795 MQ_CREATE_EXT failed with " 13393 "status x%x. Failback to MQ_CREATE.\n", 13394 rc); 13395 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13396 mq_create = &mbox->u.mqe.un.mq_create; 13397 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13398 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13399 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13400 &mq_create->u.response); 13401 } 13402 13403 /* The IOCTL status is embedded in the mailbox subheader. */ 13404 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13405 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13406 if (shdr_status || shdr_add_status || rc) { 13407 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13408 "2502 MQ_CREATE mailbox failed with " 13409 "status x%x add_status x%x, mbx status x%x\n", 13410 shdr_status, shdr_add_status, rc); 13411 status = -ENXIO; 13412 goto out; 13413 } 13414 if (mq->queue_id == 0xFFFF) { 13415 status = -ENXIO; 13416 goto out; 13417 } 13418 mq->type = LPFC_MQ; 13419 mq->assoc_qid = cq->queue_id; 13420 mq->subtype = subtype; 13421 mq->host_index = 0; 13422 mq->hba_index = 0; 13423 13424 /* link the mq onto the parent cq child list */ 13425 list_add_tail(&mq->list, &cq->child_list); 13426 out: 13427 mempool_free(mbox, phba->mbox_mem_pool); 13428 return status; 13429 } 13430 13431 /** 13432 * lpfc_wq_create - Create a Work Queue on the HBA 13433 * @phba: HBA structure that indicates port to create a queue on. 13434 * @wq: The queue structure to use to create the work queue. 13435 * @cq: The completion queue to bind this work queue to. 13436 * @subtype: The subtype of the work queue indicating its functionality. 13437 * 13438 * This function creates a work queue, as detailed in @wq, on a port, described 13439 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13440 * 13441 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13442 * is used to get the entry count and entry size that are necessary to 13443 * determine the number of pages to allocate and use for this queue. The @cq 13444 * is used to indicate which completion queue to bind this work queue to. This 13445 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13446 * work queue. This function is asynchronous and will wait for the mailbox 13447 * command to finish before continuing. 13448 * 13449 * On success this function will return a zero. If unable to allocate enough 13450 * memory this function will return -ENOMEM. If the queue create mailbox command 13451 * fails this function will return -ENXIO. 13452 **/ 13453 int 13454 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13455 struct lpfc_queue *cq, uint32_t subtype) 13456 { 13457 struct lpfc_mbx_wq_create *wq_create; 13458 struct lpfc_dmabuf *dmabuf; 13459 LPFC_MBOXQ_t *mbox; 13460 int rc, length, status = 0; 13461 uint32_t shdr_status, shdr_add_status; 13462 union lpfc_sli4_cfg_shdr *shdr; 13463 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13464 struct dma_address *page; 13465 void __iomem *bar_memmap_p; 13466 uint32_t db_offset; 13467 uint16_t pci_barset; 13468 13469 /* sanity check on queue memory */ 13470 if (!wq || !cq) 13471 return -ENODEV; 13472 if (!phba->sli4_hba.pc_sli4_params.supported) 13473 hw_page_size = SLI4_PAGE_SIZE; 13474 13475 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13476 if (!mbox) 13477 return -ENOMEM; 13478 length = (sizeof(struct lpfc_mbx_wq_create) - 13479 sizeof(struct lpfc_sli4_cfg_mhdr)); 13480 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13481 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13482 length, LPFC_SLI4_MBX_EMBED); 13483 wq_create = &mbox->u.mqe.un.wq_create; 13484 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13485 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13486 wq->page_count); 13487 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13488 cq->queue_id); 13489 13490 /* wqv is the earliest version supported, NOT the latest */ 13491 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13492 phba->sli4_hba.pc_sli4_params.wqv); 13493 13494 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13495 case LPFC_Q_CREATE_VERSION_0: 13496 switch (wq->entry_size) { 13497 default: 13498 case 64: 13499 /* Nothing to do, version 0 ONLY supports 64 byte */ 13500 page = wq_create->u.request.page; 13501 break; 13502 case 128: 13503 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13504 LPFC_WQ_SZ128_SUPPORT)) { 13505 status = -ERANGE; 13506 goto out; 13507 } 13508 /* If we get here the HBA MUST also support V1 and 13509 * we MUST use it 13510 */ 13511 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13512 LPFC_Q_CREATE_VERSION_1); 13513 13514 bf_set(lpfc_mbx_wq_create_wqe_count, 13515 &wq_create->u.request_1, wq->entry_count); 13516 bf_set(lpfc_mbx_wq_create_wqe_size, 13517 &wq_create->u.request_1, 13518 LPFC_WQ_WQE_SIZE_128); 13519 bf_set(lpfc_mbx_wq_create_page_size, 13520 &wq_create->u.request_1, 13521 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13522 page = wq_create->u.request_1.page; 13523 break; 13524 } 13525 break; 13526 case LPFC_Q_CREATE_VERSION_1: 13527 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13528 wq->entry_count); 13529 switch (wq->entry_size) { 13530 default: 13531 case 64: 13532 bf_set(lpfc_mbx_wq_create_wqe_size, 13533 &wq_create->u.request_1, 13534 LPFC_WQ_WQE_SIZE_64); 13535 break; 13536 case 128: 13537 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13538 LPFC_WQ_SZ128_SUPPORT)) { 13539 status = -ERANGE; 13540 goto out; 13541 } 13542 bf_set(lpfc_mbx_wq_create_wqe_size, 13543 &wq_create->u.request_1, 13544 LPFC_WQ_WQE_SIZE_128); 13545 break; 13546 } 13547 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13548 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13549 page = wq_create->u.request_1.page; 13550 break; 13551 default: 13552 status = -ERANGE; 13553 goto out; 13554 } 13555 13556 list_for_each_entry(dmabuf, &wq->page_list, list) { 13557 memset(dmabuf->virt, 0, hw_page_size); 13558 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13559 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13560 } 13561 13562 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13563 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13564 13565 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13566 /* The IOCTL status is embedded in the mailbox subheader. */ 13567 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13568 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13569 if (shdr_status || shdr_add_status || rc) { 13570 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13571 "2503 WQ_CREATE mailbox failed with " 13572 "status x%x add_status x%x, mbx status x%x\n", 13573 shdr_status, shdr_add_status, rc); 13574 status = -ENXIO; 13575 goto out; 13576 } 13577 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13578 if (wq->queue_id == 0xFFFF) { 13579 status = -ENXIO; 13580 goto out; 13581 } 13582 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13583 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13584 &wq_create->u.response); 13585 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13586 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13587 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13588 "3265 WQ[%d] doorbell format not " 13589 "supported: x%x\n", wq->queue_id, 13590 wq->db_format); 13591 status = -EINVAL; 13592 goto out; 13593 } 13594 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13595 &wq_create->u.response); 13596 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13597 if (!bar_memmap_p) { 13598 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13599 "3263 WQ[%d] failed to memmap pci " 13600 "barset:x%x\n", wq->queue_id, 13601 pci_barset); 13602 status = -ENOMEM; 13603 goto out; 13604 } 13605 db_offset = wq_create->u.response.doorbell_offset; 13606 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13607 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13608 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13609 "3252 WQ[%d] doorbell offset not " 13610 "supported: x%x\n", wq->queue_id, 13611 db_offset); 13612 status = -EINVAL; 13613 goto out; 13614 } 13615 wq->db_regaddr = bar_memmap_p + db_offset; 13616 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13617 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13618 "format:x%x\n", wq->queue_id, pci_barset, 13619 db_offset, wq->db_format); 13620 } else { 13621 wq->db_format = LPFC_DB_LIST_FORMAT; 13622 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13623 } 13624 wq->type = LPFC_WQ; 13625 wq->assoc_qid = cq->queue_id; 13626 wq->subtype = subtype; 13627 wq->host_index = 0; 13628 wq->hba_index = 0; 13629 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13630 13631 /* link the wq onto the parent cq child list */ 13632 list_add_tail(&wq->list, &cq->child_list); 13633 out: 13634 mempool_free(mbox, phba->mbox_mem_pool); 13635 return status; 13636 } 13637 13638 /** 13639 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13640 * @phba: HBA structure that indicates port to create a queue on. 13641 * @rq: The queue structure to use for the receive queue. 13642 * @qno: The associated HBQ number 13643 * 13644 * 13645 * For SLI4 we need to adjust the RQ repost value based on 13646 * the number of buffers that are initially posted to the RQ. 13647 */ 13648 void 13649 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13650 { 13651 uint32_t cnt; 13652 13653 /* sanity check on queue memory */ 13654 if (!rq) 13655 return; 13656 cnt = lpfc_hbq_defs[qno]->entry_count; 13657 13658 /* Recalc repost for RQs based on buffers initially posted */ 13659 cnt = (cnt >> 3); 13660 if (cnt < LPFC_QUEUE_MIN_REPOST) 13661 cnt = LPFC_QUEUE_MIN_REPOST; 13662 13663 rq->entry_repost = cnt; 13664 } 13665 13666 /** 13667 * lpfc_rq_create - Create a Receive Queue on the HBA 13668 * @phba: HBA structure that indicates port to create a queue on. 13669 * @hrq: The queue structure to use to create the header receive queue. 13670 * @drq: The queue structure to use to create the data receive queue. 13671 * @cq: The completion queue to bind this work queue to. 13672 * 13673 * This function creates a receive buffer queue pair , as detailed in @hrq and 13674 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13675 * to the HBA. 13676 * 13677 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13678 * struct is used to get the entry count that is necessary to determine the 13679 * number of pages to use for this queue. The @cq is used to indicate which 13680 * completion queue to bind received buffers that are posted to these queues to. 13681 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13682 * receive queue pair. This function is asynchronous and will wait for the 13683 * mailbox command to finish before continuing. 13684 * 13685 * On success this function will return a zero. If unable to allocate enough 13686 * memory this function will return -ENOMEM. If the queue create mailbox command 13687 * fails this function will return -ENXIO. 13688 **/ 13689 int 13690 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13691 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13692 { 13693 struct lpfc_mbx_rq_create *rq_create; 13694 struct lpfc_dmabuf *dmabuf; 13695 LPFC_MBOXQ_t *mbox; 13696 int rc, length, status = 0; 13697 uint32_t shdr_status, shdr_add_status; 13698 union lpfc_sli4_cfg_shdr *shdr; 13699 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13700 void __iomem *bar_memmap_p; 13701 uint32_t db_offset; 13702 uint16_t pci_barset; 13703 13704 /* sanity check on queue memory */ 13705 if (!hrq || !drq || !cq) 13706 return -ENODEV; 13707 if (!phba->sli4_hba.pc_sli4_params.supported) 13708 hw_page_size = SLI4_PAGE_SIZE; 13709 13710 if (hrq->entry_count != drq->entry_count) 13711 return -EINVAL; 13712 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13713 if (!mbox) 13714 return -ENOMEM; 13715 length = (sizeof(struct lpfc_mbx_rq_create) - 13716 sizeof(struct lpfc_sli4_cfg_mhdr)); 13717 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13718 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13719 length, LPFC_SLI4_MBX_EMBED); 13720 rq_create = &mbox->u.mqe.un.rq_create; 13721 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13722 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13723 phba->sli4_hba.pc_sli4_params.rqv); 13724 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13725 bf_set(lpfc_rq_context_rqe_count_1, 13726 &rq_create->u.request.context, 13727 hrq->entry_count); 13728 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13729 bf_set(lpfc_rq_context_rqe_size, 13730 &rq_create->u.request.context, 13731 LPFC_RQE_SIZE_8); 13732 bf_set(lpfc_rq_context_page_size, 13733 &rq_create->u.request.context, 13734 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13735 } else { 13736 switch (hrq->entry_count) { 13737 default: 13738 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13739 "2535 Unsupported RQ count. (%d)\n", 13740 hrq->entry_count); 13741 if (hrq->entry_count < 512) { 13742 status = -EINVAL; 13743 goto out; 13744 } 13745 /* otherwise default to smallest count (drop through) */ 13746 case 512: 13747 bf_set(lpfc_rq_context_rqe_count, 13748 &rq_create->u.request.context, 13749 LPFC_RQ_RING_SIZE_512); 13750 break; 13751 case 1024: 13752 bf_set(lpfc_rq_context_rqe_count, 13753 &rq_create->u.request.context, 13754 LPFC_RQ_RING_SIZE_1024); 13755 break; 13756 case 2048: 13757 bf_set(lpfc_rq_context_rqe_count, 13758 &rq_create->u.request.context, 13759 LPFC_RQ_RING_SIZE_2048); 13760 break; 13761 case 4096: 13762 bf_set(lpfc_rq_context_rqe_count, 13763 &rq_create->u.request.context, 13764 LPFC_RQ_RING_SIZE_4096); 13765 break; 13766 } 13767 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13768 LPFC_HDR_BUF_SIZE); 13769 } 13770 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13771 cq->queue_id); 13772 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13773 hrq->page_count); 13774 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13775 memset(dmabuf->virt, 0, hw_page_size); 13776 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13777 putPaddrLow(dmabuf->phys); 13778 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13779 putPaddrHigh(dmabuf->phys); 13780 } 13781 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13782 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13783 13784 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13785 /* The IOCTL status is embedded in the mailbox subheader. */ 13786 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13787 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13788 if (shdr_status || shdr_add_status || rc) { 13789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13790 "2504 RQ_CREATE mailbox failed with " 13791 "status x%x add_status x%x, mbx status x%x\n", 13792 shdr_status, shdr_add_status, rc); 13793 status = -ENXIO; 13794 goto out; 13795 } 13796 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13797 if (hrq->queue_id == 0xFFFF) { 13798 status = -ENXIO; 13799 goto out; 13800 } 13801 13802 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13803 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 13804 &rq_create->u.response); 13805 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 13806 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 13807 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13808 "3262 RQ [%d] doorbell format not " 13809 "supported: x%x\n", hrq->queue_id, 13810 hrq->db_format); 13811 status = -EINVAL; 13812 goto out; 13813 } 13814 13815 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 13816 &rq_create->u.response); 13817 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13818 if (!bar_memmap_p) { 13819 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13820 "3269 RQ[%d] failed to memmap pci " 13821 "barset:x%x\n", hrq->queue_id, 13822 pci_barset); 13823 status = -ENOMEM; 13824 goto out; 13825 } 13826 13827 db_offset = rq_create->u.response.doorbell_offset; 13828 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 13829 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 13830 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13831 "3270 RQ[%d] doorbell offset not " 13832 "supported: x%x\n", hrq->queue_id, 13833 db_offset); 13834 status = -EINVAL; 13835 goto out; 13836 } 13837 hrq->db_regaddr = bar_memmap_p + db_offset; 13838 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13839 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 13840 "format:x%x\n", hrq->queue_id, pci_barset, 13841 db_offset, hrq->db_format); 13842 } else { 13843 hrq->db_format = LPFC_DB_RING_FORMAT; 13844 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 13845 } 13846 hrq->type = LPFC_HRQ; 13847 hrq->assoc_qid = cq->queue_id; 13848 hrq->subtype = subtype; 13849 hrq->host_index = 0; 13850 hrq->hba_index = 0; 13851 13852 /* now create the data queue */ 13853 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13854 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13855 length, LPFC_SLI4_MBX_EMBED); 13856 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13857 phba->sli4_hba.pc_sli4_params.rqv); 13858 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13859 bf_set(lpfc_rq_context_rqe_count_1, 13860 &rq_create->u.request.context, hrq->entry_count); 13861 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 13862 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 13863 LPFC_RQE_SIZE_8); 13864 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 13865 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13866 } else { 13867 switch (drq->entry_count) { 13868 default: 13869 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13870 "2536 Unsupported RQ count. (%d)\n", 13871 drq->entry_count); 13872 if (drq->entry_count < 512) { 13873 status = -EINVAL; 13874 goto out; 13875 } 13876 /* otherwise default to smallest count (drop through) */ 13877 case 512: 13878 bf_set(lpfc_rq_context_rqe_count, 13879 &rq_create->u.request.context, 13880 LPFC_RQ_RING_SIZE_512); 13881 break; 13882 case 1024: 13883 bf_set(lpfc_rq_context_rqe_count, 13884 &rq_create->u.request.context, 13885 LPFC_RQ_RING_SIZE_1024); 13886 break; 13887 case 2048: 13888 bf_set(lpfc_rq_context_rqe_count, 13889 &rq_create->u.request.context, 13890 LPFC_RQ_RING_SIZE_2048); 13891 break; 13892 case 4096: 13893 bf_set(lpfc_rq_context_rqe_count, 13894 &rq_create->u.request.context, 13895 LPFC_RQ_RING_SIZE_4096); 13896 break; 13897 } 13898 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13899 LPFC_DATA_BUF_SIZE); 13900 } 13901 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13902 cq->queue_id); 13903 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13904 drq->page_count); 13905 list_for_each_entry(dmabuf, &drq->page_list, list) { 13906 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13907 putPaddrLow(dmabuf->phys); 13908 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13909 putPaddrHigh(dmabuf->phys); 13910 } 13911 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13912 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13913 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13914 /* The IOCTL status is embedded in the mailbox subheader. */ 13915 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13916 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13917 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13918 if (shdr_status || shdr_add_status || rc) { 13919 status = -ENXIO; 13920 goto out; 13921 } 13922 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13923 if (drq->queue_id == 0xFFFF) { 13924 status = -ENXIO; 13925 goto out; 13926 } 13927 drq->type = LPFC_DRQ; 13928 drq->assoc_qid = cq->queue_id; 13929 drq->subtype = subtype; 13930 drq->host_index = 0; 13931 drq->hba_index = 0; 13932 13933 /* link the header and data RQs onto the parent cq child list */ 13934 list_add_tail(&hrq->list, &cq->child_list); 13935 list_add_tail(&drq->list, &cq->child_list); 13936 13937 out: 13938 mempool_free(mbox, phba->mbox_mem_pool); 13939 return status; 13940 } 13941 13942 /** 13943 * lpfc_eq_destroy - Destroy an event Queue on the HBA 13944 * @eq: The queue structure associated with the queue to destroy. 13945 * 13946 * This function destroys a queue, as detailed in @eq by sending an mailbox 13947 * command, specific to the type of queue, to the HBA. 13948 * 13949 * The @eq struct is used to get the queue ID of the queue to destroy. 13950 * 13951 * On success this function will return a zero. If the queue destroy mailbox 13952 * command fails this function will return -ENXIO. 13953 **/ 13954 int 13955 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 13956 { 13957 LPFC_MBOXQ_t *mbox; 13958 int rc, length, status = 0; 13959 uint32_t shdr_status, shdr_add_status; 13960 union lpfc_sli4_cfg_shdr *shdr; 13961 13962 /* sanity check on queue memory */ 13963 if (!eq) 13964 return -ENODEV; 13965 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 13966 if (!mbox) 13967 return -ENOMEM; 13968 length = (sizeof(struct lpfc_mbx_eq_destroy) - 13969 sizeof(struct lpfc_sli4_cfg_mhdr)); 13970 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13971 LPFC_MBOX_OPCODE_EQ_DESTROY, 13972 length, LPFC_SLI4_MBX_EMBED); 13973 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 13974 eq->queue_id); 13975 mbox->vport = eq->phba->pport; 13976 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13977 13978 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 13979 /* The IOCTL status is embedded in the mailbox subheader. */ 13980 shdr = (union lpfc_sli4_cfg_shdr *) 13981 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 13982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13984 if (shdr_status || shdr_add_status || rc) { 13985 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13986 "2505 EQ_DESTROY mailbox failed with " 13987 "status x%x add_status x%x, mbx status x%x\n", 13988 shdr_status, shdr_add_status, rc); 13989 status = -ENXIO; 13990 } 13991 13992 /* Remove eq from any list */ 13993 list_del_init(&eq->list); 13994 mempool_free(mbox, eq->phba->mbox_mem_pool); 13995 return status; 13996 } 13997 13998 /** 13999 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 14000 * @cq: The queue structure associated with the queue to destroy. 14001 * 14002 * This function destroys a queue, as detailed in @cq by sending an mailbox 14003 * command, specific to the type of queue, to the HBA. 14004 * 14005 * The @cq struct is used to get the queue ID of the queue to destroy. 14006 * 14007 * On success this function will return a zero. If the queue destroy mailbox 14008 * command fails this function will return -ENXIO. 14009 **/ 14010 int 14011 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 14012 { 14013 LPFC_MBOXQ_t *mbox; 14014 int rc, length, status = 0; 14015 uint32_t shdr_status, shdr_add_status; 14016 union lpfc_sli4_cfg_shdr *shdr; 14017 14018 /* sanity check on queue memory */ 14019 if (!cq) 14020 return -ENODEV; 14021 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 14022 if (!mbox) 14023 return -ENOMEM; 14024 length = (sizeof(struct lpfc_mbx_cq_destroy) - 14025 sizeof(struct lpfc_sli4_cfg_mhdr)); 14026 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14027 LPFC_MBOX_OPCODE_CQ_DESTROY, 14028 length, LPFC_SLI4_MBX_EMBED); 14029 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 14030 cq->queue_id); 14031 mbox->vport = cq->phba->pport; 14032 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14033 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 14034 /* The IOCTL status is embedded in the mailbox subheader. */ 14035 shdr = (union lpfc_sli4_cfg_shdr *) 14036 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 14037 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14038 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14039 if (shdr_status || shdr_add_status || rc) { 14040 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14041 "2506 CQ_DESTROY mailbox failed with " 14042 "status x%x add_status x%x, mbx status x%x\n", 14043 shdr_status, shdr_add_status, rc); 14044 status = -ENXIO; 14045 } 14046 /* Remove cq from any list */ 14047 list_del_init(&cq->list); 14048 mempool_free(mbox, cq->phba->mbox_mem_pool); 14049 return status; 14050 } 14051 14052 /** 14053 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 14054 * @qm: The queue structure associated with the queue to destroy. 14055 * 14056 * This function destroys a queue, as detailed in @mq by sending an mailbox 14057 * command, specific to the type of queue, to the HBA. 14058 * 14059 * The @mq struct is used to get the queue ID of the queue to destroy. 14060 * 14061 * On success this function will return a zero. If the queue destroy mailbox 14062 * command fails this function will return -ENXIO. 14063 **/ 14064 int 14065 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14066 { 14067 LPFC_MBOXQ_t *mbox; 14068 int rc, length, status = 0; 14069 uint32_t shdr_status, shdr_add_status; 14070 union lpfc_sli4_cfg_shdr *shdr; 14071 14072 /* sanity check on queue memory */ 14073 if (!mq) 14074 return -ENODEV; 14075 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14076 if (!mbox) 14077 return -ENOMEM; 14078 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14079 sizeof(struct lpfc_sli4_cfg_mhdr)); 14080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14081 LPFC_MBOX_OPCODE_MQ_DESTROY, 14082 length, LPFC_SLI4_MBX_EMBED); 14083 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14084 mq->queue_id); 14085 mbox->vport = mq->phba->pport; 14086 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14087 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14088 /* The IOCTL status is embedded in the mailbox subheader. */ 14089 shdr = (union lpfc_sli4_cfg_shdr *) 14090 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14091 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14092 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14093 if (shdr_status || shdr_add_status || rc) { 14094 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14095 "2507 MQ_DESTROY mailbox failed with " 14096 "status x%x add_status x%x, mbx status x%x\n", 14097 shdr_status, shdr_add_status, rc); 14098 status = -ENXIO; 14099 } 14100 /* Remove mq from any list */ 14101 list_del_init(&mq->list); 14102 mempool_free(mbox, mq->phba->mbox_mem_pool); 14103 return status; 14104 } 14105 14106 /** 14107 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14108 * @wq: The queue structure associated with the queue to destroy. 14109 * 14110 * This function destroys a queue, as detailed in @wq by sending an mailbox 14111 * command, specific to the type of queue, to the HBA. 14112 * 14113 * The @wq struct is used to get the queue ID of the queue to destroy. 14114 * 14115 * On success this function will return a zero. If the queue destroy mailbox 14116 * command fails this function will return -ENXIO. 14117 **/ 14118 int 14119 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14120 { 14121 LPFC_MBOXQ_t *mbox; 14122 int rc, length, status = 0; 14123 uint32_t shdr_status, shdr_add_status; 14124 union lpfc_sli4_cfg_shdr *shdr; 14125 14126 /* sanity check on queue memory */ 14127 if (!wq) 14128 return -ENODEV; 14129 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14130 if (!mbox) 14131 return -ENOMEM; 14132 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14133 sizeof(struct lpfc_sli4_cfg_mhdr)); 14134 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14135 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14136 length, LPFC_SLI4_MBX_EMBED); 14137 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14138 wq->queue_id); 14139 mbox->vport = wq->phba->pport; 14140 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14141 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14142 shdr = (union lpfc_sli4_cfg_shdr *) 14143 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14144 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14145 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14146 if (shdr_status || shdr_add_status || rc) { 14147 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14148 "2508 WQ_DESTROY mailbox failed with " 14149 "status x%x add_status x%x, mbx status x%x\n", 14150 shdr_status, shdr_add_status, rc); 14151 status = -ENXIO; 14152 } 14153 /* Remove wq from any list */ 14154 list_del_init(&wq->list); 14155 mempool_free(mbox, wq->phba->mbox_mem_pool); 14156 return status; 14157 } 14158 14159 /** 14160 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14161 * @rq: The queue structure associated with the queue to destroy. 14162 * 14163 * This function destroys a queue, as detailed in @rq by sending an mailbox 14164 * command, specific to the type of queue, to the HBA. 14165 * 14166 * The @rq struct is used to get the queue ID of the queue to destroy. 14167 * 14168 * On success this function will return a zero. If the queue destroy mailbox 14169 * command fails this function will return -ENXIO. 14170 **/ 14171 int 14172 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14173 struct lpfc_queue *drq) 14174 { 14175 LPFC_MBOXQ_t *mbox; 14176 int rc, length, status = 0; 14177 uint32_t shdr_status, shdr_add_status; 14178 union lpfc_sli4_cfg_shdr *shdr; 14179 14180 /* sanity check on queue memory */ 14181 if (!hrq || !drq) 14182 return -ENODEV; 14183 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14184 if (!mbox) 14185 return -ENOMEM; 14186 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14187 sizeof(struct lpfc_sli4_cfg_mhdr)); 14188 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14189 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14190 length, LPFC_SLI4_MBX_EMBED); 14191 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14192 hrq->queue_id); 14193 mbox->vport = hrq->phba->pport; 14194 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14195 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14196 /* The IOCTL status is embedded in the mailbox subheader. */ 14197 shdr = (union lpfc_sli4_cfg_shdr *) 14198 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14199 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14200 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14201 if (shdr_status || shdr_add_status || rc) { 14202 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14203 "2509 RQ_DESTROY mailbox failed with " 14204 "status x%x add_status x%x, mbx status x%x\n", 14205 shdr_status, shdr_add_status, rc); 14206 if (rc != MBX_TIMEOUT) 14207 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14208 return -ENXIO; 14209 } 14210 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14211 drq->queue_id); 14212 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14213 shdr = (union lpfc_sli4_cfg_shdr *) 14214 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14215 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14216 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14217 if (shdr_status || shdr_add_status || rc) { 14218 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14219 "2510 RQ_DESTROY mailbox failed with " 14220 "status x%x add_status x%x, mbx status x%x\n", 14221 shdr_status, shdr_add_status, rc); 14222 status = -ENXIO; 14223 } 14224 list_del_init(&hrq->list); 14225 list_del_init(&drq->list); 14226 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14227 return status; 14228 } 14229 14230 /** 14231 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14232 * @phba: The virtual port for which this call being executed. 14233 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14234 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14235 * @xritag: the xritag that ties this io to the SGL pages. 14236 * 14237 * This routine will post the sgl pages for the IO that has the xritag 14238 * that is in the iocbq structure. The xritag is assigned during iocbq 14239 * creation and persists for as long as the driver is loaded. 14240 * if the caller has fewer than 256 scatter gather segments to map then 14241 * pdma_phys_addr1 should be 0. 14242 * If the caller needs to map more than 256 scatter gather segment then 14243 * pdma_phys_addr1 should be a valid physical address. 14244 * physical address for SGLs must be 64 byte aligned. 14245 * If you are going to map 2 SGL's then the first one must have 256 entries 14246 * the second sgl can have between 1 and 256 entries. 14247 * 14248 * Return codes: 14249 * 0 - Success 14250 * -ENXIO, -ENOMEM - Failure 14251 **/ 14252 int 14253 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14254 dma_addr_t pdma_phys_addr0, 14255 dma_addr_t pdma_phys_addr1, 14256 uint16_t xritag) 14257 { 14258 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14259 LPFC_MBOXQ_t *mbox; 14260 int rc; 14261 uint32_t shdr_status, shdr_add_status; 14262 uint32_t mbox_tmo; 14263 union lpfc_sli4_cfg_shdr *shdr; 14264 14265 if (xritag == NO_XRI) { 14266 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14267 "0364 Invalid param:\n"); 14268 return -EINVAL; 14269 } 14270 14271 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14272 if (!mbox) 14273 return -ENOMEM; 14274 14275 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14276 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14277 sizeof(struct lpfc_mbx_post_sgl_pages) - 14278 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14279 14280 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14281 &mbox->u.mqe.un.post_sgl_pages; 14282 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14283 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14284 14285 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14286 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14287 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14288 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14289 14290 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14291 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14292 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14293 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14294 if (!phba->sli4_hba.intr_enable) 14295 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14296 else { 14297 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14298 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14299 } 14300 /* The IOCTL status is embedded in the mailbox subheader. */ 14301 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14302 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14303 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14304 if (rc != MBX_TIMEOUT) 14305 mempool_free(mbox, phba->mbox_mem_pool); 14306 if (shdr_status || shdr_add_status || rc) { 14307 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14308 "2511 POST_SGL mailbox failed with " 14309 "status x%x add_status x%x, mbx status x%x\n", 14310 shdr_status, shdr_add_status, rc); 14311 } 14312 return 0; 14313 } 14314 14315 /** 14316 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14317 * @phba: pointer to lpfc hba data structure. 14318 * 14319 * This routine is invoked to post rpi header templates to the 14320 * HBA consistent with the SLI-4 interface spec. This routine 14321 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14322 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14323 * 14324 * Returns 14325 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14326 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14327 **/ 14328 static uint16_t 14329 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14330 { 14331 unsigned long xri; 14332 14333 /* 14334 * Fetch the next logical xri. Because this index is logical, 14335 * the driver starts at 0 each time. 14336 */ 14337 spin_lock_irq(&phba->hbalock); 14338 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14339 phba->sli4_hba.max_cfg_param.max_xri, 0); 14340 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14341 spin_unlock_irq(&phba->hbalock); 14342 return NO_XRI; 14343 } else { 14344 set_bit(xri, phba->sli4_hba.xri_bmask); 14345 phba->sli4_hba.max_cfg_param.xri_used++; 14346 } 14347 spin_unlock_irq(&phba->hbalock); 14348 return xri; 14349 } 14350 14351 /** 14352 * lpfc_sli4_free_xri - Release an xri for reuse. 14353 * @phba: pointer to lpfc hba data structure. 14354 * 14355 * This routine is invoked to release an xri to the pool of 14356 * available rpis maintained by the driver. 14357 **/ 14358 static void 14359 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14360 { 14361 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14362 phba->sli4_hba.max_cfg_param.xri_used--; 14363 } 14364 } 14365 14366 /** 14367 * lpfc_sli4_free_xri - Release an xri for reuse. 14368 * @phba: pointer to lpfc hba data structure. 14369 * 14370 * This routine is invoked to release an xri to the pool of 14371 * available rpis maintained by the driver. 14372 **/ 14373 void 14374 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14375 { 14376 spin_lock_irq(&phba->hbalock); 14377 __lpfc_sli4_free_xri(phba, xri); 14378 spin_unlock_irq(&phba->hbalock); 14379 } 14380 14381 /** 14382 * lpfc_sli4_next_xritag - Get an xritag for the io 14383 * @phba: Pointer to HBA context object. 14384 * 14385 * This function gets an xritag for the iocb. If there is no unused xritag 14386 * it will return 0xffff. 14387 * The function returns the allocated xritag if successful, else returns zero. 14388 * Zero is not a valid xritag. 14389 * The caller is not required to hold any lock. 14390 **/ 14391 uint16_t 14392 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14393 { 14394 uint16_t xri_index; 14395 14396 xri_index = lpfc_sli4_alloc_xri(phba); 14397 if (xri_index == NO_XRI) 14398 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14399 "2004 Failed to allocate XRI.last XRITAG is %d" 14400 " Max XRI is %d, Used XRI is %d\n", 14401 xri_index, 14402 phba->sli4_hba.max_cfg_param.max_xri, 14403 phba->sli4_hba.max_cfg_param.xri_used); 14404 return xri_index; 14405 } 14406 14407 /** 14408 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14409 * @phba: pointer to lpfc hba data structure. 14410 * @post_sgl_list: pointer to els sgl entry list. 14411 * @count: number of els sgl entries on the list. 14412 * 14413 * This routine is invoked to post a block of driver's sgl pages to the 14414 * HBA using non-embedded mailbox command. No Lock is held. This routine 14415 * is only called when the driver is loading and after all IO has been 14416 * stopped. 14417 **/ 14418 static int 14419 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14420 struct list_head *post_sgl_list, 14421 int post_cnt) 14422 { 14423 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14424 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14425 struct sgl_page_pairs *sgl_pg_pairs; 14426 void *viraddr; 14427 LPFC_MBOXQ_t *mbox; 14428 uint32_t reqlen, alloclen, pg_pairs; 14429 uint32_t mbox_tmo; 14430 uint16_t xritag_start = 0; 14431 int rc = 0; 14432 uint32_t shdr_status, shdr_add_status; 14433 union lpfc_sli4_cfg_shdr *shdr; 14434 14435 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14436 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14437 if (reqlen > SLI4_PAGE_SIZE) { 14438 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14439 "2559 Block sgl registration required DMA " 14440 "size (%d) great than a page\n", reqlen); 14441 return -ENOMEM; 14442 } 14443 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14444 if (!mbox) 14445 return -ENOMEM; 14446 14447 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14448 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14449 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14450 LPFC_SLI4_MBX_NEMBED); 14451 14452 if (alloclen < reqlen) { 14453 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14454 "0285 Allocated DMA memory size (%d) is " 14455 "less than the requested DMA memory " 14456 "size (%d)\n", alloclen, reqlen); 14457 lpfc_sli4_mbox_cmd_free(phba, mbox); 14458 return -ENOMEM; 14459 } 14460 /* Set up the SGL pages in the non-embedded DMA pages */ 14461 viraddr = mbox->sge_array->addr[0]; 14462 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14463 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14464 14465 pg_pairs = 0; 14466 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14467 /* Set up the sge entry */ 14468 sgl_pg_pairs->sgl_pg0_addr_lo = 14469 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14470 sgl_pg_pairs->sgl_pg0_addr_hi = 14471 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14472 sgl_pg_pairs->sgl_pg1_addr_lo = 14473 cpu_to_le32(putPaddrLow(0)); 14474 sgl_pg_pairs->sgl_pg1_addr_hi = 14475 cpu_to_le32(putPaddrHigh(0)); 14476 14477 /* Keep the first xritag on the list */ 14478 if (pg_pairs == 0) 14479 xritag_start = sglq_entry->sli4_xritag; 14480 sgl_pg_pairs++; 14481 pg_pairs++; 14482 } 14483 14484 /* Complete initialization and perform endian conversion. */ 14485 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14486 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14487 sgl->word0 = cpu_to_le32(sgl->word0); 14488 if (!phba->sli4_hba.intr_enable) 14489 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14490 else { 14491 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14492 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14493 } 14494 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14495 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14496 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14497 if (rc != MBX_TIMEOUT) 14498 lpfc_sli4_mbox_cmd_free(phba, mbox); 14499 if (shdr_status || shdr_add_status || rc) { 14500 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14501 "2513 POST_SGL_BLOCK mailbox command failed " 14502 "status x%x add_status x%x mbx status x%x\n", 14503 shdr_status, shdr_add_status, rc); 14504 rc = -ENXIO; 14505 } 14506 return rc; 14507 } 14508 14509 /** 14510 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14511 * @phba: pointer to lpfc hba data structure. 14512 * @sblist: pointer to scsi buffer list. 14513 * @count: number of scsi buffers on the list. 14514 * 14515 * This routine is invoked to post a block of @count scsi sgl pages from a 14516 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14517 * No Lock is held. 14518 * 14519 **/ 14520 int 14521 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14522 struct list_head *sblist, 14523 int count) 14524 { 14525 struct lpfc_scsi_buf *psb; 14526 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14527 struct sgl_page_pairs *sgl_pg_pairs; 14528 void *viraddr; 14529 LPFC_MBOXQ_t *mbox; 14530 uint32_t reqlen, alloclen, pg_pairs; 14531 uint32_t mbox_tmo; 14532 uint16_t xritag_start = 0; 14533 int rc = 0; 14534 uint32_t shdr_status, shdr_add_status; 14535 dma_addr_t pdma_phys_bpl1; 14536 union lpfc_sli4_cfg_shdr *shdr; 14537 14538 /* Calculate the requested length of the dma memory */ 14539 reqlen = count * sizeof(struct sgl_page_pairs) + 14540 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14541 if (reqlen > SLI4_PAGE_SIZE) { 14542 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14543 "0217 Block sgl registration required DMA " 14544 "size (%d) great than a page\n", reqlen); 14545 return -ENOMEM; 14546 } 14547 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14548 if (!mbox) { 14549 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14550 "0283 Failed to allocate mbox cmd memory\n"); 14551 return -ENOMEM; 14552 } 14553 14554 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14555 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14556 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14557 LPFC_SLI4_MBX_NEMBED); 14558 14559 if (alloclen < reqlen) { 14560 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14561 "2561 Allocated DMA memory size (%d) is " 14562 "less than the requested DMA memory " 14563 "size (%d)\n", alloclen, reqlen); 14564 lpfc_sli4_mbox_cmd_free(phba, mbox); 14565 return -ENOMEM; 14566 } 14567 14568 /* Get the first SGE entry from the non-embedded DMA memory */ 14569 viraddr = mbox->sge_array->addr[0]; 14570 14571 /* Set up the SGL pages in the non-embedded DMA pages */ 14572 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14573 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14574 14575 pg_pairs = 0; 14576 list_for_each_entry(psb, sblist, list) { 14577 /* Set up the sge entry */ 14578 sgl_pg_pairs->sgl_pg0_addr_lo = 14579 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14580 sgl_pg_pairs->sgl_pg0_addr_hi = 14581 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14582 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14583 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14584 else 14585 pdma_phys_bpl1 = 0; 14586 sgl_pg_pairs->sgl_pg1_addr_lo = 14587 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14588 sgl_pg_pairs->sgl_pg1_addr_hi = 14589 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14590 /* Keep the first xritag on the list */ 14591 if (pg_pairs == 0) 14592 xritag_start = psb->cur_iocbq.sli4_xritag; 14593 sgl_pg_pairs++; 14594 pg_pairs++; 14595 } 14596 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14597 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14598 /* Perform endian conversion if necessary */ 14599 sgl->word0 = cpu_to_le32(sgl->word0); 14600 14601 if (!phba->sli4_hba.intr_enable) 14602 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14603 else { 14604 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14605 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14606 } 14607 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14608 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14609 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14610 if (rc != MBX_TIMEOUT) 14611 lpfc_sli4_mbox_cmd_free(phba, mbox); 14612 if (shdr_status || shdr_add_status || rc) { 14613 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14614 "2564 POST_SGL_BLOCK mailbox command failed " 14615 "status x%x add_status x%x mbx status x%x\n", 14616 shdr_status, shdr_add_status, rc); 14617 rc = -ENXIO; 14618 } 14619 return rc; 14620 } 14621 14622 /** 14623 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14624 * @phba: pointer to lpfc_hba struct that the frame was received on 14625 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14626 * 14627 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14628 * valid type of frame that the LPFC driver will handle. This function will 14629 * return a zero if the frame is a valid frame or a non zero value when the 14630 * frame does not pass the check. 14631 **/ 14632 static int 14633 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14634 { 14635 /* make rctl_names static to save stack space */ 14636 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14637 char *type_names[] = FC_TYPE_NAMES_INIT; 14638 struct fc_vft_header *fc_vft_hdr; 14639 uint32_t *header = (uint32_t *) fc_hdr; 14640 14641 switch (fc_hdr->fh_r_ctl) { 14642 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14643 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14644 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14645 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14646 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14647 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14648 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14649 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14650 case FC_RCTL_ELS_REQ: /* extended link services request */ 14651 case FC_RCTL_ELS_REP: /* extended link services reply */ 14652 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14653 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14654 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14655 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14656 case FC_RCTL_BA_RMC: /* remove connection */ 14657 case FC_RCTL_BA_ACC: /* basic accept */ 14658 case FC_RCTL_BA_RJT: /* basic reject */ 14659 case FC_RCTL_BA_PRMT: 14660 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14661 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14662 case FC_RCTL_P_RJT: /* port reject */ 14663 case FC_RCTL_F_RJT: /* fabric reject */ 14664 case FC_RCTL_P_BSY: /* port busy */ 14665 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14666 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14667 case FC_RCTL_LCR: /* link credit reset */ 14668 case FC_RCTL_END: /* end */ 14669 break; 14670 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14671 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14672 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14673 return lpfc_fc_frame_check(phba, fc_hdr); 14674 default: 14675 goto drop; 14676 } 14677 switch (fc_hdr->fh_type) { 14678 case FC_TYPE_BLS: 14679 case FC_TYPE_ELS: 14680 case FC_TYPE_FCP: 14681 case FC_TYPE_CT: 14682 break; 14683 case FC_TYPE_IP: 14684 case FC_TYPE_ILS: 14685 default: 14686 goto drop; 14687 } 14688 14689 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14690 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14691 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14692 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14693 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14694 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14695 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14696 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14697 be32_to_cpu(header[6])); 14698 return 0; 14699 drop: 14700 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14701 "2539 Dropped frame rctl:%s type:%s\n", 14702 rctl_names[fc_hdr->fh_r_ctl], 14703 type_names[fc_hdr->fh_type]); 14704 return 1; 14705 } 14706 14707 /** 14708 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14709 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14710 * 14711 * This function processes the FC header to retrieve the VFI from the VF 14712 * header, if one exists. This function will return the VFI if one exists 14713 * or 0 if no VSAN Header exists. 14714 **/ 14715 static uint32_t 14716 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14717 { 14718 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14719 14720 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14721 return 0; 14722 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14723 } 14724 14725 /** 14726 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14727 * @phba: Pointer to the HBA structure to search for the vport on 14728 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14729 * @fcfi: The FC Fabric ID that the frame came from 14730 * 14731 * This function searches the @phba for a vport that matches the content of the 14732 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14733 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14734 * returns the matching vport pointer or NULL if unable to match frame to a 14735 * vport. 14736 **/ 14737 static struct lpfc_vport * 14738 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14739 uint16_t fcfi) 14740 { 14741 struct lpfc_vport **vports; 14742 struct lpfc_vport *vport = NULL; 14743 int i; 14744 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14745 fc_hdr->fh_d_id[1] << 8 | 14746 fc_hdr->fh_d_id[2]); 14747 14748 if (did == Fabric_DID) 14749 return phba->pport; 14750 if ((phba->pport->fc_flag & FC_PT2PT) && 14751 !(phba->link_state == LPFC_HBA_READY)) 14752 return phba->pport; 14753 14754 vports = lpfc_create_vport_work_array(phba); 14755 if (vports != NULL) 14756 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14757 if (phba->fcf.fcfi == fcfi && 14758 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14759 vports[i]->fc_myDID == did) { 14760 vport = vports[i]; 14761 break; 14762 } 14763 } 14764 lpfc_destroy_vport_work_array(phba, vports); 14765 return vport; 14766 } 14767 14768 /** 14769 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14770 * @vport: The vport to work on. 14771 * 14772 * This function updates the receive sequence time stamp for this vport. The 14773 * receive sequence time stamp indicates the time that the last frame of the 14774 * the sequence that has been idle for the longest amount of time was received. 14775 * the driver uses this time stamp to indicate if any received sequences have 14776 * timed out. 14777 **/ 14778 static void 14779 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14780 { 14781 struct lpfc_dmabuf *h_buf; 14782 struct hbq_dmabuf *dmabuf = NULL; 14783 14784 /* get the oldest sequence on the rcv list */ 14785 h_buf = list_get_first(&vport->rcv_buffer_list, 14786 struct lpfc_dmabuf, list); 14787 if (!h_buf) 14788 return; 14789 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14790 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14791 } 14792 14793 /** 14794 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14795 * @vport: The vport that the received sequences were sent to. 14796 * 14797 * This function cleans up all outstanding received sequences. This is called 14798 * by the driver when a link event or user action invalidates all the received 14799 * sequences. 14800 **/ 14801 void 14802 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 14803 { 14804 struct lpfc_dmabuf *h_buf, *hnext; 14805 struct lpfc_dmabuf *d_buf, *dnext; 14806 struct hbq_dmabuf *dmabuf = NULL; 14807 14808 /* start with the oldest sequence on the rcv list */ 14809 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14810 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14811 list_del_init(&dmabuf->hbuf.list); 14812 list_for_each_entry_safe(d_buf, dnext, 14813 &dmabuf->dbuf.list, list) { 14814 list_del_init(&d_buf->list); 14815 lpfc_in_buf_free(vport->phba, d_buf); 14816 } 14817 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14818 } 14819 } 14820 14821 /** 14822 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 14823 * @vport: The vport that the received sequences were sent to. 14824 * 14825 * This function determines whether any received sequences have timed out by 14826 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 14827 * indicates that there is at least one timed out sequence this routine will 14828 * go through the received sequences one at a time from most inactive to most 14829 * active to determine which ones need to be cleaned up. Once it has determined 14830 * that a sequence needs to be cleaned up it will simply free up the resources 14831 * without sending an abort. 14832 **/ 14833 void 14834 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 14835 { 14836 struct lpfc_dmabuf *h_buf, *hnext; 14837 struct lpfc_dmabuf *d_buf, *dnext; 14838 struct hbq_dmabuf *dmabuf = NULL; 14839 unsigned long timeout; 14840 int abort_count = 0; 14841 14842 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14843 vport->rcv_buffer_time_stamp); 14844 if (list_empty(&vport->rcv_buffer_list) || 14845 time_before(jiffies, timeout)) 14846 return; 14847 /* start with the oldest sequence on the rcv list */ 14848 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14849 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14850 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14851 dmabuf->time_stamp); 14852 if (time_before(jiffies, timeout)) 14853 break; 14854 abort_count++; 14855 list_del_init(&dmabuf->hbuf.list); 14856 list_for_each_entry_safe(d_buf, dnext, 14857 &dmabuf->dbuf.list, list) { 14858 list_del_init(&d_buf->list); 14859 lpfc_in_buf_free(vport->phba, d_buf); 14860 } 14861 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14862 } 14863 if (abort_count) 14864 lpfc_update_rcv_time_stamp(vport); 14865 } 14866 14867 /** 14868 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 14869 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 14870 * 14871 * This function searches through the existing incomplete sequences that have 14872 * been sent to this @vport. If the frame matches one of the incomplete 14873 * sequences then the dbuf in the @dmabuf is added to the list of frames that 14874 * make up that sequence. If no sequence is found that matches this frame then 14875 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 14876 * This function returns a pointer to the first dmabuf in the sequence list that 14877 * the frame was linked to. 14878 **/ 14879 static struct hbq_dmabuf * 14880 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14881 { 14882 struct fc_frame_header *new_hdr; 14883 struct fc_frame_header *temp_hdr; 14884 struct lpfc_dmabuf *d_buf; 14885 struct lpfc_dmabuf *h_buf; 14886 struct hbq_dmabuf *seq_dmabuf = NULL; 14887 struct hbq_dmabuf *temp_dmabuf = NULL; 14888 uint8_t found = 0; 14889 14890 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14891 dmabuf->time_stamp = jiffies; 14892 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14893 14894 /* Use the hdr_buf to find the sequence that this frame belongs to */ 14895 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14896 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14897 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14898 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14899 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14900 continue; 14901 /* found a pending sequence that matches this frame */ 14902 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14903 break; 14904 } 14905 if (!seq_dmabuf) { 14906 /* 14907 * This indicates first frame received for this sequence. 14908 * Queue the buffer on the vport's rcv_buffer_list. 14909 */ 14910 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14911 lpfc_update_rcv_time_stamp(vport); 14912 return dmabuf; 14913 } 14914 temp_hdr = seq_dmabuf->hbuf.virt; 14915 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 14916 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14917 list_del_init(&seq_dmabuf->hbuf.list); 14918 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14919 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14920 lpfc_update_rcv_time_stamp(vport); 14921 return dmabuf; 14922 } 14923 /* move this sequence to the tail to indicate a young sequence */ 14924 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 14925 seq_dmabuf->time_stamp = jiffies; 14926 lpfc_update_rcv_time_stamp(vport); 14927 if (list_empty(&seq_dmabuf->dbuf.list)) { 14928 temp_hdr = dmabuf->hbuf.virt; 14929 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14930 return seq_dmabuf; 14931 } 14932 /* find the correct place in the sequence to insert this frame */ 14933 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 14934 while (!found) { 14935 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14936 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 14937 /* 14938 * If the frame's sequence count is greater than the frame on 14939 * the list then insert the frame right after this frame 14940 */ 14941 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 14942 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14943 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 14944 found = 1; 14945 break; 14946 } 14947 14948 if (&d_buf->list == &seq_dmabuf->dbuf.list) 14949 break; 14950 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 14951 } 14952 14953 if (found) 14954 return seq_dmabuf; 14955 return NULL; 14956 } 14957 14958 /** 14959 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 14960 * @vport: pointer to a vitural port 14961 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14962 * 14963 * This function tries to abort from the partially assembed sequence, described 14964 * by the information from basic abbort @dmabuf. It checks to see whether such 14965 * partially assembled sequence held by the driver. If so, it shall free up all 14966 * the frames from the partially assembled sequence. 14967 * 14968 * Return 14969 * true -- if there is matching partially assembled sequence present and all 14970 * the frames freed with the sequence; 14971 * false -- if there is no matching partially assembled sequence present so 14972 * nothing got aborted in the lower layer driver 14973 **/ 14974 static bool 14975 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 14976 struct hbq_dmabuf *dmabuf) 14977 { 14978 struct fc_frame_header *new_hdr; 14979 struct fc_frame_header *temp_hdr; 14980 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 14981 struct hbq_dmabuf *seq_dmabuf = NULL; 14982 14983 /* Use the hdr_buf to find the sequence that matches this frame */ 14984 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14985 INIT_LIST_HEAD(&dmabuf->hbuf.list); 14986 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14987 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14988 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14989 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14990 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14991 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14992 continue; 14993 /* found a pending sequence that matches this frame */ 14994 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14995 break; 14996 } 14997 14998 /* Free up all the frames from the partially assembled sequence */ 14999 if (seq_dmabuf) { 15000 list_for_each_entry_safe(d_buf, n_buf, 15001 &seq_dmabuf->dbuf.list, list) { 15002 list_del_init(&d_buf->list); 15003 lpfc_in_buf_free(vport->phba, d_buf); 15004 } 15005 return true; 15006 } 15007 return false; 15008 } 15009 15010 /** 15011 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 15012 * @vport: pointer to a vitural port 15013 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15014 * 15015 * This function tries to abort from the assembed sequence from upper level 15016 * protocol, described by the information from basic abbort @dmabuf. It 15017 * checks to see whether such pending context exists at upper level protocol. 15018 * If so, it shall clean up the pending context. 15019 * 15020 * Return 15021 * true -- if there is matching pending context of the sequence cleaned 15022 * at ulp; 15023 * false -- if there is no matching pending context of the sequence present 15024 * at ulp. 15025 **/ 15026 static bool 15027 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15028 { 15029 struct lpfc_hba *phba = vport->phba; 15030 int handled; 15031 15032 /* Accepting abort at ulp with SLI4 only */ 15033 if (phba->sli_rev < LPFC_SLI_REV4) 15034 return false; 15035 15036 /* Register all caring upper level protocols to attend abort */ 15037 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 15038 if (handled) 15039 return true; 15040 15041 return false; 15042 } 15043 15044 /** 15045 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 15046 * @phba: Pointer to HBA context object. 15047 * @cmd_iocbq: pointer to the command iocbq structure. 15048 * @rsp_iocbq: pointer to the response iocbq structure. 15049 * 15050 * This function handles the sequence abort response iocb command complete 15051 * event. It properly releases the memory allocated to the sequence abort 15052 * accept iocb. 15053 **/ 15054 static void 15055 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 15056 struct lpfc_iocbq *cmd_iocbq, 15057 struct lpfc_iocbq *rsp_iocbq) 15058 { 15059 struct lpfc_nodelist *ndlp; 15060 15061 if (cmd_iocbq) { 15062 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 15063 lpfc_nlp_put(ndlp); 15064 lpfc_nlp_not_used(ndlp); 15065 lpfc_sli_release_iocbq(phba, cmd_iocbq); 15066 } 15067 15068 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 15069 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 15070 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15071 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15072 rsp_iocbq->iocb.ulpStatus, 15073 rsp_iocbq->iocb.un.ulpWord[4]); 15074 } 15075 15076 /** 15077 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15078 * @phba: Pointer to HBA context object. 15079 * @xri: xri id in transaction. 15080 * 15081 * This function validates the xri maps to the known range of XRIs allocated an 15082 * used by the driver. 15083 **/ 15084 uint16_t 15085 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15086 uint16_t xri) 15087 { 15088 uint16_t i; 15089 15090 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15091 if (xri == phba->sli4_hba.xri_ids[i]) 15092 return i; 15093 } 15094 return NO_XRI; 15095 } 15096 15097 /** 15098 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15099 * @phba: Pointer to HBA context object. 15100 * @fc_hdr: pointer to a FC frame header. 15101 * 15102 * This function sends a basic response to a previous unsol sequence abort 15103 * event after aborting the sequence handling. 15104 **/ 15105 static void 15106 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15107 struct fc_frame_header *fc_hdr, bool aborted) 15108 { 15109 struct lpfc_hba *phba = vport->phba; 15110 struct lpfc_iocbq *ctiocb = NULL; 15111 struct lpfc_nodelist *ndlp; 15112 uint16_t oxid, rxid, xri, lxri; 15113 uint32_t sid, fctl; 15114 IOCB_t *icmd; 15115 int rc; 15116 15117 if (!lpfc_is_link_up(phba)) 15118 return; 15119 15120 sid = sli4_sid_from_fc_hdr(fc_hdr); 15121 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15122 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15123 15124 ndlp = lpfc_findnode_did(vport, sid); 15125 if (!ndlp) { 15126 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15127 if (!ndlp) { 15128 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15129 "1268 Failed to allocate ndlp for " 15130 "oxid:x%x SID:x%x\n", oxid, sid); 15131 return; 15132 } 15133 lpfc_nlp_init(vport, ndlp, sid); 15134 /* Put ndlp onto pport node list */ 15135 lpfc_enqueue_node(vport, ndlp); 15136 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15137 /* re-setup ndlp without removing from node list */ 15138 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15139 if (!ndlp) { 15140 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15141 "3275 Failed to active ndlp found " 15142 "for oxid:x%x SID:x%x\n", oxid, sid); 15143 return; 15144 } 15145 } 15146 15147 /* Allocate buffer for rsp iocb */ 15148 ctiocb = lpfc_sli_get_iocbq(phba); 15149 if (!ctiocb) 15150 return; 15151 15152 /* Extract the F_CTL field from FC_HDR */ 15153 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15154 15155 icmd = &ctiocb->iocb; 15156 icmd->un.xseq64.bdl.bdeSize = 0; 15157 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15158 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15159 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15160 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15161 15162 /* Fill in the rest of iocb fields */ 15163 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15164 icmd->ulpBdeCount = 0; 15165 icmd->ulpLe = 1; 15166 icmd->ulpClass = CLASS3; 15167 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15168 ctiocb->context1 = lpfc_nlp_get(ndlp); 15169 15170 ctiocb->iocb_cmpl = NULL; 15171 ctiocb->vport = phba->pport; 15172 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15173 ctiocb->sli4_lxritag = NO_XRI; 15174 ctiocb->sli4_xritag = NO_XRI; 15175 15176 if (fctl & FC_FC_EX_CTX) 15177 /* Exchange responder sent the abort so we 15178 * own the oxid. 15179 */ 15180 xri = oxid; 15181 else 15182 xri = rxid; 15183 lxri = lpfc_sli4_xri_inrange(phba, xri); 15184 if (lxri != NO_XRI) 15185 lpfc_set_rrq_active(phba, ndlp, lxri, 15186 (xri == oxid) ? rxid : oxid, 0); 15187 /* For BA_ABTS from exchange responder, if the logical xri with 15188 * the oxid maps to the FCP XRI range, the port no longer has 15189 * that exchange context, send a BLS_RJT. Override the IOCB for 15190 * a BA_RJT. 15191 */ 15192 if ((fctl & FC_FC_EX_CTX) && 15193 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15194 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15195 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15196 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15197 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15198 } 15199 15200 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15201 * the driver no longer has that exchange, send a BLS_RJT. Override 15202 * the IOCB for a BA_RJT. 15203 */ 15204 if (aborted == false) { 15205 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15206 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15207 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15208 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15209 } 15210 15211 if (fctl & FC_FC_EX_CTX) { 15212 /* ABTS sent by responder to CT exchange, construction 15213 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15214 * field and RX_ID from ABTS for RX_ID field. 15215 */ 15216 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15217 } else { 15218 /* ABTS sent by initiator to CT exchange, construction 15219 * of BA_ACC will need to allocate a new XRI as for the 15220 * XRI_TAG field. 15221 */ 15222 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15223 } 15224 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15225 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15226 15227 /* Xmit CT abts response on exchange <xid> */ 15228 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15229 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15230 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15231 15232 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15233 if (rc == IOCB_ERROR) { 15234 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15235 "2925 Failed to issue CT ABTS RSP x%x on " 15236 "xri x%x, Data x%x\n", 15237 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15238 phba->link_state); 15239 lpfc_nlp_put(ndlp); 15240 ctiocb->context1 = NULL; 15241 lpfc_sli_release_iocbq(phba, ctiocb); 15242 } 15243 } 15244 15245 /** 15246 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15247 * @vport: Pointer to the vport on which this sequence was received 15248 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15249 * 15250 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15251 * receive sequence is only partially assembed by the driver, it shall abort 15252 * the partially assembled frames for the sequence. Otherwise, if the 15253 * unsolicited receive sequence has been completely assembled and passed to 15254 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15255 * unsolicited sequence has been aborted. After that, it will issue a basic 15256 * accept to accept the abort. 15257 **/ 15258 static void 15259 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15260 struct hbq_dmabuf *dmabuf) 15261 { 15262 struct lpfc_hba *phba = vport->phba; 15263 struct fc_frame_header fc_hdr; 15264 uint32_t fctl; 15265 bool aborted; 15266 15267 /* Make a copy of fc_hdr before the dmabuf being released */ 15268 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15269 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15270 15271 if (fctl & FC_FC_EX_CTX) { 15272 /* ABTS by responder to exchange, no cleanup needed */ 15273 aborted = true; 15274 } else { 15275 /* ABTS by initiator to exchange, need to do cleanup */ 15276 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15277 if (aborted == false) 15278 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15279 } 15280 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15281 15282 /* Respond with BA_ACC or BA_RJT accordingly */ 15283 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15284 } 15285 15286 /** 15287 * lpfc_seq_complete - Indicates if a sequence is complete 15288 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15289 * 15290 * This function checks the sequence, starting with the frame described by 15291 * @dmabuf, to see if all the frames associated with this sequence are present. 15292 * the frames associated with this sequence are linked to the @dmabuf using the 15293 * dbuf list. This function looks for two major things. 1) That the first frame 15294 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15295 * set. 3) That there are no holes in the sequence count. The function will 15296 * return 1 when the sequence is complete, otherwise it will return 0. 15297 **/ 15298 static int 15299 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15300 { 15301 struct fc_frame_header *hdr; 15302 struct lpfc_dmabuf *d_buf; 15303 struct hbq_dmabuf *seq_dmabuf; 15304 uint32_t fctl; 15305 int seq_count = 0; 15306 15307 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15308 /* make sure first fame of sequence has a sequence count of zero */ 15309 if (hdr->fh_seq_cnt != seq_count) 15310 return 0; 15311 fctl = (hdr->fh_f_ctl[0] << 16 | 15312 hdr->fh_f_ctl[1] << 8 | 15313 hdr->fh_f_ctl[2]); 15314 /* If last frame of sequence we can return success. */ 15315 if (fctl & FC_FC_END_SEQ) 15316 return 1; 15317 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15318 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15319 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15320 /* If there is a hole in the sequence count then fail. */ 15321 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15322 return 0; 15323 fctl = (hdr->fh_f_ctl[0] << 16 | 15324 hdr->fh_f_ctl[1] << 8 | 15325 hdr->fh_f_ctl[2]); 15326 /* If last frame of sequence we can return success. */ 15327 if (fctl & FC_FC_END_SEQ) 15328 return 1; 15329 } 15330 return 0; 15331 } 15332 15333 /** 15334 * lpfc_prep_seq - Prep sequence for ULP processing 15335 * @vport: Pointer to the vport on which this sequence was received 15336 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15337 * 15338 * This function takes a sequence, described by a list of frames, and creates 15339 * a list of iocbq structures to describe the sequence. This iocbq list will be 15340 * used to issue to the generic unsolicited sequence handler. This routine 15341 * returns a pointer to the first iocbq in the list. If the function is unable 15342 * to allocate an iocbq then it throw out the received frames that were not 15343 * able to be described and return a pointer to the first iocbq. If unable to 15344 * allocate any iocbqs (including the first) this function will return NULL. 15345 **/ 15346 static struct lpfc_iocbq * 15347 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15348 { 15349 struct hbq_dmabuf *hbq_buf; 15350 struct lpfc_dmabuf *d_buf, *n_buf; 15351 struct lpfc_iocbq *first_iocbq, *iocbq; 15352 struct fc_frame_header *fc_hdr; 15353 uint32_t sid; 15354 uint32_t len, tot_len; 15355 struct ulp_bde64 *pbde; 15356 15357 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15358 /* remove from receive buffer list */ 15359 list_del_init(&seq_dmabuf->hbuf.list); 15360 lpfc_update_rcv_time_stamp(vport); 15361 /* get the Remote Port's SID */ 15362 sid = sli4_sid_from_fc_hdr(fc_hdr); 15363 tot_len = 0; 15364 /* Get an iocbq struct to fill in. */ 15365 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15366 if (first_iocbq) { 15367 /* Initialize the first IOCB. */ 15368 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15369 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15370 15371 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15372 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15373 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15374 first_iocbq->iocb.un.rcvels.parmRo = 15375 sli4_did_from_fc_hdr(fc_hdr); 15376 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15377 } else 15378 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15379 first_iocbq->iocb.ulpContext = NO_XRI; 15380 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15381 be16_to_cpu(fc_hdr->fh_ox_id); 15382 /* iocbq is prepped for internal consumption. Physical vpi. */ 15383 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15384 vport->phba->vpi_ids[vport->vpi]; 15385 /* put the first buffer into the first IOCBq */ 15386 tot_len = bf_get(lpfc_rcqe_length, 15387 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15388 15389 first_iocbq->context2 = &seq_dmabuf->dbuf; 15390 first_iocbq->context3 = NULL; 15391 first_iocbq->iocb.ulpBdeCount = 1; 15392 if (tot_len > LPFC_DATA_BUF_SIZE) 15393 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15394 LPFC_DATA_BUF_SIZE; 15395 else 15396 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15397 15398 first_iocbq->iocb.un.rcvels.remoteID = sid; 15399 15400 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15401 } 15402 iocbq = first_iocbq; 15403 /* 15404 * Each IOCBq can have two Buffers assigned, so go through the list 15405 * of buffers for this sequence and save two buffers in each IOCBq 15406 */ 15407 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15408 if (!iocbq) { 15409 lpfc_in_buf_free(vport->phba, d_buf); 15410 continue; 15411 } 15412 if (!iocbq->context3) { 15413 iocbq->context3 = d_buf; 15414 iocbq->iocb.ulpBdeCount++; 15415 /* We need to get the size out of the right CQE */ 15416 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15417 len = bf_get(lpfc_rcqe_length, 15418 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15419 pbde = (struct ulp_bde64 *) 15420 &iocbq->iocb.unsli3.sli3Words[4]; 15421 if (len > LPFC_DATA_BUF_SIZE) 15422 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15423 else 15424 pbde->tus.f.bdeSize = len; 15425 15426 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15427 tot_len += len; 15428 } else { 15429 iocbq = lpfc_sli_get_iocbq(vport->phba); 15430 if (!iocbq) { 15431 if (first_iocbq) { 15432 first_iocbq->iocb.ulpStatus = 15433 IOSTAT_FCP_RSP_ERROR; 15434 first_iocbq->iocb.un.ulpWord[4] = 15435 IOERR_NO_RESOURCES; 15436 } 15437 lpfc_in_buf_free(vport->phba, d_buf); 15438 continue; 15439 } 15440 /* We need to get the size out of the right CQE */ 15441 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15442 len = bf_get(lpfc_rcqe_length, 15443 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15444 iocbq->context2 = d_buf; 15445 iocbq->context3 = NULL; 15446 iocbq->iocb.ulpBdeCount = 1; 15447 if (len > LPFC_DATA_BUF_SIZE) 15448 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15449 LPFC_DATA_BUF_SIZE; 15450 else 15451 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15452 15453 tot_len += len; 15454 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15455 15456 iocbq->iocb.un.rcvels.remoteID = sid; 15457 list_add_tail(&iocbq->list, &first_iocbq->list); 15458 } 15459 } 15460 return first_iocbq; 15461 } 15462 15463 static void 15464 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15465 struct hbq_dmabuf *seq_dmabuf) 15466 { 15467 struct fc_frame_header *fc_hdr; 15468 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15469 struct lpfc_hba *phba = vport->phba; 15470 15471 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15472 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15473 if (!iocbq) { 15474 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15475 "2707 Ring %d handler: Failed to allocate " 15476 "iocb Rctl x%x Type x%x received\n", 15477 LPFC_ELS_RING, 15478 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15479 return; 15480 } 15481 if (!lpfc_complete_unsol_iocb(phba, 15482 &phba->sli.ring[LPFC_ELS_RING], 15483 iocbq, fc_hdr->fh_r_ctl, 15484 fc_hdr->fh_type)) 15485 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15486 "2540 Ring %d handler: unexpected Rctl " 15487 "x%x Type x%x received\n", 15488 LPFC_ELS_RING, 15489 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15490 15491 /* Free iocb created in lpfc_prep_seq */ 15492 list_for_each_entry_safe(curr_iocb, next_iocb, 15493 &iocbq->list, list) { 15494 list_del_init(&curr_iocb->list); 15495 lpfc_sli_release_iocbq(phba, curr_iocb); 15496 } 15497 lpfc_sli_release_iocbq(phba, iocbq); 15498 } 15499 15500 /** 15501 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15502 * @phba: Pointer to HBA context object. 15503 * 15504 * This function is called with no lock held. This function processes all 15505 * the received buffers and gives it to upper layers when a received buffer 15506 * indicates that it is the final frame in the sequence. The interrupt 15507 * service routine processes received buffers at interrupt contexts and adds 15508 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15509 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15510 * appropriate receive function when the final frame in a sequence is received. 15511 **/ 15512 void 15513 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15514 struct hbq_dmabuf *dmabuf) 15515 { 15516 struct hbq_dmabuf *seq_dmabuf; 15517 struct fc_frame_header *fc_hdr; 15518 struct lpfc_vport *vport; 15519 uint32_t fcfi; 15520 uint32_t did; 15521 15522 /* Process each received buffer */ 15523 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15524 /* check to see if this a valid type of frame */ 15525 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15526 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15527 return; 15528 } 15529 if ((bf_get(lpfc_cqe_code, 15530 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15531 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15532 &dmabuf->cq_event.cqe.rcqe_cmpl); 15533 else 15534 fcfi = bf_get(lpfc_rcqe_fcf_id, 15535 &dmabuf->cq_event.cqe.rcqe_cmpl); 15536 15537 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15538 if (!vport) { 15539 /* throw out the frame */ 15540 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15541 return; 15542 } 15543 15544 /* d_id this frame is directed to */ 15545 did = sli4_did_from_fc_hdr(fc_hdr); 15546 15547 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15548 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15549 (did != Fabric_DID)) { 15550 /* 15551 * Throw out the frame if we are not pt2pt. 15552 * The pt2pt protocol allows for discovery frames 15553 * to be received without a registered VPI. 15554 */ 15555 if (!(vport->fc_flag & FC_PT2PT) || 15556 (phba->link_state == LPFC_HBA_READY)) { 15557 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15558 return; 15559 } 15560 } 15561 15562 /* Handle the basic abort sequence (BA_ABTS) event */ 15563 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15564 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15565 return; 15566 } 15567 15568 /* Link this frame */ 15569 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15570 if (!seq_dmabuf) { 15571 /* unable to add frame to vport - throw it out */ 15572 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15573 return; 15574 } 15575 /* If not last frame in sequence continue processing frames. */ 15576 if (!lpfc_seq_complete(seq_dmabuf)) 15577 return; 15578 15579 /* Send the complete sequence to the upper layer protocol */ 15580 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15581 } 15582 15583 /** 15584 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15585 * @phba: pointer to lpfc hba data structure. 15586 * 15587 * This routine is invoked to post rpi header templates to the 15588 * HBA consistent with the SLI-4 interface spec. This routine 15589 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15590 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15591 * 15592 * This routine does not require any locks. It's usage is expected 15593 * to be driver load or reset recovery when the driver is 15594 * sequential. 15595 * 15596 * Return codes 15597 * 0 - successful 15598 * -EIO - The mailbox failed to complete successfully. 15599 * When this error occurs, the driver is not guaranteed 15600 * to have any rpi regions posted to the device and 15601 * must either attempt to repost the regions or take a 15602 * fatal error. 15603 **/ 15604 int 15605 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15606 { 15607 struct lpfc_rpi_hdr *rpi_page; 15608 uint32_t rc = 0; 15609 uint16_t lrpi = 0; 15610 15611 /* SLI4 ports that support extents do not require RPI headers. */ 15612 if (!phba->sli4_hba.rpi_hdrs_in_use) 15613 goto exit; 15614 if (phba->sli4_hba.extents_in_use) 15615 return -EIO; 15616 15617 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15618 /* 15619 * Assign the rpi headers a physical rpi only if the driver 15620 * has not initialized those resources. A port reset only 15621 * needs the headers posted. 15622 */ 15623 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15624 LPFC_RPI_RSRC_RDY) 15625 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15626 15627 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15628 if (rc != MBX_SUCCESS) { 15629 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15630 "2008 Error %d posting all rpi " 15631 "headers\n", rc); 15632 rc = -EIO; 15633 break; 15634 } 15635 } 15636 15637 exit: 15638 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15639 LPFC_RPI_RSRC_RDY); 15640 return rc; 15641 } 15642 15643 /** 15644 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15645 * @phba: pointer to lpfc hba data structure. 15646 * @rpi_page: pointer to the rpi memory region. 15647 * 15648 * This routine is invoked to post a single rpi header to the 15649 * HBA consistent with the SLI-4 interface spec. This memory region 15650 * maps up to 64 rpi context regions. 15651 * 15652 * Return codes 15653 * 0 - successful 15654 * -ENOMEM - No available memory 15655 * -EIO - The mailbox failed to complete successfully. 15656 **/ 15657 int 15658 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15659 { 15660 LPFC_MBOXQ_t *mboxq; 15661 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15662 uint32_t rc = 0; 15663 uint32_t shdr_status, shdr_add_status; 15664 union lpfc_sli4_cfg_shdr *shdr; 15665 15666 /* SLI4 ports that support extents do not require RPI headers. */ 15667 if (!phba->sli4_hba.rpi_hdrs_in_use) 15668 return rc; 15669 if (phba->sli4_hba.extents_in_use) 15670 return -EIO; 15671 15672 /* The port is notified of the header region via a mailbox command. */ 15673 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15674 if (!mboxq) { 15675 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15676 "2001 Unable to allocate memory for issuing " 15677 "SLI_CONFIG_SPECIAL mailbox command\n"); 15678 return -ENOMEM; 15679 } 15680 15681 /* Post all rpi memory regions to the port. */ 15682 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15683 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15684 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15685 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15686 sizeof(struct lpfc_sli4_cfg_mhdr), 15687 LPFC_SLI4_MBX_EMBED); 15688 15689 15690 /* Post the physical rpi to the port for this rpi header. */ 15691 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15692 rpi_page->start_rpi); 15693 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15694 hdr_tmpl, rpi_page->page_count); 15695 15696 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15697 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15699 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15700 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15701 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15702 if (rc != MBX_TIMEOUT) 15703 mempool_free(mboxq, phba->mbox_mem_pool); 15704 if (shdr_status || shdr_add_status || rc) { 15705 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15706 "2514 POST_RPI_HDR mailbox failed with " 15707 "status x%x add_status x%x, mbx status x%x\n", 15708 shdr_status, shdr_add_status, rc); 15709 rc = -ENXIO; 15710 } 15711 return rc; 15712 } 15713 15714 /** 15715 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15716 * @phba: pointer to lpfc hba data structure. 15717 * 15718 * This routine is invoked to post rpi header templates to the 15719 * HBA consistent with the SLI-4 interface spec. This routine 15720 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15721 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15722 * 15723 * Returns 15724 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15725 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15726 **/ 15727 int 15728 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15729 { 15730 unsigned long rpi; 15731 uint16_t max_rpi, rpi_limit; 15732 uint16_t rpi_remaining, lrpi = 0; 15733 struct lpfc_rpi_hdr *rpi_hdr; 15734 unsigned long iflag; 15735 15736 /* 15737 * Fetch the next logical rpi. Because this index is logical, 15738 * the driver starts at 0 each time. 15739 */ 15740 spin_lock_irqsave(&phba->hbalock, iflag); 15741 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15742 rpi_limit = phba->sli4_hba.next_rpi; 15743 15744 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15745 if (rpi >= rpi_limit) 15746 rpi = LPFC_RPI_ALLOC_ERROR; 15747 else { 15748 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15749 phba->sli4_hba.max_cfg_param.rpi_used++; 15750 phba->sli4_hba.rpi_count++; 15751 } 15752 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15753 "0001 rpi:%x max:%x lim:%x\n", 15754 (int) rpi, max_rpi, rpi_limit); 15755 15756 /* 15757 * Don't try to allocate more rpi header regions if the device limit 15758 * has been exhausted. 15759 */ 15760 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15761 (phba->sli4_hba.rpi_count >= max_rpi)) { 15762 spin_unlock_irqrestore(&phba->hbalock, iflag); 15763 return rpi; 15764 } 15765 15766 /* 15767 * RPI header postings are not required for SLI4 ports capable of 15768 * extents. 15769 */ 15770 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15771 spin_unlock_irqrestore(&phba->hbalock, iflag); 15772 return rpi; 15773 } 15774 15775 /* 15776 * If the driver is running low on rpi resources, allocate another 15777 * page now. Note that the next_rpi value is used because 15778 * it represents how many are actually in use whereas max_rpi notes 15779 * how many are supported max by the device. 15780 */ 15781 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15782 spin_unlock_irqrestore(&phba->hbalock, iflag); 15783 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15784 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15785 if (!rpi_hdr) { 15786 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15787 "2002 Error Could not grow rpi " 15788 "count\n"); 15789 } else { 15790 lrpi = rpi_hdr->start_rpi; 15791 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15792 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15793 } 15794 } 15795 15796 return rpi; 15797 } 15798 15799 /** 15800 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15801 * @phba: pointer to lpfc hba data structure. 15802 * 15803 * This routine is invoked to release an rpi to the pool of 15804 * available rpis maintained by the driver. 15805 **/ 15806 static void 15807 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15808 { 15809 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 15810 phba->sli4_hba.rpi_count--; 15811 phba->sli4_hba.max_cfg_param.rpi_used--; 15812 } 15813 } 15814 15815 /** 15816 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15817 * @phba: pointer to lpfc hba data structure. 15818 * 15819 * This routine is invoked to release an rpi to the pool of 15820 * available rpis maintained by the driver. 15821 **/ 15822 void 15823 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15824 { 15825 spin_lock_irq(&phba->hbalock); 15826 __lpfc_sli4_free_rpi(phba, rpi); 15827 spin_unlock_irq(&phba->hbalock); 15828 } 15829 15830 /** 15831 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 15832 * @phba: pointer to lpfc hba data structure. 15833 * 15834 * This routine is invoked to remove the memory region that 15835 * provided rpi via a bitmask. 15836 **/ 15837 void 15838 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 15839 { 15840 kfree(phba->sli4_hba.rpi_bmask); 15841 kfree(phba->sli4_hba.rpi_ids); 15842 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 15843 } 15844 15845 /** 15846 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 15847 * @phba: pointer to lpfc hba data structure. 15848 * 15849 * This routine is invoked to remove the memory region that 15850 * provided rpi via a bitmask. 15851 **/ 15852 int 15853 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 15854 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 15855 { 15856 LPFC_MBOXQ_t *mboxq; 15857 struct lpfc_hba *phba = ndlp->phba; 15858 int rc; 15859 15860 /* The port is notified of the header region via a mailbox command. */ 15861 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15862 if (!mboxq) 15863 return -ENOMEM; 15864 15865 /* Post all rpi memory regions to the port. */ 15866 lpfc_resume_rpi(mboxq, ndlp); 15867 if (cmpl) { 15868 mboxq->mbox_cmpl = cmpl; 15869 mboxq->context1 = arg; 15870 mboxq->context2 = ndlp; 15871 } else 15872 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15873 mboxq->vport = ndlp->vport; 15874 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15875 if (rc == MBX_NOT_FINISHED) { 15876 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15877 "2010 Resume RPI Mailbox failed " 15878 "status %d, mbxStatus x%x\n", rc, 15879 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15880 mempool_free(mboxq, phba->mbox_mem_pool); 15881 return -EIO; 15882 } 15883 return 0; 15884 } 15885 15886 /** 15887 * lpfc_sli4_init_vpi - Initialize a vpi with the port 15888 * @vport: Pointer to the vport for which the vpi is being initialized 15889 * 15890 * This routine is invoked to activate a vpi with the port. 15891 * 15892 * Returns: 15893 * 0 success 15894 * -Evalue otherwise 15895 **/ 15896 int 15897 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 15898 { 15899 LPFC_MBOXQ_t *mboxq; 15900 int rc = 0; 15901 int retval = MBX_SUCCESS; 15902 uint32_t mbox_tmo; 15903 struct lpfc_hba *phba = vport->phba; 15904 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15905 if (!mboxq) 15906 return -ENOMEM; 15907 lpfc_init_vpi(phba, mboxq, vport->vpi); 15908 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 15909 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 15910 if (rc != MBX_SUCCESS) { 15911 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 15912 "2022 INIT VPI Mailbox failed " 15913 "status %d, mbxStatus x%x\n", rc, 15914 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15915 retval = -EIO; 15916 } 15917 if (rc != MBX_TIMEOUT) 15918 mempool_free(mboxq, vport->phba->mbox_mem_pool); 15919 15920 return retval; 15921 } 15922 15923 /** 15924 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 15925 * @phba: pointer to lpfc hba data structure. 15926 * @mboxq: Pointer to mailbox object. 15927 * 15928 * This routine is invoked to manually add a single FCF record. The caller 15929 * must pass a completely initialized FCF_Record. This routine takes 15930 * care of the nonembedded mailbox operations. 15931 **/ 15932 static void 15933 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 15934 { 15935 void *virt_addr; 15936 union lpfc_sli4_cfg_shdr *shdr; 15937 uint32_t shdr_status, shdr_add_status; 15938 15939 virt_addr = mboxq->sge_array->addr[0]; 15940 /* The IOCTL status is embedded in the mailbox subheader. */ 15941 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 15942 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15943 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15944 15945 if ((shdr_status || shdr_add_status) && 15946 (shdr_status != STATUS_FCF_IN_USE)) 15947 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15948 "2558 ADD_FCF_RECORD mailbox failed with " 15949 "status x%x add_status x%x\n", 15950 shdr_status, shdr_add_status); 15951 15952 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15953 } 15954 15955 /** 15956 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 15957 * @phba: pointer to lpfc hba data structure. 15958 * @fcf_record: pointer to the initialized fcf record to add. 15959 * 15960 * This routine is invoked to manually add a single FCF record. The caller 15961 * must pass a completely initialized FCF_Record. This routine takes 15962 * care of the nonembedded mailbox operations. 15963 **/ 15964 int 15965 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 15966 { 15967 int rc = 0; 15968 LPFC_MBOXQ_t *mboxq; 15969 uint8_t *bytep; 15970 void *virt_addr; 15971 struct lpfc_mbx_sge sge; 15972 uint32_t alloc_len, req_len; 15973 uint32_t fcfindex; 15974 15975 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15976 if (!mboxq) { 15977 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15978 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 15979 return -ENOMEM; 15980 } 15981 15982 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 15983 sizeof(uint32_t); 15984 15985 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15986 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15987 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 15988 req_len, LPFC_SLI4_MBX_NEMBED); 15989 if (alloc_len < req_len) { 15990 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15991 "2523 Allocated DMA memory size (x%x) is " 15992 "less than the requested DMA memory " 15993 "size (x%x)\n", alloc_len, req_len); 15994 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15995 return -ENOMEM; 15996 } 15997 15998 /* 15999 * Get the first SGE entry from the non-embedded DMA memory. This 16000 * routine only uses a single SGE. 16001 */ 16002 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 16003 virt_addr = mboxq->sge_array->addr[0]; 16004 /* 16005 * Configure the FCF record for FCFI 0. This is the driver's 16006 * hardcoded default and gets used in nonFIP mode. 16007 */ 16008 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 16009 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 16010 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 16011 16012 /* 16013 * Copy the fcf_index and the FCF Record Data. The data starts after 16014 * the FCoE header plus word10. The data copy needs to be endian 16015 * correct. 16016 */ 16017 bytep += sizeof(uint32_t); 16018 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 16019 mboxq->vport = phba->pport; 16020 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 16021 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16022 if (rc == MBX_NOT_FINISHED) { 16023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16024 "2515 ADD_FCF_RECORD mailbox failed with " 16025 "status 0x%x\n", rc); 16026 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16027 rc = -EIO; 16028 } else 16029 rc = 0; 16030 16031 return rc; 16032 } 16033 16034 /** 16035 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 16036 * @phba: pointer to lpfc hba data structure. 16037 * @fcf_record: pointer to the fcf record to write the default data. 16038 * @fcf_index: FCF table entry index. 16039 * 16040 * This routine is invoked to build the driver's default FCF record. The 16041 * values used are hardcoded. This routine handles memory initialization. 16042 * 16043 **/ 16044 void 16045 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 16046 struct fcf_record *fcf_record, 16047 uint16_t fcf_index) 16048 { 16049 memset(fcf_record, 0, sizeof(struct fcf_record)); 16050 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 16051 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 16052 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 16053 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 16054 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 16055 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 16056 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 16057 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 16058 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 16059 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 16060 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 16061 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 16062 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 16063 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 16064 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 16065 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 16066 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 16067 /* Set the VLAN bit map */ 16068 if (phba->valid_vlan) { 16069 fcf_record->vlan_bitmap[phba->vlan_id / 8] 16070 = 1 << (phba->vlan_id % 8); 16071 } 16072 } 16073 16074 /** 16075 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16076 * @phba: pointer to lpfc hba data structure. 16077 * @fcf_index: FCF table entry offset. 16078 * 16079 * This routine is invoked to scan the entire FCF table by reading FCF 16080 * record and processing it one at a time starting from the @fcf_index 16081 * for initial FCF discovery or fast FCF failover rediscovery. 16082 * 16083 * Return 0 if the mailbox command is submitted successfully, none 0 16084 * otherwise. 16085 **/ 16086 int 16087 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16088 { 16089 int rc = 0, error; 16090 LPFC_MBOXQ_t *mboxq; 16091 16092 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16093 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16094 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16095 if (!mboxq) { 16096 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16097 "2000 Failed to allocate mbox for " 16098 "READ_FCF cmd\n"); 16099 error = -ENOMEM; 16100 goto fail_fcf_scan; 16101 } 16102 /* Construct the read FCF record mailbox command */ 16103 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16104 if (rc) { 16105 error = -EINVAL; 16106 goto fail_fcf_scan; 16107 } 16108 /* Issue the mailbox command asynchronously */ 16109 mboxq->vport = phba->pport; 16110 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16111 16112 spin_lock_irq(&phba->hbalock); 16113 phba->hba_flag |= FCF_TS_INPROG; 16114 spin_unlock_irq(&phba->hbalock); 16115 16116 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16117 if (rc == MBX_NOT_FINISHED) 16118 error = -EIO; 16119 else { 16120 /* Reset eligible FCF count for new scan */ 16121 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16122 phba->fcf.eligible_fcf_cnt = 0; 16123 error = 0; 16124 } 16125 fail_fcf_scan: 16126 if (error) { 16127 if (mboxq) 16128 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16129 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16130 spin_lock_irq(&phba->hbalock); 16131 phba->hba_flag &= ~FCF_TS_INPROG; 16132 spin_unlock_irq(&phba->hbalock); 16133 } 16134 return error; 16135 } 16136 16137 /** 16138 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16139 * @phba: pointer to lpfc hba data structure. 16140 * @fcf_index: FCF table entry offset. 16141 * 16142 * This routine is invoked to read an FCF record indicated by @fcf_index 16143 * and to use it for FLOGI roundrobin FCF failover. 16144 * 16145 * Return 0 if the mailbox command is submitted successfully, none 0 16146 * otherwise. 16147 **/ 16148 int 16149 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16150 { 16151 int rc = 0, error; 16152 LPFC_MBOXQ_t *mboxq; 16153 16154 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16155 if (!mboxq) { 16156 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16157 "2763 Failed to allocate mbox for " 16158 "READ_FCF cmd\n"); 16159 error = -ENOMEM; 16160 goto fail_fcf_read; 16161 } 16162 /* Construct the read FCF record mailbox command */ 16163 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16164 if (rc) { 16165 error = -EINVAL; 16166 goto fail_fcf_read; 16167 } 16168 /* Issue the mailbox command asynchronously */ 16169 mboxq->vport = phba->pport; 16170 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16171 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16172 if (rc == MBX_NOT_FINISHED) 16173 error = -EIO; 16174 else 16175 error = 0; 16176 16177 fail_fcf_read: 16178 if (error && mboxq) 16179 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16180 return error; 16181 } 16182 16183 /** 16184 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16185 * @phba: pointer to lpfc hba data structure. 16186 * @fcf_index: FCF table entry offset. 16187 * 16188 * This routine is invoked to read an FCF record indicated by @fcf_index to 16189 * determine whether it's eligible for FLOGI roundrobin failover list. 16190 * 16191 * Return 0 if the mailbox command is submitted successfully, none 0 16192 * otherwise. 16193 **/ 16194 int 16195 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16196 { 16197 int rc = 0, error; 16198 LPFC_MBOXQ_t *mboxq; 16199 16200 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16201 if (!mboxq) { 16202 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16203 "2758 Failed to allocate mbox for " 16204 "READ_FCF cmd\n"); 16205 error = -ENOMEM; 16206 goto fail_fcf_read; 16207 } 16208 /* Construct the read FCF record mailbox command */ 16209 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16210 if (rc) { 16211 error = -EINVAL; 16212 goto fail_fcf_read; 16213 } 16214 /* Issue the mailbox command asynchronously */ 16215 mboxq->vport = phba->pport; 16216 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16217 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16218 if (rc == MBX_NOT_FINISHED) 16219 error = -EIO; 16220 else 16221 error = 0; 16222 16223 fail_fcf_read: 16224 if (error && mboxq) 16225 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16226 return error; 16227 } 16228 16229 /** 16230 * lpfc_check_next_fcf_pri_level 16231 * phba pointer to the lpfc_hba struct for this port. 16232 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16233 * routine when the rr_bmask is empty. The FCF indecies are put into the 16234 * rr_bmask based on their priority level. Starting from the highest priority 16235 * to the lowest. The most likely FCF candidate will be in the highest 16236 * priority group. When this routine is called it searches the fcf_pri list for 16237 * next lowest priority group and repopulates the rr_bmask with only those 16238 * fcf_indexes. 16239 * returns: 16240 * 1=success 0=failure 16241 **/ 16242 static int 16243 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16244 { 16245 uint16_t next_fcf_pri; 16246 uint16_t last_index; 16247 struct lpfc_fcf_pri *fcf_pri; 16248 int rc; 16249 int ret = 0; 16250 16251 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16252 LPFC_SLI4_FCF_TBL_INDX_MAX); 16253 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16254 "3060 Last IDX %d\n", last_index); 16255 16256 /* Verify the priority list has 2 or more entries */ 16257 spin_lock_irq(&phba->hbalock); 16258 if (list_empty(&phba->fcf.fcf_pri_list) || 16259 list_is_singular(&phba->fcf.fcf_pri_list)) { 16260 spin_unlock_irq(&phba->hbalock); 16261 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16262 "3061 Last IDX %d\n", last_index); 16263 return 0; /* Empty rr list */ 16264 } 16265 spin_unlock_irq(&phba->hbalock); 16266 16267 next_fcf_pri = 0; 16268 /* 16269 * Clear the rr_bmask and set all of the bits that are at this 16270 * priority. 16271 */ 16272 memset(phba->fcf.fcf_rr_bmask, 0, 16273 sizeof(*phba->fcf.fcf_rr_bmask)); 16274 spin_lock_irq(&phba->hbalock); 16275 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16276 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16277 continue; 16278 /* 16279 * the 1st priority that has not FLOGI failed 16280 * will be the highest. 16281 */ 16282 if (!next_fcf_pri) 16283 next_fcf_pri = fcf_pri->fcf_rec.priority; 16284 spin_unlock_irq(&phba->hbalock); 16285 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16286 rc = lpfc_sli4_fcf_rr_index_set(phba, 16287 fcf_pri->fcf_rec.fcf_index); 16288 if (rc) 16289 return 0; 16290 } 16291 spin_lock_irq(&phba->hbalock); 16292 } 16293 /* 16294 * if next_fcf_pri was not set above and the list is not empty then 16295 * we have failed flogis on all of them. So reset flogi failed 16296 * and start at the beginning. 16297 */ 16298 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16299 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16300 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16301 /* 16302 * the 1st priority that has not FLOGI failed 16303 * will be the highest. 16304 */ 16305 if (!next_fcf_pri) 16306 next_fcf_pri = fcf_pri->fcf_rec.priority; 16307 spin_unlock_irq(&phba->hbalock); 16308 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16309 rc = lpfc_sli4_fcf_rr_index_set(phba, 16310 fcf_pri->fcf_rec.fcf_index); 16311 if (rc) 16312 return 0; 16313 } 16314 spin_lock_irq(&phba->hbalock); 16315 } 16316 } else 16317 ret = 1; 16318 spin_unlock_irq(&phba->hbalock); 16319 16320 return ret; 16321 } 16322 /** 16323 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16324 * @phba: pointer to lpfc hba data structure. 16325 * 16326 * This routine is to get the next eligible FCF record index in a round 16327 * robin fashion. If the next eligible FCF record index equals to the 16328 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16329 * shall be returned, otherwise, the next eligible FCF record's index 16330 * shall be returned. 16331 **/ 16332 uint16_t 16333 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16334 { 16335 uint16_t next_fcf_index; 16336 16337 initial_priority: 16338 /* Search start from next bit of currently registered FCF index */ 16339 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16340 16341 next_priority: 16342 /* Determine the next fcf index to check */ 16343 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16344 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16345 LPFC_SLI4_FCF_TBL_INDX_MAX, 16346 next_fcf_index); 16347 16348 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16349 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16350 /* 16351 * If we have wrapped then we need to clear the bits that 16352 * have been tested so that we can detect when we should 16353 * change the priority level. 16354 */ 16355 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16356 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16357 } 16358 16359 16360 /* Check roundrobin failover list empty condition */ 16361 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16362 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16363 /* 16364 * If next fcf index is not found check if there are lower 16365 * Priority level fcf's in the fcf_priority list. 16366 * Set up the rr_bmask with all of the avaiable fcf bits 16367 * at that level and continue the selection process. 16368 */ 16369 if (lpfc_check_next_fcf_pri_level(phba)) 16370 goto initial_priority; 16371 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16372 "2844 No roundrobin failover FCF available\n"); 16373 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16374 return LPFC_FCOE_FCF_NEXT_NONE; 16375 else { 16376 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16377 "3063 Only FCF available idx %d, flag %x\n", 16378 next_fcf_index, 16379 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16380 return next_fcf_index; 16381 } 16382 } 16383 16384 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16385 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16386 LPFC_FCF_FLOGI_FAILED) { 16387 if (list_is_singular(&phba->fcf.fcf_pri_list)) 16388 return LPFC_FCOE_FCF_NEXT_NONE; 16389 16390 goto next_priority; 16391 } 16392 16393 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16394 "2845 Get next roundrobin failover FCF (x%x)\n", 16395 next_fcf_index); 16396 16397 return next_fcf_index; 16398 } 16399 16400 /** 16401 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16402 * @phba: pointer to lpfc hba data structure. 16403 * 16404 * This routine sets the FCF record index in to the eligible bmask for 16405 * roundrobin failover search. It checks to make sure that the index 16406 * does not go beyond the range of the driver allocated bmask dimension 16407 * before setting the bit. 16408 * 16409 * Returns 0 if the index bit successfully set, otherwise, it returns 16410 * -EINVAL. 16411 **/ 16412 int 16413 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16414 { 16415 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16416 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16417 "2610 FCF (x%x) reached driver's book " 16418 "keeping dimension:x%x\n", 16419 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16420 return -EINVAL; 16421 } 16422 /* Set the eligible FCF record index bmask */ 16423 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16424 16425 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16426 "2790 Set FCF (x%x) to roundrobin FCF failover " 16427 "bmask\n", fcf_index); 16428 16429 return 0; 16430 } 16431 16432 /** 16433 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16434 * @phba: pointer to lpfc hba data structure. 16435 * 16436 * This routine clears the FCF record index from the eligible bmask for 16437 * roundrobin failover search. It checks to make sure that the index 16438 * does not go beyond the range of the driver allocated bmask dimension 16439 * before clearing the bit. 16440 **/ 16441 void 16442 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16443 { 16444 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16445 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16446 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16447 "2762 FCF (x%x) reached driver's book " 16448 "keeping dimension:x%x\n", 16449 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16450 return; 16451 } 16452 /* Clear the eligible FCF record index bmask */ 16453 spin_lock_irq(&phba->hbalock); 16454 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16455 list) { 16456 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16457 list_del_init(&fcf_pri->list); 16458 break; 16459 } 16460 } 16461 spin_unlock_irq(&phba->hbalock); 16462 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16463 16464 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16465 "2791 Clear FCF (x%x) from roundrobin failover " 16466 "bmask\n", fcf_index); 16467 } 16468 16469 /** 16470 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16471 * @phba: pointer to lpfc hba data structure. 16472 * 16473 * This routine is the completion routine for the rediscover FCF table mailbox 16474 * command. If the mailbox command returned failure, it will try to stop the 16475 * FCF rediscover wait timer. 16476 **/ 16477 static void 16478 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16479 { 16480 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16481 uint32_t shdr_status, shdr_add_status; 16482 16483 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16484 16485 shdr_status = bf_get(lpfc_mbox_hdr_status, 16486 &redisc_fcf->header.cfg_shdr.response); 16487 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16488 &redisc_fcf->header.cfg_shdr.response); 16489 if (shdr_status || shdr_add_status) { 16490 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16491 "2746 Requesting for FCF rediscovery failed " 16492 "status x%x add_status x%x\n", 16493 shdr_status, shdr_add_status); 16494 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16495 spin_lock_irq(&phba->hbalock); 16496 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16497 spin_unlock_irq(&phba->hbalock); 16498 /* 16499 * CVL event triggered FCF rediscover request failed, 16500 * last resort to re-try current registered FCF entry. 16501 */ 16502 lpfc_retry_pport_discovery(phba); 16503 } else { 16504 spin_lock_irq(&phba->hbalock); 16505 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16506 spin_unlock_irq(&phba->hbalock); 16507 /* 16508 * DEAD FCF event triggered FCF rediscover request 16509 * failed, last resort to fail over as a link down 16510 * to FCF registration. 16511 */ 16512 lpfc_sli4_fcf_dead_failthrough(phba); 16513 } 16514 } else { 16515 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16516 "2775 Start FCF rediscover quiescent timer\n"); 16517 /* 16518 * Start FCF rediscovery wait timer for pending FCF 16519 * before rescan FCF record table. 16520 */ 16521 lpfc_fcf_redisc_wait_start_timer(phba); 16522 } 16523 16524 mempool_free(mbox, phba->mbox_mem_pool); 16525 } 16526 16527 /** 16528 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16529 * @phba: pointer to lpfc hba data structure. 16530 * 16531 * This routine is invoked to request for rediscovery of the entire FCF table 16532 * by the port. 16533 **/ 16534 int 16535 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16536 { 16537 LPFC_MBOXQ_t *mbox; 16538 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16539 int rc, length; 16540 16541 /* Cancel retry delay timers to all vports before FCF rediscover */ 16542 lpfc_cancel_all_vport_retry_delay_timer(phba); 16543 16544 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16545 if (!mbox) { 16546 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16547 "2745 Failed to allocate mbox for " 16548 "requesting FCF rediscover.\n"); 16549 return -ENOMEM; 16550 } 16551 16552 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16553 sizeof(struct lpfc_sli4_cfg_mhdr)); 16554 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16555 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16556 length, LPFC_SLI4_MBX_EMBED); 16557 16558 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16559 /* Set count to 0 for invalidating the entire FCF database */ 16560 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16561 16562 /* Issue the mailbox command asynchronously */ 16563 mbox->vport = phba->pport; 16564 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16565 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16566 16567 if (rc == MBX_NOT_FINISHED) { 16568 mempool_free(mbox, phba->mbox_mem_pool); 16569 return -EIO; 16570 } 16571 return 0; 16572 } 16573 16574 /** 16575 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16576 * @phba: pointer to lpfc hba data structure. 16577 * 16578 * This function is the failover routine as a last resort to the FCF DEAD 16579 * event when driver failed to perform fast FCF failover. 16580 **/ 16581 void 16582 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16583 { 16584 uint32_t link_state; 16585 16586 /* 16587 * Last resort as FCF DEAD event failover will treat this as 16588 * a link down, but save the link state because we don't want 16589 * it to be changed to Link Down unless it is already down. 16590 */ 16591 link_state = phba->link_state; 16592 lpfc_linkdown(phba); 16593 phba->link_state = link_state; 16594 16595 /* Unregister FCF if no devices connected to it */ 16596 lpfc_unregister_unused_fcf(phba); 16597 } 16598 16599 /** 16600 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16601 * @phba: pointer to lpfc hba data structure. 16602 * @rgn23_data: pointer to configure region 23 data. 16603 * 16604 * This function gets SLI3 port configure region 23 data through memory dump 16605 * mailbox command. When it successfully retrieves data, the size of the data 16606 * will be returned, otherwise, 0 will be returned. 16607 **/ 16608 static uint32_t 16609 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16610 { 16611 LPFC_MBOXQ_t *pmb = NULL; 16612 MAILBOX_t *mb; 16613 uint32_t offset = 0; 16614 int rc; 16615 16616 if (!rgn23_data) 16617 return 0; 16618 16619 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16620 if (!pmb) { 16621 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16622 "2600 failed to allocate mailbox memory\n"); 16623 return 0; 16624 } 16625 mb = &pmb->u.mb; 16626 16627 do { 16628 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16629 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16630 16631 if (rc != MBX_SUCCESS) { 16632 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16633 "2601 failed to read config " 16634 "region 23, rc 0x%x Status 0x%x\n", 16635 rc, mb->mbxStatus); 16636 mb->un.varDmp.word_cnt = 0; 16637 } 16638 /* 16639 * dump mem may return a zero when finished or we got a 16640 * mailbox error, either way we are done. 16641 */ 16642 if (mb->un.varDmp.word_cnt == 0) 16643 break; 16644 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16645 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16646 16647 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16648 rgn23_data + offset, 16649 mb->un.varDmp.word_cnt); 16650 offset += mb->un.varDmp.word_cnt; 16651 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16652 16653 mempool_free(pmb, phba->mbox_mem_pool); 16654 return offset; 16655 } 16656 16657 /** 16658 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16659 * @phba: pointer to lpfc hba data structure. 16660 * @rgn23_data: pointer to configure region 23 data. 16661 * 16662 * This function gets SLI4 port configure region 23 data through memory dump 16663 * mailbox command. When it successfully retrieves data, the size of the data 16664 * will be returned, otherwise, 0 will be returned. 16665 **/ 16666 static uint32_t 16667 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16668 { 16669 LPFC_MBOXQ_t *mboxq = NULL; 16670 struct lpfc_dmabuf *mp = NULL; 16671 struct lpfc_mqe *mqe; 16672 uint32_t data_length = 0; 16673 int rc; 16674 16675 if (!rgn23_data) 16676 return 0; 16677 16678 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16679 if (!mboxq) { 16680 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16681 "3105 failed to allocate mailbox memory\n"); 16682 return 0; 16683 } 16684 16685 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16686 goto out; 16687 mqe = &mboxq->u.mqe; 16688 mp = (struct lpfc_dmabuf *) mboxq->context1; 16689 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16690 if (rc) 16691 goto out; 16692 data_length = mqe->un.mb_words[5]; 16693 if (data_length == 0) 16694 goto out; 16695 if (data_length > DMP_RGN23_SIZE) { 16696 data_length = 0; 16697 goto out; 16698 } 16699 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16700 out: 16701 mempool_free(mboxq, phba->mbox_mem_pool); 16702 if (mp) { 16703 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16704 kfree(mp); 16705 } 16706 return data_length; 16707 } 16708 16709 /** 16710 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16711 * @phba: pointer to lpfc hba data structure. 16712 * 16713 * This function read region 23 and parse TLV for port status to 16714 * decide if the user disaled the port. If the TLV indicates the 16715 * port is disabled, the hba_flag is set accordingly. 16716 **/ 16717 void 16718 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16719 { 16720 uint8_t *rgn23_data = NULL; 16721 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16722 uint32_t offset = 0; 16723 16724 /* Get adapter Region 23 data */ 16725 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16726 if (!rgn23_data) 16727 goto out; 16728 16729 if (phba->sli_rev < LPFC_SLI_REV4) 16730 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16731 else { 16732 if_type = bf_get(lpfc_sli_intf_if_type, 16733 &phba->sli4_hba.sli_intf); 16734 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16735 goto out; 16736 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16737 } 16738 16739 if (!data_size) 16740 goto out; 16741 16742 /* Check the region signature first */ 16743 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16744 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16745 "2619 Config region 23 has bad signature\n"); 16746 goto out; 16747 } 16748 offset += 4; 16749 16750 /* Check the data structure version */ 16751 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16752 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16753 "2620 Config region 23 has bad version\n"); 16754 goto out; 16755 } 16756 offset += 4; 16757 16758 /* Parse TLV entries in the region */ 16759 while (offset < data_size) { 16760 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16761 break; 16762 /* 16763 * If the TLV is not driver specific TLV or driver id is 16764 * not linux driver id, skip the record. 16765 */ 16766 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16767 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16768 (rgn23_data[offset + 3] != 0)) { 16769 offset += rgn23_data[offset + 1] * 4 + 4; 16770 continue; 16771 } 16772 16773 /* Driver found a driver specific TLV in the config region */ 16774 sub_tlv_len = rgn23_data[offset + 1] * 4; 16775 offset += 4; 16776 tlv_offset = 0; 16777 16778 /* 16779 * Search for configured port state sub-TLV. 16780 */ 16781 while ((offset < data_size) && 16782 (tlv_offset < sub_tlv_len)) { 16783 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16784 offset += 4; 16785 tlv_offset += 4; 16786 break; 16787 } 16788 if (rgn23_data[offset] != PORT_STE_TYPE) { 16789 offset += rgn23_data[offset + 1] * 4 + 4; 16790 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16791 continue; 16792 } 16793 16794 /* This HBA contains PORT_STE configured */ 16795 if (!rgn23_data[offset + 2]) 16796 phba->hba_flag |= LINK_DISABLED; 16797 16798 goto out; 16799 } 16800 } 16801 16802 out: 16803 kfree(rgn23_data); 16804 return; 16805 } 16806 16807 /** 16808 * lpfc_wr_object - write an object to the firmware 16809 * @phba: HBA structure that indicates port to create a queue on. 16810 * @dmabuf_list: list of dmabufs to write to the port. 16811 * @size: the total byte value of the objects to write to the port. 16812 * @offset: the current offset to be used to start the transfer. 16813 * 16814 * This routine will create a wr_object mailbox command to send to the port. 16815 * the mailbox command will be constructed using the dma buffers described in 16816 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 16817 * BDEs that the imbedded mailbox can support. The @offset variable will be 16818 * used to indicate the starting offset of the transfer and will also return 16819 * the offset after the write object mailbox has completed. @size is used to 16820 * determine the end of the object and whether the eof bit should be set. 16821 * 16822 * Return 0 is successful and offset will contain the the new offset to use 16823 * for the next write. 16824 * Return negative value for error cases. 16825 **/ 16826 int 16827 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 16828 uint32_t size, uint32_t *offset) 16829 { 16830 struct lpfc_mbx_wr_object *wr_object; 16831 LPFC_MBOXQ_t *mbox; 16832 int rc = 0, i = 0; 16833 uint32_t shdr_status, shdr_add_status; 16834 uint32_t mbox_tmo; 16835 union lpfc_sli4_cfg_shdr *shdr; 16836 struct lpfc_dmabuf *dmabuf; 16837 uint32_t written = 0; 16838 16839 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16840 if (!mbox) 16841 return -ENOMEM; 16842 16843 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16844 LPFC_MBOX_OPCODE_WRITE_OBJECT, 16845 sizeof(struct lpfc_mbx_wr_object) - 16846 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16847 16848 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 16849 wr_object->u.request.write_offset = *offset; 16850 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 16851 wr_object->u.request.object_name[0] = 16852 cpu_to_le32(wr_object->u.request.object_name[0]); 16853 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 16854 list_for_each_entry(dmabuf, dmabuf_list, list) { 16855 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 16856 break; 16857 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 16858 wr_object->u.request.bde[i].addrHigh = 16859 putPaddrHigh(dmabuf->phys); 16860 if (written + SLI4_PAGE_SIZE >= size) { 16861 wr_object->u.request.bde[i].tus.f.bdeSize = 16862 (size - written); 16863 written += (size - written); 16864 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 16865 } else { 16866 wr_object->u.request.bde[i].tus.f.bdeSize = 16867 SLI4_PAGE_SIZE; 16868 written += SLI4_PAGE_SIZE; 16869 } 16870 i++; 16871 } 16872 wr_object->u.request.bde_count = i; 16873 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 16874 if (!phba->sli4_hba.intr_enable) 16875 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16876 else { 16877 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16878 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16879 } 16880 /* The IOCTL status is embedded in the mailbox subheader. */ 16881 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 16882 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16883 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16884 if (rc != MBX_TIMEOUT) 16885 mempool_free(mbox, phba->mbox_mem_pool); 16886 if (shdr_status || shdr_add_status || rc) { 16887 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16888 "3025 Write Object mailbox failed with " 16889 "status x%x add_status x%x, mbx status x%x\n", 16890 shdr_status, shdr_add_status, rc); 16891 rc = -ENXIO; 16892 } else 16893 *offset += wr_object->u.response.actual_write_length; 16894 return rc; 16895 } 16896 16897 /** 16898 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 16899 * @vport: pointer to vport data structure. 16900 * 16901 * This function iterate through the mailboxq and clean up all REG_LOGIN 16902 * and REG_VPI mailbox commands associated with the vport. This function 16903 * is called when driver want to restart discovery of the vport due to 16904 * a Clear Virtual Link event. 16905 **/ 16906 void 16907 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 16908 { 16909 struct lpfc_hba *phba = vport->phba; 16910 LPFC_MBOXQ_t *mb, *nextmb; 16911 struct lpfc_dmabuf *mp; 16912 struct lpfc_nodelist *ndlp; 16913 struct lpfc_nodelist *act_mbx_ndlp = NULL; 16914 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 16915 LIST_HEAD(mbox_cmd_list); 16916 uint8_t restart_loop; 16917 16918 /* Clean up internally queued mailbox commands with the vport */ 16919 spin_lock_irq(&phba->hbalock); 16920 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 16921 if (mb->vport != vport) 16922 continue; 16923 16924 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16925 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16926 continue; 16927 16928 list_del(&mb->list); 16929 list_add_tail(&mb->list, &mbox_cmd_list); 16930 } 16931 /* Clean up active mailbox command with the vport */ 16932 mb = phba->sli.mbox_active; 16933 if (mb && (mb->vport == vport)) { 16934 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 16935 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 16936 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16937 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16938 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 16939 /* Put reference count for delayed processing */ 16940 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 16941 /* Unregister the RPI when mailbox complete */ 16942 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16943 } 16944 } 16945 /* Cleanup any mailbox completions which are not yet processed */ 16946 do { 16947 restart_loop = 0; 16948 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 16949 /* 16950 * If this mailox is already processed or it is 16951 * for another vport ignore it. 16952 */ 16953 if ((mb->vport != vport) || 16954 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 16955 continue; 16956 16957 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16958 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16959 continue; 16960 16961 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16962 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16963 ndlp = (struct lpfc_nodelist *)mb->context2; 16964 /* Unregister the RPI when mailbox complete */ 16965 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16966 restart_loop = 1; 16967 spin_unlock_irq(&phba->hbalock); 16968 spin_lock(shost->host_lock); 16969 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16970 spin_unlock(shost->host_lock); 16971 spin_lock_irq(&phba->hbalock); 16972 break; 16973 } 16974 } 16975 } while (restart_loop); 16976 16977 spin_unlock_irq(&phba->hbalock); 16978 16979 /* Release the cleaned-up mailbox commands */ 16980 while (!list_empty(&mbox_cmd_list)) { 16981 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 16982 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16983 mp = (struct lpfc_dmabuf *) (mb->context1); 16984 if (mp) { 16985 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 16986 kfree(mp); 16987 } 16988 ndlp = (struct lpfc_nodelist *) mb->context2; 16989 mb->context2 = NULL; 16990 if (ndlp) { 16991 spin_lock(shost->host_lock); 16992 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16993 spin_unlock(shost->host_lock); 16994 lpfc_nlp_put(ndlp); 16995 } 16996 } 16997 mempool_free(mb, phba->mbox_mem_pool); 16998 } 16999 17000 /* Release the ndlp with the cleaned-up active mailbox command */ 17001 if (act_mbx_ndlp) { 17002 spin_lock(shost->host_lock); 17003 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17004 spin_unlock(shost->host_lock); 17005 lpfc_nlp_put(act_mbx_ndlp); 17006 } 17007 } 17008 17009 /** 17010 * lpfc_drain_txq - Drain the txq 17011 * @phba: Pointer to HBA context object. 17012 * 17013 * This function attempt to submit IOCBs on the txq 17014 * to the adapter. For SLI4 adapters, the txq contains 17015 * ELS IOCBs that have been deferred because the there 17016 * are no SGLs. This congestion can occur with large 17017 * vport counts during node discovery. 17018 **/ 17019 17020 uint32_t 17021 lpfc_drain_txq(struct lpfc_hba *phba) 17022 { 17023 LIST_HEAD(completions); 17024 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 17025 struct lpfc_iocbq *piocbq = NULL; 17026 unsigned long iflags = 0; 17027 char *fail_msg = NULL; 17028 struct lpfc_sglq *sglq; 17029 union lpfc_wqe wqe; 17030 uint32_t txq_cnt = 0; 17031 17032 spin_lock_irqsave(&pring->ring_lock, iflags); 17033 list_for_each_entry(piocbq, &pring->txq, list) { 17034 txq_cnt++; 17035 } 17036 17037 if (txq_cnt > pring->txq_max) 17038 pring->txq_max = txq_cnt; 17039 17040 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17041 17042 while (!list_empty(&pring->txq)) { 17043 spin_lock_irqsave(&pring->ring_lock, iflags); 17044 17045 piocbq = lpfc_sli_ringtx_get(phba, pring); 17046 if (!piocbq) { 17047 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17048 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17049 "2823 txq empty and txq_cnt is %d\n ", 17050 txq_cnt); 17051 break; 17052 } 17053 sglq = __lpfc_sli_get_sglq(phba, piocbq); 17054 if (!sglq) { 17055 __lpfc_sli_ringtx_put(phba, pring, piocbq); 17056 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17057 break; 17058 } 17059 txq_cnt--; 17060 17061 /* The xri and iocb resources secured, 17062 * attempt to issue request 17063 */ 17064 piocbq->sli4_lxritag = sglq->sli4_lxritag; 17065 piocbq->sli4_xritag = sglq->sli4_xritag; 17066 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 17067 fail_msg = "to convert bpl to sgl"; 17068 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 17069 fail_msg = "to convert iocb to wqe"; 17070 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 17071 fail_msg = " - Wq is full"; 17072 else 17073 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 17074 17075 if (fail_msg) { 17076 /* Failed means we can't issue and need to cancel */ 17077 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17078 "2822 IOCB failed %s iotag 0x%x " 17079 "xri 0x%x\n", 17080 fail_msg, 17081 piocbq->iotag, piocbq->sli4_xritag); 17082 list_add_tail(&piocbq->list, &completions); 17083 } 17084 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17085 } 17086 17087 /* Cancel all the IOCBs that cannot be issued */ 17088 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17089 IOERR_SLI_ABORTED); 17090 17091 return txq_cnt; 17092 } 17093