1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1212 rrq->nlp_DID = ndlp->nlp_DID; 1213 rrq->vport = ndlp->vport; 1214 rrq->rxid = rxid; 1215 1216 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1220 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 outnl: 1227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1228 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1229 " DID:0x%x Send:%d\n", 1230 xritag, rxid, ndlp->nlp_DID, send_rrq); 1231 return -EINVAL; 1232 } 1233 1234 /** 1235 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1236 * @phba: Pointer to HBA context object. 1237 * @piocbq: Pointer to the iocbq. 1238 * 1239 * The driver calls this function with either the nvme ls ring lock 1240 * or the fc els ring lock held depending on the iocb usage. This function 1241 * gets a new driver sglq object from the sglq list. If the list is not empty 1242 * then it is successful, it returns pointer to the newly allocated sglq 1243 * object else it returns NULL. 1244 **/ 1245 static struct lpfc_sglq * 1246 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1247 { 1248 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1249 struct lpfc_sglq *sglq = NULL; 1250 struct lpfc_sglq *start_sglq = NULL; 1251 struct lpfc_io_buf *lpfc_cmd; 1252 struct lpfc_nodelist *ndlp; 1253 int found = 0; 1254 u8 cmnd; 1255 1256 cmnd = get_job_cmnd(phba, piocbq); 1257 1258 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1259 lpfc_cmd = piocbq->io_buf; 1260 ndlp = lpfc_cmd->rdata->pnode; 1261 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1262 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1263 ndlp = piocbq->ndlp; 1264 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1265 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1266 ndlp = NULL; 1267 else 1268 ndlp = piocbq->ndlp; 1269 } else { 1270 ndlp = piocbq->ndlp; 1271 } 1272 1273 spin_lock(&phba->sli4_hba.sgl_list_lock); 1274 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1275 start_sglq = sglq; 1276 while (!found) { 1277 if (!sglq) 1278 break; 1279 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1280 test_bit(sglq->sli4_lxritag, 1281 ndlp->active_rrqs_xri_bitmap)) { 1282 /* This xri has an rrq outstanding for this DID. 1283 * put it back in the list and get another xri. 1284 */ 1285 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1286 sglq = NULL; 1287 list_remove_head(lpfc_els_sgl_list, sglq, 1288 struct lpfc_sglq, list); 1289 if (sglq == start_sglq) { 1290 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1291 sglq = NULL; 1292 break; 1293 } else 1294 continue; 1295 } 1296 sglq->ndlp = ndlp; 1297 found = 1; 1298 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1299 sglq->state = SGL_ALLOCATED; 1300 } 1301 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1302 return sglq; 1303 } 1304 1305 /** 1306 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1307 * @phba: Pointer to HBA context object. 1308 * @piocbq: Pointer to the iocbq. 1309 * 1310 * This function is called with the sgl_list lock held. This function 1311 * gets a new driver sglq object from the sglq list. If the 1312 * list is not empty then it is successful, it returns pointer to the newly 1313 * allocated sglq object else it returns NULL. 1314 **/ 1315 struct lpfc_sglq * 1316 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1317 { 1318 struct list_head *lpfc_nvmet_sgl_list; 1319 struct lpfc_sglq *sglq = NULL; 1320 1321 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1322 1323 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1324 1325 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1326 if (!sglq) 1327 return NULL; 1328 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1329 sglq->state = SGL_ALLOCATED; 1330 return sglq; 1331 } 1332 1333 /** 1334 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1335 * @phba: Pointer to HBA context object. 1336 * 1337 * This function is called with no lock held. This function 1338 * allocates a new driver iocb object from the iocb pool. If the 1339 * allocation is successful, it returns pointer to the newly 1340 * allocated iocb object else it returns NULL. 1341 **/ 1342 struct lpfc_iocbq * 1343 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1344 { 1345 struct lpfc_iocbq * iocbq = NULL; 1346 unsigned long iflags; 1347 1348 spin_lock_irqsave(&phba->hbalock, iflags); 1349 iocbq = __lpfc_sli_get_iocbq(phba); 1350 spin_unlock_irqrestore(&phba->hbalock, iflags); 1351 return iocbq; 1352 } 1353 1354 /** 1355 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1356 * @phba: Pointer to HBA context object. 1357 * @iocbq: Pointer to driver iocb object. 1358 * 1359 * This function is called to release the driver iocb object 1360 * to the iocb pool. The iotag in the iocb object 1361 * does not change for each use of the iocb object. This function 1362 * clears all other fields of the iocb object when it is freed. 1363 * The sqlq structure that holds the xritag and phys and virtual 1364 * mappings for the scatter gather list is retrieved from the 1365 * active array of sglq. The get of the sglq pointer also clears 1366 * the entry in the array. If the status of the IO indiactes that 1367 * this IO was aborted then the sglq entry it put on the 1368 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1369 * IO has good status or fails for any other reason then the sglq 1370 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1371 * asserted held in the code path calling this routine. 1372 **/ 1373 static void 1374 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1375 { 1376 struct lpfc_sglq *sglq; 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset_startat(iocbq, 0, wqe); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 1457 /* 1458 * Clean all volatile data fields, preserve iotag and node struct. 1459 */ 1460 memset_startat(iocbq, 0, iocb); 1461 iocbq->sli4_xritag = NO_XRI; 1462 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1463 } 1464 1465 /** 1466 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1467 * @phba: Pointer to HBA context object. 1468 * @iocbq: Pointer to driver iocb object. 1469 * 1470 * This function is called with hbalock held to release driver 1471 * iocb object to the iocb pool. The iotag in the iocb object 1472 * does not change for each use of the iocb object. This function 1473 * clears all other fields of the iocb object when it is freed. 1474 **/ 1475 static void 1476 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1477 { 1478 lockdep_assert_held(&phba->hbalock); 1479 1480 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1481 phba->iocb_cnt--; 1482 } 1483 1484 /** 1485 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1486 * @phba: Pointer to HBA context object. 1487 * @iocbq: Pointer to driver iocb object. 1488 * 1489 * This function is called with no lock held to release the iocb to 1490 * iocb pool. 1491 **/ 1492 void 1493 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1494 { 1495 unsigned long iflags; 1496 1497 /* 1498 * Clean all volatile data fields, preserve iotag and node struct. 1499 */ 1500 spin_lock_irqsave(&phba->hbalock, iflags); 1501 __lpfc_sli_release_iocbq(phba, iocbq); 1502 spin_unlock_irqrestore(&phba->hbalock, iflags); 1503 } 1504 1505 /** 1506 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1507 * @phba: Pointer to HBA context object. 1508 * @iocblist: List of IOCBs. 1509 * @ulpstatus: ULP status in IOCB command field. 1510 * @ulpWord4: ULP word-4 in IOCB command field. 1511 * 1512 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1513 * on the list by invoking the complete callback function associated with the 1514 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1515 * fields. 1516 **/ 1517 void 1518 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1519 uint32_t ulpstatus, uint32_t ulpWord4) 1520 { 1521 struct lpfc_iocbq *piocb; 1522 1523 while (!list_empty(iocblist)) { 1524 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1525 if (piocb->cmd_cmpl) { 1526 if (piocb->cmd_flag & LPFC_IO_NVME) { 1527 lpfc_nvme_cancel_iocb(phba, piocb, 1528 ulpstatus, ulpWord4); 1529 } else { 1530 if (phba->sli_rev == LPFC_SLI_REV4) { 1531 bf_set(lpfc_wcqe_c_status, 1532 &piocb->wcqe_cmpl, ulpstatus); 1533 piocb->wcqe_cmpl.parameter = ulpWord4; 1534 } else { 1535 piocb->iocb.ulpStatus = ulpstatus; 1536 piocb->iocb.un.ulpWord[4] = ulpWord4; 1537 } 1538 (piocb->cmd_cmpl) (phba, piocb, piocb); 1539 } 1540 } else { 1541 lpfc_sli_release_iocbq(phba, piocb); 1542 } 1543 } 1544 return; 1545 } 1546 1547 /** 1548 * lpfc_sli_iocb_cmd_type - Get the iocb type 1549 * @iocb_cmnd: iocb command code. 1550 * 1551 * This function is called by ring event handler function to get the iocb type. 1552 * This function translates the iocb command to an iocb command type used to 1553 * decide the final disposition of each completed IOCB. 1554 * The function returns 1555 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1556 * LPFC_SOL_IOCB if it is a solicited iocb completion 1557 * LPFC_ABORT_IOCB if it is an abort iocb 1558 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1559 * 1560 * The caller is not required to hold any lock. 1561 **/ 1562 static lpfc_iocb_type 1563 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1564 { 1565 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1566 1567 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1568 return 0; 1569 1570 switch (iocb_cmnd) { 1571 case CMD_XMIT_SEQUENCE_CR: 1572 case CMD_XMIT_SEQUENCE_CX: 1573 case CMD_XMIT_BCAST_CN: 1574 case CMD_XMIT_BCAST_CX: 1575 case CMD_ELS_REQUEST_CR: 1576 case CMD_ELS_REQUEST_CX: 1577 case CMD_CREATE_XRI_CR: 1578 case CMD_CREATE_XRI_CX: 1579 case CMD_GET_RPI_CN: 1580 case CMD_XMIT_ELS_RSP_CX: 1581 case CMD_GET_RPI_CR: 1582 case CMD_FCP_IWRITE_CR: 1583 case CMD_FCP_IWRITE_CX: 1584 case CMD_FCP_IREAD_CR: 1585 case CMD_FCP_IREAD_CX: 1586 case CMD_FCP_ICMND_CR: 1587 case CMD_FCP_ICMND_CX: 1588 case CMD_FCP_TSEND_CX: 1589 case CMD_FCP_TRSP_CX: 1590 case CMD_FCP_TRECEIVE_CX: 1591 case CMD_FCP_AUTO_TRSP_CX: 1592 case CMD_ADAPTER_MSG: 1593 case CMD_ADAPTER_DUMP: 1594 case CMD_XMIT_SEQUENCE64_CR: 1595 case CMD_XMIT_SEQUENCE64_CX: 1596 case CMD_XMIT_BCAST64_CN: 1597 case CMD_XMIT_BCAST64_CX: 1598 case CMD_ELS_REQUEST64_CR: 1599 case CMD_ELS_REQUEST64_CX: 1600 case CMD_FCP_IWRITE64_CR: 1601 case CMD_FCP_IWRITE64_CX: 1602 case CMD_FCP_IREAD64_CR: 1603 case CMD_FCP_IREAD64_CX: 1604 case CMD_FCP_ICMND64_CR: 1605 case CMD_FCP_ICMND64_CX: 1606 case CMD_FCP_TSEND64_CX: 1607 case CMD_FCP_TRSP64_CX: 1608 case CMD_FCP_TRECEIVE64_CX: 1609 case CMD_GEN_REQUEST64_CR: 1610 case CMD_GEN_REQUEST64_CX: 1611 case CMD_XMIT_ELS_RSP64_CX: 1612 case DSSCMD_IWRITE64_CR: 1613 case DSSCMD_IWRITE64_CX: 1614 case DSSCMD_IREAD64_CR: 1615 case DSSCMD_IREAD64_CX: 1616 case CMD_SEND_FRAME: 1617 type = LPFC_SOL_IOCB; 1618 break; 1619 case CMD_ABORT_XRI_CN: 1620 case CMD_ABORT_XRI_CX: 1621 case CMD_CLOSE_XRI_CN: 1622 case CMD_CLOSE_XRI_CX: 1623 case CMD_XRI_ABORTED_CX: 1624 case CMD_ABORT_MXRI64_CN: 1625 case CMD_XMIT_BLS_RSP64_CX: 1626 type = LPFC_ABORT_IOCB; 1627 break; 1628 case CMD_RCV_SEQUENCE_CX: 1629 case CMD_RCV_ELS_REQ_CX: 1630 case CMD_RCV_SEQUENCE64_CX: 1631 case CMD_RCV_ELS_REQ64_CX: 1632 case CMD_ASYNC_STATUS: 1633 case CMD_IOCB_RCV_SEQ64_CX: 1634 case CMD_IOCB_RCV_ELS64_CX: 1635 case CMD_IOCB_RCV_CONT64_CX: 1636 case CMD_IOCB_RET_XRI64_CX: 1637 type = LPFC_UNSOL_IOCB; 1638 break; 1639 case CMD_IOCB_XMIT_MSEQ64_CR: 1640 case CMD_IOCB_XMIT_MSEQ64_CX: 1641 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1642 case CMD_IOCB_RCV_ELS_LIST64_CX: 1643 case CMD_IOCB_CLOSE_EXTENDED_CN: 1644 case CMD_IOCB_ABORT_EXTENDED_CN: 1645 case CMD_IOCB_RET_HBQE64_CN: 1646 case CMD_IOCB_FCP_IBIDIR64_CR: 1647 case CMD_IOCB_FCP_IBIDIR64_CX: 1648 case CMD_IOCB_FCP_ITASKMGT64_CX: 1649 case CMD_IOCB_LOGENTRY_CN: 1650 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1651 printk("%s - Unhandled SLI-3 Command x%x\n", 1652 __func__, iocb_cmnd); 1653 type = LPFC_UNKNOWN_IOCB; 1654 break; 1655 default: 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 } 1659 1660 return type; 1661 } 1662 1663 /** 1664 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1665 * @phba: Pointer to HBA context object. 1666 * 1667 * This function is called from SLI initialization code 1668 * to configure every ring of the HBA's SLI interface. The 1669 * caller is not required to hold any lock. This function issues 1670 * a config_ring mailbox command for each ring. 1671 * This function returns zero if successful else returns a negative 1672 * error code. 1673 **/ 1674 static int 1675 lpfc_sli_ring_map(struct lpfc_hba *phba) 1676 { 1677 struct lpfc_sli *psli = &phba->sli; 1678 LPFC_MBOXQ_t *pmb; 1679 MAILBOX_t *pmbox; 1680 int i, rc, ret = 0; 1681 1682 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1683 if (!pmb) 1684 return -ENOMEM; 1685 pmbox = &pmb->u.mb; 1686 phba->link_state = LPFC_INIT_MBX_CMDS; 1687 for (i = 0; i < psli->num_rings; i++) { 1688 lpfc_config_ring(phba, i, pmb); 1689 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1690 if (rc != MBX_SUCCESS) { 1691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1692 "0446 Adapter failed to init (%d), " 1693 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1694 "ring %d\n", 1695 rc, pmbox->mbxCommand, 1696 pmbox->mbxStatus, i); 1697 phba->link_state = LPFC_HBA_ERROR; 1698 ret = -ENXIO; 1699 break; 1700 } 1701 } 1702 mempool_free(pmb, phba->mbox_mem_pool); 1703 return ret; 1704 } 1705 1706 /** 1707 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1708 * @phba: Pointer to HBA context object. 1709 * @pring: Pointer to driver SLI ring object. 1710 * @piocb: Pointer to the driver iocb object. 1711 * 1712 * The driver calls this function with the hbalock held for SLI3 ports or 1713 * the ring lock held for SLI4 ports. The function adds the 1714 * new iocb to txcmplq of the given ring. This function always returns 1715 * 0. If this function is called for ELS ring, this function checks if 1716 * there is a vport associated with the ELS command. This function also 1717 * starts els_tmofunc timer if this is an ELS command. 1718 **/ 1719 static int 1720 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1721 struct lpfc_iocbq *piocb) 1722 { 1723 u32 ulp_command = 0; 1724 1725 BUG_ON(!piocb); 1726 ulp_command = get_job_cmnd(phba, piocb); 1727 1728 list_add_tail(&piocb->list, &pring->txcmplq); 1729 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1730 pring->txcmplq_cnt++; 1731 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1732 (ulp_command != CMD_ABORT_XRI_WQE) && 1733 (ulp_command != CMD_ABORT_XRI_CN) && 1734 (ulp_command != CMD_CLOSE_XRI_CN)) { 1735 BUG_ON(!piocb->vport); 1736 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1737 mod_timer(&piocb->vport->els_tmofunc, 1738 jiffies + secs_to_jiffies(phba->fc_ratov << 1)); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val, cgn_sig_freq; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 spin_lock_irqsave(&phba->hbalock, iflags); 1942 1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1945 phba->link_state < LPFC_LINK_UP) { 1946 ret_val = 0; 1947 goto out_unlock; 1948 } 1949 1950 sync_buf = __lpfc_sli_get_iocbq(phba); 1951 if (!sync_buf) { 1952 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1953 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1954 ret_val = ENOMEM; 1955 goto out_unlock; 1956 } 1957 1958 wqe = &sync_buf->wqe; 1959 1960 /* WQEs are reused. Clear stale data and set key fields to zero */ 1961 memset(wqe, 0, sizeof(*wqe)); 1962 1963 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1964 if (!ms) { 1965 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1966 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1967 phba->fc_eventTag); 1968 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1969 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1970 goto initpath; 1971 } 1972 1973 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1974 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1975 1976 /* Check for alarms / warnings */ 1977 if (atot) { 1978 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1979 /* We hit an Signal alarm condition */ 1980 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1981 } else { 1982 /* We hit a FPIN alarm condition */ 1983 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1984 } 1985 } else if (wtot) { 1986 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1987 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1988 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq : 1989 lpfc_fabric_cgn_frequency; 1990 /* We hit an Signal warning condition */ 1991 max = LPFC_SEC_TO_MSEC / cgn_sig_freq * 1992 lpfc_acqe_cgn_frequency; 1993 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1994 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1995 warn_sync_period = lpfc_acqe_cgn_frequency; 1996 } else { 1997 /* We hit a FPIN warning condition */ 1998 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2000 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2001 warn_sync_period = 2002 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2003 } 2004 } 2005 2006 /* Update total read blocks during previous timer interval */ 2007 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2008 2009 initpath: 2010 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2011 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2012 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2013 2014 /* Setup reqtag to match the wqe completion. */ 2015 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2016 2017 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2018 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2019 2020 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2021 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2022 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2023 2024 sync_buf->vport = phba->pport; 2025 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2026 sync_buf->cmd_dmabuf = NULL; 2027 sync_buf->rsp_dmabuf = NULL; 2028 sync_buf->bpl_dmabuf = NULL; 2029 sync_buf->sli4_xritag = NO_XRI; 2030 2031 sync_buf->cmd_flag |= LPFC_IO_CMF; 2032 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2033 if (ret_val) { 2034 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2035 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2036 ret_val); 2037 __lpfc_sli_release_iocbq(phba, sync_buf); 2038 } 2039 out_unlock: 2040 spin_unlock_irqrestore(&phba->hbalock, iflags); 2041 return ret_val; 2042 } 2043 2044 /** 2045 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2046 * @phba: Pointer to HBA context object. 2047 * @pring: Pointer to driver SLI ring object. 2048 * 2049 * This function is called with hbalock held and the caller must post the 2050 * iocb without releasing the lock. If the caller releases the lock, 2051 * iocb slot returned by the function is not guaranteed to be available. 2052 * The function returns pointer to the next available iocb slot if there 2053 * is available slot in the ring, else it returns NULL. 2054 * If the get index of the ring is ahead of the put index, the function 2055 * will post an error attention event to the worker thread to take the 2056 * HBA to offline state. 2057 **/ 2058 static IOCB_t * 2059 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2060 { 2061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2062 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2063 2064 lockdep_assert_held(&phba->hbalock); 2065 2066 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2067 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2068 pring->sli.sli3.next_cmdidx = 0; 2069 2070 if (unlikely(pring->sli.sli3.local_getidx == 2071 pring->sli.sli3.next_cmdidx)) { 2072 2073 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2074 2075 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2077 "0315 Ring %d issue: portCmdGet %d " 2078 "is bigger than cmd ring %d\n", 2079 pring->ringno, 2080 pring->sli.sli3.local_getidx, 2081 max_cmd_idx); 2082 2083 phba->link_state = LPFC_HBA_ERROR; 2084 /* 2085 * All error attention handlers are posted to 2086 * worker thread 2087 */ 2088 phba->work_ha |= HA_ERATT; 2089 phba->work_hs = HS_FFER3; 2090 2091 lpfc_worker_wake_up(phba); 2092 2093 return NULL; 2094 } 2095 2096 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2097 return NULL; 2098 } 2099 2100 return lpfc_cmd_iocb(phba, pring); 2101 } 2102 2103 /** 2104 * lpfc_sli_next_iotag - Get an iotag for the iocb 2105 * @phba: Pointer to HBA context object. 2106 * @iocbq: Pointer to driver iocb object. 2107 * 2108 * This function gets an iotag for the iocb. If there is no unused iotag and 2109 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2110 * array and assigns a new iotag. 2111 * The function returns the allocated iotag if successful, else returns zero. 2112 * Zero is not a valid iotag. 2113 * The caller is not required to hold any lock. 2114 **/ 2115 uint16_t 2116 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2117 { 2118 struct lpfc_iocbq **new_arr; 2119 struct lpfc_iocbq **old_arr; 2120 size_t new_len; 2121 struct lpfc_sli *psli = &phba->sli; 2122 uint16_t iotag; 2123 2124 spin_lock_irq(&phba->hbalock); 2125 iotag = psli->last_iotag; 2126 if(++iotag < psli->iocbq_lookup_len) { 2127 psli->last_iotag = iotag; 2128 psli->iocbq_lookup[iotag] = iocbq; 2129 spin_unlock_irq(&phba->hbalock); 2130 iocbq->iotag = iotag; 2131 return iotag; 2132 } else if (psli->iocbq_lookup_len < (0xffff 2133 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2134 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2135 spin_unlock_irq(&phba->hbalock); 2136 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2137 GFP_KERNEL); 2138 if (new_arr) { 2139 spin_lock_irq(&phba->hbalock); 2140 old_arr = psli->iocbq_lookup; 2141 if (new_len <= psli->iocbq_lookup_len) { 2142 /* highly unprobable case */ 2143 kfree(new_arr); 2144 iotag = psli->last_iotag; 2145 if(++iotag < psli->iocbq_lookup_len) { 2146 psli->last_iotag = iotag; 2147 psli->iocbq_lookup[iotag] = iocbq; 2148 spin_unlock_irq(&phba->hbalock); 2149 iocbq->iotag = iotag; 2150 return iotag; 2151 } 2152 spin_unlock_irq(&phba->hbalock); 2153 return 0; 2154 } 2155 if (psli->iocbq_lookup) 2156 memcpy(new_arr, old_arr, 2157 ((psli->last_iotag + 1) * 2158 sizeof (struct lpfc_iocbq *))); 2159 psli->iocbq_lookup = new_arr; 2160 psli->iocbq_lookup_len = new_len; 2161 psli->last_iotag = iotag; 2162 psli->iocbq_lookup[iotag] = iocbq; 2163 spin_unlock_irq(&phba->hbalock); 2164 iocbq->iotag = iotag; 2165 kfree(old_arr); 2166 return iotag; 2167 } 2168 } else 2169 spin_unlock_irq(&phba->hbalock); 2170 2171 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2172 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2173 psli->last_iotag); 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2180 * @phba: Pointer to HBA context object. 2181 * @pring: Pointer to driver SLI ring object. 2182 * @iocb: Pointer to iocb slot in the ring. 2183 * @nextiocb: Pointer to driver iocb object which need to be 2184 * posted to firmware. 2185 * 2186 * This function is called to post a new iocb to the firmware. This 2187 * function copies the new iocb to ring iocb slot and updates the 2188 * ring pointers. It adds the new iocb to txcmplq if there is 2189 * a completion call back for this iocb else the function will free the 2190 * iocb object. The hbalock is asserted held in the code path calling 2191 * this routine. 2192 **/ 2193 static void 2194 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2195 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2196 { 2197 /* 2198 * Set up an iotag 2199 */ 2200 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2201 2202 2203 if (pring->ringno == LPFC_ELS_RING) { 2204 lpfc_debugfs_slow_ring_trc(phba, 2205 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2206 *(((uint32_t *) &nextiocb->iocb) + 4), 2207 *(((uint32_t *) &nextiocb->iocb) + 6), 2208 *(((uint32_t *) &nextiocb->iocb) + 7)); 2209 } 2210 2211 /* 2212 * Issue iocb command to adapter 2213 */ 2214 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2215 wmb(); 2216 pring->stats.iocb_cmd++; 2217 2218 /* 2219 * If there is no completion routine to call, we can release the 2220 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2221 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2222 */ 2223 if (nextiocb->cmd_cmpl) 2224 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2225 else 2226 __lpfc_sli_release_iocbq(phba, nextiocb); 2227 2228 /* 2229 * Let the HBA know what IOCB slot will be the next one the 2230 * driver will put a command into. 2231 */ 2232 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2233 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2234 } 2235 2236 /** 2237 * lpfc_sli_update_full_ring - Update the chip attention register 2238 * @phba: Pointer to HBA context object. 2239 * @pring: Pointer to driver SLI ring object. 2240 * 2241 * The caller is not required to hold any lock for calling this function. 2242 * This function updates the chip attention bits for the ring to inform firmware 2243 * that there are pending work to be done for this ring and requests an 2244 * interrupt when there is space available in the ring. This function is 2245 * called when the driver is unable to post more iocbs to the ring due 2246 * to unavailability of space in the ring. 2247 **/ 2248 static void 2249 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2250 { 2251 int ringno = pring->ringno; 2252 2253 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2254 2255 wmb(); 2256 2257 /* 2258 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2259 * The HBA will tell us when an IOCB entry is available. 2260 */ 2261 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 2264 pring->stats.iocb_cmd_full++; 2265 } 2266 2267 /** 2268 * lpfc_sli_update_ring - Update chip attention register 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function updates the chip attention register bit for the 2273 * given ring to inform HBA that there is more work to be done 2274 * in this ring. The caller is not required to hold any lock. 2275 **/ 2276 static void 2277 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 int ringno = pring->ringno; 2280 2281 /* 2282 * Tell the HBA that there is work to do in this ring. 2283 */ 2284 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2285 wmb(); 2286 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2287 readl(phba->CAregaddr); /* flush */ 2288 } 2289 } 2290 2291 /** 2292 * lpfc_sli_resume_iocb - Process iocbs in the txq 2293 * @phba: Pointer to HBA context object. 2294 * @pring: Pointer to driver SLI ring object. 2295 * 2296 * This function is called with hbalock held to post pending iocbs 2297 * in the txq to the firmware. This function is called when driver 2298 * detects space available in the ring. 2299 **/ 2300 static void 2301 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2302 { 2303 IOCB_t *iocb; 2304 struct lpfc_iocbq *nextiocb; 2305 2306 lockdep_assert_held(&phba->hbalock); 2307 2308 /* 2309 * Check to see if: 2310 * (a) there is anything on the txq to send 2311 * (b) link is up 2312 * (c) link attention events can be processed (fcp ring only) 2313 * (d) IOCB processing is not blocked by the outstanding mbox command. 2314 */ 2315 2316 if (lpfc_is_link_up(phba) && 2317 (!list_empty(&pring->txq)) && 2318 (pring->ringno != LPFC_FCP_RING || 2319 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2320 2321 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2322 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2323 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2324 2325 if (iocb) 2326 lpfc_sli_update_ring(phba, pring); 2327 else 2328 lpfc_sli_update_full_ring(phba, pring); 2329 } 2330 2331 return; 2332 } 2333 2334 /** 2335 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2336 * @phba: Pointer to HBA context object. 2337 * @hbqno: HBQ number. 2338 * 2339 * This function is called with hbalock held to get the next 2340 * available slot for the given HBQ. If there is free slot 2341 * available for the HBQ it will return pointer to the next available 2342 * HBQ entry else it will return NULL. 2343 **/ 2344 static struct lpfc_hbq_entry * 2345 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2346 { 2347 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2348 2349 lockdep_assert_held(&phba->hbalock); 2350 2351 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2352 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2353 hbqp->next_hbqPutIdx = 0; 2354 2355 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2356 uint32_t raw_index = phba->hbq_get[hbqno]; 2357 uint32_t getidx = le32_to_cpu(raw_index); 2358 2359 hbqp->local_hbqGetIdx = getidx; 2360 2361 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2363 "1802 HBQ %d: local_hbqGetIdx " 2364 "%u is > than hbqp->entry_count %u\n", 2365 hbqno, hbqp->local_hbqGetIdx, 2366 hbqp->entry_count); 2367 2368 phba->link_state = LPFC_HBA_ERROR; 2369 return NULL; 2370 } 2371 2372 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2373 return NULL; 2374 } 2375 2376 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2377 hbqp->hbqPutIdx; 2378 } 2379 2380 /** 2381 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2382 * @phba: Pointer to HBA context object. 2383 * 2384 * This function is called with no lock held to free all the 2385 * hbq buffers while uninitializing the SLI interface. It also 2386 * frees the HBQ buffers returned by the firmware but not yet 2387 * processed by the upper layers. 2388 **/ 2389 void 2390 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2391 { 2392 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2393 struct hbq_dmabuf *hbq_buf; 2394 unsigned long flags; 2395 int i, hbq_count; 2396 2397 hbq_count = lpfc_sli_hbq_count(); 2398 /* Return all memory used by all HBQs */ 2399 spin_lock_irqsave(&phba->hbalock, flags); 2400 for (i = 0; i < hbq_count; ++i) { 2401 list_for_each_entry_safe(dmabuf, next_dmabuf, 2402 &phba->hbqs[i].hbq_buffer_list, list) { 2403 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2404 list_del(&hbq_buf->dbuf.list); 2405 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2406 } 2407 phba->hbqs[i].buffer_count = 0; 2408 } 2409 2410 /* Mark the HBQs not in use */ 2411 phba->hbq_in_use = 0; 2412 spin_unlock_irqrestore(&phba->hbalock, flags); 2413 } 2414 2415 /** 2416 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2417 * @phba: Pointer to HBA context object. 2418 * @hbqno: HBQ number. 2419 * @hbq_buf: Pointer to HBQ buffer. 2420 * 2421 * This function is called with the hbalock held to post a 2422 * hbq buffer to the firmware. If the function finds an empty 2423 * slot in the HBQ, it will post the buffer. The function will return 2424 * pointer to the hbq entry if it successfully post the buffer 2425 * else it will return NULL. 2426 **/ 2427 static int 2428 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2429 struct hbq_dmabuf *hbq_buf) 2430 { 2431 lockdep_assert_held(&phba->hbalock); 2432 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2433 } 2434 2435 /** 2436 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2437 * @phba: Pointer to HBA context object. 2438 * @hbqno: HBQ number. 2439 * @hbq_buf: Pointer to HBQ buffer. 2440 * 2441 * This function is called with the hbalock held to post a hbq buffer to the 2442 * firmware. If the function finds an empty slot in the HBQ, it will post the 2443 * buffer and place it on the hbq_buffer_list. The function will return zero if 2444 * it successfully post the buffer else it will return an error. 2445 **/ 2446 static int 2447 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2448 struct hbq_dmabuf *hbq_buf) 2449 { 2450 struct lpfc_hbq_entry *hbqe; 2451 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2452 2453 lockdep_assert_held(&phba->hbalock); 2454 /* Get next HBQ entry slot to use */ 2455 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2456 if (hbqe) { 2457 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2458 2459 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2460 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2461 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2462 hbqe->bde.tus.f.bdeFlags = 0; 2463 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2464 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2465 /* Sync SLIM */ 2466 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2467 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2468 /* flush */ 2469 readl(phba->hbq_put + hbqno); 2470 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2471 return 0; 2472 } else 2473 return -ENOMEM; 2474 } 2475 2476 /** 2477 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2478 * @phba: Pointer to HBA context object. 2479 * @hbqno: HBQ number. 2480 * @hbq_buf: Pointer to HBQ buffer. 2481 * 2482 * This function is called with the hbalock held to post an RQE to the SLI4 2483 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2484 * the hbq_buffer_list and return zero, otherwise it will return an error. 2485 **/ 2486 static int 2487 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2488 struct hbq_dmabuf *hbq_buf) 2489 { 2490 int rc; 2491 struct lpfc_rqe hrqe; 2492 struct lpfc_rqe drqe; 2493 struct lpfc_queue *hrq; 2494 struct lpfc_queue *drq; 2495 2496 if (hbqno != LPFC_ELS_HBQ) 2497 return 1; 2498 hrq = phba->sli4_hba.hdr_rq; 2499 drq = phba->sli4_hba.dat_rq; 2500 2501 lockdep_assert_held(&phba->hbalock); 2502 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2503 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2504 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2505 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2506 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2507 if (rc < 0) 2508 return rc; 2509 hbq_buf->tag = (rc | (hbqno << 16)); 2510 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2511 return 0; 2512 } 2513 2514 /* HBQ for ELS and CT traffic. */ 2515 static struct lpfc_hbq_init lpfc_els_hbq = { 2516 .rn = 1, 2517 .entry_count = 256, 2518 .mask_count = 0, 2519 .profile = 0, 2520 .ring_mask = (1 << LPFC_ELS_RING), 2521 .buffer_count = 0, 2522 .init_count = 40, 2523 .add_count = 40, 2524 }; 2525 2526 /* Array of HBQs */ 2527 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2528 &lpfc_els_hbq, 2529 }; 2530 2531 /** 2532 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2533 * @phba: Pointer to HBA context object. 2534 * @hbqno: HBQ number. 2535 * @count: Number of HBQ buffers to be posted. 2536 * 2537 * This function is called with no lock held to post more hbq buffers to the 2538 * given HBQ. The function returns the number of HBQ buffers successfully 2539 * posted. 2540 **/ 2541 static int 2542 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2543 { 2544 uint32_t i, posted = 0; 2545 unsigned long flags; 2546 struct hbq_dmabuf *hbq_buffer; 2547 LIST_HEAD(hbq_buf_list); 2548 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2549 return 0; 2550 2551 if ((phba->hbqs[hbqno].buffer_count + count) > 2552 lpfc_hbq_defs[hbqno]->entry_count) 2553 count = lpfc_hbq_defs[hbqno]->entry_count - 2554 phba->hbqs[hbqno].buffer_count; 2555 if (!count) 2556 return 0; 2557 /* Allocate HBQ entries */ 2558 for (i = 0; i < count; i++) { 2559 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2560 if (!hbq_buffer) 2561 break; 2562 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2563 } 2564 /* Check whether HBQ is still in use */ 2565 spin_lock_irqsave(&phba->hbalock, flags); 2566 if (!phba->hbq_in_use) 2567 goto err; 2568 while (!list_empty(&hbq_buf_list)) { 2569 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2570 dbuf.list); 2571 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2572 (hbqno << 16)); 2573 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2574 phba->hbqs[hbqno].buffer_count++; 2575 posted++; 2576 } else 2577 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2578 } 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 return posted; 2581 err: 2582 spin_unlock_irqrestore(&phba->hbalock, flags); 2583 while (!list_empty(&hbq_buf_list)) { 2584 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2585 dbuf.list); 2586 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2587 } 2588 return 0; 2589 } 2590 2591 /** 2592 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2593 * @phba: Pointer to HBA context object. 2594 * @qno: HBQ number. 2595 * 2596 * This function posts more buffers to the HBQ. This function 2597 * is called with no lock held. The function returns the number of HBQ entries 2598 * successfully allocated. 2599 **/ 2600 int 2601 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2602 { 2603 if (phba->sli_rev == LPFC_SLI_REV4) 2604 return 0; 2605 else 2606 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2607 lpfc_hbq_defs[qno]->add_count); 2608 } 2609 2610 /** 2611 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2612 * @phba: Pointer to HBA context object. 2613 * @qno: HBQ queue number. 2614 * 2615 * This function is called from SLI initialization code path with 2616 * no lock held to post initial HBQ buffers to firmware. The 2617 * function returns the number of HBQ entries successfully allocated. 2618 **/ 2619 static int 2620 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2621 { 2622 if (phba->sli_rev == LPFC_SLI_REV4) 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->entry_count); 2625 else 2626 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2627 lpfc_hbq_defs[qno]->init_count); 2628 } 2629 2630 /* 2631 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2632 * 2633 * This function removes the first hbq buffer on an hbq list and returns a 2634 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2635 **/ 2636 static struct hbq_dmabuf * 2637 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2638 { 2639 struct lpfc_dmabuf *d_buf; 2640 2641 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2642 if (!d_buf) 2643 return NULL; 2644 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2645 } 2646 2647 /** 2648 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2649 * @phba: Pointer to HBA context object. 2650 * @hrq: HBQ number. 2651 * 2652 * This function removes the first RQ buffer on an RQ buffer list and returns a 2653 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2654 **/ 2655 static struct rqb_dmabuf * 2656 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2657 { 2658 struct lpfc_dmabuf *h_buf; 2659 struct lpfc_rqb *rqbp; 2660 2661 rqbp = hrq->rqbp; 2662 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2663 struct lpfc_dmabuf, list); 2664 if (!h_buf) 2665 return NULL; 2666 rqbp->buffer_count--; 2667 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2668 } 2669 2670 /** 2671 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2672 * @phba: Pointer to HBA context object. 2673 * @tag: Tag of the hbq buffer. 2674 * 2675 * This function searches for the hbq buffer associated with the given tag in 2676 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2677 * otherwise it returns NULL. 2678 **/ 2679 static struct hbq_dmabuf * 2680 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2681 { 2682 struct lpfc_dmabuf *d_buf; 2683 struct hbq_dmabuf *hbq_buf; 2684 uint32_t hbqno; 2685 2686 hbqno = tag >> 16; 2687 if (hbqno >= LPFC_MAX_HBQS) 2688 return NULL; 2689 2690 spin_lock_irq(&phba->hbalock); 2691 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2692 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2693 if (hbq_buf->tag == tag) { 2694 spin_unlock_irq(&phba->hbalock); 2695 return hbq_buf; 2696 } 2697 } 2698 spin_unlock_irq(&phba->hbalock); 2699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2700 "1803 Bad hbq tag. Data: x%x x%x\n", 2701 tag, phba->hbqs[tag >> 16].buffer_count); 2702 return NULL; 2703 } 2704 2705 /** 2706 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2707 * @phba: Pointer to HBA context object. 2708 * @hbq_buffer: Pointer to HBQ buffer. 2709 * 2710 * This function is called with hbalock. This function gives back 2711 * the hbq buffer to firmware. If the HBQ does not have space to 2712 * post the buffer, it will free the buffer. 2713 **/ 2714 void 2715 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2716 { 2717 uint32_t hbqno; 2718 2719 if (hbq_buffer) { 2720 hbqno = hbq_buffer->tag >> 16; 2721 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2722 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2723 } 2724 } 2725 2726 /** 2727 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2728 * @mbxCommand: mailbox command code. 2729 * 2730 * This function is called by the mailbox event handler function to verify 2731 * that the completed mailbox command is a legitimate mailbox command. If the 2732 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2733 * and the mailbox event handler will take the HBA offline. 2734 **/ 2735 static int 2736 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2737 { 2738 uint8_t ret; 2739 2740 switch (mbxCommand) { 2741 case MBX_LOAD_SM: 2742 case MBX_READ_NV: 2743 case MBX_WRITE_NV: 2744 case MBX_WRITE_VPARMS: 2745 case MBX_RUN_BIU_DIAG: 2746 case MBX_INIT_LINK: 2747 case MBX_DOWN_LINK: 2748 case MBX_CONFIG_LINK: 2749 case MBX_CONFIG_RING: 2750 case MBX_RESET_RING: 2751 case MBX_READ_CONFIG: 2752 case MBX_READ_RCONFIG: 2753 case MBX_READ_SPARM: 2754 case MBX_READ_STATUS: 2755 case MBX_READ_RPI: 2756 case MBX_READ_XRI: 2757 case MBX_READ_REV: 2758 case MBX_READ_LNK_STAT: 2759 case MBX_REG_LOGIN: 2760 case MBX_UNREG_LOGIN: 2761 case MBX_CLEAR_LA: 2762 case MBX_DUMP_MEMORY: 2763 case MBX_DUMP_CONTEXT: 2764 case MBX_RUN_DIAGS: 2765 case MBX_RESTART: 2766 case MBX_UPDATE_CFG: 2767 case MBX_DOWN_LOAD: 2768 case MBX_DEL_LD_ENTRY: 2769 case MBX_RUN_PROGRAM: 2770 case MBX_SET_MASK: 2771 case MBX_SET_VARIABLE: 2772 case MBX_UNREG_D_ID: 2773 case MBX_KILL_BOARD: 2774 case MBX_CONFIG_FARP: 2775 case MBX_BEACON: 2776 case MBX_LOAD_AREA: 2777 case MBX_RUN_BIU_DIAG64: 2778 case MBX_CONFIG_PORT: 2779 case MBX_READ_SPARM64: 2780 case MBX_READ_RPI64: 2781 case MBX_REG_LOGIN64: 2782 case MBX_READ_TOPOLOGY: 2783 case MBX_WRITE_WWN: 2784 case MBX_SET_DEBUG: 2785 case MBX_LOAD_EXP_ROM: 2786 case MBX_ASYNCEVT_ENABLE: 2787 case MBX_REG_VPI: 2788 case MBX_UNREG_VPI: 2789 case MBX_HEARTBEAT: 2790 case MBX_PORT_CAPABILITIES: 2791 case MBX_PORT_IOV_CONTROL: 2792 case MBX_SLI4_CONFIG: 2793 case MBX_SLI4_REQ_FTRS: 2794 case MBX_REG_FCFI: 2795 case MBX_UNREG_FCFI: 2796 case MBX_REG_VFI: 2797 case MBX_UNREG_VFI: 2798 case MBX_INIT_VPI: 2799 case MBX_INIT_VFI: 2800 case MBX_RESUME_RPI: 2801 case MBX_READ_EVENT_LOG_STATUS: 2802 case MBX_READ_EVENT_LOG: 2803 case MBX_SECURITY_MGMT: 2804 case MBX_AUTH_PORT: 2805 case MBX_ACCESS_VDATA: 2806 ret = mbxCommand; 2807 break; 2808 default: 2809 ret = MBX_SHUTDOWN; 2810 break; 2811 } 2812 return ret; 2813 } 2814 2815 /** 2816 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2817 * @phba: Pointer to HBA context object. 2818 * @pmboxq: Pointer to mailbox command. 2819 * 2820 * This is completion handler function for mailbox commands issued from 2821 * lpfc_sli_issue_mbox_wait function. This function is called by the 2822 * mailbox event handler function with no lock held. This function 2823 * will wake up thread waiting on the wait queue pointed by context1 2824 * of the mailbox. 2825 **/ 2826 void 2827 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2828 { 2829 unsigned long drvr_flag; 2830 struct completion *pmbox_done; 2831 2832 /* 2833 * If pmbox_done is empty, the driver thread gave up waiting and 2834 * continued running. 2835 */ 2836 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2837 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2838 pmbox_done = pmboxq->ctx_u.mbox_wait; 2839 if (pmbox_done) 2840 complete(pmbox_done); 2841 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2842 return; 2843 } 2844 2845 /** 2846 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2847 * @phba: Pointer to HBA context object. 2848 * @pmb: Pointer to mailbox object. 2849 * 2850 * This function is the default mailbox completion handler. It 2851 * frees the memory resources associated with the completed mailbox 2852 * command. If the completed command is a REG_LOGIN mailbox command, 2853 * this function will issue a UREG_LOGIN to re-claim the RPI. 2854 **/ 2855 void 2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2857 { 2858 struct lpfc_vport *vport = pmb->vport; 2859 struct lpfc_dmabuf *mp; 2860 struct lpfc_nodelist *ndlp; 2861 struct Scsi_Host *shost; 2862 uint16_t rpi, vpi; 2863 int rc; 2864 2865 /* 2866 * If a REG_LOGIN succeeded after node is destroyed or node 2867 * is in re-discovery driver need to cleanup the RPI. 2868 */ 2869 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2870 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2871 !pmb->u.mb.mbxStatus) { 2872 mp = pmb->ctx_buf; 2873 if (mp) { 2874 pmb->ctx_buf = NULL; 2875 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2876 kfree(mp); 2877 } 2878 rpi = pmb->u.mb.un.varWords[0]; 2879 vpi = pmb->u.mb.un.varRegLogin.vpi; 2880 if (phba->sli_rev == LPFC_SLI_REV4) 2881 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2882 lpfc_unreg_login(phba, vpi, rpi, pmb); 2883 pmb->vport = vport; 2884 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2885 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2886 if (rc != MBX_NOT_FINISHED) 2887 return; 2888 } 2889 2890 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2891 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2892 !pmb->u.mb.mbxStatus) { 2893 shost = lpfc_shost_from_vport(vport); 2894 spin_lock_irq(shost->host_lock); 2895 vport->vpi_state |= LPFC_VPI_REGISTERED; 2896 spin_unlock_irq(shost->host_lock); 2897 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2898 } 2899 2900 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2901 ndlp = pmb->ctx_ndlp; 2902 lpfc_nlp_put(ndlp); 2903 } 2904 2905 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2906 ndlp = pmb->ctx_ndlp; 2907 2908 /* Check to see if there are any deferred events to process */ 2909 if (ndlp) { 2910 lpfc_printf_vlog( 2911 vport, 2912 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2913 "1438 UNREG cmpl deferred mbox x%x " 2914 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n", 2915 ndlp->nlp_rpi, ndlp->nlp_DID, 2916 ndlp->nlp_flag, ndlp->nlp_defer_did, 2917 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2918 2919 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) && 2920 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) { 2921 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2922 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2923 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2924 } else { 2925 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2926 } 2927 2928 /* The unreg_login mailbox is complete and had a 2929 * reference that has to be released. The PLOGI 2930 * got its own ref. 2931 */ 2932 lpfc_nlp_put(ndlp); 2933 pmb->ctx_ndlp = NULL; 2934 } 2935 } 2936 2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2939 ndlp = pmb->ctx_ndlp; 2940 lpfc_nlp_put(ndlp); 2941 } 2942 2943 /* Check security permission status on INIT_LINK mailbox command */ 2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2947 "2860 SLI authentication is required " 2948 "for INIT_LINK but has not done yet\n"); 2949 2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2951 lpfc_sli4_mbox_cmd_free(phba, pmb); 2952 else 2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2954 } 2955 /** 2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2957 * @phba: Pointer to HBA context object. 2958 * @pmb: Pointer to mailbox object. 2959 * 2960 * This function is the unreg rpi mailbox completion handler. It 2961 * frees the memory resources associated with the completed mailbox 2962 * command. An additional reference is put on the ndlp to prevent 2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2964 * the unreg mailbox command completes, this routine puts the 2965 * reference back. 2966 * 2967 **/ 2968 void 2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2970 { 2971 struct lpfc_vport *vport = pmb->vport; 2972 struct lpfc_nodelist *ndlp; 2973 bool unreg_inp; 2974 2975 ndlp = pmb->ctx_ndlp; 2976 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2977 if (phba->sli_rev == LPFC_SLI_REV4 && 2978 (bf_get(lpfc_sli_intf_if_type, 2979 &phba->sli4_hba.sli_intf) >= 2980 LPFC_SLI_INTF_IF_TYPE_2)) { 2981 if (ndlp) { 2982 lpfc_printf_vlog( 2983 vport, KERN_INFO, 2984 LOG_MBOX | LOG_SLI | LOG_NODE, 2985 "0010 UNREG_LOGIN vpi:x%x " 2986 "rpi:%x DID:%x defer x%x flg x%lx " 2987 "x%px\n", 2988 vport->vpi, ndlp->nlp_rpi, 2989 ndlp->nlp_DID, ndlp->nlp_defer_did, 2990 ndlp->nlp_flag, 2991 ndlp); 2992 2993 /* Cleanup the nlp_flag now that the UNREG RPI 2994 * has completed. 2995 */ 2996 unreg_inp = test_and_clear_bit(NLP_UNREG_INP, 2997 &ndlp->nlp_flag); 2998 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag); 2999 3000 /* Check to see if there are any deferred 3001 * events to process 3002 */ 3003 if (unreg_inp && 3004 ndlp->nlp_defer_did != 3005 NLP_EVT_NOTHING_PENDING) { 3006 lpfc_printf_vlog( 3007 vport, KERN_INFO, 3008 LOG_MBOX | LOG_SLI | LOG_NODE, 3009 "4111 UNREG cmpl deferred " 3010 "clr x%x on " 3011 "NPort x%x Data: x%x x%px\n", 3012 ndlp->nlp_rpi, ndlp->nlp_DID, 3013 ndlp->nlp_defer_did, ndlp); 3014 ndlp->nlp_defer_did = 3015 NLP_EVT_NOTHING_PENDING; 3016 lpfc_issue_els_plogi( 3017 vport, ndlp->nlp_DID, 0); 3018 } 3019 3020 lpfc_nlp_put(ndlp); 3021 } 3022 } 3023 } 3024 3025 mempool_free(pmb, phba->mbox_mem_pool); 3026 } 3027 3028 /** 3029 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3030 * @phba: Pointer to HBA context object. 3031 * 3032 * This function is called with no lock held. This function processes all 3033 * the completed mailbox commands and gives it to upper layers. The interrupt 3034 * service routine processes mailbox completion interrupt and adds completed 3035 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3036 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3037 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3038 * function returns the mailbox commands to the upper layer by calling the 3039 * completion handler function of each mailbox. 3040 **/ 3041 int 3042 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3043 { 3044 MAILBOX_t *pmbox; 3045 LPFC_MBOXQ_t *pmb; 3046 int rc; 3047 LIST_HEAD(cmplq); 3048 3049 phba->sli.slistat.mbox_event++; 3050 3051 /* Get all completed mailboxe buffers into the cmplq */ 3052 spin_lock_irq(&phba->hbalock); 3053 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3054 spin_unlock_irq(&phba->hbalock); 3055 3056 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3057 do { 3058 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3059 if (pmb == NULL) 3060 break; 3061 3062 pmbox = &pmb->u.mb; 3063 3064 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3065 if (pmb->vport) { 3066 lpfc_debugfs_disc_trc(pmb->vport, 3067 LPFC_DISC_TRC_MBOX_VPORT, 3068 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3069 (uint32_t)pmbox->mbxCommand, 3070 pmbox->un.varWords[0], 3071 pmbox->un.varWords[1]); 3072 } 3073 else { 3074 lpfc_debugfs_disc_trc(phba->pport, 3075 LPFC_DISC_TRC_MBOX, 3076 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3077 (uint32_t)pmbox->mbxCommand, 3078 pmbox->un.varWords[0], 3079 pmbox->un.varWords[1]); 3080 } 3081 } 3082 3083 /* 3084 * It is a fatal error if unknown mbox command completion. 3085 */ 3086 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3087 MBX_SHUTDOWN) { 3088 /* Unknown mailbox command compl */ 3089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3090 "(%d):0323 Unknown Mailbox command " 3091 "x%x (x%x/x%x) Cmpl\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb)); 3099 phba->link_state = LPFC_HBA_ERROR; 3100 phba->work_hs = HS_FFER3; 3101 lpfc_handle_eratt(phba); 3102 continue; 3103 } 3104 3105 if (pmbox->mbxStatus) { 3106 phba->sli.slistat.mbox_stat_err++; 3107 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3108 /* Mbox cmd cmpl error - RETRYing */ 3109 lpfc_printf_log(phba, KERN_INFO, 3110 LOG_MBOX | LOG_SLI, 3111 "(%d):0305 Mbox cmd cmpl " 3112 "error - RETRYing Data: x%x " 3113 "(x%x/x%x) x%x x%x x%x\n", 3114 pmb->vport ? pmb->vport->vpi : 3115 LPFC_VPORT_UNKNOWN, 3116 pmbox->mbxCommand, 3117 lpfc_sli_config_mbox_subsys_get(phba, 3118 pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, 3120 pmb), 3121 pmbox->mbxStatus, 3122 pmbox->un.varWords[0], 3123 pmb->vport ? pmb->vport->port_state : 3124 LPFC_VPORT_UNKNOWN); 3125 pmbox->mbxStatus = 0; 3126 pmbox->mbxOwner = OWN_HOST; 3127 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3128 if (rc != MBX_NOT_FINISHED) 3129 continue; 3130 } 3131 } 3132 3133 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3135 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3136 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3137 "x%x x%x x%x\n", 3138 pmb->vport ? pmb->vport->vpi : 0, 3139 pmbox->mbxCommand, 3140 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3141 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3142 pmb->mbox_cmpl, 3143 *((uint32_t *) pmbox), 3144 pmbox->un.varWords[0], 3145 pmbox->un.varWords[1], 3146 pmbox->un.varWords[2], 3147 pmbox->un.varWords[3], 3148 pmbox->un.varWords[4], 3149 pmbox->un.varWords[5], 3150 pmbox->un.varWords[6], 3151 pmbox->un.varWords[7], 3152 pmbox->un.varWords[8], 3153 pmbox->un.varWords[9], 3154 pmbox->un.varWords[10]); 3155 3156 if (pmb->mbox_cmpl) 3157 pmb->mbox_cmpl(phba,pmb); 3158 } while (1); 3159 return 0; 3160 } 3161 3162 /** 3163 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3164 * @phba: Pointer to HBA context object. 3165 * @pring: Pointer to driver SLI ring object. 3166 * @tag: buffer tag. 3167 * 3168 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3169 * is set in the tag the buffer is posted for a particular exchange, 3170 * the function will return the buffer without replacing the buffer. 3171 * If the buffer is for unsolicited ELS or CT traffic, this function 3172 * returns the buffer and also posts another buffer to the firmware. 3173 **/ 3174 static struct lpfc_dmabuf * 3175 lpfc_sli_get_buff(struct lpfc_hba *phba, 3176 struct lpfc_sli_ring *pring, 3177 uint32_t tag) 3178 { 3179 struct hbq_dmabuf *hbq_entry; 3180 3181 if (tag & QUE_BUFTAG_BIT) 3182 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3183 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3184 if (!hbq_entry) 3185 return NULL; 3186 return &hbq_entry->dbuf; 3187 } 3188 3189 /** 3190 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3191 * containing a NVME LS request. 3192 * @phba: pointer to lpfc hba data structure. 3193 * @piocb: pointer to the iocbq struct representing the sequence starting 3194 * frame. 3195 * 3196 * This routine initially validates the NVME LS, validates there is a login 3197 * with the port that sent the LS, and then calls the appropriate nvme host 3198 * or target LS request handler. 3199 **/ 3200 static void 3201 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3202 { 3203 struct lpfc_nodelist *ndlp; 3204 struct lpfc_dmabuf *d_buf; 3205 struct hbq_dmabuf *nvmebuf; 3206 struct fc_frame_header *fc_hdr; 3207 struct lpfc_async_xchg_ctx *axchg = NULL; 3208 char *failwhy = NULL; 3209 uint32_t oxid, sid, did, fctl, size; 3210 int ret = 1; 3211 3212 d_buf = piocb->cmd_dmabuf; 3213 3214 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3215 fc_hdr = nvmebuf->hbuf.virt; 3216 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3217 sid = sli4_sid_from_fc_hdr(fc_hdr); 3218 did = sli4_did_from_fc_hdr(fc_hdr); 3219 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3220 fc_hdr->fh_f_ctl[1] << 8 | 3221 fc_hdr->fh_f_ctl[2]); 3222 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3223 3224 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3225 oxid, size, sid); 3226 3227 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3228 failwhy = "Driver Unloading"; 3229 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3230 failwhy = "NVME FC4 Disabled"; 3231 } else if (!phba->nvmet_support && !phba->pport->localport) { 3232 failwhy = "No Localport"; 3233 } else if (phba->nvmet_support && !phba->targetport) { 3234 failwhy = "No Targetport"; 3235 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3236 failwhy = "Bad NVME LS R_CTL"; 3237 } else if (unlikely((fctl & 0x00FF0000) != 3238 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3239 failwhy = "Bad NVME LS F_CTL"; 3240 } else { 3241 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3242 if (!axchg) 3243 failwhy = "No CTX memory"; 3244 } 3245 3246 if (unlikely(failwhy)) { 3247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3248 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3249 sid, oxid, failwhy); 3250 goto out_fail; 3251 } 3252 3253 /* validate the source of the LS is logged in */ 3254 ndlp = lpfc_findnode_did(phba->pport, sid); 3255 if (!ndlp || 3256 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3257 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3259 "6216 NVME Unsol rcv: No ndlp: " 3260 "NPort_ID x%x oxid x%x\n", 3261 sid, oxid); 3262 goto out_fail; 3263 } 3264 3265 axchg->phba = phba; 3266 axchg->ndlp = ndlp; 3267 axchg->size = size; 3268 axchg->oxid = oxid; 3269 axchg->sid = sid; 3270 axchg->wqeq = NULL; 3271 axchg->state = LPFC_NVME_STE_LS_RCV; 3272 axchg->entry_cnt = 1; 3273 axchg->rqb_buffer = (void *)nvmebuf; 3274 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3275 axchg->payload = nvmebuf->dbuf.virt; 3276 INIT_LIST_HEAD(&axchg->list); 3277 3278 if (phba->nvmet_support) { 3279 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3280 spin_lock_irq(&ndlp->lock); 3281 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3282 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3283 spin_unlock_irq(&ndlp->lock); 3284 3285 /* This reference is a single occurrence to hold the 3286 * node valid until the nvmet transport calls 3287 * host_release. 3288 */ 3289 if (!lpfc_nlp_get(ndlp)) 3290 goto out_fail; 3291 3292 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3293 "6206 NVMET unsol ls_req ndlp x%px " 3294 "DID x%x xflags x%x refcnt %d\n", 3295 ndlp, ndlp->nlp_DID, 3296 ndlp->fc4_xpt_flags, 3297 kref_read(&ndlp->kref)); 3298 } else { 3299 spin_unlock_irq(&ndlp->lock); 3300 } 3301 } else { 3302 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3303 } 3304 3305 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3306 if (!ret) 3307 return; 3308 3309 out_fail: 3310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3311 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3312 "NVMe%s handler failed %d\n", 3313 did, sid, oxid, 3314 (phba->nvmet_support) ? "T" : "I", ret); 3315 3316 /* recycle receive buffer */ 3317 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3318 3319 /* If start of new exchange, abort it */ 3320 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3321 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3322 3323 if (ret) 3324 kfree(axchg); 3325 } 3326 3327 /** 3328 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3329 * @phba: Pointer to HBA context object. 3330 * @pring: Pointer to driver SLI ring object. 3331 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3332 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3333 * @fch_type: the type for the first frame of the sequence. 3334 * 3335 * This function is called with no lock held. This function uses the r_ctl and 3336 * type of the received sequence to find the correct callback function to call 3337 * to process the sequence. 3338 **/ 3339 static int 3340 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3341 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3342 uint32_t fch_type) 3343 { 3344 int i; 3345 3346 switch (fch_type) { 3347 case FC_TYPE_NVME: 3348 lpfc_nvme_unsol_ls_handler(phba, saveq); 3349 return 1; 3350 default: 3351 break; 3352 } 3353 3354 /* unSolicited Responses */ 3355 if (pring->prt[0].profile) { 3356 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3357 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3358 saveq); 3359 return 1; 3360 } 3361 /* We must search, based on rctl / type 3362 for the right routine */ 3363 for (i = 0; i < pring->num_mask; i++) { 3364 if ((pring->prt[i].rctl == fch_r_ctl) && 3365 (pring->prt[i].type == fch_type)) { 3366 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3367 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3368 (phba, pring, saveq); 3369 return 1; 3370 } 3371 } 3372 return 0; 3373 } 3374 3375 static void 3376 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t *irsp; 3380 union lpfc_wqe128 *wqe; 3381 u16 i = 0; 3382 3383 irsp = &saveq->iocb; 3384 wqe = &saveq->wqe; 3385 3386 /* Fill wcqe with the IOCB status fields */ 3387 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3388 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3389 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3390 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3391 3392 /* Source ID */ 3393 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3394 3395 /* rx-id of the response frame */ 3396 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3397 3398 /* ox-id of the frame */ 3399 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3400 irsp->unsli3.rcvsli3.ox_id); 3401 3402 /* DID */ 3403 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3404 irsp->un.rcvels.remoteID); 3405 3406 /* unsol data len */ 3407 for (i = 0; i < irsp->ulpBdeCount; i++) { 3408 struct lpfc_hbq_entry *hbqe = NULL; 3409 3410 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3411 if (i == 0) { 3412 hbqe = (struct lpfc_hbq_entry *) 3413 &irsp->un.ulpWord[0]; 3414 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3415 hbqe->bde.tus.f.bdeSize; 3416 } else if (i == 1) { 3417 hbqe = (struct lpfc_hbq_entry *) 3418 &irsp->unsli3.sli3Words[4]; 3419 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3420 } 3421 } 3422 } 3423 } 3424 3425 /** 3426 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3427 * @phba: Pointer to HBA context object. 3428 * @pring: Pointer to driver SLI ring object. 3429 * @saveq: Pointer to the unsolicited iocb. 3430 * 3431 * This function is called with no lock held by the ring event handler 3432 * when there is an unsolicited iocb posted to the response ring by the 3433 * firmware. This function gets the buffer associated with the iocbs 3434 * and calls the event handler for the ring. This function handles both 3435 * qring buffers and hbq buffers. 3436 * When the function returns 1 the caller can free the iocb object otherwise 3437 * upper layer functions will free the iocb objects. 3438 **/ 3439 static int 3440 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3441 struct lpfc_iocbq *saveq) 3442 { 3443 IOCB_t * irsp; 3444 WORD5 * w5p; 3445 dma_addr_t paddr; 3446 uint32_t Rctl, Type; 3447 struct lpfc_iocbq *iocbq; 3448 struct lpfc_dmabuf *dmzbuf; 3449 3450 irsp = &saveq->iocb; 3451 saveq->vport = phba->pport; 3452 3453 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3454 if (pring->lpfc_sli_rcv_async_status) 3455 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3456 else 3457 lpfc_printf_log(phba, 3458 KERN_WARNING, 3459 LOG_SLI, 3460 "0316 Ring %d handler: unexpected " 3461 "ASYNC_STATUS iocb received evt_code " 3462 "0x%x\n", 3463 pring->ringno, 3464 irsp->un.asyncstat.evt_code); 3465 return 1; 3466 } 3467 3468 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3469 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3470 if (irsp->ulpBdeCount > 0) { 3471 dmzbuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 lpfc_in_buf_free(phba, dmzbuf); 3474 } 3475 3476 if (irsp->ulpBdeCount > 1) { 3477 dmzbuf = lpfc_sli_get_buff(phba, pring, 3478 irsp->unsli3.sli3Words[3]); 3479 lpfc_in_buf_free(phba, dmzbuf); 3480 } 3481 3482 if (irsp->ulpBdeCount > 2) { 3483 dmzbuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 lpfc_in_buf_free(phba, dmzbuf); 3486 } 3487 3488 return 1; 3489 } 3490 3491 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3492 if (irsp->ulpBdeCount != 0) { 3493 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3494 irsp->un.ulpWord[3]); 3495 if (!saveq->cmd_dmabuf) 3496 lpfc_printf_log(phba, 3497 KERN_ERR, 3498 LOG_SLI, 3499 "0341 Ring %d Cannot find buffer for " 3500 "an unsolicited iocb. tag 0x%x\n", 3501 pring->ringno, 3502 irsp->un.ulpWord[3]); 3503 } 3504 if (irsp->ulpBdeCount == 2) { 3505 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3506 irsp->unsli3.sli3Words[7]); 3507 if (!saveq->bpl_dmabuf) 3508 lpfc_printf_log(phba, 3509 KERN_ERR, 3510 LOG_SLI, 3511 "0342 Ring %d Cannot find buffer for an" 3512 " unsolicited iocb. tag 0x%x\n", 3513 pring->ringno, 3514 irsp->unsli3.sli3Words[7]); 3515 } 3516 list_for_each_entry(iocbq, &saveq->list, list) { 3517 irsp = &iocbq->iocb; 3518 if (irsp->ulpBdeCount != 0) { 3519 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3520 pring, 3521 irsp->un.ulpWord[3]); 3522 if (!iocbq->cmd_dmabuf) 3523 lpfc_printf_log(phba, 3524 KERN_ERR, 3525 LOG_SLI, 3526 "0343 Ring %d Cannot find " 3527 "buffer for an unsolicited iocb" 3528 ". tag 0x%x\n", pring->ringno, 3529 irsp->un.ulpWord[3]); 3530 } 3531 if (irsp->ulpBdeCount == 2) { 3532 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->unsli3.sli3Words[7]); 3535 if (!iocbq->bpl_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0344 Ring %d Cannot find " 3540 "buffer for an unsolicited " 3541 "iocb. tag 0x%x\n", 3542 pring->ringno, 3543 irsp->unsli3.sli3Words[7]); 3544 } 3545 } 3546 } else { 3547 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3548 irsp->un.cont64[0].addrLow); 3549 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3550 paddr); 3551 if (irsp->ulpBdeCount == 2) { 3552 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3553 irsp->un.cont64[1].addrLow); 3554 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3555 pring, 3556 paddr); 3557 } 3558 } 3559 3560 if (irsp->ulpBdeCount != 0 && 3561 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3562 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3563 int found = 0; 3564 3565 /* search continue save q for same XRI */ 3566 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3567 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3568 saveq->iocb.unsli3.rcvsli3.ox_id) { 3569 list_add_tail(&saveq->list, &iocbq->list); 3570 found = 1; 3571 break; 3572 } 3573 } 3574 if (!found) 3575 list_add_tail(&saveq->clist, 3576 &pring->iocb_continue_saveq); 3577 3578 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3579 list_del_init(&iocbq->clist); 3580 saveq = iocbq; 3581 irsp = &saveq->iocb; 3582 } else { 3583 return 0; 3584 } 3585 } 3586 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3587 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3588 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3589 Rctl = FC_RCTL_ELS_REQ; 3590 Type = FC_TYPE_ELS; 3591 } else { 3592 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3593 Rctl = w5p->hcsw.Rctl; 3594 Type = w5p->hcsw.Type; 3595 3596 /* Firmware Workaround */ 3597 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3598 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3599 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3600 Rctl = FC_RCTL_ELS_REQ; 3601 Type = FC_TYPE_ELS; 3602 w5p->hcsw.Rctl = Rctl; 3603 w5p->hcsw.Type = Type; 3604 } 3605 } 3606 3607 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3608 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3609 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3610 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3611 saveq->vport = phba->pport; 3612 else 3613 saveq->vport = lpfc_find_vport_by_vpid(phba, 3614 irsp->unsli3.rcvsli3.vpi); 3615 } 3616 3617 /* Prepare WQE with Unsol frame */ 3618 lpfc_sli_prep_unsol_wqe(phba, saveq); 3619 3620 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3622 "0313 Ring %d handler: unexpected Rctl x%x " 3623 "Type x%x received\n", 3624 pring->ringno, Rctl, Type); 3625 3626 return 1; 3627 } 3628 3629 /** 3630 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3631 * @phba: Pointer to HBA context object. 3632 * @pring: Pointer to driver SLI ring object. 3633 * @prspiocb: Pointer to response iocb object. 3634 * 3635 * This function looks up the iocb_lookup table to get the command iocb 3636 * corresponding to the given response iocb using the iotag of the 3637 * response iocb. The driver calls this function with the hbalock held 3638 * for SLI3 ports or the ring lock held for SLI4 ports. 3639 * This function returns the command iocb object if it finds the command 3640 * iocb else returns NULL. 3641 **/ 3642 static struct lpfc_iocbq * 3643 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3644 struct lpfc_sli_ring *pring, 3645 struct lpfc_iocbq *prspiocb) 3646 { 3647 struct lpfc_iocbq *cmd_iocb = NULL; 3648 u16 iotag; 3649 3650 if (phba->sli_rev == LPFC_SLI_REV4) 3651 iotag = get_wqe_reqtag(prspiocb); 3652 else 3653 iotag = prspiocb->iocb.ulpIoTag; 3654 3655 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3656 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3657 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3658 /* remove from txcmpl queue list */ 3659 list_del_init(&cmd_iocb->list); 3660 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3661 pring->txcmplq_cnt--; 3662 return cmd_iocb; 3663 } 3664 } 3665 3666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3667 "0317 iotag x%x is out of " 3668 "range: max iotag x%x\n", 3669 iotag, phba->sli.last_iotag); 3670 return NULL; 3671 } 3672 3673 /** 3674 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3675 * @phba: Pointer to HBA context object. 3676 * @pring: Pointer to driver SLI ring object. 3677 * @iotag: IOCB tag. 3678 * 3679 * This function looks up the iocb_lookup table to get the command iocb 3680 * corresponding to the given iotag. The driver calls this function with 3681 * the ring lock held because this function is an SLI4 port only helper. 3682 * This function returns the command iocb object if it finds the command 3683 * iocb else returns NULL. 3684 **/ 3685 static struct lpfc_iocbq * 3686 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint16_t iotag) 3688 { 3689 struct lpfc_iocbq *cmd_iocb = NULL; 3690 3691 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3692 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3693 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3694 /* remove from txcmpl queue list */ 3695 list_del_init(&cmd_iocb->list); 3696 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3697 pring->txcmplq_cnt--; 3698 return cmd_iocb; 3699 } 3700 } 3701 3702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3703 "0372 iotag x%x lookup error: max iotag (x%x) " 3704 "cmd_flag x%x\n", 3705 iotag, phba->sli.last_iotag, 3706 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3707 return NULL; 3708 } 3709 3710 /** 3711 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3712 * @phba: Pointer to HBA context object. 3713 * @pring: Pointer to driver SLI ring object. 3714 * @saveq: Pointer to the response iocb to be processed. 3715 * 3716 * This function is called by the ring event handler for non-fcp 3717 * rings when there is a new response iocb in the response ring. 3718 * The caller is not required to hold any locks. This function 3719 * gets the command iocb associated with the response iocb and 3720 * calls the completion handler for the command iocb. If there 3721 * is no completion handler, the function will free the resources 3722 * associated with command iocb. If the response iocb is for 3723 * an already aborted command iocb, the status of the completion 3724 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3725 * This function always returns 1. 3726 **/ 3727 static int 3728 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3729 struct lpfc_iocbq *saveq) 3730 { 3731 struct lpfc_iocbq *cmdiocbp; 3732 unsigned long iflag; 3733 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3734 3735 if (phba->sli_rev == LPFC_SLI_REV4) 3736 spin_lock_irqsave(&pring->ring_lock, iflag); 3737 else 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3740 if (phba->sli_rev == LPFC_SLI_REV4) 3741 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3742 else 3743 spin_unlock_irqrestore(&phba->hbalock, iflag); 3744 3745 ulp_command = get_job_cmnd(phba, saveq); 3746 ulp_status = get_job_ulpstatus(phba, saveq); 3747 ulp_word4 = get_job_word4(phba, saveq); 3748 ulp_context = get_job_ulpcontext(phba, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 iotag = get_wqe_reqtag(saveq); 3751 else 3752 iotag = saveq->iocb.ulpIoTag; 3753 3754 if (cmdiocbp) { 3755 ulp_command = get_job_cmnd(phba, cmdiocbp); 3756 if (cmdiocbp->cmd_cmpl) { 3757 /* 3758 * If an ELS command failed send an event to mgmt 3759 * application. 3760 */ 3761 if (ulp_status && 3762 (pring->ringno == LPFC_ELS_RING) && 3763 (ulp_command == CMD_ELS_REQUEST64_CR)) 3764 lpfc_send_els_failure_event(phba, 3765 cmdiocbp, saveq); 3766 3767 /* 3768 * Post all ELS completions to the worker thread. 3769 * All other are passed to the completion callback. 3770 */ 3771 if (pring->ringno == LPFC_ELS_RING) { 3772 if ((phba->sli_rev < LPFC_SLI_REV4) && 3773 (cmdiocbp->cmd_flag & 3774 LPFC_DRIVER_ABORTED)) { 3775 spin_lock_irqsave(&phba->hbalock, 3776 iflag); 3777 cmdiocbp->cmd_flag &= 3778 ~LPFC_DRIVER_ABORTED; 3779 spin_unlock_irqrestore(&phba->hbalock, 3780 iflag); 3781 saveq->iocb.ulpStatus = 3782 IOSTAT_LOCAL_REJECT; 3783 saveq->iocb.un.ulpWord[4] = 3784 IOERR_SLI_ABORTED; 3785 3786 /* Firmware could still be in progress 3787 * of DMAing payload, so don't free data 3788 * buffer till after a hbeat. 3789 */ 3790 spin_lock_irqsave(&phba->hbalock, 3791 iflag); 3792 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3793 spin_unlock_irqrestore(&phba->hbalock, 3794 iflag); 3795 } 3796 if (phba->sli_rev == LPFC_SLI_REV4) { 3797 if (saveq->cmd_flag & 3798 LPFC_EXCHANGE_BUSY) { 3799 /* Set cmdiocb flag for the 3800 * exchange busy so sgl (xri) 3801 * will not be released until 3802 * the abort xri is received 3803 * from hba. 3804 */ 3805 spin_lock_irqsave( 3806 &phba->hbalock, iflag); 3807 cmdiocbp->cmd_flag |= 3808 LPFC_EXCHANGE_BUSY; 3809 spin_unlock_irqrestore( 3810 &phba->hbalock, iflag); 3811 } 3812 if (cmdiocbp->cmd_flag & 3813 LPFC_DRIVER_ABORTED) { 3814 /* 3815 * Clear LPFC_DRIVER_ABORTED 3816 * bit in case it was driver 3817 * initiated abort. 3818 */ 3819 spin_lock_irqsave( 3820 &phba->hbalock, iflag); 3821 cmdiocbp->cmd_flag &= 3822 ~LPFC_DRIVER_ABORTED; 3823 spin_unlock_irqrestore( 3824 &phba->hbalock, iflag); 3825 set_job_ulpstatus(cmdiocbp, 3826 IOSTAT_LOCAL_REJECT); 3827 set_job_ulpword4(cmdiocbp, 3828 IOERR_ABORT_REQUESTED); 3829 /* 3830 * For SLI4, irspiocb contains 3831 * NO_XRI in sli_xritag, it 3832 * shall not affect releasing 3833 * sgl (xri) process. 3834 */ 3835 set_job_ulpstatus(saveq, 3836 IOSTAT_LOCAL_REJECT); 3837 set_job_ulpword4(saveq, 3838 IOERR_SLI_ABORTED); 3839 spin_lock_irqsave( 3840 &phba->hbalock, iflag); 3841 saveq->cmd_flag |= 3842 LPFC_DELAY_MEM_FREE; 3843 spin_unlock_irqrestore( 3844 &phba->hbalock, iflag); 3845 } 3846 } 3847 } 3848 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3849 } else 3850 lpfc_sli_release_iocbq(phba, cmdiocbp); 3851 } else { 3852 /* 3853 * Unknown initiating command based on the response iotag. 3854 * This could be the case on the ELS ring because of 3855 * lpfc_els_abort(). 3856 */ 3857 if (pring->ringno != LPFC_ELS_RING) { 3858 /* 3859 * Ring <ringno> handler: unexpected completion IoTag 3860 * <IoTag> 3861 */ 3862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3863 "0322 Ring %d handler: " 3864 "unexpected completion IoTag x%x " 3865 "Data: x%x x%x x%x x%x\n", 3866 pring->ringno, iotag, ulp_status, 3867 ulp_word4, ulp_command, ulp_context); 3868 } 3869 } 3870 3871 return 1; 3872 } 3873 3874 /** 3875 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3876 * @phba: Pointer to HBA context object. 3877 * @pring: Pointer to driver SLI ring object. 3878 * 3879 * This function is called from the iocb ring event handlers when 3880 * put pointer is ahead of the get pointer for a ring. This function signal 3881 * an error attention condition to the worker thread and the worker 3882 * thread will transition the HBA to offline state. 3883 **/ 3884 static void 3885 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3886 { 3887 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3888 /* 3889 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3890 * rsp ring <portRspMax> 3891 */ 3892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3893 "0312 Ring %d handler: portRspPut %d " 3894 "is bigger than rsp ring %d\n", 3895 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3896 pring->sli.sli3.numRiocb); 3897 3898 phba->link_state = LPFC_HBA_ERROR; 3899 3900 /* 3901 * All error attention handlers are posted to 3902 * worker thread 3903 */ 3904 phba->work_ha |= HA_ERATT; 3905 phba->work_hs = HS_FFER3; 3906 3907 lpfc_worker_wake_up(phba); 3908 3909 return; 3910 } 3911 3912 /** 3913 * lpfc_poll_eratt - Error attention polling timer timeout handler 3914 * @t: Context to fetch pointer to address of HBA context object from. 3915 * 3916 * This function is invoked by the Error Attention polling timer when the 3917 * timer times out. It will check the SLI Error Attention register for 3918 * possible attention events. If so, it will post an Error Attention event 3919 * and wake up worker thread to process it. Otherwise, it will set up the 3920 * Error Attention polling timer for the next poll. 3921 **/ 3922 void lpfc_poll_eratt(struct timer_list *t) 3923 { 3924 struct lpfc_hba *phba; 3925 uint32_t eratt = 0; 3926 uint64_t sli_intr, cnt; 3927 3928 phba = timer_container_of(phba, t, eratt_poll); 3929 3930 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3931 return; 3932 3933 if (phba->sli_rev == LPFC_SLI_REV4 && 3934 !test_bit(HBA_SETUP, &phba->hba_flag)) { 3935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3936 "0663 HBA still initializing 0x%lx, restart " 3937 "timer\n", 3938 phba->hba_flag); 3939 goto restart_timer; 3940 } 3941 3942 /* Here we will also keep track of interrupts per sec of the hba */ 3943 sli_intr = phba->sli.slistat.sli_intr; 3944 3945 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3946 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3947 sli_intr); 3948 else 3949 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3950 3951 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3952 do_div(cnt, phba->eratt_poll_interval); 3953 phba->sli.slistat.sli_ips = cnt; 3954 3955 phba->sli.slistat.sli_prev_intr = sli_intr; 3956 3957 /* Check chip HA register for error event */ 3958 eratt = lpfc_sli_check_eratt(phba); 3959 3960 if (eratt) { 3961 /* Tell the worker thread there is work to do */ 3962 lpfc_worker_wake_up(phba); 3963 return; 3964 } 3965 3966 restart_timer: 3967 /* Restart the timer for next eratt poll */ 3968 mod_timer(&phba->eratt_poll, 3969 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 3970 return; 3971 } 3972 3973 3974 /** 3975 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3976 * @phba: Pointer to HBA context object. 3977 * @pring: Pointer to driver SLI ring object. 3978 * @mask: Host attention register mask for this ring. 3979 * 3980 * This function is called from the interrupt context when there is a ring 3981 * event for the fcp ring. The caller does not hold any lock. 3982 * The function processes each response iocb in the response ring until it 3983 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3984 * LE bit set. The function will call the completion handler of the command iocb 3985 * if the response iocb indicates a completion for a command iocb or it is 3986 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3987 * function if this is an unsolicited iocb. 3988 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3989 * to check it explicitly. 3990 */ 3991 int 3992 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3993 struct lpfc_sli_ring *pring, uint32_t mask) 3994 { 3995 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3996 IOCB_t *irsp = NULL; 3997 IOCB_t *entry = NULL; 3998 struct lpfc_iocbq *cmdiocbq = NULL; 3999 struct lpfc_iocbq rspiocbq; 4000 uint32_t status; 4001 uint32_t portRspPut, portRspMax; 4002 int rc = 1; 4003 lpfc_iocb_type type; 4004 unsigned long iflag; 4005 uint32_t rsp_cmpl = 0; 4006 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 pring->stats.iocb_event++; 4009 4010 /* 4011 * The next available response entry should never exceed the maximum 4012 * entries. If it does, treat it as an adapter hardware error. 4013 */ 4014 portRspMax = pring->sli.sli3.numRiocb; 4015 portRspPut = le32_to_cpu(pgp->rspPutInx); 4016 if (unlikely(portRspPut >= portRspMax)) { 4017 lpfc_sli_rsp_pointers_error(phba, pring); 4018 spin_unlock_irqrestore(&phba->hbalock, iflag); 4019 return 1; 4020 } 4021 if (phba->fcp_ring_in_use) { 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 return 1; 4024 } else 4025 phba->fcp_ring_in_use = 1; 4026 4027 rmb(); 4028 while (pring->sli.sli3.rspidx != portRspPut) { 4029 /* 4030 * Fetch an entry off the ring and copy it into a local data 4031 * structure. The copy involves a byte-swap since the 4032 * network byte order and pci byte orders are different. 4033 */ 4034 entry = lpfc_resp_iocb(phba, pring); 4035 phba->last_completion_time = jiffies; 4036 4037 if (++pring->sli.sli3.rspidx >= portRspMax) 4038 pring->sli.sli3.rspidx = 0; 4039 4040 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4041 (uint32_t *) &rspiocbq.iocb, 4042 phba->iocb_rsp_size); 4043 INIT_LIST_HEAD(&(rspiocbq.list)); 4044 irsp = &rspiocbq.iocb; 4045 4046 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4047 pring->stats.iocb_rsp++; 4048 rsp_cmpl++; 4049 4050 if (unlikely(irsp->ulpStatus)) { 4051 /* 4052 * If resource errors reported from HBA, reduce 4053 * queuedepths of the SCSI device. 4054 */ 4055 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4056 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4057 IOERR_NO_RESOURCES)) { 4058 spin_unlock_irqrestore(&phba->hbalock, iflag); 4059 phba->lpfc_rampdown_queue_depth(phba); 4060 spin_lock_irqsave(&phba->hbalock, iflag); 4061 } 4062 4063 /* Rsp ring <ringno> error: IOCB */ 4064 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4065 "0336 Rsp Ring %d error: IOCB Data: " 4066 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4067 pring->ringno, 4068 irsp->un.ulpWord[0], 4069 irsp->un.ulpWord[1], 4070 irsp->un.ulpWord[2], 4071 irsp->un.ulpWord[3], 4072 irsp->un.ulpWord[4], 4073 irsp->un.ulpWord[5], 4074 *(uint32_t *)&irsp->un1, 4075 *((uint32_t *)&irsp->un1 + 1)); 4076 } 4077 4078 switch (type) { 4079 case LPFC_ABORT_IOCB: 4080 case LPFC_SOL_IOCB: 4081 /* 4082 * Idle exchange closed via ABTS from port. No iocb 4083 * resources need to be recovered. 4084 */ 4085 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4087 "0333 IOCB cmd 0x%x" 4088 " processed. Skipping" 4089 " completion\n", 4090 irsp->ulpCommand); 4091 break; 4092 } 4093 4094 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4095 &rspiocbq); 4096 if (unlikely(!cmdiocbq)) 4097 break; 4098 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4099 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4100 if (cmdiocbq->cmd_cmpl) { 4101 spin_unlock_irqrestore(&phba->hbalock, iflag); 4102 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4103 spin_lock_irqsave(&phba->hbalock, iflag); 4104 } 4105 break; 4106 case LPFC_UNSOL_IOCB: 4107 spin_unlock_irqrestore(&phba->hbalock, iflag); 4108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4109 spin_lock_irqsave(&phba->hbalock, iflag); 4110 break; 4111 default: 4112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4113 char adaptermsg[LPFC_MAX_ADPTMSG]; 4114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4115 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4116 MAX_MSG_DATA); 4117 dev_warn(&((phba->pcidev)->dev), 4118 "lpfc%d: %s\n", 4119 phba->brd_no, adaptermsg); 4120 } else { 4121 /* Unknown IOCB command */ 4122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4123 "0334 Unknown IOCB command " 4124 "Data: x%x, x%x x%x x%x x%x\n", 4125 type, irsp->ulpCommand, 4126 irsp->ulpStatus, 4127 irsp->ulpIoTag, 4128 irsp->ulpContext); 4129 } 4130 break; 4131 } 4132 4133 /* 4134 * The response IOCB has been processed. Update the ring 4135 * pointer in SLIM. If the port response put pointer has not 4136 * been updated, sync the pgp->rspPutInx and fetch the new port 4137 * response put pointer. 4138 */ 4139 writel(pring->sli.sli3.rspidx, 4140 &phba->host_gp[pring->ringno].rspGetInx); 4141 4142 if (pring->sli.sli3.rspidx == portRspPut) 4143 portRspPut = le32_to_cpu(pgp->rspPutInx); 4144 } 4145 4146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4147 pring->stats.iocb_rsp_full++; 4148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4149 writel(status, phba->CAregaddr); 4150 readl(phba->CAregaddr); 4151 } 4152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4154 pring->stats.iocb_cmd_empty++; 4155 4156 /* Force update of the local copy of cmdGetInx */ 4157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4158 lpfc_sli_resume_iocb(phba, pring); 4159 4160 if ((pring->lpfc_sli_cmd_available)) 4161 (pring->lpfc_sli_cmd_available) (phba, pring); 4162 4163 } 4164 4165 phba->fcp_ring_in_use = 0; 4166 spin_unlock_irqrestore(&phba->hbalock, iflag); 4167 return rc; 4168 } 4169 4170 /** 4171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4172 * @phba: Pointer to HBA context object. 4173 * @pring: Pointer to driver SLI ring object. 4174 * @rspiocbp: Pointer to driver response IOCB object. 4175 * 4176 * This function is called from the worker thread when there is a slow-path 4177 * response IOCB to process. This function chains all the response iocbs until 4178 * seeing the iocb with the LE bit set. The function will call 4179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4180 * completion of a command iocb. The function will call the 4181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4182 * The function frees the resources or calls the completion handler if this 4183 * iocb is an abort completion. The function returns NULL when the response 4184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4185 * this function shall chain the iocb on to the iocb_continueq and return the 4186 * response iocb passed in. 4187 **/ 4188 static struct lpfc_iocbq * 4189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4190 struct lpfc_iocbq *rspiocbp) 4191 { 4192 struct lpfc_iocbq *saveq; 4193 struct lpfc_iocbq *cmdiocb; 4194 struct lpfc_iocbq *next_iocb; 4195 IOCB_t *irsp; 4196 uint32_t free_saveq; 4197 u8 cmd_type; 4198 lpfc_iocb_type type; 4199 unsigned long iflag; 4200 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4201 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4202 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4203 int rc; 4204 4205 spin_lock_irqsave(&phba->hbalock, iflag); 4206 /* First add the response iocb to the countinueq list */ 4207 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4208 pring->iocb_continueq_cnt++; 4209 4210 /* 4211 * By default, the driver expects to free all resources 4212 * associated with this iocb completion. 4213 */ 4214 free_saveq = 1; 4215 saveq = list_get_first(&pring->iocb_continueq, 4216 struct lpfc_iocbq, list); 4217 list_del_init(&pring->iocb_continueq); 4218 pring->iocb_continueq_cnt = 0; 4219 4220 pring->stats.iocb_rsp++; 4221 4222 /* 4223 * If resource errors reported from HBA, reduce 4224 * queuedepths of the SCSI device. 4225 */ 4226 if (ulp_status == IOSTAT_LOCAL_REJECT && 4227 ((ulp_word4 & IOERR_PARAM_MASK) == 4228 IOERR_NO_RESOURCES)) { 4229 spin_unlock_irqrestore(&phba->hbalock, iflag); 4230 phba->lpfc_rampdown_queue_depth(phba); 4231 spin_lock_irqsave(&phba->hbalock, iflag); 4232 } 4233 4234 if (ulp_status) { 4235 /* Rsp ring <ringno> error: IOCB */ 4236 if (phba->sli_rev < LPFC_SLI_REV4) { 4237 irsp = &rspiocbp->iocb; 4238 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4239 "0328 Rsp Ring %d error: ulp_status x%x " 4240 "IOCB Data: " 4241 "x%08x x%08x x%08x x%08x " 4242 "x%08x x%08x x%08x x%08x " 4243 "x%08x x%08x x%08x x%08x " 4244 "x%08x x%08x x%08x x%08x\n", 4245 pring->ringno, ulp_status, 4246 get_job_ulpword(rspiocbp, 0), 4247 get_job_ulpword(rspiocbp, 1), 4248 get_job_ulpword(rspiocbp, 2), 4249 get_job_ulpword(rspiocbp, 3), 4250 get_job_ulpword(rspiocbp, 4), 4251 get_job_ulpword(rspiocbp, 5), 4252 *(((uint32_t *)irsp) + 6), 4253 *(((uint32_t *)irsp) + 7), 4254 *(((uint32_t *)irsp) + 8), 4255 *(((uint32_t *)irsp) + 9), 4256 *(((uint32_t *)irsp) + 10), 4257 *(((uint32_t *)irsp) + 11), 4258 *(((uint32_t *)irsp) + 12), 4259 *(((uint32_t *)irsp) + 13), 4260 *(((uint32_t *)irsp) + 14), 4261 *(((uint32_t *)irsp) + 15)); 4262 } else { 4263 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4264 "0321 Rsp Ring %d error: " 4265 "IOCB Data: " 4266 "x%x x%x x%x x%x\n", 4267 pring->ringno, 4268 rspiocbp->wcqe_cmpl.word0, 4269 rspiocbp->wcqe_cmpl.total_data_placed, 4270 rspiocbp->wcqe_cmpl.parameter, 4271 rspiocbp->wcqe_cmpl.word3); 4272 } 4273 } 4274 4275 4276 /* 4277 * Fetch the iocb command type and call the correct completion 4278 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4279 * get freed back to the lpfc_iocb_list by the discovery 4280 * kernel thread. 4281 */ 4282 cmd_type = ulp_command & CMD_IOCB_MASK; 4283 type = lpfc_sli_iocb_cmd_type(cmd_type); 4284 switch (type) { 4285 case LPFC_SOL_IOCB: 4286 spin_unlock_irqrestore(&phba->hbalock, iflag); 4287 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4288 spin_lock_irqsave(&phba->hbalock, iflag); 4289 break; 4290 case LPFC_UNSOL_IOCB: 4291 spin_unlock_irqrestore(&phba->hbalock, iflag); 4292 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4293 spin_lock_irqsave(&phba->hbalock, iflag); 4294 if (!rc) 4295 free_saveq = 0; 4296 break; 4297 case LPFC_ABORT_IOCB: 4298 cmdiocb = NULL; 4299 if (ulp_command != CMD_XRI_ABORTED_CX) 4300 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4301 saveq); 4302 if (cmdiocb) { 4303 /* Call the specified completion routine */ 4304 if (cmdiocb->cmd_cmpl) { 4305 spin_unlock_irqrestore(&phba->hbalock, iflag); 4306 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4307 spin_lock_irqsave(&phba->hbalock, iflag); 4308 } else { 4309 __lpfc_sli_release_iocbq(phba, cmdiocb); 4310 } 4311 } 4312 break; 4313 case LPFC_UNKNOWN_IOCB: 4314 if (ulp_command == CMD_ADAPTER_MSG) { 4315 char adaptermsg[LPFC_MAX_ADPTMSG]; 4316 4317 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4318 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4319 MAX_MSG_DATA); 4320 dev_warn(&((phba->pcidev)->dev), 4321 "lpfc%d: %s\n", 4322 phba->brd_no, adaptermsg); 4323 } else { 4324 /* Unknown command */ 4325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4326 "0335 Unknown IOCB " 4327 "command Data: x%x " 4328 "x%x x%x x%x\n", 4329 ulp_command, 4330 ulp_status, 4331 get_wqe_reqtag(rspiocbp), 4332 get_job_ulpcontext(phba, rspiocbp)); 4333 } 4334 break; 4335 } 4336 4337 if (free_saveq) { 4338 list_for_each_entry_safe(rspiocbp, next_iocb, 4339 &saveq->list, list) { 4340 list_del_init(&rspiocbp->list); 4341 __lpfc_sli_release_iocbq(phba, rspiocbp); 4342 } 4343 __lpfc_sli_release_iocbq(phba, saveq); 4344 } 4345 rspiocbp = NULL; 4346 spin_unlock_irqrestore(&phba->hbalock, iflag); 4347 return rspiocbp; 4348 } 4349 4350 /** 4351 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4352 * @phba: Pointer to HBA context object. 4353 * @pring: Pointer to driver SLI ring object. 4354 * @mask: Host attention register mask for this ring. 4355 * 4356 * This routine wraps the actual slow_ring event process routine from the 4357 * API jump table function pointer from the lpfc_hba struct. 4358 **/ 4359 void 4360 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4361 struct lpfc_sli_ring *pring, uint32_t mask) 4362 { 4363 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4364 } 4365 4366 /** 4367 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4368 * @phba: Pointer to HBA context object. 4369 * @pring: Pointer to driver SLI ring object. 4370 * @mask: Host attention register mask for this ring. 4371 * 4372 * This function is called from the worker thread when there is a ring event 4373 * for non-fcp rings. The caller does not hold any lock. The function will 4374 * remove each response iocb in the response ring and calls the handle 4375 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4376 **/ 4377 static void 4378 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4379 struct lpfc_sli_ring *pring, uint32_t mask) 4380 { 4381 struct lpfc_pgp *pgp; 4382 IOCB_t *entry; 4383 IOCB_t *irsp = NULL; 4384 struct lpfc_iocbq *rspiocbp = NULL; 4385 uint32_t portRspPut, portRspMax; 4386 unsigned long iflag; 4387 uint32_t status; 4388 4389 pgp = &phba->port_gp[pring->ringno]; 4390 spin_lock_irqsave(&phba->hbalock, iflag); 4391 pring->stats.iocb_event++; 4392 4393 /* 4394 * The next available response entry should never exceed the maximum 4395 * entries. If it does, treat it as an adapter hardware error. 4396 */ 4397 portRspMax = pring->sli.sli3.numRiocb; 4398 portRspPut = le32_to_cpu(pgp->rspPutInx); 4399 if (portRspPut >= portRspMax) { 4400 /* 4401 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4402 * rsp ring <portRspMax> 4403 */ 4404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4405 "0303 Ring %d handler: portRspPut %d " 4406 "is bigger than rsp ring %d\n", 4407 pring->ringno, portRspPut, portRspMax); 4408 4409 phba->link_state = LPFC_HBA_ERROR; 4410 spin_unlock_irqrestore(&phba->hbalock, iflag); 4411 4412 phba->work_hs = HS_FFER3; 4413 lpfc_handle_eratt(phba); 4414 4415 return; 4416 } 4417 4418 rmb(); 4419 while (pring->sli.sli3.rspidx != portRspPut) { 4420 /* 4421 * Build a completion list and call the appropriate handler. 4422 * The process is to get the next available response iocb, get 4423 * a free iocb from the list, copy the response data into the 4424 * free iocb, insert to the continuation list, and update the 4425 * next response index to slim. This process makes response 4426 * iocb's in the ring available to DMA as fast as possible but 4427 * pays a penalty for a copy operation. Since the iocb is 4428 * only 32 bytes, this penalty is considered small relative to 4429 * the PCI reads for register values and a slim write. When 4430 * the ulpLe field is set, the entire Command has been 4431 * received. 4432 */ 4433 entry = lpfc_resp_iocb(phba, pring); 4434 4435 phba->last_completion_time = jiffies; 4436 rspiocbp = __lpfc_sli_get_iocbq(phba); 4437 if (rspiocbp == NULL) { 4438 printk(KERN_ERR "%s: out of buffers! Failing " 4439 "completion.\n", __func__); 4440 break; 4441 } 4442 4443 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4444 phba->iocb_rsp_size); 4445 irsp = &rspiocbp->iocb; 4446 4447 if (++pring->sli.sli3.rspidx >= portRspMax) 4448 pring->sli.sli3.rspidx = 0; 4449 4450 if (pring->ringno == LPFC_ELS_RING) { 4451 lpfc_debugfs_slow_ring_trc(phba, 4452 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4453 *(((uint32_t *) irsp) + 4), 4454 *(((uint32_t *) irsp) + 6), 4455 *(((uint32_t *) irsp) + 7)); 4456 } 4457 4458 writel(pring->sli.sli3.rspidx, 4459 &phba->host_gp[pring->ringno].rspGetInx); 4460 4461 spin_unlock_irqrestore(&phba->hbalock, iflag); 4462 /* Handle the response IOCB */ 4463 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4464 spin_lock_irqsave(&phba->hbalock, iflag); 4465 4466 /* 4467 * If the port response put pointer has not been updated, sync 4468 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4469 * response put pointer. 4470 */ 4471 if (pring->sli.sli3.rspidx == portRspPut) { 4472 portRspPut = le32_to_cpu(pgp->rspPutInx); 4473 } 4474 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4475 4476 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4477 /* At least one response entry has been freed */ 4478 pring->stats.iocb_rsp_full++; 4479 /* SET RxRE_RSP in Chip Att register */ 4480 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4481 writel(status, phba->CAregaddr); 4482 readl(phba->CAregaddr); /* flush */ 4483 } 4484 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4485 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4486 pring->stats.iocb_cmd_empty++; 4487 4488 /* Force update of the local copy of cmdGetInx */ 4489 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4490 lpfc_sli_resume_iocb(phba, pring); 4491 4492 if ((pring->lpfc_sli_cmd_available)) 4493 (pring->lpfc_sli_cmd_available) (phba, pring); 4494 4495 } 4496 4497 spin_unlock_irqrestore(&phba->hbalock, iflag); 4498 return; 4499 } 4500 4501 /** 4502 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4503 * @phba: Pointer to HBA context object. 4504 * @pring: Pointer to driver SLI ring object. 4505 * @mask: Host attention register mask for this ring. 4506 * 4507 * This function is called from the worker thread when there is a pending 4508 * ELS response iocb on the driver internal slow-path response iocb worker 4509 * queue. The caller does not hold any lock. The function will remove each 4510 * response iocb from the response worker queue and calls the handle 4511 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4512 **/ 4513 static void 4514 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4515 struct lpfc_sli_ring *pring, uint32_t mask) 4516 { 4517 struct lpfc_iocbq *irspiocbq; 4518 struct hbq_dmabuf *dmabuf; 4519 struct lpfc_cq_event *cq_event; 4520 unsigned long iflag; 4521 int count = 0; 4522 4523 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4524 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4525 /* Get the response iocb from the head of work queue */ 4526 spin_lock_irqsave(&phba->hbalock, iflag); 4527 list_remove_head(&phba->sli4_hba.sp_queue_event, 4528 cq_event, struct lpfc_cq_event, list); 4529 spin_unlock_irqrestore(&phba->hbalock, iflag); 4530 4531 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4532 case CQE_CODE_COMPL_WQE: 4533 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4534 cq_event); 4535 /* Translate ELS WCQE to response IOCBQ */ 4536 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4537 irspiocbq); 4538 if (irspiocbq) 4539 lpfc_sli_sp_handle_rspiocb(phba, pring, 4540 irspiocbq); 4541 count++; 4542 break; 4543 case CQE_CODE_RECEIVE: 4544 case CQE_CODE_RECEIVE_V1: 4545 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4546 cq_event); 4547 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4548 count++; 4549 break; 4550 default: 4551 break; 4552 } 4553 4554 /* Limit the number of events to 64 to avoid soft lockups */ 4555 if (count == 64) 4556 break; 4557 } 4558 } 4559 4560 /** 4561 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4562 * @phba: Pointer to HBA context object. 4563 * @pring: Pointer to driver SLI ring object. 4564 * 4565 * This function aborts all iocbs in the given ring and frees all the iocb 4566 * objects in txq. This function issues an abort iocb for all the iocb commands 4567 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4568 * the return of this function. The caller is not required to hold any locks. 4569 **/ 4570 void 4571 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4572 { 4573 LIST_HEAD(tx_completions); 4574 LIST_HEAD(txcmplq_completions); 4575 struct lpfc_iocbq *iocb, *next_iocb; 4576 int offline; 4577 4578 if (pring->ringno == LPFC_ELS_RING) { 4579 lpfc_fabric_abort_hba(phba); 4580 } 4581 offline = pci_channel_offline(phba->pcidev); 4582 4583 /* Error everything on txq and txcmplq 4584 * First do the txq. 4585 */ 4586 if (phba->sli_rev >= LPFC_SLI_REV4) { 4587 spin_lock_irq(&pring->ring_lock); 4588 list_splice_init(&pring->txq, &tx_completions); 4589 pring->txq_cnt = 0; 4590 4591 if (offline) { 4592 list_splice_init(&pring->txcmplq, 4593 &txcmplq_completions); 4594 } else { 4595 /* Next issue ABTS for everything on the txcmplq */ 4596 list_for_each_entry_safe(iocb, next_iocb, 4597 &pring->txcmplq, list) 4598 lpfc_sli_issue_abort_iotag(phba, pring, 4599 iocb, NULL); 4600 } 4601 spin_unlock_irq(&pring->ring_lock); 4602 } else { 4603 spin_lock_irq(&phba->hbalock); 4604 list_splice_init(&pring->txq, &tx_completions); 4605 pring->txq_cnt = 0; 4606 4607 if (offline) { 4608 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4609 } else { 4610 /* Next issue ABTS for everything on the txcmplq */ 4611 list_for_each_entry_safe(iocb, next_iocb, 4612 &pring->txcmplq, list) 4613 lpfc_sli_issue_abort_iotag(phba, pring, 4614 iocb, NULL); 4615 } 4616 spin_unlock_irq(&phba->hbalock); 4617 } 4618 4619 if (offline) { 4620 /* Cancel all the IOCBs from the completions list */ 4621 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4622 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4623 } else { 4624 /* Make sure HBA is alive */ 4625 lpfc_issue_hb_tmo(phba); 4626 } 4627 /* Cancel all the IOCBs from the completions list */ 4628 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4629 IOERR_SLI_ABORTED); 4630 } 4631 4632 /** 4633 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4634 * @phba: Pointer to HBA context object. 4635 * 4636 * This function aborts all iocbs in FCP rings and frees all the iocb 4637 * objects in txq. This function issues an abort iocb for all the iocb commands 4638 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4639 * the return of this function. The caller is not required to hold any locks. 4640 **/ 4641 void 4642 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4643 { 4644 struct lpfc_sli *psli = &phba->sli; 4645 struct lpfc_sli_ring *pring; 4646 uint32_t i; 4647 4648 /* Look on all the FCP Rings for the iotag */ 4649 if (phba->sli_rev >= LPFC_SLI_REV4) { 4650 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4651 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4652 lpfc_sli_abort_iocb_ring(phba, pring); 4653 } 4654 } else { 4655 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4656 lpfc_sli_abort_iocb_ring(phba, pring); 4657 } 4658 } 4659 4660 /** 4661 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4662 * @phba: Pointer to HBA context object. 4663 * 4664 * This function flushes all iocbs in the IO ring and frees all the iocb 4665 * objects in txq and txcmplq. This function will not issue abort iocbs 4666 * for all the iocb commands in txcmplq, they will just be returned with 4667 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4668 * slot has been permanently disabled. 4669 **/ 4670 void 4671 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4672 { 4673 LIST_HEAD(txq); 4674 LIST_HEAD(txcmplq); 4675 struct lpfc_sli *psli = &phba->sli; 4676 struct lpfc_sli_ring *pring; 4677 uint32_t i; 4678 struct lpfc_iocbq *piocb, *next_iocb; 4679 4680 /* Indicate the I/O queues are flushed */ 4681 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4682 4683 /* Look on all the FCP Rings for the iotag */ 4684 if (phba->sli_rev >= LPFC_SLI_REV4) { 4685 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4686 if (!phba->sli4_hba.hdwq || 4687 !phba->sli4_hba.hdwq[i].io_wq) { 4688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4689 "7777 hdwq's deleted %lx " 4690 "%lx %x %x\n", 4691 phba->pport->load_flag, 4692 phba->hba_flag, 4693 phba->link_state, 4694 phba->sli.sli_flag); 4695 return; 4696 } 4697 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4698 4699 spin_lock_irq(&pring->ring_lock); 4700 /* Retrieve everything on txq */ 4701 list_splice_init(&pring->txq, &txq); 4702 list_for_each_entry_safe(piocb, next_iocb, 4703 &pring->txcmplq, list) 4704 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4705 /* Retrieve everything on the txcmplq */ 4706 list_splice_init(&pring->txcmplq, &txcmplq); 4707 pring->txq_cnt = 0; 4708 pring->txcmplq_cnt = 0; 4709 spin_unlock_irq(&pring->ring_lock); 4710 4711 /* Flush the txq */ 4712 lpfc_sli_cancel_iocbs(phba, &txq, 4713 IOSTAT_LOCAL_REJECT, 4714 IOERR_SLI_DOWN); 4715 /* Flush the txcmplq */ 4716 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4717 IOSTAT_LOCAL_REJECT, 4718 IOERR_SLI_DOWN); 4719 if (unlikely(pci_channel_offline(phba->pcidev))) 4720 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4721 } 4722 } else { 4723 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4724 4725 spin_lock_irq(&phba->hbalock); 4726 /* Retrieve everything on txq */ 4727 list_splice_init(&pring->txq, &txq); 4728 list_for_each_entry_safe(piocb, next_iocb, 4729 &pring->txcmplq, list) 4730 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4731 /* Retrieve everything on the txcmplq */ 4732 list_splice_init(&pring->txcmplq, &txcmplq); 4733 pring->txq_cnt = 0; 4734 pring->txcmplq_cnt = 0; 4735 spin_unlock_irq(&phba->hbalock); 4736 4737 /* Flush the txq */ 4738 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4739 IOERR_SLI_DOWN); 4740 /* Flush the txcmpq */ 4741 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4742 IOERR_SLI_DOWN); 4743 } 4744 } 4745 4746 /** 4747 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4748 * @phba: Pointer to HBA context object. 4749 * @mask: Bit mask to be checked. 4750 * 4751 * This function reads the host status register and compares 4752 * with the provided bit mask to check if HBA completed 4753 * the restart. This function will wait in a loop for the 4754 * HBA to complete restart. If the HBA does not restart within 4755 * 15 iterations, the function will reset the HBA again. The 4756 * function returns 1 when HBA fail to restart otherwise returns 4757 * zero. 4758 **/ 4759 static int 4760 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4761 { 4762 uint32_t status; 4763 int i = 0; 4764 int retval = 0; 4765 4766 /* Read the HBA Host Status Register */ 4767 if (lpfc_readl(phba->HSregaddr, &status)) 4768 return 1; 4769 4770 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4771 4772 /* 4773 * Check status register every 100ms for 5 retries, then every 4774 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4775 * every 2.5 sec for 4. 4776 * Break our of the loop if errors occurred during init. 4777 */ 4778 while (((status & mask) != mask) && 4779 !(status & HS_FFERM) && 4780 i++ < 20) { 4781 4782 if (i <= 5) 4783 msleep(10); 4784 else if (i <= 10) 4785 msleep(500); 4786 else 4787 msleep(2500); 4788 4789 if (i == 15) { 4790 /* Do post */ 4791 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4792 lpfc_sli_brdrestart(phba); 4793 } 4794 /* Read the HBA Host Status Register */ 4795 if (lpfc_readl(phba->HSregaddr, &status)) { 4796 retval = 1; 4797 break; 4798 } 4799 } 4800 4801 /* Check to see if any errors occurred during init */ 4802 if ((status & HS_FFERM) || (i >= 20)) { 4803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4804 "2751 Adapter failed to restart, " 4805 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4806 status, 4807 readl(phba->MBslimaddr + 0xa8), 4808 readl(phba->MBslimaddr + 0xac)); 4809 phba->link_state = LPFC_HBA_ERROR; 4810 retval = 1; 4811 } 4812 4813 return retval; 4814 } 4815 4816 /** 4817 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4818 * @phba: Pointer to HBA context object. 4819 * @mask: Bit mask to be checked. 4820 * 4821 * This function checks the host status register to check if HBA is 4822 * ready. This function will wait in a loop for the HBA to be ready 4823 * If the HBA is not ready , the function will will reset the HBA PCI 4824 * function again. The function returns 1 when HBA fail to be ready 4825 * otherwise returns zero. 4826 **/ 4827 static int 4828 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4829 { 4830 uint32_t status; 4831 int retval = 0; 4832 4833 /* Read the HBA Host Status Register */ 4834 status = lpfc_sli4_post_status_check(phba); 4835 4836 if (status) { 4837 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4838 lpfc_sli_brdrestart(phba); 4839 status = lpfc_sli4_post_status_check(phba); 4840 } 4841 4842 /* Check to see if any errors occurred during init */ 4843 if (status) { 4844 phba->link_state = LPFC_HBA_ERROR; 4845 retval = 1; 4846 } else 4847 phba->sli4_hba.intr_enable = 0; 4848 4849 clear_bit(HBA_SETUP, &phba->hba_flag); 4850 return retval; 4851 } 4852 4853 /** 4854 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4855 * @phba: Pointer to HBA context object. 4856 * @mask: Bit mask to be checked. 4857 * 4858 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4859 * from the API jump table function pointer from the lpfc_hba struct. 4860 **/ 4861 int 4862 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4863 { 4864 return phba->lpfc_sli_brdready(phba, mask); 4865 } 4866 4867 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4868 4869 /** 4870 * lpfc_reset_barrier - Make HBA ready for HBA reset 4871 * @phba: Pointer to HBA context object. 4872 * 4873 * This function is called before resetting an HBA. This function is called 4874 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4875 **/ 4876 void lpfc_reset_barrier(struct lpfc_hba *phba) 4877 { 4878 uint32_t __iomem *resp_buf; 4879 uint32_t __iomem *mbox_buf; 4880 volatile struct MAILBOX_word0 mbox; 4881 uint32_t hc_copy, ha_copy, resp_data; 4882 int i; 4883 uint8_t hdrtype; 4884 4885 lockdep_assert_held(&phba->hbalock); 4886 4887 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4888 if (hdrtype != PCI_HEADER_TYPE_MFD || 4889 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4890 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4891 return; 4892 4893 /* 4894 * Tell the other part of the chip to suspend temporarily all 4895 * its DMA activity. 4896 */ 4897 resp_buf = phba->MBslimaddr; 4898 4899 /* Disable the error attention */ 4900 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4901 return; 4902 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4903 readl(phba->HCregaddr); /* flush */ 4904 phba->link_flag |= LS_IGNORE_ERATT; 4905 4906 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4907 return; 4908 if (ha_copy & HA_ERATT) { 4909 /* Clear Chip error bit */ 4910 writel(HA_ERATT, phba->HAregaddr); 4911 phba->pport->stopped = 1; 4912 } 4913 4914 mbox.word0 = 0; 4915 mbox.mbxCommand = MBX_KILL_BOARD; 4916 mbox.mbxOwner = OWN_CHIP; 4917 4918 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4919 mbox_buf = phba->MBslimaddr; 4920 writel(mbox.word0, mbox_buf); 4921 4922 for (i = 0; i < 50; i++) { 4923 if (lpfc_readl((resp_buf + 1), &resp_data)) 4924 return; 4925 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4926 mdelay(1); 4927 else 4928 break; 4929 } 4930 resp_data = 0; 4931 if (lpfc_readl((resp_buf + 1), &resp_data)) 4932 return; 4933 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4934 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4935 phba->pport->stopped) 4936 goto restore_hc; 4937 else 4938 goto clear_errat; 4939 } 4940 4941 mbox.mbxOwner = OWN_HOST; 4942 resp_data = 0; 4943 for (i = 0; i < 500; i++) { 4944 if (lpfc_readl(resp_buf, &resp_data)) 4945 return; 4946 if (resp_data != mbox.word0) 4947 mdelay(1); 4948 else 4949 break; 4950 } 4951 4952 clear_errat: 4953 4954 while (++i < 500) { 4955 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4956 return; 4957 if (!(ha_copy & HA_ERATT)) 4958 mdelay(1); 4959 else 4960 break; 4961 } 4962 4963 if (readl(phba->HAregaddr) & HA_ERATT) { 4964 writel(HA_ERATT, phba->HAregaddr); 4965 phba->pport->stopped = 1; 4966 } 4967 4968 restore_hc: 4969 phba->link_flag &= ~LS_IGNORE_ERATT; 4970 writel(hc_copy, phba->HCregaddr); 4971 readl(phba->HCregaddr); /* flush */ 4972 } 4973 4974 /** 4975 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4976 * @phba: Pointer to HBA context object. 4977 * 4978 * This function issues a kill_board mailbox command and waits for 4979 * the error attention interrupt. This function is called for stopping 4980 * the firmware processing. The caller is not required to hold any 4981 * locks. This function calls lpfc_hba_down_post function to free 4982 * any pending commands after the kill. The function will return 1 when it 4983 * fails to kill the board else will return 0. 4984 **/ 4985 int 4986 lpfc_sli_brdkill(struct lpfc_hba *phba) 4987 { 4988 struct lpfc_sli *psli; 4989 LPFC_MBOXQ_t *pmb; 4990 uint32_t status; 4991 uint32_t ha_copy; 4992 int retval; 4993 int i = 0; 4994 4995 psli = &phba->sli; 4996 4997 /* Kill HBA */ 4998 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4999 "0329 Kill HBA Data: x%x x%x\n", 5000 phba->pport->port_state, psli->sli_flag); 5001 5002 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5003 if (!pmb) 5004 return 1; 5005 5006 /* Disable the error attention */ 5007 spin_lock_irq(&phba->hbalock); 5008 if (lpfc_readl(phba->HCregaddr, &status)) { 5009 spin_unlock_irq(&phba->hbalock); 5010 mempool_free(pmb, phba->mbox_mem_pool); 5011 return 1; 5012 } 5013 status &= ~HC_ERINT_ENA; 5014 writel(status, phba->HCregaddr); 5015 readl(phba->HCregaddr); /* flush */ 5016 phba->link_flag |= LS_IGNORE_ERATT; 5017 spin_unlock_irq(&phba->hbalock); 5018 5019 lpfc_kill_board(phba, pmb); 5020 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5021 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5022 5023 if (retval != MBX_SUCCESS) { 5024 if (retval != MBX_BUSY) 5025 mempool_free(pmb, phba->mbox_mem_pool); 5026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5027 "2752 KILL_BOARD command failed retval %d\n", 5028 retval); 5029 spin_lock_irq(&phba->hbalock); 5030 phba->link_flag &= ~LS_IGNORE_ERATT; 5031 spin_unlock_irq(&phba->hbalock); 5032 return 1; 5033 } 5034 5035 spin_lock_irq(&phba->hbalock); 5036 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5037 spin_unlock_irq(&phba->hbalock); 5038 5039 mempool_free(pmb, phba->mbox_mem_pool); 5040 5041 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5042 * attention every 100ms for 3 seconds. If we don't get ERATT after 5043 * 3 seconds we still set HBA_ERROR state because the status of the 5044 * board is now undefined. 5045 */ 5046 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5047 return 1; 5048 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5049 mdelay(100); 5050 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5051 return 1; 5052 } 5053 5054 timer_delete_sync(&psli->mbox_tmo); 5055 if (ha_copy & HA_ERATT) { 5056 writel(HA_ERATT, phba->HAregaddr); 5057 phba->pport->stopped = 1; 5058 } 5059 spin_lock_irq(&phba->hbalock); 5060 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5061 psli->mbox_active = NULL; 5062 phba->link_flag &= ~LS_IGNORE_ERATT; 5063 spin_unlock_irq(&phba->hbalock); 5064 5065 lpfc_hba_down_post(phba); 5066 phba->link_state = LPFC_HBA_ERROR; 5067 5068 return ha_copy & HA_ERATT ? 0 : 1; 5069 } 5070 5071 /** 5072 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5073 * @phba: Pointer to HBA context object. 5074 * 5075 * This function resets the HBA by writing HC_INITFF to the control 5076 * register. After the HBA resets, this function resets all the iocb ring 5077 * indices. This function disables PCI layer parity checking during 5078 * the reset. 5079 * This function returns 0 always. 5080 * The caller is not required to hold any locks. 5081 **/ 5082 int 5083 lpfc_sli_brdreset(struct lpfc_hba *phba) 5084 { 5085 struct lpfc_sli *psli; 5086 struct lpfc_sli_ring *pring; 5087 uint16_t cfg_value; 5088 int i; 5089 5090 psli = &phba->sli; 5091 5092 /* Reset HBA */ 5093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5094 "0325 Reset HBA Data: x%x x%x\n", 5095 (phba->pport) ? phba->pport->port_state : 0, 5096 psli->sli_flag); 5097 5098 /* perform board reset */ 5099 phba->fc_eventTag = 0; 5100 phba->link_events = 0; 5101 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5102 if (phba->pport) { 5103 phba->pport->fc_myDID = 0; 5104 phba->pport->fc_prevDID = 0; 5105 } 5106 5107 /* Turn off parity checking and serr during the physical reset */ 5108 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5109 return -EIO; 5110 5111 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5112 (cfg_value & 5113 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5114 5115 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5116 5117 /* Now toggle INITFF bit in the Host Control Register */ 5118 writel(HC_INITFF, phba->HCregaddr); 5119 mdelay(1); 5120 readl(phba->HCregaddr); /* flush */ 5121 writel(0, phba->HCregaddr); 5122 readl(phba->HCregaddr); /* flush */ 5123 5124 /* Restore PCI cmd register */ 5125 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5126 5127 /* Initialize relevant SLI info */ 5128 for (i = 0; i < psli->num_rings; i++) { 5129 pring = &psli->sli3_ring[i]; 5130 pring->flag = 0; 5131 pring->sli.sli3.rspidx = 0; 5132 pring->sli.sli3.next_cmdidx = 0; 5133 pring->sli.sli3.local_getidx = 0; 5134 pring->sli.sli3.cmdidx = 0; 5135 pring->missbufcnt = 0; 5136 } 5137 5138 phba->link_state = LPFC_WARM_START; 5139 return 0; 5140 } 5141 5142 /** 5143 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5144 * @phba: Pointer to HBA context object. 5145 * 5146 * This function resets a SLI4 HBA. This function disables PCI layer parity 5147 * checking during resets the device. The caller is not required to hold 5148 * any locks. 5149 * 5150 * This function returns 0 on success else returns negative error code. 5151 **/ 5152 int 5153 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5154 { 5155 struct lpfc_sli *psli = &phba->sli; 5156 uint16_t cfg_value; 5157 int rc = 0; 5158 5159 /* Reset HBA */ 5160 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5161 "0295 Reset HBA Data: x%x x%x x%lx\n", 5162 phba->pport->port_state, psli->sli_flag, 5163 phba->hba_flag); 5164 5165 /* perform board reset */ 5166 phba->fc_eventTag = 0; 5167 phba->link_events = 0; 5168 phba->pport->fc_myDID = 0; 5169 phba->pport->fc_prevDID = 0; 5170 5171 spin_lock_irq(&phba->hbalock); 5172 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5173 phba->fcf.fcf_flag = 0; 5174 spin_unlock_irq(&phba->hbalock); 5175 5176 /* Now physically reset the device */ 5177 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5178 "0389 Performing PCI function reset!\n"); 5179 5180 /* Turn off parity checking and serr during the physical reset */ 5181 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5182 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5183 "3205 PCI read Config failed\n"); 5184 return -EIO; 5185 } 5186 5187 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5188 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5189 5190 /* Perform FCoE PCI function reset before freeing queue memory */ 5191 rc = lpfc_pci_function_reset(phba); 5192 5193 /* Restore PCI cmd register */ 5194 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5195 5196 return rc; 5197 } 5198 5199 /** 5200 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5201 * @phba: Pointer to HBA context object. 5202 * 5203 * This function is called in the SLI initialization code path to 5204 * restart the HBA. The caller is not required to hold any lock. 5205 * This function writes MBX_RESTART mailbox command to the SLIM and 5206 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5207 * function to free any pending commands. The function enables 5208 * POST only during the first initialization. The function returns zero. 5209 * The function does not guarantee completion of MBX_RESTART mailbox 5210 * command before the return of this function. 5211 **/ 5212 static int 5213 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5214 { 5215 volatile struct MAILBOX_word0 mb; 5216 struct lpfc_sli *psli; 5217 void __iomem *to_slim; 5218 5219 spin_lock_irq(&phba->hbalock); 5220 5221 psli = &phba->sli; 5222 5223 /* Restart HBA */ 5224 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5225 "0337 Restart HBA Data: x%x x%x\n", 5226 (phba->pport) ? phba->pport->port_state : 0, 5227 psli->sli_flag); 5228 5229 mb.word0 = 0; 5230 mb.mbxCommand = MBX_RESTART; 5231 mb.mbxHc = 1; 5232 5233 lpfc_reset_barrier(phba); 5234 5235 to_slim = phba->MBslimaddr; 5236 writel(mb.word0, to_slim); 5237 readl(to_slim); /* flush */ 5238 5239 /* Only skip post after fc_ffinit is completed */ 5240 if (phba->pport && phba->pport->port_state) 5241 mb.word0 = 1; /* This is really setting up word1 */ 5242 else 5243 mb.word0 = 0; /* This is really setting up word1 */ 5244 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5245 writel(mb.word0, to_slim); 5246 readl(to_slim); /* flush */ 5247 5248 lpfc_sli_brdreset(phba); 5249 if (phba->pport) 5250 phba->pport->stopped = 0; 5251 phba->link_state = LPFC_INIT_START; 5252 phba->hba_flag = 0; 5253 spin_unlock_irq(&phba->hbalock); 5254 5255 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5256 psli->stats_start = ktime_get_seconds(); 5257 5258 /* Give the INITFF and Post time to settle. */ 5259 mdelay(100); 5260 5261 lpfc_hba_down_post(phba); 5262 5263 return 0; 5264 } 5265 5266 /** 5267 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5268 * @phba: Pointer to HBA context object. 5269 * 5270 * This function is called in the SLI initialization code path to restart 5271 * a SLI4 HBA. The caller is not required to hold any lock. 5272 * At the end of the function, it calls lpfc_hba_down_post function to 5273 * free any pending commands. 5274 **/ 5275 static int 5276 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5277 { 5278 struct lpfc_sli *psli = &phba->sli; 5279 int rc; 5280 5281 /* Restart HBA */ 5282 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5283 "0296 Restart HBA Data: x%x x%x\n", 5284 phba->pport->port_state, psli->sli_flag); 5285 5286 clear_bit(HBA_SETUP, &phba->hba_flag); 5287 lpfc_sli4_queue_unset(phba); 5288 5289 rc = lpfc_sli4_brdreset(phba); 5290 if (rc) { 5291 phba->link_state = LPFC_HBA_ERROR; 5292 goto hba_down_queue; 5293 } 5294 5295 spin_lock_irq(&phba->hbalock); 5296 phba->pport->stopped = 0; 5297 phba->link_state = LPFC_INIT_START; 5298 phba->hba_flag = 0; 5299 /* Preserve FA-PWWN expectation */ 5300 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5301 spin_unlock_irq(&phba->hbalock); 5302 5303 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5304 psli->stats_start = ktime_get_seconds(); 5305 5306 hba_down_queue: 5307 lpfc_hba_down_post(phba); 5308 lpfc_sli4_queue_destroy(phba); 5309 5310 return rc; 5311 } 5312 5313 /** 5314 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5315 * @phba: Pointer to HBA context object. 5316 * 5317 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5318 * API jump table function pointer from the lpfc_hba struct. 5319 **/ 5320 int 5321 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5322 { 5323 return phba->lpfc_sli_brdrestart(phba); 5324 } 5325 5326 /** 5327 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5328 * @phba: Pointer to HBA context object. 5329 * 5330 * This function is called after a HBA restart to wait for successful 5331 * restart of the HBA. Successful restart of the HBA is indicated by 5332 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5333 * iteration, the function will restart the HBA again. The function returns 5334 * zero if HBA successfully restarted else returns negative error code. 5335 **/ 5336 int 5337 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5338 { 5339 uint32_t status, i = 0; 5340 5341 /* Read the HBA Host Status Register */ 5342 if (lpfc_readl(phba->HSregaddr, &status)) 5343 return -EIO; 5344 5345 /* Check status register to see what current state is */ 5346 i = 0; 5347 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5348 5349 /* Check every 10ms for 10 retries, then every 100ms for 90 5350 * retries, then every 1 sec for 50 retires for a total of 5351 * ~60 seconds before reset the board again and check every 5352 * 1 sec for 50 retries. The up to 60 seconds before the 5353 * board ready is required by the Falcon FIPS zeroization 5354 * complete, and any reset the board in between shall cause 5355 * restart of zeroization, further delay the board ready. 5356 */ 5357 if (i++ >= 200) { 5358 /* Adapter failed to init, timeout, status reg 5359 <status> */ 5360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5361 "0436 Adapter failed to init, " 5362 "timeout, status reg x%x, " 5363 "FW Data: A8 x%x AC x%x\n", status, 5364 readl(phba->MBslimaddr + 0xa8), 5365 readl(phba->MBslimaddr + 0xac)); 5366 phba->link_state = LPFC_HBA_ERROR; 5367 return -ETIMEDOUT; 5368 } 5369 5370 /* Check to see if any errors occurred during init */ 5371 if (status & HS_FFERM) { 5372 /* ERROR: During chipset initialization */ 5373 /* Adapter failed to init, chipset, status reg 5374 <status> */ 5375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5376 "0437 Adapter failed to init, " 5377 "chipset, status reg x%x, " 5378 "FW Data: A8 x%x AC x%x\n", status, 5379 readl(phba->MBslimaddr + 0xa8), 5380 readl(phba->MBslimaddr + 0xac)); 5381 phba->link_state = LPFC_HBA_ERROR; 5382 return -EIO; 5383 } 5384 5385 if (i <= 10) 5386 msleep(10); 5387 else if (i <= 100) 5388 msleep(100); 5389 else 5390 msleep(1000); 5391 5392 if (i == 150) { 5393 /* Do post */ 5394 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5395 lpfc_sli_brdrestart(phba); 5396 } 5397 /* Read the HBA Host Status Register */ 5398 if (lpfc_readl(phba->HSregaddr, &status)) 5399 return -EIO; 5400 } 5401 5402 /* Check to see if any errors occurred during init */ 5403 if (status & HS_FFERM) { 5404 /* ERROR: During chipset initialization */ 5405 /* Adapter failed to init, chipset, status reg <status> */ 5406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5407 "0438 Adapter failed to init, chipset, " 5408 "status reg x%x, " 5409 "FW Data: A8 x%x AC x%x\n", status, 5410 readl(phba->MBslimaddr + 0xa8), 5411 readl(phba->MBslimaddr + 0xac)); 5412 phba->link_state = LPFC_HBA_ERROR; 5413 return -EIO; 5414 } 5415 5416 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5417 5418 /* Clear all interrupt enable conditions */ 5419 writel(0, phba->HCregaddr); 5420 readl(phba->HCregaddr); /* flush */ 5421 5422 /* setup host attn register */ 5423 writel(0xffffffff, phba->HAregaddr); 5424 readl(phba->HAregaddr); /* flush */ 5425 return 0; 5426 } 5427 5428 /** 5429 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5430 * 5431 * This function calculates and returns the number of HBQs required to be 5432 * configured. 5433 **/ 5434 int 5435 lpfc_sli_hbq_count(void) 5436 { 5437 return ARRAY_SIZE(lpfc_hbq_defs); 5438 } 5439 5440 /** 5441 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5442 * 5443 * This function adds the number of hbq entries in every HBQ to get 5444 * the total number of hbq entries required for the HBA and returns 5445 * the total count. 5446 **/ 5447 static int 5448 lpfc_sli_hbq_entry_count(void) 5449 { 5450 int hbq_count = lpfc_sli_hbq_count(); 5451 int count = 0; 5452 int i; 5453 5454 for (i = 0; i < hbq_count; ++i) 5455 count += lpfc_hbq_defs[i]->entry_count; 5456 return count; 5457 } 5458 5459 /** 5460 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5461 * 5462 * This function calculates amount of memory required for all hbq entries 5463 * to be configured and returns the total memory required. 5464 **/ 5465 int 5466 lpfc_sli_hbq_size(void) 5467 { 5468 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5469 } 5470 5471 /** 5472 * lpfc_sli_hbq_setup - configure and initialize HBQs 5473 * @phba: Pointer to HBA context object. 5474 * 5475 * This function is called during the SLI initialization to configure 5476 * all the HBQs and post buffers to the HBQ. The caller is not 5477 * required to hold any locks. This function will return zero if successful 5478 * else it will return negative error code. 5479 **/ 5480 static int 5481 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5482 { 5483 int hbq_count = lpfc_sli_hbq_count(); 5484 LPFC_MBOXQ_t *pmb; 5485 MAILBOX_t *pmbox; 5486 uint32_t hbqno; 5487 uint32_t hbq_entry_index; 5488 5489 /* Get a Mailbox buffer to setup mailbox 5490 * commands for HBA initialization 5491 */ 5492 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5493 5494 if (!pmb) 5495 return -ENOMEM; 5496 5497 pmbox = &pmb->u.mb; 5498 5499 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5500 phba->link_state = LPFC_INIT_MBX_CMDS; 5501 phba->hbq_in_use = 1; 5502 5503 hbq_entry_index = 0; 5504 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5505 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5506 phba->hbqs[hbqno].hbqPutIdx = 0; 5507 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5508 phba->hbqs[hbqno].entry_count = 5509 lpfc_hbq_defs[hbqno]->entry_count; 5510 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5511 hbq_entry_index, pmb); 5512 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5513 5514 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5515 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5516 mbxStatus <status>, ring <num> */ 5517 5518 lpfc_printf_log(phba, KERN_ERR, 5519 LOG_SLI | LOG_VPORT, 5520 "1805 Adapter failed to init. " 5521 "Data: x%x x%x x%x\n", 5522 pmbox->mbxCommand, 5523 pmbox->mbxStatus, hbqno); 5524 5525 phba->link_state = LPFC_HBA_ERROR; 5526 mempool_free(pmb, phba->mbox_mem_pool); 5527 return -ENXIO; 5528 } 5529 } 5530 phba->hbq_count = hbq_count; 5531 5532 mempool_free(pmb, phba->mbox_mem_pool); 5533 5534 /* Initially populate or replenish the HBQs */ 5535 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5536 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5537 return 0; 5538 } 5539 5540 /** 5541 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5542 * @phba: Pointer to HBA context object. 5543 * 5544 * This function is called during the SLI initialization to configure 5545 * all the HBQs and post buffers to the HBQ. The caller is not 5546 * required to hold any locks. This function will return zero if successful 5547 * else it will return negative error code. 5548 **/ 5549 static int 5550 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5551 { 5552 phba->hbq_in_use = 1; 5553 /** 5554 * Specific case when the MDS diagnostics is enabled and supported. 5555 * The receive buffer count is truncated to manage the incoming 5556 * traffic. 5557 **/ 5558 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5559 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5560 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5561 else 5562 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5563 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5564 phba->hbq_count = 1; 5565 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5566 /* Initially populate or replenish the HBQs */ 5567 return 0; 5568 } 5569 5570 /** 5571 * lpfc_sli_config_port - Issue config port mailbox command 5572 * @phba: Pointer to HBA context object. 5573 * @sli_mode: sli mode - 2/3 5574 * 5575 * This function is called by the sli initialization code path 5576 * to issue config_port mailbox command. This function restarts the 5577 * HBA firmware and issues a config_port mailbox command to configure 5578 * the SLI interface in the sli mode specified by sli_mode 5579 * variable. The caller is not required to hold any locks. 5580 * The function returns 0 if successful, else returns negative error 5581 * code. 5582 **/ 5583 int 5584 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5585 { 5586 LPFC_MBOXQ_t *pmb; 5587 uint32_t resetcount = 0, rc = 0, done = 0; 5588 5589 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5590 if (!pmb) { 5591 phba->link_state = LPFC_HBA_ERROR; 5592 return -ENOMEM; 5593 } 5594 5595 phba->sli_rev = sli_mode; 5596 while (resetcount < 2 && !done) { 5597 spin_lock_irq(&phba->hbalock); 5598 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5599 spin_unlock_irq(&phba->hbalock); 5600 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5601 lpfc_sli_brdrestart(phba); 5602 rc = lpfc_sli_chipset_init(phba); 5603 if (rc) 5604 break; 5605 5606 spin_lock_irq(&phba->hbalock); 5607 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5608 spin_unlock_irq(&phba->hbalock); 5609 resetcount++; 5610 5611 /* Call pre CONFIG_PORT mailbox command initialization. A 5612 * value of 0 means the call was successful. Any other 5613 * nonzero value is a failure, but if ERESTART is returned, 5614 * the driver may reset the HBA and try again. 5615 */ 5616 rc = lpfc_config_port_prep(phba); 5617 if (rc == -ERESTART) { 5618 phba->link_state = LPFC_LINK_UNKNOWN; 5619 continue; 5620 } else if (rc) 5621 break; 5622 5623 phba->link_state = LPFC_INIT_MBX_CMDS; 5624 lpfc_config_port(phba, pmb); 5625 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5626 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5627 LPFC_SLI3_HBQ_ENABLED | 5628 LPFC_SLI3_CRP_ENABLED | 5629 LPFC_SLI3_DSS_ENABLED); 5630 if (rc != MBX_SUCCESS) { 5631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5632 "0442 Adapter failed to init, mbxCmd x%x " 5633 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5634 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5635 spin_lock_irq(&phba->hbalock); 5636 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5637 spin_unlock_irq(&phba->hbalock); 5638 rc = -ENXIO; 5639 } else { 5640 /* Allow asynchronous mailbox command to go through */ 5641 spin_lock_irq(&phba->hbalock); 5642 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5643 spin_unlock_irq(&phba->hbalock); 5644 done = 1; 5645 5646 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5647 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5648 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5649 "3110 Port did not grant ASABT\n"); 5650 } 5651 } 5652 if (!done) { 5653 rc = -EINVAL; 5654 goto do_prep_failed; 5655 } 5656 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5657 if (!pmb->u.mb.un.varCfgPort.cMA) { 5658 rc = -ENXIO; 5659 goto do_prep_failed; 5660 } 5661 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5662 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5663 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5664 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5665 phba->max_vpi : phba->max_vports; 5666 5667 } else 5668 phba->max_vpi = 0; 5669 if (pmb->u.mb.un.varCfgPort.gerbm) 5670 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5671 if (pmb->u.mb.un.varCfgPort.gcrp) 5672 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5673 5674 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5675 phba->port_gp = phba->mbox->us.s3_pgp.port; 5676 5677 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5678 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5679 phba->cfg_enable_bg = 0; 5680 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5682 "0443 Adapter did not grant " 5683 "BlockGuard\n"); 5684 } 5685 } 5686 } else { 5687 phba->hbq_get = NULL; 5688 phba->port_gp = phba->mbox->us.s2.port; 5689 phba->max_vpi = 0; 5690 } 5691 do_prep_failed: 5692 mempool_free(pmb, phba->mbox_mem_pool); 5693 return rc; 5694 } 5695 5696 5697 /** 5698 * lpfc_sli_hba_setup - SLI initialization function 5699 * @phba: Pointer to HBA context object. 5700 * 5701 * This function is the main SLI initialization function. This function 5702 * is called by the HBA initialization code, HBA reset code and HBA 5703 * error attention handler code. Caller is not required to hold any 5704 * locks. This function issues config_port mailbox command to configure 5705 * the SLI, setup iocb rings and HBQ rings. In the end the function 5706 * calls the config_port_post function to issue init_link mailbox 5707 * command and to start the discovery. The function will return zero 5708 * if successful, else it will return negative error code. 5709 **/ 5710 int 5711 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5712 { 5713 uint32_t rc; 5714 int i; 5715 int longs; 5716 5717 /* Enable ISR already does config_port because of config_msi mbx */ 5718 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5719 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5720 if (rc) 5721 return -EIO; 5722 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5723 } 5724 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5725 5726 if (phba->sli_rev == 3) { 5727 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5728 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5729 } else { 5730 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5731 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5732 phba->sli3_options = 0; 5733 } 5734 5735 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5736 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5737 phba->sli_rev, phba->max_vpi); 5738 rc = lpfc_sli_ring_map(phba); 5739 5740 if (rc) 5741 goto lpfc_sli_hba_setup_error; 5742 5743 /* Initialize VPIs. */ 5744 if (phba->sli_rev == LPFC_SLI_REV3) { 5745 /* 5746 * The VPI bitmask and physical ID array are allocated 5747 * and initialized once only - at driver load. A port 5748 * reset doesn't need to reinitialize this memory. 5749 */ 5750 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5751 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5752 phba->vpi_bmask = kcalloc(longs, 5753 sizeof(unsigned long), 5754 GFP_KERNEL); 5755 if (!phba->vpi_bmask) { 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 5760 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5761 sizeof(uint16_t), 5762 GFP_KERNEL); 5763 if (!phba->vpi_ids) { 5764 kfree(phba->vpi_bmask); 5765 rc = -ENOMEM; 5766 goto lpfc_sli_hba_setup_error; 5767 } 5768 for (i = 0; i < phba->max_vpi; i++) 5769 phba->vpi_ids[i] = i; 5770 } 5771 } 5772 5773 /* Init HBQs */ 5774 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5775 rc = lpfc_sli_hbq_setup(phba); 5776 if (rc) 5777 goto lpfc_sli_hba_setup_error; 5778 } 5779 spin_lock_irq(&phba->hbalock); 5780 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5781 spin_unlock_irq(&phba->hbalock); 5782 5783 rc = lpfc_config_port_post(phba); 5784 if (rc) 5785 goto lpfc_sli_hba_setup_error; 5786 5787 return rc; 5788 5789 lpfc_sli_hba_setup_error: 5790 phba->link_state = LPFC_HBA_ERROR; 5791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5792 "0445 Firmware initialization failed\n"); 5793 return rc; 5794 } 5795 5796 /** 5797 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5798 * @phba: Pointer to HBA context object. 5799 * 5800 * This function issue a dump mailbox command to read config region 5801 * 23 and parse the records in the region and populate driver 5802 * data structure. 5803 **/ 5804 static int 5805 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5806 { 5807 LPFC_MBOXQ_t *mboxq; 5808 struct lpfc_dmabuf *mp; 5809 struct lpfc_mqe *mqe; 5810 uint32_t data_length; 5811 int rc; 5812 5813 /* Program the default value of vlan_id and fc_map */ 5814 phba->valid_vlan = 0; 5815 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5816 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5817 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5818 5819 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5820 if (!mboxq) 5821 return -ENOMEM; 5822 5823 mqe = &mboxq->u.mqe; 5824 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5825 rc = -ENOMEM; 5826 goto out_free_mboxq; 5827 } 5828 5829 mp = mboxq->ctx_buf; 5830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5831 5832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5833 "(%d):2571 Mailbox cmd x%x Status x%x " 5834 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5835 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5836 "CQ: x%x x%x x%x x%x\n", 5837 mboxq->vport ? mboxq->vport->vpi : 0, 5838 bf_get(lpfc_mqe_command, mqe), 5839 bf_get(lpfc_mqe_status, mqe), 5840 mqe->un.mb_words[0], mqe->un.mb_words[1], 5841 mqe->un.mb_words[2], mqe->un.mb_words[3], 5842 mqe->un.mb_words[4], mqe->un.mb_words[5], 5843 mqe->un.mb_words[6], mqe->un.mb_words[7], 5844 mqe->un.mb_words[8], mqe->un.mb_words[9], 5845 mqe->un.mb_words[10], mqe->un.mb_words[11], 5846 mqe->un.mb_words[12], mqe->un.mb_words[13], 5847 mqe->un.mb_words[14], mqe->un.mb_words[15], 5848 mqe->un.mb_words[16], mqe->un.mb_words[50], 5849 mboxq->mcqe.word0, 5850 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5851 mboxq->mcqe.trailer); 5852 5853 if (rc) { 5854 rc = -EIO; 5855 goto out_free_mboxq; 5856 } 5857 data_length = mqe->un.mb_words[5]; 5858 if (data_length > DMP_RGN23_SIZE) { 5859 rc = -EIO; 5860 goto out_free_mboxq; 5861 } 5862 5863 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5864 rc = 0; 5865 5866 out_free_mboxq: 5867 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5868 return rc; 5869 } 5870 5871 /** 5872 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5873 * @phba: pointer to lpfc hba data structure. 5874 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5875 * @vpd: pointer to the memory to hold resulting port vpd data. 5876 * @vpd_size: On input, the number of bytes allocated to @vpd. 5877 * On output, the number of data bytes in @vpd. 5878 * 5879 * This routine executes a READ_REV SLI4 mailbox command. In 5880 * addition, this routine gets the port vpd data. 5881 * 5882 * Return codes 5883 * 0 - successful 5884 * -ENOMEM - could not allocated memory. 5885 **/ 5886 static int 5887 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5888 uint8_t *vpd, uint32_t *vpd_size) 5889 { 5890 int rc = 0; 5891 uint32_t dma_size; 5892 struct lpfc_dmabuf *dmabuf; 5893 struct lpfc_mqe *mqe; 5894 5895 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5896 if (!dmabuf) 5897 return -ENOMEM; 5898 5899 /* 5900 * Get a DMA buffer for the vpd data resulting from the READ_REV 5901 * mailbox command. 5902 */ 5903 dma_size = *vpd_size; 5904 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5905 &dmabuf->phys, GFP_KERNEL); 5906 if (!dmabuf->virt) { 5907 kfree(dmabuf); 5908 return -ENOMEM; 5909 } 5910 5911 /* 5912 * The SLI4 implementation of READ_REV conflicts at word1, 5913 * bits 31:16 and SLI4 adds vpd functionality not present 5914 * in SLI3. This code corrects the conflicts. 5915 */ 5916 lpfc_read_rev(phba, mboxq); 5917 mqe = &mboxq->u.mqe; 5918 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5919 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5920 mqe->un.read_rev.word1 &= 0x0000FFFF; 5921 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5922 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5923 5924 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5925 if (rc) { 5926 dma_free_coherent(&phba->pcidev->dev, dma_size, 5927 dmabuf->virt, dmabuf->phys); 5928 kfree(dmabuf); 5929 return -EIO; 5930 } 5931 5932 /* 5933 * The available vpd length cannot be bigger than the 5934 * DMA buffer passed to the port. Catch the less than 5935 * case and update the caller's size. 5936 */ 5937 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5938 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5939 5940 memcpy(vpd, dmabuf->virt, *vpd_size); 5941 5942 dma_free_coherent(&phba->pcidev->dev, dma_size, 5943 dmabuf->virt, dmabuf->phys); 5944 kfree(dmabuf); 5945 return 0; 5946 } 5947 5948 /** 5949 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5950 * @phba: pointer to lpfc hba data structure. 5951 * 5952 * This routine retrieves SLI4 device physical port name this PCI function 5953 * is attached to. 5954 * 5955 * Return codes 5956 * 0 - successful 5957 * otherwise - failed to retrieve controller attributes 5958 **/ 5959 static int 5960 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5961 { 5962 LPFC_MBOXQ_t *mboxq; 5963 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5964 struct lpfc_controller_attribute *cntl_attr; 5965 void *virtaddr = NULL; 5966 uint32_t alloclen, reqlen; 5967 uint32_t shdr_status, shdr_add_status; 5968 union lpfc_sli4_cfg_shdr *shdr; 5969 int rc; 5970 5971 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5972 if (!mboxq) 5973 return -ENOMEM; 5974 5975 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5976 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5977 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5978 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5979 LPFC_SLI4_MBX_NEMBED); 5980 5981 if (alloclen < reqlen) { 5982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5983 "3084 Allocated DMA memory size (%d) is " 5984 "less than the requested DMA memory size " 5985 "(%d)\n", alloclen, reqlen); 5986 rc = -ENOMEM; 5987 goto out_free_mboxq; 5988 } 5989 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5990 virtaddr = mboxq->sge_array->addr[0]; 5991 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5992 shdr = &mbx_cntl_attr->cfg_shdr; 5993 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5994 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5995 if (shdr_status || shdr_add_status || rc) { 5996 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5997 "3085 Mailbox x%x (x%x/x%x) failed, " 5998 "rc:x%x, status:x%x, add_status:x%x\n", 5999 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6000 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6001 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6002 rc, shdr_status, shdr_add_status); 6003 rc = -ENXIO; 6004 goto out_free_mboxq; 6005 } 6006 6007 cntl_attr = &mbx_cntl_attr->cntl_attr; 6008 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6009 phba->sli4_hba.lnk_info.lnk_tp = 6010 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6011 phba->sli4_hba.lnk_info.lnk_no = 6012 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6013 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6014 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6015 6016 memcpy(phba->BIOSVersion, cntl_attr->bios_ver_str, 6017 sizeof(phba->BIOSVersion)); 6018 phba->BIOSVersion[sizeof(phba->BIOSVersion) - 1] = '\0'; 6019 6020 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6021 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6022 "flash_id: x%02x, asic_rev: x%02x\n", 6023 phba->sli4_hba.lnk_info.lnk_tp, 6024 phba->sli4_hba.lnk_info.lnk_no, 6025 phba->BIOSVersion, phba->sli4_hba.flash_id, 6026 phba->sli4_hba.asic_rev); 6027 out_free_mboxq: 6028 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6029 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6030 else 6031 mempool_free(mboxq, phba->mbox_mem_pool); 6032 return rc; 6033 } 6034 6035 /** 6036 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6037 * @phba: pointer to lpfc hba data structure. 6038 * 6039 * This routine retrieves SLI4 device physical port name this PCI function 6040 * is attached to. 6041 * 6042 * Return codes 6043 * 0 - successful 6044 * otherwise - failed to retrieve physical port name 6045 **/ 6046 static int 6047 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6048 { 6049 LPFC_MBOXQ_t *mboxq; 6050 struct lpfc_mbx_get_port_name *get_port_name; 6051 uint32_t shdr_status, shdr_add_status; 6052 union lpfc_sli4_cfg_shdr *shdr; 6053 char cport_name = 0; 6054 int rc; 6055 6056 /* We assume nothing at this point */ 6057 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6058 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6059 6060 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6061 if (!mboxq) 6062 return -ENOMEM; 6063 /* obtain link type and link number via READ_CONFIG */ 6064 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6065 lpfc_sli4_read_config(phba); 6066 6067 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6068 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6069 6070 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6071 goto retrieve_ppname; 6072 6073 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6074 rc = lpfc_sli4_get_ctl_attr(phba); 6075 if (rc) 6076 goto out_free_mboxq; 6077 6078 retrieve_ppname: 6079 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6080 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6081 sizeof(struct lpfc_mbx_get_port_name) - 6082 sizeof(struct lpfc_sli4_cfg_mhdr), 6083 LPFC_SLI4_MBX_EMBED); 6084 get_port_name = &mboxq->u.mqe.un.get_port_name; 6085 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6086 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6087 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6088 phba->sli4_hba.lnk_info.lnk_tp); 6089 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6092 if (shdr_status || shdr_add_status || rc) { 6093 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6094 "3087 Mailbox x%x (x%x/x%x) failed: " 6095 "rc:x%x, status:x%x, add_status:x%x\n", 6096 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6097 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6098 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6099 rc, shdr_status, shdr_add_status); 6100 rc = -ENXIO; 6101 goto out_free_mboxq; 6102 } 6103 switch (phba->sli4_hba.lnk_info.lnk_no) { 6104 case LPFC_LINK_NUMBER_0: 6105 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6106 &get_port_name->u.response); 6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6108 break; 6109 case LPFC_LINK_NUMBER_1: 6110 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6111 &get_port_name->u.response); 6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6113 break; 6114 case LPFC_LINK_NUMBER_2: 6115 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6116 &get_port_name->u.response); 6117 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6118 break; 6119 case LPFC_LINK_NUMBER_3: 6120 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6121 &get_port_name->u.response); 6122 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6123 break; 6124 default: 6125 break; 6126 } 6127 6128 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6129 phba->Port[0] = cport_name; 6130 phba->Port[1] = '\0'; 6131 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6132 "3091 SLI get port name: %s\n", phba->Port); 6133 } 6134 6135 out_free_mboxq: 6136 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6137 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6138 else 6139 mempool_free(mboxq, phba->mbox_mem_pool); 6140 return rc; 6141 } 6142 6143 /** 6144 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6145 * @phba: pointer to lpfc hba data structure. 6146 * 6147 * This routine is called to explicitly arm the SLI4 device's completion and 6148 * event queues 6149 **/ 6150 static void 6151 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6152 { 6153 int qidx; 6154 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6155 struct lpfc_sli4_hdw_queue *qp; 6156 struct lpfc_queue *eq; 6157 6158 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6159 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6160 if (sli4_hba->nvmels_cq) 6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6162 LPFC_QUEUE_REARM); 6163 6164 if (sli4_hba->hdwq) { 6165 /* Loop thru all Hardware Queues */ 6166 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6167 qp = &sli4_hba->hdwq[qidx]; 6168 /* ARM the corresponding CQ */ 6169 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6170 LPFC_QUEUE_REARM); 6171 } 6172 6173 /* Loop thru all IRQ vectors */ 6174 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6175 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6176 /* ARM the corresponding EQ */ 6177 sli4_hba->sli4_write_eq_db(phba, eq, 6178 0, LPFC_QUEUE_REARM); 6179 } 6180 } 6181 6182 if (phba->nvmet_support) { 6183 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6184 sli4_hba->sli4_write_cq_db(phba, 6185 sli4_hba->nvmet_cqset[qidx], 0, 6186 LPFC_QUEUE_REARM); 6187 } 6188 } 6189 } 6190 6191 /** 6192 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6193 * @phba: Pointer to HBA context object. 6194 * @type: The resource extent type. 6195 * @extnt_count: buffer to hold port available extent count. 6196 * @extnt_size: buffer to hold element count per extent. 6197 * 6198 * This function calls the port and retrievs the number of available 6199 * extents and their size for a particular extent type. 6200 * 6201 * Returns: 0 if successful. Nonzero otherwise. 6202 **/ 6203 int 6204 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6205 uint16_t *extnt_count, uint16_t *extnt_size) 6206 { 6207 int rc = 0; 6208 uint32_t length; 6209 uint32_t mbox_tmo; 6210 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6211 LPFC_MBOXQ_t *mbox; 6212 6213 *extnt_count = 0; 6214 *extnt_size = 0; 6215 6216 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6217 if (!mbox) 6218 return -ENOMEM; 6219 6220 /* Find out how many extents are available for this resource type */ 6221 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6222 sizeof(struct lpfc_sli4_cfg_mhdr)); 6223 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6224 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6225 length, LPFC_SLI4_MBX_EMBED); 6226 6227 /* Send an extents count of 0 - the GET doesn't use it. */ 6228 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6229 LPFC_SLI4_MBX_EMBED); 6230 if (unlikely(rc)) { 6231 rc = -EIO; 6232 goto err_exit; 6233 } 6234 6235 if (!phba->sli4_hba.intr_enable) 6236 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6237 else { 6238 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6239 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6240 } 6241 if (unlikely(rc)) { 6242 rc = -EIO; 6243 goto err_exit; 6244 } 6245 6246 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6247 if (bf_get(lpfc_mbox_hdr_status, 6248 &rsrc_info->header.cfg_shdr.response)) { 6249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6250 "2930 Failed to get resource extents " 6251 "Status 0x%x Add'l Status 0x%x\n", 6252 bf_get(lpfc_mbox_hdr_status, 6253 &rsrc_info->header.cfg_shdr.response), 6254 bf_get(lpfc_mbox_hdr_add_status, 6255 &rsrc_info->header.cfg_shdr.response)); 6256 rc = -EIO; 6257 goto err_exit; 6258 } 6259 6260 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6261 &rsrc_info->u.rsp); 6262 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6263 &rsrc_info->u.rsp); 6264 6265 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6266 "3162 Retrieved extents type-%d from port: count:%d, " 6267 "size:%d\n", type, *extnt_count, *extnt_size); 6268 6269 err_exit: 6270 mempool_free(mbox, phba->mbox_mem_pool); 6271 return rc; 6272 } 6273 6274 /** 6275 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6276 * @phba: Pointer to HBA context object. 6277 * @type: The extent type to check. 6278 * 6279 * This function reads the current available extents from the port and checks 6280 * if the extent count or extent size has changed since the last access. 6281 * Callers use this routine post port reset to understand if there is a 6282 * extent reprovisioning requirement. 6283 * 6284 * Returns: 6285 * -Error: error indicates problem. 6286 * 1: Extent count or size has changed. 6287 * 0: No changes. 6288 **/ 6289 static int 6290 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6291 { 6292 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6293 uint16_t size_diff, rsrc_ext_size; 6294 int rc = 0; 6295 struct lpfc_rsrc_blks *rsrc_entry; 6296 struct list_head *rsrc_blk_list = NULL; 6297 6298 size_diff = 0; 6299 curr_ext_cnt = 0; 6300 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6301 &rsrc_ext_cnt, 6302 &rsrc_ext_size); 6303 if (unlikely(rc)) 6304 return -EIO; 6305 6306 switch (type) { 6307 case LPFC_RSC_TYPE_FCOE_RPI: 6308 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6309 break; 6310 case LPFC_RSC_TYPE_FCOE_VPI: 6311 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6312 break; 6313 case LPFC_RSC_TYPE_FCOE_XRI: 6314 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6315 break; 6316 case LPFC_RSC_TYPE_FCOE_VFI: 6317 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6318 break; 6319 default: 6320 break; 6321 } 6322 6323 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6324 curr_ext_cnt++; 6325 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6326 size_diff++; 6327 } 6328 6329 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6330 rc = 1; 6331 6332 return rc; 6333 } 6334 6335 /** 6336 * lpfc_sli4_cfg_post_extnts - 6337 * @phba: Pointer to HBA context object. 6338 * @extnt_cnt: number of available extents. 6339 * @type: the extent type (rpi, xri, vfi, vpi). 6340 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6341 * @mbox: pointer to the caller's allocated mailbox structure. 6342 * 6343 * This function executes the extents allocation request. It also 6344 * takes care of the amount of memory needed to allocate or get the 6345 * allocated extents. It is the caller's responsibility to evaluate 6346 * the response. 6347 * 6348 * Returns: 6349 * -Error: Error value describes the condition found. 6350 * 0: if successful 6351 **/ 6352 static int 6353 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6354 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6355 { 6356 int rc = 0; 6357 uint32_t req_len; 6358 uint32_t emb_len; 6359 uint32_t alloc_len, mbox_tmo; 6360 6361 /* Calculate the total requested length of the dma memory */ 6362 req_len = extnt_cnt * sizeof(uint16_t); 6363 6364 /* 6365 * Calculate the size of an embedded mailbox. The uint32_t 6366 * accounts for extents-specific word. 6367 */ 6368 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6369 sizeof(uint32_t); 6370 6371 /* 6372 * Presume the allocation and response will fit into an embedded 6373 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6374 */ 6375 *emb = LPFC_SLI4_MBX_EMBED; 6376 if (req_len > emb_len) { 6377 req_len = extnt_cnt * sizeof(uint16_t) + 6378 sizeof(union lpfc_sli4_cfg_shdr) + 6379 sizeof(uint32_t); 6380 *emb = LPFC_SLI4_MBX_NEMBED; 6381 } 6382 6383 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6384 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6385 req_len, *emb); 6386 if (alloc_len < req_len) { 6387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6388 "2982 Allocated DMA memory size (x%x) is " 6389 "less than the requested DMA memory " 6390 "size (x%x)\n", alloc_len, req_len); 6391 return -ENOMEM; 6392 } 6393 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6394 if (unlikely(rc)) 6395 return -EIO; 6396 6397 if (!phba->sli4_hba.intr_enable) 6398 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6399 else { 6400 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6401 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6402 } 6403 6404 if (unlikely(rc)) 6405 rc = -EIO; 6406 return rc; 6407 } 6408 6409 /** 6410 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6411 * @phba: Pointer to HBA context object. 6412 * @type: The resource extent type to allocate. 6413 * 6414 * This function allocates the number of elements for the specified 6415 * resource type. 6416 **/ 6417 static int 6418 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6419 { 6420 bool emb = false; 6421 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6422 uint16_t rsrc_id, rsrc_start, j, k; 6423 uint16_t *ids; 6424 int i, rc; 6425 unsigned long longs; 6426 unsigned long *bmask; 6427 struct lpfc_rsrc_blks *rsrc_blks; 6428 LPFC_MBOXQ_t *mbox; 6429 uint32_t length; 6430 struct lpfc_id_range *id_array = NULL; 6431 void *virtaddr = NULL; 6432 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6433 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6434 struct list_head *ext_blk_list; 6435 6436 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6437 &rsrc_cnt, 6438 &rsrc_size); 6439 if (unlikely(rc)) 6440 return -EIO; 6441 6442 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6444 "3009 No available Resource Extents " 6445 "for resource type 0x%x: Count: 0x%x, " 6446 "Size 0x%x\n", type, rsrc_cnt, 6447 rsrc_size); 6448 return -ENOMEM; 6449 } 6450 6451 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6452 "2903 Post resource extents type-0x%x: " 6453 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6454 6455 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6456 if (!mbox) 6457 return -ENOMEM; 6458 6459 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6460 if (unlikely(rc)) { 6461 rc = -EIO; 6462 goto err_exit; 6463 } 6464 6465 /* 6466 * Figure out where the response is located. Then get local pointers 6467 * to the response data. The port does not guarantee to respond to 6468 * all extents counts request so update the local variable with the 6469 * allocated count from the port. 6470 */ 6471 if (emb == LPFC_SLI4_MBX_EMBED) { 6472 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6473 id_array = &rsrc_ext->u.rsp.id[0]; 6474 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6475 } else { 6476 virtaddr = mbox->sge_array->addr[0]; 6477 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6478 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6479 id_array = &n_rsrc->id; 6480 } 6481 6482 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6483 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6484 6485 /* 6486 * Based on the resource size and count, correct the base and max 6487 * resource values. 6488 */ 6489 length = sizeof(struct lpfc_rsrc_blks); 6490 switch (type) { 6491 case LPFC_RSC_TYPE_FCOE_RPI: 6492 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6493 sizeof(unsigned long), 6494 GFP_KERNEL); 6495 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6496 rc = -ENOMEM; 6497 goto err_exit; 6498 } 6499 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6500 sizeof(uint16_t), 6501 GFP_KERNEL); 6502 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6503 kfree(phba->sli4_hba.rpi_bmask); 6504 rc = -ENOMEM; 6505 goto err_exit; 6506 } 6507 6508 /* 6509 * The next_rpi was initialized with the maximum available 6510 * count but the port may allocate a smaller number. Catch 6511 * that case and update the next_rpi. 6512 */ 6513 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6514 6515 /* Initialize local ptrs for common extent processing later. */ 6516 bmask = phba->sli4_hba.rpi_bmask; 6517 ids = phba->sli4_hba.rpi_ids; 6518 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6519 break; 6520 case LPFC_RSC_TYPE_FCOE_VPI: 6521 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6522 GFP_KERNEL); 6523 if (unlikely(!phba->vpi_bmask)) { 6524 rc = -ENOMEM; 6525 goto err_exit; 6526 } 6527 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6528 GFP_KERNEL); 6529 if (unlikely(!phba->vpi_ids)) { 6530 kfree(phba->vpi_bmask); 6531 rc = -ENOMEM; 6532 goto err_exit; 6533 } 6534 6535 /* Initialize local ptrs for common extent processing later. */ 6536 bmask = phba->vpi_bmask; 6537 ids = phba->vpi_ids; 6538 ext_blk_list = &phba->lpfc_vpi_blk_list; 6539 break; 6540 case LPFC_RSC_TYPE_FCOE_XRI: 6541 phba->sli4_hba.xri_bmask = kcalloc(longs, 6542 sizeof(unsigned long), 6543 GFP_KERNEL); 6544 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 phba->sli4_hba.max_cfg_param.xri_used = 0; 6549 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6550 sizeof(uint16_t), 6551 GFP_KERNEL); 6552 if (unlikely(!phba->sli4_hba.xri_ids)) { 6553 kfree(phba->sli4_hba.xri_bmask); 6554 rc = -ENOMEM; 6555 goto err_exit; 6556 } 6557 6558 /* Initialize local ptrs for common extent processing later. */ 6559 bmask = phba->sli4_hba.xri_bmask; 6560 ids = phba->sli4_hba.xri_ids; 6561 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6562 break; 6563 case LPFC_RSC_TYPE_FCOE_VFI: 6564 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6565 sizeof(unsigned long), 6566 GFP_KERNEL); 6567 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6568 rc = -ENOMEM; 6569 goto err_exit; 6570 } 6571 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6572 sizeof(uint16_t), 6573 GFP_KERNEL); 6574 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6575 kfree(phba->sli4_hba.vfi_bmask); 6576 rc = -ENOMEM; 6577 goto err_exit; 6578 } 6579 6580 /* Initialize local ptrs for common extent processing later. */ 6581 bmask = phba->sli4_hba.vfi_bmask; 6582 ids = phba->sli4_hba.vfi_ids; 6583 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6584 break; 6585 default: 6586 /* Unsupported Opcode. Fail call. */ 6587 id_array = NULL; 6588 bmask = NULL; 6589 ids = NULL; 6590 ext_blk_list = NULL; 6591 goto err_exit; 6592 } 6593 6594 /* 6595 * Complete initializing the extent configuration with the 6596 * allocated ids assigned to this function. The bitmask serves 6597 * as an index into the array and manages the available ids. The 6598 * array just stores the ids communicated to the port via the wqes. 6599 */ 6600 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6601 if ((i % 2) == 0) 6602 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6603 &id_array[k]); 6604 else 6605 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6606 &id_array[k]); 6607 6608 rsrc_blks = kzalloc(length, GFP_KERNEL); 6609 if (unlikely(!rsrc_blks)) { 6610 rc = -ENOMEM; 6611 kfree(bmask); 6612 kfree(ids); 6613 goto err_exit; 6614 } 6615 rsrc_blks->rsrc_start = rsrc_id; 6616 rsrc_blks->rsrc_size = rsrc_size; 6617 list_add_tail(&rsrc_blks->list, ext_blk_list); 6618 rsrc_start = rsrc_id; 6619 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6620 phba->sli4_hba.io_xri_start = rsrc_start + 6621 lpfc_sli4_get_iocb_cnt(phba); 6622 } 6623 6624 while (rsrc_id < (rsrc_start + rsrc_size)) { 6625 ids[j] = rsrc_id; 6626 rsrc_id++; 6627 j++; 6628 } 6629 /* Entire word processed. Get next word.*/ 6630 if ((i % 2) == 1) 6631 k++; 6632 } 6633 err_exit: 6634 lpfc_sli4_mbox_cmd_free(phba, mbox); 6635 return rc; 6636 } 6637 6638 6639 6640 /** 6641 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6642 * @phba: Pointer to HBA context object. 6643 * @type: the extent's type. 6644 * 6645 * This function deallocates all extents of a particular resource type. 6646 * SLI4 does not allow for deallocating a particular extent range. It 6647 * is the caller's responsibility to release all kernel memory resources. 6648 **/ 6649 static int 6650 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6651 { 6652 int rc; 6653 uint32_t length, mbox_tmo = 0; 6654 LPFC_MBOXQ_t *mbox; 6655 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6656 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6657 6658 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6659 if (!mbox) 6660 return -ENOMEM; 6661 6662 /* 6663 * This function sends an embedded mailbox because it only sends the 6664 * the resource type. All extents of this type are released by the 6665 * port. 6666 */ 6667 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6668 sizeof(struct lpfc_sli4_cfg_mhdr)); 6669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6670 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6671 length, LPFC_SLI4_MBX_EMBED); 6672 6673 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6674 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6675 LPFC_SLI4_MBX_EMBED); 6676 if (unlikely(rc)) { 6677 rc = -EIO; 6678 goto out_free_mbox; 6679 } 6680 if (!phba->sli4_hba.intr_enable) 6681 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6682 else { 6683 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6684 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6685 } 6686 if (unlikely(rc)) { 6687 rc = -EIO; 6688 goto out_free_mbox; 6689 } 6690 6691 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6692 if (bf_get(lpfc_mbox_hdr_status, 6693 &dealloc_rsrc->header.cfg_shdr.response)) { 6694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6695 "2919 Failed to release resource extents " 6696 "for type %d - Status 0x%x Add'l Status 0x%x. " 6697 "Resource memory not released.\n", 6698 type, 6699 bf_get(lpfc_mbox_hdr_status, 6700 &dealloc_rsrc->header.cfg_shdr.response), 6701 bf_get(lpfc_mbox_hdr_add_status, 6702 &dealloc_rsrc->header.cfg_shdr.response)); 6703 rc = -EIO; 6704 goto out_free_mbox; 6705 } 6706 6707 /* Release kernel memory resources for the specific type. */ 6708 switch (type) { 6709 case LPFC_RSC_TYPE_FCOE_VPI: 6710 kfree(phba->vpi_bmask); 6711 kfree(phba->vpi_ids); 6712 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6713 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6714 &phba->lpfc_vpi_blk_list, list) { 6715 list_del_init(&rsrc_blk->list); 6716 kfree(rsrc_blk); 6717 } 6718 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6719 break; 6720 case LPFC_RSC_TYPE_FCOE_XRI: 6721 kfree(phba->sli4_hba.xri_bmask); 6722 kfree(phba->sli4_hba.xri_ids); 6723 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6724 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6725 list_del_init(&rsrc_blk->list); 6726 kfree(rsrc_blk); 6727 } 6728 break; 6729 case LPFC_RSC_TYPE_FCOE_VFI: 6730 kfree(phba->sli4_hba.vfi_bmask); 6731 kfree(phba->sli4_hba.vfi_ids); 6732 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6733 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6734 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6735 list_del_init(&rsrc_blk->list); 6736 kfree(rsrc_blk); 6737 } 6738 break; 6739 case LPFC_RSC_TYPE_FCOE_RPI: 6740 /* RPI bitmask and physical id array are cleaned up earlier. */ 6741 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6742 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6743 list_del_init(&rsrc_blk->list); 6744 kfree(rsrc_blk); 6745 } 6746 break; 6747 default: 6748 break; 6749 } 6750 6751 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6752 6753 out_free_mbox: 6754 mempool_free(mbox, phba->mbox_mem_pool); 6755 return rc; 6756 } 6757 6758 static void 6759 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6760 uint32_t feature) 6761 { 6762 uint32_t len; 6763 u32 sig_freq = 0; 6764 6765 len = sizeof(struct lpfc_mbx_set_feature) - 6766 sizeof(struct lpfc_sli4_cfg_mhdr); 6767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6768 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6769 LPFC_SLI4_MBX_EMBED); 6770 6771 switch (feature) { 6772 case LPFC_SET_UE_RECOVERY: 6773 bf_set(lpfc_mbx_set_feature_UER, 6774 &mbox->u.mqe.un.set_feature, 1); 6775 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6776 mbox->u.mqe.un.set_feature.param_len = 8; 6777 break; 6778 case LPFC_SET_MDS_DIAGS: 6779 bf_set(lpfc_mbx_set_feature_mds, 6780 &mbox->u.mqe.un.set_feature, 1); 6781 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6782 &mbox->u.mqe.un.set_feature, 1); 6783 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6784 mbox->u.mqe.un.set_feature.param_len = 8; 6785 break; 6786 case LPFC_SET_CGN_SIGNAL: 6787 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6788 sig_freq = 0; 6789 else 6790 sig_freq = phba->cgn_sig_freq; 6791 6792 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6793 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6794 &mbox->u.mqe.un.set_feature, sig_freq); 6795 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6796 &mbox->u.mqe.un.set_feature, sig_freq); 6797 } 6798 6799 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6800 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 6803 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6804 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6805 sig_freq = 0; 6806 else 6807 sig_freq = lpfc_acqe_cgn_frequency; 6808 6809 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6810 &mbox->u.mqe.un.set_feature, sig_freq); 6811 6812 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6813 mbox->u.mqe.un.set_feature.param_len = 12; 6814 break; 6815 case LPFC_SET_DUAL_DUMP: 6816 bf_set(lpfc_mbx_set_feature_dd, 6817 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6818 bf_set(lpfc_mbx_set_feature_ddquery, 6819 &mbox->u.mqe.un.set_feature, 0); 6820 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6821 mbox->u.mqe.un.set_feature.param_len = 4; 6822 break; 6823 case LPFC_SET_ENABLE_MI: 6824 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6825 mbox->u.mqe.un.set_feature.param_len = 4; 6826 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6827 phba->pport->cfg_lun_queue_depth); 6828 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6829 phba->sli4_hba.pc_sli4_params.mi_ver); 6830 break; 6831 case LPFC_SET_LD_SIGNAL: 6832 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6833 mbox->u.mqe.un.set_feature.param_len = 16; 6834 bf_set(lpfc_mbx_set_feature_lds_qry, 6835 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6836 break; 6837 case LPFC_SET_ENABLE_CMF: 6838 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6839 mbox->u.mqe.un.set_feature.param_len = 4; 6840 bf_set(lpfc_mbx_set_feature_cmf, 6841 &mbox->u.mqe.un.set_feature, 1); 6842 break; 6843 } 6844 return; 6845 } 6846 6847 /** 6848 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6849 * @phba: Pointer to HBA context object. 6850 * 6851 * Disable FW logging into host memory on the adapter. To 6852 * be done before reading logs from the host memory. 6853 **/ 6854 void 6855 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6856 { 6857 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6858 6859 spin_lock_irq(&phba->ras_fwlog_lock); 6860 ras_fwlog->state = INACTIVE; 6861 spin_unlock_irq(&phba->ras_fwlog_lock); 6862 6863 /* Disable FW logging to host memory */ 6864 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6865 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6866 6867 /* Wait 10ms for firmware to stop using DMA buffer */ 6868 usleep_range(10 * 1000, 20 * 1000); 6869 } 6870 6871 /** 6872 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6873 * @phba: Pointer to HBA context object. 6874 * 6875 * This function is called to free memory allocated for RAS FW logging 6876 * support in the driver. 6877 **/ 6878 void 6879 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6880 { 6881 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6882 struct lpfc_dmabuf *dmabuf, *next; 6883 6884 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6885 list_for_each_entry_safe(dmabuf, next, 6886 &ras_fwlog->fwlog_buff_list, 6887 list) { 6888 list_del(&dmabuf->list); 6889 dma_free_coherent(&phba->pcidev->dev, 6890 LPFC_RAS_MAX_ENTRY_SIZE, 6891 dmabuf->virt, dmabuf->phys); 6892 kfree(dmabuf); 6893 } 6894 } 6895 6896 if (ras_fwlog->lwpd.virt) { 6897 dma_free_coherent(&phba->pcidev->dev, 6898 sizeof(uint32_t) * 2, 6899 ras_fwlog->lwpd.virt, 6900 ras_fwlog->lwpd.phys); 6901 ras_fwlog->lwpd.virt = NULL; 6902 } 6903 6904 spin_lock_irq(&phba->ras_fwlog_lock); 6905 ras_fwlog->state = INACTIVE; 6906 spin_unlock_irq(&phba->ras_fwlog_lock); 6907 } 6908 6909 /** 6910 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6911 * @phba: Pointer to HBA context object. 6912 * @fwlog_buff_count: Count of buffers to be created. 6913 * 6914 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6915 * to update FW log is posted to the adapter. 6916 * Buffer count is calculated based on module param ras_fwlog_buffsize 6917 * Size of each buffer posted to FW is 64K. 6918 **/ 6919 6920 static int 6921 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6922 uint32_t fwlog_buff_count) 6923 { 6924 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6925 struct lpfc_dmabuf *dmabuf; 6926 int rc = 0, i = 0; 6927 6928 /* Initialize List */ 6929 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6930 6931 /* Allocate memory for the LWPD */ 6932 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6933 sizeof(uint32_t) * 2, 6934 &ras_fwlog->lwpd.phys, 6935 GFP_KERNEL); 6936 if (!ras_fwlog->lwpd.virt) { 6937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6938 "6185 LWPD Memory Alloc Failed\n"); 6939 6940 return -ENOMEM; 6941 } 6942 6943 ras_fwlog->fw_buffcount = fwlog_buff_count; 6944 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6945 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6946 GFP_KERNEL); 6947 if (!dmabuf) { 6948 rc = -ENOMEM; 6949 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6950 "6186 Memory Alloc failed FW logging"); 6951 goto free_mem; 6952 } 6953 6954 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6955 LPFC_RAS_MAX_ENTRY_SIZE, 6956 &dmabuf->phys, GFP_KERNEL); 6957 if (!dmabuf->virt) { 6958 kfree(dmabuf); 6959 rc = -ENOMEM; 6960 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6961 "6187 DMA Alloc Failed FW logging"); 6962 goto free_mem; 6963 } 6964 dmabuf->buffer_tag = i; 6965 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6966 } 6967 6968 free_mem: 6969 if (rc) 6970 lpfc_sli4_ras_dma_free(phba); 6971 6972 return rc; 6973 } 6974 6975 /** 6976 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6977 * @phba: pointer to lpfc hba data structure. 6978 * @pmb: pointer to the driver internal queue element for mailbox command. 6979 * 6980 * Completion handler for driver's RAS MBX command to the device. 6981 **/ 6982 static void 6983 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6984 { 6985 MAILBOX_t *mb; 6986 union lpfc_sli4_cfg_shdr *shdr; 6987 uint32_t shdr_status, shdr_add_status; 6988 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6989 6990 mb = &pmb->u.mb; 6991 6992 shdr = (union lpfc_sli4_cfg_shdr *) 6993 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6996 6997 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6999 "6188 FW LOG mailbox " 7000 "completed with status x%x add_status x%x," 7001 " mbx status x%x\n", 7002 shdr_status, shdr_add_status, mb->mbxStatus); 7003 7004 ras_fwlog->ras_hwsupport = false; 7005 goto disable_ras; 7006 } 7007 7008 spin_lock_irq(&phba->ras_fwlog_lock); 7009 ras_fwlog->state = ACTIVE; 7010 spin_unlock_irq(&phba->ras_fwlog_lock); 7011 mempool_free(pmb, phba->mbox_mem_pool); 7012 7013 return; 7014 7015 disable_ras: 7016 /* Free RAS DMA memory */ 7017 lpfc_sli4_ras_dma_free(phba); 7018 mempool_free(pmb, phba->mbox_mem_pool); 7019 } 7020 7021 /** 7022 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7023 * @phba: pointer to lpfc hba data structure. 7024 * @fwlog_level: Logging verbosity level. 7025 * @fwlog_enable: Enable/Disable logging. 7026 * 7027 * Initialize memory and post mailbox command to enable FW logging in host 7028 * memory. 7029 **/ 7030 int 7031 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7032 uint32_t fwlog_level, 7033 uint32_t fwlog_enable) 7034 { 7035 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7036 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7037 struct lpfc_dmabuf *dmabuf; 7038 LPFC_MBOXQ_t *mbox; 7039 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7040 int rc = 0; 7041 7042 spin_lock_irq(&phba->ras_fwlog_lock); 7043 ras_fwlog->state = INACTIVE; 7044 spin_unlock_irq(&phba->ras_fwlog_lock); 7045 7046 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7047 phba->cfg_ras_fwlog_buffsize); 7048 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7049 7050 /* 7051 * If re-enabling FW logging support use earlier allocated 7052 * DMA buffers while posting MBX command. 7053 **/ 7054 if (!ras_fwlog->lwpd.virt) { 7055 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7056 if (rc) { 7057 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7058 "6189 FW Log Memory Allocation Failed"); 7059 return rc; 7060 } 7061 } 7062 7063 /* Setup Mailbox command */ 7064 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7065 if (!mbox) { 7066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7067 "6190 RAS MBX Alloc Failed"); 7068 rc = -ENOMEM; 7069 goto mem_free; 7070 } 7071 7072 ras_fwlog->fw_loglevel = fwlog_level; 7073 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7074 sizeof(struct lpfc_sli4_cfg_mhdr)); 7075 7076 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7077 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7078 len, LPFC_SLI4_MBX_EMBED); 7079 7080 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7081 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7082 fwlog_enable); 7083 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7084 ras_fwlog->fw_loglevel); 7085 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7086 ras_fwlog->fw_buffcount); 7087 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7088 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7089 7090 /* Update DMA buffer address */ 7091 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7092 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7093 7094 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7095 putPaddrLow(dmabuf->phys); 7096 7097 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7098 putPaddrHigh(dmabuf->phys); 7099 } 7100 7101 /* Update LPWD address */ 7102 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7103 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7104 7105 spin_lock_irq(&phba->ras_fwlog_lock); 7106 ras_fwlog->state = REG_INPROGRESS; 7107 spin_unlock_irq(&phba->ras_fwlog_lock); 7108 mbox->vport = phba->pport; 7109 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7110 7111 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7112 7113 if (rc == MBX_NOT_FINISHED) { 7114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7115 "6191 FW-Log Mailbox failed. " 7116 "status %d mbxStatus : x%x", rc, 7117 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7118 mempool_free(mbox, phba->mbox_mem_pool); 7119 rc = -EIO; 7120 goto mem_free; 7121 } else 7122 rc = 0; 7123 mem_free: 7124 if (rc) 7125 lpfc_sli4_ras_dma_free(phba); 7126 7127 return rc; 7128 } 7129 7130 /** 7131 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7132 * @phba: Pointer to HBA context object. 7133 * 7134 * Check if RAS is supported on the adapter and initialize it. 7135 **/ 7136 void 7137 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7138 { 7139 /* Check RAS FW Log needs to be enabled or not */ 7140 if (lpfc_check_fwlog_support(phba)) 7141 return; 7142 7143 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7144 LPFC_RAS_ENABLE_LOGGING); 7145 } 7146 7147 /** 7148 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7149 * @phba: Pointer to HBA context object. 7150 * 7151 * This function allocates all SLI4 resource identifiers. 7152 **/ 7153 int 7154 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7155 { 7156 int i, rc, error = 0; 7157 uint16_t count, base; 7158 unsigned long longs; 7159 7160 if (!phba->sli4_hba.rpi_hdrs_in_use) 7161 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7162 if (phba->sli4_hba.extents_in_use) { 7163 /* 7164 * The port supports resource extents. The XRI, VPI, VFI, RPI 7165 * resource extent count must be read and allocated before 7166 * provisioning the resource id arrays. 7167 */ 7168 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7169 LPFC_IDX_RSRC_RDY) { 7170 /* 7171 * Extent-based resources are set - the driver could 7172 * be in a port reset. Figure out if any corrective 7173 * actions need to be taken. 7174 */ 7175 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7176 LPFC_RSC_TYPE_FCOE_VFI); 7177 if (rc != 0) 7178 error++; 7179 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7180 LPFC_RSC_TYPE_FCOE_VPI); 7181 if (rc != 0) 7182 error++; 7183 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7184 LPFC_RSC_TYPE_FCOE_XRI); 7185 if (rc != 0) 7186 error++; 7187 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7188 LPFC_RSC_TYPE_FCOE_RPI); 7189 if (rc != 0) 7190 error++; 7191 7192 /* 7193 * It's possible that the number of resources 7194 * provided to this port instance changed between 7195 * resets. Detect this condition and reallocate 7196 * resources. Otherwise, there is no action. 7197 */ 7198 if (error) { 7199 lpfc_printf_log(phba, KERN_INFO, 7200 LOG_MBOX | LOG_INIT, 7201 "2931 Detected extent resource " 7202 "change. Reallocating all " 7203 "extents.\n"); 7204 rc = lpfc_sli4_dealloc_extent(phba, 7205 LPFC_RSC_TYPE_FCOE_VFI); 7206 rc = lpfc_sli4_dealloc_extent(phba, 7207 LPFC_RSC_TYPE_FCOE_VPI); 7208 rc = lpfc_sli4_dealloc_extent(phba, 7209 LPFC_RSC_TYPE_FCOE_XRI); 7210 rc = lpfc_sli4_dealloc_extent(phba, 7211 LPFC_RSC_TYPE_FCOE_RPI); 7212 } else 7213 return 0; 7214 } 7215 7216 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7217 if (unlikely(rc)) 7218 goto err_exit; 7219 7220 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7221 if (unlikely(rc)) 7222 goto err_exit; 7223 7224 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7225 if (unlikely(rc)) 7226 goto err_exit; 7227 7228 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7229 if (unlikely(rc)) 7230 goto err_exit; 7231 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7232 LPFC_IDX_RSRC_RDY); 7233 return rc; 7234 } else { 7235 /* 7236 * The port does not support resource extents. The XRI, VPI, 7237 * VFI, RPI resource ids were determined from READ_CONFIG. 7238 * Just allocate the bitmasks and provision the resource id 7239 * arrays. If a port reset is active, the resources don't 7240 * need any action - just exit. 7241 */ 7242 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7243 LPFC_IDX_RSRC_RDY) { 7244 lpfc_sli4_dealloc_resource_identifiers(phba); 7245 lpfc_sli4_remove_rpis(phba); 7246 } 7247 /* RPIs. */ 7248 count = phba->sli4_hba.max_cfg_param.max_rpi; 7249 if (count <= 0) { 7250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7251 "3279 Invalid provisioning of " 7252 "rpi:%d\n", count); 7253 rc = -EINVAL; 7254 goto err_exit; 7255 } 7256 base = phba->sli4_hba.max_cfg_param.rpi_base; 7257 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7258 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7259 sizeof(unsigned long), 7260 GFP_KERNEL); 7261 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7262 rc = -ENOMEM; 7263 goto err_exit; 7264 } 7265 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7266 GFP_KERNEL); 7267 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7268 rc = -ENOMEM; 7269 goto free_rpi_bmask; 7270 } 7271 7272 for (i = 0; i < count; i++) 7273 phba->sli4_hba.rpi_ids[i] = base + i; 7274 7275 /* VPIs. */ 7276 count = phba->sli4_hba.max_cfg_param.max_vpi; 7277 if (count <= 0) { 7278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7279 "3280 Invalid provisioning of " 7280 "vpi:%d\n", count); 7281 rc = -EINVAL; 7282 goto free_rpi_ids; 7283 } 7284 base = phba->sli4_hba.max_cfg_param.vpi_base; 7285 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7286 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7287 GFP_KERNEL); 7288 if (unlikely(!phba->vpi_bmask)) { 7289 rc = -ENOMEM; 7290 goto free_rpi_ids; 7291 } 7292 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7293 GFP_KERNEL); 7294 if (unlikely(!phba->vpi_ids)) { 7295 rc = -ENOMEM; 7296 goto free_vpi_bmask; 7297 } 7298 7299 for (i = 0; i < count; i++) 7300 phba->vpi_ids[i] = base + i; 7301 7302 /* XRIs. */ 7303 count = phba->sli4_hba.max_cfg_param.max_xri; 7304 if (count <= 0) { 7305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7306 "3281 Invalid provisioning of " 7307 "xri:%d\n", count); 7308 rc = -EINVAL; 7309 goto free_vpi_ids; 7310 } 7311 base = phba->sli4_hba.max_cfg_param.xri_base; 7312 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7313 phba->sli4_hba.xri_bmask = kcalloc(longs, 7314 sizeof(unsigned long), 7315 GFP_KERNEL); 7316 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7317 rc = -ENOMEM; 7318 goto free_vpi_ids; 7319 } 7320 phba->sli4_hba.max_cfg_param.xri_used = 0; 7321 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7322 GFP_KERNEL); 7323 if (unlikely(!phba->sli4_hba.xri_ids)) { 7324 rc = -ENOMEM; 7325 goto free_xri_bmask; 7326 } 7327 7328 for (i = 0; i < count; i++) 7329 phba->sli4_hba.xri_ids[i] = base + i; 7330 7331 /* VFIs. */ 7332 count = phba->sli4_hba.max_cfg_param.max_vfi; 7333 if (count <= 0) { 7334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7335 "3282 Invalid provisioning of " 7336 "vfi:%d\n", count); 7337 rc = -EINVAL; 7338 goto free_xri_ids; 7339 } 7340 base = phba->sli4_hba.max_cfg_param.vfi_base; 7341 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7342 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7343 sizeof(unsigned long), 7344 GFP_KERNEL); 7345 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7346 rc = -ENOMEM; 7347 goto free_xri_ids; 7348 } 7349 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7350 GFP_KERNEL); 7351 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7352 rc = -ENOMEM; 7353 goto free_vfi_bmask; 7354 } 7355 7356 for (i = 0; i < count; i++) 7357 phba->sli4_hba.vfi_ids[i] = base + i; 7358 7359 /* 7360 * Mark all resources ready. An HBA reset doesn't need 7361 * to reset the initialization. 7362 */ 7363 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7364 LPFC_IDX_RSRC_RDY); 7365 return 0; 7366 } 7367 7368 free_vfi_bmask: 7369 kfree(phba->sli4_hba.vfi_bmask); 7370 phba->sli4_hba.vfi_bmask = NULL; 7371 free_xri_ids: 7372 kfree(phba->sli4_hba.xri_ids); 7373 phba->sli4_hba.xri_ids = NULL; 7374 free_xri_bmask: 7375 kfree(phba->sli4_hba.xri_bmask); 7376 phba->sli4_hba.xri_bmask = NULL; 7377 free_vpi_ids: 7378 kfree(phba->vpi_ids); 7379 phba->vpi_ids = NULL; 7380 free_vpi_bmask: 7381 kfree(phba->vpi_bmask); 7382 phba->vpi_bmask = NULL; 7383 free_rpi_ids: 7384 kfree(phba->sli4_hba.rpi_ids); 7385 phba->sli4_hba.rpi_ids = NULL; 7386 free_rpi_bmask: 7387 kfree(phba->sli4_hba.rpi_bmask); 7388 phba->sli4_hba.rpi_bmask = NULL; 7389 err_exit: 7390 return rc; 7391 } 7392 7393 /** 7394 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7395 * @phba: Pointer to HBA context object. 7396 * 7397 * This function allocates the number of elements for the specified 7398 * resource type. 7399 **/ 7400 int 7401 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7402 { 7403 if (phba->sli4_hba.extents_in_use) { 7404 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7408 } else { 7409 kfree(phba->vpi_bmask); 7410 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7411 kfree(phba->vpi_ids); 7412 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7413 kfree(phba->sli4_hba.xri_bmask); 7414 kfree(phba->sli4_hba.xri_ids); 7415 kfree(phba->sli4_hba.vfi_bmask); 7416 kfree(phba->sli4_hba.vfi_ids); 7417 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7418 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7419 } 7420 7421 return 0; 7422 } 7423 7424 /** 7425 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7426 * @phba: Pointer to HBA context object. 7427 * @type: The resource extent type. 7428 * @extnt_cnt: buffer to hold port extent count response 7429 * @extnt_size: buffer to hold port extent size response. 7430 * 7431 * This function calls the port to read the host allocated extents 7432 * for a particular type. 7433 **/ 7434 int 7435 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7436 uint16_t *extnt_cnt, uint16_t *extnt_size) 7437 { 7438 bool emb; 7439 int rc = 0; 7440 uint16_t curr_blks = 0; 7441 uint32_t req_len, emb_len; 7442 uint32_t alloc_len, mbox_tmo; 7443 struct list_head *blk_list_head; 7444 struct lpfc_rsrc_blks *rsrc_blk; 7445 LPFC_MBOXQ_t *mbox; 7446 void *virtaddr = NULL; 7447 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7448 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7449 union lpfc_sli4_cfg_shdr *shdr; 7450 7451 switch (type) { 7452 case LPFC_RSC_TYPE_FCOE_VPI: 7453 blk_list_head = &phba->lpfc_vpi_blk_list; 7454 break; 7455 case LPFC_RSC_TYPE_FCOE_XRI: 7456 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7457 break; 7458 case LPFC_RSC_TYPE_FCOE_VFI: 7459 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7460 break; 7461 case LPFC_RSC_TYPE_FCOE_RPI: 7462 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7463 break; 7464 default: 7465 return -EIO; 7466 } 7467 7468 /* Count the number of extents currently allocatd for this type. */ 7469 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7470 if (curr_blks == 0) { 7471 /* 7472 * The GET_ALLOCATED mailbox does not return the size, 7473 * just the count. The size should be just the size 7474 * stored in the current allocated block and all sizes 7475 * for an extent type are the same so set the return 7476 * value now. 7477 */ 7478 *extnt_size = rsrc_blk->rsrc_size; 7479 } 7480 curr_blks++; 7481 } 7482 7483 /* 7484 * Calculate the size of an embedded mailbox. The uint32_t 7485 * accounts for extents-specific word. 7486 */ 7487 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7488 sizeof(uint32_t); 7489 7490 /* 7491 * Presume the allocation and response will fit into an embedded 7492 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7493 */ 7494 emb = LPFC_SLI4_MBX_EMBED; 7495 req_len = emb_len; 7496 if (req_len > emb_len) { 7497 req_len = curr_blks * sizeof(uint16_t) + 7498 sizeof(union lpfc_sli4_cfg_shdr) + 7499 sizeof(uint32_t); 7500 emb = LPFC_SLI4_MBX_NEMBED; 7501 } 7502 7503 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7504 if (!mbox) 7505 return -ENOMEM; 7506 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7507 7508 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7509 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7510 req_len, emb); 7511 if (alloc_len < req_len) { 7512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7513 "2983 Allocated DMA memory size (x%x) is " 7514 "less than the requested DMA memory " 7515 "size (x%x)\n", alloc_len, req_len); 7516 rc = -ENOMEM; 7517 goto err_exit; 7518 } 7519 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7520 if (unlikely(rc)) { 7521 rc = -EIO; 7522 goto err_exit; 7523 } 7524 7525 if (!phba->sli4_hba.intr_enable) 7526 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7527 else { 7528 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7529 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7530 } 7531 7532 if (unlikely(rc)) { 7533 rc = -EIO; 7534 goto err_exit; 7535 } 7536 7537 /* 7538 * Figure out where the response is located. Then get local pointers 7539 * to the response data. The port does not guarantee to respond to 7540 * all extents counts request so update the local variable with the 7541 * allocated count from the port. 7542 */ 7543 if (emb == LPFC_SLI4_MBX_EMBED) { 7544 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7545 shdr = &rsrc_ext->header.cfg_shdr; 7546 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7547 } else { 7548 virtaddr = mbox->sge_array->addr[0]; 7549 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7550 shdr = &n_rsrc->cfg_shdr; 7551 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7552 } 7553 7554 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7556 "2984 Failed to read allocated resources " 7557 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7558 type, 7559 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7560 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7561 rc = -EIO; 7562 goto err_exit; 7563 } 7564 err_exit: 7565 lpfc_sli4_mbox_cmd_free(phba, mbox); 7566 return rc; 7567 } 7568 7569 /** 7570 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7571 * @phba: pointer to lpfc hba data structure. 7572 * @sgl_list: linked link of sgl buffers to post 7573 * @cnt: number of linked list buffers 7574 * 7575 * This routine walks the list of buffers that have been allocated and 7576 * repost them to the port by using SGL block post. This is needed after a 7577 * pci_function_reset/warm_start or start. It attempts to construct blocks 7578 * of buffer sgls which contains contiguous xris and uses the non-embedded 7579 * SGL block post mailbox commands to post them to the port. For single 7580 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7581 * mailbox command for posting. 7582 * 7583 * Returns: 0 = success, non-zero failure. 7584 **/ 7585 static int 7586 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7587 struct list_head *sgl_list, int cnt) 7588 { 7589 struct lpfc_sglq *sglq_entry = NULL; 7590 struct lpfc_sglq *sglq_entry_next = NULL; 7591 struct lpfc_sglq *sglq_entry_first = NULL; 7592 int status = 0, total_cnt; 7593 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7594 int last_xritag = NO_XRI; 7595 LIST_HEAD(prep_sgl_list); 7596 LIST_HEAD(blck_sgl_list); 7597 LIST_HEAD(allc_sgl_list); 7598 LIST_HEAD(post_sgl_list); 7599 LIST_HEAD(free_sgl_list); 7600 7601 spin_lock_irq(&phba->hbalock); 7602 spin_lock(&phba->sli4_hba.sgl_list_lock); 7603 list_splice_init(sgl_list, &allc_sgl_list); 7604 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7605 spin_unlock_irq(&phba->hbalock); 7606 7607 total_cnt = cnt; 7608 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7609 &allc_sgl_list, list) { 7610 list_del_init(&sglq_entry->list); 7611 block_cnt++; 7612 if ((last_xritag != NO_XRI) && 7613 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7614 /* a hole in xri block, form a sgl posting block */ 7615 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7616 post_cnt = block_cnt - 1; 7617 /* prepare list for next posting block */ 7618 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7619 block_cnt = 1; 7620 } else { 7621 /* prepare list for next posting block */ 7622 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7623 /* enough sgls for non-embed sgl mbox command */ 7624 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7625 list_splice_init(&prep_sgl_list, 7626 &blck_sgl_list); 7627 post_cnt = block_cnt; 7628 block_cnt = 0; 7629 } 7630 } 7631 num_posted++; 7632 7633 /* keep track of last sgl's xritag */ 7634 last_xritag = sglq_entry->sli4_xritag; 7635 7636 /* end of repost sgl list condition for buffers */ 7637 if (num_posted == total_cnt) { 7638 if (post_cnt == 0) { 7639 list_splice_init(&prep_sgl_list, 7640 &blck_sgl_list); 7641 post_cnt = block_cnt; 7642 } else if (block_cnt == 1) { 7643 status = lpfc_sli4_post_sgl(phba, 7644 sglq_entry->phys, 0, 7645 sglq_entry->sli4_xritag); 7646 if (!status) { 7647 /* successful, put sgl to posted list */ 7648 list_add_tail(&sglq_entry->list, 7649 &post_sgl_list); 7650 } else { 7651 /* Failure, put sgl to free list */ 7652 lpfc_printf_log(phba, KERN_WARNING, 7653 LOG_SLI, 7654 "3159 Failed to post " 7655 "sgl, xritag:x%x\n", 7656 sglq_entry->sli4_xritag); 7657 list_add_tail(&sglq_entry->list, 7658 &free_sgl_list); 7659 total_cnt--; 7660 } 7661 } 7662 } 7663 7664 /* continue until a nembed page worth of sgls */ 7665 if (post_cnt == 0) 7666 continue; 7667 7668 /* post the buffer list sgls as a block */ 7669 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7670 post_cnt); 7671 7672 if (!status) { 7673 /* success, put sgl list to posted sgl list */ 7674 list_splice_init(&blck_sgl_list, &post_sgl_list); 7675 } else { 7676 /* Failure, put sgl list to free sgl list */ 7677 sglq_entry_first = list_first_entry(&blck_sgl_list, 7678 struct lpfc_sglq, 7679 list); 7680 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7681 "3160 Failed to post sgl-list, " 7682 "xritag:x%x-x%x\n", 7683 sglq_entry_first->sli4_xritag, 7684 (sglq_entry_first->sli4_xritag + 7685 post_cnt - 1)); 7686 list_splice_init(&blck_sgl_list, &free_sgl_list); 7687 total_cnt -= post_cnt; 7688 } 7689 7690 /* don't reset xirtag due to hole in xri block */ 7691 if (block_cnt == 0) 7692 last_xritag = NO_XRI; 7693 7694 /* reset sgl post count for next round of posting */ 7695 post_cnt = 0; 7696 } 7697 7698 /* free the sgls failed to post */ 7699 lpfc_free_sgl_list(phba, &free_sgl_list); 7700 7701 /* push sgls posted to the available list */ 7702 if (!list_empty(&post_sgl_list)) { 7703 spin_lock_irq(&phba->hbalock); 7704 spin_lock(&phba->sli4_hba.sgl_list_lock); 7705 list_splice_init(&post_sgl_list, sgl_list); 7706 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7707 spin_unlock_irq(&phba->hbalock); 7708 } else { 7709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7710 "3161 Failure to post sgl to port,status %x " 7711 "blkcnt %d totalcnt %d postcnt %d\n", 7712 status, block_cnt, total_cnt, post_cnt); 7713 return -EIO; 7714 } 7715 7716 /* return the number of XRIs actually posted */ 7717 return total_cnt; 7718 } 7719 7720 /** 7721 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7722 * @phba: pointer to lpfc hba data structure. 7723 * 7724 * This routine walks the list of nvme buffers that have been allocated and 7725 * repost them to the port by using SGL block post. This is needed after a 7726 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7727 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7728 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7729 * 7730 * Returns: 0 = success, non-zero failure. 7731 **/ 7732 static int 7733 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7734 { 7735 LIST_HEAD(post_nblist); 7736 int num_posted, rc = 0; 7737 7738 /* get all NVME buffers need to repost to a local list */ 7739 lpfc_io_buf_flush(phba, &post_nblist); 7740 7741 /* post the list of nvme buffer sgls to port if available */ 7742 if (!list_empty(&post_nblist)) { 7743 num_posted = lpfc_sli4_post_io_sgl_list( 7744 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7745 /* failed to post any nvme buffer, return error */ 7746 if (num_posted == 0) 7747 rc = -EIO; 7748 } 7749 return rc; 7750 } 7751 7752 static void 7753 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7754 { 7755 uint32_t len; 7756 7757 len = sizeof(struct lpfc_mbx_set_host_data) - 7758 sizeof(struct lpfc_sli4_cfg_mhdr); 7759 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7760 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7761 LPFC_SLI4_MBX_EMBED); 7762 7763 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7764 mbox->u.mqe.un.set_host_data.param_len = 7765 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7766 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7767 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7768 "Linux %s v"LPFC_DRIVER_VERSION, 7769 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7770 } 7771 7772 int 7773 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7774 struct lpfc_queue *drq, int count, int idx) 7775 { 7776 int rc, i; 7777 struct lpfc_rqe hrqe; 7778 struct lpfc_rqe drqe; 7779 struct lpfc_rqb *rqbp; 7780 unsigned long flags; 7781 struct rqb_dmabuf *rqb_buffer; 7782 LIST_HEAD(rqb_buf_list); 7783 7784 rqbp = hrq->rqbp; 7785 for (i = 0; i < count; i++) { 7786 spin_lock_irqsave(&phba->hbalock, flags); 7787 /* IF RQ is already full, don't bother */ 7788 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7789 spin_unlock_irqrestore(&phba->hbalock, flags); 7790 break; 7791 } 7792 spin_unlock_irqrestore(&phba->hbalock, flags); 7793 7794 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7795 if (!rqb_buffer) 7796 break; 7797 rqb_buffer->hrq = hrq; 7798 rqb_buffer->drq = drq; 7799 rqb_buffer->idx = idx; 7800 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7801 } 7802 7803 spin_lock_irqsave(&phba->hbalock, flags); 7804 while (!list_empty(&rqb_buf_list)) { 7805 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7806 hbuf.list); 7807 7808 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7809 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7810 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7811 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7812 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7813 if (rc < 0) { 7814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7815 "6421 Cannot post to HRQ %d: %x %x %x " 7816 "DRQ %x %x\n", 7817 hrq->queue_id, 7818 hrq->host_index, 7819 hrq->hba_index, 7820 hrq->entry_count, 7821 drq->host_index, 7822 drq->hba_index); 7823 rqbp->rqb_free_buffer(phba, rqb_buffer); 7824 } else { 7825 list_add_tail(&rqb_buffer->hbuf.list, 7826 &rqbp->rqb_buffer_list); 7827 rqbp->buffer_count++; 7828 } 7829 } 7830 spin_unlock_irqrestore(&phba->hbalock, flags); 7831 return 1; 7832 } 7833 7834 static void 7835 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7836 { 7837 union lpfc_sli4_cfg_shdr *shdr; 7838 u32 shdr_status, shdr_add_status; 7839 7840 shdr = (union lpfc_sli4_cfg_shdr *) 7841 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7842 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7843 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7844 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7845 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7846 "4622 SET_FEATURE (x%x) mbox failed, " 7847 "status x%x add_status x%x, mbx status x%x\n", 7848 LPFC_SET_LD_SIGNAL, shdr_status, 7849 shdr_add_status, pmb->u.mb.mbxStatus); 7850 phba->degrade_activate_threshold = 0; 7851 phba->degrade_deactivate_threshold = 0; 7852 phba->fec_degrade_interval = 0; 7853 goto out; 7854 } 7855 7856 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7857 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7858 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7859 7860 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7861 "4624 Success: da x%x dd x%x interval x%x\n", 7862 phba->degrade_activate_threshold, 7863 phba->degrade_deactivate_threshold, 7864 phba->fec_degrade_interval); 7865 out: 7866 mempool_free(pmb, phba->mbox_mem_pool); 7867 } 7868 7869 int 7870 lpfc_read_lds_params(struct lpfc_hba *phba) 7871 { 7872 LPFC_MBOXQ_t *mboxq; 7873 int rc; 7874 7875 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7876 if (!mboxq) 7877 return -ENOMEM; 7878 7879 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7880 mboxq->vport = phba->pport; 7881 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7883 if (rc == MBX_NOT_FINISHED) { 7884 mempool_free(mboxq, phba->mbox_mem_pool); 7885 return -EIO; 7886 } 7887 return 0; 7888 } 7889 7890 static void 7891 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7892 { 7893 struct lpfc_vport *vport = pmb->vport; 7894 union lpfc_sli4_cfg_shdr *shdr; 7895 u32 shdr_status, shdr_add_status; 7896 u32 sig, acqe; 7897 7898 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7899 * is done. (2) Mailbox failed and send FPIN support only. 7900 */ 7901 shdr = (union lpfc_sli4_cfg_shdr *) 7902 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7905 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7906 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7907 "2516 CGN SET_FEATURE mbox failed with " 7908 "status x%x add_status x%x, mbx status x%x " 7909 "Reset Congestion to FPINs only\n", 7910 shdr_status, shdr_add_status, 7911 pmb->u.mb.mbxStatus); 7912 /* If there is a mbox error, move on to RDF */ 7913 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7914 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7915 goto out; 7916 } 7917 7918 /* Zero out Congestion Signal ACQE counter */ 7919 phba->cgn_acqe_cnt = 0; 7920 7921 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7922 &pmb->u.mqe.un.set_feature); 7923 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7924 &pmb->u.mqe.un.set_feature); 7925 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7926 "4620 SET_FEATURES Success: Freq: %ds %dms " 7927 " Reg: x%x x%x\n", acqe, sig, 7928 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7929 out: 7930 mempool_free(pmb, phba->mbox_mem_pool); 7931 7932 /* Register for FPIN events from the fabric now that the 7933 * EDC common_set_features has completed. 7934 */ 7935 lpfc_issue_els_rdf(vport, 0); 7936 } 7937 7938 int 7939 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7940 { 7941 LPFC_MBOXQ_t *mboxq; 7942 u32 rc; 7943 7944 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7945 if (!mboxq) 7946 goto out_rdf; 7947 7948 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7949 mboxq->vport = phba->pport; 7950 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7951 7952 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7953 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7954 "Reg: x%x x%x\n", 7955 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7956 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7957 7958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7959 if (rc == MBX_NOT_FINISHED) 7960 goto out; 7961 return 0; 7962 7963 out: 7964 mempool_free(mboxq, phba->mbox_mem_pool); 7965 out_rdf: 7966 /* If there is a mbox error, move on to RDF */ 7967 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7968 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7969 lpfc_issue_els_rdf(phba->pport, 0); 7970 return -EIO; 7971 } 7972 7973 /** 7974 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7975 * @phba: pointer to lpfc hba data structure. 7976 * 7977 * This routine initializes the per-eq idle_stat to dynamically dictate 7978 * polling decisions. 7979 * 7980 * Return codes: 7981 * None 7982 **/ 7983 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7984 { 7985 int i; 7986 struct lpfc_sli4_hdw_queue *hdwq; 7987 struct lpfc_queue *eq; 7988 struct lpfc_idle_stat *idle_stat; 7989 u64 wall; 7990 7991 for_each_present_cpu(i) { 7992 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7993 eq = hdwq->hba_eq; 7994 7995 /* Skip if we've already handled this eq's primary CPU */ 7996 if (eq->chann != i) 7997 continue; 7998 7999 idle_stat = &phba->sli4_hba.idle_stat[i]; 8000 8001 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8002 idle_stat->prev_wall = wall; 8003 8004 if (phba->nvmet_support || 8005 phba->cmf_active_mode != LPFC_CFG_OFF || 8006 phba->intr_type != MSIX) 8007 eq->poll_mode = LPFC_QUEUE_WORK; 8008 else 8009 eq->poll_mode = LPFC_THREADED_IRQ; 8010 } 8011 8012 if (!phba->nvmet_support && phba->intr_type == MSIX) 8013 schedule_delayed_work(&phba->idle_stat_delay_work, 8014 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8015 } 8016 8017 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8018 { 8019 uint32_t if_type; 8020 8021 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8022 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8023 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8024 struct lpfc_register reg_data; 8025 8026 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8027 ®_data.word0)) 8028 return; 8029 8030 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8031 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8032 "2904 Firmware Dump Image Present" 8033 " on Adapter"); 8034 } 8035 } 8036 8037 /** 8038 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8039 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8040 * @entries: Number of rx_info_entry objects to allocate in ring 8041 * 8042 * Return: 8043 * 0 - Success 8044 * ENOMEM - Failure to kmalloc 8045 **/ 8046 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8047 u32 entries) 8048 { 8049 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8050 GFP_KERNEL); 8051 if (!rx_monitor->ring) 8052 return -ENOMEM; 8053 8054 rx_monitor->head_idx = 0; 8055 rx_monitor->tail_idx = 0; 8056 spin_lock_init(&rx_monitor->lock); 8057 rx_monitor->entries = entries; 8058 8059 return 0; 8060 } 8061 8062 /** 8063 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8064 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8065 * 8066 * Called after cancellation of cmf_timer. 8067 **/ 8068 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8069 { 8070 kfree(rx_monitor->ring); 8071 rx_monitor->ring = NULL; 8072 rx_monitor->entries = 0; 8073 rx_monitor->head_idx = 0; 8074 rx_monitor->tail_idx = 0; 8075 } 8076 8077 /** 8078 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8079 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8080 * @entry: Pointer to rx_info_entry 8081 * 8082 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8083 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8084 * 8085 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8086 * 8087 * In cases of old data overflow, we do a best effort of FIFO order. 8088 **/ 8089 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8090 struct rx_info_entry *entry) 8091 { 8092 struct rx_info_entry *ring = rx_monitor->ring; 8093 u32 *head_idx = &rx_monitor->head_idx; 8094 u32 *tail_idx = &rx_monitor->tail_idx; 8095 spinlock_t *ring_lock = &rx_monitor->lock; 8096 u32 ring_size = rx_monitor->entries; 8097 8098 spin_lock(ring_lock); 8099 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8100 *tail_idx = (*tail_idx + 1) % ring_size; 8101 8102 /* Best effort of FIFO saved data */ 8103 if (*tail_idx == *head_idx) 8104 *head_idx = (*head_idx + 1) % ring_size; 8105 8106 spin_unlock(ring_lock); 8107 } 8108 8109 /** 8110 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8111 * @phba: Pointer to lpfc_hba object 8112 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8113 * @buf: Pointer to char buffer that will contain rx monitor info data 8114 * @buf_len: Length buf including null char 8115 * @max_read_entries: Maximum number of entries to read out of ring 8116 * 8117 * Used to dump/read what's in rx_monitor's ring buffer. 8118 * 8119 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8120 * information to kmsg instead of filling out buf. 8121 * 8122 * Return: 8123 * Number of entries read out of the ring 8124 **/ 8125 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8126 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8127 u32 buf_len, u32 max_read_entries) 8128 { 8129 struct rx_info_entry *ring = rx_monitor->ring; 8130 struct rx_info_entry *entry; 8131 u32 *head_idx = &rx_monitor->head_idx; 8132 u32 *tail_idx = &rx_monitor->tail_idx; 8133 spinlock_t *ring_lock = &rx_monitor->lock; 8134 u32 ring_size = rx_monitor->entries; 8135 u32 cnt = 0; 8136 char tmp[DBG_LOG_STR_SZ] = {0}; 8137 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8138 8139 if (!log_to_kmsg) { 8140 /* clear the buffer to be sure */ 8141 memset(buf, 0, buf_len); 8142 8143 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8144 "%-8s%-8s%-8s%-16s\n", 8145 "MaxBPI", "Tot_Data_CMF", 8146 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8147 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8148 "IO_cnt", "Info", "BWutil(ms)"); 8149 } 8150 8151 /* Needs to be _irq because record is called from timer interrupt 8152 * context 8153 */ 8154 spin_lock_irq(ring_lock); 8155 while (*head_idx != *tail_idx) { 8156 entry = &ring[*head_idx]; 8157 8158 /* Read out this entry's data. */ 8159 if (!log_to_kmsg) { 8160 /* If !log_to_kmsg, then store to buf. */ 8161 scnprintf(tmp, sizeof(tmp), 8162 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8163 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8164 *head_idx, entry->max_bytes_per_interval, 8165 entry->cmf_bytes, entry->total_bytes, 8166 entry->rcv_bytes, entry->avg_io_latency, 8167 entry->avg_io_size, entry->max_read_cnt, 8168 entry->cmf_busy, entry->io_cnt, 8169 entry->cmf_info, entry->timer_utilization, 8170 entry->timer_interval); 8171 8172 /* Check for buffer overflow */ 8173 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8174 break; 8175 8176 /* Append entry's data to buffer */ 8177 strlcat(buf, tmp, buf_len); 8178 } else { 8179 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8180 "4410 %02u: MBPI %llu Xmit %llu " 8181 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8182 "BWUtil %u Int %u slot %u\n", 8183 cnt, entry->max_bytes_per_interval, 8184 entry->total_bytes, entry->rcv_bytes, 8185 entry->avg_io_latency, 8186 entry->avg_io_size, entry->cmf_info, 8187 entry->timer_utilization, 8188 entry->timer_interval, *head_idx); 8189 } 8190 8191 *head_idx = (*head_idx + 1) % ring_size; 8192 8193 /* Don't feed more than max_read_entries */ 8194 cnt++; 8195 if (cnt >= max_read_entries) 8196 break; 8197 } 8198 spin_unlock_irq(ring_lock); 8199 8200 return cnt; 8201 } 8202 8203 /** 8204 * lpfc_cmf_setup - Initialize idle_stat tracking 8205 * @phba: Pointer to HBA context object. 8206 * 8207 * This is called from HBA setup during driver load or when the HBA 8208 * comes online. this does all the initialization to support CMF and MI. 8209 **/ 8210 static int 8211 lpfc_cmf_setup(struct lpfc_hba *phba) 8212 { 8213 LPFC_MBOXQ_t *mboxq; 8214 struct lpfc_dmabuf *mp; 8215 struct lpfc_pc_sli4_params *sli4_params; 8216 int rc, cmf, mi_ver; 8217 8218 rc = lpfc_sli4_refresh_params(phba); 8219 if (unlikely(rc)) 8220 return rc; 8221 8222 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8223 if (!mboxq) 8224 return -ENOMEM; 8225 8226 sli4_params = &phba->sli4_hba.pc_sli4_params; 8227 8228 /* Always try to enable MI feature if we can */ 8229 if (sli4_params->mi_ver) { 8230 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8231 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8232 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8233 &mboxq->u.mqe.un.set_feature); 8234 8235 if (rc == MBX_SUCCESS) { 8236 if (mi_ver) { 8237 lpfc_printf_log(phba, 8238 KERN_WARNING, LOG_CGN_MGMT, 8239 "6215 MI is enabled\n"); 8240 sli4_params->mi_ver = mi_ver; 8241 } else { 8242 lpfc_printf_log(phba, 8243 KERN_WARNING, LOG_CGN_MGMT, 8244 "6338 MI is disabled\n"); 8245 sli4_params->mi_ver = 0; 8246 } 8247 } else { 8248 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8249 lpfc_printf_log(phba, KERN_INFO, 8250 LOG_CGN_MGMT | LOG_INIT, 8251 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8252 "failed, rc:x%x mi:x%x\n", 8253 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8254 lpfc_sli_config_mbox_subsys_get 8255 (phba, mboxq), 8256 lpfc_sli_config_mbox_opcode_get 8257 (phba, mboxq), 8258 rc, sli4_params->mi_ver); 8259 } 8260 } else { 8261 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8262 "6217 MI is disabled\n"); 8263 } 8264 8265 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8266 if (sli4_params->mi_ver) 8267 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8268 8269 /* Always try to enable CMF feature if we can */ 8270 if (sli4_params->cmf) { 8271 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8272 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8273 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8274 &mboxq->u.mqe.un.set_feature); 8275 if (rc == MBX_SUCCESS && cmf) { 8276 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8277 "6218 CMF is enabled: mode %d\n", 8278 phba->cmf_active_mode); 8279 } else { 8280 lpfc_printf_log(phba, KERN_WARNING, 8281 LOG_CGN_MGMT | LOG_INIT, 8282 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8283 "failed, rc:x%x dd:x%x\n", 8284 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8285 lpfc_sli_config_mbox_subsys_get 8286 (phba, mboxq), 8287 lpfc_sli_config_mbox_opcode_get 8288 (phba, mboxq), 8289 rc, cmf); 8290 sli4_params->cmf = 0; 8291 phba->cmf_active_mode = LPFC_CFG_OFF; 8292 goto no_cmf; 8293 } 8294 8295 /* Allocate Congestion Information Buffer */ 8296 if (!phba->cgn_i) { 8297 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8298 if (mp) 8299 mp->virt = dma_alloc_coherent 8300 (&phba->pcidev->dev, 8301 sizeof(struct lpfc_cgn_info), 8302 &mp->phys, GFP_KERNEL); 8303 if (!mp || !mp->virt) { 8304 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8305 "2640 Failed to alloc memory " 8306 "for Congestion Info\n"); 8307 kfree(mp); 8308 sli4_params->cmf = 0; 8309 phba->cmf_active_mode = LPFC_CFG_OFF; 8310 goto no_cmf; 8311 } 8312 phba->cgn_i = mp; 8313 8314 /* initialize congestion buffer info */ 8315 lpfc_init_congestion_buf(phba); 8316 lpfc_init_congestion_stat(phba); 8317 8318 /* Zero out Congestion Signal counters */ 8319 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8320 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8321 } 8322 8323 rc = lpfc_sli4_cgn_params_read(phba); 8324 if (rc < 0) { 8325 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8326 "6242 Error reading Cgn Params (%d)\n", 8327 rc); 8328 /* Ensure CGN Mode is off */ 8329 sli4_params->cmf = 0; 8330 } else if (!rc) { 8331 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8332 "6243 CGN Event empty object.\n"); 8333 /* Ensure CGN Mode is off */ 8334 sli4_params->cmf = 0; 8335 } 8336 } else { 8337 no_cmf: 8338 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8339 "6220 CMF is disabled\n"); 8340 } 8341 8342 /* Only register congestion buffer with firmware if BOTH 8343 * CMF and E2E are enabled. 8344 */ 8345 if (sli4_params->cmf && sli4_params->mi_ver) { 8346 rc = lpfc_reg_congestion_buf(phba); 8347 if (rc) { 8348 dma_free_coherent(&phba->pcidev->dev, 8349 sizeof(struct lpfc_cgn_info), 8350 phba->cgn_i->virt, phba->cgn_i->phys); 8351 kfree(phba->cgn_i); 8352 phba->cgn_i = NULL; 8353 /* Ensure CGN Mode is off */ 8354 phba->cmf_active_mode = LPFC_CFG_OFF; 8355 sli4_params->cmf = 0; 8356 return 0; 8357 } 8358 } 8359 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8360 "6470 Setup MI version %d CMF %d mode %d\n", 8361 sli4_params->mi_ver, sli4_params->cmf, 8362 phba->cmf_active_mode); 8363 8364 mempool_free(mboxq, phba->mbox_mem_pool); 8365 8366 /* Initialize atomic counters */ 8367 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8368 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8369 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8370 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8371 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8372 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8373 atomic64_set(&phba->cgn_latency_evt, 0); 8374 8375 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8376 8377 /* Allocate RX Monitor Buffer */ 8378 if (!phba->rx_monitor) { 8379 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8380 GFP_KERNEL); 8381 8382 if (!phba->rx_monitor) { 8383 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8384 "2644 Failed to alloc memory " 8385 "for RX Monitor Buffer\n"); 8386 return -ENOMEM; 8387 } 8388 8389 /* Instruct the rx_monitor object to instantiate its ring */ 8390 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8391 LPFC_MAX_RXMONITOR_ENTRY)) { 8392 kfree(phba->rx_monitor); 8393 phba->rx_monitor = NULL; 8394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8395 "2645 Failed to alloc memory " 8396 "for RX Monitor's Ring\n"); 8397 return -ENOMEM; 8398 } 8399 } 8400 8401 return 0; 8402 } 8403 8404 static int 8405 lpfc_set_host_tm(struct lpfc_hba *phba) 8406 { 8407 LPFC_MBOXQ_t *mboxq; 8408 uint32_t len, rc; 8409 struct timespec64 cur_time; 8410 struct tm broken; 8411 uint32_t month, day, year; 8412 uint32_t hour, minute, second; 8413 struct lpfc_mbx_set_host_date_time *tm; 8414 8415 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8416 if (!mboxq) 8417 return -ENOMEM; 8418 8419 len = sizeof(struct lpfc_mbx_set_host_data) - 8420 sizeof(struct lpfc_sli4_cfg_mhdr); 8421 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8422 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8423 LPFC_SLI4_MBX_EMBED); 8424 8425 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8426 mboxq->u.mqe.un.set_host_data.param_len = 8427 sizeof(struct lpfc_mbx_set_host_date_time); 8428 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8429 ktime_get_real_ts64(&cur_time); 8430 time64_to_tm(cur_time.tv_sec, 0, &broken); 8431 month = broken.tm_mon + 1; 8432 day = broken.tm_mday; 8433 year = broken.tm_year - 100; 8434 hour = broken.tm_hour; 8435 minute = broken.tm_min; 8436 second = broken.tm_sec; 8437 bf_set(lpfc_mbx_set_host_month, tm, month); 8438 bf_set(lpfc_mbx_set_host_day, tm, day); 8439 bf_set(lpfc_mbx_set_host_year, tm, year); 8440 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8441 bf_set(lpfc_mbx_set_host_min, tm, minute); 8442 bf_set(lpfc_mbx_set_host_sec, tm, second); 8443 8444 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8445 mempool_free(mboxq, phba->mbox_mem_pool); 8446 return rc; 8447 } 8448 8449 /** 8450 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8451 * @phba: Pointer to HBA context object. 8452 * 8453 * This function is the main SLI4 device initialization PCI function. This 8454 * function is called by the HBA initialization code, HBA reset code and 8455 * HBA error attention handler code. Caller is not required to hold any 8456 * locks. 8457 **/ 8458 int 8459 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8460 { 8461 int rc, i, cnt, len, dd; 8462 LPFC_MBOXQ_t *mboxq; 8463 struct lpfc_mqe *mqe; 8464 uint8_t *vpd; 8465 uint32_t vpd_size; 8466 uint32_t ftr_rsp = 0; 8467 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8468 struct lpfc_vport *vport = phba->pport; 8469 struct lpfc_dmabuf *mp; 8470 struct lpfc_rqb *rqbp; 8471 u32 flg; 8472 8473 /* Perform a PCI function reset to start from clean */ 8474 rc = lpfc_pci_function_reset(phba); 8475 if (unlikely(rc)) 8476 return -ENODEV; 8477 8478 /* Check the HBA Host Status Register for readyness */ 8479 rc = lpfc_sli4_post_status_check(phba); 8480 if (unlikely(rc)) 8481 return -ENODEV; 8482 else { 8483 spin_lock_irq(&phba->hbalock); 8484 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8485 flg = phba->sli.sli_flag; 8486 spin_unlock_irq(&phba->hbalock); 8487 /* Allow a little time after setting SLI_ACTIVE for any polled 8488 * MBX commands to complete via BSG. 8489 */ 8490 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8491 msleep(20); 8492 spin_lock_irq(&phba->hbalock); 8493 flg = phba->sli.sli_flag; 8494 spin_unlock_irq(&phba->hbalock); 8495 } 8496 } 8497 clear_bit(HBA_SETUP, &phba->hba_flag); 8498 8499 lpfc_sli4_dip(phba); 8500 8501 /* 8502 * Allocate a single mailbox container for initializing the 8503 * port. 8504 */ 8505 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8506 if (!mboxq) 8507 return -ENOMEM; 8508 8509 /* Issue READ_REV to collect vpd and FW information. */ 8510 vpd_size = SLI4_PAGE_SIZE; 8511 vpd = kzalloc(vpd_size, GFP_KERNEL); 8512 if (!vpd) { 8513 rc = -ENOMEM; 8514 goto out_free_mbox; 8515 } 8516 8517 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8518 if (unlikely(rc)) { 8519 kfree(vpd); 8520 goto out_free_mbox; 8521 } 8522 8523 mqe = &mboxq->u.mqe; 8524 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8525 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8526 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8527 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8528 } else { 8529 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8530 } 8531 8532 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8533 LPFC_DCBX_CEE_MODE) 8534 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8535 else 8536 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8537 8538 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8539 8540 if (phba->sli_rev != LPFC_SLI_REV4) { 8541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8542 "0376 READ_REV Error. SLI Level %d " 8543 "FCoE enabled %d\n", 8544 phba->sli_rev, 8545 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8546 rc = -EIO; 8547 kfree(vpd); 8548 goto out_free_mbox; 8549 } 8550 8551 rc = lpfc_set_host_tm(phba); 8552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8553 "6468 Set host date / time: Status x%x:\n", rc); 8554 8555 /* 8556 * Continue initialization with default values even if driver failed 8557 * to read FCoE param config regions, only read parameters if the 8558 * board is FCoE 8559 */ 8560 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8561 lpfc_sli4_read_fcoe_params(phba)) 8562 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8563 "2570 Failed to read FCoE parameters\n"); 8564 8565 /* 8566 * Retrieve sli4 device physical port name, failure of doing it 8567 * is considered as non-fatal. 8568 */ 8569 rc = lpfc_sli4_retrieve_pport_name(phba); 8570 if (!rc) 8571 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8572 "3080 Successful retrieving SLI4 device " 8573 "physical port name: %s.\n", phba->Port); 8574 8575 rc = lpfc_sli4_get_ctl_attr(phba); 8576 if (!rc) 8577 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8578 "8351 Successful retrieving SLI4 device " 8579 "CTL ATTR\n"); 8580 8581 /* 8582 * Evaluate the read rev and vpd data. Populate the driver 8583 * state with the results. If this routine fails, the failure 8584 * is not fatal as the driver will use generic values. 8585 */ 8586 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8587 if (unlikely(!rc)) 8588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8589 "0377 Error %d parsing vpd. " 8590 "Using defaults.\n", rc); 8591 kfree(vpd); 8592 8593 /* Save information as VPD data */ 8594 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8595 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8596 8597 /* 8598 * This is because first G7 ASIC doesn't support the standard 8599 * 0x5a NVME cmd descriptor type/subtype 8600 */ 8601 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8602 LPFC_SLI_INTF_IF_TYPE_6) && 8603 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8604 (phba->vpd.rev.smRev == 0) && 8605 (phba->cfg_nvme_embed_cmd == 1)) 8606 phba->cfg_nvme_embed_cmd = 0; 8607 8608 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8609 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8610 &mqe->un.read_rev); 8611 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8612 &mqe->un.read_rev); 8613 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8614 &mqe->un.read_rev); 8615 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8616 &mqe->un.read_rev); 8617 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8618 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8619 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8620 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8621 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8622 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8623 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8624 "(%d):0380 READ_REV Status x%x " 8625 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8626 mboxq->vport ? mboxq->vport->vpi : 0, 8627 bf_get(lpfc_mqe_status, mqe), 8628 phba->vpd.rev.opFwName, 8629 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8630 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8631 8632 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8633 LPFC_SLI_INTF_IF_TYPE_0) { 8634 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8636 if (rc == MBX_SUCCESS) { 8637 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8638 /* Set 1Sec interval to detect UE */ 8639 phba->eratt_poll_interval = 1; 8640 phba->sli4_hba.ue_to_sr = bf_get( 8641 lpfc_mbx_set_feature_UESR, 8642 &mboxq->u.mqe.un.set_feature); 8643 phba->sli4_hba.ue_to_rp = bf_get( 8644 lpfc_mbx_set_feature_UERP, 8645 &mboxq->u.mqe.un.set_feature); 8646 } 8647 } 8648 8649 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8650 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8651 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8652 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8653 if (rc != MBX_SUCCESS) 8654 phba->mds_diags_support = 0; 8655 } 8656 8657 /* 8658 * Discover the port's supported feature set and match it against the 8659 * hosts requests. 8660 */ 8661 lpfc_request_features(phba, mboxq); 8662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8663 if (unlikely(rc)) { 8664 rc = -EIO; 8665 goto out_free_mbox; 8666 } 8667 8668 /* Disable VMID if app header is not supported */ 8669 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8670 &mqe->un.req_ftrs))) { 8671 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8672 phba->cfg_vmid_app_header = 0; 8673 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8674 "1242 vmid feature not supported\n"); 8675 } 8676 8677 /* 8678 * The port must support FCP initiator mode as this is the 8679 * only mode running in the host. 8680 */ 8681 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8682 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8683 "0378 No support for fcpi mode.\n"); 8684 ftr_rsp++; 8685 } 8686 8687 /* Performance Hints are ONLY for FCoE */ 8688 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8689 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8690 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8691 else 8692 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8693 } 8694 8695 /* 8696 * If the port cannot support the host's requested features 8697 * then turn off the global config parameters to disable the 8698 * feature in the driver. This is not a fatal error. 8699 */ 8700 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8702 phba->cfg_enable_bg = 0; 8703 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8704 ftr_rsp++; 8705 } 8706 } 8707 8708 if (phba->max_vpi && phba->cfg_enable_npiv && 8709 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8710 ftr_rsp++; 8711 8712 if (ftr_rsp) { 8713 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8714 "0379 Feature Mismatch Data: x%08x %08x " 8715 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8716 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8717 phba->cfg_enable_npiv, phba->max_vpi); 8718 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8719 phba->cfg_enable_bg = 0; 8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8721 phba->cfg_enable_npiv = 0; 8722 } 8723 8724 /* These SLI3 features are assumed in SLI4 */ 8725 spin_lock_irq(&phba->hbalock); 8726 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8727 spin_unlock_irq(&phba->hbalock); 8728 8729 /* Always try to enable dual dump feature if we can */ 8730 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8731 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8732 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8733 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8734 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8735 "6448 Dual Dump is enabled\n"); 8736 else 8737 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8738 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8739 "rc:x%x dd:x%x\n", 8740 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8741 lpfc_sli_config_mbox_subsys_get( 8742 phba, mboxq), 8743 lpfc_sli_config_mbox_opcode_get( 8744 phba, mboxq), 8745 rc, dd); 8746 8747 /* 8748 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8749 * calls depends on these resources to complete port setup. 8750 */ 8751 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8752 if (rc) { 8753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8754 "2920 Failed to alloc Resource IDs " 8755 "rc = x%x\n", rc); 8756 goto out_free_mbox; 8757 } 8758 8759 lpfc_sli4_node_rpi_restore(phba); 8760 8761 lpfc_set_host_data(phba, mboxq); 8762 8763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8764 if (rc) { 8765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8766 "2134 Failed to set host os driver version %x", 8767 rc); 8768 } 8769 8770 /* Read the port's service parameters. */ 8771 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8772 if (rc) { 8773 phba->link_state = LPFC_HBA_ERROR; 8774 rc = -ENOMEM; 8775 goto out_free_mbox; 8776 } 8777 8778 mboxq->vport = vport; 8779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8780 mp = mboxq->ctx_buf; 8781 if (rc == MBX_SUCCESS) { 8782 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8783 rc = 0; 8784 } 8785 8786 /* 8787 * This memory was allocated by the lpfc_read_sparam routine but is 8788 * no longer needed. It is released and ctx_buf NULLed to prevent 8789 * unintended pointer access as the mbox is reused. 8790 */ 8791 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8792 kfree(mp); 8793 mboxq->ctx_buf = NULL; 8794 if (unlikely(rc)) { 8795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8796 "0382 READ_SPARAM command failed " 8797 "status %d, mbxStatus x%x\n", 8798 rc, bf_get(lpfc_mqe_status, mqe)); 8799 phba->link_state = LPFC_HBA_ERROR; 8800 rc = -EIO; 8801 goto out_free_mbox; 8802 } 8803 8804 lpfc_update_vport_wwn(vport); 8805 8806 /* Update the fc_host data structures with new wwn. */ 8807 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8808 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8809 8810 /* Create all the SLI4 queues */ 8811 rc = lpfc_sli4_queue_create(phba); 8812 if (rc) { 8813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8814 "3089 Failed to allocate queues\n"); 8815 rc = -ENODEV; 8816 goto out_free_mbox; 8817 } 8818 /* Set up all the queues to the device */ 8819 rc = lpfc_sli4_queue_setup(phba); 8820 if (unlikely(rc)) { 8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8822 "0381 Error %d during queue setup.\n", rc); 8823 goto out_stop_timers; 8824 } 8825 /* Initialize the driver internal SLI layer lists. */ 8826 lpfc_sli4_setup(phba); 8827 lpfc_sli4_queue_init(phba); 8828 8829 /* update host els xri-sgl sizes and mappings */ 8830 rc = lpfc_sli4_els_sgl_update(phba); 8831 if (unlikely(rc)) { 8832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8833 "1400 Failed to update xri-sgl size and " 8834 "mapping: %d\n", rc); 8835 goto out_destroy_queue; 8836 } 8837 8838 /* register the els sgl pool to the port */ 8839 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8840 phba->sli4_hba.els_xri_cnt); 8841 if (unlikely(rc < 0)) { 8842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8843 "0582 Error %d during els sgl post " 8844 "operation\n", rc); 8845 rc = -ENODEV; 8846 goto out_destroy_queue; 8847 } 8848 phba->sli4_hba.els_xri_cnt = rc; 8849 8850 if (phba->nvmet_support) { 8851 /* update host nvmet xri-sgl sizes and mappings */ 8852 rc = lpfc_sli4_nvmet_sgl_update(phba); 8853 if (unlikely(rc)) { 8854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8855 "6308 Failed to update nvmet-sgl size " 8856 "and mapping: %d\n", rc); 8857 goto out_destroy_queue; 8858 } 8859 8860 /* register the nvmet sgl pool to the port */ 8861 rc = lpfc_sli4_repost_sgl_list( 8862 phba, 8863 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8864 phba->sli4_hba.nvmet_xri_cnt); 8865 if (unlikely(rc < 0)) { 8866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8867 "3117 Error %d during nvmet " 8868 "sgl post\n", rc); 8869 rc = -ENODEV; 8870 goto out_destroy_queue; 8871 } 8872 phba->sli4_hba.nvmet_xri_cnt = rc; 8873 8874 /* We allocate an iocbq for every receive context SGL. 8875 * The additional allocation is for abort and ls handling. 8876 */ 8877 cnt = phba->sli4_hba.nvmet_xri_cnt + 8878 phba->sli4_hba.max_cfg_param.max_xri; 8879 } else { 8880 /* update host common xri-sgl sizes and mappings */ 8881 rc = lpfc_sli4_io_sgl_update(phba); 8882 if (unlikely(rc)) { 8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8884 "6082 Failed to update nvme-sgl size " 8885 "and mapping: %d\n", rc); 8886 goto out_destroy_queue; 8887 } 8888 8889 /* register the allocated common sgl pool to the port */ 8890 rc = lpfc_sli4_repost_io_sgl_list(phba); 8891 if (unlikely(rc)) { 8892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8893 "6116 Error %d during nvme sgl post " 8894 "operation\n", rc); 8895 /* Some NVME buffers were moved to abort nvme list */ 8896 /* A pci function reset will repost them */ 8897 rc = -ENODEV; 8898 goto out_destroy_queue; 8899 } 8900 /* Each lpfc_io_buf job structure has an iocbq element. 8901 * This cnt provides for abort, els, ct and ls requests. 8902 */ 8903 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8904 } 8905 8906 if (!phba->sli.iocbq_lookup) { 8907 /* Initialize and populate the iocb list per host */ 8908 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8909 "2821 initialize iocb list with %d entries\n", 8910 cnt); 8911 rc = lpfc_init_iocb_list(phba, cnt); 8912 if (rc) { 8913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8914 "1413 Failed to init iocb list.\n"); 8915 goto out_destroy_queue; 8916 } 8917 } 8918 8919 if (phba->nvmet_support) 8920 lpfc_nvmet_create_targetport(phba); 8921 8922 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8923 /* Post initial buffers to all RQs created */ 8924 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8925 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8926 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8927 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8928 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8929 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8930 rqbp->buffer_count = 0; 8931 8932 lpfc_post_rq_buffer( 8933 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8934 phba->sli4_hba.nvmet_mrq_data[i], 8935 phba->cfg_nvmet_mrq_post, i); 8936 } 8937 } 8938 8939 /* Post the rpi header region to the device. */ 8940 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8941 if (unlikely(rc)) { 8942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8943 "0393 Error %d during rpi post operation\n", 8944 rc); 8945 rc = -ENODEV; 8946 goto out_free_iocblist; 8947 } 8948 8949 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8950 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8951 /* 8952 * The FC Port needs to register FCFI (index 0) 8953 */ 8954 lpfc_reg_fcfi(phba, mboxq); 8955 mboxq->vport = phba->pport; 8956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8957 if (rc != MBX_SUCCESS) 8958 goto out_unset_queue; 8959 rc = 0; 8960 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8961 &mboxq->u.mqe.un.reg_fcfi); 8962 } else { 8963 /* We are a NVME Target mode with MRQ > 1 */ 8964 8965 /* First register the FCFI */ 8966 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8967 mboxq->vport = phba->pport; 8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8969 if (rc != MBX_SUCCESS) 8970 goto out_unset_queue; 8971 rc = 0; 8972 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8973 &mboxq->u.mqe.un.reg_fcfi_mrq); 8974 8975 /* Next register the MRQs */ 8976 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8977 mboxq->vport = phba->pport; 8978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8979 if (rc != MBX_SUCCESS) 8980 goto out_unset_queue; 8981 rc = 0; 8982 } 8983 /* Check if the port is configured to be disabled */ 8984 lpfc_sli_read_link_ste(phba); 8985 } 8986 8987 /* Don't post more new bufs if repost already recovered 8988 * the nvme sgls. 8989 */ 8990 if (phba->nvmet_support == 0) { 8991 if (phba->sli4_hba.io_xri_cnt == 0) { 8992 len = lpfc_new_io_buf( 8993 phba, phba->sli4_hba.io_xri_max); 8994 if (len == 0) { 8995 rc = -ENOMEM; 8996 goto out_unset_queue; 8997 } 8998 8999 if (phba->cfg_xri_rebalancing) 9000 lpfc_create_multixri_pools(phba); 9001 } 9002 } else { 9003 phba->cfg_xri_rebalancing = 0; 9004 } 9005 9006 /* Allow asynchronous mailbox command to go through */ 9007 spin_lock_irq(&phba->hbalock); 9008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9009 spin_unlock_irq(&phba->hbalock); 9010 9011 /* Post receive buffers to the device */ 9012 lpfc_sli4_rb_setup(phba); 9013 9014 /* Reset HBA FCF states after HBA reset */ 9015 phba->fcf.fcf_flag = 0; 9016 phba->fcf.current_rec.flag = 0; 9017 9018 /* Start the ELS watchdog timer */ 9019 mod_timer(&vport->els_tmofunc, 9020 jiffies + secs_to_jiffies(phba->fc_ratov * 2)); 9021 9022 /* Start heart beat timer */ 9023 mod_timer(&phba->hb_tmofunc, 9024 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 9025 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9026 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9027 phba->last_completion_time = jiffies; 9028 9029 /* start eq_delay heartbeat */ 9030 if (phba->cfg_auto_imax) 9031 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9032 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9033 9034 /* start per phba idle_stat_delay heartbeat */ 9035 lpfc_init_idle_stat_hb(phba); 9036 9037 /* Start error attention (ERATT) polling timer */ 9038 mod_timer(&phba->eratt_poll, 9039 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 9040 9041 /* 9042 * The port is ready, set the host's link state to LINK_DOWN 9043 * in preparation for link interrupts. 9044 */ 9045 spin_lock_irq(&phba->hbalock); 9046 phba->link_state = LPFC_LINK_DOWN; 9047 9048 /* Check if physical ports are trunked */ 9049 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9050 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9051 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9052 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9053 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9054 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9055 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9056 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9057 spin_unlock_irq(&phba->hbalock); 9058 9059 /* Arm the CQs and then EQs on device */ 9060 lpfc_sli4_arm_cqeq_intr(phba); 9061 9062 /* Indicate device interrupt mode */ 9063 phba->sli4_hba.intr_enable = 1; 9064 9065 /* Setup CMF after HBA is initialized */ 9066 lpfc_cmf_setup(phba); 9067 9068 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9069 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9071 "3103 Adapter Link is disabled.\n"); 9072 lpfc_down_link(phba, mboxq); 9073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9074 if (rc != MBX_SUCCESS) { 9075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9076 "3104 Adapter failed to issue " 9077 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9078 goto out_io_buff_free; 9079 } 9080 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9081 /* don't perform init_link on SLI4 FC port loopback test */ 9082 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9083 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9084 if (rc) 9085 goto out_io_buff_free; 9086 } 9087 } 9088 mempool_free(mboxq, phba->mbox_mem_pool); 9089 9090 /* Enable RAS FW log support */ 9091 lpfc_sli4_ras_setup(phba); 9092 9093 set_bit(HBA_SETUP, &phba->hba_flag); 9094 return rc; 9095 9096 out_io_buff_free: 9097 /* Free allocated IO Buffers */ 9098 lpfc_io_free(phba); 9099 out_unset_queue: 9100 /* Unset all the queues set up in this routine when error out */ 9101 lpfc_sli4_queue_unset(phba); 9102 out_free_iocblist: 9103 lpfc_free_iocb_list(phba); 9104 out_destroy_queue: 9105 lpfc_sli4_queue_destroy(phba); 9106 out_stop_timers: 9107 lpfc_stop_hba_timers(phba); 9108 out_free_mbox: 9109 mempool_free(mboxq, phba->mbox_mem_pool); 9110 return rc; 9111 } 9112 9113 /** 9114 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9115 * @t: Context to fetch pointer to hba structure from. 9116 * 9117 * This is the callback function for mailbox timer. The mailbox 9118 * timer is armed when a new mailbox command is issued and the timer 9119 * is deleted when the mailbox complete. The function is called by 9120 * the kernel timer code when a mailbox does not complete within 9121 * expected time. This function wakes up the worker thread to 9122 * process the mailbox timeout and returns. All the processing is 9123 * done by the worker thread function lpfc_mbox_timeout_handler. 9124 **/ 9125 void 9126 lpfc_mbox_timeout(struct timer_list *t) 9127 { 9128 struct lpfc_hba *phba = timer_container_of(phba, t, sli.mbox_tmo); 9129 unsigned long iflag; 9130 uint32_t tmo_posted; 9131 9132 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9133 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9134 if (!tmo_posted) 9135 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9136 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9137 9138 if (!tmo_posted) 9139 lpfc_worker_wake_up(phba); 9140 return; 9141 } 9142 9143 /** 9144 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9145 * are pending 9146 * @phba: Pointer to HBA context object. 9147 * 9148 * This function checks if any mailbox completions are present on the mailbox 9149 * completion queue. 9150 **/ 9151 static bool 9152 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9153 { 9154 9155 uint32_t idx; 9156 struct lpfc_queue *mcq; 9157 struct lpfc_mcqe *mcqe; 9158 bool pending_completions = false; 9159 uint8_t qe_valid; 9160 9161 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9162 return false; 9163 9164 /* Check for completions on mailbox completion queue */ 9165 9166 mcq = phba->sli4_hba.mbx_cq; 9167 idx = mcq->hba_index; 9168 qe_valid = mcq->qe_valid; 9169 while (bf_get_le32(lpfc_cqe_valid, 9170 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9171 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9172 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9173 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9174 pending_completions = true; 9175 break; 9176 } 9177 idx = (idx + 1) % mcq->entry_count; 9178 if (mcq->hba_index == idx) 9179 break; 9180 9181 /* if the index wrapped around, toggle the valid bit */ 9182 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9183 qe_valid = (qe_valid) ? 0 : 1; 9184 } 9185 return pending_completions; 9186 9187 } 9188 9189 /** 9190 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9191 * that were missed. 9192 * @phba: Pointer to HBA context object. 9193 * 9194 * For sli4, it is possible to miss an interrupt. As such mbox completions 9195 * maybe missed causing erroneous mailbox timeouts to occur. This function 9196 * checks to see if mbox completions are on the mailbox completion queue 9197 * and will process all the completions associated with the eq for the 9198 * mailbox completion queue. 9199 **/ 9200 static bool 9201 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9202 { 9203 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9204 uint32_t eqidx; 9205 struct lpfc_queue *fpeq = NULL; 9206 struct lpfc_queue *eq; 9207 bool mbox_pending; 9208 9209 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9210 return false; 9211 9212 /* Find the EQ associated with the mbox CQ */ 9213 if (sli4_hba->hdwq) { 9214 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9215 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9216 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9217 fpeq = eq; 9218 break; 9219 } 9220 } 9221 } 9222 if (!fpeq) 9223 return false; 9224 9225 /* Turn off interrupts from this EQ */ 9226 9227 sli4_hba->sli4_eq_clr_intr(fpeq); 9228 9229 /* Check to see if a mbox completion is pending */ 9230 9231 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9232 9233 /* 9234 * If a mbox completion is pending, process all the events on EQ 9235 * associated with the mbox completion queue (this could include 9236 * mailbox commands, async events, els commands, receive queue data 9237 * and fcp commands) 9238 */ 9239 9240 if (mbox_pending) 9241 /* process and rearm the EQ */ 9242 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9243 LPFC_QUEUE_WORK); 9244 else 9245 /* Always clear and re-arm the EQ */ 9246 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9247 9248 return mbox_pending; 9249 9250 } 9251 9252 /** 9253 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9254 * @phba: Pointer to HBA context object. 9255 * 9256 * This function is called from worker thread when a mailbox command times out. 9257 * The caller is not required to hold any locks. This function will reset the 9258 * HBA and recover all the pending commands. 9259 **/ 9260 void 9261 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9262 { 9263 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9264 MAILBOX_t *mb = NULL; 9265 9266 struct lpfc_sli *psli = &phba->sli; 9267 9268 /* If the mailbox completed, process the completion */ 9269 lpfc_sli4_process_missed_mbox_completions(phba); 9270 9271 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9272 return; 9273 9274 if (pmbox != NULL) 9275 mb = &pmbox->u.mb; 9276 /* Check the pmbox pointer first. There is a race condition 9277 * between the mbox timeout handler getting executed in the 9278 * worklist and the mailbox actually completing. When this 9279 * race condition occurs, the mbox_active will be NULL. 9280 */ 9281 spin_lock_irq(&phba->hbalock); 9282 if (pmbox == NULL) { 9283 lpfc_printf_log(phba, KERN_WARNING, 9284 LOG_MBOX | LOG_SLI, 9285 "0353 Active Mailbox cleared - mailbox timeout " 9286 "exiting\n"); 9287 spin_unlock_irq(&phba->hbalock); 9288 return; 9289 } 9290 9291 /* Mbox cmd <mbxCommand> timeout */ 9292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9293 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9294 mb->mbxCommand, 9295 phba->pport->port_state, 9296 phba->sli.sli_flag, 9297 phba->sli.mbox_active); 9298 spin_unlock_irq(&phba->hbalock); 9299 9300 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9301 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9302 * it to fail all outstanding SCSI IO. 9303 */ 9304 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9305 spin_lock_irq(&phba->pport->work_port_lock); 9306 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9307 spin_unlock_irq(&phba->pport->work_port_lock); 9308 spin_lock_irq(&phba->hbalock); 9309 phba->link_state = LPFC_LINK_UNKNOWN; 9310 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9311 spin_unlock_irq(&phba->hbalock); 9312 9313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9314 "0345 Resetting board due to mailbox timeout\n"); 9315 9316 /* Reset the HBA device */ 9317 lpfc_reset_hba(phba); 9318 } 9319 9320 /** 9321 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9322 * @phba: Pointer to HBA context object. 9323 * @pmbox: Pointer to mailbox object. 9324 * @flag: Flag indicating how the mailbox need to be processed. 9325 * 9326 * This function is called by discovery code and HBA management code 9327 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9328 * function gets the hbalock to protect the data structures. 9329 * The mailbox command can be submitted in polling mode, in which case 9330 * this function will wait in a polling loop for the completion of the 9331 * mailbox. 9332 * If the mailbox is submitted in no_wait mode (not polling) the 9333 * function will submit the command and returns immediately without waiting 9334 * for the mailbox completion. The no_wait is supported only when HBA 9335 * is in SLI2/SLI3 mode - interrupts are enabled. 9336 * The SLI interface allows only one mailbox pending at a time. If the 9337 * mailbox is issued in polling mode and there is already a mailbox 9338 * pending, then the function will return an error. If the mailbox is issued 9339 * in NO_WAIT mode and there is a mailbox pending already, the function 9340 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9341 * The sli layer owns the mailbox object until the completion of mailbox 9342 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9343 * return codes the caller owns the mailbox command after the return of 9344 * the function. 9345 **/ 9346 static int 9347 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9348 uint32_t flag) 9349 { 9350 MAILBOX_t *mbx; 9351 struct lpfc_sli *psli = &phba->sli; 9352 uint32_t status, evtctr; 9353 uint32_t ha_copy, hc_copy; 9354 int i; 9355 unsigned long timeout; 9356 unsigned long drvr_flag = 0; 9357 uint32_t word0, ldata; 9358 void __iomem *to_slim; 9359 int processing_queue = 0; 9360 9361 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9362 if (!pmbox) { 9363 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9364 /* processing mbox queue from intr_handler */ 9365 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9366 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9367 return MBX_SUCCESS; 9368 } 9369 processing_queue = 1; 9370 pmbox = lpfc_mbox_get(phba); 9371 if (!pmbox) { 9372 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9373 return MBX_SUCCESS; 9374 } 9375 } 9376 9377 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9378 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9379 if(!pmbox->vport) { 9380 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9381 lpfc_printf_log(phba, KERN_ERR, 9382 LOG_MBOX | LOG_VPORT, 9383 "1806 Mbox x%x failed. No vport\n", 9384 pmbox->u.mb.mbxCommand); 9385 dump_stack(); 9386 goto out_not_finished; 9387 } 9388 } 9389 9390 /* If the PCI channel is in offline state, do not post mbox. */ 9391 if (unlikely(pci_channel_offline(phba->pcidev))) { 9392 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9393 goto out_not_finished; 9394 } 9395 9396 /* If HBA has a deferred error attention, fail the iocb. */ 9397 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9398 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9399 goto out_not_finished; 9400 } 9401 9402 psli = &phba->sli; 9403 9404 mbx = &pmbox->u.mb; 9405 status = MBX_SUCCESS; 9406 9407 if (phba->link_state == LPFC_HBA_ERROR) { 9408 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9409 9410 /* Mbox command <mbxCommand> cannot issue */ 9411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9412 "(%d):0311 Mailbox command x%x cannot " 9413 "issue Data: x%x x%x\n", 9414 pmbox->vport ? pmbox->vport->vpi : 0, 9415 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9416 goto out_not_finished; 9417 } 9418 9419 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9420 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9421 !(hc_copy & HC_MBINT_ENA)) { 9422 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9423 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9424 "(%d):2528 Mailbox command x%x cannot " 9425 "issue Data: x%x x%x\n", 9426 pmbox->vport ? pmbox->vport->vpi : 0, 9427 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9428 goto out_not_finished; 9429 } 9430 } 9431 9432 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9433 /* Polling for a mbox command when another one is already active 9434 * is not allowed in SLI. Also, the driver must have established 9435 * SLI2 mode to queue and process multiple mbox commands. 9436 */ 9437 9438 if (flag & MBX_POLL) { 9439 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9440 9441 /* Mbox command <mbxCommand> cannot issue */ 9442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9443 "(%d):2529 Mailbox command x%x " 9444 "cannot issue Data: x%x x%x\n", 9445 pmbox->vport ? pmbox->vport->vpi : 0, 9446 pmbox->u.mb.mbxCommand, 9447 psli->sli_flag, flag); 9448 goto out_not_finished; 9449 } 9450 9451 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9452 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9453 /* Mbox command <mbxCommand> cannot issue */ 9454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9455 "(%d):2530 Mailbox command x%x " 9456 "cannot issue Data: x%x x%x\n", 9457 pmbox->vport ? pmbox->vport->vpi : 0, 9458 pmbox->u.mb.mbxCommand, 9459 psli->sli_flag, flag); 9460 goto out_not_finished; 9461 } 9462 9463 /* Another mailbox command is still being processed, queue this 9464 * command to be processed later. 9465 */ 9466 lpfc_mbox_put(phba, pmbox); 9467 9468 /* Mbox cmd issue - BUSY */ 9469 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9470 "(%d):0308 Mbox cmd issue - BUSY Data: " 9471 "x%x x%x x%x x%x\n", 9472 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9473 mbx->mbxCommand, 9474 phba->pport ? phba->pport->port_state : 0xff, 9475 psli->sli_flag, flag); 9476 9477 psli->slistat.mbox_busy++; 9478 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9479 9480 if (pmbox->vport) { 9481 lpfc_debugfs_disc_trc(pmbox->vport, 9482 LPFC_DISC_TRC_MBOX_VPORT, 9483 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9484 (uint32_t)mbx->mbxCommand, 9485 mbx->un.varWords[0], mbx->un.varWords[1]); 9486 } 9487 else { 9488 lpfc_debugfs_disc_trc(phba->pport, 9489 LPFC_DISC_TRC_MBOX, 9490 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9491 (uint32_t)mbx->mbxCommand, 9492 mbx->un.varWords[0], mbx->un.varWords[1]); 9493 } 9494 9495 return MBX_BUSY; 9496 } 9497 9498 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9499 9500 /* If we are not polling, we MUST be in SLI2 mode */ 9501 if (flag != MBX_POLL) { 9502 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9503 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9504 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9505 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9506 /* Mbox command <mbxCommand> cannot issue */ 9507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9508 "(%d):2531 Mailbox command x%x " 9509 "cannot issue Data: x%x x%x\n", 9510 pmbox->vport ? pmbox->vport->vpi : 0, 9511 pmbox->u.mb.mbxCommand, 9512 psli->sli_flag, flag); 9513 goto out_not_finished; 9514 } 9515 /* timeout active mbox command */ 9516 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)); 9517 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9518 } 9519 9520 /* Mailbox cmd <cmd> issue */ 9521 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9522 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9523 "x%x\n", 9524 pmbox->vport ? pmbox->vport->vpi : 0, 9525 mbx->mbxCommand, 9526 phba->pport ? phba->pport->port_state : 0xff, 9527 psli->sli_flag, flag); 9528 9529 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9530 if (pmbox->vport) { 9531 lpfc_debugfs_disc_trc(pmbox->vport, 9532 LPFC_DISC_TRC_MBOX_VPORT, 9533 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9534 (uint32_t)mbx->mbxCommand, 9535 mbx->un.varWords[0], mbx->un.varWords[1]); 9536 } 9537 else { 9538 lpfc_debugfs_disc_trc(phba->pport, 9539 LPFC_DISC_TRC_MBOX, 9540 "MBOX Send: cmd:x%x mb:x%x x%x", 9541 (uint32_t)mbx->mbxCommand, 9542 mbx->un.varWords[0], mbx->un.varWords[1]); 9543 } 9544 } 9545 9546 psli->slistat.mbox_cmd++; 9547 evtctr = psli->slistat.mbox_event; 9548 9549 /* next set own bit for the adapter and copy over command word */ 9550 mbx->mbxOwner = OWN_CHIP; 9551 9552 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9553 /* Populate mbox extension offset word. */ 9554 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9555 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9556 = (uint8_t *)phba->mbox_ext 9557 - (uint8_t *)phba->mbox; 9558 } 9559 9560 /* Copy the mailbox extension data */ 9561 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9562 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9563 (uint8_t *)phba->mbox_ext, 9564 pmbox->in_ext_byte_len); 9565 } 9566 /* Copy command data to host SLIM area */ 9567 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9568 } else { 9569 /* Populate mbox extension offset word. */ 9570 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9571 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9572 = MAILBOX_HBA_EXT_OFFSET; 9573 9574 /* Copy the mailbox extension data */ 9575 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9576 lpfc_memcpy_to_slim(phba->MBslimaddr + 9577 MAILBOX_HBA_EXT_OFFSET, 9578 pmbox->ext_buf, pmbox->in_ext_byte_len); 9579 9580 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9581 /* copy command data into host mbox for cmpl */ 9582 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9583 MAILBOX_CMD_SIZE); 9584 9585 /* First copy mbox command data to HBA SLIM, skip past first 9586 word */ 9587 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9588 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9589 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9590 9591 /* Next copy over first word, with mbxOwner set */ 9592 ldata = *((uint32_t *)mbx); 9593 to_slim = phba->MBslimaddr; 9594 writel(ldata, to_slim); 9595 readl(to_slim); /* flush */ 9596 9597 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9598 /* switch over to host mailbox */ 9599 psli->sli_flag |= LPFC_SLI_ACTIVE; 9600 } 9601 9602 wmb(); 9603 9604 switch (flag) { 9605 case MBX_NOWAIT: 9606 /* Set up reference to mailbox command */ 9607 psli->mbox_active = pmbox; 9608 /* Interrupt board to do it */ 9609 writel(CA_MBATT, phba->CAregaddr); 9610 readl(phba->CAregaddr); /* flush */ 9611 /* Don't wait for it to finish, just return */ 9612 break; 9613 9614 case MBX_POLL: 9615 /* Set up null reference to mailbox command */ 9616 psli->mbox_active = NULL; 9617 /* Interrupt board to do it */ 9618 writel(CA_MBATT, phba->CAregaddr); 9619 readl(phba->CAregaddr); /* flush */ 9620 9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9622 /* First read mbox status word */ 9623 word0 = *((uint32_t *)phba->mbox); 9624 word0 = le32_to_cpu(word0); 9625 } else { 9626 /* First read mbox status word */ 9627 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9628 spin_unlock_irqrestore(&phba->hbalock, 9629 drvr_flag); 9630 goto out_not_finished; 9631 } 9632 } 9633 9634 /* Read the HBA Host Attention Register */ 9635 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9636 spin_unlock_irqrestore(&phba->hbalock, 9637 drvr_flag); 9638 goto out_not_finished; 9639 } 9640 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies; 9641 i = 0; 9642 /* Wait for command to complete */ 9643 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9644 (!(ha_copy & HA_MBATT) && 9645 (phba->link_state > LPFC_WARM_START))) { 9646 if (time_after(jiffies, timeout)) { 9647 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9648 spin_unlock_irqrestore(&phba->hbalock, 9649 drvr_flag); 9650 goto out_not_finished; 9651 } 9652 9653 /* Check if we took a mbox interrupt while we were 9654 polling */ 9655 if (((word0 & OWN_CHIP) != OWN_CHIP) 9656 && (evtctr != psli->slistat.mbox_event)) 9657 break; 9658 9659 if (i++ > 10) { 9660 spin_unlock_irqrestore(&phba->hbalock, 9661 drvr_flag); 9662 msleep(1); 9663 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9664 } 9665 9666 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9667 /* First copy command data */ 9668 word0 = *((uint32_t *)phba->mbox); 9669 word0 = le32_to_cpu(word0); 9670 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9671 MAILBOX_t *slimmb; 9672 uint32_t slimword0; 9673 /* Check real SLIM for any errors */ 9674 slimword0 = readl(phba->MBslimaddr); 9675 slimmb = (MAILBOX_t *) & slimword0; 9676 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9677 && slimmb->mbxStatus) { 9678 psli->sli_flag &= 9679 ~LPFC_SLI_ACTIVE; 9680 word0 = slimword0; 9681 } 9682 } 9683 } else { 9684 /* First copy command data */ 9685 word0 = readl(phba->MBslimaddr); 9686 } 9687 /* Read the HBA Host Attention Register */ 9688 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9689 spin_unlock_irqrestore(&phba->hbalock, 9690 drvr_flag); 9691 goto out_not_finished; 9692 } 9693 } 9694 9695 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9696 /* copy results back to user */ 9697 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9698 MAILBOX_CMD_SIZE); 9699 /* Copy the mailbox extension data */ 9700 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9701 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9702 pmbox->ext_buf, 9703 pmbox->out_ext_byte_len); 9704 } 9705 } else { 9706 /* First copy command data */ 9707 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9708 MAILBOX_CMD_SIZE); 9709 /* Copy the mailbox extension data */ 9710 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9711 lpfc_memcpy_from_slim( 9712 pmbox->ext_buf, 9713 phba->MBslimaddr + 9714 MAILBOX_HBA_EXT_OFFSET, 9715 pmbox->out_ext_byte_len); 9716 } 9717 } 9718 9719 writel(HA_MBATT, phba->HAregaddr); 9720 readl(phba->HAregaddr); /* flush */ 9721 9722 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9723 status = mbx->mbxStatus; 9724 } 9725 9726 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9727 return status; 9728 9729 out_not_finished: 9730 if (processing_queue) { 9731 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9732 lpfc_mbox_cmpl_put(phba, pmbox); 9733 } 9734 return MBX_NOT_FINISHED; 9735 } 9736 9737 /** 9738 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9739 * @phba: Pointer to HBA context object. 9740 * 9741 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9742 * the driver internal pending mailbox queue. It will then try to wait out the 9743 * possible outstanding mailbox command before return. 9744 * 9745 * Returns: 9746 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9747 * the outstanding mailbox command timed out. 9748 **/ 9749 static int 9750 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9751 { 9752 struct lpfc_sli *psli = &phba->sli; 9753 LPFC_MBOXQ_t *mboxq; 9754 int rc = 0; 9755 unsigned long timeout = 0; 9756 u32 sli_flag; 9757 u8 cmd, subsys, opcode; 9758 9759 /* Mark the asynchronous mailbox command posting as blocked */ 9760 spin_lock_irq(&phba->hbalock); 9761 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9762 /* Determine how long we might wait for the active mailbox 9763 * command to be gracefully completed by firmware. 9764 */ 9765 if (phba->sli.mbox_active) 9766 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 9767 phba->sli.mbox_active)) + jiffies; 9768 spin_unlock_irq(&phba->hbalock); 9769 9770 /* Make sure the mailbox is really active */ 9771 if (timeout) 9772 lpfc_sli4_process_missed_mbox_completions(phba); 9773 9774 /* Wait for the outstanding mailbox command to complete */ 9775 while (phba->sli.mbox_active) { 9776 /* Check active mailbox complete status every 2ms */ 9777 msleep(2); 9778 if (time_after(jiffies, timeout)) { 9779 /* Timeout, mark the outstanding cmd not complete */ 9780 9781 /* Sanity check sli.mbox_active has not completed or 9782 * cancelled from another context during last 2ms sleep, 9783 * so take hbalock to be sure before logging. 9784 */ 9785 spin_lock_irq(&phba->hbalock); 9786 if (phba->sli.mbox_active) { 9787 mboxq = phba->sli.mbox_active; 9788 cmd = mboxq->u.mb.mbxCommand; 9789 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9790 mboxq); 9791 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9792 mboxq); 9793 sli_flag = psli->sli_flag; 9794 spin_unlock_irq(&phba->hbalock); 9795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9796 "2352 Mailbox command x%x " 9797 "(x%x/x%x) sli_flag x%x could " 9798 "not complete\n", 9799 cmd, subsys, opcode, 9800 sli_flag); 9801 } else { 9802 spin_unlock_irq(&phba->hbalock); 9803 } 9804 9805 rc = 1; 9806 break; 9807 } 9808 } 9809 9810 /* Can not cleanly block async mailbox command, fails it */ 9811 if (rc) { 9812 spin_lock_irq(&phba->hbalock); 9813 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9814 spin_unlock_irq(&phba->hbalock); 9815 } 9816 return rc; 9817 } 9818 9819 /** 9820 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9821 * @phba: Pointer to HBA context object. 9822 * 9823 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9824 * commands from the driver internal pending mailbox queue. It makes sure 9825 * that there is no outstanding mailbox command before resuming posting 9826 * asynchronous mailbox commands. If, for any reason, there is outstanding 9827 * mailbox command, it will try to wait it out before resuming asynchronous 9828 * mailbox command posting. 9829 **/ 9830 static void 9831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9832 { 9833 struct lpfc_sli *psli = &phba->sli; 9834 9835 spin_lock_irq(&phba->hbalock); 9836 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9837 /* Asynchronous mailbox posting is not blocked, do nothing */ 9838 spin_unlock_irq(&phba->hbalock); 9839 return; 9840 } 9841 9842 /* Outstanding synchronous mailbox command is guaranteed to be done, 9843 * successful or timeout, after timing-out the outstanding mailbox 9844 * command shall always be removed, so just unblock posting async 9845 * mailbox command and resume 9846 */ 9847 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9848 spin_unlock_irq(&phba->hbalock); 9849 9850 /* wake up worker thread to post asynchronous mailbox command */ 9851 lpfc_worker_wake_up(phba); 9852 } 9853 9854 /** 9855 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9856 * @phba: Pointer to HBA context object. 9857 * @mboxq: Pointer to mailbox object. 9858 * 9859 * The function waits for the bootstrap mailbox register ready bit from 9860 * port for twice the regular mailbox command timeout value. 9861 * 9862 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9863 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9864 * is in an unrecoverable state. 9865 **/ 9866 static int 9867 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9868 { 9869 uint32_t db_ready; 9870 unsigned long timeout; 9871 struct lpfc_register bmbx_reg; 9872 struct lpfc_register portstat_reg = {-1}; 9873 9874 /* Sanity check - there is no point to wait if the port is in an 9875 * unrecoverable state. 9876 */ 9877 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9878 LPFC_SLI_INTF_IF_TYPE_2) { 9879 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9880 &portstat_reg.word0) || 9881 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9883 "3858 Skipping bmbx ready because " 9884 "Port Status x%x\n", 9885 portstat_reg.word0); 9886 return MBXERR_ERROR; 9887 } 9888 } 9889 9890 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies; 9891 9892 do { 9893 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9894 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9895 if (!db_ready) 9896 mdelay(2); 9897 9898 if (time_after(jiffies, timeout)) 9899 return MBXERR_ERROR; 9900 } while (!db_ready); 9901 9902 return 0; 9903 } 9904 9905 /** 9906 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9907 * @phba: Pointer to HBA context object. 9908 * @mboxq: Pointer to mailbox object. 9909 * 9910 * The function posts a mailbox to the port. The mailbox is expected 9911 * to be comletely filled in and ready for the port to operate on it. 9912 * This routine executes a synchronous completion operation on the 9913 * mailbox by polling for its completion. 9914 * 9915 * The caller must not be holding any locks when calling this routine. 9916 * 9917 * Returns: 9918 * MBX_SUCCESS - mailbox posted successfully 9919 * Any of the MBX error values. 9920 **/ 9921 static int 9922 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9923 { 9924 int rc = MBX_SUCCESS; 9925 unsigned long iflag; 9926 uint32_t mcqe_status; 9927 uint32_t mbx_cmnd; 9928 struct lpfc_sli *psli = &phba->sli; 9929 struct lpfc_mqe *mb = &mboxq->u.mqe; 9930 struct lpfc_bmbx_create *mbox_rgn; 9931 struct dma_address *dma_address; 9932 9933 /* 9934 * Only one mailbox can be active to the bootstrap mailbox region 9935 * at a time and there is no queueing provided. 9936 */ 9937 spin_lock_irqsave(&phba->hbalock, iflag); 9938 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9939 spin_unlock_irqrestore(&phba->hbalock, iflag); 9940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9941 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9942 "cannot issue Data: x%x x%x\n", 9943 mboxq->vport ? mboxq->vport->vpi : 0, 9944 mboxq->u.mb.mbxCommand, 9945 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9946 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9947 psli->sli_flag, MBX_POLL); 9948 return MBXERR_ERROR; 9949 } 9950 /* The server grabs the token and owns it until release */ 9951 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9952 phba->sli.mbox_active = mboxq; 9953 spin_unlock_irqrestore(&phba->hbalock, iflag); 9954 9955 /* wait for bootstrap mbox register for readyness */ 9956 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9957 if (rc) 9958 goto exit; 9959 /* 9960 * Initialize the bootstrap memory region to avoid stale data areas 9961 * in the mailbox post. Then copy the caller's mailbox contents to 9962 * the bmbx mailbox region. 9963 */ 9964 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9965 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9966 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9967 sizeof(struct lpfc_mqe)); 9968 9969 /* Post the high mailbox dma address to the port and wait for ready. */ 9970 dma_address = &phba->sli4_hba.bmbx.dma_address; 9971 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9972 9973 /* wait for bootstrap mbox register for hi-address write done */ 9974 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9975 if (rc) 9976 goto exit; 9977 9978 /* Post the low mailbox dma address to the port. */ 9979 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9980 9981 /* wait for bootstrap mbox register for low address write done */ 9982 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9983 if (rc) 9984 goto exit; 9985 9986 /* 9987 * Read the CQ to ensure the mailbox has completed. 9988 * If so, update the mailbox status so that the upper layers 9989 * can complete the request normally. 9990 */ 9991 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9992 sizeof(struct lpfc_mqe)); 9993 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9994 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9995 sizeof(struct lpfc_mcqe)); 9996 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9997 /* 9998 * When the CQE status indicates a failure and the mailbox status 9999 * indicates success then copy the CQE status into the mailbox status 10000 * (and prefix it with x4000). 10001 */ 10002 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10003 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10004 bf_set(lpfc_mqe_status, mb, 10005 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10006 rc = MBXERR_ERROR; 10007 } else 10008 lpfc_sli4_swap_str(phba, mboxq); 10009 10010 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10011 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10012 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10013 " x%x x%x CQ: x%x x%x x%x x%x\n", 10014 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10015 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10016 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10017 bf_get(lpfc_mqe_status, mb), 10018 mb->un.mb_words[0], mb->un.mb_words[1], 10019 mb->un.mb_words[2], mb->un.mb_words[3], 10020 mb->un.mb_words[4], mb->un.mb_words[5], 10021 mb->un.mb_words[6], mb->un.mb_words[7], 10022 mb->un.mb_words[8], mb->un.mb_words[9], 10023 mb->un.mb_words[10], mb->un.mb_words[11], 10024 mb->un.mb_words[12], mboxq->mcqe.word0, 10025 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10026 mboxq->mcqe.trailer); 10027 exit: 10028 /* We are holding the token, no needed for lock when release */ 10029 spin_lock_irqsave(&phba->hbalock, iflag); 10030 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10031 phba->sli.mbox_active = NULL; 10032 spin_unlock_irqrestore(&phba->hbalock, iflag); 10033 return rc; 10034 } 10035 10036 /** 10037 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10038 * @phba: Pointer to HBA context object. 10039 * @mboxq: Pointer to mailbox object. 10040 * @flag: Flag indicating how the mailbox need to be processed. 10041 * 10042 * This function is called by discovery code and HBA management code to submit 10043 * a mailbox command to firmware with SLI-4 interface spec. 10044 * 10045 * Return codes the caller owns the mailbox command after the return of the 10046 * function. 10047 **/ 10048 static int 10049 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10050 uint32_t flag) 10051 { 10052 struct lpfc_sli *psli = &phba->sli; 10053 unsigned long iflags; 10054 int rc; 10055 10056 /* dump from issue mailbox command if setup */ 10057 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10058 10059 rc = lpfc_mbox_dev_check(phba); 10060 if (unlikely(rc)) { 10061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10062 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10063 "cannot issue Data: x%x x%x\n", 10064 mboxq->vport ? mboxq->vport->vpi : 0, 10065 mboxq->u.mb.mbxCommand, 10066 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10067 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10068 psli->sli_flag, flag); 10069 goto out_not_finished; 10070 } 10071 10072 /* Detect polling mode and jump to a handler */ 10073 if (!phba->sli4_hba.intr_enable) { 10074 if (flag == MBX_POLL) 10075 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10076 else 10077 rc = -EIO; 10078 if (rc != MBX_SUCCESS) 10079 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10080 "(%d):2541 Mailbox command x%x " 10081 "(x%x/x%x) failure: " 10082 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10083 "Data: x%x x%x\n", 10084 mboxq->vport ? mboxq->vport->vpi : 0, 10085 mboxq->u.mb.mbxCommand, 10086 lpfc_sli_config_mbox_subsys_get(phba, 10087 mboxq), 10088 lpfc_sli_config_mbox_opcode_get(phba, 10089 mboxq), 10090 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10091 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10092 bf_get(lpfc_mcqe_ext_status, 10093 &mboxq->mcqe), 10094 psli->sli_flag, flag); 10095 return rc; 10096 } else if (flag == MBX_POLL) { 10097 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10098 "(%d):2542 Try to issue mailbox command " 10099 "x%x (x%x/x%x) synchronously ahead of async " 10100 "mailbox command queue: x%x x%x\n", 10101 mboxq->vport ? mboxq->vport->vpi : 0, 10102 mboxq->u.mb.mbxCommand, 10103 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10104 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10105 psli->sli_flag, flag); 10106 /* Try to block the asynchronous mailbox posting */ 10107 rc = lpfc_sli4_async_mbox_block(phba); 10108 if (!rc) { 10109 /* Successfully blocked, now issue sync mbox cmd */ 10110 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10111 if (rc != MBX_SUCCESS) 10112 lpfc_printf_log(phba, KERN_WARNING, 10113 LOG_MBOX | LOG_SLI, 10114 "(%d):2597 Sync Mailbox command " 10115 "x%x (x%x/x%x) failure: " 10116 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10117 "Data: x%x x%x\n", 10118 mboxq->vport ? mboxq->vport->vpi : 0, 10119 mboxq->u.mb.mbxCommand, 10120 lpfc_sli_config_mbox_subsys_get(phba, 10121 mboxq), 10122 lpfc_sli_config_mbox_opcode_get(phba, 10123 mboxq), 10124 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10125 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10126 bf_get(lpfc_mcqe_ext_status, 10127 &mboxq->mcqe), 10128 psli->sli_flag, flag); 10129 /* Unblock the async mailbox posting afterward */ 10130 lpfc_sli4_async_mbox_unblock(phba); 10131 } 10132 return rc; 10133 } 10134 10135 /* Now, interrupt mode asynchronous mailbox command */ 10136 rc = lpfc_mbox_cmd_check(phba, mboxq); 10137 if (rc) { 10138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10139 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10140 "cannot issue Data: x%x x%x\n", 10141 mboxq->vport ? mboxq->vport->vpi : 0, 10142 mboxq->u.mb.mbxCommand, 10143 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10144 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10145 psli->sli_flag, flag); 10146 goto out_not_finished; 10147 } 10148 10149 /* Put the mailbox command to the driver internal FIFO */ 10150 psli->slistat.mbox_busy++; 10151 spin_lock_irqsave(&phba->hbalock, iflags); 10152 lpfc_mbox_put(phba, mboxq); 10153 spin_unlock_irqrestore(&phba->hbalock, iflags); 10154 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10155 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10156 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10157 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10158 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10159 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10160 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10161 mboxq->u.mb.un.varUnregLogin.rpi, 10162 phba->pport->port_state, 10163 psli->sli_flag, MBX_NOWAIT); 10164 /* Wake up worker thread to transport mailbox command from head */ 10165 lpfc_worker_wake_up(phba); 10166 10167 return MBX_BUSY; 10168 10169 out_not_finished: 10170 return MBX_NOT_FINISHED; 10171 } 10172 10173 /** 10174 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10175 * @phba: Pointer to HBA context object. 10176 * 10177 * This function is called by worker thread to send a mailbox command to 10178 * SLI4 HBA firmware. 10179 * 10180 **/ 10181 int 10182 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10183 { 10184 struct lpfc_sli *psli = &phba->sli; 10185 LPFC_MBOXQ_t *mboxq; 10186 int rc = MBX_SUCCESS; 10187 unsigned long iflags; 10188 struct lpfc_mqe *mqe; 10189 uint32_t mbx_cmnd; 10190 10191 /* Check interrupt mode before post async mailbox command */ 10192 if (unlikely(!phba->sli4_hba.intr_enable)) 10193 return MBX_NOT_FINISHED; 10194 10195 /* Check for mailbox command service token */ 10196 spin_lock_irqsave(&phba->hbalock, iflags); 10197 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10198 spin_unlock_irqrestore(&phba->hbalock, iflags); 10199 return MBX_NOT_FINISHED; 10200 } 10201 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10202 spin_unlock_irqrestore(&phba->hbalock, iflags); 10203 return MBX_NOT_FINISHED; 10204 } 10205 if (unlikely(phba->sli.mbox_active)) { 10206 spin_unlock_irqrestore(&phba->hbalock, iflags); 10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10208 "0384 There is pending active mailbox cmd\n"); 10209 return MBX_NOT_FINISHED; 10210 } 10211 /* Take the mailbox command service token */ 10212 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10213 10214 /* Get the next mailbox command from head of queue */ 10215 mboxq = lpfc_mbox_get(phba); 10216 10217 /* If no more mailbox command waiting for post, we're done */ 10218 if (!mboxq) { 10219 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10220 spin_unlock_irqrestore(&phba->hbalock, iflags); 10221 return MBX_SUCCESS; 10222 } 10223 phba->sli.mbox_active = mboxq; 10224 spin_unlock_irqrestore(&phba->hbalock, iflags); 10225 10226 /* Check device readiness for posting mailbox command */ 10227 rc = lpfc_mbox_dev_check(phba); 10228 if (unlikely(rc)) 10229 /* Driver clean routine will clean up pending mailbox */ 10230 goto out_not_finished; 10231 10232 /* Prepare the mbox command to be posted */ 10233 mqe = &mboxq->u.mqe; 10234 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10235 10236 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10237 mod_timer(&psli->mbox_tmo, (jiffies + 10238 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)))); 10239 10240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10241 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10242 "x%x x%x\n", 10243 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10244 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10245 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10246 phba->pport->port_state, psli->sli_flag); 10247 10248 if (mbx_cmnd != MBX_HEARTBEAT) { 10249 if (mboxq->vport) { 10250 lpfc_debugfs_disc_trc(mboxq->vport, 10251 LPFC_DISC_TRC_MBOX_VPORT, 10252 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10253 mbx_cmnd, mqe->un.mb_words[0], 10254 mqe->un.mb_words[1]); 10255 } else { 10256 lpfc_debugfs_disc_trc(phba->pport, 10257 LPFC_DISC_TRC_MBOX, 10258 "MBOX Send: cmd:x%x mb:x%x x%x", 10259 mbx_cmnd, mqe->un.mb_words[0], 10260 mqe->un.mb_words[1]); 10261 } 10262 } 10263 psli->slistat.mbox_cmd++; 10264 10265 /* Post the mailbox command to the port */ 10266 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10267 if (rc != MBX_SUCCESS) { 10268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10269 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10270 "cannot issue Data: x%x x%x\n", 10271 mboxq->vport ? mboxq->vport->vpi : 0, 10272 mboxq->u.mb.mbxCommand, 10273 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10274 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10275 psli->sli_flag, MBX_NOWAIT); 10276 goto out_not_finished; 10277 } 10278 10279 return rc; 10280 10281 out_not_finished: 10282 spin_lock_irqsave(&phba->hbalock, iflags); 10283 if (phba->sli.mbox_active) { 10284 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10285 __lpfc_mbox_cmpl_put(phba, mboxq); 10286 /* Release the token */ 10287 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10288 phba->sli.mbox_active = NULL; 10289 } 10290 spin_unlock_irqrestore(&phba->hbalock, iflags); 10291 10292 return MBX_NOT_FINISHED; 10293 } 10294 10295 /** 10296 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10297 * @phba: Pointer to HBA context object. 10298 * @pmbox: Pointer to mailbox object. 10299 * @flag: Flag indicating how the mailbox need to be processed. 10300 * 10301 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10302 * the API jump table function pointer from the lpfc_hba struct. 10303 * 10304 * Return codes the caller owns the mailbox command after the return of the 10305 * function. 10306 **/ 10307 int 10308 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10309 { 10310 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10311 } 10312 10313 /** 10314 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10315 * @phba: The hba struct for which this call is being executed. 10316 * @dev_grp: The HBA PCI-Device group number. 10317 * 10318 * This routine sets up the mbox interface API function jump table in @phba 10319 * struct. 10320 * Returns: 0 - success, -ENODEV - failure. 10321 **/ 10322 int 10323 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10324 { 10325 10326 switch (dev_grp) { 10327 case LPFC_PCI_DEV_LP: 10328 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10329 phba->lpfc_sli_handle_slow_ring_event = 10330 lpfc_sli_handle_slow_ring_event_s3; 10331 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10332 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10333 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10334 break; 10335 case LPFC_PCI_DEV_OC: 10336 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10337 phba->lpfc_sli_handle_slow_ring_event = 10338 lpfc_sli_handle_slow_ring_event_s4; 10339 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10340 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10341 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10342 break; 10343 default: 10344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10345 "1420 Invalid HBA PCI-device group: 0x%x\n", 10346 dev_grp); 10347 return -ENODEV; 10348 } 10349 return 0; 10350 } 10351 10352 /** 10353 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10354 * @phba: Pointer to HBA context object. 10355 * @pring: Pointer to driver SLI ring object. 10356 * @piocb: Pointer to address of newly added command iocb. 10357 * 10358 * This function is called with hbalock held for SLI3 ports or 10359 * the ring lock held for SLI4 ports to add a command 10360 * iocb to the txq when SLI layer cannot submit the command iocb 10361 * to the ring. 10362 **/ 10363 void 10364 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10365 struct lpfc_iocbq *piocb) 10366 { 10367 if (phba->sli_rev == LPFC_SLI_REV4) 10368 lockdep_assert_held(&pring->ring_lock); 10369 else 10370 lockdep_assert_held(&phba->hbalock); 10371 /* Insert the caller's iocb in the txq tail for later processing. */ 10372 list_add_tail(&piocb->list, &pring->txq); 10373 } 10374 10375 /** 10376 * lpfc_sli_next_iocb - Get the next iocb in the txq 10377 * @phba: Pointer to HBA context object. 10378 * @pring: Pointer to driver SLI ring object. 10379 * @piocb: Pointer to address of newly added command iocb. 10380 * 10381 * This function is called with hbalock held before a new 10382 * iocb is submitted to the firmware. This function checks 10383 * txq to flush the iocbs in txq to Firmware before 10384 * submitting new iocbs to the Firmware. 10385 * If there are iocbs in the txq which need to be submitted 10386 * to firmware, lpfc_sli_next_iocb returns the first element 10387 * of the txq after dequeuing it from txq. 10388 * If there is no iocb in the txq then the function will return 10389 * *piocb and *piocb is set to NULL. Caller needs to check 10390 * *piocb to find if there are more commands in the txq. 10391 **/ 10392 static struct lpfc_iocbq * 10393 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10394 struct lpfc_iocbq **piocb) 10395 { 10396 struct lpfc_iocbq * nextiocb; 10397 10398 lockdep_assert_held(&phba->hbalock); 10399 10400 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10401 if (!nextiocb) { 10402 nextiocb = *piocb; 10403 *piocb = NULL; 10404 } 10405 10406 return nextiocb; 10407 } 10408 10409 /** 10410 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10411 * @phba: Pointer to HBA context object. 10412 * @ring_number: SLI ring number to issue iocb on. 10413 * @piocb: Pointer to command iocb. 10414 * @flag: Flag indicating if this command can be put into txq. 10415 * 10416 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10417 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10418 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10419 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10420 * this function allows only iocbs for posting buffers. This function finds 10421 * next available slot in the command ring and posts the command to the 10422 * available slot and writes the port attention register to request HBA start 10423 * processing new iocb. If there is no slot available in the ring and 10424 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10425 * the function returns IOCB_BUSY. 10426 * 10427 * This function is called with hbalock held. The function will return success 10428 * after it successfully submit the iocb to firmware or after adding to the 10429 * txq. 10430 **/ 10431 static int 10432 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10433 struct lpfc_iocbq *piocb, uint32_t flag) 10434 { 10435 struct lpfc_iocbq *nextiocb; 10436 IOCB_t *iocb; 10437 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10438 10439 lockdep_assert_held(&phba->hbalock); 10440 10441 if (piocb->cmd_cmpl && (!piocb->vport) && 10442 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10443 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10445 "1807 IOCB x%x failed. No vport\n", 10446 piocb->iocb.ulpCommand); 10447 dump_stack(); 10448 return IOCB_ERROR; 10449 } 10450 10451 10452 /* If the PCI channel is in offline state, do not post iocbs. */ 10453 if (unlikely(pci_channel_offline(phba->pcidev))) 10454 return IOCB_ERROR; 10455 10456 /* If HBA has a deferred error attention, fail the iocb. */ 10457 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10458 return IOCB_ERROR; 10459 10460 /* 10461 * We should never get an IOCB if we are in a < LINK_DOWN state 10462 */ 10463 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10464 return IOCB_ERROR; 10465 10466 /* 10467 * Check to see if we are blocking IOCB processing because of a 10468 * outstanding event. 10469 */ 10470 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10471 goto iocb_busy; 10472 10473 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10474 /* 10475 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10476 * can be issued if the link is not up. 10477 */ 10478 switch (piocb->iocb.ulpCommand) { 10479 case CMD_QUE_RING_BUF_CN: 10480 case CMD_QUE_RING_BUF64_CN: 10481 /* 10482 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10483 * completion, cmd_cmpl MUST be 0. 10484 */ 10485 if (piocb->cmd_cmpl) 10486 piocb->cmd_cmpl = NULL; 10487 fallthrough; 10488 case CMD_CREATE_XRI_CR: 10489 case CMD_CLOSE_XRI_CN: 10490 case CMD_CLOSE_XRI_CX: 10491 break; 10492 default: 10493 goto iocb_busy; 10494 } 10495 10496 /* 10497 * For FCP commands, we must be in a state where we can process link 10498 * attention events. 10499 */ 10500 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10501 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10502 goto iocb_busy; 10503 } 10504 10505 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10506 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10507 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10508 10509 if (iocb) 10510 lpfc_sli_update_ring(phba, pring); 10511 else 10512 lpfc_sli_update_full_ring(phba, pring); 10513 10514 if (!piocb) 10515 return IOCB_SUCCESS; 10516 10517 goto out_busy; 10518 10519 iocb_busy: 10520 pring->stats.iocb_cmd_delay++; 10521 10522 out_busy: 10523 10524 if (!(flag & SLI_IOCB_RET_IOCB)) { 10525 __lpfc_sli_ringtx_put(phba, pring, piocb); 10526 return IOCB_SUCCESS; 10527 } 10528 10529 return IOCB_BUSY; 10530 } 10531 10532 /** 10533 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10534 * @phba: Pointer to HBA context object. 10535 * @ring_number: SLI ring number to issue wqe on. 10536 * @piocb: Pointer to command iocb. 10537 * @flag: Flag indicating if this command can be put into txq. 10538 * 10539 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10540 * send an iocb command to an HBA with SLI-3 interface spec. 10541 * 10542 * This function takes the hbalock before invoking the lockless version. 10543 * The function will return success after it successfully submit the wqe to 10544 * firmware or after adding to the txq. 10545 **/ 10546 static int 10547 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10548 struct lpfc_iocbq *piocb, uint32_t flag) 10549 { 10550 unsigned long iflags; 10551 int rc; 10552 10553 spin_lock_irqsave(&phba->hbalock, iflags); 10554 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10555 spin_unlock_irqrestore(&phba->hbalock, iflags); 10556 10557 return rc; 10558 } 10559 10560 /** 10561 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10562 * @phba: Pointer to HBA context object. 10563 * @ring_number: SLI ring number to issue wqe on. 10564 * @piocb: Pointer to command iocb. 10565 * @flag: Flag indicating if this command can be put into txq. 10566 * 10567 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10568 * an wqe command to an HBA with SLI-4 interface spec. 10569 * 10570 * This function is a lockless version. The function will return success 10571 * after it successfully submit the wqe to firmware or after adding to the 10572 * txq. 10573 **/ 10574 static int 10575 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10576 struct lpfc_iocbq *piocb, uint32_t flag) 10577 { 10578 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10579 10580 lpfc_prep_embed_io(phba, lpfc_cmd); 10581 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10582 } 10583 10584 void 10585 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10586 { 10587 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10588 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10589 struct sli4_sge_le *sgl; 10590 u32 type_size; 10591 10592 /* 128 byte wqe support here */ 10593 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10594 10595 if (phba->fcp_embed_io) { 10596 struct fcp_cmnd *fcp_cmnd; 10597 u32 *ptr; 10598 10599 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10600 10601 /* Word 0-2 - FCP_CMND */ 10602 type_size = le32_to_cpu(sgl->sge_len); 10603 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10604 wqe->generic.bde.tus.w = type_size; 10605 wqe->generic.bde.addrHigh = 0; 10606 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10607 10608 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10609 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10610 10611 /* Word 18-29 FCP CMND Payload */ 10612 ptr = &wqe->words[18]; 10613 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10614 } else { 10615 /* Word 0-2 - Inline BDE */ 10616 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10617 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10618 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10619 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10620 10621 /* Word 10 */ 10622 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10623 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10624 } 10625 10626 /* add the VMID tags as per switch response */ 10627 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10628 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10629 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10630 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10631 (piocb->vmid_tag.cs_ctl_vmid)); 10632 } else if (phba->cfg_vmid_app_header) { 10633 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10634 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10635 wqe->words[31] = piocb->vmid_tag.app_id; 10636 } 10637 } 10638 } 10639 10640 /** 10641 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10642 * @phba: Pointer to HBA context object. 10643 * @ring_number: SLI ring number to issue iocb on. 10644 * @piocb: Pointer to command iocb. 10645 * @flag: Flag indicating if this command can be put into txq. 10646 * 10647 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10648 * an iocb command to an HBA with SLI-4 interface spec. 10649 * 10650 * This function is called with ringlock held. The function will return success 10651 * after it successfully submit the iocb to firmware or after adding to the 10652 * txq. 10653 **/ 10654 static int 10655 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10656 struct lpfc_iocbq *piocb, uint32_t flag) 10657 { 10658 struct lpfc_sglq *sglq; 10659 union lpfc_wqe128 *wqe; 10660 struct lpfc_queue *wq; 10661 struct lpfc_sli_ring *pring; 10662 u32 ulp_command = get_job_cmnd(phba, piocb); 10663 10664 /* Get the WQ */ 10665 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10666 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10667 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10668 } else { 10669 wq = phba->sli4_hba.els_wq; 10670 } 10671 10672 /* Get corresponding ring */ 10673 pring = wq->pring; 10674 10675 /* 10676 * The WQE can be either 64 or 128 bytes, 10677 */ 10678 10679 lockdep_assert_held(&pring->ring_lock); 10680 wqe = &piocb->wqe; 10681 if (piocb->sli4_xritag == NO_XRI) { 10682 if (ulp_command == CMD_ABORT_XRI_CX) 10683 sglq = NULL; 10684 else { 10685 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10686 if (!sglq) { 10687 if (!(flag & SLI_IOCB_RET_IOCB)) { 10688 __lpfc_sli_ringtx_put(phba, 10689 pring, 10690 piocb); 10691 return IOCB_SUCCESS; 10692 } else { 10693 return IOCB_BUSY; 10694 } 10695 } 10696 } 10697 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10698 /* These IO's already have an XRI and a mapped sgl. */ 10699 sglq = NULL; 10700 } 10701 else { 10702 /* 10703 * This is a continuation of a commandi,(CX) so this 10704 * sglq is on the active list 10705 */ 10706 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10707 if (!sglq) 10708 return IOCB_ERROR; 10709 } 10710 10711 if (sglq) { 10712 piocb->sli4_lxritag = sglq->sli4_lxritag; 10713 piocb->sli4_xritag = sglq->sli4_xritag; 10714 10715 /* ABTS sent by initiator to CT exchange, the 10716 * RX_ID field will be filled with the newly 10717 * allocated responder XRI. 10718 */ 10719 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10720 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10721 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10722 piocb->sli4_xritag); 10723 10724 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10725 piocb->sli4_xritag); 10726 10727 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10728 return IOCB_ERROR; 10729 } 10730 10731 if (lpfc_sli4_wq_put(wq, wqe)) 10732 return IOCB_ERROR; 10733 10734 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10735 10736 return 0; 10737 } 10738 10739 /* 10740 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10741 * 10742 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10743 * or IOCB for sli-3 function. 10744 * pointer from the lpfc_hba struct. 10745 * 10746 * Return codes: 10747 * IOCB_ERROR - Error 10748 * IOCB_SUCCESS - Success 10749 * IOCB_BUSY - Busy 10750 **/ 10751 int 10752 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10753 struct lpfc_iocbq *piocb, uint32_t flag) 10754 { 10755 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10756 } 10757 10758 /* 10759 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10760 * 10761 * This routine wraps the actual lockless version for issusing IOCB function 10762 * pointer from the lpfc_hba struct. 10763 * 10764 * Return codes: 10765 * IOCB_ERROR - Error 10766 * IOCB_SUCCESS - Success 10767 * IOCB_BUSY - Busy 10768 **/ 10769 int 10770 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10771 struct lpfc_iocbq *piocb, uint32_t flag) 10772 { 10773 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10774 } 10775 10776 static void 10777 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10778 struct lpfc_vport *vport, 10779 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10780 u32 elscmd, u8 tmo, u8 expect_rsp) 10781 { 10782 struct lpfc_hba *phba = vport->phba; 10783 IOCB_t *cmd; 10784 10785 cmd = &cmdiocbq->iocb; 10786 memset(cmd, 0, sizeof(*cmd)); 10787 10788 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10789 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10790 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10791 10792 if (expect_rsp) { 10793 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10794 cmd->un.elsreq64.remoteID = did; /* DID */ 10795 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10796 cmd->ulpTimeout = tmo; 10797 } else { 10798 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10799 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10800 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10801 cmd->ulpPU = PARM_NPIV_DID; 10802 } 10803 cmd->ulpBdeCount = 1; 10804 cmd->ulpLe = 1; 10805 cmd->ulpClass = CLASS3; 10806 10807 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10808 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10809 if (expect_rsp) { 10810 cmd->un.elsreq64.myID = vport->fc_myDID; 10811 10812 /* For ELS_REQUEST64_CR, use the VPI by default */ 10813 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10814 } 10815 10816 cmd->ulpCt_h = 0; 10817 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10818 if (elscmd == ELS_CMD_ECHO) 10819 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10820 else 10821 cmd->ulpCt_l = 1; /* context = VPI */ 10822 } 10823 } 10824 10825 static void 10826 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10827 struct lpfc_vport *vport, 10828 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10829 u32 elscmd, u8 tmo, u8 expect_rsp) 10830 { 10831 struct lpfc_hba *phba = vport->phba; 10832 union lpfc_wqe128 *wqe; 10833 struct ulp_bde64_le *bde; 10834 u8 els_id; 10835 10836 wqe = &cmdiocbq->wqe; 10837 memset(wqe, 0, sizeof(*wqe)); 10838 10839 /* Word 0 - 2 BDE */ 10840 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10841 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10842 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10843 bde->type_size = cpu_to_le32(cmd_size); 10844 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10845 10846 if (expect_rsp) { 10847 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10848 10849 /* Transfer length */ 10850 wqe->els_req.payload_len = cmd_size; 10851 wqe->els_req.max_response_payload_len = FCELSSIZE; 10852 10853 /* DID */ 10854 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10855 10856 /* Word 11 - ELS_ID */ 10857 switch (elscmd) { 10858 case ELS_CMD_PLOGI: 10859 els_id = LPFC_ELS_ID_PLOGI; 10860 break; 10861 case ELS_CMD_FLOGI: 10862 els_id = LPFC_ELS_ID_FLOGI; 10863 break; 10864 case ELS_CMD_LOGO: 10865 els_id = LPFC_ELS_ID_LOGO; 10866 break; 10867 case ELS_CMD_FDISC: 10868 if (!vport->fc_myDID) { 10869 els_id = LPFC_ELS_ID_FDISC; 10870 break; 10871 } 10872 fallthrough; 10873 default: 10874 els_id = LPFC_ELS_ID_DEFAULT; 10875 break; 10876 } 10877 10878 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10879 } else { 10880 /* DID */ 10881 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10882 10883 /* Transfer length */ 10884 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10885 10886 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10887 CMD_XMIT_ELS_RSP64_WQE); 10888 } 10889 10890 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10891 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10892 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10893 10894 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10895 * For SLI4, since the driver controls VPIs we also want to include 10896 * all ELS pt2pt protocol traffic as well. 10897 */ 10898 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10899 test_bit(FC_PT2PT, &vport->fc_flag)) { 10900 if (expect_rsp) { 10901 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10902 10903 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10904 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10905 phba->vpi_ids[vport->vpi]); 10906 } 10907 10908 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10909 if (elscmd == ELS_CMD_ECHO) 10910 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10911 else 10912 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10913 } 10914 } 10915 10916 void 10917 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10918 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10919 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10920 u8 expect_rsp) 10921 { 10922 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10923 elscmd, tmo, expect_rsp); 10924 } 10925 10926 static void 10927 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10928 u16 rpi, u32 num_entry, u8 tmo) 10929 { 10930 IOCB_t *cmd; 10931 10932 cmd = &cmdiocbq->iocb; 10933 memset(cmd, 0, sizeof(*cmd)); 10934 10935 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10936 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10937 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10938 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10939 10940 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10941 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10942 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10943 10944 cmd->ulpContext = rpi; 10945 cmd->ulpClass = CLASS3; 10946 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10947 cmd->ulpBdeCount = 1; 10948 cmd->ulpLe = 1; 10949 cmd->ulpOwner = OWN_CHIP; 10950 cmd->ulpTimeout = tmo; 10951 } 10952 10953 static void 10954 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10955 u16 rpi, u32 num_entry, u8 tmo) 10956 { 10957 union lpfc_wqe128 *cmdwqe; 10958 struct ulp_bde64_le *bde, *bpl; 10959 u32 xmit_len = 0, total_len = 0, size, type, i; 10960 10961 cmdwqe = &cmdiocbq->wqe; 10962 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10963 10964 /* Calculate total_len and xmit_len */ 10965 bpl = (struct ulp_bde64_le *)bmp->virt; 10966 for (i = 0; i < num_entry; i++) { 10967 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10968 total_len += size; 10969 } 10970 for (i = 0; i < num_entry; i++) { 10971 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10972 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10973 if (type != ULP_BDE64_TYPE_BDE_64) 10974 break; 10975 xmit_len += size; 10976 } 10977 10978 /* Words 0 - 2 */ 10979 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10980 bde->addr_low = bpl->addr_low; 10981 bde->addr_high = bpl->addr_high; 10982 bde->type_size = cpu_to_le32(xmit_len); 10983 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10984 10985 /* Word 3 */ 10986 cmdwqe->gen_req.request_payload_len = xmit_len; 10987 10988 /* Word 5 */ 10989 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10990 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10991 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10992 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10993 10994 /* Word 6 */ 10995 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10996 10997 /* Word 7 */ 10998 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10999 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 11000 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11001 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11002 11003 /* Word 12 */ 11004 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11005 } 11006 11007 void 11008 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11009 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11010 { 11011 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11012 } 11013 11014 static void 11015 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11016 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11017 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11018 { 11019 IOCB_t *icmd; 11020 11021 icmd = &cmdiocbq->iocb; 11022 memset(icmd, 0, sizeof(*icmd)); 11023 11024 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11025 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11026 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11027 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11028 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11029 if (last_seq) 11030 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11031 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11032 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11033 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11034 11035 icmd->ulpBdeCount = 1; 11036 icmd->ulpLe = 1; 11037 icmd->ulpClass = CLASS3; 11038 11039 switch (cr_cx_cmd) { 11040 case CMD_XMIT_SEQUENCE64_CR: 11041 icmd->ulpContext = rpi; 11042 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11043 break; 11044 case CMD_XMIT_SEQUENCE64_CX: 11045 icmd->ulpContext = ox_id; 11046 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11047 break; 11048 default: 11049 break; 11050 } 11051 } 11052 11053 static void 11054 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11055 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11056 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11057 { 11058 union lpfc_wqe128 *wqe; 11059 struct ulp_bde64 *bpl; 11060 11061 wqe = &cmdiocbq->wqe; 11062 memset(wqe, 0, sizeof(*wqe)); 11063 11064 /* Words 0 - 2 */ 11065 bpl = (struct ulp_bde64 *)bmp->virt; 11066 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11067 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11068 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11069 11070 /* Word 5 */ 11071 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11072 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11073 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11074 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11075 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11076 11077 /* Word 6 */ 11078 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11079 11080 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11081 CMD_XMIT_SEQUENCE64_WQE); 11082 11083 /* Word 7 */ 11084 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11085 11086 /* Word 9 */ 11087 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11088 11089 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11090 /* Word 10 */ 11091 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11092 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11093 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11094 wqe->words[31] = LOOPBACK_SRC_APPID; 11095 } 11096 11097 /* Word 12 */ 11098 wqe->xmit_sequence.xmit_len = full_size; 11099 } 11100 else 11101 wqe->xmit_sequence.xmit_len = 11102 wqe->xmit_sequence.bde.tus.f.bdeSize; 11103 } 11104 11105 void 11106 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11107 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11108 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11109 { 11110 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11111 rctl, last_seq, cr_cx_cmd); 11112 } 11113 11114 static void 11115 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11116 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11117 bool wqec) 11118 { 11119 IOCB_t *icmd = NULL; 11120 11121 icmd = &cmdiocbq->iocb; 11122 memset(icmd, 0, sizeof(*icmd)); 11123 11124 /* Word 5 */ 11125 icmd->un.acxri.abortContextTag = ulp_context; 11126 icmd->un.acxri.abortIoTag = iotag; 11127 11128 if (ia) { 11129 /* Word 7 */ 11130 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11131 } else { 11132 /* Word 3 */ 11133 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11134 11135 /* Word 7 */ 11136 icmd->ulpClass = ulp_class; 11137 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11138 } 11139 11140 /* Word 7 */ 11141 icmd->ulpLe = 1; 11142 } 11143 11144 static void 11145 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11146 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11147 bool wqec) 11148 { 11149 union lpfc_wqe128 *wqe; 11150 11151 wqe = &cmdiocbq->wqe; 11152 memset(wqe, 0, sizeof(*wqe)); 11153 11154 /* Word 3 */ 11155 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11156 if (ia) 11157 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11158 else 11159 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11160 11161 /* Word 7 */ 11162 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11163 11164 /* Word 8 */ 11165 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11166 11167 /* Word 9 */ 11168 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11169 11170 /* Word 10 */ 11171 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11172 11173 /* Word 11 */ 11174 if (wqec) 11175 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11176 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11177 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11178 } 11179 11180 void 11181 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11182 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11183 bool ia, bool wqec) 11184 { 11185 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11186 cqid, ia, wqec); 11187 } 11188 11189 /** 11190 * lpfc_sli_api_table_setup - Set up sli api function jump table 11191 * @phba: The hba struct for which this call is being executed. 11192 * @dev_grp: The HBA PCI-Device group number. 11193 * 11194 * This routine sets up the SLI interface API function jump table in @phba 11195 * struct. 11196 * Returns: 0 - success, -ENODEV - failure. 11197 **/ 11198 int 11199 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11200 { 11201 11202 switch (dev_grp) { 11203 case LPFC_PCI_DEV_LP: 11204 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11205 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11206 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11207 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11208 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11209 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11210 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11211 break; 11212 case LPFC_PCI_DEV_OC: 11213 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11214 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11215 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11216 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11217 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11218 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11219 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11220 break; 11221 default: 11222 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11223 "1419 Invalid HBA PCI-device group: 0x%x\n", 11224 dev_grp); 11225 return -ENODEV; 11226 } 11227 return 0; 11228 } 11229 11230 /** 11231 * lpfc_sli4_calc_ring - Calculates which ring to use 11232 * @phba: Pointer to HBA context object. 11233 * @piocb: Pointer to command iocb. 11234 * 11235 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11236 * hba_wqidx, thus we need to calculate the corresponding ring. 11237 * Since ABORTS must go on the same WQ of the command they are 11238 * aborting, we use command's hba_wqidx. 11239 */ 11240 struct lpfc_sli_ring * 11241 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11242 { 11243 struct lpfc_io_buf *lpfc_cmd; 11244 11245 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11246 if (unlikely(!phba->sli4_hba.hdwq)) 11247 return NULL; 11248 /* 11249 * for abort iocb hba_wqidx should already 11250 * be setup based on what work queue we used. 11251 */ 11252 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11253 lpfc_cmd = piocb->io_buf; 11254 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11255 } 11256 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11257 } else { 11258 if (unlikely(!phba->sli4_hba.els_wq)) 11259 return NULL; 11260 piocb->hba_wqidx = 0; 11261 return phba->sli4_hba.els_wq->pring; 11262 } 11263 } 11264 11265 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11266 { 11267 struct lpfc_hba *phba = eq->phba; 11268 11269 /* 11270 * Unlocking an irq is one of the entry point to check 11271 * for re-schedule, but we are good for io submission 11272 * path as midlayer does a get_cpu to glue us in. Flush 11273 * out the invalidate queue so we can see the updated 11274 * value for flag. 11275 */ 11276 smp_rmb(); 11277 11278 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11279 /* We will not likely get the completion for the caller 11280 * during this iteration but i guess that's fine. 11281 * Future io's coming on this eq should be able to 11282 * pick it up. As for the case of single io's, they 11283 * will be handled through a sched from polling timer 11284 * function which is currently triggered every 1msec. 11285 */ 11286 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11287 LPFC_QUEUE_WORK); 11288 } 11289 11290 /** 11291 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11292 * @phba: Pointer to HBA context object. 11293 * @ring_number: Ring number 11294 * @piocb: Pointer to command iocb. 11295 * @flag: Flag indicating if this command can be put into txq. 11296 * 11297 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11298 * function. This function gets the hbalock and calls 11299 * __lpfc_sli_issue_iocb function and will return the error returned 11300 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11301 * functions which do not hold hbalock. 11302 **/ 11303 int 11304 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11305 struct lpfc_iocbq *piocb, uint32_t flag) 11306 { 11307 struct lpfc_sli_ring *pring; 11308 struct lpfc_queue *eq; 11309 unsigned long iflags; 11310 int rc; 11311 11312 /* If the PCI channel is in offline state, do not post iocbs. */ 11313 if (unlikely(pci_channel_offline(phba->pcidev))) 11314 return IOCB_ERROR; 11315 11316 if (phba->sli_rev == LPFC_SLI_REV4) { 11317 lpfc_sli_prep_wqe(phba, piocb); 11318 11319 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11320 11321 pring = lpfc_sli4_calc_ring(phba, piocb); 11322 if (unlikely(pring == NULL)) 11323 return IOCB_ERROR; 11324 11325 spin_lock_irqsave(&pring->ring_lock, iflags); 11326 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11327 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11328 11329 lpfc_sli4_poll_eq(eq); 11330 } else { 11331 /* For now, SLI2/3 will still use hbalock */ 11332 spin_lock_irqsave(&phba->hbalock, iflags); 11333 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11334 spin_unlock_irqrestore(&phba->hbalock, iflags); 11335 } 11336 return rc; 11337 } 11338 11339 /** 11340 * lpfc_extra_ring_setup - Extra ring setup function 11341 * @phba: Pointer to HBA context object. 11342 * 11343 * This function is called while driver attaches with the 11344 * HBA to setup the extra ring. The extra ring is used 11345 * only when driver needs to support target mode functionality 11346 * or IP over FC functionalities. 11347 * 11348 * This function is called with no lock held. SLI3 only. 11349 **/ 11350 static int 11351 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11352 { 11353 struct lpfc_sli *psli; 11354 struct lpfc_sli_ring *pring; 11355 11356 psli = &phba->sli; 11357 11358 /* Adjust cmd/rsp ring iocb entries more evenly */ 11359 11360 /* Take some away from the FCP ring */ 11361 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11362 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11363 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11364 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11365 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11366 11367 /* and give them to the extra ring */ 11368 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11369 11370 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11371 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11372 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11373 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11374 11375 /* Setup default profile for this ring */ 11376 pring->iotag_max = 4096; 11377 pring->num_mask = 1; 11378 pring->prt[0].profile = 0; /* Mask 0 */ 11379 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11380 pring->prt[0].type = phba->cfg_multi_ring_type; 11381 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11382 return 0; 11383 } 11384 11385 static void 11386 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11387 struct lpfc_nodelist *ndlp) 11388 { 11389 unsigned long iflags; 11390 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11391 11392 /* Hold a node reference for outstanding queued work */ 11393 if (!lpfc_nlp_get(ndlp)) 11394 return; 11395 11396 spin_lock_irqsave(&phba->hbalock, iflags); 11397 if (!list_empty(&evtp->evt_listp)) { 11398 spin_unlock_irqrestore(&phba->hbalock, iflags); 11399 lpfc_nlp_put(ndlp); 11400 return; 11401 } 11402 11403 evtp->evt_arg1 = ndlp; 11404 evtp->evt = LPFC_EVT_RECOVER_PORT; 11405 list_add_tail(&evtp->evt_listp, &phba->work_list); 11406 spin_unlock_irqrestore(&phba->hbalock, iflags); 11407 11408 lpfc_worker_wake_up(phba); 11409 } 11410 11411 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11412 * @phba: Pointer to HBA context object. 11413 * @iocbq: Pointer to iocb object. 11414 * 11415 * The async_event handler calls this routine when it receives 11416 * an ASYNC_STATUS_CN event from the port. The port generates 11417 * this event when an Abort Sequence request to an rport fails 11418 * twice in succession. The abort could be originated by the 11419 * driver or by the port. The ABTS could have been for an ELS 11420 * or FCP IO. The port only generates this event when an ABTS 11421 * fails to complete after one retry. 11422 */ 11423 static void 11424 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11425 struct lpfc_iocbq *iocbq) 11426 { 11427 struct lpfc_nodelist *ndlp = NULL; 11428 uint16_t rpi = 0, vpi = 0; 11429 struct lpfc_vport *vport = NULL; 11430 11431 /* The rpi in the ulpContext is vport-sensitive. */ 11432 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11433 rpi = iocbq->iocb.ulpContext; 11434 11435 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11436 "3092 Port generated ABTS async event " 11437 "on vpi %d rpi %d status 0x%x\n", 11438 vpi, rpi, iocbq->iocb.ulpStatus); 11439 11440 vport = lpfc_find_vport_by_vpid(phba, vpi); 11441 if (!vport) 11442 goto err_exit; 11443 ndlp = lpfc_findnode_rpi(vport, rpi); 11444 if (!ndlp) 11445 goto err_exit; 11446 11447 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11448 lpfc_sli_abts_recover_port(vport, ndlp); 11449 return; 11450 11451 err_exit: 11452 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11453 "3095 Event Context not found, no " 11454 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11455 vpi, rpi, iocbq->iocb.ulpStatus, 11456 iocbq->iocb.ulpContext); 11457 } 11458 11459 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11460 * @phba: pointer to HBA context object. 11461 * @ndlp: nodelist pointer for the impacted rport. 11462 * @axri: pointer to the wcqe containing the failed exchange. 11463 * 11464 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11465 * port. The port generates this event when an abort exchange request to an 11466 * rport fails twice in succession with no reply. The abort could be originated 11467 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11468 */ 11469 void 11470 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11471 struct lpfc_nodelist *ndlp, 11472 struct sli4_wcqe_xri_aborted *axri) 11473 { 11474 uint32_t ext_status = 0; 11475 11476 if (!ndlp) { 11477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11478 "3115 Node Context not found, driver " 11479 "ignoring abts err event\n"); 11480 return; 11481 } 11482 11483 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11484 "3116 Port generated FCP XRI ABORT event on " 11485 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11486 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11487 bf_get(lpfc_wcqe_xa_xri, axri), 11488 bf_get(lpfc_wcqe_xa_status, axri), 11489 axri->parameter); 11490 11491 /* 11492 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11493 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11494 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11495 */ 11496 ext_status = axri->parameter & IOERR_PARAM_MASK; 11497 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11498 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11499 lpfc_sli_post_recovery_event(phba, ndlp); 11500 } 11501 11502 /** 11503 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11504 * @phba: Pointer to HBA context object. 11505 * @pring: Pointer to driver SLI ring object. 11506 * @iocbq: Pointer to iocb object. 11507 * 11508 * This function is called by the slow ring event handler 11509 * function when there is an ASYNC event iocb in the ring. 11510 * This function is called with no lock held. 11511 * Currently this function handles only temperature related 11512 * ASYNC events. The function decodes the temperature sensor 11513 * event message and posts events for the management applications. 11514 **/ 11515 static void 11516 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11517 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11518 { 11519 IOCB_t *icmd; 11520 uint16_t evt_code; 11521 struct temp_event temp_event_data; 11522 struct Scsi_Host *shost; 11523 uint32_t *iocb_w; 11524 11525 icmd = &iocbq->iocb; 11526 evt_code = icmd->un.asyncstat.evt_code; 11527 11528 switch (evt_code) { 11529 case ASYNC_TEMP_WARN: 11530 case ASYNC_TEMP_SAFE: 11531 temp_event_data.data = (uint32_t) icmd->ulpContext; 11532 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11533 if (evt_code == ASYNC_TEMP_WARN) { 11534 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11536 "0347 Adapter is very hot, please take " 11537 "corrective action. temperature : %d Celsius\n", 11538 (uint32_t) icmd->ulpContext); 11539 } else { 11540 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11542 "0340 Adapter temperature is OK now. " 11543 "temperature : %d Celsius\n", 11544 (uint32_t) icmd->ulpContext); 11545 } 11546 11547 /* Send temperature change event to applications */ 11548 shost = lpfc_shost_from_vport(phba->pport); 11549 fc_host_post_vendor_event(shost, fc_get_event_number(), 11550 sizeof(temp_event_data), (char *) &temp_event_data, 11551 LPFC_NL_VENDOR_ID); 11552 break; 11553 case ASYNC_STATUS_CN: 11554 lpfc_sli_abts_err_handler(phba, iocbq); 11555 break; 11556 default: 11557 iocb_w = (uint32_t *) icmd; 11558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11559 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11560 " evt_code 0x%x\n" 11561 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11562 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11563 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11564 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11565 pring->ringno, icmd->un.asyncstat.evt_code, 11566 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11567 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11568 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11569 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11570 11571 break; 11572 } 11573 } 11574 11575 11576 /** 11577 * lpfc_sli4_setup - SLI ring setup function 11578 * @phba: Pointer to HBA context object. 11579 * 11580 * lpfc_sli_setup sets up rings of the SLI interface with 11581 * number of iocbs per ring and iotags. This function is 11582 * called while driver attach to the HBA and before the 11583 * interrupts are enabled. So there is no need for locking. 11584 * 11585 * This function always returns 0. 11586 **/ 11587 int 11588 lpfc_sli4_setup(struct lpfc_hba *phba) 11589 { 11590 struct lpfc_sli_ring *pring; 11591 11592 pring = phba->sli4_hba.els_wq->pring; 11593 pring->num_mask = LPFC_MAX_RING_MASK; 11594 pring->prt[0].profile = 0; /* Mask 0 */ 11595 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11596 pring->prt[0].type = FC_TYPE_ELS; 11597 pring->prt[0].lpfc_sli_rcv_unsol_event = 11598 lpfc_els_unsol_event; 11599 pring->prt[1].profile = 0; /* Mask 1 */ 11600 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11601 pring->prt[1].type = FC_TYPE_ELS; 11602 pring->prt[1].lpfc_sli_rcv_unsol_event = 11603 lpfc_els_unsol_event; 11604 pring->prt[2].profile = 0; /* Mask 2 */ 11605 /* NameServer Inquiry */ 11606 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11607 /* NameServer */ 11608 pring->prt[2].type = FC_TYPE_CT; 11609 pring->prt[2].lpfc_sli_rcv_unsol_event = 11610 lpfc_ct_unsol_event; 11611 pring->prt[3].profile = 0; /* Mask 3 */ 11612 /* NameServer response */ 11613 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11614 /* NameServer */ 11615 pring->prt[3].type = FC_TYPE_CT; 11616 pring->prt[3].lpfc_sli_rcv_unsol_event = 11617 lpfc_ct_unsol_event; 11618 return 0; 11619 } 11620 11621 /** 11622 * lpfc_sli_setup - SLI ring setup function 11623 * @phba: Pointer to HBA context object. 11624 * 11625 * lpfc_sli_setup sets up rings of the SLI interface with 11626 * number of iocbs per ring and iotags. This function is 11627 * called while driver attach to the HBA and before the 11628 * interrupts are enabled. So there is no need for locking. 11629 * 11630 * This function always returns 0. SLI3 only. 11631 **/ 11632 int 11633 lpfc_sli_setup(struct lpfc_hba *phba) 11634 { 11635 int i, totiocbsize = 0; 11636 struct lpfc_sli *psli = &phba->sli; 11637 struct lpfc_sli_ring *pring; 11638 11639 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11640 psli->sli_flag = 0; 11641 11642 psli->iocbq_lookup = NULL; 11643 psli->iocbq_lookup_len = 0; 11644 psli->last_iotag = 0; 11645 11646 for (i = 0; i < psli->num_rings; i++) { 11647 pring = &psli->sli3_ring[i]; 11648 switch (i) { 11649 case LPFC_FCP_RING: /* ring 0 - FCP */ 11650 /* numCiocb and numRiocb are used in config_port */ 11651 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11652 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11653 pring->sli.sli3.numCiocb += 11654 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11655 pring->sli.sli3.numRiocb += 11656 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11657 pring->sli.sli3.numCiocb += 11658 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11659 pring->sli.sli3.numRiocb += 11660 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11661 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11662 SLI3_IOCB_CMD_SIZE : 11663 SLI2_IOCB_CMD_SIZE; 11664 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11665 SLI3_IOCB_RSP_SIZE : 11666 SLI2_IOCB_RSP_SIZE; 11667 pring->iotag_ctr = 0; 11668 pring->iotag_max = 11669 (phba->cfg_hba_queue_depth * 2); 11670 pring->fast_iotag = pring->iotag_max; 11671 pring->num_mask = 0; 11672 break; 11673 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11674 /* numCiocb and numRiocb are used in config_port */ 11675 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11676 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11677 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11678 SLI3_IOCB_CMD_SIZE : 11679 SLI2_IOCB_CMD_SIZE; 11680 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11681 SLI3_IOCB_RSP_SIZE : 11682 SLI2_IOCB_RSP_SIZE; 11683 pring->iotag_max = phba->cfg_hba_queue_depth; 11684 pring->num_mask = 0; 11685 break; 11686 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11687 /* numCiocb and numRiocb are used in config_port */ 11688 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11689 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11690 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11691 SLI3_IOCB_CMD_SIZE : 11692 SLI2_IOCB_CMD_SIZE; 11693 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11694 SLI3_IOCB_RSP_SIZE : 11695 SLI2_IOCB_RSP_SIZE; 11696 pring->fast_iotag = 0; 11697 pring->iotag_ctr = 0; 11698 pring->iotag_max = 4096; 11699 pring->lpfc_sli_rcv_async_status = 11700 lpfc_sli_async_event_handler; 11701 pring->num_mask = LPFC_MAX_RING_MASK; 11702 pring->prt[0].profile = 0; /* Mask 0 */ 11703 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11704 pring->prt[0].type = FC_TYPE_ELS; 11705 pring->prt[0].lpfc_sli_rcv_unsol_event = 11706 lpfc_els_unsol_event; 11707 pring->prt[1].profile = 0; /* Mask 1 */ 11708 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11709 pring->prt[1].type = FC_TYPE_ELS; 11710 pring->prt[1].lpfc_sli_rcv_unsol_event = 11711 lpfc_els_unsol_event; 11712 pring->prt[2].profile = 0; /* Mask 2 */ 11713 /* NameServer Inquiry */ 11714 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11715 /* NameServer */ 11716 pring->prt[2].type = FC_TYPE_CT; 11717 pring->prt[2].lpfc_sli_rcv_unsol_event = 11718 lpfc_ct_unsol_event; 11719 pring->prt[3].profile = 0; /* Mask 3 */ 11720 /* NameServer response */ 11721 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11722 /* NameServer */ 11723 pring->prt[3].type = FC_TYPE_CT; 11724 pring->prt[3].lpfc_sli_rcv_unsol_event = 11725 lpfc_ct_unsol_event; 11726 break; 11727 } 11728 totiocbsize += (pring->sli.sli3.numCiocb * 11729 pring->sli.sli3.sizeCiocb) + 11730 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11731 } 11732 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11733 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11734 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11735 "SLI2 SLIM Data: x%x x%lx\n", 11736 phba->brd_no, totiocbsize, 11737 (unsigned long) MAX_SLIM_IOCB_SIZE); 11738 } 11739 if (phba->cfg_multi_ring_support == 2) 11740 lpfc_extra_ring_setup(phba); 11741 11742 return 0; 11743 } 11744 11745 /** 11746 * lpfc_sli4_queue_init - Queue initialization function 11747 * @phba: Pointer to HBA context object. 11748 * 11749 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11750 * ring. This function also initializes ring indices of each ring. 11751 * This function is called during the initialization of the SLI 11752 * interface of an HBA. 11753 * This function is called with no lock held and always returns 11754 * 1. 11755 **/ 11756 void 11757 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11758 { 11759 struct lpfc_sli *psli; 11760 struct lpfc_sli_ring *pring; 11761 int i; 11762 11763 psli = &phba->sli; 11764 spin_lock_irq(&phba->hbalock); 11765 INIT_LIST_HEAD(&psli->mboxq); 11766 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11767 /* Initialize list headers for txq and txcmplq as double linked lists */ 11768 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11769 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11770 pring->flag = 0; 11771 pring->ringno = LPFC_FCP_RING; 11772 pring->txcmplq_cnt = 0; 11773 INIT_LIST_HEAD(&pring->txq); 11774 INIT_LIST_HEAD(&pring->txcmplq); 11775 INIT_LIST_HEAD(&pring->iocb_continueq); 11776 spin_lock_init(&pring->ring_lock); 11777 } 11778 pring = phba->sli4_hba.els_wq->pring; 11779 pring->flag = 0; 11780 pring->ringno = LPFC_ELS_RING; 11781 pring->txcmplq_cnt = 0; 11782 INIT_LIST_HEAD(&pring->txq); 11783 INIT_LIST_HEAD(&pring->txcmplq); 11784 INIT_LIST_HEAD(&pring->iocb_continueq); 11785 spin_lock_init(&pring->ring_lock); 11786 11787 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11788 pring = phba->sli4_hba.nvmels_wq->pring; 11789 pring->flag = 0; 11790 pring->ringno = LPFC_ELS_RING; 11791 pring->txcmplq_cnt = 0; 11792 INIT_LIST_HEAD(&pring->txq); 11793 INIT_LIST_HEAD(&pring->txcmplq); 11794 INIT_LIST_HEAD(&pring->iocb_continueq); 11795 spin_lock_init(&pring->ring_lock); 11796 } 11797 11798 spin_unlock_irq(&phba->hbalock); 11799 } 11800 11801 /** 11802 * lpfc_sli_queue_init - Queue initialization function 11803 * @phba: Pointer to HBA context object. 11804 * 11805 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11806 * ring. This function also initializes ring indices of each ring. 11807 * This function is called during the initialization of the SLI 11808 * interface of an HBA. 11809 * This function is called with no lock held and always returns 11810 * 1. 11811 **/ 11812 void 11813 lpfc_sli_queue_init(struct lpfc_hba *phba) 11814 { 11815 struct lpfc_sli *psli; 11816 struct lpfc_sli_ring *pring; 11817 int i; 11818 11819 psli = &phba->sli; 11820 spin_lock_irq(&phba->hbalock); 11821 INIT_LIST_HEAD(&psli->mboxq); 11822 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11823 /* Initialize list headers for txq and txcmplq as double linked lists */ 11824 for (i = 0; i < psli->num_rings; i++) { 11825 pring = &psli->sli3_ring[i]; 11826 pring->ringno = i; 11827 pring->sli.sli3.next_cmdidx = 0; 11828 pring->sli.sli3.local_getidx = 0; 11829 pring->sli.sli3.cmdidx = 0; 11830 INIT_LIST_HEAD(&pring->iocb_continueq); 11831 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11832 INIT_LIST_HEAD(&pring->postbufq); 11833 pring->flag = 0; 11834 INIT_LIST_HEAD(&pring->txq); 11835 INIT_LIST_HEAD(&pring->txcmplq); 11836 spin_lock_init(&pring->ring_lock); 11837 } 11838 spin_unlock_irq(&phba->hbalock); 11839 } 11840 11841 /** 11842 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11843 * @phba: Pointer to HBA context object. 11844 * 11845 * This routine flushes the mailbox command subsystem. It will unconditionally 11846 * flush all the mailbox commands in the three possible stages in the mailbox 11847 * command sub-system: pending mailbox command queue; the outstanding mailbox 11848 * command; and completed mailbox command queue. It is caller's responsibility 11849 * to make sure that the driver is in the proper state to flush the mailbox 11850 * command sub-system. Namely, the posting of mailbox commands into the 11851 * pending mailbox command queue from the various clients must be stopped; 11852 * either the HBA is in a state that it will never works on the outstanding 11853 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11854 * mailbox command has been completed. 11855 **/ 11856 static void 11857 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11858 { 11859 LIST_HEAD(completions); 11860 struct lpfc_sli *psli = &phba->sli; 11861 LPFC_MBOXQ_t *pmb; 11862 unsigned long iflag; 11863 11864 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11865 local_bh_disable(); 11866 11867 /* Flush all the mailbox commands in the mbox system */ 11868 spin_lock_irqsave(&phba->hbalock, iflag); 11869 11870 /* The pending mailbox command queue */ 11871 list_splice_init(&phba->sli.mboxq, &completions); 11872 /* The outstanding active mailbox command */ 11873 if (psli->mbox_active) { 11874 list_add_tail(&psli->mbox_active->list, &completions); 11875 psli->mbox_active = NULL; 11876 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11877 } 11878 /* The completed mailbox command queue */ 11879 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11880 spin_unlock_irqrestore(&phba->hbalock, iflag); 11881 11882 /* Enable softirqs again, done with phba->hbalock */ 11883 local_bh_enable(); 11884 11885 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11886 while (!list_empty(&completions)) { 11887 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11888 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11889 if (pmb->mbox_cmpl) 11890 pmb->mbox_cmpl(phba, pmb); 11891 } 11892 } 11893 11894 /** 11895 * lpfc_sli_host_down - Vport cleanup function 11896 * @vport: Pointer to virtual port object. 11897 * 11898 * lpfc_sli_host_down is called to clean up the resources 11899 * associated with a vport before destroying virtual 11900 * port data structures. 11901 * This function does following operations: 11902 * - Free discovery resources associated with this virtual 11903 * port. 11904 * - Free iocbs associated with this virtual port in 11905 * the txq. 11906 * - Send abort for all iocb commands associated with this 11907 * vport in txcmplq. 11908 * 11909 * This function is called with no lock held and always returns 1. 11910 **/ 11911 int 11912 lpfc_sli_host_down(struct lpfc_vport *vport) 11913 { 11914 LIST_HEAD(completions); 11915 struct lpfc_hba *phba = vport->phba; 11916 struct lpfc_sli *psli = &phba->sli; 11917 struct lpfc_queue *qp = NULL; 11918 struct lpfc_sli_ring *pring; 11919 struct lpfc_iocbq *iocb, *next_iocb; 11920 int i; 11921 unsigned long flags = 0; 11922 uint16_t prev_pring_flag; 11923 11924 lpfc_cleanup_discovery_resources(vport); 11925 11926 spin_lock_irqsave(&phba->hbalock, flags); 11927 11928 /* 11929 * Error everything on the txq since these iocbs 11930 * have not been given to the FW yet. 11931 * Also issue ABTS for everything on the txcmplq 11932 */ 11933 if (phba->sli_rev != LPFC_SLI_REV4) { 11934 for (i = 0; i < psli->num_rings; i++) { 11935 pring = &psli->sli3_ring[i]; 11936 prev_pring_flag = pring->flag; 11937 /* Only slow rings */ 11938 if (pring->ringno == LPFC_ELS_RING) { 11939 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11940 /* Set the lpfc data pending flag */ 11941 set_bit(LPFC_DATA_READY, &phba->data_flags); 11942 } 11943 list_for_each_entry_safe(iocb, next_iocb, 11944 &pring->txq, list) { 11945 if (iocb->vport != vport) 11946 continue; 11947 list_move_tail(&iocb->list, &completions); 11948 } 11949 list_for_each_entry_safe(iocb, next_iocb, 11950 &pring->txcmplq, list) { 11951 if (iocb->vport != vport) 11952 continue; 11953 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11954 NULL); 11955 } 11956 pring->flag = prev_pring_flag; 11957 } 11958 } else { 11959 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11960 pring = qp->pring; 11961 if (!pring) 11962 continue; 11963 if (pring == phba->sli4_hba.els_wq->pring) { 11964 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11965 /* Set the lpfc data pending flag */ 11966 set_bit(LPFC_DATA_READY, &phba->data_flags); 11967 } 11968 prev_pring_flag = pring->flag; 11969 spin_lock(&pring->ring_lock); 11970 list_for_each_entry_safe(iocb, next_iocb, 11971 &pring->txq, list) { 11972 if (iocb->vport != vport) 11973 continue; 11974 list_move_tail(&iocb->list, &completions); 11975 } 11976 spin_unlock(&pring->ring_lock); 11977 list_for_each_entry_safe(iocb, next_iocb, 11978 &pring->txcmplq, list) { 11979 if (iocb->vport != vport) 11980 continue; 11981 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11982 NULL); 11983 } 11984 pring->flag = prev_pring_flag; 11985 } 11986 } 11987 spin_unlock_irqrestore(&phba->hbalock, flags); 11988 11989 /* Make sure HBA is alive */ 11990 lpfc_issue_hb_tmo(phba); 11991 11992 /* Cancel all the IOCBs from the completions list */ 11993 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11994 IOERR_SLI_DOWN); 11995 return 1; 11996 } 11997 11998 /** 11999 * lpfc_sli_hba_down - Resource cleanup function for the HBA 12000 * @phba: Pointer to HBA context object. 12001 * 12002 * This function cleans up all iocb, buffers, mailbox commands 12003 * while shutting down the HBA. This function is called with no 12004 * lock held and always returns 1. 12005 * This function does the following to cleanup driver resources: 12006 * - Free discovery resources for each virtual port 12007 * - Cleanup any pending fabric iocbs 12008 * - Iterate through the iocb txq and free each entry 12009 * in the list. 12010 * - Free up any buffer posted to the HBA 12011 * - Free mailbox commands in the mailbox queue. 12012 **/ 12013 int 12014 lpfc_sli_hba_down(struct lpfc_hba *phba) 12015 { 12016 LIST_HEAD(completions); 12017 struct lpfc_sli *psli = &phba->sli; 12018 struct lpfc_queue *qp = NULL; 12019 struct lpfc_sli_ring *pring; 12020 struct lpfc_dmabuf *buf_ptr; 12021 unsigned long flags = 0; 12022 int i; 12023 12024 /* Shutdown the mailbox command sub-system */ 12025 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12026 12027 lpfc_hba_down_prep(phba); 12028 12029 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12030 local_bh_disable(); 12031 12032 lpfc_fabric_abort_hba(phba); 12033 12034 spin_lock_irqsave(&phba->hbalock, flags); 12035 12036 /* 12037 * Error everything on the txq since these iocbs 12038 * have not been given to the FW yet. 12039 */ 12040 if (phba->sli_rev != LPFC_SLI_REV4) { 12041 for (i = 0; i < psli->num_rings; i++) { 12042 pring = &psli->sli3_ring[i]; 12043 /* Only slow rings */ 12044 if (pring->ringno == LPFC_ELS_RING) { 12045 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12046 /* Set the lpfc data pending flag */ 12047 set_bit(LPFC_DATA_READY, &phba->data_flags); 12048 } 12049 list_splice_init(&pring->txq, &completions); 12050 } 12051 } else { 12052 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12053 pring = qp->pring; 12054 if (!pring) 12055 continue; 12056 spin_lock(&pring->ring_lock); 12057 list_splice_init(&pring->txq, &completions); 12058 spin_unlock(&pring->ring_lock); 12059 if (pring == phba->sli4_hba.els_wq->pring) { 12060 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12061 /* Set the lpfc data pending flag */ 12062 set_bit(LPFC_DATA_READY, &phba->data_flags); 12063 } 12064 } 12065 } 12066 spin_unlock_irqrestore(&phba->hbalock, flags); 12067 12068 /* Cancel all the IOCBs from the completions list */ 12069 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12070 IOERR_SLI_DOWN); 12071 12072 spin_lock_irqsave(&phba->hbalock, flags); 12073 list_splice_init(&phba->elsbuf, &completions); 12074 phba->elsbuf_cnt = 0; 12075 phba->elsbuf_prev_cnt = 0; 12076 spin_unlock_irqrestore(&phba->hbalock, flags); 12077 12078 while (!list_empty(&completions)) { 12079 list_remove_head(&completions, buf_ptr, 12080 struct lpfc_dmabuf, list); 12081 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12082 kfree(buf_ptr); 12083 } 12084 12085 /* Enable softirqs again, done with phba->hbalock */ 12086 local_bh_enable(); 12087 12088 /* Return any active mbox cmds */ 12089 timer_delete_sync(&psli->mbox_tmo); 12090 12091 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12092 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12093 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12094 12095 return 1; 12096 } 12097 12098 /** 12099 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12100 * @srcp: Source memory pointer. 12101 * @destp: Destination memory pointer. 12102 * @cnt: Number of words required to be copied. 12103 * 12104 * This function is used for copying data between driver memory 12105 * and the SLI memory. This function also changes the endianness 12106 * of each word if native endianness is different from SLI 12107 * endianness. This function can be called with or without 12108 * lock. 12109 **/ 12110 void 12111 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12112 { 12113 uint32_t *src = srcp; 12114 uint32_t *dest = destp; 12115 uint32_t ldata; 12116 int i; 12117 12118 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12119 ldata = *src; 12120 ldata = le32_to_cpu(ldata); 12121 *dest = ldata; 12122 src++; 12123 dest++; 12124 } 12125 } 12126 12127 12128 /** 12129 * lpfc_sli_bemem_bcopy - SLI memory copy function 12130 * @srcp: Source memory pointer. 12131 * @destp: Destination memory pointer. 12132 * @cnt: Number of words required to be copied. 12133 * 12134 * This function is used for copying data between a data structure 12135 * with big endian representation to local endianness. 12136 * This function can be called with or without lock. 12137 **/ 12138 void 12139 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12140 { 12141 uint32_t *src = srcp; 12142 uint32_t *dest = destp; 12143 uint32_t ldata; 12144 int i; 12145 12146 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12147 ldata = *src; 12148 ldata = be32_to_cpu(ldata); 12149 *dest = ldata; 12150 src++; 12151 dest++; 12152 } 12153 } 12154 12155 /** 12156 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12157 * @phba: Pointer to HBA context object. 12158 * @pring: Pointer to driver SLI ring object. 12159 * @mp: Pointer to driver buffer object. 12160 * 12161 * This function is called with no lock held. 12162 * It always return zero after adding the buffer to the postbufq 12163 * buffer list. 12164 **/ 12165 int 12166 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12167 struct lpfc_dmabuf *mp) 12168 { 12169 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12170 later */ 12171 spin_lock_irq(&phba->hbalock); 12172 list_add_tail(&mp->list, &pring->postbufq); 12173 pring->postbufq_cnt++; 12174 spin_unlock_irq(&phba->hbalock); 12175 return 0; 12176 } 12177 12178 /** 12179 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12180 * @phba: Pointer to HBA context object. 12181 * 12182 * When HBQ is enabled, buffers are searched based on tags. This function 12183 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12184 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12185 * does not conflict with tags of buffer posted for unsolicited events. 12186 * The function returns the allocated tag. The function is called with 12187 * no locks held. 12188 **/ 12189 uint32_t 12190 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12191 { 12192 spin_lock_irq(&phba->hbalock); 12193 phba->buffer_tag_count++; 12194 /* 12195 * Always set the QUE_BUFTAG_BIT to distiguish between 12196 * a tag assigned by HBQ. 12197 */ 12198 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12199 spin_unlock_irq(&phba->hbalock); 12200 return phba->buffer_tag_count; 12201 } 12202 12203 /** 12204 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12205 * @phba: Pointer to HBA context object. 12206 * @pring: Pointer to driver SLI ring object. 12207 * @tag: Buffer tag. 12208 * 12209 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12210 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12211 * iocb is posted to the response ring with the tag of the buffer. 12212 * This function searches the pring->postbufq list using the tag 12213 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12214 * iocb. If the buffer is found then lpfc_dmabuf object of the 12215 * buffer is returned to the caller else NULL is returned. 12216 * This function is called with no lock held. 12217 **/ 12218 struct lpfc_dmabuf * 12219 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12220 uint32_t tag) 12221 { 12222 struct lpfc_dmabuf *mp, *next_mp; 12223 struct list_head *slp = &pring->postbufq; 12224 12225 /* Search postbufq, from the beginning, looking for a match on tag */ 12226 spin_lock_irq(&phba->hbalock); 12227 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12228 if (mp->buffer_tag == tag) { 12229 list_del_init(&mp->list); 12230 pring->postbufq_cnt--; 12231 spin_unlock_irq(&phba->hbalock); 12232 return mp; 12233 } 12234 } 12235 12236 spin_unlock_irq(&phba->hbalock); 12237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12238 "0402 Cannot find virtual addr for buffer tag on " 12239 "ring %d Data x%lx x%px x%px x%x\n", 12240 pring->ringno, (unsigned long) tag, 12241 slp->next, slp->prev, pring->postbufq_cnt); 12242 12243 return NULL; 12244 } 12245 12246 /** 12247 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12248 * @phba: Pointer to HBA context object. 12249 * @pring: Pointer to driver SLI ring object. 12250 * @phys: DMA address of the buffer. 12251 * 12252 * This function searches the buffer list using the dma_address 12253 * of unsolicited event to find the driver's lpfc_dmabuf object 12254 * corresponding to the dma_address. The function returns the 12255 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12256 * This function is called by the ct and els unsolicited event 12257 * handlers to get the buffer associated with the unsolicited 12258 * event. 12259 * 12260 * This function is called with no lock held. 12261 **/ 12262 struct lpfc_dmabuf * 12263 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12264 dma_addr_t phys) 12265 { 12266 struct lpfc_dmabuf *mp, *next_mp; 12267 struct list_head *slp = &pring->postbufq; 12268 12269 /* Search postbufq, from the beginning, looking for a match on phys */ 12270 spin_lock_irq(&phba->hbalock); 12271 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12272 if (mp->phys == phys) { 12273 list_del_init(&mp->list); 12274 pring->postbufq_cnt--; 12275 spin_unlock_irq(&phba->hbalock); 12276 return mp; 12277 } 12278 } 12279 12280 spin_unlock_irq(&phba->hbalock); 12281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12282 "0410 Cannot find virtual addr for mapped buf on " 12283 "ring %d Data x%llx x%px x%px x%x\n", 12284 pring->ringno, (unsigned long long)phys, 12285 slp->next, slp->prev, pring->postbufq_cnt); 12286 return NULL; 12287 } 12288 12289 /** 12290 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12291 * @phba: Pointer to HBA context object. 12292 * @cmdiocb: Pointer to driver command iocb object. 12293 * @rspiocb: Pointer to driver response iocb object. 12294 * 12295 * This function is the completion handler for the abort iocbs for 12296 * ELS commands. This function is called from the ELS ring event 12297 * handler with no lock held. This function frees memory resources 12298 * associated with the abort iocb. 12299 **/ 12300 static void 12301 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12302 struct lpfc_iocbq *rspiocb) 12303 { 12304 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12305 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12306 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12307 12308 if (ulp_status) { 12309 /* 12310 * Assume that the port already completed and returned, or 12311 * will return the iocb. Just Log the message. 12312 */ 12313 if (phba->sli_rev < LPFC_SLI_REV4) { 12314 if (cmnd == CMD_ABORT_XRI_CX && 12315 ulp_status == IOSTAT_LOCAL_REJECT && 12316 ulp_word4 == IOERR_ABORT_REQUESTED) { 12317 goto release_iocb; 12318 } 12319 } 12320 } 12321 12322 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12323 "0327 Abort els iocb complete x%px with io cmd xri %x " 12324 "abort tag x%x abort status %x abort code %x\n", 12325 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12326 (phba->sli_rev == LPFC_SLI_REV4) ? 12327 get_wqe_reqtag(cmdiocb) : 12328 cmdiocb->iocb.ulpIoTag, 12329 ulp_status, ulp_word4); 12330 release_iocb: 12331 lpfc_sli_release_iocbq(phba, cmdiocb); 12332 return; 12333 } 12334 12335 /** 12336 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12337 * @phba: Pointer to HBA context object. 12338 * @cmdiocb: Pointer to driver command iocb object. 12339 * @rspiocb: Pointer to driver response iocb object. 12340 * 12341 * The function is called from SLI ring event handler with no 12342 * lock held. This function is the completion handler for ELS commands 12343 * which are aborted. The function frees memory resources used for 12344 * the aborted ELS commands. 12345 **/ 12346 void 12347 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12348 struct lpfc_iocbq *rspiocb) 12349 { 12350 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12351 IOCB_t *irsp; 12352 LPFC_MBOXQ_t *mbox; 12353 u32 ulp_command, ulp_status, ulp_word4, iotag; 12354 12355 ulp_command = get_job_cmnd(phba, cmdiocb); 12356 ulp_status = get_job_ulpstatus(phba, rspiocb); 12357 ulp_word4 = get_job_word4(phba, rspiocb); 12358 12359 if (phba->sli_rev == LPFC_SLI_REV4) { 12360 iotag = get_wqe_reqtag(cmdiocb); 12361 } else { 12362 irsp = &rspiocb->iocb; 12363 iotag = irsp->ulpIoTag; 12364 12365 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12366 * The MBX_REG_LOGIN64 mbox command is freed back to the 12367 * mbox_mem_pool here. 12368 */ 12369 if (cmdiocb->context_un.mbox) { 12370 mbox = cmdiocb->context_un.mbox; 12371 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12372 cmdiocb->context_un.mbox = NULL; 12373 } 12374 } 12375 12376 /* ELS cmd tag <ulpIoTag> completes */ 12377 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12378 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12379 "x%x x%x x%x x%px\n", 12380 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12381 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12382 /* 12383 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12384 * if exchange is busy. 12385 */ 12386 if (ulp_command == CMD_GEN_REQUEST64_CR) 12387 lpfc_ct_free_iocb(phba, cmdiocb); 12388 else 12389 lpfc_els_free_iocb(phba, cmdiocb); 12390 12391 lpfc_nlp_put(ndlp); 12392 } 12393 12394 /** 12395 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12396 * @phba: Pointer to HBA context object. 12397 * @pring: Pointer to driver SLI ring object. 12398 * @cmdiocb: Pointer to driver command iocb object. 12399 * @cmpl: completion function. 12400 * 12401 * This function issues an abort iocb for the provided command iocb. In case 12402 * of unloading, the abort iocb will not be issued to commands on the ELS 12403 * ring. Instead, the callback function shall be changed to those commands 12404 * so that nothing happens when them finishes. This function is called with 12405 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12406 * when the command iocb is an abort request. 12407 * 12408 **/ 12409 int 12410 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12411 struct lpfc_iocbq *cmdiocb, void *cmpl) 12412 { 12413 struct lpfc_vport *vport = cmdiocb->vport; 12414 struct lpfc_iocbq *abtsiocbp; 12415 int retval = IOCB_ERROR; 12416 unsigned long iflags; 12417 struct lpfc_nodelist *ndlp = NULL; 12418 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12419 u16 ulp_context, iotag; 12420 bool ia; 12421 12422 /* 12423 * There are certain command types we don't want to abort. And we 12424 * don't want to abort commands that are already in the process of 12425 * being aborted. 12426 */ 12427 if (ulp_command == CMD_ABORT_XRI_WQE || 12428 ulp_command == CMD_ABORT_XRI_CN || 12429 ulp_command == CMD_CLOSE_XRI_CN || 12430 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12431 return IOCB_ABORTING; 12432 12433 if (!pring) { 12434 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12435 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12436 else 12437 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12438 return retval; 12439 } 12440 12441 /* 12442 * If we're unloading, don't abort iocb on the ELS ring, but change 12443 * the callback so that nothing happens when it finishes. 12444 */ 12445 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12446 pring->ringno == LPFC_ELS_RING) { 12447 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12448 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12449 else 12450 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12451 return retval; 12452 } 12453 12454 /* issue ABTS for this IOCB based on iotag */ 12455 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12456 if (abtsiocbp == NULL) 12457 return IOCB_NORESOURCE; 12458 12459 /* This signals the response to set the correct status 12460 * before calling the completion handler 12461 */ 12462 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12463 12464 if (phba->sli_rev == LPFC_SLI_REV4) { 12465 ulp_context = cmdiocb->sli4_xritag; 12466 iotag = abtsiocbp->iotag; 12467 } else { 12468 iotag = cmdiocb->iocb.ulpIoTag; 12469 if (pring->ringno == LPFC_ELS_RING) { 12470 ndlp = cmdiocb->ndlp; 12471 ulp_context = ndlp->nlp_rpi; 12472 } else { 12473 ulp_context = cmdiocb->iocb.ulpContext; 12474 } 12475 } 12476 12477 /* Just close the exchange under certain conditions. */ 12478 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12479 phba->link_state < LPFC_LINK_UP || 12480 (phba->sli_rev == LPFC_SLI_REV4 && 12481 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12482 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12483 ia = true; 12484 else 12485 ia = false; 12486 12487 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12488 cmdiocb->iocb.ulpClass, 12489 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12490 12491 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12492 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12493 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12494 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12495 12496 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12497 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12498 12499 if (cmpl) 12500 abtsiocbp->cmd_cmpl = cmpl; 12501 else 12502 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12503 abtsiocbp->vport = vport; 12504 12505 if (phba->sli_rev == LPFC_SLI_REV4) { 12506 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12507 if (unlikely(pring == NULL)) 12508 goto abort_iotag_exit; 12509 /* Note: both hbalock and ring_lock need to be set here */ 12510 spin_lock_irqsave(&pring->ring_lock, iflags); 12511 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12512 abtsiocbp, 0); 12513 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12514 } else { 12515 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12516 abtsiocbp, 0); 12517 } 12518 12519 abort_iotag_exit: 12520 12521 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12522 "0339 Abort IO XRI x%x, Original iotag x%x, " 12523 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12524 "retval x%x : IA %d cmd_cmpl %ps\n", 12525 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12526 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12527 retval, ia, abtsiocbp->cmd_cmpl); 12528 if (retval) { 12529 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12530 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12531 } 12532 12533 /* 12534 * Caller to this routine should check for IOCB_ERROR 12535 * and handle it properly. This routine no longer removes 12536 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12537 */ 12538 return retval; 12539 } 12540 12541 /** 12542 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12543 * @phba: pointer to lpfc HBA data structure. 12544 * 12545 * This routine will abort all pending and outstanding iocbs to an HBA. 12546 **/ 12547 void 12548 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12549 { 12550 struct lpfc_sli *psli = &phba->sli; 12551 struct lpfc_sli_ring *pring; 12552 struct lpfc_queue *qp = NULL; 12553 int i; 12554 12555 if (phba->sli_rev != LPFC_SLI_REV4) { 12556 for (i = 0; i < psli->num_rings; i++) { 12557 pring = &psli->sli3_ring[i]; 12558 lpfc_sli_abort_iocb_ring(phba, pring); 12559 } 12560 return; 12561 } 12562 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12563 pring = qp->pring; 12564 if (!pring) 12565 continue; 12566 lpfc_sli_abort_iocb_ring(phba, pring); 12567 } 12568 } 12569 12570 /** 12571 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12572 * @iocbq: Pointer to iocb object. 12573 * @vport: Pointer to driver virtual port object. 12574 * 12575 * This function acts as an iocb filter for functions which abort FCP iocbs. 12576 * 12577 * Return values 12578 * -ENODEV, if a null iocb or vport ptr is encountered 12579 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12580 * driver already started the abort process, or is an abort iocb itself 12581 * 0, passes criteria for aborting the FCP I/O iocb 12582 **/ 12583 static int 12584 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12585 struct lpfc_vport *vport) 12586 { 12587 u8 ulp_command; 12588 12589 /* No null ptr vports */ 12590 if (!iocbq || iocbq->vport != vport) 12591 return -ENODEV; 12592 12593 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12594 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12595 */ 12596 ulp_command = get_job_cmnd(vport->phba, iocbq); 12597 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12598 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12599 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12600 (ulp_command == CMD_ABORT_XRI_CN || 12601 ulp_command == CMD_CLOSE_XRI_CN || 12602 ulp_command == CMD_ABORT_XRI_WQE)) 12603 return -EINVAL; 12604 12605 return 0; 12606 } 12607 12608 /** 12609 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12610 * @iocbq: Pointer to driver iocb object. 12611 * @vport: Pointer to driver virtual port object. 12612 * @tgt_id: SCSI ID of the target. 12613 * @lun_id: LUN ID of the scsi device. 12614 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12615 * 12616 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12617 * host. 12618 * 12619 * It will return 12620 * 0 if the filtering criteria is met for the given iocb and will return 12621 * 1 if the filtering criteria is not met. 12622 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12623 * given iocb is for the SCSI device specified by vport, tgt_id and 12624 * lun_id parameter. 12625 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12626 * given iocb is for the SCSI target specified by vport and tgt_id 12627 * parameters. 12628 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12629 * given iocb is for the SCSI host associated with the given vport. 12630 * This function is called with no locks held. 12631 **/ 12632 static int 12633 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12634 uint16_t tgt_id, uint64_t lun_id, 12635 lpfc_ctx_cmd ctx_cmd) 12636 { 12637 struct lpfc_io_buf *lpfc_cmd; 12638 int rc = 1; 12639 12640 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12641 12642 if (lpfc_cmd->pCmd == NULL) 12643 return rc; 12644 12645 switch (ctx_cmd) { 12646 case LPFC_CTX_LUN: 12647 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12648 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12649 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12650 rc = 0; 12651 break; 12652 case LPFC_CTX_TGT: 12653 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12654 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12655 rc = 0; 12656 break; 12657 case LPFC_CTX_HOST: 12658 rc = 0; 12659 break; 12660 default: 12661 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12662 __func__, ctx_cmd); 12663 break; 12664 } 12665 12666 return rc; 12667 } 12668 12669 /** 12670 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12671 * @vport: Pointer to virtual port. 12672 * @tgt_id: SCSI ID of the target. 12673 * @lun_id: LUN ID of the scsi device. 12674 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12675 * 12676 * This function returns number of FCP commands pending for the vport. 12677 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12678 * commands pending on the vport associated with SCSI device specified 12679 * by tgt_id and lun_id parameters. 12680 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12681 * commands pending on the vport associated with SCSI target specified 12682 * by tgt_id parameter. 12683 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12684 * commands pending on the vport. 12685 * This function returns the number of iocbs which satisfy the filter. 12686 * This function is called without any lock held. 12687 **/ 12688 int 12689 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12690 lpfc_ctx_cmd ctx_cmd) 12691 { 12692 struct lpfc_hba *phba = vport->phba; 12693 struct lpfc_iocbq *iocbq; 12694 int sum, i; 12695 unsigned long iflags; 12696 u8 ulp_command; 12697 12698 spin_lock_irqsave(&phba->hbalock, iflags); 12699 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12700 iocbq = phba->sli.iocbq_lookup[i]; 12701 12702 if (!iocbq || iocbq->vport != vport) 12703 continue; 12704 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12705 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12706 continue; 12707 12708 /* Include counting outstanding aborts */ 12709 ulp_command = get_job_cmnd(phba, iocbq); 12710 if (ulp_command == CMD_ABORT_XRI_CN || 12711 ulp_command == CMD_CLOSE_XRI_CN || 12712 ulp_command == CMD_ABORT_XRI_WQE) { 12713 sum++; 12714 continue; 12715 } 12716 12717 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12718 ctx_cmd) == 0) 12719 sum++; 12720 } 12721 spin_unlock_irqrestore(&phba->hbalock, iflags); 12722 12723 return sum; 12724 } 12725 12726 /** 12727 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12728 * @phba: Pointer to HBA context object 12729 * @cmdiocb: Pointer to command iocb object. 12730 * @rspiocb: Pointer to response iocb object. 12731 * 12732 * This function is called when an aborted FCP iocb completes. This 12733 * function is called by the ring event handler with no lock held. 12734 * This function frees the iocb. 12735 **/ 12736 void 12737 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12738 struct lpfc_iocbq *rspiocb) 12739 { 12740 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12741 "3096 ABORT_XRI_CX completing on rpi x%x " 12742 "original iotag x%x, abort cmd iotag x%x " 12743 "status 0x%x, reason 0x%x\n", 12744 (phba->sli_rev == LPFC_SLI_REV4) ? 12745 cmdiocb->sli4_xritag : 12746 cmdiocb->iocb.un.acxri.abortContextTag, 12747 get_job_abtsiotag(phba, cmdiocb), 12748 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12749 get_job_word4(phba, rspiocb)); 12750 lpfc_sli_release_iocbq(phba, cmdiocb); 12751 return; 12752 } 12753 12754 /** 12755 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12756 * @vport: Pointer to virtual port. 12757 * @tgt_id: SCSI ID of the target. 12758 * @lun_id: LUN ID of the scsi device. 12759 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12760 * 12761 * This function sends an abort command for every SCSI command 12762 * associated with the given virtual port pending on the ring 12763 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12764 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12765 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12766 * followed by lpfc_sli_validate_fcp_iocb. 12767 * 12768 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12769 * FCP iocbs associated with lun specified by tgt_id and lun_id 12770 * parameters 12771 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12772 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12773 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12774 * FCP iocbs associated with virtual port. 12775 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12776 * lpfc_sli4_calc_ring is used. 12777 * This function returns number of iocbs it failed to abort. 12778 * This function is called with no locks held. 12779 **/ 12780 int 12781 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12782 lpfc_ctx_cmd abort_cmd) 12783 { 12784 struct lpfc_hba *phba = vport->phba; 12785 struct lpfc_sli_ring *pring = NULL; 12786 struct lpfc_iocbq *iocbq; 12787 int errcnt = 0, ret_val = 0; 12788 unsigned long iflags; 12789 int i; 12790 12791 /* all I/Os are in process of being flushed */ 12792 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12793 return errcnt; 12794 12795 for (i = 1; i <= phba->sli.last_iotag; i++) { 12796 iocbq = phba->sli.iocbq_lookup[i]; 12797 12798 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12799 continue; 12800 12801 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12802 abort_cmd) != 0) 12803 continue; 12804 12805 spin_lock_irqsave(&phba->hbalock, iflags); 12806 if (phba->sli_rev == LPFC_SLI_REV3) { 12807 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12808 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12809 pring = lpfc_sli4_calc_ring(phba, iocbq); 12810 } 12811 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12812 lpfc_sli_abort_fcp_cmpl); 12813 spin_unlock_irqrestore(&phba->hbalock, iflags); 12814 if (ret_val != IOCB_SUCCESS) 12815 errcnt++; 12816 } 12817 12818 return errcnt; 12819 } 12820 12821 /** 12822 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12823 * @vport: Pointer to virtual port. 12824 * @pring: Pointer to driver SLI ring object. 12825 * @tgt_id: SCSI ID of the target. 12826 * @lun_id: LUN ID of the scsi device. 12827 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12828 * 12829 * This function sends an abort command for every SCSI command 12830 * associated with the given virtual port pending on the ring 12831 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12832 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12833 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12834 * followed by lpfc_sli_validate_fcp_iocb. 12835 * 12836 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12837 * FCP iocbs associated with lun specified by tgt_id and lun_id 12838 * parameters 12839 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12840 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12841 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12842 * FCP iocbs associated with virtual port. 12843 * This function returns number of iocbs it aborted . 12844 * This function is called with no locks held right after a taskmgmt 12845 * command is sent. 12846 **/ 12847 int 12848 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12849 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12850 { 12851 struct lpfc_hba *phba = vport->phba; 12852 struct lpfc_io_buf *lpfc_cmd; 12853 struct lpfc_iocbq *abtsiocbq; 12854 struct lpfc_nodelist *ndlp = NULL; 12855 struct lpfc_iocbq *iocbq; 12856 int sum, i, ret_val; 12857 unsigned long iflags; 12858 struct lpfc_sli_ring *pring_s4 = NULL; 12859 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12860 bool ia; 12861 12862 /* all I/Os are in process of being flushed */ 12863 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12864 return 0; 12865 12866 sum = 0; 12867 12868 spin_lock_irqsave(&phba->hbalock, iflags); 12869 for (i = 1; i <= phba->sli.last_iotag; i++) { 12870 iocbq = phba->sli.iocbq_lookup[i]; 12871 12872 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12873 continue; 12874 12875 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12876 cmd) != 0) 12877 continue; 12878 12879 /* Guard against IO completion being called at same time */ 12880 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12881 spin_lock(&lpfc_cmd->buf_lock); 12882 12883 if (!lpfc_cmd->pCmd) { 12884 spin_unlock(&lpfc_cmd->buf_lock); 12885 continue; 12886 } 12887 12888 if (phba->sli_rev == LPFC_SLI_REV4) { 12889 pring_s4 = 12890 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12891 if (!pring_s4) { 12892 spin_unlock(&lpfc_cmd->buf_lock); 12893 continue; 12894 } 12895 /* Note: both hbalock and ring_lock must be set here */ 12896 spin_lock(&pring_s4->ring_lock); 12897 } 12898 12899 /* 12900 * If the iocbq is already being aborted, don't take a second 12901 * action, but do count it. 12902 */ 12903 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12904 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12905 if (phba->sli_rev == LPFC_SLI_REV4) 12906 spin_unlock(&pring_s4->ring_lock); 12907 spin_unlock(&lpfc_cmd->buf_lock); 12908 continue; 12909 } 12910 12911 /* issue ABTS for this IOCB based on iotag */ 12912 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12913 if (!abtsiocbq) { 12914 if (phba->sli_rev == LPFC_SLI_REV4) 12915 spin_unlock(&pring_s4->ring_lock); 12916 spin_unlock(&lpfc_cmd->buf_lock); 12917 continue; 12918 } 12919 12920 if (phba->sli_rev == LPFC_SLI_REV4) { 12921 iotag = abtsiocbq->iotag; 12922 ulp_context = iocbq->sli4_xritag; 12923 cqid = lpfc_cmd->hdwq->io_cq_map; 12924 } else { 12925 iotag = iocbq->iocb.ulpIoTag; 12926 if (pring->ringno == LPFC_ELS_RING) { 12927 ndlp = iocbq->ndlp; 12928 ulp_context = ndlp->nlp_rpi; 12929 } else { 12930 ulp_context = iocbq->iocb.ulpContext; 12931 } 12932 } 12933 12934 ndlp = lpfc_cmd->rdata->pnode; 12935 12936 if (lpfc_is_link_up(phba) && 12937 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12938 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12939 ia = false; 12940 else 12941 ia = true; 12942 12943 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12944 iocbq->iocb.ulpClass, cqid, 12945 ia, false); 12946 12947 abtsiocbq->vport = vport; 12948 12949 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12950 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12951 if (iocbq->cmd_flag & LPFC_IO_FCP) 12952 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12953 if (iocbq->cmd_flag & LPFC_IO_FOF) 12954 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12955 12956 /* Setup callback routine and issue the command. */ 12957 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12958 12959 /* 12960 * Indicate the IO is being aborted by the driver and set 12961 * the caller's flag into the aborted IO. 12962 */ 12963 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12964 12965 if (phba->sli_rev == LPFC_SLI_REV4) { 12966 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12967 abtsiocbq, 0); 12968 spin_unlock(&pring_s4->ring_lock); 12969 } else { 12970 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12971 abtsiocbq, 0); 12972 } 12973 12974 spin_unlock(&lpfc_cmd->buf_lock); 12975 12976 if (ret_val == IOCB_ERROR) 12977 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12978 else 12979 sum++; 12980 } 12981 spin_unlock_irqrestore(&phba->hbalock, iflags); 12982 return sum; 12983 } 12984 12985 /** 12986 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12987 * @phba: Pointer to HBA context object. 12988 * @cmdiocbq: Pointer to command iocb. 12989 * @rspiocbq: Pointer to response iocb. 12990 * 12991 * This function is the completion handler for iocbs issued using 12992 * lpfc_sli_issue_iocb_wait function. This function is called by the 12993 * ring event handler function without any lock held. This function 12994 * can be called from both worker thread context and interrupt 12995 * context. This function also can be called from other thread which 12996 * cleans up the SLI layer objects. 12997 * This function copy the contents of the response iocb to the 12998 * response iocb memory object provided by the caller of 12999 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 13000 * sleeps for the iocb completion. 13001 **/ 13002 static void 13003 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 13004 struct lpfc_iocbq *cmdiocbq, 13005 struct lpfc_iocbq *rspiocbq) 13006 { 13007 wait_queue_head_t *pdone_q; 13008 unsigned long iflags; 13009 struct lpfc_io_buf *lpfc_cmd; 13010 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13011 13012 spin_lock_irqsave(&phba->hbalock, iflags); 13013 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13014 13015 /* 13016 * A time out has occurred for the iocb. If a time out 13017 * completion handler has been supplied, call it. Otherwise, 13018 * just free the iocbq. 13019 */ 13020 13021 spin_unlock_irqrestore(&phba->hbalock, iflags); 13022 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13023 cmdiocbq->wait_cmd_cmpl = NULL; 13024 if (cmdiocbq->cmd_cmpl) 13025 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13026 else 13027 lpfc_sli_release_iocbq(phba, cmdiocbq); 13028 return; 13029 } 13030 13031 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13032 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13033 if (cmdiocbq->rsp_iocb && rspiocbq) 13034 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13035 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13036 13037 /* Set the exchange busy flag for task management commands */ 13038 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13039 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13040 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13041 cur_iocbq); 13042 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13043 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13044 else 13045 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13046 } 13047 13048 pdone_q = cmdiocbq->context_un.wait_queue; 13049 if (pdone_q) 13050 wake_up(pdone_q); 13051 spin_unlock_irqrestore(&phba->hbalock, iflags); 13052 return; 13053 } 13054 13055 /** 13056 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13057 * @phba: Pointer to HBA context object.. 13058 * @piocbq: Pointer to command iocb. 13059 * @flag: Flag to test. 13060 * 13061 * This routine grabs the hbalock and then test the cmd_flag to 13062 * see if the passed in flag is set. 13063 * Returns: 13064 * 1 if flag is set. 13065 * 0 if flag is not set. 13066 **/ 13067 static int 13068 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13069 struct lpfc_iocbq *piocbq, uint32_t flag) 13070 { 13071 unsigned long iflags; 13072 int ret; 13073 13074 spin_lock_irqsave(&phba->hbalock, iflags); 13075 ret = piocbq->cmd_flag & flag; 13076 spin_unlock_irqrestore(&phba->hbalock, iflags); 13077 return ret; 13078 13079 } 13080 13081 /** 13082 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13083 * @phba: Pointer to HBA context object.. 13084 * @ring_number: Ring number 13085 * @piocb: Pointer to command iocb. 13086 * @prspiocbq: Pointer to response iocb. 13087 * @timeout: Timeout in number of seconds. 13088 * 13089 * This function issues the iocb to firmware and waits for the 13090 * iocb to complete. The cmd_cmpl field of the shall be used 13091 * to handle iocbs which time out. If the field is NULL, the 13092 * function shall free the iocbq structure. If more clean up is 13093 * needed, the caller is expected to provide a completion function 13094 * that will provide the needed clean up. If the iocb command is 13095 * not completed within timeout seconds, the function will either 13096 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13097 * completion function set in the cmd_cmpl field and then return 13098 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13099 * resources if this function returns IOCB_TIMEDOUT. 13100 * The function waits for the iocb completion using an 13101 * non-interruptible wait. 13102 * This function will sleep while waiting for iocb completion. 13103 * So, this function should not be called from any context which 13104 * does not allow sleeping. Due to the same reason, this function 13105 * cannot be called with interrupt disabled. 13106 * This function assumes that the iocb completions occur while 13107 * this function sleep. So, this function cannot be called from 13108 * the thread which process iocb completion for this ring. 13109 * This function clears the cmd_flag of the iocb object before 13110 * issuing the iocb and the iocb completion handler sets this 13111 * flag and wakes this thread when the iocb completes. 13112 * The contents of the response iocb will be copied to prspiocbq 13113 * by the completion handler when the command completes. 13114 * This function returns IOCB_SUCCESS when success. 13115 * This function is called with no lock held. 13116 **/ 13117 int 13118 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13119 uint32_t ring_number, 13120 struct lpfc_iocbq *piocb, 13121 struct lpfc_iocbq *prspiocbq, 13122 uint32_t timeout) 13123 { 13124 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13125 long timeleft, timeout_req = 0; 13126 int retval = IOCB_SUCCESS; 13127 uint32_t creg_val; 13128 struct lpfc_iocbq *iocb; 13129 int txq_cnt = 0; 13130 int txcmplq_cnt = 0; 13131 struct lpfc_sli_ring *pring; 13132 unsigned long iflags; 13133 bool iocb_completed = true; 13134 13135 if (phba->sli_rev >= LPFC_SLI_REV4) { 13136 lpfc_sli_prep_wqe(phba, piocb); 13137 13138 pring = lpfc_sli4_calc_ring(phba, piocb); 13139 } else 13140 pring = &phba->sli.sli3_ring[ring_number]; 13141 /* 13142 * If the caller has provided a response iocbq buffer, then rsp_iocb 13143 * is NULL or its an error. 13144 */ 13145 if (prspiocbq) { 13146 if (piocb->rsp_iocb) 13147 return IOCB_ERROR; 13148 piocb->rsp_iocb = prspiocbq; 13149 } 13150 13151 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13152 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13153 piocb->context_un.wait_queue = &done_q; 13154 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13155 13156 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13157 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13158 return IOCB_ERROR; 13159 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13160 writel(creg_val, phba->HCregaddr); 13161 readl(phba->HCregaddr); /* flush */ 13162 } 13163 13164 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13165 SLI_IOCB_RET_IOCB); 13166 if (retval == IOCB_SUCCESS) { 13167 timeout_req = secs_to_jiffies(timeout); 13168 timeleft = wait_event_timeout(done_q, 13169 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13170 timeout_req); 13171 spin_lock_irqsave(&phba->hbalock, iflags); 13172 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13173 13174 /* 13175 * IOCB timed out. Inform the wake iocb wait 13176 * completion function and set local status 13177 */ 13178 13179 iocb_completed = false; 13180 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13181 } 13182 spin_unlock_irqrestore(&phba->hbalock, iflags); 13183 if (iocb_completed) { 13184 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13185 "0331 IOCB wake signaled\n"); 13186 /* Note: we are not indicating if the IOCB has a success 13187 * status or not - that's for the caller to check. 13188 * IOCB_SUCCESS means just that the command was sent and 13189 * completed. Not that it completed successfully. 13190 * */ 13191 } else if (timeleft == 0) { 13192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13193 "0338 IOCB wait timeout error - no " 13194 "wake response Data x%x\n", timeout); 13195 retval = IOCB_TIMEDOUT; 13196 } else { 13197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13198 "0330 IOCB wake NOT set, " 13199 "Data x%x x%lx\n", 13200 timeout, (timeleft / jiffies)); 13201 retval = IOCB_TIMEDOUT; 13202 } 13203 } else if (retval == IOCB_BUSY) { 13204 if (phba->cfg_log_verbose & LOG_SLI) { 13205 list_for_each_entry(iocb, &pring->txq, list) { 13206 txq_cnt++; 13207 } 13208 list_for_each_entry(iocb, &pring->txcmplq, list) { 13209 txcmplq_cnt++; 13210 } 13211 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13212 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13213 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13214 } 13215 return retval; 13216 } else { 13217 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13218 "0332 IOCB wait issue failed, Data x%x\n", 13219 retval); 13220 retval = IOCB_ERROR; 13221 } 13222 13223 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13224 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13225 return IOCB_ERROR; 13226 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13227 writel(creg_val, phba->HCregaddr); 13228 readl(phba->HCregaddr); /* flush */ 13229 } 13230 13231 if (prspiocbq) 13232 piocb->rsp_iocb = NULL; 13233 13234 piocb->context_un.wait_queue = NULL; 13235 piocb->cmd_cmpl = NULL; 13236 return retval; 13237 } 13238 13239 /** 13240 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13241 * @phba: Pointer to HBA context object. 13242 * @pmboxq: Pointer to driver mailbox object. 13243 * @timeout: Timeout in number of seconds. 13244 * 13245 * This function issues the mailbox to firmware and waits for the 13246 * mailbox command to complete. If the mailbox command is not 13247 * completed within timeout seconds, it returns MBX_TIMEOUT. 13248 * The function waits for the mailbox completion using an 13249 * interruptible wait. If the thread is woken up due to a 13250 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13251 * should not free the mailbox resources, if this function returns 13252 * MBX_TIMEOUT. 13253 * This function will sleep while waiting for mailbox completion. 13254 * So, this function should not be called from any context which 13255 * does not allow sleeping. Due to the same reason, this function 13256 * cannot be called with interrupt disabled. 13257 * This function assumes that the mailbox completion occurs while 13258 * this function sleep. So, this function cannot be called from 13259 * the worker thread which processes mailbox completion. 13260 * This function is called in the context of HBA management 13261 * applications. 13262 * This function returns MBX_SUCCESS when successful. 13263 * This function is called with no lock held. 13264 **/ 13265 int 13266 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13267 uint32_t timeout) 13268 { 13269 struct completion mbox_done; 13270 int retval; 13271 unsigned long flag; 13272 13273 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13274 /* setup wake call as IOCB callback */ 13275 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13276 13277 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13278 init_completion(&mbox_done); 13279 pmboxq->ctx_u.mbox_wait = &mbox_done; 13280 /* now issue the command */ 13281 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13282 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13283 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout)); 13284 13285 spin_lock_irqsave(&phba->hbalock, flag); 13286 pmboxq->ctx_u.mbox_wait = NULL; 13287 /* 13288 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13289 * else do not free the resources. 13290 */ 13291 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13292 retval = MBX_SUCCESS; 13293 } else { 13294 retval = MBX_TIMEOUT; 13295 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13296 } 13297 spin_unlock_irqrestore(&phba->hbalock, flag); 13298 } 13299 return retval; 13300 } 13301 13302 /** 13303 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13304 * @phba: Pointer to HBA context. 13305 * @mbx_action: Mailbox shutdown options. 13306 * 13307 * This function is called to shutdown the driver's mailbox sub-system. 13308 * It first marks the mailbox sub-system is in a block state to prevent 13309 * the asynchronous mailbox command from issued off the pending mailbox 13310 * command queue. If the mailbox command sub-system shutdown is due to 13311 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13312 * the mailbox sub-system flush routine to forcefully bring down the 13313 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13314 * as with offline or HBA function reset), this routine will wait for the 13315 * outstanding mailbox command to complete before invoking the mailbox 13316 * sub-system flush routine to gracefully bring down mailbox sub-system. 13317 **/ 13318 void 13319 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13320 { 13321 struct lpfc_sli *psli = &phba->sli; 13322 unsigned long timeout; 13323 13324 if (mbx_action == LPFC_MBX_NO_WAIT) { 13325 /* delay 100ms for port state */ 13326 msleep(100); 13327 lpfc_sli_mbox_sys_flush(phba); 13328 return; 13329 } 13330 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 13331 13332 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13333 local_bh_disable(); 13334 13335 spin_lock_irq(&phba->hbalock); 13336 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13337 13338 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13339 /* Determine how long we might wait for the active mailbox 13340 * command to be gracefully completed by firmware. 13341 */ 13342 if (phba->sli.mbox_active) 13343 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 13344 phba->sli.mbox_active)) + jiffies; 13345 spin_unlock_irq(&phba->hbalock); 13346 13347 /* Enable softirqs again, done with phba->hbalock */ 13348 local_bh_enable(); 13349 13350 while (phba->sli.mbox_active) { 13351 /* Check active mailbox complete status every 2ms */ 13352 msleep(2); 13353 if (time_after(jiffies, timeout)) 13354 /* Timeout, let the mailbox flush routine to 13355 * forcefully release active mailbox command 13356 */ 13357 break; 13358 } 13359 } else { 13360 spin_unlock_irq(&phba->hbalock); 13361 13362 /* Enable softirqs again, done with phba->hbalock */ 13363 local_bh_enable(); 13364 } 13365 13366 lpfc_sli_mbox_sys_flush(phba); 13367 } 13368 13369 /** 13370 * lpfc_sli_eratt_read - read sli-3 error attention events 13371 * @phba: Pointer to HBA context. 13372 * 13373 * This function is called to read the SLI3 device error attention registers 13374 * for possible error attention events. The caller must hold the hostlock 13375 * with spin_lock_irq(). 13376 * 13377 * This function returns 1 when there is Error Attention in the Host Attention 13378 * Register and returns 0 otherwise. 13379 **/ 13380 static int 13381 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13382 { 13383 uint32_t ha_copy; 13384 13385 /* Read chip Host Attention (HA) register */ 13386 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13387 goto unplug_err; 13388 13389 if (ha_copy & HA_ERATT) { 13390 /* Read host status register to retrieve error event */ 13391 if (lpfc_sli_read_hs(phba)) 13392 goto unplug_err; 13393 13394 /* Check if there is a deferred error condition is active */ 13395 if ((HS_FFER1 & phba->work_hs) && 13396 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13397 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13398 set_bit(DEFER_ERATT, &phba->hba_flag); 13399 /* Clear all interrupt enable conditions */ 13400 writel(0, phba->HCregaddr); 13401 readl(phba->HCregaddr); 13402 } 13403 13404 /* Set the driver HA work bitmap */ 13405 phba->work_ha |= HA_ERATT; 13406 /* Indicate polling handles this ERATT */ 13407 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13408 return 1; 13409 } 13410 return 0; 13411 13412 unplug_err: 13413 /* Set the driver HS work bitmap */ 13414 phba->work_hs |= UNPLUG_ERR; 13415 /* Set the driver HA work bitmap */ 13416 phba->work_ha |= HA_ERATT; 13417 /* Indicate polling handles this ERATT */ 13418 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13419 return 1; 13420 } 13421 13422 /** 13423 * lpfc_sli4_eratt_read - read sli-4 error attention events 13424 * @phba: Pointer to HBA context. 13425 * 13426 * This function is called to read the SLI4 device error attention registers 13427 * for possible error attention events. The caller must hold the hostlock 13428 * with spin_lock_irq(). 13429 * 13430 * This function returns 1 when there is Error Attention in the Host Attention 13431 * Register and returns 0 otherwise. 13432 **/ 13433 static int 13434 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13435 { 13436 uint32_t uerr_sta_hi, uerr_sta_lo; 13437 uint32_t if_type, portsmphr; 13438 struct lpfc_register portstat_reg; 13439 u32 logmask; 13440 13441 /* 13442 * For now, use the SLI4 device internal unrecoverable error 13443 * registers for error attention. This can be changed later. 13444 */ 13445 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13446 switch (if_type) { 13447 case LPFC_SLI_INTF_IF_TYPE_0: 13448 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13449 &uerr_sta_lo) || 13450 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13451 &uerr_sta_hi)) { 13452 phba->work_hs |= UNPLUG_ERR; 13453 phba->work_ha |= HA_ERATT; 13454 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13455 return 1; 13456 } 13457 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13458 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13460 "1423 HBA Unrecoverable error: " 13461 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13462 "ue_mask_lo_reg=0x%x, " 13463 "ue_mask_hi_reg=0x%x\n", 13464 uerr_sta_lo, uerr_sta_hi, 13465 phba->sli4_hba.ue_mask_lo, 13466 phba->sli4_hba.ue_mask_hi); 13467 phba->work_status[0] = uerr_sta_lo; 13468 phba->work_status[1] = uerr_sta_hi; 13469 phba->work_ha |= HA_ERATT; 13470 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13471 return 1; 13472 } 13473 break; 13474 case LPFC_SLI_INTF_IF_TYPE_2: 13475 case LPFC_SLI_INTF_IF_TYPE_6: 13476 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13477 &portstat_reg.word0) || 13478 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13479 &portsmphr)){ 13480 phba->work_hs |= UNPLUG_ERR; 13481 phba->work_ha |= HA_ERATT; 13482 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13483 return 1; 13484 } 13485 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13486 phba->work_status[0] = 13487 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13488 phba->work_status[1] = 13489 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13490 logmask = LOG_TRACE_EVENT; 13491 if (phba->work_status[0] == 13492 SLIPORT_ERR1_REG_ERR_CODE_2 && 13493 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13494 logmask = LOG_SLI; 13495 lpfc_printf_log(phba, KERN_ERR, logmask, 13496 "2885 Port Status Event: " 13497 "port status reg 0x%x, " 13498 "port smphr reg 0x%x, " 13499 "error 1=0x%x, error 2=0x%x\n", 13500 portstat_reg.word0, 13501 portsmphr, 13502 phba->work_status[0], 13503 phba->work_status[1]); 13504 phba->work_ha |= HA_ERATT; 13505 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13506 return 1; 13507 } 13508 break; 13509 case LPFC_SLI_INTF_IF_TYPE_1: 13510 default: 13511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13512 "2886 HBA Error Attention on unsupported " 13513 "if type %d.", if_type); 13514 return 1; 13515 } 13516 13517 return 0; 13518 } 13519 13520 /** 13521 * lpfc_sli_check_eratt - check error attention events 13522 * @phba: Pointer to HBA context. 13523 * 13524 * This function is called from timer soft interrupt context to check HBA's 13525 * error attention register bit for error attention events. 13526 * 13527 * This function returns 1 when there is Error Attention in the Host Attention 13528 * Register and returns 0 otherwise. 13529 **/ 13530 int 13531 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13532 { 13533 uint32_t ha_copy; 13534 13535 /* If somebody is waiting to handle an eratt, don't process it 13536 * here. The brdkill function will do this. 13537 */ 13538 if (phba->link_flag & LS_IGNORE_ERATT) 13539 return 0; 13540 13541 /* Check if interrupt handler handles this ERATT */ 13542 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13543 /* Interrupt handler has handled ERATT */ 13544 return 0; 13545 13546 /* 13547 * If there is deferred error attention, do not check for error 13548 * attention 13549 */ 13550 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13551 return 0; 13552 13553 spin_lock_irq(&phba->hbalock); 13554 /* If PCI channel is offline, don't process it */ 13555 if (unlikely(pci_channel_offline(phba->pcidev))) { 13556 spin_unlock_irq(&phba->hbalock); 13557 return 0; 13558 } 13559 13560 switch (phba->sli_rev) { 13561 case LPFC_SLI_REV2: 13562 case LPFC_SLI_REV3: 13563 /* Read chip Host Attention (HA) register */ 13564 ha_copy = lpfc_sli_eratt_read(phba); 13565 break; 13566 case LPFC_SLI_REV4: 13567 /* Read device Uncoverable Error (UERR) registers */ 13568 ha_copy = lpfc_sli4_eratt_read(phba); 13569 break; 13570 default: 13571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13572 "0299 Invalid SLI revision (%d)\n", 13573 phba->sli_rev); 13574 ha_copy = 0; 13575 break; 13576 } 13577 spin_unlock_irq(&phba->hbalock); 13578 13579 return ha_copy; 13580 } 13581 13582 /** 13583 * lpfc_intr_state_check - Check device state for interrupt handling 13584 * @phba: Pointer to HBA context. 13585 * 13586 * This inline routine checks whether a device or its PCI slot is in a state 13587 * that the interrupt should be handled. 13588 * 13589 * This function returns 0 if the device or the PCI slot is in a state that 13590 * interrupt should be handled, otherwise -EIO. 13591 */ 13592 static inline int 13593 lpfc_intr_state_check(struct lpfc_hba *phba) 13594 { 13595 /* If the pci channel is offline, ignore all the interrupts */ 13596 if (unlikely(pci_channel_offline(phba->pcidev))) 13597 return -EIO; 13598 13599 /* Update device level interrupt statistics */ 13600 phba->sli.slistat.sli_intr++; 13601 13602 /* Ignore all interrupts during initialization. */ 13603 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13604 return -EIO; 13605 13606 return 0; 13607 } 13608 13609 /** 13610 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13611 * @irq: Interrupt number. 13612 * @dev_id: The device context pointer. 13613 * 13614 * This function is directly called from the PCI layer as an interrupt 13615 * service routine when device with SLI-3 interface spec is enabled with 13616 * MSI-X multi-message interrupt mode and there are slow-path events in 13617 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13618 * interrupt mode, this function is called as part of the device-level 13619 * interrupt handler. When the PCI slot is in error recovery or the HBA 13620 * is undergoing initialization, the interrupt handler will not process 13621 * the interrupt. The link attention and ELS ring attention events are 13622 * handled by the worker thread. The interrupt handler signals the worker 13623 * thread and returns for these events. This function is called without 13624 * any lock held. It gets the hbalock to access and update SLI data 13625 * structures. 13626 * 13627 * This function returns IRQ_HANDLED when interrupt is handled else it 13628 * returns IRQ_NONE. 13629 **/ 13630 irqreturn_t 13631 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13632 { 13633 struct lpfc_hba *phba; 13634 uint32_t ha_copy, hc_copy; 13635 uint32_t work_ha_copy; 13636 unsigned long status; 13637 unsigned long iflag; 13638 uint32_t control; 13639 13640 MAILBOX_t *mbox, *pmbox; 13641 struct lpfc_vport *vport; 13642 struct lpfc_nodelist *ndlp; 13643 struct lpfc_dmabuf *mp; 13644 LPFC_MBOXQ_t *pmb; 13645 int rc; 13646 13647 /* 13648 * Get the driver's phba structure from the dev_id and 13649 * assume the HBA is not interrupting. 13650 */ 13651 phba = (struct lpfc_hba *)dev_id; 13652 13653 if (unlikely(!phba)) 13654 return IRQ_NONE; 13655 13656 /* 13657 * Stuff needs to be attented to when this function is invoked as an 13658 * individual interrupt handler in MSI-X multi-message interrupt mode 13659 */ 13660 if (phba->intr_type == MSIX) { 13661 /* Check device state for handling interrupt */ 13662 if (lpfc_intr_state_check(phba)) 13663 return IRQ_NONE; 13664 /* Need to read HA REG for slow-path events */ 13665 spin_lock_irqsave(&phba->hbalock, iflag); 13666 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13667 goto unplug_error; 13668 /* If somebody is waiting to handle an eratt don't process it 13669 * here. The brdkill function will do this. 13670 */ 13671 if (phba->link_flag & LS_IGNORE_ERATT) 13672 ha_copy &= ~HA_ERATT; 13673 /* Check the need for handling ERATT in interrupt handler */ 13674 if (ha_copy & HA_ERATT) { 13675 if (test_and_set_bit(HBA_ERATT_HANDLED, 13676 &phba->hba_flag)) 13677 /* ERATT polling has handled ERATT */ 13678 ha_copy &= ~HA_ERATT; 13679 } 13680 13681 /* 13682 * If there is deferred error attention, do not check for any 13683 * interrupt. 13684 */ 13685 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13686 spin_unlock_irqrestore(&phba->hbalock, iflag); 13687 return IRQ_NONE; 13688 } 13689 13690 /* Clear up only attention source related to slow-path */ 13691 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13692 goto unplug_error; 13693 13694 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13695 HC_LAINT_ENA | HC_ERINT_ENA), 13696 phba->HCregaddr); 13697 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13698 phba->HAregaddr); 13699 writel(hc_copy, phba->HCregaddr); 13700 readl(phba->HAregaddr); /* flush */ 13701 spin_unlock_irqrestore(&phba->hbalock, iflag); 13702 } else 13703 ha_copy = phba->ha_copy; 13704 13705 work_ha_copy = ha_copy & phba->work_ha_mask; 13706 13707 if (work_ha_copy) { 13708 if (work_ha_copy & HA_LATT) { 13709 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13710 /* 13711 * Turn off Link Attention interrupts 13712 * until CLEAR_LA done 13713 */ 13714 spin_lock_irqsave(&phba->hbalock, iflag); 13715 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13716 if (lpfc_readl(phba->HCregaddr, &control)) 13717 goto unplug_error; 13718 control &= ~HC_LAINT_ENA; 13719 writel(control, phba->HCregaddr); 13720 readl(phba->HCregaddr); /* flush */ 13721 spin_unlock_irqrestore(&phba->hbalock, iflag); 13722 } 13723 else 13724 work_ha_copy &= ~HA_LATT; 13725 } 13726 13727 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13728 /* 13729 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13730 * the only slow ring. 13731 */ 13732 status = (work_ha_copy & 13733 (HA_RXMASK << (4*LPFC_ELS_RING))); 13734 status >>= (4*LPFC_ELS_RING); 13735 if (status & HA_RXMASK) { 13736 spin_lock_irqsave(&phba->hbalock, iflag); 13737 if (lpfc_readl(phba->HCregaddr, &control)) 13738 goto unplug_error; 13739 13740 lpfc_debugfs_slow_ring_trc(phba, 13741 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13742 control, status, 13743 (uint32_t)phba->sli.slistat.sli_intr); 13744 13745 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13746 lpfc_debugfs_slow_ring_trc(phba, 13747 "ISR Disable ring:" 13748 "pwork:x%x hawork:x%x wait:x%x", 13749 phba->work_ha, work_ha_copy, 13750 (uint32_t)((unsigned long) 13751 &phba->work_waitq)); 13752 13753 control &= 13754 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13755 writel(control, phba->HCregaddr); 13756 readl(phba->HCregaddr); /* flush */ 13757 } 13758 else { 13759 lpfc_debugfs_slow_ring_trc(phba, 13760 "ISR slow ring: pwork:" 13761 "x%x hawork:x%x wait:x%x", 13762 phba->work_ha, work_ha_copy, 13763 (uint32_t)((unsigned long) 13764 &phba->work_waitq)); 13765 } 13766 spin_unlock_irqrestore(&phba->hbalock, iflag); 13767 } 13768 } 13769 spin_lock_irqsave(&phba->hbalock, iflag); 13770 if (work_ha_copy & HA_ERATT) { 13771 if (lpfc_sli_read_hs(phba)) 13772 goto unplug_error; 13773 /* 13774 * Check if there is a deferred error condition 13775 * is active 13776 */ 13777 if ((HS_FFER1 & phba->work_hs) && 13778 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13779 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13780 phba->work_hs)) { 13781 set_bit(DEFER_ERATT, &phba->hba_flag); 13782 /* Clear all interrupt enable conditions */ 13783 writel(0, phba->HCregaddr); 13784 readl(phba->HCregaddr); 13785 } 13786 } 13787 13788 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13789 pmb = phba->sli.mbox_active; 13790 pmbox = &pmb->u.mb; 13791 mbox = phba->mbox; 13792 vport = pmb->vport; 13793 13794 /* First check out the status word */ 13795 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13796 if (pmbox->mbxOwner != OWN_HOST) { 13797 spin_unlock_irqrestore(&phba->hbalock, iflag); 13798 /* 13799 * Stray Mailbox Interrupt, mbxCommand <cmd> 13800 * mbxStatus <status> 13801 */ 13802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13803 "(%d):0304 Stray Mailbox " 13804 "Interrupt mbxCommand x%x " 13805 "mbxStatus x%x\n", 13806 (vport ? vport->vpi : 0), 13807 pmbox->mbxCommand, 13808 pmbox->mbxStatus); 13809 /* clear mailbox attention bit */ 13810 work_ha_copy &= ~HA_MBATT; 13811 } else { 13812 phba->sli.mbox_active = NULL; 13813 spin_unlock_irqrestore(&phba->hbalock, iflag); 13814 phba->last_completion_time = jiffies; 13815 timer_delete(&phba->sli.mbox_tmo); 13816 if (pmb->mbox_cmpl) { 13817 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13818 MAILBOX_CMD_SIZE); 13819 if (pmb->out_ext_byte_len && 13820 pmb->ext_buf) 13821 lpfc_sli_pcimem_bcopy( 13822 phba->mbox_ext, 13823 pmb->ext_buf, 13824 pmb->out_ext_byte_len); 13825 } 13826 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13827 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13828 13829 lpfc_debugfs_disc_trc(vport, 13830 LPFC_DISC_TRC_MBOX_VPORT, 13831 "MBOX dflt rpi: : " 13832 "status:x%x rpi:x%x", 13833 (uint32_t)pmbox->mbxStatus, 13834 pmbox->un.varWords[0], 0); 13835 13836 if (!pmbox->mbxStatus) { 13837 mp = pmb->ctx_buf; 13838 ndlp = pmb->ctx_ndlp; 13839 13840 /* Reg_LOGIN of dflt RPI was 13841 * successful. new lets get 13842 * rid of the RPI using the 13843 * same mbox buffer. 13844 */ 13845 lpfc_unreg_login(phba, 13846 vport->vpi, 13847 pmbox->un.varWords[0], 13848 pmb); 13849 pmb->mbox_cmpl = 13850 lpfc_mbx_cmpl_dflt_rpi; 13851 pmb->ctx_buf = mp; 13852 pmb->ctx_ndlp = ndlp; 13853 pmb->vport = vport; 13854 rc = lpfc_sli_issue_mbox(phba, 13855 pmb, 13856 MBX_NOWAIT); 13857 if (rc != MBX_BUSY) 13858 lpfc_printf_log(phba, 13859 KERN_ERR, 13860 LOG_TRACE_EVENT, 13861 "0350 rc should have" 13862 "been MBX_BUSY\n"); 13863 if (rc != MBX_NOT_FINISHED) 13864 goto send_current_mbox; 13865 } 13866 } 13867 spin_lock_irqsave( 13868 &phba->pport->work_port_lock, 13869 iflag); 13870 phba->pport->work_port_events &= 13871 ~WORKER_MBOX_TMO; 13872 spin_unlock_irqrestore( 13873 &phba->pport->work_port_lock, 13874 iflag); 13875 13876 /* Do NOT queue MBX_HEARTBEAT to the worker 13877 * thread for processing. 13878 */ 13879 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13880 /* Process mbox now */ 13881 phba->sli.mbox_active = NULL; 13882 phba->sli.sli_flag &= 13883 ~LPFC_SLI_MBOX_ACTIVE; 13884 if (pmb->mbox_cmpl) 13885 pmb->mbox_cmpl(phba, pmb); 13886 } else { 13887 /* Queue to worker thread to process */ 13888 lpfc_mbox_cmpl_put(phba, pmb); 13889 } 13890 } 13891 } else 13892 spin_unlock_irqrestore(&phba->hbalock, iflag); 13893 13894 if ((work_ha_copy & HA_MBATT) && 13895 (phba->sli.mbox_active == NULL)) { 13896 send_current_mbox: 13897 /* Process next mailbox command if there is one */ 13898 do { 13899 rc = lpfc_sli_issue_mbox(phba, NULL, 13900 MBX_NOWAIT); 13901 } while (rc == MBX_NOT_FINISHED); 13902 if (rc != MBX_SUCCESS) 13903 lpfc_printf_log(phba, KERN_ERR, 13904 LOG_TRACE_EVENT, 13905 "0349 rc should be " 13906 "MBX_SUCCESS\n"); 13907 } 13908 13909 spin_lock_irqsave(&phba->hbalock, iflag); 13910 phba->work_ha |= work_ha_copy; 13911 spin_unlock_irqrestore(&phba->hbalock, iflag); 13912 lpfc_worker_wake_up(phba); 13913 } 13914 return IRQ_HANDLED; 13915 unplug_error: 13916 spin_unlock_irqrestore(&phba->hbalock, iflag); 13917 return IRQ_HANDLED; 13918 13919 } /* lpfc_sli_sp_intr_handler */ 13920 13921 /** 13922 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13923 * @irq: Interrupt number. 13924 * @dev_id: The device context pointer. 13925 * 13926 * This function is directly called from the PCI layer as an interrupt 13927 * service routine when device with SLI-3 interface spec is enabled with 13928 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13929 * ring event in the HBA. However, when the device is enabled with either 13930 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13931 * device-level interrupt handler. When the PCI slot is in error recovery 13932 * or the HBA is undergoing initialization, the interrupt handler will not 13933 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13934 * the intrrupt context. This function is called without any lock held. 13935 * It gets the hbalock to access and update SLI data structures. 13936 * 13937 * This function returns IRQ_HANDLED when interrupt is handled else it 13938 * returns IRQ_NONE. 13939 **/ 13940 irqreturn_t 13941 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13942 { 13943 struct lpfc_hba *phba; 13944 uint32_t ha_copy; 13945 unsigned long status; 13946 unsigned long iflag; 13947 struct lpfc_sli_ring *pring; 13948 13949 /* Get the driver's phba structure from the dev_id and 13950 * assume the HBA is not interrupting. 13951 */ 13952 phba = (struct lpfc_hba *) dev_id; 13953 13954 if (unlikely(!phba)) 13955 return IRQ_NONE; 13956 13957 /* 13958 * Stuff needs to be attented to when this function is invoked as an 13959 * individual interrupt handler in MSI-X multi-message interrupt mode 13960 */ 13961 if (phba->intr_type == MSIX) { 13962 /* Check device state for handling interrupt */ 13963 if (lpfc_intr_state_check(phba)) 13964 return IRQ_NONE; 13965 /* Need to read HA REG for FCP ring and other ring events */ 13966 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13967 return IRQ_HANDLED; 13968 13969 /* 13970 * If there is deferred error attention, do not check for 13971 * any interrupt. 13972 */ 13973 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13974 return IRQ_NONE; 13975 13976 /* Clear up only attention source related to fast-path */ 13977 spin_lock_irqsave(&phba->hbalock, iflag); 13978 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13979 phba->HAregaddr); 13980 readl(phba->HAregaddr); /* flush */ 13981 spin_unlock_irqrestore(&phba->hbalock, iflag); 13982 } else 13983 ha_copy = phba->ha_copy; 13984 13985 /* 13986 * Process all events on FCP ring. Take the optimized path for FCP IO. 13987 */ 13988 ha_copy &= ~(phba->work_ha_mask); 13989 13990 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13991 status >>= (4*LPFC_FCP_RING); 13992 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13993 if (status & HA_RXMASK) 13994 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13995 13996 if (phba->cfg_multi_ring_support == 2) { 13997 /* 13998 * Process all events on extra ring. Take the optimized path 13999 * for extra ring IO. 14000 */ 14001 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14002 status >>= (4*LPFC_EXTRA_RING); 14003 if (status & HA_RXMASK) { 14004 lpfc_sli_handle_fast_ring_event(phba, 14005 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14006 status); 14007 } 14008 } 14009 return IRQ_HANDLED; 14010 } /* lpfc_sli_fp_intr_handler */ 14011 14012 /** 14013 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14014 * @irq: Interrupt number. 14015 * @dev_id: The device context pointer. 14016 * 14017 * This function is the HBA device-level interrupt handler to device with 14018 * SLI-3 interface spec, called from the PCI layer when either MSI or 14019 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14020 * requires driver attention. This function invokes the slow-path interrupt 14021 * attention handling function and fast-path interrupt attention handling 14022 * function in turn to process the relevant HBA attention events. This 14023 * function is called without any lock held. It gets the hbalock to access 14024 * and update SLI data structures. 14025 * 14026 * This function returns IRQ_HANDLED when interrupt is handled, else it 14027 * returns IRQ_NONE. 14028 **/ 14029 irqreturn_t 14030 lpfc_sli_intr_handler(int irq, void *dev_id) 14031 { 14032 struct lpfc_hba *phba; 14033 irqreturn_t sp_irq_rc, fp_irq_rc; 14034 unsigned long status1, status2; 14035 uint32_t hc_copy; 14036 14037 /* 14038 * Get the driver's phba structure from the dev_id and 14039 * assume the HBA is not interrupting. 14040 */ 14041 phba = (struct lpfc_hba *) dev_id; 14042 14043 if (unlikely(!phba)) 14044 return IRQ_NONE; 14045 14046 /* Check device state for handling interrupt */ 14047 if (lpfc_intr_state_check(phba)) 14048 return IRQ_NONE; 14049 14050 spin_lock(&phba->hbalock); 14051 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14052 spin_unlock(&phba->hbalock); 14053 return IRQ_HANDLED; 14054 } 14055 14056 if (unlikely(!phba->ha_copy)) { 14057 spin_unlock(&phba->hbalock); 14058 return IRQ_NONE; 14059 } else if (phba->ha_copy & HA_ERATT) { 14060 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14061 /* ERATT polling has handled ERATT */ 14062 phba->ha_copy &= ~HA_ERATT; 14063 } 14064 14065 /* 14066 * If there is deferred error attention, do not check for any interrupt. 14067 */ 14068 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14069 spin_unlock(&phba->hbalock); 14070 return IRQ_NONE; 14071 } 14072 14073 /* Clear attention sources except link and error attentions */ 14074 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14075 spin_unlock(&phba->hbalock); 14076 return IRQ_HANDLED; 14077 } 14078 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14079 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14080 phba->HCregaddr); 14081 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14082 writel(hc_copy, phba->HCregaddr); 14083 readl(phba->HAregaddr); /* flush */ 14084 spin_unlock(&phba->hbalock); 14085 14086 /* 14087 * Invokes slow-path host attention interrupt handling as appropriate. 14088 */ 14089 14090 /* status of events with mailbox and link attention */ 14091 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14092 14093 /* status of events with ELS ring */ 14094 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14095 status2 >>= (4*LPFC_ELS_RING); 14096 14097 if (status1 || (status2 & HA_RXMASK)) 14098 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14099 else 14100 sp_irq_rc = IRQ_NONE; 14101 14102 /* 14103 * Invoke fast-path host attention interrupt handling as appropriate. 14104 */ 14105 14106 /* status of events with FCP ring */ 14107 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14108 status1 >>= (4*LPFC_FCP_RING); 14109 14110 /* status of events with extra ring */ 14111 if (phba->cfg_multi_ring_support == 2) { 14112 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14113 status2 >>= (4*LPFC_EXTRA_RING); 14114 } else 14115 status2 = 0; 14116 14117 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14118 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14119 else 14120 fp_irq_rc = IRQ_NONE; 14121 14122 /* Return device-level interrupt handling status */ 14123 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14124 } /* lpfc_sli_intr_handler */ 14125 14126 /** 14127 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14128 * @phba: pointer to lpfc hba data structure. 14129 * 14130 * This routine is invoked by the worker thread to process all the pending 14131 * SLI4 els abort xri events. 14132 **/ 14133 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14134 { 14135 struct lpfc_cq_event *cq_event; 14136 unsigned long iflags; 14137 14138 /* First, declare the els xri abort event has been handled */ 14139 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14140 14141 /* Now, handle all the els xri abort events */ 14142 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14143 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14144 /* Get the first event from the head of the event queue */ 14145 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14146 cq_event, struct lpfc_cq_event, list); 14147 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14148 iflags); 14149 /* Notify aborted XRI for ELS work queue */ 14150 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14151 14152 /* Free the event processed back to the free pool */ 14153 lpfc_sli4_cq_event_release(phba, cq_event); 14154 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14155 iflags); 14156 } 14157 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14158 } 14159 14160 /** 14161 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14162 * @phba: Pointer to HBA context object. 14163 * @irspiocbq: Pointer to work-queue completion queue entry. 14164 * 14165 * This routine handles an ELS work-queue completion event and construct 14166 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14167 * discovery engine to handle. 14168 * 14169 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14170 **/ 14171 static struct lpfc_iocbq * 14172 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14173 struct lpfc_iocbq *irspiocbq) 14174 { 14175 struct lpfc_sli_ring *pring; 14176 struct lpfc_iocbq *cmdiocbq; 14177 struct lpfc_wcqe_complete *wcqe; 14178 unsigned long iflags; 14179 14180 pring = lpfc_phba_elsring(phba); 14181 if (unlikely(!pring)) 14182 return NULL; 14183 14184 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14185 spin_lock_irqsave(&pring->ring_lock, iflags); 14186 pring->stats.iocb_event++; 14187 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14188 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14189 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14190 if (unlikely(!cmdiocbq)) { 14191 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14192 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14193 "0386 ELS complete with no corresponding " 14194 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14195 wcqe->word0, wcqe->total_data_placed, 14196 wcqe->parameter, wcqe->word3); 14197 lpfc_sli_release_iocbq(phba, irspiocbq); 14198 return NULL; 14199 } 14200 14201 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14202 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14203 14204 /* Put the iocb back on the txcmplq */ 14205 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14206 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14207 14208 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14209 spin_lock_irqsave(&phba->hbalock, iflags); 14210 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14211 spin_unlock_irqrestore(&phba->hbalock, iflags); 14212 } 14213 14214 return irspiocbq; 14215 } 14216 14217 inline struct lpfc_cq_event * 14218 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14219 { 14220 struct lpfc_cq_event *cq_event; 14221 14222 /* Allocate a new internal CQ_EVENT entry */ 14223 cq_event = lpfc_sli4_cq_event_alloc(phba); 14224 if (!cq_event) { 14225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14226 "0602 Failed to alloc CQ_EVENT entry\n"); 14227 return NULL; 14228 } 14229 14230 /* Move the CQE into the event */ 14231 memcpy(&cq_event->cqe, entry, size); 14232 return cq_event; 14233 } 14234 14235 /** 14236 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14237 * @phba: Pointer to HBA context object. 14238 * @mcqe: Pointer to mailbox completion queue entry. 14239 * 14240 * This routine process a mailbox completion queue entry with asynchronous 14241 * event. 14242 * 14243 * Return: true if work posted to worker thread, otherwise false. 14244 **/ 14245 static bool 14246 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14247 { 14248 struct lpfc_cq_event *cq_event; 14249 unsigned long iflags; 14250 14251 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14252 "0392 Async Event: word0:x%x, word1:x%x, " 14253 "word2:x%x, word3:x%x\n", mcqe->word0, 14254 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14255 14256 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14257 if (!cq_event) 14258 return false; 14259 14260 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14261 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14262 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14263 14264 /* Set the async event flag */ 14265 set_bit(ASYNC_EVENT, &phba->hba_flag); 14266 14267 return true; 14268 } 14269 14270 /** 14271 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14272 * @phba: Pointer to HBA context object. 14273 * @mcqe: Pointer to mailbox completion queue entry. 14274 * 14275 * This routine process a mailbox completion queue entry with mailbox 14276 * completion event. 14277 * 14278 * Return: true if work posted to worker thread, otherwise false. 14279 **/ 14280 static bool 14281 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14282 { 14283 uint32_t mcqe_status; 14284 MAILBOX_t *mbox, *pmbox; 14285 struct lpfc_mqe *mqe; 14286 struct lpfc_vport *vport; 14287 struct lpfc_nodelist *ndlp; 14288 struct lpfc_dmabuf *mp; 14289 unsigned long iflags; 14290 LPFC_MBOXQ_t *pmb; 14291 bool workposted = false; 14292 int rc; 14293 14294 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14295 if (!bf_get(lpfc_trailer_completed, mcqe)) 14296 goto out_no_mqe_complete; 14297 14298 /* Get the reference to the active mbox command */ 14299 spin_lock_irqsave(&phba->hbalock, iflags); 14300 pmb = phba->sli.mbox_active; 14301 if (unlikely(!pmb)) { 14302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14303 "1832 No pending MBOX command to handle\n"); 14304 spin_unlock_irqrestore(&phba->hbalock, iflags); 14305 goto out_no_mqe_complete; 14306 } 14307 spin_unlock_irqrestore(&phba->hbalock, iflags); 14308 mqe = &pmb->u.mqe; 14309 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14310 mbox = phba->mbox; 14311 vport = pmb->vport; 14312 14313 /* Reset heartbeat timer */ 14314 phba->last_completion_time = jiffies; 14315 timer_delete(&phba->sli.mbox_tmo); 14316 14317 /* Move mbox data to caller's mailbox region, do endian swapping */ 14318 if (pmb->mbox_cmpl && mbox) 14319 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14320 14321 /* 14322 * For mcqe errors, conditionally move a modified error code to 14323 * the mbox so that the error will not be missed. 14324 */ 14325 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14326 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14327 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14328 bf_set(lpfc_mqe_status, mqe, 14329 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14330 } 14331 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14332 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14333 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14334 "MBOX dflt rpi: status:x%x rpi:x%x", 14335 mcqe_status, 14336 pmbox->un.varWords[0], 0); 14337 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14338 mp = pmb->ctx_buf; 14339 ndlp = pmb->ctx_ndlp; 14340 14341 /* Reg_LOGIN of dflt RPI was successful. Mark the 14342 * node as having an UNREG_LOGIN in progress to stop 14343 * an unsolicited PLOGI from the same NPortId from 14344 * starting another mailbox transaction. 14345 */ 14346 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 14347 lpfc_unreg_login(phba, vport->vpi, 14348 pmbox->un.varWords[0], pmb); 14349 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14350 pmb->ctx_buf = mp; 14351 14352 /* No reference taken here. This is a default 14353 * RPI reg/immediate unreg cycle. The reference was 14354 * taken in the reg rpi path and is released when 14355 * this mailbox completes. 14356 */ 14357 pmb->ctx_ndlp = ndlp; 14358 pmb->vport = vport; 14359 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14360 if (rc != MBX_BUSY) 14361 lpfc_printf_log(phba, KERN_ERR, 14362 LOG_TRACE_EVENT, 14363 "0385 rc should " 14364 "have been MBX_BUSY\n"); 14365 if (rc != MBX_NOT_FINISHED) 14366 goto send_current_mbox; 14367 } 14368 } 14369 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14370 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14371 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14372 14373 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14374 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14375 spin_lock_irqsave(&phba->hbalock, iflags); 14376 /* Release the mailbox command posting token */ 14377 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14378 phba->sli.mbox_active = NULL; 14379 if (bf_get(lpfc_trailer_consumed, mcqe)) 14380 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14381 spin_unlock_irqrestore(&phba->hbalock, iflags); 14382 14383 /* Post the next mbox command, if there is one */ 14384 lpfc_sli4_post_async_mbox(phba); 14385 14386 /* Process cmpl now */ 14387 if (pmb->mbox_cmpl) 14388 pmb->mbox_cmpl(phba, pmb); 14389 return false; 14390 } 14391 14392 /* There is mailbox completion work to queue to the worker thread */ 14393 spin_lock_irqsave(&phba->hbalock, iflags); 14394 __lpfc_mbox_cmpl_put(phba, pmb); 14395 phba->work_ha |= HA_MBATT; 14396 spin_unlock_irqrestore(&phba->hbalock, iflags); 14397 workposted = true; 14398 14399 send_current_mbox: 14400 spin_lock_irqsave(&phba->hbalock, iflags); 14401 /* Release the mailbox command posting token */ 14402 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14403 /* Setting active mailbox pointer need to be in sync to flag clear */ 14404 phba->sli.mbox_active = NULL; 14405 if (bf_get(lpfc_trailer_consumed, mcqe)) 14406 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14407 spin_unlock_irqrestore(&phba->hbalock, iflags); 14408 /* Wake up worker thread to post the next pending mailbox command */ 14409 lpfc_worker_wake_up(phba); 14410 return workposted; 14411 14412 out_no_mqe_complete: 14413 spin_lock_irqsave(&phba->hbalock, iflags); 14414 if (bf_get(lpfc_trailer_consumed, mcqe)) 14415 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14416 spin_unlock_irqrestore(&phba->hbalock, iflags); 14417 return false; 14418 } 14419 14420 /** 14421 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14422 * @phba: Pointer to HBA context object. 14423 * @cq: Pointer to associated CQ 14424 * @cqe: Pointer to mailbox completion queue entry. 14425 * 14426 * This routine process a mailbox completion queue entry, it invokes the 14427 * proper mailbox complete handling or asynchronous event handling routine 14428 * according to the MCQE's async bit. 14429 * 14430 * Return: true if work posted to worker thread, otherwise false. 14431 **/ 14432 static bool 14433 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14434 struct lpfc_cqe *cqe) 14435 { 14436 struct lpfc_mcqe mcqe; 14437 bool workposted; 14438 14439 cq->CQ_mbox++; 14440 14441 /* Copy the mailbox MCQE and convert endian order as needed */ 14442 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14443 14444 /* Invoke the proper event handling routine */ 14445 if (!bf_get(lpfc_trailer_async, &mcqe)) 14446 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14447 else 14448 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14449 return workposted; 14450 } 14451 14452 /** 14453 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14454 * @phba: Pointer to HBA context object. 14455 * @cq: Pointer to associated CQ 14456 * @wcqe: Pointer to work-queue completion queue entry. 14457 * 14458 * This routine handles an ELS work-queue completion event. 14459 * 14460 * Return: true if work posted to worker thread, otherwise false. 14461 **/ 14462 static bool 14463 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14464 struct lpfc_wcqe_complete *wcqe) 14465 { 14466 struct lpfc_iocbq *irspiocbq; 14467 unsigned long iflags; 14468 struct lpfc_sli_ring *pring = cq->pring; 14469 int txq_cnt = 0; 14470 int txcmplq_cnt = 0; 14471 14472 /* Check for response status */ 14473 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14474 /* Log the error status */ 14475 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14476 "0357 ELS CQE error: status=x%x: " 14477 "CQE: %08x %08x %08x %08x\n", 14478 bf_get(lpfc_wcqe_c_status, wcqe), 14479 wcqe->word0, wcqe->total_data_placed, 14480 wcqe->parameter, wcqe->word3); 14481 } 14482 14483 /* Get an irspiocbq for later ELS response processing use */ 14484 irspiocbq = lpfc_sli_get_iocbq(phba); 14485 if (!irspiocbq) { 14486 if (!list_empty(&pring->txq)) 14487 txq_cnt++; 14488 if (!list_empty(&pring->txcmplq)) 14489 txcmplq_cnt++; 14490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14491 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14492 "els_txcmplq_cnt=%d\n", 14493 txq_cnt, phba->iocb_cnt, 14494 txcmplq_cnt); 14495 return false; 14496 } 14497 14498 /* Save off the slow-path queue event for work thread to process */ 14499 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14500 spin_lock_irqsave(&phba->hbalock, iflags); 14501 list_add_tail(&irspiocbq->cq_event.list, 14502 &phba->sli4_hba.sp_queue_event); 14503 spin_unlock_irqrestore(&phba->hbalock, iflags); 14504 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14505 14506 return true; 14507 } 14508 14509 /** 14510 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14511 * @phba: Pointer to HBA context object. 14512 * @wcqe: Pointer to work-queue completion queue entry. 14513 * 14514 * This routine handles slow-path WQ entry consumed event by invoking the 14515 * proper WQ release routine to the slow-path WQ. 14516 **/ 14517 static void 14518 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14519 struct lpfc_wcqe_release *wcqe) 14520 { 14521 /* sanity check on queue memory */ 14522 if (unlikely(!phba->sli4_hba.els_wq)) 14523 return; 14524 /* Check for the slow-path ELS work queue */ 14525 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14526 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14527 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14528 else 14529 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14530 "2579 Slow-path wqe consume event carries " 14531 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14532 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14533 phba->sli4_hba.els_wq->queue_id); 14534 } 14535 14536 /** 14537 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14538 * @phba: Pointer to HBA context object. 14539 * @cq: Pointer to a WQ completion queue. 14540 * @wcqe: Pointer to work-queue completion queue entry. 14541 * 14542 * This routine handles an XRI abort event. 14543 * 14544 * Return: true if work posted to worker thread, otherwise false. 14545 **/ 14546 static bool 14547 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14548 struct lpfc_queue *cq, 14549 struct sli4_wcqe_xri_aborted *wcqe) 14550 { 14551 bool workposted = false; 14552 struct lpfc_cq_event *cq_event; 14553 unsigned long iflags; 14554 14555 switch (cq->subtype) { 14556 case LPFC_IO: 14557 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14558 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14559 /* Notify aborted XRI for NVME work queue */ 14560 if (phba->nvmet_support) 14561 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14562 } 14563 workposted = false; 14564 break; 14565 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14566 case LPFC_ELS: 14567 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14568 if (!cq_event) { 14569 workposted = false; 14570 break; 14571 } 14572 cq_event->hdwq = cq->hdwq; 14573 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14574 iflags); 14575 list_add_tail(&cq_event->list, 14576 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14577 /* Set the els xri abort event flag */ 14578 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14579 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14580 iflags); 14581 workposted = true; 14582 break; 14583 default: 14584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14585 "0603 Invalid CQ subtype %d: " 14586 "%08x %08x %08x %08x\n", 14587 cq->subtype, wcqe->word0, wcqe->parameter, 14588 wcqe->word2, wcqe->word3); 14589 workposted = false; 14590 break; 14591 } 14592 return workposted; 14593 } 14594 14595 #define FC_RCTL_MDS_DIAGS 0xF4 14596 14597 /** 14598 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14599 * @phba: Pointer to HBA context object. 14600 * @rcqe: Pointer to receive-queue completion queue entry. 14601 * 14602 * This routine process a receive-queue completion queue entry. 14603 * 14604 * Return: true if work posted to worker thread, otherwise false. 14605 **/ 14606 static bool 14607 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14608 { 14609 bool workposted = false; 14610 struct fc_frame_header *fc_hdr; 14611 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14612 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14613 struct lpfc_nvmet_tgtport *tgtp; 14614 struct hbq_dmabuf *dma_buf; 14615 uint32_t status, rq_id; 14616 unsigned long iflags; 14617 14618 /* sanity check on queue memory */ 14619 if (unlikely(!hrq) || unlikely(!drq)) 14620 return workposted; 14621 14622 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14623 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14624 else 14625 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14626 if (rq_id != hrq->queue_id) 14627 goto out; 14628 14629 status = bf_get(lpfc_rcqe_status, rcqe); 14630 switch (status) { 14631 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14633 "2537 Receive Frame Truncated!!\n"); 14634 fallthrough; 14635 case FC_STATUS_RQ_SUCCESS: 14636 spin_lock_irqsave(&phba->hbalock, iflags); 14637 lpfc_sli4_rq_release(hrq, drq); 14638 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14639 if (!dma_buf) { 14640 hrq->RQ_no_buf_found++; 14641 spin_unlock_irqrestore(&phba->hbalock, iflags); 14642 goto out; 14643 } 14644 hrq->RQ_rcv_buf++; 14645 hrq->RQ_buf_posted--; 14646 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14647 14648 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14649 14650 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14651 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14652 spin_unlock_irqrestore(&phba->hbalock, iflags); 14653 /* Handle MDS Loopback frames */ 14654 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14655 lpfc_sli4_handle_mds_loopback(phba->pport, 14656 dma_buf); 14657 else 14658 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14659 break; 14660 } 14661 14662 /* save off the frame for the work thread to process */ 14663 list_add_tail(&dma_buf->cq_event.list, 14664 &phba->sli4_hba.sp_queue_event); 14665 spin_unlock_irqrestore(&phba->hbalock, iflags); 14666 /* Frame received */ 14667 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14668 workposted = true; 14669 break; 14670 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14671 if (phba->nvmet_support) { 14672 tgtp = phba->targetport->private; 14673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14674 "6402 RQE Error x%x, posted %d err_cnt " 14675 "%d: %x %x %x\n", 14676 status, hrq->RQ_buf_posted, 14677 hrq->RQ_no_posted_buf, 14678 atomic_read(&tgtp->rcv_fcp_cmd_in), 14679 atomic_read(&tgtp->rcv_fcp_cmd_out), 14680 atomic_read(&tgtp->xmt_fcp_release)); 14681 } 14682 fallthrough; 14683 14684 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14685 hrq->RQ_no_posted_buf++; 14686 /* Post more buffers if possible */ 14687 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14688 workposted = true; 14689 break; 14690 case FC_STATUS_RQ_DMA_FAILURE: 14691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14692 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14693 "x%08x\n", 14694 status, rcqe->word0, rcqe->word1, 14695 rcqe->word2, rcqe->word3); 14696 14697 /* If IV set, no further recovery */ 14698 if (bf_get(lpfc_rcqe_iv, rcqe)) 14699 break; 14700 14701 /* recycle consumed resource */ 14702 spin_lock_irqsave(&phba->hbalock, iflags); 14703 lpfc_sli4_rq_release(hrq, drq); 14704 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14705 if (!dma_buf) { 14706 hrq->RQ_no_buf_found++; 14707 spin_unlock_irqrestore(&phba->hbalock, iflags); 14708 break; 14709 } 14710 hrq->RQ_rcv_buf++; 14711 hrq->RQ_buf_posted--; 14712 spin_unlock_irqrestore(&phba->hbalock, iflags); 14713 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14714 break; 14715 default: 14716 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14717 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14718 "x%08x x%08x x%08x\n", 14719 status, rcqe->word0, rcqe->word1, 14720 rcqe->word2, rcqe->word3); 14721 break; 14722 } 14723 out: 14724 return workposted; 14725 } 14726 14727 /** 14728 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14729 * @phba: Pointer to HBA context object. 14730 * @cq: Pointer to the completion queue. 14731 * @cqe: Pointer to a completion queue entry. 14732 * 14733 * This routine process a slow-path work-queue or receive queue completion queue 14734 * entry. 14735 * 14736 * Return: true if work posted to worker thread, otherwise false. 14737 **/ 14738 static bool 14739 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14740 struct lpfc_cqe *cqe) 14741 { 14742 struct lpfc_cqe cqevt; 14743 bool workposted = false; 14744 14745 /* Copy the work queue CQE and convert endian order if needed */ 14746 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14747 14748 /* Check and process for different type of WCQE and dispatch */ 14749 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14750 case CQE_CODE_COMPL_WQE: 14751 /* Process the WQ/RQ complete event */ 14752 phba->last_completion_time = jiffies; 14753 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14754 (struct lpfc_wcqe_complete *)&cqevt); 14755 break; 14756 case CQE_CODE_RELEASE_WQE: 14757 /* Process the WQ release event */ 14758 lpfc_sli4_sp_handle_rel_wcqe(phba, 14759 (struct lpfc_wcqe_release *)&cqevt); 14760 break; 14761 case CQE_CODE_XRI_ABORTED: 14762 /* Process the WQ XRI abort event */ 14763 phba->last_completion_time = jiffies; 14764 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14765 (struct sli4_wcqe_xri_aborted *)&cqevt); 14766 break; 14767 case CQE_CODE_RECEIVE: 14768 case CQE_CODE_RECEIVE_V1: 14769 /* Process the RQ event */ 14770 phba->last_completion_time = jiffies; 14771 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14772 (struct lpfc_rcqe *)&cqevt); 14773 break; 14774 default: 14775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14776 "0388 Not a valid WCQE code: x%x\n", 14777 bf_get(lpfc_cqe_code, &cqevt)); 14778 break; 14779 } 14780 return workposted; 14781 } 14782 14783 /** 14784 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14785 * @phba: Pointer to HBA context object. 14786 * @eqe: Pointer to fast-path event queue entry. 14787 * @speq: Pointer to slow-path event queue. 14788 * 14789 * This routine process a event queue entry from the slow-path event queue. 14790 * It will check the MajorCode and MinorCode to determine this is for a 14791 * completion event on a completion queue, if not, an error shall be logged 14792 * and just return. Otherwise, it will get to the corresponding completion 14793 * queue and process all the entries on that completion queue, rearm the 14794 * completion queue, and then return. 14795 * 14796 **/ 14797 static void 14798 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14799 struct lpfc_queue *speq) 14800 { 14801 struct lpfc_queue *cq = NULL, *childq; 14802 uint16_t cqid; 14803 int ret = 0; 14804 14805 /* Get the reference to the corresponding CQ */ 14806 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14807 14808 list_for_each_entry(childq, &speq->child_list, list) { 14809 if (childq->queue_id == cqid) { 14810 cq = childq; 14811 break; 14812 } 14813 } 14814 if (unlikely(!cq)) { 14815 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14817 "0365 Slow-path CQ identifier " 14818 "(%d) does not exist\n", cqid); 14819 return; 14820 } 14821 14822 /* Save EQ associated with this CQ */ 14823 cq->assoc_qp = speq; 14824 14825 if (is_kdump_kernel()) 14826 ret = queue_work(phba->wq, &cq->spwork); 14827 else 14828 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14829 14830 if (!ret) 14831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14832 "0390 Cannot schedule queue work " 14833 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14834 cqid, cq->queue_id, raw_smp_processor_id()); 14835 } 14836 14837 /** 14838 * __lpfc_sli4_process_cq - Process elements of a CQ 14839 * @phba: Pointer to HBA context object. 14840 * @cq: Pointer to CQ to be processed 14841 * @handler: Routine to process each cqe 14842 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14843 * 14844 * This routine processes completion queue entries in a CQ. While a valid 14845 * queue element is found, the handler is called. During processing checks 14846 * are made for periodic doorbell writes to let the hardware know of 14847 * element consumption. 14848 * 14849 * If the max limit on cqes to process is hit, or there are no more valid 14850 * entries, the loop stops. If we processed a sufficient number of elements, 14851 * meaning there is sufficient load, rather than rearming and generating 14852 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14853 * indicates no rescheduling. 14854 * 14855 * Returns True if work scheduled, False otherwise. 14856 **/ 14857 static bool 14858 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14859 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14860 struct lpfc_cqe *), unsigned long *delay) 14861 { 14862 struct lpfc_cqe *cqe; 14863 bool workposted = false; 14864 int count = 0, consumed = 0; 14865 bool arm = true; 14866 14867 /* default - no reschedule */ 14868 *delay = 0; 14869 14870 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14871 goto rearm_and_exit; 14872 14873 /* Process all the entries to the CQ */ 14874 cq->q_flag = 0; 14875 cqe = lpfc_sli4_cq_get(cq); 14876 while (cqe) { 14877 workposted |= handler(phba, cq, cqe); 14878 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14879 14880 consumed++; 14881 if (!(++count % cq->max_proc_limit)) 14882 break; 14883 14884 if (!(count % cq->notify_interval)) { 14885 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14886 LPFC_QUEUE_NOARM); 14887 consumed = 0; 14888 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14889 } 14890 14891 if (count == LPFC_NVMET_CQ_NOTIFY) 14892 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14893 14894 cqe = lpfc_sli4_cq_get(cq); 14895 } 14896 if (count >= phba->cfg_cq_poll_threshold) { 14897 *delay = 1; 14898 arm = false; 14899 } 14900 14901 /* Track the max number of CQEs processed in 1 EQ */ 14902 if (count > cq->CQ_max_cqe) 14903 cq->CQ_max_cqe = count; 14904 14905 cq->assoc_qp->EQ_cqe_cnt += count; 14906 14907 /* Catch the no cq entry condition */ 14908 if (unlikely(count == 0)) 14909 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14910 "0369 No entry from completion queue " 14911 "qid=%d\n", cq->queue_id); 14912 14913 xchg(&cq->queue_claimed, 0); 14914 14915 rearm_and_exit: 14916 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14917 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14918 14919 return workposted; 14920 } 14921 14922 /** 14923 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14924 * @cq: pointer to CQ to process 14925 * 14926 * This routine calls the cq processing routine with a handler specific 14927 * to the type of queue bound to it. 14928 * 14929 * The CQ routine returns two values: the first is the calling status, 14930 * which indicates whether work was queued to the background discovery 14931 * thread. If true, the routine should wakeup the discovery thread; 14932 * the second is the delay parameter. If non-zero, rather than rearming 14933 * the CQ and yet another interrupt, the CQ handler should be queued so 14934 * that it is processed in a subsequent polling action. The value of 14935 * the delay indicates when to reschedule it. 14936 **/ 14937 static void 14938 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14939 { 14940 struct lpfc_hba *phba = cq->phba; 14941 unsigned long delay; 14942 bool workposted = false; 14943 int ret = 0; 14944 14945 /* Process and rearm the CQ */ 14946 switch (cq->type) { 14947 case LPFC_MCQ: 14948 workposted |= __lpfc_sli4_process_cq(phba, cq, 14949 lpfc_sli4_sp_handle_mcqe, 14950 &delay); 14951 break; 14952 case LPFC_WCQ: 14953 if (cq->subtype == LPFC_IO) 14954 workposted |= __lpfc_sli4_process_cq(phba, cq, 14955 lpfc_sli4_fp_handle_cqe, 14956 &delay); 14957 else 14958 workposted |= __lpfc_sli4_process_cq(phba, cq, 14959 lpfc_sli4_sp_handle_cqe, 14960 &delay); 14961 break; 14962 default: 14963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14964 "0370 Invalid completion queue type (%d)\n", 14965 cq->type); 14966 return; 14967 } 14968 14969 if (delay) { 14970 if (is_kdump_kernel()) 14971 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14972 delay); 14973 else 14974 ret = queue_delayed_work_on(cq->chann, phba->wq, 14975 &cq->sched_spwork, delay); 14976 if (!ret) 14977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14978 "0394 Cannot schedule queue work " 14979 "for cqid=%d on CPU %d\n", 14980 cq->queue_id, cq->chann); 14981 } 14982 14983 /* wake up worker thread if there are works to be done */ 14984 if (workposted) 14985 lpfc_worker_wake_up(phba); 14986 } 14987 14988 /** 14989 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14990 * interrupt 14991 * @work: pointer to work element 14992 * 14993 * translates from the work handler and calls the slow-path handler. 14994 **/ 14995 static void 14996 lpfc_sli4_sp_process_cq(struct work_struct *work) 14997 { 14998 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14999 15000 __lpfc_sli4_sp_process_cq(cq); 15001 } 15002 15003 /** 15004 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15005 * @work: pointer to work element 15006 * 15007 * translates from the work handler and calls the slow-path handler. 15008 **/ 15009 static void 15010 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15011 { 15012 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15013 struct lpfc_queue, sched_spwork); 15014 15015 __lpfc_sli4_sp_process_cq(cq); 15016 } 15017 15018 /** 15019 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15020 * @phba: Pointer to HBA context object. 15021 * @cq: Pointer to associated CQ 15022 * @wcqe: Pointer to work-queue completion queue entry. 15023 * 15024 * This routine process a fast-path work queue completion entry from fast-path 15025 * event queue for FCP command response completion. 15026 **/ 15027 static void 15028 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15029 struct lpfc_wcqe_complete *wcqe) 15030 { 15031 struct lpfc_sli_ring *pring = cq->pring; 15032 struct lpfc_iocbq *cmdiocbq; 15033 unsigned long iflags; 15034 15035 /* Check for response status */ 15036 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15037 /* If resource errors reported from HBA, reduce queue 15038 * depth of the SCSI device. 15039 */ 15040 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15041 IOSTAT_LOCAL_REJECT)) && 15042 ((wcqe->parameter & IOERR_PARAM_MASK) == 15043 IOERR_NO_RESOURCES)) 15044 phba->lpfc_rampdown_queue_depth(phba); 15045 15046 /* Log the cmpl status */ 15047 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15048 "0373 FCP CQE cmpl: status=x%x: " 15049 "CQE: %08x %08x %08x %08x\n", 15050 bf_get(lpfc_wcqe_c_status, wcqe), 15051 wcqe->word0, wcqe->total_data_placed, 15052 wcqe->parameter, wcqe->word3); 15053 } 15054 15055 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15056 spin_lock_irqsave(&pring->ring_lock, iflags); 15057 pring->stats.iocb_event++; 15058 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15059 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15060 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15061 if (unlikely(!cmdiocbq)) { 15062 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15063 "0374 FCP complete with no corresponding " 15064 "cmdiocb: iotag (%d)\n", 15065 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15066 return; 15067 } 15068 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15069 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15070 #endif 15071 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15072 spin_lock_irqsave(&phba->hbalock, iflags); 15073 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15074 spin_unlock_irqrestore(&phba->hbalock, iflags); 15075 } 15076 15077 if (cmdiocbq->cmd_cmpl) { 15078 /* For FCP the flag is cleared in cmd_cmpl */ 15079 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15080 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15081 spin_lock_irqsave(&phba->hbalock, iflags); 15082 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15083 spin_unlock_irqrestore(&phba->hbalock, iflags); 15084 } 15085 15086 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15087 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15088 sizeof(struct lpfc_wcqe_complete)); 15089 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15090 } else { 15091 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15092 "0375 FCP cmdiocb not callback function " 15093 "iotag: (%d)\n", 15094 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15095 } 15096 } 15097 15098 /** 15099 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15100 * @phba: Pointer to HBA context object. 15101 * @cq: Pointer to completion queue. 15102 * @wcqe: Pointer to work-queue completion queue entry. 15103 * 15104 * This routine handles an fast-path WQ entry consumed event by invoking the 15105 * proper WQ release routine to the slow-path WQ. 15106 **/ 15107 static void 15108 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15109 struct lpfc_wcqe_release *wcqe) 15110 { 15111 struct lpfc_queue *childwq; 15112 bool wqid_matched = false; 15113 uint16_t hba_wqid; 15114 15115 /* Check for fast-path FCP work queue release */ 15116 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15117 list_for_each_entry(childwq, &cq->child_list, list) { 15118 if (childwq->queue_id == hba_wqid) { 15119 lpfc_sli4_wq_release(childwq, 15120 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15121 if (childwq->q_flag & HBA_NVMET_WQFULL) 15122 lpfc_nvmet_wqfull_process(phba, childwq); 15123 wqid_matched = true; 15124 break; 15125 } 15126 } 15127 /* Report warning log message if no match found */ 15128 if (wqid_matched != true) 15129 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15130 "2580 Fast-path wqe consume event carries " 15131 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15132 } 15133 15134 /** 15135 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15136 * @phba: Pointer to HBA context object. 15137 * @cq: Pointer to completion queue. 15138 * @rcqe: Pointer to receive-queue completion queue entry. 15139 * 15140 * This routine process a receive-queue completion queue entry. 15141 * 15142 * Return: true if work posted to worker thread, otherwise false. 15143 **/ 15144 static bool 15145 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15146 struct lpfc_rcqe *rcqe) 15147 { 15148 bool workposted = false; 15149 struct lpfc_queue *hrq; 15150 struct lpfc_queue *drq; 15151 struct rqb_dmabuf *dma_buf; 15152 struct fc_frame_header *fc_hdr; 15153 struct lpfc_nvmet_tgtport *tgtp; 15154 uint32_t status, rq_id; 15155 unsigned long iflags; 15156 uint32_t fctl, idx; 15157 15158 if ((phba->nvmet_support == 0) || 15159 (phba->sli4_hba.nvmet_cqset == NULL)) 15160 return workposted; 15161 15162 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15163 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15164 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15165 15166 /* sanity check on queue memory */ 15167 if (unlikely(!hrq) || unlikely(!drq)) 15168 return workposted; 15169 15170 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15171 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15172 else 15173 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15174 15175 if ((phba->nvmet_support == 0) || 15176 (rq_id != hrq->queue_id)) 15177 return workposted; 15178 15179 status = bf_get(lpfc_rcqe_status, rcqe); 15180 switch (status) { 15181 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15183 "6126 Receive Frame Truncated!!\n"); 15184 fallthrough; 15185 case FC_STATUS_RQ_SUCCESS: 15186 spin_lock_irqsave(&phba->hbalock, iflags); 15187 lpfc_sli4_rq_release(hrq, drq); 15188 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15189 if (!dma_buf) { 15190 hrq->RQ_no_buf_found++; 15191 spin_unlock_irqrestore(&phba->hbalock, iflags); 15192 goto out; 15193 } 15194 spin_unlock_irqrestore(&phba->hbalock, iflags); 15195 hrq->RQ_rcv_buf++; 15196 hrq->RQ_buf_posted--; 15197 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15198 15199 /* Just some basic sanity checks on FCP Command frame */ 15200 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15201 fc_hdr->fh_f_ctl[1] << 8 | 15202 fc_hdr->fh_f_ctl[2]); 15203 if (((fctl & 15204 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15205 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15206 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15207 goto drop; 15208 15209 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15210 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15211 lpfc_nvmet_unsol_fcp_event( 15212 phba, idx, dma_buf, cq->isr_timestamp, 15213 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15214 return false; 15215 } 15216 drop: 15217 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15218 break; 15219 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15220 if (phba->nvmet_support) { 15221 tgtp = phba->targetport->private; 15222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15223 "6401 RQE Error x%x, posted %d err_cnt " 15224 "%d: %x %x %x\n", 15225 status, hrq->RQ_buf_posted, 15226 hrq->RQ_no_posted_buf, 15227 atomic_read(&tgtp->rcv_fcp_cmd_in), 15228 atomic_read(&tgtp->rcv_fcp_cmd_out), 15229 atomic_read(&tgtp->xmt_fcp_release)); 15230 } 15231 fallthrough; 15232 15233 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15234 hrq->RQ_no_posted_buf++; 15235 /* Post more buffers if possible */ 15236 break; 15237 case FC_STATUS_RQ_DMA_FAILURE: 15238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15239 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15240 "x%08x\n", 15241 status, rcqe->word0, rcqe->word1, 15242 rcqe->word2, rcqe->word3); 15243 15244 /* If IV set, no further recovery */ 15245 if (bf_get(lpfc_rcqe_iv, rcqe)) 15246 break; 15247 15248 /* recycle consumed resource */ 15249 spin_lock_irqsave(&phba->hbalock, iflags); 15250 lpfc_sli4_rq_release(hrq, drq); 15251 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15252 if (!dma_buf) { 15253 hrq->RQ_no_buf_found++; 15254 spin_unlock_irqrestore(&phba->hbalock, iflags); 15255 break; 15256 } 15257 hrq->RQ_rcv_buf++; 15258 hrq->RQ_buf_posted--; 15259 spin_unlock_irqrestore(&phba->hbalock, iflags); 15260 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15261 break; 15262 default: 15263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15264 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15265 "x%08x x%08x x%08x\n", 15266 status, rcqe->word0, rcqe->word1, 15267 rcqe->word2, rcqe->word3); 15268 break; 15269 } 15270 out: 15271 return workposted; 15272 } 15273 15274 /** 15275 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15276 * @phba: adapter with cq 15277 * @cq: Pointer to the completion queue. 15278 * @cqe: Pointer to fast-path completion queue entry. 15279 * 15280 * This routine process a fast-path work queue completion entry from fast-path 15281 * event queue for FCP command response completion. 15282 * 15283 * Return: true if work posted to worker thread, otherwise false. 15284 **/ 15285 static bool 15286 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15287 struct lpfc_cqe *cqe) 15288 { 15289 struct lpfc_wcqe_release wcqe; 15290 bool workposted = false; 15291 15292 /* Copy the work queue CQE and convert endian order if needed */ 15293 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15294 15295 /* Check and process for different type of WCQE and dispatch */ 15296 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15297 case CQE_CODE_COMPL_WQE: 15298 case CQE_CODE_NVME_ERSP: 15299 cq->CQ_wq++; 15300 /* Process the WQ complete event */ 15301 phba->last_completion_time = jiffies; 15302 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15303 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15304 (struct lpfc_wcqe_complete *)&wcqe); 15305 break; 15306 case CQE_CODE_RELEASE_WQE: 15307 cq->CQ_release_wqe++; 15308 /* Process the WQ release event */ 15309 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15310 (struct lpfc_wcqe_release *)&wcqe); 15311 break; 15312 case CQE_CODE_XRI_ABORTED: 15313 cq->CQ_xri_aborted++; 15314 /* Process the WQ XRI abort event */ 15315 phba->last_completion_time = jiffies; 15316 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15317 (struct sli4_wcqe_xri_aborted *)&wcqe); 15318 break; 15319 case CQE_CODE_RECEIVE_V1: 15320 case CQE_CODE_RECEIVE: 15321 phba->last_completion_time = jiffies; 15322 if (cq->subtype == LPFC_NVMET) { 15323 workposted = lpfc_sli4_nvmet_handle_rcqe( 15324 phba, cq, (struct lpfc_rcqe *)&wcqe); 15325 } 15326 break; 15327 default: 15328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15329 "0144 Not a valid CQE code: x%x\n", 15330 bf_get(lpfc_wcqe_c_code, &wcqe)); 15331 break; 15332 } 15333 return workposted; 15334 } 15335 15336 /** 15337 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15338 * @cq: Pointer to CQ to be processed 15339 * 15340 * This routine calls the cq processing routine with the handler for 15341 * fast path CQEs. 15342 * 15343 * The CQ routine returns two values: the first is the calling status, 15344 * which indicates whether work was queued to the background discovery 15345 * thread. If true, the routine should wakeup the discovery thread; 15346 * the second is the delay parameter. If non-zero, rather than rearming 15347 * the CQ and yet another interrupt, the CQ handler should be queued so 15348 * that it is processed in a subsequent polling action. The value of 15349 * the delay indicates when to reschedule it. 15350 **/ 15351 static void 15352 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15353 { 15354 struct lpfc_hba *phba = cq->phba; 15355 unsigned long delay; 15356 bool workposted = false; 15357 int ret; 15358 15359 /* process and rearm the CQ */ 15360 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15361 &delay); 15362 15363 if (delay) { 15364 if (is_kdump_kernel()) 15365 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15366 delay); 15367 else 15368 ret = queue_delayed_work_on(cq->chann, phba->wq, 15369 &cq->sched_irqwork, delay); 15370 if (!ret) 15371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15372 "0367 Cannot schedule queue work " 15373 "for cqid=%d on CPU %d\n", 15374 cq->queue_id, cq->chann); 15375 } 15376 15377 /* wake up worker thread if there are works to be done */ 15378 if (workposted) 15379 lpfc_worker_wake_up(phba); 15380 } 15381 15382 /** 15383 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15384 * interrupt 15385 * @work: pointer to work element 15386 * 15387 * translates from the work handler and calls the fast-path handler. 15388 **/ 15389 static void 15390 lpfc_sli4_hba_process_cq(struct work_struct *work) 15391 { 15392 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15393 15394 __lpfc_sli4_hba_process_cq(cq); 15395 } 15396 15397 /** 15398 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15399 * @phba: Pointer to HBA context object. 15400 * @eq: Pointer to the queue structure. 15401 * @eqe: Pointer to fast-path event queue entry. 15402 * @poll_mode: poll_mode to execute processing the cq. 15403 * 15404 * This routine process a event queue entry from the fast-path event queue. 15405 * It will check the MajorCode and MinorCode to determine this is for a 15406 * completion event on a completion queue, if not, an error shall be logged 15407 * and just return. Otherwise, it will get to the corresponding completion 15408 * queue and process all the entries on the completion queue, rearm the 15409 * completion queue, and then return. 15410 **/ 15411 static void 15412 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15413 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15414 { 15415 struct lpfc_queue *cq = NULL; 15416 uint32_t qidx = eq->hdwq; 15417 uint16_t cqid, id; 15418 int ret; 15419 15420 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15421 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15422 "0366 Not a valid completion " 15423 "event: majorcode=x%x, minorcode=x%x\n", 15424 bf_get_le32(lpfc_eqe_major_code, eqe), 15425 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15426 return; 15427 } 15428 15429 /* Get the reference to the corresponding CQ */ 15430 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15431 15432 /* Use the fast lookup method first */ 15433 if (cqid <= phba->sli4_hba.cq_max) { 15434 cq = phba->sli4_hba.cq_lookup[cqid]; 15435 if (cq) 15436 goto work_cq; 15437 } 15438 15439 /* Next check for NVMET completion */ 15440 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15441 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15442 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15443 /* Process NVMET unsol rcv */ 15444 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15445 goto process_cq; 15446 } 15447 } 15448 15449 if (phba->sli4_hba.nvmels_cq && 15450 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15451 /* Process NVME unsol rcv */ 15452 cq = phba->sli4_hba.nvmels_cq; 15453 } 15454 15455 /* Otherwise this is a Slow path event */ 15456 if (cq == NULL) { 15457 lpfc_sli4_sp_handle_eqe(phba, eqe, 15458 phba->sli4_hba.hdwq[qidx].hba_eq); 15459 return; 15460 } 15461 15462 process_cq: 15463 if (unlikely(cqid != cq->queue_id)) { 15464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15465 "0368 Miss-matched fast-path completion " 15466 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15467 cqid, cq->queue_id); 15468 return; 15469 } 15470 15471 work_cq: 15472 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15473 if (phba->ktime_on) 15474 cq->isr_timestamp = ktime_get_ns(); 15475 else 15476 cq->isr_timestamp = 0; 15477 #endif 15478 15479 switch (poll_mode) { 15480 case LPFC_THREADED_IRQ: 15481 __lpfc_sli4_hba_process_cq(cq); 15482 break; 15483 case LPFC_QUEUE_WORK: 15484 default: 15485 if (is_kdump_kernel()) 15486 ret = queue_work(phba->wq, &cq->irqwork); 15487 else 15488 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15489 if (!ret) 15490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15491 "0383 Cannot schedule queue work " 15492 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15493 cqid, cq->queue_id, 15494 raw_smp_processor_id()); 15495 break; 15496 } 15497 } 15498 15499 /** 15500 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15501 * @work: pointer to work element 15502 * 15503 * translates from the work handler and calls the fast-path handler. 15504 **/ 15505 static void 15506 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15507 { 15508 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15509 struct lpfc_queue, sched_irqwork); 15510 15511 __lpfc_sli4_hba_process_cq(cq); 15512 } 15513 15514 /** 15515 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15516 * @irq: Interrupt number. 15517 * @dev_id: The device context pointer. 15518 * 15519 * This function is directly called from the PCI layer as an interrupt 15520 * service routine when device with SLI-4 interface spec is enabled with 15521 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15522 * ring event in the HBA. However, when the device is enabled with either 15523 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15524 * device-level interrupt handler. When the PCI slot is in error recovery 15525 * or the HBA is undergoing initialization, the interrupt handler will not 15526 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15527 * the intrrupt context. This function is called without any lock held. 15528 * It gets the hbalock to access and update SLI data structures. Note that, 15529 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15530 * equal to that of FCP CQ index. 15531 * 15532 * The link attention and ELS ring attention events are handled 15533 * by the worker thread. The interrupt handler signals the worker thread 15534 * and returns for these events. This function is called without any lock 15535 * held. It gets the hbalock to access and update SLI data structures. 15536 * 15537 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15538 * when interrupt is scheduled to be handled from a threaded irq context, or 15539 * else returns IRQ_NONE. 15540 **/ 15541 irqreturn_t 15542 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15543 { 15544 struct lpfc_hba *phba; 15545 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15546 struct lpfc_queue *fpeq; 15547 unsigned long iflag; 15548 int hba_eqidx; 15549 int ecount = 0; 15550 struct lpfc_eq_intr_info *eqi; 15551 15552 /* Get the driver's phba structure from the dev_id */ 15553 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15554 phba = hba_eq_hdl->phba; 15555 hba_eqidx = hba_eq_hdl->idx; 15556 15557 if (unlikely(!phba)) 15558 return IRQ_NONE; 15559 if (unlikely(!phba->sli4_hba.hdwq)) 15560 return IRQ_NONE; 15561 15562 /* Get to the EQ struct associated with this vector */ 15563 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15564 if (unlikely(!fpeq)) 15565 return IRQ_NONE; 15566 15567 /* Check device state for handling interrupt */ 15568 if (unlikely(lpfc_intr_state_check(phba))) { 15569 /* Check again for link_state with lock held */ 15570 spin_lock_irqsave(&phba->hbalock, iflag); 15571 if (phba->link_state < LPFC_LINK_DOWN) 15572 /* Flush, clear interrupt, and rearm the EQ */ 15573 lpfc_sli4_eqcq_flush(phba, fpeq); 15574 spin_unlock_irqrestore(&phba->hbalock, iflag); 15575 return IRQ_NONE; 15576 } 15577 15578 switch (fpeq->poll_mode) { 15579 case LPFC_THREADED_IRQ: 15580 /* CGN mgmt is mutually exclusive from irq processing */ 15581 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15582 return IRQ_WAKE_THREAD; 15583 fallthrough; 15584 case LPFC_QUEUE_WORK: 15585 default: 15586 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15587 eqi->icnt++; 15588 15589 fpeq->last_cpu = raw_smp_processor_id(); 15590 15591 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15592 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15593 phba->cfg_auto_imax && 15594 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15595 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15596 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15597 LPFC_MAX_AUTO_EQ_DELAY); 15598 15599 /* process and rearm the EQ */ 15600 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15601 LPFC_QUEUE_WORK); 15602 15603 if (unlikely(ecount == 0)) { 15604 fpeq->EQ_no_entry++; 15605 if (phba->intr_type == MSIX) 15606 /* MSI-X treated interrupt served as no EQ share INT */ 15607 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15608 "0358 MSI-X interrupt with no EQE\n"); 15609 else 15610 /* Non MSI-X treated on interrupt as EQ share INT */ 15611 return IRQ_NONE; 15612 } 15613 } 15614 15615 return IRQ_HANDLED; 15616 } /* lpfc_sli4_hba_intr_handler */ 15617 15618 /** 15619 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15620 * @irq: Interrupt number. 15621 * @dev_id: The device context pointer. 15622 * 15623 * This function is the device-level interrupt handler to device with SLI-4 15624 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15625 * interrupt mode is enabled and there is an event in the HBA which requires 15626 * driver attention. This function invokes the slow-path interrupt attention 15627 * handling function and fast-path interrupt attention handling function in 15628 * turn to process the relevant HBA attention events. This function is called 15629 * without any lock held. It gets the hbalock to access and update SLI data 15630 * structures. 15631 * 15632 * This function returns IRQ_HANDLED when interrupt is handled, else it 15633 * returns IRQ_NONE. 15634 **/ 15635 irqreturn_t 15636 lpfc_sli4_intr_handler(int irq, void *dev_id) 15637 { 15638 struct lpfc_hba *phba; 15639 irqreturn_t hba_irq_rc; 15640 bool hba_handled = false; 15641 int qidx; 15642 15643 /* Get the driver's phba structure from the dev_id */ 15644 phba = (struct lpfc_hba *)dev_id; 15645 15646 if (unlikely(!phba)) 15647 return IRQ_NONE; 15648 15649 /* 15650 * Invoke fast-path host attention interrupt handling as appropriate. 15651 */ 15652 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15653 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15654 &phba->sli4_hba.hba_eq_hdl[qidx]); 15655 if (hba_irq_rc == IRQ_HANDLED) 15656 hba_handled |= true; 15657 } 15658 15659 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15660 } /* lpfc_sli4_intr_handler */ 15661 15662 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15663 { 15664 struct lpfc_hba *phba = timer_container_of(phba, t, cpuhp_poll_timer); 15665 struct lpfc_queue *eq; 15666 15667 rcu_read_lock(); 15668 15669 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15670 lpfc_sli4_poll_eq(eq); 15671 if (!list_empty(&phba->poll_list)) 15672 mod_timer(&phba->cpuhp_poll_timer, 15673 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15674 15675 rcu_read_unlock(); 15676 } 15677 15678 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15679 { 15680 struct lpfc_hba *phba = eq->phba; 15681 15682 /* kickstart slowpath processing if needed */ 15683 if (list_empty(&phba->poll_list)) 15684 mod_timer(&phba->cpuhp_poll_timer, 15685 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15686 15687 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15688 synchronize_rcu(); 15689 } 15690 15691 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15692 { 15693 struct lpfc_hba *phba = eq->phba; 15694 15695 /* Disable slowpath processing for this eq. Kick start the eq 15696 * by RE-ARMING the eq's ASAP 15697 */ 15698 list_del_rcu(&eq->_poll_list); 15699 synchronize_rcu(); 15700 15701 if (list_empty(&phba->poll_list)) 15702 timer_delete_sync(&phba->cpuhp_poll_timer); 15703 } 15704 15705 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15706 { 15707 struct lpfc_queue *eq, *next; 15708 15709 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15710 list_del(&eq->_poll_list); 15711 15712 INIT_LIST_HEAD(&phba->poll_list); 15713 synchronize_rcu(); 15714 } 15715 15716 static inline void 15717 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15718 { 15719 if (mode == eq->mode) 15720 return; 15721 /* 15722 * currently this function is only called during a hotplug 15723 * event and the cpu on which this function is executing 15724 * is going offline. By now the hotplug has instructed 15725 * the scheduler to remove this cpu from cpu active mask. 15726 * So we don't need to work about being put aside by the 15727 * scheduler for a high priority process. Yes, the inte- 15728 * rrupts could come but they are known to retire ASAP. 15729 */ 15730 15731 /* Disable polling in the fastpath */ 15732 WRITE_ONCE(eq->mode, mode); 15733 /* flush out the store buffer */ 15734 smp_wmb(); 15735 15736 /* 15737 * Add this eq to the polling list and start polling. For 15738 * a grace period both interrupt handler and poller will 15739 * try to process the eq _but_ that's fine. We have a 15740 * synchronization mechanism in place (queue_claimed) to 15741 * deal with it. This is just a draining phase for int- 15742 * errupt handler (not eq's) as we have guranteed through 15743 * barrier that all the CPUs have seen the new CQ_POLLED 15744 * state. which will effectively disable the REARMING of 15745 * the EQ. The whole idea is eq's die off eventually as 15746 * we are not rearming EQ's anymore. 15747 */ 15748 mode ? lpfc_sli4_add_to_poll_list(eq) : 15749 lpfc_sli4_remove_from_poll_list(eq); 15750 } 15751 15752 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15753 { 15754 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15755 } 15756 15757 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15758 { 15759 struct lpfc_hba *phba = eq->phba; 15760 15761 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15762 15763 /* Kick start for the pending io's in h/w. 15764 * Once we switch back to interrupt processing on a eq 15765 * the io path completion will only arm eq's when it 15766 * receives a completion. But since eq's are in disa- 15767 * rmed state it doesn't receive a completion. This 15768 * creates a deadlock scenaro. 15769 */ 15770 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15771 } 15772 15773 /** 15774 * lpfc_sli4_queue_free - free a queue structure and associated memory 15775 * @queue: The queue structure to free. 15776 * 15777 * This function frees a queue structure and the DMAable memory used for 15778 * the host resident queue. This function must be called after destroying the 15779 * queue on the HBA. 15780 **/ 15781 void 15782 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15783 { 15784 struct lpfc_dmabuf *dmabuf; 15785 15786 if (!queue) 15787 return; 15788 15789 if (!list_empty(&queue->wq_list)) 15790 list_del(&queue->wq_list); 15791 15792 while (!list_empty(&queue->page_list)) { 15793 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15794 list); 15795 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15796 dmabuf->virt, dmabuf->phys); 15797 kfree(dmabuf); 15798 } 15799 if (queue->rqbp) { 15800 lpfc_free_rq_buffer(queue->phba, queue); 15801 kfree(queue->rqbp); 15802 } 15803 15804 if (!list_empty(&queue->cpu_list)) 15805 list_del(&queue->cpu_list); 15806 15807 kfree(queue); 15808 return; 15809 } 15810 15811 /** 15812 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15813 * @phba: The HBA that this queue is being created on. 15814 * @page_size: The size of a queue page 15815 * @entry_size: The size of each queue entry for this queue. 15816 * @entry_count: The number of entries that this queue will handle. 15817 * @cpu: The cpu that will primarily utilize this queue. 15818 * 15819 * This function allocates a queue structure and the DMAable memory used for 15820 * the host resident queue. This function must be called before creating the 15821 * queue on the HBA. 15822 **/ 15823 struct lpfc_queue * 15824 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15825 uint32_t entry_size, uint32_t entry_count, int cpu) 15826 { 15827 struct lpfc_queue *queue; 15828 struct lpfc_dmabuf *dmabuf; 15829 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15830 uint16_t x, pgcnt; 15831 15832 if (!phba->sli4_hba.pc_sli4_params.supported) 15833 hw_page_size = page_size; 15834 15835 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15836 15837 /* If needed, Adjust page count to match the max the adapter supports */ 15838 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15839 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15840 15841 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15842 GFP_KERNEL, cpu_to_node(cpu)); 15843 if (!queue) 15844 return NULL; 15845 15846 INIT_LIST_HEAD(&queue->list); 15847 INIT_LIST_HEAD(&queue->_poll_list); 15848 INIT_LIST_HEAD(&queue->wq_list); 15849 INIT_LIST_HEAD(&queue->wqfull_list); 15850 INIT_LIST_HEAD(&queue->page_list); 15851 INIT_LIST_HEAD(&queue->child_list); 15852 INIT_LIST_HEAD(&queue->cpu_list); 15853 15854 /* Set queue parameters now. If the system cannot provide memory 15855 * resources, the free routine needs to know what was allocated. 15856 */ 15857 queue->page_count = pgcnt; 15858 queue->q_pgs = (void **)&queue[1]; 15859 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15860 queue->entry_size = entry_size; 15861 queue->entry_count = entry_count; 15862 queue->page_size = hw_page_size; 15863 queue->phba = phba; 15864 15865 for (x = 0; x < queue->page_count; x++) { 15866 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15867 dev_to_node(&phba->pcidev->dev)); 15868 if (!dmabuf) 15869 goto out_fail; 15870 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15871 hw_page_size, &dmabuf->phys, 15872 GFP_KERNEL); 15873 if (!dmabuf->virt) { 15874 kfree(dmabuf); 15875 goto out_fail; 15876 } 15877 dmabuf->buffer_tag = x; 15878 list_add_tail(&dmabuf->list, &queue->page_list); 15879 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15880 queue->q_pgs[x] = dmabuf->virt; 15881 } 15882 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15883 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15884 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15885 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15886 15887 /* notify_interval will be set during q creation */ 15888 15889 return queue; 15890 out_fail: 15891 lpfc_sli4_queue_free(queue); 15892 return NULL; 15893 } 15894 15895 /** 15896 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15897 * @phba: HBA structure that indicates port to create a queue on. 15898 * @pci_barset: PCI BAR set flag. 15899 * 15900 * This function shall perform iomap of the specified PCI BAR address to host 15901 * memory address if not already done so and return it. The returned host 15902 * memory address can be NULL. 15903 */ 15904 static void __iomem * 15905 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15906 { 15907 if (!phba->pcidev) 15908 return NULL; 15909 15910 switch (pci_barset) { 15911 case WQ_PCI_BAR_0_AND_1: 15912 return phba->pci_bar0_memmap_p; 15913 case WQ_PCI_BAR_2_AND_3: 15914 return phba->pci_bar2_memmap_p; 15915 case WQ_PCI_BAR_4_AND_5: 15916 return phba->pci_bar4_memmap_p; 15917 default: 15918 break; 15919 } 15920 return NULL; 15921 } 15922 15923 /** 15924 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15925 * @phba: HBA structure that EQs are on. 15926 * @startq: The starting EQ index to modify 15927 * @numq: The number of EQs (consecutive indexes) to modify 15928 * @usdelay: amount of delay 15929 * 15930 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15931 * is set either by writing to a register (if supported by the SLI Port) 15932 * or by mailbox command. The mailbox command allows several EQs to be 15933 * updated at once. 15934 * 15935 * The @phba struct is used to send a mailbox command to HBA. The @startq 15936 * is used to get the starting EQ index to change. The @numq value is 15937 * used to specify how many consecutive EQ indexes, starting at EQ index, 15938 * are to be changed. This function is asynchronous and will wait for any 15939 * mailbox commands to finish before returning. 15940 * 15941 * On success this function will return a zero. If unable to allocate 15942 * enough memory this function will return -ENOMEM. If a mailbox command 15943 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15944 * have had their delay multipler changed. 15945 **/ 15946 void 15947 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15948 uint32_t numq, uint32_t usdelay) 15949 { 15950 struct lpfc_mbx_modify_eq_delay *eq_delay; 15951 LPFC_MBOXQ_t *mbox; 15952 struct lpfc_queue *eq; 15953 int cnt = 0, rc, length; 15954 uint32_t shdr_status, shdr_add_status; 15955 uint32_t dmult; 15956 int qidx; 15957 union lpfc_sli4_cfg_shdr *shdr; 15958 15959 if (startq >= phba->cfg_irq_chann) 15960 return; 15961 15962 if (usdelay > 0xFFFF) { 15963 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15964 "6429 usdelay %d too large. Scaled down to " 15965 "0xFFFF.\n", usdelay); 15966 usdelay = 0xFFFF; 15967 } 15968 15969 /* set values by EQ_DELAY register if supported */ 15970 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15971 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15972 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15973 if (!eq) 15974 continue; 15975 15976 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15977 15978 if (++cnt >= numq) 15979 break; 15980 } 15981 return; 15982 } 15983 15984 /* Otherwise, set values by mailbox cmd */ 15985 15986 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15987 if (!mbox) { 15988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15989 "6428 Failed allocating mailbox cmd buffer." 15990 " EQ delay was not set.\n"); 15991 return; 15992 } 15993 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15994 sizeof(struct lpfc_sli4_cfg_mhdr)); 15995 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15996 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15997 length, LPFC_SLI4_MBX_EMBED); 15998 eq_delay = &mbox->u.mqe.un.eq_delay; 15999 16000 /* Calculate delay multiper from maximum interrupt per second */ 16001 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16002 if (dmult) 16003 dmult--; 16004 if (dmult > LPFC_DMULT_MAX) 16005 dmult = LPFC_DMULT_MAX; 16006 16007 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16008 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16009 if (!eq) 16010 continue; 16011 eq->q_mode = usdelay; 16012 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16013 eq_delay->u.request.eq[cnt].phase = 0; 16014 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16015 16016 if (++cnt >= numq) 16017 break; 16018 } 16019 eq_delay->u.request.num_eq = cnt; 16020 16021 mbox->vport = phba->pport; 16022 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16023 mbox->ctx_ndlp = NULL; 16024 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16025 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16026 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16027 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16028 if (shdr_status || shdr_add_status || rc) { 16029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16030 "2512 MODIFY_EQ_DELAY mailbox failed with " 16031 "status x%x add_status x%x, mbx status x%x\n", 16032 shdr_status, shdr_add_status, rc); 16033 } 16034 mempool_free(mbox, phba->mbox_mem_pool); 16035 return; 16036 } 16037 16038 /** 16039 * lpfc_eq_create - Create an Event Queue on the HBA 16040 * @phba: HBA structure that indicates port to create a queue on. 16041 * @eq: The queue structure to use to create the event queue. 16042 * @imax: The maximum interrupt per second limit. 16043 * 16044 * This function creates an event queue, as detailed in @eq, on a port, 16045 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16046 * 16047 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16048 * is used to get the entry count and entry size that are necessary to 16049 * determine the number of pages to allocate and use for this queue. This 16050 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16051 * event queue. This function is asynchronous and will wait for the mailbox 16052 * command to finish before continuing. 16053 * 16054 * On success this function will return a zero. If unable to allocate enough 16055 * memory this function will return -ENOMEM. If the queue create mailbox command 16056 * fails this function will return -ENXIO. 16057 **/ 16058 int 16059 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16060 { 16061 struct lpfc_mbx_eq_create *eq_create; 16062 LPFC_MBOXQ_t *mbox; 16063 int rc, length, status = 0; 16064 struct lpfc_dmabuf *dmabuf; 16065 uint32_t shdr_status, shdr_add_status; 16066 union lpfc_sli4_cfg_shdr *shdr; 16067 uint16_t dmult; 16068 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16069 16070 /* sanity check on queue memory */ 16071 if (!eq) 16072 return -ENODEV; 16073 if (!phba->sli4_hba.pc_sli4_params.supported) 16074 hw_page_size = SLI4_PAGE_SIZE; 16075 16076 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16077 if (!mbox) 16078 return -ENOMEM; 16079 length = (sizeof(struct lpfc_mbx_eq_create) - 16080 sizeof(struct lpfc_sli4_cfg_mhdr)); 16081 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16082 LPFC_MBOX_OPCODE_EQ_CREATE, 16083 length, LPFC_SLI4_MBX_EMBED); 16084 eq_create = &mbox->u.mqe.un.eq_create; 16085 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16086 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16087 eq->page_count); 16088 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16089 LPFC_EQE_SIZE); 16090 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16091 16092 /* Use version 2 of CREATE_EQ if eqav is set */ 16093 if (phba->sli4_hba.pc_sli4_params.eqav) { 16094 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16095 LPFC_Q_CREATE_VERSION_2); 16096 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16097 phba->sli4_hba.pc_sli4_params.eqav); 16098 } 16099 16100 /* don't setup delay multiplier using EQ_CREATE */ 16101 dmult = 0; 16102 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16103 dmult); 16104 switch (eq->entry_count) { 16105 default: 16106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16107 "0360 Unsupported EQ count. (%d)\n", 16108 eq->entry_count); 16109 if (eq->entry_count < 256) { 16110 status = -EINVAL; 16111 goto out; 16112 } 16113 fallthrough; /* otherwise default to smallest count */ 16114 case 256: 16115 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16116 LPFC_EQ_CNT_256); 16117 break; 16118 case 512: 16119 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16120 LPFC_EQ_CNT_512); 16121 break; 16122 case 1024: 16123 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16124 LPFC_EQ_CNT_1024); 16125 break; 16126 case 2048: 16127 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16128 LPFC_EQ_CNT_2048); 16129 break; 16130 case 4096: 16131 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16132 LPFC_EQ_CNT_4096); 16133 break; 16134 } 16135 list_for_each_entry(dmabuf, &eq->page_list, list) { 16136 memset(dmabuf->virt, 0, hw_page_size); 16137 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16138 putPaddrLow(dmabuf->phys); 16139 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16140 putPaddrHigh(dmabuf->phys); 16141 } 16142 mbox->vport = phba->pport; 16143 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16144 mbox->ctx_buf = NULL; 16145 mbox->ctx_ndlp = NULL; 16146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16147 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16148 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16149 if (shdr_status || shdr_add_status || rc) { 16150 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16151 "2500 EQ_CREATE mailbox failed with " 16152 "status x%x add_status x%x, mbx status x%x\n", 16153 shdr_status, shdr_add_status, rc); 16154 status = -ENXIO; 16155 } 16156 eq->type = LPFC_EQ; 16157 eq->subtype = LPFC_NONE; 16158 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16159 if (eq->queue_id == 0xFFFF) 16160 status = -ENXIO; 16161 eq->host_index = 0; 16162 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16163 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16164 out: 16165 mempool_free(mbox, phba->mbox_mem_pool); 16166 return status; 16167 } 16168 16169 /** 16170 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16171 * @irq: Interrupt number. 16172 * @dev_id: The device context pointer. 16173 * 16174 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16175 * threaded irq context. 16176 * 16177 * Returns 16178 * IRQ_HANDLED - interrupt is handled 16179 * IRQ_NONE - otherwise 16180 **/ 16181 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16182 { 16183 struct lpfc_hba *phba; 16184 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16185 struct lpfc_queue *fpeq; 16186 int ecount = 0; 16187 int hba_eqidx; 16188 struct lpfc_eq_intr_info *eqi; 16189 16190 /* Get the driver's phba structure from the dev_id */ 16191 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16192 phba = hba_eq_hdl->phba; 16193 hba_eqidx = hba_eq_hdl->idx; 16194 16195 if (unlikely(!phba)) 16196 return IRQ_NONE; 16197 if (unlikely(!phba->sli4_hba.hdwq)) 16198 return IRQ_NONE; 16199 16200 /* Get to the EQ struct associated with this vector */ 16201 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16202 if (unlikely(!fpeq)) 16203 return IRQ_NONE; 16204 16205 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16206 eqi->icnt++; 16207 16208 fpeq->last_cpu = raw_smp_processor_id(); 16209 16210 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16211 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16212 phba->cfg_auto_imax && 16213 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16214 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16215 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16216 16217 /* process and rearm the EQ */ 16218 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16219 LPFC_THREADED_IRQ); 16220 16221 if (unlikely(ecount == 0)) { 16222 fpeq->EQ_no_entry++; 16223 if (phba->intr_type == MSIX) 16224 /* MSI-X treated interrupt served as no EQ share INT */ 16225 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16226 "3358 MSI-X interrupt with no EQE\n"); 16227 else 16228 /* Non MSI-X treated on interrupt as EQ share INT */ 16229 return IRQ_NONE; 16230 } 16231 return IRQ_HANDLED; 16232 } 16233 16234 /** 16235 * lpfc_cq_create - Create a Completion Queue on the HBA 16236 * @phba: HBA structure that indicates port to create a queue on. 16237 * @cq: The queue structure to use to create the completion queue. 16238 * @eq: The event queue to bind this completion queue to. 16239 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16240 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16241 * 16242 * This function creates a completion queue, as detailed in @wq, on a port, 16243 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16244 * 16245 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16246 * is used to get the entry count and entry size that are necessary to 16247 * determine the number of pages to allocate and use for this queue. The @eq 16248 * is used to indicate which event queue to bind this completion queue to. This 16249 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16250 * completion queue. This function is asynchronous and will wait for the mailbox 16251 * command to finish before continuing. 16252 * 16253 * On success this function will return a zero. If unable to allocate enough 16254 * memory this function will return -ENOMEM. If the queue create mailbox command 16255 * fails this function will return -ENXIO. 16256 **/ 16257 int 16258 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16259 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16260 { 16261 struct lpfc_mbx_cq_create *cq_create; 16262 struct lpfc_dmabuf *dmabuf; 16263 LPFC_MBOXQ_t *mbox; 16264 int rc, length, status = 0; 16265 uint32_t shdr_status, shdr_add_status; 16266 union lpfc_sli4_cfg_shdr *shdr; 16267 16268 /* sanity check on queue memory */ 16269 if (!cq || !eq) 16270 return -ENODEV; 16271 16272 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16273 if (!mbox) 16274 return -ENOMEM; 16275 length = (sizeof(struct lpfc_mbx_cq_create) - 16276 sizeof(struct lpfc_sli4_cfg_mhdr)); 16277 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16278 LPFC_MBOX_OPCODE_CQ_CREATE, 16279 length, LPFC_SLI4_MBX_EMBED); 16280 cq_create = &mbox->u.mqe.un.cq_create; 16281 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16282 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16283 cq->page_count); 16284 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16285 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16286 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16287 phba->sli4_hba.pc_sli4_params.cqv); 16288 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16289 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16290 (cq->page_size / SLI4_PAGE_SIZE)); 16291 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16292 eq->queue_id); 16293 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16294 phba->sli4_hba.pc_sli4_params.cqav); 16295 } else { 16296 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16297 eq->queue_id); 16298 } 16299 switch (cq->entry_count) { 16300 case 2048: 16301 case 4096: 16302 if (phba->sli4_hba.pc_sli4_params.cqv == 16303 LPFC_Q_CREATE_VERSION_2) { 16304 cq_create->u.request.context.lpfc_cq_context_count = 16305 cq->entry_count; 16306 bf_set(lpfc_cq_context_count, 16307 &cq_create->u.request.context, 16308 LPFC_CQ_CNT_WORD7); 16309 break; 16310 } 16311 fallthrough; 16312 default: 16313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16314 "0361 Unsupported CQ count: " 16315 "entry cnt %d sz %d pg cnt %d\n", 16316 cq->entry_count, cq->entry_size, 16317 cq->page_count); 16318 if (cq->entry_count < 256) { 16319 status = -EINVAL; 16320 goto out; 16321 } 16322 fallthrough; /* otherwise default to smallest count */ 16323 case 256: 16324 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16325 LPFC_CQ_CNT_256); 16326 break; 16327 case 512: 16328 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16329 LPFC_CQ_CNT_512); 16330 break; 16331 case 1024: 16332 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16333 LPFC_CQ_CNT_1024); 16334 break; 16335 } 16336 list_for_each_entry(dmabuf, &cq->page_list, list) { 16337 memset(dmabuf->virt, 0, cq->page_size); 16338 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16339 putPaddrLow(dmabuf->phys); 16340 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16341 putPaddrHigh(dmabuf->phys); 16342 } 16343 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16344 16345 /* The IOCTL status is embedded in the mailbox subheader. */ 16346 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16347 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16348 if (shdr_status || shdr_add_status || rc) { 16349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16350 "2501 CQ_CREATE mailbox failed with " 16351 "status x%x add_status x%x, mbx status x%x\n", 16352 shdr_status, shdr_add_status, rc); 16353 status = -ENXIO; 16354 goto out; 16355 } 16356 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16357 if (cq->queue_id == 0xFFFF) { 16358 status = -ENXIO; 16359 goto out; 16360 } 16361 /* link the cq onto the parent eq child list */ 16362 list_add_tail(&cq->list, &eq->child_list); 16363 /* Set up completion queue's type and subtype */ 16364 cq->type = type; 16365 cq->subtype = subtype; 16366 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16367 cq->assoc_qid = eq->queue_id; 16368 cq->assoc_qp = eq; 16369 cq->host_index = 0; 16370 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16371 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16372 16373 if (cq->queue_id > phba->sli4_hba.cq_max) 16374 phba->sli4_hba.cq_max = cq->queue_id; 16375 out: 16376 mempool_free(mbox, phba->mbox_mem_pool); 16377 return status; 16378 } 16379 16380 /** 16381 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16382 * @phba: HBA structure that indicates port to create a queue on. 16383 * @cqp: The queue structure array to use to create the completion queues. 16384 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16385 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16386 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16387 * 16388 * This function creates a set of completion queue, s to support MRQ 16389 * as detailed in @cqp, on a port, 16390 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16391 * 16392 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16393 * is used to get the entry count and entry size that are necessary to 16394 * determine the number of pages to allocate and use for this queue. The @eq 16395 * is used to indicate which event queue to bind this completion queue to. This 16396 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16397 * completion queue. This function is asynchronous and will wait for the mailbox 16398 * command to finish before continuing. 16399 * 16400 * On success this function will return a zero. If unable to allocate enough 16401 * memory this function will return -ENOMEM. If the queue create mailbox command 16402 * fails this function will return -ENXIO. 16403 **/ 16404 int 16405 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16406 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16407 uint32_t subtype) 16408 { 16409 struct lpfc_queue *cq; 16410 struct lpfc_queue *eq; 16411 struct lpfc_mbx_cq_create_set *cq_set; 16412 struct lpfc_dmabuf *dmabuf; 16413 LPFC_MBOXQ_t *mbox; 16414 int rc, length, alloclen, status = 0; 16415 int cnt, idx, numcq, page_idx = 0; 16416 uint32_t shdr_status, shdr_add_status; 16417 union lpfc_sli4_cfg_shdr *shdr; 16418 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16419 16420 /* sanity check on queue memory */ 16421 numcq = phba->cfg_nvmet_mrq; 16422 if (!cqp || !hdwq || !numcq) 16423 return -ENODEV; 16424 16425 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16426 if (!mbox) 16427 return -ENOMEM; 16428 16429 length = sizeof(struct lpfc_mbx_cq_create_set); 16430 length += ((numcq * cqp[0]->page_count) * 16431 sizeof(struct dma_address)); 16432 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16433 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16434 LPFC_SLI4_MBX_NEMBED); 16435 if (alloclen < length) { 16436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16437 "3098 Allocated DMA memory size (%d) is " 16438 "less than the requested DMA memory size " 16439 "(%d)\n", alloclen, length); 16440 status = -ENOMEM; 16441 goto out; 16442 } 16443 cq_set = mbox->sge_array->addr[0]; 16444 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16445 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16446 16447 for (idx = 0; idx < numcq; idx++) { 16448 cq = cqp[idx]; 16449 eq = hdwq[idx].hba_eq; 16450 if (!cq || !eq) { 16451 status = -ENOMEM; 16452 goto out; 16453 } 16454 if (!phba->sli4_hba.pc_sli4_params.supported) 16455 hw_page_size = cq->page_size; 16456 16457 switch (idx) { 16458 case 0: 16459 bf_set(lpfc_mbx_cq_create_set_page_size, 16460 &cq_set->u.request, 16461 (hw_page_size / SLI4_PAGE_SIZE)); 16462 bf_set(lpfc_mbx_cq_create_set_num_pages, 16463 &cq_set->u.request, cq->page_count); 16464 bf_set(lpfc_mbx_cq_create_set_evt, 16465 &cq_set->u.request, 1); 16466 bf_set(lpfc_mbx_cq_create_set_valid, 16467 &cq_set->u.request, 1); 16468 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16469 &cq_set->u.request, 0); 16470 bf_set(lpfc_mbx_cq_create_set_num_cq, 16471 &cq_set->u.request, numcq); 16472 bf_set(lpfc_mbx_cq_create_set_autovalid, 16473 &cq_set->u.request, 16474 phba->sli4_hba.pc_sli4_params.cqav); 16475 switch (cq->entry_count) { 16476 case 2048: 16477 case 4096: 16478 if (phba->sli4_hba.pc_sli4_params.cqv == 16479 LPFC_Q_CREATE_VERSION_2) { 16480 bf_set(lpfc_mbx_cq_create_set_cqe_cnt_lo, 16481 &cq_set->u.request, 16482 cq->entry_count); 16483 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16484 &cq_set->u.request, 16485 LPFC_CQ_CNT_WORD7); 16486 break; 16487 } 16488 fallthrough; 16489 default: 16490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16491 "3118 Bad CQ count. (%d)\n", 16492 cq->entry_count); 16493 if (cq->entry_count < 256) { 16494 status = -EINVAL; 16495 goto out; 16496 } 16497 fallthrough; /* otherwise default to smallest */ 16498 case 256: 16499 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16500 &cq_set->u.request, LPFC_CQ_CNT_256); 16501 break; 16502 case 512: 16503 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16504 &cq_set->u.request, LPFC_CQ_CNT_512); 16505 break; 16506 case 1024: 16507 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16508 &cq_set->u.request, LPFC_CQ_CNT_1024); 16509 break; 16510 } 16511 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16512 &cq_set->u.request, eq->queue_id); 16513 break; 16514 case 1: 16515 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16516 &cq_set->u.request, eq->queue_id); 16517 break; 16518 case 2: 16519 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16520 &cq_set->u.request, eq->queue_id); 16521 break; 16522 case 3: 16523 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16524 &cq_set->u.request, eq->queue_id); 16525 break; 16526 case 4: 16527 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16528 &cq_set->u.request, eq->queue_id); 16529 break; 16530 case 5: 16531 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16532 &cq_set->u.request, eq->queue_id); 16533 break; 16534 case 6: 16535 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16536 &cq_set->u.request, eq->queue_id); 16537 break; 16538 case 7: 16539 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16540 &cq_set->u.request, eq->queue_id); 16541 break; 16542 case 8: 16543 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16544 &cq_set->u.request, eq->queue_id); 16545 break; 16546 case 9: 16547 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16548 &cq_set->u.request, eq->queue_id); 16549 break; 16550 case 10: 16551 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16552 &cq_set->u.request, eq->queue_id); 16553 break; 16554 case 11: 16555 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16556 &cq_set->u.request, eq->queue_id); 16557 break; 16558 case 12: 16559 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16560 &cq_set->u.request, eq->queue_id); 16561 break; 16562 case 13: 16563 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16564 &cq_set->u.request, eq->queue_id); 16565 break; 16566 case 14: 16567 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16568 &cq_set->u.request, eq->queue_id); 16569 break; 16570 case 15: 16571 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16572 &cq_set->u.request, eq->queue_id); 16573 break; 16574 } 16575 16576 /* link the cq onto the parent eq child list */ 16577 list_add_tail(&cq->list, &eq->child_list); 16578 /* Set up completion queue's type and subtype */ 16579 cq->type = type; 16580 cq->subtype = subtype; 16581 cq->assoc_qid = eq->queue_id; 16582 cq->assoc_qp = eq; 16583 cq->host_index = 0; 16584 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16585 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16586 cq->entry_count); 16587 cq->chann = idx; 16588 16589 rc = 0; 16590 list_for_each_entry(dmabuf, &cq->page_list, list) { 16591 memset(dmabuf->virt, 0, hw_page_size); 16592 cnt = page_idx + dmabuf->buffer_tag; 16593 cq_set->u.request.page[cnt].addr_lo = 16594 putPaddrLow(dmabuf->phys); 16595 cq_set->u.request.page[cnt].addr_hi = 16596 putPaddrHigh(dmabuf->phys); 16597 rc++; 16598 } 16599 page_idx += rc; 16600 } 16601 16602 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16603 16604 /* The IOCTL status is embedded in the mailbox subheader. */ 16605 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16606 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16607 if (shdr_status || shdr_add_status || rc) { 16608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16609 "3119 CQ_CREATE_SET mailbox failed with " 16610 "status x%x add_status x%x, mbx status x%x\n", 16611 shdr_status, shdr_add_status, rc); 16612 status = -ENXIO; 16613 goto out; 16614 } 16615 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16616 if (rc == 0xFFFF) { 16617 status = -ENXIO; 16618 goto out; 16619 } 16620 16621 for (idx = 0; idx < numcq; idx++) { 16622 cq = cqp[idx]; 16623 cq->queue_id = rc + idx; 16624 if (cq->queue_id > phba->sli4_hba.cq_max) 16625 phba->sli4_hba.cq_max = cq->queue_id; 16626 } 16627 16628 out: 16629 lpfc_sli4_mbox_cmd_free(phba, mbox); 16630 return status; 16631 } 16632 16633 /** 16634 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16635 * @phba: HBA structure that indicates port to create a queue on. 16636 * @mq: The queue structure to use to create the mailbox queue. 16637 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16638 * @cq: The completion queue to associate with this cq. 16639 * 16640 * This function provides failback (fb) functionality when the 16641 * mq_create_ext fails on older FW generations. It's purpose is identical 16642 * to mq_create_ext otherwise. 16643 * 16644 * This routine cannot fail as all attributes were previously accessed and 16645 * initialized in mq_create_ext. 16646 **/ 16647 static void 16648 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16649 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16650 { 16651 struct lpfc_mbx_mq_create *mq_create; 16652 struct lpfc_dmabuf *dmabuf; 16653 int length; 16654 16655 length = (sizeof(struct lpfc_mbx_mq_create) - 16656 sizeof(struct lpfc_sli4_cfg_mhdr)); 16657 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16658 LPFC_MBOX_OPCODE_MQ_CREATE, 16659 length, LPFC_SLI4_MBX_EMBED); 16660 mq_create = &mbox->u.mqe.un.mq_create; 16661 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16662 mq->page_count); 16663 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16664 cq->queue_id); 16665 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16666 switch (mq->entry_count) { 16667 case 16: 16668 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16669 LPFC_MQ_RING_SIZE_16); 16670 break; 16671 case 32: 16672 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16673 LPFC_MQ_RING_SIZE_32); 16674 break; 16675 case 64: 16676 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16677 LPFC_MQ_RING_SIZE_64); 16678 break; 16679 case 128: 16680 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16681 LPFC_MQ_RING_SIZE_128); 16682 break; 16683 } 16684 list_for_each_entry(dmabuf, &mq->page_list, list) { 16685 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16686 putPaddrLow(dmabuf->phys); 16687 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16688 putPaddrHigh(dmabuf->phys); 16689 } 16690 } 16691 16692 /** 16693 * lpfc_mq_create - Create a mailbox Queue on the HBA 16694 * @phba: HBA structure that indicates port to create a queue on. 16695 * @mq: The queue structure to use to create the mailbox queue. 16696 * @cq: The completion queue to associate with this cq. 16697 * @subtype: The queue's subtype. 16698 * 16699 * This function creates a mailbox queue, as detailed in @mq, on a port, 16700 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16701 * 16702 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16703 * is used to get the entry count and entry size that are necessary to 16704 * determine the number of pages to allocate and use for this queue. This 16705 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16706 * mailbox queue. This function is asynchronous and will wait for the mailbox 16707 * command to finish before continuing. 16708 * 16709 * On success this function will return a zero. If unable to allocate enough 16710 * memory this function will return -ENOMEM. If the queue create mailbox command 16711 * fails this function will return -ENXIO. 16712 **/ 16713 int32_t 16714 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16715 struct lpfc_queue *cq, uint32_t subtype) 16716 { 16717 struct lpfc_mbx_mq_create *mq_create; 16718 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16719 struct lpfc_dmabuf *dmabuf; 16720 LPFC_MBOXQ_t *mbox; 16721 int rc, length, status = 0; 16722 uint32_t shdr_status, shdr_add_status; 16723 union lpfc_sli4_cfg_shdr *shdr; 16724 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16725 16726 /* sanity check on queue memory */ 16727 if (!mq || !cq) 16728 return -ENODEV; 16729 if (!phba->sli4_hba.pc_sli4_params.supported) 16730 hw_page_size = SLI4_PAGE_SIZE; 16731 16732 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16733 if (!mbox) 16734 return -ENOMEM; 16735 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16736 sizeof(struct lpfc_sli4_cfg_mhdr)); 16737 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16738 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16739 length, LPFC_SLI4_MBX_EMBED); 16740 16741 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16742 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16743 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16744 &mq_create_ext->u.request, mq->page_count); 16745 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16746 &mq_create_ext->u.request, 1); 16747 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16748 &mq_create_ext->u.request, 1); 16749 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16750 &mq_create_ext->u.request, 1); 16751 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16752 &mq_create_ext->u.request, 1); 16753 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16754 &mq_create_ext->u.request, 1); 16755 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16756 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16757 phba->sli4_hba.pc_sli4_params.mqv); 16758 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16759 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16760 cq->queue_id); 16761 else 16762 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16763 cq->queue_id); 16764 switch (mq->entry_count) { 16765 default: 16766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16767 "0362 Unsupported MQ count. (%d)\n", 16768 mq->entry_count); 16769 if (mq->entry_count < 16) { 16770 status = -EINVAL; 16771 goto out; 16772 } 16773 fallthrough; /* otherwise default to smallest count */ 16774 case 16: 16775 bf_set(lpfc_mq_context_ring_size, 16776 &mq_create_ext->u.request.context, 16777 LPFC_MQ_RING_SIZE_16); 16778 break; 16779 case 32: 16780 bf_set(lpfc_mq_context_ring_size, 16781 &mq_create_ext->u.request.context, 16782 LPFC_MQ_RING_SIZE_32); 16783 break; 16784 case 64: 16785 bf_set(lpfc_mq_context_ring_size, 16786 &mq_create_ext->u.request.context, 16787 LPFC_MQ_RING_SIZE_64); 16788 break; 16789 case 128: 16790 bf_set(lpfc_mq_context_ring_size, 16791 &mq_create_ext->u.request.context, 16792 LPFC_MQ_RING_SIZE_128); 16793 break; 16794 } 16795 list_for_each_entry(dmabuf, &mq->page_list, list) { 16796 memset(dmabuf->virt, 0, hw_page_size); 16797 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16798 putPaddrLow(dmabuf->phys); 16799 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16800 putPaddrHigh(dmabuf->phys); 16801 } 16802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16803 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16804 &mq_create_ext->u.response); 16805 if (rc != MBX_SUCCESS) { 16806 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16807 "2795 MQ_CREATE_EXT failed with " 16808 "status x%x. Failback to MQ_CREATE.\n", 16809 rc); 16810 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16811 mq_create = &mbox->u.mqe.un.mq_create; 16812 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16813 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16814 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16815 &mq_create->u.response); 16816 } 16817 16818 /* The IOCTL status is embedded in the mailbox subheader. */ 16819 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16820 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16821 if (shdr_status || shdr_add_status || rc) { 16822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16823 "2502 MQ_CREATE mailbox failed with " 16824 "status x%x add_status x%x, mbx status x%x\n", 16825 shdr_status, shdr_add_status, rc); 16826 status = -ENXIO; 16827 goto out; 16828 } 16829 if (mq->queue_id == 0xFFFF) { 16830 status = -ENXIO; 16831 goto out; 16832 } 16833 mq->type = LPFC_MQ; 16834 mq->assoc_qid = cq->queue_id; 16835 mq->subtype = subtype; 16836 mq->host_index = 0; 16837 mq->hba_index = 0; 16838 16839 /* link the mq onto the parent cq child list */ 16840 list_add_tail(&mq->list, &cq->child_list); 16841 out: 16842 mempool_free(mbox, phba->mbox_mem_pool); 16843 return status; 16844 } 16845 16846 /** 16847 * lpfc_wq_create - Create a Work Queue on the HBA 16848 * @phba: HBA structure that indicates port to create a queue on. 16849 * @wq: The queue structure to use to create the work queue. 16850 * @cq: The completion queue to bind this work queue to. 16851 * @subtype: The subtype of the work queue indicating its functionality. 16852 * 16853 * This function creates a work queue, as detailed in @wq, on a port, described 16854 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16855 * 16856 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16857 * is used to get the entry count and entry size that are necessary to 16858 * determine the number of pages to allocate and use for this queue. The @cq 16859 * is used to indicate which completion queue to bind this work queue to. This 16860 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16861 * work queue. This function is asynchronous and will wait for the mailbox 16862 * command to finish before continuing. 16863 * 16864 * On success this function will return a zero. If unable to allocate enough 16865 * memory this function will return -ENOMEM. If the queue create mailbox command 16866 * fails this function will return -ENXIO. 16867 **/ 16868 int 16869 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16870 struct lpfc_queue *cq, uint32_t subtype) 16871 { 16872 struct lpfc_mbx_wq_create *wq_create; 16873 struct lpfc_dmabuf *dmabuf; 16874 LPFC_MBOXQ_t *mbox; 16875 int rc, length, status = 0; 16876 uint32_t shdr_status, shdr_add_status; 16877 union lpfc_sli4_cfg_shdr *shdr; 16878 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16879 struct dma_address *page; 16880 void __iomem *bar_memmap_p; 16881 uint32_t db_offset; 16882 uint16_t pci_barset; 16883 uint8_t dpp_barset; 16884 uint32_t dpp_offset; 16885 uint8_t wq_create_version; 16886 #ifdef CONFIG_X86 16887 unsigned long pg_addr; 16888 #endif 16889 16890 /* sanity check on queue memory */ 16891 if (!wq || !cq) 16892 return -ENODEV; 16893 if (!phba->sli4_hba.pc_sli4_params.supported) 16894 hw_page_size = wq->page_size; 16895 16896 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16897 if (!mbox) 16898 return -ENOMEM; 16899 length = (sizeof(struct lpfc_mbx_wq_create) - 16900 sizeof(struct lpfc_sli4_cfg_mhdr)); 16901 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16902 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16903 length, LPFC_SLI4_MBX_EMBED); 16904 wq_create = &mbox->u.mqe.un.wq_create; 16905 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16906 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16907 wq->page_count); 16908 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16909 cq->queue_id); 16910 16911 /* wqv is the earliest version supported, NOT the latest */ 16912 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16913 phba->sli4_hba.pc_sli4_params.wqv); 16914 16915 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16916 (wq->page_size > SLI4_PAGE_SIZE)) 16917 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16918 else 16919 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16920 16921 switch (wq_create_version) { 16922 case LPFC_Q_CREATE_VERSION_1: 16923 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16924 wq->entry_count); 16925 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16926 LPFC_Q_CREATE_VERSION_1); 16927 16928 switch (wq->entry_size) { 16929 default: 16930 case 64: 16931 bf_set(lpfc_mbx_wq_create_wqe_size, 16932 &wq_create->u.request_1, 16933 LPFC_WQ_WQE_SIZE_64); 16934 break; 16935 case 128: 16936 bf_set(lpfc_mbx_wq_create_wqe_size, 16937 &wq_create->u.request_1, 16938 LPFC_WQ_WQE_SIZE_128); 16939 break; 16940 } 16941 /* Request DPP by default */ 16942 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16943 bf_set(lpfc_mbx_wq_create_page_size, 16944 &wq_create->u.request_1, 16945 (wq->page_size / SLI4_PAGE_SIZE)); 16946 page = wq_create->u.request_1.page; 16947 break; 16948 default: 16949 page = wq_create->u.request.page; 16950 break; 16951 } 16952 16953 list_for_each_entry(dmabuf, &wq->page_list, list) { 16954 memset(dmabuf->virt, 0, hw_page_size); 16955 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16956 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16957 } 16958 16959 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16960 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16961 16962 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16963 /* The IOCTL status is embedded in the mailbox subheader. */ 16964 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16965 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16966 if (shdr_status || shdr_add_status || rc) { 16967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16968 "2503 WQ_CREATE mailbox failed with " 16969 "status x%x add_status x%x, mbx status x%x\n", 16970 shdr_status, shdr_add_status, rc); 16971 status = -ENXIO; 16972 goto out; 16973 } 16974 16975 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16976 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16977 &wq_create->u.response); 16978 else 16979 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16980 &wq_create->u.response_1); 16981 16982 if (wq->queue_id == 0xFFFF) { 16983 status = -ENXIO; 16984 goto out; 16985 } 16986 16987 wq->db_format = LPFC_DB_LIST_FORMAT; 16988 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16989 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16990 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16991 &wq_create->u.response); 16992 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16993 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16995 "3265 WQ[%d] doorbell format " 16996 "not supported: x%x\n", 16997 wq->queue_id, wq->db_format); 16998 status = -EINVAL; 16999 goto out; 17000 } 17001 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17002 &wq_create->u.response); 17003 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17004 pci_barset); 17005 if (!bar_memmap_p) { 17006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17007 "3263 WQ[%d] failed to memmap " 17008 "pci barset:x%x\n", 17009 wq->queue_id, pci_barset); 17010 status = -ENOMEM; 17011 goto out; 17012 } 17013 db_offset = wq_create->u.response.doorbell_offset; 17014 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17015 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17017 "3252 WQ[%d] doorbell offset " 17018 "not supported: x%x\n", 17019 wq->queue_id, db_offset); 17020 status = -EINVAL; 17021 goto out; 17022 } 17023 wq->db_regaddr = bar_memmap_p + db_offset; 17024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17025 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17026 "format:x%x\n", wq->queue_id, 17027 pci_barset, db_offset, wq->db_format); 17028 } else 17029 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17030 } else { 17031 /* Check if DPP was honored by the firmware */ 17032 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17033 &wq_create->u.response_1); 17034 if (wq->dpp_enable) { 17035 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17036 &wq_create->u.response_1); 17037 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17038 pci_barset); 17039 if (!bar_memmap_p) { 17040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17041 "3267 WQ[%d] failed to memmap " 17042 "pci barset:x%x\n", 17043 wq->queue_id, pci_barset); 17044 status = -ENOMEM; 17045 goto out; 17046 } 17047 db_offset = wq_create->u.response_1.doorbell_offset; 17048 wq->db_regaddr = bar_memmap_p + db_offset; 17049 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17050 &wq_create->u.response_1); 17051 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17052 &wq_create->u.response_1); 17053 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17054 dpp_barset); 17055 if (!bar_memmap_p) { 17056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17057 "3268 WQ[%d] failed to memmap " 17058 "pci barset:x%x\n", 17059 wq->queue_id, dpp_barset); 17060 status = -ENOMEM; 17061 goto out; 17062 } 17063 dpp_offset = wq_create->u.response_1.dpp_offset; 17064 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17065 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17066 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17067 "dpp_id:x%x dpp_barset:x%x " 17068 "dpp_offset:x%x\n", 17069 wq->queue_id, pci_barset, db_offset, 17070 wq->dpp_id, dpp_barset, dpp_offset); 17071 17072 #ifdef CONFIG_X86 17073 /* Enable combined writes for DPP aperture */ 17074 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17075 rc = set_memory_wc(pg_addr, 1); 17076 if (rc) { 17077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17078 "3272 Cannot setup Combined " 17079 "Write on WQ[%d] - disable DPP\n", 17080 wq->queue_id); 17081 phba->cfg_enable_dpp = 0; 17082 } 17083 #else 17084 phba->cfg_enable_dpp = 0; 17085 #endif 17086 } else 17087 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17088 } 17089 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17090 if (wq->pring == NULL) { 17091 status = -ENOMEM; 17092 goto out; 17093 } 17094 wq->type = LPFC_WQ; 17095 wq->assoc_qid = cq->queue_id; 17096 wq->subtype = subtype; 17097 wq->host_index = 0; 17098 wq->hba_index = 0; 17099 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17100 17101 /* link the wq onto the parent cq child list */ 17102 list_add_tail(&wq->list, &cq->child_list); 17103 out: 17104 mempool_free(mbox, phba->mbox_mem_pool); 17105 return status; 17106 } 17107 17108 /** 17109 * lpfc_rq_create - Create a Receive Queue on the HBA 17110 * @phba: HBA structure that indicates port to create a queue on. 17111 * @hrq: The queue structure to use to create the header receive queue. 17112 * @drq: The queue structure to use to create the data receive queue. 17113 * @cq: The completion queue to bind this work queue to. 17114 * @subtype: The subtype of the work queue indicating its functionality. 17115 * 17116 * This function creates a receive buffer queue pair , as detailed in @hrq and 17117 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17118 * to the HBA. 17119 * 17120 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17121 * struct is used to get the entry count that is necessary to determine the 17122 * number of pages to use for this queue. The @cq is used to indicate which 17123 * completion queue to bind received buffers that are posted to these queues to. 17124 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17125 * receive queue pair. This function is asynchronous and will wait for the 17126 * mailbox command to finish before continuing. 17127 * 17128 * On success this function will return a zero. If unable to allocate enough 17129 * memory this function will return -ENOMEM. If the queue create mailbox command 17130 * fails this function will return -ENXIO. 17131 **/ 17132 int 17133 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17134 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17135 { 17136 struct lpfc_mbx_rq_create *rq_create; 17137 struct lpfc_dmabuf *dmabuf; 17138 LPFC_MBOXQ_t *mbox; 17139 int rc, length, status = 0; 17140 uint32_t shdr_status, shdr_add_status; 17141 union lpfc_sli4_cfg_shdr *shdr; 17142 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17143 void __iomem *bar_memmap_p; 17144 uint32_t db_offset; 17145 uint16_t pci_barset; 17146 17147 /* sanity check on queue memory */ 17148 if (!hrq || !drq || !cq) 17149 return -ENODEV; 17150 if (!phba->sli4_hba.pc_sli4_params.supported) 17151 hw_page_size = SLI4_PAGE_SIZE; 17152 17153 if (hrq->entry_count != drq->entry_count) 17154 return -EINVAL; 17155 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17156 if (!mbox) 17157 return -ENOMEM; 17158 length = (sizeof(struct lpfc_mbx_rq_create) - 17159 sizeof(struct lpfc_sli4_cfg_mhdr)); 17160 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17161 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17162 length, LPFC_SLI4_MBX_EMBED); 17163 rq_create = &mbox->u.mqe.un.rq_create; 17164 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17165 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17166 phba->sli4_hba.pc_sli4_params.rqv); 17167 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17168 bf_set(lpfc_rq_context_rqe_count_1, 17169 &rq_create->u.request.context, 17170 hrq->entry_count); 17171 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17172 bf_set(lpfc_rq_context_rqe_size, 17173 &rq_create->u.request.context, 17174 LPFC_RQE_SIZE_8); 17175 bf_set(lpfc_rq_context_page_size, 17176 &rq_create->u.request.context, 17177 LPFC_RQ_PAGE_SIZE_4096); 17178 } else { 17179 switch (hrq->entry_count) { 17180 default: 17181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17182 "2535 Unsupported RQ count. (%d)\n", 17183 hrq->entry_count); 17184 if (hrq->entry_count < 512) { 17185 status = -EINVAL; 17186 goto out; 17187 } 17188 fallthrough; /* otherwise default to smallest count */ 17189 case 512: 17190 bf_set(lpfc_rq_context_rqe_count, 17191 &rq_create->u.request.context, 17192 LPFC_RQ_RING_SIZE_512); 17193 break; 17194 case 1024: 17195 bf_set(lpfc_rq_context_rqe_count, 17196 &rq_create->u.request.context, 17197 LPFC_RQ_RING_SIZE_1024); 17198 break; 17199 case 2048: 17200 bf_set(lpfc_rq_context_rqe_count, 17201 &rq_create->u.request.context, 17202 LPFC_RQ_RING_SIZE_2048); 17203 break; 17204 case 4096: 17205 bf_set(lpfc_rq_context_rqe_count, 17206 &rq_create->u.request.context, 17207 LPFC_RQ_RING_SIZE_4096); 17208 break; 17209 } 17210 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17211 LPFC_HDR_BUF_SIZE); 17212 } 17213 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17214 cq->queue_id); 17215 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17216 hrq->page_count); 17217 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17218 memset(dmabuf->virt, 0, hw_page_size); 17219 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17220 putPaddrLow(dmabuf->phys); 17221 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17222 putPaddrHigh(dmabuf->phys); 17223 } 17224 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17225 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17226 17227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17228 /* The IOCTL status is embedded in the mailbox subheader. */ 17229 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17230 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17231 if (shdr_status || shdr_add_status || rc) { 17232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17233 "2504 RQ_CREATE mailbox failed with " 17234 "status x%x add_status x%x, mbx status x%x\n", 17235 shdr_status, shdr_add_status, rc); 17236 status = -ENXIO; 17237 goto out; 17238 } 17239 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17240 if (hrq->queue_id == 0xFFFF) { 17241 status = -ENXIO; 17242 goto out; 17243 } 17244 17245 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17246 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17247 &rq_create->u.response); 17248 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17249 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17251 "3262 RQ [%d] doorbell format not " 17252 "supported: x%x\n", hrq->queue_id, 17253 hrq->db_format); 17254 status = -EINVAL; 17255 goto out; 17256 } 17257 17258 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17259 &rq_create->u.response); 17260 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17261 if (!bar_memmap_p) { 17262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17263 "3269 RQ[%d] failed to memmap pci " 17264 "barset:x%x\n", hrq->queue_id, 17265 pci_barset); 17266 status = -ENOMEM; 17267 goto out; 17268 } 17269 17270 db_offset = rq_create->u.response.doorbell_offset; 17271 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17272 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17274 "3270 RQ[%d] doorbell offset not " 17275 "supported: x%x\n", hrq->queue_id, 17276 db_offset); 17277 status = -EINVAL; 17278 goto out; 17279 } 17280 hrq->db_regaddr = bar_memmap_p + db_offset; 17281 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17282 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17283 "format:x%x\n", hrq->queue_id, pci_barset, 17284 db_offset, hrq->db_format); 17285 } else { 17286 hrq->db_format = LPFC_DB_RING_FORMAT; 17287 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17288 } 17289 hrq->type = LPFC_HRQ; 17290 hrq->assoc_qid = cq->queue_id; 17291 hrq->subtype = subtype; 17292 hrq->host_index = 0; 17293 hrq->hba_index = 0; 17294 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17295 17296 /* now create the data queue */ 17297 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17298 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17299 length, LPFC_SLI4_MBX_EMBED); 17300 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17301 phba->sli4_hba.pc_sli4_params.rqv); 17302 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17303 bf_set(lpfc_rq_context_rqe_count_1, 17304 &rq_create->u.request.context, hrq->entry_count); 17305 if (subtype == LPFC_NVMET) 17306 rq_create->u.request.context.buffer_size = 17307 LPFC_NVMET_DATA_BUF_SIZE; 17308 else 17309 rq_create->u.request.context.buffer_size = 17310 LPFC_DATA_BUF_SIZE; 17311 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17312 LPFC_RQE_SIZE_8); 17313 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17314 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17315 } else { 17316 switch (drq->entry_count) { 17317 default: 17318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17319 "2536 Unsupported RQ count. (%d)\n", 17320 drq->entry_count); 17321 if (drq->entry_count < 512) { 17322 status = -EINVAL; 17323 goto out; 17324 } 17325 fallthrough; /* otherwise default to smallest count */ 17326 case 512: 17327 bf_set(lpfc_rq_context_rqe_count, 17328 &rq_create->u.request.context, 17329 LPFC_RQ_RING_SIZE_512); 17330 break; 17331 case 1024: 17332 bf_set(lpfc_rq_context_rqe_count, 17333 &rq_create->u.request.context, 17334 LPFC_RQ_RING_SIZE_1024); 17335 break; 17336 case 2048: 17337 bf_set(lpfc_rq_context_rqe_count, 17338 &rq_create->u.request.context, 17339 LPFC_RQ_RING_SIZE_2048); 17340 break; 17341 case 4096: 17342 bf_set(lpfc_rq_context_rqe_count, 17343 &rq_create->u.request.context, 17344 LPFC_RQ_RING_SIZE_4096); 17345 break; 17346 } 17347 if (subtype == LPFC_NVMET) 17348 bf_set(lpfc_rq_context_buf_size, 17349 &rq_create->u.request.context, 17350 LPFC_NVMET_DATA_BUF_SIZE); 17351 else 17352 bf_set(lpfc_rq_context_buf_size, 17353 &rq_create->u.request.context, 17354 LPFC_DATA_BUF_SIZE); 17355 } 17356 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17357 cq->queue_id); 17358 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17359 drq->page_count); 17360 list_for_each_entry(dmabuf, &drq->page_list, list) { 17361 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17362 putPaddrLow(dmabuf->phys); 17363 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17364 putPaddrHigh(dmabuf->phys); 17365 } 17366 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17367 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17368 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17369 /* The IOCTL status is embedded in the mailbox subheader. */ 17370 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17371 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17372 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17373 if (shdr_status || shdr_add_status || rc) { 17374 status = -ENXIO; 17375 goto out; 17376 } 17377 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17378 if (drq->queue_id == 0xFFFF) { 17379 status = -ENXIO; 17380 goto out; 17381 } 17382 drq->type = LPFC_DRQ; 17383 drq->assoc_qid = cq->queue_id; 17384 drq->subtype = subtype; 17385 drq->host_index = 0; 17386 drq->hba_index = 0; 17387 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17388 17389 /* link the header and data RQs onto the parent cq child list */ 17390 list_add_tail(&hrq->list, &cq->child_list); 17391 list_add_tail(&drq->list, &cq->child_list); 17392 17393 out: 17394 mempool_free(mbox, phba->mbox_mem_pool); 17395 return status; 17396 } 17397 17398 /** 17399 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17400 * @phba: HBA structure that indicates port to create a queue on. 17401 * @hrqp: The queue structure array to use to create the header receive queues. 17402 * @drqp: The queue structure array to use to create the data receive queues. 17403 * @cqp: The completion queue array to bind these receive queues to. 17404 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17405 * 17406 * This function creates a receive buffer queue pair , as detailed in @hrq and 17407 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17408 * to the HBA. 17409 * 17410 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17411 * struct is used to get the entry count that is necessary to determine the 17412 * number of pages to use for this queue. The @cq is used to indicate which 17413 * completion queue to bind received buffers that are posted to these queues to. 17414 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17415 * receive queue pair. This function is asynchronous and will wait for the 17416 * mailbox command to finish before continuing. 17417 * 17418 * On success this function will return a zero. If unable to allocate enough 17419 * memory this function will return -ENOMEM. If the queue create mailbox command 17420 * fails this function will return -ENXIO. 17421 **/ 17422 int 17423 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17424 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17425 uint32_t subtype) 17426 { 17427 struct lpfc_queue *hrq, *drq, *cq; 17428 struct lpfc_mbx_rq_create_v2 *rq_create; 17429 struct lpfc_dmabuf *dmabuf; 17430 LPFC_MBOXQ_t *mbox; 17431 int rc, length, alloclen, status = 0; 17432 int cnt, idx, numrq, page_idx = 0; 17433 uint32_t shdr_status, shdr_add_status; 17434 union lpfc_sli4_cfg_shdr *shdr; 17435 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17436 17437 numrq = phba->cfg_nvmet_mrq; 17438 /* sanity check on array memory */ 17439 if (!hrqp || !drqp || !cqp || !numrq) 17440 return -ENODEV; 17441 if (!phba->sli4_hba.pc_sli4_params.supported) 17442 hw_page_size = SLI4_PAGE_SIZE; 17443 17444 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17445 if (!mbox) 17446 return -ENOMEM; 17447 17448 length = sizeof(struct lpfc_mbx_rq_create_v2); 17449 length += ((2 * numrq * hrqp[0]->page_count) * 17450 sizeof(struct dma_address)); 17451 17452 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17453 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17454 LPFC_SLI4_MBX_NEMBED); 17455 if (alloclen < length) { 17456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17457 "3099 Allocated DMA memory size (%d) is " 17458 "less than the requested DMA memory size " 17459 "(%d)\n", alloclen, length); 17460 status = -ENOMEM; 17461 goto out; 17462 } 17463 17464 17465 17466 rq_create = mbox->sge_array->addr[0]; 17467 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17468 17469 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17470 cnt = 0; 17471 17472 for (idx = 0; idx < numrq; idx++) { 17473 hrq = hrqp[idx]; 17474 drq = drqp[idx]; 17475 cq = cqp[idx]; 17476 17477 /* sanity check on queue memory */ 17478 if (!hrq || !drq || !cq) { 17479 status = -ENODEV; 17480 goto out; 17481 } 17482 17483 if (hrq->entry_count != drq->entry_count) { 17484 status = -EINVAL; 17485 goto out; 17486 } 17487 17488 if (idx == 0) { 17489 bf_set(lpfc_mbx_rq_create_num_pages, 17490 &rq_create->u.request, 17491 hrq->page_count); 17492 bf_set(lpfc_mbx_rq_create_rq_cnt, 17493 &rq_create->u.request, (numrq * 2)); 17494 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17495 1); 17496 bf_set(lpfc_rq_context_base_cq, 17497 &rq_create->u.request.context, 17498 cq->queue_id); 17499 bf_set(lpfc_rq_context_data_size, 17500 &rq_create->u.request.context, 17501 LPFC_NVMET_DATA_BUF_SIZE); 17502 bf_set(lpfc_rq_context_hdr_size, 17503 &rq_create->u.request.context, 17504 LPFC_HDR_BUF_SIZE); 17505 bf_set(lpfc_rq_context_rqe_count_1, 17506 &rq_create->u.request.context, 17507 hrq->entry_count); 17508 bf_set(lpfc_rq_context_rqe_size, 17509 &rq_create->u.request.context, 17510 LPFC_RQE_SIZE_8); 17511 bf_set(lpfc_rq_context_page_size, 17512 &rq_create->u.request.context, 17513 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17514 } 17515 rc = 0; 17516 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17517 memset(dmabuf->virt, 0, hw_page_size); 17518 cnt = page_idx + dmabuf->buffer_tag; 17519 rq_create->u.request.page[cnt].addr_lo = 17520 putPaddrLow(dmabuf->phys); 17521 rq_create->u.request.page[cnt].addr_hi = 17522 putPaddrHigh(dmabuf->phys); 17523 rc++; 17524 } 17525 page_idx += rc; 17526 17527 rc = 0; 17528 list_for_each_entry(dmabuf, &drq->page_list, list) { 17529 memset(dmabuf->virt, 0, hw_page_size); 17530 cnt = page_idx + dmabuf->buffer_tag; 17531 rq_create->u.request.page[cnt].addr_lo = 17532 putPaddrLow(dmabuf->phys); 17533 rq_create->u.request.page[cnt].addr_hi = 17534 putPaddrHigh(dmabuf->phys); 17535 rc++; 17536 } 17537 page_idx += rc; 17538 17539 hrq->db_format = LPFC_DB_RING_FORMAT; 17540 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17541 hrq->type = LPFC_HRQ; 17542 hrq->assoc_qid = cq->queue_id; 17543 hrq->subtype = subtype; 17544 hrq->host_index = 0; 17545 hrq->hba_index = 0; 17546 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17547 17548 drq->db_format = LPFC_DB_RING_FORMAT; 17549 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17550 drq->type = LPFC_DRQ; 17551 drq->assoc_qid = cq->queue_id; 17552 drq->subtype = subtype; 17553 drq->host_index = 0; 17554 drq->hba_index = 0; 17555 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17556 17557 list_add_tail(&hrq->list, &cq->child_list); 17558 list_add_tail(&drq->list, &cq->child_list); 17559 } 17560 17561 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17562 /* The IOCTL status is embedded in the mailbox subheader. */ 17563 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17564 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17565 if (shdr_status || shdr_add_status || rc) { 17566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17567 "3120 RQ_CREATE mailbox failed with " 17568 "status x%x add_status x%x, mbx status x%x\n", 17569 shdr_status, shdr_add_status, rc); 17570 status = -ENXIO; 17571 goto out; 17572 } 17573 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17574 if (rc == 0xFFFF) { 17575 status = -ENXIO; 17576 goto out; 17577 } 17578 17579 /* Initialize all RQs with associated queue id */ 17580 for (idx = 0; idx < numrq; idx++) { 17581 hrq = hrqp[idx]; 17582 hrq->queue_id = rc + (2 * idx); 17583 drq = drqp[idx]; 17584 drq->queue_id = rc + (2 * idx) + 1; 17585 } 17586 17587 out: 17588 lpfc_sli4_mbox_cmd_free(phba, mbox); 17589 return status; 17590 } 17591 17592 /** 17593 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17594 * @phba: HBA structure that indicates port to destroy a queue on. 17595 * @eq: The queue structure associated with the queue to destroy. 17596 * 17597 * This function destroys a queue, as detailed in @eq by sending an mailbox 17598 * command, specific to the type of queue, to the HBA. 17599 * 17600 * The @eq struct is used to get the queue ID of the queue to destroy. 17601 * 17602 * On success this function will return a zero. If the queue destroy mailbox 17603 * command fails this function will return -ENXIO. 17604 **/ 17605 int 17606 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17607 { 17608 LPFC_MBOXQ_t *mbox; 17609 int rc, length, status = 0; 17610 uint32_t shdr_status, shdr_add_status; 17611 union lpfc_sli4_cfg_shdr *shdr; 17612 17613 /* sanity check on queue memory */ 17614 if (!eq) 17615 return -ENODEV; 17616 17617 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17618 goto list_remove; 17619 17620 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17621 if (!mbox) 17622 return -ENOMEM; 17623 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17624 sizeof(struct lpfc_sli4_cfg_mhdr)); 17625 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17626 LPFC_MBOX_OPCODE_EQ_DESTROY, 17627 length, LPFC_SLI4_MBX_EMBED); 17628 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17629 eq->queue_id); 17630 mbox->vport = eq->phba->pport; 17631 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17632 17633 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17634 /* The IOCTL status is embedded in the mailbox subheader. */ 17635 shdr = (union lpfc_sli4_cfg_shdr *) 17636 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17639 if (shdr_status || shdr_add_status || rc) { 17640 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17641 "2505 EQ_DESTROY mailbox failed with " 17642 "status x%x add_status x%x, mbx status x%x\n", 17643 shdr_status, shdr_add_status, rc); 17644 status = -ENXIO; 17645 } 17646 mempool_free(mbox, eq->phba->mbox_mem_pool); 17647 17648 list_remove: 17649 /* Remove eq from any list */ 17650 list_del_init(&eq->list); 17651 17652 return status; 17653 } 17654 17655 /** 17656 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17657 * @phba: HBA structure that indicates port to destroy a queue on. 17658 * @cq: The queue structure associated with the queue to destroy. 17659 * 17660 * This function destroys a queue, as detailed in @cq by sending an mailbox 17661 * command, specific to the type of queue, to the HBA. 17662 * 17663 * The @cq struct is used to get the queue ID of the queue to destroy. 17664 * 17665 * On success this function will return a zero. If the queue destroy mailbox 17666 * command fails this function will return -ENXIO. 17667 **/ 17668 int 17669 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17670 { 17671 LPFC_MBOXQ_t *mbox; 17672 int rc, length, status = 0; 17673 uint32_t shdr_status, shdr_add_status; 17674 union lpfc_sli4_cfg_shdr *shdr; 17675 17676 /* sanity check on queue memory */ 17677 if (!cq) 17678 return -ENODEV; 17679 17680 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17681 goto list_remove; 17682 17683 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17684 if (!mbox) 17685 return -ENOMEM; 17686 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17687 sizeof(struct lpfc_sli4_cfg_mhdr)); 17688 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17689 LPFC_MBOX_OPCODE_CQ_DESTROY, 17690 length, LPFC_SLI4_MBX_EMBED); 17691 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17692 cq->queue_id); 17693 mbox->vport = cq->phba->pport; 17694 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17695 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17696 /* The IOCTL status is embedded in the mailbox subheader. */ 17697 shdr = (union lpfc_sli4_cfg_shdr *) 17698 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17699 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17700 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17701 if (shdr_status || shdr_add_status || rc) { 17702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17703 "2506 CQ_DESTROY mailbox failed with " 17704 "status x%x add_status x%x, mbx status x%x\n", 17705 shdr_status, shdr_add_status, rc); 17706 status = -ENXIO; 17707 } 17708 mempool_free(mbox, cq->phba->mbox_mem_pool); 17709 17710 list_remove: 17711 /* Remove cq from any list */ 17712 list_del_init(&cq->list); 17713 return status; 17714 } 17715 17716 /** 17717 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17718 * @phba: HBA structure that indicates port to destroy a queue on. 17719 * @mq: The queue structure associated with the queue to destroy. 17720 * 17721 * This function destroys a queue, as detailed in @mq by sending an mailbox 17722 * command, specific to the type of queue, to the HBA. 17723 * 17724 * The @mq struct is used to get the queue ID of the queue to destroy. 17725 * 17726 * On success this function will return a zero. If the queue destroy mailbox 17727 * command fails this function will return -ENXIO. 17728 **/ 17729 int 17730 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17731 { 17732 LPFC_MBOXQ_t *mbox; 17733 int rc, length, status = 0; 17734 uint32_t shdr_status, shdr_add_status; 17735 union lpfc_sli4_cfg_shdr *shdr; 17736 17737 /* sanity check on queue memory */ 17738 if (!mq) 17739 return -ENODEV; 17740 17741 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17742 goto list_remove; 17743 17744 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17745 if (!mbox) 17746 return -ENOMEM; 17747 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17748 sizeof(struct lpfc_sli4_cfg_mhdr)); 17749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17750 LPFC_MBOX_OPCODE_MQ_DESTROY, 17751 length, LPFC_SLI4_MBX_EMBED); 17752 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17753 mq->queue_id); 17754 mbox->vport = mq->phba->pport; 17755 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17756 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17757 /* The IOCTL status is embedded in the mailbox subheader. */ 17758 shdr = (union lpfc_sli4_cfg_shdr *) 17759 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17762 if (shdr_status || shdr_add_status || rc) { 17763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17764 "2507 MQ_DESTROY mailbox failed with " 17765 "status x%x add_status x%x, mbx status x%x\n", 17766 shdr_status, shdr_add_status, rc); 17767 status = -ENXIO; 17768 } 17769 mempool_free(mbox, mq->phba->mbox_mem_pool); 17770 17771 list_remove: 17772 /* Remove mq from any list */ 17773 list_del_init(&mq->list); 17774 return status; 17775 } 17776 17777 /** 17778 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17779 * @phba: HBA structure that indicates port to destroy a queue on. 17780 * @wq: The queue structure associated with the queue to destroy. 17781 * 17782 * This function destroys a queue, as detailed in @wq by sending an mailbox 17783 * command, specific to the type of queue, to the HBA. 17784 * 17785 * The @wq struct is used to get the queue ID of the queue to destroy. 17786 * 17787 * On success this function will return a zero. If the queue destroy mailbox 17788 * command fails this function will return -ENXIO. 17789 **/ 17790 int 17791 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17792 { 17793 LPFC_MBOXQ_t *mbox; 17794 int rc, length, status = 0; 17795 uint32_t shdr_status, shdr_add_status; 17796 union lpfc_sli4_cfg_shdr *shdr; 17797 17798 /* sanity check on queue memory */ 17799 if (!wq) 17800 return -ENODEV; 17801 17802 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17803 goto list_remove; 17804 17805 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17806 if (!mbox) 17807 return -ENOMEM; 17808 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17809 sizeof(struct lpfc_sli4_cfg_mhdr)); 17810 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17811 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17812 length, LPFC_SLI4_MBX_EMBED); 17813 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17814 wq->queue_id); 17815 mbox->vport = wq->phba->pport; 17816 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17817 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17818 shdr = (union lpfc_sli4_cfg_shdr *) 17819 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17820 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17821 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17822 if (shdr_status || shdr_add_status || rc) { 17823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17824 "2508 WQ_DESTROY mailbox failed with " 17825 "status x%x add_status x%x, mbx status x%x\n", 17826 shdr_status, shdr_add_status, rc); 17827 status = -ENXIO; 17828 } 17829 mempool_free(mbox, wq->phba->mbox_mem_pool); 17830 17831 list_remove: 17832 /* Remove wq from any list */ 17833 list_del_init(&wq->list); 17834 kfree(wq->pring); 17835 wq->pring = NULL; 17836 return status; 17837 } 17838 17839 /** 17840 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17841 * @phba: HBA structure that indicates port to destroy a queue on. 17842 * @hrq: The queue structure associated with the queue to destroy. 17843 * @drq: The queue structure associated with the queue to destroy. 17844 * 17845 * This function destroys a queue, as detailed in @rq by sending an mailbox 17846 * command, specific to the type of queue, to the HBA. 17847 * 17848 * The @rq struct is used to get the queue ID of the queue to destroy. 17849 * 17850 * On success this function will return a zero. If the queue destroy mailbox 17851 * command fails this function will return -ENXIO. 17852 **/ 17853 int 17854 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17855 struct lpfc_queue *drq) 17856 { 17857 LPFC_MBOXQ_t *mbox; 17858 int rc, length, status = 0; 17859 uint32_t shdr_status, shdr_add_status; 17860 union lpfc_sli4_cfg_shdr *shdr; 17861 17862 /* sanity check on queue memory */ 17863 if (!hrq || !drq) 17864 return -ENODEV; 17865 17866 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17867 goto list_remove; 17868 17869 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17870 if (!mbox) 17871 return -ENOMEM; 17872 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17873 sizeof(struct lpfc_sli4_cfg_mhdr)); 17874 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17875 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17876 length, LPFC_SLI4_MBX_EMBED); 17877 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17878 hrq->queue_id); 17879 mbox->vport = hrq->phba->pport; 17880 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17881 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17882 /* The IOCTL status is embedded in the mailbox subheader. */ 17883 shdr = (union lpfc_sli4_cfg_shdr *) 17884 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17885 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17886 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17887 if (shdr_status || shdr_add_status || rc) { 17888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17889 "2509 RQ_DESTROY mailbox failed with " 17890 "status x%x add_status x%x, mbx status x%x\n", 17891 shdr_status, shdr_add_status, rc); 17892 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17893 return -ENXIO; 17894 } 17895 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17896 drq->queue_id); 17897 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17898 shdr = (union lpfc_sli4_cfg_shdr *) 17899 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17902 if (shdr_status || shdr_add_status || rc) { 17903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17904 "2510 RQ_DESTROY mailbox failed with " 17905 "status x%x add_status x%x, mbx status x%x\n", 17906 shdr_status, shdr_add_status, rc); 17907 status = -ENXIO; 17908 } 17909 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17910 17911 list_remove: 17912 list_del_init(&hrq->list); 17913 list_del_init(&drq->list); 17914 return status; 17915 } 17916 17917 /** 17918 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17919 * @phba: The virtual port for which this call being executed. 17920 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17921 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17922 * @xritag: the xritag that ties this io to the SGL pages. 17923 * 17924 * This routine will post the sgl pages for the IO that has the xritag 17925 * that is in the iocbq structure. The xritag is assigned during iocbq 17926 * creation and persists for as long as the driver is loaded. 17927 * if the caller has fewer than 256 scatter gather segments to map then 17928 * pdma_phys_addr1 should be 0. 17929 * If the caller needs to map more than 256 scatter gather segment then 17930 * pdma_phys_addr1 should be a valid physical address. 17931 * physical address for SGLs must be 64 byte aligned. 17932 * If you are going to map 2 SGL's then the first one must have 256 entries 17933 * the second sgl can have between 1 and 256 entries. 17934 * 17935 * Return codes: 17936 * 0 - Success 17937 * -ENXIO, -ENOMEM - Failure 17938 **/ 17939 int 17940 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17941 dma_addr_t pdma_phys_addr0, 17942 dma_addr_t pdma_phys_addr1, 17943 uint16_t xritag) 17944 { 17945 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17946 LPFC_MBOXQ_t *mbox; 17947 int rc; 17948 uint32_t shdr_status, shdr_add_status; 17949 uint32_t mbox_tmo; 17950 union lpfc_sli4_cfg_shdr *shdr; 17951 17952 if (xritag == NO_XRI) { 17953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17954 "0364 Invalid param:\n"); 17955 return -EINVAL; 17956 } 17957 17958 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17959 if (!mbox) 17960 return -ENOMEM; 17961 17962 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17963 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17964 sizeof(struct lpfc_mbx_post_sgl_pages) - 17965 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17966 17967 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17968 &mbox->u.mqe.un.post_sgl_pages; 17969 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17970 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17971 17972 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17973 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17974 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17975 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17976 17977 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17978 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17979 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17980 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17981 if (!phba->sli4_hba.intr_enable) 17982 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17983 else { 17984 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17985 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17986 } 17987 /* The IOCTL status is embedded in the mailbox subheader. */ 17988 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17989 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17990 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17991 if (!phba->sli4_hba.intr_enable) 17992 mempool_free(mbox, phba->mbox_mem_pool); 17993 else if (rc != MBX_TIMEOUT) 17994 mempool_free(mbox, phba->mbox_mem_pool); 17995 if (shdr_status || shdr_add_status || rc) { 17996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17997 "2511 POST_SGL mailbox failed with " 17998 "status x%x add_status x%x, mbx status x%x\n", 17999 shdr_status, shdr_add_status, rc); 18000 } 18001 return 0; 18002 } 18003 18004 /** 18005 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 18006 * @phba: pointer to lpfc hba data structure. 18007 * 18008 * This routine is invoked to post rpi header templates to the 18009 * HBA consistent with the SLI-4 interface spec. This routine 18010 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18011 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18012 * 18013 * Returns 18014 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18015 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18016 **/ 18017 static uint16_t 18018 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18019 { 18020 unsigned long xri; 18021 18022 /* 18023 * Fetch the next logical xri. Because this index is logical, 18024 * the driver starts at 0 each time. 18025 */ 18026 spin_lock_irq(&phba->hbalock); 18027 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18028 phba->sli4_hba.max_cfg_param.max_xri); 18029 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18030 spin_unlock_irq(&phba->hbalock); 18031 return NO_XRI; 18032 } else { 18033 set_bit(xri, phba->sli4_hba.xri_bmask); 18034 phba->sli4_hba.max_cfg_param.xri_used++; 18035 } 18036 spin_unlock_irq(&phba->hbalock); 18037 return xri; 18038 } 18039 18040 /** 18041 * __lpfc_sli4_free_xri - Release an xri for reuse. 18042 * @phba: pointer to lpfc hba data structure. 18043 * @xri: xri to release. 18044 * 18045 * This routine is invoked to release an xri to the pool of 18046 * available rpis maintained by the driver. 18047 **/ 18048 static void 18049 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18050 { 18051 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18052 phba->sli4_hba.max_cfg_param.xri_used--; 18053 } 18054 } 18055 18056 /** 18057 * lpfc_sli4_free_xri - Release an xri for reuse. 18058 * @phba: pointer to lpfc hba data structure. 18059 * @xri: xri to release. 18060 * 18061 * This routine is invoked to release an xri to the pool of 18062 * available rpis maintained by the driver. 18063 **/ 18064 void 18065 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18066 { 18067 spin_lock_irq(&phba->hbalock); 18068 __lpfc_sli4_free_xri(phba, xri); 18069 spin_unlock_irq(&phba->hbalock); 18070 } 18071 18072 /** 18073 * lpfc_sli4_next_xritag - Get an xritag for the io 18074 * @phba: Pointer to HBA context object. 18075 * 18076 * This function gets an xritag for the iocb. If there is no unused xritag 18077 * it will return 0xffff. 18078 * The function returns the allocated xritag if successful, else returns zero. 18079 * Zero is not a valid xritag. 18080 * The caller is not required to hold any lock. 18081 **/ 18082 uint16_t 18083 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18084 { 18085 uint16_t xri_index; 18086 18087 xri_index = lpfc_sli4_alloc_xri(phba); 18088 if (xri_index == NO_XRI) 18089 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18090 "2004 Failed to allocate XRI.last XRITAG is %d" 18091 " Max XRI is %d, Used XRI is %d\n", 18092 xri_index, 18093 phba->sli4_hba.max_cfg_param.max_xri, 18094 phba->sli4_hba.max_cfg_param.xri_used); 18095 return xri_index; 18096 } 18097 18098 /** 18099 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18100 * @phba: pointer to lpfc hba data structure. 18101 * @post_sgl_list: pointer to els sgl entry list. 18102 * @post_cnt: number of els sgl entries on the list. 18103 * 18104 * This routine is invoked to post a block of driver's sgl pages to the 18105 * HBA using non-embedded mailbox command. No Lock is held. This routine 18106 * is only called when the driver is loading and after all IO has been 18107 * stopped. 18108 **/ 18109 static int 18110 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18111 struct list_head *post_sgl_list, 18112 int post_cnt) 18113 { 18114 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18115 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18116 struct sgl_page_pairs *sgl_pg_pairs; 18117 void *viraddr; 18118 LPFC_MBOXQ_t *mbox; 18119 uint32_t reqlen, alloclen, pg_pairs; 18120 uint32_t mbox_tmo; 18121 uint16_t xritag_start = 0; 18122 int rc = 0; 18123 uint32_t shdr_status, shdr_add_status; 18124 union lpfc_sli4_cfg_shdr *shdr; 18125 18126 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18127 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18128 if (reqlen > SLI4_PAGE_SIZE) { 18129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18130 "2559 Block sgl registration required DMA " 18131 "size (%d) great than a page\n", reqlen); 18132 return -ENOMEM; 18133 } 18134 18135 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18136 if (!mbox) 18137 return -ENOMEM; 18138 18139 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18140 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18141 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18142 LPFC_SLI4_MBX_NEMBED); 18143 18144 if (alloclen < reqlen) { 18145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18146 "0285 Allocated DMA memory size (%d) is " 18147 "less than the requested DMA memory " 18148 "size (%d)\n", alloclen, reqlen); 18149 lpfc_sli4_mbox_cmd_free(phba, mbox); 18150 return -ENOMEM; 18151 } 18152 /* Set up the SGL pages in the non-embedded DMA pages */ 18153 viraddr = mbox->sge_array->addr[0]; 18154 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18155 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18156 18157 pg_pairs = 0; 18158 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18159 /* Set up the sge entry */ 18160 sgl_pg_pairs->sgl_pg0_addr_lo = 18161 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18162 sgl_pg_pairs->sgl_pg0_addr_hi = 18163 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18164 sgl_pg_pairs->sgl_pg1_addr_lo = 18165 cpu_to_le32(putPaddrLow(0)); 18166 sgl_pg_pairs->sgl_pg1_addr_hi = 18167 cpu_to_le32(putPaddrHigh(0)); 18168 18169 /* Keep the first xritag on the list */ 18170 if (pg_pairs == 0) 18171 xritag_start = sglq_entry->sli4_xritag; 18172 sgl_pg_pairs++; 18173 pg_pairs++; 18174 } 18175 18176 /* Complete initialization and perform endian conversion. */ 18177 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18178 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18179 sgl->word0 = cpu_to_le32(sgl->word0); 18180 18181 if (!phba->sli4_hba.intr_enable) 18182 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18183 else { 18184 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18185 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18186 } 18187 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18188 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18189 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18190 if (!phba->sli4_hba.intr_enable) 18191 lpfc_sli4_mbox_cmd_free(phba, mbox); 18192 else if (rc != MBX_TIMEOUT) 18193 lpfc_sli4_mbox_cmd_free(phba, mbox); 18194 if (shdr_status || shdr_add_status || rc) { 18195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18196 "2513 POST_SGL_BLOCK mailbox command failed " 18197 "status x%x add_status x%x mbx status x%x\n", 18198 shdr_status, shdr_add_status, rc); 18199 rc = -ENXIO; 18200 } 18201 return rc; 18202 } 18203 18204 /** 18205 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18206 * @phba: pointer to lpfc hba data structure. 18207 * @nblist: pointer to nvme buffer list. 18208 * @count: number of scsi buffers on the list. 18209 * 18210 * This routine is invoked to post a block of @count scsi sgl pages from a 18211 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18212 * No Lock is held. 18213 * 18214 **/ 18215 static int 18216 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18217 int count) 18218 { 18219 struct lpfc_io_buf *lpfc_ncmd; 18220 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18221 struct sgl_page_pairs *sgl_pg_pairs; 18222 void *viraddr; 18223 LPFC_MBOXQ_t *mbox; 18224 uint32_t reqlen, alloclen, pg_pairs; 18225 uint32_t mbox_tmo; 18226 uint16_t xritag_start = 0; 18227 int rc = 0; 18228 uint32_t shdr_status, shdr_add_status; 18229 dma_addr_t pdma_phys_bpl1; 18230 union lpfc_sli4_cfg_shdr *shdr; 18231 18232 /* Calculate the requested length of the dma memory */ 18233 reqlen = count * sizeof(struct sgl_page_pairs) + 18234 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18235 if (reqlen > SLI4_PAGE_SIZE) { 18236 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18237 "6118 Block sgl registration required DMA " 18238 "size (%d) great than a page\n", reqlen); 18239 return -ENOMEM; 18240 } 18241 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18242 if (!mbox) { 18243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18244 "6119 Failed to allocate mbox cmd memory\n"); 18245 return -ENOMEM; 18246 } 18247 18248 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18249 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18250 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18251 reqlen, LPFC_SLI4_MBX_NEMBED); 18252 18253 if (alloclen < reqlen) { 18254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18255 "6120 Allocated DMA memory size (%d) is " 18256 "less than the requested DMA memory " 18257 "size (%d)\n", alloclen, reqlen); 18258 lpfc_sli4_mbox_cmd_free(phba, mbox); 18259 return -ENOMEM; 18260 } 18261 18262 /* Get the first SGE entry from the non-embedded DMA memory */ 18263 viraddr = mbox->sge_array->addr[0]; 18264 18265 /* Set up the SGL pages in the non-embedded DMA pages */ 18266 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18267 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18268 18269 pg_pairs = 0; 18270 list_for_each_entry(lpfc_ncmd, nblist, list) { 18271 /* Set up the sge entry */ 18272 sgl_pg_pairs->sgl_pg0_addr_lo = 18273 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18274 sgl_pg_pairs->sgl_pg0_addr_hi = 18275 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18276 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18277 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18278 SGL_PAGE_SIZE; 18279 else 18280 pdma_phys_bpl1 = 0; 18281 sgl_pg_pairs->sgl_pg1_addr_lo = 18282 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18283 sgl_pg_pairs->sgl_pg1_addr_hi = 18284 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18285 /* Keep the first xritag on the list */ 18286 if (pg_pairs == 0) 18287 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18288 sgl_pg_pairs++; 18289 pg_pairs++; 18290 } 18291 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18292 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18293 /* Perform endian conversion if necessary */ 18294 sgl->word0 = cpu_to_le32(sgl->word0); 18295 18296 if (!phba->sli4_hba.intr_enable) { 18297 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18298 } else { 18299 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18300 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18301 } 18302 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18303 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18304 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18305 if (!phba->sli4_hba.intr_enable) 18306 lpfc_sli4_mbox_cmd_free(phba, mbox); 18307 else if (rc != MBX_TIMEOUT) 18308 lpfc_sli4_mbox_cmd_free(phba, mbox); 18309 if (shdr_status || shdr_add_status || rc) { 18310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18311 "6125 POST_SGL_BLOCK mailbox command failed " 18312 "status x%x add_status x%x mbx status x%x\n", 18313 shdr_status, shdr_add_status, rc); 18314 rc = -ENXIO; 18315 } 18316 return rc; 18317 } 18318 18319 /** 18320 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18321 * @phba: pointer to lpfc hba data structure. 18322 * @post_nblist: pointer to the nvme buffer list. 18323 * @sb_count: number of nvme buffers. 18324 * 18325 * This routine walks a list of nvme buffers that was passed in. It attempts 18326 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18327 * uses the non-embedded SGL block post mailbox commands to post to the port. 18328 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18329 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18330 * must be local list, thus no lock is needed when manipulate the list. 18331 * 18332 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18333 **/ 18334 int 18335 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18336 struct list_head *post_nblist, int sb_count) 18337 { 18338 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18339 int status, sgl_size; 18340 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18341 dma_addr_t pdma_phys_sgl1; 18342 int last_xritag = NO_XRI; 18343 int cur_xritag; 18344 LIST_HEAD(prep_nblist); 18345 LIST_HEAD(blck_nblist); 18346 LIST_HEAD(nvme_nblist); 18347 18348 /* sanity check */ 18349 if (sb_count <= 0) 18350 return -EINVAL; 18351 18352 sgl_size = phba->cfg_sg_dma_buf_size; 18353 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18354 list_del_init(&lpfc_ncmd->list); 18355 block_cnt++; 18356 if ((last_xritag != NO_XRI) && 18357 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18358 /* a hole in xri block, form a sgl posting block */ 18359 list_splice_init(&prep_nblist, &blck_nblist); 18360 post_cnt = block_cnt - 1; 18361 /* prepare list for next posting block */ 18362 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18363 block_cnt = 1; 18364 } else { 18365 /* prepare list for next posting block */ 18366 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18367 /* enough sgls for non-embed sgl mbox command */ 18368 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18369 list_splice_init(&prep_nblist, &blck_nblist); 18370 post_cnt = block_cnt; 18371 block_cnt = 0; 18372 } 18373 } 18374 num_posting++; 18375 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18376 18377 /* end of repost sgl list condition for NVME buffers */ 18378 if (num_posting == sb_count) { 18379 if (post_cnt == 0) { 18380 /* last sgl posting block */ 18381 list_splice_init(&prep_nblist, &blck_nblist); 18382 post_cnt = block_cnt; 18383 } else if (block_cnt == 1) { 18384 /* last single sgl with non-contiguous xri */ 18385 if (sgl_size > SGL_PAGE_SIZE) 18386 pdma_phys_sgl1 = 18387 lpfc_ncmd->dma_phys_sgl + 18388 SGL_PAGE_SIZE; 18389 else 18390 pdma_phys_sgl1 = 0; 18391 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18392 status = lpfc_sli4_post_sgl( 18393 phba, lpfc_ncmd->dma_phys_sgl, 18394 pdma_phys_sgl1, cur_xritag); 18395 if (status) { 18396 /* Post error. Buffer unavailable. */ 18397 lpfc_ncmd->flags |= 18398 LPFC_SBUF_NOT_POSTED; 18399 } else { 18400 /* Post success. Bffer available. */ 18401 lpfc_ncmd->flags &= 18402 ~LPFC_SBUF_NOT_POSTED; 18403 lpfc_ncmd->status = IOSTAT_SUCCESS; 18404 num_posted++; 18405 } 18406 /* success, put on NVME buffer sgl list */ 18407 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18408 } 18409 } 18410 18411 /* continue until a nembed page worth of sgls */ 18412 if (post_cnt == 0) 18413 continue; 18414 18415 /* post block of NVME buffer list sgls */ 18416 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18417 post_cnt); 18418 18419 /* don't reset xirtag due to hole in xri block */ 18420 if (block_cnt == 0) 18421 last_xritag = NO_XRI; 18422 18423 /* reset NVME buffer post count for next round of posting */ 18424 post_cnt = 0; 18425 18426 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18427 while (!list_empty(&blck_nblist)) { 18428 list_remove_head(&blck_nblist, lpfc_ncmd, 18429 struct lpfc_io_buf, list); 18430 if (status) { 18431 /* Post error. Mark buffer unavailable. */ 18432 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18433 } else { 18434 /* Post success, Mark buffer available. */ 18435 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18436 lpfc_ncmd->status = IOSTAT_SUCCESS; 18437 num_posted++; 18438 } 18439 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18440 } 18441 } 18442 /* Push NVME buffers with sgl posted to the available list */ 18443 lpfc_io_buf_replenish(phba, &nvme_nblist); 18444 18445 return num_posted; 18446 } 18447 18448 /** 18449 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18450 * @phba: pointer to lpfc_hba struct that the frame was received on 18451 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18452 * 18453 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18454 * valid type of frame that the LPFC driver will handle. This function will 18455 * return a zero if the frame is a valid frame or a non zero value when the 18456 * frame does not pass the check. 18457 **/ 18458 static int 18459 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18460 { 18461 /* make rctl_names static to save stack space */ 18462 struct fc_vft_header *fc_vft_hdr; 18463 struct fc_app_header *fc_app_hdr; 18464 uint32_t *header = (uint32_t *) fc_hdr; 18465 18466 #define FC_RCTL_MDS_DIAGS 0xF4 18467 18468 switch (fc_hdr->fh_r_ctl) { 18469 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18470 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18471 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18472 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18473 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18474 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18475 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18476 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18477 case FC_RCTL_ELS_REQ: /* extended link services request */ 18478 case FC_RCTL_ELS_REP: /* extended link services reply */ 18479 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18480 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18481 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18482 case FC_RCTL_BA_RMC: /* remove connection */ 18483 case FC_RCTL_BA_ACC: /* basic accept */ 18484 case FC_RCTL_BA_RJT: /* basic reject */ 18485 case FC_RCTL_BA_PRMT: 18486 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18487 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18488 case FC_RCTL_P_RJT: /* port reject */ 18489 case FC_RCTL_F_RJT: /* fabric reject */ 18490 case FC_RCTL_P_BSY: /* port busy */ 18491 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18492 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18493 case FC_RCTL_LCR: /* link credit reset */ 18494 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18495 case FC_RCTL_END: /* end */ 18496 break; 18497 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18498 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18499 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18500 return lpfc_fc_frame_check(phba, fc_hdr); 18501 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18502 default: 18503 goto drop; 18504 } 18505 18506 switch (fc_hdr->fh_type) { 18507 case FC_TYPE_BLS: 18508 case FC_TYPE_ELS: 18509 case FC_TYPE_FCP: 18510 case FC_TYPE_CT: 18511 case FC_TYPE_NVME: 18512 break; 18513 case FC_TYPE_IP: 18514 case FC_TYPE_ILS: 18515 default: 18516 goto drop; 18517 } 18518 18519 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18520 phba->cfg_vmid_app_header)) { 18521 /* Application header is 16B device header */ 18522 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18523 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18524 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18525 LOOPBACK_SRC_APPID) { 18526 lpfc_printf_log(phba, KERN_WARNING, 18527 LOG_ELS | LOG_LIBDFC, 18528 "1932 Loopback src app id " 18529 "not matched, app_id:x%x\n", 18530 be32_to_cpu(fc_app_hdr->src_app_id)); 18531 18532 goto drop; 18533 } 18534 } else { 18535 lpfc_printf_log(phba, KERN_WARNING, 18536 LOG_ELS | LOG_LIBDFC, 18537 "1933 Loopback df_ctl bit not set, " 18538 "df_ctl:x%x\n", 18539 fc_hdr->fh_df_ctl); 18540 18541 goto drop; 18542 } 18543 } 18544 18545 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18546 "2538 Received frame rctl:x%x, type:x%x, " 18547 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18548 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18549 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18550 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18551 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18552 be32_to_cpu(header[6])); 18553 return 0; 18554 drop: 18555 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18556 "2539 Dropped frame rctl:x%x type:x%x\n", 18557 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18558 return 1; 18559 } 18560 18561 /** 18562 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18563 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18564 * 18565 * This function processes the FC header to retrieve the VFI from the VF 18566 * header, if one exists. This function will return the VFI if one exists 18567 * or 0 if no VSAN Header exists. 18568 **/ 18569 static uint32_t 18570 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18571 { 18572 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18573 18574 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18575 return 0; 18576 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18577 } 18578 18579 /** 18580 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18581 * @phba: Pointer to the HBA structure to search for the vport on 18582 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18583 * @fcfi: The FC Fabric ID that the frame came from 18584 * @did: Destination ID to match against 18585 * 18586 * This function searches the @phba for a vport that matches the content of the 18587 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18588 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18589 * returns the matching vport pointer or NULL if unable to match frame to a 18590 * vport. 18591 **/ 18592 static struct lpfc_vport * 18593 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18594 uint16_t fcfi, uint32_t did) 18595 { 18596 struct lpfc_vport **vports; 18597 struct lpfc_vport *vport = NULL; 18598 int i; 18599 18600 if (did == Fabric_DID) 18601 return phba->pport; 18602 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18603 phba->link_state != LPFC_HBA_READY) 18604 return phba->pport; 18605 18606 vports = lpfc_create_vport_work_array(phba); 18607 if (vports != NULL) { 18608 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18609 if (phba->fcf.fcfi == fcfi && 18610 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18611 vports[i]->fc_myDID == did) { 18612 vport = vports[i]; 18613 break; 18614 } 18615 } 18616 } 18617 lpfc_destroy_vport_work_array(phba, vports); 18618 return vport; 18619 } 18620 18621 /** 18622 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18623 * @vport: The vport to work on. 18624 * 18625 * This function updates the receive sequence time stamp for this vport. The 18626 * receive sequence time stamp indicates the time that the last frame of the 18627 * the sequence that has been idle for the longest amount of time was received. 18628 * the driver uses this time stamp to indicate if any received sequences have 18629 * timed out. 18630 **/ 18631 static void 18632 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18633 { 18634 struct lpfc_dmabuf *h_buf; 18635 struct hbq_dmabuf *dmabuf = NULL; 18636 18637 /* get the oldest sequence on the rcv list */ 18638 h_buf = list_get_first(&vport->rcv_buffer_list, 18639 struct lpfc_dmabuf, list); 18640 if (!h_buf) 18641 return; 18642 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18643 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18644 } 18645 18646 /** 18647 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18648 * @vport: The vport that the received sequences were sent to. 18649 * 18650 * This function cleans up all outstanding received sequences. This is called 18651 * by the driver when a link event or user action invalidates all the received 18652 * sequences. 18653 **/ 18654 void 18655 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18656 { 18657 struct lpfc_dmabuf *h_buf, *hnext; 18658 struct lpfc_dmabuf *d_buf, *dnext; 18659 struct hbq_dmabuf *dmabuf = NULL; 18660 18661 /* start with the oldest sequence on the rcv list */ 18662 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18663 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18664 list_del_init(&dmabuf->hbuf.list); 18665 list_for_each_entry_safe(d_buf, dnext, 18666 &dmabuf->dbuf.list, list) { 18667 list_del_init(&d_buf->list); 18668 lpfc_in_buf_free(vport->phba, d_buf); 18669 } 18670 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18671 } 18672 } 18673 18674 /** 18675 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18676 * @vport: The vport that the received sequences were sent to. 18677 * 18678 * This function determines whether any received sequences have timed out by 18679 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18680 * indicates that there is at least one timed out sequence this routine will 18681 * go through the received sequences one at a time from most inactive to most 18682 * active to determine which ones need to be cleaned up. Once it has determined 18683 * that a sequence needs to be cleaned up it will simply free up the resources 18684 * without sending an abort. 18685 **/ 18686 void 18687 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18688 { 18689 struct lpfc_dmabuf *h_buf, *hnext; 18690 struct lpfc_dmabuf *d_buf, *dnext; 18691 struct hbq_dmabuf *dmabuf = NULL; 18692 unsigned long timeout; 18693 int abort_count = 0; 18694 18695 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18696 vport->rcv_buffer_time_stamp); 18697 if (list_empty(&vport->rcv_buffer_list) || 18698 time_before(jiffies, timeout)) 18699 return; 18700 /* start with the oldest sequence on the rcv list */ 18701 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18702 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18703 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18704 dmabuf->time_stamp); 18705 if (time_before(jiffies, timeout)) 18706 break; 18707 abort_count++; 18708 list_del_init(&dmabuf->hbuf.list); 18709 list_for_each_entry_safe(d_buf, dnext, 18710 &dmabuf->dbuf.list, list) { 18711 list_del_init(&d_buf->list); 18712 lpfc_in_buf_free(vport->phba, d_buf); 18713 } 18714 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18715 } 18716 if (abort_count) 18717 lpfc_update_rcv_time_stamp(vport); 18718 } 18719 18720 /** 18721 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18722 * @vport: pointer to a vitural port 18723 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18724 * 18725 * This function searches through the existing incomplete sequences that have 18726 * been sent to this @vport. If the frame matches one of the incomplete 18727 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18728 * make up that sequence. If no sequence is found that matches this frame then 18729 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18730 * This function returns a pointer to the first dmabuf in the sequence list that 18731 * the frame was linked to. 18732 **/ 18733 static struct hbq_dmabuf * 18734 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18735 { 18736 struct fc_frame_header *new_hdr; 18737 struct fc_frame_header *temp_hdr; 18738 struct lpfc_dmabuf *d_buf; 18739 struct lpfc_dmabuf *h_buf; 18740 struct hbq_dmabuf *seq_dmabuf = NULL; 18741 struct hbq_dmabuf *temp_dmabuf = NULL; 18742 uint8_t found = 0; 18743 18744 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18745 dmabuf->time_stamp = jiffies; 18746 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18747 18748 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18749 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18750 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18751 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18752 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18753 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18754 continue; 18755 /* found a pending sequence that matches this frame */ 18756 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18757 break; 18758 } 18759 if (!seq_dmabuf) { 18760 /* 18761 * This indicates first frame received for this sequence. 18762 * Queue the buffer on the vport's rcv_buffer_list. 18763 */ 18764 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18765 lpfc_update_rcv_time_stamp(vport); 18766 return dmabuf; 18767 } 18768 temp_hdr = seq_dmabuf->hbuf.virt; 18769 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18770 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18771 list_del_init(&seq_dmabuf->hbuf.list); 18772 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18773 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18774 lpfc_update_rcv_time_stamp(vport); 18775 return dmabuf; 18776 } 18777 /* move this sequence to the tail to indicate a young sequence */ 18778 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18779 seq_dmabuf->time_stamp = jiffies; 18780 lpfc_update_rcv_time_stamp(vport); 18781 if (list_empty(&seq_dmabuf->dbuf.list)) { 18782 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18783 return seq_dmabuf; 18784 } 18785 /* find the correct place in the sequence to insert this frame */ 18786 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18787 while (!found) { 18788 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18789 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18790 /* 18791 * If the frame's sequence count is greater than the frame on 18792 * the list then insert the frame right after this frame 18793 */ 18794 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18795 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18796 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18797 found = 1; 18798 break; 18799 } 18800 18801 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18802 break; 18803 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18804 } 18805 18806 if (found) 18807 return seq_dmabuf; 18808 return NULL; 18809 } 18810 18811 /** 18812 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18813 * @vport: pointer to a vitural port 18814 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18815 * 18816 * This function tries to abort from the partially assembed sequence, described 18817 * by the information from basic abbort @dmabuf. It checks to see whether such 18818 * partially assembled sequence held by the driver. If so, it shall free up all 18819 * the frames from the partially assembled sequence. 18820 * 18821 * Return 18822 * true -- if there is matching partially assembled sequence present and all 18823 * the frames freed with the sequence; 18824 * false -- if there is no matching partially assembled sequence present so 18825 * nothing got aborted in the lower layer driver 18826 **/ 18827 static bool 18828 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18829 struct hbq_dmabuf *dmabuf) 18830 { 18831 struct fc_frame_header *new_hdr; 18832 struct fc_frame_header *temp_hdr; 18833 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18834 struct hbq_dmabuf *seq_dmabuf = NULL; 18835 18836 /* Use the hdr_buf to find the sequence that matches this frame */ 18837 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18838 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18839 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18840 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18841 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18842 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18843 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18844 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18845 continue; 18846 /* found a pending sequence that matches this frame */ 18847 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18848 break; 18849 } 18850 18851 /* Free up all the frames from the partially assembled sequence */ 18852 if (seq_dmabuf) { 18853 list_for_each_entry_safe(d_buf, n_buf, 18854 &seq_dmabuf->dbuf.list, list) { 18855 list_del_init(&d_buf->list); 18856 lpfc_in_buf_free(vport->phba, d_buf); 18857 } 18858 return true; 18859 } 18860 return false; 18861 } 18862 18863 /** 18864 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18865 * @vport: pointer to a vitural port 18866 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18867 * 18868 * This function tries to abort from the assembed sequence from upper level 18869 * protocol, described by the information from basic abbort @dmabuf. It 18870 * checks to see whether such pending context exists at upper level protocol. 18871 * If so, it shall clean up the pending context. 18872 * 18873 * Return 18874 * true -- if there is matching pending context of the sequence cleaned 18875 * at ulp; 18876 * false -- if there is no matching pending context of the sequence present 18877 * at ulp. 18878 **/ 18879 static bool 18880 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18881 { 18882 struct lpfc_hba *phba = vport->phba; 18883 int handled; 18884 18885 /* Accepting abort at ulp with SLI4 only */ 18886 if (phba->sli_rev < LPFC_SLI_REV4) 18887 return false; 18888 18889 /* Register all caring upper level protocols to attend abort */ 18890 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18891 if (handled) 18892 return true; 18893 18894 return false; 18895 } 18896 18897 /** 18898 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18899 * @phba: Pointer to HBA context object. 18900 * @cmd_iocbq: pointer to the command iocbq structure. 18901 * @rsp_iocbq: pointer to the response iocbq structure. 18902 * 18903 * This function handles the sequence abort response iocb command complete 18904 * event. It properly releases the memory allocated to the sequence abort 18905 * accept iocb. 18906 **/ 18907 static void 18908 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18909 struct lpfc_iocbq *cmd_iocbq, 18910 struct lpfc_iocbq *rsp_iocbq) 18911 { 18912 if (cmd_iocbq) { 18913 lpfc_nlp_put(cmd_iocbq->ndlp); 18914 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18915 } 18916 18917 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18918 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18919 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18920 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18921 get_job_ulpstatus(phba, rsp_iocbq), 18922 get_job_word4(phba, rsp_iocbq)); 18923 } 18924 18925 /** 18926 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18927 * @phba: Pointer to HBA context object. 18928 * @xri: xri id in transaction. 18929 * 18930 * This function validates the xri maps to the known range of XRIs allocated an 18931 * used by the driver. 18932 **/ 18933 uint16_t 18934 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18935 uint16_t xri) 18936 { 18937 uint16_t i; 18938 18939 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18940 if (xri == phba->sli4_hba.xri_ids[i]) 18941 return i; 18942 } 18943 return NO_XRI; 18944 } 18945 18946 /** 18947 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18948 * @vport: pointer to a virtual port. 18949 * @fc_hdr: pointer to a FC frame header. 18950 * @aborted: was the partially assembled receive sequence successfully aborted 18951 * 18952 * This function sends a basic response to a previous unsol sequence abort 18953 * event after aborting the sequence handling. 18954 **/ 18955 void 18956 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18957 struct fc_frame_header *fc_hdr, bool aborted) 18958 { 18959 struct lpfc_hba *phba = vport->phba; 18960 struct lpfc_iocbq *ctiocb = NULL; 18961 struct lpfc_nodelist *ndlp; 18962 uint16_t oxid, rxid, xri, lxri; 18963 uint32_t sid, fctl; 18964 union lpfc_wqe128 *icmd; 18965 int rc; 18966 18967 if (!lpfc_is_link_up(phba)) 18968 return; 18969 18970 sid = sli4_sid_from_fc_hdr(fc_hdr); 18971 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18972 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18973 18974 ndlp = lpfc_findnode_did(vport, sid); 18975 if (!ndlp) { 18976 ndlp = lpfc_nlp_init(vport, sid); 18977 if (!ndlp) { 18978 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18979 "1268 Failed to allocate ndlp for " 18980 "oxid:x%x SID:x%x\n", oxid, sid); 18981 return; 18982 } 18983 /* Put ndlp onto vport node list */ 18984 lpfc_enqueue_node(vport, ndlp); 18985 } 18986 18987 /* Allocate buffer for rsp iocb */ 18988 ctiocb = lpfc_sli_get_iocbq(phba); 18989 if (!ctiocb) 18990 return; 18991 18992 icmd = &ctiocb->wqe; 18993 18994 /* Extract the F_CTL field from FC_HDR */ 18995 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18996 18997 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18998 if (!ctiocb->ndlp) { 18999 lpfc_sli_release_iocbq(phba, ctiocb); 19000 return; 19001 } 19002 19003 ctiocb->vport = vport; 19004 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 19005 ctiocb->sli4_lxritag = NO_XRI; 19006 ctiocb->sli4_xritag = NO_XRI; 19007 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 19008 19009 if (fctl & FC_FC_EX_CTX) 19010 /* Exchange responder sent the abort so we 19011 * own the oxid. 19012 */ 19013 xri = oxid; 19014 else 19015 xri = rxid; 19016 lxri = lpfc_sli4_xri_inrange(phba, xri); 19017 if (lxri != NO_XRI) 19018 lpfc_set_rrq_active(phba, ndlp, lxri, 19019 (xri == oxid) ? rxid : oxid, 0); 19020 /* For BA_ABTS from exchange responder, if the logical xri with 19021 * the oxid maps to the FCP XRI range, the port no longer has 19022 * that exchange context, send a BLS_RJT. Override the IOCB for 19023 * a BA_RJT. 19024 */ 19025 if ((fctl & FC_FC_EX_CTX) && 19026 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19027 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19028 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19029 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19030 FC_BA_RJT_INV_XID); 19031 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19032 FC_BA_RJT_UNABLE); 19033 } 19034 19035 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19036 * the driver no longer has that exchange, send a BLS_RJT. Override 19037 * the IOCB for a BA_RJT. 19038 */ 19039 if (aborted == false) { 19040 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19041 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19042 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19043 FC_BA_RJT_INV_XID); 19044 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19045 FC_BA_RJT_UNABLE); 19046 } 19047 19048 if (fctl & FC_FC_EX_CTX) { 19049 /* ABTS sent by responder to CT exchange, construction 19050 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19051 * field and RX_ID from ABTS for RX_ID field. 19052 */ 19053 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19054 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19055 } else { 19056 /* ABTS sent by initiator to CT exchange, construction 19057 * of BA_ACC will need to allocate a new XRI as for the 19058 * XRI_TAG field. 19059 */ 19060 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19061 } 19062 19063 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19064 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19065 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19066 19067 /* Use CT=VPI */ 19068 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19069 ndlp->nlp_DID); 19070 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19071 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19072 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19073 19074 /* Xmit CT abts response on exchange <xid> */ 19075 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19076 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19077 ctiocb->abort_rctl, oxid, phba->link_state); 19078 19079 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19080 if (rc == IOCB_ERROR) { 19081 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19082 "2925 Failed to issue CT ABTS RSP x%x on " 19083 "xri x%x, Data x%x\n", 19084 ctiocb->abort_rctl, oxid, 19085 phba->link_state); 19086 lpfc_nlp_put(ndlp); 19087 ctiocb->ndlp = NULL; 19088 lpfc_sli_release_iocbq(phba, ctiocb); 19089 } 19090 19091 /* if only usage of this nodelist is BLS response, release initial ref 19092 * to free ndlp when transmit completes 19093 */ 19094 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19095 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) && 19096 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19097 set_bit(NLP_DROPPED, &ndlp->nlp_flag); 19098 lpfc_nlp_put(ndlp); 19099 } 19100 } 19101 19102 /** 19103 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19104 * @vport: Pointer to the vport on which this sequence was received 19105 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19106 * 19107 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19108 * receive sequence is only partially assembed by the driver, it shall abort 19109 * the partially assembled frames for the sequence. Otherwise, if the 19110 * unsolicited receive sequence has been completely assembled and passed to 19111 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19112 * unsolicited sequence has been aborted. After that, it will issue a basic 19113 * accept to accept the abort. 19114 **/ 19115 static void 19116 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19117 struct hbq_dmabuf *dmabuf) 19118 { 19119 struct lpfc_hba *phba = vport->phba; 19120 struct fc_frame_header fc_hdr; 19121 uint32_t fctl; 19122 bool aborted; 19123 19124 /* Make a copy of fc_hdr before the dmabuf being released */ 19125 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19126 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19127 19128 if (fctl & FC_FC_EX_CTX) { 19129 /* ABTS by responder to exchange, no cleanup needed */ 19130 aborted = true; 19131 } else { 19132 /* ABTS by initiator to exchange, need to do cleanup */ 19133 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19134 if (aborted == false) 19135 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19136 } 19137 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19138 19139 if (phba->nvmet_support) { 19140 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19141 return; 19142 } 19143 19144 /* Respond with BA_ACC or BA_RJT accordingly */ 19145 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19146 } 19147 19148 /** 19149 * lpfc_seq_complete - Indicates if a sequence is complete 19150 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19151 * 19152 * This function checks the sequence, starting with the frame described by 19153 * @dmabuf, to see if all the frames associated with this sequence are present. 19154 * the frames associated with this sequence are linked to the @dmabuf using the 19155 * dbuf list. This function looks for two major things. 1) That the first frame 19156 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19157 * set. 3) That there are no holes in the sequence count. The function will 19158 * return 1 when the sequence is complete, otherwise it will return 0. 19159 **/ 19160 static int 19161 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19162 { 19163 struct fc_frame_header *hdr; 19164 struct lpfc_dmabuf *d_buf; 19165 struct hbq_dmabuf *seq_dmabuf; 19166 uint32_t fctl; 19167 int seq_count = 0; 19168 19169 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19170 /* make sure first fame of sequence has a sequence count of zero */ 19171 if (hdr->fh_seq_cnt != seq_count) 19172 return 0; 19173 fctl = (hdr->fh_f_ctl[0] << 16 | 19174 hdr->fh_f_ctl[1] << 8 | 19175 hdr->fh_f_ctl[2]); 19176 /* If last frame of sequence we can return success. */ 19177 if (fctl & FC_FC_END_SEQ) 19178 return 1; 19179 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19180 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19181 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19182 /* If there is a hole in the sequence count then fail. */ 19183 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19184 return 0; 19185 fctl = (hdr->fh_f_ctl[0] << 16 | 19186 hdr->fh_f_ctl[1] << 8 | 19187 hdr->fh_f_ctl[2]); 19188 /* If last frame of sequence we can return success. */ 19189 if (fctl & FC_FC_END_SEQ) 19190 return 1; 19191 } 19192 return 0; 19193 } 19194 19195 /** 19196 * lpfc_prep_seq - Prep sequence for ULP processing 19197 * @vport: Pointer to the vport on which this sequence was received 19198 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19199 * 19200 * This function takes a sequence, described by a list of frames, and creates 19201 * a list of iocbq structures to describe the sequence. This iocbq list will be 19202 * used to issue to the generic unsolicited sequence handler. This routine 19203 * returns a pointer to the first iocbq in the list. If the function is unable 19204 * to allocate an iocbq then it throw out the received frames that were not 19205 * able to be described and return a pointer to the first iocbq. If unable to 19206 * allocate any iocbqs (including the first) this function will return NULL. 19207 **/ 19208 static struct lpfc_iocbq * 19209 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19210 { 19211 struct hbq_dmabuf *hbq_buf; 19212 struct lpfc_dmabuf *d_buf, *n_buf; 19213 struct lpfc_iocbq *first_iocbq, *iocbq; 19214 struct fc_frame_header *fc_hdr; 19215 uint32_t sid; 19216 uint32_t len, tot_len; 19217 19218 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19219 /* remove from receive buffer list */ 19220 list_del_init(&seq_dmabuf->hbuf.list); 19221 lpfc_update_rcv_time_stamp(vport); 19222 /* get the Remote Port's SID */ 19223 sid = sli4_sid_from_fc_hdr(fc_hdr); 19224 tot_len = 0; 19225 /* Get an iocbq struct to fill in. */ 19226 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19227 if (first_iocbq) { 19228 /* Initialize the first IOCB. */ 19229 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19230 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19231 IOSTAT_SUCCESS); 19232 first_iocbq->vport = vport; 19233 19234 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19235 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19236 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19237 sli4_did_from_fc_hdr(fc_hdr)); 19238 } 19239 19240 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19241 NO_XRI); 19242 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19243 be16_to_cpu(fc_hdr->fh_ox_id)); 19244 19245 /* put the first buffer into the first iocb */ 19246 tot_len = bf_get(lpfc_rcqe_length, 19247 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19248 19249 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19250 first_iocbq->bpl_dmabuf = NULL; 19251 /* Keep track of the BDE count */ 19252 first_iocbq->wcqe_cmpl.word3 = 1; 19253 19254 if (tot_len > LPFC_DATA_BUF_SIZE) 19255 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19256 LPFC_DATA_BUF_SIZE; 19257 else 19258 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19259 19260 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19261 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19262 sid); 19263 } 19264 iocbq = first_iocbq; 19265 /* 19266 * Each IOCBq can have two Buffers assigned, so go through the list 19267 * of buffers for this sequence and save two buffers in each IOCBq 19268 */ 19269 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19270 if (!iocbq) { 19271 lpfc_in_buf_free(vport->phba, d_buf); 19272 continue; 19273 } 19274 if (!iocbq->bpl_dmabuf) { 19275 iocbq->bpl_dmabuf = d_buf; 19276 iocbq->wcqe_cmpl.word3++; 19277 /* We need to get the size out of the right CQE */ 19278 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19279 len = bf_get(lpfc_rcqe_length, 19280 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19281 iocbq->unsol_rcv_len = len; 19282 iocbq->wcqe_cmpl.total_data_placed += len; 19283 tot_len += len; 19284 } else { 19285 iocbq = lpfc_sli_get_iocbq(vport->phba); 19286 if (!iocbq) { 19287 if (first_iocbq) { 19288 bf_set(lpfc_wcqe_c_status, 19289 &first_iocbq->wcqe_cmpl, 19290 IOSTAT_SUCCESS); 19291 first_iocbq->wcqe_cmpl.parameter = 19292 IOERR_NO_RESOURCES; 19293 } 19294 lpfc_in_buf_free(vport->phba, d_buf); 19295 continue; 19296 } 19297 /* We need to get the size out of the right CQE */ 19298 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19299 len = bf_get(lpfc_rcqe_length, 19300 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19301 iocbq->cmd_dmabuf = d_buf; 19302 iocbq->bpl_dmabuf = NULL; 19303 iocbq->wcqe_cmpl.word3 = 1; 19304 19305 if (len > LPFC_DATA_BUF_SIZE) 19306 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19307 LPFC_DATA_BUF_SIZE; 19308 else 19309 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19310 len; 19311 19312 tot_len += len; 19313 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19314 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19315 sid); 19316 list_add_tail(&iocbq->list, &first_iocbq->list); 19317 } 19318 } 19319 /* Free the sequence's header buffer */ 19320 if (!first_iocbq) 19321 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19322 19323 return first_iocbq; 19324 } 19325 19326 static void 19327 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19328 struct hbq_dmabuf *seq_dmabuf) 19329 { 19330 struct fc_frame_header *fc_hdr; 19331 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19332 struct lpfc_hba *phba = vport->phba; 19333 19334 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19335 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19336 if (!iocbq) { 19337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19338 "2707 Ring %d handler: Failed to allocate " 19339 "iocb Rctl x%x Type x%x received\n", 19340 LPFC_ELS_RING, 19341 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19342 return; 19343 } 19344 if (!lpfc_complete_unsol_iocb(phba, 19345 phba->sli4_hba.els_wq->pring, 19346 iocbq, fc_hdr->fh_r_ctl, 19347 fc_hdr->fh_type)) { 19348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19349 "2540 Ring %d handler: unexpected Rctl " 19350 "x%x Type x%x received\n", 19351 LPFC_ELS_RING, 19352 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19353 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19354 } 19355 19356 /* Free iocb created in lpfc_prep_seq */ 19357 list_for_each_entry_safe(curr_iocb, next_iocb, 19358 &iocbq->list, list) { 19359 list_del_init(&curr_iocb->list); 19360 lpfc_sli_release_iocbq(phba, curr_iocb); 19361 } 19362 lpfc_sli_release_iocbq(phba, iocbq); 19363 } 19364 19365 static void 19366 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19367 struct lpfc_iocbq *rspiocb) 19368 { 19369 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19370 19371 if (pcmd && pcmd->virt) 19372 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19373 kfree(pcmd); 19374 lpfc_sli_release_iocbq(phba, cmdiocb); 19375 lpfc_drain_txq(phba); 19376 } 19377 19378 static void 19379 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19380 struct hbq_dmabuf *dmabuf) 19381 { 19382 struct fc_frame_header *fc_hdr; 19383 struct lpfc_hba *phba = vport->phba; 19384 struct lpfc_iocbq *iocbq = NULL; 19385 union lpfc_wqe128 *pwqe; 19386 struct lpfc_dmabuf *pcmd = NULL; 19387 uint32_t frame_len; 19388 int rc; 19389 unsigned long iflags; 19390 19391 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19392 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19393 19394 /* Send the received frame back */ 19395 iocbq = lpfc_sli_get_iocbq(phba); 19396 if (!iocbq) { 19397 /* Queue cq event and wakeup worker thread to process it */ 19398 spin_lock_irqsave(&phba->hbalock, iflags); 19399 list_add_tail(&dmabuf->cq_event.list, 19400 &phba->sli4_hba.sp_queue_event); 19401 spin_unlock_irqrestore(&phba->hbalock, iflags); 19402 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19403 lpfc_worker_wake_up(phba); 19404 return; 19405 } 19406 19407 /* Allocate buffer for command payload */ 19408 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19409 if (pcmd) 19410 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19411 &pcmd->phys); 19412 if (!pcmd || !pcmd->virt) 19413 goto exit; 19414 19415 INIT_LIST_HEAD(&pcmd->list); 19416 19417 /* copyin the payload */ 19418 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19419 19420 iocbq->cmd_dmabuf = pcmd; 19421 iocbq->vport = vport; 19422 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19423 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19424 iocbq->num_bdes = 0; 19425 19426 pwqe = &iocbq->wqe; 19427 /* fill in BDE's for command */ 19428 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19429 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19430 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19431 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19432 19433 pwqe->send_frame.frame_len = frame_len; 19434 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19435 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19436 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19437 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19438 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19439 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19440 19441 pwqe->generic.wqe_com.word7 = 0; 19442 pwqe->generic.wqe_com.word10 = 0; 19443 19444 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19445 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19446 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19447 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19448 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19449 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19450 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19451 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19452 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19453 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19454 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19455 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19456 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19457 19458 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19459 19460 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19461 if (rc == IOCB_ERROR) 19462 goto exit; 19463 19464 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19465 return; 19466 19467 exit: 19468 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19469 "2023 Unable to process MDS loopback frame\n"); 19470 if (pcmd && pcmd->virt) 19471 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19472 kfree(pcmd); 19473 if (iocbq) 19474 lpfc_sli_release_iocbq(phba, iocbq); 19475 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19476 } 19477 19478 /** 19479 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19480 * @phba: Pointer to HBA context object. 19481 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19482 * 19483 * This function is called with no lock held. This function processes all 19484 * the received buffers and gives it to upper layers when a received buffer 19485 * indicates that it is the final frame in the sequence. The interrupt 19486 * service routine processes received buffers at interrupt contexts. 19487 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19488 * appropriate receive function when the final frame in a sequence is received. 19489 **/ 19490 void 19491 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19492 struct hbq_dmabuf *dmabuf) 19493 { 19494 struct hbq_dmabuf *seq_dmabuf; 19495 struct fc_frame_header *fc_hdr; 19496 struct lpfc_vport *vport; 19497 uint32_t fcfi; 19498 uint32_t did; 19499 19500 /* Process each received buffer */ 19501 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19502 19503 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19504 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19505 vport = phba->pport; 19506 /* Handle MDS Loopback frames */ 19507 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19508 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19509 else 19510 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19511 return; 19512 } 19513 19514 /* check to see if this a valid type of frame */ 19515 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19516 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19517 return; 19518 } 19519 19520 if ((bf_get(lpfc_cqe_code, 19521 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19522 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19523 &dmabuf->cq_event.cqe.rcqe_cmpl); 19524 else 19525 fcfi = bf_get(lpfc_rcqe_fcf_id, 19526 &dmabuf->cq_event.cqe.rcqe_cmpl); 19527 19528 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19529 vport = phba->pport; 19530 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19531 "2023 MDS Loopback %d bytes\n", 19532 bf_get(lpfc_rcqe_length, 19533 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19534 /* Handle MDS Loopback frames */ 19535 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19536 return; 19537 } 19538 19539 /* d_id this frame is directed to */ 19540 did = sli4_did_from_fc_hdr(fc_hdr); 19541 19542 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19543 if (!vport) { 19544 /* throw out the frame */ 19545 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19546 return; 19547 } 19548 19549 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19550 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19551 (did != Fabric_DID)) { 19552 /* 19553 * Throw out the frame if we are not pt2pt. 19554 * The pt2pt protocol allows for discovery frames 19555 * to be received without a registered VPI. 19556 */ 19557 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19558 phba->link_state == LPFC_HBA_READY) { 19559 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19560 return; 19561 } 19562 } 19563 19564 /* Handle the basic abort sequence (BA_ABTS) event */ 19565 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19566 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19567 return; 19568 } 19569 19570 /* Link this frame */ 19571 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19572 if (!seq_dmabuf) { 19573 /* unable to add frame to vport - throw it out */ 19574 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19575 return; 19576 } 19577 /* If not last frame in sequence continue processing frames. */ 19578 if (!lpfc_seq_complete(seq_dmabuf)) 19579 return; 19580 19581 /* Send the complete sequence to the upper layer protocol */ 19582 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19583 } 19584 19585 /** 19586 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19587 * @phba: pointer to lpfc hba data structure. 19588 * 19589 * This routine is invoked to post rpi header templates to the 19590 * HBA consistent with the SLI-4 interface spec. This routine 19591 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19592 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19593 * 19594 * This routine does not require any locks. It's usage is expected 19595 * to be driver load or reset recovery when the driver is 19596 * sequential. 19597 * 19598 * Return codes 19599 * 0 - successful 19600 * -EIO - The mailbox failed to complete successfully. 19601 * When this error occurs, the driver is not guaranteed 19602 * to have any rpi regions posted to the device and 19603 * must either attempt to repost the regions or take a 19604 * fatal error. 19605 **/ 19606 int 19607 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19608 { 19609 struct lpfc_rpi_hdr *rpi_page; 19610 uint32_t rc = 0; 19611 uint16_t lrpi = 0; 19612 19613 /* SLI4 ports that support extents do not require RPI headers. */ 19614 if (!phba->sli4_hba.rpi_hdrs_in_use) 19615 goto exit; 19616 if (phba->sli4_hba.extents_in_use) 19617 return -EIO; 19618 19619 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19620 /* 19621 * Assign the rpi headers a physical rpi only if the driver 19622 * has not initialized those resources. A port reset only 19623 * needs the headers posted. 19624 */ 19625 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19626 LPFC_RPI_RSRC_RDY) 19627 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19628 19629 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19630 if (rc != MBX_SUCCESS) { 19631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19632 "2008 Error %d posting all rpi " 19633 "headers\n", rc); 19634 rc = -EIO; 19635 break; 19636 } 19637 } 19638 19639 exit: 19640 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19641 LPFC_RPI_RSRC_RDY); 19642 return rc; 19643 } 19644 19645 /** 19646 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19647 * @phba: pointer to lpfc hba data structure. 19648 * @rpi_page: pointer to the rpi memory region. 19649 * 19650 * This routine is invoked to post a single rpi header to the 19651 * HBA consistent with the SLI-4 interface spec. This memory region 19652 * maps up to 64 rpi context regions. 19653 * 19654 * Return codes 19655 * 0 - successful 19656 * -ENOMEM - No available memory 19657 * -EIO - The mailbox failed to complete successfully. 19658 **/ 19659 int 19660 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19661 { 19662 LPFC_MBOXQ_t *mboxq; 19663 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19664 uint32_t rc = 0; 19665 uint32_t shdr_status, shdr_add_status; 19666 union lpfc_sli4_cfg_shdr *shdr; 19667 19668 /* SLI4 ports that support extents do not require RPI headers. */ 19669 if (!phba->sli4_hba.rpi_hdrs_in_use) 19670 return rc; 19671 if (phba->sli4_hba.extents_in_use) 19672 return -EIO; 19673 19674 /* The port is notified of the header region via a mailbox command. */ 19675 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19676 if (!mboxq) { 19677 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19678 "2001 Unable to allocate memory for issuing " 19679 "SLI_CONFIG_SPECIAL mailbox command\n"); 19680 return -ENOMEM; 19681 } 19682 19683 /* Post all rpi memory regions to the port. */ 19684 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19685 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19686 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19687 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19688 sizeof(struct lpfc_sli4_cfg_mhdr), 19689 LPFC_SLI4_MBX_EMBED); 19690 19691 19692 /* Post the physical rpi to the port for this rpi header. */ 19693 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19694 rpi_page->start_rpi); 19695 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19696 hdr_tmpl, rpi_page->page_count); 19697 19698 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19699 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19701 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19702 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19703 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19704 mempool_free(mboxq, phba->mbox_mem_pool); 19705 if (shdr_status || shdr_add_status || rc) { 19706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19707 "2514 POST_RPI_HDR mailbox failed with " 19708 "status x%x add_status x%x, mbx status x%x\n", 19709 shdr_status, shdr_add_status, rc); 19710 rc = -ENXIO; 19711 } else { 19712 /* 19713 * The next_rpi stores the next logical module-64 rpi value used 19714 * to post physical rpis in subsequent rpi postings. 19715 */ 19716 spin_lock_irq(&phba->hbalock); 19717 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19718 spin_unlock_irq(&phba->hbalock); 19719 } 19720 return rc; 19721 } 19722 19723 /** 19724 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19725 * @phba: pointer to lpfc hba data structure. 19726 * 19727 * This routine is invoked to post rpi header templates to the 19728 * HBA consistent with the SLI-4 interface spec. This routine 19729 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19730 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19731 * 19732 * Returns 19733 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19734 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19735 **/ 19736 int 19737 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19738 { 19739 unsigned long rpi; 19740 uint16_t max_rpi, rpi_limit; 19741 uint16_t rpi_remaining, lrpi = 0; 19742 struct lpfc_rpi_hdr *rpi_hdr; 19743 unsigned long iflag; 19744 19745 /* 19746 * Fetch the next logical rpi. Because this index is logical, 19747 * the driver starts at 0 each time. 19748 */ 19749 spin_lock_irqsave(&phba->hbalock, iflag); 19750 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19751 rpi_limit = phba->sli4_hba.next_rpi; 19752 19753 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19754 if (rpi >= rpi_limit) 19755 rpi = LPFC_RPI_ALLOC_ERROR; 19756 else { 19757 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19758 phba->sli4_hba.max_cfg_param.rpi_used++; 19759 phba->sli4_hba.rpi_count++; 19760 } 19761 lpfc_printf_log(phba, KERN_INFO, 19762 LOG_NODE | LOG_DISCOVERY, 19763 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19764 (int) rpi, max_rpi, rpi_limit); 19765 19766 /* 19767 * Don't try to allocate more rpi header regions if the device limit 19768 * has been exhausted. 19769 */ 19770 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19771 (phba->sli4_hba.rpi_count >= max_rpi)) { 19772 spin_unlock_irqrestore(&phba->hbalock, iflag); 19773 return rpi; 19774 } 19775 19776 /* 19777 * RPI header postings are not required for SLI4 ports capable of 19778 * extents. 19779 */ 19780 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19781 spin_unlock_irqrestore(&phba->hbalock, iflag); 19782 return rpi; 19783 } 19784 19785 /* 19786 * If the driver is running low on rpi resources, allocate another 19787 * page now. Note that the next_rpi value is used because 19788 * it represents how many are actually in use whereas max_rpi notes 19789 * how many are supported max by the device. 19790 */ 19791 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19792 spin_unlock_irqrestore(&phba->hbalock, iflag); 19793 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19794 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19795 if (!rpi_hdr) { 19796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19797 "2002 Error Could not grow rpi " 19798 "count\n"); 19799 } else { 19800 lrpi = rpi_hdr->start_rpi; 19801 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19802 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19803 } 19804 } 19805 19806 return rpi; 19807 } 19808 19809 /** 19810 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19811 * @phba: pointer to lpfc hba data structure. 19812 * @rpi: rpi to free 19813 * 19814 * This routine is invoked to release an rpi to the pool of 19815 * available rpis maintained by the driver. 19816 **/ 19817 static void 19818 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19819 { 19820 /* 19821 * if the rpi value indicates a prior unreg has already 19822 * been done, skip the unreg. 19823 */ 19824 if (rpi == LPFC_RPI_ALLOC_ERROR) 19825 return; 19826 19827 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19828 phba->sli4_hba.rpi_count--; 19829 phba->sli4_hba.max_cfg_param.rpi_used--; 19830 } else { 19831 lpfc_printf_log(phba, KERN_INFO, 19832 LOG_NODE | LOG_DISCOVERY, 19833 "2016 rpi %x not inuse\n", 19834 rpi); 19835 } 19836 } 19837 19838 /** 19839 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19840 * @phba: pointer to lpfc hba data structure. 19841 * @rpi: rpi to free 19842 * 19843 * This routine is invoked to release an rpi to the pool of 19844 * available rpis maintained by the driver. 19845 **/ 19846 void 19847 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19848 { 19849 spin_lock_irq(&phba->hbalock); 19850 __lpfc_sli4_free_rpi(phba, rpi); 19851 spin_unlock_irq(&phba->hbalock); 19852 } 19853 19854 /** 19855 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19856 * @phba: pointer to lpfc hba data structure. 19857 * 19858 * This routine is invoked to remove the memory region that 19859 * provided rpi via a bitmask. 19860 **/ 19861 void 19862 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19863 { 19864 kfree(phba->sli4_hba.rpi_bmask); 19865 kfree(phba->sli4_hba.rpi_ids); 19866 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19867 } 19868 19869 /** 19870 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19871 * @ndlp: pointer to lpfc nodelist data structure. 19872 * @cmpl: completion call-back. 19873 * @iocbq: data to load as mbox ctx_u information 19874 * 19875 * This routine is invoked to remove the memory region that 19876 * provided rpi via a bitmask. 19877 **/ 19878 int 19879 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19880 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19881 struct lpfc_iocbq *iocbq) 19882 { 19883 LPFC_MBOXQ_t *mboxq; 19884 struct lpfc_hba *phba = ndlp->phba; 19885 int rc; 19886 19887 /* The port is notified of the header region via a mailbox command. */ 19888 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19889 if (!mboxq) 19890 return -ENOMEM; 19891 19892 /* If cmpl assigned, then this nlp_get pairs with 19893 * lpfc_mbx_cmpl_resume_rpi. 19894 * 19895 * Else cmpl is NULL, then this nlp_get pairs with 19896 * lpfc_sli_def_mbox_cmpl. 19897 */ 19898 if (!lpfc_nlp_get(ndlp)) { 19899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19900 "2122 %s: Failed to get nlp ref\n", 19901 __func__); 19902 mempool_free(mboxq, phba->mbox_mem_pool); 19903 return -EIO; 19904 } 19905 19906 /* Post all rpi memory regions to the port. */ 19907 lpfc_resume_rpi(mboxq, ndlp); 19908 if (cmpl) { 19909 mboxq->mbox_cmpl = cmpl; 19910 mboxq->ctx_u.save_iocb = iocbq; 19911 } else 19912 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19913 mboxq->ctx_ndlp = ndlp; 19914 mboxq->vport = ndlp->vport; 19915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19916 if (rc == MBX_NOT_FINISHED) { 19917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19918 "2010 Resume RPI Mailbox failed " 19919 "status %d, mbxStatus x%x\n", rc, 19920 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19921 lpfc_nlp_put(ndlp); 19922 mempool_free(mboxq, phba->mbox_mem_pool); 19923 return -EIO; 19924 } 19925 return 0; 19926 } 19927 19928 /** 19929 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19930 * @vport: Pointer to the vport for which the vpi is being initialized 19931 * 19932 * This routine is invoked to activate a vpi with the port. 19933 * 19934 * Returns: 19935 * 0 success 19936 * -Evalue otherwise 19937 **/ 19938 int 19939 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19940 { 19941 LPFC_MBOXQ_t *mboxq; 19942 int rc = 0; 19943 int retval = MBX_SUCCESS; 19944 uint32_t mbox_tmo; 19945 struct lpfc_hba *phba = vport->phba; 19946 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19947 if (!mboxq) 19948 return -ENOMEM; 19949 lpfc_init_vpi(phba, mboxq, vport->vpi); 19950 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19951 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19952 if (rc != MBX_SUCCESS) { 19953 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19954 "2022 INIT VPI Mailbox failed " 19955 "status %d, mbxStatus x%x\n", rc, 19956 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19957 retval = -EIO; 19958 } 19959 if (rc != MBX_TIMEOUT) 19960 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19961 19962 return retval; 19963 } 19964 19965 /** 19966 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19967 * @phba: pointer to lpfc hba data structure. 19968 * @mboxq: Pointer to mailbox object. 19969 * 19970 * This routine is invoked to manually add a single FCF record. The caller 19971 * must pass a completely initialized FCF_Record. This routine takes 19972 * care of the nonembedded mailbox operations. 19973 **/ 19974 static void 19975 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19976 { 19977 void *virt_addr; 19978 union lpfc_sli4_cfg_shdr *shdr; 19979 uint32_t shdr_status, shdr_add_status; 19980 19981 virt_addr = mboxq->sge_array->addr[0]; 19982 /* The IOCTL status is embedded in the mailbox subheader. */ 19983 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19986 19987 if ((shdr_status || shdr_add_status) && 19988 (shdr_status != STATUS_FCF_IN_USE)) 19989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19990 "2558 ADD_FCF_RECORD mailbox failed with " 19991 "status x%x add_status x%x\n", 19992 shdr_status, shdr_add_status); 19993 19994 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19995 } 19996 19997 /** 19998 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19999 * @phba: pointer to lpfc hba data structure. 20000 * @fcf_record: pointer to the initialized fcf record to add. 20001 * 20002 * This routine is invoked to manually add a single FCF record. The caller 20003 * must pass a completely initialized FCF_Record. This routine takes 20004 * care of the nonembedded mailbox operations. 20005 **/ 20006 int 20007 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 20008 { 20009 int rc = 0; 20010 LPFC_MBOXQ_t *mboxq; 20011 uint8_t *bytep; 20012 void *virt_addr; 20013 struct lpfc_mbx_sge sge; 20014 uint32_t alloc_len, req_len; 20015 uint32_t fcfindex; 20016 20017 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20018 if (!mboxq) { 20019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20020 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20021 return -ENOMEM; 20022 } 20023 20024 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20025 sizeof(uint32_t); 20026 20027 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20028 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20029 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20030 req_len, LPFC_SLI4_MBX_NEMBED); 20031 if (alloc_len < req_len) { 20032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20033 "2523 Allocated DMA memory size (x%x) is " 20034 "less than the requested DMA memory " 20035 "size (x%x)\n", alloc_len, req_len); 20036 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20037 return -ENOMEM; 20038 } 20039 20040 /* 20041 * Get the first SGE entry from the non-embedded DMA memory. This 20042 * routine only uses a single SGE. 20043 */ 20044 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20045 virt_addr = mboxq->sge_array->addr[0]; 20046 /* 20047 * Configure the FCF record for FCFI 0. This is the driver's 20048 * hardcoded default and gets used in nonFIP mode. 20049 */ 20050 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20051 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20052 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20053 20054 /* 20055 * Copy the fcf_index and the FCF Record Data. The data starts after 20056 * the FCoE header plus word10. The data copy needs to be endian 20057 * correct. 20058 */ 20059 bytep += sizeof(uint32_t); 20060 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20061 mboxq->vport = phba->pport; 20062 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20063 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20064 if (rc == MBX_NOT_FINISHED) { 20065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20066 "2515 ADD_FCF_RECORD mailbox failed with " 20067 "status 0x%x\n", rc); 20068 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20069 rc = -EIO; 20070 } else 20071 rc = 0; 20072 20073 return rc; 20074 } 20075 20076 /** 20077 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20078 * @phba: pointer to lpfc hba data structure. 20079 * @fcf_record: pointer to the fcf record to write the default data. 20080 * @fcf_index: FCF table entry index. 20081 * 20082 * This routine is invoked to build the driver's default FCF record. The 20083 * values used are hardcoded. This routine handles memory initialization. 20084 * 20085 **/ 20086 void 20087 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20088 struct fcf_record *fcf_record, 20089 uint16_t fcf_index) 20090 { 20091 memset(fcf_record, 0, sizeof(struct fcf_record)); 20092 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20093 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20094 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20095 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20096 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20097 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20098 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20099 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20100 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20101 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20102 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20103 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20104 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20105 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20106 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20107 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20108 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20109 /* Set the VLAN bit map */ 20110 if (phba->valid_vlan) { 20111 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20112 = 1 << (phba->vlan_id % 8); 20113 } 20114 } 20115 20116 /** 20117 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20118 * @phba: pointer to lpfc hba data structure. 20119 * @fcf_index: FCF table entry offset. 20120 * 20121 * This routine is invoked to scan the entire FCF table by reading FCF 20122 * record and processing it one at a time starting from the @fcf_index 20123 * for initial FCF discovery or fast FCF failover rediscovery. 20124 * 20125 * Return 0 if the mailbox command is submitted successfully, none 0 20126 * otherwise. 20127 **/ 20128 int 20129 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20130 { 20131 int rc = 0, error; 20132 LPFC_MBOXQ_t *mboxq; 20133 20134 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20135 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20136 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20137 if (!mboxq) { 20138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20139 "2000 Failed to allocate mbox for " 20140 "READ_FCF cmd\n"); 20141 error = -ENOMEM; 20142 goto fail_fcf_scan; 20143 } 20144 /* Construct the read FCF record mailbox command */ 20145 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20146 if (rc) { 20147 error = -EINVAL; 20148 goto fail_fcf_scan; 20149 } 20150 /* Issue the mailbox command asynchronously */ 20151 mboxq->vport = phba->pport; 20152 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20153 20154 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20155 20156 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20157 if (rc == MBX_NOT_FINISHED) 20158 error = -EIO; 20159 else { 20160 /* Reset eligible FCF count for new scan */ 20161 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20162 phba->fcf.eligible_fcf_cnt = 0; 20163 error = 0; 20164 } 20165 fail_fcf_scan: 20166 if (error) { 20167 if (mboxq) 20168 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20169 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20170 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20171 } 20172 return error; 20173 } 20174 20175 /** 20176 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20177 * @phba: pointer to lpfc hba data structure. 20178 * @fcf_index: FCF table entry offset. 20179 * 20180 * This routine is invoked to read an FCF record indicated by @fcf_index 20181 * and to use it for FLOGI roundrobin FCF failover. 20182 * 20183 * Return 0 if the mailbox command is submitted successfully, none 0 20184 * otherwise. 20185 **/ 20186 int 20187 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20188 { 20189 int rc = 0, error; 20190 LPFC_MBOXQ_t *mboxq; 20191 20192 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20193 if (!mboxq) { 20194 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20195 "2763 Failed to allocate mbox for " 20196 "READ_FCF cmd\n"); 20197 error = -ENOMEM; 20198 goto fail_fcf_read; 20199 } 20200 /* Construct the read FCF record mailbox command */ 20201 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20202 if (rc) { 20203 error = -EINVAL; 20204 goto fail_fcf_read; 20205 } 20206 /* Issue the mailbox command asynchronously */ 20207 mboxq->vport = phba->pport; 20208 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20209 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20210 if (rc == MBX_NOT_FINISHED) 20211 error = -EIO; 20212 else 20213 error = 0; 20214 20215 fail_fcf_read: 20216 if (error && mboxq) 20217 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20218 return error; 20219 } 20220 20221 /** 20222 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20223 * @phba: pointer to lpfc hba data structure. 20224 * @fcf_index: FCF table entry offset. 20225 * 20226 * This routine is invoked to read an FCF record indicated by @fcf_index to 20227 * determine whether it's eligible for FLOGI roundrobin failover list. 20228 * 20229 * Return 0 if the mailbox command is submitted successfully, none 0 20230 * otherwise. 20231 **/ 20232 int 20233 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20234 { 20235 int rc = 0, error; 20236 LPFC_MBOXQ_t *mboxq; 20237 20238 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20239 if (!mboxq) { 20240 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20241 "2758 Failed to allocate mbox for " 20242 "READ_FCF cmd\n"); 20243 error = -ENOMEM; 20244 goto fail_fcf_read; 20245 } 20246 /* Construct the read FCF record mailbox command */ 20247 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20248 if (rc) { 20249 error = -EINVAL; 20250 goto fail_fcf_read; 20251 } 20252 /* Issue the mailbox command asynchronously */ 20253 mboxq->vport = phba->pport; 20254 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20255 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20256 if (rc == MBX_NOT_FINISHED) 20257 error = -EIO; 20258 else 20259 error = 0; 20260 20261 fail_fcf_read: 20262 if (error && mboxq) 20263 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20264 return error; 20265 } 20266 20267 /** 20268 * lpfc_check_next_fcf_pri_level 20269 * @phba: pointer to the lpfc_hba struct for this port. 20270 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20271 * routine when the rr_bmask is empty. The FCF indecies are put into the 20272 * rr_bmask based on their priority level. Starting from the highest priority 20273 * to the lowest. The most likely FCF candidate will be in the highest 20274 * priority group. When this routine is called it searches the fcf_pri list for 20275 * next lowest priority group and repopulates the rr_bmask with only those 20276 * fcf_indexes. 20277 * returns: 20278 * 1=success 0=failure 20279 **/ 20280 static int 20281 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20282 { 20283 uint16_t next_fcf_pri; 20284 uint16_t last_index; 20285 struct lpfc_fcf_pri *fcf_pri; 20286 int rc; 20287 int ret = 0; 20288 20289 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20290 LPFC_SLI4_FCF_TBL_INDX_MAX); 20291 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20292 "3060 Last IDX %d\n", last_index); 20293 20294 /* Verify the priority list has 2 or more entries */ 20295 spin_lock_irq(&phba->hbalock); 20296 if (list_empty(&phba->fcf.fcf_pri_list) || 20297 list_is_singular(&phba->fcf.fcf_pri_list)) { 20298 spin_unlock_irq(&phba->hbalock); 20299 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20300 "3061 Last IDX %d\n", last_index); 20301 return 0; /* Empty rr list */ 20302 } 20303 spin_unlock_irq(&phba->hbalock); 20304 20305 next_fcf_pri = 0; 20306 /* 20307 * Clear the rr_bmask and set all of the bits that are at this 20308 * priority. 20309 */ 20310 memset(phba->fcf.fcf_rr_bmask, 0, 20311 sizeof(*phba->fcf.fcf_rr_bmask)); 20312 spin_lock_irq(&phba->hbalock); 20313 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20314 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20315 continue; 20316 /* 20317 * the 1st priority that has not FLOGI failed 20318 * will be the highest. 20319 */ 20320 if (!next_fcf_pri) 20321 next_fcf_pri = fcf_pri->fcf_rec.priority; 20322 spin_unlock_irq(&phba->hbalock); 20323 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20324 rc = lpfc_sli4_fcf_rr_index_set(phba, 20325 fcf_pri->fcf_rec.fcf_index); 20326 if (rc) 20327 return 0; 20328 } 20329 spin_lock_irq(&phba->hbalock); 20330 } 20331 /* 20332 * if next_fcf_pri was not set above and the list is not empty then 20333 * we have failed flogis on all of them. So reset flogi failed 20334 * and start at the beginning. 20335 */ 20336 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20337 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20338 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20339 /* 20340 * the 1st priority that has not FLOGI failed 20341 * will be the highest. 20342 */ 20343 if (!next_fcf_pri) 20344 next_fcf_pri = fcf_pri->fcf_rec.priority; 20345 spin_unlock_irq(&phba->hbalock); 20346 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20347 rc = lpfc_sli4_fcf_rr_index_set(phba, 20348 fcf_pri->fcf_rec.fcf_index); 20349 if (rc) 20350 return 0; 20351 } 20352 spin_lock_irq(&phba->hbalock); 20353 } 20354 } else 20355 ret = 1; 20356 spin_unlock_irq(&phba->hbalock); 20357 20358 return ret; 20359 } 20360 /** 20361 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20362 * @phba: pointer to lpfc hba data structure. 20363 * 20364 * This routine is to get the next eligible FCF record index in a round 20365 * robin fashion. If the next eligible FCF record index equals to the 20366 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20367 * shall be returned, otherwise, the next eligible FCF record's index 20368 * shall be returned. 20369 **/ 20370 uint16_t 20371 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20372 { 20373 uint16_t next_fcf_index; 20374 20375 initial_priority: 20376 /* Search start from next bit of currently registered FCF index */ 20377 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20378 20379 next_priority: 20380 /* Determine the next fcf index to check */ 20381 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20382 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20383 LPFC_SLI4_FCF_TBL_INDX_MAX, 20384 next_fcf_index); 20385 20386 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20387 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20388 /* 20389 * If we have wrapped then we need to clear the bits that 20390 * have been tested so that we can detect when we should 20391 * change the priority level. 20392 */ 20393 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20394 LPFC_SLI4_FCF_TBL_INDX_MAX); 20395 } 20396 20397 20398 /* Check roundrobin failover list empty condition */ 20399 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20400 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20401 /* 20402 * If next fcf index is not found check if there are lower 20403 * Priority level fcf's in the fcf_priority list. 20404 * Set up the rr_bmask with all of the avaiable fcf bits 20405 * at that level and continue the selection process. 20406 */ 20407 if (lpfc_check_next_fcf_pri_level(phba)) 20408 goto initial_priority; 20409 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20410 "2844 No roundrobin failover FCF available\n"); 20411 20412 return LPFC_FCOE_FCF_NEXT_NONE; 20413 } 20414 20415 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20416 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20417 LPFC_FCF_FLOGI_FAILED) { 20418 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20419 return LPFC_FCOE_FCF_NEXT_NONE; 20420 20421 goto next_priority; 20422 } 20423 20424 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20425 "2845 Get next roundrobin failover FCF (x%x)\n", 20426 next_fcf_index); 20427 20428 return next_fcf_index; 20429 } 20430 20431 /** 20432 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20433 * @phba: pointer to lpfc hba data structure. 20434 * @fcf_index: index into the FCF table to 'set' 20435 * 20436 * This routine sets the FCF record index in to the eligible bmask for 20437 * roundrobin failover search. It checks to make sure that the index 20438 * does not go beyond the range of the driver allocated bmask dimension 20439 * before setting the bit. 20440 * 20441 * Returns 0 if the index bit successfully set, otherwise, it returns 20442 * -EINVAL. 20443 **/ 20444 int 20445 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20446 { 20447 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20448 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20449 "2610 FCF (x%x) reached driver's book " 20450 "keeping dimension:x%x\n", 20451 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20452 return -EINVAL; 20453 } 20454 /* Set the eligible FCF record index bmask */ 20455 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20456 20457 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20458 "2790 Set FCF (x%x) to roundrobin FCF failover " 20459 "bmask\n", fcf_index); 20460 20461 return 0; 20462 } 20463 20464 /** 20465 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20466 * @phba: pointer to lpfc hba data structure. 20467 * @fcf_index: index into the FCF table to 'clear' 20468 * 20469 * This routine clears the FCF record index from the eligible bmask for 20470 * roundrobin failover search. It checks to make sure that the index 20471 * does not go beyond the range of the driver allocated bmask dimension 20472 * before clearing the bit. 20473 **/ 20474 void 20475 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20476 { 20477 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20478 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20479 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20480 "2762 FCF (x%x) reached driver's book " 20481 "keeping dimension:x%x\n", 20482 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20483 return; 20484 } 20485 /* Clear the eligible FCF record index bmask */ 20486 spin_lock_irq(&phba->hbalock); 20487 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20488 list) { 20489 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20490 list_del_init(&fcf_pri->list); 20491 break; 20492 } 20493 } 20494 spin_unlock_irq(&phba->hbalock); 20495 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20496 20497 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20498 "2791 Clear FCF (x%x) from roundrobin failover " 20499 "bmask\n", fcf_index); 20500 } 20501 20502 /** 20503 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20504 * @phba: pointer to lpfc hba data structure. 20505 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20506 * 20507 * This routine is the completion routine for the rediscover FCF table mailbox 20508 * command. If the mailbox command returned failure, it will try to stop the 20509 * FCF rediscover wait timer. 20510 **/ 20511 static void 20512 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20513 { 20514 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20515 uint32_t shdr_status, shdr_add_status; 20516 20517 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20518 20519 shdr_status = bf_get(lpfc_mbox_hdr_status, 20520 &redisc_fcf->header.cfg_shdr.response); 20521 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20522 &redisc_fcf->header.cfg_shdr.response); 20523 if (shdr_status || shdr_add_status) { 20524 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20525 "2746 Requesting for FCF rediscovery failed " 20526 "status x%x add_status x%x\n", 20527 shdr_status, shdr_add_status); 20528 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20529 spin_lock_irq(&phba->hbalock); 20530 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20531 spin_unlock_irq(&phba->hbalock); 20532 /* 20533 * CVL event triggered FCF rediscover request failed, 20534 * last resort to re-try current registered FCF entry. 20535 */ 20536 lpfc_retry_pport_discovery(phba); 20537 } else { 20538 spin_lock_irq(&phba->hbalock); 20539 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20540 spin_unlock_irq(&phba->hbalock); 20541 /* 20542 * DEAD FCF event triggered FCF rediscover request 20543 * failed, last resort to fail over as a link down 20544 * to FCF registration. 20545 */ 20546 lpfc_sli4_fcf_dead_failthrough(phba); 20547 } 20548 } else { 20549 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20550 "2775 Start FCF rediscover quiescent timer\n"); 20551 /* 20552 * Start FCF rediscovery wait timer for pending FCF 20553 * before rescan FCF record table. 20554 */ 20555 lpfc_fcf_redisc_wait_start_timer(phba); 20556 } 20557 20558 mempool_free(mbox, phba->mbox_mem_pool); 20559 } 20560 20561 /** 20562 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20563 * @phba: pointer to lpfc hba data structure. 20564 * 20565 * This routine is invoked to request for rediscovery of the entire FCF table 20566 * by the port. 20567 **/ 20568 int 20569 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20570 { 20571 LPFC_MBOXQ_t *mbox; 20572 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20573 int rc, length; 20574 20575 /* Cancel retry delay timers to all vports before FCF rediscover */ 20576 lpfc_cancel_all_vport_retry_delay_timer(phba); 20577 20578 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20579 if (!mbox) { 20580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20581 "2745 Failed to allocate mbox for " 20582 "requesting FCF rediscover.\n"); 20583 return -ENOMEM; 20584 } 20585 20586 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20587 sizeof(struct lpfc_sli4_cfg_mhdr)); 20588 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20589 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20590 length, LPFC_SLI4_MBX_EMBED); 20591 20592 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20593 /* Set count to 0 for invalidating the entire FCF database */ 20594 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20595 20596 /* Issue the mailbox command asynchronously */ 20597 mbox->vport = phba->pport; 20598 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20600 20601 if (rc == MBX_NOT_FINISHED) { 20602 mempool_free(mbox, phba->mbox_mem_pool); 20603 return -EIO; 20604 } 20605 return 0; 20606 } 20607 20608 /** 20609 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20610 * @phba: pointer to lpfc hba data structure. 20611 * 20612 * This function is the failover routine as a last resort to the FCF DEAD 20613 * event when driver failed to perform fast FCF failover. 20614 **/ 20615 void 20616 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20617 { 20618 uint32_t link_state; 20619 20620 /* 20621 * Last resort as FCF DEAD event failover will treat this as 20622 * a link down, but save the link state because we don't want 20623 * it to be changed to Link Down unless it is already down. 20624 */ 20625 link_state = phba->link_state; 20626 lpfc_linkdown(phba); 20627 phba->link_state = link_state; 20628 20629 /* Unregister FCF if no devices connected to it */ 20630 lpfc_unregister_unused_fcf(phba); 20631 } 20632 20633 /** 20634 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20635 * @phba: pointer to lpfc hba data structure. 20636 * @rgn23_data: pointer to configure region 23 data. 20637 * 20638 * This function gets SLI3 port configure region 23 data through memory dump 20639 * mailbox command. When it successfully retrieves data, the size of the data 20640 * will be returned, otherwise, 0 will be returned. 20641 **/ 20642 static uint32_t 20643 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20644 { 20645 LPFC_MBOXQ_t *pmb = NULL; 20646 MAILBOX_t *mb; 20647 uint32_t offset = 0; 20648 int rc; 20649 20650 if (!rgn23_data) 20651 return 0; 20652 20653 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20654 if (!pmb) { 20655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20656 "2600 failed to allocate mailbox memory\n"); 20657 return 0; 20658 } 20659 mb = &pmb->u.mb; 20660 20661 do { 20662 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20663 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20664 20665 if (rc != MBX_SUCCESS) { 20666 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20667 "2601 failed to read config " 20668 "region 23, rc 0x%x Status 0x%x\n", 20669 rc, mb->mbxStatus); 20670 mb->un.varDmp.word_cnt = 0; 20671 } 20672 /* 20673 * dump mem may return a zero when finished or we got a 20674 * mailbox error, either way we are done. 20675 */ 20676 if (mb->un.varDmp.word_cnt == 0) 20677 break; 20678 20679 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20680 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20681 20682 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20683 rgn23_data + offset, 20684 mb->un.varDmp.word_cnt); 20685 offset += mb->un.varDmp.word_cnt; 20686 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20687 20688 mempool_free(pmb, phba->mbox_mem_pool); 20689 return offset; 20690 } 20691 20692 /** 20693 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20694 * @phba: pointer to lpfc hba data structure. 20695 * @rgn23_data: pointer to configure region 23 data. 20696 * 20697 * This function gets SLI4 port configure region 23 data through memory dump 20698 * mailbox command. When it successfully retrieves data, the size of the data 20699 * will be returned, otherwise, 0 will be returned. 20700 **/ 20701 static uint32_t 20702 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20703 { 20704 LPFC_MBOXQ_t *mboxq = NULL; 20705 struct lpfc_dmabuf *mp = NULL; 20706 struct lpfc_mqe *mqe; 20707 uint32_t data_length = 0; 20708 int rc; 20709 20710 if (!rgn23_data) 20711 return 0; 20712 20713 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20714 if (!mboxq) { 20715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20716 "3105 failed to allocate mailbox memory\n"); 20717 return 0; 20718 } 20719 20720 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20721 goto out; 20722 mqe = &mboxq->u.mqe; 20723 mp = mboxq->ctx_buf; 20724 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20725 if (rc) 20726 goto out; 20727 data_length = mqe->un.mb_words[5]; 20728 if (data_length == 0) 20729 goto out; 20730 if (data_length > DMP_RGN23_SIZE) { 20731 data_length = 0; 20732 goto out; 20733 } 20734 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20735 out: 20736 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20737 return data_length; 20738 } 20739 20740 /** 20741 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20742 * @phba: pointer to lpfc hba data structure. 20743 * 20744 * This function read region 23 and parse TLV for port status to 20745 * decide if the user disaled the port. If the TLV indicates the 20746 * port is disabled, the hba_flag is set accordingly. 20747 **/ 20748 void 20749 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20750 { 20751 uint8_t *rgn23_data = NULL; 20752 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20753 uint32_t offset = 0; 20754 20755 /* Get adapter Region 23 data */ 20756 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20757 if (!rgn23_data) 20758 goto out; 20759 20760 if (phba->sli_rev < LPFC_SLI_REV4) 20761 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20762 else { 20763 if_type = bf_get(lpfc_sli_intf_if_type, 20764 &phba->sli4_hba.sli_intf); 20765 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20766 goto out; 20767 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20768 } 20769 20770 if (!data_size) 20771 goto out; 20772 20773 /* Check the region signature first */ 20774 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20776 "2619 Config region 23 has bad signature\n"); 20777 goto out; 20778 } 20779 offset += 4; 20780 20781 /* Check the data structure version */ 20782 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20784 "2620 Config region 23 has bad version\n"); 20785 goto out; 20786 } 20787 offset += 4; 20788 20789 /* Parse TLV entries in the region */ 20790 while (offset < data_size) { 20791 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20792 break; 20793 /* 20794 * If the TLV is not driver specific TLV or driver id is 20795 * not linux driver id, skip the record. 20796 */ 20797 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20798 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20799 (rgn23_data[offset + 3] != 0)) { 20800 offset += rgn23_data[offset + 1] * 4 + 4; 20801 continue; 20802 } 20803 20804 /* Driver found a driver specific TLV in the config region */ 20805 sub_tlv_len = rgn23_data[offset + 1] * 4; 20806 offset += 4; 20807 tlv_offset = 0; 20808 20809 /* 20810 * Search for configured port state sub-TLV. 20811 */ 20812 while ((offset < data_size) && 20813 (tlv_offset < sub_tlv_len)) { 20814 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20815 offset += 4; 20816 tlv_offset += 4; 20817 break; 20818 } 20819 if (rgn23_data[offset] != PORT_STE_TYPE) { 20820 offset += rgn23_data[offset + 1] * 4 + 4; 20821 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20822 continue; 20823 } 20824 20825 /* This HBA contains PORT_STE configured */ 20826 if (!rgn23_data[offset + 2]) 20827 set_bit(LINK_DISABLED, &phba->hba_flag); 20828 20829 goto out; 20830 } 20831 } 20832 20833 out: 20834 kfree(rgn23_data); 20835 return; 20836 } 20837 20838 /** 20839 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20840 * @phba: pointer to lpfc hba data structure 20841 * @shdr_status: wr_object rsp's status field 20842 * @shdr_add_status: wr_object rsp's add_status field 20843 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20844 * @shdr_change_status: wr_object rsp's change_status field 20845 * @shdr_csf: wr_object rsp's csf bit 20846 * 20847 * This routine is intended to be called after a firmware write completes. 20848 * It will log next action items to be performed by the user to instantiate 20849 * the newly downloaded firmware or reason for incompatibility. 20850 **/ 20851 static void 20852 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20853 u32 shdr_add_status, u32 shdr_add_status_2, 20854 u32 shdr_change_status, u32 shdr_csf) 20855 { 20856 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20857 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20858 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20859 "change_status x%02x, csf %01x\n", __func__, 20860 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20861 shdr_status, shdr_add_status, shdr_add_status_2, 20862 shdr_change_status, shdr_csf); 20863 20864 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20865 switch (shdr_add_status_2) { 20866 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20867 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20868 "4199 Firmware write failed: " 20869 "image incompatible with flash x%02x\n", 20870 phba->sli4_hba.flash_id); 20871 break; 20872 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20873 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20874 "4200 Firmware write failed: " 20875 "image incompatible with ASIC " 20876 "architecture x%02x\n", 20877 phba->sli4_hba.asic_rev); 20878 break; 20879 default: 20880 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20881 "4210 Firmware write failed: " 20882 "add_status_2 x%02x\n", 20883 shdr_add_status_2); 20884 break; 20885 } 20886 } else if (!shdr_status && !shdr_add_status) { 20887 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20888 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20889 if (shdr_csf) 20890 shdr_change_status = 20891 LPFC_CHANGE_STATUS_PCI_RESET; 20892 } 20893 20894 switch (shdr_change_status) { 20895 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20896 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20897 "3198 Firmware write complete: System " 20898 "reboot required to instantiate\n"); 20899 break; 20900 case (LPFC_CHANGE_STATUS_FW_RESET): 20901 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20902 "3199 Firmware write complete: " 20903 "Firmware reset required to " 20904 "instantiate\n"); 20905 break; 20906 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20907 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20908 "3200 Firmware write complete: Port " 20909 "Migration or PCI Reset required to " 20910 "instantiate\n"); 20911 break; 20912 case (LPFC_CHANGE_STATUS_PCI_RESET): 20913 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20914 "3201 Firmware write complete: PCI " 20915 "Reset required to instantiate\n"); 20916 break; 20917 default: 20918 break; 20919 } 20920 } 20921 } 20922 20923 /** 20924 * lpfc_wr_object - write an object to the firmware 20925 * @phba: HBA structure that indicates port to create a queue on. 20926 * @dmabuf_list: list of dmabufs to write to the port. 20927 * @size: the total byte value of the objects to write to the port. 20928 * @offset: the current offset to be used to start the transfer. 20929 * 20930 * This routine will create a wr_object mailbox command to send to the port. 20931 * the mailbox command will be constructed using the dma buffers described in 20932 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20933 * BDEs that the imbedded mailbox can support. The @offset variable will be 20934 * used to indicate the starting offset of the transfer and will also return 20935 * the offset after the write object mailbox has completed. @size is used to 20936 * determine the end of the object and whether the eof bit should be set. 20937 * 20938 * Return 0 is successful and offset will contain the new offset to use 20939 * for the next write. 20940 * Return negative value for error cases. 20941 **/ 20942 int 20943 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20944 uint32_t size, uint32_t *offset) 20945 { 20946 struct lpfc_mbx_wr_object *wr_object; 20947 LPFC_MBOXQ_t *mbox; 20948 int rc = 0, i = 0; 20949 int mbox_status = 0; 20950 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20951 uint32_t shdr_change_status = 0, shdr_csf = 0; 20952 uint32_t mbox_tmo; 20953 struct lpfc_dmabuf *dmabuf; 20954 uint32_t written = 0; 20955 bool check_change_status = false; 20956 20957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20958 if (!mbox) 20959 return -ENOMEM; 20960 20961 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20962 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20963 sizeof(struct lpfc_mbx_wr_object) - 20964 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20965 20966 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20967 wr_object->u.request.write_offset = *offset; 20968 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20969 wr_object->u.request.object_name[0] = 20970 cpu_to_le32(wr_object->u.request.object_name[0]); 20971 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20972 list_for_each_entry(dmabuf, dmabuf_list, list) { 20973 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20974 break; 20975 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20976 wr_object->u.request.bde[i].addrHigh = 20977 putPaddrHigh(dmabuf->phys); 20978 if (written + SLI4_PAGE_SIZE >= size) { 20979 wr_object->u.request.bde[i].tus.f.bdeSize = 20980 (size - written); 20981 written += (size - written); 20982 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20983 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20984 check_change_status = true; 20985 } else { 20986 wr_object->u.request.bde[i].tus.f.bdeSize = 20987 SLI4_PAGE_SIZE; 20988 written += SLI4_PAGE_SIZE; 20989 } 20990 i++; 20991 } 20992 wr_object->u.request.bde_count = i; 20993 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20994 if (!phba->sli4_hba.intr_enable) 20995 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20996 else { 20997 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20998 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20999 } 21000 21001 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 21002 rc = mbox_status; 21003 21004 /* The IOCTL status is embedded in the mailbox subheader. */ 21005 shdr_status = bf_get(lpfc_mbox_hdr_status, 21006 &wr_object->header.cfg_shdr.response); 21007 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 21008 &wr_object->header.cfg_shdr.response); 21009 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 21010 &wr_object->header.cfg_shdr.response); 21011 if (check_change_status) { 21012 shdr_change_status = bf_get(lpfc_wr_object_change_status, 21013 &wr_object->u.response); 21014 shdr_csf = bf_get(lpfc_wr_object_csf, 21015 &wr_object->u.response); 21016 } 21017 21018 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21020 "3025 Write Object mailbox failed with " 21021 "status x%x add_status x%x, add_status_2 x%x, " 21022 "mbx status x%x\n", 21023 shdr_status, shdr_add_status, shdr_add_status_2, 21024 rc); 21025 rc = -ENXIO; 21026 *offset = shdr_add_status; 21027 } else { 21028 *offset += wr_object->u.response.actual_write_length; 21029 } 21030 21031 if (rc || check_change_status) 21032 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21033 shdr_add_status_2, shdr_change_status, 21034 shdr_csf); 21035 21036 if (!phba->sli4_hba.intr_enable) 21037 mempool_free(mbox, phba->mbox_mem_pool); 21038 else if (mbox_status != MBX_TIMEOUT) 21039 mempool_free(mbox, phba->mbox_mem_pool); 21040 21041 return rc; 21042 } 21043 21044 /** 21045 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21046 * @vport: pointer to vport data structure. 21047 * 21048 * This function iterate through the mailboxq and clean up all REG_LOGIN 21049 * and REG_VPI mailbox commands associated with the vport. This function 21050 * is called when driver want to restart discovery of the vport due to 21051 * a Clear Virtual Link event. 21052 **/ 21053 void 21054 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21055 { 21056 struct lpfc_hba *phba = vport->phba; 21057 LPFC_MBOXQ_t *mb, *nextmb; 21058 struct lpfc_nodelist *ndlp; 21059 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21060 LIST_HEAD(mbox_cmd_list); 21061 uint8_t restart_loop; 21062 21063 /* Clean up internally queued mailbox commands with the vport */ 21064 spin_lock_irq(&phba->hbalock); 21065 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21066 if (mb->vport != vport) 21067 continue; 21068 21069 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21070 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21071 continue; 21072 21073 list_move_tail(&mb->list, &mbox_cmd_list); 21074 } 21075 /* Clean up active mailbox command with the vport */ 21076 mb = phba->sli.mbox_active; 21077 if (mb && (mb->vport == vport)) { 21078 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21079 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21080 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21081 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21082 act_mbx_ndlp = mb->ctx_ndlp; 21083 21084 /* This reference is local to this routine. The 21085 * reference is removed at routine exit. 21086 */ 21087 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21088 21089 /* Unregister the RPI when mailbox complete */ 21090 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21091 } 21092 } 21093 /* Cleanup any mailbox completions which are not yet processed */ 21094 do { 21095 restart_loop = 0; 21096 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21097 /* 21098 * If this mailox is already processed or it is 21099 * for another vport ignore it. 21100 */ 21101 if ((mb->vport != vport) || 21102 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21103 continue; 21104 21105 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21106 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21107 continue; 21108 21109 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21110 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21111 ndlp = mb->ctx_ndlp; 21112 /* Unregister the RPI when mailbox complete */ 21113 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21114 restart_loop = 1; 21115 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21116 break; 21117 } 21118 } 21119 } while (restart_loop); 21120 21121 spin_unlock_irq(&phba->hbalock); 21122 21123 /* Release the cleaned-up mailbox commands */ 21124 while (!list_empty(&mbox_cmd_list)) { 21125 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21126 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21127 ndlp = mb->ctx_ndlp; 21128 mb->ctx_ndlp = NULL; 21129 if (ndlp) { 21130 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21131 lpfc_nlp_put(ndlp); 21132 } 21133 } 21134 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21135 } 21136 21137 /* Release the ndlp with the cleaned-up active mailbox command */ 21138 if (act_mbx_ndlp) { 21139 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag); 21140 lpfc_nlp_put(act_mbx_ndlp); 21141 } 21142 } 21143 21144 /** 21145 * lpfc_drain_txq - Drain the txq 21146 * @phba: Pointer to HBA context object. 21147 * 21148 * This function attempt to submit IOCBs on the txq 21149 * to the adapter. For SLI4 adapters, the txq contains 21150 * ELS IOCBs that have been deferred because the there 21151 * are no SGLs. This congestion can occur with large 21152 * vport counts during node discovery. 21153 **/ 21154 21155 uint32_t 21156 lpfc_drain_txq(struct lpfc_hba *phba) 21157 { 21158 LIST_HEAD(completions); 21159 struct lpfc_sli_ring *pring; 21160 struct lpfc_iocbq *piocbq = NULL; 21161 unsigned long iflags = 0; 21162 char *fail_msg = NULL; 21163 uint32_t txq_cnt = 0; 21164 struct lpfc_queue *wq; 21165 int ret = 0; 21166 21167 if (phba->link_flag & LS_MDS_LOOPBACK) { 21168 /* MDS WQE are posted only to first WQ*/ 21169 wq = phba->sli4_hba.hdwq[0].io_wq; 21170 if (unlikely(!wq)) 21171 return 0; 21172 pring = wq->pring; 21173 } else { 21174 wq = phba->sli4_hba.els_wq; 21175 if (unlikely(!wq)) 21176 return 0; 21177 pring = lpfc_phba_elsring(phba); 21178 } 21179 21180 if (unlikely(!pring) || list_empty(&pring->txq)) 21181 return 0; 21182 21183 spin_lock_irqsave(&pring->ring_lock, iflags); 21184 list_for_each_entry(piocbq, &pring->txq, list) { 21185 txq_cnt++; 21186 } 21187 21188 if (txq_cnt > pring->txq_max) 21189 pring->txq_max = txq_cnt; 21190 21191 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21192 21193 while (!list_empty(&pring->txq)) { 21194 spin_lock_irqsave(&pring->ring_lock, iflags); 21195 21196 piocbq = lpfc_sli_ringtx_get(phba, pring); 21197 if (!piocbq) { 21198 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21200 "2823 txq empty and txq_cnt is %d\n", 21201 txq_cnt); 21202 break; 21203 } 21204 txq_cnt--; 21205 21206 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21207 21208 if (ret && ret != IOCB_BUSY) { 21209 fail_msg = " - Cannot send IO "; 21210 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21211 } 21212 if (fail_msg) { 21213 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21214 /* Failed means we can't issue and need to cancel */ 21215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21216 "2822 IOCB failed %s iotag 0x%x " 21217 "xri 0x%x %d flg x%x\n", 21218 fail_msg, piocbq->iotag, 21219 piocbq->sli4_xritag, ret, 21220 piocbq->cmd_flag); 21221 list_add_tail(&piocbq->list, &completions); 21222 fail_msg = NULL; 21223 } 21224 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21225 if (txq_cnt == 0 || ret == IOCB_BUSY) 21226 break; 21227 } 21228 /* Cancel all the IOCBs that cannot be issued */ 21229 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21230 IOERR_SLI_ABORTED); 21231 21232 return txq_cnt; 21233 } 21234 21235 /** 21236 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21237 * @phba: Pointer to HBA context object. 21238 * @pwqeq: Pointer to command WQE. 21239 * @sglq: Pointer to the scatter gather queue object. 21240 * 21241 * This routine converts the bpl or bde that is in the WQE 21242 * to a sgl list for the sli4 hardware. The physical address 21243 * of the bpl/bde is converted back to a virtual address. 21244 * If the WQE contains a BPL then the list of BDE's is 21245 * converted to sli4_sge's. If the WQE contains a single 21246 * BDE then it is converted to a single sli_sge. 21247 * The WQE is still in cpu endianness so the contents of 21248 * the bpl can be used without byte swapping. 21249 * 21250 * Returns valid XRI = Success, NO_XRI = Failure. 21251 */ 21252 static uint16_t 21253 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21254 struct lpfc_sglq *sglq) 21255 { 21256 uint16_t xritag = NO_XRI; 21257 struct ulp_bde64 *bpl = NULL; 21258 struct ulp_bde64 bde; 21259 struct sli4_sge *sgl = NULL; 21260 struct lpfc_dmabuf *dmabuf; 21261 union lpfc_wqe128 *wqe; 21262 int numBdes = 0; 21263 int i = 0; 21264 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21265 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21266 uint32_t cmd; 21267 21268 if (!pwqeq || !sglq) 21269 return xritag; 21270 21271 sgl = (struct sli4_sge *)sglq->sgl; 21272 wqe = &pwqeq->wqe; 21273 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21274 21275 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21276 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21277 return sglq->sli4_xritag; 21278 numBdes = pwqeq->num_bdes; 21279 if (numBdes) { 21280 /* The addrHigh and addrLow fields within the WQE 21281 * have not been byteswapped yet so there is no 21282 * need to swap them back. 21283 */ 21284 if (pwqeq->bpl_dmabuf) 21285 dmabuf = pwqeq->bpl_dmabuf; 21286 else 21287 return xritag; 21288 21289 bpl = (struct ulp_bde64 *)dmabuf->virt; 21290 if (!bpl) 21291 return xritag; 21292 21293 for (i = 0; i < numBdes; i++) { 21294 /* Should already be byte swapped. */ 21295 sgl->addr_hi = bpl->addrHigh; 21296 sgl->addr_lo = bpl->addrLow; 21297 21298 sgl->word2 = le32_to_cpu(sgl->word2); 21299 if ((i+1) == numBdes) 21300 bf_set(lpfc_sli4_sge_last, sgl, 1); 21301 else 21302 bf_set(lpfc_sli4_sge_last, sgl, 0); 21303 /* swap the size field back to the cpu so we 21304 * can assign it to the sgl. 21305 */ 21306 bde.tus.w = le32_to_cpu(bpl->tus.w); 21307 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21308 /* The offsets in the sgl need to be accumulated 21309 * separately for the request and reply lists. 21310 * The request is always first, the reply follows. 21311 */ 21312 switch (cmd) { 21313 case CMD_GEN_REQUEST64_WQE: 21314 /* add up the reply sg entries */ 21315 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21316 inbound++; 21317 /* first inbound? reset the offset */ 21318 if (inbound == 1) 21319 offset = 0; 21320 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21321 bf_set(lpfc_sli4_sge_type, sgl, 21322 LPFC_SGE_TYPE_DATA); 21323 offset += bde.tus.f.bdeSize; 21324 break; 21325 case CMD_FCP_TRSP64_WQE: 21326 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21327 bf_set(lpfc_sli4_sge_type, sgl, 21328 LPFC_SGE_TYPE_DATA); 21329 break; 21330 case CMD_FCP_TSEND64_WQE: 21331 case CMD_FCP_TRECEIVE64_WQE: 21332 bf_set(lpfc_sli4_sge_type, sgl, 21333 bpl->tus.f.bdeFlags); 21334 if (i < 3) 21335 offset = 0; 21336 else 21337 offset += bde.tus.f.bdeSize; 21338 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21339 break; 21340 } 21341 sgl->word2 = cpu_to_le32(sgl->word2); 21342 bpl++; 21343 sgl++; 21344 } 21345 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21346 /* The addrHigh and addrLow fields of the BDE have not 21347 * been byteswapped yet so they need to be swapped 21348 * before putting them in the sgl. 21349 */ 21350 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21351 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21352 sgl->word2 = le32_to_cpu(sgl->word2); 21353 bf_set(lpfc_sli4_sge_last, sgl, 1); 21354 sgl->word2 = cpu_to_le32(sgl->word2); 21355 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21356 } 21357 return sglq->sli4_xritag; 21358 } 21359 21360 /** 21361 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21362 * @phba: Pointer to HBA context object. 21363 * @qp: Pointer to HDW queue. 21364 * @pwqe: Pointer to command WQE. 21365 **/ 21366 int 21367 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21368 struct lpfc_iocbq *pwqe) 21369 { 21370 union lpfc_wqe128 *wqe = &pwqe->wqe; 21371 struct lpfc_async_xchg_ctx *ctxp; 21372 struct lpfc_queue *wq; 21373 struct lpfc_sglq *sglq; 21374 struct lpfc_sli_ring *pring; 21375 unsigned long iflags; 21376 uint32_t ret = 0; 21377 21378 /* NVME_LS and NVME_LS ABTS requests. */ 21379 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21380 pring = phba->sli4_hba.nvmels_wq->pring; 21381 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21382 qp, wq_access); 21383 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21384 if (!sglq) { 21385 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21386 return WQE_BUSY; 21387 } 21388 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21389 pwqe->sli4_xritag = sglq->sli4_xritag; 21390 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21391 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21392 return WQE_ERROR; 21393 } 21394 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21395 pwqe->sli4_xritag); 21396 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21397 if (ret) { 21398 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21399 return ret; 21400 } 21401 21402 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21403 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21404 21405 lpfc_sli4_poll_eq(qp->hba_eq); 21406 return 0; 21407 } 21408 21409 /* NVME_FCREQ and NVME_ABTS requests */ 21410 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21411 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21412 wq = qp->io_wq; 21413 pring = wq->pring; 21414 21415 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21416 21417 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21418 qp, wq_access); 21419 ret = lpfc_sli4_wq_put(wq, wqe); 21420 if (ret) { 21421 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21422 return ret; 21423 } 21424 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21425 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21426 21427 lpfc_sli4_poll_eq(qp->hba_eq); 21428 return 0; 21429 } 21430 21431 /* NVMET requests */ 21432 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21433 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21434 wq = qp->io_wq; 21435 pring = wq->pring; 21436 21437 ctxp = pwqe->context_un.axchg; 21438 sglq = ctxp->ctxbuf->sglq; 21439 if (pwqe->sli4_xritag == NO_XRI) { 21440 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21441 pwqe->sli4_xritag = sglq->sli4_xritag; 21442 } 21443 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21444 pwqe->sli4_xritag); 21445 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21446 21447 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21448 qp, wq_access); 21449 ret = lpfc_sli4_wq_put(wq, wqe); 21450 if (ret) { 21451 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21452 return ret; 21453 } 21454 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21455 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21456 21457 lpfc_sli4_poll_eq(qp->hba_eq); 21458 return 0; 21459 } 21460 return WQE_ERROR; 21461 } 21462 21463 /** 21464 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21465 * @phba: Pointer to HBA context object. 21466 * @cmdiocb: Pointer to driver command iocb object. 21467 * @cmpl: completion function. 21468 * 21469 * Fill the appropriate fields for the abort WQE and call 21470 * internal routine lpfc_sli4_issue_wqe to send the WQE 21471 * This function is called with hbalock held and no ring_lock held. 21472 * 21473 * RETURNS 0 - SUCCESS 21474 **/ 21475 21476 int 21477 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21478 void *cmpl) 21479 { 21480 struct lpfc_vport *vport = cmdiocb->vport; 21481 struct lpfc_iocbq *abtsiocb = NULL; 21482 union lpfc_wqe128 *abtswqe; 21483 struct lpfc_io_buf *lpfc_cmd; 21484 int retval = IOCB_ERROR; 21485 u16 xritag = cmdiocb->sli4_xritag; 21486 21487 /* 21488 * The scsi command can not be in txq and it is in flight because the 21489 * pCmd is still pointing at the SCSI command we have to abort. There 21490 * is no need to search the txcmplq. Just send an abort to the FW. 21491 */ 21492 21493 abtsiocb = __lpfc_sli_get_iocbq(phba); 21494 if (!abtsiocb) 21495 return WQE_NORESOURCE; 21496 21497 /* Indicate the IO is being aborted by the driver. */ 21498 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21499 21500 abtswqe = &abtsiocb->wqe; 21501 memset(abtswqe, 0, sizeof(*abtswqe)); 21502 21503 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21504 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21505 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21506 abtswqe->abort_cmd.rsrvd5 = 0; 21507 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21508 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21509 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21510 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21511 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21512 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21513 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21514 21515 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21516 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21517 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21518 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21519 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21520 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21521 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21522 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21523 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21524 abtsiocb->vport = vport; 21525 abtsiocb->cmd_cmpl = cmpl; 21526 21527 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21528 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21529 21530 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21531 "0359 Abort xri x%x, original iotag x%x, " 21532 "abort cmd iotag x%x retval x%x\n", 21533 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21534 21535 if (retval) { 21536 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21537 __lpfc_sli_release_iocbq(phba, abtsiocb); 21538 } 21539 21540 return retval; 21541 } 21542 21543 #ifdef LPFC_MXP_STAT 21544 /** 21545 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21546 * @phba: pointer to lpfc hba data structure. 21547 * @hwqid: belong to which HWQ. 21548 * 21549 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21550 * 15 seconds after a test case is running. 21551 * 21552 * The user should call lpfc_debugfs_multixripools_write before running a test 21553 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21554 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21555 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21556 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21557 **/ 21558 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21559 { 21560 struct lpfc_sli4_hdw_queue *qp; 21561 struct lpfc_multixri_pool *multixri_pool; 21562 struct lpfc_pvt_pool *pvt_pool; 21563 struct lpfc_pbl_pool *pbl_pool; 21564 u32 txcmplq_cnt; 21565 21566 qp = &phba->sli4_hba.hdwq[hwqid]; 21567 multixri_pool = qp->p_multixri_pool; 21568 if (!multixri_pool) 21569 return; 21570 21571 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21572 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21573 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21574 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21575 21576 multixri_pool->stat_pbl_count = pbl_pool->count; 21577 multixri_pool->stat_pvt_count = pvt_pool->count; 21578 multixri_pool->stat_busy_count = txcmplq_cnt; 21579 } 21580 21581 multixri_pool->stat_snapshot_taken++; 21582 } 21583 #endif 21584 21585 /** 21586 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21587 * @phba: pointer to lpfc hba data structure. 21588 * @hwqid: belong to which HWQ. 21589 * 21590 * This routine moves some XRIs from private to public pool when private pool 21591 * is not busy. 21592 **/ 21593 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21594 { 21595 struct lpfc_multixri_pool *multixri_pool; 21596 u32 io_req_count; 21597 u32 prev_io_req_count; 21598 21599 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21600 if (!multixri_pool) 21601 return; 21602 io_req_count = multixri_pool->io_req_count; 21603 prev_io_req_count = multixri_pool->prev_io_req_count; 21604 21605 if (prev_io_req_count != io_req_count) { 21606 /* Private pool is busy */ 21607 multixri_pool->prev_io_req_count = io_req_count; 21608 } else { 21609 /* Private pool is not busy. 21610 * Move XRIs from private to public pool. 21611 */ 21612 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21613 } 21614 } 21615 21616 /** 21617 * lpfc_adjust_high_watermark - Adjust high watermark 21618 * @phba: pointer to lpfc hba data structure. 21619 * @hwqid: belong to which HWQ. 21620 * 21621 * This routine sets high watermark as number of outstanding XRIs, 21622 * but make sure the new value is between xri_limit/2 and xri_limit. 21623 **/ 21624 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21625 { 21626 u32 new_watermark; 21627 u32 watermark_max; 21628 u32 watermark_min; 21629 u32 xri_limit; 21630 u32 txcmplq_cnt; 21631 u32 abts_io_bufs; 21632 struct lpfc_multixri_pool *multixri_pool; 21633 struct lpfc_sli4_hdw_queue *qp; 21634 21635 qp = &phba->sli4_hba.hdwq[hwqid]; 21636 multixri_pool = qp->p_multixri_pool; 21637 if (!multixri_pool) 21638 return; 21639 xri_limit = multixri_pool->xri_limit; 21640 21641 watermark_max = xri_limit; 21642 watermark_min = xri_limit / 2; 21643 21644 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21645 abts_io_bufs = qp->abts_scsi_io_bufs; 21646 abts_io_bufs += qp->abts_nvme_io_bufs; 21647 21648 new_watermark = txcmplq_cnt + abts_io_bufs; 21649 new_watermark = min(watermark_max, new_watermark); 21650 new_watermark = max(watermark_min, new_watermark); 21651 multixri_pool->pvt_pool.high_watermark = new_watermark; 21652 21653 #ifdef LPFC_MXP_STAT 21654 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21655 new_watermark); 21656 #endif 21657 } 21658 21659 /** 21660 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21661 * @phba: pointer to lpfc hba data structure. 21662 * @hwqid: belong to which HWQ. 21663 * 21664 * This routine is called from hearbeat timer when pvt_pool is idle. 21665 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21666 * The first step moves (all - low_watermark) amount of XRIs. 21667 * The second step moves the rest of XRIs. 21668 **/ 21669 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21670 { 21671 struct lpfc_pbl_pool *pbl_pool; 21672 struct lpfc_pvt_pool *pvt_pool; 21673 struct lpfc_sli4_hdw_queue *qp; 21674 struct lpfc_io_buf *lpfc_ncmd; 21675 struct lpfc_io_buf *lpfc_ncmd_next; 21676 unsigned long iflag; 21677 struct list_head tmp_list; 21678 u32 tmp_count; 21679 21680 qp = &phba->sli4_hba.hdwq[hwqid]; 21681 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21682 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21683 tmp_count = 0; 21684 21685 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21686 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21687 21688 if (pvt_pool->count > pvt_pool->low_watermark) { 21689 /* Step 1: move (all - low_watermark) from pvt_pool 21690 * to pbl_pool 21691 */ 21692 21693 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21694 INIT_LIST_HEAD(&tmp_list); 21695 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21696 &pvt_pool->list, list) { 21697 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21698 tmp_count++; 21699 if (tmp_count >= pvt_pool->low_watermark) 21700 break; 21701 } 21702 21703 /* Move all bufs from pvt_pool to pbl_pool */ 21704 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21705 21706 /* Move all bufs from tmp_list to pvt_pool */ 21707 list_splice(&tmp_list, &pvt_pool->list); 21708 21709 pbl_pool->count += (pvt_pool->count - tmp_count); 21710 pvt_pool->count = tmp_count; 21711 } else { 21712 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21713 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21714 pbl_pool->count += pvt_pool->count; 21715 pvt_pool->count = 0; 21716 } 21717 21718 spin_unlock(&pvt_pool->lock); 21719 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21720 } 21721 21722 /** 21723 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21724 * @phba: pointer to lpfc hba data structure 21725 * @qp: pointer to HDW queue 21726 * @pbl_pool: specified public free XRI pool 21727 * @pvt_pool: specified private free XRI pool 21728 * @count: number of XRIs to move 21729 * 21730 * This routine tries to move some free common bufs from the specified pbl_pool 21731 * to the specified pvt_pool. It might move less than count XRIs if there's not 21732 * enough in public pool. 21733 * 21734 * Return: 21735 * true - if XRIs are successfully moved from the specified pbl_pool to the 21736 * specified pvt_pool 21737 * false - if the specified pbl_pool is empty or locked by someone else 21738 **/ 21739 static bool 21740 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21741 struct lpfc_pbl_pool *pbl_pool, 21742 struct lpfc_pvt_pool *pvt_pool, u32 count) 21743 { 21744 struct lpfc_io_buf *lpfc_ncmd; 21745 struct lpfc_io_buf *lpfc_ncmd_next; 21746 unsigned long iflag; 21747 int ret; 21748 21749 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21750 if (ret) { 21751 if (pbl_pool->count) { 21752 /* Move a batch of XRIs from public to private pool */ 21753 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21754 list_for_each_entry_safe(lpfc_ncmd, 21755 lpfc_ncmd_next, 21756 &pbl_pool->list, 21757 list) { 21758 list_move_tail(&lpfc_ncmd->list, 21759 &pvt_pool->list); 21760 pvt_pool->count++; 21761 pbl_pool->count--; 21762 count--; 21763 if (count == 0) 21764 break; 21765 } 21766 21767 spin_unlock(&pvt_pool->lock); 21768 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21769 return true; 21770 } 21771 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21772 } 21773 21774 return false; 21775 } 21776 21777 /** 21778 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21779 * @phba: pointer to lpfc hba data structure. 21780 * @hwqid: belong to which HWQ. 21781 * @count: number of XRIs to move 21782 * 21783 * This routine tries to find some free common bufs in one of public pools with 21784 * Round Robin method. The search always starts from local hwqid, then the next 21785 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21786 * a batch of free common bufs are moved to private pool on hwqid. 21787 * It might move less than count XRIs if there's not enough in public pool. 21788 **/ 21789 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21790 { 21791 struct lpfc_multixri_pool *multixri_pool; 21792 struct lpfc_multixri_pool *next_multixri_pool; 21793 struct lpfc_pvt_pool *pvt_pool; 21794 struct lpfc_pbl_pool *pbl_pool; 21795 struct lpfc_sli4_hdw_queue *qp; 21796 u32 next_hwqid; 21797 u32 hwq_count; 21798 int ret; 21799 21800 qp = &phba->sli4_hba.hdwq[hwqid]; 21801 multixri_pool = qp->p_multixri_pool; 21802 pvt_pool = &multixri_pool->pvt_pool; 21803 pbl_pool = &multixri_pool->pbl_pool; 21804 21805 /* Check if local pbl_pool is available */ 21806 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21807 if (ret) { 21808 #ifdef LPFC_MXP_STAT 21809 multixri_pool->local_pbl_hit_count++; 21810 #endif 21811 return; 21812 } 21813 21814 hwq_count = phba->cfg_hdw_queue; 21815 21816 /* Get the next hwqid which was found last time */ 21817 next_hwqid = multixri_pool->rrb_next_hwqid; 21818 21819 do { 21820 /* Go to next hwq */ 21821 next_hwqid = (next_hwqid + 1) % hwq_count; 21822 21823 next_multixri_pool = 21824 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21825 pbl_pool = &next_multixri_pool->pbl_pool; 21826 21827 /* Check if the public free xri pool is available */ 21828 ret = _lpfc_move_xri_pbl_to_pvt( 21829 phba, qp, pbl_pool, pvt_pool, count); 21830 21831 /* Exit while-loop if success or all hwqid are checked */ 21832 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21833 21834 /* Starting point for the next time */ 21835 multixri_pool->rrb_next_hwqid = next_hwqid; 21836 21837 if (!ret) { 21838 /* stats: all public pools are empty*/ 21839 multixri_pool->pbl_empty_count++; 21840 } 21841 21842 #ifdef LPFC_MXP_STAT 21843 if (ret) { 21844 if (next_hwqid == hwqid) 21845 multixri_pool->local_pbl_hit_count++; 21846 else 21847 multixri_pool->other_pbl_hit_count++; 21848 } 21849 #endif 21850 } 21851 21852 /** 21853 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21854 * @phba: pointer to lpfc hba data structure. 21855 * @hwqid: belong to which HWQ. 21856 * 21857 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21858 * low watermark. 21859 **/ 21860 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21861 { 21862 struct lpfc_multixri_pool *multixri_pool; 21863 struct lpfc_pvt_pool *pvt_pool; 21864 21865 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21866 pvt_pool = &multixri_pool->pvt_pool; 21867 21868 if (pvt_pool->count < pvt_pool->low_watermark) 21869 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21870 } 21871 21872 /** 21873 * lpfc_release_io_buf - Return one IO buf back to free pool 21874 * @phba: pointer to lpfc hba data structure. 21875 * @lpfc_ncmd: IO buf to be returned. 21876 * @qp: belong to which HWQ. 21877 * 21878 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21879 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21880 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21881 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21882 * lpfc_io_buf_list_put. 21883 **/ 21884 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21885 struct lpfc_sli4_hdw_queue *qp) 21886 { 21887 unsigned long iflag; 21888 struct lpfc_pbl_pool *pbl_pool; 21889 struct lpfc_pvt_pool *pvt_pool; 21890 struct lpfc_epd_pool *epd_pool; 21891 u32 txcmplq_cnt; 21892 u32 xri_owned; 21893 u32 xri_limit; 21894 u32 abts_io_bufs; 21895 21896 /* MUST zero fields if buffer is reused by another protocol */ 21897 lpfc_ncmd->nvmeCmd = NULL; 21898 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21899 21900 if (phba->cfg_xpsgl && !phba->nvmet_support && 21901 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21902 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21903 21904 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21905 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21906 21907 if (phba->cfg_xri_rebalancing) { 21908 if (lpfc_ncmd->expedite) { 21909 /* Return to expedite pool */ 21910 epd_pool = &phba->epd_pool; 21911 spin_lock_irqsave(&epd_pool->lock, iflag); 21912 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21913 epd_pool->count++; 21914 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21915 return; 21916 } 21917 21918 /* Avoid invalid access if an IO sneaks in and is being rejected 21919 * just _after_ xri pools are destroyed in lpfc_offline. 21920 * Nothing much can be done at this point. 21921 */ 21922 if (!qp->p_multixri_pool) 21923 return; 21924 21925 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21926 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21927 21928 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21929 abts_io_bufs = qp->abts_scsi_io_bufs; 21930 abts_io_bufs += qp->abts_nvme_io_bufs; 21931 21932 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21933 xri_limit = qp->p_multixri_pool->xri_limit; 21934 21935 #ifdef LPFC_MXP_STAT 21936 if (xri_owned <= xri_limit) 21937 qp->p_multixri_pool->below_limit_count++; 21938 else 21939 qp->p_multixri_pool->above_limit_count++; 21940 #endif 21941 21942 /* XRI goes to either public or private free xri pool 21943 * based on watermark and xri_limit 21944 */ 21945 if ((pvt_pool->count < pvt_pool->low_watermark) || 21946 (xri_owned < xri_limit && 21947 pvt_pool->count < pvt_pool->high_watermark)) { 21948 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21949 qp, free_pvt_pool); 21950 list_add_tail(&lpfc_ncmd->list, 21951 &pvt_pool->list); 21952 pvt_pool->count++; 21953 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21954 } else { 21955 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21956 qp, free_pub_pool); 21957 list_add_tail(&lpfc_ncmd->list, 21958 &pbl_pool->list); 21959 pbl_pool->count++; 21960 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21961 } 21962 } else { 21963 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21964 qp, free_xri); 21965 list_add_tail(&lpfc_ncmd->list, 21966 &qp->lpfc_io_buf_list_put); 21967 qp->put_io_bufs++; 21968 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21969 iflag); 21970 } 21971 } 21972 21973 /** 21974 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21975 * @phba: pointer to lpfc hba data structure. 21976 * @qp: pointer to HDW queue 21977 * @pvt_pool: pointer to private pool data structure. 21978 * @ndlp: pointer to lpfc nodelist data structure. 21979 * 21980 * This routine tries to get one free IO buf from private pool. 21981 * 21982 * Return: 21983 * pointer to one free IO buf - if private pool is not empty 21984 * NULL - if private pool is empty 21985 **/ 21986 static struct lpfc_io_buf * 21987 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21988 struct lpfc_sli4_hdw_queue *qp, 21989 struct lpfc_pvt_pool *pvt_pool, 21990 struct lpfc_nodelist *ndlp) 21991 { 21992 struct lpfc_io_buf *lpfc_ncmd; 21993 struct lpfc_io_buf *lpfc_ncmd_next; 21994 unsigned long iflag; 21995 21996 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21997 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21998 &pvt_pool->list, list) { 21999 if (lpfc_test_rrq_active( 22000 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 22001 continue; 22002 list_del(&lpfc_ncmd->list); 22003 pvt_pool->count--; 22004 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22005 return lpfc_ncmd; 22006 } 22007 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22008 22009 return NULL; 22010 } 22011 22012 /** 22013 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22014 * @phba: pointer to lpfc hba data structure. 22015 * 22016 * This routine tries to get one free IO buf from expedite pool. 22017 * 22018 * Return: 22019 * pointer to one free IO buf - if expedite pool is not empty 22020 * NULL - if expedite pool is empty 22021 **/ 22022 static struct lpfc_io_buf * 22023 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22024 { 22025 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22026 struct lpfc_io_buf *lpfc_ncmd_next; 22027 unsigned long iflag; 22028 struct lpfc_epd_pool *epd_pool; 22029 22030 epd_pool = &phba->epd_pool; 22031 22032 spin_lock_irqsave(&epd_pool->lock, iflag); 22033 if (epd_pool->count > 0) { 22034 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22035 &epd_pool->list, list) { 22036 list_del(&iter->list); 22037 epd_pool->count--; 22038 lpfc_ncmd = iter; 22039 break; 22040 } 22041 } 22042 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22043 22044 return lpfc_ncmd; 22045 } 22046 22047 /** 22048 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22049 * @phba: pointer to lpfc hba data structure. 22050 * @ndlp: pointer to lpfc nodelist data structure. 22051 * @hwqid: belong to which HWQ 22052 * @expedite: 1 means this request is urgent. 22053 * 22054 * This routine will do the following actions and then return a pointer to 22055 * one free IO buf. 22056 * 22057 * 1. If private free xri count is empty, move some XRIs from public to 22058 * private pool. 22059 * 2. Get one XRI from private free xri pool. 22060 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22061 * get one free xri from expedite pool. 22062 * 22063 * Note: ndlp is only used on SCSI side for RRQ testing. 22064 * The caller should pass NULL for ndlp on NVME side. 22065 * 22066 * Return: 22067 * pointer to one free IO buf - if private pool is not empty 22068 * NULL - if private pool is empty 22069 **/ 22070 static struct lpfc_io_buf * 22071 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22072 struct lpfc_nodelist *ndlp, 22073 int hwqid, int expedite) 22074 { 22075 struct lpfc_sli4_hdw_queue *qp; 22076 struct lpfc_multixri_pool *multixri_pool; 22077 struct lpfc_pvt_pool *pvt_pool; 22078 struct lpfc_io_buf *lpfc_ncmd; 22079 22080 qp = &phba->sli4_hba.hdwq[hwqid]; 22081 lpfc_ncmd = NULL; 22082 if (!qp) { 22083 lpfc_printf_log(phba, KERN_INFO, 22084 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22085 "5556 NULL qp for hwqid x%x\n", hwqid); 22086 return lpfc_ncmd; 22087 } 22088 multixri_pool = qp->p_multixri_pool; 22089 if (!multixri_pool) { 22090 lpfc_printf_log(phba, KERN_INFO, 22091 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22092 "5557 NULL multixri for hwqid x%x\n", hwqid); 22093 return lpfc_ncmd; 22094 } 22095 pvt_pool = &multixri_pool->pvt_pool; 22096 if (!pvt_pool) { 22097 lpfc_printf_log(phba, KERN_INFO, 22098 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22099 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22100 return lpfc_ncmd; 22101 } 22102 multixri_pool->io_req_count++; 22103 22104 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22105 if (pvt_pool->count == 0) 22106 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22107 22108 /* Get one XRI from private free xri pool */ 22109 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22110 22111 if (lpfc_ncmd) { 22112 lpfc_ncmd->hdwq = qp; 22113 lpfc_ncmd->hdwq_no = hwqid; 22114 } else if (expedite) { 22115 /* If we fail to get one from pvt_pool and this is an expedite 22116 * request, get one free xri from expedite pool. 22117 */ 22118 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22119 } 22120 22121 return lpfc_ncmd; 22122 } 22123 22124 static inline struct lpfc_io_buf * 22125 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22126 { 22127 struct lpfc_sli4_hdw_queue *qp; 22128 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22129 22130 qp = &phba->sli4_hba.hdwq[idx]; 22131 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22132 &qp->lpfc_io_buf_list_get, list) { 22133 if (lpfc_test_rrq_active(phba, ndlp, 22134 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22135 continue; 22136 22137 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22138 continue; 22139 22140 list_del_init(&lpfc_cmd->list); 22141 qp->get_io_bufs--; 22142 lpfc_cmd->hdwq = qp; 22143 lpfc_cmd->hdwq_no = idx; 22144 return lpfc_cmd; 22145 } 22146 return NULL; 22147 } 22148 22149 /** 22150 * lpfc_get_io_buf - Get one IO buffer from free pool 22151 * @phba: The HBA for which this call is being executed. 22152 * @ndlp: pointer to lpfc nodelist data structure. 22153 * @hwqid: belong to which HWQ 22154 * @expedite: 1 means this request is urgent. 22155 * 22156 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22157 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22158 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22159 * 22160 * Note: ndlp is only used on SCSI side for RRQ testing. 22161 * The caller should pass NULL for ndlp on NVME side. 22162 * 22163 * Return codes: 22164 * NULL - Error 22165 * Pointer to lpfc_io_buf - Success 22166 **/ 22167 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22168 struct lpfc_nodelist *ndlp, 22169 u32 hwqid, int expedite) 22170 { 22171 struct lpfc_sli4_hdw_queue *qp; 22172 unsigned long iflag; 22173 struct lpfc_io_buf *lpfc_cmd; 22174 22175 qp = &phba->sli4_hba.hdwq[hwqid]; 22176 lpfc_cmd = NULL; 22177 if (!qp) { 22178 lpfc_printf_log(phba, KERN_WARNING, 22179 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22180 "5555 NULL qp for hwqid x%x\n", hwqid); 22181 return lpfc_cmd; 22182 } 22183 22184 if (phba->cfg_xri_rebalancing) 22185 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22186 phba, ndlp, hwqid, expedite); 22187 else { 22188 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22189 qp, alloc_xri_get); 22190 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22191 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22192 if (!lpfc_cmd) { 22193 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22194 qp, alloc_xri_put); 22195 list_splice(&qp->lpfc_io_buf_list_put, 22196 &qp->lpfc_io_buf_list_get); 22197 qp->get_io_bufs += qp->put_io_bufs; 22198 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22199 qp->put_io_bufs = 0; 22200 spin_unlock(&qp->io_buf_list_put_lock); 22201 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22202 expedite) 22203 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22204 } 22205 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22206 } 22207 22208 return lpfc_cmd; 22209 } 22210 22211 /** 22212 * lpfc_read_object - Retrieve object data from HBA 22213 * @phba: The HBA for which this call is being executed. 22214 * @rdobject: Pathname of object data we want to read. 22215 * @datap: Pointer to where data will be copied to. 22216 * @datasz: size of data area 22217 * 22218 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22219 * The data will be truncated if datasz is not large enough. 22220 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22221 * Returns the actual bytes read from the object. 22222 * 22223 * This routine is hard coded to use a poll completion. Unlike other 22224 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22225 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22226 * to use interrupt-based completions, code is needed to fully cleanup 22227 * the memory. 22228 */ 22229 int 22230 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22231 uint32_t datasz) 22232 { 22233 struct lpfc_mbx_read_object *read_object; 22234 LPFC_MBOXQ_t *mbox; 22235 int rc, length, eof, j, byte_cnt = 0; 22236 uint32_t shdr_status, shdr_add_status; 22237 union lpfc_sli4_cfg_shdr *shdr; 22238 struct lpfc_dmabuf *pcmd; 22239 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22240 22241 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22242 if (!mbox) 22243 return -ENOMEM; 22244 length = (sizeof(struct lpfc_mbx_read_object) - 22245 sizeof(struct lpfc_sli4_cfg_mhdr)); 22246 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22247 LPFC_MBOX_OPCODE_READ_OBJECT, 22248 length, LPFC_SLI4_MBX_EMBED); 22249 read_object = &mbox->u.mqe.un.read_object; 22250 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22251 22252 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22253 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22254 read_object->u.request.rd_object_offset = 0; 22255 read_object->u.request.rd_object_cnt = 1; 22256 22257 memset((void *)read_object->u.request.rd_object_name, 0, 22258 LPFC_OBJ_NAME_SZ); 22259 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22260 for (j = 0; j < strlen(rdobject); j++) 22261 read_object->u.request.rd_object_name[j] = 22262 cpu_to_le32(rd_object_name[j]); 22263 22264 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22265 if (pcmd) 22266 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22267 if (!pcmd || !pcmd->virt) { 22268 kfree(pcmd); 22269 mempool_free(mbox, phba->mbox_mem_pool); 22270 return -ENOMEM; 22271 } 22272 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22273 read_object->u.request.rd_object_hbuf[0].pa_lo = 22274 putPaddrLow(pcmd->phys); 22275 read_object->u.request.rd_object_hbuf[0].pa_hi = 22276 putPaddrHigh(pcmd->phys); 22277 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22278 22279 mbox->vport = phba->pport; 22280 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22281 mbox->ctx_ndlp = NULL; 22282 22283 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22284 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22285 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22286 22287 if (shdr_status == STATUS_FAILED && 22288 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22290 "4674 No port cfg file in FW.\n"); 22291 byte_cnt = -ENOENT; 22292 } else if (shdr_status || shdr_add_status || rc) { 22293 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22294 "2625 READ_OBJECT mailbox failed with " 22295 "status x%x add_status x%x, mbx status x%x\n", 22296 shdr_status, shdr_add_status, rc); 22297 byte_cnt = -ENXIO; 22298 } else { 22299 /* Success */ 22300 length = read_object->u.response.rd_object_actual_rlen; 22301 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22302 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22303 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22304 length, datasz, eof); 22305 22306 /* Detect the port config file exists but is empty */ 22307 if (!length && eof) { 22308 byte_cnt = 0; 22309 goto exit; 22310 } 22311 22312 byte_cnt = length; 22313 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22314 } 22315 22316 exit: 22317 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22318 * Free the pcmd and then cleanup with the correct routine. 22319 */ 22320 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22321 kfree(pcmd); 22322 lpfc_sli4_mbox_cmd_free(phba, mbox); 22323 return byte_cnt; 22324 } 22325 22326 /** 22327 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22328 * @phba: The HBA for which this call is being executed. 22329 * @lpfc_buf: IO buf structure to append the SGL chunk 22330 * 22331 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22332 * and will allocate an SGL chunk if the pool is empty. 22333 * 22334 * Return codes: 22335 * NULL - Error 22336 * Pointer to sli4_hybrid_sgl - Success 22337 **/ 22338 struct sli4_hybrid_sgl * 22339 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22340 { 22341 struct sli4_hybrid_sgl *list_entry = NULL; 22342 struct sli4_hybrid_sgl *tmp = NULL; 22343 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22344 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22345 struct list_head *buf_list = &hdwq->sgl_list; 22346 unsigned long iflags; 22347 22348 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22349 22350 if (likely(!list_empty(buf_list))) { 22351 /* break off 1 chunk from the sgl_list */ 22352 list_for_each_entry_safe(list_entry, tmp, 22353 buf_list, list_node) { 22354 list_move_tail(&list_entry->list_node, 22355 &lpfc_buf->dma_sgl_xtra_list); 22356 break; 22357 } 22358 } else { 22359 /* allocate more */ 22360 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22361 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22362 cpu_to_node(hdwq->io_wq->chann)); 22363 if (!tmp) { 22364 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22365 "8353 error kmalloc memory for HDWQ " 22366 "%d %s\n", 22367 lpfc_buf->hdwq_no, __func__); 22368 return NULL; 22369 } 22370 22371 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22372 GFP_ATOMIC, &tmp->dma_phys_sgl); 22373 if (!tmp->dma_sgl) { 22374 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22375 "8354 error pool_alloc memory for HDWQ " 22376 "%d %s\n", 22377 lpfc_buf->hdwq_no, __func__); 22378 kfree(tmp); 22379 return NULL; 22380 } 22381 22382 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22383 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22384 } 22385 22386 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22387 struct sli4_hybrid_sgl, 22388 list_node); 22389 22390 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22391 22392 return allocated_sgl; 22393 } 22394 22395 /** 22396 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22397 * @phba: The HBA for which this call is being executed. 22398 * @lpfc_buf: IO buf structure with the SGL chunk 22399 * 22400 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22401 * 22402 * Return codes: 22403 * 0 - Success 22404 * -EINVAL - Error 22405 **/ 22406 int 22407 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22408 { 22409 int rc = 0; 22410 struct sli4_hybrid_sgl *list_entry = NULL; 22411 struct sli4_hybrid_sgl *tmp = NULL; 22412 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22413 struct list_head *buf_list = &hdwq->sgl_list; 22414 unsigned long iflags; 22415 22416 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22417 22418 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22419 list_for_each_entry_safe(list_entry, tmp, 22420 &lpfc_buf->dma_sgl_xtra_list, 22421 list_node) { 22422 list_move_tail(&list_entry->list_node, 22423 buf_list); 22424 } 22425 } else { 22426 rc = -EINVAL; 22427 } 22428 22429 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22430 return rc; 22431 } 22432 22433 /** 22434 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22435 * @phba: phba object 22436 * @hdwq: hdwq to cleanup sgl buff resources on 22437 * 22438 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22439 * 22440 * Return codes: 22441 * None 22442 **/ 22443 void 22444 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22445 struct lpfc_sli4_hdw_queue *hdwq) 22446 { 22447 struct list_head *buf_list = &hdwq->sgl_list; 22448 struct sli4_hybrid_sgl *list_entry = NULL; 22449 struct sli4_hybrid_sgl *tmp = NULL; 22450 unsigned long iflags; 22451 22452 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22453 22454 /* Free sgl pool */ 22455 list_for_each_entry_safe(list_entry, tmp, 22456 buf_list, list_node) { 22457 list_del(&list_entry->list_node); 22458 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22459 list_entry->dma_sgl, 22460 list_entry->dma_phys_sgl); 22461 kfree(list_entry); 22462 } 22463 22464 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22465 } 22466 22467 /** 22468 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22469 * @phba: The HBA for which this call is being executed. 22470 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22471 * 22472 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22473 * and will allocate an CMD/RSP buffer if the pool is empty. 22474 * 22475 * Return codes: 22476 * NULL - Error 22477 * Pointer to fcp_cmd_rsp_buf - Success 22478 **/ 22479 struct fcp_cmd_rsp_buf * 22480 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22481 struct lpfc_io_buf *lpfc_buf) 22482 { 22483 struct fcp_cmd_rsp_buf *list_entry = NULL; 22484 struct fcp_cmd_rsp_buf *tmp = NULL; 22485 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22486 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22487 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22488 unsigned long iflags; 22489 22490 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22491 22492 if (likely(!list_empty(buf_list))) { 22493 /* break off 1 chunk from the list */ 22494 list_for_each_entry_safe(list_entry, tmp, 22495 buf_list, 22496 list_node) { 22497 list_move_tail(&list_entry->list_node, 22498 &lpfc_buf->dma_cmd_rsp_list); 22499 break; 22500 } 22501 } else { 22502 /* allocate more */ 22503 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22504 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22505 cpu_to_node(hdwq->io_wq->chann)); 22506 if (!tmp) { 22507 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22508 "8355 error kmalloc memory for HDWQ " 22509 "%d %s\n", 22510 lpfc_buf->hdwq_no, __func__); 22511 return NULL; 22512 } 22513 22514 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22515 GFP_ATOMIC, 22516 &tmp->fcp_cmd_rsp_dma_handle); 22517 22518 if (!tmp->fcp_cmnd) { 22519 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22520 "8356 error pool_alloc memory for HDWQ " 22521 "%d %s\n", 22522 lpfc_buf->hdwq_no, __func__); 22523 kfree(tmp); 22524 return NULL; 22525 } 22526 22527 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22528 sizeof(struct fcp_cmnd32)); 22529 22530 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22531 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22532 } 22533 22534 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22535 struct fcp_cmd_rsp_buf, 22536 list_node); 22537 22538 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22539 22540 return allocated_buf; 22541 } 22542 22543 /** 22544 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22545 * @phba: The HBA for which this call is being executed. 22546 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22547 * 22548 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22549 * 22550 * Return codes: 22551 * 0 - Success 22552 * -EINVAL - Error 22553 **/ 22554 int 22555 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22556 struct lpfc_io_buf *lpfc_buf) 22557 { 22558 int rc = 0; 22559 struct fcp_cmd_rsp_buf *list_entry = NULL; 22560 struct fcp_cmd_rsp_buf *tmp = NULL; 22561 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22562 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22563 unsigned long iflags; 22564 22565 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22566 22567 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22568 list_for_each_entry_safe(list_entry, tmp, 22569 &lpfc_buf->dma_cmd_rsp_list, 22570 list_node) { 22571 list_move_tail(&list_entry->list_node, 22572 buf_list); 22573 } 22574 } else { 22575 rc = -EINVAL; 22576 } 22577 22578 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22579 return rc; 22580 } 22581 22582 /** 22583 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22584 * @phba: phba object 22585 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22586 * 22587 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22588 * 22589 * Return codes: 22590 * None 22591 **/ 22592 void 22593 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22594 struct lpfc_sli4_hdw_queue *hdwq) 22595 { 22596 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22597 struct fcp_cmd_rsp_buf *list_entry = NULL; 22598 struct fcp_cmd_rsp_buf *tmp = NULL; 22599 unsigned long iflags; 22600 22601 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22602 22603 /* Free cmd_rsp buf pool */ 22604 list_for_each_entry_safe(list_entry, tmp, 22605 buf_list, 22606 list_node) { 22607 list_del(&list_entry->list_node); 22608 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22609 list_entry->fcp_cmnd, 22610 list_entry->fcp_cmd_rsp_dma_handle); 22611 kfree(list_entry); 22612 } 22613 22614 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22615 } 22616 22617 /** 22618 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22619 * @phba: phba object 22620 * @job: job entry of the command to be posted. 22621 * 22622 * Fill the common fields of the wqe for each of the command. 22623 * 22624 * Return codes: 22625 * None 22626 **/ 22627 void 22628 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22629 { 22630 u8 cmnd; 22631 u32 *pcmd; 22632 u32 if_type = 0; 22633 u32 abort_tag; 22634 bool fip; 22635 struct lpfc_nodelist *ndlp = NULL; 22636 union lpfc_wqe128 *wqe = &job->wqe; 22637 u8 command_type = ELS_COMMAND_NON_FIP; 22638 22639 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22640 /* The fcp commands will set command type */ 22641 if (job->cmd_flag & LPFC_IO_FCP) 22642 command_type = FCP_COMMAND; 22643 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22644 command_type = ELS_COMMAND_FIP; 22645 else 22646 command_type = ELS_COMMAND_NON_FIP; 22647 22648 abort_tag = job->iotag; 22649 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22650 22651 switch (cmnd) { 22652 case CMD_ELS_REQUEST64_WQE: 22653 ndlp = job->ndlp; 22654 22655 if_type = bf_get(lpfc_sli_intf_if_type, 22656 &phba->sli4_hba.sli_intf); 22657 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22658 pcmd = (u32 *)job->cmd_dmabuf->virt; 22659 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22660 *pcmd == ELS_CMD_SCR || 22661 *pcmd == ELS_CMD_RDF || 22662 *pcmd == ELS_CMD_EDC || 22663 *pcmd == ELS_CMD_RSCN_XMT || 22664 *pcmd == ELS_CMD_FDISC || 22665 *pcmd == ELS_CMD_LOGO || 22666 *pcmd == ELS_CMD_QFPA || 22667 *pcmd == ELS_CMD_UVEM || 22668 *pcmd == ELS_CMD_PLOGI)) { 22669 bf_set(els_req64_sp, &wqe->els_req, 1); 22670 bf_set(els_req64_sid, &wqe->els_req, 22671 job->vport->fc_myDID); 22672 22673 if ((*pcmd == ELS_CMD_FLOGI) && 22674 !(phba->fc_topology == 22675 LPFC_TOPOLOGY_LOOP)) 22676 bf_set(els_req64_sid, &wqe->els_req, 0); 22677 22678 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22679 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22680 phba->vpi_ids[job->vport->vpi]); 22681 } else if (pcmd) { 22682 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22683 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22684 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22685 } 22686 } 22687 22688 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22689 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22690 22691 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22692 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22693 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22694 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22695 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22696 break; 22697 case CMD_XMIT_ELS_RSP64_WQE: 22698 ndlp = job->ndlp; 22699 22700 /* word4 */ 22701 wqe->xmit_els_rsp.word4 = 0; 22702 22703 if_type = bf_get(lpfc_sli_intf_if_type, 22704 &phba->sli4_hba.sli_intf); 22705 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22706 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22707 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22708 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22709 job->vport->fc_myDID); 22710 if (job->vport->fc_myDID == Fabric_DID) { 22711 bf_set(wqe_els_did, 22712 &wqe->xmit_els_rsp.wqe_dest, 0); 22713 } 22714 } 22715 } 22716 22717 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22718 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22719 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22720 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22721 LPFC_WQE_LENLOC_WORD3); 22722 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22723 22724 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22725 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22726 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22727 job->vport->fc_myDID); 22728 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22729 } 22730 22731 if (phba->sli_rev == LPFC_SLI_REV4) { 22732 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22733 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22734 22735 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22736 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22737 phba->vpi_ids[job->vport->vpi]); 22738 } 22739 command_type = OTHER_COMMAND; 22740 break; 22741 case CMD_GEN_REQUEST64_WQE: 22742 /* Word 10 */ 22743 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22744 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22745 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22746 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22747 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22748 command_type = OTHER_COMMAND; 22749 break; 22750 case CMD_XMIT_SEQUENCE64_WQE: 22751 if (phba->link_flag & LS_LOOPBACK_MODE) 22752 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22753 22754 wqe->xmit_sequence.rsvd3 = 0; 22755 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22756 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22757 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22758 LPFC_WQE_IOD_WRITE); 22759 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22760 LPFC_WQE_LENLOC_WORD12); 22761 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22762 command_type = OTHER_COMMAND; 22763 break; 22764 case CMD_XMIT_BLS_RSP64_WQE: 22765 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22766 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22767 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22768 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22769 phba->vpi_ids[phba->pport->vpi]); 22770 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22771 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22772 LPFC_WQE_LENLOC_NONE); 22773 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22774 command_type = OTHER_COMMAND; 22775 break; 22776 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22777 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22778 case CMD_SEND_FRAME: /* mds loopback */ 22779 /* cases already formatted for sli4 wqe - no chgs necessary */ 22780 return; 22781 default: 22782 dump_stack(); 22783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22784 "6207 Invalid command 0x%x\n", 22785 cmnd); 22786 break; 22787 } 22788 22789 wqe->generic.wqe_com.abort_tag = abort_tag; 22790 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22791 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22792 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22793 } 22794