1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1212 rrq->nlp_DID = ndlp->nlp_DID; 1213 rrq->vport = ndlp->vport; 1214 rrq->rxid = rxid; 1215 1216 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1220 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 outnl: 1227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1228 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1229 " DID:0x%x Send:%d\n", 1230 xritag, rxid, ndlp->nlp_DID, send_rrq); 1231 return -EINVAL; 1232 } 1233 1234 /** 1235 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1236 * @phba: Pointer to HBA context object. 1237 * @piocbq: Pointer to the iocbq. 1238 * 1239 * The driver calls this function with either the nvme ls ring lock 1240 * or the fc els ring lock held depending on the iocb usage. This function 1241 * gets a new driver sglq object from the sglq list. If the list is not empty 1242 * then it is successful, it returns pointer to the newly allocated sglq 1243 * object else it returns NULL. 1244 **/ 1245 static struct lpfc_sglq * 1246 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1247 { 1248 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1249 struct lpfc_sglq *sglq = NULL; 1250 struct lpfc_sglq *start_sglq = NULL; 1251 struct lpfc_io_buf *lpfc_cmd; 1252 struct lpfc_nodelist *ndlp; 1253 int found = 0; 1254 u8 cmnd; 1255 1256 cmnd = get_job_cmnd(phba, piocbq); 1257 1258 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1259 lpfc_cmd = piocbq->io_buf; 1260 ndlp = lpfc_cmd->rdata->pnode; 1261 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1262 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1263 ndlp = piocbq->ndlp; 1264 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1265 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1266 ndlp = NULL; 1267 else 1268 ndlp = piocbq->ndlp; 1269 } else { 1270 ndlp = piocbq->ndlp; 1271 } 1272 1273 spin_lock(&phba->sli4_hba.sgl_list_lock); 1274 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1275 start_sglq = sglq; 1276 while (!found) { 1277 if (!sglq) 1278 break; 1279 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1280 test_bit(sglq->sli4_lxritag, 1281 ndlp->active_rrqs_xri_bitmap)) { 1282 /* This xri has an rrq outstanding for this DID. 1283 * put it back in the list and get another xri. 1284 */ 1285 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1286 sglq = NULL; 1287 list_remove_head(lpfc_els_sgl_list, sglq, 1288 struct lpfc_sglq, list); 1289 if (sglq == start_sglq) { 1290 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1291 sglq = NULL; 1292 break; 1293 } else 1294 continue; 1295 } 1296 sglq->ndlp = ndlp; 1297 found = 1; 1298 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1299 sglq->state = SGL_ALLOCATED; 1300 } 1301 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1302 return sglq; 1303 } 1304 1305 /** 1306 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1307 * @phba: Pointer to HBA context object. 1308 * @piocbq: Pointer to the iocbq. 1309 * 1310 * This function is called with the sgl_list lock held. This function 1311 * gets a new driver sglq object from the sglq list. If the 1312 * list is not empty then it is successful, it returns pointer to the newly 1313 * allocated sglq object else it returns NULL. 1314 **/ 1315 struct lpfc_sglq * 1316 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1317 { 1318 struct list_head *lpfc_nvmet_sgl_list; 1319 struct lpfc_sglq *sglq = NULL; 1320 1321 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1322 1323 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1324 1325 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1326 if (!sglq) 1327 return NULL; 1328 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1329 sglq->state = SGL_ALLOCATED; 1330 return sglq; 1331 } 1332 1333 /** 1334 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1335 * @phba: Pointer to HBA context object. 1336 * 1337 * This function is called with no lock held. This function 1338 * allocates a new driver iocb object from the iocb pool. If the 1339 * allocation is successful, it returns pointer to the newly 1340 * allocated iocb object else it returns NULL. 1341 **/ 1342 struct lpfc_iocbq * 1343 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1344 { 1345 struct lpfc_iocbq * iocbq = NULL; 1346 unsigned long iflags; 1347 1348 spin_lock_irqsave(&phba->hbalock, iflags); 1349 iocbq = __lpfc_sli_get_iocbq(phba); 1350 spin_unlock_irqrestore(&phba->hbalock, iflags); 1351 return iocbq; 1352 } 1353 1354 /** 1355 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1356 * @phba: Pointer to HBA context object. 1357 * @iocbq: Pointer to driver iocb object. 1358 * 1359 * This function is called to release the driver iocb object 1360 * to the iocb pool. The iotag in the iocb object 1361 * does not change for each use of the iocb object. This function 1362 * clears all other fields of the iocb object when it is freed. 1363 * The sqlq structure that holds the xritag and phys and virtual 1364 * mappings for the scatter gather list is retrieved from the 1365 * active array of sglq. The get of the sglq pointer also clears 1366 * the entry in the array. If the status of the IO indiactes that 1367 * this IO was aborted then the sglq entry it put on the 1368 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1369 * IO has good status or fails for any other reason then the sglq 1370 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1371 * asserted held in the code path calling this routine. 1372 **/ 1373 static void 1374 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1375 { 1376 struct lpfc_sglq *sglq; 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset_startat(iocbq, 0, wqe); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 1457 /* 1458 * Clean all volatile data fields, preserve iotag and node struct. 1459 */ 1460 memset_startat(iocbq, 0, iocb); 1461 iocbq->sli4_xritag = NO_XRI; 1462 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1463 } 1464 1465 /** 1466 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1467 * @phba: Pointer to HBA context object. 1468 * @iocbq: Pointer to driver iocb object. 1469 * 1470 * This function is called with hbalock held to release driver 1471 * iocb object to the iocb pool. The iotag in the iocb object 1472 * does not change for each use of the iocb object. This function 1473 * clears all other fields of the iocb object when it is freed. 1474 **/ 1475 static void 1476 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1477 { 1478 lockdep_assert_held(&phba->hbalock); 1479 1480 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1481 phba->iocb_cnt--; 1482 } 1483 1484 /** 1485 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1486 * @phba: Pointer to HBA context object. 1487 * @iocbq: Pointer to driver iocb object. 1488 * 1489 * This function is called with no lock held to release the iocb to 1490 * iocb pool. 1491 **/ 1492 void 1493 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1494 { 1495 unsigned long iflags; 1496 1497 /* 1498 * Clean all volatile data fields, preserve iotag and node struct. 1499 */ 1500 spin_lock_irqsave(&phba->hbalock, iflags); 1501 __lpfc_sli_release_iocbq(phba, iocbq); 1502 spin_unlock_irqrestore(&phba->hbalock, iflags); 1503 } 1504 1505 /** 1506 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1507 * @phba: Pointer to HBA context object. 1508 * @iocblist: List of IOCBs. 1509 * @ulpstatus: ULP status in IOCB command field. 1510 * @ulpWord4: ULP word-4 in IOCB command field. 1511 * 1512 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1513 * on the list by invoking the complete callback function associated with the 1514 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1515 * fields. 1516 **/ 1517 void 1518 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1519 uint32_t ulpstatus, uint32_t ulpWord4) 1520 { 1521 struct lpfc_iocbq *piocb; 1522 1523 while (!list_empty(iocblist)) { 1524 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1525 if (piocb->cmd_cmpl) { 1526 if (piocb->cmd_flag & LPFC_IO_NVME) { 1527 lpfc_nvme_cancel_iocb(phba, piocb, 1528 ulpstatus, ulpWord4); 1529 } else { 1530 if (phba->sli_rev == LPFC_SLI_REV4) { 1531 bf_set(lpfc_wcqe_c_status, 1532 &piocb->wcqe_cmpl, ulpstatus); 1533 piocb->wcqe_cmpl.parameter = ulpWord4; 1534 } else { 1535 piocb->iocb.ulpStatus = ulpstatus; 1536 piocb->iocb.un.ulpWord[4] = ulpWord4; 1537 } 1538 (piocb->cmd_cmpl) (phba, piocb, piocb); 1539 } 1540 } else { 1541 lpfc_sli_release_iocbq(phba, piocb); 1542 } 1543 } 1544 return; 1545 } 1546 1547 /** 1548 * lpfc_sli_iocb_cmd_type - Get the iocb type 1549 * @iocb_cmnd: iocb command code. 1550 * 1551 * This function is called by ring event handler function to get the iocb type. 1552 * This function translates the iocb command to an iocb command type used to 1553 * decide the final disposition of each completed IOCB. 1554 * The function returns 1555 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1556 * LPFC_SOL_IOCB if it is a solicited iocb completion 1557 * LPFC_ABORT_IOCB if it is an abort iocb 1558 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1559 * 1560 * The caller is not required to hold any lock. 1561 **/ 1562 static lpfc_iocb_type 1563 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1564 { 1565 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1566 1567 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1568 return 0; 1569 1570 switch (iocb_cmnd) { 1571 case CMD_XMIT_SEQUENCE_CR: 1572 case CMD_XMIT_SEQUENCE_CX: 1573 case CMD_XMIT_BCAST_CN: 1574 case CMD_XMIT_BCAST_CX: 1575 case CMD_ELS_REQUEST_CR: 1576 case CMD_ELS_REQUEST_CX: 1577 case CMD_CREATE_XRI_CR: 1578 case CMD_CREATE_XRI_CX: 1579 case CMD_GET_RPI_CN: 1580 case CMD_XMIT_ELS_RSP_CX: 1581 case CMD_GET_RPI_CR: 1582 case CMD_FCP_IWRITE_CR: 1583 case CMD_FCP_IWRITE_CX: 1584 case CMD_FCP_IREAD_CR: 1585 case CMD_FCP_IREAD_CX: 1586 case CMD_FCP_ICMND_CR: 1587 case CMD_FCP_ICMND_CX: 1588 case CMD_FCP_TSEND_CX: 1589 case CMD_FCP_TRSP_CX: 1590 case CMD_FCP_TRECEIVE_CX: 1591 case CMD_FCP_AUTO_TRSP_CX: 1592 case CMD_ADAPTER_MSG: 1593 case CMD_ADAPTER_DUMP: 1594 case CMD_XMIT_SEQUENCE64_CR: 1595 case CMD_XMIT_SEQUENCE64_CX: 1596 case CMD_XMIT_BCAST64_CN: 1597 case CMD_XMIT_BCAST64_CX: 1598 case CMD_ELS_REQUEST64_CR: 1599 case CMD_ELS_REQUEST64_CX: 1600 case CMD_FCP_IWRITE64_CR: 1601 case CMD_FCP_IWRITE64_CX: 1602 case CMD_FCP_IREAD64_CR: 1603 case CMD_FCP_IREAD64_CX: 1604 case CMD_FCP_ICMND64_CR: 1605 case CMD_FCP_ICMND64_CX: 1606 case CMD_FCP_TSEND64_CX: 1607 case CMD_FCP_TRSP64_CX: 1608 case CMD_FCP_TRECEIVE64_CX: 1609 case CMD_GEN_REQUEST64_CR: 1610 case CMD_GEN_REQUEST64_CX: 1611 case CMD_XMIT_ELS_RSP64_CX: 1612 case DSSCMD_IWRITE64_CR: 1613 case DSSCMD_IWRITE64_CX: 1614 case DSSCMD_IREAD64_CR: 1615 case DSSCMD_IREAD64_CX: 1616 case CMD_SEND_FRAME: 1617 type = LPFC_SOL_IOCB; 1618 break; 1619 case CMD_ABORT_XRI_CN: 1620 case CMD_ABORT_XRI_CX: 1621 case CMD_CLOSE_XRI_CN: 1622 case CMD_CLOSE_XRI_CX: 1623 case CMD_XRI_ABORTED_CX: 1624 case CMD_ABORT_MXRI64_CN: 1625 case CMD_XMIT_BLS_RSP64_CX: 1626 type = LPFC_ABORT_IOCB; 1627 break; 1628 case CMD_RCV_SEQUENCE_CX: 1629 case CMD_RCV_ELS_REQ_CX: 1630 case CMD_RCV_SEQUENCE64_CX: 1631 case CMD_RCV_ELS_REQ64_CX: 1632 case CMD_ASYNC_STATUS: 1633 case CMD_IOCB_RCV_SEQ64_CX: 1634 case CMD_IOCB_RCV_ELS64_CX: 1635 case CMD_IOCB_RCV_CONT64_CX: 1636 case CMD_IOCB_RET_XRI64_CX: 1637 type = LPFC_UNSOL_IOCB; 1638 break; 1639 case CMD_IOCB_XMIT_MSEQ64_CR: 1640 case CMD_IOCB_XMIT_MSEQ64_CX: 1641 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1642 case CMD_IOCB_RCV_ELS_LIST64_CX: 1643 case CMD_IOCB_CLOSE_EXTENDED_CN: 1644 case CMD_IOCB_ABORT_EXTENDED_CN: 1645 case CMD_IOCB_RET_HBQE64_CN: 1646 case CMD_IOCB_FCP_IBIDIR64_CR: 1647 case CMD_IOCB_FCP_IBIDIR64_CX: 1648 case CMD_IOCB_FCP_ITASKMGT64_CX: 1649 case CMD_IOCB_LOGENTRY_CN: 1650 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1651 printk("%s - Unhandled SLI-3 Command x%x\n", 1652 __func__, iocb_cmnd); 1653 type = LPFC_UNKNOWN_IOCB; 1654 break; 1655 default: 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 } 1659 1660 return type; 1661 } 1662 1663 /** 1664 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1665 * @phba: Pointer to HBA context object. 1666 * 1667 * This function is called from SLI initialization code 1668 * to configure every ring of the HBA's SLI interface. The 1669 * caller is not required to hold any lock. This function issues 1670 * a config_ring mailbox command for each ring. 1671 * This function returns zero if successful else returns a negative 1672 * error code. 1673 **/ 1674 static int 1675 lpfc_sli_ring_map(struct lpfc_hba *phba) 1676 { 1677 struct lpfc_sli *psli = &phba->sli; 1678 LPFC_MBOXQ_t *pmb; 1679 MAILBOX_t *pmbox; 1680 int i, rc, ret = 0; 1681 1682 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1683 if (!pmb) 1684 return -ENOMEM; 1685 pmbox = &pmb->u.mb; 1686 phba->link_state = LPFC_INIT_MBX_CMDS; 1687 for (i = 0; i < psli->num_rings; i++) { 1688 lpfc_config_ring(phba, i, pmb); 1689 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1690 if (rc != MBX_SUCCESS) { 1691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1692 "0446 Adapter failed to init (%d), " 1693 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1694 "ring %d\n", 1695 rc, pmbox->mbxCommand, 1696 pmbox->mbxStatus, i); 1697 phba->link_state = LPFC_HBA_ERROR; 1698 ret = -ENXIO; 1699 break; 1700 } 1701 } 1702 mempool_free(pmb, phba->mbox_mem_pool); 1703 return ret; 1704 } 1705 1706 /** 1707 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1708 * @phba: Pointer to HBA context object. 1709 * @pring: Pointer to driver SLI ring object. 1710 * @piocb: Pointer to the driver iocb object. 1711 * 1712 * The driver calls this function with the hbalock held for SLI3 ports or 1713 * the ring lock held for SLI4 ports. The function adds the 1714 * new iocb to txcmplq of the given ring. This function always returns 1715 * 0. If this function is called for ELS ring, this function checks if 1716 * there is a vport associated with the ELS command. This function also 1717 * starts els_tmofunc timer if this is an ELS command. 1718 **/ 1719 static int 1720 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1721 struct lpfc_iocbq *piocb) 1722 { 1723 u32 ulp_command = 0; 1724 1725 BUG_ON(!piocb); 1726 ulp_command = get_job_cmnd(phba, piocb); 1727 1728 list_add_tail(&piocb->list, &pring->txcmplq); 1729 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1730 pring->txcmplq_cnt++; 1731 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1732 (ulp_command != CMD_ABORT_XRI_WQE) && 1733 (ulp_command != CMD_ABORT_XRI_CN) && 1734 (ulp_command != CMD_CLOSE_XRI_CN)) { 1735 BUG_ON(!piocb->vport); 1736 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1737 mod_timer(&piocb->vport->els_tmofunc, 1738 jiffies + secs_to_jiffies(phba->fc_ratov << 1)); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val, cgn_sig_freq; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 spin_lock_irqsave(&phba->hbalock, iflags); 1942 1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1945 phba->link_state < LPFC_LINK_UP) { 1946 ret_val = 0; 1947 goto out_unlock; 1948 } 1949 1950 sync_buf = __lpfc_sli_get_iocbq(phba); 1951 if (!sync_buf) { 1952 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1953 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1954 ret_val = ENOMEM; 1955 goto out_unlock; 1956 } 1957 1958 wqe = &sync_buf->wqe; 1959 1960 /* WQEs are reused. Clear stale data and set key fields to zero */ 1961 memset(wqe, 0, sizeof(*wqe)); 1962 1963 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1964 if (!ms) { 1965 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1966 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1967 phba->fc_eventTag); 1968 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1969 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1970 goto initpath; 1971 } 1972 1973 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1974 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1975 1976 /* Check for alarms / warnings */ 1977 if (atot) { 1978 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1979 /* We hit an Signal alarm condition */ 1980 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1981 } else { 1982 /* We hit a FPIN alarm condition */ 1983 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1984 } 1985 } else if (wtot) { 1986 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1987 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1988 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq : 1989 lpfc_fabric_cgn_frequency; 1990 /* We hit an Signal warning condition */ 1991 max = LPFC_SEC_TO_MSEC / cgn_sig_freq * 1992 lpfc_acqe_cgn_frequency; 1993 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1994 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1995 warn_sync_period = lpfc_acqe_cgn_frequency; 1996 } else { 1997 /* We hit a FPIN warning condition */ 1998 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2000 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2001 warn_sync_period = 2002 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2003 } 2004 } 2005 2006 /* Update total read blocks during previous timer interval */ 2007 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2008 2009 initpath: 2010 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2011 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2012 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2013 2014 /* Setup reqtag to match the wqe completion. */ 2015 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2016 2017 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2018 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2019 2020 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2021 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2022 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2023 2024 sync_buf->vport = phba->pport; 2025 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2026 sync_buf->cmd_dmabuf = NULL; 2027 sync_buf->rsp_dmabuf = NULL; 2028 sync_buf->bpl_dmabuf = NULL; 2029 sync_buf->sli4_xritag = NO_XRI; 2030 2031 sync_buf->cmd_flag |= LPFC_IO_CMF; 2032 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2033 if (ret_val) { 2034 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2035 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2036 ret_val); 2037 __lpfc_sli_release_iocbq(phba, sync_buf); 2038 } 2039 out_unlock: 2040 spin_unlock_irqrestore(&phba->hbalock, iflags); 2041 return ret_val; 2042 } 2043 2044 /** 2045 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2046 * @phba: Pointer to HBA context object. 2047 * @pring: Pointer to driver SLI ring object. 2048 * 2049 * This function is called with hbalock held and the caller must post the 2050 * iocb without releasing the lock. If the caller releases the lock, 2051 * iocb slot returned by the function is not guaranteed to be available. 2052 * The function returns pointer to the next available iocb slot if there 2053 * is available slot in the ring, else it returns NULL. 2054 * If the get index of the ring is ahead of the put index, the function 2055 * will post an error attention event to the worker thread to take the 2056 * HBA to offline state. 2057 **/ 2058 static IOCB_t * 2059 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2060 { 2061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2062 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2063 2064 lockdep_assert_held(&phba->hbalock); 2065 2066 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2067 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2068 pring->sli.sli3.next_cmdidx = 0; 2069 2070 if (unlikely(pring->sli.sli3.local_getidx == 2071 pring->sli.sli3.next_cmdidx)) { 2072 2073 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2074 2075 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2077 "0315 Ring %d issue: portCmdGet %d " 2078 "is bigger than cmd ring %d\n", 2079 pring->ringno, 2080 pring->sli.sli3.local_getidx, 2081 max_cmd_idx); 2082 2083 phba->link_state = LPFC_HBA_ERROR; 2084 /* 2085 * All error attention handlers are posted to 2086 * worker thread 2087 */ 2088 phba->work_ha |= HA_ERATT; 2089 phba->work_hs = HS_FFER3; 2090 2091 lpfc_worker_wake_up(phba); 2092 2093 return NULL; 2094 } 2095 2096 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2097 return NULL; 2098 } 2099 2100 return lpfc_cmd_iocb(phba, pring); 2101 } 2102 2103 /** 2104 * lpfc_sli_next_iotag - Get an iotag for the iocb 2105 * @phba: Pointer to HBA context object. 2106 * @iocbq: Pointer to driver iocb object. 2107 * 2108 * This function gets an iotag for the iocb. If there is no unused iotag and 2109 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2110 * array and assigns a new iotag. 2111 * The function returns the allocated iotag if successful, else returns zero. 2112 * Zero is not a valid iotag. 2113 * The caller is not required to hold any lock. 2114 **/ 2115 uint16_t 2116 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2117 { 2118 struct lpfc_iocbq **new_arr; 2119 struct lpfc_iocbq **old_arr; 2120 size_t new_len; 2121 struct lpfc_sli *psli = &phba->sli; 2122 uint16_t iotag; 2123 2124 spin_lock_irq(&phba->hbalock); 2125 iotag = psli->last_iotag; 2126 if(++iotag < psli->iocbq_lookup_len) { 2127 psli->last_iotag = iotag; 2128 psli->iocbq_lookup[iotag] = iocbq; 2129 spin_unlock_irq(&phba->hbalock); 2130 iocbq->iotag = iotag; 2131 return iotag; 2132 } else if (psli->iocbq_lookup_len < (0xffff 2133 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2134 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2135 spin_unlock_irq(&phba->hbalock); 2136 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2137 GFP_KERNEL); 2138 if (new_arr) { 2139 spin_lock_irq(&phba->hbalock); 2140 old_arr = psli->iocbq_lookup; 2141 if (new_len <= psli->iocbq_lookup_len) { 2142 /* highly unprobable case */ 2143 kfree(new_arr); 2144 iotag = psli->last_iotag; 2145 if(++iotag < psli->iocbq_lookup_len) { 2146 psli->last_iotag = iotag; 2147 psli->iocbq_lookup[iotag] = iocbq; 2148 spin_unlock_irq(&phba->hbalock); 2149 iocbq->iotag = iotag; 2150 return iotag; 2151 } 2152 spin_unlock_irq(&phba->hbalock); 2153 return 0; 2154 } 2155 if (psli->iocbq_lookup) 2156 memcpy(new_arr, old_arr, 2157 ((psli->last_iotag + 1) * 2158 sizeof (struct lpfc_iocbq *))); 2159 psli->iocbq_lookup = new_arr; 2160 psli->iocbq_lookup_len = new_len; 2161 psli->last_iotag = iotag; 2162 psli->iocbq_lookup[iotag] = iocbq; 2163 spin_unlock_irq(&phba->hbalock); 2164 iocbq->iotag = iotag; 2165 kfree(old_arr); 2166 return iotag; 2167 } 2168 } else 2169 spin_unlock_irq(&phba->hbalock); 2170 2171 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2172 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2173 psli->last_iotag); 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2180 * @phba: Pointer to HBA context object. 2181 * @pring: Pointer to driver SLI ring object. 2182 * @iocb: Pointer to iocb slot in the ring. 2183 * @nextiocb: Pointer to driver iocb object which need to be 2184 * posted to firmware. 2185 * 2186 * This function is called to post a new iocb to the firmware. This 2187 * function copies the new iocb to ring iocb slot and updates the 2188 * ring pointers. It adds the new iocb to txcmplq if there is 2189 * a completion call back for this iocb else the function will free the 2190 * iocb object. The hbalock is asserted held in the code path calling 2191 * this routine. 2192 **/ 2193 static void 2194 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2195 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2196 { 2197 /* 2198 * Set up an iotag 2199 */ 2200 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2201 2202 2203 if (pring->ringno == LPFC_ELS_RING) { 2204 lpfc_debugfs_slow_ring_trc(phba, 2205 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2206 *(((uint32_t *) &nextiocb->iocb) + 4), 2207 *(((uint32_t *) &nextiocb->iocb) + 6), 2208 *(((uint32_t *) &nextiocb->iocb) + 7)); 2209 } 2210 2211 /* 2212 * Issue iocb command to adapter 2213 */ 2214 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2215 wmb(); 2216 pring->stats.iocb_cmd++; 2217 2218 /* 2219 * If there is no completion routine to call, we can release the 2220 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2221 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2222 */ 2223 if (nextiocb->cmd_cmpl) 2224 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2225 else 2226 __lpfc_sli_release_iocbq(phba, nextiocb); 2227 2228 /* 2229 * Let the HBA know what IOCB slot will be the next one the 2230 * driver will put a command into. 2231 */ 2232 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2233 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2234 } 2235 2236 /** 2237 * lpfc_sli_update_full_ring - Update the chip attention register 2238 * @phba: Pointer to HBA context object. 2239 * @pring: Pointer to driver SLI ring object. 2240 * 2241 * The caller is not required to hold any lock for calling this function. 2242 * This function updates the chip attention bits for the ring to inform firmware 2243 * that there are pending work to be done for this ring and requests an 2244 * interrupt when there is space available in the ring. This function is 2245 * called when the driver is unable to post more iocbs to the ring due 2246 * to unavailability of space in the ring. 2247 **/ 2248 static void 2249 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2250 { 2251 int ringno = pring->ringno; 2252 2253 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2254 2255 wmb(); 2256 2257 /* 2258 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2259 * The HBA will tell us when an IOCB entry is available. 2260 */ 2261 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 2264 pring->stats.iocb_cmd_full++; 2265 } 2266 2267 /** 2268 * lpfc_sli_update_ring - Update chip attention register 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function updates the chip attention register bit for the 2273 * given ring to inform HBA that there is more work to be done 2274 * in this ring. The caller is not required to hold any lock. 2275 **/ 2276 static void 2277 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 int ringno = pring->ringno; 2280 2281 /* 2282 * Tell the HBA that there is work to do in this ring. 2283 */ 2284 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2285 wmb(); 2286 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2287 readl(phba->CAregaddr); /* flush */ 2288 } 2289 } 2290 2291 /** 2292 * lpfc_sli_resume_iocb - Process iocbs in the txq 2293 * @phba: Pointer to HBA context object. 2294 * @pring: Pointer to driver SLI ring object. 2295 * 2296 * This function is called with hbalock held to post pending iocbs 2297 * in the txq to the firmware. This function is called when driver 2298 * detects space available in the ring. 2299 **/ 2300 static void 2301 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2302 { 2303 IOCB_t *iocb; 2304 struct lpfc_iocbq *nextiocb; 2305 2306 lockdep_assert_held(&phba->hbalock); 2307 2308 /* 2309 * Check to see if: 2310 * (a) there is anything on the txq to send 2311 * (b) link is up 2312 * (c) link attention events can be processed (fcp ring only) 2313 * (d) IOCB processing is not blocked by the outstanding mbox command. 2314 */ 2315 2316 if (lpfc_is_link_up(phba) && 2317 (!list_empty(&pring->txq)) && 2318 (pring->ringno != LPFC_FCP_RING || 2319 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2320 2321 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2322 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2323 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2324 2325 if (iocb) 2326 lpfc_sli_update_ring(phba, pring); 2327 else 2328 lpfc_sli_update_full_ring(phba, pring); 2329 } 2330 2331 return; 2332 } 2333 2334 /** 2335 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2336 * @phba: Pointer to HBA context object. 2337 * @hbqno: HBQ number. 2338 * 2339 * This function is called with hbalock held to get the next 2340 * available slot for the given HBQ. If there is free slot 2341 * available for the HBQ it will return pointer to the next available 2342 * HBQ entry else it will return NULL. 2343 **/ 2344 static struct lpfc_hbq_entry * 2345 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2346 { 2347 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2348 2349 lockdep_assert_held(&phba->hbalock); 2350 2351 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2352 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2353 hbqp->next_hbqPutIdx = 0; 2354 2355 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2356 uint32_t raw_index = phba->hbq_get[hbqno]; 2357 uint32_t getidx = le32_to_cpu(raw_index); 2358 2359 hbqp->local_hbqGetIdx = getidx; 2360 2361 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2363 "1802 HBQ %d: local_hbqGetIdx " 2364 "%u is > than hbqp->entry_count %u\n", 2365 hbqno, hbqp->local_hbqGetIdx, 2366 hbqp->entry_count); 2367 2368 phba->link_state = LPFC_HBA_ERROR; 2369 return NULL; 2370 } 2371 2372 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2373 return NULL; 2374 } 2375 2376 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2377 hbqp->hbqPutIdx; 2378 } 2379 2380 /** 2381 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2382 * @phba: Pointer to HBA context object. 2383 * 2384 * This function is called with no lock held to free all the 2385 * hbq buffers while uninitializing the SLI interface. It also 2386 * frees the HBQ buffers returned by the firmware but not yet 2387 * processed by the upper layers. 2388 **/ 2389 void 2390 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2391 { 2392 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2393 struct hbq_dmabuf *hbq_buf; 2394 unsigned long flags; 2395 int i, hbq_count; 2396 2397 hbq_count = lpfc_sli_hbq_count(); 2398 /* Return all memory used by all HBQs */ 2399 spin_lock_irqsave(&phba->hbalock, flags); 2400 for (i = 0; i < hbq_count; ++i) { 2401 list_for_each_entry_safe(dmabuf, next_dmabuf, 2402 &phba->hbqs[i].hbq_buffer_list, list) { 2403 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2404 list_del(&hbq_buf->dbuf.list); 2405 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2406 } 2407 phba->hbqs[i].buffer_count = 0; 2408 } 2409 2410 /* Mark the HBQs not in use */ 2411 phba->hbq_in_use = 0; 2412 spin_unlock_irqrestore(&phba->hbalock, flags); 2413 } 2414 2415 /** 2416 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2417 * @phba: Pointer to HBA context object. 2418 * @hbqno: HBQ number. 2419 * @hbq_buf: Pointer to HBQ buffer. 2420 * 2421 * This function is called with the hbalock held to post a 2422 * hbq buffer to the firmware. If the function finds an empty 2423 * slot in the HBQ, it will post the buffer. The function will return 2424 * pointer to the hbq entry if it successfully post the buffer 2425 * else it will return NULL. 2426 **/ 2427 static int 2428 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2429 struct hbq_dmabuf *hbq_buf) 2430 { 2431 lockdep_assert_held(&phba->hbalock); 2432 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2433 } 2434 2435 /** 2436 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2437 * @phba: Pointer to HBA context object. 2438 * @hbqno: HBQ number. 2439 * @hbq_buf: Pointer to HBQ buffer. 2440 * 2441 * This function is called with the hbalock held to post a hbq buffer to the 2442 * firmware. If the function finds an empty slot in the HBQ, it will post the 2443 * buffer and place it on the hbq_buffer_list. The function will return zero if 2444 * it successfully post the buffer else it will return an error. 2445 **/ 2446 static int 2447 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2448 struct hbq_dmabuf *hbq_buf) 2449 { 2450 struct lpfc_hbq_entry *hbqe; 2451 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2452 2453 lockdep_assert_held(&phba->hbalock); 2454 /* Get next HBQ entry slot to use */ 2455 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2456 if (hbqe) { 2457 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2458 2459 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2460 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2461 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2462 hbqe->bde.tus.f.bdeFlags = 0; 2463 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2464 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2465 /* Sync SLIM */ 2466 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2467 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2468 /* flush */ 2469 readl(phba->hbq_put + hbqno); 2470 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2471 return 0; 2472 } else 2473 return -ENOMEM; 2474 } 2475 2476 /** 2477 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2478 * @phba: Pointer to HBA context object. 2479 * @hbqno: HBQ number. 2480 * @hbq_buf: Pointer to HBQ buffer. 2481 * 2482 * This function is called with the hbalock held to post an RQE to the SLI4 2483 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2484 * the hbq_buffer_list and return zero, otherwise it will return an error. 2485 **/ 2486 static int 2487 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2488 struct hbq_dmabuf *hbq_buf) 2489 { 2490 int rc; 2491 struct lpfc_rqe hrqe; 2492 struct lpfc_rqe drqe; 2493 struct lpfc_queue *hrq; 2494 struct lpfc_queue *drq; 2495 2496 if (hbqno != LPFC_ELS_HBQ) 2497 return 1; 2498 hrq = phba->sli4_hba.hdr_rq; 2499 drq = phba->sli4_hba.dat_rq; 2500 2501 lockdep_assert_held(&phba->hbalock); 2502 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2503 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2504 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2505 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2506 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2507 if (rc < 0) 2508 return rc; 2509 hbq_buf->tag = (rc | (hbqno << 16)); 2510 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2511 return 0; 2512 } 2513 2514 /* HBQ for ELS and CT traffic. */ 2515 static struct lpfc_hbq_init lpfc_els_hbq = { 2516 .rn = 1, 2517 .entry_count = 256, 2518 .mask_count = 0, 2519 .profile = 0, 2520 .ring_mask = (1 << LPFC_ELS_RING), 2521 .buffer_count = 0, 2522 .init_count = 40, 2523 .add_count = 40, 2524 }; 2525 2526 /* Array of HBQs */ 2527 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2528 &lpfc_els_hbq, 2529 }; 2530 2531 /** 2532 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2533 * @phba: Pointer to HBA context object. 2534 * @hbqno: HBQ number. 2535 * @count: Number of HBQ buffers to be posted. 2536 * 2537 * This function is called with no lock held to post more hbq buffers to the 2538 * given HBQ. The function returns the number of HBQ buffers successfully 2539 * posted. 2540 **/ 2541 static int 2542 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2543 { 2544 uint32_t i, posted = 0; 2545 unsigned long flags; 2546 struct hbq_dmabuf *hbq_buffer; 2547 LIST_HEAD(hbq_buf_list); 2548 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2549 return 0; 2550 2551 if ((phba->hbqs[hbqno].buffer_count + count) > 2552 lpfc_hbq_defs[hbqno]->entry_count) 2553 count = lpfc_hbq_defs[hbqno]->entry_count - 2554 phba->hbqs[hbqno].buffer_count; 2555 if (!count) 2556 return 0; 2557 /* Allocate HBQ entries */ 2558 for (i = 0; i < count; i++) { 2559 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2560 if (!hbq_buffer) 2561 break; 2562 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2563 } 2564 /* Check whether HBQ is still in use */ 2565 spin_lock_irqsave(&phba->hbalock, flags); 2566 if (!phba->hbq_in_use) 2567 goto err; 2568 while (!list_empty(&hbq_buf_list)) { 2569 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2570 dbuf.list); 2571 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2572 (hbqno << 16)); 2573 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2574 phba->hbqs[hbqno].buffer_count++; 2575 posted++; 2576 } else 2577 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2578 } 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 return posted; 2581 err: 2582 spin_unlock_irqrestore(&phba->hbalock, flags); 2583 while (!list_empty(&hbq_buf_list)) { 2584 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2585 dbuf.list); 2586 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2587 } 2588 return 0; 2589 } 2590 2591 /** 2592 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2593 * @phba: Pointer to HBA context object. 2594 * @qno: HBQ number. 2595 * 2596 * This function posts more buffers to the HBQ. This function 2597 * is called with no lock held. The function returns the number of HBQ entries 2598 * successfully allocated. 2599 **/ 2600 int 2601 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2602 { 2603 if (phba->sli_rev == LPFC_SLI_REV4) 2604 return 0; 2605 else 2606 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2607 lpfc_hbq_defs[qno]->add_count); 2608 } 2609 2610 /** 2611 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2612 * @phba: Pointer to HBA context object. 2613 * @qno: HBQ queue number. 2614 * 2615 * This function is called from SLI initialization code path with 2616 * no lock held to post initial HBQ buffers to firmware. The 2617 * function returns the number of HBQ entries successfully allocated. 2618 **/ 2619 static int 2620 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2621 { 2622 if (phba->sli_rev == LPFC_SLI_REV4) 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->entry_count); 2625 else 2626 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2627 lpfc_hbq_defs[qno]->init_count); 2628 } 2629 2630 /* 2631 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2632 * 2633 * This function removes the first hbq buffer on an hbq list and returns a 2634 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2635 **/ 2636 static struct hbq_dmabuf * 2637 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2638 { 2639 struct lpfc_dmabuf *d_buf; 2640 2641 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2642 if (!d_buf) 2643 return NULL; 2644 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2645 } 2646 2647 /** 2648 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2649 * @phba: Pointer to HBA context object. 2650 * @hrq: HBQ number. 2651 * 2652 * This function removes the first RQ buffer on an RQ buffer list and returns a 2653 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2654 **/ 2655 static struct rqb_dmabuf * 2656 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2657 { 2658 struct lpfc_dmabuf *h_buf; 2659 struct lpfc_rqb *rqbp; 2660 2661 rqbp = hrq->rqbp; 2662 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2663 struct lpfc_dmabuf, list); 2664 if (!h_buf) 2665 return NULL; 2666 rqbp->buffer_count--; 2667 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2668 } 2669 2670 /** 2671 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2672 * @phba: Pointer to HBA context object. 2673 * @tag: Tag of the hbq buffer. 2674 * 2675 * This function searches for the hbq buffer associated with the given tag in 2676 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2677 * otherwise it returns NULL. 2678 **/ 2679 static struct hbq_dmabuf * 2680 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2681 { 2682 struct lpfc_dmabuf *d_buf; 2683 struct hbq_dmabuf *hbq_buf; 2684 uint32_t hbqno; 2685 2686 hbqno = tag >> 16; 2687 if (hbqno >= LPFC_MAX_HBQS) 2688 return NULL; 2689 2690 spin_lock_irq(&phba->hbalock); 2691 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2692 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2693 if (hbq_buf->tag == tag) { 2694 spin_unlock_irq(&phba->hbalock); 2695 return hbq_buf; 2696 } 2697 } 2698 spin_unlock_irq(&phba->hbalock); 2699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2700 "1803 Bad hbq tag. Data: x%x x%x\n", 2701 tag, phba->hbqs[tag >> 16].buffer_count); 2702 return NULL; 2703 } 2704 2705 /** 2706 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2707 * @phba: Pointer to HBA context object. 2708 * @hbq_buffer: Pointer to HBQ buffer. 2709 * 2710 * This function is called with hbalock. This function gives back 2711 * the hbq buffer to firmware. If the HBQ does not have space to 2712 * post the buffer, it will free the buffer. 2713 **/ 2714 void 2715 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2716 { 2717 uint32_t hbqno; 2718 2719 if (hbq_buffer) { 2720 hbqno = hbq_buffer->tag >> 16; 2721 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2722 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2723 } 2724 } 2725 2726 /** 2727 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2728 * @mbxCommand: mailbox command code. 2729 * 2730 * This function is called by the mailbox event handler function to verify 2731 * that the completed mailbox command is a legitimate mailbox command. If the 2732 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2733 * and the mailbox event handler will take the HBA offline. 2734 **/ 2735 static int 2736 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2737 { 2738 uint8_t ret; 2739 2740 switch (mbxCommand) { 2741 case MBX_LOAD_SM: 2742 case MBX_READ_NV: 2743 case MBX_WRITE_NV: 2744 case MBX_WRITE_VPARMS: 2745 case MBX_RUN_BIU_DIAG: 2746 case MBX_INIT_LINK: 2747 case MBX_DOWN_LINK: 2748 case MBX_CONFIG_LINK: 2749 case MBX_CONFIG_RING: 2750 case MBX_RESET_RING: 2751 case MBX_READ_CONFIG: 2752 case MBX_READ_RCONFIG: 2753 case MBX_READ_SPARM: 2754 case MBX_READ_STATUS: 2755 case MBX_READ_RPI: 2756 case MBX_READ_XRI: 2757 case MBX_READ_REV: 2758 case MBX_READ_LNK_STAT: 2759 case MBX_REG_LOGIN: 2760 case MBX_UNREG_LOGIN: 2761 case MBX_CLEAR_LA: 2762 case MBX_DUMP_MEMORY: 2763 case MBX_DUMP_CONTEXT: 2764 case MBX_RUN_DIAGS: 2765 case MBX_RESTART: 2766 case MBX_UPDATE_CFG: 2767 case MBX_DOWN_LOAD: 2768 case MBX_DEL_LD_ENTRY: 2769 case MBX_RUN_PROGRAM: 2770 case MBX_SET_MASK: 2771 case MBX_SET_VARIABLE: 2772 case MBX_UNREG_D_ID: 2773 case MBX_KILL_BOARD: 2774 case MBX_CONFIG_FARP: 2775 case MBX_BEACON: 2776 case MBX_LOAD_AREA: 2777 case MBX_RUN_BIU_DIAG64: 2778 case MBX_CONFIG_PORT: 2779 case MBX_READ_SPARM64: 2780 case MBX_READ_RPI64: 2781 case MBX_REG_LOGIN64: 2782 case MBX_READ_TOPOLOGY: 2783 case MBX_WRITE_WWN: 2784 case MBX_SET_DEBUG: 2785 case MBX_LOAD_EXP_ROM: 2786 case MBX_ASYNCEVT_ENABLE: 2787 case MBX_REG_VPI: 2788 case MBX_UNREG_VPI: 2789 case MBX_HEARTBEAT: 2790 case MBX_PORT_CAPABILITIES: 2791 case MBX_PORT_IOV_CONTROL: 2792 case MBX_SLI4_CONFIG: 2793 case MBX_SLI4_REQ_FTRS: 2794 case MBX_REG_FCFI: 2795 case MBX_UNREG_FCFI: 2796 case MBX_REG_VFI: 2797 case MBX_UNREG_VFI: 2798 case MBX_INIT_VPI: 2799 case MBX_INIT_VFI: 2800 case MBX_RESUME_RPI: 2801 case MBX_READ_EVENT_LOG_STATUS: 2802 case MBX_READ_EVENT_LOG: 2803 case MBX_SECURITY_MGMT: 2804 case MBX_AUTH_PORT: 2805 case MBX_ACCESS_VDATA: 2806 ret = mbxCommand; 2807 break; 2808 default: 2809 ret = MBX_SHUTDOWN; 2810 break; 2811 } 2812 return ret; 2813 } 2814 2815 /** 2816 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2817 * @phba: Pointer to HBA context object. 2818 * @pmboxq: Pointer to mailbox command. 2819 * 2820 * This is completion handler function for mailbox commands issued from 2821 * lpfc_sli_issue_mbox_wait function. This function is called by the 2822 * mailbox event handler function with no lock held. This function 2823 * will wake up thread waiting on the wait queue pointed by context1 2824 * of the mailbox. 2825 **/ 2826 void 2827 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2828 { 2829 unsigned long drvr_flag; 2830 struct completion *pmbox_done; 2831 2832 /* 2833 * If pmbox_done is empty, the driver thread gave up waiting and 2834 * continued running. 2835 */ 2836 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2837 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2838 pmbox_done = pmboxq->ctx_u.mbox_wait; 2839 if (pmbox_done) 2840 complete(pmbox_done); 2841 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2842 return; 2843 } 2844 2845 /** 2846 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2847 * @phba: Pointer to HBA context object. 2848 * @pmb: Pointer to mailbox object. 2849 * 2850 * This function is the default mailbox completion handler. It 2851 * frees the memory resources associated with the completed mailbox 2852 * command. If the completed command is a REG_LOGIN mailbox command, 2853 * this function will issue a UREG_LOGIN to re-claim the RPI. 2854 **/ 2855 void 2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2857 { 2858 struct lpfc_vport *vport = pmb->vport; 2859 struct lpfc_dmabuf *mp; 2860 struct lpfc_nodelist *ndlp; 2861 struct Scsi_Host *shost; 2862 uint16_t rpi, vpi; 2863 int rc; 2864 2865 /* 2866 * If a REG_LOGIN succeeded after node is destroyed or node 2867 * is in re-discovery driver need to cleanup the RPI. 2868 */ 2869 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2870 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2871 !pmb->u.mb.mbxStatus) { 2872 mp = pmb->ctx_buf; 2873 if (mp) { 2874 pmb->ctx_buf = NULL; 2875 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2876 kfree(mp); 2877 } 2878 rpi = pmb->u.mb.un.varWords[0]; 2879 vpi = pmb->u.mb.un.varRegLogin.vpi; 2880 if (phba->sli_rev == LPFC_SLI_REV4) 2881 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2882 lpfc_unreg_login(phba, vpi, rpi, pmb); 2883 pmb->vport = vport; 2884 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2885 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2886 if (rc != MBX_NOT_FINISHED) 2887 return; 2888 } 2889 2890 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2891 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2892 !pmb->u.mb.mbxStatus) { 2893 shost = lpfc_shost_from_vport(vport); 2894 spin_lock_irq(shost->host_lock); 2895 vport->vpi_state |= LPFC_VPI_REGISTERED; 2896 spin_unlock_irq(shost->host_lock); 2897 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2898 } 2899 2900 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2901 ndlp = pmb->ctx_ndlp; 2902 lpfc_nlp_put(ndlp); 2903 } 2904 2905 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2906 ndlp = pmb->ctx_ndlp; 2907 2908 /* Check to see if there are any deferred events to process */ 2909 if (ndlp) { 2910 lpfc_printf_vlog( 2911 vport, 2912 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2913 "1438 UNREG cmpl deferred mbox x%x " 2914 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n", 2915 ndlp->nlp_rpi, ndlp->nlp_DID, 2916 ndlp->nlp_flag, ndlp->nlp_defer_did, 2917 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2918 2919 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) && 2920 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) { 2921 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2922 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2923 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2924 } else { 2925 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2926 } 2927 2928 /* The unreg_login mailbox is complete and had a 2929 * reference that has to be released. The PLOGI 2930 * got its own ref. 2931 */ 2932 lpfc_nlp_put(ndlp); 2933 pmb->ctx_ndlp = NULL; 2934 } 2935 } 2936 2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2939 ndlp = pmb->ctx_ndlp; 2940 lpfc_nlp_put(ndlp); 2941 } 2942 2943 /* Check security permission status on INIT_LINK mailbox command */ 2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2947 "2860 SLI authentication is required " 2948 "for INIT_LINK but has not done yet\n"); 2949 2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2951 lpfc_sli4_mbox_cmd_free(phba, pmb); 2952 else 2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2954 } 2955 /** 2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2957 * @phba: Pointer to HBA context object. 2958 * @pmb: Pointer to mailbox object. 2959 * 2960 * This function is the unreg rpi mailbox completion handler. It 2961 * frees the memory resources associated with the completed mailbox 2962 * command. An additional reference is put on the ndlp to prevent 2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2964 * the unreg mailbox command completes, this routine puts the 2965 * reference back. 2966 * 2967 **/ 2968 void 2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2970 { 2971 struct lpfc_vport *vport = pmb->vport; 2972 struct lpfc_nodelist *ndlp; 2973 bool unreg_inp; 2974 2975 ndlp = pmb->ctx_ndlp; 2976 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2977 if (phba->sli_rev == LPFC_SLI_REV4 && 2978 (bf_get(lpfc_sli_intf_if_type, 2979 &phba->sli4_hba.sli_intf) >= 2980 LPFC_SLI_INTF_IF_TYPE_2)) { 2981 if (ndlp) { 2982 lpfc_printf_vlog( 2983 vport, KERN_INFO, 2984 LOG_MBOX | LOG_SLI | LOG_NODE, 2985 "0010 UNREG_LOGIN vpi:x%x " 2986 "rpi:%x DID:%x defer x%x flg x%lx " 2987 "x%px\n", 2988 vport->vpi, ndlp->nlp_rpi, 2989 ndlp->nlp_DID, ndlp->nlp_defer_did, 2990 ndlp->nlp_flag, 2991 ndlp); 2992 2993 /* Cleanup the nlp_flag now that the UNREG RPI 2994 * has completed. 2995 */ 2996 unreg_inp = test_and_clear_bit(NLP_UNREG_INP, 2997 &ndlp->nlp_flag); 2998 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag); 2999 3000 /* Check to see if there are any deferred 3001 * events to process 3002 */ 3003 if (unreg_inp && 3004 ndlp->nlp_defer_did != 3005 NLP_EVT_NOTHING_PENDING) { 3006 lpfc_printf_vlog( 3007 vport, KERN_INFO, 3008 LOG_MBOX | LOG_SLI | LOG_NODE, 3009 "4111 UNREG cmpl deferred " 3010 "clr x%x on " 3011 "NPort x%x Data: x%x x%px\n", 3012 ndlp->nlp_rpi, ndlp->nlp_DID, 3013 ndlp->nlp_defer_did, ndlp); 3014 ndlp->nlp_defer_did = 3015 NLP_EVT_NOTHING_PENDING; 3016 lpfc_issue_els_plogi( 3017 vport, ndlp->nlp_DID, 0); 3018 } 3019 3020 lpfc_nlp_put(ndlp); 3021 } 3022 } 3023 } 3024 3025 mempool_free(pmb, phba->mbox_mem_pool); 3026 } 3027 3028 /** 3029 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3030 * @phba: Pointer to HBA context object. 3031 * 3032 * This function is called with no lock held. This function processes all 3033 * the completed mailbox commands and gives it to upper layers. The interrupt 3034 * service routine processes mailbox completion interrupt and adds completed 3035 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3036 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3037 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3038 * function returns the mailbox commands to the upper layer by calling the 3039 * completion handler function of each mailbox. 3040 **/ 3041 int 3042 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3043 { 3044 MAILBOX_t *pmbox; 3045 LPFC_MBOXQ_t *pmb; 3046 int rc; 3047 LIST_HEAD(cmplq); 3048 3049 phba->sli.slistat.mbox_event++; 3050 3051 /* Get all completed mailboxe buffers into the cmplq */ 3052 spin_lock_irq(&phba->hbalock); 3053 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3054 spin_unlock_irq(&phba->hbalock); 3055 3056 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3057 do { 3058 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3059 if (pmb == NULL) 3060 break; 3061 3062 pmbox = &pmb->u.mb; 3063 3064 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3065 if (pmb->vport) { 3066 lpfc_debugfs_disc_trc(pmb->vport, 3067 LPFC_DISC_TRC_MBOX_VPORT, 3068 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3069 (uint32_t)pmbox->mbxCommand, 3070 pmbox->un.varWords[0], 3071 pmbox->un.varWords[1]); 3072 } 3073 else { 3074 lpfc_debugfs_disc_trc(phba->pport, 3075 LPFC_DISC_TRC_MBOX, 3076 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3077 (uint32_t)pmbox->mbxCommand, 3078 pmbox->un.varWords[0], 3079 pmbox->un.varWords[1]); 3080 } 3081 } 3082 3083 /* 3084 * It is a fatal error if unknown mbox command completion. 3085 */ 3086 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3087 MBX_SHUTDOWN) { 3088 /* Unknown mailbox command compl */ 3089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3090 "(%d):0323 Unknown Mailbox command " 3091 "x%x (x%x/x%x) Cmpl\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb)); 3099 phba->link_state = LPFC_HBA_ERROR; 3100 phba->work_hs = HS_FFER3; 3101 lpfc_handle_eratt(phba); 3102 continue; 3103 } 3104 3105 if (pmbox->mbxStatus) { 3106 phba->sli.slistat.mbox_stat_err++; 3107 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3108 /* Mbox cmd cmpl error - RETRYing */ 3109 lpfc_printf_log(phba, KERN_INFO, 3110 LOG_MBOX | LOG_SLI, 3111 "(%d):0305 Mbox cmd cmpl " 3112 "error - RETRYing Data: x%x " 3113 "(x%x/x%x) x%x x%x x%x\n", 3114 pmb->vport ? pmb->vport->vpi : 3115 LPFC_VPORT_UNKNOWN, 3116 pmbox->mbxCommand, 3117 lpfc_sli_config_mbox_subsys_get(phba, 3118 pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, 3120 pmb), 3121 pmbox->mbxStatus, 3122 pmbox->un.varWords[0], 3123 pmb->vport ? pmb->vport->port_state : 3124 LPFC_VPORT_UNKNOWN); 3125 pmbox->mbxStatus = 0; 3126 pmbox->mbxOwner = OWN_HOST; 3127 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3128 if (rc != MBX_NOT_FINISHED) 3129 continue; 3130 } 3131 } 3132 3133 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3135 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3136 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3137 "x%x x%x x%x\n", 3138 pmb->vport ? pmb->vport->vpi : 0, 3139 pmbox->mbxCommand, 3140 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3141 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3142 pmb->mbox_cmpl, 3143 *((uint32_t *) pmbox), 3144 pmbox->un.varWords[0], 3145 pmbox->un.varWords[1], 3146 pmbox->un.varWords[2], 3147 pmbox->un.varWords[3], 3148 pmbox->un.varWords[4], 3149 pmbox->un.varWords[5], 3150 pmbox->un.varWords[6], 3151 pmbox->un.varWords[7], 3152 pmbox->un.varWords[8], 3153 pmbox->un.varWords[9], 3154 pmbox->un.varWords[10]); 3155 3156 if (pmb->mbox_cmpl) 3157 pmb->mbox_cmpl(phba,pmb); 3158 } while (1); 3159 return 0; 3160 } 3161 3162 /** 3163 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3164 * @phba: Pointer to HBA context object. 3165 * @pring: Pointer to driver SLI ring object. 3166 * @tag: buffer tag. 3167 * 3168 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3169 * is set in the tag the buffer is posted for a particular exchange, 3170 * the function will return the buffer without replacing the buffer. 3171 * If the buffer is for unsolicited ELS or CT traffic, this function 3172 * returns the buffer and also posts another buffer to the firmware. 3173 **/ 3174 static struct lpfc_dmabuf * 3175 lpfc_sli_get_buff(struct lpfc_hba *phba, 3176 struct lpfc_sli_ring *pring, 3177 uint32_t tag) 3178 { 3179 struct hbq_dmabuf *hbq_entry; 3180 3181 if (tag & QUE_BUFTAG_BIT) 3182 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3183 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3184 if (!hbq_entry) 3185 return NULL; 3186 return &hbq_entry->dbuf; 3187 } 3188 3189 /** 3190 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3191 * containing a NVME LS request. 3192 * @phba: pointer to lpfc hba data structure. 3193 * @piocb: pointer to the iocbq struct representing the sequence starting 3194 * frame. 3195 * 3196 * This routine initially validates the NVME LS, validates there is a login 3197 * with the port that sent the LS, and then calls the appropriate nvme host 3198 * or target LS request handler. 3199 **/ 3200 static void 3201 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3202 { 3203 struct lpfc_nodelist *ndlp; 3204 struct lpfc_dmabuf *d_buf; 3205 struct hbq_dmabuf *nvmebuf; 3206 struct fc_frame_header *fc_hdr; 3207 struct lpfc_async_xchg_ctx *axchg = NULL; 3208 char *failwhy = NULL; 3209 uint32_t oxid, sid, did, fctl, size; 3210 int ret = 1; 3211 3212 d_buf = piocb->cmd_dmabuf; 3213 3214 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3215 fc_hdr = nvmebuf->hbuf.virt; 3216 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3217 sid = sli4_sid_from_fc_hdr(fc_hdr); 3218 did = sli4_did_from_fc_hdr(fc_hdr); 3219 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3220 fc_hdr->fh_f_ctl[1] << 8 | 3221 fc_hdr->fh_f_ctl[2]); 3222 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3223 3224 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3225 oxid, size, sid); 3226 3227 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3228 failwhy = "Driver Unloading"; 3229 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3230 failwhy = "NVME FC4 Disabled"; 3231 } else if (!phba->nvmet_support && !phba->pport->localport) { 3232 failwhy = "No Localport"; 3233 } else if (phba->nvmet_support && !phba->targetport) { 3234 failwhy = "No Targetport"; 3235 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3236 failwhy = "Bad NVME LS R_CTL"; 3237 } else if (unlikely((fctl & 0x00FF0000) != 3238 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3239 failwhy = "Bad NVME LS F_CTL"; 3240 } else { 3241 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3242 if (!axchg) 3243 failwhy = "No CTX memory"; 3244 } 3245 3246 if (unlikely(failwhy)) { 3247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3248 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3249 sid, oxid, failwhy); 3250 goto out_fail; 3251 } 3252 3253 /* validate the source of the LS is logged in */ 3254 ndlp = lpfc_findnode_did(phba->pport, sid); 3255 if (!ndlp || 3256 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3257 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3259 "6216 NVME Unsol rcv: No ndlp: " 3260 "NPort_ID x%x oxid x%x\n", 3261 sid, oxid); 3262 goto out_fail; 3263 } 3264 3265 axchg->phba = phba; 3266 axchg->ndlp = ndlp; 3267 axchg->size = size; 3268 axchg->oxid = oxid; 3269 axchg->sid = sid; 3270 axchg->wqeq = NULL; 3271 axchg->state = LPFC_NVME_STE_LS_RCV; 3272 axchg->entry_cnt = 1; 3273 axchg->rqb_buffer = (void *)nvmebuf; 3274 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3275 axchg->payload = nvmebuf->dbuf.virt; 3276 INIT_LIST_HEAD(&axchg->list); 3277 3278 if (phba->nvmet_support) { 3279 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3280 spin_lock_irq(&ndlp->lock); 3281 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3282 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3283 spin_unlock_irq(&ndlp->lock); 3284 3285 /* This reference is a single occurrence to hold the 3286 * node valid until the nvmet transport calls 3287 * host_release. 3288 */ 3289 if (!lpfc_nlp_get(ndlp)) 3290 goto out_fail; 3291 3292 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3293 "6206 NVMET unsol ls_req ndlp x%px " 3294 "DID x%x xflags x%x refcnt %d\n", 3295 ndlp, ndlp->nlp_DID, 3296 ndlp->fc4_xpt_flags, 3297 kref_read(&ndlp->kref)); 3298 } else { 3299 spin_unlock_irq(&ndlp->lock); 3300 } 3301 } else { 3302 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3303 } 3304 3305 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3306 if (!ret) 3307 return; 3308 3309 out_fail: 3310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3311 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3312 "NVMe%s handler failed %d\n", 3313 did, sid, oxid, 3314 (phba->nvmet_support) ? "T" : "I", ret); 3315 3316 /* recycle receive buffer */ 3317 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3318 3319 /* If start of new exchange, abort it */ 3320 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3321 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3322 3323 if (ret) 3324 kfree(axchg); 3325 } 3326 3327 /** 3328 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3329 * @phba: Pointer to HBA context object. 3330 * @pring: Pointer to driver SLI ring object. 3331 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3332 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3333 * @fch_type: the type for the first frame of the sequence. 3334 * 3335 * This function is called with no lock held. This function uses the r_ctl and 3336 * type of the received sequence to find the correct callback function to call 3337 * to process the sequence. 3338 **/ 3339 static int 3340 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3341 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3342 uint32_t fch_type) 3343 { 3344 int i; 3345 3346 switch (fch_type) { 3347 case FC_TYPE_NVME: 3348 lpfc_nvme_unsol_ls_handler(phba, saveq); 3349 return 1; 3350 default: 3351 break; 3352 } 3353 3354 /* unSolicited Responses */ 3355 if (pring->prt[0].profile) { 3356 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3357 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3358 saveq); 3359 return 1; 3360 } 3361 /* We must search, based on rctl / type 3362 for the right routine */ 3363 for (i = 0; i < pring->num_mask; i++) { 3364 if ((pring->prt[i].rctl == fch_r_ctl) && 3365 (pring->prt[i].type == fch_type)) { 3366 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3367 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3368 (phba, pring, saveq); 3369 return 1; 3370 } 3371 } 3372 return 0; 3373 } 3374 3375 static void 3376 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t *irsp; 3380 union lpfc_wqe128 *wqe; 3381 u16 i = 0; 3382 3383 irsp = &saveq->iocb; 3384 wqe = &saveq->wqe; 3385 3386 /* Fill wcqe with the IOCB status fields */ 3387 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3388 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3389 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3390 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3391 3392 /* Source ID */ 3393 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3394 3395 /* rx-id of the response frame */ 3396 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3397 3398 /* ox-id of the frame */ 3399 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3400 irsp->unsli3.rcvsli3.ox_id); 3401 3402 /* DID */ 3403 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3404 irsp->un.rcvels.remoteID); 3405 3406 /* unsol data len */ 3407 for (i = 0; i < irsp->ulpBdeCount; i++) { 3408 struct lpfc_hbq_entry *hbqe = NULL; 3409 3410 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3411 if (i == 0) { 3412 hbqe = (struct lpfc_hbq_entry *) 3413 &irsp->un.ulpWord[0]; 3414 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3415 hbqe->bde.tus.f.bdeSize; 3416 } else if (i == 1) { 3417 hbqe = (struct lpfc_hbq_entry *) 3418 &irsp->unsli3.sli3Words[4]; 3419 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3420 } 3421 } 3422 } 3423 } 3424 3425 /** 3426 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3427 * @phba: Pointer to HBA context object. 3428 * @pring: Pointer to driver SLI ring object. 3429 * @saveq: Pointer to the unsolicited iocb. 3430 * 3431 * This function is called with no lock held by the ring event handler 3432 * when there is an unsolicited iocb posted to the response ring by the 3433 * firmware. This function gets the buffer associated with the iocbs 3434 * and calls the event handler for the ring. This function handles both 3435 * qring buffers and hbq buffers. 3436 * When the function returns 1 the caller can free the iocb object otherwise 3437 * upper layer functions will free the iocb objects. 3438 **/ 3439 static int 3440 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3441 struct lpfc_iocbq *saveq) 3442 { 3443 IOCB_t * irsp; 3444 WORD5 * w5p; 3445 dma_addr_t paddr; 3446 uint32_t Rctl, Type; 3447 struct lpfc_iocbq *iocbq; 3448 struct lpfc_dmabuf *dmzbuf; 3449 3450 irsp = &saveq->iocb; 3451 saveq->vport = phba->pport; 3452 3453 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3454 if (pring->lpfc_sli_rcv_async_status) 3455 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3456 else 3457 lpfc_printf_log(phba, 3458 KERN_WARNING, 3459 LOG_SLI, 3460 "0316 Ring %d handler: unexpected " 3461 "ASYNC_STATUS iocb received evt_code " 3462 "0x%x\n", 3463 pring->ringno, 3464 irsp->un.asyncstat.evt_code); 3465 return 1; 3466 } 3467 3468 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3469 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3470 if (irsp->ulpBdeCount > 0) { 3471 dmzbuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 lpfc_in_buf_free(phba, dmzbuf); 3474 } 3475 3476 if (irsp->ulpBdeCount > 1) { 3477 dmzbuf = lpfc_sli_get_buff(phba, pring, 3478 irsp->unsli3.sli3Words[3]); 3479 lpfc_in_buf_free(phba, dmzbuf); 3480 } 3481 3482 if (irsp->ulpBdeCount > 2) { 3483 dmzbuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 lpfc_in_buf_free(phba, dmzbuf); 3486 } 3487 3488 return 1; 3489 } 3490 3491 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3492 if (irsp->ulpBdeCount != 0) { 3493 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3494 irsp->un.ulpWord[3]); 3495 if (!saveq->cmd_dmabuf) 3496 lpfc_printf_log(phba, 3497 KERN_ERR, 3498 LOG_SLI, 3499 "0341 Ring %d Cannot find buffer for " 3500 "an unsolicited iocb. tag 0x%x\n", 3501 pring->ringno, 3502 irsp->un.ulpWord[3]); 3503 } 3504 if (irsp->ulpBdeCount == 2) { 3505 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3506 irsp->unsli3.sli3Words[7]); 3507 if (!saveq->bpl_dmabuf) 3508 lpfc_printf_log(phba, 3509 KERN_ERR, 3510 LOG_SLI, 3511 "0342 Ring %d Cannot find buffer for an" 3512 " unsolicited iocb. tag 0x%x\n", 3513 pring->ringno, 3514 irsp->unsli3.sli3Words[7]); 3515 } 3516 list_for_each_entry(iocbq, &saveq->list, list) { 3517 irsp = &iocbq->iocb; 3518 if (irsp->ulpBdeCount != 0) { 3519 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3520 pring, 3521 irsp->un.ulpWord[3]); 3522 if (!iocbq->cmd_dmabuf) 3523 lpfc_printf_log(phba, 3524 KERN_ERR, 3525 LOG_SLI, 3526 "0343 Ring %d Cannot find " 3527 "buffer for an unsolicited iocb" 3528 ". tag 0x%x\n", pring->ringno, 3529 irsp->un.ulpWord[3]); 3530 } 3531 if (irsp->ulpBdeCount == 2) { 3532 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->unsli3.sli3Words[7]); 3535 if (!iocbq->bpl_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0344 Ring %d Cannot find " 3540 "buffer for an unsolicited " 3541 "iocb. tag 0x%x\n", 3542 pring->ringno, 3543 irsp->unsli3.sli3Words[7]); 3544 } 3545 } 3546 } else { 3547 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3548 irsp->un.cont64[0].addrLow); 3549 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3550 paddr); 3551 if (irsp->ulpBdeCount == 2) { 3552 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3553 irsp->un.cont64[1].addrLow); 3554 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3555 pring, 3556 paddr); 3557 } 3558 } 3559 3560 if (irsp->ulpBdeCount != 0 && 3561 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3562 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3563 int found = 0; 3564 3565 /* search continue save q for same XRI */ 3566 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3567 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3568 saveq->iocb.unsli3.rcvsli3.ox_id) { 3569 list_add_tail(&saveq->list, &iocbq->list); 3570 found = 1; 3571 break; 3572 } 3573 } 3574 if (!found) 3575 list_add_tail(&saveq->clist, 3576 &pring->iocb_continue_saveq); 3577 3578 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3579 list_del_init(&iocbq->clist); 3580 saveq = iocbq; 3581 irsp = &saveq->iocb; 3582 } else { 3583 return 0; 3584 } 3585 } 3586 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3587 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3588 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3589 Rctl = FC_RCTL_ELS_REQ; 3590 Type = FC_TYPE_ELS; 3591 } else { 3592 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3593 Rctl = w5p->hcsw.Rctl; 3594 Type = w5p->hcsw.Type; 3595 3596 /* Firmware Workaround */ 3597 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3598 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3599 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3600 Rctl = FC_RCTL_ELS_REQ; 3601 Type = FC_TYPE_ELS; 3602 w5p->hcsw.Rctl = Rctl; 3603 w5p->hcsw.Type = Type; 3604 } 3605 } 3606 3607 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3608 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3609 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3610 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3611 saveq->vport = phba->pport; 3612 else 3613 saveq->vport = lpfc_find_vport_by_vpid(phba, 3614 irsp->unsli3.rcvsli3.vpi); 3615 } 3616 3617 /* Prepare WQE with Unsol frame */ 3618 lpfc_sli_prep_unsol_wqe(phba, saveq); 3619 3620 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3622 "0313 Ring %d handler: unexpected Rctl x%x " 3623 "Type x%x received\n", 3624 pring->ringno, Rctl, Type); 3625 3626 return 1; 3627 } 3628 3629 /** 3630 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3631 * @phba: Pointer to HBA context object. 3632 * @pring: Pointer to driver SLI ring object. 3633 * @prspiocb: Pointer to response iocb object. 3634 * 3635 * This function looks up the iocb_lookup table to get the command iocb 3636 * corresponding to the given response iocb using the iotag of the 3637 * response iocb. The driver calls this function with the hbalock held 3638 * for SLI3 ports or the ring lock held for SLI4 ports. 3639 * This function returns the command iocb object if it finds the command 3640 * iocb else returns NULL. 3641 **/ 3642 static struct lpfc_iocbq * 3643 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3644 struct lpfc_sli_ring *pring, 3645 struct lpfc_iocbq *prspiocb) 3646 { 3647 struct lpfc_iocbq *cmd_iocb = NULL; 3648 u16 iotag; 3649 3650 if (phba->sli_rev == LPFC_SLI_REV4) 3651 iotag = get_wqe_reqtag(prspiocb); 3652 else 3653 iotag = prspiocb->iocb.ulpIoTag; 3654 3655 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3656 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3657 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3658 /* remove from txcmpl queue list */ 3659 list_del_init(&cmd_iocb->list); 3660 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3661 pring->txcmplq_cnt--; 3662 return cmd_iocb; 3663 } 3664 } 3665 3666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3667 "0317 iotag x%x is out of " 3668 "range: max iotag x%x\n", 3669 iotag, phba->sli.last_iotag); 3670 return NULL; 3671 } 3672 3673 /** 3674 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3675 * @phba: Pointer to HBA context object. 3676 * @pring: Pointer to driver SLI ring object. 3677 * @iotag: IOCB tag. 3678 * 3679 * This function looks up the iocb_lookup table to get the command iocb 3680 * corresponding to the given iotag. The driver calls this function with 3681 * the ring lock held because this function is an SLI4 port only helper. 3682 * This function returns the command iocb object if it finds the command 3683 * iocb else returns NULL. 3684 **/ 3685 static struct lpfc_iocbq * 3686 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint16_t iotag) 3688 { 3689 struct lpfc_iocbq *cmd_iocb = NULL; 3690 3691 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3692 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3693 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3694 /* remove from txcmpl queue list */ 3695 list_del_init(&cmd_iocb->list); 3696 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3697 pring->txcmplq_cnt--; 3698 return cmd_iocb; 3699 } 3700 } 3701 3702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3703 "0372 iotag x%x lookup error: max iotag (x%x) " 3704 "cmd_flag x%x\n", 3705 iotag, phba->sli.last_iotag, 3706 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3707 return NULL; 3708 } 3709 3710 /** 3711 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3712 * @phba: Pointer to HBA context object. 3713 * @pring: Pointer to driver SLI ring object. 3714 * @saveq: Pointer to the response iocb to be processed. 3715 * 3716 * This function is called by the ring event handler for non-fcp 3717 * rings when there is a new response iocb in the response ring. 3718 * The caller is not required to hold any locks. This function 3719 * gets the command iocb associated with the response iocb and 3720 * calls the completion handler for the command iocb. If there 3721 * is no completion handler, the function will free the resources 3722 * associated with command iocb. If the response iocb is for 3723 * an already aborted command iocb, the status of the completion 3724 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3725 * This function always returns 1. 3726 **/ 3727 static int 3728 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3729 struct lpfc_iocbq *saveq) 3730 { 3731 struct lpfc_iocbq *cmdiocbp; 3732 unsigned long iflag; 3733 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3734 3735 if (phba->sli_rev == LPFC_SLI_REV4) 3736 spin_lock_irqsave(&pring->ring_lock, iflag); 3737 else 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3740 if (phba->sli_rev == LPFC_SLI_REV4) 3741 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3742 else 3743 spin_unlock_irqrestore(&phba->hbalock, iflag); 3744 3745 ulp_command = get_job_cmnd(phba, saveq); 3746 ulp_status = get_job_ulpstatus(phba, saveq); 3747 ulp_word4 = get_job_word4(phba, saveq); 3748 ulp_context = get_job_ulpcontext(phba, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 iotag = get_wqe_reqtag(saveq); 3751 else 3752 iotag = saveq->iocb.ulpIoTag; 3753 3754 if (cmdiocbp) { 3755 ulp_command = get_job_cmnd(phba, cmdiocbp); 3756 if (cmdiocbp->cmd_cmpl) { 3757 /* 3758 * If an ELS command failed send an event to mgmt 3759 * application. 3760 */ 3761 if (ulp_status && 3762 (pring->ringno == LPFC_ELS_RING) && 3763 (ulp_command == CMD_ELS_REQUEST64_CR)) 3764 lpfc_send_els_failure_event(phba, 3765 cmdiocbp, saveq); 3766 3767 /* 3768 * Post all ELS completions to the worker thread. 3769 * All other are passed to the completion callback. 3770 */ 3771 if (pring->ringno == LPFC_ELS_RING) { 3772 if ((phba->sli_rev < LPFC_SLI_REV4) && 3773 (cmdiocbp->cmd_flag & 3774 LPFC_DRIVER_ABORTED)) { 3775 spin_lock_irqsave(&phba->hbalock, 3776 iflag); 3777 cmdiocbp->cmd_flag &= 3778 ~LPFC_DRIVER_ABORTED; 3779 spin_unlock_irqrestore(&phba->hbalock, 3780 iflag); 3781 saveq->iocb.ulpStatus = 3782 IOSTAT_LOCAL_REJECT; 3783 saveq->iocb.un.ulpWord[4] = 3784 IOERR_SLI_ABORTED; 3785 3786 /* Firmware could still be in progress 3787 * of DMAing payload, so don't free data 3788 * buffer till after a hbeat. 3789 */ 3790 spin_lock_irqsave(&phba->hbalock, 3791 iflag); 3792 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3793 spin_unlock_irqrestore(&phba->hbalock, 3794 iflag); 3795 } 3796 if (phba->sli_rev == LPFC_SLI_REV4) { 3797 if (saveq->cmd_flag & 3798 LPFC_EXCHANGE_BUSY) { 3799 /* Set cmdiocb flag for the 3800 * exchange busy so sgl (xri) 3801 * will not be released until 3802 * the abort xri is received 3803 * from hba. 3804 */ 3805 spin_lock_irqsave( 3806 &phba->hbalock, iflag); 3807 cmdiocbp->cmd_flag |= 3808 LPFC_EXCHANGE_BUSY; 3809 spin_unlock_irqrestore( 3810 &phba->hbalock, iflag); 3811 } 3812 if (cmdiocbp->cmd_flag & 3813 LPFC_DRIVER_ABORTED) { 3814 /* 3815 * Clear LPFC_DRIVER_ABORTED 3816 * bit in case it was driver 3817 * initiated abort. 3818 */ 3819 spin_lock_irqsave( 3820 &phba->hbalock, iflag); 3821 cmdiocbp->cmd_flag &= 3822 ~LPFC_DRIVER_ABORTED; 3823 spin_unlock_irqrestore( 3824 &phba->hbalock, iflag); 3825 set_job_ulpstatus(cmdiocbp, 3826 IOSTAT_LOCAL_REJECT); 3827 set_job_ulpword4(cmdiocbp, 3828 IOERR_ABORT_REQUESTED); 3829 /* 3830 * For SLI4, irspiocb contains 3831 * NO_XRI in sli_xritag, it 3832 * shall not affect releasing 3833 * sgl (xri) process. 3834 */ 3835 set_job_ulpstatus(saveq, 3836 IOSTAT_LOCAL_REJECT); 3837 set_job_ulpword4(saveq, 3838 IOERR_SLI_ABORTED); 3839 spin_lock_irqsave( 3840 &phba->hbalock, iflag); 3841 saveq->cmd_flag |= 3842 LPFC_DELAY_MEM_FREE; 3843 spin_unlock_irqrestore( 3844 &phba->hbalock, iflag); 3845 } 3846 } 3847 } 3848 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3849 } else 3850 lpfc_sli_release_iocbq(phba, cmdiocbp); 3851 } else { 3852 /* 3853 * Unknown initiating command based on the response iotag. 3854 * This could be the case on the ELS ring because of 3855 * lpfc_els_abort(). 3856 */ 3857 if (pring->ringno != LPFC_ELS_RING) { 3858 /* 3859 * Ring <ringno> handler: unexpected completion IoTag 3860 * <IoTag> 3861 */ 3862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3863 "0322 Ring %d handler: " 3864 "unexpected completion IoTag x%x " 3865 "Data: x%x x%x x%x x%x\n", 3866 pring->ringno, iotag, ulp_status, 3867 ulp_word4, ulp_command, ulp_context); 3868 } 3869 } 3870 3871 return 1; 3872 } 3873 3874 /** 3875 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3876 * @phba: Pointer to HBA context object. 3877 * @pring: Pointer to driver SLI ring object. 3878 * 3879 * This function is called from the iocb ring event handlers when 3880 * put pointer is ahead of the get pointer for a ring. This function signal 3881 * an error attention condition to the worker thread and the worker 3882 * thread will transition the HBA to offline state. 3883 **/ 3884 static void 3885 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3886 { 3887 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3888 /* 3889 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3890 * rsp ring <portRspMax> 3891 */ 3892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3893 "0312 Ring %d handler: portRspPut %d " 3894 "is bigger than rsp ring %d\n", 3895 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3896 pring->sli.sli3.numRiocb); 3897 3898 phba->link_state = LPFC_HBA_ERROR; 3899 3900 /* 3901 * All error attention handlers are posted to 3902 * worker thread 3903 */ 3904 phba->work_ha |= HA_ERATT; 3905 phba->work_hs = HS_FFER3; 3906 3907 lpfc_worker_wake_up(phba); 3908 3909 return; 3910 } 3911 3912 /** 3913 * lpfc_poll_eratt - Error attention polling timer timeout handler 3914 * @t: Context to fetch pointer to address of HBA context object from. 3915 * 3916 * This function is invoked by the Error Attention polling timer when the 3917 * timer times out. It will check the SLI Error Attention register for 3918 * possible attention events. If so, it will post an Error Attention event 3919 * and wake up worker thread to process it. Otherwise, it will set up the 3920 * Error Attention polling timer for the next poll. 3921 **/ 3922 void lpfc_poll_eratt(struct timer_list *t) 3923 { 3924 struct lpfc_hba *phba; 3925 uint32_t eratt = 0; 3926 uint64_t sli_intr, cnt; 3927 3928 phba = timer_container_of(phba, t, eratt_poll); 3929 3930 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3931 return; 3932 3933 if (phba->sli_rev == LPFC_SLI_REV4 && 3934 !test_bit(HBA_SETUP, &phba->hba_flag)) { 3935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3936 "0663 HBA still initializing 0x%lx, restart " 3937 "timer\n", 3938 phba->hba_flag); 3939 goto restart_timer; 3940 } 3941 3942 /* Here we will also keep track of interrupts per sec of the hba */ 3943 sli_intr = phba->sli.slistat.sli_intr; 3944 3945 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3946 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3947 sli_intr); 3948 else 3949 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3950 3951 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3952 do_div(cnt, phba->eratt_poll_interval); 3953 phba->sli.slistat.sli_ips = cnt; 3954 3955 phba->sli.slistat.sli_prev_intr = sli_intr; 3956 3957 /* Check chip HA register for error event */ 3958 eratt = lpfc_sli_check_eratt(phba); 3959 3960 if (eratt) { 3961 /* Tell the worker thread there is work to do */ 3962 lpfc_worker_wake_up(phba); 3963 return; 3964 } 3965 3966 restart_timer: 3967 /* Restart the timer for next eratt poll */ 3968 mod_timer(&phba->eratt_poll, 3969 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 3970 return; 3971 } 3972 3973 3974 /** 3975 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3976 * @phba: Pointer to HBA context object. 3977 * @pring: Pointer to driver SLI ring object. 3978 * @mask: Host attention register mask for this ring. 3979 * 3980 * This function is called from the interrupt context when there is a ring 3981 * event for the fcp ring. The caller does not hold any lock. 3982 * The function processes each response iocb in the response ring until it 3983 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3984 * LE bit set. The function will call the completion handler of the command iocb 3985 * if the response iocb indicates a completion for a command iocb or it is 3986 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3987 * function if this is an unsolicited iocb. 3988 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3989 * to check it explicitly. 3990 */ 3991 int 3992 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3993 struct lpfc_sli_ring *pring, uint32_t mask) 3994 { 3995 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3996 IOCB_t *irsp = NULL; 3997 IOCB_t *entry = NULL; 3998 struct lpfc_iocbq *cmdiocbq = NULL; 3999 struct lpfc_iocbq rspiocbq; 4000 uint32_t status; 4001 uint32_t portRspPut, portRspMax; 4002 int rc = 1; 4003 lpfc_iocb_type type; 4004 unsigned long iflag; 4005 uint32_t rsp_cmpl = 0; 4006 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 pring->stats.iocb_event++; 4009 4010 /* 4011 * The next available response entry should never exceed the maximum 4012 * entries. If it does, treat it as an adapter hardware error. 4013 */ 4014 portRspMax = pring->sli.sli3.numRiocb; 4015 portRspPut = le32_to_cpu(pgp->rspPutInx); 4016 if (unlikely(portRspPut >= portRspMax)) { 4017 lpfc_sli_rsp_pointers_error(phba, pring); 4018 spin_unlock_irqrestore(&phba->hbalock, iflag); 4019 return 1; 4020 } 4021 if (phba->fcp_ring_in_use) { 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 return 1; 4024 } else 4025 phba->fcp_ring_in_use = 1; 4026 4027 rmb(); 4028 while (pring->sli.sli3.rspidx != portRspPut) { 4029 /* 4030 * Fetch an entry off the ring and copy it into a local data 4031 * structure. The copy involves a byte-swap since the 4032 * network byte order and pci byte orders are different. 4033 */ 4034 entry = lpfc_resp_iocb(phba, pring); 4035 phba->last_completion_time = jiffies; 4036 4037 if (++pring->sli.sli3.rspidx >= portRspMax) 4038 pring->sli.sli3.rspidx = 0; 4039 4040 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4041 (uint32_t *) &rspiocbq.iocb, 4042 phba->iocb_rsp_size); 4043 INIT_LIST_HEAD(&(rspiocbq.list)); 4044 irsp = &rspiocbq.iocb; 4045 4046 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4047 pring->stats.iocb_rsp++; 4048 rsp_cmpl++; 4049 4050 if (unlikely(irsp->ulpStatus)) { 4051 /* 4052 * If resource errors reported from HBA, reduce 4053 * queuedepths of the SCSI device. 4054 */ 4055 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4056 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4057 IOERR_NO_RESOURCES)) { 4058 spin_unlock_irqrestore(&phba->hbalock, iflag); 4059 phba->lpfc_rampdown_queue_depth(phba); 4060 spin_lock_irqsave(&phba->hbalock, iflag); 4061 } 4062 4063 /* Rsp ring <ringno> error: IOCB */ 4064 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4065 "0336 Rsp Ring %d error: IOCB Data: " 4066 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4067 pring->ringno, 4068 irsp->un.ulpWord[0], 4069 irsp->un.ulpWord[1], 4070 irsp->un.ulpWord[2], 4071 irsp->un.ulpWord[3], 4072 irsp->un.ulpWord[4], 4073 irsp->un.ulpWord[5], 4074 *(uint32_t *)&irsp->un1, 4075 *((uint32_t *)&irsp->un1 + 1)); 4076 } 4077 4078 switch (type) { 4079 case LPFC_ABORT_IOCB: 4080 case LPFC_SOL_IOCB: 4081 /* 4082 * Idle exchange closed via ABTS from port. No iocb 4083 * resources need to be recovered. 4084 */ 4085 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4087 "0333 IOCB cmd 0x%x" 4088 " processed. Skipping" 4089 " completion\n", 4090 irsp->ulpCommand); 4091 break; 4092 } 4093 4094 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4095 &rspiocbq); 4096 if (unlikely(!cmdiocbq)) 4097 break; 4098 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4099 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4100 if (cmdiocbq->cmd_cmpl) { 4101 spin_unlock_irqrestore(&phba->hbalock, iflag); 4102 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4103 spin_lock_irqsave(&phba->hbalock, iflag); 4104 } 4105 break; 4106 case LPFC_UNSOL_IOCB: 4107 spin_unlock_irqrestore(&phba->hbalock, iflag); 4108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4109 spin_lock_irqsave(&phba->hbalock, iflag); 4110 break; 4111 default: 4112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4113 char adaptermsg[LPFC_MAX_ADPTMSG]; 4114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4115 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4116 MAX_MSG_DATA); 4117 dev_warn(&((phba->pcidev)->dev), 4118 "lpfc%d: %s\n", 4119 phba->brd_no, adaptermsg); 4120 } else { 4121 /* Unknown IOCB command */ 4122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4123 "0334 Unknown IOCB command " 4124 "Data: x%x, x%x x%x x%x x%x\n", 4125 type, irsp->ulpCommand, 4126 irsp->ulpStatus, 4127 irsp->ulpIoTag, 4128 irsp->ulpContext); 4129 } 4130 break; 4131 } 4132 4133 /* 4134 * The response IOCB has been processed. Update the ring 4135 * pointer in SLIM. If the port response put pointer has not 4136 * been updated, sync the pgp->rspPutInx and fetch the new port 4137 * response put pointer. 4138 */ 4139 writel(pring->sli.sli3.rspidx, 4140 &phba->host_gp[pring->ringno].rspGetInx); 4141 4142 if (pring->sli.sli3.rspidx == portRspPut) 4143 portRspPut = le32_to_cpu(pgp->rspPutInx); 4144 } 4145 4146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4147 pring->stats.iocb_rsp_full++; 4148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4149 writel(status, phba->CAregaddr); 4150 readl(phba->CAregaddr); 4151 } 4152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4154 pring->stats.iocb_cmd_empty++; 4155 4156 /* Force update of the local copy of cmdGetInx */ 4157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4158 lpfc_sli_resume_iocb(phba, pring); 4159 4160 if ((pring->lpfc_sli_cmd_available)) 4161 (pring->lpfc_sli_cmd_available) (phba, pring); 4162 4163 } 4164 4165 phba->fcp_ring_in_use = 0; 4166 spin_unlock_irqrestore(&phba->hbalock, iflag); 4167 return rc; 4168 } 4169 4170 /** 4171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4172 * @phba: Pointer to HBA context object. 4173 * @pring: Pointer to driver SLI ring object. 4174 * @rspiocbp: Pointer to driver response IOCB object. 4175 * 4176 * This function is called from the worker thread when there is a slow-path 4177 * response IOCB to process. This function chains all the response iocbs until 4178 * seeing the iocb with the LE bit set. The function will call 4179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4180 * completion of a command iocb. The function will call the 4181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4182 * The function frees the resources or calls the completion handler if this 4183 * iocb is an abort completion. The function returns NULL when the response 4184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4185 * this function shall chain the iocb on to the iocb_continueq and return the 4186 * response iocb passed in. 4187 **/ 4188 static struct lpfc_iocbq * 4189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4190 struct lpfc_iocbq *rspiocbp) 4191 { 4192 struct lpfc_iocbq *saveq; 4193 struct lpfc_iocbq *cmdiocb; 4194 struct lpfc_iocbq *next_iocb; 4195 IOCB_t *irsp; 4196 uint32_t free_saveq; 4197 u8 cmd_type; 4198 lpfc_iocb_type type; 4199 unsigned long iflag; 4200 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4201 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4202 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4203 int rc; 4204 4205 spin_lock_irqsave(&phba->hbalock, iflag); 4206 /* First add the response iocb to the countinueq list */ 4207 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4208 pring->iocb_continueq_cnt++; 4209 4210 /* 4211 * By default, the driver expects to free all resources 4212 * associated with this iocb completion. 4213 */ 4214 free_saveq = 1; 4215 saveq = list_get_first(&pring->iocb_continueq, 4216 struct lpfc_iocbq, list); 4217 list_del_init(&pring->iocb_continueq); 4218 pring->iocb_continueq_cnt = 0; 4219 4220 pring->stats.iocb_rsp++; 4221 4222 /* 4223 * If resource errors reported from HBA, reduce 4224 * queuedepths of the SCSI device. 4225 */ 4226 if (ulp_status == IOSTAT_LOCAL_REJECT && 4227 ((ulp_word4 & IOERR_PARAM_MASK) == 4228 IOERR_NO_RESOURCES)) { 4229 spin_unlock_irqrestore(&phba->hbalock, iflag); 4230 phba->lpfc_rampdown_queue_depth(phba); 4231 spin_lock_irqsave(&phba->hbalock, iflag); 4232 } 4233 4234 if (ulp_status) { 4235 /* Rsp ring <ringno> error: IOCB */ 4236 if (phba->sli_rev < LPFC_SLI_REV4) { 4237 irsp = &rspiocbp->iocb; 4238 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4239 "0328 Rsp Ring %d error: ulp_status x%x " 4240 "IOCB Data: " 4241 "x%08x x%08x x%08x x%08x " 4242 "x%08x x%08x x%08x x%08x " 4243 "x%08x x%08x x%08x x%08x " 4244 "x%08x x%08x x%08x x%08x\n", 4245 pring->ringno, ulp_status, 4246 get_job_ulpword(rspiocbp, 0), 4247 get_job_ulpword(rspiocbp, 1), 4248 get_job_ulpword(rspiocbp, 2), 4249 get_job_ulpword(rspiocbp, 3), 4250 get_job_ulpword(rspiocbp, 4), 4251 get_job_ulpword(rspiocbp, 5), 4252 *(((uint32_t *)irsp) + 6), 4253 *(((uint32_t *)irsp) + 7), 4254 *(((uint32_t *)irsp) + 8), 4255 *(((uint32_t *)irsp) + 9), 4256 *(((uint32_t *)irsp) + 10), 4257 *(((uint32_t *)irsp) + 11), 4258 *(((uint32_t *)irsp) + 12), 4259 *(((uint32_t *)irsp) + 13), 4260 *(((uint32_t *)irsp) + 14), 4261 *(((uint32_t *)irsp) + 15)); 4262 } else { 4263 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4264 "0321 Rsp Ring %d error: " 4265 "IOCB Data: " 4266 "x%x x%x x%x x%x\n", 4267 pring->ringno, 4268 rspiocbp->wcqe_cmpl.word0, 4269 rspiocbp->wcqe_cmpl.total_data_placed, 4270 rspiocbp->wcqe_cmpl.parameter, 4271 rspiocbp->wcqe_cmpl.word3); 4272 } 4273 } 4274 4275 4276 /* 4277 * Fetch the iocb command type and call the correct completion 4278 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4279 * get freed back to the lpfc_iocb_list by the discovery 4280 * kernel thread. 4281 */ 4282 cmd_type = ulp_command & CMD_IOCB_MASK; 4283 type = lpfc_sli_iocb_cmd_type(cmd_type); 4284 switch (type) { 4285 case LPFC_SOL_IOCB: 4286 spin_unlock_irqrestore(&phba->hbalock, iflag); 4287 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4288 spin_lock_irqsave(&phba->hbalock, iflag); 4289 break; 4290 case LPFC_UNSOL_IOCB: 4291 spin_unlock_irqrestore(&phba->hbalock, iflag); 4292 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4293 spin_lock_irqsave(&phba->hbalock, iflag); 4294 if (!rc) 4295 free_saveq = 0; 4296 break; 4297 case LPFC_ABORT_IOCB: 4298 cmdiocb = NULL; 4299 if (ulp_command != CMD_XRI_ABORTED_CX) 4300 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4301 saveq); 4302 if (cmdiocb) { 4303 /* Call the specified completion routine */ 4304 if (cmdiocb->cmd_cmpl) { 4305 spin_unlock_irqrestore(&phba->hbalock, iflag); 4306 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4307 spin_lock_irqsave(&phba->hbalock, iflag); 4308 } else { 4309 __lpfc_sli_release_iocbq(phba, cmdiocb); 4310 } 4311 } 4312 break; 4313 case LPFC_UNKNOWN_IOCB: 4314 if (ulp_command == CMD_ADAPTER_MSG) { 4315 char adaptermsg[LPFC_MAX_ADPTMSG]; 4316 4317 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4318 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4319 MAX_MSG_DATA); 4320 dev_warn(&((phba->pcidev)->dev), 4321 "lpfc%d: %s\n", 4322 phba->brd_no, adaptermsg); 4323 } else { 4324 /* Unknown command */ 4325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4326 "0335 Unknown IOCB " 4327 "command Data: x%x " 4328 "x%x x%x x%x\n", 4329 ulp_command, 4330 ulp_status, 4331 get_wqe_reqtag(rspiocbp), 4332 get_job_ulpcontext(phba, rspiocbp)); 4333 } 4334 break; 4335 } 4336 4337 if (free_saveq) { 4338 list_for_each_entry_safe(rspiocbp, next_iocb, 4339 &saveq->list, list) { 4340 list_del_init(&rspiocbp->list); 4341 __lpfc_sli_release_iocbq(phba, rspiocbp); 4342 } 4343 __lpfc_sli_release_iocbq(phba, saveq); 4344 } 4345 rspiocbp = NULL; 4346 spin_unlock_irqrestore(&phba->hbalock, iflag); 4347 return rspiocbp; 4348 } 4349 4350 /** 4351 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4352 * @phba: Pointer to HBA context object. 4353 * @pring: Pointer to driver SLI ring object. 4354 * @mask: Host attention register mask for this ring. 4355 * 4356 * This routine wraps the actual slow_ring event process routine from the 4357 * API jump table function pointer from the lpfc_hba struct. 4358 **/ 4359 void 4360 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4361 struct lpfc_sli_ring *pring, uint32_t mask) 4362 { 4363 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4364 } 4365 4366 /** 4367 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4368 * @phba: Pointer to HBA context object. 4369 * @pring: Pointer to driver SLI ring object. 4370 * @mask: Host attention register mask for this ring. 4371 * 4372 * This function is called from the worker thread when there is a ring event 4373 * for non-fcp rings. The caller does not hold any lock. The function will 4374 * remove each response iocb in the response ring and calls the handle 4375 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4376 **/ 4377 static void 4378 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4379 struct lpfc_sli_ring *pring, uint32_t mask) 4380 { 4381 struct lpfc_pgp *pgp; 4382 IOCB_t *entry; 4383 IOCB_t *irsp = NULL; 4384 struct lpfc_iocbq *rspiocbp = NULL; 4385 uint32_t portRspPut, portRspMax; 4386 unsigned long iflag; 4387 uint32_t status; 4388 4389 pgp = &phba->port_gp[pring->ringno]; 4390 spin_lock_irqsave(&phba->hbalock, iflag); 4391 pring->stats.iocb_event++; 4392 4393 /* 4394 * The next available response entry should never exceed the maximum 4395 * entries. If it does, treat it as an adapter hardware error. 4396 */ 4397 portRspMax = pring->sli.sli3.numRiocb; 4398 portRspPut = le32_to_cpu(pgp->rspPutInx); 4399 if (portRspPut >= portRspMax) { 4400 /* 4401 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4402 * rsp ring <portRspMax> 4403 */ 4404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4405 "0303 Ring %d handler: portRspPut %d " 4406 "is bigger than rsp ring %d\n", 4407 pring->ringno, portRspPut, portRspMax); 4408 4409 phba->link_state = LPFC_HBA_ERROR; 4410 spin_unlock_irqrestore(&phba->hbalock, iflag); 4411 4412 phba->work_hs = HS_FFER3; 4413 lpfc_handle_eratt(phba); 4414 4415 return; 4416 } 4417 4418 rmb(); 4419 while (pring->sli.sli3.rspidx != portRspPut) { 4420 /* 4421 * Build a completion list and call the appropriate handler. 4422 * The process is to get the next available response iocb, get 4423 * a free iocb from the list, copy the response data into the 4424 * free iocb, insert to the continuation list, and update the 4425 * next response index to slim. This process makes response 4426 * iocb's in the ring available to DMA as fast as possible but 4427 * pays a penalty for a copy operation. Since the iocb is 4428 * only 32 bytes, this penalty is considered small relative to 4429 * the PCI reads for register values and a slim write. When 4430 * the ulpLe field is set, the entire Command has been 4431 * received. 4432 */ 4433 entry = lpfc_resp_iocb(phba, pring); 4434 4435 phba->last_completion_time = jiffies; 4436 rspiocbp = __lpfc_sli_get_iocbq(phba); 4437 if (rspiocbp == NULL) { 4438 printk(KERN_ERR "%s: out of buffers! Failing " 4439 "completion.\n", __func__); 4440 break; 4441 } 4442 4443 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4444 phba->iocb_rsp_size); 4445 irsp = &rspiocbp->iocb; 4446 4447 if (++pring->sli.sli3.rspidx >= portRspMax) 4448 pring->sli.sli3.rspidx = 0; 4449 4450 if (pring->ringno == LPFC_ELS_RING) { 4451 lpfc_debugfs_slow_ring_trc(phba, 4452 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4453 *(((uint32_t *) irsp) + 4), 4454 *(((uint32_t *) irsp) + 6), 4455 *(((uint32_t *) irsp) + 7)); 4456 } 4457 4458 writel(pring->sli.sli3.rspidx, 4459 &phba->host_gp[pring->ringno].rspGetInx); 4460 4461 spin_unlock_irqrestore(&phba->hbalock, iflag); 4462 /* Handle the response IOCB */ 4463 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4464 spin_lock_irqsave(&phba->hbalock, iflag); 4465 4466 /* 4467 * If the port response put pointer has not been updated, sync 4468 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4469 * response put pointer. 4470 */ 4471 if (pring->sli.sli3.rspidx == portRspPut) { 4472 portRspPut = le32_to_cpu(pgp->rspPutInx); 4473 } 4474 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4475 4476 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4477 /* At least one response entry has been freed */ 4478 pring->stats.iocb_rsp_full++; 4479 /* SET RxRE_RSP in Chip Att register */ 4480 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4481 writel(status, phba->CAregaddr); 4482 readl(phba->CAregaddr); /* flush */ 4483 } 4484 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4485 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4486 pring->stats.iocb_cmd_empty++; 4487 4488 /* Force update of the local copy of cmdGetInx */ 4489 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4490 lpfc_sli_resume_iocb(phba, pring); 4491 4492 if ((pring->lpfc_sli_cmd_available)) 4493 (pring->lpfc_sli_cmd_available) (phba, pring); 4494 4495 } 4496 4497 spin_unlock_irqrestore(&phba->hbalock, iflag); 4498 return; 4499 } 4500 4501 /** 4502 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4503 * @phba: Pointer to HBA context object. 4504 * @pring: Pointer to driver SLI ring object. 4505 * @mask: Host attention register mask for this ring. 4506 * 4507 * This function is called from the worker thread when there is a pending 4508 * ELS response iocb on the driver internal slow-path response iocb worker 4509 * queue. The caller does not hold any lock. The function will remove each 4510 * response iocb from the response worker queue and calls the handle 4511 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4512 **/ 4513 static void 4514 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4515 struct lpfc_sli_ring *pring, uint32_t mask) 4516 { 4517 struct lpfc_iocbq *irspiocbq; 4518 struct hbq_dmabuf *dmabuf; 4519 struct lpfc_cq_event *cq_event; 4520 unsigned long iflag; 4521 int count = 0; 4522 4523 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4524 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4525 /* Get the response iocb from the head of work queue */ 4526 spin_lock_irqsave(&phba->hbalock, iflag); 4527 list_remove_head(&phba->sli4_hba.sp_queue_event, 4528 cq_event, struct lpfc_cq_event, list); 4529 spin_unlock_irqrestore(&phba->hbalock, iflag); 4530 4531 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4532 case CQE_CODE_COMPL_WQE: 4533 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4534 cq_event); 4535 /* Translate ELS WCQE to response IOCBQ */ 4536 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4537 irspiocbq); 4538 if (irspiocbq) 4539 lpfc_sli_sp_handle_rspiocb(phba, pring, 4540 irspiocbq); 4541 count++; 4542 break; 4543 case CQE_CODE_RECEIVE: 4544 case CQE_CODE_RECEIVE_V1: 4545 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4546 cq_event); 4547 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4548 count++; 4549 break; 4550 default: 4551 break; 4552 } 4553 4554 /* Limit the number of events to 64 to avoid soft lockups */ 4555 if (count == 64) 4556 break; 4557 } 4558 } 4559 4560 /** 4561 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4562 * @phba: Pointer to HBA context object. 4563 * @pring: Pointer to driver SLI ring object. 4564 * 4565 * This function aborts all iocbs in the given ring and frees all the iocb 4566 * objects in txq. This function issues an abort iocb for all the iocb commands 4567 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4568 * the return of this function. The caller is not required to hold any locks. 4569 **/ 4570 void 4571 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4572 { 4573 LIST_HEAD(tx_completions); 4574 LIST_HEAD(txcmplq_completions); 4575 struct lpfc_iocbq *iocb, *next_iocb; 4576 int offline; 4577 4578 if (pring->ringno == LPFC_ELS_RING) { 4579 lpfc_fabric_abort_hba(phba); 4580 } 4581 offline = pci_channel_offline(phba->pcidev); 4582 4583 /* Error everything on txq and txcmplq 4584 * First do the txq. 4585 */ 4586 if (phba->sli_rev >= LPFC_SLI_REV4) { 4587 spin_lock_irq(&pring->ring_lock); 4588 list_splice_init(&pring->txq, &tx_completions); 4589 pring->txq_cnt = 0; 4590 4591 if (offline) { 4592 list_splice_init(&pring->txcmplq, 4593 &txcmplq_completions); 4594 } else { 4595 /* Next issue ABTS for everything on the txcmplq */ 4596 list_for_each_entry_safe(iocb, next_iocb, 4597 &pring->txcmplq, list) 4598 lpfc_sli_issue_abort_iotag(phba, pring, 4599 iocb, NULL); 4600 } 4601 spin_unlock_irq(&pring->ring_lock); 4602 } else { 4603 spin_lock_irq(&phba->hbalock); 4604 list_splice_init(&pring->txq, &tx_completions); 4605 pring->txq_cnt = 0; 4606 4607 if (offline) { 4608 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4609 } else { 4610 /* Next issue ABTS for everything on the txcmplq */ 4611 list_for_each_entry_safe(iocb, next_iocb, 4612 &pring->txcmplq, list) 4613 lpfc_sli_issue_abort_iotag(phba, pring, 4614 iocb, NULL); 4615 } 4616 spin_unlock_irq(&phba->hbalock); 4617 } 4618 4619 if (offline) { 4620 /* Cancel all the IOCBs from the completions list */ 4621 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4622 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4623 } else { 4624 /* Make sure HBA is alive */ 4625 lpfc_issue_hb_tmo(phba); 4626 } 4627 /* Cancel all the IOCBs from the completions list */ 4628 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4629 IOERR_SLI_ABORTED); 4630 } 4631 4632 /** 4633 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4634 * @phba: Pointer to HBA context object. 4635 * 4636 * This function aborts all iocbs in FCP rings and frees all the iocb 4637 * objects in txq. This function issues an abort iocb for all the iocb commands 4638 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4639 * the return of this function. The caller is not required to hold any locks. 4640 **/ 4641 void 4642 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4643 { 4644 struct lpfc_sli *psli = &phba->sli; 4645 struct lpfc_sli_ring *pring; 4646 uint32_t i; 4647 4648 /* Look on all the FCP Rings for the iotag */ 4649 if (phba->sli_rev >= LPFC_SLI_REV4) { 4650 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4651 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4652 lpfc_sli_abort_iocb_ring(phba, pring); 4653 } 4654 } else { 4655 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4656 lpfc_sli_abort_iocb_ring(phba, pring); 4657 } 4658 } 4659 4660 /** 4661 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4662 * @phba: Pointer to HBA context object. 4663 * 4664 * This function flushes all iocbs in the IO ring and frees all the iocb 4665 * objects in txq and txcmplq. This function will not issue abort iocbs 4666 * for all the iocb commands in txcmplq, they will just be returned with 4667 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4668 * slot has been permanently disabled. 4669 **/ 4670 void 4671 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4672 { 4673 LIST_HEAD(txq); 4674 LIST_HEAD(txcmplq); 4675 struct lpfc_sli *psli = &phba->sli; 4676 struct lpfc_sli_ring *pring; 4677 uint32_t i; 4678 struct lpfc_iocbq *piocb, *next_iocb; 4679 4680 /* Indicate the I/O queues are flushed */ 4681 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4682 4683 /* Look on all the FCP Rings for the iotag */ 4684 if (phba->sli_rev >= LPFC_SLI_REV4) { 4685 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4686 if (!phba->sli4_hba.hdwq || 4687 !phba->sli4_hba.hdwq[i].io_wq) { 4688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4689 "7777 hdwq's deleted %lx " 4690 "%lx %x %x\n", 4691 phba->pport->load_flag, 4692 phba->hba_flag, 4693 phba->link_state, 4694 phba->sli.sli_flag); 4695 return; 4696 } 4697 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4698 4699 spin_lock_irq(&pring->ring_lock); 4700 /* Retrieve everything on txq */ 4701 list_splice_init(&pring->txq, &txq); 4702 list_for_each_entry_safe(piocb, next_iocb, 4703 &pring->txcmplq, list) 4704 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4705 /* Retrieve everything on the txcmplq */ 4706 list_splice_init(&pring->txcmplq, &txcmplq); 4707 pring->txq_cnt = 0; 4708 pring->txcmplq_cnt = 0; 4709 spin_unlock_irq(&pring->ring_lock); 4710 4711 /* Flush the txq */ 4712 lpfc_sli_cancel_iocbs(phba, &txq, 4713 IOSTAT_LOCAL_REJECT, 4714 IOERR_SLI_DOWN); 4715 /* Flush the txcmplq */ 4716 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4717 IOSTAT_LOCAL_REJECT, 4718 IOERR_SLI_DOWN); 4719 if (unlikely(pci_channel_offline(phba->pcidev))) 4720 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4721 } 4722 } else { 4723 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4724 4725 spin_lock_irq(&phba->hbalock); 4726 /* Retrieve everything on txq */ 4727 list_splice_init(&pring->txq, &txq); 4728 list_for_each_entry_safe(piocb, next_iocb, 4729 &pring->txcmplq, list) 4730 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4731 /* Retrieve everything on the txcmplq */ 4732 list_splice_init(&pring->txcmplq, &txcmplq); 4733 pring->txq_cnt = 0; 4734 pring->txcmplq_cnt = 0; 4735 spin_unlock_irq(&phba->hbalock); 4736 4737 /* Flush the txq */ 4738 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4739 IOERR_SLI_DOWN); 4740 /* Flush the txcmpq */ 4741 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4742 IOERR_SLI_DOWN); 4743 } 4744 } 4745 4746 /** 4747 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4748 * @phba: Pointer to HBA context object. 4749 * @mask: Bit mask to be checked. 4750 * 4751 * This function reads the host status register and compares 4752 * with the provided bit mask to check if HBA completed 4753 * the restart. This function will wait in a loop for the 4754 * HBA to complete restart. If the HBA does not restart within 4755 * 15 iterations, the function will reset the HBA again. The 4756 * function returns 1 when HBA fail to restart otherwise returns 4757 * zero. 4758 **/ 4759 static int 4760 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4761 { 4762 uint32_t status; 4763 int i = 0; 4764 int retval = 0; 4765 4766 /* Read the HBA Host Status Register */ 4767 if (lpfc_readl(phba->HSregaddr, &status)) 4768 return 1; 4769 4770 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4771 4772 /* 4773 * Check status register every 100ms for 5 retries, then every 4774 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4775 * every 2.5 sec for 4. 4776 * Break our of the loop if errors occurred during init. 4777 */ 4778 while (((status & mask) != mask) && 4779 !(status & HS_FFERM) && 4780 i++ < 20) { 4781 4782 if (i <= 5) 4783 msleep(10); 4784 else if (i <= 10) 4785 msleep(500); 4786 else 4787 msleep(2500); 4788 4789 if (i == 15) { 4790 /* Do post */ 4791 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4792 lpfc_sli_brdrestart(phba); 4793 } 4794 /* Read the HBA Host Status Register */ 4795 if (lpfc_readl(phba->HSregaddr, &status)) { 4796 retval = 1; 4797 break; 4798 } 4799 } 4800 4801 /* Check to see if any errors occurred during init */ 4802 if ((status & HS_FFERM) || (i >= 20)) { 4803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4804 "2751 Adapter failed to restart, " 4805 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4806 status, 4807 readl(phba->MBslimaddr + 0xa8), 4808 readl(phba->MBslimaddr + 0xac)); 4809 phba->link_state = LPFC_HBA_ERROR; 4810 retval = 1; 4811 } 4812 4813 return retval; 4814 } 4815 4816 /** 4817 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4818 * @phba: Pointer to HBA context object. 4819 * @mask: Bit mask to be checked. 4820 * 4821 * This function checks the host status register to check if HBA is 4822 * ready. This function will wait in a loop for the HBA to be ready 4823 * If the HBA is not ready , the function will will reset the HBA PCI 4824 * function again. The function returns 1 when HBA fail to be ready 4825 * otherwise returns zero. 4826 **/ 4827 static int 4828 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4829 { 4830 uint32_t status; 4831 int retval = 0; 4832 4833 /* Read the HBA Host Status Register */ 4834 status = lpfc_sli4_post_status_check(phba); 4835 4836 if (status) { 4837 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4838 lpfc_sli_brdrestart(phba); 4839 status = lpfc_sli4_post_status_check(phba); 4840 } 4841 4842 /* Check to see if any errors occurred during init */ 4843 if (status) { 4844 phba->link_state = LPFC_HBA_ERROR; 4845 retval = 1; 4846 } else 4847 phba->sli4_hba.intr_enable = 0; 4848 4849 clear_bit(HBA_SETUP, &phba->hba_flag); 4850 return retval; 4851 } 4852 4853 /** 4854 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4855 * @phba: Pointer to HBA context object. 4856 * @mask: Bit mask to be checked. 4857 * 4858 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4859 * from the API jump table function pointer from the lpfc_hba struct. 4860 **/ 4861 int 4862 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4863 { 4864 return phba->lpfc_sli_brdready(phba, mask); 4865 } 4866 4867 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4868 4869 /** 4870 * lpfc_reset_barrier - Make HBA ready for HBA reset 4871 * @phba: Pointer to HBA context object. 4872 * 4873 * This function is called before resetting an HBA. This function is called 4874 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4875 **/ 4876 void lpfc_reset_barrier(struct lpfc_hba *phba) 4877 { 4878 uint32_t __iomem *resp_buf; 4879 uint32_t __iomem *mbox_buf; 4880 volatile struct MAILBOX_word0 mbox; 4881 uint32_t hc_copy, ha_copy, resp_data; 4882 int i; 4883 uint8_t hdrtype; 4884 4885 lockdep_assert_held(&phba->hbalock); 4886 4887 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4888 if (hdrtype != PCI_HEADER_TYPE_MFD || 4889 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4890 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4891 return; 4892 4893 /* 4894 * Tell the other part of the chip to suspend temporarily all 4895 * its DMA activity. 4896 */ 4897 resp_buf = phba->MBslimaddr; 4898 4899 /* Disable the error attention */ 4900 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4901 return; 4902 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4903 readl(phba->HCregaddr); /* flush */ 4904 phba->link_flag |= LS_IGNORE_ERATT; 4905 4906 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4907 return; 4908 if (ha_copy & HA_ERATT) { 4909 /* Clear Chip error bit */ 4910 writel(HA_ERATT, phba->HAregaddr); 4911 phba->pport->stopped = 1; 4912 } 4913 4914 mbox.word0 = 0; 4915 mbox.mbxCommand = MBX_KILL_BOARD; 4916 mbox.mbxOwner = OWN_CHIP; 4917 4918 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4919 mbox_buf = phba->MBslimaddr; 4920 writel(mbox.word0, mbox_buf); 4921 4922 for (i = 0; i < 50; i++) { 4923 if (lpfc_readl((resp_buf + 1), &resp_data)) 4924 return; 4925 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4926 mdelay(1); 4927 else 4928 break; 4929 } 4930 resp_data = 0; 4931 if (lpfc_readl((resp_buf + 1), &resp_data)) 4932 return; 4933 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4934 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4935 phba->pport->stopped) 4936 goto restore_hc; 4937 else 4938 goto clear_errat; 4939 } 4940 4941 mbox.mbxOwner = OWN_HOST; 4942 resp_data = 0; 4943 for (i = 0; i < 500; i++) { 4944 if (lpfc_readl(resp_buf, &resp_data)) 4945 return; 4946 if (resp_data != mbox.word0) 4947 mdelay(1); 4948 else 4949 break; 4950 } 4951 4952 clear_errat: 4953 4954 while (++i < 500) { 4955 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4956 return; 4957 if (!(ha_copy & HA_ERATT)) 4958 mdelay(1); 4959 else 4960 break; 4961 } 4962 4963 if (readl(phba->HAregaddr) & HA_ERATT) { 4964 writel(HA_ERATT, phba->HAregaddr); 4965 phba->pport->stopped = 1; 4966 } 4967 4968 restore_hc: 4969 phba->link_flag &= ~LS_IGNORE_ERATT; 4970 writel(hc_copy, phba->HCregaddr); 4971 readl(phba->HCregaddr); /* flush */ 4972 } 4973 4974 /** 4975 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4976 * @phba: Pointer to HBA context object. 4977 * 4978 * This function issues a kill_board mailbox command and waits for 4979 * the error attention interrupt. This function is called for stopping 4980 * the firmware processing. The caller is not required to hold any 4981 * locks. This function calls lpfc_hba_down_post function to free 4982 * any pending commands after the kill. The function will return 1 when it 4983 * fails to kill the board else will return 0. 4984 **/ 4985 int 4986 lpfc_sli_brdkill(struct lpfc_hba *phba) 4987 { 4988 struct lpfc_sli *psli; 4989 LPFC_MBOXQ_t *pmb; 4990 uint32_t status; 4991 uint32_t ha_copy; 4992 int retval; 4993 int i = 0; 4994 4995 psli = &phba->sli; 4996 4997 /* Kill HBA */ 4998 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4999 "0329 Kill HBA Data: x%x x%x\n", 5000 phba->pport->port_state, psli->sli_flag); 5001 5002 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5003 if (!pmb) 5004 return 1; 5005 5006 /* Disable the error attention */ 5007 spin_lock_irq(&phba->hbalock); 5008 if (lpfc_readl(phba->HCregaddr, &status)) { 5009 spin_unlock_irq(&phba->hbalock); 5010 mempool_free(pmb, phba->mbox_mem_pool); 5011 return 1; 5012 } 5013 status &= ~HC_ERINT_ENA; 5014 writel(status, phba->HCregaddr); 5015 readl(phba->HCregaddr); /* flush */ 5016 phba->link_flag |= LS_IGNORE_ERATT; 5017 spin_unlock_irq(&phba->hbalock); 5018 5019 lpfc_kill_board(phba, pmb); 5020 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5021 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5022 5023 if (retval != MBX_SUCCESS) { 5024 if (retval != MBX_BUSY) 5025 mempool_free(pmb, phba->mbox_mem_pool); 5026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5027 "2752 KILL_BOARD command failed retval %d\n", 5028 retval); 5029 spin_lock_irq(&phba->hbalock); 5030 phba->link_flag &= ~LS_IGNORE_ERATT; 5031 spin_unlock_irq(&phba->hbalock); 5032 return 1; 5033 } 5034 5035 spin_lock_irq(&phba->hbalock); 5036 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5037 spin_unlock_irq(&phba->hbalock); 5038 5039 mempool_free(pmb, phba->mbox_mem_pool); 5040 5041 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5042 * attention every 100ms for 3 seconds. If we don't get ERATT after 5043 * 3 seconds we still set HBA_ERROR state because the status of the 5044 * board is now undefined. 5045 */ 5046 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5047 return 1; 5048 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5049 mdelay(100); 5050 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5051 return 1; 5052 } 5053 5054 timer_delete_sync(&psli->mbox_tmo); 5055 if (ha_copy & HA_ERATT) { 5056 writel(HA_ERATT, phba->HAregaddr); 5057 phba->pport->stopped = 1; 5058 } 5059 spin_lock_irq(&phba->hbalock); 5060 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5061 psli->mbox_active = NULL; 5062 phba->link_flag &= ~LS_IGNORE_ERATT; 5063 spin_unlock_irq(&phba->hbalock); 5064 5065 lpfc_hba_down_post(phba); 5066 phba->link_state = LPFC_HBA_ERROR; 5067 5068 return ha_copy & HA_ERATT ? 0 : 1; 5069 } 5070 5071 /** 5072 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5073 * @phba: Pointer to HBA context object. 5074 * 5075 * This function resets the HBA by writing HC_INITFF to the control 5076 * register. After the HBA resets, this function resets all the iocb ring 5077 * indices. This function disables PCI layer parity checking during 5078 * the reset. 5079 * This function returns 0 always. 5080 * The caller is not required to hold any locks. 5081 **/ 5082 int 5083 lpfc_sli_brdreset(struct lpfc_hba *phba) 5084 { 5085 struct lpfc_sli *psli; 5086 struct lpfc_sli_ring *pring; 5087 uint16_t cfg_value; 5088 int i; 5089 5090 psli = &phba->sli; 5091 5092 /* Reset HBA */ 5093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5094 "0325 Reset HBA Data: x%x x%x\n", 5095 (phba->pport) ? phba->pport->port_state : 0, 5096 psli->sli_flag); 5097 5098 /* perform board reset */ 5099 phba->fc_eventTag = 0; 5100 phba->link_events = 0; 5101 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5102 if (phba->pport) { 5103 phba->pport->fc_myDID = 0; 5104 phba->pport->fc_prevDID = 0; 5105 } 5106 5107 /* Turn off parity checking and serr during the physical reset */ 5108 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5109 return -EIO; 5110 5111 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5112 (cfg_value & 5113 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5114 5115 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5116 5117 /* Now toggle INITFF bit in the Host Control Register */ 5118 writel(HC_INITFF, phba->HCregaddr); 5119 mdelay(1); 5120 readl(phba->HCregaddr); /* flush */ 5121 writel(0, phba->HCregaddr); 5122 readl(phba->HCregaddr); /* flush */ 5123 5124 /* Restore PCI cmd register */ 5125 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5126 5127 /* Initialize relevant SLI info */ 5128 for (i = 0; i < psli->num_rings; i++) { 5129 pring = &psli->sli3_ring[i]; 5130 pring->flag = 0; 5131 pring->sli.sli3.rspidx = 0; 5132 pring->sli.sli3.next_cmdidx = 0; 5133 pring->sli.sli3.local_getidx = 0; 5134 pring->sli.sli3.cmdidx = 0; 5135 pring->missbufcnt = 0; 5136 } 5137 5138 phba->link_state = LPFC_WARM_START; 5139 return 0; 5140 } 5141 5142 /** 5143 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5144 * @phba: Pointer to HBA context object. 5145 * 5146 * This function resets a SLI4 HBA. This function disables PCI layer parity 5147 * checking during resets the device. The caller is not required to hold 5148 * any locks. 5149 * 5150 * This function returns 0 on success else returns negative error code. 5151 **/ 5152 int 5153 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5154 { 5155 struct lpfc_sli *psli = &phba->sli; 5156 uint16_t cfg_value; 5157 int rc = 0; 5158 5159 /* Reset HBA */ 5160 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5161 "0295 Reset HBA Data: x%x x%x x%lx\n", 5162 phba->pport->port_state, psli->sli_flag, 5163 phba->hba_flag); 5164 5165 /* perform board reset */ 5166 phba->fc_eventTag = 0; 5167 phba->link_events = 0; 5168 phba->pport->fc_myDID = 0; 5169 phba->pport->fc_prevDID = 0; 5170 5171 spin_lock_irq(&phba->hbalock); 5172 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5173 phba->fcf.fcf_flag = 0; 5174 spin_unlock_irq(&phba->hbalock); 5175 5176 /* Now physically reset the device */ 5177 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5178 "0389 Performing PCI function reset!\n"); 5179 5180 /* Turn off parity checking and serr during the physical reset */ 5181 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5182 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5183 "3205 PCI read Config failed\n"); 5184 return -EIO; 5185 } 5186 5187 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5188 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5189 5190 /* Perform FCoE PCI function reset before freeing queue memory */ 5191 rc = lpfc_pci_function_reset(phba); 5192 5193 /* Restore PCI cmd register */ 5194 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5195 5196 return rc; 5197 } 5198 5199 /** 5200 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5201 * @phba: Pointer to HBA context object. 5202 * 5203 * This function is called in the SLI initialization code path to 5204 * restart the HBA. The caller is not required to hold any lock. 5205 * This function writes MBX_RESTART mailbox command to the SLIM and 5206 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5207 * function to free any pending commands. The function enables 5208 * POST only during the first initialization. The function returns zero. 5209 * The function does not guarantee completion of MBX_RESTART mailbox 5210 * command before the return of this function. 5211 **/ 5212 static int 5213 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5214 { 5215 volatile struct MAILBOX_word0 mb; 5216 struct lpfc_sli *psli; 5217 void __iomem *to_slim; 5218 5219 spin_lock_irq(&phba->hbalock); 5220 5221 psli = &phba->sli; 5222 5223 /* Restart HBA */ 5224 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5225 "0337 Restart HBA Data: x%x x%x\n", 5226 (phba->pport) ? phba->pport->port_state : 0, 5227 psli->sli_flag); 5228 5229 mb.word0 = 0; 5230 mb.mbxCommand = MBX_RESTART; 5231 mb.mbxHc = 1; 5232 5233 lpfc_reset_barrier(phba); 5234 5235 to_slim = phba->MBslimaddr; 5236 writel(mb.word0, to_slim); 5237 readl(to_slim); /* flush */ 5238 5239 /* Only skip post after fc_ffinit is completed */ 5240 if (phba->pport && phba->pport->port_state) 5241 mb.word0 = 1; /* This is really setting up word1 */ 5242 else 5243 mb.word0 = 0; /* This is really setting up word1 */ 5244 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5245 writel(mb.word0, to_slim); 5246 readl(to_slim); /* flush */ 5247 5248 lpfc_sli_brdreset(phba); 5249 if (phba->pport) 5250 phba->pport->stopped = 0; 5251 phba->link_state = LPFC_INIT_START; 5252 phba->hba_flag = 0; 5253 spin_unlock_irq(&phba->hbalock); 5254 5255 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5256 psli->stats_start = ktime_get_seconds(); 5257 5258 /* Give the INITFF and Post time to settle. */ 5259 mdelay(100); 5260 5261 lpfc_hba_down_post(phba); 5262 5263 return 0; 5264 } 5265 5266 /** 5267 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5268 * @phba: Pointer to HBA context object. 5269 * 5270 * This function is called in the SLI initialization code path to restart 5271 * a SLI4 HBA. The caller is not required to hold any lock. 5272 * At the end of the function, it calls lpfc_hba_down_post function to 5273 * free any pending commands. 5274 **/ 5275 static int 5276 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5277 { 5278 struct lpfc_sli *psli = &phba->sli; 5279 int rc; 5280 5281 /* Restart HBA */ 5282 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5283 "0296 Restart HBA Data: x%x x%x\n", 5284 phba->pport->port_state, psli->sli_flag); 5285 5286 clear_bit(HBA_SETUP, &phba->hba_flag); 5287 lpfc_sli4_queue_unset(phba); 5288 5289 rc = lpfc_sli4_brdreset(phba); 5290 if (rc) { 5291 phba->link_state = LPFC_HBA_ERROR; 5292 goto hba_down_queue; 5293 } 5294 5295 spin_lock_irq(&phba->hbalock); 5296 phba->pport->stopped = 0; 5297 phba->link_state = LPFC_INIT_START; 5298 phba->hba_flag = 0; 5299 /* Preserve FA-PWWN expectation */ 5300 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5301 spin_unlock_irq(&phba->hbalock); 5302 5303 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5304 psli->stats_start = ktime_get_seconds(); 5305 5306 hba_down_queue: 5307 lpfc_hba_down_post(phba); 5308 lpfc_sli4_queue_destroy(phba); 5309 5310 return rc; 5311 } 5312 5313 /** 5314 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5315 * @phba: Pointer to HBA context object. 5316 * 5317 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5318 * API jump table function pointer from the lpfc_hba struct. 5319 **/ 5320 int 5321 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5322 { 5323 return phba->lpfc_sli_brdrestart(phba); 5324 } 5325 5326 /** 5327 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5328 * @phba: Pointer to HBA context object. 5329 * 5330 * This function is called after a HBA restart to wait for successful 5331 * restart of the HBA. Successful restart of the HBA is indicated by 5332 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5333 * iteration, the function will restart the HBA again. The function returns 5334 * zero if HBA successfully restarted else returns negative error code. 5335 **/ 5336 int 5337 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5338 { 5339 uint32_t status, i = 0; 5340 5341 /* Read the HBA Host Status Register */ 5342 if (lpfc_readl(phba->HSregaddr, &status)) 5343 return -EIO; 5344 5345 /* Check status register to see what current state is */ 5346 i = 0; 5347 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5348 5349 /* Check every 10ms for 10 retries, then every 100ms for 90 5350 * retries, then every 1 sec for 50 retires for a total of 5351 * ~60 seconds before reset the board again and check every 5352 * 1 sec for 50 retries. The up to 60 seconds before the 5353 * board ready is required by the Falcon FIPS zeroization 5354 * complete, and any reset the board in between shall cause 5355 * restart of zeroization, further delay the board ready. 5356 */ 5357 if (i++ >= 200) { 5358 /* Adapter failed to init, timeout, status reg 5359 <status> */ 5360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5361 "0436 Adapter failed to init, " 5362 "timeout, status reg x%x, " 5363 "FW Data: A8 x%x AC x%x\n", status, 5364 readl(phba->MBslimaddr + 0xa8), 5365 readl(phba->MBslimaddr + 0xac)); 5366 phba->link_state = LPFC_HBA_ERROR; 5367 return -ETIMEDOUT; 5368 } 5369 5370 /* Check to see if any errors occurred during init */ 5371 if (status & HS_FFERM) { 5372 /* ERROR: During chipset initialization */ 5373 /* Adapter failed to init, chipset, status reg 5374 <status> */ 5375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5376 "0437 Adapter failed to init, " 5377 "chipset, status reg x%x, " 5378 "FW Data: A8 x%x AC x%x\n", status, 5379 readl(phba->MBslimaddr + 0xa8), 5380 readl(phba->MBslimaddr + 0xac)); 5381 phba->link_state = LPFC_HBA_ERROR; 5382 return -EIO; 5383 } 5384 5385 if (i <= 10) 5386 msleep(10); 5387 else if (i <= 100) 5388 msleep(100); 5389 else 5390 msleep(1000); 5391 5392 if (i == 150) { 5393 /* Do post */ 5394 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5395 lpfc_sli_brdrestart(phba); 5396 } 5397 /* Read the HBA Host Status Register */ 5398 if (lpfc_readl(phba->HSregaddr, &status)) 5399 return -EIO; 5400 } 5401 5402 /* Check to see if any errors occurred during init */ 5403 if (status & HS_FFERM) { 5404 /* ERROR: During chipset initialization */ 5405 /* Adapter failed to init, chipset, status reg <status> */ 5406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5407 "0438 Adapter failed to init, chipset, " 5408 "status reg x%x, " 5409 "FW Data: A8 x%x AC x%x\n", status, 5410 readl(phba->MBslimaddr + 0xa8), 5411 readl(phba->MBslimaddr + 0xac)); 5412 phba->link_state = LPFC_HBA_ERROR; 5413 return -EIO; 5414 } 5415 5416 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5417 5418 /* Clear all interrupt enable conditions */ 5419 writel(0, phba->HCregaddr); 5420 readl(phba->HCregaddr); /* flush */ 5421 5422 /* setup host attn register */ 5423 writel(0xffffffff, phba->HAregaddr); 5424 readl(phba->HAregaddr); /* flush */ 5425 return 0; 5426 } 5427 5428 /** 5429 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5430 * 5431 * This function calculates and returns the number of HBQs required to be 5432 * configured. 5433 **/ 5434 int 5435 lpfc_sli_hbq_count(void) 5436 { 5437 return ARRAY_SIZE(lpfc_hbq_defs); 5438 } 5439 5440 /** 5441 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5442 * 5443 * This function adds the number of hbq entries in every HBQ to get 5444 * the total number of hbq entries required for the HBA and returns 5445 * the total count. 5446 **/ 5447 static int 5448 lpfc_sli_hbq_entry_count(void) 5449 { 5450 int hbq_count = lpfc_sli_hbq_count(); 5451 int count = 0; 5452 int i; 5453 5454 for (i = 0; i < hbq_count; ++i) 5455 count += lpfc_hbq_defs[i]->entry_count; 5456 return count; 5457 } 5458 5459 /** 5460 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5461 * 5462 * This function calculates amount of memory required for all hbq entries 5463 * to be configured and returns the total memory required. 5464 **/ 5465 int 5466 lpfc_sli_hbq_size(void) 5467 { 5468 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5469 } 5470 5471 /** 5472 * lpfc_sli_hbq_setup - configure and initialize HBQs 5473 * @phba: Pointer to HBA context object. 5474 * 5475 * This function is called during the SLI initialization to configure 5476 * all the HBQs and post buffers to the HBQ. The caller is not 5477 * required to hold any locks. This function will return zero if successful 5478 * else it will return negative error code. 5479 **/ 5480 static int 5481 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5482 { 5483 int hbq_count = lpfc_sli_hbq_count(); 5484 LPFC_MBOXQ_t *pmb; 5485 MAILBOX_t *pmbox; 5486 uint32_t hbqno; 5487 uint32_t hbq_entry_index; 5488 5489 /* Get a Mailbox buffer to setup mailbox 5490 * commands for HBA initialization 5491 */ 5492 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5493 5494 if (!pmb) 5495 return -ENOMEM; 5496 5497 pmbox = &pmb->u.mb; 5498 5499 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5500 phba->link_state = LPFC_INIT_MBX_CMDS; 5501 phba->hbq_in_use = 1; 5502 5503 hbq_entry_index = 0; 5504 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5505 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5506 phba->hbqs[hbqno].hbqPutIdx = 0; 5507 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5508 phba->hbqs[hbqno].entry_count = 5509 lpfc_hbq_defs[hbqno]->entry_count; 5510 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5511 hbq_entry_index, pmb); 5512 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5513 5514 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5515 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5516 mbxStatus <status>, ring <num> */ 5517 5518 lpfc_printf_log(phba, KERN_ERR, 5519 LOG_SLI | LOG_VPORT, 5520 "1805 Adapter failed to init. " 5521 "Data: x%x x%x x%x\n", 5522 pmbox->mbxCommand, 5523 pmbox->mbxStatus, hbqno); 5524 5525 phba->link_state = LPFC_HBA_ERROR; 5526 mempool_free(pmb, phba->mbox_mem_pool); 5527 return -ENXIO; 5528 } 5529 } 5530 phba->hbq_count = hbq_count; 5531 5532 mempool_free(pmb, phba->mbox_mem_pool); 5533 5534 /* Initially populate or replenish the HBQs */ 5535 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5536 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5537 return 0; 5538 } 5539 5540 /** 5541 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5542 * @phba: Pointer to HBA context object. 5543 * 5544 * This function is called during the SLI initialization to configure 5545 * all the HBQs and post buffers to the HBQ. The caller is not 5546 * required to hold any locks. This function will return zero if successful 5547 * else it will return negative error code. 5548 **/ 5549 static int 5550 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5551 { 5552 phba->hbq_in_use = 1; 5553 /** 5554 * Specific case when the MDS diagnostics is enabled and supported. 5555 * The receive buffer count is truncated to manage the incoming 5556 * traffic. 5557 **/ 5558 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5559 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5560 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5561 else 5562 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5563 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5564 phba->hbq_count = 1; 5565 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5566 /* Initially populate or replenish the HBQs */ 5567 return 0; 5568 } 5569 5570 /** 5571 * lpfc_sli_config_port - Issue config port mailbox command 5572 * @phba: Pointer to HBA context object. 5573 * @sli_mode: sli mode - 2/3 5574 * 5575 * This function is called by the sli initialization code path 5576 * to issue config_port mailbox command. This function restarts the 5577 * HBA firmware and issues a config_port mailbox command to configure 5578 * the SLI interface in the sli mode specified by sli_mode 5579 * variable. The caller is not required to hold any locks. 5580 * The function returns 0 if successful, else returns negative error 5581 * code. 5582 **/ 5583 int 5584 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5585 { 5586 LPFC_MBOXQ_t *pmb; 5587 uint32_t resetcount = 0, rc = 0, done = 0; 5588 5589 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5590 if (!pmb) { 5591 phba->link_state = LPFC_HBA_ERROR; 5592 return -ENOMEM; 5593 } 5594 5595 phba->sli_rev = sli_mode; 5596 while (resetcount < 2 && !done) { 5597 spin_lock_irq(&phba->hbalock); 5598 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5599 spin_unlock_irq(&phba->hbalock); 5600 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5601 lpfc_sli_brdrestart(phba); 5602 rc = lpfc_sli_chipset_init(phba); 5603 if (rc) 5604 break; 5605 5606 spin_lock_irq(&phba->hbalock); 5607 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5608 spin_unlock_irq(&phba->hbalock); 5609 resetcount++; 5610 5611 /* Call pre CONFIG_PORT mailbox command initialization. A 5612 * value of 0 means the call was successful. Any other 5613 * nonzero value is a failure, but if ERESTART is returned, 5614 * the driver may reset the HBA and try again. 5615 */ 5616 rc = lpfc_config_port_prep(phba); 5617 if (rc == -ERESTART) { 5618 phba->link_state = LPFC_LINK_UNKNOWN; 5619 continue; 5620 } else if (rc) 5621 break; 5622 5623 phba->link_state = LPFC_INIT_MBX_CMDS; 5624 lpfc_config_port(phba, pmb); 5625 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5626 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5627 LPFC_SLI3_HBQ_ENABLED | 5628 LPFC_SLI3_CRP_ENABLED | 5629 LPFC_SLI3_DSS_ENABLED); 5630 if (rc != MBX_SUCCESS) { 5631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5632 "0442 Adapter failed to init, mbxCmd x%x " 5633 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5634 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5635 spin_lock_irq(&phba->hbalock); 5636 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5637 spin_unlock_irq(&phba->hbalock); 5638 rc = -ENXIO; 5639 } else { 5640 /* Allow asynchronous mailbox command to go through */ 5641 spin_lock_irq(&phba->hbalock); 5642 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5643 spin_unlock_irq(&phba->hbalock); 5644 done = 1; 5645 5646 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5647 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5648 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5649 "3110 Port did not grant ASABT\n"); 5650 } 5651 } 5652 if (!done) { 5653 rc = -EINVAL; 5654 goto do_prep_failed; 5655 } 5656 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5657 if (!pmb->u.mb.un.varCfgPort.cMA) { 5658 rc = -ENXIO; 5659 goto do_prep_failed; 5660 } 5661 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5662 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5663 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5664 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5665 phba->max_vpi : phba->max_vports; 5666 5667 } else 5668 phba->max_vpi = 0; 5669 if (pmb->u.mb.un.varCfgPort.gerbm) 5670 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5671 if (pmb->u.mb.un.varCfgPort.gcrp) 5672 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5673 5674 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5675 phba->port_gp = phba->mbox->us.s3_pgp.port; 5676 5677 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5678 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5679 phba->cfg_enable_bg = 0; 5680 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5682 "0443 Adapter did not grant " 5683 "BlockGuard\n"); 5684 } 5685 } 5686 } else { 5687 phba->hbq_get = NULL; 5688 phba->port_gp = phba->mbox->us.s2.port; 5689 phba->max_vpi = 0; 5690 } 5691 do_prep_failed: 5692 mempool_free(pmb, phba->mbox_mem_pool); 5693 return rc; 5694 } 5695 5696 5697 /** 5698 * lpfc_sli_hba_setup - SLI initialization function 5699 * @phba: Pointer to HBA context object. 5700 * 5701 * This function is the main SLI initialization function. This function 5702 * is called by the HBA initialization code, HBA reset code and HBA 5703 * error attention handler code. Caller is not required to hold any 5704 * locks. This function issues config_port mailbox command to configure 5705 * the SLI, setup iocb rings and HBQ rings. In the end the function 5706 * calls the config_port_post function to issue init_link mailbox 5707 * command and to start the discovery. The function will return zero 5708 * if successful, else it will return negative error code. 5709 **/ 5710 int 5711 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5712 { 5713 uint32_t rc; 5714 int i; 5715 int longs; 5716 5717 /* Enable ISR already does config_port because of config_msi mbx */ 5718 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5719 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5720 if (rc) 5721 return -EIO; 5722 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5723 } 5724 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5725 5726 if (phba->sli_rev == 3) { 5727 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5728 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5729 } else { 5730 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5731 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5732 phba->sli3_options = 0; 5733 } 5734 5735 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5736 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5737 phba->sli_rev, phba->max_vpi); 5738 rc = lpfc_sli_ring_map(phba); 5739 5740 if (rc) 5741 goto lpfc_sli_hba_setup_error; 5742 5743 /* Initialize VPIs. */ 5744 if (phba->sli_rev == LPFC_SLI_REV3) { 5745 /* 5746 * The VPI bitmask and physical ID array are allocated 5747 * and initialized once only - at driver load. A port 5748 * reset doesn't need to reinitialize this memory. 5749 */ 5750 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5751 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5752 phba->vpi_bmask = kcalloc(longs, 5753 sizeof(unsigned long), 5754 GFP_KERNEL); 5755 if (!phba->vpi_bmask) { 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 5760 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5761 sizeof(uint16_t), 5762 GFP_KERNEL); 5763 if (!phba->vpi_ids) { 5764 kfree(phba->vpi_bmask); 5765 rc = -ENOMEM; 5766 goto lpfc_sli_hba_setup_error; 5767 } 5768 for (i = 0; i < phba->max_vpi; i++) 5769 phba->vpi_ids[i] = i; 5770 } 5771 } 5772 5773 /* Init HBQs */ 5774 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5775 rc = lpfc_sli_hbq_setup(phba); 5776 if (rc) 5777 goto lpfc_sli_hba_setup_error; 5778 } 5779 spin_lock_irq(&phba->hbalock); 5780 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5781 spin_unlock_irq(&phba->hbalock); 5782 5783 rc = lpfc_config_port_post(phba); 5784 if (rc) 5785 goto lpfc_sli_hba_setup_error; 5786 5787 return rc; 5788 5789 lpfc_sli_hba_setup_error: 5790 phba->link_state = LPFC_HBA_ERROR; 5791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5792 "0445 Firmware initialization failed\n"); 5793 return rc; 5794 } 5795 5796 /** 5797 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5798 * @phba: Pointer to HBA context object. 5799 * 5800 * This function issue a dump mailbox command to read config region 5801 * 23 and parse the records in the region and populate driver 5802 * data structure. 5803 **/ 5804 static int 5805 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5806 { 5807 LPFC_MBOXQ_t *mboxq; 5808 struct lpfc_dmabuf *mp; 5809 struct lpfc_mqe *mqe; 5810 uint32_t data_length; 5811 int rc; 5812 5813 /* Program the default value of vlan_id and fc_map */ 5814 phba->valid_vlan = 0; 5815 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5816 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5817 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5818 5819 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5820 if (!mboxq) 5821 return -ENOMEM; 5822 5823 mqe = &mboxq->u.mqe; 5824 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5825 rc = -ENOMEM; 5826 goto out_free_mboxq; 5827 } 5828 5829 mp = mboxq->ctx_buf; 5830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5831 5832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5833 "(%d):2571 Mailbox cmd x%x Status x%x " 5834 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5835 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5836 "CQ: x%x x%x x%x x%x\n", 5837 mboxq->vport ? mboxq->vport->vpi : 0, 5838 bf_get(lpfc_mqe_command, mqe), 5839 bf_get(lpfc_mqe_status, mqe), 5840 mqe->un.mb_words[0], mqe->un.mb_words[1], 5841 mqe->un.mb_words[2], mqe->un.mb_words[3], 5842 mqe->un.mb_words[4], mqe->un.mb_words[5], 5843 mqe->un.mb_words[6], mqe->un.mb_words[7], 5844 mqe->un.mb_words[8], mqe->un.mb_words[9], 5845 mqe->un.mb_words[10], mqe->un.mb_words[11], 5846 mqe->un.mb_words[12], mqe->un.mb_words[13], 5847 mqe->un.mb_words[14], mqe->un.mb_words[15], 5848 mqe->un.mb_words[16], mqe->un.mb_words[50], 5849 mboxq->mcqe.word0, 5850 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5851 mboxq->mcqe.trailer); 5852 5853 if (rc) { 5854 rc = -EIO; 5855 goto out_free_mboxq; 5856 } 5857 data_length = mqe->un.mb_words[5]; 5858 if (data_length > DMP_RGN23_SIZE) { 5859 rc = -EIO; 5860 goto out_free_mboxq; 5861 } 5862 5863 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5864 rc = 0; 5865 5866 out_free_mboxq: 5867 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5868 return rc; 5869 } 5870 5871 /** 5872 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5873 * @phba: pointer to lpfc hba data structure. 5874 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5875 * @vpd: pointer to the memory to hold resulting port vpd data. 5876 * @vpd_size: On input, the number of bytes allocated to @vpd. 5877 * On output, the number of data bytes in @vpd. 5878 * 5879 * This routine executes a READ_REV SLI4 mailbox command. In 5880 * addition, this routine gets the port vpd data. 5881 * 5882 * Return codes 5883 * 0 - successful 5884 * -ENOMEM - could not allocated memory. 5885 **/ 5886 static int 5887 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5888 uint8_t *vpd, uint32_t *vpd_size) 5889 { 5890 int rc = 0; 5891 uint32_t dma_size; 5892 struct lpfc_dmabuf *dmabuf; 5893 struct lpfc_mqe *mqe; 5894 5895 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5896 if (!dmabuf) 5897 return -ENOMEM; 5898 5899 /* 5900 * Get a DMA buffer for the vpd data resulting from the READ_REV 5901 * mailbox command. 5902 */ 5903 dma_size = *vpd_size; 5904 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5905 &dmabuf->phys, GFP_KERNEL); 5906 if (!dmabuf->virt) { 5907 kfree(dmabuf); 5908 return -ENOMEM; 5909 } 5910 5911 /* 5912 * The SLI4 implementation of READ_REV conflicts at word1, 5913 * bits 31:16 and SLI4 adds vpd functionality not present 5914 * in SLI3. This code corrects the conflicts. 5915 */ 5916 lpfc_read_rev(phba, mboxq); 5917 mqe = &mboxq->u.mqe; 5918 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5919 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5920 mqe->un.read_rev.word1 &= 0x0000FFFF; 5921 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5922 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5923 5924 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5925 if (rc) { 5926 dma_free_coherent(&phba->pcidev->dev, dma_size, 5927 dmabuf->virt, dmabuf->phys); 5928 kfree(dmabuf); 5929 return -EIO; 5930 } 5931 5932 /* 5933 * The available vpd length cannot be bigger than the 5934 * DMA buffer passed to the port. Catch the less than 5935 * case and update the caller's size. 5936 */ 5937 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5938 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5939 5940 memcpy(vpd, dmabuf->virt, *vpd_size); 5941 5942 dma_free_coherent(&phba->pcidev->dev, dma_size, 5943 dmabuf->virt, dmabuf->phys); 5944 kfree(dmabuf); 5945 return 0; 5946 } 5947 5948 /** 5949 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5950 * @phba: pointer to lpfc hba data structure. 5951 * 5952 * This routine retrieves SLI4 device physical port name this PCI function 5953 * is attached to. 5954 * 5955 * Return codes 5956 * 0 - successful 5957 * otherwise - failed to retrieve controller attributes 5958 **/ 5959 static int 5960 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5961 { 5962 LPFC_MBOXQ_t *mboxq; 5963 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5964 struct lpfc_controller_attribute *cntl_attr; 5965 void *virtaddr = NULL; 5966 uint32_t alloclen, reqlen; 5967 uint32_t shdr_status, shdr_add_status; 5968 union lpfc_sli4_cfg_shdr *shdr; 5969 int rc; 5970 5971 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5972 if (!mboxq) 5973 return -ENOMEM; 5974 5975 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5976 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5977 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5978 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5979 LPFC_SLI4_MBX_NEMBED); 5980 5981 if (alloclen < reqlen) { 5982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5983 "3084 Allocated DMA memory size (%d) is " 5984 "less than the requested DMA memory size " 5985 "(%d)\n", alloclen, reqlen); 5986 rc = -ENOMEM; 5987 goto out_free_mboxq; 5988 } 5989 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5990 virtaddr = mboxq->sge_array->addr[0]; 5991 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5992 shdr = &mbx_cntl_attr->cfg_shdr; 5993 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5994 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5995 if (shdr_status || shdr_add_status || rc) { 5996 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5997 "3085 Mailbox x%x (x%x/x%x) failed, " 5998 "rc:x%x, status:x%x, add_status:x%x\n", 5999 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6000 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6001 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6002 rc, shdr_status, shdr_add_status); 6003 rc = -ENXIO; 6004 goto out_free_mboxq; 6005 } 6006 6007 cntl_attr = &mbx_cntl_attr->cntl_attr; 6008 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6009 phba->sli4_hba.lnk_info.lnk_tp = 6010 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6011 phba->sli4_hba.lnk_info.lnk_no = 6012 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6013 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6014 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6015 6016 memcpy(phba->BIOSVersion, cntl_attr->bios_ver_str, 6017 sizeof(phba->BIOSVersion)); 6018 phba->BIOSVersion[sizeof(phba->BIOSVersion) - 1] = '\0'; 6019 6020 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6021 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6022 "flash_id: x%02x, asic_rev: x%02x\n", 6023 phba->sli4_hba.lnk_info.lnk_tp, 6024 phba->sli4_hba.lnk_info.lnk_no, 6025 phba->BIOSVersion, phba->sli4_hba.flash_id, 6026 phba->sli4_hba.asic_rev); 6027 out_free_mboxq: 6028 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6029 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6030 else 6031 mempool_free(mboxq, phba->mbox_mem_pool); 6032 return rc; 6033 } 6034 6035 /** 6036 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6037 * @phba: pointer to lpfc hba data structure. 6038 * 6039 * This routine retrieves SLI4 device physical port name this PCI function 6040 * is attached to. 6041 * 6042 * Return codes 6043 * 0 - successful 6044 * otherwise - failed to retrieve physical port name 6045 **/ 6046 static int 6047 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6048 { 6049 LPFC_MBOXQ_t *mboxq; 6050 struct lpfc_mbx_get_port_name *get_port_name; 6051 uint32_t shdr_status, shdr_add_status; 6052 union lpfc_sli4_cfg_shdr *shdr; 6053 char cport_name = 0; 6054 int rc; 6055 6056 /* We assume nothing at this point */ 6057 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6058 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6059 6060 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6061 if (!mboxq) 6062 return -ENOMEM; 6063 /* obtain link type and link number via READ_CONFIG */ 6064 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6065 lpfc_sli4_read_config(phba); 6066 6067 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6068 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6069 6070 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6071 goto retrieve_ppname; 6072 6073 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6074 rc = lpfc_sli4_get_ctl_attr(phba); 6075 if (rc) 6076 goto out_free_mboxq; 6077 6078 retrieve_ppname: 6079 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6080 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6081 sizeof(struct lpfc_mbx_get_port_name) - 6082 sizeof(struct lpfc_sli4_cfg_mhdr), 6083 LPFC_SLI4_MBX_EMBED); 6084 get_port_name = &mboxq->u.mqe.un.get_port_name; 6085 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6086 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6087 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6088 phba->sli4_hba.lnk_info.lnk_tp); 6089 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6092 if (shdr_status || shdr_add_status || rc) { 6093 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6094 "3087 Mailbox x%x (x%x/x%x) failed: " 6095 "rc:x%x, status:x%x, add_status:x%x\n", 6096 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6097 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6098 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6099 rc, shdr_status, shdr_add_status); 6100 rc = -ENXIO; 6101 goto out_free_mboxq; 6102 } 6103 switch (phba->sli4_hba.lnk_info.lnk_no) { 6104 case LPFC_LINK_NUMBER_0: 6105 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6106 &get_port_name->u.response); 6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6108 break; 6109 case LPFC_LINK_NUMBER_1: 6110 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6111 &get_port_name->u.response); 6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6113 break; 6114 case LPFC_LINK_NUMBER_2: 6115 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6116 &get_port_name->u.response); 6117 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6118 break; 6119 case LPFC_LINK_NUMBER_3: 6120 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6121 &get_port_name->u.response); 6122 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6123 break; 6124 default: 6125 break; 6126 } 6127 6128 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6129 phba->Port[0] = cport_name; 6130 phba->Port[1] = '\0'; 6131 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6132 "3091 SLI get port name: %s\n", phba->Port); 6133 } 6134 6135 out_free_mboxq: 6136 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6137 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6138 else 6139 mempool_free(mboxq, phba->mbox_mem_pool); 6140 return rc; 6141 } 6142 6143 /** 6144 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6145 * @phba: pointer to lpfc hba data structure. 6146 * 6147 * This routine is called to explicitly arm the SLI4 device's completion and 6148 * event queues 6149 **/ 6150 static void 6151 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6152 { 6153 int qidx; 6154 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6155 struct lpfc_sli4_hdw_queue *qp; 6156 struct lpfc_queue *eq; 6157 6158 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6159 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6160 if (sli4_hba->nvmels_cq) 6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6162 LPFC_QUEUE_REARM); 6163 6164 if (sli4_hba->hdwq) { 6165 /* Loop thru all Hardware Queues */ 6166 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6167 qp = &sli4_hba->hdwq[qidx]; 6168 /* ARM the corresponding CQ */ 6169 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6170 LPFC_QUEUE_REARM); 6171 } 6172 6173 /* Loop thru all IRQ vectors */ 6174 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6175 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6176 /* ARM the corresponding EQ */ 6177 sli4_hba->sli4_write_eq_db(phba, eq, 6178 0, LPFC_QUEUE_REARM); 6179 } 6180 } 6181 6182 if (phba->nvmet_support) { 6183 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6184 sli4_hba->sli4_write_cq_db(phba, 6185 sli4_hba->nvmet_cqset[qidx], 0, 6186 LPFC_QUEUE_REARM); 6187 } 6188 } 6189 } 6190 6191 /** 6192 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6193 * @phba: Pointer to HBA context object. 6194 * @type: The resource extent type. 6195 * @extnt_count: buffer to hold port available extent count. 6196 * @extnt_size: buffer to hold element count per extent. 6197 * 6198 * This function calls the port and retrievs the number of available 6199 * extents and their size for a particular extent type. 6200 * 6201 * Returns: 0 if successful. Nonzero otherwise. 6202 **/ 6203 int 6204 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6205 uint16_t *extnt_count, uint16_t *extnt_size) 6206 { 6207 int rc = 0; 6208 uint32_t length; 6209 uint32_t mbox_tmo; 6210 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6211 LPFC_MBOXQ_t *mbox; 6212 6213 *extnt_count = 0; 6214 *extnt_size = 0; 6215 6216 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6217 if (!mbox) 6218 return -ENOMEM; 6219 6220 /* Find out how many extents are available for this resource type */ 6221 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6222 sizeof(struct lpfc_sli4_cfg_mhdr)); 6223 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6224 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6225 length, LPFC_SLI4_MBX_EMBED); 6226 6227 /* Send an extents count of 0 - the GET doesn't use it. */ 6228 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6229 LPFC_SLI4_MBX_EMBED); 6230 if (unlikely(rc)) { 6231 rc = -EIO; 6232 goto err_exit; 6233 } 6234 6235 if (!phba->sli4_hba.intr_enable) 6236 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6237 else { 6238 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6239 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6240 } 6241 if (unlikely(rc)) { 6242 rc = -EIO; 6243 goto err_exit; 6244 } 6245 6246 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6247 if (bf_get(lpfc_mbox_hdr_status, 6248 &rsrc_info->header.cfg_shdr.response)) { 6249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6250 "2930 Failed to get resource extents " 6251 "Status 0x%x Add'l Status 0x%x\n", 6252 bf_get(lpfc_mbox_hdr_status, 6253 &rsrc_info->header.cfg_shdr.response), 6254 bf_get(lpfc_mbox_hdr_add_status, 6255 &rsrc_info->header.cfg_shdr.response)); 6256 rc = -EIO; 6257 goto err_exit; 6258 } 6259 6260 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6261 &rsrc_info->u.rsp); 6262 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6263 &rsrc_info->u.rsp); 6264 6265 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6266 "3162 Retrieved extents type-%d from port: count:%d, " 6267 "size:%d\n", type, *extnt_count, *extnt_size); 6268 6269 err_exit: 6270 mempool_free(mbox, phba->mbox_mem_pool); 6271 return rc; 6272 } 6273 6274 /** 6275 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6276 * @phba: Pointer to HBA context object. 6277 * @type: The extent type to check. 6278 * 6279 * This function reads the current available extents from the port and checks 6280 * if the extent count or extent size has changed since the last access. 6281 * Callers use this routine post port reset to understand if there is a 6282 * extent reprovisioning requirement. 6283 * 6284 * Returns: 6285 * -Error: error indicates problem. 6286 * 1: Extent count or size has changed. 6287 * 0: No changes. 6288 **/ 6289 static int 6290 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6291 { 6292 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6293 uint16_t size_diff, rsrc_ext_size; 6294 int rc = 0; 6295 struct lpfc_rsrc_blks *rsrc_entry; 6296 struct list_head *rsrc_blk_list = NULL; 6297 6298 size_diff = 0; 6299 curr_ext_cnt = 0; 6300 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6301 &rsrc_ext_cnt, 6302 &rsrc_ext_size); 6303 if (unlikely(rc)) 6304 return -EIO; 6305 6306 switch (type) { 6307 case LPFC_RSC_TYPE_FCOE_RPI: 6308 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6309 break; 6310 case LPFC_RSC_TYPE_FCOE_VPI: 6311 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6312 break; 6313 case LPFC_RSC_TYPE_FCOE_XRI: 6314 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6315 break; 6316 case LPFC_RSC_TYPE_FCOE_VFI: 6317 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6318 break; 6319 default: 6320 break; 6321 } 6322 6323 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6324 curr_ext_cnt++; 6325 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6326 size_diff++; 6327 } 6328 6329 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6330 rc = 1; 6331 6332 return rc; 6333 } 6334 6335 /** 6336 * lpfc_sli4_cfg_post_extnts - 6337 * @phba: Pointer to HBA context object. 6338 * @extnt_cnt: number of available extents. 6339 * @type: the extent type (rpi, xri, vfi, vpi). 6340 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6341 * @mbox: pointer to the caller's allocated mailbox structure. 6342 * 6343 * This function executes the extents allocation request. It also 6344 * takes care of the amount of memory needed to allocate or get the 6345 * allocated extents. It is the caller's responsibility to evaluate 6346 * the response. 6347 * 6348 * Returns: 6349 * -Error: Error value describes the condition found. 6350 * 0: if successful 6351 **/ 6352 static int 6353 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6354 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6355 { 6356 int rc = 0; 6357 uint32_t req_len; 6358 uint32_t emb_len; 6359 uint32_t alloc_len, mbox_tmo; 6360 6361 /* Calculate the total requested length of the dma memory */ 6362 req_len = extnt_cnt * sizeof(uint16_t); 6363 6364 /* 6365 * Calculate the size of an embedded mailbox. The uint32_t 6366 * accounts for extents-specific word. 6367 */ 6368 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6369 sizeof(uint32_t); 6370 6371 /* 6372 * Presume the allocation and response will fit into an embedded 6373 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6374 */ 6375 *emb = LPFC_SLI4_MBX_EMBED; 6376 if (req_len > emb_len) { 6377 req_len = extnt_cnt * sizeof(uint16_t) + 6378 sizeof(union lpfc_sli4_cfg_shdr) + 6379 sizeof(uint32_t); 6380 *emb = LPFC_SLI4_MBX_NEMBED; 6381 } 6382 6383 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6384 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6385 req_len, *emb); 6386 if (alloc_len < req_len) { 6387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6388 "2982 Allocated DMA memory size (x%x) is " 6389 "less than the requested DMA memory " 6390 "size (x%x)\n", alloc_len, req_len); 6391 return -ENOMEM; 6392 } 6393 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6394 if (unlikely(rc)) 6395 return -EIO; 6396 6397 if (!phba->sli4_hba.intr_enable) 6398 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6399 else { 6400 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6401 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6402 } 6403 6404 if (unlikely(rc)) 6405 rc = -EIO; 6406 return rc; 6407 } 6408 6409 /** 6410 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6411 * @phba: Pointer to HBA context object. 6412 * @type: The resource extent type to allocate. 6413 * 6414 * This function allocates the number of elements for the specified 6415 * resource type. 6416 **/ 6417 static int 6418 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6419 { 6420 bool emb = false; 6421 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6422 uint16_t rsrc_id, rsrc_start, j, k; 6423 uint16_t *ids; 6424 int i, rc; 6425 unsigned long longs; 6426 unsigned long *bmask; 6427 struct lpfc_rsrc_blks *rsrc_blks; 6428 LPFC_MBOXQ_t *mbox; 6429 uint32_t length; 6430 struct lpfc_id_range *id_array = NULL; 6431 void *virtaddr = NULL; 6432 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6433 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6434 struct list_head *ext_blk_list; 6435 6436 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6437 &rsrc_cnt, 6438 &rsrc_size); 6439 if (unlikely(rc)) 6440 return -EIO; 6441 6442 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6444 "3009 No available Resource Extents " 6445 "for resource type 0x%x: Count: 0x%x, " 6446 "Size 0x%x\n", type, rsrc_cnt, 6447 rsrc_size); 6448 return -ENOMEM; 6449 } 6450 6451 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6452 "2903 Post resource extents type-0x%x: " 6453 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6454 6455 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6456 if (!mbox) 6457 return -ENOMEM; 6458 6459 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6460 if (unlikely(rc)) { 6461 rc = -EIO; 6462 goto err_exit; 6463 } 6464 6465 /* 6466 * Figure out where the response is located. Then get local pointers 6467 * to the response data. The port does not guarantee to respond to 6468 * all extents counts request so update the local variable with the 6469 * allocated count from the port. 6470 */ 6471 if (emb == LPFC_SLI4_MBX_EMBED) { 6472 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6473 id_array = &rsrc_ext->u.rsp.id[0]; 6474 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6475 } else { 6476 virtaddr = mbox->sge_array->addr[0]; 6477 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6478 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6479 id_array = &n_rsrc->id; 6480 } 6481 6482 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6483 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6484 6485 /* 6486 * Based on the resource size and count, correct the base and max 6487 * resource values. 6488 */ 6489 length = sizeof(struct lpfc_rsrc_blks); 6490 switch (type) { 6491 case LPFC_RSC_TYPE_FCOE_RPI: 6492 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6493 sizeof(unsigned long), 6494 GFP_KERNEL); 6495 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6496 rc = -ENOMEM; 6497 goto err_exit; 6498 } 6499 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6500 sizeof(uint16_t), 6501 GFP_KERNEL); 6502 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6503 kfree(phba->sli4_hba.rpi_bmask); 6504 rc = -ENOMEM; 6505 goto err_exit; 6506 } 6507 6508 /* 6509 * The next_rpi was initialized with the maximum available 6510 * count but the port may allocate a smaller number. Catch 6511 * that case and update the next_rpi. 6512 */ 6513 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6514 6515 /* Initialize local ptrs for common extent processing later. */ 6516 bmask = phba->sli4_hba.rpi_bmask; 6517 ids = phba->sli4_hba.rpi_ids; 6518 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6519 break; 6520 case LPFC_RSC_TYPE_FCOE_VPI: 6521 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6522 GFP_KERNEL); 6523 if (unlikely(!phba->vpi_bmask)) { 6524 rc = -ENOMEM; 6525 goto err_exit; 6526 } 6527 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6528 GFP_KERNEL); 6529 if (unlikely(!phba->vpi_ids)) { 6530 kfree(phba->vpi_bmask); 6531 rc = -ENOMEM; 6532 goto err_exit; 6533 } 6534 6535 /* Initialize local ptrs for common extent processing later. */ 6536 bmask = phba->vpi_bmask; 6537 ids = phba->vpi_ids; 6538 ext_blk_list = &phba->lpfc_vpi_blk_list; 6539 break; 6540 case LPFC_RSC_TYPE_FCOE_XRI: 6541 phba->sli4_hba.xri_bmask = kcalloc(longs, 6542 sizeof(unsigned long), 6543 GFP_KERNEL); 6544 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 phba->sli4_hba.max_cfg_param.xri_used = 0; 6549 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6550 sizeof(uint16_t), 6551 GFP_KERNEL); 6552 if (unlikely(!phba->sli4_hba.xri_ids)) { 6553 kfree(phba->sli4_hba.xri_bmask); 6554 rc = -ENOMEM; 6555 goto err_exit; 6556 } 6557 6558 /* Initialize local ptrs for common extent processing later. */ 6559 bmask = phba->sli4_hba.xri_bmask; 6560 ids = phba->sli4_hba.xri_ids; 6561 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6562 break; 6563 case LPFC_RSC_TYPE_FCOE_VFI: 6564 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6565 sizeof(unsigned long), 6566 GFP_KERNEL); 6567 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6568 rc = -ENOMEM; 6569 goto err_exit; 6570 } 6571 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6572 sizeof(uint16_t), 6573 GFP_KERNEL); 6574 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6575 kfree(phba->sli4_hba.vfi_bmask); 6576 rc = -ENOMEM; 6577 goto err_exit; 6578 } 6579 6580 /* Initialize local ptrs for common extent processing later. */ 6581 bmask = phba->sli4_hba.vfi_bmask; 6582 ids = phba->sli4_hba.vfi_ids; 6583 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6584 break; 6585 default: 6586 /* Unsupported Opcode. Fail call. */ 6587 id_array = NULL; 6588 bmask = NULL; 6589 ids = NULL; 6590 ext_blk_list = NULL; 6591 goto err_exit; 6592 } 6593 6594 /* 6595 * Complete initializing the extent configuration with the 6596 * allocated ids assigned to this function. The bitmask serves 6597 * as an index into the array and manages the available ids. The 6598 * array just stores the ids communicated to the port via the wqes. 6599 */ 6600 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6601 if ((i % 2) == 0) 6602 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6603 &id_array[k]); 6604 else 6605 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6606 &id_array[k]); 6607 6608 rsrc_blks = kzalloc(length, GFP_KERNEL); 6609 if (unlikely(!rsrc_blks)) { 6610 rc = -ENOMEM; 6611 kfree(bmask); 6612 kfree(ids); 6613 goto err_exit; 6614 } 6615 rsrc_blks->rsrc_start = rsrc_id; 6616 rsrc_blks->rsrc_size = rsrc_size; 6617 list_add_tail(&rsrc_blks->list, ext_blk_list); 6618 rsrc_start = rsrc_id; 6619 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6620 phba->sli4_hba.io_xri_start = rsrc_start + 6621 lpfc_sli4_get_iocb_cnt(phba); 6622 } 6623 6624 while (rsrc_id < (rsrc_start + rsrc_size)) { 6625 ids[j] = rsrc_id; 6626 rsrc_id++; 6627 j++; 6628 } 6629 /* Entire word processed. Get next word.*/ 6630 if ((i % 2) == 1) 6631 k++; 6632 } 6633 err_exit: 6634 lpfc_sli4_mbox_cmd_free(phba, mbox); 6635 return rc; 6636 } 6637 6638 6639 6640 /** 6641 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6642 * @phba: Pointer to HBA context object. 6643 * @type: the extent's type. 6644 * 6645 * This function deallocates all extents of a particular resource type. 6646 * SLI4 does not allow for deallocating a particular extent range. It 6647 * is the caller's responsibility to release all kernel memory resources. 6648 **/ 6649 static int 6650 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6651 { 6652 int rc; 6653 uint32_t length, mbox_tmo = 0; 6654 LPFC_MBOXQ_t *mbox; 6655 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6656 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6657 6658 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6659 if (!mbox) 6660 return -ENOMEM; 6661 6662 /* 6663 * This function sends an embedded mailbox because it only sends the 6664 * the resource type. All extents of this type are released by the 6665 * port. 6666 */ 6667 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6668 sizeof(struct lpfc_sli4_cfg_mhdr)); 6669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6670 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6671 length, LPFC_SLI4_MBX_EMBED); 6672 6673 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6674 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6675 LPFC_SLI4_MBX_EMBED); 6676 if (unlikely(rc)) { 6677 rc = -EIO; 6678 goto out_free_mbox; 6679 } 6680 if (!phba->sli4_hba.intr_enable) 6681 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6682 else { 6683 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6684 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6685 } 6686 if (unlikely(rc)) { 6687 rc = -EIO; 6688 goto out_free_mbox; 6689 } 6690 6691 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6692 if (bf_get(lpfc_mbox_hdr_status, 6693 &dealloc_rsrc->header.cfg_shdr.response)) { 6694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6695 "2919 Failed to release resource extents " 6696 "for type %d - Status 0x%x Add'l Status 0x%x. " 6697 "Resource memory not released.\n", 6698 type, 6699 bf_get(lpfc_mbox_hdr_status, 6700 &dealloc_rsrc->header.cfg_shdr.response), 6701 bf_get(lpfc_mbox_hdr_add_status, 6702 &dealloc_rsrc->header.cfg_shdr.response)); 6703 rc = -EIO; 6704 goto out_free_mbox; 6705 } 6706 6707 /* Release kernel memory resources for the specific type. */ 6708 switch (type) { 6709 case LPFC_RSC_TYPE_FCOE_VPI: 6710 kfree(phba->vpi_bmask); 6711 kfree(phba->vpi_ids); 6712 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6713 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6714 &phba->lpfc_vpi_blk_list, list) { 6715 list_del_init(&rsrc_blk->list); 6716 kfree(rsrc_blk); 6717 } 6718 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6719 break; 6720 case LPFC_RSC_TYPE_FCOE_XRI: 6721 kfree(phba->sli4_hba.xri_bmask); 6722 kfree(phba->sli4_hba.xri_ids); 6723 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6724 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6725 list_del_init(&rsrc_blk->list); 6726 kfree(rsrc_blk); 6727 } 6728 break; 6729 case LPFC_RSC_TYPE_FCOE_VFI: 6730 kfree(phba->sli4_hba.vfi_bmask); 6731 kfree(phba->sli4_hba.vfi_ids); 6732 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6733 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6734 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6735 list_del_init(&rsrc_blk->list); 6736 kfree(rsrc_blk); 6737 } 6738 break; 6739 case LPFC_RSC_TYPE_FCOE_RPI: 6740 /* RPI bitmask and physical id array are cleaned up earlier. */ 6741 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6742 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6743 list_del_init(&rsrc_blk->list); 6744 kfree(rsrc_blk); 6745 } 6746 break; 6747 default: 6748 break; 6749 } 6750 6751 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6752 6753 out_free_mbox: 6754 mempool_free(mbox, phba->mbox_mem_pool); 6755 return rc; 6756 } 6757 6758 static void 6759 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6760 uint32_t feature) 6761 { 6762 uint32_t len; 6763 u32 sig_freq = 0; 6764 6765 len = sizeof(struct lpfc_mbx_set_feature) - 6766 sizeof(struct lpfc_sli4_cfg_mhdr); 6767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6768 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6769 LPFC_SLI4_MBX_EMBED); 6770 6771 switch (feature) { 6772 case LPFC_SET_UE_RECOVERY: 6773 bf_set(lpfc_mbx_set_feature_UER, 6774 &mbox->u.mqe.un.set_feature, 1); 6775 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6776 mbox->u.mqe.un.set_feature.param_len = 8; 6777 break; 6778 case LPFC_SET_MDS_DIAGS: 6779 bf_set(lpfc_mbx_set_feature_mds, 6780 &mbox->u.mqe.un.set_feature, 1); 6781 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6782 &mbox->u.mqe.un.set_feature, 1); 6783 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6784 mbox->u.mqe.un.set_feature.param_len = 8; 6785 break; 6786 case LPFC_SET_CGN_SIGNAL: 6787 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6788 sig_freq = 0; 6789 else 6790 sig_freq = phba->cgn_sig_freq; 6791 6792 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6793 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6794 &mbox->u.mqe.un.set_feature, sig_freq); 6795 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6796 &mbox->u.mqe.un.set_feature, sig_freq); 6797 } 6798 6799 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6800 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 6803 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6804 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6805 sig_freq = 0; 6806 else 6807 sig_freq = lpfc_acqe_cgn_frequency; 6808 6809 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6810 &mbox->u.mqe.un.set_feature, sig_freq); 6811 6812 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6813 mbox->u.mqe.un.set_feature.param_len = 12; 6814 break; 6815 case LPFC_SET_DUAL_DUMP: 6816 bf_set(lpfc_mbx_set_feature_dd, 6817 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6818 bf_set(lpfc_mbx_set_feature_ddquery, 6819 &mbox->u.mqe.un.set_feature, 0); 6820 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6821 mbox->u.mqe.un.set_feature.param_len = 4; 6822 break; 6823 case LPFC_SET_ENABLE_MI: 6824 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6825 mbox->u.mqe.un.set_feature.param_len = 4; 6826 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6827 phba->pport->cfg_lun_queue_depth); 6828 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6829 phba->sli4_hba.pc_sli4_params.mi_ver); 6830 break; 6831 case LPFC_SET_LD_SIGNAL: 6832 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6833 mbox->u.mqe.un.set_feature.param_len = 16; 6834 bf_set(lpfc_mbx_set_feature_lds_qry, 6835 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6836 break; 6837 case LPFC_SET_ENABLE_CMF: 6838 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6839 mbox->u.mqe.un.set_feature.param_len = 4; 6840 bf_set(lpfc_mbx_set_feature_cmf, 6841 &mbox->u.mqe.un.set_feature, 1); 6842 break; 6843 } 6844 return; 6845 } 6846 6847 /** 6848 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6849 * @phba: Pointer to HBA context object. 6850 * 6851 * Disable FW logging into host memory on the adapter. To 6852 * be done before reading logs from the host memory. 6853 **/ 6854 void 6855 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6856 { 6857 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6858 6859 spin_lock_irq(&phba->ras_fwlog_lock); 6860 ras_fwlog->state = INACTIVE; 6861 spin_unlock_irq(&phba->ras_fwlog_lock); 6862 6863 /* Disable FW logging to host memory */ 6864 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6865 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6866 6867 /* Wait 10ms for firmware to stop using DMA buffer */ 6868 usleep_range(10 * 1000, 20 * 1000); 6869 } 6870 6871 /** 6872 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6873 * @phba: Pointer to HBA context object. 6874 * 6875 * This function is called to free memory allocated for RAS FW logging 6876 * support in the driver. 6877 **/ 6878 void 6879 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6880 { 6881 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6882 struct lpfc_dmabuf *dmabuf, *next; 6883 6884 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6885 list_for_each_entry_safe(dmabuf, next, 6886 &ras_fwlog->fwlog_buff_list, 6887 list) { 6888 list_del(&dmabuf->list); 6889 dma_free_coherent(&phba->pcidev->dev, 6890 LPFC_RAS_MAX_ENTRY_SIZE, 6891 dmabuf->virt, dmabuf->phys); 6892 kfree(dmabuf); 6893 } 6894 } 6895 6896 if (ras_fwlog->lwpd.virt) { 6897 dma_free_coherent(&phba->pcidev->dev, 6898 sizeof(uint32_t) * 2, 6899 ras_fwlog->lwpd.virt, 6900 ras_fwlog->lwpd.phys); 6901 ras_fwlog->lwpd.virt = NULL; 6902 } 6903 6904 spin_lock_irq(&phba->ras_fwlog_lock); 6905 ras_fwlog->state = INACTIVE; 6906 spin_unlock_irq(&phba->ras_fwlog_lock); 6907 } 6908 6909 /** 6910 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6911 * @phba: Pointer to HBA context object. 6912 * @fwlog_buff_count: Count of buffers to be created. 6913 * 6914 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6915 * to update FW log is posted to the adapter. 6916 * Buffer count is calculated based on module param ras_fwlog_buffsize 6917 * Size of each buffer posted to FW is 64K. 6918 **/ 6919 6920 static int 6921 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6922 uint32_t fwlog_buff_count) 6923 { 6924 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6925 struct lpfc_dmabuf *dmabuf; 6926 int rc = 0, i = 0; 6927 6928 /* Initialize List */ 6929 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6930 6931 /* Allocate memory for the LWPD */ 6932 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6933 sizeof(uint32_t) * 2, 6934 &ras_fwlog->lwpd.phys, 6935 GFP_KERNEL); 6936 if (!ras_fwlog->lwpd.virt) { 6937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6938 "6185 LWPD Memory Alloc Failed\n"); 6939 6940 return -ENOMEM; 6941 } 6942 6943 ras_fwlog->fw_buffcount = fwlog_buff_count; 6944 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6945 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6946 GFP_KERNEL); 6947 if (!dmabuf) { 6948 rc = -ENOMEM; 6949 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6950 "6186 Memory Alloc failed FW logging"); 6951 goto free_mem; 6952 } 6953 6954 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6955 LPFC_RAS_MAX_ENTRY_SIZE, 6956 &dmabuf->phys, GFP_KERNEL); 6957 if (!dmabuf->virt) { 6958 kfree(dmabuf); 6959 rc = -ENOMEM; 6960 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6961 "6187 DMA Alloc Failed FW logging"); 6962 goto free_mem; 6963 } 6964 dmabuf->buffer_tag = i; 6965 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6966 } 6967 6968 free_mem: 6969 if (rc) 6970 lpfc_sli4_ras_dma_free(phba); 6971 6972 return rc; 6973 } 6974 6975 /** 6976 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6977 * @phba: pointer to lpfc hba data structure. 6978 * @pmb: pointer to the driver internal queue element for mailbox command. 6979 * 6980 * Completion handler for driver's RAS MBX command to the device. 6981 **/ 6982 static void 6983 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6984 { 6985 MAILBOX_t *mb; 6986 union lpfc_sli4_cfg_shdr *shdr; 6987 uint32_t shdr_status, shdr_add_status; 6988 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6989 6990 mb = &pmb->u.mb; 6991 6992 shdr = (union lpfc_sli4_cfg_shdr *) 6993 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6996 6997 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6999 "6188 FW LOG mailbox " 7000 "completed with status x%x add_status x%x," 7001 " mbx status x%x\n", 7002 shdr_status, shdr_add_status, mb->mbxStatus); 7003 7004 ras_fwlog->ras_hwsupport = false; 7005 goto disable_ras; 7006 } 7007 7008 spin_lock_irq(&phba->ras_fwlog_lock); 7009 ras_fwlog->state = ACTIVE; 7010 spin_unlock_irq(&phba->ras_fwlog_lock); 7011 mempool_free(pmb, phba->mbox_mem_pool); 7012 7013 return; 7014 7015 disable_ras: 7016 /* Free RAS DMA memory */ 7017 lpfc_sli4_ras_dma_free(phba); 7018 mempool_free(pmb, phba->mbox_mem_pool); 7019 } 7020 7021 /** 7022 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7023 * @phba: pointer to lpfc hba data structure. 7024 * @fwlog_level: Logging verbosity level. 7025 * @fwlog_enable: Enable/Disable logging. 7026 * 7027 * Initialize memory and post mailbox command to enable FW logging in host 7028 * memory. 7029 **/ 7030 int 7031 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7032 uint32_t fwlog_level, 7033 uint32_t fwlog_enable) 7034 { 7035 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7036 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7037 struct lpfc_dmabuf *dmabuf; 7038 LPFC_MBOXQ_t *mbox; 7039 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7040 int rc = 0; 7041 7042 spin_lock_irq(&phba->ras_fwlog_lock); 7043 ras_fwlog->state = INACTIVE; 7044 spin_unlock_irq(&phba->ras_fwlog_lock); 7045 7046 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7047 phba->cfg_ras_fwlog_buffsize); 7048 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7049 7050 /* 7051 * If re-enabling FW logging support use earlier allocated 7052 * DMA buffers while posting MBX command. 7053 **/ 7054 if (!ras_fwlog->lwpd.virt) { 7055 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7056 if (rc) { 7057 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7058 "6189 FW Log Memory Allocation Failed"); 7059 return rc; 7060 } 7061 } 7062 7063 /* Setup Mailbox command */ 7064 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7065 if (!mbox) { 7066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7067 "6190 RAS MBX Alloc Failed"); 7068 rc = -ENOMEM; 7069 goto mem_free; 7070 } 7071 7072 ras_fwlog->fw_loglevel = fwlog_level; 7073 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7074 sizeof(struct lpfc_sli4_cfg_mhdr)); 7075 7076 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7077 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7078 len, LPFC_SLI4_MBX_EMBED); 7079 7080 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7081 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7082 fwlog_enable); 7083 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7084 ras_fwlog->fw_loglevel); 7085 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7086 ras_fwlog->fw_buffcount); 7087 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7088 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7089 7090 /* Update DMA buffer address */ 7091 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7092 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7093 7094 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7095 putPaddrLow(dmabuf->phys); 7096 7097 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7098 putPaddrHigh(dmabuf->phys); 7099 } 7100 7101 /* Update LPWD address */ 7102 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7103 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7104 7105 spin_lock_irq(&phba->ras_fwlog_lock); 7106 ras_fwlog->state = REG_INPROGRESS; 7107 spin_unlock_irq(&phba->ras_fwlog_lock); 7108 mbox->vport = phba->pport; 7109 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7110 7111 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7112 7113 if (rc == MBX_NOT_FINISHED) { 7114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7115 "6191 FW-Log Mailbox failed. " 7116 "status %d mbxStatus : x%x", rc, 7117 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7118 mempool_free(mbox, phba->mbox_mem_pool); 7119 rc = -EIO; 7120 goto mem_free; 7121 } else 7122 rc = 0; 7123 mem_free: 7124 if (rc) 7125 lpfc_sli4_ras_dma_free(phba); 7126 7127 return rc; 7128 } 7129 7130 /** 7131 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7132 * @phba: Pointer to HBA context object. 7133 * 7134 * Check if RAS is supported on the adapter and initialize it. 7135 **/ 7136 void 7137 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7138 { 7139 /* Check RAS FW Log needs to be enabled or not */ 7140 if (lpfc_check_fwlog_support(phba)) 7141 return; 7142 7143 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7144 LPFC_RAS_ENABLE_LOGGING); 7145 } 7146 7147 /** 7148 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7149 * @phba: Pointer to HBA context object. 7150 * 7151 * This function allocates all SLI4 resource identifiers. 7152 **/ 7153 int 7154 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7155 { 7156 int i, rc, error = 0; 7157 uint16_t count, base; 7158 unsigned long longs; 7159 7160 if (!phba->sli4_hba.rpi_hdrs_in_use) 7161 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7162 if (phba->sli4_hba.extents_in_use) { 7163 /* 7164 * The port supports resource extents. The XRI, VPI, VFI, RPI 7165 * resource extent count must be read and allocated before 7166 * provisioning the resource id arrays. 7167 */ 7168 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7169 LPFC_IDX_RSRC_RDY) { 7170 /* 7171 * Extent-based resources are set - the driver could 7172 * be in a port reset. Figure out if any corrective 7173 * actions need to be taken. 7174 */ 7175 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7176 LPFC_RSC_TYPE_FCOE_VFI); 7177 if (rc != 0) 7178 error++; 7179 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7180 LPFC_RSC_TYPE_FCOE_VPI); 7181 if (rc != 0) 7182 error++; 7183 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7184 LPFC_RSC_TYPE_FCOE_XRI); 7185 if (rc != 0) 7186 error++; 7187 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7188 LPFC_RSC_TYPE_FCOE_RPI); 7189 if (rc != 0) 7190 error++; 7191 7192 /* 7193 * It's possible that the number of resources 7194 * provided to this port instance changed between 7195 * resets. Detect this condition and reallocate 7196 * resources. Otherwise, there is no action. 7197 */ 7198 if (error) { 7199 lpfc_printf_log(phba, KERN_INFO, 7200 LOG_MBOX | LOG_INIT, 7201 "2931 Detected extent resource " 7202 "change. Reallocating all " 7203 "extents.\n"); 7204 rc = lpfc_sli4_dealloc_extent(phba, 7205 LPFC_RSC_TYPE_FCOE_VFI); 7206 rc = lpfc_sli4_dealloc_extent(phba, 7207 LPFC_RSC_TYPE_FCOE_VPI); 7208 rc = lpfc_sli4_dealloc_extent(phba, 7209 LPFC_RSC_TYPE_FCOE_XRI); 7210 rc = lpfc_sli4_dealloc_extent(phba, 7211 LPFC_RSC_TYPE_FCOE_RPI); 7212 } else 7213 return 0; 7214 } 7215 7216 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7217 if (unlikely(rc)) 7218 goto err_exit; 7219 7220 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7221 if (unlikely(rc)) 7222 goto err_exit; 7223 7224 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7225 if (unlikely(rc)) 7226 goto err_exit; 7227 7228 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7229 if (unlikely(rc)) 7230 goto err_exit; 7231 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7232 LPFC_IDX_RSRC_RDY); 7233 return rc; 7234 } else { 7235 /* 7236 * The port does not support resource extents. The XRI, VPI, 7237 * VFI, RPI resource ids were determined from READ_CONFIG. 7238 * Just allocate the bitmasks and provision the resource id 7239 * arrays. If a port reset is active, the resources don't 7240 * need any action - just exit. 7241 */ 7242 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7243 LPFC_IDX_RSRC_RDY) { 7244 lpfc_sli4_dealloc_resource_identifiers(phba); 7245 lpfc_sli4_remove_rpis(phba); 7246 } 7247 /* RPIs. */ 7248 count = phba->sli4_hba.max_cfg_param.max_rpi; 7249 if (count <= 0) { 7250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7251 "3279 Invalid provisioning of " 7252 "rpi:%d\n", count); 7253 rc = -EINVAL; 7254 goto err_exit; 7255 } 7256 base = phba->sli4_hba.max_cfg_param.rpi_base; 7257 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7258 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7259 sizeof(unsigned long), 7260 GFP_KERNEL); 7261 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7262 rc = -ENOMEM; 7263 goto err_exit; 7264 } 7265 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7266 GFP_KERNEL); 7267 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7268 rc = -ENOMEM; 7269 goto free_rpi_bmask; 7270 } 7271 7272 for (i = 0; i < count; i++) 7273 phba->sli4_hba.rpi_ids[i] = base + i; 7274 7275 /* VPIs. */ 7276 count = phba->sli4_hba.max_cfg_param.max_vpi; 7277 if (count <= 0) { 7278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7279 "3280 Invalid provisioning of " 7280 "vpi:%d\n", count); 7281 rc = -EINVAL; 7282 goto free_rpi_ids; 7283 } 7284 base = phba->sli4_hba.max_cfg_param.vpi_base; 7285 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7286 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7287 GFP_KERNEL); 7288 if (unlikely(!phba->vpi_bmask)) { 7289 rc = -ENOMEM; 7290 goto free_rpi_ids; 7291 } 7292 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7293 GFP_KERNEL); 7294 if (unlikely(!phba->vpi_ids)) { 7295 rc = -ENOMEM; 7296 goto free_vpi_bmask; 7297 } 7298 7299 for (i = 0; i < count; i++) 7300 phba->vpi_ids[i] = base + i; 7301 7302 /* XRIs. */ 7303 count = phba->sli4_hba.max_cfg_param.max_xri; 7304 if (count <= 0) { 7305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7306 "3281 Invalid provisioning of " 7307 "xri:%d\n", count); 7308 rc = -EINVAL; 7309 goto free_vpi_ids; 7310 } 7311 base = phba->sli4_hba.max_cfg_param.xri_base; 7312 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7313 phba->sli4_hba.xri_bmask = kcalloc(longs, 7314 sizeof(unsigned long), 7315 GFP_KERNEL); 7316 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7317 rc = -ENOMEM; 7318 goto free_vpi_ids; 7319 } 7320 phba->sli4_hba.max_cfg_param.xri_used = 0; 7321 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7322 GFP_KERNEL); 7323 if (unlikely(!phba->sli4_hba.xri_ids)) { 7324 rc = -ENOMEM; 7325 goto free_xri_bmask; 7326 } 7327 7328 for (i = 0; i < count; i++) 7329 phba->sli4_hba.xri_ids[i] = base + i; 7330 7331 /* VFIs. */ 7332 count = phba->sli4_hba.max_cfg_param.max_vfi; 7333 if (count <= 0) { 7334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7335 "3282 Invalid provisioning of " 7336 "vfi:%d\n", count); 7337 rc = -EINVAL; 7338 goto free_xri_ids; 7339 } 7340 base = phba->sli4_hba.max_cfg_param.vfi_base; 7341 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7342 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7343 sizeof(unsigned long), 7344 GFP_KERNEL); 7345 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7346 rc = -ENOMEM; 7347 goto free_xri_ids; 7348 } 7349 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7350 GFP_KERNEL); 7351 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7352 rc = -ENOMEM; 7353 goto free_vfi_bmask; 7354 } 7355 7356 for (i = 0; i < count; i++) 7357 phba->sli4_hba.vfi_ids[i] = base + i; 7358 7359 /* 7360 * Mark all resources ready. An HBA reset doesn't need 7361 * to reset the initialization. 7362 */ 7363 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7364 LPFC_IDX_RSRC_RDY); 7365 return 0; 7366 } 7367 7368 free_vfi_bmask: 7369 kfree(phba->sli4_hba.vfi_bmask); 7370 phba->sli4_hba.vfi_bmask = NULL; 7371 free_xri_ids: 7372 kfree(phba->sli4_hba.xri_ids); 7373 phba->sli4_hba.xri_ids = NULL; 7374 free_xri_bmask: 7375 kfree(phba->sli4_hba.xri_bmask); 7376 phba->sli4_hba.xri_bmask = NULL; 7377 free_vpi_ids: 7378 kfree(phba->vpi_ids); 7379 phba->vpi_ids = NULL; 7380 free_vpi_bmask: 7381 kfree(phba->vpi_bmask); 7382 phba->vpi_bmask = NULL; 7383 free_rpi_ids: 7384 kfree(phba->sli4_hba.rpi_ids); 7385 phba->sli4_hba.rpi_ids = NULL; 7386 free_rpi_bmask: 7387 kfree(phba->sli4_hba.rpi_bmask); 7388 phba->sli4_hba.rpi_bmask = NULL; 7389 err_exit: 7390 return rc; 7391 } 7392 7393 /** 7394 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7395 * @phba: Pointer to HBA context object. 7396 * 7397 * This function allocates the number of elements for the specified 7398 * resource type. 7399 **/ 7400 int 7401 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7402 { 7403 if (phba->sli4_hba.extents_in_use) { 7404 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7408 } else { 7409 kfree(phba->vpi_bmask); 7410 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7411 kfree(phba->vpi_ids); 7412 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7413 kfree(phba->sli4_hba.xri_bmask); 7414 kfree(phba->sli4_hba.xri_ids); 7415 kfree(phba->sli4_hba.vfi_bmask); 7416 kfree(phba->sli4_hba.vfi_ids); 7417 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7418 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7419 } 7420 7421 return 0; 7422 } 7423 7424 /** 7425 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7426 * @phba: Pointer to HBA context object. 7427 * @type: The resource extent type. 7428 * @extnt_cnt: buffer to hold port extent count response 7429 * @extnt_size: buffer to hold port extent size response. 7430 * 7431 * This function calls the port to read the host allocated extents 7432 * for a particular type. 7433 **/ 7434 int 7435 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7436 uint16_t *extnt_cnt, uint16_t *extnt_size) 7437 { 7438 bool emb; 7439 int rc = 0; 7440 uint16_t curr_blks = 0; 7441 uint32_t req_len, emb_len; 7442 uint32_t alloc_len, mbox_tmo; 7443 struct list_head *blk_list_head; 7444 struct lpfc_rsrc_blks *rsrc_blk; 7445 LPFC_MBOXQ_t *mbox; 7446 void *virtaddr = NULL; 7447 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7448 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7449 union lpfc_sli4_cfg_shdr *shdr; 7450 7451 switch (type) { 7452 case LPFC_RSC_TYPE_FCOE_VPI: 7453 blk_list_head = &phba->lpfc_vpi_blk_list; 7454 break; 7455 case LPFC_RSC_TYPE_FCOE_XRI: 7456 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7457 break; 7458 case LPFC_RSC_TYPE_FCOE_VFI: 7459 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7460 break; 7461 case LPFC_RSC_TYPE_FCOE_RPI: 7462 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7463 break; 7464 default: 7465 return -EIO; 7466 } 7467 7468 /* Count the number of extents currently allocatd for this type. */ 7469 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7470 if (curr_blks == 0) { 7471 /* 7472 * The GET_ALLOCATED mailbox does not return the size, 7473 * just the count. The size should be just the size 7474 * stored in the current allocated block and all sizes 7475 * for an extent type are the same so set the return 7476 * value now. 7477 */ 7478 *extnt_size = rsrc_blk->rsrc_size; 7479 } 7480 curr_blks++; 7481 } 7482 7483 /* 7484 * Calculate the size of an embedded mailbox. The uint32_t 7485 * accounts for extents-specific word. 7486 */ 7487 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7488 sizeof(uint32_t); 7489 7490 /* 7491 * Presume the allocation and response will fit into an embedded 7492 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7493 */ 7494 emb = LPFC_SLI4_MBX_EMBED; 7495 req_len = emb_len; 7496 if (req_len > emb_len) { 7497 req_len = curr_blks * sizeof(uint16_t) + 7498 sizeof(union lpfc_sli4_cfg_shdr) + 7499 sizeof(uint32_t); 7500 emb = LPFC_SLI4_MBX_NEMBED; 7501 } 7502 7503 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7504 if (!mbox) 7505 return -ENOMEM; 7506 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7507 7508 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7509 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7510 req_len, emb); 7511 if (alloc_len < req_len) { 7512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7513 "2983 Allocated DMA memory size (x%x) is " 7514 "less than the requested DMA memory " 7515 "size (x%x)\n", alloc_len, req_len); 7516 rc = -ENOMEM; 7517 goto err_exit; 7518 } 7519 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7520 if (unlikely(rc)) { 7521 rc = -EIO; 7522 goto err_exit; 7523 } 7524 7525 if (!phba->sli4_hba.intr_enable) 7526 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7527 else { 7528 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7529 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7530 } 7531 7532 if (unlikely(rc)) { 7533 rc = -EIO; 7534 goto err_exit; 7535 } 7536 7537 /* 7538 * Figure out where the response is located. Then get local pointers 7539 * to the response data. The port does not guarantee to respond to 7540 * all extents counts request so update the local variable with the 7541 * allocated count from the port. 7542 */ 7543 if (emb == LPFC_SLI4_MBX_EMBED) { 7544 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7545 shdr = &rsrc_ext->header.cfg_shdr; 7546 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7547 } else { 7548 virtaddr = mbox->sge_array->addr[0]; 7549 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7550 shdr = &n_rsrc->cfg_shdr; 7551 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7552 } 7553 7554 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7556 "2984 Failed to read allocated resources " 7557 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7558 type, 7559 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7560 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7561 rc = -EIO; 7562 goto err_exit; 7563 } 7564 err_exit: 7565 lpfc_sli4_mbox_cmd_free(phba, mbox); 7566 return rc; 7567 } 7568 7569 /** 7570 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7571 * @phba: pointer to lpfc hba data structure. 7572 * @sgl_list: linked link of sgl buffers to post 7573 * @cnt: number of linked list buffers 7574 * 7575 * This routine walks the list of buffers that have been allocated and 7576 * repost them to the port by using SGL block post. This is needed after a 7577 * pci_function_reset/warm_start or start. It attempts to construct blocks 7578 * of buffer sgls which contains contiguous xris and uses the non-embedded 7579 * SGL block post mailbox commands to post them to the port. For single 7580 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7581 * mailbox command for posting. 7582 * 7583 * Returns: 0 = success, non-zero failure. 7584 **/ 7585 static int 7586 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7587 struct list_head *sgl_list, int cnt) 7588 { 7589 struct lpfc_sglq *sglq_entry = NULL; 7590 struct lpfc_sglq *sglq_entry_next = NULL; 7591 struct lpfc_sglq *sglq_entry_first = NULL; 7592 int status = 0, total_cnt; 7593 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7594 int last_xritag = NO_XRI; 7595 LIST_HEAD(prep_sgl_list); 7596 LIST_HEAD(blck_sgl_list); 7597 LIST_HEAD(allc_sgl_list); 7598 LIST_HEAD(post_sgl_list); 7599 LIST_HEAD(free_sgl_list); 7600 7601 spin_lock_irq(&phba->hbalock); 7602 spin_lock(&phba->sli4_hba.sgl_list_lock); 7603 list_splice_init(sgl_list, &allc_sgl_list); 7604 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7605 spin_unlock_irq(&phba->hbalock); 7606 7607 total_cnt = cnt; 7608 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7609 &allc_sgl_list, list) { 7610 list_del_init(&sglq_entry->list); 7611 block_cnt++; 7612 if ((last_xritag != NO_XRI) && 7613 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7614 /* a hole in xri block, form a sgl posting block */ 7615 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7616 post_cnt = block_cnt - 1; 7617 /* prepare list for next posting block */ 7618 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7619 block_cnt = 1; 7620 } else { 7621 /* prepare list for next posting block */ 7622 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7623 /* enough sgls for non-embed sgl mbox command */ 7624 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7625 list_splice_init(&prep_sgl_list, 7626 &blck_sgl_list); 7627 post_cnt = block_cnt; 7628 block_cnt = 0; 7629 } 7630 } 7631 num_posted++; 7632 7633 /* keep track of last sgl's xritag */ 7634 last_xritag = sglq_entry->sli4_xritag; 7635 7636 /* end of repost sgl list condition for buffers */ 7637 if (num_posted == total_cnt) { 7638 if (post_cnt == 0) { 7639 list_splice_init(&prep_sgl_list, 7640 &blck_sgl_list); 7641 post_cnt = block_cnt; 7642 } else if (block_cnt == 1) { 7643 status = lpfc_sli4_post_sgl(phba, 7644 sglq_entry->phys, 0, 7645 sglq_entry->sli4_xritag); 7646 if (!status) { 7647 /* successful, put sgl to posted list */ 7648 list_add_tail(&sglq_entry->list, 7649 &post_sgl_list); 7650 } else { 7651 /* Failure, put sgl to free list */ 7652 lpfc_printf_log(phba, KERN_WARNING, 7653 LOG_SLI, 7654 "3159 Failed to post " 7655 "sgl, xritag:x%x\n", 7656 sglq_entry->sli4_xritag); 7657 list_add_tail(&sglq_entry->list, 7658 &free_sgl_list); 7659 total_cnt--; 7660 } 7661 } 7662 } 7663 7664 /* continue until a nembed page worth of sgls */ 7665 if (post_cnt == 0) 7666 continue; 7667 7668 /* post the buffer list sgls as a block */ 7669 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7670 post_cnt); 7671 7672 if (!status) { 7673 /* success, put sgl list to posted sgl list */ 7674 list_splice_init(&blck_sgl_list, &post_sgl_list); 7675 } else { 7676 /* Failure, put sgl list to free sgl list */ 7677 sglq_entry_first = list_first_entry(&blck_sgl_list, 7678 struct lpfc_sglq, 7679 list); 7680 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7681 "3160 Failed to post sgl-list, " 7682 "xritag:x%x-x%x\n", 7683 sglq_entry_first->sli4_xritag, 7684 (sglq_entry_first->sli4_xritag + 7685 post_cnt - 1)); 7686 list_splice_init(&blck_sgl_list, &free_sgl_list); 7687 total_cnt -= post_cnt; 7688 } 7689 7690 /* don't reset xirtag due to hole in xri block */ 7691 if (block_cnt == 0) 7692 last_xritag = NO_XRI; 7693 7694 /* reset sgl post count for next round of posting */ 7695 post_cnt = 0; 7696 } 7697 7698 /* free the sgls failed to post */ 7699 lpfc_free_sgl_list(phba, &free_sgl_list); 7700 7701 /* push sgls posted to the available list */ 7702 if (!list_empty(&post_sgl_list)) { 7703 spin_lock_irq(&phba->hbalock); 7704 spin_lock(&phba->sli4_hba.sgl_list_lock); 7705 list_splice_init(&post_sgl_list, sgl_list); 7706 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7707 spin_unlock_irq(&phba->hbalock); 7708 } else { 7709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7710 "3161 Failure to post sgl to port,status %x " 7711 "blkcnt %d totalcnt %d postcnt %d\n", 7712 status, block_cnt, total_cnt, post_cnt); 7713 return -EIO; 7714 } 7715 7716 /* return the number of XRIs actually posted */ 7717 return total_cnt; 7718 } 7719 7720 /** 7721 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7722 * @phba: pointer to lpfc hba data structure. 7723 * 7724 * This routine walks the list of nvme buffers that have been allocated and 7725 * repost them to the port by using SGL block post. This is needed after a 7726 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7727 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7728 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7729 * 7730 * Returns: 0 = success, non-zero failure. 7731 **/ 7732 static int 7733 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7734 { 7735 LIST_HEAD(post_nblist); 7736 int num_posted, rc = 0; 7737 7738 /* get all NVME buffers need to repost to a local list */ 7739 lpfc_io_buf_flush(phba, &post_nblist); 7740 7741 /* post the list of nvme buffer sgls to port if available */ 7742 if (!list_empty(&post_nblist)) { 7743 num_posted = lpfc_sli4_post_io_sgl_list( 7744 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7745 /* failed to post any nvme buffer, return error */ 7746 if (num_posted == 0) 7747 rc = -EIO; 7748 } 7749 return rc; 7750 } 7751 7752 static void 7753 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7754 { 7755 uint32_t len; 7756 7757 len = sizeof(struct lpfc_mbx_set_host_data) - 7758 sizeof(struct lpfc_sli4_cfg_mhdr); 7759 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7760 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7761 LPFC_SLI4_MBX_EMBED); 7762 7763 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7764 mbox->u.mqe.un.set_host_data.param_len = 7765 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7766 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7767 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7768 "Linux %s v"LPFC_DRIVER_VERSION, 7769 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7770 } 7771 7772 int 7773 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7774 struct lpfc_queue *drq, int count, int idx) 7775 { 7776 int rc, i; 7777 struct lpfc_rqe hrqe; 7778 struct lpfc_rqe drqe; 7779 struct lpfc_rqb *rqbp; 7780 unsigned long flags; 7781 struct rqb_dmabuf *rqb_buffer; 7782 LIST_HEAD(rqb_buf_list); 7783 7784 rqbp = hrq->rqbp; 7785 for (i = 0; i < count; i++) { 7786 spin_lock_irqsave(&phba->hbalock, flags); 7787 /* IF RQ is already full, don't bother */ 7788 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7789 spin_unlock_irqrestore(&phba->hbalock, flags); 7790 break; 7791 } 7792 spin_unlock_irqrestore(&phba->hbalock, flags); 7793 7794 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7795 if (!rqb_buffer) 7796 break; 7797 rqb_buffer->hrq = hrq; 7798 rqb_buffer->drq = drq; 7799 rqb_buffer->idx = idx; 7800 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7801 } 7802 7803 spin_lock_irqsave(&phba->hbalock, flags); 7804 while (!list_empty(&rqb_buf_list)) { 7805 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7806 hbuf.list); 7807 7808 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7809 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7810 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7811 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7812 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7813 if (rc < 0) { 7814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7815 "6421 Cannot post to HRQ %d: %x %x %x " 7816 "DRQ %x %x\n", 7817 hrq->queue_id, 7818 hrq->host_index, 7819 hrq->hba_index, 7820 hrq->entry_count, 7821 drq->host_index, 7822 drq->hba_index); 7823 rqbp->rqb_free_buffer(phba, rqb_buffer); 7824 } else { 7825 list_add_tail(&rqb_buffer->hbuf.list, 7826 &rqbp->rqb_buffer_list); 7827 rqbp->buffer_count++; 7828 } 7829 } 7830 spin_unlock_irqrestore(&phba->hbalock, flags); 7831 return 1; 7832 } 7833 7834 static void 7835 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7836 { 7837 union lpfc_sli4_cfg_shdr *shdr; 7838 u32 shdr_status, shdr_add_status; 7839 7840 shdr = (union lpfc_sli4_cfg_shdr *) 7841 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7842 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7843 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7844 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7845 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7846 "4622 SET_FEATURE (x%x) mbox failed, " 7847 "status x%x add_status x%x, mbx status x%x\n", 7848 LPFC_SET_LD_SIGNAL, shdr_status, 7849 shdr_add_status, pmb->u.mb.mbxStatus); 7850 phba->degrade_activate_threshold = 0; 7851 phba->degrade_deactivate_threshold = 0; 7852 phba->fec_degrade_interval = 0; 7853 goto out; 7854 } 7855 7856 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7857 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7858 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7859 7860 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7861 "4624 Success: da x%x dd x%x interval x%x\n", 7862 phba->degrade_activate_threshold, 7863 phba->degrade_deactivate_threshold, 7864 phba->fec_degrade_interval); 7865 out: 7866 mempool_free(pmb, phba->mbox_mem_pool); 7867 } 7868 7869 int 7870 lpfc_read_lds_params(struct lpfc_hba *phba) 7871 { 7872 LPFC_MBOXQ_t *mboxq; 7873 int rc; 7874 7875 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7876 if (!mboxq) 7877 return -ENOMEM; 7878 7879 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7880 mboxq->vport = phba->pport; 7881 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7883 if (rc == MBX_NOT_FINISHED) { 7884 mempool_free(mboxq, phba->mbox_mem_pool); 7885 return -EIO; 7886 } 7887 return 0; 7888 } 7889 7890 static void 7891 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7892 { 7893 struct lpfc_vport *vport = pmb->vport; 7894 union lpfc_sli4_cfg_shdr *shdr; 7895 u32 shdr_status, shdr_add_status; 7896 u32 sig, acqe; 7897 7898 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7899 * is done. (2) Mailbox failed and send FPIN support only. 7900 */ 7901 shdr = (union lpfc_sli4_cfg_shdr *) 7902 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7905 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7906 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7907 "2516 CGN SET_FEATURE mbox failed with " 7908 "status x%x add_status x%x, mbx status x%x " 7909 "Reset Congestion to FPINs only\n", 7910 shdr_status, shdr_add_status, 7911 pmb->u.mb.mbxStatus); 7912 /* If there is a mbox error, move on to RDF */ 7913 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7914 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7915 goto out; 7916 } 7917 7918 /* Zero out Congestion Signal ACQE counter */ 7919 phba->cgn_acqe_cnt = 0; 7920 7921 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7922 &pmb->u.mqe.un.set_feature); 7923 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7924 &pmb->u.mqe.un.set_feature); 7925 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7926 "4620 SET_FEATURES Success: Freq: %ds %dms " 7927 " Reg: x%x x%x\n", acqe, sig, 7928 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7929 out: 7930 mempool_free(pmb, phba->mbox_mem_pool); 7931 7932 /* Register for FPIN events from the fabric now that the 7933 * EDC common_set_features has completed. 7934 */ 7935 lpfc_issue_els_rdf(vport, 0); 7936 } 7937 7938 int 7939 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7940 { 7941 LPFC_MBOXQ_t *mboxq; 7942 u32 rc; 7943 7944 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7945 if (!mboxq) 7946 goto out_rdf; 7947 7948 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7949 mboxq->vport = phba->pport; 7950 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7951 7952 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7953 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7954 "Reg: x%x x%x\n", 7955 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7956 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7957 7958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7959 if (rc == MBX_NOT_FINISHED) 7960 goto out; 7961 return 0; 7962 7963 out: 7964 mempool_free(mboxq, phba->mbox_mem_pool); 7965 out_rdf: 7966 /* If there is a mbox error, move on to RDF */ 7967 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7968 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7969 lpfc_issue_els_rdf(phba->pport, 0); 7970 return -EIO; 7971 } 7972 7973 /** 7974 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7975 * @phba: pointer to lpfc hba data structure. 7976 * 7977 * This routine initializes the per-eq idle_stat to dynamically dictate 7978 * polling decisions. 7979 * 7980 * Return codes: 7981 * None 7982 **/ 7983 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7984 { 7985 int i; 7986 struct lpfc_sli4_hdw_queue *hdwq; 7987 struct lpfc_queue *eq; 7988 struct lpfc_idle_stat *idle_stat; 7989 u64 wall; 7990 7991 for_each_present_cpu(i) { 7992 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7993 eq = hdwq->hba_eq; 7994 7995 /* Skip if we've already handled this eq's primary CPU */ 7996 if (eq->chann != i) 7997 continue; 7998 7999 idle_stat = &phba->sli4_hba.idle_stat[i]; 8000 8001 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8002 idle_stat->prev_wall = wall; 8003 8004 if (phba->nvmet_support || 8005 phba->cmf_active_mode != LPFC_CFG_OFF || 8006 phba->intr_type != MSIX) 8007 eq->poll_mode = LPFC_QUEUE_WORK; 8008 else 8009 eq->poll_mode = LPFC_THREADED_IRQ; 8010 } 8011 8012 if (!phba->nvmet_support && phba->intr_type == MSIX) 8013 schedule_delayed_work(&phba->idle_stat_delay_work, 8014 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8015 } 8016 8017 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8018 { 8019 uint32_t if_type; 8020 8021 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8022 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8023 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8024 struct lpfc_register reg_data; 8025 8026 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8027 ®_data.word0)) 8028 return; 8029 8030 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8031 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8032 "2904 Firmware Dump Image Present" 8033 " on Adapter"); 8034 } 8035 } 8036 8037 /** 8038 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8039 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8040 * @entries: Number of rx_info_entry objects to allocate in ring 8041 * 8042 * Return: 8043 * 0 - Success 8044 * ENOMEM - Failure to kmalloc 8045 **/ 8046 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8047 u32 entries) 8048 { 8049 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8050 GFP_KERNEL); 8051 if (!rx_monitor->ring) 8052 return -ENOMEM; 8053 8054 rx_monitor->head_idx = 0; 8055 rx_monitor->tail_idx = 0; 8056 spin_lock_init(&rx_monitor->lock); 8057 rx_monitor->entries = entries; 8058 8059 return 0; 8060 } 8061 8062 /** 8063 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8064 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8065 * 8066 * Called after cancellation of cmf_timer. 8067 **/ 8068 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8069 { 8070 kfree(rx_monitor->ring); 8071 rx_monitor->ring = NULL; 8072 rx_monitor->entries = 0; 8073 rx_monitor->head_idx = 0; 8074 rx_monitor->tail_idx = 0; 8075 } 8076 8077 /** 8078 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8079 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8080 * @entry: Pointer to rx_info_entry 8081 * 8082 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8083 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8084 * 8085 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8086 * 8087 * In cases of old data overflow, we do a best effort of FIFO order. 8088 **/ 8089 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8090 struct rx_info_entry *entry) 8091 { 8092 struct rx_info_entry *ring = rx_monitor->ring; 8093 u32 *head_idx = &rx_monitor->head_idx; 8094 u32 *tail_idx = &rx_monitor->tail_idx; 8095 spinlock_t *ring_lock = &rx_monitor->lock; 8096 u32 ring_size = rx_monitor->entries; 8097 8098 spin_lock(ring_lock); 8099 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8100 *tail_idx = (*tail_idx + 1) % ring_size; 8101 8102 /* Best effort of FIFO saved data */ 8103 if (*tail_idx == *head_idx) 8104 *head_idx = (*head_idx + 1) % ring_size; 8105 8106 spin_unlock(ring_lock); 8107 } 8108 8109 /** 8110 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8111 * @phba: Pointer to lpfc_hba object 8112 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8113 * @buf: Pointer to char buffer that will contain rx monitor info data 8114 * @buf_len: Length buf including null char 8115 * @max_read_entries: Maximum number of entries to read out of ring 8116 * 8117 * Used to dump/read what's in rx_monitor's ring buffer. 8118 * 8119 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8120 * information to kmsg instead of filling out buf. 8121 * 8122 * Return: 8123 * Number of entries read out of the ring 8124 **/ 8125 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8126 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8127 u32 buf_len, u32 max_read_entries) 8128 { 8129 struct rx_info_entry *ring = rx_monitor->ring; 8130 struct rx_info_entry *entry; 8131 u32 *head_idx = &rx_monitor->head_idx; 8132 u32 *tail_idx = &rx_monitor->tail_idx; 8133 spinlock_t *ring_lock = &rx_monitor->lock; 8134 u32 ring_size = rx_monitor->entries; 8135 u32 cnt = 0; 8136 char tmp[DBG_LOG_STR_SZ] = {0}; 8137 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8138 8139 if (!log_to_kmsg) { 8140 /* clear the buffer to be sure */ 8141 memset(buf, 0, buf_len); 8142 8143 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8144 "%-8s%-8s%-8s%-16s\n", 8145 "MaxBPI", "Tot_Data_CMF", 8146 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8147 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8148 "IO_cnt", "Info", "BWutil(ms)"); 8149 } 8150 8151 /* Needs to be _irq because record is called from timer interrupt 8152 * context 8153 */ 8154 spin_lock_irq(ring_lock); 8155 while (*head_idx != *tail_idx) { 8156 entry = &ring[*head_idx]; 8157 8158 /* Read out this entry's data. */ 8159 if (!log_to_kmsg) { 8160 /* If !log_to_kmsg, then store to buf. */ 8161 scnprintf(tmp, sizeof(tmp), 8162 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8163 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8164 *head_idx, entry->max_bytes_per_interval, 8165 entry->cmf_bytes, entry->total_bytes, 8166 entry->rcv_bytes, entry->avg_io_latency, 8167 entry->avg_io_size, entry->max_read_cnt, 8168 entry->cmf_busy, entry->io_cnt, 8169 entry->cmf_info, entry->timer_utilization, 8170 entry->timer_interval); 8171 8172 /* Check for buffer overflow */ 8173 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8174 break; 8175 8176 /* Append entry's data to buffer */ 8177 strlcat(buf, tmp, buf_len); 8178 } else { 8179 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8180 "4410 %02u: MBPI %llu Xmit %llu " 8181 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8182 "BWUtil %u Int %u slot %u\n", 8183 cnt, entry->max_bytes_per_interval, 8184 entry->total_bytes, entry->rcv_bytes, 8185 entry->avg_io_latency, 8186 entry->avg_io_size, entry->cmf_info, 8187 entry->timer_utilization, 8188 entry->timer_interval, *head_idx); 8189 } 8190 8191 *head_idx = (*head_idx + 1) % ring_size; 8192 8193 /* Don't feed more than max_read_entries */ 8194 cnt++; 8195 if (cnt >= max_read_entries) 8196 break; 8197 } 8198 spin_unlock_irq(ring_lock); 8199 8200 return cnt; 8201 } 8202 8203 /** 8204 * lpfc_cmf_setup - Initialize idle_stat tracking 8205 * @phba: Pointer to HBA context object. 8206 * 8207 * This is called from HBA setup during driver load or when the HBA 8208 * comes online. this does all the initialization to support CMF and MI. 8209 **/ 8210 static int 8211 lpfc_cmf_setup(struct lpfc_hba *phba) 8212 { 8213 LPFC_MBOXQ_t *mboxq; 8214 struct lpfc_dmabuf *mp; 8215 struct lpfc_pc_sli4_params *sli4_params; 8216 int rc, cmf, mi_ver; 8217 8218 rc = lpfc_sli4_refresh_params(phba); 8219 if (unlikely(rc)) 8220 return rc; 8221 8222 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8223 if (!mboxq) 8224 return -ENOMEM; 8225 8226 sli4_params = &phba->sli4_hba.pc_sli4_params; 8227 8228 /* Always try to enable MI feature if we can */ 8229 if (sli4_params->mi_ver) { 8230 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8231 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8232 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8233 &mboxq->u.mqe.un.set_feature); 8234 8235 if (rc == MBX_SUCCESS) { 8236 if (mi_ver) { 8237 lpfc_printf_log(phba, 8238 KERN_WARNING, LOG_CGN_MGMT, 8239 "6215 MI is enabled\n"); 8240 sli4_params->mi_ver = mi_ver; 8241 } else { 8242 lpfc_printf_log(phba, 8243 KERN_WARNING, LOG_CGN_MGMT, 8244 "6338 MI is disabled\n"); 8245 sli4_params->mi_ver = 0; 8246 } 8247 } else { 8248 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8249 lpfc_printf_log(phba, KERN_INFO, 8250 LOG_CGN_MGMT | LOG_INIT, 8251 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8252 "failed, rc:x%x mi:x%x\n", 8253 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8254 lpfc_sli_config_mbox_subsys_get 8255 (phba, mboxq), 8256 lpfc_sli_config_mbox_opcode_get 8257 (phba, mboxq), 8258 rc, sli4_params->mi_ver); 8259 } 8260 } else { 8261 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8262 "6217 MI is disabled\n"); 8263 } 8264 8265 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8266 if (sli4_params->mi_ver) 8267 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8268 8269 /* Always try to enable CMF feature if we can */ 8270 if (sli4_params->cmf) { 8271 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8272 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8273 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8274 &mboxq->u.mqe.un.set_feature); 8275 if (rc == MBX_SUCCESS && cmf) { 8276 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8277 "6218 CMF is enabled: mode %d\n", 8278 phba->cmf_active_mode); 8279 } else { 8280 lpfc_printf_log(phba, KERN_WARNING, 8281 LOG_CGN_MGMT | LOG_INIT, 8282 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8283 "failed, rc:x%x dd:x%x\n", 8284 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8285 lpfc_sli_config_mbox_subsys_get 8286 (phba, mboxq), 8287 lpfc_sli_config_mbox_opcode_get 8288 (phba, mboxq), 8289 rc, cmf); 8290 sli4_params->cmf = 0; 8291 phba->cmf_active_mode = LPFC_CFG_OFF; 8292 goto no_cmf; 8293 } 8294 8295 /* Allocate Congestion Information Buffer */ 8296 if (!phba->cgn_i) { 8297 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8298 if (mp) 8299 mp->virt = dma_alloc_coherent 8300 (&phba->pcidev->dev, 8301 sizeof(struct lpfc_cgn_info), 8302 &mp->phys, GFP_KERNEL); 8303 if (!mp || !mp->virt) { 8304 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8305 "2640 Failed to alloc memory " 8306 "for Congestion Info\n"); 8307 kfree(mp); 8308 sli4_params->cmf = 0; 8309 phba->cmf_active_mode = LPFC_CFG_OFF; 8310 goto no_cmf; 8311 } 8312 phba->cgn_i = mp; 8313 8314 /* initialize congestion buffer info */ 8315 lpfc_init_congestion_buf(phba); 8316 lpfc_init_congestion_stat(phba); 8317 8318 /* Zero out Congestion Signal counters */ 8319 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8320 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8321 } 8322 8323 rc = lpfc_sli4_cgn_params_read(phba); 8324 if (rc < 0) { 8325 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8326 "6242 Error reading Cgn Params (%d)\n", 8327 rc); 8328 /* Ensure CGN Mode is off */ 8329 sli4_params->cmf = 0; 8330 } else if (!rc) { 8331 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8332 "6243 CGN Event empty object.\n"); 8333 /* Ensure CGN Mode is off */ 8334 sli4_params->cmf = 0; 8335 } 8336 } else { 8337 no_cmf: 8338 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8339 "6220 CMF is disabled\n"); 8340 } 8341 8342 /* Only register congestion buffer with firmware if BOTH 8343 * CMF and E2E are enabled. 8344 */ 8345 if (sli4_params->cmf && sli4_params->mi_ver) { 8346 rc = lpfc_reg_congestion_buf(phba); 8347 if (rc) { 8348 dma_free_coherent(&phba->pcidev->dev, 8349 sizeof(struct lpfc_cgn_info), 8350 phba->cgn_i->virt, phba->cgn_i->phys); 8351 kfree(phba->cgn_i); 8352 phba->cgn_i = NULL; 8353 /* Ensure CGN Mode is off */ 8354 phba->cmf_active_mode = LPFC_CFG_OFF; 8355 sli4_params->cmf = 0; 8356 return 0; 8357 } 8358 } 8359 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8360 "6470 Setup MI version %d CMF %d mode %d\n", 8361 sli4_params->mi_ver, sli4_params->cmf, 8362 phba->cmf_active_mode); 8363 8364 mempool_free(mboxq, phba->mbox_mem_pool); 8365 8366 /* Initialize atomic counters */ 8367 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8368 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8369 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8370 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8371 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8372 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8373 atomic64_set(&phba->cgn_latency_evt, 0); 8374 8375 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8376 8377 /* Allocate RX Monitor Buffer */ 8378 if (!phba->rx_monitor) { 8379 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8380 GFP_KERNEL); 8381 8382 if (!phba->rx_monitor) { 8383 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8384 "2644 Failed to alloc memory " 8385 "for RX Monitor Buffer\n"); 8386 return -ENOMEM; 8387 } 8388 8389 /* Instruct the rx_monitor object to instantiate its ring */ 8390 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8391 LPFC_MAX_RXMONITOR_ENTRY)) { 8392 kfree(phba->rx_monitor); 8393 phba->rx_monitor = NULL; 8394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8395 "2645 Failed to alloc memory " 8396 "for RX Monitor's Ring\n"); 8397 return -ENOMEM; 8398 } 8399 } 8400 8401 return 0; 8402 } 8403 8404 static int 8405 lpfc_set_host_tm(struct lpfc_hba *phba) 8406 { 8407 LPFC_MBOXQ_t *mboxq; 8408 uint32_t len, rc; 8409 struct timespec64 cur_time; 8410 struct tm broken; 8411 uint32_t month, day, year; 8412 uint32_t hour, minute, second; 8413 struct lpfc_mbx_set_host_date_time *tm; 8414 8415 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8416 if (!mboxq) 8417 return -ENOMEM; 8418 8419 len = sizeof(struct lpfc_mbx_set_host_data) - 8420 sizeof(struct lpfc_sli4_cfg_mhdr); 8421 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8422 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8423 LPFC_SLI4_MBX_EMBED); 8424 8425 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8426 mboxq->u.mqe.un.set_host_data.param_len = 8427 sizeof(struct lpfc_mbx_set_host_date_time); 8428 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8429 ktime_get_real_ts64(&cur_time); 8430 time64_to_tm(cur_time.tv_sec, 0, &broken); 8431 month = broken.tm_mon + 1; 8432 day = broken.tm_mday; 8433 year = broken.tm_year - 100; 8434 hour = broken.tm_hour; 8435 minute = broken.tm_min; 8436 second = broken.tm_sec; 8437 bf_set(lpfc_mbx_set_host_month, tm, month); 8438 bf_set(lpfc_mbx_set_host_day, tm, day); 8439 bf_set(lpfc_mbx_set_host_year, tm, year); 8440 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8441 bf_set(lpfc_mbx_set_host_min, tm, minute); 8442 bf_set(lpfc_mbx_set_host_sec, tm, second); 8443 8444 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8445 mempool_free(mboxq, phba->mbox_mem_pool); 8446 return rc; 8447 } 8448 8449 /** 8450 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8451 * @phba: Pointer to HBA context object. 8452 * 8453 * This function is the main SLI4 device initialization PCI function. This 8454 * function is called by the HBA initialization code, HBA reset code and 8455 * HBA error attention handler code. Caller is not required to hold any 8456 * locks. 8457 **/ 8458 int 8459 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8460 { 8461 int rc, i, cnt, len, dd; 8462 LPFC_MBOXQ_t *mboxq; 8463 struct lpfc_mqe *mqe; 8464 uint8_t *vpd; 8465 uint32_t vpd_size; 8466 uint32_t ftr_rsp = 0; 8467 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8468 struct lpfc_vport *vport = phba->pport; 8469 struct lpfc_dmabuf *mp; 8470 struct lpfc_rqb *rqbp; 8471 u32 flg; 8472 8473 /* Perform a PCI function reset to start from clean */ 8474 rc = lpfc_pci_function_reset(phba); 8475 if (unlikely(rc)) 8476 return -ENODEV; 8477 8478 /* Check the HBA Host Status Register for readyness */ 8479 rc = lpfc_sli4_post_status_check(phba); 8480 if (unlikely(rc)) 8481 return -ENODEV; 8482 else { 8483 spin_lock_irq(&phba->hbalock); 8484 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8485 flg = phba->sli.sli_flag; 8486 spin_unlock_irq(&phba->hbalock); 8487 /* Allow a little time after setting SLI_ACTIVE for any polled 8488 * MBX commands to complete via BSG. 8489 */ 8490 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8491 msleep(20); 8492 spin_lock_irq(&phba->hbalock); 8493 flg = phba->sli.sli_flag; 8494 spin_unlock_irq(&phba->hbalock); 8495 } 8496 } 8497 clear_bit(HBA_SETUP, &phba->hba_flag); 8498 8499 lpfc_sli4_dip(phba); 8500 8501 /* 8502 * Allocate a single mailbox container for initializing the 8503 * port. 8504 */ 8505 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8506 if (!mboxq) 8507 return -ENOMEM; 8508 8509 /* Issue READ_REV to collect vpd and FW information. */ 8510 vpd_size = SLI4_PAGE_SIZE; 8511 vpd = kzalloc(vpd_size, GFP_KERNEL); 8512 if (!vpd) { 8513 rc = -ENOMEM; 8514 goto out_free_mbox; 8515 } 8516 8517 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8518 if (unlikely(rc)) { 8519 kfree(vpd); 8520 goto out_free_mbox; 8521 } 8522 8523 mqe = &mboxq->u.mqe; 8524 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8525 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8526 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8527 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8528 } else { 8529 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8530 } 8531 8532 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8533 LPFC_DCBX_CEE_MODE) 8534 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8535 else 8536 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8537 8538 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8539 8540 if (phba->sli_rev != LPFC_SLI_REV4) { 8541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8542 "0376 READ_REV Error. SLI Level %d " 8543 "FCoE enabled %d\n", 8544 phba->sli_rev, 8545 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8546 rc = -EIO; 8547 kfree(vpd); 8548 goto out_free_mbox; 8549 } 8550 8551 rc = lpfc_set_host_tm(phba); 8552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8553 "6468 Set host date / time: Status x%x:\n", rc); 8554 8555 /* 8556 * Continue initialization with default values even if driver failed 8557 * to read FCoE param config regions, only read parameters if the 8558 * board is FCoE 8559 */ 8560 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8561 lpfc_sli4_read_fcoe_params(phba)) 8562 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8563 "2570 Failed to read FCoE parameters\n"); 8564 8565 /* 8566 * Retrieve sli4 device physical port name, failure of doing it 8567 * is considered as non-fatal. 8568 */ 8569 rc = lpfc_sli4_retrieve_pport_name(phba); 8570 if (!rc) 8571 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8572 "3080 Successful retrieving SLI4 device " 8573 "physical port name: %s.\n", phba->Port); 8574 8575 rc = lpfc_sli4_get_ctl_attr(phba); 8576 if (!rc) 8577 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8578 "8351 Successful retrieving SLI4 device " 8579 "CTL ATTR\n"); 8580 8581 /* 8582 * Evaluate the read rev and vpd data. Populate the driver 8583 * state with the results. If this routine fails, the failure 8584 * is not fatal as the driver will use generic values. 8585 */ 8586 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8587 if (unlikely(!rc)) 8588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8589 "0377 Error %d parsing vpd. " 8590 "Using defaults.\n", rc); 8591 kfree(vpd); 8592 8593 /* Save information as VPD data */ 8594 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8595 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8596 8597 /* 8598 * This is because first G7 ASIC doesn't support the standard 8599 * 0x5a NVME cmd descriptor type/subtype 8600 */ 8601 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8602 LPFC_SLI_INTF_IF_TYPE_6) && 8603 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8604 (phba->vpd.rev.smRev == 0) && 8605 (phba->cfg_nvme_embed_cmd == 1)) 8606 phba->cfg_nvme_embed_cmd = 0; 8607 8608 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8609 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8610 &mqe->un.read_rev); 8611 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8612 &mqe->un.read_rev); 8613 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8614 &mqe->un.read_rev); 8615 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8616 &mqe->un.read_rev); 8617 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8618 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8619 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8620 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8621 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8622 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8623 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8624 "(%d):0380 READ_REV Status x%x " 8625 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8626 mboxq->vport ? mboxq->vport->vpi : 0, 8627 bf_get(lpfc_mqe_status, mqe), 8628 phba->vpd.rev.opFwName, 8629 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8630 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8631 8632 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8633 LPFC_SLI_INTF_IF_TYPE_0) { 8634 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8636 if (rc == MBX_SUCCESS) { 8637 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8638 /* Set 1Sec interval to detect UE */ 8639 phba->eratt_poll_interval = 1; 8640 phba->sli4_hba.ue_to_sr = bf_get( 8641 lpfc_mbx_set_feature_UESR, 8642 &mboxq->u.mqe.un.set_feature); 8643 phba->sli4_hba.ue_to_rp = bf_get( 8644 lpfc_mbx_set_feature_UERP, 8645 &mboxq->u.mqe.un.set_feature); 8646 } 8647 } 8648 8649 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8650 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8651 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8652 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8653 if (rc != MBX_SUCCESS) 8654 phba->mds_diags_support = 0; 8655 } 8656 8657 /* 8658 * Discover the port's supported feature set and match it against the 8659 * hosts requests. 8660 */ 8661 lpfc_request_features(phba, mboxq); 8662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8663 if (unlikely(rc)) { 8664 rc = -EIO; 8665 goto out_free_mbox; 8666 } 8667 8668 /* Disable VMID if app header is not supported */ 8669 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8670 &mqe->un.req_ftrs))) { 8671 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8672 phba->cfg_vmid_app_header = 0; 8673 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8674 "1242 vmid feature not supported\n"); 8675 } 8676 8677 /* 8678 * The port must support FCP initiator mode as this is the 8679 * only mode running in the host. 8680 */ 8681 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8682 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8683 "0378 No support for fcpi mode.\n"); 8684 ftr_rsp++; 8685 } 8686 8687 /* Performance Hints are ONLY for FCoE */ 8688 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8689 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8690 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8691 else 8692 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8693 } 8694 8695 /* 8696 * If the port cannot support the host's requested features 8697 * then turn off the global config parameters to disable the 8698 * feature in the driver. This is not a fatal error. 8699 */ 8700 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8702 phba->cfg_enable_bg = 0; 8703 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8704 ftr_rsp++; 8705 } 8706 } 8707 8708 if (phba->max_vpi && phba->cfg_enable_npiv && 8709 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8710 ftr_rsp++; 8711 8712 if (ftr_rsp) { 8713 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8714 "0379 Feature Mismatch Data: x%08x %08x " 8715 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8716 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8717 phba->cfg_enable_npiv, phba->max_vpi); 8718 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8719 phba->cfg_enable_bg = 0; 8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8721 phba->cfg_enable_npiv = 0; 8722 } 8723 8724 /* These SLI3 features are assumed in SLI4 */ 8725 spin_lock_irq(&phba->hbalock); 8726 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8727 spin_unlock_irq(&phba->hbalock); 8728 8729 /* Always try to enable dual dump feature if we can */ 8730 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8731 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8732 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8733 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8734 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8735 "6448 Dual Dump is enabled\n"); 8736 else 8737 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8738 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8739 "rc:x%x dd:x%x\n", 8740 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8741 lpfc_sli_config_mbox_subsys_get( 8742 phba, mboxq), 8743 lpfc_sli_config_mbox_opcode_get( 8744 phba, mboxq), 8745 rc, dd); 8746 8747 /* 8748 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8749 * calls depends on these resources to complete port setup. 8750 */ 8751 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8752 if (rc) { 8753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8754 "2920 Failed to alloc Resource IDs " 8755 "rc = x%x\n", rc); 8756 goto out_free_mbox; 8757 } 8758 8759 lpfc_sli4_node_rpi_restore(phba); 8760 8761 lpfc_set_host_data(phba, mboxq); 8762 8763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8764 if (rc) { 8765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8766 "2134 Failed to set host os driver version %x", 8767 rc); 8768 } 8769 8770 /* Read the port's service parameters. */ 8771 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8772 if (rc) { 8773 phba->link_state = LPFC_HBA_ERROR; 8774 rc = -ENOMEM; 8775 goto out_free_mbox; 8776 } 8777 8778 mboxq->vport = vport; 8779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8780 mp = mboxq->ctx_buf; 8781 if (rc == MBX_SUCCESS) { 8782 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8783 rc = 0; 8784 } 8785 8786 /* 8787 * This memory was allocated by the lpfc_read_sparam routine but is 8788 * no longer needed. It is released and ctx_buf NULLed to prevent 8789 * unintended pointer access as the mbox is reused. 8790 */ 8791 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8792 kfree(mp); 8793 mboxq->ctx_buf = NULL; 8794 if (unlikely(rc)) { 8795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8796 "0382 READ_SPARAM command failed " 8797 "status %d, mbxStatus x%x\n", 8798 rc, bf_get(lpfc_mqe_status, mqe)); 8799 phba->link_state = LPFC_HBA_ERROR; 8800 rc = -EIO; 8801 goto out_free_mbox; 8802 } 8803 8804 lpfc_update_vport_wwn(vport); 8805 8806 /* Update the fc_host data structures with new wwn. */ 8807 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8808 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8809 8810 /* Create all the SLI4 queues */ 8811 rc = lpfc_sli4_queue_create(phba); 8812 if (rc) { 8813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8814 "3089 Failed to allocate queues\n"); 8815 rc = -ENODEV; 8816 goto out_free_mbox; 8817 } 8818 /* Set up all the queues to the device */ 8819 rc = lpfc_sli4_queue_setup(phba); 8820 if (unlikely(rc)) { 8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8822 "0381 Error %d during queue setup.\n", rc); 8823 goto out_destroy_queue; 8824 } 8825 /* Initialize the driver internal SLI layer lists. */ 8826 lpfc_sli4_setup(phba); 8827 lpfc_sli4_queue_init(phba); 8828 8829 /* update host els xri-sgl sizes and mappings */ 8830 rc = lpfc_sli4_els_sgl_update(phba); 8831 if (unlikely(rc)) { 8832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8833 "1400 Failed to update xri-sgl size and " 8834 "mapping: %d\n", rc); 8835 goto out_destroy_queue; 8836 } 8837 8838 /* register the els sgl pool to the port */ 8839 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8840 phba->sli4_hba.els_xri_cnt); 8841 if (unlikely(rc < 0)) { 8842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8843 "0582 Error %d during els sgl post " 8844 "operation\n", rc); 8845 rc = -ENODEV; 8846 goto out_destroy_queue; 8847 } 8848 phba->sli4_hba.els_xri_cnt = rc; 8849 8850 if (phba->nvmet_support) { 8851 /* update host nvmet xri-sgl sizes and mappings */ 8852 rc = lpfc_sli4_nvmet_sgl_update(phba); 8853 if (unlikely(rc)) { 8854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8855 "6308 Failed to update nvmet-sgl size " 8856 "and mapping: %d\n", rc); 8857 goto out_destroy_queue; 8858 } 8859 8860 /* register the nvmet sgl pool to the port */ 8861 rc = lpfc_sli4_repost_sgl_list( 8862 phba, 8863 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8864 phba->sli4_hba.nvmet_xri_cnt); 8865 if (unlikely(rc < 0)) { 8866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8867 "3117 Error %d during nvmet " 8868 "sgl post\n", rc); 8869 rc = -ENODEV; 8870 goto out_destroy_queue; 8871 } 8872 phba->sli4_hba.nvmet_xri_cnt = rc; 8873 8874 /* We allocate an iocbq for every receive context SGL. 8875 * The additional allocation is for abort and ls handling. 8876 */ 8877 cnt = phba->sli4_hba.nvmet_xri_cnt + 8878 phba->sli4_hba.max_cfg_param.max_xri; 8879 } else { 8880 /* update host common xri-sgl sizes and mappings */ 8881 rc = lpfc_sli4_io_sgl_update(phba); 8882 if (unlikely(rc)) { 8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8884 "6082 Failed to update nvme-sgl size " 8885 "and mapping: %d\n", rc); 8886 goto out_destroy_queue; 8887 } 8888 8889 /* register the allocated common sgl pool to the port */ 8890 rc = lpfc_sli4_repost_io_sgl_list(phba); 8891 if (unlikely(rc)) { 8892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8893 "6116 Error %d during nvme sgl post " 8894 "operation\n", rc); 8895 /* Some NVME buffers were moved to abort nvme list */ 8896 /* A pci function reset will repost them */ 8897 rc = -ENODEV; 8898 goto out_destroy_queue; 8899 } 8900 /* Each lpfc_io_buf job structure has an iocbq element. 8901 * This cnt provides for abort, els, ct and ls requests. 8902 */ 8903 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8904 } 8905 8906 if (!phba->sli.iocbq_lookup) { 8907 /* Initialize and populate the iocb list per host */ 8908 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8909 "2821 initialize iocb list with %d entries\n", 8910 cnt); 8911 rc = lpfc_init_iocb_list(phba, cnt); 8912 if (rc) { 8913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8914 "1413 Failed to init iocb list.\n"); 8915 goto out_destroy_queue; 8916 } 8917 } 8918 8919 if (phba->nvmet_support) 8920 lpfc_nvmet_create_targetport(phba); 8921 8922 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8923 /* Post initial buffers to all RQs created */ 8924 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8925 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8926 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8927 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8928 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8929 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8930 rqbp->buffer_count = 0; 8931 8932 lpfc_post_rq_buffer( 8933 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8934 phba->sli4_hba.nvmet_mrq_data[i], 8935 phba->cfg_nvmet_mrq_post, i); 8936 } 8937 } 8938 8939 /* Post the rpi header region to the device. */ 8940 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8941 if (unlikely(rc)) { 8942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8943 "0393 Error %d during rpi post operation\n", 8944 rc); 8945 rc = -ENODEV; 8946 goto out_free_iocblist; 8947 } 8948 8949 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8950 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8951 /* 8952 * The FC Port needs to register FCFI (index 0) 8953 */ 8954 lpfc_reg_fcfi(phba, mboxq); 8955 mboxq->vport = phba->pport; 8956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8957 if (rc != MBX_SUCCESS) 8958 goto out_unset_queue; 8959 rc = 0; 8960 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8961 &mboxq->u.mqe.un.reg_fcfi); 8962 } else { 8963 /* We are a NVME Target mode with MRQ > 1 */ 8964 8965 /* First register the FCFI */ 8966 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8967 mboxq->vport = phba->pport; 8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8969 if (rc != MBX_SUCCESS) 8970 goto out_unset_queue; 8971 rc = 0; 8972 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8973 &mboxq->u.mqe.un.reg_fcfi_mrq); 8974 8975 /* Next register the MRQs */ 8976 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8977 mboxq->vport = phba->pport; 8978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8979 if (rc != MBX_SUCCESS) 8980 goto out_unset_queue; 8981 rc = 0; 8982 } 8983 /* Check if the port is configured to be disabled */ 8984 lpfc_sli_read_link_ste(phba); 8985 } 8986 8987 /* Don't post more new bufs if repost already recovered 8988 * the nvme sgls. 8989 */ 8990 if (phba->nvmet_support == 0) { 8991 if (phba->sli4_hba.io_xri_cnt == 0) { 8992 len = lpfc_new_io_buf( 8993 phba, phba->sli4_hba.io_xri_max); 8994 if (len == 0) { 8995 rc = -ENOMEM; 8996 goto out_unset_queue; 8997 } 8998 8999 if (phba->cfg_xri_rebalancing) 9000 lpfc_create_multixri_pools(phba); 9001 } 9002 } else { 9003 phba->cfg_xri_rebalancing = 0; 9004 } 9005 9006 /* Allow asynchronous mailbox command to go through */ 9007 spin_lock_irq(&phba->hbalock); 9008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9009 spin_unlock_irq(&phba->hbalock); 9010 9011 /* Post receive buffers to the device */ 9012 lpfc_sli4_rb_setup(phba); 9013 9014 /* Reset HBA FCF states after HBA reset */ 9015 phba->fcf.fcf_flag = 0; 9016 phba->fcf.current_rec.flag = 0; 9017 9018 /* Start the ELS watchdog timer */ 9019 mod_timer(&vport->els_tmofunc, 9020 jiffies + secs_to_jiffies(phba->fc_ratov * 2)); 9021 9022 /* Start heart beat timer */ 9023 mod_timer(&phba->hb_tmofunc, 9024 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 9025 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9026 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9027 phba->last_completion_time = jiffies; 9028 9029 /* start eq_delay heartbeat */ 9030 if (phba->cfg_auto_imax) 9031 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9032 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9033 9034 /* start per phba idle_stat_delay heartbeat */ 9035 lpfc_init_idle_stat_hb(phba); 9036 9037 /* Start error attention (ERATT) polling timer */ 9038 mod_timer(&phba->eratt_poll, 9039 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 9040 9041 /* 9042 * The port is ready, set the host's link state to LINK_DOWN 9043 * in preparation for link interrupts. 9044 */ 9045 spin_lock_irq(&phba->hbalock); 9046 phba->link_state = LPFC_LINK_DOWN; 9047 9048 /* Check if physical ports are trunked */ 9049 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9050 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9051 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9052 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9053 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9054 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9055 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9056 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9057 spin_unlock_irq(&phba->hbalock); 9058 9059 /* Arm the CQs and then EQs on device */ 9060 lpfc_sli4_arm_cqeq_intr(phba); 9061 9062 /* Indicate device interrupt mode */ 9063 phba->sli4_hba.intr_enable = 1; 9064 9065 /* Setup CMF after HBA is initialized */ 9066 lpfc_cmf_setup(phba); 9067 9068 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9069 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9071 "3103 Adapter Link is disabled.\n"); 9072 lpfc_down_link(phba, mboxq); 9073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9074 if (rc != MBX_SUCCESS) { 9075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9076 "3104 Adapter failed to issue " 9077 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9078 goto out_io_buff_free; 9079 } 9080 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9081 /* don't perform init_link on SLI4 FC port loopback test */ 9082 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9083 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9084 if (rc) 9085 goto out_io_buff_free; 9086 } 9087 } 9088 mempool_free(mboxq, phba->mbox_mem_pool); 9089 9090 /* Enable RAS FW log support */ 9091 lpfc_sli4_ras_setup(phba); 9092 9093 set_bit(HBA_SETUP, &phba->hba_flag); 9094 return rc; 9095 9096 out_io_buff_free: 9097 /* Free allocated IO Buffers */ 9098 lpfc_io_free(phba); 9099 out_unset_queue: 9100 /* Unset all the queues set up in this routine when error out */ 9101 lpfc_sli4_queue_unset(phba); 9102 out_free_iocblist: 9103 lpfc_free_iocb_list(phba); 9104 out_destroy_queue: 9105 lpfc_sli4_queue_destroy(phba); 9106 lpfc_stop_hba_timers(phba); 9107 out_free_mbox: 9108 mempool_free(mboxq, phba->mbox_mem_pool); 9109 return rc; 9110 } 9111 9112 /** 9113 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9114 * @t: Context to fetch pointer to hba structure from. 9115 * 9116 * This is the callback function for mailbox timer. The mailbox 9117 * timer is armed when a new mailbox command is issued and the timer 9118 * is deleted when the mailbox complete. The function is called by 9119 * the kernel timer code when a mailbox does not complete within 9120 * expected time. This function wakes up the worker thread to 9121 * process the mailbox timeout and returns. All the processing is 9122 * done by the worker thread function lpfc_mbox_timeout_handler. 9123 **/ 9124 void 9125 lpfc_mbox_timeout(struct timer_list *t) 9126 { 9127 struct lpfc_hba *phba = timer_container_of(phba, t, sli.mbox_tmo); 9128 unsigned long iflag; 9129 uint32_t tmo_posted; 9130 9131 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9132 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9133 if (!tmo_posted) 9134 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9135 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9136 9137 if (!tmo_posted) 9138 lpfc_worker_wake_up(phba); 9139 return; 9140 } 9141 9142 /** 9143 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9144 * are pending 9145 * @phba: Pointer to HBA context object. 9146 * 9147 * This function checks if any mailbox completions are present on the mailbox 9148 * completion queue. 9149 **/ 9150 static bool 9151 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9152 { 9153 9154 uint32_t idx; 9155 struct lpfc_queue *mcq; 9156 struct lpfc_mcqe *mcqe; 9157 bool pending_completions = false; 9158 uint8_t qe_valid; 9159 9160 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9161 return false; 9162 9163 /* Check for completions on mailbox completion queue */ 9164 9165 mcq = phba->sli4_hba.mbx_cq; 9166 idx = mcq->hba_index; 9167 qe_valid = mcq->qe_valid; 9168 while (bf_get_le32(lpfc_cqe_valid, 9169 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9170 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9171 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9172 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9173 pending_completions = true; 9174 break; 9175 } 9176 idx = (idx + 1) % mcq->entry_count; 9177 if (mcq->hba_index == idx) 9178 break; 9179 9180 /* if the index wrapped around, toggle the valid bit */ 9181 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9182 qe_valid = (qe_valid) ? 0 : 1; 9183 } 9184 return pending_completions; 9185 9186 } 9187 9188 /** 9189 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9190 * that were missed. 9191 * @phba: Pointer to HBA context object. 9192 * 9193 * For sli4, it is possible to miss an interrupt. As such mbox completions 9194 * maybe missed causing erroneous mailbox timeouts to occur. This function 9195 * checks to see if mbox completions are on the mailbox completion queue 9196 * and will process all the completions associated with the eq for the 9197 * mailbox completion queue. 9198 **/ 9199 static bool 9200 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9201 { 9202 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9203 uint32_t eqidx; 9204 struct lpfc_queue *fpeq = NULL; 9205 struct lpfc_queue *eq; 9206 bool mbox_pending; 9207 9208 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9209 return false; 9210 9211 /* Find the EQ associated with the mbox CQ */ 9212 if (sli4_hba->hdwq) { 9213 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9214 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9215 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9216 fpeq = eq; 9217 break; 9218 } 9219 } 9220 } 9221 if (!fpeq) 9222 return false; 9223 9224 /* Turn off interrupts from this EQ */ 9225 9226 sli4_hba->sli4_eq_clr_intr(fpeq); 9227 9228 /* Check to see if a mbox completion is pending */ 9229 9230 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9231 9232 /* 9233 * If a mbox completion is pending, process all the events on EQ 9234 * associated with the mbox completion queue (this could include 9235 * mailbox commands, async events, els commands, receive queue data 9236 * and fcp commands) 9237 */ 9238 9239 if (mbox_pending) 9240 /* process and rearm the EQ */ 9241 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9242 LPFC_QUEUE_WORK); 9243 else 9244 /* Always clear and re-arm the EQ */ 9245 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9246 9247 return mbox_pending; 9248 9249 } 9250 9251 /** 9252 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9253 * @phba: Pointer to HBA context object. 9254 * 9255 * This function is called from worker thread when a mailbox command times out. 9256 * The caller is not required to hold any locks. This function will reset the 9257 * HBA and recover all the pending commands. 9258 **/ 9259 void 9260 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9261 { 9262 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9263 MAILBOX_t *mb = NULL; 9264 9265 struct lpfc_sli *psli = &phba->sli; 9266 9267 /* If the mailbox completed, process the completion */ 9268 lpfc_sli4_process_missed_mbox_completions(phba); 9269 9270 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9271 return; 9272 9273 if (pmbox != NULL) 9274 mb = &pmbox->u.mb; 9275 /* Check the pmbox pointer first. There is a race condition 9276 * between the mbox timeout handler getting executed in the 9277 * worklist and the mailbox actually completing. When this 9278 * race condition occurs, the mbox_active will be NULL. 9279 */ 9280 spin_lock_irq(&phba->hbalock); 9281 if (pmbox == NULL) { 9282 lpfc_printf_log(phba, KERN_WARNING, 9283 LOG_MBOX | LOG_SLI, 9284 "0353 Active Mailbox cleared - mailbox timeout " 9285 "exiting\n"); 9286 spin_unlock_irq(&phba->hbalock); 9287 return; 9288 } 9289 9290 /* Mbox cmd <mbxCommand> timeout */ 9291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9292 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9293 mb->mbxCommand, 9294 phba->pport->port_state, 9295 phba->sli.sli_flag, 9296 phba->sli.mbox_active); 9297 spin_unlock_irq(&phba->hbalock); 9298 9299 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9300 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9301 * it to fail all outstanding SCSI IO. 9302 */ 9303 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9304 spin_lock_irq(&phba->pport->work_port_lock); 9305 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9306 spin_unlock_irq(&phba->pport->work_port_lock); 9307 spin_lock_irq(&phba->hbalock); 9308 phba->link_state = LPFC_LINK_UNKNOWN; 9309 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9310 spin_unlock_irq(&phba->hbalock); 9311 9312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9313 "0345 Resetting board due to mailbox timeout\n"); 9314 9315 /* Reset the HBA device */ 9316 lpfc_reset_hba(phba); 9317 } 9318 9319 /** 9320 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9321 * @phba: Pointer to HBA context object. 9322 * @pmbox: Pointer to mailbox object. 9323 * @flag: Flag indicating how the mailbox need to be processed. 9324 * 9325 * This function is called by discovery code and HBA management code 9326 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9327 * function gets the hbalock to protect the data structures. 9328 * The mailbox command can be submitted in polling mode, in which case 9329 * this function will wait in a polling loop for the completion of the 9330 * mailbox. 9331 * If the mailbox is submitted in no_wait mode (not polling) the 9332 * function will submit the command and returns immediately without waiting 9333 * for the mailbox completion. The no_wait is supported only when HBA 9334 * is in SLI2/SLI3 mode - interrupts are enabled. 9335 * The SLI interface allows only one mailbox pending at a time. If the 9336 * mailbox is issued in polling mode and there is already a mailbox 9337 * pending, then the function will return an error. If the mailbox is issued 9338 * in NO_WAIT mode and there is a mailbox pending already, the function 9339 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9340 * The sli layer owns the mailbox object until the completion of mailbox 9341 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9342 * return codes the caller owns the mailbox command after the return of 9343 * the function. 9344 **/ 9345 static int 9346 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9347 uint32_t flag) 9348 { 9349 MAILBOX_t *mbx; 9350 struct lpfc_sli *psli = &phba->sli; 9351 uint32_t status, evtctr; 9352 uint32_t ha_copy, hc_copy; 9353 int i; 9354 unsigned long timeout; 9355 unsigned long drvr_flag = 0; 9356 uint32_t word0, ldata; 9357 void __iomem *to_slim; 9358 int processing_queue = 0; 9359 9360 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9361 if (!pmbox) { 9362 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9363 /* processing mbox queue from intr_handler */ 9364 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9366 return MBX_SUCCESS; 9367 } 9368 processing_queue = 1; 9369 pmbox = lpfc_mbox_get(phba); 9370 if (!pmbox) { 9371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9372 return MBX_SUCCESS; 9373 } 9374 } 9375 9376 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9377 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9378 if(!pmbox->vport) { 9379 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9380 lpfc_printf_log(phba, KERN_ERR, 9381 LOG_MBOX | LOG_VPORT, 9382 "1806 Mbox x%x failed. No vport\n", 9383 pmbox->u.mb.mbxCommand); 9384 dump_stack(); 9385 goto out_not_finished; 9386 } 9387 } 9388 9389 /* If the PCI channel is in offline state, do not post mbox. */ 9390 if (unlikely(pci_channel_offline(phba->pcidev))) { 9391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9392 goto out_not_finished; 9393 } 9394 9395 /* If HBA has a deferred error attention, fail the iocb. */ 9396 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9398 goto out_not_finished; 9399 } 9400 9401 psli = &phba->sli; 9402 9403 mbx = &pmbox->u.mb; 9404 status = MBX_SUCCESS; 9405 9406 if (phba->link_state == LPFC_HBA_ERROR) { 9407 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9408 9409 /* Mbox command <mbxCommand> cannot issue */ 9410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9411 "(%d):0311 Mailbox command x%x cannot " 9412 "issue Data: x%x x%x\n", 9413 pmbox->vport ? pmbox->vport->vpi : 0, 9414 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9415 goto out_not_finished; 9416 } 9417 9418 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9419 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9420 !(hc_copy & HC_MBINT_ENA)) { 9421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9423 "(%d):2528 Mailbox command x%x cannot " 9424 "issue Data: x%x x%x\n", 9425 pmbox->vport ? pmbox->vport->vpi : 0, 9426 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9427 goto out_not_finished; 9428 } 9429 } 9430 9431 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9432 /* Polling for a mbox command when another one is already active 9433 * is not allowed in SLI. Also, the driver must have established 9434 * SLI2 mode to queue and process multiple mbox commands. 9435 */ 9436 9437 if (flag & MBX_POLL) { 9438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9439 9440 /* Mbox command <mbxCommand> cannot issue */ 9441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9442 "(%d):2529 Mailbox command x%x " 9443 "cannot issue Data: x%x x%x\n", 9444 pmbox->vport ? pmbox->vport->vpi : 0, 9445 pmbox->u.mb.mbxCommand, 9446 psli->sli_flag, flag); 9447 goto out_not_finished; 9448 } 9449 9450 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9451 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9452 /* Mbox command <mbxCommand> cannot issue */ 9453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9454 "(%d):2530 Mailbox command x%x " 9455 "cannot issue Data: x%x x%x\n", 9456 pmbox->vport ? pmbox->vport->vpi : 0, 9457 pmbox->u.mb.mbxCommand, 9458 psli->sli_flag, flag); 9459 goto out_not_finished; 9460 } 9461 9462 /* Another mailbox command is still being processed, queue this 9463 * command to be processed later. 9464 */ 9465 lpfc_mbox_put(phba, pmbox); 9466 9467 /* Mbox cmd issue - BUSY */ 9468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9469 "(%d):0308 Mbox cmd issue - BUSY Data: " 9470 "x%x x%x x%x x%x\n", 9471 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9472 mbx->mbxCommand, 9473 phba->pport ? phba->pport->port_state : 0xff, 9474 psli->sli_flag, flag); 9475 9476 psli->slistat.mbox_busy++; 9477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9478 9479 if (pmbox->vport) { 9480 lpfc_debugfs_disc_trc(pmbox->vport, 9481 LPFC_DISC_TRC_MBOX_VPORT, 9482 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9483 (uint32_t)mbx->mbxCommand, 9484 mbx->un.varWords[0], mbx->un.varWords[1]); 9485 } 9486 else { 9487 lpfc_debugfs_disc_trc(phba->pport, 9488 LPFC_DISC_TRC_MBOX, 9489 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9490 (uint32_t)mbx->mbxCommand, 9491 mbx->un.varWords[0], mbx->un.varWords[1]); 9492 } 9493 9494 return MBX_BUSY; 9495 } 9496 9497 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9498 9499 /* If we are not polling, we MUST be in SLI2 mode */ 9500 if (flag != MBX_POLL) { 9501 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9502 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9503 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9504 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9505 /* Mbox command <mbxCommand> cannot issue */ 9506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9507 "(%d):2531 Mailbox command x%x " 9508 "cannot issue Data: x%x x%x\n", 9509 pmbox->vport ? pmbox->vport->vpi : 0, 9510 pmbox->u.mb.mbxCommand, 9511 psli->sli_flag, flag); 9512 goto out_not_finished; 9513 } 9514 /* timeout active mbox command */ 9515 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)); 9516 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9517 } 9518 9519 /* Mailbox cmd <cmd> issue */ 9520 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9521 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9522 "x%x\n", 9523 pmbox->vport ? pmbox->vport->vpi : 0, 9524 mbx->mbxCommand, 9525 phba->pport ? phba->pport->port_state : 0xff, 9526 psli->sli_flag, flag); 9527 9528 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9529 if (pmbox->vport) { 9530 lpfc_debugfs_disc_trc(pmbox->vport, 9531 LPFC_DISC_TRC_MBOX_VPORT, 9532 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9533 (uint32_t)mbx->mbxCommand, 9534 mbx->un.varWords[0], mbx->un.varWords[1]); 9535 } 9536 else { 9537 lpfc_debugfs_disc_trc(phba->pport, 9538 LPFC_DISC_TRC_MBOX, 9539 "MBOX Send: cmd:x%x mb:x%x x%x", 9540 (uint32_t)mbx->mbxCommand, 9541 mbx->un.varWords[0], mbx->un.varWords[1]); 9542 } 9543 } 9544 9545 psli->slistat.mbox_cmd++; 9546 evtctr = psli->slistat.mbox_event; 9547 9548 /* next set own bit for the adapter and copy over command word */ 9549 mbx->mbxOwner = OWN_CHIP; 9550 9551 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9552 /* Populate mbox extension offset word. */ 9553 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9554 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9555 = (uint8_t *)phba->mbox_ext 9556 - (uint8_t *)phba->mbox; 9557 } 9558 9559 /* Copy the mailbox extension data */ 9560 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9561 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9562 (uint8_t *)phba->mbox_ext, 9563 pmbox->in_ext_byte_len); 9564 } 9565 /* Copy command data to host SLIM area */ 9566 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9567 } else { 9568 /* Populate mbox extension offset word. */ 9569 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9570 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9571 = MAILBOX_HBA_EXT_OFFSET; 9572 9573 /* Copy the mailbox extension data */ 9574 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9575 lpfc_memcpy_to_slim(phba->MBslimaddr + 9576 MAILBOX_HBA_EXT_OFFSET, 9577 pmbox->ext_buf, pmbox->in_ext_byte_len); 9578 9579 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9580 /* copy command data into host mbox for cmpl */ 9581 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9582 MAILBOX_CMD_SIZE); 9583 9584 /* First copy mbox command data to HBA SLIM, skip past first 9585 word */ 9586 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9587 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9588 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9589 9590 /* Next copy over first word, with mbxOwner set */ 9591 ldata = *((uint32_t *)mbx); 9592 to_slim = phba->MBslimaddr; 9593 writel(ldata, to_slim); 9594 readl(to_slim); /* flush */ 9595 9596 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9597 /* switch over to host mailbox */ 9598 psli->sli_flag |= LPFC_SLI_ACTIVE; 9599 } 9600 9601 wmb(); 9602 9603 switch (flag) { 9604 case MBX_NOWAIT: 9605 /* Set up reference to mailbox command */ 9606 psli->mbox_active = pmbox; 9607 /* Interrupt board to do it */ 9608 writel(CA_MBATT, phba->CAregaddr); 9609 readl(phba->CAregaddr); /* flush */ 9610 /* Don't wait for it to finish, just return */ 9611 break; 9612 9613 case MBX_POLL: 9614 /* Set up null reference to mailbox command */ 9615 psli->mbox_active = NULL; 9616 /* Interrupt board to do it */ 9617 writel(CA_MBATT, phba->CAregaddr); 9618 readl(phba->CAregaddr); /* flush */ 9619 9620 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9621 /* First read mbox status word */ 9622 word0 = *((uint32_t *)phba->mbox); 9623 word0 = le32_to_cpu(word0); 9624 } else { 9625 /* First read mbox status word */ 9626 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9627 spin_unlock_irqrestore(&phba->hbalock, 9628 drvr_flag); 9629 goto out_not_finished; 9630 } 9631 } 9632 9633 /* Read the HBA Host Attention Register */ 9634 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9635 spin_unlock_irqrestore(&phba->hbalock, 9636 drvr_flag); 9637 goto out_not_finished; 9638 } 9639 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies; 9640 i = 0; 9641 /* Wait for command to complete */ 9642 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9643 (!(ha_copy & HA_MBATT) && 9644 (phba->link_state > LPFC_WARM_START))) { 9645 if (time_after(jiffies, timeout)) { 9646 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9647 spin_unlock_irqrestore(&phba->hbalock, 9648 drvr_flag); 9649 goto out_not_finished; 9650 } 9651 9652 /* Check if we took a mbox interrupt while we were 9653 polling */ 9654 if (((word0 & OWN_CHIP) != OWN_CHIP) 9655 && (evtctr != psli->slistat.mbox_event)) 9656 break; 9657 9658 if (i++ > 10) { 9659 spin_unlock_irqrestore(&phba->hbalock, 9660 drvr_flag); 9661 msleep(1); 9662 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9663 } 9664 9665 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9666 /* First copy command data */ 9667 word0 = *((uint32_t *)phba->mbox); 9668 word0 = le32_to_cpu(word0); 9669 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9670 MAILBOX_t *slimmb; 9671 uint32_t slimword0; 9672 /* Check real SLIM for any errors */ 9673 slimword0 = readl(phba->MBslimaddr); 9674 slimmb = (MAILBOX_t *) & slimword0; 9675 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9676 && slimmb->mbxStatus) { 9677 psli->sli_flag &= 9678 ~LPFC_SLI_ACTIVE; 9679 word0 = slimword0; 9680 } 9681 } 9682 } else { 9683 /* First copy command data */ 9684 word0 = readl(phba->MBslimaddr); 9685 } 9686 /* Read the HBA Host Attention Register */ 9687 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9688 spin_unlock_irqrestore(&phba->hbalock, 9689 drvr_flag); 9690 goto out_not_finished; 9691 } 9692 } 9693 9694 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9695 /* copy results back to user */ 9696 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9697 MAILBOX_CMD_SIZE); 9698 /* Copy the mailbox extension data */ 9699 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9700 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9701 pmbox->ext_buf, 9702 pmbox->out_ext_byte_len); 9703 } 9704 } else { 9705 /* First copy command data */ 9706 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9707 MAILBOX_CMD_SIZE); 9708 /* Copy the mailbox extension data */ 9709 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9710 lpfc_memcpy_from_slim( 9711 pmbox->ext_buf, 9712 phba->MBslimaddr + 9713 MAILBOX_HBA_EXT_OFFSET, 9714 pmbox->out_ext_byte_len); 9715 } 9716 } 9717 9718 writel(HA_MBATT, phba->HAregaddr); 9719 readl(phba->HAregaddr); /* flush */ 9720 9721 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9722 status = mbx->mbxStatus; 9723 } 9724 9725 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9726 return status; 9727 9728 out_not_finished: 9729 if (processing_queue) { 9730 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9731 lpfc_mbox_cmpl_put(phba, pmbox); 9732 } 9733 return MBX_NOT_FINISHED; 9734 } 9735 9736 /** 9737 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9738 * @phba: Pointer to HBA context object. 9739 * 9740 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9741 * the driver internal pending mailbox queue. It will then try to wait out the 9742 * possible outstanding mailbox command before return. 9743 * 9744 * Returns: 9745 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9746 * the outstanding mailbox command timed out. 9747 **/ 9748 static int 9749 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9750 { 9751 struct lpfc_sli *psli = &phba->sli; 9752 LPFC_MBOXQ_t *mboxq; 9753 int rc = 0; 9754 unsigned long timeout = 0; 9755 u32 sli_flag; 9756 u8 cmd, subsys, opcode; 9757 9758 /* Mark the asynchronous mailbox command posting as blocked */ 9759 spin_lock_irq(&phba->hbalock); 9760 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9761 /* Determine how long we might wait for the active mailbox 9762 * command to be gracefully completed by firmware. 9763 */ 9764 if (phba->sli.mbox_active) 9765 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 9766 phba->sli.mbox_active)) + jiffies; 9767 spin_unlock_irq(&phba->hbalock); 9768 9769 /* Make sure the mailbox is really active */ 9770 if (timeout) 9771 lpfc_sli4_process_missed_mbox_completions(phba); 9772 9773 /* Wait for the outstanding mailbox command to complete */ 9774 while (phba->sli.mbox_active) { 9775 /* Check active mailbox complete status every 2ms */ 9776 msleep(2); 9777 if (time_after(jiffies, timeout)) { 9778 /* Timeout, mark the outstanding cmd not complete */ 9779 9780 /* Sanity check sli.mbox_active has not completed or 9781 * cancelled from another context during last 2ms sleep, 9782 * so take hbalock to be sure before logging. 9783 */ 9784 spin_lock_irq(&phba->hbalock); 9785 if (phba->sli.mbox_active) { 9786 mboxq = phba->sli.mbox_active; 9787 cmd = mboxq->u.mb.mbxCommand; 9788 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9789 mboxq); 9790 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9791 mboxq); 9792 sli_flag = psli->sli_flag; 9793 spin_unlock_irq(&phba->hbalock); 9794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9795 "2352 Mailbox command x%x " 9796 "(x%x/x%x) sli_flag x%x could " 9797 "not complete\n", 9798 cmd, subsys, opcode, 9799 sli_flag); 9800 } else { 9801 spin_unlock_irq(&phba->hbalock); 9802 } 9803 9804 rc = 1; 9805 break; 9806 } 9807 } 9808 9809 /* Can not cleanly block async mailbox command, fails it */ 9810 if (rc) { 9811 spin_lock_irq(&phba->hbalock); 9812 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9813 spin_unlock_irq(&phba->hbalock); 9814 } 9815 return rc; 9816 } 9817 9818 /** 9819 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9820 * @phba: Pointer to HBA context object. 9821 * 9822 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9823 * commands from the driver internal pending mailbox queue. It makes sure 9824 * that there is no outstanding mailbox command before resuming posting 9825 * asynchronous mailbox commands. If, for any reason, there is outstanding 9826 * mailbox command, it will try to wait it out before resuming asynchronous 9827 * mailbox command posting. 9828 **/ 9829 static void 9830 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9831 { 9832 struct lpfc_sli *psli = &phba->sli; 9833 9834 spin_lock_irq(&phba->hbalock); 9835 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9836 /* Asynchronous mailbox posting is not blocked, do nothing */ 9837 spin_unlock_irq(&phba->hbalock); 9838 return; 9839 } 9840 9841 /* Outstanding synchronous mailbox command is guaranteed to be done, 9842 * successful or timeout, after timing-out the outstanding mailbox 9843 * command shall always be removed, so just unblock posting async 9844 * mailbox command and resume 9845 */ 9846 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9847 spin_unlock_irq(&phba->hbalock); 9848 9849 /* wake up worker thread to post asynchronous mailbox command */ 9850 lpfc_worker_wake_up(phba); 9851 } 9852 9853 /** 9854 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9855 * @phba: Pointer to HBA context object. 9856 * @mboxq: Pointer to mailbox object. 9857 * 9858 * The function waits for the bootstrap mailbox register ready bit from 9859 * port for twice the regular mailbox command timeout value. 9860 * 9861 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9862 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9863 * is in an unrecoverable state. 9864 **/ 9865 static int 9866 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9867 { 9868 uint32_t db_ready; 9869 unsigned long timeout; 9870 struct lpfc_register bmbx_reg; 9871 struct lpfc_register portstat_reg = {-1}; 9872 9873 /* Sanity check - there is no point to wait if the port is in an 9874 * unrecoverable state. 9875 */ 9876 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9877 LPFC_SLI_INTF_IF_TYPE_2) { 9878 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9879 &portstat_reg.word0) || 9880 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9881 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9882 "3858 Skipping bmbx ready because " 9883 "Port Status x%x\n", 9884 portstat_reg.word0); 9885 return MBXERR_ERROR; 9886 } 9887 } 9888 9889 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies; 9890 9891 do { 9892 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9893 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9894 if (!db_ready) 9895 mdelay(2); 9896 9897 if (time_after(jiffies, timeout)) 9898 return MBXERR_ERROR; 9899 } while (!db_ready); 9900 9901 return 0; 9902 } 9903 9904 /** 9905 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9906 * @phba: Pointer to HBA context object. 9907 * @mboxq: Pointer to mailbox object. 9908 * 9909 * The function posts a mailbox to the port. The mailbox is expected 9910 * to be comletely filled in and ready for the port to operate on it. 9911 * This routine executes a synchronous completion operation on the 9912 * mailbox by polling for its completion. 9913 * 9914 * The caller must not be holding any locks when calling this routine. 9915 * 9916 * Returns: 9917 * MBX_SUCCESS - mailbox posted successfully 9918 * Any of the MBX error values. 9919 **/ 9920 static int 9921 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9922 { 9923 int rc = MBX_SUCCESS; 9924 unsigned long iflag; 9925 uint32_t mcqe_status; 9926 uint32_t mbx_cmnd; 9927 struct lpfc_sli *psli = &phba->sli; 9928 struct lpfc_mqe *mb = &mboxq->u.mqe; 9929 struct lpfc_bmbx_create *mbox_rgn; 9930 struct dma_address *dma_address; 9931 9932 /* 9933 * Only one mailbox can be active to the bootstrap mailbox region 9934 * at a time and there is no queueing provided. 9935 */ 9936 spin_lock_irqsave(&phba->hbalock, iflag); 9937 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9938 spin_unlock_irqrestore(&phba->hbalock, iflag); 9939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9940 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9941 "cannot issue Data: x%x x%x\n", 9942 mboxq->vport ? mboxq->vport->vpi : 0, 9943 mboxq->u.mb.mbxCommand, 9944 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9945 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9946 psli->sli_flag, MBX_POLL); 9947 return MBXERR_ERROR; 9948 } 9949 /* The server grabs the token and owns it until release */ 9950 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9951 phba->sli.mbox_active = mboxq; 9952 spin_unlock_irqrestore(&phba->hbalock, iflag); 9953 9954 /* wait for bootstrap mbox register for readyness */ 9955 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9956 if (rc) 9957 goto exit; 9958 /* 9959 * Initialize the bootstrap memory region to avoid stale data areas 9960 * in the mailbox post. Then copy the caller's mailbox contents to 9961 * the bmbx mailbox region. 9962 */ 9963 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9964 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9965 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9966 sizeof(struct lpfc_mqe)); 9967 9968 /* Post the high mailbox dma address to the port and wait for ready. */ 9969 dma_address = &phba->sli4_hba.bmbx.dma_address; 9970 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9971 9972 /* wait for bootstrap mbox register for hi-address write done */ 9973 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9974 if (rc) 9975 goto exit; 9976 9977 /* Post the low mailbox dma address to the port. */ 9978 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9979 9980 /* wait for bootstrap mbox register for low address write done */ 9981 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9982 if (rc) 9983 goto exit; 9984 9985 /* 9986 * Read the CQ to ensure the mailbox has completed. 9987 * If so, update the mailbox status so that the upper layers 9988 * can complete the request normally. 9989 */ 9990 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9991 sizeof(struct lpfc_mqe)); 9992 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9993 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9994 sizeof(struct lpfc_mcqe)); 9995 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9996 /* 9997 * When the CQE status indicates a failure and the mailbox status 9998 * indicates success then copy the CQE status into the mailbox status 9999 * (and prefix it with x4000). 10000 */ 10001 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10002 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10003 bf_set(lpfc_mqe_status, mb, 10004 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10005 rc = MBXERR_ERROR; 10006 } else 10007 lpfc_sli4_swap_str(phba, mboxq); 10008 10009 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10010 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10011 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10012 " x%x x%x CQ: x%x x%x x%x x%x\n", 10013 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10014 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10015 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10016 bf_get(lpfc_mqe_status, mb), 10017 mb->un.mb_words[0], mb->un.mb_words[1], 10018 mb->un.mb_words[2], mb->un.mb_words[3], 10019 mb->un.mb_words[4], mb->un.mb_words[5], 10020 mb->un.mb_words[6], mb->un.mb_words[7], 10021 mb->un.mb_words[8], mb->un.mb_words[9], 10022 mb->un.mb_words[10], mb->un.mb_words[11], 10023 mb->un.mb_words[12], mboxq->mcqe.word0, 10024 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10025 mboxq->mcqe.trailer); 10026 exit: 10027 /* We are holding the token, no needed for lock when release */ 10028 spin_lock_irqsave(&phba->hbalock, iflag); 10029 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10030 phba->sli.mbox_active = NULL; 10031 spin_unlock_irqrestore(&phba->hbalock, iflag); 10032 return rc; 10033 } 10034 10035 /** 10036 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10037 * @phba: Pointer to HBA context object. 10038 * @mboxq: Pointer to mailbox object. 10039 * @flag: Flag indicating how the mailbox need to be processed. 10040 * 10041 * This function is called by discovery code and HBA management code to submit 10042 * a mailbox command to firmware with SLI-4 interface spec. 10043 * 10044 * Return codes the caller owns the mailbox command after the return of the 10045 * function. 10046 **/ 10047 static int 10048 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10049 uint32_t flag) 10050 { 10051 struct lpfc_sli *psli = &phba->sli; 10052 unsigned long iflags; 10053 int rc; 10054 10055 /* dump from issue mailbox command if setup */ 10056 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10057 10058 rc = lpfc_mbox_dev_check(phba); 10059 if (unlikely(rc)) { 10060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10061 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10062 "cannot issue Data: x%x x%x\n", 10063 mboxq->vport ? mboxq->vport->vpi : 0, 10064 mboxq->u.mb.mbxCommand, 10065 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10066 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10067 psli->sli_flag, flag); 10068 goto out_not_finished; 10069 } 10070 10071 /* Detect polling mode and jump to a handler */ 10072 if (!phba->sli4_hba.intr_enable) { 10073 if (flag == MBX_POLL) 10074 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10075 else 10076 rc = -EIO; 10077 if (rc != MBX_SUCCESS) 10078 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10079 "(%d):2541 Mailbox command x%x " 10080 "(x%x/x%x) failure: " 10081 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10082 "Data: x%x x%x\n", 10083 mboxq->vport ? mboxq->vport->vpi : 0, 10084 mboxq->u.mb.mbxCommand, 10085 lpfc_sli_config_mbox_subsys_get(phba, 10086 mboxq), 10087 lpfc_sli_config_mbox_opcode_get(phba, 10088 mboxq), 10089 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10090 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10091 bf_get(lpfc_mcqe_ext_status, 10092 &mboxq->mcqe), 10093 psli->sli_flag, flag); 10094 return rc; 10095 } else if (flag == MBX_POLL) { 10096 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10097 "(%d):2542 Try to issue mailbox command " 10098 "x%x (x%x/x%x) synchronously ahead of async " 10099 "mailbox command queue: x%x x%x\n", 10100 mboxq->vport ? mboxq->vport->vpi : 0, 10101 mboxq->u.mb.mbxCommand, 10102 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10103 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10104 psli->sli_flag, flag); 10105 /* Try to block the asynchronous mailbox posting */ 10106 rc = lpfc_sli4_async_mbox_block(phba); 10107 if (!rc) { 10108 /* Successfully blocked, now issue sync mbox cmd */ 10109 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10110 if (rc != MBX_SUCCESS) 10111 lpfc_printf_log(phba, KERN_WARNING, 10112 LOG_MBOX | LOG_SLI, 10113 "(%d):2597 Sync Mailbox command " 10114 "x%x (x%x/x%x) failure: " 10115 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10116 "Data: x%x x%x\n", 10117 mboxq->vport ? mboxq->vport->vpi : 0, 10118 mboxq->u.mb.mbxCommand, 10119 lpfc_sli_config_mbox_subsys_get(phba, 10120 mboxq), 10121 lpfc_sli_config_mbox_opcode_get(phba, 10122 mboxq), 10123 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10124 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10125 bf_get(lpfc_mcqe_ext_status, 10126 &mboxq->mcqe), 10127 psli->sli_flag, flag); 10128 /* Unblock the async mailbox posting afterward */ 10129 lpfc_sli4_async_mbox_unblock(phba); 10130 } 10131 return rc; 10132 } 10133 10134 /* Now, interrupt mode asynchronous mailbox command */ 10135 rc = lpfc_mbox_cmd_check(phba, mboxq); 10136 if (rc) { 10137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10138 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10139 "cannot issue Data: x%x x%x\n", 10140 mboxq->vport ? mboxq->vport->vpi : 0, 10141 mboxq->u.mb.mbxCommand, 10142 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10143 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10144 psli->sli_flag, flag); 10145 goto out_not_finished; 10146 } 10147 10148 /* Put the mailbox command to the driver internal FIFO */ 10149 psli->slistat.mbox_busy++; 10150 spin_lock_irqsave(&phba->hbalock, iflags); 10151 lpfc_mbox_put(phba, mboxq); 10152 spin_unlock_irqrestore(&phba->hbalock, iflags); 10153 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10154 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10155 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10156 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10157 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10158 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10159 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10160 mboxq->u.mb.un.varUnregLogin.rpi, 10161 phba->pport->port_state, 10162 psli->sli_flag, MBX_NOWAIT); 10163 /* Wake up worker thread to transport mailbox command from head */ 10164 lpfc_worker_wake_up(phba); 10165 10166 return MBX_BUSY; 10167 10168 out_not_finished: 10169 return MBX_NOT_FINISHED; 10170 } 10171 10172 /** 10173 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10174 * @phba: Pointer to HBA context object. 10175 * 10176 * This function is called by worker thread to send a mailbox command to 10177 * SLI4 HBA firmware. 10178 * 10179 **/ 10180 int 10181 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10182 { 10183 struct lpfc_sli *psli = &phba->sli; 10184 LPFC_MBOXQ_t *mboxq; 10185 int rc = MBX_SUCCESS; 10186 unsigned long iflags; 10187 struct lpfc_mqe *mqe; 10188 uint32_t mbx_cmnd; 10189 10190 /* Check interrupt mode before post async mailbox command */ 10191 if (unlikely(!phba->sli4_hba.intr_enable)) 10192 return MBX_NOT_FINISHED; 10193 10194 /* Check for mailbox command service token */ 10195 spin_lock_irqsave(&phba->hbalock, iflags); 10196 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10197 spin_unlock_irqrestore(&phba->hbalock, iflags); 10198 return MBX_NOT_FINISHED; 10199 } 10200 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10201 spin_unlock_irqrestore(&phba->hbalock, iflags); 10202 return MBX_NOT_FINISHED; 10203 } 10204 if (unlikely(phba->sli.mbox_active)) { 10205 spin_unlock_irqrestore(&phba->hbalock, iflags); 10206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10207 "0384 There is pending active mailbox cmd\n"); 10208 return MBX_NOT_FINISHED; 10209 } 10210 /* Take the mailbox command service token */ 10211 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10212 10213 /* Get the next mailbox command from head of queue */ 10214 mboxq = lpfc_mbox_get(phba); 10215 10216 /* If no more mailbox command waiting for post, we're done */ 10217 if (!mboxq) { 10218 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10219 spin_unlock_irqrestore(&phba->hbalock, iflags); 10220 return MBX_SUCCESS; 10221 } 10222 phba->sli.mbox_active = mboxq; 10223 spin_unlock_irqrestore(&phba->hbalock, iflags); 10224 10225 /* Check device readiness for posting mailbox command */ 10226 rc = lpfc_mbox_dev_check(phba); 10227 if (unlikely(rc)) 10228 /* Driver clean routine will clean up pending mailbox */ 10229 goto out_not_finished; 10230 10231 /* Prepare the mbox command to be posted */ 10232 mqe = &mboxq->u.mqe; 10233 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10234 10235 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10236 mod_timer(&psli->mbox_tmo, (jiffies + 10237 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)))); 10238 10239 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10240 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10241 "x%x x%x\n", 10242 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10243 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10244 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10245 phba->pport->port_state, psli->sli_flag); 10246 10247 if (mbx_cmnd != MBX_HEARTBEAT) { 10248 if (mboxq->vport) { 10249 lpfc_debugfs_disc_trc(mboxq->vport, 10250 LPFC_DISC_TRC_MBOX_VPORT, 10251 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10252 mbx_cmnd, mqe->un.mb_words[0], 10253 mqe->un.mb_words[1]); 10254 } else { 10255 lpfc_debugfs_disc_trc(phba->pport, 10256 LPFC_DISC_TRC_MBOX, 10257 "MBOX Send: cmd:x%x mb:x%x x%x", 10258 mbx_cmnd, mqe->un.mb_words[0], 10259 mqe->un.mb_words[1]); 10260 } 10261 } 10262 psli->slistat.mbox_cmd++; 10263 10264 /* Post the mailbox command to the port */ 10265 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10266 if (rc != MBX_SUCCESS) { 10267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10268 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10269 "cannot issue Data: x%x x%x\n", 10270 mboxq->vport ? mboxq->vport->vpi : 0, 10271 mboxq->u.mb.mbxCommand, 10272 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10273 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10274 psli->sli_flag, MBX_NOWAIT); 10275 goto out_not_finished; 10276 } 10277 10278 return rc; 10279 10280 out_not_finished: 10281 spin_lock_irqsave(&phba->hbalock, iflags); 10282 if (phba->sli.mbox_active) { 10283 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10284 __lpfc_mbox_cmpl_put(phba, mboxq); 10285 /* Release the token */ 10286 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10287 phba->sli.mbox_active = NULL; 10288 } 10289 spin_unlock_irqrestore(&phba->hbalock, iflags); 10290 10291 return MBX_NOT_FINISHED; 10292 } 10293 10294 /** 10295 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10296 * @phba: Pointer to HBA context object. 10297 * @pmbox: Pointer to mailbox object. 10298 * @flag: Flag indicating how the mailbox need to be processed. 10299 * 10300 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10301 * the API jump table function pointer from the lpfc_hba struct. 10302 * 10303 * Return codes the caller owns the mailbox command after the return of the 10304 * function. 10305 **/ 10306 int 10307 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10308 { 10309 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10310 } 10311 10312 /** 10313 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10314 * @phba: The hba struct for which this call is being executed. 10315 * @dev_grp: The HBA PCI-Device group number. 10316 * 10317 * This routine sets up the mbox interface API function jump table in @phba 10318 * struct. 10319 * Returns: 0 - success, -ENODEV - failure. 10320 **/ 10321 int 10322 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10323 { 10324 10325 switch (dev_grp) { 10326 case LPFC_PCI_DEV_LP: 10327 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10328 phba->lpfc_sli_handle_slow_ring_event = 10329 lpfc_sli_handle_slow_ring_event_s3; 10330 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10331 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10332 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10333 break; 10334 case LPFC_PCI_DEV_OC: 10335 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10336 phba->lpfc_sli_handle_slow_ring_event = 10337 lpfc_sli_handle_slow_ring_event_s4; 10338 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10339 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10340 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10341 break; 10342 default: 10343 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10344 "1420 Invalid HBA PCI-device group: 0x%x\n", 10345 dev_grp); 10346 return -ENODEV; 10347 } 10348 return 0; 10349 } 10350 10351 /** 10352 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10353 * @phba: Pointer to HBA context object. 10354 * @pring: Pointer to driver SLI ring object. 10355 * @piocb: Pointer to address of newly added command iocb. 10356 * 10357 * This function is called with hbalock held for SLI3 ports or 10358 * the ring lock held for SLI4 ports to add a command 10359 * iocb to the txq when SLI layer cannot submit the command iocb 10360 * to the ring. 10361 **/ 10362 void 10363 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10364 struct lpfc_iocbq *piocb) 10365 { 10366 if (phba->sli_rev == LPFC_SLI_REV4) 10367 lockdep_assert_held(&pring->ring_lock); 10368 else 10369 lockdep_assert_held(&phba->hbalock); 10370 /* Insert the caller's iocb in the txq tail for later processing. */ 10371 list_add_tail(&piocb->list, &pring->txq); 10372 } 10373 10374 /** 10375 * lpfc_sli_next_iocb - Get the next iocb in the txq 10376 * @phba: Pointer to HBA context object. 10377 * @pring: Pointer to driver SLI ring object. 10378 * @piocb: Pointer to address of newly added command iocb. 10379 * 10380 * This function is called with hbalock held before a new 10381 * iocb is submitted to the firmware. This function checks 10382 * txq to flush the iocbs in txq to Firmware before 10383 * submitting new iocbs to the Firmware. 10384 * If there are iocbs in the txq which need to be submitted 10385 * to firmware, lpfc_sli_next_iocb returns the first element 10386 * of the txq after dequeuing it from txq. 10387 * If there is no iocb in the txq then the function will return 10388 * *piocb and *piocb is set to NULL. Caller needs to check 10389 * *piocb to find if there are more commands in the txq. 10390 **/ 10391 static struct lpfc_iocbq * 10392 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10393 struct lpfc_iocbq **piocb) 10394 { 10395 struct lpfc_iocbq * nextiocb; 10396 10397 lockdep_assert_held(&phba->hbalock); 10398 10399 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10400 if (!nextiocb) { 10401 nextiocb = *piocb; 10402 *piocb = NULL; 10403 } 10404 10405 return nextiocb; 10406 } 10407 10408 /** 10409 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10410 * @phba: Pointer to HBA context object. 10411 * @ring_number: SLI ring number to issue iocb on. 10412 * @piocb: Pointer to command iocb. 10413 * @flag: Flag indicating if this command can be put into txq. 10414 * 10415 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10416 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10417 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10418 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10419 * this function allows only iocbs for posting buffers. This function finds 10420 * next available slot in the command ring and posts the command to the 10421 * available slot and writes the port attention register to request HBA start 10422 * processing new iocb. If there is no slot available in the ring and 10423 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10424 * the function returns IOCB_BUSY. 10425 * 10426 * This function is called with hbalock held. The function will return success 10427 * after it successfully submit the iocb to firmware or after adding to the 10428 * txq. 10429 **/ 10430 static int 10431 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10432 struct lpfc_iocbq *piocb, uint32_t flag) 10433 { 10434 struct lpfc_iocbq *nextiocb; 10435 IOCB_t *iocb; 10436 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10437 10438 lockdep_assert_held(&phba->hbalock); 10439 10440 if (piocb->cmd_cmpl && (!piocb->vport) && 10441 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10442 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10444 "1807 IOCB x%x failed. No vport\n", 10445 piocb->iocb.ulpCommand); 10446 dump_stack(); 10447 return IOCB_ERROR; 10448 } 10449 10450 10451 /* If the PCI channel is in offline state, do not post iocbs. */ 10452 if (unlikely(pci_channel_offline(phba->pcidev))) 10453 return IOCB_ERROR; 10454 10455 /* If HBA has a deferred error attention, fail the iocb. */ 10456 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10457 return IOCB_ERROR; 10458 10459 /* 10460 * We should never get an IOCB if we are in a < LINK_DOWN state 10461 */ 10462 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10463 return IOCB_ERROR; 10464 10465 /* 10466 * Check to see if we are blocking IOCB processing because of a 10467 * outstanding event. 10468 */ 10469 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10470 goto iocb_busy; 10471 10472 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10473 /* 10474 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10475 * can be issued if the link is not up. 10476 */ 10477 switch (piocb->iocb.ulpCommand) { 10478 case CMD_QUE_RING_BUF_CN: 10479 case CMD_QUE_RING_BUF64_CN: 10480 /* 10481 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10482 * completion, cmd_cmpl MUST be 0. 10483 */ 10484 if (piocb->cmd_cmpl) 10485 piocb->cmd_cmpl = NULL; 10486 fallthrough; 10487 case CMD_CREATE_XRI_CR: 10488 case CMD_CLOSE_XRI_CN: 10489 case CMD_CLOSE_XRI_CX: 10490 break; 10491 default: 10492 goto iocb_busy; 10493 } 10494 10495 /* 10496 * For FCP commands, we must be in a state where we can process link 10497 * attention events. 10498 */ 10499 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10500 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10501 goto iocb_busy; 10502 } 10503 10504 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10505 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10506 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10507 10508 if (iocb) 10509 lpfc_sli_update_ring(phba, pring); 10510 else 10511 lpfc_sli_update_full_ring(phba, pring); 10512 10513 if (!piocb) 10514 return IOCB_SUCCESS; 10515 10516 goto out_busy; 10517 10518 iocb_busy: 10519 pring->stats.iocb_cmd_delay++; 10520 10521 out_busy: 10522 10523 if (!(flag & SLI_IOCB_RET_IOCB)) { 10524 __lpfc_sli_ringtx_put(phba, pring, piocb); 10525 return IOCB_SUCCESS; 10526 } 10527 10528 return IOCB_BUSY; 10529 } 10530 10531 /** 10532 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10533 * @phba: Pointer to HBA context object. 10534 * @ring_number: SLI ring number to issue wqe on. 10535 * @piocb: Pointer to command iocb. 10536 * @flag: Flag indicating if this command can be put into txq. 10537 * 10538 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10539 * send an iocb command to an HBA with SLI-3 interface spec. 10540 * 10541 * This function takes the hbalock before invoking the lockless version. 10542 * The function will return success after it successfully submit the wqe to 10543 * firmware or after adding to the txq. 10544 **/ 10545 static int 10546 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10547 struct lpfc_iocbq *piocb, uint32_t flag) 10548 { 10549 unsigned long iflags; 10550 int rc; 10551 10552 spin_lock_irqsave(&phba->hbalock, iflags); 10553 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10554 spin_unlock_irqrestore(&phba->hbalock, iflags); 10555 10556 return rc; 10557 } 10558 10559 /** 10560 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10561 * @phba: Pointer to HBA context object. 10562 * @ring_number: SLI ring number to issue wqe on. 10563 * @piocb: Pointer to command iocb. 10564 * @flag: Flag indicating if this command can be put into txq. 10565 * 10566 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10567 * an wqe command to an HBA with SLI-4 interface spec. 10568 * 10569 * This function is a lockless version. The function will return success 10570 * after it successfully submit the wqe to firmware or after adding to the 10571 * txq. 10572 **/ 10573 static int 10574 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10575 struct lpfc_iocbq *piocb, uint32_t flag) 10576 { 10577 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10578 10579 lpfc_prep_embed_io(phba, lpfc_cmd); 10580 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10581 } 10582 10583 void 10584 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10585 { 10586 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10587 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10588 struct sli4_sge_le *sgl; 10589 u32 type_size; 10590 10591 /* 128 byte wqe support here */ 10592 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10593 10594 if (phba->fcp_embed_io) { 10595 struct fcp_cmnd *fcp_cmnd; 10596 u32 *ptr; 10597 10598 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10599 10600 /* Word 0-2 - FCP_CMND */ 10601 type_size = le32_to_cpu(sgl->sge_len); 10602 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10603 wqe->generic.bde.tus.w = type_size; 10604 wqe->generic.bde.addrHigh = 0; 10605 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10606 10607 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10608 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10609 10610 /* Word 18-29 FCP CMND Payload */ 10611 ptr = &wqe->words[18]; 10612 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10613 } else { 10614 /* Word 0-2 - Inline BDE */ 10615 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10616 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10617 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10618 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10619 10620 /* Word 10 */ 10621 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10622 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10623 } 10624 10625 /* add the VMID tags as per switch response */ 10626 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10627 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10628 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10629 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10630 (piocb->vmid_tag.cs_ctl_vmid)); 10631 } else if (phba->cfg_vmid_app_header) { 10632 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10633 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10634 wqe->words[31] = piocb->vmid_tag.app_id; 10635 } 10636 } 10637 } 10638 10639 /** 10640 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10641 * @phba: Pointer to HBA context object. 10642 * @ring_number: SLI ring number to issue iocb on. 10643 * @piocb: Pointer to command iocb. 10644 * @flag: Flag indicating if this command can be put into txq. 10645 * 10646 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10647 * an iocb command to an HBA with SLI-4 interface spec. 10648 * 10649 * This function is called with ringlock held. The function will return success 10650 * after it successfully submit the iocb to firmware or after adding to the 10651 * txq. 10652 **/ 10653 static int 10654 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10655 struct lpfc_iocbq *piocb, uint32_t flag) 10656 { 10657 struct lpfc_sglq *sglq; 10658 union lpfc_wqe128 *wqe; 10659 struct lpfc_queue *wq; 10660 struct lpfc_sli_ring *pring; 10661 u32 ulp_command = get_job_cmnd(phba, piocb); 10662 10663 /* Get the WQ */ 10664 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10665 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10666 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10667 } else { 10668 wq = phba->sli4_hba.els_wq; 10669 } 10670 10671 /* Get corresponding ring */ 10672 pring = wq->pring; 10673 10674 /* 10675 * The WQE can be either 64 or 128 bytes, 10676 */ 10677 10678 lockdep_assert_held(&pring->ring_lock); 10679 wqe = &piocb->wqe; 10680 if (piocb->sli4_xritag == NO_XRI) { 10681 if (ulp_command == CMD_ABORT_XRI_CX) 10682 sglq = NULL; 10683 else { 10684 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10685 if (!sglq) { 10686 if (!(flag & SLI_IOCB_RET_IOCB)) { 10687 __lpfc_sli_ringtx_put(phba, 10688 pring, 10689 piocb); 10690 return IOCB_SUCCESS; 10691 } else { 10692 return IOCB_BUSY; 10693 } 10694 } 10695 } 10696 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10697 /* These IO's already have an XRI and a mapped sgl. */ 10698 sglq = NULL; 10699 } 10700 else { 10701 /* 10702 * This is a continuation of a commandi,(CX) so this 10703 * sglq is on the active list 10704 */ 10705 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10706 if (!sglq) 10707 return IOCB_ERROR; 10708 } 10709 10710 if (sglq) { 10711 piocb->sli4_lxritag = sglq->sli4_lxritag; 10712 piocb->sli4_xritag = sglq->sli4_xritag; 10713 10714 /* ABTS sent by initiator to CT exchange, the 10715 * RX_ID field will be filled with the newly 10716 * allocated responder XRI. 10717 */ 10718 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10719 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10720 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10721 piocb->sli4_xritag); 10722 10723 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10724 piocb->sli4_xritag); 10725 10726 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10727 return IOCB_ERROR; 10728 } 10729 10730 if (lpfc_sli4_wq_put(wq, wqe)) 10731 return IOCB_ERROR; 10732 10733 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10734 10735 return 0; 10736 } 10737 10738 /* 10739 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10740 * 10741 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10742 * or IOCB for sli-3 function. 10743 * pointer from the lpfc_hba struct. 10744 * 10745 * Return codes: 10746 * IOCB_ERROR - Error 10747 * IOCB_SUCCESS - Success 10748 * IOCB_BUSY - Busy 10749 **/ 10750 int 10751 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10752 struct lpfc_iocbq *piocb, uint32_t flag) 10753 { 10754 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10755 } 10756 10757 /* 10758 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10759 * 10760 * This routine wraps the actual lockless version for issusing IOCB function 10761 * pointer from the lpfc_hba struct. 10762 * 10763 * Return codes: 10764 * IOCB_ERROR - Error 10765 * IOCB_SUCCESS - Success 10766 * IOCB_BUSY - Busy 10767 **/ 10768 int 10769 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10770 struct lpfc_iocbq *piocb, uint32_t flag) 10771 { 10772 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10773 } 10774 10775 static void 10776 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10777 struct lpfc_vport *vport, 10778 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10779 u32 elscmd, u8 tmo, u8 expect_rsp) 10780 { 10781 struct lpfc_hba *phba = vport->phba; 10782 IOCB_t *cmd; 10783 10784 cmd = &cmdiocbq->iocb; 10785 memset(cmd, 0, sizeof(*cmd)); 10786 10787 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10788 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10789 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10790 10791 if (expect_rsp) { 10792 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10793 cmd->un.elsreq64.remoteID = did; /* DID */ 10794 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10795 cmd->ulpTimeout = tmo; 10796 } else { 10797 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10798 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10799 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10800 cmd->ulpPU = PARM_NPIV_DID; 10801 } 10802 cmd->ulpBdeCount = 1; 10803 cmd->ulpLe = 1; 10804 cmd->ulpClass = CLASS3; 10805 10806 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10807 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10808 if (expect_rsp) { 10809 cmd->un.elsreq64.myID = vport->fc_myDID; 10810 10811 /* For ELS_REQUEST64_CR, use the VPI by default */ 10812 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10813 } 10814 10815 cmd->ulpCt_h = 0; 10816 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10817 if (elscmd == ELS_CMD_ECHO) 10818 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10819 else 10820 cmd->ulpCt_l = 1; /* context = VPI */ 10821 } 10822 } 10823 10824 static void 10825 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10826 struct lpfc_vport *vport, 10827 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10828 u32 elscmd, u8 tmo, u8 expect_rsp) 10829 { 10830 struct lpfc_hba *phba = vport->phba; 10831 union lpfc_wqe128 *wqe; 10832 struct ulp_bde64_le *bde; 10833 u8 els_id; 10834 10835 wqe = &cmdiocbq->wqe; 10836 memset(wqe, 0, sizeof(*wqe)); 10837 10838 /* Word 0 - 2 BDE */ 10839 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10840 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10841 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10842 bde->type_size = cpu_to_le32(cmd_size); 10843 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10844 10845 if (expect_rsp) { 10846 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10847 10848 /* Transfer length */ 10849 wqe->els_req.payload_len = cmd_size; 10850 wqe->els_req.max_response_payload_len = FCELSSIZE; 10851 10852 /* DID */ 10853 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10854 10855 /* Word 11 - ELS_ID */ 10856 switch (elscmd) { 10857 case ELS_CMD_PLOGI: 10858 els_id = LPFC_ELS_ID_PLOGI; 10859 break; 10860 case ELS_CMD_FLOGI: 10861 els_id = LPFC_ELS_ID_FLOGI; 10862 break; 10863 case ELS_CMD_LOGO: 10864 els_id = LPFC_ELS_ID_LOGO; 10865 break; 10866 case ELS_CMD_FDISC: 10867 if (!vport->fc_myDID) { 10868 els_id = LPFC_ELS_ID_FDISC; 10869 break; 10870 } 10871 fallthrough; 10872 default: 10873 els_id = LPFC_ELS_ID_DEFAULT; 10874 break; 10875 } 10876 10877 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10878 } else { 10879 /* DID */ 10880 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10881 10882 /* Transfer length */ 10883 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10884 10885 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10886 CMD_XMIT_ELS_RSP64_WQE); 10887 } 10888 10889 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10890 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10891 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10892 10893 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10894 * For SLI4, since the driver controls VPIs we also want to include 10895 * all ELS pt2pt protocol traffic as well. 10896 */ 10897 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10898 test_bit(FC_PT2PT, &vport->fc_flag)) { 10899 if (expect_rsp) { 10900 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10901 10902 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10903 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10904 phba->vpi_ids[vport->vpi]); 10905 } 10906 10907 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10908 if (elscmd == ELS_CMD_ECHO) 10909 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10910 else 10911 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10912 } 10913 } 10914 10915 void 10916 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10917 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10918 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10919 u8 expect_rsp) 10920 { 10921 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10922 elscmd, tmo, expect_rsp); 10923 } 10924 10925 static void 10926 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10927 u16 rpi, u32 num_entry, u8 tmo) 10928 { 10929 IOCB_t *cmd; 10930 10931 cmd = &cmdiocbq->iocb; 10932 memset(cmd, 0, sizeof(*cmd)); 10933 10934 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10935 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10936 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10937 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10938 10939 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10940 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10941 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10942 10943 cmd->ulpContext = rpi; 10944 cmd->ulpClass = CLASS3; 10945 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10946 cmd->ulpBdeCount = 1; 10947 cmd->ulpLe = 1; 10948 cmd->ulpOwner = OWN_CHIP; 10949 cmd->ulpTimeout = tmo; 10950 } 10951 10952 static void 10953 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10954 u16 rpi, u32 num_entry, u8 tmo) 10955 { 10956 union lpfc_wqe128 *cmdwqe; 10957 struct ulp_bde64_le *bde, *bpl; 10958 u32 xmit_len = 0, total_len = 0, size, type, i; 10959 10960 cmdwqe = &cmdiocbq->wqe; 10961 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10962 10963 /* Calculate total_len and xmit_len */ 10964 bpl = (struct ulp_bde64_le *)bmp->virt; 10965 for (i = 0; i < num_entry; i++) { 10966 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10967 total_len += size; 10968 } 10969 for (i = 0; i < num_entry; i++) { 10970 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10971 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10972 if (type != ULP_BDE64_TYPE_BDE_64) 10973 break; 10974 xmit_len += size; 10975 } 10976 10977 /* Words 0 - 2 */ 10978 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10979 bde->addr_low = bpl->addr_low; 10980 bde->addr_high = bpl->addr_high; 10981 bde->type_size = cpu_to_le32(xmit_len); 10982 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10983 10984 /* Word 3 */ 10985 cmdwqe->gen_req.request_payload_len = xmit_len; 10986 10987 /* Word 5 */ 10988 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10989 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10990 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10991 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10992 10993 /* Word 6 */ 10994 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10995 10996 /* Word 7 */ 10997 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10998 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10999 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11000 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11001 11002 /* Word 12 */ 11003 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11004 } 11005 11006 void 11007 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11008 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11009 { 11010 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11011 } 11012 11013 static void 11014 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11015 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11016 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11017 { 11018 IOCB_t *icmd; 11019 11020 icmd = &cmdiocbq->iocb; 11021 memset(icmd, 0, sizeof(*icmd)); 11022 11023 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11024 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11025 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11026 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11027 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11028 if (last_seq) 11029 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11030 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11031 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11032 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11033 11034 icmd->ulpBdeCount = 1; 11035 icmd->ulpLe = 1; 11036 icmd->ulpClass = CLASS3; 11037 11038 switch (cr_cx_cmd) { 11039 case CMD_XMIT_SEQUENCE64_CR: 11040 icmd->ulpContext = rpi; 11041 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11042 break; 11043 case CMD_XMIT_SEQUENCE64_CX: 11044 icmd->ulpContext = ox_id; 11045 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11046 break; 11047 default: 11048 break; 11049 } 11050 } 11051 11052 static void 11053 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11054 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11055 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11056 { 11057 union lpfc_wqe128 *wqe; 11058 struct ulp_bde64 *bpl; 11059 11060 wqe = &cmdiocbq->wqe; 11061 memset(wqe, 0, sizeof(*wqe)); 11062 11063 /* Words 0 - 2 */ 11064 bpl = (struct ulp_bde64 *)bmp->virt; 11065 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11066 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11067 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11068 11069 /* Word 5 */ 11070 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11071 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11072 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11073 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11074 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11075 11076 /* Word 6 */ 11077 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11078 11079 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11080 CMD_XMIT_SEQUENCE64_WQE); 11081 11082 /* Word 7 */ 11083 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11084 11085 /* Word 9 */ 11086 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11087 11088 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11089 /* Word 10 */ 11090 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11091 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11092 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11093 wqe->words[31] = LOOPBACK_SRC_APPID; 11094 } 11095 11096 /* Word 12 */ 11097 wqe->xmit_sequence.xmit_len = full_size; 11098 } 11099 else 11100 wqe->xmit_sequence.xmit_len = 11101 wqe->xmit_sequence.bde.tus.f.bdeSize; 11102 } 11103 11104 void 11105 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11106 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11107 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11108 { 11109 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11110 rctl, last_seq, cr_cx_cmd); 11111 } 11112 11113 static void 11114 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11115 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11116 bool wqec) 11117 { 11118 IOCB_t *icmd = NULL; 11119 11120 icmd = &cmdiocbq->iocb; 11121 memset(icmd, 0, sizeof(*icmd)); 11122 11123 /* Word 5 */ 11124 icmd->un.acxri.abortContextTag = ulp_context; 11125 icmd->un.acxri.abortIoTag = iotag; 11126 11127 if (ia) { 11128 /* Word 7 */ 11129 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11130 } else { 11131 /* Word 3 */ 11132 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11133 11134 /* Word 7 */ 11135 icmd->ulpClass = ulp_class; 11136 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11137 } 11138 11139 /* Word 7 */ 11140 icmd->ulpLe = 1; 11141 } 11142 11143 static void 11144 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11145 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11146 bool wqec) 11147 { 11148 union lpfc_wqe128 *wqe; 11149 11150 wqe = &cmdiocbq->wqe; 11151 memset(wqe, 0, sizeof(*wqe)); 11152 11153 /* Word 3 */ 11154 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11155 if (ia) 11156 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11157 else 11158 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11159 11160 /* Word 7 */ 11161 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11162 11163 /* Word 8 */ 11164 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11165 11166 /* Word 9 */ 11167 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11168 11169 /* Word 10 */ 11170 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11171 11172 /* Word 11 */ 11173 if (wqec) 11174 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11175 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11176 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11177 } 11178 11179 void 11180 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11181 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11182 bool ia, bool wqec) 11183 { 11184 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11185 cqid, ia, wqec); 11186 } 11187 11188 /** 11189 * lpfc_sli_api_table_setup - Set up sli api function jump table 11190 * @phba: The hba struct for which this call is being executed. 11191 * @dev_grp: The HBA PCI-Device group number. 11192 * 11193 * This routine sets up the SLI interface API function jump table in @phba 11194 * struct. 11195 * Returns: 0 - success, -ENODEV - failure. 11196 **/ 11197 int 11198 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11199 { 11200 11201 switch (dev_grp) { 11202 case LPFC_PCI_DEV_LP: 11203 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11204 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11205 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11206 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11207 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11208 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11209 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11210 break; 11211 case LPFC_PCI_DEV_OC: 11212 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11213 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11214 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11215 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11216 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11217 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11218 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11219 break; 11220 default: 11221 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11222 "1419 Invalid HBA PCI-device group: 0x%x\n", 11223 dev_grp); 11224 return -ENODEV; 11225 } 11226 return 0; 11227 } 11228 11229 /** 11230 * lpfc_sli4_calc_ring - Calculates which ring to use 11231 * @phba: Pointer to HBA context object. 11232 * @piocb: Pointer to command iocb. 11233 * 11234 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11235 * hba_wqidx, thus we need to calculate the corresponding ring. 11236 * Since ABORTS must go on the same WQ of the command they are 11237 * aborting, we use command's hba_wqidx. 11238 */ 11239 struct lpfc_sli_ring * 11240 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11241 { 11242 struct lpfc_io_buf *lpfc_cmd; 11243 11244 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11245 if (unlikely(!phba->sli4_hba.hdwq)) 11246 return NULL; 11247 /* 11248 * for abort iocb hba_wqidx should already 11249 * be setup based on what work queue we used. 11250 */ 11251 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11252 lpfc_cmd = piocb->io_buf; 11253 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11254 } 11255 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11256 } else { 11257 if (unlikely(!phba->sli4_hba.els_wq)) 11258 return NULL; 11259 piocb->hba_wqidx = 0; 11260 return phba->sli4_hba.els_wq->pring; 11261 } 11262 } 11263 11264 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11265 { 11266 struct lpfc_hba *phba = eq->phba; 11267 11268 /* 11269 * Unlocking an irq is one of the entry point to check 11270 * for re-schedule, but we are good for io submission 11271 * path as midlayer does a get_cpu to glue us in. Flush 11272 * out the invalidate queue so we can see the updated 11273 * value for flag. 11274 */ 11275 smp_rmb(); 11276 11277 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11278 /* We will not likely get the completion for the caller 11279 * during this iteration but i guess that's fine. 11280 * Future io's coming on this eq should be able to 11281 * pick it up. As for the case of single io's, they 11282 * will be handled through a sched from polling timer 11283 * function which is currently triggered every 1msec. 11284 */ 11285 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11286 LPFC_QUEUE_WORK); 11287 } 11288 11289 /** 11290 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11291 * @phba: Pointer to HBA context object. 11292 * @ring_number: Ring number 11293 * @piocb: Pointer to command iocb. 11294 * @flag: Flag indicating if this command can be put into txq. 11295 * 11296 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11297 * function. This function gets the hbalock and calls 11298 * __lpfc_sli_issue_iocb function and will return the error returned 11299 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11300 * functions which do not hold hbalock. 11301 **/ 11302 int 11303 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11304 struct lpfc_iocbq *piocb, uint32_t flag) 11305 { 11306 struct lpfc_sli_ring *pring; 11307 struct lpfc_queue *eq; 11308 unsigned long iflags; 11309 int rc; 11310 11311 /* If the PCI channel is in offline state, do not post iocbs. */ 11312 if (unlikely(pci_channel_offline(phba->pcidev))) 11313 return IOCB_ERROR; 11314 11315 if (phba->sli_rev == LPFC_SLI_REV4) { 11316 lpfc_sli_prep_wqe(phba, piocb); 11317 11318 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11319 11320 pring = lpfc_sli4_calc_ring(phba, piocb); 11321 if (unlikely(pring == NULL)) 11322 return IOCB_ERROR; 11323 11324 spin_lock_irqsave(&pring->ring_lock, iflags); 11325 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11326 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11327 11328 lpfc_sli4_poll_eq(eq); 11329 } else { 11330 /* For now, SLI2/3 will still use hbalock */ 11331 spin_lock_irqsave(&phba->hbalock, iflags); 11332 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11333 spin_unlock_irqrestore(&phba->hbalock, iflags); 11334 } 11335 return rc; 11336 } 11337 11338 /** 11339 * lpfc_extra_ring_setup - Extra ring setup function 11340 * @phba: Pointer to HBA context object. 11341 * 11342 * This function is called while driver attaches with the 11343 * HBA to setup the extra ring. The extra ring is used 11344 * only when driver needs to support target mode functionality 11345 * or IP over FC functionalities. 11346 * 11347 * This function is called with no lock held. SLI3 only. 11348 **/ 11349 static int 11350 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11351 { 11352 struct lpfc_sli *psli; 11353 struct lpfc_sli_ring *pring; 11354 11355 psli = &phba->sli; 11356 11357 /* Adjust cmd/rsp ring iocb entries more evenly */ 11358 11359 /* Take some away from the FCP ring */ 11360 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11361 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11362 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11363 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11364 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11365 11366 /* and give them to the extra ring */ 11367 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11368 11369 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11370 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11371 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11372 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11373 11374 /* Setup default profile for this ring */ 11375 pring->iotag_max = 4096; 11376 pring->num_mask = 1; 11377 pring->prt[0].profile = 0; /* Mask 0 */ 11378 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11379 pring->prt[0].type = phba->cfg_multi_ring_type; 11380 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11381 return 0; 11382 } 11383 11384 static void 11385 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11386 struct lpfc_nodelist *ndlp) 11387 { 11388 unsigned long iflags; 11389 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11390 11391 /* Hold a node reference for outstanding queued work */ 11392 if (!lpfc_nlp_get(ndlp)) 11393 return; 11394 11395 spin_lock_irqsave(&phba->hbalock, iflags); 11396 if (!list_empty(&evtp->evt_listp)) { 11397 spin_unlock_irqrestore(&phba->hbalock, iflags); 11398 lpfc_nlp_put(ndlp); 11399 return; 11400 } 11401 11402 evtp->evt_arg1 = ndlp; 11403 evtp->evt = LPFC_EVT_RECOVER_PORT; 11404 list_add_tail(&evtp->evt_listp, &phba->work_list); 11405 spin_unlock_irqrestore(&phba->hbalock, iflags); 11406 11407 lpfc_worker_wake_up(phba); 11408 } 11409 11410 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11411 * @phba: Pointer to HBA context object. 11412 * @iocbq: Pointer to iocb object. 11413 * 11414 * The async_event handler calls this routine when it receives 11415 * an ASYNC_STATUS_CN event from the port. The port generates 11416 * this event when an Abort Sequence request to an rport fails 11417 * twice in succession. The abort could be originated by the 11418 * driver or by the port. The ABTS could have been for an ELS 11419 * or FCP IO. The port only generates this event when an ABTS 11420 * fails to complete after one retry. 11421 */ 11422 static void 11423 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11424 struct lpfc_iocbq *iocbq) 11425 { 11426 struct lpfc_nodelist *ndlp = NULL; 11427 uint16_t rpi = 0, vpi = 0; 11428 struct lpfc_vport *vport = NULL; 11429 11430 /* The rpi in the ulpContext is vport-sensitive. */ 11431 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11432 rpi = iocbq->iocb.ulpContext; 11433 11434 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11435 "3092 Port generated ABTS async event " 11436 "on vpi %d rpi %d status 0x%x\n", 11437 vpi, rpi, iocbq->iocb.ulpStatus); 11438 11439 vport = lpfc_find_vport_by_vpid(phba, vpi); 11440 if (!vport) 11441 goto err_exit; 11442 ndlp = lpfc_findnode_rpi(vport, rpi); 11443 if (!ndlp) 11444 goto err_exit; 11445 11446 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11447 lpfc_sli_abts_recover_port(vport, ndlp); 11448 return; 11449 11450 err_exit: 11451 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11452 "3095 Event Context not found, no " 11453 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11454 vpi, rpi, iocbq->iocb.ulpStatus, 11455 iocbq->iocb.ulpContext); 11456 } 11457 11458 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11459 * @phba: pointer to HBA context object. 11460 * @ndlp: nodelist pointer for the impacted rport. 11461 * @axri: pointer to the wcqe containing the failed exchange. 11462 * 11463 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11464 * port. The port generates this event when an abort exchange request to an 11465 * rport fails twice in succession with no reply. The abort could be originated 11466 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11467 */ 11468 void 11469 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11470 struct lpfc_nodelist *ndlp, 11471 struct sli4_wcqe_xri_aborted *axri) 11472 { 11473 uint32_t ext_status = 0; 11474 11475 if (!ndlp) { 11476 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11477 "3115 Node Context not found, driver " 11478 "ignoring abts err event\n"); 11479 return; 11480 } 11481 11482 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11483 "3116 Port generated FCP XRI ABORT event on " 11484 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11485 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11486 bf_get(lpfc_wcqe_xa_xri, axri), 11487 bf_get(lpfc_wcqe_xa_status, axri), 11488 axri->parameter); 11489 11490 /* 11491 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11492 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11493 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11494 */ 11495 ext_status = axri->parameter & IOERR_PARAM_MASK; 11496 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11497 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11498 lpfc_sli_post_recovery_event(phba, ndlp); 11499 } 11500 11501 /** 11502 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11503 * @phba: Pointer to HBA context object. 11504 * @pring: Pointer to driver SLI ring object. 11505 * @iocbq: Pointer to iocb object. 11506 * 11507 * This function is called by the slow ring event handler 11508 * function when there is an ASYNC event iocb in the ring. 11509 * This function is called with no lock held. 11510 * Currently this function handles only temperature related 11511 * ASYNC events. The function decodes the temperature sensor 11512 * event message and posts events for the management applications. 11513 **/ 11514 static void 11515 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11516 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11517 { 11518 IOCB_t *icmd; 11519 uint16_t evt_code; 11520 struct temp_event temp_event_data; 11521 struct Scsi_Host *shost; 11522 uint32_t *iocb_w; 11523 11524 icmd = &iocbq->iocb; 11525 evt_code = icmd->un.asyncstat.evt_code; 11526 11527 switch (evt_code) { 11528 case ASYNC_TEMP_WARN: 11529 case ASYNC_TEMP_SAFE: 11530 temp_event_data.data = (uint32_t) icmd->ulpContext; 11531 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11532 if (evt_code == ASYNC_TEMP_WARN) { 11533 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11535 "0347 Adapter is very hot, please take " 11536 "corrective action. temperature : %d Celsius\n", 11537 (uint32_t) icmd->ulpContext); 11538 } else { 11539 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11541 "0340 Adapter temperature is OK now. " 11542 "temperature : %d Celsius\n", 11543 (uint32_t) icmd->ulpContext); 11544 } 11545 11546 /* Send temperature change event to applications */ 11547 shost = lpfc_shost_from_vport(phba->pport); 11548 fc_host_post_vendor_event(shost, fc_get_event_number(), 11549 sizeof(temp_event_data), (char *) &temp_event_data, 11550 LPFC_NL_VENDOR_ID); 11551 break; 11552 case ASYNC_STATUS_CN: 11553 lpfc_sli_abts_err_handler(phba, iocbq); 11554 break; 11555 default: 11556 iocb_w = (uint32_t *) icmd; 11557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11558 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11559 " evt_code 0x%x\n" 11560 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11561 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11562 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11563 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11564 pring->ringno, icmd->un.asyncstat.evt_code, 11565 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11566 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11567 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11568 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11569 11570 break; 11571 } 11572 } 11573 11574 11575 /** 11576 * lpfc_sli4_setup - SLI ring setup function 11577 * @phba: Pointer to HBA context object. 11578 * 11579 * lpfc_sli_setup sets up rings of the SLI interface with 11580 * number of iocbs per ring and iotags. This function is 11581 * called while driver attach to the HBA and before the 11582 * interrupts are enabled. So there is no need for locking. 11583 * 11584 * This function always returns 0. 11585 **/ 11586 int 11587 lpfc_sli4_setup(struct lpfc_hba *phba) 11588 { 11589 struct lpfc_sli_ring *pring; 11590 11591 pring = phba->sli4_hba.els_wq->pring; 11592 pring->num_mask = LPFC_MAX_RING_MASK; 11593 pring->prt[0].profile = 0; /* Mask 0 */ 11594 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11595 pring->prt[0].type = FC_TYPE_ELS; 11596 pring->prt[0].lpfc_sli_rcv_unsol_event = 11597 lpfc_els_unsol_event; 11598 pring->prt[1].profile = 0; /* Mask 1 */ 11599 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11600 pring->prt[1].type = FC_TYPE_ELS; 11601 pring->prt[1].lpfc_sli_rcv_unsol_event = 11602 lpfc_els_unsol_event; 11603 pring->prt[2].profile = 0; /* Mask 2 */ 11604 /* NameServer Inquiry */ 11605 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11606 /* NameServer */ 11607 pring->prt[2].type = FC_TYPE_CT; 11608 pring->prt[2].lpfc_sli_rcv_unsol_event = 11609 lpfc_ct_unsol_event; 11610 pring->prt[3].profile = 0; /* Mask 3 */ 11611 /* NameServer response */ 11612 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11613 /* NameServer */ 11614 pring->prt[3].type = FC_TYPE_CT; 11615 pring->prt[3].lpfc_sli_rcv_unsol_event = 11616 lpfc_ct_unsol_event; 11617 return 0; 11618 } 11619 11620 /** 11621 * lpfc_sli_setup - SLI ring setup function 11622 * @phba: Pointer to HBA context object. 11623 * 11624 * lpfc_sli_setup sets up rings of the SLI interface with 11625 * number of iocbs per ring and iotags. This function is 11626 * called while driver attach to the HBA and before the 11627 * interrupts are enabled. So there is no need for locking. 11628 * 11629 * This function always returns 0. SLI3 only. 11630 **/ 11631 int 11632 lpfc_sli_setup(struct lpfc_hba *phba) 11633 { 11634 int i, totiocbsize = 0; 11635 struct lpfc_sli *psli = &phba->sli; 11636 struct lpfc_sli_ring *pring; 11637 11638 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11639 psli->sli_flag = 0; 11640 11641 psli->iocbq_lookup = NULL; 11642 psli->iocbq_lookup_len = 0; 11643 psli->last_iotag = 0; 11644 11645 for (i = 0; i < psli->num_rings; i++) { 11646 pring = &psli->sli3_ring[i]; 11647 switch (i) { 11648 case LPFC_FCP_RING: /* ring 0 - FCP */ 11649 /* numCiocb and numRiocb are used in config_port */ 11650 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11651 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11652 pring->sli.sli3.numCiocb += 11653 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11654 pring->sli.sli3.numRiocb += 11655 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11656 pring->sli.sli3.numCiocb += 11657 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11658 pring->sli.sli3.numRiocb += 11659 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11660 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11661 SLI3_IOCB_CMD_SIZE : 11662 SLI2_IOCB_CMD_SIZE; 11663 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11664 SLI3_IOCB_RSP_SIZE : 11665 SLI2_IOCB_RSP_SIZE; 11666 pring->iotag_ctr = 0; 11667 pring->iotag_max = 11668 (phba->cfg_hba_queue_depth * 2); 11669 pring->fast_iotag = pring->iotag_max; 11670 pring->num_mask = 0; 11671 break; 11672 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11673 /* numCiocb and numRiocb are used in config_port */ 11674 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11675 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11676 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11677 SLI3_IOCB_CMD_SIZE : 11678 SLI2_IOCB_CMD_SIZE; 11679 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11680 SLI3_IOCB_RSP_SIZE : 11681 SLI2_IOCB_RSP_SIZE; 11682 pring->iotag_max = phba->cfg_hba_queue_depth; 11683 pring->num_mask = 0; 11684 break; 11685 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11686 /* numCiocb and numRiocb are used in config_port */ 11687 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11688 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11689 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11690 SLI3_IOCB_CMD_SIZE : 11691 SLI2_IOCB_CMD_SIZE; 11692 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11693 SLI3_IOCB_RSP_SIZE : 11694 SLI2_IOCB_RSP_SIZE; 11695 pring->fast_iotag = 0; 11696 pring->iotag_ctr = 0; 11697 pring->iotag_max = 4096; 11698 pring->lpfc_sli_rcv_async_status = 11699 lpfc_sli_async_event_handler; 11700 pring->num_mask = LPFC_MAX_RING_MASK; 11701 pring->prt[0].profile = 0; /* Mask 0 */ 11702 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11703 pring->prt[0].type = FC_TYPE_ELS; 11704 pring->prt[0].lpfc_sli_rcv_unsol_event = 11705 lpfc_els_unsol_event; 11706 pring->prt[1].profile = 0; /* Mask 1 */ 11707 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11708 pring->prt[1].type = FC_TYPE_ELS; 11709 pring->prt[1].lpfc_sli_rcv_unsol_event = 11710 lpfc_els_unsol_event; 11711 pring->prt[2].profile = 0; /* Mask 2 */ 11712 /* NameServer Inquiry */ 11713 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11714 /* NameServer */ 11715 pring->prt[2].type = FC_TYPE_CT; 11716 pring->prt[2].lpfc_sli_rcv_unsol_event = 11717 lpfc_ct_unsol_event; 11718 pring->prt[3].profile = 0; /* Mask 3 */ 11719 /* NameServer response */ 11720 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11721 /* NameServer */ 11722 pring->prt[3].type = FC_TYPE_CT; 11723 pring->prt[3].lpfc_sli_rcv_unsol_event = 11724 lpfc_ct_unsol_event; 11725 break; 11726 } 11727 totiocbsize += (pring->sli.sli3.numCiocb * 11728 pring->sli.sli3.sizeCiocb) + 11729 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11730 } 11731 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11732 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11733 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11734 "SLI2 SLIM Data: x%x x%lx\n", 11735 phba->brd_no, totiocbsize, 11736 (unsigned long) MAX_SLIM_IOCB_SIZE); 11737 } 11738 if (phba->cfg_multi_ring_support == 2) 11739 lpfc_extra_ring_setup(phba); 11740 11741 return 0; 11742 } 11743 11744 /** 11745 * lpfc_sli4_queue_init - Queue initialization function 11746 * @phba: Pointer to HBA context object. 11747 * 11748 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11749 * ring. This function also initializes ring indices of each ring. 11750 * This function is called during the initialization of the SLI 11751 * interface of an HBA. 11752 * This function is called with no lock held and always returns 11753 * 1. 11754 **/ 11755 void 11756 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11757 { 11758 struct lpfc_sli *psli; 11759 struct lpfc_sli_ring *pring; 11760 int i; 11761 11762 psli = &phba->sli; 11763 spin_lock_irq(&phba->hbalock); 11764 INIT_LIST_HEAD(&psli->mboxq); 11765 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11766 /* Initialize list headers for txq and txcmplq as double linked lists */ 11767 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11768 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11769 pring->flag = 0; 11770 pring->ringno = LPFC_FCP_RING; 11771 pring->txcmplq_cnt = 0; 11772 INIT_LIST_HEAD(&pring->txq); 11773 INIT_LIST_HEAD(&pring->txcmplq); 11774 INIT_LIST_HEAD(&pring->iocb_continueq); 11775 spin_lock_init(&pring->ring_lock); 11776 } 11777 pring = phba->sli4_hba.els_wq->pring; 11778 pring->flag = 0; 11779 pring->ringno = LPFC_ELS_RING; 11780 pring->txcmplq_cnt = 0; 11781 INIT_LIST_HEAD(&pring->txq); 11782 INIT_LIST_HEAD(&pring->txcmplq); 11783 INIT_LIST_HEAD(&pring->iocb_continueq); 11784 spin_lock_init(&pring->ring_lock); 11785 11786 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11787 pring = phba->sli4_hba.nvmels_wq->pring; 11788 pring->flag = 0; 11789 pring->ringno = LPFC_ELS_RING; 11790 pring->txcmplq_cnt = 0; 11791 INIT_LIST_HEAD(&pring->txq); 11792 INIT_LIST_HEAD(&pring->txcmplq); 11793 INIT_LIST_HEAD(&pring->iocb_continueq); 11794 spin_lock_init(&pring->ring_lock); 11795 } 11796 11797 spin_unlock_irq(&phba->hbalock); 11798 } 11799 11800 /** 11801 * lpfc_sli_queue_init - Queue initialization function 11802 * @phba: Pointer to HBA context object. 11803 * 11804 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11805 * ring. This function also initializes ring indices of each ring. 11806 * This function is called during the initialization of the SLI 11807 * interface of an HBA. 11808 * This function is called with no lock held and always returns 11809 * 1. 11810 **/ 11811 void 11812 lpfc_sli_queue_init(struct lpfc_hba *phba) 11813 { 11814 struct lpfc_sli *psli; 11815 struct lpfc_sli_ring *pring; 11816 int i; 11817 11818 psli = &phba->sli; 11819 spin_lock_irq(&phba->hbalock); 11820 INIT_LIST_HEAD(&psli->mboxq); 11821 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11822 /* Initialize list headers for txq and txcmplq as double linked lists */ 11823 for (i = 0; i < psli->num_rings; i++) { 11824 pring = &psli->sli3_ring[i]; 11825 pring->ringno = i; 11826 pring->sli.sli3.next_cmdidx = 0; 11827 pring->sli.sli3.local_getidx = 0; 11828 pring->sli.sli3.cmdidx = 0; 11829 INIT_LIST_HEAD(&pring->iocb_continueq); 11830 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11831 INIT_LIST_HEAD(&pring->postbufq); 11832 pring->flag = 0; 11833 INIT_LIST_HEAD(&pring->txq); 11834 INIT_LIST_HEAD(&pring->txcmplq); 11835 spin_lock_init(&pring->ring_lock); 11836 } 11837 spin_unlock_irq(&phba->hbalock); 11838 } 11839 11840 /** 11841 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11842 * @phba: Pointer to HBA context object. 11843 * 11844 * This routine flushes the mailbox command subsystem. It will unconditionally 11845 * flush all the mailbox commands in the three possible stages in the mailbox 11846 * command sub-system: pending mailbox command queue; the outstanding mailbox 11847 * command; and completed mailbox command queue. It is caller's responsibility 11848 * to make sure that the driver is in the proper state to flush the mailbox 11849 * command sub-system. Namely, the posting of mailbox commands into the 11850 * pending mailbox command queue from the various clients must be stopped; 11851 * either the HBA is in a state that it will never works on the outstanding 11852 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11853 * mailbox command has been completed. 11854 **/ 11855 static void 11856 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11857 { 11858 LIST_HEAD(completions); 11859 struct lpfc_sli *psli = &phba->sli; 11860 LPFC_MBOXQ_t *pmb; 11861 unsigned long iflag; 11862 11863 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11864 local_bh_disable(); 11865 11866 /* Flush all the mailbox commands in the mbox system */ 11867 spin_lock_irqsave(&phba->hbalock, iflag); 11868 11869 /* The pending mailbox command queue */ 11870 list_splice_init(&phba->sli.mboxq, &completions); 11871 /* The outstanding active mailbox command */ 11872 if (psli->mbox_active) { 11873 list_add_tail(&psli->mbox_active->list, &completions); 11874 psli->mbox_active = NULL; 11875 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11876 } 11877 /* The completed mailbox command queue */ 11878 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11879 spin_unlock_irqrestore(&phba->hbalock, iflag); 11880 11881 /* Enable softirqs again, done with phba->hbalock */ 11882 local_bh_enable(); 11883 11884 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11885 while (!list_empty(&completions)) { 11886 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11887 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11888 if (pmb->mbox_cmpl) 11889 pmb->mbox_cmpl(phba, pmb); 11890 } 11891 } 11892 11893 /** 11894 * lpfc_sli_host_down - Vport cleanup function 11895 * @vport: Pointer to virtual port object. 11896 * 11897 * lpfc_sli_host_down is called to clean up the resources 11898 * associated with a vport before destroying virtual 11899 * port data structures. 11900 * This function does following operations: 11901 * - Free discovery resources associated with this virtual 11902 * port. 11903 * - Free iocbs associated with this virtual port in 11904 * the txq. 11905 * - Send abort for all iocb commands associated with this 11906 * vport in txcmplq. 11907 * 11908 * This function is called with no lock held and always returns 1. 11909 **/ 11910 int 11911 lpfc_sli_host_down(struct lpfc_vport *vport) 11912 { 11913 LIST_HEAD(completions); 11914 struct lpfc_hba *phba = vport->phba; 11915 struct lpfc_sli *psli = &phba->sli; 11916 struct lpfc_queue *qp = NULL; 11917 struct lpfc_sli_ring *pring; 11918 struct lpfc_iocbq *iocb, *next_iocb; 11919 int i; 11920 unsigned long flags = 0; 11921 uint16_t prev_pring_flag; 11922 11923 lpfc_cleanup_discovery_resources(vport); 11924 11925 spin_lock_irqsave(&phba->hbalock, flags); 11926 11927 /* 11928 * Error everything on the txq since these iocbs 11929 * have not been given to the FW yet. 11930 * Also issue ABTS for everything on the txcmplq 11931 */ 11932 if (phba->sli_rev != LPFC_SLI_REV4) { 11933 for (i = 0; i < psli->num_rings; i++) { 11934 pring = &psli->sli3_ring[i]; 11935 prev_pring_flag = pring->flag; 11936 /* Only slow rings */ 11937 if (pring->ringno == LPFC_ELS_RING) { 11938 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11939 /* Set the lpfc data pending flag */ 11940 set_bit(LPFC_DATA_READY, &phba->data_flags); 11941 } 11942 list_for_each_entry_safe(iocb, next_iocb, 11943 &pring->txq, list) { 11944 if (iocb->vport != vport) 11945 continue; 11946 list_move_tail(&iocb->list, &completions); 11947 } 11948 list_for_each_entry_safe(iocb, next_iocb, 11949 &pring->txcmplq, list) { 11950 if (iocb->vport != vport) 11951 continue; 11952 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11953 NULL); 11954 } 11955 pring->flag = prev_pring_flag; 11956 } 11957 } else { 11958 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11959 pring = qp->pring; 11960 if (!pring) 11961 continue; 11962 if (pring == phba->sli4_hba.els_wq->pring) { 11963 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11964 /* Set the lpfc data pending flag */ 11965 set_bit(LPFC_DATA_READY, &phba->data_flags); 11966 } 11967 prev_pring_flag = pring->flag; 11968 spin_lock(&pring->ring_lock); 11969 list_for_each_entry_safe(iocb, next_iocb, 11970 &pring->txq, list) { 11971 if (iocb->vport != vport) 11972 continue; 11973 list_move_tail(&iocb->list, &completions); 11974 } 11975 spin_unlock(&pring->ring_lock); 11976 list_for_each_entry_safe(iocb, next_iocb, 11977 &pring->txcmplq, list) { 11978 if (iocb->vport != vport) 11979 continue; 11980 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11981 NULL); 11982 } 11983 pring->flag = prev_pring_flag; 11984 } 11985 } 11986 spin_unlock_irqrestore(&phba->hbalock, flags); 11987 11988 /* Make sure HBA is alive */ 11989 lpfc_issue_hb_tmo(phba); 11990 11991 /* Cancel all the IOCBs from the completions list */ 11992 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11993 IOERR_SLI_DOWN); 11994 return 1; 11995 } 11996 11997 /** 11998 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11999 * @phba: Pointer to HBA context object. 12000 * 12001 * This function cleans up all iocb, buffers, mailbox commands 12002 * while shutting down the HBA. This function is called with no 12003 * lock held and always returns 1. 12004 * This function does the following to cleanup driver resources: 12005 * - Free discovery resources for each virtual port 12006 * - Cleanup any pending fabric iocbs 12007 * - Iterate through the iocb txq and free each entry 12008 * in the list. 12009 * - Free up any buffer posted to the HBA 12010 * - Free mailbox commands in the mailbox queue. 12011 **/ 12012 int 12013 lpfc_sli_hba_down(struct lpfc_hba *phba) 12014 { 12015 LIST_HEAD(completions); 12016 struct lpfc_sli *psli = &phba->sli; 12017 struct lpfc_queue *qp = NULL; 12018 struct lpfc_sli_ring *pring; 12019 struct lpfc_dmabuf *buf_ptr; 12020 unsigned long flags = 0; 12021 int i; 12022 12023 /* Shutdown the mailbox command sub-system */ 12024 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12025 12026 lpfc_hba_down_prep(phba); 12027 12028 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12029 local_bh_disable(); 12030 12031 lpfc_fabric_abort_hba(phba); 12032 12033 spin_lock_irqsave(&phba->hbalock, flags); 12034 12035 /* 12036 * Error everything on the txq since these iocbs 12037 * have not been given to the FW yet. 12038 */ 12039 if (phba->sli_rev != LPFC_SLI_REV4) { 12040 for (i = 0; i < psli->num_rings; i++) { 12041 pring = &psli->sli3_ring[i]; 12042 /* Only slow rings */ 12043 if (pring->ringno == LPFC_ELS_RING) { 12044 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12045 /* Set the lpfc data pending flag */ 12046 set_bit(LPFC_DATA_READY, &phba->data_flags); 12047 } 12048 list_splice_init(&pring->txq, &completions); 12049 } 12050 } else { 12051 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12052 pring = qp->pring; 12053 if (!pring) 12054 continue; 12055 spin_lock(&pring->ring_lock); 12056 list_splice_init(&pring->txq, &completions); 12057 spin_unlock(&pring->ring_lock); 12058 if (pring == phba->sli4_hba.els_wq->pring) { 12059 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12060 /* Set the lpfc data pending flag */ 12061 set_bit(LPFC_DATA_READY, &phba->data_flags); 12062 } 12063 } 12064 } 12065 spin_unlock_irqrestore(&phba->hbalock, flags); 12066 12067 /* Cancel all the IOCBs from the completions list */ 12068 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12069 IOERR_SLI_DOWN); 12070 12071 spin_lock_irqsave(&phba->hbalock, flags); 12072 list_splice_init(&phba->elsbuf, &completions); 12073 phba->elsbuf_cnt = 0; 12074 phba->elsbuf_prev_cnt = 0; 12075 spin_unlock_irqrestore(&phba->hbalock, flags); 12076 12077 while (!list_empty(&completions)) { 12078 list_remove_head(&completions, buf_ptr, 12079 struct lpfc_dmabuf, list); 12080 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12081 kfree(buf_ptr); 12082 } 12083 12084 /* Enable softirqs again, done with phba->hbalock */ 12085 local_bh_enable(); 12086 12087 /* Return any active mbox cmds */ 12088 timer_delete_sync(&psli->mbox_tmo); 12089 12090 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12091 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12092 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12093 12094 return 1; 12095 } 12096 12097 /** 12098 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12099 * @srcp: Source memory pointer. 12100 * @destp: Destination memory pointer. 12101 * @cnt: Number of words required to be copied. 12102 * 12103 * This function is used for copying data between driver memory 12104 * and the SLI memory. This function also changes the endianness 12105 * of each word if native endianness is different from SLI 12106 * endianness. This function can be called with or without 12107 * lock. 12108 **/ 12109 void 12110 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12111 { 12112 uint32_t *src = srcp; 12113 uint32_t *dest = destp; 12114 uint32_t ldata; 12115 int i; 12116 12117 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12118 ldata = *src; 12119 ldata = le32_to_cpu(ldata); 12120 *dest = ldata; 12121 src++; 12122 dest++; 12123 } 12124 } 12125 12126 12127 /** 12128 * lpfc_sli_bemem_bcopy - SLI memory copy function 12129 * @srcp: Source memory pointer. 12130 * @destp: Destination memory pointer. 12131 * @cnt: Number of words required to be copied. 12132 * 12133 * This function is used for copying data between a data structure 12134 * with big endian representation to local endianness. 12135 * This function can be called with or without lock. 12136 **/ 12137 void 12138 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12139 { 12140 uint32_t *src = srcp; 12141 uint32_t *dest = destp; 12142 uint32_t ldata; 12143 int i; 12144 12145 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12146 ldata = *src; 12147 ldata = be32_to_cpu(ldata); 12148 *dest = ldata; 12149 src++; 12150 dest++; 12151 } 12152 } 12153 12154 /** 12155 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12156 * @phba: Pointer to HBA context object. 12157 * @pring: Pointer to driver SLI ring object. 12158 * @mp: Pointer to driver buffer object. 12159 * 12160 * This function is called with no lock held. 12161 * It always return zero after adding the buffer to the postbufq 12162 * buffer list. 12163 **/ 12164 int 12165 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12166 struct lpfc_dmabuf *mp) 12167 { 12168 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12169 later */ 12170 spin_lock_irq(&phba->hbalock); 12171 list_add_tail(&mp->list, &pring->postbufq); 12172 pring->postbufq_cnt++; 12173 spin_unlock_irq(&phba->hbalock); 12174 return 0; 12175 } 12176 12177 /** 12178 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12179 * @phba: Pointer to HBA context object. 12180 * 12181 * When HBQ is enabled, buffers are searched based on tags. This function 12182 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12183 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12184 * does not conflict with tags of buffer posted for unsolicited events. 12185 * The function returns the allocated tag. The function is called with 12186 * no locks held. 12187 **/ 12188 uint32_t 12189 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12190 { 12191 spin_lock_irq(&phba->hbalock); 12192 phba->buffer_tag_count++; 12193 /* 12194 * Always set the QUE_BUFTAG_BIT to distiguish between 12195 * a tag assigned by HBQ. 12196 */ 12197 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12198 spin_unlock_irq(&phba->hbalock); 12199 return phba->buffer_tag_count; 12200 } 12201 12202 /** 12203 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12204 * @phba: Pointer to HBA context object. 12205 * @pring: Pointer to driver SLI ring object. 12206 * @tag: Buffer tag. 12207 * 12208 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12209 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12210 * iocb is posted to the response ring with the tag of the buffer. 12211 * This function searches the pring->postbufq list using the tag 12212 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12213 * iocb. If the buffer is found then lpfc_dmabuf object of the 12214 * buffer is returned to the caller else NULL is returned. 12215 * This function is called with no lock held. 12216 **/ 12217 struct lpfc_dmabuf * 12218 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12219 uint32_t tag) 12220 { 12221 struct lpfc_dmabuf *mp, *next_mp; 12222 struct list_head *slp = &pring->postbufq; 12223 12224 /* Search postbufq, from the beginning, looking for a match on tag */ 12225 spin_lock_irq(&phba->hbalock); 12226 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12227 if (mp->buffer_tag == tag) { 12228 list_del_init(&mp->list); 12229 pring->postbufq_cnt--; 12230 spin_unlock_irq(&phba->hbalock); 12231 return mp; 12232 } 12233 } 12234 12235 spin_unlock_irq(&phba->hbalock); 12236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12237 "0402 Cannot find virtual addr for buffer tag on " 12238 "ring %d Data x%lx x%px x%px x%x\n", 12239 pring->ringno, (unsigned long) tag, 12240 slp->next, slp->prev, pring->postbufq_cnt); 12241 12242 return NULL; 12243 } 12244 12245 /** 12246 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12247 * @phba: Pointer to HBA context object. 12248 * @pring: Pointer to driver SLI ring object. 12249 * @phys: DMA address of the buffer. 12250 * 12251 * This function searches the buffer list using the dma_address 12252 * of unsolicited event to find the driver's lpfc_dmabuf object 12253 * corresponding to the dma_address. The function returns the 12254 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12255 * This function is called by the ct and els unsolicited event 12256 * handlers to get the buffer associated with the unsolicited 12257 * event. 12258 * 12259 * This function is called with no lock held. 12260 **/ 12261 struct lpfc_dmabuf * 12262 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12263 dma_addr_t phys) 12264 { 12265 struct lpfc_dmabuf *mp, *next_mp; 12266 struct list_head *slp = &pring->postbufq; 12267 12268 /* Search postbufq, from the beginning, looking for a match on phys */ 12269 spin_lock_irq(&phba->hbalock); 12270 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12271 if (mp->phys == phys) { 12272 list_del_init(&mp->list); 12273 pring->postbufq_cnt--; 12274 spin_unlock_irq(&phba->hbalock); 12275 return mp; 12276 } 12277 } 12278 12279 spin_unlock_irq(&phba->hbalock); 12280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12281 "0410 Cannot find virtual addr for mapped buf on " 12282 "ring %d Data x%llx x%px x%px x%x\n", 12283 pring->ringno, (unsigned long long)phys, 12284 slp->next, slp->prev, pring->postbufq_cnt); 12285 return NULL; 12286 } 12287 12288 /** 12289 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12290 * @phba: Pointer to HBA context object. 12291 * @cmdiocb: Pointer to driver command iocb object. 12292 * @rspiocb: Pointer to driver response iocb object. 12293 * 12294 * This function is the completion handler for the abort iocbs for 12295 * ELS commands. This function is called from the ELS ring event 12296 * handler with no lock held. This function frees memory resources 12297 * associated with the abort iocb. 12298 **/ 12299 static void 12300 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12301 struct lpfc_iocbq *rspiocb) 12302 { 12303 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12304 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12305 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12306 12307 if (ulp_status) { 12308 /* 12309 * Assume that the port already completed and returned, or 12310 * will return the iocb. Just Log the message. 12311 */ 12312 if (phba->sli_rev < LPFC_SLI_REV4) { 12313 if (cmnd == CMD_ABORT_XRI_CX && 12314 ulp_status == IOSTAT_LOCAL_REJECT && 12315 ulp_word4 == IOERR_ABORT_REQUESTED) { 12316 goto release_iocb; 12317 } 12318 } 12319 } 12320 12321 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12322 "0327 Abort els iocb complete x%px with io cmd xri %x " 12323 "abort tag x%x abort status %x abort code %x\n", 12324 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12325 (phba->sli_rev == LPFC_SLI_REV4) ? 12326 get_wqe_reqtag(cmdiocb) : 12327 cmdiocb->iocb.ulpIoTag, 12328 ulp_status, ulp_word4); 12329 release_iocb: 12330 lpfc_sli_release_iocbq(phba, cmdiocb); 12331 return; 12332 } 12333 12334 /** 12335 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12336 * @phba: Pointer to HBA context object. 12337 * @cmdiocb: Pointer to driver command iocb object. 12338 * @rspiocb: Pointer to driver response iocb object. 12339 * 12340 * The function is called from SLI ring event handler with no 12341 * lock held. This function is the completion handler for ELS commands 12342 * which are aborted. The function frees memory resources used for 12343 * the aborted ELS commands. 12344 **/ 12345 void 12346 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12347 struct lpfc_iocbq *rspiocb) 12348 { 12349 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12350 IOCB_t *irsp; 12351 LPFC_MBOXQ_t *mbox; 12352 u32 ulp_command, ulp_status, ulp_word4, iotag; 12353 12354 ulp_command = get_job_cmnd(phba, cmdiocb); 12355 ulp_status = get_job_ulpstatus(phba, rspiocb); 12356 ulp_word4 = get_job_word4(phba, rspiocb); 12357 12358 if (phba->sli_rev == LPFC_SLI_REV4) { 12359 iotag = get_wqe_reqtag(cmdiocb); 12360 } else { 12361 irsp = &rspiocb->iocb; 12362 iotag = irsp->ulpIoTag; 12363 12364 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12365 * The MBX_REG_LOGIN64 mbox command is freed back to the 12366 * mbox_mem_pool here. 12367 */ 12368 if (cmdiocb->context_un.mbox) { 12369 mbox = cmdiocb->context_un.mbox; 12370 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12371 cmdiocb->context_un.mbox = NULL; 12372 } 12373 } 12374 12375 /* ELS cmd tag <ulpIoTag> completes */ 12376 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12377 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12378 "x%x x%x x%x x%px\n", 12379 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12380 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12381 /* 12382 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12383 * if exchange is busy. 12384 */ 12385 if (ulp_command == CMD_GEN_REQUEST64_CR) 12386 lpfc_ct_free_iocb(phba, cmdiocb); 12387 else 12388 lpfc_els_free_iocb(phba, cmdiocb); 12389 12390 lpfc_nlp_put(ndlp); 12391 } 12392 12393 /** 12394 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12395 * @phba: Pointer to HBA context object. 12396 * @pring: Pointer to driver SLI ring object. 12397 * @cmdiocb: Pointer to driver command iocb object. 12398 * @cmpl: completion function. 12399 * 12400 * This function issues an abort iocb for the provided command iocb. In case 12401 * of unloading, the abort iocb will not be issued to commands on the ELS 12402 * ring. Instead, the callback function shall be changed to those commands 12403 * so that nothing happens when them finishes. This function is called with 12404 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12405 * when the command iocb is an abort request. 12406 * 12407 **/ 12408 int 12409 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12410 struct lpfc_iocbq *cmdiocb, void *cmpl) 12411 { 12412 struct lpfc_vport *vport = cmdiocb->vport; 12413 struct lpfc_iocbq *abtsiocbp; 12414 int retval = IOCB_ERROR; 12415 unsigned long iflags; 12416 struct lpfc_nodelist *ndlp = NULL; 12417 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12418 u16 ulp_context, iotag; 12419 bool ia; 12420 12421 /* 12422 * There are certain command types we don't want to abort. And we 12423 * don't want to abort commands that are already in the process of 12424 * being aborted. 12425 */ 12426 if (ulp_command == CMD_ABORT_XRI_WQE || 12427 ulp_command == CMD_ABORT_XRI_CN || 12428 ulp_command == CMD_CLOSE_XRI_CN || 12429 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12430 return IOCB_ABORTING; 12431 12432 if (!pring) { 12433 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12434 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12435 else 12436 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12437 return retval; 12438 } 12439 12440 /* 12441 * Always abort the outstanding WQE and set the IA bit correctly 12442 * for the context. This is necessary for correctly removing 12443 * outstanding ndlp reference counts when the CQE completes with 12444 * the XB bit set. 12445 */ 12446 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12447 if (abtsiocbp == NULL) 12448 return IOCB_NORESOURCE; 12449 12450 /* This signals the response to set the correct status 12451 * before calling the completion handler 12452 */ 12453 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12454 12455 if (phba->sli_rev == LPFC_SLI_REV4) { 12456 ulp_context = cmdiocb->sli4_xritag; 12457 iotag = abtsiocbp->iotag; 12458 } else { 12459 iotag = cmdiocb->iocb.ulpIoTag; 12460 if (pring->ringno == LPFC_ELS_RING) { 12461 ndlp = cmdiocb->ndlp; 12462 ulp_context = ndlp->nlp_rpi; 12463 } else { 12464 ulp_context = cmdiocb->iocb.ulpContext; 12465 } 12466 } 12467 12468 /* Just close the exchange under certain conditions. */ 12469 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12470 phba->link_state < LPFC_LINK_UP || 12471 (phba->sli_rev == LPFC_SLI_REV4 && 12472 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12473 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12474 ia = true; 12475 else 12476 ia = false; 12477 12478 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12479 cmdiocb->iocb.ulpClass, 12480 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12481 12482 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12483 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12484 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12485 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12486 12487 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12488 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12489 12490 if (cmpl) 12491 abtsiocbp->cmd_cmpl = cmpl; 12492 else 12493 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12494 abtsiocbp->vport = vport; 12495 12496 if (phba->sli_rev == LPFC_SLI_REV4) { 12497 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12498 if (unlikely(pring == NULL)) 12499 goto abort_iotag_exit; 12500 /* Note: both hbalock and ring_lock need to be set here */ 12501 spin_lock_irqsave(&pring->ring_lock, iflags); 12502 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12503 abtsiocbp, 0); 12504 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12505 } else { 12506 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12507 abtsiocbp, 0); 12508 } 12509 12510 abort_iotag_exit: 12511 12512 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12513 "0339 Abort IO XRI x%x, Original iotag x%x, " 12514 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12515 "retval x%x : IA %d cmd_cmpl %ps\n", 12516 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12517 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12518 retval, ia, abtsiocbp->cmd_cmpl); 12519 if (retval) { 12520 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12521 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12522 } 12523 12524 /* 12525 * Caller to this routine should check for IOCB_ERROR 12526 * and handle it properly. This routine no longer removes 12527 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12528 */ 12529 return retval; 12530 } 12531 12532 /** 12533 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12534 * @phba: pointer to lpfc HBA data structure. 12535 * 12536 * This routine will abort all pending and outstanding iocbs to an HBA. 12537 **/ 12538 void 12539 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12540 { 12541 struct lpfc_sli *psli = &phba->sli; 12542 struct lpfc_sli_ring *pring; 12543 struct lpfc_queue *qp = NULL; 12544 int i; 12545 12546 if (phba->sli_rev != LPFC_SLI_REV4) { 12547 for (i = 0; i < psli->num_rings; i++) { 12548 pring = &psli->sli3_ring[i]; 12549 lpfc_sli_abort_iocb_ring(phba, pring); 12550 } 12551 return; 12552 } 12553 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12554 pring = qp->pring; 12555 if (!pring) 12556 continue; 12557 lpfc_sli_abort_iocb_ring(phba, pring); 12558 } 12559 } 12560 12561 /** 12562 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12563 * @iocbq: Pointer to iocb object. 12564 * @vport: Pointer to driver virtual port object. 12565 * 12566 * This function acts as an iocb filter for functions which abort FCP iocbs. 12567 * 12568 * Return values 12569 * -ENODEV, if a null iocb or vport ptr is encountered 12570 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12571 * driver already started the abort process, or is an abort iocb itself 12572 * 0, passes criteria for aborting the FCP I/O iocb 12573 **/ 12574 static int 12575 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12576 struct lpfc_vport *vport) 12577 { 12578 u8 ulp_command; 12579 12580 /* No null ptr vports */ 12581 if (!iocbq || iocbq->vport != vport) 12582 return -ENODEV; 12583 12584 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12585 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12586 */ 12587 ulp_command = get_job_cmnd(vport->phba, iocbq); 12588 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12589 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12590 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12591 (ulp_command == CMD_ABORT_XRI_CN || 12592 ulp_command == CMD_CLOSE_XRI_CN || 12593 ulp_command == CMD_ABORT_XRI_WQE)) 12594 return -EINVAL; 12595 12596 return 0; 12597 } 12598 12599 /** 12600 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12601 * @iocbq: Pointer to driver iocb object. 12602 * @vport: Pointer to driver virtual port object. 12603 * @tgt_id: SCSI ID of the target. 12604 * @lun_id: LUN ID of the scsi device. 12605 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12606 * 12607 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12608 * host. 12609 * 12610 * It will return 12611 * 0 if the filtering criteria is met for the given iocb and will return 12612 * 1 if the filtering criteria is not met. 12613 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12614 * given iocb is for the SCSI device specified by vport, tgt_id and 12615 * lun_id parameter. 12616 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12617 * given iocb is for the SCSI target specified by vport and tgt_id 12618 * parameters. 12619 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12620 * given iocb is for the SCSI host associated with the given vport. 12621 * This function is called with no locks held. 12622 **/ 12623 static int 12624 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12625 uint16_t tgt_id, uint64_t lun_id, 12626 lpfc_ctx_cmd ctx_cmd) 12627 { 12628 struct lpfc_io_buf *lpfc_cmd; 12629 int rc = 1; 12630 12631 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12632 12633 if (lpfc_cmd->pCmd == NULL) 12634 return rc; 12635 12636 switch (ctx_cmd) { 12637 case LPFC_CTX_LUN: 12638 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12639 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12640 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12641 rc = 0; 12642 break; 12643 case LPFC_CTX_TGT: 12644 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12645 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12646 rc = 0; 12647 break; 12648 case LPFC_CTX_HOST: 12649 rc = 0; 12650 break; 12651 default: 12652 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12653 __func__, ctx_cmd); 12654 break; 12655 } 12656 12657 return rc; 12658 } 12659 12660 /** 12661 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12662 * @vport: Pointer to virtual port. 12663 * @tgt_id: SCSI ID of the target. 12664 * @lun_id: LUN ID of the scsi device. 12665 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12666 * 12667 * This function returns number of FCP commands pending for the vport. 12668 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12669 * commands pending on the vport associated with SCSI device specified 12670 * by tgt_id and lun_id parameters. 12671 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12672 * commands pending on the vport associated with SCSI target specified 12673 * by tgt_id parameter. 12674 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12675 * commands pending on the vport. 12676 * This function returns the number of iocbs which satisfy the filter. 12677 * This function is called without any lock held. 12678 **/ 12679 int 12680 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12681 lpfc_ctx_cmd ctx_cmd) 12682 { 12683 struct lpfc_hba *phba = vport->phba; 12684 struct lpfc_iocbq *iocbq; 12685 int sum, i; 12686 unsigned long iflags; 12687 u8 ulp_command; 12688 12689 spin_lock_irqsave(&phba->hbalock, iflags); 12690 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12691 iocbq = phba->sli.iocbq_lookup[i]; 12692 12693 if (!iocbq || iocbq->vport != vport) 12694 continue; 12695 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12696 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12697 continue; 12698 12699 /* Include counting outstanding aborts */ 12700 ulp_command = get_job_cmnd(phba, iocbq); 12701 if (ulp_command == CMD_ABORT_XRI_CN || 12702 ulp_command == CMD_CLOSE_XRI_CN || 12703 ulp_command == CMD_ABORT_XRI_WQE) { 12704 sum++; 12705 continue; 12706 } 12707 12708 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12709 ctx_cmd) == 0) 12710 sum++; 12711 } 12712 spin_unlock_irqrestore(&phba->hbalock, iflags); 12713 12714 return sum; 12715 } 12716 12717 /** 12718 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12719 * @phba: Pointer to HBA context object 12720 * @cmdiocb: Pointer to command iocb object. 12721 * @rspiocb: Pointer to response iocb object. 12722 * 12723 * This function is called when an aborted FCP iocb completes. This 12724 * function is called by the ring event handler with no lock held. 12725 * This function frees the iocb. 12726 **/ 12727 void 12728 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12729 struct lpfc_iocbq *rspiocb) 12730 { 12731 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12732 "3096 ABORT_XRI_CX completing on rpi x%x " 12733 "original iotag x%x, abort cmd iotag x%x " 12734 "status 0x%x, reason 0x%x\n", 12735 (phba->sli_rev == LPFC_SLI_REV4) ? 12736 cmdiocb->sli4_xritag : 12737 cmdiocb->iocb.un.acxri.abortContextTag, 12738 get_job_abtsiotag(phba, cmdiocb), 12739 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12740 get_job_word4(phba, rspiocb)); 12741 lpfc_sli_release_iocbq(phba, cmdiocb); 12742 return; 12743 } 12744 12745 /** 12746 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12747 * @vport: Pointer to virtual port. 12748 * @tgt_id: SCSI ID of the target. 12749 * @lun_id: LUN ID of the scsi device. 12750 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12751 * 12752 * This function sends an abort command for every SCSI command 12753 * associated with the given virtual port pending on the ring 12754 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12755 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12756 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12757 * followed by lpfc_sli_validate_fcp_iocb. 12758 * 12759 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12760 * FCP iocbs associated with lun specified by tgt_id and lun_id 12761 * parameters 12762 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12763 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12764 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12765 * FCP iocbs associated with virtual port. 12766 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12767 * lpfc_sli4_calc_ring is used. 12768 * This function returns number of iocbs it failed to abort. 12769 * This function is called with no locks held. 12770 **/ 12771 int 12772 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12773 lpfc_ctx_cmd abort_cmd) 12774 { 12775 struct lpfc_hba *phba = vport->phba; 12776 struct lpfc_sli_ring *pring = NULL; 12777 struct lpfc_iocbq *iocbq; 12778 int errcnt = 0, ret_val = 0; 12779 unsigned long iflags; 12780 int i; 12781 12782 /* all I/Os are in process of being flushed */ 12783 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12784 return errcnt; 12785 12786 for (i = 1; i <= phba->sli.last_iotag; i++) { 12787 iocbq = phba->sli.iocbq_lookup[i]; 12788 12789 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12790 continue; 12791 12792 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12793 abort_cmd) != 0) 12794 continue; 12795 12796 spin_lock_irqsave(&phba->hbalock, iflags); 12797 if (phba->sli_rev == LPFC_SLI_REV3) { 12798 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12799 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12800 pring = lpfc_sli4_calc_ring(phba, iocbq); 12801 } 12802 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12803 lpfc_sli_abort_fcp_cmpl); 12804 spin_unlock_irqrestore(&phba->hbalock, iflags); 12805 if (ret_val != IOCB_SUCCESS) 12806 errcnt++; 12807 } 12808 12809 return errcnt; 12810 } 12811 12812 /** 12813 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12814 * @vport: Pointer to virtual port. 12815 * @pring: Pointer to driver SLI ring object. 12816 * @tgt_id: SCSI ID of the target. 12817 * @lun_id: LUN ID of the scsi device. 12818 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12819 * 12820 * This function sends an abort command for every SCSI command 12821 * associated with the given virtual port pending on the ring 12822 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12823 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12824 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12825 * followed by lpfc_sli_validate_fcp_iocb. 12826 * 12827 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12828 * FCP iocbs associated with lun specified by tgt_id and lun_id 12829 * parameters 12830 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12831 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12832 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12833 * FCP iocbs associated with virtual port. 12834 * This function returns number of iocbs it aborted . 12835 * This function is called with no locks held right after a taskmgmt 12836 * command is sent. 12837 **/ 12838 int 12839 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12840 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12841 { 12842 struct lpfc_hba *phba = vport->phba; 12843 struct lpfc_io_buf *lpfc_cmd; 12844 struct lpfc_iocbq *abtsiocbq; 12845 struct lpfc_nodelist *ndlp = NULL; 12846 struct lpfc_iocbq *iocbq; 12847 int sum, i, ret_val; 12848 unsigned long iflags; 12849 struct lpfc_sli_ring *pring_s4 = NULL; 12850 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12851 bool ia; 12852 12853 /* all I/Os are in process of being flushed */ 12854 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12855 return 0; 12856 12857 sum = 0; 12858 12859 spin_lock_irqsave(&phba->hbalock, iflags); 12860 for (i = 1; i <= phba->sli.last_iotag; i++) { 12861 iocbq = phba->sli.iocbq_lookup[i]; 12862 12863 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12864 continue; 12865 12866 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12867 cmd) != 0) 12868 continue; 12869 12870 /* Guard against IO completion being called at same time */ 12871 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12872 spin_lock(&lpfc_cmd->buf_lock); 12873 12874 if (!lpfc_cmd->pCmd) { 12875 spin_unlock(&lpfc_cmd->buf_lock); 12876 continue; 12877 } 12878 12879 if (phba->sli_rev == LPFC_SLI_REV4) { 12880 pring_s4 = 12881 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12882 if (!pring_s4) { 12883 spin_unlock(&lpfc_cmd->buf_lock); 12884 continue; 12885 } 12886 /* Note: both hbalock and ring_lock must be set here */ 12887 spin_lock(&pring_s4->ring_lock); 12888 } 12889 12890 /* 12891 * If the iocbq is already being aborted, don't take a second 12892 * action, but do count it. 12893 */ 12894 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12895 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12896 if (phba->sli_rev == LPFC_SLI_REV4) 12897 spin_unlock(&pring_s4->ring_lock); 12898 spin_unlock(&lpfc_cmd->buf_lock); 12899 continue; 12900 } 12901 12902 /* issue ABTS for this IOCB based on iotag */ 12903 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12904 if (!abtsiocbq) { 12905 if (phba->sli_rev == LPFC_SLI_REV4) 12906 spin_unlock(&pring_s4->ring_lock); 12907 spin_unlock(&lpfc_cmd->buf_lock); 12908 continue; 12909 } 12910 12911 if (phba->sli_rev == LPFC_SLI_REV4) { 12912 iotag = abtsiocbq->iotag; 12913 ulp_context = iocbq->sli4_xritag; 12914 cqid = lpfc_cmd->hdwq->io_cq_map; 12915 } else { 12916 iotag = iocbq->iocb.ulpIoTag; 12917 if (pring->ringno == LPFC_ELS_RING) { 12918 ndlp = iocbq->ndlp; 12919 ulp_context = ndlp->nlp_rpi; 12920 } else { 12921 ulp_context = iocbq->iocb.ulpContext; 12922 } 12923 } 12924 12925 ndlp = lpfc_cmd->rdata->pnode; 12926 12927 if (lpfc_is_link_up(phba) && 12928 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12929 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12930 ia = false; 12931 else 12932 ia = true; 12933 12934 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12935 iocbq->iocb.ulpClass, cqid, 12936 ia, false); 12937 12938 abtsiocbq->vport = vport; 12939 12940 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12941 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12942 if (iocbq->cmd_flag & LPFC_IO_FCP) 12943 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12944 if (iocbq->cmd_flag & LPFC_IO_FOF) 12945 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12946 12947 /* Setup callback routine and issue the command. */ 12948 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12949 12950 /* 12951 * Indicate the IO is being aborted by the driver and set 12952 * the caller's flag into the aborted IO. 12953 */ 12954 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12955 12956 if (phba->sli_rev == LPFC_SLI_REV4) { 12957 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12958 abtsiocbq, 0); 12959 spin_unlock(&pring_s4->ring_lock); 12960 } else { 12961 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12962 abtsiocbq, 0); 12963 } 12964 12965 spin_unlock(&lpfc_cmd->buf_lock); 12966 12967 if (ret_val == IOCB_ERROR) 12968 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12969 else 12970 sum++; 12971 } 12972 spin_unlock_irqrestore(&phba->hbalock, iflags); 12973 return sum; 12974 } 12975 12976 /** 12977 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12978 * @phba: Pointer to HBA context object. 12979 * @cmdiocbq: Pointer to command iocb. 12980 * @rspiocbq: Pointer to response iocb. 12981 * 12982 * This function is the completion handler for iocbs issued using 12983 * lpfc_sli_issue_iocb_wait function. This function is called by the 12984 * ring event handler function without any lock held. This function 12985 * can be called from both worker thread context and interrupt 12986 * context. This function also can be called from other thread which 12987 * cleans up the SLI layer objects. 12988 * This function copy the contents of the response iocb to the 12989 * response iocb memory object provided by the caller of 12990 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12991 * sleeps for the iocb completion. 12992 **/ 12993 static void 12994 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12995 struct lpfc_iocbq *cmdiocbq, 12996 struct lpfc_iocbq *rspiocbq) 12997 { 12998 wait_queue_head_t *pdone_q; 12999 unsigned long iflags; 13000 struct lpfc_io_buf *lpfc_cmd; 13001 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13002 13003 spin_lock_irqsave(&phba->hbalock, iflags); 13004 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13005 13006 /* 13007 * A time out has occurred for the iocb. If a time out 13008 * completion handler has been supplied, call it. Otherwise, 13009 * just free the iocbq. 13010 */ 13011 13012 spin_unlock_irqrestore(&phba->hbalock, iflags); 13013 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13014 cmdiocbq->wait_cmd_cmpl = NULL; 13015 if (cmdiocbq->cmd_cmpl) 13016 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13017 else 13018 lpfc_sli_release_iocbq(phba, cmdiocbq); 13019 return; 13020 } 13021 13022 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13023 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13024 if (cmdiocbq->rsp_iocb && rspiocbq) 13025 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13026 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13027 13028 /* Set the exchange busy flag for task management commands */ 13029 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13030 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13031 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13032 cur_iocbq); 13033 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13034 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13035 else 13036 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13037 } 13038 13039 pdone_q = cmdiocbq->context_un.wait_queue; 13040 if (pdone_q) 13041 wake_up(pdone_q); 13042 spin_unlock_irqrestore(&phba->hbalock, iflags); 13043 return; 13044 } 13045 13046 /** 13047 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13048 * @phba: Pointer to HBA context object.. 13049 * @piocbq: Pointer to command iocb. 13050 * @flag: Flag to test. 13051 * 13052 * This routine grabs the hbalock and then test the cmd_flag to 13053 * see if the passed in flag is set. 13054 * Returns: 13055 * 1 if flag is set. 13056 * 0 if flag is not set. 13057 **/ 13058 static int 13059 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13060 struct lpfc_iocbq *piocbq, uint32_t flag) 13061 { 13062 unsigned long iflags; 13063 int ret; 13064 13065 spin_lock_irqsave(&phba->hbalock, iflags); 13066 ret = piocbq->cmd_flag & flag; 13067 spin_unlock_irqrestore(&phba->hbalock, iflags); 13068 return ret; 13069 13070 } 13071 13072 /** 13073 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13074 * @phba: Pointer to HBA context object.. 13075 * @ring_number: Ring number 13076 * @piocb: Pointer to command iocb. 13077 * @prspiocbq: Pointer to response iocb. 13078 * @timeout: Timeout in number of seconds. 13079 * 13080 * This function issues the iocb to firmware and waits for the 13081 * iocb to complete. The cmd_cmpl field of the shall be used 13082 * to handle iocbs which time out. If the field is NULL, the 13083 * function shall free the iocbq structure. If more clean up is 13084 * needed, the caller is expected to provide a completion function 13085 * that will provide the needed clean up. If the iocb command is 13086 * not completed within timeout seconds, the function will either 13087 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13088 * completion function set in the cmd_cmpl field and then return 13089 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13090 * resources if this function returns IOCB_TIMEDOUT. 13091 * The function waits for the iocb completion using an 13092 * non-interruptible wait. 13093 * This function will sleep while waiting for iocb completion. 13094 * So, this function should not be called from any context which 13095 * does not allow sleeping. Due to the same reason, this function 13096 * cannot be called with interrupt disabled. 13097 * This function assumes that the iocb completions occur while 13098 * this function sleep. So, this function cannot be called from 13099 * the thread which process iocb completion for this ring. 13100 * This function clears the cmd_flag of the iocb object before 13101 * issuing the iocb and the iocb completion handler sets this 13102 * flag and wakes this thread when the iocb completes. 13103 * The contents of the response iocb will be copied to prspiocbq 13104 * by the completion handler when the command completes. 13105 * This function returns IOCB_SUCCESS when success. 13106 * This function is called with no lock held. 13107 **/ 13108 int 13109 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13110 uint32_t ring_number, 13111 struct lpfc_iocbq *piocb, 13112 struct lpfc_iocbq *prspiocbq, 13113 uint32_t timeout) 13114 { 13115 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13116 long timeleft, timeout_req = 0; 13117 int retval = IOCB_SUCCESS; 13118 uint32_t creg_val; 13119 struct lpfc_iocbq *iocb; 13120 int txq_cnt = 0; 13121 int txcmplq_cnt = 0; 13122 struct lpfc_sli_ring *pring; 13123 unsigned long iflags; 13124 bool iocb_completed = true; 13125 13126 if (phba->sli_rev >= LPFC_SLI_REV4) { 13127 lpfc_sli_prep_wqe(phba, piocb); 13128 13129 pring = lpfc_sli4_calc_ring(phba, piocb); 13130 } else 13131 pring = &phba->sli.sli3_ring[ring_number]; 13132 /* 13133 * If the caller has provided a response iocbq buffer, then rsp_iocb 13134 * is NULL or its an error. 13135 */ 13136 if (prspiocbq) { 13137 if (piocb->rsp_iocb) 13138 return IOCB_ERROR; 13139 piocb->rsp_iocb = prspiocbq; 13140 } 13141 13142 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13143 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13144 piocb->context_un.wait_queue = &done_q; 13145 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13146 13147 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13148 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13149 return IOCB_ERROR; 13150 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13151 writel(creg_val, phba->HCregaddr); 13152 readl(phba->HCregaddr); /* flush */ 13153 } 13154 13155 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13156 SLI_IOCB_RET_IOCB); 13157 if (retval == IOCB_SUCCESS) { 13158 timeout_req = secs_to_jiffies(timeout); 13159 timeleft = wait_event_timeout(done_q, 13160 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13161 timeout_req); 13162 spin_lock_irqsave(&phba->hbalock, iflags); 13163 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13164 13165 /* 13166 * IOCB timed out. Inform the wake iocb wait 13167 * completion function and set local status 13168 */ 13169 13170 iocb_completed = false; 13171 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13172 } 13173 spin_unlock_irqrestore(&phba->hbalock, iflags); 13174 if (iocb_completed) { 13175 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13176 "0331 IOCB wake signaled\n"); 13177 /* Note: we are not indicating if the IOCB has a success 13178 * status or not - that's for the caller to check. 13179 * IOCB_SUCCESS means just that the command was sent and 13180 * completed. Not that it completed successfully. 13181 * */ 13182 } else if (timeleft == 0) { 13183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13184 "0338 IOCB wait timeout error - no " 13185 "wake response Data x%x\n", timeout); 13186 retval = IOCB_TIMEDOUT; 13187 } else { 13188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13189 "0330 IOCB wake NOT set, " 13190 "Data x%x x%lx\n", 13191 timeout, (timeleft / jiffies)); 13192 retval = IOCB_TIMEDOUT; 13193 } 13194 } else if (retval == IOCB_BUSY) { 13195 if (phba->cfg_log_verbose & LOG_SLI) { 13196 list_for_each_entry(iocb, &pring->txq, list) { 13197 txq_cnt++; 13198 } 13199 list_for_each_entry(iocb, &pring->txcmplq, list) { 13200 txcmplq_cnt++; 13201 } 13202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13203 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13204 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13205 } 13206 return retval; 13207 } else { 13208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13209 "0332 IOCB wait issue failed, Data x%x\n", 13210 retval); 13211 retval = IOCB_ERROR; 13212 } 13213 13214 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13215 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13216 return IOCB_ERROR; 13217 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13218 writel(creg_val, phba->HCregaddr); 13219 readl(phba->HCregaddr); /* flush */ 13220 } 13221 13222 if (prspiocbq) 13223 piocb->rsp_iocb = NULL; 13224 13225 piocb->context_un.wait_queue = NULL; 13226 piocb->cmd_cmpl = NULL; 13227 return retval; 13228 } 13229 13230 /** 13231 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13232 * @phba: Pointer to HBA context object. 13233 * @pmboxq: Pointer to driver mailbox object. 13234 * @timeout: Timeout in number of seconds. 13235 * 13236 * This function issues the mailbox to firmware and waits for the 13237 * mailbox command to complete. If the mailbox command is not 13238 * completed within timeout seconds, it returns MBX_TIMEOUT. 13239 * The function waits for the mailbox completion using an 13240 * interruptible wait. If the thread is woken up due to a 13241 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13242 * should not free the mailbox resources, if this function returns 13243 * MBX_TIMEOUT. 13244 * This function will sleep while waiting for mailbox completion. 13245 * So, this function should not be called from any context which 13246 * does not allow sleeping. Due to the same reason, this function 13247 * cannot be called with interrupt disabled. 13248 * This function assumes that the mailbox completion occurs while 13249 * this function sleep. So, this function cannot be called from 13250 * the worker thread which processes mailbox completion. 13251 * This function is called in the context of HBA management 13252 * applications. 13253 * This function returns MBX_SUCCESS when successful. 13254 * This function is called with no lock held. 13255 **/ 13256 int 13257 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13258 uint32_t timeout) 13259 { 13260 struct completion mbox_done; 13261 int retval; 13262 unsigned long flag; 13263 13264 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13265 /* setup wake call as IOCB callback */ 13266 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13267 13268 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13269 init_completion(&mbox_done); 13270 pmboxq->ctx_u.mbox_wait = &mbox_done; 13271 /* now issue the command */ 13272 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13273 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13274 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout)); 13275 13276 spin_lock_irqsave(&phba->hbalock, flag); 13277 pmboxq->ctx_u.mbox_wait = NULL; 13278 /* 13279 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13280 * else do not free the resources. 13281 */ 13282 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13283 retval = MBX_SUCCESS; 13284 } else { 13285 retval = MBX_TIMEOUT; 13286 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13287 } 13288 spin_unlock_irqrestore(&phba->hbalock, flag); 13289 } 13290 return retval; 13291 } 13292 13293 /** 13294 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13295 * @phba: Pointer to HBA context. 13296 * @mbx_action: Mailbox shutdown options. 13297 * 13298 * This function is called to shutdown the driver's mailbox sub-system. 13299 * It first marks the mailbox sub-system is in a block state to prevent 13300 * the asynchronous mailbox command from issued off the pending mailbox 13301 * command queue. If the mailbox command sub-system shutdown is due to 13302 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13303 * the mailbox sub-system flush routine to forcefully bring down the 13304 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13305 * as with offline or HBA function reset), this routine will wait for the 13306 * outstanding mailbox command to complete before invoking the mailbox 13307 * sub-system flush routine to gracefully bring down mailbox sub-system. 13308 **/ 13309 void 13310 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13311 { 13312 struct lpfc_sli *psli = &phba->sli; 13313 unsigned long timeout; 13314 13315 if (mbx_action == LPFC_MBX_NO_WAIT) { 13316 /* delay 100ms for port state */ 13317 msleep(100); 13318 lpfc_sli_mbox_sys_flush(phba); 13319 return; 13320 } 13321 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 13322 13323 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13324 local_bh_disable(); 13325 13326 spin_lock_irq(&phba->hbalock); 13327 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13328 13329 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13330 /* Determine how long we might wait for the active mailbox 13331 * command to be gracefully completed by firmware. 13332 */ 13333 if (phba->sli.mbox_active) 13334 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 13335 phba->sli.mbox_active)) + jiffies; 13336 spin_unlock_irq(&phba->hbalock); 13337 13338 /* Enable softirqs again, done with phba->hbalock */ 13339 local_bh_enable(); 13340 13341 while (phba->sli.mbox_active) { 13342 /* Check active mailbox complete status every 2ms */ 13343 msleep(2); 13344 if (time_after(jiffies, timeout)) 13345 /* Timeout, let the mailbox flush routine to 13346 * forcefully release active mailbox command 13347 */ 13348 break; 13349 } 13350 } else { 13351 spin_unlock_irq(&phba->hbalock); 13352 13353 /* Enable softirqs again, done with phba->hbalock */ 13354 local_bh_enable(); 13355 } 13356 13357 lpfc_sli_mbox_sys_flush(phba); 13358 } 13359 13360 /** 13361 * lpfc_sli_eratt_read - read sli-3 error attention events 13362 * @phba: Pointer to HBA context. 13363 * 13364 * This function is called to read the SLI3 device error attention registers 13365 * for possible error attention events. The caller must hold the hostlock 13366 * with spin_lock_irq(). 13367 * 13368 * This function returns 1 when there is Error Attention in the Host Attention 13369 * Register and returns 0 otherwise. 13370 **/ 13371 static int 13372 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13373 { 13374 uint32_t ha_copy; 13375 13376 /* Read chip Host Attention (HA) register */ 13377 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13378 goto unplug_err; 13379 13380 if (ha_copy & HA_ERATT) { 13381 /* Read host status register to retrieve error event */ 13382 if (lpfc_sli_read_hs(phba)) 13383 goto unplug_err; 13384 13385 /* Check if there is a deferred error condition is active */ 13386 if ((HS_FFER1 & phba->work_hs) && 13387 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13388 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13389 set_bit(DEFER_ERATT, &phba->hba_flag); 13390 /* Clear all interrupt enable conditions */ 13391 writel(0, phba->HCregaddr); 13392 readl(phba->HCregaddr); 13393 } 13394 13395 /* Set the driver HA work bitmap */ 13396 phba->work_ha |= HA_ERATT; 13397 /* Indicate polling handles this ERATT */ 13398 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13399 return 1; 13400 } 13401 return 0; 13402 13403 unplug_err: 13404 /* Set the driver HS work bitmap */ 13405 phba->work_hs |= UNPLUG_ERR; 13406 /* Set the driver HA work bitmap */ 13407 phba->work_ha |= HA_ERATT; 13408 /* Indicate polling handles this ERATT */ 13409 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13410 return 1; 13411 } 13412 13413 /** 13414 * lpfc_sli4_eratt_read - read sli-4 error attention events 13415 * @phba: Pointer to HBA context. 13416 * 13417 * This function is called to read the SLI4 device error attention registers 13418 * for possible error attention events. The caller must hold the hostlock 13419 * with spin_lock_irq(). 13420 * 13421 * This function returns 1 when there is Error Attention in the Host Attention 13422 * Register and returns 0 otherwise. 13423 **/ 13424 static int 13425 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13426 { 13427 uint32_t uerr_sta_hi, uerr_sta_lo; 13428 uint32_t if_type, portsmphr; 13429 struct lpfc_register portstat_reg; 13430 u32 logmask; 13431 13432 /* 13433 * For now, use the SLI4 device internal unrecoverable error 13434 * registers for error attention. This can be changed later. 13435 */ 13436 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13437 switch (if_type) { 13438 case LPFC_SLI_INTF_IF_TYPE_0: 13439 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13440 &uerr_sta_lo) || 13441 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13442 &uerr_sta_hi)) { 13443 phba->work_hs |= UNPLUG_ERR; 13444 phba->work_ha |= HA_ERATT; 13445 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13446 return 1; 13447 } 13448 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13449 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13450 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13451 "1423 HBA Unrecoverable error: " 13452 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13453 "ue_mask_lo_reg=0x%x, " 13454 "ue_mask_hi_reg=0x%x\n", 13455 uerr_sta_lo, uerr_sta_hi, 13456 phba->sli4_hba.ue_mask_lo, 13457 phba->sli4_hba.ue_mask_hi); 13458 phba->work_status[0] = uerr_sta_lo; 13459 phba->work_status[1] = uerr_sta_hi; 13460 phba->work_ha |= HA_ERATT; 13461 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13462 return 1; 13463 } 13464 break; 13465 case LPFC_SLI_INTF_IF_TYPE_2: 13466 case LPFC_SLI_INTF_IF_TYPE_6: 13467 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13468 &portstat_reg.word0) || 13469 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13470 &portsmphr)){ 13471 phba->work_hs |= UNPLUG_ERR; 13472 phba->work_ha |= HA_ERATT; 13473 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13474 return 1; 13475 } 13476 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13477 phba->work_status[0] = 13478 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13479 phba->work_status[1] = 13480 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13481 logmask = LOG_TRACE_EVENT; 13482 if (phba->work_status[0] == 13483 SLIPORT_ERR1_REG_ERR_CODE_2 && 13484 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13485 logmask = LOG_SLI; 13486 lpfc_printf_log(phba, KERN_ERR, logmask, 13487 "2885 Port Status Event: " 13488 "port status reg 0x%x, " 13489 "port smphr reg 0x%x, " 13490 "error 1=0x%x, error 2=0x%x\n", 13491 portstat_reg.word0, 13492 portsmphr, 13493 phba->work_status[0], 13494 phba->work_status[1]); 13495 phba->work_ha |= HA_ERATT; 13496 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13497 return 1; 13498 } 13499 break; 13500 case LPFC_SLI_INTF_IF_TYPE_1: 13501 default: 13502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13503 "2886 HBA Error Attention on unsupported " 13504 "if type %d.", if_type); 13505 return 1; 13506 } 13507 13508 return 0; 13509 } 13510 13511 /** 13512 * lpfc_sli_check_eratt - check error attention events 13513 * @phba: Pointer to HBA context. 13514 * 13515 * This function is called from timer soft interrupt context to check HBA's 13516 * error attention register bit for error attention events. 13517 * 13518 * This function returns 1 when there is Error Attention in the Host Attention 13519 * Register and returns 0 otherwise. 13520 **/ 13521 int 13522 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13523 { 13524 uint32_t ha_copy; 13525 13526 /* If somebody is waiting to handle an eratt, don't process it 13527 * here. The brdkill function will do this. 13528 */ 13529 if (phba->link_flag & LS_IGNORE_ERATT) 13530 return 0; 13531 13532 /* Check if interrupt handler handles this ERATT */ 13533 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13534 /* Interrupt handler has handled ERATT */ 13535 return 0; 13536 13537 /* 13538 * If there is deferred error attention, do not check for error 13539 * attention 13540 */ 13541 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13542 return 0; 13543 13544 spin_lock_irq(&phba->hbalock); 13545 /* If PCI channel is offline, don't process it */ 13546 if (unlikely(pci_channel_offline(phba->pcidev))) { 13547 spin_unlock_irq(&phba->hbalock); 13548 return 0; 13549 } 13550 13551 switch (phba->sli_rev) { 13552 case LPFC_SLI_REV2: 13553 case LPFC_SLI_REV3: 13554 /* Read chip Host Attention (HA) register */ 13555 ha_copy = lpfc_sli_eratt_read(phba); 13556 break; 13557 case LPFC_SLI_REV4: 13558 /* Read device Uncoverable Error (UERR) registers */ 13559 ha_copy = lpfc_sli4_eratt_read(phba); 13560 break; 13561 default: 13562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13563 "0299 Invalid SLI revision (%d)\n", 13564 phba->sli_rev); 13565 ha_copy = 0; 13566 break; 13567 } 13568 spin_unlock_irq(&phba->hbalock); 13569 13570 return ha_copy; 13571 } 13572 13573 /** 13574 * lpfc_intr_state_check - Check device state for interrupt handling 13575 * @phba: Pointer to HBA context. 13576 * 13577 * This inline routine checks whether a device or its PCI slot is in a state 13578 * that the interrupt should be handled. 13579 * 13580 * This function returns 0 if the device or the PCI slot is in a state that 13581 * interrupt should be handled, otherwise -EIO. 13582 */ 13583 static inline int 13584 lpfc_intr_state_check(struct lpfc_hba *phba) 13585 { 13586 /* If the pci channel is offline, ignore all the interrupts */ 13587 if (unlikely(pci_channel_offline(phba->pcidev))) 13588 return -EIO; 13589 13590 /* Update device level interrupt statistics */ 13591 phba->sli.slistat.sli_intr++; 13592 13593 /* Ignore all interrupts during initialization. */ 13594 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13595 return -EIO; 13596 13597 return 0; 13598 } 13599 13600 /** 13601 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13602 * @irq: Interrupt number. 13603 * @dev_id: The device context pointer. 13604 * 13605 * This function is directly called from the PCI layer as an interrupt 13606 * service routine when device with SLI-3 interface spec is enabled with 13607 * MSI-X multi-message interrupt mode and there are slow-path events in 13608 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13609 * interrupt mode, this function is called as part of the device-level 13610 * interrupt handler. When the PCI slot is in error recovery or the HBA 13611 * is undergoing initialization, the interrupt handler will not process 13612 * the interrupt. The link attention and ELS ring attention events are 13613 * handled by the worker thread. The interrupt handler signals the worker 13614 * thread and returns for these events. This function is called without 13615 * any lock held. It gets the hbalock to access and update SLI data 13616 * structures. 13617 * 13618 * This function returns IRQ_HANDLED when interrupt is handled else it 13619 * returns IRQ_NONE. 13620 **/ 13621 irqreturn_t 13622 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13623 { 13624 struct lpfc_hba *phba; 13625 uint32_t ha_copy, hc_copy; 13626 uint32_t work_ha_copy; 13627 unsigned long status; 13628 unsigned long iflag; 13629 uint32_t control; 13630 13631 MAILBOX_t *mbox, *pmbox; 13632 struct lpfc_vport *vport; 13633 struct lpfc_nodelist *ndlp; 13634 struct lpfc_dmabuf *mp; 13635 LPFC_MBOXQ_t *pmb; 13636 int rc; 13637 13638 /* 13639 * Get the driver's phba structure from the dev_id and 13640 * assume the HBA is not interrupting. 13641 */ 13642 phba = (struct lpfc_hba *)dev_id; 13643 13644 if (unlikely(!phba)) 13645 return IRQ_NONE; 13646 13647 /* 13648 * Stuff needs to be attented to when this function is invoked as an 13649 * individual interrupt handler in MSI-X multi-message interrupt mode 13650 */ 13651 if (phba->intr_type == MSIX) { 13652 /* Check device state for handling interrupt */ 13653 if (lpfc_intr_state_check(phba)) 13654 return IRQ_NONE; 13655 /* Need to read HA REG for slow-path events */ 13656 spin_lock_irqsave(&phba->hbalock, iflag); 13657 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13658 goto unplug_error; 13659 /* If somebody is waiting to handle an eratt don't process it 13660 * here. The brdkill function will do this. 13661 */ 13662 if (phba->link_flag & LS_IGNORE_ERATT) 13663 ha_copy &= ~HA_ERATT; 13664 /* Check the need for handling ERATT in interrupt handler */ 13665 if (ha_copy & HA_ERATT) { 13666 if (test_and_set_bit(HBA_ERATT_HANDLED, 13667 &phba->hba_flag)) 13668 /* ERATT polling has handled ERATT */ 13669 ha_copy &= ~HA_ERATT; 13670 } 13671 13672 /* 13673 * If there is deferred error attention, do not check for any 13674 * interrupt. 13675 */ 13676 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13677 spin_unlock_irqrestore(&phba->hbalock, iflag); 13678 return IRQ_NONE; 13679 } 13680 13681 /* Clear up only attention source related to slow-path */ 13682 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13683 goto unplug_error; 13684 13685 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13686 HC_LAINT_ENA | HC_ERINT_ENA), 13687 phba->HCregaddr); 13688 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13689 phba->HAregaddr); 13690 writel(hc_copy, phba->HCregaddr); 13691 readl(phba->HAregaddr); /* flush */ 13692 spin_unlock_irqrestore(&phba->hbalock, iflag); 13693 } else 13694 ha_copy = phba->ha_copy; 13695 13696 work_ha_copy = ha_copy & phba->work_ha_mask; 13697 13698 if (work_ha_copy) { 13699 if (work_ha_copy & HA_LATT) { 13700 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13701 /* 13702 * Turn off Link Attention interrupts 13703 * until CLEAR_LA done 13704 */ 13705 spin_lock_irqsave(&phba->hbalock, iflag); 13706 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13707 if (lpfc_readl(phba->HCregaddr, &control)) 13708 goto unplug_error; 13709 control &= ~HC_LAINT_ENA; 13710 writel(control, phba->HCregaddr); 13711 readl(phba->HCregaddr); /* flush */ 13712 spin_unlock_irqrestore(&phba->hbalock, iflag); 13713 } 13714 else 13715 work_ha_copy &= ~HA_LATT; 13716 } 13717 13718 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13719 /* 13720 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13721 * the only slow ring. 13722 */ 13723 status = (work_ha_copy & 13724 (HA_RXMASK << (4*LPFC_ELS_RING))); 13725 status >>= (4*LPFC_ELS_RING); 13726 if (status & HA_RXMASK) { 13727 spin_lock_irqsave(&phba->hbalock, iflag); 13728 if (lpfc_readl(phba->HCregaddr, &control)) 13729 goto unplug_error; 13730 13731 lpfc_debugfs_slow_ring_trc(phba, 13732 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13733 control, status, 13734 (uint32_t)phba->sli.slistat.sli_intr); 13735 13736 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13737 lpfc_debugfs_slow_ring_trc(phba, 13738 "ISR Disable ring:" 13739 "pwork:x%x hawork:x%x wait:x%x", 13740 phba->work_ha, work_ha_copy, 13741 (uint32_t)((unsigned long) 13742 &phba->work_waitq)); 13743 13744 control &= 13745 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13746 writel(control, phba->HCregaddr); 13747 readl(phba->HCregaddr); /* flush */ 13748 } 13749 else { 13750 lpfc_debugfs_slow_ring_trc(phba, 13751 "ISR slow ring: pwork:" 13752 "x%x hawork:x%x wait:x%x", 13753 phba->work_ha, work_ha_copy, 13754 (uint32_t)((unsigned long) 13755 &phba->work_waitq)); 13756 } 13757 spin_unlock_irqrestore(&phba->hbalock, iflag); 13758 } 13759 } 13760 spin_lock_irqsave(&phba->hbalock, iflag); 13761 if (work_ha_copy & HA_ERATT) { 13762 if (lpfc_sli_read_hs(phba)) 13763 goto unplug_error; 13764 /* 13765 * Check if there is a deferred error condition 13766 * is active 13767 */ 13768 if ((HS_FFER1 & phba->work_hs) && 13769 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13770 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13771 phba->work_hs)) { 13772 set_bit(DEFER_ERATT, &phba->hba_flag); 13773 /* Clear all interrupt enable conditions */ 13774 writel(0, phba->HCregaddr); 13775 readl(phba->HCregaddr); 13776 } 13777 } 13778 13779 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13780 pmb = phba->sli.mbox_active; 13781 pmbox = &pmb->u.mb; 13782 mbox = phba->mbox; 13783 vport = pmb->vport; 13784 13785 /* First check out the status word */ 13786 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13787 if (pmbox->mbxOwner != OWN_HOST) { 13788 spin_unlock_irqrestore(&phba->hbalock, iflag); 13789 /* 13790 * Stray Mailbox Interrupt, mbxCommand <cmd> 13791 * mbxStatus <status> 13792 */ 13793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13794 "(%d):0304 Stray Mailbox " 13795 "Interrupt mbxCommand x%x " 13796 "mbxStatus x%x\n", 13797 (vport ? vport->vpi : 0), 13798 pmbox->mbxCommand, 13799 pmbox->mbxStatus); 13800 /* clear mailbox attention bit */ 13801 work_ha_copy &= ~HA_MBATT; 13802 } else { 13803 phba->sli.mbox_active = NULL; 13804 spin_unlock_irqrestore(&phba->hbalock, iflag); 13805 phba->last_completion_time = jiffies; 13806 timer_delete(&phba->sli.mbox_tmo); 13807 if (pmb->mbox_cmpl) { 13808 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13809 MAILBOX_CMD_SIZE); 13810 if (pmb->out_ext_byte_len && 13811 pmb->ext_buf) 13812 lpfc_sli_pcimem_bcopy( 13813 phba->mbox_ext, 13814 pmb->ext_buf, 13815 pmb->out_ext_byte_len); 13816 } 13817 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13818 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13819 13820 lpfc_debugfs_disc_trc(vport, 13821 LPFC_DISC_TRC_MBOX_VPORT, 13822 "MBOX dflt rpi: : " 13823 "status:x%x rpi:x%x", 13824 (uint32_t)pmbox->mbxStatus, 13825 pmbox->un.varWords[0], 0); 13826 13827 if (!pmbox->mbxStatus) { 13828 mp = pmb->ctx_buf; 13829 ndlp = pmb->ctx_ndlp; 13830 13831 /* Reg_LOGIN of dflt RPI was 13832 * successful. new lets get 13833 * rid of the RPI using the 13834 * same mbox buffer. 13835 */ 13836 lpfc_unreg_login(phba, 13837 vport->vpi, 13838 pmbox->un.varWords[0], 13839 pmb); 13840 pmb->mbox_cmpl = 13841 lpfc_mbx_cmpl_dflt_rpi; 13842 pmb->ctx_buf = mp; 13843 pmb->ctx_ndlp = ndlp; 13844 pmb->vport = vport; 13845 rc = lpfc_sli_issue_mbox(phba, 13846 pmb, 13847 MBX_NOWAIT); 13848 if (rc != MBX_BUSY) 13849 lpfc_printf_log(phba, 13850 KERN_ERR, 13851 LOG_TRACE_EVENT, 13852 "0350 rc should have" 13853 "been MBX_BUSY\n"); 13854 if (rc != MBX_NOT_FINISHED) 13855 goto send_current_mbox; 13856 } 13857 } 13858 spin_lock_irqsave( 13859 &phba->pport->work_port_lock, 13860 iflag); 13861 phba->pport->work_port_events &= 13862 ~WORKER_MBOX_TMO; 13863 spin_unlock_irqrestore( 13864 &phba->pport->work_port_lock, 13865 iflag); 13866 13867 /* Do NOT queue MBX_HEARTBEAT to the worker 13868 * thread for processing. 13869 */ 13870 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13871 /* Process mbox now */ 13872 phba->sli.mbox_active = NULL; 13873 phba->sli.sli_flag &= 13874 ~LPFC_SLI_MBOX_ACTIVE; 13875 if (pmb->mbox_cmpl) 13876 pmb->mbox_cmpl(phba, pmb); 13877 } else { 13878 /* Queue to worker thread to process */ 13879 lpfc_mbox_cmpl_put(phba, pmb); 13880 } 13881 } 13882 } else 13883 spin_unlock_irqrestore(&phba->hbalock, iflag); 13884 13885 if ((work_ha_copy & HA_MBATT) && 13886 (phba->sli.mbox_active == NULL)) { 13887 send_current_mbox: 13888 /* Process next mailbox command if there is one */ 13889 do { 13890 rc = lpfc_sli_issue_mbox(phba, NULL, 13891 MBX_NOWAIT); 13892 } while (rc == MBX_NOT_FINISHED); 13893 if (rc != MBX_SUCCESS) 13894 lpfc_printf_log(phba, KERN_ERR, 13895 LOG_TRACE_EVENT, 13896 "0349 rc should be " 13897 "MBX_SUCCESS\n"); 13898 } 13899 13900 spin_lock_irqsave(&phba->hbalock, iflag); 13901 phba->work_ha |= work_ha_copy; 13902 spin_unlock_irqrestore(&phba->hbalock, iflag); 13903 lpfc_worker_wake_up(phba); 13904 } 13905 return IRQ_HANDLED; 13906 unplug_error: 13907 spin_unlock_irqrestore(&phba->hbalock, iflag); 13908 return IRQ_HANDLED; 13909 13910 } /* lpfc_sli_sp_intr_handler */ 13911 13912 /** 13913 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13914 * @irq: Interrupt number. 13915 * @dev_id: The device context pointer. 13916 * 13917 * This function is directly called from the PCI layer as an interrupt 13918 * service routine when device with SLI-3 interface spec is enabled with 13919 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13920 * ring event in the HBA. However, when the device is enabled with either 13921 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13922 * device-level interrupt handler. When the PCI slot is in error recovery 13923 * or the HBA is undergoing initialization, the interrupt handler will not 13924 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13925 * the intrrupt context. This function is called without any lock held. 13926 * It gets the hbalock to access and update SLI data structures. 13927 * 13928 * This function returns IRQ_HANDLED when interrupt is handled else it 13929 * returns IRQ_NONE. 13930 **/ 13931 irqreturn_t 13932 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13933 { 13934 struct lpfc_hba *phba; 13935 uint32_t ha_copy; 13936 unsigned long status; 13937 unsigned long iflag; 13938 struct lpfc_sli_ring *pring; 13939 13940 /* Get the driver's phba structure from the dev_id and 13941 * assume the HBA is not interrupting. 13942 */ 13943 phba = (struct lpfc_hba *) dev_id; 13944 13945 if (unlikely(!phba)) 13946 return IRQ_NONE; 13947 13948 /* 13949 * Stuff needs to be attented to when this function is invoked as an 13950 * individual interrupt handler in MSI-X multi-message interrupt mode 13951 */ 13952 if (phba->intr_type == MSIX) { 13953 /* Check device state for handling interrupt */ 13954 if (lpfc_intr_state_check(phba)) 13955 return IRQ_NONE; 13956 /* Need to read HA REG for FCP ring and other ring events */ 13957 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13958 return IRQ_HANDLED; 13959 13960 /* 13961 * If there is deferred error attention, do not check for 13962 * any interrupt. 13963 */ 13964 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13965 return IRQ_NONE; 13966 13967 /* Clear up only attention source related to fast-path */ 13968 spin_lock_irqsave(&phba->hbalock, iflag); 13969 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13970 phba->HAregaddr); 13971 readl(phba->HAregaddr); /* flush */ 13972 spin_unlock_irqrestore(&phba->hbalock, iflag); 13973 } else 13974 ha_copy = phba->ha_copy; 13975 13976 /* 13977 * Process all events on FCP ring. Take the optimized path for FCP IO. 13978 */ 13979 ha_copy &= ~(phba->work_ha_mask); 13980 13981 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13982 status >>= (4*LPFC_FCP_RING); 13983 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13984 if (status & HA_RXMASK) 13985 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13986 13987 if (phba->cfg_multi_ring_support == 2) { 13988 /* 13989 * Process all events on extra ring. Take the optimized path 13990 * for extra ring IO. 13991 */ 13992 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13993 status >>= (4*LPFC_EXTRA_RING); 13994 if (status & HA_RXMASK) { 13995 lpfc_sli_handle_fast_ring_event(phba, 13996 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13997 status); 13998 } 13999 } 14000 return IRQ_HANDLED; 14001 } /* lpfc_sli_fp_intr_handler */ 14002 14003 /** 14004 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14005 * @irq: Interrupt number. 14006 * @dev_id: The device context pointer. 14007 * 14008 * This function is the HBA device-level interrupt handler to device with 14009 * SLI-3 interface spec, called from the PCI layer when either MSI or 14010 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14011 * requires driver attention. This function invokes the slow-path interrupt 14012 * attention handling function and fast-path interrupt attention handling 14013 * function in turn to process the relevant HBA attention events. This 14014 * function is called without any lock held. It gets the hbalock to access 14015 * and update SLI data structures. 14016 * 14017 * This function returns IRQ_HANDLED when interrupt is handled, else it 14018 * returns IRQ_NONE. 14019 **/ 14020 irqreturn_t 14021 lpfc_sli_intr_handler(int irq, void *dev_id) 14022 { 14023 struct lpfc_hba *phba; 14024 irqreturn_t sp_irq_rc, fp_irq_rc; 14025 unsigned long status1, status2; 14026 uint32_t hc_copy; 14027 14028 /* 14029 * Get the driver's phba structure from the dev_id and 14030 * assume the HBA is not interrupting. 14031 */ 14032 phba = (struct lpfc_hba *) dev_id; 14033 14034 if (unlikely(!phba)) 14035 return IRQ_NONE; 14036 14037 /* Check device state for handling interrupt */ 14038 if (lpfc_intr_state_check(phba)) 14039 return IRQ_NONE; 14040 14041 spin_lock(&phba->hbalock); 14042 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14043 spin_unlock(&phba->hbalock); 14044 return IRQ_HANDLED; 14045 } 14046 14047 if (unlikely(!phba->ha_copy)) { 14048 spin_unlock(&phba->hbalock); 14049 return IRQ_NONE; 14050 } else if (phba->ha_copy & HA_ERATT) { 14051 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14052 /* ERATT polling has handled ERATT */ 14053 phba->ha_copy &= ~HA_ERATT; 14054 } 14055 14056 /* 14057 * If there is deferred error attention, do not check for any interrupt. 14058 */ 14059 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14060 spin_unlock(&phba->hbalock); 14061 return IRQ_NONE; 14062 } 14063 14064 /* Clear attention sources except link and error attentions */ 14065 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14066 spin_unlock(&phba->hbalock); 14067 return IRQ_HANDLED; 14068 } 14069 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14070 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14071 phba->HCregaddr); 14072 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14073 writel(hc_copy, phba->HCregaddr); 14074 readl(phba->HAregaddr); /* flush */ 14075 spin_unlock(&phba->hbalock); 14076 14077 /* 14078 * Invokes slow-path host attention interrupt handling as appropriate. 14079 */ 14080 14081 /* status of events with mailbox and link attention */ 14082 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14083 14084 /* status of events with ELS ring */ 14085 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14086 status2 >>= (4*LPFC_ELS_RING); 14087 14088 if (status1 || (status2 & HA_RXMASK)) 14089 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14090 else 14091 sp_irq_rc = IRQ_NONE; 14092 14093 /* 14094 * Invoke fast-path host attention interrupt handling as appropriate. 14095 */ 14096 14097 /* status of events with FCP ring */ 14098 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14099 status1 >>= (4*LPFC_FCP_RING); 14100 14101 /* status of events with extra ring */ 14102 if (phba->cfg_multi_ring_support == 2) { 14103 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14104 status2 >>= (4*LPFC_EXTRA_RING); 14105 } else 14106 status2 = 0; 14107 14108 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14109 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14110 else 14111 fp_irq_rc = IRQ_NONE; 14112 14113 /* Return device-level interrupt handling status */ 14114 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14115 } /* lpfc_sli_intr_handler */ 14116 14117 /** 14118 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14119 * @phba: pointer to lpfc hba data structure. 14120 * 14121 * This routine is invoked by the worker thread to process all the pending 14122 * SLI4 els abort xri events. 14123 **/ 14124 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14125 { 14126 struct lpfc_cq_event *cq_event; 14127 unsigned long iflags; 14128 14129 /* First, declare the els xri abort event has been handled */ 14130 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14131 14132 /* Now, handle all the els xri abort events */ 14133 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14134 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14135 /* Get the first event from the head of the event queue */ 14136 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14137 cq_event, struct lpfc_cq_event, list); 14138 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14139 iflags); 14140 /* Notify aborted XRI for ELS work queue */ 14141 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14142 14143 /* Free the event processed back to the free pool */ 14144 lpfc_sli4_cq_event_release(phba, cq_event); 14145 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14146 iflags); 14147 } 14148 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14149 } 14150 14151 /** 14152 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14153 * @phba: Pointer to HBA context object. 14154 * @irspiocbq: Pointer to work-queue completion queue entry. 14155 * 14156 * This routine handles an ELS work-queue completion event and construct 14157 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14158 * discovery engine to handle. 14159 * 14160 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14161 **/ 14162 static struct lpfc_iocbq * 14163 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14164 struct lpfc_iocbq *irspiocbq) 14165 { 14166 struct lpfc_sli_ring *pring; 14167 struct lpfc_iocbq *cmdiocbq; 14168 struct lpfc_wcqe_complete *wcqe; 14169 unsigned long iflags; 14170 14171 pring = lpfc_phba_elsring(phba); 14172 if (unlikely(!pring)) 14173 return NULL; 14174 14175 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14176 spin_lock_irqsave(&pring->ring_lock, iflags); 14177 pring->stats.iocb_event++; 14178 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14179 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14180 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14181 if (unlikely(!cmdiocbq)) { 14182 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14183 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14184 "0386 ELS complete with no corresponding " 14185 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14186 wcqe->word0, wcqe->total_data_placed, 14187 wcqe->parameter, wcqe->word3); 14188 lpfc_sli_release_iocbq(phba, irspiocbq); 14189 return NULL; 14190 } 14191 14192 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14193 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14194 14195 /* Put the iocb back on the txcmplq */ 14196 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14197 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14198 14199 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14200 spin_lock_irqsave(&phba->hbalock, iflags); 14201 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14202 spin_unlock_irqrestore(&phba->hbalock, iflags); 14203 } 14204 14205 return irspiocbq; 14206 } 14207 14208 inline struct lpfc_cq_event * 14209 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14210 { 14211 struct lpfc_cq_event *cq_event; 14212 14213 /* Allocate a new internal CQ_EVENT entry */ 14214 cq_event = lpfc_sli4_cq_event_alloc(phba); 14215 if (!cq_event) { 14216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14217 "0602 Failed to alloc CQ_EVENT entry\n"); 14218 return NULL; 14219 } 14220 14221 /* Move the CQE into the event */ 14222 memcpy(&cq_event->cqe, entry, size); 14223 return cq_event; 14224 } 14225 14226 /** 14227 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14228 * @phba: Pointer to HBA context object. 14229 * @mcqe: Pointer to mailbox completion queue entry. 14230 * 14231 * This routine process a mailbox completion queue entry with asynchronous 14232 * event. 14233 * 14234 * Return: true if work posted to worker thread, otherwise false. 14235 **/ 14236 static bool 14237 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14238 { 14239 struct lpfc_cq_event *cq_event; 14240 unsigned long iflags; 14241 14242 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14243 "0392 Async Event: word0:x%x, word1:x%x, " 14244 "word2:x%x, word3:x%x\n", mcqe->word0, 14245 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14246 14247 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14248 if (!cq_event) 14249 return false; 14250 14251 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14252 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14253 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14254 14255 /* Set the async event flag */ 14256 set_bit(ASYNC_EVENT, &phba->hba_flag); 14257 14258 return true; 14259 } 14260 14261 /** 14262 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14263 * @phba: Pointer to HBA context object. 14264 * @mcqe: Pointer to mailbox completion queue entry. 14265 * 14266 * This routine process a mailbox completion queue entry with mailbox 14267 * completion event. 14268 * 14269 * Return: true if work posted to worker thread, otherwise false. 14270 **/ 14271 static bool 14272 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14273 { 14274 uint32_t mcqe_status; 14275 MAILBOX_t *mbox, *pmbox; 14276 struct lpfc_mqe *mqe; 14277 struct lpfc_vport *vport; 14278 struct lpfc_nodelist *ndlp; 14279 struct lpfc_dmabuf *mp; 14280 unsigned long iflags; 14281 LPFC_MBOXQ_t *pmb; 14282 bool workposted = false; 14283 int rc; 14284 14285 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14286 if (!bf_get(lpfc_trailer_completed, mcqe)) 14287 goto out_no_mqe_complete; 14288 14289 /* Get the reference to the active mbox command */ 14290 spin_lock_irqsave(&phba->hbalock, iflags); 14291 pmb = phba->sli.mbox_active; 14292 if (unlikely(!pmb)) { 14293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14294 "1832 No pending MBOX command to handle\n"); 14295 spin_unlock_irqrestore(&phba->hbalock, iflags); 14296 goto out_no_mqe_complete; 14297 } 14298 spin_unlock_irqrestore(&phba->hbalock, iflags); 14299 mqe = &pmb->u.mqe; 14300 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14301 mbox = phba->mbox; 14302 vport = pmb->vport; 14303 14304 /* Reset heartbeat timer */ 14305 phba->last_completion_time = jiffies; 14306 timer_delete(&phba->sli.mbox_tmo); 14307 14308 /* Move mbox data to caller's mailbox region, do endian swapping */ 14309 if (pmb->mbox_cmpl && mbox) 14310 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14311 14312 /* 14313 * For mcqe errors, conditionally move a modified error code to 14314 * the mbox so that the error will not be missed. 14315 */ 14316 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14317 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14318 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14319 bf_set(lpfc_mqe_status, mqe, 14320 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14321 } 14322 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14323 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14324 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14325 "MBOX dflt rpi: status:x%x rpi:x%x", 14326 mcqe_status, 14327 pmbox->un.varWords[0], 0); 14328 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14329 mp = pmb->ctx_buf; 14330 ndlp = pmb->ctx_ndlp; 14331 14332 /* Reg_LOGIN of dflt RPI was successful. Mark the 14333 * node as having an UNREG_LOGIN in progress to stop 14334 * an unsolicited PLOGI from the same NPortId from 14335 * starting another mailbox transaction. 14336 */ 14337 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 14338 lpfc_unreg_login(phba, vport->vpi, 14339 pmbox->un.varWords[0], pmb); 14340 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14341 pmb->ctx_buf = mp; 14342 14343 /* No reference taken here. This is a default 14344 * RPI reg/immediate unreg cycle. The reference was 14345 * taken in the reg rpi path and is released when 14346 * this mailbox completes. 14347 */ 14348 pmb->ctx_ndlp = ndlp; 14349 pmb->vport = vport; 14350 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14351 if (rc != MBX_BUSY) 14352 lpfc_printf_log(phba, KERN_ERR, 14353 LOG_TRACE_EVENT, 14354 "0385 rc should " 14355 "have been MBX_BUSY\n"); 14356 if (rc != MBX_NOT_FINISHED) 14357 goto send_current_mbox; 14358 } 14359 } 14360 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14361 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14362 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14363 14364 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14365 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14366 spin_lock_irqsave(&phba->hbalock, iflags); 14367 /* Release the mailbox command posting token */ 14368 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14369 phba->sli.mbox_active = NULL; 14370 if (bf_get(lpfc_trailer_consumed, mcqe)) 14371 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14372 spin_unlock_irqrestore(&phba->hbalock, iflags); 14373 14374 /* Post the next mbox command, if there is one */ 14375 lpfc_sli4_post_async_mbox(phba); 14376 14377 /* Process cmpl now */ 14378 if (pmb->mbox_cmpl) 14379 pmb->mbox_cmpl(phba, pmb); 14380 return false; 14381 } 14382 14383 /* There is mailbox completion work to queue to the worker thread */ 14384 spin_lock_irqsave(&phba->hbalock, iflags); 14385 __lpfc_mbox_cmpl_put(phba, pmb); 14386 phba->work_ha |= HA_MBATT; 14387 spin_unlock_irqrestore(&phba->hbalock, iflags); 14388 workposted = true; 14389 14390 send_current_mbox: 14391 spin_lock_irqsave(&phba->hbalock, iflags); 14392 /* Release the mailbox command posting token */ 14393 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14394 /* Setting active mailbox pointer need to be in sync to flag clear */ 14395 phba->sli.mbox_active = NULL; 14396 if (bf_get(lpfc_trailer_consumed, mcqe)) 14397 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14398 spin_unlock_irqrestore(&phba->hbalock, iflags); 14399 /* Wake up worker thread to post the next pending mailbox command */ 14400 lpfc_worker_wake_up(phba); 14401 return workposted; 14402 14403 out_no_mqe_complete: 14404 spin_lock_irqsave(&phba->hbalock, iflags); 14405 if (bf_get(lpfc_trailer_consumed, mcqe)) 14406 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14407 spin_unlock_irqrestore(&phba->hbalock, iflags); 14408 return false; 14409 } 14410 14411 /** 14412 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14413 * @phba: Pointer to HBA context object. 14414 * @cq: Pointer to associated CQ 14415 * @cqe: Pointer to mailbox completion queue entry. 14416 * 14417 * This routine process a mailbox completion queue entry, it invokes the 14418 * proper mailbox complete handling or asynchronous event handling routine 14419 * according to the MCQE's async bit. 14420 * 14421 * Return: true if work posted to worker thread, otherwise false. 14422 **/ 14423 static bool 14424 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14425 struct lpfc_cqe *cqe) 14426 { 14427 struct lpfc_mcqe mcqe; 14428 bool workposted; 14429 14430 cq->CQ_mbox++; 14431 14432 /* Copy the mailbox MCQE and convert endian order as needed */ 14433 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14434 14435 /* Invoke the proper event handling routine */ 14436 if (!bf_get(lpfc_trailer_async, &mcqe)) 14437 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14438 else 14439 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14440 return workposted; 14441 } 14442 14443 /** 14444 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14445 * @phba: Pointer to HBA context object. 14446 * @cq: Pointer to associated CQ 14447 * @wcqe: Pointer to work-queue completion queue entry. 14448 * 14449 * This routine handles an ELS work-queue completion event. 14450 * 14451 * Return: true if work posted to worker thread, otherwise false. 14452 **/ 14453 static bool 14454 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14455 struct lpfc_wcqe_complete *wcqe) 14456 { 14457 struct lpfc_iocbq *irspiocbq; 14458 unsigned long iflags; 14459 struct lpfc_sli_ring *pring = cq->pring; 14460 int txq_cnt = 0; 14461 int txcmplq_cnt = 0; 14462 14463 /* Check for response status */ 14464 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14465 /* Log the error status */ 14466 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14467 "0357 ELS CQE error: status=x%x: " 14468 "CQE: %08x %08x %08x %08x\n", 14469 bf_get(lpfc_wcqe_c_status, wcqe), 14470 wcqe->word0, wcqe->total_data_placed, 14471 wcqe->parameter, wcqe->word3); 14472 } 14473 14474 /* Get an irspiocbq for later ELS response processing use */ 14475 irspiocbq = lpfc_sli_get_iocbq(phba); 14476 if (!irspiocbq) { 14477 if (!list_empty(&pring->txq)) 14478 txq_cnt++; 14479 if (!list_empty(&pring->txcmplq)) 14480 txcmplq_cnt++; 14481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14482 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14483 "els_txcmplq_cnt=%d\n", 14484 txq_cnt, phba->iocb_cnt, 14485 txcmplq_cnt); 14486 return false; 14487 } 14488 14489 /* Save off the slow-path queue event for work thread to process */ 14490 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14491 spin_lock_irqsave(&phba->hbalock, iflags); 14492 list_add_tail(&irspiocbq->cq_event.list, 14493 &phba->sli4_hba.sp_queue_event); 14494 spin_unlock_irqrestore(&phba->hbalock, iflags); 14495 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14496 14497 return true; 14498 } 14499 14500 /** 14501 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14502 * @phba: Pointer to HBA context object. 14503 * @wcqe: Pointer to work-queue completion queue entry. 14504 * 14505 * This routine handles slow-path WQ entry consumed event by invoking the 14506 * proper WQ release routine to the slow-path WQ. 14507 **/ 14508 static void 14509 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14510 struct lpfc_wcqe_release *wcqe) 14511 { 14512 /* sanity check on queue memory */ 14513 if (unlikely(!phba->sli4_hba.els_wq)) 14514 return; 14515 /* Check for the slow-path ELS work queue */ 14516 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14517 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14518 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14519 else 14520 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14521 "2579 Slow-path wqe consume event carries " 14522 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14523 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14524 phba->sli4_hba.els_wq->queue_id); 14525 } 14526 14527 /** 14528 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14529 * @phba: Pointer to HBA context object. 14530 * @cq: Pointer to a WQ completion queue. 14531 * @wcqe: Pointer to work-queue completion queue entry. 14532 * 14533 * This routine handles an XRI abort event. 14534 * 14535 * Return: true if work posted to worker thread, otherwise false. 14536 **/ 14537 static bool 14538 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14539 struct lpfc_queue *cq, 14540 struct sli4_wcqe_xri_aborted *wcqe) 14541 { 14542 bool workposted = false; 14543 struct lpfc_cq_event *cq_event; 14544 unsigned long iflags; 14545 14546 switch (cq->subtype) { 14547 case LPFC_IO: 14548 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14549 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14550 /* Notify aborted XRI for NVME work queue */ 14551 if (phba->nvmet_support) 14552 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14553 } 14554 workposted = false; 14555 break; 14556 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14557 case LPFC_ELS: 14558 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14559 if (!cq_event) { 14560 workposted = false; 14561 break; 14562 } 14563 cq_event->hdwq = cq->hdwq; 14564 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14565 iflags); 14566 list_add_tail(&cq_event->list, 14567 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14568 /* Set the els xri abort event flag */ 14569 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14570 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14571 iflags); 14572 workposted = true; 14573 break; 14574 default: 14575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14576 "0603 Invalid CQ subtype %d: " 14577 "%08x %08x %08x %08x\n", 14578 cq->subtype, wcqe->word0, wcqe->parameter, 14579 wcqe->word2, wcqe->word3); 14580 workposted = false; 14581 break; 14582 } 14583 return workposted; 14584 } 14585 14586 #define FC_RCTL_MDS_DIAGS 0xF4 14587 14588 /** 14589 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14590 * @phba: Pointer to HBA context object. 14591 * @rcqe: Pointer to receive-queue completion queue entry. 14592 * 14593 * This routine process a receive-queue completion queue entry. 14594 * 14595 * Return: true if work posted to worker thread, otherwise false. 14596 **/ 14597 static bool 14598 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14599 { 14600 bool workposted = false; 14601 struct fc_frame_header *fc_hdr; 14602 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14603 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14604 struct lpfc_nvmet_tgtport *tgtp; 14605 struct hbq_dmabuf *dma_buf; 14606 uint32_t status, rq_id; 14607 unsigned long iflags; 14608 14609 /* sanity check on queue memory */ 14610 if (unlikely(!hrq) || unlikely(!drq)) 14611 return workposted; 14612 14613 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14614 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14615 else 14616 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14617 if (rq_id != hrq->queue_id) 14618 goto out; 14619 14620 status = bf_get(lpfc_rcqe_status, rcqe); 14621 switch (status) { 14622 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14624 "2537 Receive Frame Truncated!!\n"); 14625 fallthrough; 14626 case FC_STATUS_RQ_SUCCESS: 14627 spin_lock_irqsave(&phba->hbalock, iflags); 14628 lpfc_sli4_rq_release(hrq, drq); 14629 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14630 if (!dma_buf) { 14631 hrq->RQ_no_buf_found++; 14632 spin_unlock_irqrestore(&phba->hbalock, iflags); 14633 goto out; 14634 } 14635 hrq->RQ_rcv_buf++; 14636 hrq->RQ_buf_posted--; 14637 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14638 14639 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14640 14641 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14642 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14643 spin_unlock_irqrestore(&phba->hbalock, iflags); 14644 /* Handle MDS Loopback frames */ 14645 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14646 lpfc_sli4_handle_mds_loopback(phba->pport, 14647 dma_buf); 14648 else 14649 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14650 break; 14651 } 14652 14653 /* save off the frame for the work thread to process */ 14654 list_add_tail(&dma_buf->cq_event.list, 14655 &phba->sli4_hba.sp_queue_event); 14656 spin_unlock_irqrestore(&phba->hbalock, iflags); 14657 /* Frame received */ 14658 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14659 workposted = true; 14660 break; 14661 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14662 if (phba->nvmet_support) { 14663 tgtp = phba->targetport->private; 14664 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14665 "6402 RQE Error x%x, posted %d err_cnt " 14666 "%d: %x %x %x\n", 14667 status, hrq->RQ_buf_posted, 14668 hrq->RQ_no_posted_buf, 14669 atomic_read(&tgtp->rcv_fcp_cmd_in), 14670 atomic_read(&tgtp->rcv_fcp_cmd_out), 14671 atomic_read(&tgtp->xmt_fcp_release)); 14672 } 14673 fallthrough; 14674 14675 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14676 hrq->RQ_no_posted_buf++; 14677 /* Post more buffers if possible */ 14678 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14679 workposted = true; 14680 break; 14681 case FC_STATUS_RQ_DMA_FAILURE: 14682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14683 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14684 "x%08x\n", 14685 status, rcqe->word0, rcqe->word1, 14686 rcqe->word2, rcqe->word3); 14687 14688 /* If IV set, no further recovery */ 14689 if (bf_get(lpfc_rcqe_iv, rcqe)) 14690 break; 14691 14692 /* recycle consumed resource */ 14693 spin_lock_irqsave(&phba->hbalock, iflags); 14694 lpfc_sli4_rq_release(hrq, drq); 14695 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14696 if (!dma_buf) { 14697 hrq->RQ_no_buf_found++; 14698 spin_unlock_irqrestore(&phba->hbalock, iflags); 14699 break; 14700 } 14701 hrq->RQ_rcv_buf++; 14702 hrq->RQ_buf_posted--; 14703 spin_unlock_irqrestore(&phba->hbalock, iflags); 14704 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14705 break; 14706 default: 14707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14708 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14709 "x%08x x%08x x%08x\n", 14710 status, rcqe->word0, rcqe->word1, 14711 rcqe->word2, rcqe->word3); 14712 break; 14713 } 14714 out: 14715 return workposted; 14716 } 14717 14718 /** 14719 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14720 * @phba: Pointer to HBA context object. 14721 * @cq: Pointer to the completion queue. 14722 * @cqe: Pointer to a completion queue entry. 14723 * 14724 * This routine process a slow-path work-queue or receive queue completion queue 14725 * entry. 14726 * 14727 * Return: true if work posted to worker thread, otherwise false. 14728 **/ 14729 static bool 14730 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14731 struct lpfc_cqe *cqe) 14732 { 14733 struct lpfc_cqe cqevt; 14734 bool workposted = false; 14735 14736 /* Copy the work queue CQE and convert endian order if needed */ 14737 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14738 14739 /* Check and process for different type of WCQE and dispatch */ 14740 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14741 case CQE_CODE_COMPL_WQE: 14742 /* Process the WQ/RQ complete event */ 14743 phba->last_completion_time = jiffies; 14744 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14745 (struct lpfc_wcqe_complete *)&cqevt); 14746 break; 14747 case CQE_CODE_RELEASE_WQE: 14748 /* Process the WQ release event */ 14749 lpfc_sli4_sp_handle_rel_wcqe(phba, 14750 (struct lpfc_wcqe_release *)&cqevt); 14751 break; 14752 case CQE_CODE_XRI_ABORTED: 14753 /* Process the WQ XRI abort event */ 14754 phba->last_completion_time = jiffies; 14755 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14756 (struct sli4_wcqe_xri_aborted *)&cqevt); 14757 break; 14758 case CQE_CODE_RECEIVE: 14759 case CQE_CODE_RECEIVE_V1: 14760 /* Process the RQ event */ 14761 phba->last_completion_time = jiffies; 14762 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14763 (struct lpfc_rcqe *)&cqevt); 14764 break; 14765 default: 14766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14767 "0388 Not a valid WCQE code: x%x\n", 14768 bf_get(lpfc_cqe_code, &cqevt)); 14769 break; 14770 } 14771 return workposted; 14772 } 14773 14774 /** 14775 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14776 * @phba: Pointer to HBA context object. 14777 * @eqe: Pointer to fast-path event queue entry. 14778 * @speq: Pointer to slow-path event queue. 14779 * 14780 * This routine process a event queue entry from the slow-path event queue. 14781 * It will check the MajorCode and MinorCode to determine this is for a 14782 * completion event on a completion queue, if not, an error shall be logged 14783 * and just return. Otherwise, it will get to the corresponding completion 14784 * queue and process all the entries on that completion queue, rearm the 14785 * completion queue, and then return. 14786 * 14787 **/ 14788 static void 14789 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14790 struct lpfc_queue *speq) 14791 { 14792 struct lpfc_queue *cq = NULL, *childq; 14793 uint16_t cqid; 14794 int ret = 0; 14795 14796 /* Get the reference to the corresponding CQ */ 14797 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14798 14799 list_for_each_entry(childq, &speq->child_list, list) { 14800 if (childq->queue_id == cqid) { 14801 cq = childq; 14802 break; 14803 } 14804 } 14805 if (unlikely(!cq)) { 14806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14808 "0365 Slow-path CQ identifier " 14809 "(%d) does not exist\n", cqid); 14810 return; 14811 } 14812 14813 /* Save EQ associated with this CQ */ 14814 cq->assoc_qp = speq; 14815 14816 if (is_kdump_kernel()) 14817 ret = queue_work(phba->wq, &cq->spwork); 14818 else 14819 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14820 14821 if (!ret) 14822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14823 "0390 Cannot schedule queue work " 14824 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14825 cqid, cq->queue_id, raw_smp_processor_id()); 14826 } 14827 14828 /** 14829 * __lpfc_sli4_process_cq - Process elements of a CQ 14830 * @phba: Pointer to HBA context object. 14831 * @cq: Pointer to CQ to be processed 14832 * @handler: Routine to process each cqe 14833 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14834 * 14835 * This routine processes completion queue entries in a CQ. While a valid 14836 * queue element is found, the handler is called. During processing checks 14837 * are made for periodic doorbell writes to let the hardware know of 14838 * element consumption. 14839 * 14840 * If the max limit on cqes to process is hit, or there are no more valid 14841 * entries, the loop stops. If we processed a sufficient number of elements, 14842 * meaning there is sufficient load, rather than rearming and generating 14843 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14844 * indicates no rescheduling. 14845 * 14846 * Returns True if work scheduled, False otherwise. 14847 **/ 14848 static bool 14849 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14850 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14851 struct lpfc_cqe *), unsigned long *delay) 14852 { 14853 struct lpfc_cqe *cqe; 14854 bool workposted = false; 14855 int count = 0, consumed = 0; 14856 bool arm = true; 14857 14858 /* default - no reschedule */ 14859 *delay = 0; 14860 14861 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14862 goto rearm_and_exit; 14863 14864 /* Process all the entries to the CQ */ 14865 cq->q_flag = 0; 14866 cqe = lpfc_sli4_cq_get(cq); 14867 while (cqe) { 14868 workposted |= handler(phba, cq, cqe); 14869 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14870 14871 consumed++; 14872 if (!(++count % cq->max_proc_limit)) 14873 break; 14874 14875 if (!(count % cq->notify_interval)) { 14876 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14877 LPFC_QUEUE_NOARM); 14878 consumed = 0; 14879 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14880 } 14881 14882 if (count == LPFC_NVMET_CQ_NOTIFY) 14883 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14884 14885 cqe = lpfc_sli4_cq_get(cq); 14886 } 14887 if (count >= phba->cfg_cq_poll_threshold) { 14888 *delay = 1; 14889 arm = false; 14890 } 14891 14892 /* Track the max number of CQEs processed in 1 EQ */ 14893 if (count > cq->CQ_max_cqe) 14894 cq->CQ_max_cqe = count; 14895 14896 cq->assoc_qp->EQ_cqe_cnt += count; 14897 14898 /* Catch the no cq entry condition */ 14899 if (unlikely(count == 0)) 14900 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14901 "0369 No entry from completion queue " 14902 "qid=%d\n", cq->queue_id); 14903 14904 xchg(&cq->queue_claimed, 0); 14905 14906 rearm_and_exit: 14907 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14908 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14909 14910 return workposted; 14911 } 14912 14913 /** 14914 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14915 * @cq: pointer to CQ to process 14916 * 14917 * This routine calls the cq processing routine with a handler specific 14918 * to the type of queue bound to it. 14919 * 14920 * The CQ routine returns two values: the first is the calling status, 14921 * which indicates whether work was queued to the background discovery 14922 * thread. If true, the routine should wakeup the discovery thread; 14923 * the second is the delay parameter. If non-zero, rather than rearming 14924 * the CQ and yet another interrupt, the CQ handler should be queued so 14925 * that it is processed in a subsequent polling action. The value of 14926 * the delay indicates when to reschedule it. 14927 **/ 14928 static void 14929 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14930 { 14931 struct lpfc_hba *phba = cq->phba; 14932 unsigned long delay; 14933 bool workposted = false; 14934 int ret = 0; 14935 14936 /* Process and rearm the CQ */ 14937 switch (cq->type) { 14938 case LPFC_MCQ: 14939 workposted |= __lpfc_sli4_process_cq(phba, cq, 14940 lpfc_sli4_sp_handle_mcqe, 14941 &delay); 14942 break; 14943 case LPFC_WCQ: 14944 if (cq->subtype == LPFC_IO) 14945 workposted |= __lpfc_sli4_process_cq(phba, cq, 14946 lpfc_sli4_fp_handle_cqe, 14947 &delay); 14948 else 14949 workposted |= __lpfc_sli4_process_cq(phba, cq, 14950 lpfc_sli4_sp_handle_cqe, 14951 &delay); 14952 break; 14953 default: 14954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14955 "0370 Invalid completion queue type (%d)\n", 14956 cq->type); 14957 return; 14958 } 14959 14960 if (delay) { 14961 if (is_kdump_kernel()) 14962 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14963 delay); 14964 else 14965 ret = queue_delayed_work_on(cq->chann, phba->wq, 14966 &cq->sched_spwork, delay); 14967 if (!ret) 14968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14969 "0394 Cannot schedule queue work " 14970 "for cqid=%d on CPU %d\n", 14971 cq->queue_id, cq->chann); 14972 } 14973 14974 /* wake up worker thread if there are works to be done */ 14975 if (workposted) 14976 lpfc_worker_wake_up(phba); 14977 } 14978 14979 /** 14980 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14981 * interrupt 14982 * @work: pointer to work element 14983 * 14984 * translates from the work handler and calls the slow-path handler. 14985 **/ 14986 static void 14987 lpfc_sli4_sp_process_cq(struct work_struct *work) 14988 { 14989 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14990 14991 __lpfc_sli4_sp_process_cq(cq); 14992 } 14993 14994 /** 14995 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14996 * @work: pointer to work element 14997 * 14998 * translates from the work handler and calls the slow-path handler. 14999 **/ 15000 static void 15001 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15002 { 15003 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15004 struct lpfc_queue, sched_spwork); 15005 15006 __lpfc_sli4_sp_process_cq(cq); 15007 } 15008 15009 /** 15010 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15011 * @phba: Pointer to HBA context object. 15012 * @cq: Pointer to associated CQ 15013 * @wcqe: Pointer to work-queue completion queue entry. 15014 * 15015 * This routine process a fast-path work queue completion entry from fast-path 15016 * event queue for FCP command response completion. 15017 **/ 15018 static void 15019 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15020 struct lpfc_wcqe_complete *wcqe) 15021 { 15022 struct lpfc_sli_ring *pring = cq->pring; 15023 struct lpfc_iocbq *cmdiocbq; 15024 unsigned long iflags; 15025 15026 /* Check for response status */ 15027 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15028 /* If resource errors reported from HBA, reduce queue 15029 * depth of the SCSI device. 15030 */ 15031 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15032 IOSTAT_LOCAL_REJECT)) && 15033 ((wcqe->parameter & IOERR_PARAM_MASK) == 15034 IOERR_NO_RESOURCES)) 15035 phba->lpfc_rampdown_queue_depth(phba); 15036 15037 /* Log the cmpl status */ 15038 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15039 "0373 FCP CQE cmpl: status=x%x: " 15040 "CQE: %08x %08x %08x %08x\n", 15041 bf_get(lpfc_wcqe_c_status, wcqe), 15042 wcqe->word0, wcqe->total_data_placed, 15043 wcqe->parameter, wcqe->word3); 15044 } 15045 15046 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15047 spin_lock_irqsave(&pring->ring_lock, iflags); 15048 pring->stats.iocb_event++; 15049 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15050 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15051 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15052 if (unlikely(!cmdiocbq)) { 15053 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15054 "0374 FCP complete with no corresponding " 15055 "cmdiocb: iotag (%d)\n", 15056 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15057 return; 15058 } 15059 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15060 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15061 #endif 15062 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15063 spin_lock_irqsave(&phba->hbalock, iflags); 15064 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15065 spin_unlock_irqrestore(&phba->hbalock, iflags); 15066 } 15067 15068 if (cmdiocbq->cmd_cmpl) { 15069 /* For FCP the flag is cleared in cmd_cmpl */ 15070 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15071 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15072 spin_lock_irqsave(&phba->hbalock, iflags); 15073 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15074 spin_unlock_irqrestore(&phba->hbalock, iflags); 15075 } 15076 15077 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15078 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15079 sizeof(struct lpfc_wcqe_complete)); 15080 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15081 } else { 15082 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15083 "0375 FCP cmdiocb not callback function " 15084 "iotag: (%d)\n", 15085 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15086 } 15087 } 15088 15089 /** 15090 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15091 * @phba: Pointer to HBA context object. 15092 * @cq: Pointer to completion queue. 15093 * @wcqe: Pointer to work-queue completion queue entry. 15094 * 15095 * This routine handles an fast-path WQ entry consumed event by invoking the 15096 * proper WQ release routine to the slow-path WQ. 15097 **/ 15098 static void 15099 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15100 struct lpfc_wcqe_release *wcqe) 15101 { 15102 struct lpfc_queue *childwq; 15103 bool wqid_matched = false; 15104 uint16_t hba_wqid; 15105 15106 /* Check for fast-path FCP work queue release */ 15107 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15108 list_for_each_entry(childwq, &cq->child_list, list) { 15109 if (childwq->queue_id == hba_wqid) { 15110 lpfc_sli4_wq_release(childwq, 15111 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15112 if (childwq->q_flag & HBA_NVMET_WQFULL) 15113 lpfc_nvmet_wqfull_process(phba, childwq); 15114 wqid_matched = true; 15115 break; 15116 } 15117 } 15118 /* Report warning log message if no match found */ 15119 if (wqid_matched != true) 15120 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15121 "2580 Fast-path wqe consume event carries " 15122 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15123 } 15124 15125 /** 15126 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15127 * @phba: Pointer to HBA context object. 15128 * @cq: Pointer to completion queue. 15129 * @rcqe: Pointer to receive-queue completion queue entry. 15130 * 15131 * This routine process a receive-queue completion queue entry. 15132 * 15133 * Return: true if work posted to worker thread, otherwise false. 15134 **/ 15135 static bool 15136 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15137 struct lpfc_rcqe *rcqe) 15138 { 15139 bool workposted = false; 15140 struct lpfc_queue *hrq; 15141 struct lpfc_queue *drq; 15142 struct rqb_dmabuf *dma_buf; 15143 struct fc_frame_header *fc_hdr; 15144 struct lpfc_nvmet_tgtport *tgtp; 15145 uint32_t status, rq_id; 15146 unsigned long iflags; 15147 uint32_t fctl, idx; 15148 15149 if ((phba->nvmet_support == 0) || 15150 (phba->sli4_hba.nvmet_cqset == NULL)) 15151 return workposted; 15152 15153 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15154 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15155 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15156 15157 /* sanity check on queue memory */ 15158 if (unlikely(!hrq) || unlikely(!drq)) 15159 return workposted; 15160 15161 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15162 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15163 else 15164 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15165 15166 if ((phba->nvmet_support == 0) || 15167 (rq_id != hrq->queue_id)) 15168 return workposted; 15169 15170 status = bf_get(lpfc_rcqe_status, rcqe); 15171 switch (status) { 15172 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15174 "6126 Receive Frame Truncated!!\n"); 15175 fallthrough; 15176 case FC_STATUS_RQ_SUCCESS: 15177 spin_lock_irqsave(&phba->hbalock, iflags); 15178 lpfc_sli4_rq_release(hrq, drq); 15179 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15180 if (!dma_buf) { 15181 hrq->RQ_no_buf_found++; 15182 spin_unlock_irqrestore(&phba->hbalock, iflags); 15183 goto out; 15184 } 15185 spin_unlock_irqrestore(&phba->hbalock, iflags); 15186 hrq->RQ_rcv_buf++; 15187 hrq->RQ_buf_posted--; 15188 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15189 15190 /* Just some basic sanity checks on FCP Command frame */ 15191 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15192 fc_hdr->fh_f_ctl[1] << 8 | 15193 fc_hdr->fh_f_ctl[2]); 15194 if (((fctl & 15195 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15196 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15197 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15198 goto drop; 15199 15200 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15201 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15202 lpfc_nvmet_unsol_fcp_event( 15203 phba, idx, dma_buf, cq->isr_timestamp, 15204 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15205 return false; 15206 } 15207 drop: 15208 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15209 break; 15210 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15211 if (phba->nvmet_support) { 15212 tgtp = phba->targetport->private; 15213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15214 "6401 RQE Error x%x, posted %d err_cnt " 15215 "%d: %x %x %x\n", 15216 status, hrq->RQ_buf_posted, 15217 hrq->RQ_no_posted_buf, 15218 atomic_read(&tgtp->rcv_fcp_cmd_in), 15219 atomic_read(&tgtp->rcv_fcp_cmd_out), 15220 atomic_read(&tgtp->xmt_fcp_release)); 15221 } 15222 fallthrough; 15223 15224 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15225 hrq->RQ_no_posted_buf++; 15226 /* Post more buffers if possible */ 15227 break; 15228 case FC_STATUS_RQ_DMA_FAILURE: 15229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15230 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15231 "x%08x\n", 15232 status, rcqe->word0, rcqe->word1, 15233 rcqe->word2, rcqe->word3); 15234 15235 /* If IV set, no further recovery */ 15236 if (bf_get(lpfc_rcqe_iv, rcqe)) 15237 break; 15238 15239 /* recycle consumed resource */ 15240 spin_lock_irqsave(&phba->hbalock, iflags); 15241 lpfc_sli4_rq_release(hrq, drq); 15242 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15243 if (!dma_buf) { 15244 hrq->RQ_no_buf_found++; 15245 spin_unlock_irqrestore(&phba->hbalock, iflags); 15246 break; 15247 } 15248 hrq->RQ_rcv_buf++; 15249 hrq->RQ_buf_posted--; 15250 spin_unlock_irqrestore(&phba->hbalock, iflags); 15251 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15252 break; 15253 default: 15254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15255 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15256 "x%08x x%08x x%08x\n", 15257 status, rcqe->word0, rcqe->word1, 15258 rcqe->word2, rcqe->word3); 15259 break; 15260 } 15261 out: 15262 return workposted; 15263 } 15264 15265 /** 15266 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15267 * @phba: adapter with cq 15268 * @cq: Pointer to the completion queue. 15269 * @cqe: Pointer to fast-path completion queue entry. 15270 * 15271 * This routine process a fast-path work queue completion entry from fast-path 15272 * event queue for FCP command response completion. 15273 * 15274 * Return: true if work posted to worker thread, otherwise false. 15275 **/ 15276 static bool 15277 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15278 struct lpfc_cqe *cqe) 15279 { 15280 struct lpfc_wcqe_release wcqe; 15281 bool workposted = false; 15282 15283 /* Copy the work queue CQE and convert endian order if needed */ 15284 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15285 15286 /* Check and process for different type of WCQE and dispatch */ 15287 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15288 case CQE_CODE_COMPL_WQE: 15289 case CQE_CODE_NVME_ERSP: 15290 cq->CQ_wq++; 15291 /* Process the WQ complete event */ 15292 phba->last_completion_time = jiffies; 15293 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15294 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15295 (struct lpfc_wcqe_complete *)&wcqe); 15296 break; 15297 case CQE_CODE_RELEASE_WQE: 15298 cq->CQ_release_wqe++; 15299 /* Process the WQ release event */ 15300 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15301 (struct lpfc_wcqe_release *)&wcqe); 15302 break; 15303 case CQE_CODE_XRI_ABORTED: 15304 cq->CQ_xri_aborted++; 15305 /* Process the WQ XRI abort event */ 15306 phba->last_completion_time = jiffies; 15307 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15308 (struct sli4_wcqe_xri_aborted *)&wcqe); 15309 break; 15310 case CQE_CODE_RECEIVE_V1: 15311 case CQE_CODE_RECEIVE: 15312 phba->last_completion_time = jiffies; 15313 if (cq->subtype == LPFC_NVMET) { 15314 workposted = lpfc_sli4_nvmet_handle_rcqe( 15315 phba, cq, (struct lpfc_rcqe *)&wcqe); 15316 } 15317 break; 15318 default: 15319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15320 "0144 Not a valid CQE code: x%x\n", 15321 bf_get(lpfc_wcqe_c_code, &wcqe)); 15322 break; 15323 } 15324 return workposted; 15325 } 15326 15327 /** 15328 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15329 * @cq: Pointer to CQ to be processed 15330 * 15331 * This routine calls the cq processing routine with the handler for 15332 * fast path CQEs. 15333 * 15334 * The CQ routine returns two values: the first is the calling status, 15335 * which indicates whether work was queued to the background discovery 15336 * thread. If true, the routine should wakeup the discovery thread; 15337 * the second is the delay parameter. If non-zero, rather than rearming 15338 * the CQ and yet another interrupt, the CQ handler should be queued so 15339 * that it is processed in a subsequent polling action. The value of 15340 * the delay indicates when to reschedule it. 15341 **/ 15342 static void 15343 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15344 { 15345 struct lpfc_hba *phba = cq->phba; 15346 unsigned long delay; 15347 bool workposted = false; 15348 int ret; 15349 15350 /* process and rearm the CQ */ 15351 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15352 &delay); 15353 15354 if (delay) { 15355 if (is_kdump_kernel()) 15356 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15357 delay); 15358 else 15359 ret = queue_delayed_work_on(cq->chann, phba->wq, 15360 &cq->sched_irqwork, delay); 15361 if (!ret) 15362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15363 "0367 Cannot schedule queue work " 15364 "for cqid=%d on CPU %d\n", 15365 cq->queue_id, cq->chann); 15366 } 15367 15368 /* wake up worker thread if there are works to be done */ 15369 if (workposted) 15370 lpfc_worker_wake_up(phba); 15371 } 15372 15373 /** 15374 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15375 * interrupt 15376 * @work: pointer to work element 15377 * 15378 * translates from the work handler and calls the fast-path handler. 15379 **/ 15380 static void 15381 lpfc_sli4_hba_process_cq(struct work_struct *work) 15382 { 15383 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15384 15385 __lpfc_sli4_hba_process_cq(cq); 15386 } 15387 15388 /** 15389 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15390 * @phba: Pointer to HBA context object. 15391 * @eq: Pointer to the queue structure. 15392 * @eqe: Pointer to fast-path event queue entry. 15393 * @poll_mode: poll_mode to execute processing the cq. 15394 * 15395 * This routine process a event queue entry from the fast-path event queue. 15396 * It will check the MajorCode and MinorCode to determine this is for a 15397 * completion event on a completion queue, if not, an error shall be logged 15398 * and just return. Otherwise, it will get to the corresponding completion 15399 * queue and process all the entries on the completion queue, rearm the 15400 * completion queue, and then return. 15401 **/ 15402 static void 15403 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15404 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15405 { 15406 struct lpfc_queue *cq = NULL; 15407 uint32_t qidx = eq->hdwq; 15408 uint16_t cqid, id; 15409 int ret; 15410 15411 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15413 "0366 Not a valid completion " 15414 "event: majorcode=x%x, minorcode=x%x\n", 15415 bf_get_le32(lpfc_eqe_major_code, eqe), 15416 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15417 return; 15418 } 15419 15420 /* Get the reference to the corresponding CQ */ 15421 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15422 15423 /* Use the fast lookup method first */ 15424 if (cqid <= phba->sli4_hba.cq_max) { 15425 cq = phba->sli4_hba.cq_lookup[cqid]; 15426 if (cq) 15427 goto work_cq; 15428 } 15429 15430 /* Next check for NVMET completion */ 15431 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15432 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15433 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15434 /* Process NVMET unsol rcv */ 15435 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15436 goto process_cq; 15437 } 15438 } 15439 15440 if (phba->sli4_hba.nvmels_cq && 15441 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15442 /* Process NVME unsol rcv */ 15443 cq = phba->sli4_hba.nvmels_cq; 15444 } 15445 15446 /* Otherwise this is a Slow path event */ 15447 if (cq == NULL) { 15448 lpfc_sli4_sp_handle_eqe(phba, eqe, 15449 phba->sli4_hba.hdwq[qidx].hba_eq); 15450 return; 15451 } 15452 15453 process_cq: 15454 if (unlikely(cqid != cq->queue_id)) { 15455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15456 "0368 Miss-matched fast-path completion " 15457 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15458 cqid, cq->queue_id); 15459 return; 15460 } 15461 15462 work_cq: 15463 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15464 if (phba->ktime_on) 15465 cq->isr_timestamp = ktime_get_ns(); 15466 else 15467 cq->isr_timestamp = 0; 15468 #endif 15469 15470 switch (poll_mode) { 15471 case LPFC_THREADED_IRQ: 15472 __lpfc_sli4_hba_process_cq(cq); 15473 break; 15474 case LPFC_QUEUE_WORK: 15475 default: 15476 if (is_kdump_kernel()) 15477 ret = queue_work(phba->wq, &cq->irqwork); 15478 else 15479 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15480 if (!ret) 15481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15482 "0383 Cannot schedule queue work " 15483 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15484 cqid, cq->queue_id, 15485 raw_smp_processor_id()); 15486 break; 15487 } 15488 } 15489 15490 /** 15491 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15492 * @work: pointer to work element 15493 * 15494 * translates from the work handler and calls the fast-path handler. 15495 **/ 15496 static void 15497 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15498 { 15499 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15500 struct lpfc_queue, sched_irqwork); 15501 15502 __lpfc_sli4_hba_process_cq(cq); 15503 } 15504 15505 /** 15506 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15507 * @irq: Interrupt number. 15508 * @dev_id: The device context pointer. 15509 * 15510 * This function is directly called from the PCI layer as an interrupt 15511 * service routine when device with SLI-4 interface spec is enabled with 15512 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15513 * ring event in the HBA. However, when the device is enabled with either 15514 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15515 * device-level interrupt handler. When the PCI slot is in error recovery 15516 * or the HBA is undergoing initialization, the interrupt handler will not 15517 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15518 * the intrrupt context. This function is called without any lock held. 15519 * It gets the hbalock to access and update SLI data structures. Note that, 15520 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15521 * equal to that of FCP CQ index. 15522 * 15523 * The link attention and ELS ring attention events are handled 15524 * by the worker thread. The interrupt handler signals the worker thread 15525 * and returns for these events. This function is called without any lock 15526 * held. It gets the hbalock to access and update SLI data structures. 15527 * 15528 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15529 * when interrupt is scheduled to be handled from a threaded irq context, or 15530 * else returns IRQ_NONE. 15531 **/ 15532 irqreturn_t 15533 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15534 { 15535 struct lpfc_hba *phba; 15536 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15537 struct lpfc_queue *fpeq; 15538 unsigned long iflag; 15539 int hba_eqidx; 15540 int ecount = 0; 15541 struct lpfc_eq_intr_info *eqi; 15542 15543 /* Get the driver's phba structure from the dev_id */ 15544 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15545 phba = hba_eq_hdl->phba; 15546 hba_eqidx = hba_eq_hdl->idx; 15547 15548 if (unlikely(!phba)) 15549 return IRQ_NONE; 15550 if (unlikely(!phba->sli4_hba.hdwq)) 15551 return IRQ_NONE; 15552 15553 /* Get to the EQ struct associated with this vector */ 15554 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15555 if (unlikely(!fpeq)) 15556 return IRQ_NONE; 15557 15558 /* Check device state for handling interrupt */ 15559 if (unlikely(lpfc_intr_state_check(phba))) { 15560 /* Check again for link_state with lock held */ 15561 spin_lock_irqsave(&phba->hbalock, iflag); 15562 if (phba->link_state < LPFC_LINK_DOWN) 15563 /* Flush, clear interrupt, and rearm the EQ */ 15564 lpfc_sli4_eqcq_flush(phba, fpeq); 15565 spin_unlock_irqrestore(&phba->hbalock, iflag); 15566 return IRQ_NONE; 15567 } 15568 15569 switch (fpeq->poll_mode) { 15570 case LPFC_THREADED_IRQ: 15571 /* CGN mgmt is mutually exclusive from irq processing */ 15572 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15573 return IRQ_WAKE_THREAD; 15574 fallthrough; 15575 case LPFC_QUEUE_WORK: 15576 default: 15577 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15578 eqi->icnt++; 15579 15580 fpeq->last_cpu = raw_smp_processor_id(); 15581 15582 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15583 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15584 phba->cfg_auto_imax && 15585 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15586 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15587 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15588 LPFC_MAX_AUTO_EQ_DELAY); 15589 15590 /* process and rearm the EQ */ 15591 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15592 LPFC_QUEUE_WORK); 15593 15594 if (unlikely(ecount == 0)) { 15595 fpeq->EQ_no_entry++; 15596 if (phba->intr_type == MSIX) 15597 /* MSI-X treated interrupt served as no EQ share INT */ 15598 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15599 "0358 MSI-X interrupt with no EQE\n"); 15600 else 15601 /* Non MSI-X treated on interrupt as EQ share INT */ 15602 return IRQ_NONE; 15603 } 15604 } 15605 15606 return IRQ_HANDLED; 15607 } /* lpfc_sli4_hba_intr_handler */ 15608 15609 /** 15610 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15611 * @irq: Interrupt number. 15612 * @dev_id: The device context pointer. 15613 * 15614 * This function is the device-level interrupt handler to device with SLI-4 15615 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15616 * interrupt mode is enabled and there is an event in the HBA which requires 15617 * driver attention. This function invokes the slow-path interrupt attention 15618 * handling function and fast-path interrupt attention handling function in 15619 * turn to process the relevant HBA attention events. This function is called 15620 * without any lock held. It gets the hbalock to access and update SLI data 15621 * structures. 15622 * 15623 * This function returns IRQ_HANDLED when interrupt is handled, else it 15624 * returns IRQ_NONE. 15625 **/ 15626 irqreturn_t 15627 lpfc_sli4_intr_handler(int irq, void *dev_id) 15628 { 15629 struct lpfc_hba *phba; 15630 irqreturn_t hba_irq_rc; 15631 bool hba_handled = false; 15632 int qidx; 15633 15634 /* Get the driver's phba structure from the dev_id */ 15635 phba = (struct lpfc_hba *)dev_id; 15636 15637 if (unlikely(!phba)) 15638 return IRQ_NONE; 15639 15640 /* 15641 * Invoke fast-path host attention interrupt handling as appropriate. 15642 */ 15643 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15644 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15645 &phba->sli4_hba.hba_eq_hdl[qidx]); 15646 if (hba_irq_rc == IRQ_HANDLED) 15647 hba_handled |= true; 15648 } 15649 15650 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15651 } /* lpfc_sli4_intr_handler */ 15652 15653 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15654 { 15655 struct lpfc_hba *phba = timer_container_of(phba, t, cpuhp_poll_timer); 15656 struct lpfc_queue *eq; 15657 15658 rcu_read_lock(); 15659 15660 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15661 lpfc_sli4_poll_eq(eq); 15662 if (!list_empty(&phba->poll_list)) 15663 mod_timer(&phba->cpuhp_poll_timer, 15664 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15665 15666 rcu_read_unlock(); 15667 } 15668 15669 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15670 { 15671 struct lpfc_hba *phba = eq->phba; 15672 15673 /* kickstart slowpath processing if needed */ 15674 if (list_empty(&phba->poll_list)) 15675 mod_timer(&phba->cpuhp_poll_timer, 15676 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15677 15678 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15679 synchronize_rcu(); 15680 } 15681 15682 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15683 { 15684 struct lpfc_hba *phba = eq->phba; 15685 15686 /* Disable slowpath processing for this eq. Kick start the eq 15687 * by RE-ARMING the eq's ASAP 15688 */ 15689 list_del_rcu(&eq->_poll_list); 15690 synchronize_rcu(); 15691 15692 if (list_empty(&phba->poll_list)) 15693 timer_delete_sync(&phba->cpuhp_poll_timer); 15694 } 15695 15696 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15697 { 15698 struct lpfc_queue *eq, *next; 15699 15700 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15701 list_del(&eq->_poll_list); 15702 15703 INIT_LIST_HEAD(&phba->poll_list); 15704 synchronize_rcu(); 15705 } 15706 15707 static inline void 15708 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15709 { 15710 if (mode == eq->mode) 15711 return; 15712 /* 15713 * currently this function is only called during a hotplug 15714 * event and the cpu on which this function is executing 15715 * is going offline. By now the hotplug has instructed 15716 * the scheduler to remove this cpu from cpu active mask. 15717 * So we don't need to work about being put aside by the 15718 * scheduler for a high priority process. Yes, the inte- 15719 * rrupts could come but they are known to retire ASAP. 15720 */ 15721 15722 /* Disable polling in the fastpath */ 15723 WRITE_ONCE(eq->mode, mode); 15724 /* flush out the store buffer */ 15725 smp_wmb(); 15726 15727 /* 15728 * Add this eq to the polling list and start polling. For 15729 * a grace period both interrupt handler and poller will 15730 * try to process the eq _but_ that's fine. We have a 15731 * synchronization mechanism in place (queue_claimed) to 15732 * deal with it. This is just a draining phase for int- 15733 * errupt handler (not eq's) as we have guranteed through 15734 * barrier that all the CPUs have seen the new CQ_POLLED 15735 * state. which will effectively disable the REARMING of 15736 * the EQ. The whole idea is eq's die off eventually as 15737 * we are not rearming EQ's anymore. 15738 */ 15739 mode ? lpfc_sli4_add_to_poll_list(eq) : 15740 lpfc_sli4_remove_from_poll_list(eq); 15741 } 15742 15743 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15744 { 15745 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15746 } 15747 15748 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15749 { 15750 struct lpfc_hba *phba = eq->phba; 15751 15752 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15753 15754 /* Kick start for the pending io's in h/w. 15755 * Once we switch back to interrupt processing on a eq 15756 * the io path completion will only arm eq's when it 15757 * receives a completion. But since eq's are in disa- 15758 * rmed state it doesn't receive a completion. This 15759 * creates a deadlock scenaro. 15760 */ 15761 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15762 } 15763 15764 /** 15765 * lpfc_sli4_queue_free - free a queue structure and associated memory 15766 * @queue: The queue structure to free. 15767 * 15768 * This function frees a queue structure and the DMAable memory used for 15769 * the host resident queue. This function must be called after destroying the 15770 * queue on the HBA. 15771 **/ 15772 void 15773 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15774 { 15775 struct lpfc_dmabuf *dmabuf; 15776 15777 if (!queue) 15778 return; 15779 15780 if (!list_empty(&queue->wq_list)) 15781 list_del(&queue->wq_list); 15782 15783 while (!list_empty(&queue->page_list)) { 15784 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15785 list); 15786 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15787 dmabuf->virt, dmabuf->phys); 15788 kfree(dmabuf); 15789 } 15790 if (queue->rqbp) { 15791 lpfc_free_rq_buffer(queue->phba, queue); 15792 kfree(queue->rqbp); 15793 } 15794 15795 if (!list_empty(&queue->cpu_list)) 15796 list_del(&queue->cpu_list); 15797 15798 kfree(queue); 15799 return; 15800 } 15801 15802 /** 15803 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15804 * @phba: The HBA that this queue is being created on. 15805 * @page_size: The size of a queue page 15806 * @entry_size: The size of each queue entry for this queue. 15807 * @entry_count: The number of entries that this queue will handle. 15808 * @cpu: The cpu that will primarily utilize this queue. 15809 * 15810 * This function allocates a queue structure and the DMAable memory used for 15811 * the host resident queue. This function must be called before creating the 15812 * queue on the HBA. 15813 **/ 15814 struct lpfc_queue * 15815 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15816 uint32_t entry_size, uint32_t entry_count, int cpu) 15817 { 15818 struct lpfc_queue *queue; 15819 struct lpfc_dmabuf *dmabuf; 15820 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15821 uint16_t x, pgcnt; 15822 15823 if (!phba->sli4_hba.pc_sli4_params.supported) 15824 hw_page_size = page_size; 15825 15826 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15827 15828 /* If needed, Adjust page count to match the max the adapter supports */ 15829 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15830 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15831 15832 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15833 GFP_KERNEL, cpu_to_node(cpu)); 15834 if (!queue) 15835 return NULL; 15836 15837 INIT_LIST_HEAD(&queue->list); 15838 INIT_LIST_HEAD(&queue->_poll_list); 15839 INIT_LIST_HEAD(&queue->wq_list); 15840 INIT_LIST_HEAD(&queue->wqfull_list); 15841 INIT_LIST_HEAD(&queue->page_list); 15842 INIT_LIST_HEAD(&queue->child_list); 15843 INIT_LIST_HEAD(&queue->cpu_list); 15844 15845 /* Set queue parameters now. If the system cannot provide memory 15846 * resources, the free routine needs to know what was allocated. 15847 */ 15848 queue->page_count = pgcnt; 15849 queue->q_pgs = (void **)&queue[1]; 15850 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15851 queue->entry_size = entry_size; 15852 queue->entry_count = entry_count; 15853 queue->page_size = hw_page_size; 15854 queue->phba = phba; 15855 15856 for (x = 0; x < queue->page_count; x++) { 15857 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15858 dev_to_node(&phba->pcidev->dev)); 15859 if (!dmabuf) 15860 goto out_fail; 15861 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15862 hw_page_size, &dmabuf->phys, 15863 GFP_KERNEL); 15864 if (!dmabuf->virt) { 15865 kfree(dmabuf); 15866 goto out_fail; 15867 } 15868 dmabuf->buffer_tag = x; 15869 list_add_tail(&dmabuf->list, &queue->page_list); 15870 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15871 queue->q_pgs[x] = dmabuf->virt; 15872 } 15873 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15874 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15875 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15876 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15877 15878 /* notify_interval will be set during q creation */ 15879 15880 return queue; 15881 out_fail: 15882 lpfc_sli4_queue_free(queue); 15883 return NULL; 15884 } 15885 15886 /** 15887 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15888 * @phba: HBA structure that indicates port to create a queue on. 15889 * @pci_barset: PCI BAR set flag. 15890 * 15891 * This function shall perform iomap of the specified PCI BAR address to host 15892 * memory address if not already done so and return it. The returned host 15893 * memory address can be NULL. 15894 */ 15895 static void __iomem * 15896 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15897 { 15898 if (!phba->pcidev) 15899 return NULL; 15900 15901 switch (pci_barset) { 15902 case WQ_PCI_BAR_0_AND_1: 15903 return phba->pci_bar0_memmap_p; 15904 case WQ_PCI_BAR_2_AND_3: 15905 return phba->pci_bar2_memmap_p; 15906 case WQ_PCI_BAR_4_AND_5: 15907 return phba->pci_bar4_memmap_p; 15908 default: 15909 break; 15910 } 15911 return NULL; 15912 } 15913 15914 /** 15915 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15916 * @phba: HBA structure that EQs are on. 15917 * @startq: The starting EQ index to modify 15918 * @numq: The number of EQs (consecutive indexes) to modify 15919 * @usdelay: amount of delay 15920 * 15921 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15922 * is set either by writing to a register (if supported by the SLI Port) 15923 * or by mailbox command. The mailbox command allows several EQs to be 15924 * updated at once. 15925 * 15926 * The @phba struct is used to send a mailbox command to HBA. The @startq 15927 * is used to get the starting EQ index to change. The @numq value is 15928 * used to specify how many consecutive EQ indexes, starting at EQ index, 15929 * are to be changed. This function is asynchronous and will wait for any 15930 * mailbox commands to finish before returning. 15931 * 15932 * On success this function will return a zero. If unable to allocate 15933 * enough memory this function will return -ENOMEM. If a mailbox command 15934 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15935 * have had their delay multipler changed. 15936 **/ 15937 void 15938 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15939 uint32_t numq, uint32_t usdelay) 15940 { 15941 struct lpfc_mbx_modify_eq_delay *eq_delay; 15942 LPFC_MBOXQ_t *mbox; 15943 struct lpfc_queue *eq; 15944 int cnt = 0, rc, length; 15945 uint32_t shdr_status, shdr_add_status; 15946 uint32_t dmult; 15947 int qidx; 15948 union lpfc_sli4_cfg_shdr *shdr; 15949 15950 if (startq >= phba->cfg_irq_chann) 15951 return; 15952 15953 if (usdelay > 0xFFFF) { 15954 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15955 "6429 usdelay %d too large. Scaled down to " 15956 "0xFFFF.\n", usdelay); 15957 usdelay = 0xFFFF; 15958 } 15959 15960 /* set values by EQ_DELAY register if supported */ 15961 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15962 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15963 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15964 if (!eq) 15965 continue; 15966 15967 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15968 15969 if (++cnt >= numq) 15970 break; 15971 } 15972 return; 15973 } 15974 15975 /* Otherwise, set values by mailbox cmd */ 15976 15977 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15978 if (!mbox) { 15979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15980 "6428 Failed allocating mailbox cmd buffer." 15981 " EQ delay was not set.\n"); 15982 return; 15983 } 15984 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15985 sizeof(struct lpfc_sli4_cfg_mhdr)); 15986 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15987 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15988 length, LPFC_SLI4_MBX_EMBED); 15989 eq_delay = &mbox->u.mqe.un.eq_delay; 15990 15991 /* Calculate delay multiper from maximum interrupt per second */ 15992 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15993 if (dmult) 15994 dmult--; 15995 if (dmult > LPFC_DMULT_MAX) 15996 dmult = LPFC_DMULT_MAX; 15997 15998 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15999 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16000 if (!eq) 16001 continue; 16002 eq->q_mode = usdelay; 16003 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16004 eq_delay->u.request.eq[cnt].phase = 0; 16005 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16006 16007 if (++cnt >= numq) 16008 break; 16009 } 16010 eq_delay->u.request.num_eq = cnt; 16011 16012 mbox->vport = phba->pport; 16013 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16014 mbox->ctx_ndlp = NULL; 16015 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16016 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16017 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16018 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16019 if (shdr_status || shdr_add_status || rc) { 16020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16021 "2512 MODIFY_EQ_DELAY mailbox failed with " 16022 "status x%x add_status x%x, mbx status x%x\n", 16023 shdr_status, shdr_add_status, rc); 16024 } 16025 mempool_free(mbox, phba->mbox_mem_pool); 16026 return; 16027 } 16028 16029 /** 16030 * lpfc_eq_create - Create an Event Queue on the HBA 16031 * @phba: HBA structure that indicates port to create a queue on. 16032 * @eq: The queue structure to use to create the event queue. 16033 * @imax: The maximum interrupt per second limit. 16034 * 16035 * This function creates an event queue, as detailed in @eq, on a port, 16036 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16037 * 16038 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16039 * is used to get the entry count and entry size that are necessary to 16040 * determine the number of pages to allocate and use for this queue. This 16041 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16042 * event queue. This function is asynchronous and will wait for the mailbox 16043 * command to finish before continuing. 16044 * 16045 * On success this function will return a zero. If unable to allocate enough 16046 * memory this function will return -ENOMEM. If the queue create mailbox command 16047 * fails this function will return -ENXIO. 16048 **/ 16049 int 16050 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16051 { 16052 struct lpfc_mbx_eq_create *eq_create; 16053 LPFC_MBOXQ_t *mbox; 16054 int rc, length, status = 0; 16055 struct lpfc_dmabuf *dmabuf; 16056 uint32_t shdr_status, shdr_add_status; 16057 union lpfc_sli4_cfg_shdr *shdr; 16058 uint16_t dmult; 16059 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16060 16061 /* sanity check on queue memory */ 16062 if (!eq) 16063 return -ENODEV; 16064 if (!phba->sli4_hba.pc_sli4_params.supported) 16065 hw_page_size = SLI4_PAGE_SIZE; 16066 16067 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16068 if (!mbox) 16069 return -ENOMEM; 16070 length = (sizeof(struct lpfc_mbx_eq_create) - 16071 sizeof(struct lpfc_sli4_cfg_mhdr)); 16072 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16073 LPFC_MBOX_OPCODE_EQ_CREATE, 16074 length, LPFC_SLI4_MBX_EMBED); 16075 eq_create = &mbox->u.mqe.un.eq_create; 16076 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16077 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16078 eq->page_count); 16079 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16080 LPFC_EQE_SIZE); 16081 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16082 16083 /* Use version 2 of CREATE_EQ if eqav is set */ 16084 if (phba->sli4_hba.pc_sli4_params.eqav) { 16085 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16086 LPFC_Q_CREATE_VERSION_2); 16087 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16088 phba->sli4_hba.pc_sli4_params.eqav); 16089 } 16090 16091 /* don't setup delay multiplier using EQ_CREATE */ 16092 dmult = 0; 16093 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16094 dmult); 16095 switch (eq->entry_count) { 16096 default: 16097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16098 "0360 Unsupported EQ count. (%d)\n", 16099 eq->entry_count); 16100 if (eq->entry_count < 256) { 16101 status = -EINVAL; 16102 goto out; 16103 } 16104 fallthrough; /* otherwise default to smallest count */ 16105 case 256: 16106 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16107 LPFC_EQ_CNT_256); 16108 break; 16109 case 512: 16110 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16111 LPFC_EQ_CNT_512); 16112 break; 16113 case 1024: 16114 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16115 LPFC_EQ_CNT_1024); 16116 break; 16117 case 2048: 16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16119 LPFC_EQ_CNT_2048); 16120 break; 16121 case 4096: 16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16123 LPFC_EQ_CNT_4096); 16124 break; 16125 } 16126 list_for_each_entry(dmabuf, &eq->page_list, list) { 16127 memset(dmabuf->virt, 0, hw_page_size); 16128 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16129 putPaddrLow(dmabuf->phys); 16130 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16131 putPaddrHigh(dmabuf->phys); 16132 } 16133 mbox->vport = phba->pport; 16134 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16135 mbox->ctx_buf = NULL; 16136 mbox->ctx_ndlp = NULL; 16137 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16138 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16139 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16140 if (shdr_status || shdr_add_status || rc) { 16141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16142 "2500 EQ_CREATE mailbox failed with " 16143 "status x%x add_status x%x, mbx status x%x\n", 16144 shdr_status, shdr_add_status, rc); 16145 status = -ENXIO; 16146 } 16147 eq->type = LPFC_EQ; 16148 eq->subtype = LPFC_NONE; 16149 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16150 if (eq->queue_id == 0xFFFF) 16151 status = -ENXIO; 16152 eq->host_index = 0; 16153 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16154 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16155 out: 16156 mempool_free(mbox, phba->mbox_mem_pool); 16157 return status; 16158 } 16159 16160 /** 16161 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16162 * @irq: Interrupt number. 16163 * @dev_id: The device context pointer. 16164 * 16165 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16166 * threaded irq context. 16167 * 16168 * Returns 16169 * IRQ_HANDLED - interrupt is handled 16170 * IRQ_NONE - otherwise 16171 **/ 16172 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16173 { 16174 struct lpfc_hba *phba; 16175 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16176 struct lpfc_queue *fpeq; 16177 int ecount = 0; 16178 int hba_eqidx; 16179 struct lpfc_eq_intr_info *eqi; 16180 16181 /* Get the driver's phba structure from the dev_id */ 16182 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16183 phba = hba_eq_hdl->phba; 16184 hba_eqidx = hba_eq_hdl->idx; 16185 16186 if (unlikely(!phba)) 16187 return IRQ_NONE; 16188 if (unlikely(!phba->sli4_hba.hdwq)) 16189 return IRQ_NONE; 16190 16191 /* Get to the EQ struct associated with this vector */ 16192 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16193 if (unlikely(!fpeq)) 16194 return IRQ_NONE; 16195 16196 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16197 eqi->icnt++; 16198 16199 fpeq->last_cpu = raw_smp_processor_id(); 16200 16201 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16202 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16203 phba->cfg_auto_imax && 16204 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16205 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16206 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16207 16208 /* process and rearm the EQ */ 16209 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16210 LPFC_THREADED_IRQ); 16211 16212 if (unlikely(ecount == 0)) { 16213 fpeq->EQ_no_entry++; 16214 if (phba->intr_type == MSIX) 16215 /* MSI-X treated interrupt served as no EQ share INT */ 16216 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16217 "3358 MSI-X interrupt with no EQE\n"); 16218 else 16219 /* Non MSI-X treated on interrupt as EQ share INT */ 16220 return IRQ_NONE; 16221 } 16222 return IRQ_HANDLED; 16223 } 16224 16225 /** 16226 * lpfc_cq_create - Create a Completion Queue on the HBA 16227 * @phba: HBA structure that indicates port to create a queue on. 16228 * @cq: The queue structure to use to create the completion queue. 16229 * @eq: The event queue to bind this completion queue to. 16230 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16231 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16232 * 16233 * This function creates a completion queue, as detailed in @wq, on a port, 16234 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16235 * 16236 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16237 * is used to get the entry count and entry size that are necessary to 16238 * determine the number of pages to allocate and use for this queue. The @eq 16239 * is used to indicate which event queue to bind this completion queue to. This 16240 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16241 * completion queue. This function is asynchronous and will wait for the mailbox 16242 * command to finish before continuing. 16243 * 16244 * On success this function will return a zero. If unable to allocate enough 16245 * memory this function will return -ENOMEM. If the queue create mailbox command 16246 * fails this function will return -ENXIO. 16247 **/ 16248 int 16249 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16250 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16251 { 16252 struct lpfc_mbx_cq_create *cq_create; 16253 struct lpfc_dmabuf *dmabuf; 16254 LPFC_MBOXQ_t *mbox; 16255 int rc, length, status = 0; 16256 uint32_t shdr_status, shdr_add_status; 16257 union lpfc_sli4_cfg_shdr *shdr; 16258 16259 /* sanity check on queue memory */ 16260 if (!cq || !eq) 16261 return -ENODEV; 16262 16263 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16264 if (!mbox) 16265 return -ENOMEM; 16266 length = (sizeof(struct lpfc_mbx_cq_create) - 16267 sizeof(struct lpfc_sli4_cfg_mhdr)); 16268 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16269 LPFC_MBOX_OPCODE_CQ_CREATE, 16270 length, LPFC_SLI4_MBX_EMBED); 16271 cq_create = &mbox->u.mqe.un.cq_create; 16272 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16273 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16274 cq->page_count); 16275 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16276 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16277 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16278 phba->sli4_hba.pc_sli4_params.cqv); 16279 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16280 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16281 (cq->page_size / SLI4_PAGE_SIZE)); 16282 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16283 eq->queue_id); 16284 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16285 phba->sli4_hba.pc_sli4_params.cqav); 16286 } else { 16287 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16288 eq->queue_id); 16289 } 16290 switch (cq->entry_count) { 16291 case 2048: 16292 case 4096: 16293 if (phba->sli4_hba.pc_sli4_params.cqv == 16294 LPFC_Q_CREATE_VERSION_2) { 16295 cq_create->u.request.context.lpfc_cq_context_count = 16296 cq->entry_count; 16297 bf_set(lpfc_cq_context_count, 16298 &cq_create->u.request.context, 16299 LPFC_CQ_CNT_WORD7); 16300 break; 16301 } 16302 fallthrough; 16303 default: 16304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16305 "0361 Unsupported CQ count: " 16306 "entry cnt %d sz %d pg cnt %d\n", 16307 cq->entry_count, cq->entry_size, 16308 cq->page_count); 16309 if (cq->entry_count < 256) { 16310 status = -EINVAL; 16311 goto out; 16312 } 16313 fallthrough; /* otherwise default to smallest count */ 16314 case 256: 16315 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16316 LPFC_CQ_CNT_256); 16317 break; 16318 case 512: 16319 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16320 LPFC_CQ_CNT_512); 16321 break; 16322 case 1024: 16323 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16324 LPFC_CQ_CNT_1024); 16325 break; 16326 } 16327 list_for_each_entry(dmabuf, &cq->page_list, list) { 16328 memset(dmabuf->virt, 0, cq->page_size); 16329 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16330 putPaddrLow(dmabuf->phys); 16331 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16332 putPaddrHigh(dmabuf->phys); 16333 } 16334 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16335 16336 /* The IOCTL status is embedded in the mailbox subheader. */ 16337 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16338 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16339 if (shdr_status || shdr_add_status || rc) { 16340 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16341 "2501 CQ_CREATE mailbox failed with " 16342 "status x%x add_status x%x, mbx status x%x\n", 16343 shdr_status, shdr_add_status, rc); 16344 status = -ENXIO; 16345 goto out; 16346 } 16347 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16348 if (cq->queue_id == 0xFFFF) { 16349 status = -ENXIO; 16350 goto out; 16351 } 16352 /* link the cq onto the parent eq child list */ 16353 list_add_tail(&cq->list, &eq->child_list); 16354 /* Set up completion queue's type and subtype */ 16355 cq->type = type; 16356 cq->subtype = subtype; 16357 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16358 cq->assoc_qid = eq->queue_id; 16359 cq->assoc_qp = eq; 16360 cq->host_index = 0; 16361 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16362 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16363 16364 if (cq->queue_id > phba->sli4_hba.cq_max) 16365 phba->sli4_hba.cq_max = cq->queue_id; 16366 out: 16367 mempool_free(mbox, phba->mbox_mem_pool); 16368 return status; 16369 } 16370 16371 /** 16372 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16373 * @phba: HBA structure that indicates port to create a queue on. 16374 * @cqp: The queue structure array to use to create the completion queues. 16375 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16376 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16377 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16378 * 16379 * This function creates a set of completion queue, s to support MRQ 16380 * as detailed in @cqp, on a port, 16381 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16382 * 16383 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16384 * is used to get the entry count and entry size that are necessary to 16385 * determine the number of pages to allocate and use for this queue. The @eq 16386 * is used to indicate which event queue to bind this completion queue to. This 16387 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16388 * completion queue. This function is asynchronous and will wait for the mailbox 16389 * command to finish before continuing. 16390 * 16391 * On success this function will return a zero. If unable to allocate enough 16392 * memory this function will return -ENOMEM. If the queue create mailbox command 16393 * fails this function will return -ENXIO. 16394 **/ 16395 int 16396 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16397 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16398 uint32_t subtype) 16399 { 16400 struct lpfc_queue *cq; 16401 struct lpfc_queue *eq; 16402 struct lpfc_mbx_cq_create_set *cq_set; 16403 struct lpfc_dmabuf *dmabuf; 16404 LPFC_MBOXQ_t *mbox; 16405 int rc, length, alloclen, status = 0; 16406 int cnt, idx, numcq, page_idx = 0; 16407 uint32_t shdr_status, shdr_add_status; 16408 union lpfc_sli4_cfg_shdr *shdr; 16409 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16410 16411 /* sanity check on queue memory */ 16412 numcq = phba->cfg_nvmet_mrq; 16413 if (!cqp || !hdwq || !numcq) 16414 return -ENODEV; 16415 16416 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16417 if (!mbox) 16418 return -ENOMEM; 16419 16420 length = sizeof(struct lpfc_mbx_cq_create_set); 16421 length += ((numcq * cqp[0]->page_count) * 16422 sizeof(struct dma_address)); 16423 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16424 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16425 LPFC_SLI4_MBX_NEMBED); 16426 if (alloclen < length) { 16427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16428 "3098 Allocated DMA memory size (%d) is " 16429 "less than the requested DMA memory size " 16430 "(%d)\n", alloclen, length); 16431 status = -ENOMEM; 16432 goto out; 16433 } 16434 cq_set = mbox->sge_array->addr[0]; 16435 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16436 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16437 16438 for (idx = 0; idx < numcq; idx++) { 16439 cq = cqp[idx]; 16440 eq = hdwq[idx].hba_eq; 16441 if (!cq || !eq) { 16442 status = -ENOMEM; 16443 goto out; 16444 } 16445 if (!phba->sli4_hba.pc_sli4_params.supported) 16446 hw_page_size = cq->page_size; 16447 16448 switch (idx) { 16449 case 0: 16450 bf_set(lpfc_mbx_cq_create_set_page_size, 16451 &cq_set->u.request, 16452 (hw_page_size / SLI4_PAGE_SIZE)); 16453 bf_set(lpfc_mbx_cq_create_set_num_pages, 16454 &cq_set->u.request, cq->page_count); 16455 bf_set(lpfc_mbx_cq_create_set_evt, 16456 &cq_set->u.request, 1); 16457 bf_set(lpfc_mbx_cq_create_set_valid, 16458 &cq_set->u.request, 1); 16459 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16460 &cq_set->u.request, 0); 16461 bf_set(lpfc_mbx_cq_create_set_num_cq, 16462 &cq_set->u.request, numcq); 16463 bf_set(lpfc_mbx_cq_create_set_autovalid, 16464 &cq_set->u.request, 16465 phba->sli4_hba.pc_sli4_params.cqav); 16466 switch (cq->entry_count) { 16467 case 2048: 16468 case 4096: 16469 if (phba->sli4_hba.pc_sli4_params.cqv == 16470 LPFC_Q_CREATE_VERSION_2) { 16471 bf_set(lpfc_mbx_cq_create_set_cqe_cnt_lo, 16472 &cq_set->u.request, 16473 cq->entry_count); 16474 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16475 &cq_set->u.request, 16476 LPFC_CQ_CNT_WORD7); 16477 break; 16478 } 16479 fallthrough; 16480 default: 16481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16482 "3118 Bad CQ count. (%d)\n", 16483 cq->entry_count); 16484 if (cq->entry_count < 256) { 16485 status = -EINVAL; 16486 goto out; 16487 } 16488 fallthrough; /* otherwise default to smallest */ 16489 case 256: 16490 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16491 &cq_set->u.request, LPFC_CQ_CNT_256); 16492 break; 16493 case 512: 16494 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16495 &cq_set->u.request, LPFC_CQ_CNT_512); 16496 break; 16497 case 1024: 16498 bf_set(lpfc_mbx_cq_create_set_cqecnt, 16499 &cq_set->u.request, LPFC_CQ_CNT_1024); 16500 break; 16501 } 16502 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16503 &cq_set->u.request, eq->queue_id); 16504 break; 16505 case 1: 16506 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16507 &cq_set->u.request, eq->queue_id); 16508 break; 16509 case 2: 16510 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16511 &cq_set->u.request, eq->queue_id); 16512 break; 16513 case 3: 16514 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 4: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 5: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 6: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 7: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 8: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 9: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 10: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 11: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 12: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 13: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 14: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 15: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 } 16566 16567 /* link the cq onto the parent eq child list */ 16568 list_add_tail(&cq->list, &eq->child_list); 16569 /* Set up completion queue's type and subtype */ 16570 cq->type = type; 16571 cq->subtype = subtype; 16572 cq->assoc_qid = eq->queue_id; 16573 cq->assoc_qp = eq; 16574 cq->host_index = 0; 16575 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16576 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16577 cq->entry_count); 16578 cq->chann = idx; 16579 16580 rc = 0; 16581 list_for_each_entry(dmabuf, &cq->page_list, list) { 16582 memset(dmabuf->virt, 0, hw_page_size); 16583 cnt = page_idx + dmabuf->buffer_tag; 16584 cq_set->u.request.page[cnt].addr_lo = 16585 putPaddrLow(dmabuf->phys); 16586 cq_set->u.request.page[cnt].addr_hi = 16587 putPaddrHigh(dmabuf->phys); 16588 rc++; 16589 } 16590 page_idx += rc; 16591 } 16592 16593 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16594 16595 /* The IOCTL status is embedded in the mailbox subheader. */ 16596 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16597 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16598 if (shdr_status || shdr_add_status || rc) { 16599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16600 "3119 CQ_CREATE_SET mailbox failed with " 16601 "status x%x add_status x%x, mbx status x%x\n", 16602 shdr_status, shdr_add_status, rc); 16603 status = -ENXIO; 16604 goto out; 16605 } 16606 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16607 if (rc == 0xFFFF) { 16608 status = -ENXIO; 16609 goto out; 16610 } 16611 16612 for (idx = 0; idx < numcq; idx++) { 16613 cq = cqp[idx]; 16614 cq->queue_id = rc + idx; 16615 if (cq->queue_id > phba->sli4_hba.cq_max) 16616 phba->sli4_hba.cq_max = cq->queue_id; 16617 } 16618 16619 out: 16620 lpfc_sli4_mbox_cmd_free(phba, mbox); 16621 return status; 16622 } 16623 16624 /** 16625 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16626 * @phba: HBA structure that indicates port to create a queue on. 16627 * @mq: The queue structure to use to create the mailbox queue. 16628 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16629 * @cq: The completion queue to associate with this cq. 16630 * 16631 * This function provides failback (fb) functionality when the 16632 * mq_create_ext fails on older FW generations. It's purpose is identical 16633 * to mq_create_ext otherwise. 16634 * 16635 * This routine cannot fail as all attributes were previously accessed and 16636 * initialized in mq_create_ext. 16637 **/ 16638 static void 16639 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16640 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16641 { 16642 struct lpfc_mbx_mq_create *mq_create; 16643 struct lpfc_dmabuf *dmabuf; 16644 int length; 16645 16646 length = (sizeof(struct lpfc_mbx_mq_create) - 16647 sizeof(struct lpfc_sli4_cfg_mhdr)); 16648 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16649 LPFC_MBOX_OPCODE_MQ_CREATE, 16650 length, LPFC_SLI4_MBX_EMBED); 16651 mq_create = &mbox->u.mqe.un.mq_create; 16652 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16653 mq->page_count); 16654 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16655 cq->queue_id); 16656 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16657 switch (mq->entry_count) { 16658 case 16: 16659 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16660 LPFC_MQ_RING_SIZE_16); 16661 break; 16662 case 32: 16663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16664 LPFC_MQ_RING_SIZE_32); 16665 break; 16666 case 64: 16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16668 LPFC_MQ_RING_SIZE_64); 16669 break; 16670 case 128: 16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16672 LPFC_MQ_RING_SIZE_128); 16673 break; 16674 } 16675 list_for_each_entry(dmabuf, &mq->page_list, list) { 16676 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16677 putPaddrLow(dmabuf->phys); 16678 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16679 putPaddrHigh(dmabuf->phys); 16680 } 16681 } 16682 16683 /** 16684 * lpfc_mq_create - Create a mailbox Queue on the HBA 16685 * @phba: HBA structure that indicates port to create a queue on. 16686 * @mq: The queue structure to use to create the mailbox queue. 16687 * @cq: The completion queue to associate with this cq. 16688 * @subtype: The queue's subtype. 16689 * 16690 * This function creates a mailbox queue, as detailed in @mq, on a port, 16691 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16692 * 16693 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16694 * is used to get the entry count and entry size that are necessary to 16695 * determine the number of pages to allocate and use for this queue. This 16696 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16697 * mailbox queue. This function is asynchronous and will wait for the mailbox 16698 * command to finish before continuing. 16699 * 16700 * On success this function will return a zero. If unable to allocate enough 16701 * memory this function will return -ENOMEM. If the queue create mailbox command 16702 * fails this function will return -ENXIO. 16703 **/ 16704 int32_t 16705 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16706 struct lpfc_queue *cq, uint32_t subtype) 16707 { 16708 struct lpfc_mbx_mq_create *mq_create; 16709 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16710 struct lpfc_dmabuf *dmabuf; 16711 LPFC_MBOXQ_t *mbox; 16712 int rc, length, status = 0; 16713 uint32_t shdr_status, shdr_add_status; 16714 union lpfc_sli4_cfg_shdr *shdr; 16715 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16716 16717 /* sanity check on queue memory */ 16718 if (!mq || !cq) 16719 return -ENODEV; 16720 if (!phba->sli4_hba.pc_sli4_params.supported) 16721 hw_page_size = SLI4_PAGE_SIZE; 16722 16723 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16724 if (!mbox) 16725 return -ENOMEM; 16726 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16727 sizeof(struct lpfc_sli4_cfg_mhdr)); 16728 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16729 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16730 length, LPFC_SLI4_MBX_EMBED); 16731 16732 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16733 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16734 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16735 &mq_create_ext->u.request, mq->page_count); 16736 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16737 &mq_create_ext->u.request, 1); 16738 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16739 &mq_create_ext->u.request, 1); 16740 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16741 &mq_create_ext->u.request, 1); 16742 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16743 &mq_create_ext->u.request, 1); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16747 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16748 phba->sli4_hba.pc_sli4_params.mqv); 16749 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16750 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16751 cq->queue_id); 16752 else 16753 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16754 cq->queue_id); 16755 switch (mq->entry_count) { 16756 default: 16757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16758 "0362 Unsupported MQ count. (%d)\n", 16759 mq->entry_count); 16760 if (mq->entry_count < 16) { 16761 status = -EINVAL; 16762 goto out; 16763 } 16764 fallthrough; /* otherwise default to smallest count */ 16765 case 16: 16766 bf_set(lpfc_mq_context_ring_size, 16767 &mq_create_ext->u.request.context, 16768 LPFC_MQ_RING_SIZE_16); 16769 break; 16770 case 32: 16771 bf_set(lpfc_mq_context_ring_size, 16772 &mq_create_ext->u.request.context, 16773 LPFC_MQ_RING_SIZE_32); 16774 break; 16775 case 64: 16776 bf_set(lpfc_mq_context_ring_size, 16777 &mq_create_ext->u.request.context, 16778 LPFC_MQ_RING_SIZE_64); 16779 break; 16780 case 128: 16781 bf_set(lpfc_mq_context_ring_size, 16782 &mq_create_ext->u.request.context, 16783 LPFC_MQ_RING_SIZE_128); 16784 break; 16785 } 16786 list_for_each_entry(dmabuf, &mq->page_list, list) { 16787 memset(dmabuf->virt, 0, hw_page_size); 16788 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16789 putPaddrLow(dmabuf->phys); 16790 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16791 putPaddrHigh(dmabuf->phys); 16792 } 16793 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16794 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16795 &mq_create_ext->u.response); 16796 if (rc != MBX_SUCCESS) { 16797 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16798 "2795 MQ_CREATE_EXT failed with " 16799 "status x%x. Failback to MQ_CREATE.\n", 16800 rc); 16801 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16802 mq_create = &mbox->u.mqe.un.mq_create; 16803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16804 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16805 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16806 &mq_create->u.response); 16807 } 16808 16809 /* The IOCTL status is embedded in the mailbox subheader. */ 16810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16812 if (shdr_status || shdr_add_status || rc) { 16813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16814 "2502 MQ_CREATE mailbox failed with " 16815 "status x%x add_status x%x, mbx status x%x\n", 16816 shdr_status, shdr_add_status, rc); 16817 status = -ENXIO; 16818 goto out; 16819 } 16820 if (mq->queue_id == 0xFFFF) { 16821 status = -ENXIO; 16822 goto out; 16823 } 16824 mq->type = LPFC_MQ; 16825 mq->assoc_qid = cq->queue_id; 16826 mq->subtype = subtype; 16827 mq->host_index = 0; 16828 mq->hba_index = 0; 16829 16830 /* link the mq onto the parent cq child list */ 16831 list_add_tail(&mq->list, &cq->child_list); 16832 out: 16833 mempool_free(mbox, phba->mbox_mem_pool); 16834 return status; 16835 } 16836 16837 /** 16838 * lpfc_wq_create - Create a Work Queue on the HBA 16839 * @phba: HBA structure that indicates port to create a queue on. 16840 * @wq: The queue structure to use to create the work queue. 16841 * @cq: The completion queue to bind this work queue to. 16842 * @subtype: The subtype of the work queue indicating its functionality. 16843 * 16844 * This function creates a work queue, as detailed in @wq, on a port, described 16845 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16846 * 16847 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16848 * is used to get the entry count and entry size that are necessary to 16849 * determine the number of pages to allocate and use for this queue. The @cq 16850 * is used to indicate which completion queue to bind this work queue to. This 16851 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16852 * work queue. This function is asynchronous and will wait for the mailbox 16853 * command to finish before continuing. 16854 * 16855 * On success this function will return a zero. If unable to allocate enough 16856 * memory this function will return -ENOMEM. If the queue create mailbox command 16857 * fails this function will return -ENXIO. 16858 **/ 16859 int 16860 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16861 struct lpfc_queue *cq, uint32_t subtype) 16862 { 16863 struct lpfc_mbx_wq_create *wq_create; 16864 struct lpfc_dmabuf *dmabuf; 16865 LPFC_MBOXQ_t *mbox; 16866 int rc, length, status = 0; 16867 uint32_t shdr_status, shdr_add_status; 16868 union lpfc_sli4_cfg_shdr *shdr; 16869 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16870 struct dma_address *page; 16871 void __iomem *bar_memmap_p; 16872 uint32_t db_offset; 16873 uint16_t pci_barset; 16874 uint8_t dpp_barset; 16875 uint32_t dpp_offset; 16876 uint8_t wq_create_version; 16877 #ifdef CONFIG_X86 16878 unsigned long pg_addr; 16879 #endif 16880 16881 /* sanity check on queue memory */ 16882 if (!wq || !cq) 16883 return -ENODEV; 16884 if (!phba->sli4_hba.pc_sli4_params.supported) 16885 hw_page_size = wq->page_size; 16886 16887 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16888 if (!mbox) 16889 return -ENOMEM; 16890 length = (sizeof(struct lpfc_mbx_wq_create) - 16891 sizeof(struct lpfc_sli4_cfg_mhdr)); 16892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16893 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16894 length, LPFC_SLI4_MBX_EMBED); 16895 wq_create = &mbox->u.mqe.un.wq_create; 16896 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16897 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16898 wq->page_count); 16899 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16900 cq->queue_id); 16901 16902 /* wqv is the earliest version supported, NOT the latest */ 16903 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16904 phba->sli4_hba.pc_sli4_params.wqv); 16905 16906 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16907 (wq->page_size > SLI4_PAGE_SIZE)) 16908 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16909 else 16910 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16911 16912 switch (wq_create_version) { 16913 case LPFC_Q_CREATE_VERSION_1: 16914 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16915 wq->entry_count); 16916 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16917 LPFC_Q_CREATE_VERSION_1); 16918 16919 switch (wq->entry_size) { 16920 default: 16921 case 64: 16922 bf_set(lpfc_mbx_wq_create_wqe_size, 16923 &wq_create->u.request_1, 16924 LPFC_WQ_WQE_SIZE_64); 16925 break; 16926 case 128: 16927 bf_set(lpfc_mbx_wq_create_wqe_size, 16928 &wq_create->u.request_1, 16929 LPFC_WQ_WQE_SIZE_128); 16930 break; 16931 } 16932 /* Request DPP by default */ 16933 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16934 bf_set(lpfc_mbx_wq_create_page_size, 16935 &wq_create->u.request_1, 16936 (wq->page_size / SLI4_PAGE_SIZE)); 16937 page = wq_create->u.request_1.page; 16938 break; 16939 default: 16940 page = wq_create->u.request.page; 16941 break; 16942 } 16943 16944 list_for_each_entry(dmabuf, &wq->page_list, list) { 16945 memset(dmabuf->virt, 0, hw_page_size); 16946 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16947 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16948 } 16949 16950 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16951 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16952 16953 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16954 /* The IOCTL status is embedded in the mailbox subheader. */ 16955 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16956 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16957 if (shdr_status || shdr_add_status || rc) { 16958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16959 "2503 WQ_CREATE mailbox failed with " 16960 "status x%x add_status x%x, mbx status x%x\n", 16961 shdr_status, shdr_add_status, rc); 16962 status = -ENXIO; 16963 goto out; 16964 } 16965 16966 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16967 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16968 &wq_create->u.response); 16969 else 16970 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16971 &wq_create->u.response_1); 16972 16973 if (wq->queue_id == 0xFFFF) { 16974 status = -ENXIO; 16975 goto out; 16976 } 16977 16978 wq->db_format = LPFC_DB_LIST_FORMAT; 16979 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16980 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16981 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16982 &wq_create->u.response); 16983 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16984 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16986 "3265 WQ[%d] doorbell format " 16987 "not supported: x%x\n", 16988 wq->queue_id, wq->db_format); 16989 status = -EINVAL; 16990 goto out; 16991 } 16992 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16993 &wq_create->u.response); 16994 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16995 pci_barset); 16996 if (!bar_memmap_p) { 16997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16998 "3263 WQ[%d] failed to memmap " 16999 "pci barset:x%x\n", 17000 wq->queue_id, pci_barset); 17001 status = -ENOMEM; 17002 goto out; 17003 } 17004 db_offset = wq_create->u.response.doorbell_offset; 17005 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17006 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17008 "3252 WQ[%d] doorbell offset " 17009 "not supported: x%x\n", 17010 wq->queue_id, db_offset); 17011 status = -EINVAL; 17012 goto out; 17013 } 17014 wq->db_regaddr = bar_memmap_p + db_offset; 17015 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17016 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17017 "format:x%x\n", wq->queue_id, 17018 pci_barset, db_offset, wq->db_format); 17019 } else 17020 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17021 } else { 17022 /* Check if DPP was honored by the firmware */ 17023 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17024 &wq_create->u.response_1); 17025 if (wq->dpp_enable) { 17026 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17027 &wq_create->u.response_1); 17028 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17029 pci_barset); 17030 if (!bar_memmap_p) { 17031 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17032 "3267 WQ[%d] failed to memmap " 17033 "pci barset:x%x\n", 17034 wq->queue_id, pci_barset); 17035 status = -ENOMEM; 17036 goto out; 17037 } 17038 db_offset = wq_create->u.response_1.doorbell_offset; 17039 wq->db_regaddr = bar_memmap_p + db_offset; 17040 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17041 &wq_create->u.response_1); 17042 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17043 &wq_create->u.response_1); 17044 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17045 dpp_barset); 17046 if (!bar_memmap_p) { 17047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17048 "3268 WQ[%d] failed to memmap " 17049 "pci barset:x%x\n", 17050 wq->queue_id, dpp_barset); 17051 status = -ENOMEM; 17052 goto out; 17053 } 17054 dpp_offset = wq_create->u.response_1.dpp_offset; 17055 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17057 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17058 "dpp_id:x%x dpp_barset:x%x " 17059 "dpp_offset:x%x\n", 17060 wq->queue_id, pci_barset, db_offset, 17061 wq->dpp_id, dpp_barset, dpp_offset); 17062 17063 #ifdef CONFIG_X86 17064 /* Enable combined writes for DPP aperture */ 17065 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17066 rc = set_memory_wc(pg_addr, 1); 17067 if (rc) { 17068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17069 "3272 Cannot setup Combined " 17070 "Write on WQ[%d] - disable DPP\n", 17071 wq->queue_id); 17072 phba->cfg_enable_dpp = 0; 17073 } 17074 #else 17075 phba->cfg_enable_dpp = 0; 17076 #endif 17077 } else 17078 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17079 } 17080 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17081 if (wq->pring == NULL) { 17082 status = -ENOMEM; 17083 goto out; 17084 } 17085 wq->type = LPFC_WQ; 17086 wq->assoc_qid = cq->queue_id; 17087 wq->subtype = subtype; 17088 wq->host_index = 0; 17089 wq->hba_index = 0; 17090 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17091 17092 /* link the wq onto the parent cq child list */ 17093 list_add_tail(&wq->list, &cq->child_list); 17094 out: 17095 mempool_free(mbox, phba->mbox_mem_pool); 17096 return status; 17097 } 17098 17099 /** 17100 * lpfc_rq_create - Create a Receive Queue on the HBA 17101 * @phba: HBA structure that indicates port to create a queue on. 17102 * @hrq: The queue structure to use to create the header receive queue. 17103 * @drq: The queue structure to use to create the data receive queue. 17104 * @cq: The completion queue to bind this work queue to. 17105 * @subtype: The subtype of the work queue indicating its functionality. 17106 * 17107 * This function creates a receive buffer queue pair , as detailed in @hrq and 17108 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17109 * to the HBA. 17110 * 17111 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17112 * struct is used to get the entry count that is necessary to determine the 17113 * number of pages to use for this queue. The @cq is used to indicate which 17114 * completion queue to bind received buffers that are posted to these queues to. 17115 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17116 * receive queue pair. This function is asynchronous and will wait for the 17117 * mailbox command to finish before continuing. 17118 * 17119 * On success this function will return a zero. If unable to allocate enough 17120 * memory this function will return -ENOMEM. If the queue create mailbox command 17121 * fails this function will return -ENXIO. 17122 **/ 17123 int 17124 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17125 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17126 { 17127 struct lpfc_mbx_rq_create *rq_create; 17128 struct lpfc_dmabuf *dmabuf; 17129 LPFC_MBOXQ_t *mbox; 17130 int rc, length, status = 0; 17131 uint32_t shdr_status, shdr_add_status; 17132 union lpfc_sli4_cfg_shdr *shdr; 17133 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17134 void __iomem *bar_memmap_p; 17135 uint32_t db_offset; 17136 uint16_t pci_barset; 17137 17138 /* sanity check on queue memory */ 17139 if (!hrq || !drq || !cq) 17140 return -ENODEV; 17141 if (!phba->sli4_hba.pc_sli4_params.supported) 17142 hw_page_size = SLI4_PAGE_SIZE; 17143 17144 if (hrq->entry_count != drq->entry_count) 17145 return -EINVAL; 17146 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17147 if (!mbox) 17148 return -ENOMEM; 17149 length = (sizeof(struct lpfc_mbx_rq_create) - 17150 sizeof(struct lpfc_sli4_cfg_mhdr)); 17151 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17152 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17153 length, LPFC_SLI4_MBX_EMBED); 17154 rq_create = &mbox->u.mqe.un.rq_create; 17155 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17156 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17157 phba->sli4_hba.pc_sli4_params.rqv); 17158 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17159 bf_set(lpfc_rq_context_rqe_count_1, 17160 &rq_create->u.request.context, 17161 hrq->entry_count); 17162 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17163 bf_set(lpfc_rq_context_rqe_size, 17164 &rq_create->u.request.context, 17165 LPFC_RQE_SIZE_8); 17166 bf_set(lpfc_rq_context_page_size, 17167 &rq_create->u.request.context, 17168 LPFC_RQ_PAGE_SIZE_4096); 17169 } else { 17170 switch (hrq->entry_count) { 17171 default: 17172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17173 "2535 Unsupported RQ count. (%d)\n", 17174 hrq->entry_count); 17175 if (hrq->entry_count < 512) { 17176 status = -EINVAL; 17177 goto out; 17178 } 17179 fallthrough; /* otherwise default to smallest count */ 17180 case 512: 17181 bf_set(lpfc_rq_context_rqe_count, 17182 &rq_create->u.request.context, 17183 LPFC_RQ_RING_SIZE_512); 17184 break; 17185 case 1024: 17186 bf_set(lpfc_rq_context_rqe_count, 17187 &rq_create->u.request.context, 17188 LPFC_RQ_RING_SIZE_1024); 17189 break; 17190 case 2048: 17191 bf_set(lpfc_rq_context_rqe_count, 17192 &rq_create->u.request.context, 17193 LPFC_RQ_RING_SIZE_2048); 17194 break; 17195 case 4096: 17196 bf_set(lpfc_rq_context_rqe_count, 17197 &rq_create->u.request.context, 17198 LPFC_RQ_RING_SIZE_4096); 17199 break; 17200 } 17201 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17202 LPFC_HDR_BUF_SIZE); 17203 } 17204 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17205 cq->queue_id); 17206 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17207 hrq->page_count); 17208 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17209 memset(dmabuf->virt, 0, hw_page_size); 17210 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17211 putPaddrLow(dmabuf->phys); 17212 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17213 putPaddrHigh(dmabuf->phys); 17214 } 17215 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17216 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17217 17218 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17219 /* The IOCTL status is embedded in the mailbox subheader. */ 17220 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17221 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17222 if (shdr_status || shdr_add_status || rc) { 17223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17224 "2504 RQ_CREATE mailbox failed with " 17225 "status x%x add_status x%x, mbx status x%x\n", 17226 shdr_status, shdr_add_status, rc); 17227 status = -ENXIO; 17228 goto out; 17229 } 17230 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17231 if (hrq->queue_id == 0xFFFF) { 17232 status = -ENXIO; 17233 goto out; 17234 } 17235 17236 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17237 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17238 &rq_create->u.response); 17239 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17240 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17242 "3262 RQ [%d] doorbell format not " 17243 "supported: x%x\n", hrq->queue_id, 17244 hrq->db_format); 17245 status = -EINVAL; 17246 goto out; 17247 } 17248 17249 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17250 &rq_create->u.response); 17251 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17252 if (!bar_memmap_p) { 17253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17254 "3269 RQ[%d] failed to memmap pci " 17255 "barset:x%x\n", hrq->queue_id, 17256 pci_barset); 17257 status = -ENOMEM; 17258 goto out; 17259 } 17260 17261 db_offset = rq_create->u.response.doorbell_offset; 17262 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17263 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17265 "3270 RQ[%d] doorbell offset not " 17266 "supported: x%x\n", hrq->queue_id, 17267 db_offset); 17268 status = -EINVAL; 17269 goto out; 17270 } 17271 hrq->db_regaddr = bar_memmap_p + db_offset; 17272 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17273 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17274 "format:x%x\n", hrq->queue_id, pci_barset, 17275 db_offset, hrq->db_format); 17276 } else { 17277 hrq->db_format = LPFC_DB_RING_FORMAT; 17278 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17279 } 17280 hrq->type = LPFC_HRQ; 17281 hrq->assoc_qid = cq->queue_id; 17282 hrq->subtype = subtype; 17283 hrq->host_index = 0; 17284 hrq->hba_index = 0; 17285 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17286 17287 /* now create the data queue */ 17288 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17289 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17290 length, LPFC_SLI4_MBX_EMBED); 17291 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17292 phba->sli4_hba.pc_sli4_params.rqv); 17293 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17294 bf_set(lpfc_rq_context_rqe_count_1, 17295 &rq_create->u.request.context, hrq->entry_count); 17296 if (subtype == LPFC_NVMET) 17297 rq_create->u.request.context.buffer_size = 17298 LPFC_NVMET_DATA_BUF_SIZE; 17299 else 17300 rq_create->u.request.context.buffer_size = 17301 LPFC_DATA_BUF_SIZE; 17302 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17303 LPFC_RQE_SIZE_8); 17304 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17305 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17306 } else { 17307 switch (drq->entry_count) { 17308 default: 17309 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17310 "2536 Unsupported RQ count. (%d)\n", 17311 drq->entry_count); 17312 if (drq->entry_count < 512) { 17313 status = -EINVAL; 17314 goto out; 17315 } 17316 fallthrough; /* otherwise default to smallest count */ 17317 case 512: 17318 bf_set(lpfc_rq_context_rqe_count, 17319 &rq_create->u.request.context, 17320 LPFC_RQ_RING_SIZE_512); 17321 break; 17322 case 1024: 17323 bf_set(lpfc_rq_context_rqe_count, 17324 &rq_create->u.request.context, 17325 LPFC_RQ_RING_SIZE_1024); 17326 break; 17327 case 2048: 17328 bf_set(lpfc_rq_context_rqe_count, 17329 &rq_create->u.request.context, 17330 LPFC_RQ_RING_SIZE_2048); 17331 break; 17332 case 4096: 17333 bf_set(lpfc_rq_context_rqe_count, 17334 &rq_create->u.request.context, 17335 LPFC_RQ_RING_SIZE_4096); 17336 break; 17337 } 17338 if (subtype == LPFC_NVMET) 17339 bf_set(lpfc_rq_context_buf_size, 17340 &rq_create->u.request.context, 17341 LPFC_NVMET_DATA_BUF_SIZE); 17342 else 17343 bf_set(lpfc_rq_context_buf_size, 17344 &rq_create->u.request.context, 17345 LPFC_DATA_BUF_SIZE); 17346 } 17347 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17348 cq->queue_id); 17349 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17350 drq->page_count); 17351 list_for_each_entry(dmabuf, &drq->page_list, list) { 17352 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17353 putPaddrLow(dmabuf->phys); 17354 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17355 putPaddrHigh(dmabuf->phys); 17356 } 17357 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17358 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17359 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17360 /* The IOCTL status is embedded in the mailbox subheader. */ 17361 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17362 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17363 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17364 if (shdr_status || shdr_add_status || rc) { 17365 status = -ENXIO; 17366 goto out; 17367 } 17368 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17369 if (drq->queue_id == 0xFFFF) { 17370 status = -ENXIO; 17371 goto out; 17372 } 17373 drq->type = LPFC_DRQ; 17374 drq->assoc_qid = cq->queue_id; 17375 drq->subtype = subtype; 17376 drq->host_index = 0; 17377 drq->hba_index = 0; 17378 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17379 17380 /* link the header and data RQs onto the parent cq child list */ 17381 list_add_tail(&hrq->list, &cq->child_list); 17382 list_add_tail(&drq->list, &cq->child_list); 17383 17384 out: 17385 mempool_free(mbox, phba->mbox_mem_pool); 17386 return status; 17387 } 17388 17389 /** 17390 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17391 * @phba: HBA structure that indicates port to create a queue on. 17392 * @hrqp: The queue structure array to use to create the header receive queues. 17393 * @drqp: The queue structure array to use to create the data receive queues. 17394 * @cqp: The completion queue array to bind these receive queues to. 17395 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17396 * 17397 * This function creates a receive buffer queue pair , as detailed in @hrq and 17398 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17399 * to the HBA. 17400 * 17401 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17402 * struct is used to get the entry count that is necessary to determine the 17403 * number of pages to use for this queue. The @cq is used to indicate which 17404 * completion queue to bind received buffers that are posted to these queues to. 17405 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17406 * receive queue pair. This function is asynchronous and will wait for the 17407 * mailbox command to finish before continuing. 17408 * 17409 * On success this function will return a zero. If unable to allocate enough 17410 * memory this function will return -ENOMEM. If the queue create mailbox command 17411 * fails this function will return -ENXIO. 17412 **/ 17413 int 17414 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17415 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17416 uint32_t subtype) 17417 { 17418 struct lpfc_queue *hrq, *drq, *cq; 17419 struct lpfc_mbx_rq_create_v2 *rq_create; 17420 struct lpfc_dmabuf *dmabuf; 17421 LPFC_MBOXQ_t *mbox; 17422 int rc, length, alloclen, status = 0; 17423 int cnt, idx, numrq, page_idx = 0; 17424 uint32_t shdr_status, shdr_add_status; 17425 union lpfc_sli4_cfg_shdr *shdr; 17426 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17427 17428 numrq = phba->cfg_nvmet_mrq; 17429 /* sanity check on array memory */ 17430 if (!hrqp || !drqp || !cqp || !numrq) 17431 return -ENODEV; 17432 if (!phba->sli4_hba.pc_sli4_params.supported) 17433 hw_page_size = SLI4_PAGE_SIZE; 17434 17435 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17436 if (!mbox) 17437 return -ENOMEM; 17438 17439 length = sizeof(struct lpfc_mbx_rq_create_v2); 17440 length += ((2 * numrq * hrqp[0]->page_count) * 17441 sizeof(struct dma_address)); 17442 17443 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17444 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17445 LPFC_SLI4_MBX_NEMBED); 17446 if (alloclen < length) { 17447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17448 "3099 Allocated DMA memory size (%d) is " 17449 "less than the requested DMA memory size " 17450 "(%d)\n", alloclen, length); 17451 status = -ENOMEM; 17452 goto out; 17453 } 17454 17455 17456 17457 rq_create = mbox->sge_array->addr[0]; 17458 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17459 17460 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17461 cnt = 0; 17462 17463 for (idx = 0; idx < numrq; idx++) { 17464 hrq = hrqp[idx]; 17465 drq = drqp[idx]; 17466 cq = cqp[idx]; 17467 17468 /* sanity check on queue memory */ 17469 if (!hrq || !drq || !cq) { 17470 status = -ENODEV; 17471 goto out; 17472 } 17473 17474 if (hrq->entry_count != drq->entry_count) { 17475 status = -EINVAL; 17476 goto out; 17477 } 17478 17479 if (idx == 0) { 17480 bf_set(lpfc_mbx_rq_create_num_pages, 17481 &rq_create->u.request, 17482 hrq->page_count); 17483 bf_set(lpfc_mbx_rq_create_rq_cnt, 17484 &rq_create->u.request, (numrq * 2)); 17485 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17486 1); 17487 bf_set(lpfc_rq_context_base_cq, 17488 &rq_create->u.request.context, 17489 cq->queue_id); 17490 bf_set(lpfc_rq_context_data_size, 17491 &rq_create->u.request.context, 17492 LPFC_NVMET_DATA_BUF_SIZE); 17493 bf_set(lpfc_rq_context_hdr_size, 17494 &rq_create->u.request.context, 17495 LPFC_HDR_BUF_SIZE); 17496 bf_set(lpfc_rq_context_rqe_count_1, 17497 &rq_create->u.request.context, 17498 hrq->entry_count); 17499 bf_set(lpfc_rq_context_rqe_size, 17500 &rq_create->u.request.context, 17501 LPFC_RQE_SIZE_8); 17502 bf_set(lpfc_rq_context_page_size, 17503 &rq_create->u.request.context, 17504 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17505 } 17506 rc = 0; 17507 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17508 memset(dmabuf->virt, 0, hw_page_size); 17509 cnt = page_idx + dmabuf->buffer_tag; 17510 rq_create->u.request.page[cnt].addr_lo = 17511 putPaddrLow(dmabuf->phys); 17512 rq_create->u.request.page[cnt].addr_hi = 17513 putPaddrHigh(dmabuf->phys); 17514 rc++; 17515 } 17516 page_idx += rc; 17517 17518 rc = 0; 17519 list_for_each_entry(dmabuf, &drq->page_list, list) { 17520 memset(dmabuf->virt, 0, hw_page_size); 17521 cnt = page_idx + dmabuf->buffer_tag; 17522 rq_create->u.request.page[cnt].addr_lo = 17523 putPaddrLow(dmabuf->phys); 17524 rq_create->u.request.page[cnt].addr_hi = 17525 putPaddrHigh(dmabuf->phys); 17526 rc++; 17527 } 17528 page_idx += rc; 17529 17530 hrq->db_format = LPFC_DB_RING_FORMAT; 17531 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17532 hrq->type = LPFC_HRQ; 17533 hrq->assoc_qid = cq->queue_id; 17534 hrq->subtype = subtype; 17535 hrq->host_index = 0; 17536 hrq->hba_index = 0; 17537 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17538 17539 drq->db_format = LPFC_DB_RING_FORMAT; 17540 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17541 drq->type = LPFC_DRQ; 17542 drq->assoc_qid = cq->queue_id; 17543 drq->subtype = subtype; 17544 drq->host_index = 0; 17545 drq->hba_index = 0; 17546 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17547 17548 list_add_tail(&hrq->list, &cq->child_list); 17549 list_add_tail(&drq->list, &cq->child_list); 17550 } 17551 17552 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17553 /* The IOCTL status is embedded in the mailbox subheader. */ 17554 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17555 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17556 if (shdr_status || shdr_add_status || rc) { 17557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17558 "3120 RQ_CREATE mailbox failed with " 17559 "status x%x add_status x%x, mbx status x%x\n", 17560 shdr_status, shdr_add_status, rc); 17561 status = -ENXIO; 17562 goto out; 17563 } 17564 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17565 if (rc == 0xFFFF) { 17566 status = -ENXIO; 17567 goto out; 17568 } 17569 17570 /* Initialize all RQs with associated queue id */ 17571 for (idx = 0; idx < numrq; idx++) { 17572 hrq = hrqp[idx]; 17573 hrq->queue_id = rc + (2 * idx); 17574 drq = drqp[idx]; 17575 drq->queue_id = rc + (2 * idx) + 1; 17576 } 17577 17578 out: 17579 lpfc_sli4_mbox_cmd_free(phba, mbox); 17580 return status; 17581 } 17582 17583 /** 17584 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17585 * @phba: HBA structure that indicates port to destroy a queue on. 17586 * @eq: The queue structure associated with the queue to destroy. 17587 * 17588 * This function destroys a queue, as detailed in @eq by sending an mailbox 17589 * command, specific to the type of queue, to the HBA. 17590 * 17591 * The @eq struct is used to get the queue ID of the queue to destroy. 17592 * 17593 * On success this function will return a zero. If the queue destroy mailbox 17594 * command fails this function will return -ENXIO. 17595 **/ 17596 int 17597 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17598 { 17599 LPFC_MBOXQ_t *mbox; 17600 int rc, length, status = 0; 17601 uint32_t shdr_status, shdr_add_status; 17602 union lpfc_sli4_cfg_shdr *shdr; 17603 17604 /* sanity check on queue memory */ 17605 if (!eq) 17606 return -ENODEV; 17607 17608 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17609 goto list_remove; 17610 17611 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17612 if (!mbox) 17613 return -ENOMEM; 17614 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17615 sizeof(struct lpfc_sli4_cfg_mhdr)); 17616 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17617 LPFC_MBOX_OPCODE_EQ_DESTROY, 17618 length, LPFC_SLI4_MBX_EMBED); 17619 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17620 eq->queue_id); 17621 mbox->vport = eq->phba->pport; 17622 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17623 17624 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17625 /* The IOCTL status is embedded in the mailbox subheader. */ 17626 shdr = (union lpfc_sli4_cfg_shdr *) 17627 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17628 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17629 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17630 if (shdr_status || shdr_add_status || rc) { 17631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17632 "2505 EQ_DESTROY mailbox failed with " 17633 "status x%x add_status x%x, mbx status x%x\n", 17634 shdr_status, shdr_add_status, rc); 17635 status = -ENXIO; 17636 } 17637 mempool_free(mbox, eq->phba->mbox_mem_pool); 17638 17639 list_remove: 17640 /* Remove eq from any list */ 17641 list_del_init(&eq->list); 17642 17643 return status; 17644 } 17645 17646 /** 17647 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17648 * @phba: HBA structure that indicates port to destroy a queue on. 17649 * @cq: The queue structure associated with the queue to destroy. 17650 * 17651 * This function destroys a queue, as detailed in @cq by sending an mailbox 17652 * command, specific to the type of queue, to the HBA. 17653 * 17654 * The @cq struct is used to get the queue ID of the queue to destroy. 17655 * 17656 * On success this function will return a zero. If the queue destroy mailbox 17657 * command fails this function will return -ENXIO. 17658 **/ 17659 int 17660 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17661 { 17662 LPFC_MBOXQ_t *mbox; 17663 int rc, length, status = 0; 17664 uint32_t shdr_status, shdr_add_status; 17665 union lpfc_sli4_cfg_shdr *shdr; 17666 17667 /* sanity check on queue memory */ 17668 if (!cq) 17669 return -ENODEV; 17670 17671 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17672 goto list_remove; 17673 17674 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17675 if (!mbox) 17676 return -ENOMEM; 17677 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17678 sizeof(struct lpfc_sli4_cfg_mhdr)); 17679 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17680 LPFC_MBOX_OPCODE_CQ_DESTROY, 17681 length, LPFC_SLI4_MBX_EMBED); 17682 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17683 cq->queue_id); 17684 mbox->vport = cq->phba->pport; 17685 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17686 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17687 /* The IOCTL status is embedded in the mailbox subheader. */ 17688 shdr = (union lpfc_sli4_cfg_shdr *) 17689 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17690 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17691 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17692 if (shdr_status || shdr_add_status || rc) { 17693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17694 "2506 CQ_DESTROY mailbox failed with " 17695 "status x%x add_status x%x, mbx status x%x\n", 17696 shdr_status, shdr_add_status, rc); 17697 status = -ENXIO; 17698 } 17699 mempool_free(mbox, cq->phba->mbox_mem_pool); 17700 17701 list_remove: 17702 /* Remove cq from any list */ 17703 list_del_init(&cq->list); 17704 return status; 17705 } 17706 17707 /** 17708 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17709 * @phba: HBA structure that indicates port to destroy a queue on. 17710 * @mq: The queue structure associated with the queue to destroy. 17711 * 17712 * This function destroys a queue, as detailed in @mq by sending an mailbox 17713 * command, specific to the type of queue, to the HBA. 17714 * 17715 * The @mq struct is used to get the queue ID of the queue to destroy. 17716 * 17717 * On success this function will return a zero. If the queue destroy mailbox 17718 * command fails this function will return -ENXIO. 17719 **/ 17720 int 17721 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17722 { 17723 LPFC_MBOXQ_t *mbox; 17724 int rc, length, status = 0; 17725 uint32_t shdr_status, shdr_add_status; 17726 union lpfc_sli4_cfg_shdr *shdr; 17727 17728 /* sanity check on queue memory */ 17729 if (!mq) 17730 return -ENODEV; 17731 17732 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17733 goto list_remove; 17734 17735 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17736 if (!mbox) 17737 return -ENOMEM; 17738 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17739 sizeof(struct lpfc_sli4_cfg_mhdr)); 17740 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17741 LPFC_MBOX_OPCODE_MQ_DESTROY, 17742 length, LPFC_SLI4_MBX_EMBED); 17743 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17744 mq->queue_id); 17745 mbox->vport = mq->phba->pport; 17746 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17747 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17748 /* The IOCTL status is embedded in the mailbox subheader. */ 17749 shdr = (union lpfc_sli4_cfg_shdr *) 17750 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17751 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17752 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17753 if (shdr_status || shdr_add_status || rc) { 17754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17755 "2507 MQ_DESTROY mailbox failed with " 17756 "status x%x add_status x%x, mbx status x%x\n", 17757 shdr_status, shdr_add_status, rc); 17758 status = -ENXIO; 17759 } 17760 mempool_free(mbox, mq->phba->mbox_mem_pool); 17761 17762 list_remove: 17763 /* Remove mq from any list */ 17764 list_del_init(&mq->list); 17765 return status; 17766 } 17767 17768 /** 17769 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17770 * @phba: HBA structure that indicates port to destroy a queue on. 17771 * @wq: The queue structure associated with the queue to destroy. 17772 * 17773 * This function destroys a queue, as detailed in @wq by sending an mailbox 17774 * command, specific to the type of queue, to the HBA. 17775 * 17776 * The @wq struct is used to get the queue ID of the queue to destroy. 17777 * 17778 * On success this function will return a zero. If the queue destroy mailbox 17779 * command fails this function will return -ENXIO. 17780 **/ 17781 int 17782 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17783 { 17784 LPFC_MBOXQ_t *mbox; 17785 int rc, length, status = 0; 17786 uint32_t shdr_status, shdr_add_status; 17787 union lpfc_sli4_cfg_shdr *shdr; 17788 17789 /* sanity check on queue memory */ 17790 if (!wq) 17791 return -ENODEV; 17792 17793 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17794 goto list_remove; 17795 17796 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17797 if (!mbox) 17798 return -ENOMEM; 17799 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17800 sizeof(struct lpfc_sli4_cfg_mhdr)); 17801 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17802 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17803 length, LPFC_SLI4_MBX_EMBED); 17804 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17805 wq->queue_id); 17806 mbox->vport = wq->phba->pport; 17807 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17808 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17809 shdr = (union lpfc_sli4_cfg_shdr *) 17810 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17811 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17812 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17813 if (shdr_status || shdr_add_status || rc) { 17814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17815 "2508 WQ_DESTROY mailbox failed with " 17816 "status x%x add_status x%x, mbx status x%x\n", 17817 shdr_status, shdr_add_status, rc); 17818 status = -ENXIO; 17819 } 17820 mempool_free(mbox, wq->phba->mbox_mem_pool); 17821 17822 list_remove: 17823 /* Remove wq from any list */ 17824 list_del_init(&wq->list); 17825 kfree(wq->pring); 17826 wq->pring = NULL; 17827 return status; 17828 } 17829 17830 /** 17831 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17832 * @phba: HBA structure that indicates port to destroy a queue on. 17833 * @hrq: The queue structure associated with the queue to destroy. 17834 * @drq: The queue structure associated with the queue to destroy. 17835 * 17836 * This function destroys a queue, as detailed in @rq by sending an mailbox 17837 * command, specific to the type of queue, to the HBA. 17838 * 17839 * The @rq struct is used to get the queue ID of the queue to destroy. 17840 * 17841 * On success this function will return a zero. If the queue destroy mailbox 17842 * command fails this function will return -ENXIO. 17843 **/ 17844 int 17845 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17846 struct lpfc_queue *drq) 17847 { 17848 LPFC_MBOXQ_t *mbox; 17849 int rc, length, status = 0; 17850 uint32_t shdr_status, shdr_add_status; 17851 union lpfc_sli4_cfg_shdr *shdr; 17852 17853 /* sanity check on queue memory */ 17854 if (!hrq || !drq) 17855 return -ENODEV; 17856 17857 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17858 goto list_remove; 17859 17860 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17861 if (!mbox) 17862 return -ENOMEM; 17863 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17864 sizeof(struct lpfc_sli4_cfg_mhdr)); 17865 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17866 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17867 length, LPFC_SLI4_MBX_EMBED); 17868 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17869 hrq->queue_id); 17870 mbox->vport = hrq->phba->pport; 17871 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17872 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17873 /* The IOCTL status is embedded in the mailbox subheader. */ 17874 shdr = (union lpfc_sli4_cfg_shdr *) 17875 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17876 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17877 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17878 if (shdr_status || shdr_add_status || rc) { 17879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17880 "2509 RQ_DESTROY mailbox failed with " 17881 "status x%x add_status x%x, mbx status x%x\n", 17882 shdr_status, shdr_add_status, rc); 17883 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17884 return -ENXIO; 17885 } 17886 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17887 drq->queue_id); 17888 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17889 shdr = (union lpfc_sli4_cfg_shdr *) 17890 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17891 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17892 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17893 if (shdr_status || shdr_add_status || rc) { 17894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17895 "2510 RQ_DESTROY mailbox failed with " 17896 "status x%x add_status x%x, mbx status x%x\n", 17897 shdr_status, shdr_add_status, rc); 17898 status = -ENXIO; 17899 } 17900 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17901 17902 list_remove: 17903 list_del_init(&hrq->list); 17904 list_del_init(&drq->list); 17905 return status; 17906 } 17907 17908 /** 17909 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17910 * @phba: The virtual port for which this call being executed. 17911 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17912 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17913 * @xritag: the xritag that ties this io to the SGL pages. 17914 * 17915 * This routine will post the sgl pages for the IO that has the xritag 17916 * that is in the iocbq structure. The xritag is assigned during iocbq 17917 * creation and persists for as long as the driver is loaded. 17918 * if the caller has fewer than 256 scatter gather segments to map then 17919 * pdma_phys_addr1 should be 0. 17920 * If the caller needs to map more than 256 scatter gather segment then 17921 * pdma_phys_addr1 should be a valid physical address. 17922 * physical address for SGLs must be 64 byte aligned. 17923 * If you are going to map 2 SGL's then the first one must have 256 entries 17924 * the second sgl can have between 1 and 256 entries. 17925 * 17926 * Return codes: 17927 * 0 - Success 17928 * -ENXIO, -ENOMEM - Failure 17929 **/ 17930 int 17931 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17932 dma_addr_t pdma_phys_addr0, 17933 dma_addr_t pdma_phys_addr1, 17934 uint16_t xritag) 17935 { 17936 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17937 LPFC_MBOXQ_t *mbox; 17938 int rc; 17939 uint32_t shdr_status, shdr_add_status; 17940 uint32_t mbox_tmo; 17941 union lpfc_sli4_cfg_shdr *shdr; 17942 17943 if (xritag == NO_XRI) { 17944 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17945 "0364 Invalid param:\n"); 17946 return -EINVAL; 17947 } 17948 17949 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17950 if (!mbox) 17951 return -ENOMEM; 17952 17953 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17954 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17955 sizeof(struct lpfc_mbx_post_sgl_pages) - 17956 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17957 17958 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17959 &mbox->u.mqe.un.post_sgl_pages; 17960 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17961 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17962 17963 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17964 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17965 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17966 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17967 17968 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17969 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17970 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17971 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17972 if (!phba->sli4_hba.intr_enable) 17973 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17974 else { 17975 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17976 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17977 } 17978 /* The IOCTL status is embedded in the mailbox subheader. */ 17979 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17980 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17981 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17982 if (!phba->sli4_hba.intr_enable) 17983 mempool_free(mbox, phba->mbox_mem_pool); 17984 else if (rc != MBX_TIMEOUT) 17985 mempool_free(mbox, phba->mbox_mem_pool); 17986 if (shdr_status || shdr_add_status || rc) { 17987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17988 "2511 POST_SGL mailbox failed with " 17989 "status x%x add_status x%x, mbx status x%x\n", 17990 shdr_status, shdr_add_status, rc); 17991 } 17992 return 0; 17993 } 17994 17995 /** 17996 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17997 * @phba: pointer to lpfc hba data structure. 17998 * 17999 * This routine is invoked to post rpi header templates to the 18000 * HBA consistent with the SLI-4 interface spec. This routine 18001 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18002 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18003 * 18004 * Returns 18005 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18006 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18007 **/ 18008 static uint16_t 18009 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18010 { 18011 unsigned long xri; 18012 18013 /* 18014 * Fetch the next logical xri. Because this index is logical, 18015 * the driver starts at 0 each time. 18016 */ 18017 spin_lock_irq(&phba->hbalock); 18018 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18019 phba->sli4_hba.max_cfg_param.max_xri); 18020 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18021 spin_unlock_irq(&phba->hbalock); 18022 return NO_XRI; 18023 } else { 18024 set_bit(xri, phba->sli4_hba.xri_bmask); 18025 phba->sli4_hba.max_cfg_param.xri_used++; 18026 } 18027 spin_unlock_irq(&phba->hbalock); 18028 return xri; 18029 } 18030 18031 /** 18032 * __lpfc_sli4_free_xri - Release an xri for reuse. 18033 * @phba: pointer to lpfc hba data structure. 18034 * @xri: xri to release. 18035 * 18036 * This routine is invoked to release an xri to the pool of 18037 * available rpis maintained by the driver. 18038 **/ 18039 static void 18040 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18041 { 18042 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18043 phba->sli4_hba.max_cfg_param.xri_used--; 18044 } 18045 } 18046 18047 /** 18048 * lpfc_sli4_free_xri - Release an xri for reuse. 18049 * @phba: pointer to lpfc hba data structure. 18050 * @xri: xri to release. 18051 * 18052 * This routine is invoked to release an xri to the pool of 18053 * available rpis maintained by the driver. 18054 **/ 18055 void 18056 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18057 { 18058 spin_lock_irq(&phba->hbalock); 18059 __lpfc_sli4_free_xri(phba, xri); 18060 spin_unlock_irq(&phba->hbalock); 18061 } 18062 18063 /** 18064 * lpfc_sli4_next_xritag - Get an xritag for the io 18065 * @phba: Pointer to HBA context object. 18066 * 18067 * This function gets an xritag for the iocb. If there is no unused xritag 18068 * it will return 0xffff. 18069 * The function returns the allocated xritag if successful, else returns zero. 18070 * Zero is not a valid xritag. 18071 * The caller is not required to hold any lock. 18072 **/ 18073 uint16_t 18074 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18075 { 18076 uint16_t xri_index; 18077 18078 xri_index = lpfc_sli4_alloc_xri(phba); 18079 if (xri_index == NO_XRI) 18080 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18081 "2004 Failed to allocate XRI.last XRITAG is %d" 18082 " Max XRI is %d, Used XRI is %d\n", 18083 xri_index, 18084 phba->sli4_hba.max_cfg_param.max_xri, 18085 phba->sli4_hba.max_cfg_param.xri_used); 18086 return xri_index; 18087 } 18088 18089 /** 18090 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18091 * @phba: pointer to lpfc hba data structure. 18092 * @post_sgl_list: pointer to els sgl entry list. 18093 * @post_cnt: number of els sgl entries on the list. 18094 * 18095 * This routine is invoked to post a block of driver's sgl pages to the 18096 * HBA using non-embedded mailbox command. No Lock is held. This routine 18097 * is only called when the driver is loading and after all IO has been 18098 * stopped. 18099 **/ 18100 static int 18101 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18102 struct list_head *post_sgl_list, 18103 int post_cnt) 18104 { 18105 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18106 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18107 struct sgl_page_pairs *sgl_pg_pairs; 18108 void *viraddr; 18109 LPFC_MBOXQ_t *mbox; 18110 uint32_t reqlen, alloclen, pg_pairs; 18111 uint32_t mbox_tmo; 18112 uint16_t xritag_start = 0; 18113 int rc = 0; 18114 uint32_t shdr_status, shdr_add_status; 18115 union lpfc_sli4_cfg_shdr *shdr; 18116 18117 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18118 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18119 if (reqlen > SLI4_PAGE_SIZE) { 18120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18121 "2559 Block sgl registration required DMA " 18122 "size (%d) great than a page\n", reqlen); 18123 return -ENOMEM; 18124 } 18125 18126 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18127 if (!mbox) 18128 return -ENOMEM; 18129 18130 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18131 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18132 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18133 LPFC_SLI4_MBX_NEMBED); 18134 18135 if (alloclen < reqlen) { 18136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18137 "0285 Allocated DMA memory size (%d) is " 18138 "less than the requested DMA memory " 18139 "size (%d)\n", alloclen, reqlen); 18140 lpfc_sli4_mbox_cmd_free(phba, mbox); 18141 return -ENOMEM; 18142 } 18143 /* Set up the SGL pages in the non-embedded DMA pages */ 18144 viraddr = mbox->sge_array->addr[0]; 18145 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18146 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18147 18148 pg_pairs = 0; 18149 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18150 /* Set up the sge entry */ 18151 sgl_pg_pairs->sgl_pg0_addr_lo = 18152 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18153 sgl_pg_pairs->sgl_pg0_addr_hi = 18154 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18155 sgl_pg_pairs->sgl_pg1_addr_lo = 18156 cpu_to_le32(putPaddrLow(0)); 18157 sgl_pg_pairs->sgl_pg1_addr_hi = 18158 cpu_to_le32(putPaddrHigh(0)); 18159 18160 /* Keep the first xritag on the list */ 18161 if (pg_pairs == 0) 18162 xritag_start = sglq_entry->sli4_xritag; 18163 sgl_pg_pairs++; 18164 pg_pairs++; 18165 } 18166 18167 /* Complete initialization and perform endian conversion. */ 18168 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18169 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18170 sgl->word0 = cpu_to_le32(sgl->word0); 18171 18172 if (!phba->sli4_hba.intr_enable) 18173 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18174 else { 18175 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18176 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18177 } 18178 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18179 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18180 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18181 if (!phba->sli4_hba.intr_enable) 18182 lpfc_sli4_mbox_cmd_free(phba, mbox); 18183 else if (rc != MBX_TIMEOUT) 18184 lpfc_sli4_mbox_cmd_free(phba, mbox); 18185 if (shdr_status || shdr_add_status || rc) { 18186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18187 "2513 POST_SGL_BLOCK mailbox command failed " 18188 "status x%x add_status x%x mbx status x%x\n", 18189 shdr_status, shdr_add_status, rc); 18190 rc = -ENXIO; 18191 } 18192 return rc; 18193 } 18194 18195 /** 18196 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18197 * @phba: pointer to lpfc hba data structure. 18198 * @nblist: pointer to nvme buffer list. 18199 * @count: number of scsi buffers on the list. 18200 * 18201 * This routine is invoked to post a block of @count scsi sgl pages from a 18202 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18203 * No Lock is held. 18204 * 18205 **/ 18206 static int 18207 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18208 int count) 18209 { 18210 struct lpfc_io_buf *lpfc_ncmd; 18211 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18212 struct sgl_page_pairs *sgl_pg_pairs; 18213 void *viraddr; 18214 LPFC_MBOXQ_t *mbox; 18215 uint32_t reqlen, alloclen, pg_pairs; 18216 uint32_t mbox_tmo; 18217 uint16_t xritag_start = 0; 18218 int rc = 0; 18219 uint32_t shdr_status, shdr_add_status; 18220 dma_addr_t pdma_phys_bpl1; 18221 union lpfc_sli4_cfg_shdr *shdr; 18222 18223 /* Calculate the requested length of the dma memory */ 18224 reqlen = count * sizeof(struct sgl_page_pairs) + 18225 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18226 if (reqlen > SLI4_PAGE_SIZE) { 18227 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18228 "6118 Block sgl registration required DMA " 18229 "size (%d) great than a page\n", reqlen); 18230 return -ENOMEM; 18231 } 18232 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18233 if (!mbox) { 18234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18235 "6119 Failed to allocate mbox cmd memory\n"); 18236 return -ENOMEM; 18237 } 18238 18239 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18240 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18241 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18242 reqlen, LPFC_SLI4_MBX_NEMBED); 18243 18244 if (alloclen < reqlen) { 18245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18246 "6120 Allocated DMA memory size (%d) is " 18247 "less than the requested DMA memory " 18248 "size (%d)\n", alloclen, reqlen); 18249 lpfc_sli4_mbox_cmd_free(phba, mbox); 18250 return -ENOMEM; 18251 } 18252 18253 /* Get the first SGE entry from the non-embedded DMA memory */ 18254 viraddr = mbox->sge_array->addr[0]; 18255 18256 /* Set up the SGL pages in the non-embedded DMA pages */ 18257 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18258 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18259 18260 pg_pairs = 0; 18261 list_for_each_entry(lpfc_ncmd, nblist, list) { 18262 /* Set up the sge entry */ 18263 sgl_pg_pairs->sgl_pg0_addr_lo = 18264 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18265 sgl_pg_pairs->sgl_pg0_addr_hi = 18266 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18267 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18268 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18269 SGL_PAGE_SIZE; 18270 else 18271 pdma_phys_bpl1 = 0; 18272 sgl_pg_pairs->sgl_pg1_addr_lo = 18273 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18274 sgl_pg_pairs->sgl_pg1_addr_hi = 18275 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18276 /* Keep the first xritag on the list */ 18277 if (pg_pairs == 0) 18278 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18279 sgl_pg_pairs++; 18280 pg_pairs++; 18281 } 18282 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18283 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18284 /* Perform endian conversion if necessary */ 18285 sgl->word0 = cpu_to_le32(sgl->word0); 18286 18287 if (!phba->sli4_hba.intr_enable) { 18288 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18289 } else { 18290 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18291 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18292 } 18293 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18294 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18295 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18296 if (!phba->sli4_hba.intr_enable) 18297 lpfc_sli4_mbox_cmd_free(phba, mbox); 18298 else if (rc != MBX_TIMEOUT) 18299 lpfc_sli4_mbox_cmd_free(phba, mbox); 18300 if (shdr_status || shdr_add_status || rc) { 18301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18302 "6125 POST_SGL_BLOCK mailbox command failed " 18303 "status x%x add_status x%x mbx status x%x\n", 18304 shdr_status, shdr_add_status, rc); 18305 rc = -ENXIO; 18306 } 18307 return rc; 18308 } 18309 18310 /** 18311 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18312 * @phba: pointer to lpfc hba data structure. 18313 * @post_nblist: pointer to the nvme buffer list. 18314 * @sb_count: number of nvme buffers. 18315 * 18316 * This routine walks a list of nvme buffers that was passed in. It attempts 18317 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18318 * uses the non-embedded SGL block post mailbox commands to post to the port. 18319 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18320 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18321 * must be local list, thus no lock is needed when manipulate the list. 18322 * 18323 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18324 **/ 18325 int 18326 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18327 struct list_head *post_nblist, int sb_count) 18328 { 18329 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18330 int status, sgl_size; 18331 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18332 dma_addr_t pdma_phys_sgl1; 18333 int last_xritag = NO_XRI; 18334 int cur_xritag; 18335 LIST_HEAD(prep_nblist); 18336 LIST_HEAD(blck_nblist); 18337 LIST_HEAD(nvme_nblist); 18338 18339 /* sanity check */ 18340 if (sb_count <= 0) 18341 return -EINVAL; 18342 18343 sgl_size = phba->cfg_sg_dma_buf_size; 18344 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18345 list_del_init(&lpfc_ncmd->list); 18346 block_cnt++; 18347 if ((last_xritag != NO_XRI) && 18348 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18349 /* a hole in xri block, form a sgl posting block */ 18350 list_splice_init(&prep_nblist, &blck_nblist); 18351 post_cnt = block_cnt - 1; 18352 /* prepare list for next posting block */ 18353 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18354 block_cnt = 1; 18355 } else { 18356 /* prepare list for next posting block */ 18357 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18358 /* enough sgls for non-embed sgl mbox command */ 18359 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18360 list_splice_init(&prep_nblist, &blck_nblist); 18361 post_cnt = block_cnt; 18362 block_cnt = 0; 18363 } 18364 } 18365 num_posting++; 18366 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18367 18368 /* end of repost sgl list condition for NVME buffers */ 18369 if (num_posting == sb_count) { 18370 if (post_cnt == 0) { 18371 /* last sgl posting block */ 18372 list_splice_init(&prep_nblist, &blck_nblist); 18373 post_cnt = block_cnt; 18374 } else if (block_cnt == 1) { 18375 /* last single sgl with non-contiguous xri */ 18376 if (sgl_size > SGL_PAGE_SIZE) 18377 pdma_phys_sgl1 = 18378 lpfc_ncmd->dma_phys_sgl + 18379 SGL_PAGE_SIZE; 18380 else 18381 pdma_phys_sgl1 = 0; 18382 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18383 status = lpfc_sli4_post_sgl( 18384 phba, lpfc_ncmd->dma_phys_sgl, 18385 pdma_phys_sgl1, cur_xritag); 18386 if (status) { 18387 /* Post error. Buffer unavailable. */ 18388 lpfc_ncmd->flags |= 18389 LPFC_SBUF_NOT_POSTED; 18390 } else { 18391 /* Post success. Bffer available. */ 18392 lpfc_ncmd->flags &= 18393 ~LPFC_SBUF_NOT_POSTED; 18394 lpfc_ncmd->status = IOSTAT_SUCCESS; 18395 num_posted++; 18396 } 18397 /* success, put on NVME buffer sgl list */ 18398 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18399 } 18400 } 18401 18402 /* continue until a nembed page worth of sgls */ 18403 if (post_cnt == 0) 18404 continue; 18405 18406 /* post block of NVME buffer list sgls */ 18407 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18408 post_cnt); 18409 18410 /* don't reset xirtag due to hole in xri block */ 18411 if (block_cnt == 0) 18412 last_xritag = NO_XRI; 18413 18414 /* reset NVME buffer post count for next round of posting */ 18415 post_cnt = 0; 18416 18417 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18418 while (!list_empty(&blck_nblist)) { 18419 list_remove_head(&blck_nblist, lpfc_ncmd, 18420 struct lpfc_io_buf, list); 18421 if (status) { 18422 /* Post error. Mark buffer unavailable. */ 18423 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18424 } else { 18425 /* Post success, Mark buffer available. */ 18426 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18427 lpfc_ncmd->status = IOSTAT_SUCCESS; 18428 num_posted++; 18429 } 18430 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18431 } 18432 } 18433 /* Push NVME buffers with sgl posted to the available list */ 18434 lpfc_io_buf_replenish(phba, &nvme_nblist); 18435 18436 return num_posted; 18437 } 18438 18439 /** 18440 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18441 * @phba: pointer to lpfc_hba struct that the frame was received on 18442 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18443 * 18444 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18445 * valid type of frame that the LPFC driver will handle. This function will 18446 * return a zero if the frame is a valid frame or a non zero value when the 18447 * frame does not pass the check. 18448 **/ 18449 static int 18450 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18451 { 18452 /* make rctl_names static to save stack space */ 18453 struct fc_vft_header *fc_vft_hdr; 18454 struct fc_app_header *fc_app_hdr; 18455 uint32_t *header = (uint32_t *) fc_hdr; 18456 18457 #define FC_RCTL_MDS_DIAGS 0xF4 18458 18459 switch (fc_hdr->fh_r_ctl) { 18460 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18461 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18462 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18463 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18464 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18465 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18466 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18467 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18468 case FC_RCTL_ELS_REQ: /* extended link services request */ 18469 case FC_RCTL_ELS_REP: /* extended link services reply */ 18470 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18471 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18472 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18473 case FC_RCTL_BA_RMC: /* remove connection */ 18474 case FC_RCTL_BA_ACC: /* basic accept */ 18475 case FC_RCTL_BA_RJT: /* basic reject */ 18476 case FC_RCTL_BA_PRMT: 18477 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18478 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18479 case FC_RCTL_P_RJT: /* port reject */ 18480 case FC_RCTL_F_RJT: /* fabric reject */ 18481 case FC_RCTL_P_BSY: /* port busy */ 18482 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18483 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18484 case FC_RCTL_LCR: /* link credit reset */ 18485 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18486 case FC_RCTL_END: /* end */ 18487 break; 18488 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18489 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18490 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18491 return lpfc_fc_frame_check(phba, fc_hdr); 18492 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18493 default: 18494 goto drop; 18495 } 18496 18497 switch (fc_hdr->fh_type) { 18498 case FC_TYPE_BLS: 18499 case FC_TYPE_ELS: 18500 case FC_TYPE_FCP: 18501 case FC_TYPE_CT: 18502 case FC_TYPE_NVME: 18503 break; 18504 case FC_TYPE_IP: 18505 case FC_TYPE_ILS: 18506 default: 18507 goto drop; 18508 } 18509 18510 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18511 phba->cfg_vmid_app_header)) { 18512 /* Application header is 16B device header */ 18513 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18514 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18515 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18516 LOOPBACK_SRC_APPID) { 18517 lpfc_printf_log(phba, KERN_WARNING, 18518 LOG_ELS | LOG_LIBDFC, 18519 "1932 Loopback src app id " 18520 "not matched, app_id:x%x\n", 18521 be32_to_cpu(fc_app_hdr->src_app_id)); 18522 18523 goto drop; 18524 } 18525 } else { 18526 lpfc_printf_log(phba, KERN_WARNING, 18527 LOG_ELS | LOG_LIBDFC, 18528 "1933 Loopback df_ctl bit not set, " 18529 "df_ctl:x%x\n", 18530 fc_hdr->fh_df_ctl); 18531 18532 goto drop; 18533 } 18534 } 18535 18536 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18537 "2538 Received frame rctl:x%x, type:x%x, " 18538 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18539 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18540 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18541 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18542 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18543 be32_to_cpu(header[6])); 18544 return 0; 18545 drop: 18546 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18547 "2539 Dropped frame rctl:x%x type:x%x\n", 18548 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18549 return 1; 18550 } 18551 18552 /** 18553 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18554 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18555 * 18556 * This function processes the FC header to retrieve the VFI from the VF 18557 * header, if one exists. This function will return the VFI if one exists 18558 * or 0 if no VSAN Header exists. 18559 **/ 18560 static uint32_t 18561 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18562 { 18563 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18564 18565 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18566 return 0; 18567 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18568 } 18569 18570 /** 18571 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18572 * @phba: Pointer to the HBA structure to search for the vport on 18573 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18574 * @fcfi: The FC Fabric ID that the frame came from 18575 * @did: Destination ID to match against 18576 * 18577 * This function searches the @phba for a vport that matches the content of the 18578 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18579 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18580 * returns the matching vport pointer or NULL if unable to match frame to a 18581 * vport. 18582 **/ 18583 static struct lpfc_vport * 18584 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18585 uint16_t fcfi, uint32_t did) 18586 { 18587 struct lpfc_vport **vports; 18588 struct lpfc_vport *vport = NULL; 18589 int i; 18590 18591 if (did == Fabric_DID) 18592 return phba->pport; 18593 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18594 phba->link_state != LPFC_HBA_READY) 18595 return phba->pport; 18596 18597 vports = lpfc_create_vport_work_array(phba); 18598 if (vports != NULL) { 18599 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18600 if (phba->fcf.fcfi == fcfi && 18601 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18602 vports[i]->fc_myDID == did) { 18603 vport = vports[i]; 18604 break; 18605 } 18606 } 18607 } 18608 lpfc_destroy_vport_work_array(phba, vports); 18609 return vport; 18610 } 18611 18612 /** 18613 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18614 * @vport: The vport to work on. 18615 * 18616 * This function updates the receive sequence time stamp for this vport. The 18617 * receive sequence time stamp indicates the time that the last frame of the 18618 * the sequence that has been idle for the longest amount of time was received. 18619 * the driver uses this time stamp to indicate if any received sequences have 18620 * timed out. 18621 **/ 18622 static void 18623 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18624 { 18625 struct lpfc_dmabuf *h_buf; 18626 struct hbq_dmabuf *dmabuf = NULL; 18627 18628 /* get the oldest sequence on the rcv list */ 18629 h_buf = list_get_first(&vport->rcv_buffer_list, 18630 struct lpfc_dmabuf, list); 18631 if (!h_buf) 18632 return; 18633 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18634 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18635 } 18636 18637 /** 18638 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18639 * @vport: The vport that the received sequences were sent to. 18640 * 18641 * This function cleans up all outstanding received sequences. This is called 18642 * by the driver when a link event or user action invalidates all the received 18643 * sequences. 18644 **/ 18645 void 18646 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18647 { 18648 struct lpfc_dmabuf *h_buf, *hnext; 18649 struct lpfc_dmabuf *d_buf, *dnext; 18650 struct hbq_dmabuf *dmabuf = NULL; 18651 18652 /* start with the oldest sequence on the rcv list */ 18653 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18654 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18655 list_del_init(&dmabuf->hbuf.list); 18656 list_for_each_entry_safe(d_buf, dnext, 18657 &dmabuf->dbuf.list, list) { 18658 list_del_init(&d_buf->list); 18659 lpfc_in_buf_free(vport->phba, d_buf); 18660 } 18661 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18662 } 18663 } 18664 18665 /** 18666 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18667 * @vport: The vport that the received sequences were sent to. 18668 * 18669 * This function determines whether any received sequences have timed out by 18670 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18671 * indicates that there is at least one timed out sequence this routine will 18672 * go through the received sequences one at a time from most inactive to most 18673 * active to determine which ones need to be cleaned up. Once it has determined 18674 * that a sequence needs to be cleaned up it will simply free up the resources 18675 * without sending an abort. 18676 **/ 18677 void 18678 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18679 { 18680 struct lpfc_dmabuf *h_buf, *hnext; 18681 struct lpfc_dmabuf *d_buf, *dnext; 18682 struct hbq_dmabuf *dmabuf = NULL; 18683 unsigned long timeout; 18684 int abort_count = 0; 18685 18686 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18687 vport->rcv_buffer_time_stamp); 18688 if (list_empty(&vport->rcv_buffer_list) || 18689 time_before(jiffies, timeout)) 18690 return; 18691 /* start with the oldest sequence on the rcv list */ 18692 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18693 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18694 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18695 dmabuf->time_stamp); 18696 if (time_before(jiffies, timeout)) 18697 break; 18698 abort_count++; 18699 list_del_init(&dmabuf->hbuf.list); 18700 list_for_each_entry_safe(d_buf, dnext, 18701 &dmabuf->dbuf.list, list) { 18702 list_del_init(&d_buf->list); 18703 lpfc_in_buf_free(vport->phba, d_buf); 18704 } 18705 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18706 } 18707 if (abort_count) 18708 lpfc_update_rcv_time_stamp(vport); 18709 } 18710 18711 /** 18712 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18713 * @vport: pointer to a vitural port 18714 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18715 * 18716 * This function searches through the existing incomplete sequences that have 18717 * been sent to this @vport. If the frame matches one of the incomplete 18718 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18719 * make up that sequence. If no sequence is found that matches this frame then 18720 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18721 * This function returns a pointer to the first dmabuf in the sequence list that 18722 * the frame was linked to. 18723 **/ 18724 static struct hbq_dmabuf * 18725 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18726 { 18727 struct fc_frame_header *new_hdr; 18728 struct fc_frame_header *temp_hdr; 18729 struct lpfc_dmabuf *d_buf; 18730 struct lpfc_dmabuf *h_buf; 18731 struct hbq_dmabuf *seq_dmabuf = NULL; 18732 struct hbq_dmabuf *temp_dmabuf = NULL; 18733 uint8_t found = 0; 18734 18735 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18736 dmabuf->time_stamp = jiffies; 18737 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18738 18739 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18740 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18741 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18742 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18743 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18744 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18745 continue; 18746 /* found a pending sequence that matches this frame */ 18747 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18748 break; 18749 } 18750 if (!seq_dmabuf) { 18751 /* 18752 * This indicates first frame received for this sequence. 18753 * Queue the buffer on the vport's rcv_buffer_list. 18754 */ 18755 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18756 lpfc_update_rcv_time_stamp(vport); 18757 return dmabuf; 18758 } 18759 temp_hdr = seq_dmabuf->hbuf.virt; 18760 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18761 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18762 list_del_init(&seq_dmabuf->hbuf.list); 18763 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18764 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18765 lpfc_update_rcv_time_stamp(vport); 18766 return dmabuf; 18767 } 18768 /* move this sequence to the tail to indicate a young sequence */ 18769 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18770 seq_dmabuf->time_stamp = jiffies; 18771 lpfc_update_rcv_time_stamp(vport); 18772 if (list_empty(&seq_dmabuf->dbuf.list)) { 18773 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18774 return seq_dmabuf; 18775 } 18776 /* find the correct place in the sequence to insert this frame */ 18777 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18778 while (!found) { 18779 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18780 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18781 /* 18782 * If the frame's sequence count is greater than the frame on 18783 * the list then insert the frame right after this frame 18784 */ 18785 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18786 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18787 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18788 found = 1; 18789 break; 18790 } 18791 18792 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18793 break; 18794 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18795 } 18796 18797 if (found) 18798 return seq_dmabuf; 18799 return NULL; 18800 } 18801 18802 /** 18803 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18804 * @vport: pointer to a vitural port 18805 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18806 * 18807 * This function tries to abort from the partially assembed sequence, described 18808 * by the information from basic abbort @dmabuf. It checks to see whether such 18809 * partially assembled sequence held by the driver. If so, it shall free up all 18810 * the frames from the partially assembled sequence. 18811 * 18812 * Return 18813 * true -- if there is matching partially assembled sequence present and all 18814 * the frames freed with the sequence; 18815 * false -- if there is no matching partially assembled sequence present so 18816 * nothing got aborted in the lower layer driver 18817 **/ 18818 static bool 18819 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18820 struct hbq_dmabuf *dmabuf) 18821 { 18822 struct fc_frame_header *new_hdr; 18823 struct fc_frame_header *temp_hdr; 18824 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18825 struct hbq_dmabuf *seq_dmabuf = NULL; 18826 18827 /* Use the hdr_buf to find the sequence that matches this frame */ 18828 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18829 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18830 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18831 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18832 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18833 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18834 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18835 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18836 continue; 18837 /* found a pending sequence that matches this frame */ 18838 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18839 break; 18840 } 18841 18842 /* Free up all the frames from the partially assembled sequence */ 18843 if (seq_dmabuf) { 18844 list_for_each_entry_safe(d_buf, n_buf, 18845 &seq_dmabuf->dbuf.list, list) { 18846 list_del_init(&d_buf->list); 18847 lpfc_in_buf_free(vport->phba, d_buf); 18848 } 18849 return true; 18850 } 18851 return false; 18852 } 18853 18854 /** 18855 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18856 * @vport: pointer to a vitural port 18857 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18858 * 18859 * This function tries to abort from the assembed sequence from upper level 18860 * protocol, described by the information from basic abbort @dmabuf. It 18861 * checks to see whether such pending context exists at upper level protocol. 18862 * If so, it shall clean up the pending context. 18863 * 18864 * Return 18865 * true -- if there is matching pending context of the sequence cleaned 18866 * at ulp; 18867 * false -- if there is no matching pending context of the sequence present 18868 * at ulp. 18869 **/ 18870 static bool 18871 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18872 { 18873 struct lpfc_hba *phba = vport->phba; 18874 int handled; 18875 18876 /* Accepting abort at ulp with SLI4 only */ 18877 if (phba->sli_rev < LPFC_SLI_REV4) 18878 return false; 18879 18880 /* Register all caring upper level protocols to attend abort */ 18881 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18882 if (handled) 18883 return true; 18884 18885 return false; 18886 } 18887 18888 /** 18889 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18890 * @phba: Pointer to HBA context object. 18891 * @cmd_iocbq: pointer to the command iocbq structure. 18892 * @rsp_iocbq: pointer to the response iocbq structure. 18893 * 18894 * This function handles the sequence abort response iocb command complete 18895 * event. It properly releases the memory allocated to the sequence abort 18896 * accept iocb. 18897 **/ 18898 static void 18899 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18900 struct lpfc_iocbq *cmd_iocbq, 18901 struct lpfc_iocbq *rsp_iocbq) 18902 { 18903 if (cmd_iocbq) { 18904 lpfc_nlp_put(cmd_iocbq->ndlp); 18905 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18906 } 18907 18908 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18909 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18911 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18912 get_job_ulpstatus(phba, rsp_iocbq), 18913 get_job_word4(phba, rsp_iocbq)); 18914 } 18915 18916 /** 18917 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18918 * @phba: Pointer to HBA context object. 18919 * @xri: xri id in transaction. 18920 * 18921 * This function validates the xri maps to the known range of XRIs allocated an 18922 * used by the driver. 18923 **/ 18924 uint16_t 18925 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18926 uint16_t xri) 18927 { 18928 uint16_t i; 18929 18930 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18931 if (xri == phba->sli4_hba.xri_ids[i]) 18932 return i; 18933 } 18934 return NO_XRI; 18935 } 18936 18937 /** 18938 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18939 * @vport: pointer to a virtual port. 18940 * @fc_hdr: pointer to a FC frame header. 18941 * @aborted: was the partially assembled receive sequence successfully aborted 18942 * 18943 * This function sends a basic response to a previous unsol sequence abort 18944 * event after aborting the sequence handling. 18945 **/ 18946 void 18947 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18948 struct fc_frame_header *fc_hdr, bool aborted) 18949 { 18950 struct lpfc_hba *phba = vport->phba; 18951 struct lpfc_iocbq *ctiocb = NULL; 18952 struct lpfc_nodelist *ndlp; 18953 uint16_t oxid, rxid, xri, lxri; 18954 uint32_t sid, fctl; 18955 union lpfc_wqe128 *icmd; 18956 int rc; 18957 18958 if (!lpfc_is_link_up(phba)) 18959 return; 18960 18961 sid = sli4_sid_from_fc_hdr(fc_hdr); 18962 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18963 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18964 18965 ndlp = lpfc_findnode_did(vport, sid); 18966 if (!ndlp) { 18967 ndlp = lpfc_nlp_init(vport, sid); 18968 if (!ndlp) { 18969 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18970 "1268 Failed to allocate ndlp for " 18971 "oxid:x%x SID:x%x\n", oxid, sid); 18972 return; 18973 } 18974 /* Put ndlp onto vport node list */ 18975 lpfc_enqueue_node(vport, ndlp); 18976 } 18977 18978 /* Allocate buffer for rsp iocb */ 18979 ctiocb = lpfc_sli_get_iocbq(phba); 18980 if (!ctiocb) 18981 return; 18982 18983 icmd = &ctiocb->wqe; 18984 18985 /* Extract the F_CTL field from FC_HDR */ 18986 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18987 18988 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18989 if (!ctiocb->ndlp) { 18990 lpfc_sli_release_iocbq(phba, ctiocb); 18991 return; 18992 } 18993 18994 ctiocb->vport = vport; 18995 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18996 ctiocb->sli4_lxritag = NO_XRI; 18997 ctiocb->sli4_xritag = NO_XRI; 18998 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18999 19000 if (fctl & FC_FC_EX_CTX) 19001 /* Exchange responder sent the abort so we 19002 * own the oxid. 19003 */ 19004 xri = oxid; 19005 else 19006 xri = rxid; 19007 lxri = lpfc_sli4_xri_inrange(phba, xri); 19008 if (lxri != NO_XRI) 19009 lpfc_set_rrq_active(phba, ndlp, lxri, 19010 (xri == oxid) ? rxid : oxid, 0); 19011 /* For BA_ABTS from exchange responder, if the logical xri with 19012 * the oxid maps to the FCP XRI range, the port no longer has 19013 * that exchange context, send a BLS_RJT. Override the IOCB for 19014 * a BA_RJT. 19015 */ 19016 if ((fctl & FC_FC_EX_CTX) && 19017 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19018 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19019 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19020 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19021 FC_BA_RJT_INV_XID); 19022 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19023 FC_BA_RJT_UNABLE); 19024 } 19025 19026 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19027 * the driver no longer has that exchange, send a BLS_RJT. Override 19028 * the IOCB for a BA_RJT. 19029 */ 19030 if (aborted == false) { 19031 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19032 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19033 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19034 FC_BA_RJT_INV_XID); 19035 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19036 FC_BA_RJT_UNABLE); 19037 } 19038 19039 if (fctl & FC_FC_EX_CTX) { 19040 /* ABTS sent by responder to CT exchange, construction 19041 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19042 * field and RX_ID from ABTS for RX_ID field. 19043 */ 19044 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19045 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19046 } else { 19047 /* ABTS sent by initiator to CT exchange, construction 19048 * of BA_ACC will need to allocate a new XRI as for the 19049 * XRI_TAG field. 19050 */ 19051 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19052 } 19053 19054 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19055 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19056 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19057 19058 /* Use CT=VPI */ 19059 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19060 ndlp->nlp_DID); 19061 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19062 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19063 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19064 19065 /* Xmit CT abts response on exchange <xid> */ 19066 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19067 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19068 ctiocb->abort_rctl, oxid, phba->link_state); 19069 19070 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19071 if (rc == IOCB_ERROR) { 19072 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19073 "2925 Failed to issue CT ABTS RSP x%x on " 19074 "xri x%x, Data x%x\n", 19075 ctiocb->abort_rctl, oxid, 19076 phba->link_state); 19077 lpfc_nlp_put(ndlp); 19078 ctiocb->ndlp = NULL; 19079 lpfc_sli_release_iocbq(phba, ctiocb); 19080 } 19081 19082 /* if only usage of this nodelist is BLS response, release initial ref 19083 * to free ndlp when transmit completes 19084 */ 19085 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19086 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) && 19087 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19088 set_bit(NLP_DROPPED, &ndlp->nlp_flag); 19089 lpfc_nlp_put(ndlp); 19090 } 19091 } 19092 19093 /** 19094 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19095 * @vport: Pointer to the vport on which this sequence was received 19096 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19097 * 19098 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19099 * receive sequence is only partially assembed by the driver, it shall abort 19100 * the partially assembled frames for the sequence. Otherwise, if the 19101 * unsolicited receive sequence has been completely assembled and passed to 19102 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19103 * unsolicited sequence has been aborted. After that, it will issue a basic 19104 * accept to accept the abort. 19105 **/ 19106 static void 19107 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19108 struct hbq_dmabuf *dmabuf) 19109 { 19110 struct lpfc_hba *phba = vport->phba; 19111 struct fc_frame_header fc_hdr; 19112 uint32_t fctl; 19113 bool aborted; 19114 19115 /* Make a copy of fc_hdr before the dmabuf being released */ 19116 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19117 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19118 19119 if (fctl & FC_FC_EX_CTX) { 19120 /* ABTS by responder to exchange, no cleanup needed */ 19121 aborted = true; 19122 } else { 19123 /* ABTS by initiator to exchange, need to do cleanup */ 19124 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19125 if (aborted == false) 19126 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19127 } 19128 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19129 19130 if (phba->nvmet_support) { 19131 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19132 return; 19133 } 19134 19135 /* Respond with BA_ACC or BA_RJT accordingly */ 19136 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19137 } 19138 19139 /** 19140 * lpfc_seq_complete - Indicates if a sequence is complete 19141 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19142 * 19143 * This function checks the sequence, starting with the frame described by 19144 * @dmabuf, to see if all the frames associated with this sequence are present. 19145 * the frames associated with this sequence are linked to the @dmabuf using the 19146 * dbuf list. This function looks for two major things. 1) That the first frame 19147 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19148 * set. 3) That there are no holes in the sequence count. The function will 19149 * return 1 when the sequence is complete, otherwise it will return 0. 19150 **/ 19151 static int 19152 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19153 { 19154 struct fc_frame_header *hdr; 19155 struct lpfc_dmabuf *d_buf; 19156 struct hbq_dmabuf *seq_dmabuf; 19157 uint32_t fctl; 19158 int seq_count = 0; 19159 19160 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19161 /* make sure first fame of sequence has a sequence count of zero */ 19162 if (hdr->fh_seq_cnt != seq_count) 19163 return 0; 19164 fctl = (hdr->fh_f_ctl[0] << 16 | 19165 hdr->fh_f_ctl[1] << 8 | 19166 hdr->fh_f_ctl[2]); 19167 /* If last frame of sequence we can return success. */ 19168 if (fctl & FC_FC_END_SEQ) 19169 return 1; 19170 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19171 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19172 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19173 /* If there is a hole in the sequence count then fail. */ 19174 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19175 return 0; 19176 fctl = (hdr->fh_f_ctl[0] << 16 | 19177 hdr->fh_f_ctl[1] << 8 | 19178 hdr->fh_f_ctl[2]); 19179 /* If last frame of sequence we can return success. */ 19180 if (fctl & FC_FC_END_SEQ) 19181 return 1; 19182 } 19183 return 0; 19184 } 19185 19186 /** 19187 * lpfc_prep_seq - Prep sequence for ULP processing 19188 * @vport: Pointer to the vport on which this sequence was received 19189 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19190 * 19191 * This function takes a sequence, described by a list of frames, and creates 19192 * a list of iocbq structures to describe the sequence. This iocbq list will be 19193 * used to issue to the generic unsolicited sequence handler. This routine 19194 * returns a pointer to the first iocbq in the list. If the function is unable 19195 * to allocate an iocbq then it throw out the received frames that were not 19196 * able to be described and return a pointer to the first iocbq. If unable to 19197 * allocate any iocbqs (including the first) this function will return NULL. 19198 **/ 19199 static struct lpfc_iocbq * 19200 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19201 { 19202 struct hbq_dmabuf *hbq_buf; 19203 struct lpfc_dmabuf *d_buf, *n_buf; 19204 struct lpfc_iocbq *first_iocbq, *iocbq; 19205 struct fc_frame_header *fc_hdr; 19206 uint32_t sid; 19207 uint32_t len, tot_len; 19208 19209 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19210 /* remove from receive buffer list */ 19211 list_del_init(&seq_dmabuf->hbuf.list); 19212 lpfc_update_rcv_time_stamp(vport); 19213 /* get the Remote Port's SID */ 19214 sid = sli4_sid_from_fc_hdr(fc_hdr); 19215 tot_len = 0; 19216 /* Get an iocbq struct to fill in. */ 19217 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19218 if (first_iocbq) { 19219 /* Initialize the first IOCB. */ 19220 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19221 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19222 IOSTAT_SUCCESS); 19223 first_iocbq->vport = vport; 19224 19225 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19226 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19227 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19228 sli4_did_from_fc_hdr(fc_hdr)); 19229 } 19230 19231 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19232 NO_XRI); 19233 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19234 be16_to_cpu(fc_hdr->fh_ox_id)); 19235 19236 /* put the first buffer into the first iocb */ 19237 tot_len = bf_get(lpfc_rcqe_length, 19238 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19239 19240 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19241 first_iocbq->bpl_dmabuf = NULL; 19242 /* Keep track of the BDE count */ 19243 first_iocbq->wcqe_cmpl.word3 = 1; 19244 19245 if (tot_len > LPFC_DATA_BUF_SIZE) 19246 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19247 LPFC_DATA_BUF_SIZE; 19248 else 19249 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19250 19251 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19252 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19253 sid); 19254 } 19255 iocbq = first_iocbq; 19256 /* 19257 * Each IOCBq can have two Buffers assigned, so go through the list 19258 * of buffers for this sequence and save two buffers in each IOCBq 19259 */ 19260 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19261 if (!iocbq) { 19262 lpfc_in_buf_free(vport->phba, d_buf); 19263 continue; 19264 } 19265 if (!iocbq->bpl_dmabuf) { 19266 iocbq->bpl_dmabuf = d_buf; 19267 iocbq->wcqe_cmpl.word3++; 19268 /* We need to get the size out of the right CQE */ 19269 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19270 len = bf_get(lpfc_rcqe_length, 19271 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19272 iocbq->unsol_rcv_len = len; 19273 iocbq->wcqe_cmpl.total_data_placed += len; 19274 tot_len += len; 19275 } else { 19276 iocbq = lpfc_sli_get_iocbq(vport->phba); 19277 if (!iocbq) { 19278 if (first_iocbq) { 19279 bf_set(lpfc_wcqe_c_status, 19280 &first_iocbq->wcqe_cmpl, 19281 IOSTAT_SUCCESS); 19282 first_iocbq->wcqe_cmpl.parameter = 19283 IOERR_NO_RESOURCES; 19284 } 19285 lpfc_in_buf_free(vport->phba, d_buf); 19286 continue; 19287 } 19288 /* We need to get the size out of the right CQE */ 19289 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19290 len = bf_get(lpfc_rcqe_length, 19291 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19292 iocbq->cmd_dmabuf = d_buf; 19293 iocbq->bpl_dmabuf = NULL; 19294 iocbq->wcqe_cmpl.word3 = 1; 19295 19296 if (len > LPFC_DATA_BUF_SIZE) 19297 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19298 LPFC_DATA_BUF_SIZE; 19299 else 19300 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19301 len; 19302 19303 tot_len += len; 19304 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19305 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19306 sid); 19307 list_add_tail(&iocbq->list, &first_iocbq->list); 19308 } 19309 } 19310 /* Free the sequence's header buffer */ 19311 if (!first_iocbq) 19312 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19313 19314 return first_iocbq; 19315 } 19316 19317 static void 19318 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19319 struct hbq_dmabuf *seq_dmabuf) 19320 { 19321 struct fc_frame_header *fc_hdr; 19322 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19323 struct lpfc_hba *phba = vport->phba; 19324 19325 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19326 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19327 if (!iocbq) { 19328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19329 "2707 Ring %d handler: Failed to allocate " 19330 "iocb Rctl x%x Type x%x received\n", 19331 LPFC_ELS_RING, 19332 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19333 return; 19334 } 19335 if (!lpfc_complete_unsol_iocb(phba, 19336 phba->sli4_hba.els_wq->pring, 19337 iocbq, fc_hdr->fh_r_ctl, 19338 fc_hdr->fh_type)) { 19339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19340 "2540 Ring %d handler: unexpected Rctl " 19341 "x%x Type x%x received\n", 19342 LPFC_ELS_RING, 19343 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19344 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19345 } 19346 19347 /* Free iocb created in lpfc_prep_seq */ 19348 list_for_each_entry_safe(curr_iocb, next_iocb, 19349 &iocbq->list, list) { 19350 list_del_init(&curr_iocb->list); 19351 lpfc_sli_release_iocbq(phba, curr_iocb); 19352 } 19353 lpfc_sli_release_iocbq(phba, iocbq); 19354 } 19355 19356 static void 19357 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19358 struct lpfc_iocbq *rspiocb) 19359 { 19360 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19361 19362 if (pcmd && pcmd->virt) 19363 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19364 kfree(pcmd); 19365 lpfc_sli_release_iocbq(phba, cmdiocb); 19366 lpfc_drain_txq(phba); 19367 } 19368 19369 static void 19370 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19371 struct hbq_dmabuf *dmabuf) 19372 { 19373 struct fc_frame_header *fc_hdr; 19374 struct lpfc_hba *phba = vport->phba; 19375 struct lpfc_iocbq *iocbq = NULL; 19376 union lpfc_wqe128 *pwqe; 19377 struct lpfc_dmabuf *pcmd = NULL; 19378 uint32_t frame_len; 19379 int rc; 19380 unsigned long iflags; 19381 19382 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19383 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19384 19385 /* Send the received frame back */ 19386 iocbq = lpfc_sli_get_iocbq(phba); 19387 if (!iocbq) { 19388 /* Queue cq event and wakeup worker thread to process it */ 19389 spin_lock_irqsave(&phba->hbalock, iflags); 19390 list_add_tail(&dmabuf->cq_event.list, 19391 &phba->sli4_hba.sp_queue_event); 19392 spin_unlock_irqrestore(&phba->hbalock, iflags); 19393 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19394 lpfc_worker_wake_up(phba); 19395 return; 19396 } 19397 19398 /* Allocate buffer for command payload */ 19399 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19400 if (pcmd) 19401 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19402 &pcmd->phys); 19403 if (!pcmd || !pcmd->virt) 19404 goto exit; 19405 19406 INIT_LIST_HEAD(&pcmd->list); 19407 19408 /* copyin the payload */ 19409 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19410 19411 iocbq->cmd_dmabuf = pcmd; 19412 iocbq->vport = vport; 19413 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19414 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19415 iocbq->num_bdes = 0; 19416 19417 pwqe = &iocbq->wqe; 19418 /* fill in BDE's for command */ 19419 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19420 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19421 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19422 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19423 19424 pwqe->send_frame.frame_len = frame_len; 19425 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19426 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19427 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19428 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19429 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19430 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19431 19432 pwqe->generic.wqe_com.word7 = 0; 19433 pwqe->generic.wqe_com.word10 = 0; 19434 19435 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19436 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19437 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19438 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19439 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19440 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19441 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19442 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19443 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19444 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19445 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19446 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19447 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19448 19449 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19450 19451 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19452 if (rc == IOCB_ERROR) 19453 goto exit; 19454 19455 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19456 return; 19457 19458 exit: 19459 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19460 "2023 Unable to process MDS loopback frame\n"); 19461 if (pcmd && pcmd->virt) 19462 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19463 kfree(pcmd); 19464 if (iocbq) 19465 lpfc_sli_release_iocbq(phba, iocbq); 19466 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19467 } 19468 19469 /** 19470 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19471 * @phba: Pointer to HBA context object. 19472 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19473 * 19474 * This function is called with no lock held. This function processes all 19475 * the received buffers and gives it to upper layers when a received buffer 19476 * indicates that it is the final frame in the sequence. The interrupt 19477 * service routine processes received buffers at interrupt contexts. 19478 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19479 * appropriate receive function when the final frame in a sequence is received. 19480 **/ 19481 void 19482 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19483 struct hbq_dmabuf *dmabuf) 19484 { 19485 struct hbq_dmabuf *seq_dmabuf; 19486 struct fc_frame_header *fc_hdr; 19487 struct lpfc_vport *vport; 19488 uint32_t fcfi; 19489 uint32_t did; 19490 19491 /* Process each received buffer */ 19492 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19493 19494 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19495 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19496 vport = phba->pport; 19497 /* Handle MDS Loopback frames */ 19498 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19499 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19500 else 19501 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19502 return; 19503 } 19504 19505 /* check to see if this a valid type of frame */ 19506 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19507 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19508 return; 19509 } 19510 19511 if ((bf_get(lpfc_cqe_code, 19512 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19513 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19514 &dmabuf->cq_event.cqe.rcqe_cmpl); 19515 else 19516 fcfi = bf_get(lpfc_rcqe_fcf_id, 19517 &dmabuf->cq_event.cqe.rcqe_cmpl); 19518 19519 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19520 vport = phba->pport; 19521 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19522 "2023 MDS Loopback %d bytes\n", 19523 bf_get(lpfc_rcqe_length, 19524 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19525 /* Handle MDS Loopback frames */ 19526 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19527 return; 19528 } 19529 19530 /* d_id this frame is directed to */ 19531 did = sli4_did_from_fc_hdr(fc_hdr); 19532 19533 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19534 if (!vport) { 19535 /* throw out the frame */ 19536 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19537 return; 19538 } 19539 19540 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19541 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19542 (did != Fabric_DID)) { 19543 /* 19544 * Throw out the frame if we are not pt2pt. 19545 * The pt2pt protocol allows for discovery frames 19546 * to be received without a registered VPI. 19547 */ 19548 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19549 phba->link_state == LPFC_HBA_READY) { 19550 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19551 return; 19552 } 19553 } 19554 19555 /* Handle the basic abort sequence (BA_ABTS) event */ 19556 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19557 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19558 return; 19559 } 19560 19561 /* Link this frame */ 19562 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19563 if (!seq_dmabuf) { 19564 /* unable to add frame to vport - throw it out */ 19565 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19566 return; 19567 } 19568 /* If not last frame in sequence continue processing frames. */ 19569 if (!lpfc_seq_complete(seq_dmabuf)) 19570 return; 19571 19572 /* Send the complete sequence to the upper layer protocol */ 19573 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19574 } 19575 19576 /** 19577 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19578 * @phba: pointer to lpfc hba data structure. 19579 * 19580 * This routine is invoked to post rpi header templates to the 19581 * HBA consistent with the SLI-4 interface spec. This routine 19582 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19583 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19584 * 19585 * This routine does not require any locks. It's usage is expected 19586 * to be driver load or reset recovery when the driver is 19587 * sequential. 19588 * 19589 * Return codes 19590 * 0 - successful 19591 * -EIO - The mailbox failed to complete successfully. 19592 * When this error occurs, the driver is not guaranteed 19593 * to have any rpi regions posted to the device and 19594 * must either attempt to repost the regions or take a 19595 * fatal error. 19596 **/ 19597 int 19598 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19599 { 19600 struct lpfc_rpi_hdr *rpi_page; 19601 uint32_t rc = 0; 19602 uint16_t lrpi = 0; 19603 19604 /* SLI4 ports that support extents do not require RPI headers. */ 19605 if (!phba->sli4_hba.rpi_hdrs_in_use) 19606 goto exit; 19607 if (phba->sli4_hba.extents_in_use) 19608 return -EIO; 19609 19610 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19611 /* 19612 * Assign the rpi headers a physical rpi only if the driver 19613 * has not initialized those resources. A port reset only 19614 * needs the headers posted. 19615 */ 19616 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19617 LPFC_RPI_RSRC_RDY) 19618 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19619 19620 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19621 if (rc != MBX_SUCCESS) { 19622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19623 "2008 Error %d posting all rpi " 19624 "headers\n", rc); 19625 rc = -EIO; 19626 break; 19627 } 19628 } 19629 19630 exit: 19631 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19632 LPFC_RPI_RSRC_RDY); 19633 return rc; 19634 } 19635 19636 /** 19637 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19638 * @phba: pointer to lpfc hba data structure. 19639 * @rpi_page: pointer to the rpi memory region. 19640 * 19641 * This routine is invoked to post a single rpi header to the 19642 * HBA consistent with the SLI-4 interface spec. This memory region 19643 * maps up to 64 rpi context regions. 19644 * 19645 * Return codes 19646 * 0 - successful 19647 * -ENOMEM - No available memory 19648 * -EIO - The mailbox failed to complete successfully. 19649 **/ 19650 int 19651 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19652 { 19653 LPFC_MBOXQ_t *mboxq; 19654 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19655 uint32_t rc = 0; 19656 uint32_t shdr_status, shdr_add_status; 19657 union lpfc_sli4_cfg_shdr *shdr; 19658 19659 /* SLI4 ports that support extents do not require RPI headers. */ 19660 if (!phba->sli4_hba.rpi_hdrs_in_use) 19661 return rc; 19662 if (phba->sli4_hba.extents_in_use) 19663 return -EIO; 19664 19665 /* The port is notified of the header region via a mailbox command. */ 19666 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19667 if (!mboxq) { 19668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19669 "2001 Unable to allocate memory for issuing " 19670 "SLI_CONFIG_SPECIAL mailbox command\n"); 19671 return -ENOMEM; 19672 } 19673 19674 /* Post all rpi memory regions to the port. */ 19675 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19676 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19677 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19678 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19679 sizeof(struct lpfc_sli4_cfg_mhdr), 19680 LPFC_SLI4_MBX_EMBED); 19681 19682 19683 /* Post the physical rpi to the port for this rpi header. */ 19684 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19685 rpi_page->start_rpi); 19686 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19687 hdr_tmpl, rpi_page->page_count); 19688 19689 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19690 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19691 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19692 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19693 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19694 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19695 mempool_free(mboxq, phba->mbox_mem_pool); 19696 if (shdr_status || shdr_add_status || rc) { 19697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19698 "2514 POST_RPI_HDR mailbox failed with " 19699 "status x%x add_status x%x, mbx status x%x\n", 19700 shdr_status, shdr_add_status, rc); 19701 rc = -ENXIO; 19702 } else { 19703 /* 19704 * The next_rpi stores the next logical module-64 rpi value used 19705 * to post physical rpis in subsequent rpi postings. 19706 */ 19707 spin_lock_irq(&phba->hbalock); 19708 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19709 spin_unlock_irq(&phba->hbalock); 19710 } 19711 return rc; 19712 } 19713 19714 /** 19715 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19716 * @phba: pointer to lpfc hba data structure. 19717 * 19718 * This routine is invoked to post rpi header templates to the 19719 * HBA consistent with the SLI-4 interface spec. This routine 19720 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19721 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19722 * 19723 * Returns 19724 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19725 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19726 **/ 19727 int 19728 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19729 { 19730 unsigned long rpi; 19731 uint16_t max_rpi, rpi_limit; 19732 uint16_t rpi_remaining, lrpi = 0; 19733 struct lpfc_rpi_hdr *rpi_hdr; 19734 unsigned long iflag; 19735 19736 /* 19737 * Fetch the next logical rpi. Because this index is logical, 19738 * the driver starts at 0 each time. 19739 */ 19740 spin_lock_irqsave(&phba->hbalock, iflag); 19741 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19742 rpi_limit = phba->sli4_hba.next_rpi; 19743 19744 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19745 if (rpi >= rpi_limit) 19746 rpi = LPFC_RPI_ALLOC_ERROR; 19747 else { 19748 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19749 phba->sli4_hba.max_cfg_param.rpi_used++; 19750 phba->sli4_hba.rpi_count++; 19751 } 19752 lpfc_printf_log(phba, KERN_INFO, 19753 LOG_NODE | LOG_DISCOVERY, 19754 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19755 (int) rpi, max_rpi, rpi_limit); 19756 19757 /* 19758 * Don't try to allocate more rpi header regions if the device limit 19759 * has been exhausted. 19760 */ 19761 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19762 (phba->sli4_hba.rpi_count >= max_rpi)) { 19763 spin_unlock_irqrestore(&phba->hbalock, iflag); 19764 return rpi; 19765 } 19766 19767 /* 19768 * RPI header postings are not required for SLI4 ports capable of 19769 * extents. 19770 */ 19771 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19772 spin_unlock_irqrestore(&phba->hbalock, iflag); 19773 return rpi; 19774 } 19775 19776 /* 19777 * If the driver is running low on rpi resources, allocate another 19778 * page now. Note that the next_rpi value is used because 19779 * it represents how many are actually in use whereas max_rpi notes 19780 * how many are supported max by the device. 19781 */ 19782 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19783 spin_unlock_irqrestore(&phba->hbalock, iflag); 19784 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19785 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19786 if (!rpi_hdr) { 19787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19788 "2002 Error Could not grow rpi " 19789 "count\n"); 19790 } else { 19791 lrpi = rpi_hdr->start_rpi; 19792 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19793 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19794 } 19795 } 19796 19797 return rpi; 19798 } 19799 19800 /** 19801 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19802 * @phba: pointer to lpfc hba data structure. 19803 * @rpi: rpi to free 19804 * 19805 * This routine is invoked to release an rpi to the pool of 19806 * available rpis maintained by the driver. 19807 **/ 19808 static void 19809 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19810 { 19811 /* 19812 * if the rpi value indicates a prior unreg has already 19813 * been done, skip the unreg. 19814 */ 19815 if (rpi == LPFC_RPI_ALLOC_ERROR) 19816 return; 19817 19818 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19819 phba->sli4_hba.rpi_count--; 19820 phba->sli4_hba.max_cfg_param.rpi_used--; 19821 } else { 19822 lpfc_printf_log(phba, KERN_INFO, 19823 LOG_NODE | LOG_DISCOVERY, 19824 "2016 rpi %x not inuse\n", 19825 rpi); 19826 } 19827 } 19828 19829 /** 19830 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19831 * @phba: pointer to lpfc hba data structure. 19832 * @rpi: rpi to free 19833 * 19834 * This routine is invoked to release an rpi to the pool of 19835 * available rpis maintained by the driver. 19836 **/ 19837 void 19838 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19839 { 19840 spin_lock_irq(&phba->hbalock); 19841 __lpfc_sli4_free_rpi(phba, rpi); 19842 spin_unlock_irq(&phba->hbalock); 19843 } 19844 19845 /** 19846 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19847 * @phba: pointer to lpfc hba data structure. 19848 * 19849 * This routine is invoked to remove the memory region that 19850 * provided rpi via a bitmask. 19851 **/ 19852 void 19853 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19854 { 19855 kfree(phba->sli4_hba.rpi_bmask); 19856 kfree(phba->sli4_hba.rpi_ids); 19857 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19858 } 19859 19860 /** 19861 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19862 * @ndlp: pointer to lpfc nodelist data structure. 19863 * @cmpl: completion call-back. 19864 * @iocbq: data to load as mbox ctx_u information 19865 * 19866 * This routine is invoked to remove the memory region that 19867 * provided rpi via a bitmask. 19868 **/ 19869 int 19870 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19871 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19872 struct lpfc_iocbq *iocbq) 19873 { 19874 LPFC_MBOXQ_t *mboxq; 19875 struct lpfc_hba *phba = ndlp->phba; 19876 int rc; 19877 19878 /* The port is notified of the header region via a mailbox command. */ 19879 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19880 if (!mboxq) 19881 return -ENOMEM; 19882 19883 /* If cmpl assigned, then this nlp_get pairs with 19884 * lpfc_mbx_cmpl_resume_rpi. 19885 * 19886 * Else cmpl is NULL, then this nlp_get pairs with 19887 * lpfc_sli_def_mbox_cmpl. 19888 */ 19889 if (!lpfc_nlp_get(ndlp)) { 19890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19891 "2122 %s: Failed to get nlp ref\n", 19892 __func__); 19893 mempool_free(mboxq, phba->mbox_mem_pool); 19894 return -EIO; 19895 } 19896 19897 /* Post all rpi memory regions to the port. */ 19898 lpfc_resume_rpi(mboxq, ndlp); 19899 if (cmpl) { 19900 mboxq->mbox_cmpl = cmpl; 19901 mboxq->ctx_u.save_iocb = iocbq; 19902 } else 19903 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19904 mboxq->ctx_ndlp = ndlp; 19905 mboxq->vport = ndlp->vport; 19906 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19907 if (rc == MBX_NOT_FINISHED) { 19908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19909 "2010 Resume RPI Mailbox failed " 19910 "status %d, mbxStatus x%x\n", rc, 19911 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19912 lpfc_nlp_put(ndlp); 19913 mempool_free(mboxq, phba->mbox_mem_pool); 19914 return -EIO; 19915 } 19916 return 0; 19917 } 19918 19919 /** 19920 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19921 * @vport: Pointer to the vport for which the vpi is being initialized 19922 * 19923 * This routine is invoked to activate a vpi with the port. 19924 * 19925 * Returns: 19926 * 0 success 19927 * -Evalue otherwise 19928 **/ 19929 int 19930 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19931 { 19932 LPFC_MBOXQ_t *mboxq; 19933 int rc = 0; 19934 int retval = MBX_SUCCESS; 19935 uint32_t mbox_tmo; 19936 struct lpfc_hba *phba = vport->phba; 19937 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19938 if (!mboxq) 19939 return -ENOMEM; 19940 lpfc_init_vpi(phba, mboxq, vport->vpi); 19941 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19942 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19943 if (rc != MBX_SUCCESS) { 19944 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19945 "2022 INIT VPI Mailbox failed " 19946 "status %d, mbxStatus x%x\n", rc, 19947 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19948 retval = -EIO; 19949 } 19950 if (rc != MBX_TIMEOUT) 19951 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19952 19953 return retval; 19954 } 19955 19956 /** 19957 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19958 * @phba: pointer to lpfc hba data structure. 19959 * @mboxq: Pointer to mailbox object. 19960 * 19961 * This routine is invoked to manually add a single FCF record. The caller 19962 * must pass a completely initialized FCF_Record. This routine takes 19963 * care of the nonembedded mailbox operations. 19964 **/ 19965 static void 19966 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19967 { 19968 void *virt_addr; 19969 union lpfc_sli4_cfg_shdr *shdr; 19970 uint32_t shdr_status, shdr_add_status; 19971 19972 virt_addr = mboxq->sge_array->addr[0]; 19973 /* The IOCTL status is embedded in the mailbox subheader. */ 19974 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19975 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19976 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19977 19978 if ((shdr_status || shdr_add_status) && 19979 (shdr_status != STATUS_FCF_IN_USE)) 19980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19981 "2558 ADD_FCF_RECORD mailbox failed with " 19982 "status x%x add_status x%x\n", 19983 shdr_status, shdr_add_status); 19984 19985 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19986 } 19987 19988 /** 19989 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19990 * @phba: pointer to lpfc hba data structure. 19991 * @fcf_record: pointer to the initialized fcf record to add. 19992 * 19993 * This routine is invoked to manually add a single FCF record. The caller 19994 * must pass a completely initialized FCF_Record. This routine takes 19995 * care of the nonembedded mailbox operations. 19996 **/ 19997 int 19998 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19999 { 20000 int rc = 0; 20001 LPFC_MBOXQ_t *mboxq; 20002 uint8_t *bytep; 20003 void *virt_addr; 20004 struct lpfc_mbx_sge sge; 20005 uint32_t alloc_len, req_len; 20006 uint32_t fcfindex; 20007 20008 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20009 if (!mboxq) { 20010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20011 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20012 return -ENOMEM; 20013 } 20014 20015 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20016 sizeof(uint32_t); 20017 20018 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20019 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20020 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20021 req_len, LPFC_SLI4_MBX_NEMBED); 20022 if (alloc_len < req_len) { 20023 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20024 "2523 Allocated DMA memory size (x%x) is " 20025 "less than the requested DMA memory " 20026 "size (x%x)\n", alloc_len, req_len); 20027 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20028 return -ENOMEM; 20029 } 20030 20031 /* 20032 * Get the first SGE entry from the non-embedded DMA memory. This 20033 * routine only uses a single SGE. 20034 */ 20035 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20036 virt_addr = mboxq->sge_array->addr[0]; 20037 /* 20038 * Configure the FCF record for FCFI 0. This is the driver's 20039 * hardcoded default and gets used in nonFIP mode. 20040 */ 20041 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20042 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20043 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20044 20045 /* 20046 * Copy the fcf_index and the FCF Record Data. The data starts after 20047 * the FCoE header plus word10. The data copy needs to be endian 20048 * correct. 20049 */ 20050 bytep += sizeof(uint32_t); 20051 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20052 mboxq->vport = phba->pport; 20053 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20054 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20055 if (rc == MBX_NOT_FINISHED) { 20056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20057 "2515 ADD_FCF_RECORD mailbox failed with " 20058 "status 0x%x\n", rc); 20059 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20060 rc = -EIO; 20061 } else 20062 rc = 0; 20063 20064 return rc; 20065 } 20066 20067 /** 20068 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20069 * @phba: pointer to lpfc hba data structure. 20070 * @fcf_record: pointer to the fcf record to write the default data. 20071 * @fcf_index: FCF table entry index. 20072 * 20073 * This routine is invoked to build the driver's default FCF record. The 20074 * values used are hardcoded. This routine handles memory initialization. 20075 * 20076 **/ 20077 void 20078 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20079 struct fcf_record *fcf_record, 20080 uint16_t fcf_index) 20081 { 20082 memset(fcf_record, 0, sizeof(struct fcf_record)); 20083 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20084 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20085 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20086 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20087 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20088 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20089 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20090 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20091 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20092 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20093 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20094 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20095 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20096 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20097 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20098 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20099 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20100 /* Set the VLAN bit map */ 20101 if (phba->valid_vlan) { 20102 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20103 = 1 << (phba->vlan_id % 8); 20104 } 20105 } 20106 20107 /** 20108 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20109 * @phba: pointer to lpfc hba data structure. 20110 * @fcf_index: FCF table entry offset. 20111 * 20112 * This routine is invoked to scan the entire FCF table by reading FCF 20113 * record and processing it one at a time starting from the @fcf_index 20114 * for initial FCF discovery or fast FCF failover rediscovery. 20115 * 20116 * Return 0 if the mailbox command is submitted successfully, none 0 20117 * otherwise. 20118 **/ 20119 int 20120 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20121 { 20122 int rc = 0, error; 20123 LPFC_MBOXQ_t *mboxq; 20124 20125 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20126 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20127 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20128 if (!mboxq) { 20129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20130 "2000 Failed to allocate mbox for " 20131 "READ_FCF cmd\n"); 20132 error = -ENOMEM; 20133 goto fail_fcf_scan; 20134 } 20135 /* Construct the read FCF record mailbox command */ 20136 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20137 if (rc) { 20138 error = -EINVAL; 20139 goto fail_fcf_scan; 20140 } 20141 /* Issue the mailbox command asynchronously */ 20142 mboxq->vport = phba->pport; 20143 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20144 20145 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20146 20147 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20148 if (rc == MBX_NOT_FINISHED) 20149 error = -EIO; 20150 else { 20151 /* Reset eligible FCF count for new scan */ 20152 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20153 phba->fcf.eligible_fcf_cnt = 0; 20154 error = 0; 20155 } 20156 fail_fcf_scan: 20157 if (error) { 20158 if (mboxq) 20159 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20160 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20161 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20162 } 20163 return error; 20164 } 20165 20166 /** 20167 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20168 * @phba: pointer to lpfc hba data structure. 20169 * @fcf_index: FCF table entry offset. 20170 * 20171 * This routine is invoked to read an FCF record indicated by @fcf_index 20172 * and to use it for FLOGI roundrobin FCF failover. 20173 * 20174 * Return 0 if the mailbox command is submitted successfully, none 0 20175 * otherwise. 20176 **/ 20177 int 20178 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20179 { 20180 int rc = 0, error; 20181 LPFC_MBOXQ_t *mboxq; 20182 20183 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20184 if (!mboxq) { 20185 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20186 "2763 Failed to allocate mbox for " 20187 "READ_FCF cmd\n"); 20188 error = -ENOMEM; 20189 goto fail_fcf_read; 20190 } 20191 /* Construct the read FCF record mailbox command */ 20192 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20193 if (rc) { 20194 error = -EINVAL; 20195 goto fail_fcf_read; 20196 } 20197 /* Issue the mailbox command asynchronously */ 20198 mboxq->vport = phba->pport; 20199 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20200 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20201 if (rc == MBX_NOT_FINISHED) 20202 error = -EIO; 20203 else 20204 error = 0; 20205 20206 fail_fcf_read: 20207 if (error && mboxq) 20208 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20209 return error; 20210 } 20211 20212 /** 20213 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20214 * @phba: pointer to lpfc hba data structure. 20215 * @fcf_index: FCF table entry offset. 20216 * 20217 * This routine is invoked to read an FCF record indicated by @fcf_index to 20218 * determine whether it's eligible for FLOGI roundrobin failover list. 20219 * 20220 * Return 0 if the mailbox command is submitted successfully, none 0 20221 * otherwise. 20222 **/ 20223 int 20224 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20225 { 20226 int rc = 0, error; 20227 LPFC_MBOXQ_t *mboxq; 20228 20229 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20230 if (!mboxq) { 20231 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20232 "2758 Failed to allocate mbox for " 20233 "READ_FCF cmd\n"); 20234 error = -ENOMEM; 20235 goto fail_fcf_read; 20236 } 20237 /* Construct the read FCF record mailbox command */ 20238 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20239 if (rc) { 20240 error = -EINVAL; 20241 goto fail_fcf_read; 20242 } 20243 /* Issue the mailbox command asynchronously */ 20244 mboxq->vport = phba->pport; 20245 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20246 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20247 if (rc == MBX_NOT_FINISHED) 20248 error = -EIO; 20249 else 20250 error = 0; 20251 20252 fail_fcf_read: 20253 if (error && mboxq) 20254 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20255 return error; 20256 } 20257 20258 /** 20259 * lpfc_check_next_fcf_pri_level 20260 * @phba: pointer to the lpfc_hba struct for this port. 20261 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20262 * routine when the rr_bmask is empty. The FCF indecies are put into the 20263 * rr_bmask based on their priority level. Starting from the highest priority 20264 * to the lowest. The most likely FCF candidate will be in the highest 20265 * priority group. When this routine is called it searches the fcf_pri list for 20266 * next lowest priority group and repopulates the rr_bmask with only those 20267 * fcf_indexes. 20268 * returns: 20269 * 1=success 0=failure 20270 **/ 20271 static int 20272 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20273 { 20274 uint16_t next_fcf_pri; 20275 uint16_t last_index; 20276 struct lpfc_fcf_pri *fcf_pri; 20277 int rc; 20278 int ret = 0; 20279 20280 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20281 LPFC_SLI4_FCF_TBL_INDX_MAX); 20282 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20283 "3060 Last IDX %d\n", last_index); 20284 20285 /* Verify the priority list has 2 or more entries */ 20286 spin_lock_irq(&phba->hbalock); 20287 if (list_empty(&phba->fcf.fcf_pri_list) || 20288 list_is_singular(&phba->fcf.fcf_pri_list)) { 20289 spin_unlock_irq(&phba->hbalock); 20290 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20291 "3061 Last IDX %d\n", last_index); 20292 return 0; /* Empty rr list */ 20293 } 20294 spin_unlock_irq(&phba->hbalock); 20295 20296 next_fcf_pri = 0; 20297 /* 20298 * Clear the rr_bmask and set all of the bits that are at this 20299 * priority. 20300 */ 20301 memset(phba->fcf.fcf_rr_bmask, 0, 20302 sizeof(*phba->fcf.fcf_rr_bmask)); 20303 spin_lock_irq(&phba->hbalock); 20304 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20305 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20306 continue; 20307 /* 20308 * the 1st priority that has not FLOGI failed 20309 * will be the highest. 20310 */ 20311 if (!next_fcf_pri) 20312 next_fcf_pri = fcf_pri->fcf_rec.priority; 20313 spin_unlock_irq(&phba->hbalock); 20314 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20315 rc = lpfc_sli4_fcf_rr_index_set(phba, 20316 fcf_pri->fcf_rec.fcf_index); 20317 if (rc) 20318 return 0; 20319 } 20320 spin_lock_irq(&phba->hbalock); 20321 } 20322 /* 20323 * if next_fcf_pri was not set above and the list is not empty then 20324 * we have failed flogis on all of them. So reset flogi failed 20325 * and start at the beginning. 20326 */ 20327 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20328 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20329 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20330 /* 20331 * the 1st priority that has not FLOGI failed 20332 * will be the highest. 20333 */ 20334 if (!next_fcf_pri) 20335 next_fcf_pri = fcf_pri->fcf_rec.priority; 20336 spin_unlock_irq(&phba->hbalock); 20337 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20338 rc = lpfc_sli4_fcf_rr_index_set(phba, 20339 fcf_pri->fcf_rec.fcf_index); 20340 if (rc) 20341 return 0; 20342 } 20343 spin_lock_irq(&phba->hbalock); 20344 } 20345 } else 20346 ret = 1; 20347 spin_unlock_irq(&phba->hbalock); 20348 20349 return ret; 20350 } 20351 /** 20352 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20353 * @phba: pointer to lpfc hba data structure. 20354 * 20355 * This routine is to get the next eligible FCF record index in a round 20356 * robin fashion. If the next eligible FCF record index equals to the 20357 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20358 * shall be returned, otherwise, the next eligible FCF record's index 20359 * shall be returned. 20360 **/ 20361 uint16_t 20362 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20363 { 20364 uint16_t next_fcf_index; 20365 20366 initial_priority: 20367 /* Search start from next bit of currently registered FCF index */ 20368 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20369 20370 next_priority: 20371 /* Determine the next fcf index to check */ 20372 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20373 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20374 LPFC_SLI4_FCF_TBL_INDX_MAX, 20375 next_fcf_index); 20376 20377 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20378 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20379 /* 20380 * If we have wrapped then we need to clear the bits that 20381 * have been tested so that we can detect when we should 20382 * change the priority level. 20383 */ 20384 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20385 LPFC_SLI4_FCF_TBL_INDX_MAX); 20386 } 20387 20388 20389 /* Check roundrobin failover list empty condition */ 20390 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20391 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20392 /* 20393 * If next fcf index is not found check if there are lower 20394 * Priority level fcf's in the fcf_priority list. 20395 * Set up the rr_bmask with all of the avaiable fcf bits 20396 * at that level and continue the selection process. 20397 */ 20398 if (lpfc_check_next_fcf_pri_level(phba)) 20399 goto initial_priority; 20400 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20401 "2844 No roundrobin failover FCF available\n"); 20402 20403 return LPFC_FCOE_FCF_NEXT_NONE; 20404 } 20405 20406 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20407 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20408 LPFC_FCF_FLOGI_FAILED) { 20409 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20410 return LPFC_FCOE_FCF_NEXT_NONE; 20411 20412 goto next_priority; 20413 } 20414 20415 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20416 "2845 Get next roundrobin failover FCF (x%x)\n", 20417 next_fcf_index); 20418 20419 return next_fcf_index; 20420 } 20421 20422 /** 20423 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20424 * @phba: pointer to lpfc hba data structure. 20425 * @fcf_index: index into the FCF table to 'set' 20426 * 20427 * This routine sets the FCF record index in to the eligible bmask for 20428 * roundrobin failover search. It checks to make sure that the index 20429 * does not go beyond the range of the driver allocated bmask dimension 20430 * before setting the bit. 20431 * 20432 * Returns 0 if the index bit successfully set, otherwise, it returns 20433 * -EINVAL. 20434 **/ 20435 int 20436 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20437 { 20438 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20439 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20440 "2610 FCF (x%x) reached driver's book " 20441 "keeping dimension:x%x\n", 20442 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20443 return -EINVAL; 20444 } 20445 /* Set the eligible FCF record index bmask */ 20446 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20447 20448 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20449 "2790 Set FCF (x%x) to roundrobin FCF failover " 20450 "bmask\n", fcf_index); 20451 20452 return 0; 20453 } 20454 20455 /** 20456 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20457 * @phba: pointer to lpfc hba data structure. 20458 * @fcf_index: index into the FCF table to 'clear' 20459 * 20460 * This routine clears the FCF record index from the eligible bmask for 20461 * roundrobin failover search. It checks to make sure that the index 20462 * does not go beyond the range of the driver allocated bmask dimension 20463 * before clearing the bit. 20464 **/ 20465 void 20466 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20467 { 20468 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20469 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20470 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20471 "2762 FCF (x%x) reached driver's book " 20472 "keeping dimension:x%x\n", 20473 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20474 return; 20475 } 20476 /* Clear the eligible FCF record index bmask */ 20477 spin_lock_irq(&phba->hbalock); 20478 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20479 list) { 20480 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20481 list_del_init(&fcf_pri->list); 20482 break; 20483 } 20484 } 20485 spin_unlock_irq(&phba->hbalock); 20486 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20487 20488 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20489 "2791 Clear FCF (x%x) from roundrobin failover " 20490 "bmask\n", fcf_index); 20491 } 20492 20493 /** 20494 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20495 * @phba: pointer to lpfc hba data structure. 20496 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20497 * 20498 * This routine is the completion routine for the rediscover FCF table mailbox 20499 * command. If the mailbox command returned failure, it will try to stop the 20500 * FCF rediscover wait timer. 20501 **/ 20502 static void 20503 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20504 { 20505 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20506 uint32_t shdr_status, shdr_add_status; 20507 20508 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20509 20510 shdr_status = bf_get(lpfc_mbox_hdr_status, 20511 &redisc_fcf->header.cfg_shdr.response); 20512 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20513 &redisc_fcf->header.cfg_shdr.response); 20514 if (shdr_status || shdr_add_status) { 20515 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20516 "2746 Requesting for FCF rediscovery failed " 20517 "status x%x add_status x%x\n", 20518 shdr_status, shdr_add_status); 20519 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20520 spin_lock_irq(&phba->hbalock); 20521 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20522 spin_unlock_irq(&phba->hbalock); 20523 /* 20524 * CVL event triggered FCF rediscover request failed, 20525 * last resort to re-try current registered FCF entry. 20526 */ 20527 lpfc_retry_pport_discovery(phba); 20528 } else { 20529 spin_lock_irq(&phba->hbalock); 20530 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20531 spin_unlock_irq(&phba->hbalock); 20532 /* 20533 * DEAD FCF event triggered FCF rediscover request 20534 * failed, last resort to fail over as a link down 20535 * to FCF registration. 20536 */ 20537 lpfc_sli4_fcf_dead_failthrough(phba); 20538 } 20539 } else { 20540 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20541 "2775 Start FCF rediscover quiescent timer\n"); 20542 /* 20543 * Start FCF rediscovery wait timer for pending FCF 20544 * before rescan FCF record table. 20545 */ 20546 lpfc_fcf_redisc_wait_start_timer(phba); 20547 } 20548 20549 mempool_free(mbox, phba->mbox_mem_pool); 20550 } 20551 20552 /** 20553 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20554 * @phba: pointer to lpfc hba data structure. 20555 * 20556 * This routine is invoked to request for rediscovery of the entire FCF table 20557 * by the port. 20558 **/ 20559 int 20560 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20561 { 20562 LPFC_MBOXQ_t *mbox; 20563 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20564 int rc, length; 20565 20566 /* Cancel retry delay timers to all vports before FCF rediscover */ 20567 lpfc_cancel_all_vport_retry_delay_timer(phba); 20568 20569 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20570 if (!mbox) { 20571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20572 "2745 Failed to allocate mbox for " 20573 "requesting FCF rediscover.\n"); 20574 return -ENOMEM; 20575 } 20576 20577 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20578 sizeof(struct lpfc_sli4_cfg_mhdr)); 20579 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20580 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20581 length, LPFC_SLI4_MBX_EMBED); 20582 20583 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20584 /* Set count to 0 for invalidating the entire FCF database */ 20585 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20586 20587 /* Issue the mailbox command asynchronously */ 20588 mbox->vport = phba->pport; 20589 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20590 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20591 20592 if (rc == MBX_NOT_FINISHED) { 20593 mempool_free(mbox, phba->mbox_mem_pool); 20594 return -EIO; 20595 } 20596 return 0; 20597 } 20598 20599 /** 20600 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20601 * @phba: pointer to lpfc hba data structure. 20602 * 20603 * This function is the failover routine as a last resort to the FCF DEAD 20604 * event when driver failed to perform fast FCF failover. 20605 **/ 20606 void 20607 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20608 { 20609 uint32_t link_state; 20610 20611 /* 20612 * Last resort as FCF DEAD event failover will treat this as 20613 * a link down, but save the link state because we don't want 20614 * it to be changed to Link Down unless it is already down. 20615 */ 20616 link_state = phba->link_state; 20617 lpfc_linkdown(phba); 20618 phba->link_state = link_state; 20619 20620 /* Unregister FCF if no devices connected to it */ 20621 lpfc_unregister_unused_fcf(phba); 20622 } 20623 20624 /** 20625 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20626 * @phba: pointer to lpfc hba data structure. 20627 * @rgn23_data: pointer to configure region 23 data. 20628 * 20629 * This function gets SLI3 port configure region 23 data through memory dump 20630 * mailbox command. When it successfully retrieves data, the size of the data 20631 * will be returned, otherwise, 0 will be returned. 20632 **/ 20633 static uint32_t 20634 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20635 { 20636 LPFC_MBOXQ_t *pmb = NULL; 20637 MAILBOX_t *mb; 20638 uint32_t offset = 0; 20639 int rc; 20640 20641 if (!rgn23_data) 20642 return 0; 20643 20644 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20645 if (!pmb) { 20646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20647 "2600 failed to allocate mailbox memory\n"); 20648 return 0; 20649 } 20650 mb = &pmb->u.mb; 20651 20652 do { 20653 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20654 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20655 20656 if (rc != MBX_SUCCESS) { 20657 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20658 "2601 failed to read config " 20659 "region 23, rc 0x%x Status 0x%x\n", 20660 rc, mb->mbxStatus); 20661 mb->un.varDmp.word_cnt = 0; 20662 } 20663 /* 20664 * dump mem may return a zero when finished or we got a 20665 * mailbox error, either way we are done. 20666 */ 20667 if (mb->un.varDmp.word_cnt == 0) 20668 break; 20669 20670 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20671 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20672 20673 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20674 rgn23_data + offset, 20675 mb->un.varDmp.word_cnt); 20676 offset += mb->un.varDmp.word_cnt; 20677 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20678 20679 mempool_free(pmb, phba->mbox_mem_pool); 20680 return offset; 20681 } 20682 20683 /** 20684 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20685 * @phba: pointer to lpfc hba data structure. 20686 * @rgn23_data: pointer to configure region 23 data. 20687 * 20688 * This function gets SLI4 port configure region 23 data through memory dump 20689 * mailbox command. When it successfully retrieves data, the size of the data 20690 * will be returned, otherwise, 0 will be returned. 20691 **/ 20692 static uint32_t 20693 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20694 { 20695 LPFC_MBOXQ_t *mboxq = NULL; 20696 struct lpfc_dmabuf *mp = NULL; 20697 struct lpfc_mqe *mqe; 20698 uint32_t data_length = 0; 20699 int rc; 20700 20701 if (!rgn23_data) 20702 return 0; 20703 20704 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20705 if (!mboxq) { 20706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20707 "3105 failed to allocate mailbox memory\n"); 20708 return 0; 20709 } 20710 20711 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20712 goto out; 20713 mqe = &mboxq->u.mqe; 20714 mp = mboxq->ctx_buf; 20715 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20716 if (rc) 20717 goto out; 20718 data_length = mqe->un.mb_words[5]; 20719 if (data_length == 0) 20720 goto out; 20721 if (data_length > DMP_RGN23_SIZE) { 20722 data_length = 0; 20723 goto out; 20724 } 20725 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20726 out: 20727 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20728 return data_length; 20729 } 20730 20731 /** 20732 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20733 * @phba: pointer to lpfc hba data structure. 20734 * 20735 * This function read region 23 and parse TLV for port status to 20736 * decide if the user disaled the port. If the TLV indicates the 20737 * port is disabled, the hba_flag is set accordingly. 20738 **/ 20739 void 20740 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20741 { 20742 uint8_t *rgn23_data = NULL; 20743 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20744 uint32_t offset = 0; 20745 20746 /* Get adapter Region 23 data */ 20747 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20748 if (!rgn23_data) 20749 goto out; 20750 20751 if (phba->sli_rev < LPFC_SLI_REV4) 20752 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20753 else { 20754 if_type = bf_get(lpfc_sli_intf_if_type, 20755 &phba->sli4_hba.sli_intf); 20756 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20757 goto out; 20758 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20759 } 20760 20761 if (!data_size) 20762 goto out; 20763 20764 /* Check the region signature first */ 20765 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20767 "2619 Config region 23 has bad signature\n"); 20768 goto out; 20769 } 20770 offset += 4; 20771 20772 /* Check the data structure version */ 20773 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20775 "2620 Config region 23 has bad version\n"); 20776 goto out; 20777 } 20778 offset += 4; 20779 20780 /* Parse TLV entries in the region */ 20781 while (offset < data_size) { 20782 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20783 break; 20784 /* 20785 * If the TLV is not driver specific TLV or driver id is 20786 * not linux driver id, skip the record. 20787 */ 20788 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20789 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20790 (rgn23_data[offset + 3] != 0)) { 20791 offset += rgn23_data[offset + 1] * 4 + 4; 20792 continue; 20793 } 20794 20795 /* Driver found a driver specific TLV in the config region */ 20796 sub_tlv_len = rgn23_data[offset + 1] * 4; 20797 offset += 4; 20798 tlv_offset = 0; 20799 20800 /* 20801 * Search for configured port state sub-TLV. 20802 */ 20803 while ((offset < data_size) && 20804 (tlv_offset < sub_tlv_len)) { 20805 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20806 offset += 4; 20807 tlv_offset += 4; 20808 break; 20809 } 20810 if (rgn23_data[offset] != PORT_STE_TYPE) { 20811 offset += rgn23_data[offset + 1] * 4 + 4; 20812 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20813 continue; 20814 } 20815 20816 /* This HBA contains PORT_STE configured */ 20817 if (!rgn23_data[offset + 2]) 20818 set_bit(LINK_DISABLED, &phba->hba_flag); 20819 20820 goto out; 20821 } 20822 } 20823 20824 out: 20825 kfree(rgn23_data); 20826 return; 20827 } 20828 20829 /** 20830 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20831 * @phba: pointer to lpfc hba data structure 20832 * @shdr_status: wr_object rsp's status field 20833 * @shdr_add_status: wr_object rsp's add_status field 20834 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20835 * @shdr_change_status: wr_object rsp's change_status field 20836 * @shdr_csf: wr_object rsp's csf bit 20837 * 20838 * This routine is intended to be called after a firmware write completes. 20839 * It will log next action items to be performed by the user to instantiate 20840 * the newly downloaded firmware or reason for incompatibility. 20841 **/ 20842 static void 20843 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20844 u32 shdr_add_status, u32 shdr_add_status_2, 20845 u32 shdr_change_status, u32 shdr_csf) 20846 { 20847 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20848 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20849 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20850 "change_status x%02x, csf %01x\n", __func__, 20851 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20852 shdr_status, shdr_add_status, shdr_add_status_2, 20853 shdr_change_status, shdr_csf); 20854 20855 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20856 switch (shdr_add_status_2) { 20857 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20858 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20859 "4199 Firmware write failed: " 20860 "image incompatible with flash x%02x\n", 20861 phba->sli4_hba.flash_id); 20862 break; 20863 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20864 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20865 "4200 Firmware write failed: " 20866 "image incompatible with ASIC " 20867 "architecture x%02x\n", 20868 phba->sli4_hba.asic_rev); 20869 break; 20870 default: 20871 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20872 "4210 Firmware write failed: " 20873 "add_status_2 x%02x\n", 20874 shdr_add_status_2); 20875 break; 20876 } 20877 } else if (!shdr_status && !shdr_add_status) { 20878 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20879 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20880 if (shdr_csf) 20881 shdr_change_status = 20882 LPFC_CHANGE_STATUS_PCI_RESET; 20883 } 20884 20885 switch (shdr_change_status) { 20886 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20887 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20888 "3198 Firmware write complete: System " 20889 "reboot required to instantiate\n"); 20890 break; 20891 case (LPFC_CHANGE_STATUS_FW_RESET): 20892 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20893 "3199 Firmware write complete: " 20894 "Firmware reset required to " 20895 "instantiate\n"); 20896 break; 20897 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20898 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20899 "3200 Firmware write complete: Port " 20900 "Migration or PCI Reset required to " 20901 "instantiate\n"); 20902 break; 20903 case (LPFC_CHANGE_STATUS_PCI_RESET): 20904 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20905 "3201 Firmware write complete: PCI " 20906 "Reset required to instantiate\n"); 20907 break; 20908 default: 20909 break; 20910 } 20911 } 20912 } 20913 20914 /** 20915 * lpfc_wr_object - write an object to the firmware 20916 * @phba: HBA structure that indicates port to create a queue on. 20917 * @dmabuf_list: list of dmabufs to write to the port. 20918 * @size: the total byte value of the objects to write to the port. 20919 * @offset: the current offset to be used to start the transfer. 20920 * 20921 * This routine will create a wr_object mailbox command to send to the port. 20922 * the mailbox command will be constructed using the dma buffers described in 20923 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20924 * BDEs that the imbedded mailbox can support. The @offset variable will be 20925 * used to indicate the starting offset of the transfer and will also return 20926 * the offset after the write object mailbox has completed. @size is used to 20927 * determine the end of the object and whether the eof bit should be set. 20928 * 20929 * Return 0 is successful and offset will contain the new offset to use 20930 * for the next write. 20931 * Return negative value for error cases. 20932 **/ 20933 int 20934 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20935 uint32_t size, uint32_t *offset) 20936 { 20937 struct lpfc_mbx_wr_object *wr_object; 20938 LPFC_MBOXQ_t *mbox; 20939 int rc = 0, i = 0; 20940 int mbox_status = 0; 20941 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20942 uint32_t shdr_change_status = 0, shdr_csf = 0; 20943 uint32_t mbox_tmo; 20944 struct lpfc_dmabuf *dmabuf; 20945 uint32_t written = 0; 20946 bool check_change_status = false; 20947 20948 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20949 if (!mbox) 20950 return -ENOMEM; 20951 20952 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20953 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20954 sizeof(struct lpfc_mbx_wr_object) - 20955 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20956 20957 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20958 wr_object->u.request.write_offset = *offset; 20959 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20960 wr_object->u.request.object_name[0] = 20961 cpu_to_le32(wr_object->u.request.object_name[0]); 20962 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20963 list_for_each_entry(dmabuf, dmabuf_list, list) { 20964 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20965 break; 20966 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20967 wr_object->u.request.bde[i].addrHigh = 20968 putPaddrHigh(dmabuf->phys); 20969 if (written + SLI4_PAGE_SIZE >= size) { 20970 wr_object->u.request.bde[i].tus.f.bdeSize = 20971 (size - written); 20972 written += (size - written); 20973 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20974 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20975 check_change_status = true; 20976 } else { 20977 wr_object->u.request.bde[i].tus.f.bdeSize = 20978 SLI4_PAGE_SIZE; 20979 written += SLI4_PAGE_SIZE; 20980 } 20981 i++; 20982 } 20983 wr_object->u.request.bde_count = i; 20984 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20985 if (!phba->sli4_hba.intr_enable) 20986 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20987 else { 20988 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20989 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20990 } 20991 20992 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20993 rc = mbox_status; 20994 20995 /* The IOCTL status is embedded in the mailbox subheader. */ 20996 shdr_status = bf_get(lpfc_mbox_hdr_status, 20997 &wr_object->header.cfg_shdr.response); 20998 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20999 &wr_object->header.cfg_shdr.response); 21000 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 21001 &wr_object->header.cfg_shdr.response); 21002 if (check_change_status) { 21003 shdr_change_status = bf_get(lpfc_wr_object_change_status, 21004 &wr_object->u.response); 21005 shdr_csf = bf_get(lpfc_wr_object_csf, 21006 &wr_object->u.response); 21007 } 21008 21009 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21011 "3025 Write Object mailbox failed with " 21012 "status x%x add_status x%x, add_status_2 x%x, " 21013 "mbx status x%x\n", 21014 shdr_status, shdr_add_status, shdr_add_status_2, 21015 rc); 21016 rc = -ENXIO; 21017 *offset = shdr_add_status; 21018 } else { 21019 *offset += wr_object->u.response.actual_write_length; 21020 } 21021 21022 if (rc || check_change_status) 21023 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21024 shdr_add_status_2, shdr_change_status, 21025 shdr_csf); 21026 21027 if (!phba->sli4_hba.intr_enable) 21028 mempool_free(mbox, phba->mbox_mem_pool); 21029 else if (mbox_status != MBX_TIMEOUT) 21030 mempool_free(mbox, phba->mbox_mem_pool); 21031 21032 return rc; 21033 } 21034 21035 /** 21036 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21037 * @vport: pointer to vport data structure. 21038 * 21039 * This function iterate through the mailboxq and clean up all REG_LOGIN 21040 * and REG_VPI mailbox commands associated with the vport. This function 21041 * is called when driver want to restart discovery of the vport due to 21042 * a Clear Virtual Link event. 21043 **/ 21044 void 21045 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21046 { 21047 struct lpfc_hba *phba = vport->phba; 21048 LPFC_MBOXQ_t *mb, *nextmb; 21049 struct lpfc_nodelist *ndlp; 21050 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21051 LIST_HEAD(mbox_cmd_list); 21052 uint8_t restart_loop; 21053 21054 /* Clean up internally queued mailbox commands with the vport */ 21055 spin_lock_irq(&phba->hbalock); 21056 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21057 if (mb->vport != vport) 21058 continue; 21059 21060 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21061 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21062 continue; 21063 21064 list_move_tail(&mb->list, &mbox_cmd_list); 21065 } 21066 /* Clean up active mailbox command with the vport */ 21067 mb = phba->sli.mbox_active; 21068 if (mb && (mb->vport == vport)) { 21069 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21070 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21071 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21072 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21073 act_mbx_ndlp = mb->ctx_ndlp; 21074 21075 /* This reference is local to this routine. The 21076 * reference is removed at routine exit. 21077 */ 21078 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21079 21080 /* Unregister the RPI when mailbox complete */ 21081 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21082 } 21083 } 21084 /* Cleanup any mailbox completions which are not yet processed */ 21085 do { 21086 restart_loop = 0; 21087 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21088 /* 21089 * If this mailox is already processed or it is 21090 * for another vport ignore it. 21091 */ 21092 if ((mb->vport != vport) || 21093 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21094 continue; 21095 21096 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21097 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21098 continue; 21099 21100 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21101 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21102 ndlp = mb->ctx_ndlp; 21103 /* Unregister the RPI when mailbox complete */ 21104 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21105 restart_loop = 1; 21106 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21107 break; 21108 } 21109 } 21110 } while (restart_loop); 21111 21112 spin_unlock_irq(&phba->hbalock); 21113 21114 /* Release the cleaned-up mailbox commands */ 21115 while (!list_empty(&mbox_cmd_list)) { 21116 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21117 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21118 ndlp = mb->ctx_ndlp; 21119 mb->ctx_ndlp = NULL; 21120 if (ndlp) { 21121 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21122 lpfc_nlp_put(ndlp); 21123 } 21124 } 21125 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21126 } 21127 21128 /* Release the ndlp with the cleaned-up active mailbox command */ 21129 if (act_mbx_ndlp) { 21130 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag); 21131 lpfc_nlp_put(act_mbx_ndlp); 21132 } 21133 } 21134 21135 /** 21136 * lpfc_drain_txq - Drain the txq 21137 * @phba: Pointer to HBA context object. 21138 * 21139 * This function attempt to submit IOCBs on the txq 21140 * to the adapter. For SLI4 adapters, the txq contains 21141 * ELS IOCBs that have been deferred because the there 21142 * are no SGLs. This congestion can occur with large 21143 * vport counts during node discovery. 21144 **/ 21145 21146 uint32_t 21147 lpfc_drain_txq(struct lpfc_hba *phba) 21148 { 21149 LIST_HEAD(completions); 21150 struct lpfc_sli_ring *pring; 21151 struct lpfc_iocbq *piocbq = NULL; 21152 unsigned long iflags = 0; 21153 char *fail_msg = NULL; 21154 uint32_t txq_cnt = 0; 21155 struct lpfc_queue *wq; 21156 int ret = 0; 21157 21158 if (phba->link_flag & LS_MDS_LOOPBACK) { 21159 /* MDS WQE are posted only to first WQ*/ 21160 wq = phba->sli4_hba.hdwq[0].io_wq; 21161 if (unlikely(!wq)) 21162 return 0; 21163 pring = wq->pring; 21164 } else { 21165 wq = phba->sli4_hba.els_wq; 21166 if (unlikely(!wq)) 21167 return 0; 21168 pring = lpfc_phba_elsring(phba); 21169 } 21170 21171 if (unlikely(!pring) || list_empty(&pring->txq)) 21172 return 0; 21173 21174 spin_lock_irqsave(&pring->ring_lock, iflags); 21175 list_for_each_entry(piocbq, &pring->txq, list) { 21176 txq_cnt++; 21177 } 21178 21179 if (txq_cnt > pring->txq_max) 21180 pring->txq_max = txq_cnt; 21181 21182 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21183 21184 while (!list_empty(&pring->txq)) { 21185 spin_lock_irqsave(&pring->ring_lock, iflags); 21186 21187 piocbq = lpfc_sli_ringtx_get(phba, pring); 21188 if (!piocbq) { 21189 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21191 "2823 txq empty and txq_cnt is %d\n", 21192 txq_cnt); 21193 break; 21194 } 21195 txq_cnt--; 21196 21197 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21198 21199 if (ret && ret != IOCB_BUSY) { 21200 fail_msg = " - Cannot send IO "; 21201 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21202 } 21203 if (fail_msg) { 21204 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21205 /* Failed means we can't issue and need to cancel */ 21206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21207 "2822 IOCB failed %s iotag 0x%x " 21208 "xri 0x%x %d flg x%x\n", 21209 fail_msg, piocbq->iotag, 21210 piocbq->sli4_xritag, ret, 21211 piocbq->cmd_flag); 21212 list_add_tail(&piocbq->list, &completions); 21213 fail_msg = NULL; 21214 } 21215 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21216 if (txq_cnt == 0 || ret == IOCB_BUSY) 21217 break; 21218 } 21219 /* Cancel all the IOCBs that cannot be issued */ 21220 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21221 IOERR_SLI_ABORTED); 21222 21223 return txq_cnt; 21224 } 21225 21226 /** 21227 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21228 * @phba: Pointer to HBA context object. 21229 * @pwqeq: Pointer to command WQE. 21230 * @sglq: Pointer to the scatter gather queue object. 21231 * 21232 * This routine converts the bpl or bde that is in the WQE 21233 * to a sgl list for the sli4 hardware. The physical address 21234 * of the bpl/bde is converted back to a virtual address. 21235 * If the WQE contains a BPL then the list of BDE's is 21236 * converted to sli4_sge's. If the WQE contains a single 21237 * BDE then it is converted to a single sli_sge. 21238 * The WQE is still in cpu endianness so the contents of 21239 * the bpl can be used without byte swapping. 21240 * 21241 * Returns valid XRI = Success, NO_XRI = Failure. 21242 */ 21243 static uint16_t 21244 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21245 struct lpfc_sglq *sglq) 21246 { 21247 uint16_t xritag = NO_XRI; 21248 struct ulp_bde64 *bpl = NULL; 21249 struct ulp_bde64 bde; 21250 struct sli4_sge *sgl = NULL; 21251 struct lpfc_dmabuf *dmabuf; 21252 union lpfc_wqe128 *wqe; 21253 int numBdes = 0; 21254 int i = 0; 21255 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21256 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21257 uint32_t cmd; 21258 21259 if (!pwqeq || !sglq) 21260 return xritag; 21261 21262 sgl = (struct sli4_sge *)sglq->sgl; 21263 wqe = &pwqeq->wqe; 21264 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21265 21266 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21267 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21268 return sglq->sli4_xritag; 21269 numBdes = pwqeq->num_bdes; 21270 if (numBdes) { 21271 /* The addrHigh and addrLow fields within the WQE 21272 * have not been byteswapped yet so there is no 21273 * need to swap them back. 21274 */ 21275 if (pwqeq->bpl_dmabuf) 21276 dmabuf = pwqeq->bpl_dmabuf; 21277 else 21278 return xritag; 21279 21280 bpl = (struct ulp_bde64 *)dmabuf->virt; 21281 if (!bpl) 21282 return xritag; 21283 21284 for (i = 0; i < numBdes; i++) { 21285 /* Should already be byte swapped. */ 21286 sgl->addr_hi = bpl->addrHigh; 21287 sgl->addr_lo = bpl->addrLow; 21288 21289 sgl->word2 = le32_to_cpu(sgl->word2); 21290 if ((i+1) == numBdes) 21291 bf_set(lpfc_sli4_sge_last, sgl, 1); 21292 else 21293 bf_set(lpfc_sli4_sge_last, sgl, 0); 21294 /* swap the size field back to the cpu so we 21295 * can assign it to the sgl. 21296 */ 21297 bde.tus.w = le32_to_cpu(bpl->tus.w); 21298 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21299 /* The offsets in the sgl need to be accumulated 21300 * separately for the request and reply lists. 21301 * The request is always first, the reply follows. 21302 */ 21303 switch (cmd) { 21304 case CMD_GEN_REQUEST64_WQE: 21305 /* add up the reply sg entries */ 21306 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21307 inbound++; 21308 /* first inbound? reset the offset */ 21309 if (inbound == 1) 21310 offset = 0; 21311 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21312 bf_set(lpfc_sli4_sge_type, sgl, 21313 LPFC_SGE_TYPE_DATA); 21314 offset += bde.tus.f.bdeSize; 21315 break; 21316 case CMD_FCP_TRSP64_WQE: 21317 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21318 bf_set(lpfc_sli4_sge_type, sgl, 21319 LPFC_SGE_TYPE_DATA); 21320 break; 21321 case CMD_FCP_TSEND64_WQE: 21322 case CMD_FCP_TRECEIVE64_WQE: 21323 bf_set(lpfc_sli4_sge_type, sgl, 21324 bpl->tus.f.bdeFlags); 21325 if (i < 3) 21326 offset = 0; 21327 else 21328 offset += bde.tus.f.bdeSize; 21329 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21330 break; 21331 } 21332 sgl->word2 = cpu_to_le32(sgl->word2); 21333 bpl++; 21334 sgl++; 21335 } 21336 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21337 /* The addrHigh and addrLow fields of the BDE have not 21338 * been byteswapped yet so they need to be swapped 21339 * before putting them in the sgl. 21340 */ 21341 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21342 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21343 sgl->word2 = le32_to_cpu(sgl->word2); 21344 bf_set(lpfc_sli4_sge_last, sgl, 1); 21345 sgl->word2 = cpu_to_le32(sgl->word2); 21346 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21347 } 21348 return sglq->sli4_xritag; 21349 } 21350 21351 /** 21352 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21353 * @phba: Pointer to HBA context object. 21354 * @qp: Pointer to HDW queue. 21355 * @pwqe: Pointer to command WQE. 21356 **/ 21357 int 21358 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21359 struct lpfc_iocbq *pwqe) 21360 { 21361 union lpfc_wqe128 *wqe = &pwqe->wqe; 21362 struct lpfc_async_xchg_ctx *ctxp; 21363 struct lpfc_queue *wq; 21364 struct lpfc_sglq *sglq; 21365 struct lpfc_sli_ring *pring; 21366 unsigned long iflags; 21367 int ret = 0; 21368 21369 /* NVME_LS and NVME_LS ABTS requests. */ 21370 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21371 pring = phba->sli4_hba.nvmels_wq->pring; 21372 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21373 qp, wq_access); 21374 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21375 if (!sglq) { 21376 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21377 return WQE_BUSY; 21378 } 21379 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21380 pwqe->sli4_xritag = sglq->sli4_xritag; 21381 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21382 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21383 return WQE_ERROR; 21384 } 21385 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21386 pwqe->sli4_xritag); 21387 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21388 if (ret) { 21389 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21390 return ret; 21391 } 21392 21393 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21394 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21395 21396 lpfc_sli4_poll_eq(qp->hba_eq); 21397 return 0; 21398 } 21399 21400 /* NVME_FCREQ and NVME_ABTS requests */ 21401 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21402 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21403 wq = qp->io_wq; 21404 pring = wq->pring; 21405 21406 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21407 21408 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21409 qp, wq_access); 21410 ret = lpfc_sli4_wq_put(wq, wqe); 21411 if (ret) { 21412 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21413 return ret; 21414 } 21415 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21416 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21417 21418 lpfc_sli4_poll_eq(qp->hba_eq); 21419 return 0; 21420 } 21421 21422 /* NVMET requests */ 21423 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21424 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21425 wq = qp->io_wq; 21426 pring = wq->pring; 21427 21428 ctxp = pwqe->context_un.axchg; 21429 sglq = ctxp->ctxbuf->sglq; 21430 if (pwqe->sli4_xritag == NO_XRI) { 21431 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21432 pwqe->sli4_xritag = sglq->sli4_xritag; 21433 } 21434 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21435 pwqe->sli4_xritag); 21436 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21437 21438 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21439 qp, wq_access); 21440 ret = lpfc_sli4_wq_put(wq, wqe); 21441 if (ret) { 21442 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21443 return ret; 21444 } 21445 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21446 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21447 21448 lpfc_sli4_poll_eq(qp->hba_eq); 21449 return 0; 21450 } 21451 return WQE_ERROR; 21452 } 21453 21454 /** 21455 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21456 * @phba: Pointer to HBA context object. 21457 * @cmdiocb: Pointer to driver command iocb object. 21458 * @cmpl: completion function. 21459 * 21460 * Fill the appropriate fields for the abort WQE and call 21461 * internal routine lpfc_sli4_issue_wqe to send the WQE 21462 * This function is called with hbalock held and no ring_lock held. 21463 * 21464 * RETURNS 0 - SUCCESS 21465 **/ 21466 21467 int 21468 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21469 void *cmpl) 21470 { 21471 struct lpfc_vport *vport = cmdiocb->vport; 21472 struct lpfc_iocbq *abtsiocb = NULL; 21473 union lpfc_wqe128 *abtswqe; 21474 struct lpfc_io_buf *lpfc_cmd; 21475 int retval = IOCB_ERROR; 21476 u16 xritag = cmdiocb->sli4_xritag; 21477 21478 /* 21479 * The scsi command can not be in txq and it is in flight because the 21480 * pCmd is still pointing at the SCSI command we have to abort. There 21481 * is no need to search the txcmplq. Just send an abort to the FW. 21482 */ 21483 21484 abtsiocb = __lpfc_sli_get_iocbq(phba); 21485 if (!abtsiocb) 21486 return WQE_NORESOURCE; 21487 21488 /* Indicate the IO is being aborted by the driver. */ 21489 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21490 21491 abtswqe = &abtsiocb->wqe; 21492 memset(abtswqe, 0, sizeof(*abtswqe)); 21493 21494 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21495 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21496 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21497 abtswqe->abort_cmd.rsrvd5 = 0; 21498 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21499 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21500 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21501 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21502 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21503 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21504 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21505 21506 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21507 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21508 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21509 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21510 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21511 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21512 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21513 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21514 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21515 abtsiocb->vport = vport; 21516 abtsiocb->cmd_cmpl = cmpl; 21517 21518 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21519 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21520 21521 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21522 "0359 Abort xri x%x, original iotag x%x, " 21523 "abort cmd iotag x%x retval x%x\n", 21524 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21525 21526 if (retval) { 21527 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21528 __lpfc_sli_release_iocbq(phba, abtsiocb); 21529 } 21530 21531 return retval; 21532 } 21533 21534 #ifdef LPFC_MXP_STAT 21535 /** 21536 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21537 * @phba: pointer to lpfc hba data structure. 21538 * @hwqid: belong to which HWQ. 21539 * 21540 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21541 * 15 seconds after a test case is running. 21542 * 21543 * The user should call lpfc_debugfs_multixripools_write before running a test 21544 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21545 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21546 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21547 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21548 **/ 21549 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21550 { 21551 struct lpfc_sli4_hdw_queue *qp; 21552 struct lpfc_multixri_pool *multixri_pool; 21553 struct lpfc_pvt_pool *pvt_pool; 21554 struct lpfc_pbl_pool *pbl_pool; 21555 u32 txcmplq_cnt; 21556 21557 qp = &phba->sli4_hba.hdwq[hwqid]; 21558 multixri_pool = qp->p_multixri_pool; 21559 if (!multixri_pool) 21560 return; 21561 21562 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21563 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21564 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21565 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21566 21567 multixri_pool->stat_pbl_count = pbl_pool->count; 21568 multixri_pool->stat_pvt_count = pvt_pool->count; 21569 multixri_pool->stat_busy_count = txcmplq_cnt; 21570 } 21571 21572 multixri_pool->stat_snapshot_taken++; 21573 } 21574 #endif 21575 21576 /** 21577 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21578 * @phba: pointer to lpfc hba data structure. 21579 * @hwqid: belong to which HWQ. 21580 * 21581 * This routine moves some XRIs from private to public pool when private pool 21582 * is not busy. 21583 **/ 21584 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21585 { 21586 struct lpfc_multixri_pool *multixri_pool; 21587 u32 io_req_count; 21588 u32 prev_io_req_count; 21589 21590 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21591 if (!multixri_pool) 21592 return; 21593 io_req_count = multixri_pool->io_req_count; 21594 prev_io_req_count = multixri_pool->prev_io_req_count; 21595 21596 if (prev_io_req_count != io_req_count) { 21597 /* Private pool is busy */ 21598 multixri_pool->prev_io_req_count = io_req_count; 21599 } else { 21600 /* Private pool is not busy. 21601 * Move XRIs from private to public pool. 21602 */ 21603 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21604 } 21605 } 21606 21607 /** 21608 * lpfc_adjust_high_watermark - Adjust high watermark 21609 * @phba: pointer to lpfc hba data structure. 21610 * @hwqid: belong to which HWQ. 21611 * 21612 * This routine sets high watermark as number of outstanding XRIs, 21613 * but make sure the new value is between xri_limit/2 and xri_limit. 21614 **/ 21615 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21616 { 21617 u32 new_watermark; 21618 u32 watermark_max; 21619 u32 watermark_min; 21620 u32 xri_limit; 21621 u32 txcmplq_cnt; 21622 u32 abts_io_bufs; 21623 struct lpfc_multixri_pool *multixri_pool; 21624 struct lpfc_sli4_hdw_queue *qp; 21625 21626 qp = &phba->sli4_hba.hdwq[hwqid]; 21627 multixri_pool = qp->p_multixri_pool; 21628 if (!multixri_pool) 21629 return; 21630 xri_limit = multixri_pool->xri_limit; 21631 21632 watermark_max = xri_limit; 21633 watermark_min = xri_limit / 2; 21634 21635 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21636 abts_io_bufs = qp->abts_scsi_io_bufs; 21637 abts_io_bufs += qp->abts_nvme_io_bufs; 21638 21639 new_watermark = txcmplq_cnt + abts_io_bufs; 21640 new_watermark = min(watermark_max, new_watermark); 21641 new_watermark = max(watermark_min, new_watermark); 21642 multixri_pool->pvt_pool.high_watermark = new_watermark; 21643 21644 #ifdef LPFC_MXP_STAT 21645 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21646 new_watermark); 21647 #endif 21648 } 21649 21650 /** 21651 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21652 * @phba: pointer to lpfc hba data structure. 21653 * @hwqid: belong to which HWQ. 21654 * 21655 * This routine is called from hearbeat timer when pvt_pool is idle. 21656 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21657 * The first step moves (all - low_watermark) amount of XRIs. 21658 * The second step moves the rest of XRIs. 21659 **/ 21660 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21661 { 21662 struct lpfc_pbl_pool *pbl_pool; 21663 struct lpfc_pvt_pool *pvt_pool; 21664 struct lpfc_sli4_hdw_queue *qp; 21665 struct lpfc_io_buf *lpfc_ncmd; 21666 struct lpfc_io_buf *lpfc_ncmd_next; 21667 unsigned long iflag; 21668 struct list_head tmp_list; 21669 u32 tmp_count; 21670 21671 qp = &phba->sli4_hba.hdwq[hwqid]; 21672 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21673 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21674 tmp_count = 0; 21675 21676 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21677 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21678 21679 if (pvt_pool->count > pvt_pool->low_watermark) { 21680 /* Step 1: move (all - low_watermark) from pvt_pool 21681 * to pbl_pool 21682 */ 21683 21684 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21685 INIT_LIST_HEAD(&tmp_list); 21686 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21687 &pvt_pool->list, list) { 21688 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21689 tmp_count++; 21690 if (tmp_count >= pvt_pool->low_watermark) 21691 break; 21692 } 21693 21694 /* Move all bufs from pvt_pool to pbl_pool */ 21695 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21696 21697 /* Move all bufs from tmp_list to pvt_pool */ 21698 list_splice(&tmp_list, &pvt_pool->list); 21699 21700 pbl_pool->count += (pvt_pool->count - tmp_count); 21701 pvt_pool->count = tmp_count; 21702 } else { 21703 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21704 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21705 pbl_pool->count += pvt_pool->count; 21706 pvt_pool->count = 0; 21707 } 21708 21709 spin_unlock(&pvt_pool->lock); 21710 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21711 } 21712 21713 /** 21714 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21715 * @phba: pointer to lpfc hba data structure 21716 * @qp: pointer to HDW queue 21717 * @pbl_pool: specified public free XRI pool 21718 * @pvt_pool: specified private free XRI pool 21719 * @count: number of XRIs to move 21720 * 21721 * This routine tries to move some free common bufs from the specified pbl_pool 21722 * to the specified pvt_pool. It might move less than count XRIs if there's not 21723 * enough in public pool. 21724 * 21725 * Return: 21726 * true - if XRIs are successfully moved from the specified pbl_pool to the 21727 * specified pvt_pool 21728 * false - if the specified pbl_pool is empty or locked by someone else 21729 **/ 21730 static bool 21731 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21732 struct lpfc_pbl_pool *pbl_pool, 21733 struct lpfc_pvt_pool *pvt_pool, u32 count) 21734 { 21735 struct lpfc_io_buf *lpfc_ncmd; 21736 struct lpfc_io_buf *lpfc_ncmd_next; 21737 unsigned long iflag; 21738 int ret; 21739 21740 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21741 if (ret) { 21742 if (pbl_pool->count) { 21743 /* Move a batch of XRIs from public to private pool */ 21744 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21745 list_for_each_entry_safe(lpfc_ncmd, 21746 lpfc_ncmd_next, 21747 &pbl_pool->list, 21748 list) { 21749 list_move_tail(&lpfc_ncmd->list, 21750 &pvt_pool->list); 21751 pvt_pool->count++; 21752 pbl_pool->count--; 21753 count--; 21754 if (count == 0) 21755 break; 21756 } 21757 21758 spin_unlock(&pvt_pool->lock); 21759 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21760 return true; 21761 } 21762 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21763 } 21764 21765 return false; 21766 } 21767 21768 /** 21769 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21770 * @phba: pointer to lpfc hba data structure. 21771 * @hwqid: belong to which HWQ. 21772 * @count: number of XRIs to move 21773 * 21774 * This routine tries to find some free common bufs in one of public pools with 21775 * Round Robin method. The search always starts from local hwqid, then the next 21776 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21777 * a batch of free common bufs are moved to private pool on hwqid. 21778 * It might move less than count XRIs if there's not enough in public pool. 21779 **/ 21780 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21781 { 21782 struct lpfc_multixri_pool *multixri_pool; 21783 struct lpfc_multixri_pool *next_multixri_pool; 21784 struct lpfc_pvt_pool *pvt_pool; 21785 struct lpfc_pbl_pool *pbl_pool; 21786 struct lpfc_sli4_hdw_queue *qp; 21787 u32 next_hwqid; 21788 u32 hwq_count; 21789 int ret; 21790 21791 qp = &phba->sli4_hba.hdwq[hwqid]; 21792 multixri_pool = qp->p_multixri_pool; 21793 pvt_pool = &multixri_pool->pvt_pool; 21794 pbl_pool = &multixri_pool->pbl_pool; 21795 21796 /* Check if local pbl_pool is available */ 21797 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21798 if (ret) { 21799 #ifdef LPFC_MXP_STAT 21800 multixri_pool->local_pbl_hit_count++; 21801 #endif 21802 return; 21803 } 21804 21805 hwq_count = phba->cfg_hdw_queue; 21806 21807 /* Get the next hwqid which was found last time */ 21808 next_hwqid = multixri_pool->rrb_next_hwqid; 21809 21810 do { 21811 /* Go to next hwq */ 21812 next_hwqid = (next_hwqid + 1) % hwq_count; 21813 21814 next_multixri_pool = 21815 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21816 pbl_pool = &next_multixri_pool->pbl_pool; 21817 21818 /* Check if the public free xri pool is available */ 21819 ret = _lpfc_move_xri_pbl_to_pvt( 21820 phba, qp, pbl_pool, pvt_pool, count); 21821 21822 /* Exit while-loop if success or all hwqid are checked */ 21823 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21824 21825 /* Starting point for the next time */ 21826 multixri_pool->rrb_next_hwqid = next_hwqid; 21827 21828 if (!ret) { 21829 /* stats: all public pools are empty*/ 21830 multixri_pool->pbl_empty_count++; 21831 } 21832 21833 #ifdef LPFC_MXP_STAT 21834 if (ret) { 21835 if (next_hwqid == hwqid) 21836 multixri_pool->local_pbl_hit_count++; 21837 else 21838 multixri_pool->other_pbl_hit_count++; 21839 } 21840 #endif 21841 } 21842 21843 /** 21844 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21845 * @phba: pointer to lpfc hba data structure. 21846 * @hwqid: belong to which HWQ. 21847 * 21848 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21849 * low watermark. 21850 **/ 21851 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21852 { 21853 struct lpfc_multixri_pool *multixri_pool; 21854 struct lpfc_pvt_pool *pvt_pool; 21855 21856 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21857 pvt_pool = &multixri_pool->pvt_pool; 21858 21859 if (pvt_pool->count < pvt_pool->low_watermark) 21860 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21861 } 21862 21863 /** 21864 * lpfc_release_io_buf - Return one IO buf back to free pool 21865 * @phba: pointer to lpfc hba data structure. 21866 * @lpfc_ncmd: IO buf to be returned. 21867 * @qp: belong to which HWQ. 21868 * 21869 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21870 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21871 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21872 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21873 * lpfc_io_buf_list_put. 21874 **/ 21875 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21876 struct lpfc_sli4_hdw_queue *qp) 21877 { 21878 unsigned long iflag; 21879 struct lpfc_pbl_pool *pbl_pool; 21880 struct lpfc_pvt_pool *pvt_pool; 21881 struct lpfc_epd_pool *epd_pool; 21882 u32 txcmplq_cnt; 21883 u32 xri_owned; 21884 u32 xri_limit; 21885 u32 abts_io_bufs; 21886 21887 /* MUST zero fields if buffer is reused by another protocol */ 21888 lpfc_ncmd->nvmeCmd = NULL; 21889 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21890 21891 if (phba->cfg_xpsgl && !phba->nvmet_support && 21892 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21893 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21894 21895 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21896 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21897 21898 if (phba->cfg_xri_rebalancing) { 21899 if (lpfc_ncmd->expedite) { 21900 /* Return to expedite pool */ 21901 epd_pool = &phba->epd_pool; 21902 spin_lock_irqsave(&epd_pool->lock, iflag); 21903 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21904 epd_pool->count++; 21905 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21906 return; 21907 } 21908 21909 /* Avoid invalid access if an IO sneaks in and is being rejected 21910 * just _after_ xri pools are destroyed in lpfc_offline. 21911 * Nothing much can be done at this point. 21912 */ 21913 if (!qp->p_multixri_pool) 21914 return; 21915 21916 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21917 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21918 21919 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21920 abts_io_bufs = qp->abts_scsi_io_bufs; 21921 abts_io_bufs += qp->abts_nvme_io_bufs; 21922 21923 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21924 xri_limit = qp->p_multixri_pool->xri_limit; 21925 21926 #ifdef LPFC_MXP_STAT 21927 if (xri_owned <= xri_limit) 21928 qp->p_multixri_pool->below_limit_count++; 21929 else 21930 qp->p_multixri_pool->above_limit_count++; 21931 #endif 21932 21933 /* XRI goes to either public or private free xri pool 21934 * based on watermark and xri_limit 21935 */ 21936 if ((pvt_pool->count < pvt_pool->low_watermark) || 21937 (xri_owned < xri_limit && 21938 pvt_pool->count < pvt_pool->high_watermark)) { 21939 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21940 qp, free_pvt_pool); 21941 list_add_tail(&lpfc_ncmd->list, 21942 &pvt_pool->list); 21943 pvt_pool->count++; 21944 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21945 } else { 21946 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21947 qp, free_pub_pool); 21948 list_add_tail(&lpfc_ncmd->list, 21949 &pbl_pool->list); 21950 pbl_pool->count++; 21951 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21952 } 21953 } else { 21954 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21955 qp, free_xri); 21956 list_add_tail(&lpfc_ncmd->list, 21957 &qp->lpfc_io_buf_list_put); 21958 qp->put_io_bufs++; 21959 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21960 iflag); 21961 } 21962 } 21963 21964 /** 21965 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21966 * @phba: pointer to lpfc hba data structure. 21967 * @qp: pointer to HDW queue 21968 * @pvt_pool: pointer to private pool data structure. 21969 * @ndlp: pointer to lpfc nodelist data structure. 21970 * 21971 * This routine tries to get one free IO buf from private pool. 21972 * 21973 * Return: 21974 * pointer to one free IO buf - if private pool is not empty 21975 * NULL - if private pool is empty 21976 **/ 21977 static struct lpfc_io_buf * 21978 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21979 struct lpfc_sli4_hdw_queue *qp, 21980 struct lpfc_pvt_pool *pvt_pool, 21981 struct lpfc_nodelist *ndlp) 21982 { 21983 struct lpfc_io_buf *lpfc_ncmd; 21984 struct lpfc_io_buf *lpfc_ncmd_next; 21985 unsigned long iflag; 21986 21987 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21988 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21989 &pvt_pool->list, list) { 21990 if (lpfc_test_rrq_active( 21991 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21992 continue; 21993 list_del(&lpfc_ncmd->list); 21994 pvt_pool->count--; 21995 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21996 return lpfc_ncmd; 21997 } 21998 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21999 22000 return NULL; 22001 } 22002 22003 /** 22004 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22005 * @phba: pointer to lpfc hba data structure. 22006 * 22007 * This routine tries to get one free IO buf from expedite pool. 22008 * 22009 * Return: 22010 * pointer to one free IO buf - if expedite pool is not empty 22011 * NULL - if expedite pool is empty 22012 **/ 22013 static struct lpfc_io_buf * 22014 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22015 { 22016 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22017 struct lpfc_io_buf *lpfc_ncmd_next; 22018 unsigned long iflag; 22019 struct lpfc_epd_pool *epd_pool; 22020 22021 epd_pool = &phba->epd_pool; 22022 22023 spin_lock_irqsave(&epd_pool->lock, iflag); 22024 if (epd_pool->count > 0) { 22025 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22026 &epd_pool->list, list) { 22027 list_del(&iter->list); 22028 epd_pool->count--; 22029 lpfc_ncmd = iter; 22030 break; 22031 } 22032 } 22033 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22034 22035 return lpfc_ncmd; 22036 } 22037 22038 /** 22039 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22040 * @phba: pointer to lpfc hba data structure. 22041 * @ndlp: pointer to lpfc nodelist data structure. 22042 * @hwqid: belong to which HWQ 22043 * @expedite: 1 means this request is urgent. 22044 * 22045 * This routine will do the following actions and then return a pointer to 22046 * one free IO buf. 22047 * 22048 * 1. If private free xri count is empty, move some XRIs from public to 22049 * private pool. 22050 * 2. Get one XRI from private free xri pool. 22051 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22052 * get one free xri from expedite pool. 22053 * 22054 * Note: ndlp is only used on SCSI side for RRQ testing. 22055 * The caller should pass NULL for ndlp on NVME side. 22056 * 22057 * Return: 22058 * pointer to one free IO buf - if private pool is not empty 22059 * NULL - if private pool is empty 22060 **/ 22061 static struct lpfc_io_buf * 22062 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22063 struct lpfc_nodelist *ndlp, 22064 int hwqid, int expedite) 22065 { 22066 struct lpfc_sli4_hdw_queue *qp; 22067 struct lpfc_multixri_pool *multixri_pool; 22068 struct lpfc_pvt_pool *pvt_pool; 22069 struct lpfc_io_buf *lpfc_ncmd; 22070 22071 qp = &phba->sli4_hba.hdwq[hwqid]; 22072 lpfc_ncmd = NULL; 22073 if (!qp) { 22074 lpfc_printf_log(phba, KERN_INFO, 22075 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22076 "5556 NULL qp for hwqid x%x\n", hwqid); 22077 return lpfc_ncmd; 22078 } 22079 multixri_pool = qp->p_multixri_pool; 22080 if (!multixri_pool) { 22081 lpfc_printf_log(phba, KERN_INFO, 22082 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22083 "5557 NULL multixri for hwqid x%x\n", hwqid); 22084 return lpfc_ncmd; 22085 } 22086 pvt_pool = &multixri_pool->pvt_pool; 22087 if (!pvt_pool) { 22088 lpfc_printf_log(phba, KERN_INFO, 22089 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22090 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22091 return lpfc_ncmd; 22092 } 22093 multixri_pool->io_req_count++; 22094 22095 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22096 if (pvt_pool->count == 0) 22097 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22098 22099 /* Get one XRI from private free xri pool */ 22100 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22101 22102 if (lpfc_ncmd) { 22103 lpfc_ncmd->hdwq = qp; 22104 lpfc_ncmd->hdwq_no = hwqid; 22105 } else if (expedite) { 22106 /* If we fail to get one from pvt_pool and this is an expedite 22107 * request, get one free xri from expedite pool. 22108 */ 22109 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22110 } 22111 22112 return lpfc_ncmd; 22113 } 22114 22115 static inline struct lpfc_io_buf * 22116 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22117 { 22118 struct lpfc_sli4_hdw_queue *qp; 22119 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22120 22121 qp = &phba->sli4_hba.hdwq[idx]; 22122 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22123 &qp->lpfc_io_buf_list_get, list) { 22124 if (lpfc_test_rrq_active(phba, ndlp, 22125 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22126 continue; 22127 22128 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22129 continue; 22130 22131 list_del_init(&lpfc_cmd->list); 22132 qp->get_io_bufs--; 22133 lpfc_cmd->hdwq = qp; 22134 lpfc_cmd->hdwq_no = idx; 22135 return lpfc_cmd; 22136 } 22137 return NULL; 22138 } 22139 22140 /** 22141 * lpfc_get_io_buf - Get one IO buffer from free pool 22142 * @phba: The HBA for which this call is being executed. 22143 * @ndlp: pointer to lpfc nodelist data structure. 22144 * @hwqid: belong to which HWQ 22145 * @expedite: 1 means this request is urgent. 22146 * 22147 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22148 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22149 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22150 * 22151 * Note: ndlp is only used on SCSI side for RRQ testing. 22152 * The caller should pass NULL for ndlp on NVME side. 22153 * 22154 * Return codes: 22155 * NULL - Error 22156 * Pointer to lpfc_io_buf - Success 22157 **/ 22158 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22159 struct lpfc_nodelist *ndlp, 22160 u32 hwqid, int expedite) 22161 { 22162 struct lpfc_sli4_hdw_queue *qp; 22163 unsigned long iflag; 22164 struct lpfc_io_buf *lpfc_cmd; 22165 22166 qp = &phba->sli4_hba.hdwq[hwqid]; 22167 lpfc_cmd = NULL; 22168 if (!qp) { 22169 lpfc_printf_log(phba, KERN_WARNING, 22170 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22171 "5555 NULL qp for hwqid x%x\n", hwqid); 22172 return lpfc_cmd; 22173 } 22174 22175 if (phba->cfg_xri_rebalancing) 22176 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22177 phba, ndlp, hwqid, expedite); 22178 else { 22179 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22180 qp, alloc_xri_get); 22181 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22182 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22183 if (!lpfc_cmd) { 22184 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22185 qp, alloc_xri_put); 22186 list_splice(&qp->lpfc_io_buf_list_put, 22187 &qp->lpfc_io_buf_list_get); 22188 qp->get_io_bufs += qp->put_io_bufs; 22189 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22190 qp->put_io_bufs = 0; 22191 spin_unlock(&qp->io_buf_list_put_lock); 22192 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22193 expedite) 22194 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22195 } 22196 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22197 } 22198 22199 return lpfc_cmd; 22200 } 22201 22202 /** 22203 * lpfc_read_object - Retrieve object data from HBA 22204 * @phba: The HBA for which this call is being executed. 22205 * @rdobject: Pathname of object data we want to read. 22206 * @datap: Pointer to where data will be copied to. 22207 * @datasz: size of data area 22208 * 22209 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22210 * The data will be truncated if datasz is not large enough. 22211 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22212 * Returns the actual bytes read from the object. 22213 * 22214 * This routine is hard coded to use a poll completion. Unlike other 22215 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22216 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22217 * to use interrupt-based completions, code is needed to fully cleanup 22218 * the memory. 22219 */ 22220 int 22221 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22222 uint32_t datasz) 22223 { 22224 struct lpfc_mbx_read_object *read_object; 22225 LPFC_MBOXQ_t *mbox; 22226 int rc, length, eof, j, byte_cnt = 0; 22227 uint32_t shdr_status, shdr_add_status; 22228 union lpfc_sli4_cfg_shdr *shdr; 22229 struct lpfc_dmabuf *pcmd; 22230 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22231 22232 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22233 if (!mbox) 22234 return -ENOMEM; 22235 length = (sizeof(struct lpfc_mbx_read_object) - 22236 sizeof(struct lpfc_sli4_cfg_mhdr)); 22237 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22238 LPFC_MBOX_OPCODE_READ_OBJECT, 22239 length, LPFC_SLI4_MBX_EMBED); 22240 read_object = &mbox->u.mqe.un.read_object; 22241 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22242 22243 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22244 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22245 read_object->u.request.rd_object_offset = 0; 22246 read_object->u.request.rd_object_cnt = 1; 22247 22248 memset((void *)read_object->u.request.rd_object_name, 0, 22249 LPFC_OBJ_NAME_SZ); 22250 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22251 for (j = 0; j < strlen(rdobject); j++) 22252 read_object->u.request.rd_object_name[j] = 22253 cpu_to_le32(rd_object_name[j]); 22254 22255 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22256 if (pcmd) 22257 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22258 if (!pcmd || !pcmd->virt) { 22259 kfree(pcmd); 22260 mempool_free(mbox, phba->mbox_mem_pool); 22261 return -ENOMEM; 22262 } 22263 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22264 read_object->u.request.rd_object_hbuf[0].pa_lo = 22265 putPaddrLow(pcmd->phys); 22266 read_object->u.request.rd_object_hbuf[0].pa_hi = 22267 putPaddrHigh(pcmd->phys); 22268 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22269 22270 mbox->vport = phba->pport; 22271 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22272 mbox->ctx_ndlp = NULL; 22273 22274 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22275 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22276 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22277 22278 if (shdr_status == STATUS_FAILED && 22279 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22280 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22281 "4674 No port cfg file in FW.\n"); 22282 byte_cnt = -ENOENT; 22283 } else if (shdr_status || shdr_add_status || rc) { 22284 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22285 "2625 READ_OBJECT mailbox failed with " 22286 "status x%x add_status x%x, mbx status x%x\n", 22287 shdr_status, shdr_add_status, rc); 22288 byte_cnt = -ENXIO; 22289 } else { 22290 /* Success */ 22291 length = read_object->u.response.rd_object_actual_rlen; 22292 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22293 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22294 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22295 length, datasz, eof); 22296 22297 /* Detect the port config file exists but is empty */ 22298 if (!length && eof) { 22299 byte_cnt = 0; 22300 goto exit; 22301 } 22302 22303 byte_cnt = length; 22304 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22305 } 22306 22307 exit: 22308 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22309 * Free the pcmd and then cleanup with the correct routine. 22310 */ 22311 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22312 kfree(pcmd); 22313 lpfc_sli4_mbox_cmd_free(phba, mbox); 22314 return byte_cnt; 22315 } 22316 22317 /** 22318 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22319 * @phba: The HBA for which this call is being executed. 22320 * @lpfc_buf: IO buf structure to append the SGL chunk 22321 * 22322 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22323 * and will allocate an SGL chunk if the pool is empty. 22324 * 22325 * Return codes: 22326 * NULL - Error 22327 * Pointer to sli4_hybrid_sgl - Success 22328 **/ 22329 struct sli4_hybrid_sgl * 22330 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22331 { 22332 struct sli4_hybrid_sgl *list_entry = NULL; 22333 struct sli4_hybrid_sgl *tmp = NULL; 22334 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22335 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22336 struct list_head *buf_list = &hdwq->sgl_list; 22337 unsigned long iflags; 22338 22339 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22340 22341 if (likely(!list_empty(buf_list))) { 22342 /* break off 1 chunk from the sgl_list */ 22343 list_for_each_entry_safe(list_entry, tmp, 22344 buf_list, list_node) { 22345 list_move_tail(&list_entry->list_node, 22346 &lpfc_buf->dma_sgl_xtra_list); 22347 break; 22348 } 22349 } else { 22350 /* allocate more */ 22351 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22352 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22353 cpu_to_node(hdwq->io_wq->chann)); 22354 if (!tmp) { 22355 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22356 "8353 error kmalloc memory for HDWQ " 22357 "%d %s\n", 22358 lpfc_buf->hdwq_no, __func__); 22359 return NULL; 22360 } 22361 22362 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22363 GFP_ATOMIC, &tmp->dma_phys_sgl); 22364 if (!tmp->dma_sgl) { 22365 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22366 "8354 error pool_alloc memory for HDWQ " 22367 "%d %s\n", 22368 lpfc_buf->hdwq_no, __func__); 22369 kfree(tmp); 22370 return NULL; 22371 } 22372 22373 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22374 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22375 } 22376 22377 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22378 struct sli4_hybrid_sgl, 22379 list_node); 22380 22381 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22382 22383 return allocated_sgl; 22384 } 22385 22386 /** 22387 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22388 * @phba: The HBA for which this call is being executed. 22389 * @lpfc_buf: IO buf structure with the SGL chunk 22390 * 22391 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22392 * 22393 * Return codes: 22394 * 0 - Success 22395 * -EINVAL - Error 22396 **/ 22397 int 22398 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22399 { 22400 int rc = 0; 22401 struct sli4_hybrid_sgl *list_entry = NULL; 22402 struct sli4_hybrid_sgl *tmp = NULL; 22403 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22404 struct list_head *buf_list = &hdwq->sgl_list; 22405 unsigned long iflags; 22406 22407 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22408 22409 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22410 list_for_each_entry_safe(list_entry, tmp, 22411 &lpfc_buf->dma_sgl_xtra_list, 22412 list_node) { 22413 list_move_tail(&list_entry->list_node, 22414 buf_list); 22415 } 22416 } else { 22417 rc = -EINVAL; 22418 } 22419 22420 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22421 return rc; 22422 } 22423 22424 /** 22425 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22426 * @phba: phba object 22427 * @hdwq: hdwq to cleanup sgl buff resources on 22428 * 22429 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22430 * 22431 * Return codes: 22432 * None 22433 **/ 22434 void 22435 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22436 struct lpfc_sli4_hdw_queue *hdwq) 22437 { 22438 struct list_head *buf_list = &hdwq->sgl_list; 22439 struct sli4_hybrid_sgl *list_entry = NULL; 22440 struct sli4_hybrid_sgl *tmp = NULL; 22441 unsigned long iflags; 22442 22443 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22444 22445 /* Free sgl pool */ 22446 list_for_each_entry_safe(list_entry, tmp, 22447 buf_list, list_node) { 22448 list_del(&list_entry->list_node); 22449 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22450 list_entry->dma_sgl, 22451 list_entry->dma_phys_sgl); 22452 kfree(list_entry); 22453 } 22454 22455 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22456 } 22457 22458 /** 22459 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22460 * @phba: The HBA for which this call is being executed. 22461 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22462 * 22463 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22464 * and will allocate an CMD/RSP buffer if the pool is empty. 22465 * 22466 * Return codes: 22467 * NULL - Error 22468 * Pointer to fcp_cmd_rsp_buf - Success 22469 **/ 22470 struct fcp_cmd_rsp_buf * 22471 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22472 struct lpfc_io_buf *lpfc_buf) 22473 { 22474 struct fcp_cmd_rsp_buf *list_entry = NULL; 22475 struct fcp_cmd_rsp_buf *tmp = NULL; 22476 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22477 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22478 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22479 unsigned long iflags; 22480 22481 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22482 22483 if (likely(!list_empty(buf_list))) { 22484 /* break off 1 chunk from the list */ 22485 list_for_each_entry_safe(list_entry, tmp, 22486 buf_list, 22487 list_node) { 22488 list_move_tail(&list_entry->list_node, 22489 &lpfc_buf->dma_cmd_rsp_list); 22490 break; 22491 } 22492 } else { 22493 /* allocate more */ 22494 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22495 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22496 cpu_to_node(hdwq->io_wq->chann)); 22497 if (!tmp) { 22498 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22499 "8355 error kmalloc memory for HDWQ " 22500 "%d %s\n", 22501 lpfc_buf->hdwq_no, __func__); 22502 return NULL; 22503 } 22504 22505 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22506 GFP_ATOMIC, 22507 &tmp->fcp_cmd_rsp_dma_handle); 22508 22509 if (!tmp->fcp_cmnd) { 22510 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22511 "8356 error pool_alloc memory for HDWQ " 22512 "%d %s\n", 22513 lpfc_buf->hdwq_no, __func__); 22514 kfree(tmp); 22515 return NULL; 22516 } 22517 22518 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22519 sizeof(struct fcp_cmnd32)); 22520 22521 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22522 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22523 } 22524 22525 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22526 struct fcp_cmd_rsp_buf, 22527 list_node); 22528 22529 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22530 22531 return allocated_buf; 22532 } 22533 22534 /** 22535 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22536 * @phba: The HBA for which this call is being executed. 22537 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22538 * 22539 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22540 * 22541 * Return codes: 22542 * 0 - Success 22543 * -EINVAL - Error 22544 **/ 22545 int 22546 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22547 struct lpfc_io_buf *lpfc_buf) 22548 { 22549 int rc = 0; 22550 struct fcp_cmd_rsp_buf *list_entry = NULL; 22551 struct fcp_cmd_rsp_buf *tmp = NULL; 22552 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22553 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22554 unsigned long iflags; 22555 22556 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22557 22558 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22559 list_for_each_entry_safe(list_entry, tmp, 22560 &lpfc_buf->dma_cmd_rsp_list, 22561 list_node) { 22562 list_move_tail(&list_entry->list_node, 22563 buf_list); 22564 } 22565 } else { 22566 rc = -EINVAL; 22567 } 22568 22569 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22570 return rc; 22571 } 22572 22573 /** 22574 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22575 * @phba: phba object 22576 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22577 * 22578 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22579 * 22580 * Return codes: 22581 * None 22582 **/ 22583 void 22584 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22585 struct lpfc_sli4_hdw_queue *hdwq) 22586 { 22587 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22588 struct fcp_cmd_rsp_buf *list_entry = NULL; 22589 struct fcp_cmd_rsp_buf *tmp = NULL; 22590 unsigned long iflags; 22591 22592 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22593 22594 /* Free cmd_rsp buf pool */ 22595 list_for_each_entry_safe(list_entry, tmp, 22596 buf_list, 22597 list_node) { 22598 list_del(&list_entry->list_node); 22599 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22600 list_entry->fcp_cmnd, 22601 list_entry->fcp_cmd_rsp_dma_handle); 22602 kfree(list_entry); 22603 } 22604 22605 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22606 } 22607 22608 /** 22609 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22610 * @phba: phba object 22611 * @job: job entry of the command to be posted. 22612 * 22613 * Fill the common fields of the wqe for each of the command. 22614 * 22615 * Return codes: 22616 * None 22617 **/ 22618 void 22619 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22620 { 22621 u8 cmnd; 22622 u32 *pcmd; 22623 u32 if_type = 0; 22624 u32 abort_tag; 22625 bool fip; 22626 struct lpfc_nodelist *ndlp = NULL; 22627 union lpfc_wqe128 *wqe = &job->wqe; 22628 u8 command_type = ELS_COMMAND_NON_FIP; 22629 22630 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22631 /* The fcp commands will set command type */ 22632 if (job->cmd_flag & LPFC_IO_FCP) 22633 command_type = FCP_COMMAND; 22634 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22635 command_type = ELS_COMMAND_FIP; 22636 else 22637 command_type = ELS_COMMAND_NON_FIP; 22638 22639 abort_tag = job->iotag; 22640 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22641 22642 switch (cmnd) { 22643 case CMD_ELS_REQUEST64_WQE: 22644 ndlp = job->ndlp; 22645 22646 if_type = bf_get(lpfc_sli_intf_if_type, 22647 &phba->sli4_hba.sli_intf); 22648 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22649 pcmd = (u32 *)job->cmd_dmabuf->virt; 22650 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22651 *pcmd == ELS_CMD_SCR || 22652 *pcmd == ELS_CMD_RDF || 22653 *pcmd == ELS_CMD_EDC || 22654 *pcmd == ELS_CMD_RSCN_XMT || 22655 *pcmd == ELS_CMD_FDISC || 22656 *pcmd == ELS_CMD_LOGO || 22657 *pcmd == ELS_CMD_QFPA || 22658 *pcmd == ELS_CMD_UVEM || 22659 *pcmd == ELS_CMD_PLOGI)) { 22660 bf_set(els_req64_sp, &wqe->els_req, 1); 22661 bf_set(els_req64_sid, &wqe->els_req, 22662 job->vport->fc_myDID); 22663 22664 if ((*pcmd == ELS_CMD_FLOGI) && 22665 !(phba->fc_topology == 22666 LPFC_TOPOLOGY_LOOP)) 22667 bf_set(els_req64_sid, &wqe->els_req, 0); 22668 22669 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22670 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22671 phba->vpi_ids[job->vport->vpi]); 22672 } else if (pcmd) { 22673 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22674 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22675 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22676 } 22677 } 22678 22679 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22680 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22681 22682 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22683 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22684 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22685 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22686 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22687 break; 22688 case CMD_XMIT_ELS_RSP64_WQE: 22689 ndlp = job->ndlp; 22690 22691 /* word4 */ 22692 wqe->xmit_els_rsp.word4 = 0; 22693 22694 if_type = bf_get(lpfc_sli_intf_if_type, 22695 &phba->sli4_hba.sli_intf); 22696 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22697 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22698 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22699 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22700 job->vport->fc_myDID); 22701 if (job->vport->fc_myDID == Fabric_DID) { 22702 bf_set(wqe_els_did, 22703 &wqe->xmit_els_rsp.wqe_dest, 0); 22704 } 22705 } 22706 } 22707 22708 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22709 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22710 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22711 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22712 LPFC_WQE_LENLOC_WORD3); 22713 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22714 22715 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22716 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22717 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22718 job->vport->fc_myDID); 22719 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22720 } 22721 22722 if (phba->sli_rev == LPFC_SLI_REV4) { 22723 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22724 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22725 22726 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22727 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22728 phba->vpi_ids[job->vport->vpi]); 22729 } 22730 command_type = OTHER_COMMAND; 22731 break; 22732 case CMD_GEN_REQUEST64_WQE: 22733 /* Word 10 */ 22734 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22735 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22736 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22737 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22738 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22739 command_type = OTHER_COMMAND; 22740 break; 22741 case CMD_XMIT_SEQUENCE64_WQE: 22742 if (phba->link_flag & LS_LOOPBACK_MODE) 22743 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22744 22745 wqe->xmit_sequence.rsvd3 = 0; 22746 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22747 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22748 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22749 LPFC_WQE_IOD_WRITE); 22750 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22751 LPFC_WQE_LENLOC_WORD12); 22752 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22753 command_type = OTHER_COMMAND; 22754 break; 22755 case CMD_XMIT_BLS_RSP64_WQE: 22756 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22757 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22758 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22759 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22760 phba->vpi_ids[phba->pport->vpi]); 22761 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22762 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22763 LPFC_WQE_LENLOC_NONE); 22764 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22765 command_type = OTHER_COMMAND; 22766 break; 22767 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22768 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22769 case CMD_SEND_FRAME: /* mds loopback */ 22770 /* cases already formatted for sli4 wqe - no chgs necessary */ 22771 return; 22772 default: 22773 dump_stack(); 22774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22775 "6207 Invalid command 0x%x\n", 22776 cmnd); 22777 break; 22778 } 22779 22780 wqe->generic.wqe_com.abort_tag = abort_tag; 22781 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22782 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22783 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22784 } 22785