1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 1217 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1218 empty = list_empty(&phba->active_rrq_list); 1219 list_add_tail(&rrq->list, &phba->active_rrq_list); 1220 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1221 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 return 0; 1225 out: 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 outnl: 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 int found = 0; 1255 u8 cmnd; 1256 1257 cmnd = get_job_cmnd(phba, piocbq); 1258 1259 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1260 lpfc_cmd = piocbq->io_buf; 1261 ndlp = lpfc_cmd->rdata->pnode; 1262 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1263 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1264 ndlp = piocbq->ndlp; 1265 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1266 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1267 ndlp = NULL; 1268 else 1269 ndlp = piocbq->ndlp; 1270 } else { 1271 ndlp = piocbq->ndlp; 1272 } 1273 1274 spin_lock(&phba->sli4_hba.sgl_list_lock); 1275 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1276 start_sglq = sglq; 1277 while (!found) { 1278 if (!sglq) 1279 break; 1280 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1281 test_bit(sglq->sli4_lxritag, 1282 ndlp->active_rrqs_xri_bitmap)) { 1283 /* This xri has an rrq outstanding for this DID. 1284 * put it back in the list and get another xri. 1285 */ 1286 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1287 sglq = NULL; 1288 list_remove_head(lpfc_els_sgl_list, sglq, 1289 struct lpfc_sglq, list); 1290 if (sglq == start_sglq) { 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 break; 1294 } else 1295 continue; 1296 } 1297 sglq->ndlp = ndlp; 1298 found = 1; 1299 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1300 sglq->state = SGL_ALLOCATED; 1301 } 1302 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1303 return sglq; 1304 } 1305 1306 /** 1307 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1308 * @phba: Pointer to HBA context object. 1309 * @piocbq: Pointer to the iocbq. 1310 * 1311 * This function is called with the sgl_list lock held. This function 1312 * gets a new driver sglq object from the sglq list. If the 1313 * list is not empty then it is successful, it returns pointer to the newly 1314 * allocated sglq object else it returns NULL. 1315 **/ 1316 struct lpfc_sglq * 1317 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1318 { 1319 struct list_head *lpfc_nvmet_sgl_list; 1320 struct lpfc_sglq *sglq = NULL; 1321 1322 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1323 1324 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1325 1326 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1327 if (!sglq) 1328 return NULL; 1329 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1330 sglq->state = SGL_ALLOCATED; 1331 return sglq; 1332 } 1333 1334 /** 1335 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1336 * @phba: Pointer to HBA context object. 1337 * 1338 * This function is called with no lock held. This function 1339 * allocates a new driver iocb object from the iocb pool. If the 1340 * allocation is successful, it returns pointer to the newly 1341 * allocated iocb object else it returns NULL. 1342 **/ 1343 struct lpfc_iocbq * 1344 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1345 { 1346 struct lpfc_iocbq * iocbq = NULL; 1347 unsigned long iflags; 1348 1349 spin_lock_irqsave(&phba->hbalock, iflags); 1350 iocbq = __lpfc_sli_get_iocbq(phba); 1351 spin_unlock_irqrestore(&phba->hbalock, iflags); 1352 return iocbq; 1353 } 1354 1355 /** 1356 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1357 * @phba: Pointer to HBA context object. 1358 * @iocbq: Pointer to driver iocb object. 1359 * 1360 * This function is called to release the driver iocb object 1361 * to the iocb pool. The iotag in the iocb object 1362 * does not change for each use of the iocb object. This function 1363 * clears all other fields of the iocb object when it is freed. 1364 * The sqlq structure that holds the xritag and phys and virtual 1365 * mappings for the scatter gather list is retrieved from the 1366 * active array of sglq. The get of the sglq pointer also clears 1367 * the entry in the array. If the status of the IO indiactes that 1368 * this IO was aborted then the sglq entry it put on the 1369 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1370 * IO has good status or fails for any other reason then the sglq 1371 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1372 * asserted held in the code path calling this routine. 1373 **/ 1374 static void 1375 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1376 { 1377 struct lpfc_sglq *sglq; 1378 unsigned long iflag = 0; 1379 struct lpfc_sli_ring *pring; 1380 1381 if (iocbq->sli4_xritag == NO_XRI) 1382 sglq = NULL; 1383 else 1384 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1385 1386 1387 if (sglq) { 1388 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1389 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1390 iflag); 1391 sglq->state = SGL_FREED; 1392 sglq->ndlp = NULL; 1393 list_add_tail(&sglq->list, 1394 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1395 spin_unlock_irqrestore( 1396 &phba->sli4_hba.sgl_list_lock, iflag); 1397 goto out; 1398 } 1399 1400 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1401 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1402 sglq->state != SGL_XRI_ABORTED) { 1403 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1404 iflag); 1405 1406 /* Check if we can get a reference on ndlp */ 1407 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1408 sglq->ndlp = NULL; 1409 1410 list_add(&sglq->list, 1411 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1412 spin_unlock_irqrestore( 1413 &phba->sli4_hba.sgl_list_lock, iflag); 1414 } else { 1415 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1416 iflag); 1417 sglq->state = SGL_FREED; 1418 sglq->ndlp = NULL; 1419 list_add_tail(&sglq->list, 1420 &phba->sli4_hba.lpfc_els_sgl_list); 1421 spin_unlock_irqrestore( 1422 &phba->sli4_hba.sgl_list_lock, iflag); 1423 pring = lpfc_phba_elsring(phba); 1424 /* Check if TXQ queue needs to be serviced */ 1425 if (pring && (!list_empty(&pring->txq))) 1426 lpfc_worker_wake_up(phba); 1427 } 1428 } 1429 1430 out: 1431 /* 1432 * Clean all volatile data fields, preserve iotag and node struct. 1433 */ 1434 memset_startat(iocbq, 0, wqe); 1435 iocbq->sli4_lxritag = NO_XRI; 1436 iocbq->sli4_xritag = NO_XRI; 1437 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1438 LPFC_IO_NVME_LS); 1439 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1440 } 1441 1442 1443 /** 1444 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1445 * @phba: Pointer to HBA context object. 1446 * @iocbq: Pointer to driver iocb object. 1447 * 1448 * This function is called to release the driver iocb object to the 1449 * iocb pool. The iotag in the iocb object does not change for each 1450 * use of the iocb object. This function clears all other fields of 1451 * the iocb object when it is freed. The hbalock is asserted held in 1452 * the code path calling this routine. 1453 **/ 1454 static void 1455 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1456 { 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset_startat(iocbq, 0, iocb); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 /* Because of bytes adjustment due to shorter timer in 1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1853 * may seem like BW is above 100%. 1854 */ 1855 if (bwpcent > 100) 1856 bwpcent = 100; 1857 1858 if (phba->cmf_max_bytes_per_interval < bw && 1859 bwpcent > 95) 1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1861 "6208 Congestion bandwidth " 1862 "limits removed\n"); 1863 else if ((phba->cmf_max_bytes_per_interval > bw) && 1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1866 "6209 Congestion bandwidth " 1867 "limits in effect\n"); 1868 1869 if (asig) { 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6237 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Alarm: cg:%d " 1873 "Info:%u\n", 1874 bwpcent, bw, pcent, s, cg, 1875 phba->cmf_active_info); 1876 } else if (afpin) { 1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1878 "6238 BW Threshold %lld%% (%lld): " 1879 "%lld%% %s: FPIN Alarm: cg:%d " 1880 "Info:%u\n", 1881 bwpcent, bw, pcent, s, cg, 1882 phba->cmf_active_info); 1883 } else if (sigcnt) { 1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6239 BW Threshold %lld%% (%lld): " 1887 "%lld%% %s: Signal Warning: " 1888 "Cnt %d Max %d: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, sigcnt, 1890 wsigmax, cg, phba->cmf_active_info); 1891 } else if (fpincnt) { 1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6240 BW Threshold %lld%% (%lld): " 1895 "%lld%% %s: FPIN Warning: " 1896 "Cnt %d Max %d: cg:%d Info:%u\n", 1897 bwpcent, bw, pcent, s, fpincnt, 1898 wfpinmax, cg, phba->cmf_active_info); 1899 } else { 1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1901 "6241 BW Threshold %lld%% (%lld): " 1902 "CMF %lld%% %s: cg:%d Info:%u\n", 1903 bwpcent, bw, pcent, s, cg, 1904 phba->cmf_active_info); 1905 } 1906 } else if (info) { 1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1908 "6246 Info Threshold %u\n", info); 1909 } 1910 1911 /* Save BW change to be picked up during next timer interrupt */ 1912 phba->cmf_last_sync_bw = bw; 1913 out: 1914 lpfc_sli_release_iocbq(phba, cmdiocb); 1915 } 1916 1917 /** 1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1919 * @phba: Pointer to HBA context object. 1920 * @ms: ms to set in WQE interval, 0 means use init op 1921 * @total: Total rcv bytes for this interval 1922 * 1923 * This routine is called every CMF timer interrupt. Its purpose is 1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1925 * that may indicate we have congestion (FPINs or Signals). Upon 1926 * completion, the firmware will indicate any BW restrictions the 1927 * driver may need to take. 1928 **/ 1929 int 1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1931 { 1932 union lpfc_wqe128 *wqe; 1933 struct lpfc_iocbq *sync_buf; 1934 unsigned long iflags; 1935 u32 ret_val; 1936 u32 atot, wtot, max; 1937 u8 warn_sync_period = 0; 1938 1939 /* First address any alarm / warning activity */ 1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1942 1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1945 phba->link_state == LPFC_LINK_DOWN) 1946 return 0; 1947 1948 spin_lock_irqsave(&phba->hbalock, iflags); 1949 sync_buf = __lpfc_sli_get_iocbq(phba); 1950 if (!sync_buf) { 1951 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1952 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1953 ret_val = ENOMEM; 1954 goto out_unlock; 1955 } 1956 1957 wqe = &sync_buf->wqe; 1958 1959 /* WQEs are reused. Clear stale data and set key fields to zero */ 1960 memset(wqe, 0, sizeof(*wqe)); 1961 1962 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1963 if (!ms) { 1964 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1965 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1966 phba->fc_eventTag); 1967 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1968 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1969 goto initpath; 1970 } 1971 1972 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1973 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1974 1975 /* Check for alarms / warnings */ 1976 if (atot) { 1977 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1978 /* We hit an Signal alarm condition */ 1979 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1980 } else { 1981 /* We hit a FPIN alarm condition */ 1982 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1983 } 1984 } else if (wtot) { 1985 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1986 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1987 /* We hit an Signal warning condition */ 1988 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1989 lpfc_acqe_cgn_frequency; 1990 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1991 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1992 warn_sync_period = lpfc_acqe_cgn_frequency; 1993 } else { 1994 /* We hit a FPIN warning condition */ 1995 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1996 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1997 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1998 warn_sync_period = 1999 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2000 } 2001 } 2002 2003 /* Update total read blocks during previous timer interval */ 2004 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2005 2006 initpath: 2007 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2008 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2009 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2010 2011 /* Setup reqtag to match the wqe completion. */ 2012 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2013 2014 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2015 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2016 2017 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2018 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2019 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2020 2021 sync_buf->vport = phba->pport; 2022 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2023 sync_buf->cmd_dmabuf = NULL; 2024 sync_buf->rsp_dmabuf = NULL; 2025 sync_buf->bpl_dmabuf = NULL; 2026 sync_buf->sli4_xritag = NO_XRI; 2027 2028 sync_buf->cmd_flag |= LPFC_IO_CMF; 2029 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2030 if (ret_val) { 2031 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2032 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2033 ret_val); 2034 __lpfc_sli_release_iocbq(phba, sync_buf); 2035 } 2036 out_unlock: 2037 spin_unlock_irqrestore(&phba->hbalock, iflags); 2038 return ret_val; 2039 } 2040 2041 /** 2042 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2043 * @phba: Pointer to HBA context object. 2044 * @pring: Pointer to driver SLI ring object. 2045 * 2046 * This function is called with hbalock held and the caller must post the 2047 * iocb without releasing the lock. If the caller releases the lock, 2048 * iocb slot returned by the function is not guaranteed to be available. 2049 * The function returns pointer to the next available iocb slot if there 2050 * is available slot in the ring, else it returns NULL. 2051 * If the get index of the ring is ahead of the put index, the function 2052 * will post an error attention event to the worker thread to take the 2053 * HBA to offline state. 2054 **/ 2055 static IOCB_t * 2056 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2057 { 2058 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2059 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2060 2061 lockdep_assert_held(&phba->hbalock); 2062 2063 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2064 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2065 pring->sli.sli3.next_cmdidx = 0; 2066 2067 if (unlikely(pring->sli.sli3.local_getidx == 2068 pring->sli.sli3.next_cmdidx)) { 2069 2070 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2071 2072 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2074 "0315 Ring %d issue: portCmdGet %d " 2075 "is bigger than cmd ring %d\n", 2076 pring->ringno, 2077 pring->sli.sli3.local_getidx, 2078 max_cmd_idx); 2079 2080 phba->link_state = LPFC_HBA_ERROR; 2081 /* 2082 * All error attention handlers are posted to 2083 * worker thread 2084 */ 2085 phba->work_ha |= HA_ERATT; 2086 phba->work_hs = HS_FFER3; 2087 2088 lpfc_worker_wake_up(phba); 2089 2090 return NULL; 2091 } 2092 2093 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2094 return NULL; 2095 } 2096 2097 return lpfc_cmd_iocb(phba, pring); 2098 } 2099 2100 /** 2101 * lpfc_sli_next_iotag - Get an iotag for the iocb 2102 * @phba: Pointer to HBA context object. 2103 * @iocbq: Pointer to driver iocb object. 2104 * 2105 * This function gets an iotag for the iocb. If there is no unused iotag and 2106 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2107 * array and assigns a new iotag. 2108 * The function returns the allocated iotag if successful, else returns zero. 2109 * Zero is not a valid iotag. 2110 * The caller is not required to hold any lock. 2111 **/ 2112 uint16_t 2113 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2114 { 2115 struct lpfc_iocbq **new_arr; 2116 struct lpfc_iocbq **old_arr; 2117 size_t new_len; 2118 struct lpfc_sli *psli = &phba->sli; 2119 uint16_t iotag; 2120 2121 spin_lock_irq(&phba->hbalock); 2122 iotag = psli->last_iotag; 2123 if(++iotag < psli->iocbq_lookup_len) { 2124 psli->last_iotag = iotag; 2125 psli->iocbq_lookup[iotag] = iocbq; 2126 spin_unlock_irq(&phba->hbalock); 2127 iocbq->iotag = iotag; 2128 return iotag; 2129 } else if (psli->iocbq_lookup_len < (0xffff 2130 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2131 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2132 spin_unlock_irq(&phba->hbalock); 2133 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2134 GFP_KERNEL); 2135 if (new_arr) { 2136 spin_lock_irq(&phba->hbalock); 2137 old_arr = psli->iocbq_lookup; 2138 if (new_len <= psli->iocbq_lookup_len) { 2139 /* highly unprobable case */ 2140 kfree(new_arr); 2141 iotag = psli->last_iotag; 2142 if(++iotag < psli->iocbq_lookup_len) { 2143 psli->last_iotag = iotag; 2144 psli->iocbq_lookup[iotag] = iocbq; 2145 spin_unlock_irq(&phba->hbalock); 2146 iocbq->iotag = iotag; 2147 return iotag; 2148 } 2149 spin_unlock_irq(&phba->hbalock); 2150 return 0; 2151 } 2152 if (psli->iocbq_lookup) 2153 memcpy(new_arr, old_arr, 2154 ((psli->last_iotag + 1) * 2155 sizeof (struct lpfc_iocbq *))); 2156 psli->iocbq_lookup = new_arr; 2157 psli->iocbq_lookup_len = new_len; 2158 psli->last_iotag = iotag; 2159 psli->iocbq_lookup[iotag] = iocbq; 2160 spin_unlock_irq(&phba->hbalock); 2161 iocbq->iotag = iotag; 2162 kfree(old_arr); 2163 return iotag; 2164 } 2165 } else 2166 spin_unlock_irq(&phba->hbalock); 2167 2168 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2169 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2170 psli->last_iotag); 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2177 * @phba: Pointer to HBA context object. 2178 * @pring: Pointer to driver SLI ring object. 2179 * @iocb: Pointer to iocb slot in the ring. 2180 * @nextiocb: Pointer to driver iocb object which need to be 2181 * posted to firmware. 2182 * 2183 * This function is called to post a new iocb to the firmware. This 2184 * function copies the new iocb to ring iocb slot and updates the 2185 * ring pointers. It adds the new iocb to txcmplq if there is 2186 * a completion call back for this iocb else the function will free the 2187 * iocb object. The hbalock is asserted held in the code path calling 2188 * this routine. 2189 **/ 2190 static void 2191 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2192 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2193 { 2194 /* 2195 * Set up an iotag 2196 */ 2197 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2198 2199 2200 if (pring->ringno == LPFC_ELS_RING) { 2201 lpfc_debugfs_slow_ring_trc(phba, 2202 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2203 *(((uint32_t *) &nextiocb->iocb) + 4), 2204 *(((uint32_t *) &nextiocb->iocb) + 6), 2205 *(((uint32_t *) &nextiocb->iocb) + 7)); 2206 } 2207 2208 /* 2209 * Issue iocb command to adapter 2210 */ 2211 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2212 wmb(); 2213 pring->stats.iocb_cmd++; 2214 2215 /* 2216 * If there is no completion routine to call, we can release the 2217 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2218 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2219 */ 2220 if (nextiocb->cmd_cmpl) 2221 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2222 else 2223 __lpfc_sli_release_iocbq(phba, nextiocb); 2224 2225 /* 2226 * Let the HBA know what IOCB slot will be the next one the 2227 * driver will put a command into. 2228 */ 2229 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2230 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2231 } 2232 2233 /** 2234 * lpfc_sli_update_full_ring - Update the chip attention register 2235 * @phba: Pointer to HBA context object. 2236 * @pring: Pointer to driver SLI ring object. 2237 * 2238 * The caller is not required to hold any lock for calling this function. 2239 * This function updates the chip attention bits for the ring to inform firmware 2240 * that there are pending work to be done for this ring and requests an 2241 * interrupt when there is space available in the ring. This function is 2242 * called when the driver is unable to post more iocbs to the ring due 2243 * to unavailability of space in the ring. 2244 **/ 2245 static void 2246 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2247 { 2248 int ringno = pring->ringno; 2249 2250 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2251 2252 wmb(); 2253 2254 /* 2255 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2256 * The HBA will tell us when an IOCB entry is available. 2257 */ 2258 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2259 readl(phba->CAregaddr); /* flush */ 2260 2261 pring->stats.iocb_cmd_full++; 2262 } 2263 2264 /** 2265 * lpfc_sli_update_ring - Update chip attention register 2266 * @phba: Pointer to HBA context object. 2267 * @pring: Pointer to driver SLI ring object. 2268 * 2269 * This function updates the chip attention register bit for the 2270 * given ring to inform HBA that there is more work to be done 2271 * in this ring. The caller is not required to hold any lock. 2272 **/ 2273 static void 2274 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2275 { 2276 int ringno = pring->ringno; 2277 2278 /* 2279 * Tell the HBA that there is work to do in this ring. 2280 */ 2281 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2282 wmb(); 2283 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2284 readl(phba->CAregaddr); /* flush */ 2285 } 2286 } 2287 2288 /** 2289 * lpfc_sli_resume_iocb - Process iocbs in the txq 2290 * @phba: Pointer to HBA context object. 2291 * @pring: Pointer to driver SLI ring object. 2292 * 2293 * This function is called with hbalock held to post pending iocbs 2294 * in the txq to the firmware. This function is called when driver 2295 * detects space available in the ring. 2296 **/ 2297 static void 2298 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2299 { 2300 IOCB_t *iocb; 2301 struct lpfc_iocbq *nextiocb; 2302 2303 lockdep_assert_held(&phba->hbalock); 2304 2305 /* 2306 * Check to see if: 2307 * (a) there is anything on the txq to send 2308 * (b) link is up 2309 * (c) link attention events can be processed (fcp ring only) 2310 * (d) IOCB processing is not blocked by the outstanding mbox command. 2311 */ 2312 2313 if (lpfc_is_link_up(phba) && 2314 (!list_empty(&pring->txq)) && 2315 (pring->ringno != LPFC_FCP_RING || 2316 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2317 2318 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2319 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2320 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2321 2322 if (iocb) 2323 lpfc_sli_update_ring(phba, pring); 2324 else 2325 lpfc_sli_update_full_ring(phba, pring); 2326 } 2327 2328 return; 2329 } 2330 2331 /** 2332 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2333 * @phba: Pointer to HBA context object. 2334 * @hbqno: HBQ number. 2335 * 2336 * This function is called with hbalock held to get the next 2337 * available slot for the given HBQ. If there is free slot 2338 * available for the HBQ it will return pointer to the next available 2339 * HBQ entry else it will return NULL. 2340 **/ 2341 static struct lpfc_hbq_entry * 2342 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2343 { 2344 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2345 2346 lockdep_assert_held(&phba->hbalock); 2347 2348 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2349 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2350 hbqp->next_hbqPutIdx = 0; 2351 2352 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2353 uint32_t raw_index = phba->hbq_get[hbqno]; 2354 uint32_t getidx = le32_to_cpu(raw_index); 2355 2356 hbqp->local_hbqGetIdx = getidx; 2357 2358 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2360 "1802 HBQ %d: local_hbqGetIdx " 2361 "%u is > than hbqp->entry_count %u\n", 2362 hbqno, hbqp->local_hbqGetIdx, 2363 hbqp->entry_count); 2364 2365 phba->link_state = LPFC_HBA_ERROR; 2366 return NULL; 2367 } 2368 2369 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2370 return NULL; 2371 } 2372 2373 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2374 hbqp->hbqPutIdx; 2375 } 2376 2377 /** 2378 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2379 * @phba: Pointer to HBA context object. 2380 * 2381 * This function is called with no lock held to free all the 2382 * hbq buffers while uninitializing the SLI interface. It also 2383 * frees the HBQ buffers returned by the firmware but not yet 2384 * processed by the upper layers. 2385 **/ 2386 void 2387 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2388 { 2389 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2390 struct hbq_dmabuf *hbq_buf; 2391 unsigned long flags; 2392 int i, hbq_count; 2393 2394 hbq_count = lpfc_sli_hbq_count(); 2395 /* Return all memory used by all HBQs */ 2396 spin_lock_irqsave(&phba->hbalock, flags); 2397 for (i = 0; i < hbq_count; ++i) { 2398 list_for_each_entry_safe(dmabuf, next_dmabuf, 2399 &phba->hbqs[i].hbq_buffer_list, list) { 2400 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2401 list_del(&hbq_buf->dbuf.list); 2402 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2403 } 2404 phba->hbqs[i].buffer_count = 0; 2405 } 2406 2407 /* Mark the HBQs not in use */ 2408 phba->hbq_in_use = 0; 2409 spin_unlock_irqrestore(&phba->hbalock, flags); 2410 } 2411 2412 /** 2413 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2414 * @phba: Pointer to HBA context object. 2415 * @hbqno: HBQ number. 2416 * @hbq_buf: Pointer to HBQ buffer. 2417 * 2418 * This function is called with the hbalock held to post a 2419 * hbq buffer to the firmware. If the function finds an empty 2420 * slot in the HBQ, it will post the buffer. The function will return 2421 * pointer to the hbq entry if it successfully post the buffer 2422 * else it will return NULL. 2423 **/ 2424 static int 2425 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2426 struct hbq_dmabuf *hbq_buf) 2427 { 2428 lockdep_assert_held(&phba->hbalock); 2429 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2430 } 2431 2432 /** 2433 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbqno: HBQ number. 2436 * @hbq_buf: Pointer to HBQ buffer. 2437 * 2438 * This function is called with the hbalock held to post a hbq buffer to the 2439 * firmware. If the function finds an empty slot in the HBQ, it will post the 2440 * buffer and place it on the hbq_buffer_list. The function will return zero if 2441 * it successfully post the buffer else it will return an error. 2442 **/ 2443 static int 2444 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2445 struct hbq_dmabuf *hbq_buf) 2446 { 2447 struct lpfc_hbq_entry *hbqe; 2448 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2449 2450 lockdep_assert_held(&phba->hbalock); 2451 /* Get next HBQ entry slot to use */ 2452 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2453 if (hbqe) { 2454 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2455 2456 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2457 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2458 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2459 hbqe->bde.tus.f.bdeFlags = 0; 2460 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2461 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2462 /* Sync SLIM */ 2463 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2464 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2465 /* flush */ 2466 readl(phba->hbq_put + hbqno); 2467 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2468 return 0; 2469 } else 2470 return -ENOMEM; 2471 } 2472 2473 /** 2474 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2475 * @phba: Pointer to HBA context object. 2476 * @hbqno: HBQ number. 2477 * @hbq_buf: Pointer to HBQ buffer. 2478 * 2479 * This function is called with the hbalock held to post an RQE to the SLI4 2480 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2481 * the hbq_buffer_list and return zero, otherwise it will return an error. 2482 **/ 2483 static int 2484 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2485 struct hbq_dmabuf *hbq_buf) 2486 { 2487 int rc; 2488 struct lpfc_rqe hrqe; 2489 struct lpfc_rqe drqe; 2490 struct lpfc_queue *hrq; 2491 struct lpfc_queue *drq; 2492 2493 if (hbqno != LPFC_ELS_HBQ) 2494 return 1; 2495 hrq = phba->sli4_hba.hdr_rq; 2496 drq = phba->sli4_hba.dat_rq; 2497 2498 lockdep_assert_held(&phba->hbalock); 2499 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2500 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2501 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2502 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2503 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2504 if (rc < 0) 2505 return rc; 2506 hbq_buf->tag = (rc | (hbqno << 16)); 2507 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2508 return 0; 2509 } 2510 2511 /* HBQ for ELS and CT traffic. */ 2512 static struct lpfc_hbq_init lpfc_els_hbq = { 2513 .rn = 1, 2514 .entry_count = 256, 2515 .mask_count = 0, 2516 .profile = 0, 2517 .ring_mask = (1 << LPFC_ELS_RING), 2518 .buffer_count = 0, 2519 .init_count = 40, 2520 .add_count = 40, 2521 }; 2522 2523 /* Array of HBQs */ 2524 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2525 &lpfc_els_hbq, 2526 }; 2527 2528 /** 2529 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2530 * @phba: Pointer to HBA context object. 2531 * @hbqno: HBQ number. 2532 * @count: Number of HBQ buffers to be posted. 2533 * 2534 * This function is called with no lock held to post more hbq buffers to the 2535 * given HBQ. The function returns the number of HBQ buffers successfully 2536 * posted. 2537 **/ 2538 static int 2539 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2540 { 2541 uint32_t i, posted = 0; 2542 unsigned long flags; 2543 struct hbq_dmabuf *hbq_buffer; 2544 LIST_HEAD(hbq_buf_list); 2545 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2546 return 0; 2547 2548 if ((phba->hbqs[hbqno].buffer_count + count) > 2549 lpfc_hbq_defs[hbqno]->entry_count) 2550 count = lpfc_hbq_defs[hbqno]->entry_count - 2551 phba->hbqs[hbqno].buffer_count; 2552 if (!count) 2553 return 0; 2554 /* Allocate HBQ entries */ 2555 for (i = 0; i < count; i++) { 2556 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2557 if (!hbq_buffer) 2558 break; 2559 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2560 } 2561 /* Check whether HBQ is still in use */ 2562 spin_lock_irqsave(&phba->hbalock, flags); 2563 if (!phba->hbq_in_use) 2564 goto err; 2565 while (!list_empty(&hbq_buf_list)) { 2566 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2567 dbuf.list); 2568 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2569 (hbqno << 16)); 2570 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2571 phba->hbqs[hbqno].buffer_count++; 2572 posted++; 2573 } else 2574 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2575 } 2576 spin_unlock_irqrestore(&phba->hbalock, flags); 2577 return posted; 2578 err: 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 while (!list_empty(&hbq_buf_list)) { 2581 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2582 dbuf.list); 2583 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2584 } 2585 return 0; 2586 } 2587 2588 /** 2589 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2590 * @phba: Pointer to HBA context object. 2591 * @qno: HBQ number. 2592 * 2593 * This function posts more buffers to the HBQ. This function 2594 * is called with no lock held. The function returns the number of HBQ entries 2595 * successfully allocated. 2596 **/ 2597 int 2598 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2599 { 2600 if (phba->sli_rev == LPFC_SLI_REV4) 2601 return 0; 2602 else 2603 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2604 lpfc_hbq_defs[qno]->add_count); 2605 } 2606 2607 /** 2608 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2609 * @phba: Pointer to HBA context object. 2610 * @qno: HBQ queue number. 2611 * 2612 * This function is called from SLI initialization code path with 2613 * no lock held to post initial HBQ buffers to firmware. The 2614 * function returns the number of HBQ entries successfully allocated. 2615 **/ 2616 static int 2617 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2618 { 2619 if (phba->sli_rev == LPFC_SLI_REV4) 2620 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2621 lpfc_hbq_defs[qno]->entry_count); 2622 else 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->init_count); 2625 } 2626 2627 /* 2628 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2629 * 2630 * This function removes the first hbq buffer on an hbq list and returns a 2631 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2632 **/ 2633 static struct hbq_dmabuf * 2634 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2635 { 2636 struct lpfc_dmabuf *d_buf; 2637 2638 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2639 if (!d_buf) 2640 return NULL; 2641 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2642 } 2643 2644 /** 2645 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2646 * @phba: Pointer to HBA context object. 2647 * @hrq: HBQ number. 2648 * 2649 * This function removes the first RQ buffer on an RQ buffer list and returns a 2650 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2651 **/ 2652 static struct rqb_dmabuf * 2653 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2654 { 2655 struct lpfc_dmabuf *h_buf; 2656 struct lpfc_rqb *rqbp; 2657 2658 rqbp = hrq->rqbp; 2659 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2660 struct lpfc_dmabuf, list); 2661 if (!h_buf) 2662 return NULL; 2663 rqbp->buffer_count--; 2664 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2665 } 2666 2667 /** 2668 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2669 * @phba: Pointer to HBA context object. 2670 * @tag: Tag of the hbq buffer. 2671 * 2672 * This function searches for the hbq buffer associated with the given tag in 2673 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2674 * otherwise it returns NULL. 2675 **/ 2676 static struct hbq_dmabuf * 2677 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2678 { 2679 struct lpfc_dmabuf *d_buf; 2680 struct hbq_dmabuf *hbq_buf; 2681 uint32_t hbqno; 2682 2683 hbqno = tag >> 16; 2684 if (hbqno >= LPFC_MAX_HBQS) 2685 return NULL; 2686 2687 spin_lock_irq(&phba->hbalock); 2688 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2689 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2690 if (hbq_buf->tag == tag) { 2691 spin_unlock_irq(&phba->hbalock); 2692 return hbq_buf; 2693 } 2694 } 2695 spin_unlock_irq(&phba->hbalock); 2696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2697 "1803 Bad hbq tag. Data: x%x x%x\n", 2698 tag, phba->hbqs[tag >> 16].buffer_count); 2699 return NULL; 2700 } 2701 2702 /** 2703 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2704 * @phba: Pointer to HBA context object. 2705 * @hbq_buffer: Pointer to HBQ buffer. 2706 * 2707 * This function is called with hbalock. This function gives back 2708 * the hbq buffer to firmware. If the HBQ does not have space to 2709 * post the buffer, it will free the buffer. 2710 **/ 2711 void 2712 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2713 { 2714 uint32_t hbqno; 2715 2716 if (hbq_buffer) { 2717 hbqno = hbq_buffer->tag >> 16; 2718 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2719 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2720 } 2721 } 2722 2723 /** 2724 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2725 * @mbxCommand: mailbox command code. 2726 * 2727 * This function is called by the mailbox event handler function to verify 2728 * that the completed mailbox command is a legitimate mailbox command. If the 2729 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2730 * and the mailbox event handler will take the HBA offline. 2731 **/ 2732 static int 2733 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2734 { 2735 uint8_t ret; 2736 2737 switch (mbxCommand) { 2738 case MBX_LOAD_SM: 2739 case MBX_READ_NV: 2740 case MBX_WRITE_NV: 2741 case MBX_WRITE_VPARMS: 2742 case MBX_RUN_BIU_DIAG: 2743 case MBX_INIT_LINK: 2744 case MBX_DOWN_LINK: 2745 case MBX_CONFIG_LINK: 2746 case MBX_CONFIG_RING: 2747 case MBX_RESET_RING: 2748 case MBX_READ_CONFIG: 2749 case MBX_READ_RCONFIG: 2750 case MBX_READ_SPARM: 2751 case MBX_READ_STATUS: 2752 case MBX_READ_RPI: 2753 case MBX_READ_XRI: 2754 case MBX_READ_REV: 2755 case MBX_READ_LNK_STAT: 2756 case MBX_REG_LOGIN: 2757 case MBX_UNREG_LOGIN: 2758 case MBX_CLEAR_LA: 2759 case MBX_DUMP_MEMORY: 2760 case MBX_DUMP_CONTEXT: 2761 case MBX_RUN_DIAGS: 2762 case MBX_RESTART: 2763 case MBX_UPDATE_CFG: 2764 case MBX_DOWN_LOAD: 2765 case MBX_DEL_LD_ENTRY: 2766 case MBX_RUN_PROGRAM: 2767 case MBX_SET_MASK: 2768 case MBX_SET_VARIABLE: 2769 case MBX_UNREG_D_ID: 2770 case MBX_KILL_BOARD: 2771 case MBX_CONFIG_FARP: 2772 case MBX_BEACON: 2773 case MBX_LOAD_AREA: 2774 case MBX_RUN_BIU_DIAG64: 2775 case MBX_CONFIG_PORT: 2776 case MBX_READ_SPARM64: 2777 case MBX_READ_RPI64: 2778 case MBX_REG_LOGIN64: 2779 case MBX_READ_TOPOLOGY: 2780 case MBX_WRITE_WWN: 2781 case MBX_SET_DEBUG: 2782 case MBX_LOAD_EXP_ROM: 2783 case MBX_ASYNCEVT_ENABLE: 2784 case MBX_REG_VPI: 2785 case MBX_UNREG_VPI: 2786 case MBX_HEARTBEAT: 2787 case MBX_PORT_CAPABILITIES: 2788 case MBX_PORT_IOV_CONTROL: 2789 case MBX_SLI4_CONFIG: 2790 case MBX_SLI4_REQ_FTRS: 2791 case MBX_REG_FCFI: 2792 case MBX_UNREG_FCFI: 2793 case MBX_REG_VFI: 2794 case MBX_UNREG_VFI: 2795 case MBX_INIT_VPI: 2796 case MBX_INIT_VFI: 2797 case MBX_RESUME_RPI: 2798 case MBX_READ_EVENT_LOG_STATUS: 2799 case MBX_READ_EVENT_LOG: 2800 case MBX_SECURITY_MGMT: 2801 case MBX_AUTH_PORT: 2802 case MBX_ACCESS_VDATA: 2803 ret = mbxCommand; 2804 break; 2805 default: 2806 ret = MBX_SHUTDOWN; 2807 break; 2808 } 2809 return ret; 2810 } 2811 2812 /** 2813 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2814 * @phba: Pointer to HBA context object. 2815 * @pmboxq: Pointer to mailbox command. 2816 * 2817 * This is completion handler function for mailbox commands issued from 2818 * lpfc_sli_issue_mbox_wait function. This function is called by the 2819 * mailbox event handler function with no lock held. This function 2820 * will wake up thread waiting on the wait queue pointed by context1 2821 * of the mailbox. 2822 **/ 2823 void 2824 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2825 { 2826 unsigned long drvr_flag; 2827 struct completion *pmbox_done; 2828 2829 /* 2830 * If pmbox_done is empty, the driver thread gave up waiting and 2831 * continued running. 2832 */ 2833 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2834 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2835 pmbox_done = pmboxq->ctx_u.mbox_wait; 2836 if (pmbox_done) 2837 complete(pmbox_done); 2838 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2839 return; 2840 } 2841 2842 static void 2843 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2844 { 2845 unsigned long iflags; 2846 2847 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2848 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2849 spin_lock_irqsave(&ndlp->lock, iflags); 2850 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2851 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2852 spin_unlock_irqrestore(&ndlp->lock, iflags); 2853 } 2854 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2855 } 2856 2857 void 2858 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2859 { 2860 __lpfc_sli_rpi_release(vport, ndlp); 2861 } 2862 2863 /** 2864 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2865 * @phba: Pointer to HBA context object. 2866 * @pmb: Pointer to mailbox object. 2867 * 2868 * This function is the default mailbox completion handler. It 2869 * frees the memory resources associated with the completed mailbox 2870 * command. If the completed command is a REG_LOGIN mailbox command, 2871 * this function will issue a UREG_LOGIN to re-claim the RPI. 2872 **/ 2873 void 2874 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2875 { 2876 struct lpfc_vport *vport = pmb->vport; 2877 struct lpfc_dmabuf *mp; 2878 struct lpfc_nodelist *ndlp; 2879 struct Scsi_Host *shost; 2880 uint16_t rpi, vpi; 2881 int rc; 2882 2883 /* 2884 * If a REG_LOGIN succeeded after node is destroyed or node 2885 * is in re-discovery driver need to cleanup the RPI. 2886 */ 2887 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2888 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2889 !pmb->u.mb.mbxStatus) { 2890 mp = pmb->ctx_buf; 2891 if (mp) { 2892 pmb->ctx_buf = NULL; 2893 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2894 kfree(mp); 2895 } 2896 rpi = pmb->u.mb.un.varWords[0]; 2897 vpi = pmb->u.mb.un.varRegLogin.vpi; 2898 if (phba->sli_rev == LPFC_SLI_REV4) 2899 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2900 lpfc_unreg_login(phba, vpi, rpi, pmb); 2901 pmb->vport = vport; 2902 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2903 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2904 if (rc != MBX_NOT_FINISHED) 2905 return; 2906 } 2907 2908 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2909 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2910 !pmb->u.mb.mbxStatus) { 2911 shost = lpfc_shost_from_vport(vport); 2912 spin_lock_irq(shost->host_lock); 2913 vport->vpi_state |= LPFC_VPI_REGISTERED; 2914 spin_unlock_irq(shost->host_lock); 2915 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2916 } 2917 2918 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2919 ndlp = pmb->ctx_ndlp; 2920 lpfc_nlp_put(ndlp); 2921 } 2922 2923 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2924 ndlp = pmb->ctx_ndlp; 2925 2926 /* Check to see if there are any deferred events to process */ 2927 if (ndlp) { 2928 lpfc_printf_vlog( 2929 vport, 2930 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2931 "1438 UNREG cmpl deferred mbox x%x " 2932 "on NPort x%x Data: x%x x%x x%px x%lx x%x\n", 2933 ndlp->nlp_rpi, ndlp->nlp_DID, 2934 ndlp->nlp_flag, ndlp->nlp_defer_did, 2935 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2936 2937 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2938 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2939 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2940 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2941 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2942 } else { 2943 __lpfc_sli_rpi_release(vport, ndlp); 2944 } 2945 2946 /* The unreg_login mailbox is complete and had a 2947 * reference that has to be released. The PLOGI 2948 * got its own ref. 2949 */ 2950 lpfc_nlp_put(ndlp); 2951 pmb->ctx_ndlp = NULL; 2952 } 2953 } 2954 2955 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2956 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2957 ndlp = pmb->ctx_ndlp; 2958 lpfc_nlp_put(ndlp); 2959 } 2960 2961 /* Check security permission status on INIT_LINK mailbox command */ 2962 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2963 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2965 "2860 SLI authentication is required " 2966 "for INIT_LINK but has not done yet\n"); 2967 2968 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2969 lpfc_sli4_mbox_cmd_free(phba, pmb); 2970 else 2971 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2972 } 2973 /** 2974 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2975 * @phba: Pointer to HBA context object. 2976 * @pmb: Pointer to mailbox object. 2977 * 2978 * This function is the unreg rpi mailbox completion handler. It 2979 * frees the memory resources associated with the completed mailbox 2980 * command. An additional reference is put on the ndlp to prevent 2981 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2982 * the unreg mailbox command completes, this routine puts the 2983 * reference back. 2984 * 2985 **/ 2986 void 2987 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2988 { 2989 struct lpfc_vport *vport = pmb->vport; 2990 struct lpfc_nodelist *ndlp; 2991 2992 ndlp = pmb->ctx_ndlp; 2993 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2994 if (phba->sli_rev == LPFC_SLI_REV4 && 2995 (bf_get(lpfc_sli_intf_if_type, 2996 &phba->sli4_hba.sli_intf) >= 2997 LPFC_SLI_INTF_IF_TYPE_2)) { 2998 if (ndlp) { 2999 lpfc_printf_vlog( 3000 vport, KERN_INFO, 3001 LOG_MBOX | LOG_SLI | LOG_NODE, 3002 "0010 UNREG_LOGIN vpi:x%x " 3003 "rpi:%x DID:%x defer x%x flg x%x " 3004 "x%px\n", 3005 vport->vpi, ndlp->nlp_rpi, 3006 ndlp->nlp_DID, ndlp->nlp_defer_did, 3007 ndlp->nlp_flag, 3008 ndlp); 3009 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3010 3011 /* Check to see if there are any deferred 3012 * events to process 3013 */ 3014 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3015 (ndlp->nlp_defer_did != 3016 NLP_EVT_NOTHING_PENDING)) { 3017 lpfc_printf_vlog( 3018 vport, KERN_INFO, 3019 LOG_MBOX | LOG_SLI | LOG_NODE, 3020 "4111 UNREG cmpl deferred " 3021 "clr x%x on " 3022 "NPort x%x Data: x%x x%px\n", 3023 ndlp->nlp_rpi, ndlp->nlp_DID, 3024 ndlp->nlp_defer_did, ndlp); 3025 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3026 ndlp->nlp_defer_did = 3027 NLP_EVT_NOTHING_PENDING; 3028 lpfc_issue_els_plogi( 3029 vport, ndlp->nlp_DID, 0); 3030 } else { 3031 __lpfc_sli_rpi_release(vport, ndlp); 3032 } 3033 lpfc_nlp_put(ndlp); 3034 } 3035 } 3036 } 3037 3038 mempool_free(pmb, phba->mbox_mem_pool); 3039 } 3040 3041 /** 3042 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3043 * @phba: Pointer to HBA context object. 3044 * 3045 * This function is called with no lock held. This function processes all 3046 * the completed mailbox commands and gives it to upper layers. The interrupt 3047 * service routine processes mailbox completion interrupt and adds completed 3048 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3049 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3050 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3051 * function returns the mailbox commands to the upper layer by calling the 3052 * completion handler function of each mailbox. 3053 **/ 3054 int 3055 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3056 { 3057 MAILBOX_t *pmbox; 3058 LPFC_MBOXQ_t *pmb; 3059 int rc; 3060 LIST_HEAD(cmplq); 3061 3062 phba->sli.slistat.mbox_event++; 3063 3064 /* Get all completed mailboxe buffers into the cmplq */ 3065 spin_lock_irq(&phba->hbalock); 3066 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3067 spin_unlock_irq(&phba->hbalock); 3068 3069 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3070 do { 3071 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3072 if (pmb == NULL) 3073 break; 3074 3075 pmbox = &pmb->u.mb; 3076 3077 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3078 if (pmb->vport) { 3079 lpfc_debugfs_disc_trc(pmb->vport, 3080 LPFC_DISC_TRC_MBOX_VPORT, 3081 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3082 (uint32_t)pmbox->mbxCommand, 3083 pmbox->un.varWords[0], 3084 pmbox->un.varWords[1]); 3085 } 3086 else { 3087 lpfc_debugfs_disc_trc(phba->pport, 3088 LPFC_DISC_TRC_MBOX, 3089 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3090 (uint32_t)pmbox->mbxCommand, 3091 pmbox->un.varWords[0], 3092 pmbox->un.varWords[1]); 3093 } 3094 } 3095 3096 /* 3097 * It is a fatal error if unknown mbox command completion. 3098 */ 3099 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3100 MBX_SHUTDOWN) { 3101 /* Unknown mailbox command compl */ 3102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3103 "(%d):0323 Unknown Mailbox command " 3104 "x%x (x%x/x%x) Cmpl\n", 3105 pmb->vport ? pmb->vport->vpi : 3106 LPFC_VPORT_UNKNOWN, 3107 pmbox->mbxCommand, 3108 lpfc_sli_config_mbox_subsys_get(phba, 3109 pmb), 3110 lpfc_sli_config_mbox_opcode_get(phba, 3111 pmb)); 3112 phba->link_state = LPFC_HBA_ERROR; 3113 phba->work_hs = HS_FFER3; 3114 lpfc_handle_eratt(phba); 3115 continue; 3116 } 3117 3118 if (pmbox->mbxStatus) { 3119 phba->sli.slistat.mbox_stat_err++; 3120 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3121 /* Mbox cmd cmpl error - RETRYing */ 3122 lpfc_printf_log(phba, KERN_INFO, 3123 LOG_MBOX | LOG_SLI, 3124 "(%d):0305 Mbox cmd cmpl " 3125 "error - RETRYing Data: x%x " 3126 "(x%x/x%x) x%x x%x x%x\n", 3127 pmb->vport ? pmb->vport->vpi : 3128 LPFC_VPORT_UNKNOWN, 3129 pmbox->mbxCommand, 3130 lpfc_sli_config_mbox_subsys_get(phba, 3131 pmb), 3132 lpfc_sli_config_mbox_opcode_get(phba, 3133 pmb), 3134 pmbox->mbxStatus, 3135 pmbox->un.varWords[0], 3136 pmb->vport ? pmb->vport->port_state : 3137 LPFC_VPORT_UNKNOWN); 3138 pmbox->mbxStatus = 0; 3139 pmbox->mbxOwner = OWN_HOST; 3140 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3141 if (rc != MBX_NOT_FINISHED) 3142 continue; 3143 } 3144 } 3145 3146 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3147 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3148 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3149 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3150 "x%x x%x x%x\n", 3151 pmb->vport ? pmb->vport->vpi : 0, 3152 pmbox->mbxCommand, 3153 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3154 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3155 pmb->mbox_cmpl, 3156 *((uint32_t *) pmbox), 3157 pmbox->un.varWords[0], 3158 pmbox->un.varWords[1], 3159 pmbox->un.varWords[2], 3160 pmbox->un.varWords[3], 3161 pmbox->un.varWords[4], 3162 pmbox->un.varWords[5], 3163 pmbox->un.varWords[6], 3164 pmbox->un.varWords[7], 3165 pmbox->un.varWords[8], 3166 pmbox->un.varWords[9], 3167 pmbox->un.varWords[10]); 3168 3169 if (pmb->mbox_cmpl) 3170 pmb->mbox_cmpl(phba,pmb); 3171 } while (1); 3172 return 0; 3173 } 3174 3175 /** 3176 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3177 * @phba: Pointer to HBA context object. 3178 * @pring: Pointer to driver SLI ring object. 3179 * @tag: buffer tag. 3180 * 3181 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3182 * is set in the tag the buffer is posted for a particular exchange, 3183 * the function will return the buffer without replacing the buffer. 3184 * If the buffer is for unsolicited ELS or CT traffic, this function 3185 * returns the buffer and also posts another buffer to the firmware. 3186 **/ 3187 static struct lpfc_dmabuf * 3188 lpfc_sli_get_buff(struct lpfc_hba *phba, 3189 struct lpfc_sli_ring *pring, 3190 uint32_t tag) 3191 { 3192 struct hbq_dmabuf *hbq_entry; 3193 3194 if (tag & QUE_BUFTAG_BIT) 3195 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3196 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3197 if (!hbq_entry) 3198 return NULL; 3199 return &hbq_entry->dbuf; 3200 } 3201 3202 /** 3203 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3204 * containing a NVME LS request. 3205 * @phba: pointer to lpfc hba data structure. 3206 * @piocb: pointer to the iocbq struct representing the sequence starting 3207 * frame. 3208 * 3209 * This routine initially validates the NVME LS, validates there is a login 3210 * with the port that sent the LS, and then calls the appropriate nvme host 3211 * or target LS request handler. 3212 **/ 3213 static void 3214 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3215 { 3216 struct lpfc_nodelist *ndlp; 3217 struct lpfc_dmabuf *d_buf; 3218 struct hbq_dmabuf *nvmebuf; 3219 struct fc_frame_header *fc_hdr; 3220 struct lpfc_async_xchg_ctx *axchg = NULL; 3221 char *failwhy = NULL; 3222 uint32_t oxid, sid, did, fctl, size; 3223 int ret = 1; 3224 3225 d_buf = piocb->cmd_dmabuf; 3226 3227 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3228 fc_hdr = nvmebuf->hbuf.virt; 3229 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3230 sid = sli4_sid_from_fc_hdr(fc_hdr); 3231 did = sli4_did_from_fc_hdr(fc_hdr); 3232 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3233 fc_hdr->fh_f_ctl[1] << 8 | 3234 fc_hdr->fh_f_ctl[2]); 3235 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3236 3237 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3238 oxid, size, sid); 3239 3240 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3241 failwhy = "Driver Unloading"; 3242 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3243 failwhy = "NVME FC4 Disabled"; 3244 } else if (!phba->nvmet_support && !phba->pport->localport) { 3245 failwhy = "No Localport"; 3246 } else if (phba->nvmet_support && !phba->targetport) { 3247 failwhy = "No Targetport"; 3248 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3249 failwhy = "Bad NVME LS R_CTL"; 3250 } else if (unlikely((fctl & 0x00FF0000) != 3251 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3252 failwhy = "Bad NVME LS F_CTL"; 3253 } else { 3254 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3255 if (!axchg) 3256 failwhy = "No CTX memory"; 3257 } 3258 3259 if (unlikely(failwhy)) { 3260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3261 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3262 sid, oxid, failwhy); 3263 goto out_fail; 3264 } 3265 3266 /* validate the source of the LS is logged in */ 3267 ndlp = lpfc_findnode_did(phba->pport, sid); 3268 if (!ndlp || 3269 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3270 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3271 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3272 "6216 NVME Unsol rcv: No ndlp: " 3273 "NPort_ID x%x oxid x%x\n", 3274 sid, oxid); 3275 goto out_fail; 3276 } 3277 3278 axchg->phba = phba; 3279 axchg->ndlp = ndlp; 3280 axchg->size = size; 3281 axchg->oxid = oxid; 3282 axchg->sid = sid; 3283 axchg->wqeq = NULL; 3284 axchg->state = LPFC_NVME_STE_LS_RCV; 3285 axchg->entry_cnt = 1; 3286 axchg->rqb_buffer = (void *)nvmebuf; 3287 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3288 axchg->payload = nvmebuf->dbuf.virt; 3289 INIT_LIST_HEAD(&axchg->list); 3290 3291 if (phba->nvmet_support) { 3292 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3293 spin_lock_irq(&ndlp->lock); 3294 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3295 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3296 spin_unlock_irq(&ndlp->lock); 3297 3298 /* This reference is a single occurrence to hold the 3299 * node valid until the nvmet transport calls 3300 * host_release. 3301 */ 3302 if (!lpfc_nlp_get(ndlp)) 3303 goto out_fail; 3304 3305 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3306 "6206 NVMET unsol ls_req ndlp x%px " 3307 "DID x%x xflags x%x refcnt %d\n", 3308 ndlp, ndlp->nlp_DID, 3309 ndlp->fc4_xpt_flags, 3310 kref_read(&ndlp->kref)); 3311 } else { 3312 spin_unlock_irq(&ndlp->lock); 3313 } 3314 } else { 3315 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3316 } 3317 3318 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3319 if (!ret) 3320 return; 3321 3322 out_fail: 3323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3324 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3325 "NVMe%s handler failed %d\n", 3326 did, sid, oxid, 3327 (phba->nvmet_support) ? "T" : "I", ret); 3328 3329 /* recycle receive buffer */ 3330 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3331 3332 /* If start of new exchange, abort it */ 3333 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3334 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3335 3336 if (ret) 3337 kfree(axchg); 3338 } 3339 3340 /** 3341 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3342 * @phba: Pointer to HBA context object. 3343 * @pring: Pointer to driver SLI ring object. 3344 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3345 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3346 * @fch_type: the type for the first frame of the sequence. 3347 * 3348 * This function is called with no lock held. This function uses the r_ctl and 3349 * type of the received sequence to find the correct callback function to call 3350 * to process the sequence. 3351 **/ 3352 static int 3353 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3354 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3355 uint32_t fch_type) 3356 { 3357 int i; 3358 3359 switch (fch_type) { 3360 case FC_TYPE_NVME: 3361 lpfc_nvme_unsol_ls_handler(phba, saveq); 3362 return 1; 3363 default: 3364 break; 3365 } 3366 3367 /* unSolicited Responses */ 3368 if (pring->prt[0].profile) { 3369 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3370 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3371 saveq); 3372 return 1; 3373 } 3374 /* We must search, based on rctl / type 3375 for the right routine */ 3376 for (i = 0; i < pring->num_mask; i++) { 3377 if ((pring->prt[i].rctl == fch_r_ctl) && 3378 (pring->prt[i].type == fch_type)) { 3379 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3380 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3381 (phba, pring, saveq); 3382 return 1; 3383 } 3384 } 3385 return 0; 3386 } 3387 3388 static void 3389 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3390 struct lpfc_iocbq *saveq) 3391 { 3392 IOCB_t *irsp; 3393 union lpfc_wqe128 *wqe; 3394 u16 i = 0; 3395 3396 irsp = &saveq->iocb; 3397 wqe = &saveq->wqe; 3398 3399 /* Fill wcqe with the IOCB status fields */ 3400 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3401 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3402 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3403 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3404 3405 /* Source ID */ 3406 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3407 3408 /* rx-id of the response frame */ 3409 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3410 3411 /* ox-id of the frame */ 3412 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3413 irsp->unsli3.rcvsli3.ox_id); 3414 3415 /* DID */ 3416 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3417 irsp->un.rcvels.remoteID); 3418 3419 /* unsol data len */ 3420 for (i = 0; i < irsp->ulpBdeCount; i++) { 3421 struct lpfc_hbq_entry *hbqe = NULL; 3422 3423 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3424 if (i == 0) { 3425 hbqe = (struct lpfc_hbq_entry *) 3426 &irsp->un.ulpWord[0]; 3427 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3428 hbqe->bde.tus.f.bdeSize; 3429 } else if (i == 1) { 3430 hbqe = (struct lpfc_hbq_entry *) 3431 &irsp->unsli3.sli3Words[4]; 3432 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3433 } 3434 } 3435 } 3436 } 3437 3438 /** 3439 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3440 * @phba: Pointer to HBA context object. 3441 * @pring: Pointer to driver SLI ring object. 3442 * @saveq: Pointer to the unsolicited iocb. 3443 * 3444 * This function is called with no lock held by the ring event handler 3445 * when there is an unsolicited iocb posted to the response ring by the 3446 * firmware. This function gets the buffer associated with the iocbs 3447 * and calls the event handler for the ring. This function handles both 3448 * qring buffers and hbq buffers. 3449 * When the function returns 1 the caller can free the iocb object otherwise 3450 * upper layer functions will free the iocb objects. 3451 **/ 3452 static int 3453 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3454 struct lpfc_iocbq *saveq) 3455 { 3456 IOCB_t * irsp; 3457 WORD5 * w5p; 3458 dma_addr_t paddr; 3459 uint32_t Rctl, Type; 3460 struct lpfc_iocbq *iocbq; 3461 struct lpfc_dmabuf *dmzbuf; 3462 3463 irsp = &saveq->iocb; 3464 saveq->vport = phba->pport; 3465 3466 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3467 if (pring->lpfc_sli_rcv_async_status) 3468 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3469 else 3470 lpfc_printf_log(phba, 3471 KERN_WARNING, 3472 LOG_SLI, 3473 "0316 Ring %d handler: unexpected " 3474 "ASYNC_STATUS iocb received evt_code " 3475 "0x%x\n", 3476 pring->ringno, 3477 irsp->un.asyncstat.evt_code); 3478 return 1; 3479 } 3480 3481 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3482 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3483 if (irsp->ulpBdeCount > 0) { 3484 dmzbuf = lpfc_sli_get_buff(phba, pring, 3485 irsp->un.ulpWord[3]); 3486 lpfc_in_buf_free(phba, dmzbuf); 3487 } 3488 3489 if (irsp->ulpBdeCount > 1) { 3490 dmzbuf = lpfc_sli_get_buff(phba, pring, 3491 irsp->unsli3.sli3Words[3]); 3492 lpfc_in_buf_free(phba, dmzbuf); 3493 } 3494 3495 if (irsp->ulpBdeCount > 2) { 3496 dmzbuf = lpfc_sli_get_buff(phba, pring, 3497 irsp->unsli3.sli3Words[7]); 3498 lpfc_in_buf_free(phba, dmzbuf); 3499 } 3500 3501 return 1; 3502 } 3503 3504 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3505 if (irsp->ulpBdeCount != 0) { 3506 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3507 irsp->un.ulpWord[3]); 3508 if (!saveq->cmd_dmabuf) 3509 lpfc_printf_log(phba, 3510 KERN_ERR, 3511 LOG_SLI, 3512 "0341 Ring %d Cannot find buffer for " 3513 "an unsolicited iocb. tag 0x%x\n", 3514 pring->ringno, 3515 irsp->un.ulpWord[3]); 3516 } 3517 if (irsp->ulpBdeCount == 2) { 3518 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3519 irsp->unsli3.sli3Words[7]); 3520 if (!saveq->bpl_dmabuf) 3521 lpfc_printf_log(phba, 3522 KERN_ERR, 3523 LOG_SLI, 3524 "0342 Ring %d Cannot find buffer for an" 3525 " unsolicited iocb. tag 0x%x\n", 3526 pring->ringno, 3527 irsp->unsli3.sli3Words[7]); 3528 } 3529 list_for_each_entry(iocbq, &saveq->list, list) { 3530 irsp = &iocbq->iocb; 3531 if (irsp->ulpBdeCount != 0) { 3532 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->un.ulpWord[3]); 3535 if (!iocbq->cmd_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0343 Ring %d Cannot find " 3540 "buffer for an unsolicited iocb" 3541 ". tag 0x%x\n", pring->ringno, 3542 irsp->un.ulpWord[3]); 3543 } 3544 if (irsp->ulpBdeCount == 2) { 3545 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3546 pring, 3547 irsp->unsli3.sli3Words[7]); 3548 if (!iocbq->bpl_dmabuf) 3549 lpfc_printf_log(phba, 3550 KERN_ERR, 3551 LOG_SLI, 3552 "0344 Ring %d Cannot find " 3553 "buffer for an unsolicited " 3554 "iocb. tag 0x%x\n", 3555 pring->ringno, 3556 irsp->unsli3.sli3Words[7]); 3557 } 3558 } 3559 } else { 3560 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3561 irsp->un.cont64[0].addrLow); 3562 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3563 paddr); 3564 if (irsp->ulpBdeCount == 2) { 3565 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3566 irsp->un.cont64[1].addrLow); 3567 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3568 pring, 3569 paddr); 3570 } 3571 } 3572 3573 if (irsp->ulpBdeCount != 0 && 3574 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3575 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3576 int found = 0; 3577 3578 /* search continue save q for same XRI */ 3579 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3580 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3581 saveq->iocb.unsli3.rcvsli3.ox_id) { 3582 list_add_tail(&saveq->list, &iocbq->list); 3583 found = 1; 3584 break; 3585 } 3586 } 3587 if (!found) 3588 list_add_tail(&saveq->clist, 3589 &pring->iocb_continue_saveq); 3590 3591 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3592 list_del_init(&iocbq->clist); 3593 saveq = iocbq; 3594 irsp = &saveq->iocb; 3595 } else { 3596 return 0; 3597 } 3598 } 3599 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3600 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3601 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3602 Rctl = FC_RCTL_ELS_REQ; 3603 Type = FC_TYPE_ELS; 3604 } else { 3605 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3606 Rctl = w5p->hcsw.Rctl; 3607 Type = w5p->hcsw.Type; 3608 3609 /* Firmware Workaround */ 3610 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3611 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3612 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3613 Rctl = FC_RCTL_ELS_REQ; 3614 Type = FC_TYPE_ELS; 3615 w5p->hcsw.Rctl = Rctl; 3616 w5p->hcsw.Type = Type; 3617 } 3618 } 3619 3620 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3621 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3622 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3623 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3624 saveq->vport = phba->pport; 3625 else 3626 saveq->vport = lpfc_find_vport_by_vpid(phba, 3627 irsp->unsli3.rcvsli3.vpi); 3628 } 3629 3630 /* Prepare WQE with Unsol frame */ 3631 lpfc_sli_prep_unsol_wqe(phba, saveq); 3632 3633 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3634 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3635 "0313 Ring %d handler: unexpected Rctl x%x " 3636 "Type x%x received\n", 3637 pring->ringno, Rctl, Type); 3638 3639 return 1; 3640 } 3641 3642 /** 3643 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3644 * @phba: Pointer to HBA context object. 3645 * @pring: Pointer to driver SLI ring object. 3646 * @prspiocb: Pointer to response iocb object. 3647 * 3648 * This function looks up the iocb_lookup table to get the command iocb 3649 * corresponding to the given response iocb using the iotag of the 3650 * response iocb. The driver calls this function with the hbalock held 3651 * for SLI3 ports or the ring lock held for SLI4 ports. 3652 * This function returns the command iocb object if it finds the command 3653 * iocb else returns NULL. 3654 **/ 3655 static struct lpfc_iocbq * 3656 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3657 struct lpfc_sli_ring *pring, 3658 struct lpfc_iocbq *prspiocb) 3659 { 3660 struct lpfc_iocbq *cmd_iocb = NULL; 3661 u16 iotag; 3662 3663 if (phba->sli_rev == LPFC_SLI_REV4) 3664 iotag = get_wqe_reqtag(prspiocb); 3665 else 3666 iotag = prspiocb->iocb.ulpIoTag; 3667 3668 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3669 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3670 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3671 /* remove from txcmpl queue list */ 3672 list_del_init(&cmd_iocb->list); 3673 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3674 pring->txcmplq_cnt--; 3675 return cmd_iocb; 3676 } 3677 } 3678 3679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3680 "0317 iotag x%x is out of " 3681 "range: max iotag x%x\n", 3682 iotag, phba->sli.last_iotag); 3683 return NULL; 3684 } 3685 3686 /** 3687 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3688 * @phba: Pointer to HBA context object. 3689 * @pring: Pointer to driver SLI ring object. 3690 * @iotag: IOCB tag. 3691 * 3692 * This function looks up the iocb_lookup table to get the command iocb 3693 * corresponding to the given iotag. The driver calls this function with 3694 * the ring lock held because this function is an SLI4 port only helper. 3695 * This function returns the command iocb object if it finds the command 3696 * iocb else returns NULL. 3697 **/ 3698 static struct lpfc_iocbq * 3699 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3700 struct lpfc_sli_ring *pring, uint16_t iotag) 3701 { 3702 struct lpfc_iocbq *cmd_iocb = NULL; 3703 3704 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3705 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3706 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3707 /* remove from txcmpl queue list */ 3708 list_del_init(&cmd_iocb->list); 3709 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3710 pring->txcmplq_cnt--; 3711 return cmd_iocb; 3712 } 3713 } 3714 3715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3716 "0372 iotag x%x lookup error: max iotag (x%x) " 3717 "cmd_flag x%x\n", 3718 iotag, phba->sli.last_iotag, 3719 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3720 return NULL; 3721 } 3722 3723 /** 3724 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3725 * @phba: Pointer to HBA context object. 3726 * @pring: Pointer to driver SLI ring object. 3727 * @saveq: Pointer to the response iocb to be processed. 3728 * 3729 * This function is called by the ring event handler for non-fcp 3730 * rings when there is a new response iocb in the response ring. 3731 * The caller is not required to hold any locks. This function 3732 * gets the command iocb associated with the response iocb and 3733 * calls the completion handler for the command iocb. If there 3734 * is no completion handler, the function will free the resources 3735 * associated with command iocb. If the response iocb is for 3736 * an already aborted command iocb, the status of the completion 3737 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3738 * This function always returns 1. 3739 **/ 3740 static int 3741 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3742 struct lpfc_iocbq *saveq) 3743 { 3744 struct lpfc_iocbq *cmdiocbp; 3745 unsigned long iflag; 3746 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3747 3748 if (phba->sli_rev == LPFC_SLI_REV4) 3749 spin_lock_irqsave(&pring->ring_lock, iflag); 3750 else 3751 spin_lock_irqsave(&phba->hbalock, iflag); 3752 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3753 if (phba->sli_rev == LPFC_SLI_REV4) 3754 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3755 else 3756 spin_unlock_irqrestore(&phba->hbalock, iflag); 3757 3758 ulp_command = get_job_cmnd(phba, saveq); 3759 ulp_status = get_job_ulpstatus(phba, saveq); 3760 ulp_word4 = get_job_word4(phba, saveq); 3761 ulp_context = get_job_ulpcontext(phba, saveq); 3762 if (phba->sli_rev == LPFC_SLI_REV4) 3763 iotag = get_wqe_reqtag(saveq); 3764 else 3765 iotag = saveq->iocb.ulpIoTag; 3766 3767 if (cmdiocbp) { 3768 ulp_command = get_job_cmnd(phba, cmdiocbp); 3769 if (cmdiocbp->cmd_cmpl) { 3770 /* 3771 * If an ELS command failed send an event to mgmt 3772 * application. 3773 */ 3774 if (ulp_status && 3775 (pring->ringno == LPFC_ELS_RING) && 3776 (ulp_command == CMD_ELS_REQUEST64_CR)) 3777 lpfc_send_els_failure_event(phba, 3778 cmdiocbp, saveq); 3779 3780 /* 3781 * Post all ELS completions to the worker thread. 3782 * All other are passed to the completion callback. 3783 */ 3784 if (pring->ringno == LPFC_ELS_RING) { 3785 if ((phba->sli_rev < LPFC_SLI_REV4) && 3786 (cmdiocbp->cmd_flag & 3787 LPFC_DRIVER_ABORTED)) { 3788 spin_lock_irqsave(&phba->hbalock, 3789 iflag); 3790 cmdiocbp->cmd_flag &= 3791 ~LPFC_DRIVER_ABORTED; 3792 spin_unlock_irqrestore(&phba->hbalock, 3793 iflag); 3794 saveq->iocb.ulpStatus = 3795 IOSTAT_LOCAL_REJECT; 3796 saveq->iocb.un.ulpWord[4] = 3797 IOERR_SLI_ABORTED; 3798 3799 /* Firmware could still be in progress 3800 * of DMAing payload, so don't free data 3801 * buffer till after a hbeat. 3802 */ 3803 spin_lock_irqsave(&phba->hbalock, 3804 iflag); 3805 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3806 spin_unlock_irqrestore(&phba->hbalock, 3807 iflag); 3808 } 3809 if (phba->sli_rev == LPFC_SLI_REV4) { 3810 if (saveq->cmd_flag & 3811 LPFC_EXCHANGE_BUSY) { 3812 /* Set cmdiocb flag for the 3813 * exchange busy so sgl (xri) 3814 * will not be released until 3815 * the abort xri is received 3816 * from hba. 3817 */ 3818 spin_lock_irqsave( 3819 &phba->hbalock, iflag); 3820 cmdiocbp->cmd_flag |= 3821 LPFC_EXCHANGE_BUSY; 3822 spin_unlock_irqrestore( 3823 &phba->hbalock, iflag); 3824 } 3825 if (cmdiocbp->cmd_flag & 3826 LPFC_DRIVER_ABORTED) { 3827 /* 3828 * Clear LPFC_DRIVER_ABORTED 3829 * bit in case it was driver 3830 * initiated abort. 3831 */ 3832 spin_lock_irqsave( 3833 &phba->hbalock, iflag); 3834 cmdiocbp->cmd_flag &= 3835 ~LPFC_DRIVER_ABORTED; 3836 spin_unlock_irqrestore( 3837 &phba->hbalock, iflag); 3838 set_job_ulpstatus(cmdiocbp, 3839 IOSTAT_LOCAL_REJECT); 3840 set_job_ulpword4(cmdiocbp, 3841 IOERR_ABORT_REQUESTED); 3842 /* 3843 * For SLI4, irspiocb contains 3844 * NO_XRI in sli_xritag, it 3845 * shall not affect releasing 3846 * sgl (xri) process. 3847 */ 3848 set_job_ulpstatus(saveq, 3849 IOSTAT_LOCAL_REJECT); 3850 set_job_ulpword4(saveq, 3851 IOERR_SLI_ABORTED); 3852 spin_lock_irqsave( 3853 &phba->hbalock, iflag); 3854 saveq->cmd_flag |= 3855 LPFC_DELAY_MEM_FREE; 3856 spin_unlock_irqrestore( 3857 &phba->hbalock, iflag); 3858 } 3859 } 3860 } 3861 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3862 } else 3863 lpfc_sli_release_iocbq(phba, cmdiocbp); 3864 } else { 3865 /* 3866 * Unknown initiating command based on the response iotag. 3867 * This could be the case on the ELS ring because of 3868 * lpfc_els_abort(). 3869 */ 3870 if (pring->ringno != LPFC_ELS_RING) { 3871 /* 3872 * Ring <ringno> handler: unexpected completion IoTag 3873 * <IoTag> 3874 */ 3875 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3876 "0322 Ring %d handler: " 3877 "unexpected completion IoTag x%x " 3878 "Data: x%x x%x x%x x%x\n", 3879 pring->ringno, iotag, ulp_status, 3880 ulp_word4, ulp_command, ulp_context); 3881 } 3882 } 3883 3884 return 1; 3885 } 3886 3887 /** 3888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3889 * @phba: Pointer to HBA context object. 3890 * @pring: Pointer to driver SLI ring object. 3891 * 3892 * This function is called from the iocb ring event handlers when 3893 * put pointer is ahead of the get pointer for a ring. This function signal 3894 * an error attention condition to the worker thread and the worker 3895 * thread will transition the HBA to offline state. 3896 **/ 3897 static void 3898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3899 { 3900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3901 /* 3902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3903 * rsp ring <portRspMax> 3904 */ 3905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3906 "0312 Ring %d handler: portRspPut %d " 3907 "is bigger than rsp ring %d\n", 3908 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3909 pring->sli.sli3.numRiocb); 3910 3911 phba->link_state = LPFC_HBA_ERROR; 3912 3913 /* 3914 * All error attention handlers are posted to 3915 * worker thread 3916 */ 3917 phba->work_ha |= HA_ERATT; 3918 phba->work_hs = HS_FFER3; 3919 3920 lpfc_worker_wake_up(phba); 3921 3922 return; 3923 } 3924 3925 /** 3926 * lpfc_poll_eratt - Error attention polling timer timeout handler 3927 * @t: Context to fetch pointer to address of HBA context object from. 3928 * 3929 * This function is invoked by the Error Attention polling timer when the 3930 * timer times out. It will check the SLI Error Attention register for 3931 * possible attention events. If so, it will post an Error Attention event 3932 * and wake up worker thread to process it. Otherwise, it will set up the 3933 * Error Attention polling timer for the next poll. 3934 **/ 3935 void lpfc_poll_eratt(struct timer_list *t) 3936 { 3937 struct lpfc_hba *phba; 3938 uint32_t eratt = 0; 3939 uint64_t sli_intr, cnt; 3940 3941 phba = from_timer(phba, t, eratt_poll); 3942 if (!test_bit(HBA_SETUP, &phba->hba_flag)) 3943 return; 3944 3945 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3946 return; 3947 3948 /* Here we will also keep track of interrupts per sec of the hba */ 3949 sli_intr = phba->sli.slistat.sli_intr; 3950 3951 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3952 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3953 sli_intr); 3954 else 3955 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3956 3957 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3958 do_div(cnt, phba->eratt_poll_interval); 3959 phba->sli.slistat.sli_ips = cnt; 3960 3961 phba->sli.slistat.sli_prev_intr = sli_intr; 3962 3963 /* Check chip HA register for error event */ 3964 eratt = lpfc_sli_check_eratt(phba); 3965 3966 if (eratt) 3967 /* Tell the worker thread there is work to do */ 3968 lpfc_worker_wake_up(phba); 3969 else 3970 /* Restart the timer for next eratt poll */ 3971 mod_timer(&phba->eratt_poll, 3972 jiffies + 3973 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3974 return; 3975 } 3976 3977 3978 /** 3979 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3980 * @phba: Pointer to HBA context object. 3981 * @pring: Pointer to driver SLI ring object. 3982 * @mask: Host attention register mask for this ring. 3983 * 3984 * This function is called from the interrupt context when there is a ring 3985 * event for the fcp ring. The caller does not hold any lock. 3986 * The function processes each response iocb in the response ring until it 3987 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3988 * LE bit set. The function will call the completion handler of the command iocb 3989 * if the response iocb indicates a completion for a command iocb or it is 3990 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3991 * function if this is an unsolicited iocb. 3992 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3993 * to check it explicitly. 3994 */ 3995 int 3996 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3997 struct lpfc_sli_ring *pring, uint32_t mask) 3998 { 3999 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 4000 IOCB_t *irsp = NULL; 4001 IOCB_t *entry = NULL; 4002 struct lpfc_iocbq *cmdiocbq = NULL; 4003 struct lpfc_iocbq rspiocbq; 4004 uint32_t status; 4005 uint32_t portRspPut, portRspMax; 4006 int rc = 1; 4007 lpfc_iocb_type type; 4008 unsigned long iflag; 4009 uint32_t rsp_cmpl = 0; 4010 4011 spin_lock_irqsave(&phba->hbalock, iflag); 4012 pring->stats.iocb_event++; 4013 4014 /* 4015 * The next available response entry should never exceed the maximum 4016 * entries. If it does, treat it as an adapter hardware error. 4017 */ 4018 portRspMax = pring->sli.sli3.numRiocb; 4019 portRspPut = le32_to_cpu(pgp->rspPutInx); 4020 if (unlikely(portRspPut >= portRspMax)) { 4021 lpfc_sli_rsp_pointers_error(phba, pring); 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 return 1; 4024 } 4025 if (phba->fcp_ring_in_use) { 4026 spin_unlock_irqrestore(&phba->hbalock, iflag); 4027 return 1; 4028 } else 4029 phba->fcp_ring_in_use = 1; 4030 4031 rmb(); 4032 while (pring->sli.sli3.rspidx != portRspPut) { 4033 /* 4034 * Fetch an entry off the ring and copy it into a local data 4035 * structure. The copy involves a byte-swap since the 4036 * network byte order and pci byte orders are different. 4037 */ 4038 entry = lpfc_resp_iocb(phba, pring); 4039 phba->last_completion_time = jiffies; 4040 4041 if (++pring->sli.sli3.rspidx >= portRspMax) 4042 pring->sli.sli3.rspidx = 0; 4043 4044 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4045 (uint32_t *) &rspiocbq.iocb, 4046 phba->iocb_rsp_size); 4047 INIT_LIST_HEAD(&(rspiocbq.list)); 4048 irsp = &rspiocbq.iocb; 4049 4050 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4051 pring->stats.iocb_rsp++; 4052 rsp_cmpl++; 4053 4054 if (unlikely(irsp->ulpStatus)) { 4055 /* 4056 * If resource errors reported from HBA, reduce 4057 * queuedepths of the SCSI device. 4058 */ 4059 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4060 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4061 IOERR_NO_RESOURCES)) { 4062 spin_unlock_irqrestore(&phba->hbalock, iflag); 4063 phba->lpfc_rampdown_queue_depth(phba); 4064 spin_lock_irqsave(&phba->hbalock, iflag); 4065 } 4066 4067 /* Rsp ring <ringno> error: IOCB */ 4068 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4069 "0336 Rsp Ring %d error: IOCB Data: " 4070 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4071 pring->ringno, 4072 irsp->un.ulpWord[0], 4073 irsp->un.ulpWord[1], 4074 irsp->un.ulpWord[2], 4075 irsp->un.ulpWord[3], 4076 irsp->un.ulpWord[4], 4077 irsp->un.ulpWord[5], 4078 *(uint32_t *)&irsp->un1, 4079 *((uint32_t *)&irsp->un1 + 1)); 4080 } 4081 4082 switch (type) { 4083 case LPFC_ABORT_IOCB: 4084 case LPFC_SOL_IOCB: 4085 /* 4086 * Idle exchange closed via ABTS from port. No iocb 4087 * resources need to be recovered. 4088 */ 4089 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4091 "0333 IOCB cmd 0x%x" 4092 " processed. Skipping" 4093 " completion\n", 4094 irsp->ulpCommand); 4095 break; 4096 } 4097 4098 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4099 &rspiocbq); 4100 if (unlikely(!cmdiocbq)) 4101 break; 4102 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4103 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4104 if (cmdiocbq->cmd_cmpl) { 4105 spin_unlock_irqrestore(&phba->hbalock, iflag); 4106 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4107 spin_lock_irqsave(&phba->hbalock, iflag); 4108 } 4109 break; 4110 case LPFC_UNSOL_IOCB: 4111 spin_unlock_irqrestore(&phba->hbalock, iflag); 4112 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4113 spin_lock_irqsave(&phba->hbalock, iflag); 4114 break; 4115 default: 4116 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4117 char adaptermsg[LPFC_MAX_ADPTMSG]; 4118 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4119 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4120 MAX_MSG_DATA); 4121 dev_warn(&((phba->pcidev)->dev), 4122 "lpfc%d: %s\n", 4123 phba->brd_no, adaptermsg); 4124 } else { 4125 /* Unknown IOCB command */ 4126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4127 "0334 Unknown IOCB command " 4128 "Data: x%x, x%x x%x x%x x%x\n", 4129 type, irsp->ulpCommand, 4130 irsp->ulpStatus, 4131 irsp->ulpIoTag, 4132 irsp->ulpContext); 4133 } 4134 break; 4135 } 4136 4137 /* 4138 * The response IOCB has been processed. Update the ring 4139 * pointer in SLIM. If the port response put pointer has not 4140 * been updated, sync the pgp->rspPutInx and fetch the new port 4141 * response put pointer. 4142 */ 4143 writel(pring->sli.sli3.rspidx, 4144 &phba->host_gp[pring->ringno].rspGetInx); 4145 4146 if (pring->sli.sli3.rspidx == portRspPut) 4147 portRspPut = le32_to_cpu(pgp->rspPutInx); 4148 } 4149 4150 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4151 pring->stats.iocb_rsp_full++; 4152 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4153 writel(status, phba->CAregaddr); 4154 readl(phba->CAregaddr); 4155 } 4156 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4157 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4158 pring->stats.iocb_cmd_empty++; 4159 4160 /* Force update of the local copy of cmdGetInx */ 4161 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4162 lpfc_sli_resume_iocb(phba, pring); 4163 4164 if ((pring->lpfc_sli_cmd_available)) 4165 (pring->lpfc_sli_cmd_available) (phba, pring); 4166 4167 } 4168 4169 phba->fcp_ring_in_use = 0; 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 return rc; 4172 } 4173 4174 /** 4175 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4176 * @phba: Pointer to HBA context object. 4177 * @pring: Pointer to driver SLI ring object. 4178 * @rspiocbp: Pointer to driver response IOCB object. 4179 * 4180 * This function is called from the worker thread when there is a slow-path 4181 * response IOCB to process. This function chains all the response iocbs until 4182 * seeing the iocb with the LE bit set. The function will call 4183 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4184 * completion of a command iocb. The function will call the 4185 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4186 * The function frees the resources or calls the completion handler if this 4187 * iocb is an abort completion. The function returns NULL when the response 4188 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4189 * this function shall chain the iocb on to the iocb_continueq and return the 4190 * response iocb passed in. 4191 **/ 4192 static struct lpfc_iocbq * 4193 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4194 struct lpfc_iocbq *rspiocbp) 4195 { 4196 struct lpfc_iocbq *saveq; 4197 struct lpfc_iocbq *cmdiocb; 4198 struct lpfc_iocbq *next_iocb; 4199 IOCB_t *irsp; 4200 uint32_t free_saveq; 4201 u8 cmd_type; 4202 lpfc_iocb_type type; 4203 unsigned long iflag; 4204 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4205 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4206 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4207 int rc; 4208 4209 spin_lock_irqsave(&phba->hbalock, iflag); 4210 /* First add the response iocb to the countinueq list */ 4211 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4212 pring->iocb_continueq_cnt++; 4213 4214 /* 4215 * By default, the driver expects to free all resources 4216 * associated with this iocb completion. 4217 */ 4218 free_saveq = 1; 4219 saveq = list_get_first(&pring->iocb_continueq, 4220 struct lpfc_iocbq, list); 4221 list_del_init(&pring->iocb_continueq); 4222 pring->iocb_continueq_cnt = 0; 4223 4224 pring->stats.iocb_rsp++; 4225 4226 /* 4227 * If resource errors reported from HBA, reduce 4228 * queuedepths of the SCSI device. 4229 */ 4230 if (ulp_status == IOSTAT_LOCAL_REJECT && 4231 ((ulp_word4 & IOERR_PARAM_MASK) == 4232 IOERR_NO_RESOURCES)) { 4233 spin_unlock_irqrestore(&phba->hbalock, iflag); 4234 phba->lpfc_rampdown_queue_depth(phba); 4235 spin_lock_irqsave(&phba->hbalock, iflag); 4236 } 4237 4238 if (ulp_status) { 4239 /* Rsp ring <ringno> error: IOCB */ 4240 if (phba->sli_rev < LPFC_SLI_REV4) { 4241 irsp = &rspiocbp->iocb; 4242 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4243 "0328 Rsp Ring %d error: ulp_status x%x " 4244 "IOCB Data: " 4245 "x%08x x%08x x%08x x%08x " 4246 "x%08x x%08x x%08x x%08x " 4247 "x%08x x%08x x%08x x%08x " 4248 "x%08x x%08x x%08x x%08x\n", 4249 pring->ringno, ulp_status, 4250 get_job_ulpword(rspiocbp, 0), 4251 get_job_ulpword(rspiocbp, 1), 4252 get_job_ulpword(rspiocbp, 2), 4253 get_job_ulpword(rspiocbp, 3), 4254 get_job_ulpword(rspiocbp, 4), 4255 get_job_ulpword(rspiocbp, 5), 4256 *(((uint32_t *)irsp) + 6), 4257 *(((uint32_t *)irsp) + 7), 4258 *(((uint32_t *)irsp) + 8), 4259 *(((uint32_t *)irsp) + 9), 4260 *(((uint32_t *)irsp) + 10), 4261 *(((uint32_t *)irsp) + 11), 4262 *(((uint32_t *)irsp) + 12), 4263 *(((uint32_t *)irsp) + 13), 4264 *(((uint32_t *)irsp) + 14), 4265 *(((uint32_t *)irsp) + 15)); 4266 } else { 4267 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4268 "0321 Rsp Ring %d error: " 4269 "IOCB Data: " 4270 "x%x x%x x%x x%x\n", 4271 pring->ringno, 4272 rspiocbp->wcqe_cmpl.word0, 4273 rspiocbp->wcqe_cmpl.total_data_placed, 4274 rspiocbp->wcqe_cmpl.parameter, 4275 rspiocbp->wcqe_cmpl.word3); 4276 } 4277 } 4278 4279 4280 /* 4281 * Fetch the iocb command type and call the correct completion 4282 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4283 * get freed back to the lpfc_iocb_list by the discovery 4284 * kernel thread. 4285 */ 4286 cmd_type = ulp_command & CMD_IOCB_MASK; 4287 type = lpfc_sli_iocb_cmd_type(cmd_type); 4288 switch (type) { 4289 case LPFC_SOL_IOCB: 4290 spin_unlock_irqrestore(&phba->hbalock, iflag); 4291 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4292 spin_lock_irqsave(&phba->hbalock, iflag); 4293 break; 4294 case LPFC_UNSOL_IOCB: 4295 spin_unlock_irqrestore(&phba->hbalock, iflag); 4296 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4297 spin_lock_irqsave(&phba->hbalock, iflag); 4298 if (!rc) 4299 free_saveq = 0; 4300 break; 4301 case LPFC_ABORT_IOCB: 4302 cmdiocb = NULL; 4303 if (ulp_command != CMD_XRI_ABORTED_CX) 4304 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4305 saveq); 4306 if (cmdiocb) { 4307 /* Call the specified completion routine */ 4308 if (cmdiocb->cmd_cmpl) { 4309 spin_unlock_irqrestore(&phba->hbalock, iflag); 4310 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4311 spin_lock_irqsave(&phba->hbalock, iflag); 4312 } else { 4313 __lpfc_sli_release_iocbq(phba, cmdiocb); 4314 } 4315 } 4316 break; 4317 case LPFC_UNKNOWN_IOCB: 4318 if (ulp_command == CMD_ADAPTER_MSG) { 4319 char adaptermsg[LPFC_MAX_ADPTMSG]; 4320 4321 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4322 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4323 MAX_MSG_DATA); 4324 dev_warn(&((phba->pcidev)->dev), 4325 "lpfc%d: %s\n", 4326 phba->brd_no, adaptermsg); 4327 } else { 4328 /* Unknown command */ 4329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4330 "0335 Unknown IOCB " 4331 "command Data: x%x " 4332 "x%x x%x x%x\n", 4333 ulp_command, 4334 ulp_status, 4335 get_wqe_reqtag(rspiocbp), 4336 get_job_ulpcontext(phba, rspiocbp)); 4337 } 4338 break; 4339 } 4340 4341 if (free_saveq) { 4342 list_for_each_entry_safe(rspiocbp, next_iocb, 4343 &saveq->list, list) { 4344 list_del_init(&rspiocbp->list); 4345 __lpfc_sli_release_iocbq(phba, rspiocbp); 4346 } 4347 __lpfc_sli_release_iocbq(phba, saveq); 4348 } 4349 rspiocbp = NULL; 4350 spin_unlock_irqrestore(&phba->hbalock, iflag); 4351 return rspiocbp; 4352 } 4353 4354 /** 4355 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4356 * @phba: Pointer to HBA context object. 4357 * @pring: Pointer to driver SLI ring object. 4358 * @mask: Host attention register mask for this ring. 4359 * 4360 * This routine wraps the actual slow_ring event process routine from the 4361 * API jump table function pointer from the lpfc_hba struct. 4362 **/ 4363 void 4364 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4365 struct lpfc_sli_ring *pring, uint32_t mask) 4366 { 4367 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4368 } 4369 4370 /** 4371 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4372 * @phba: Pointer to HBA context object. 4373 * @pring: Pointer to driver SLI ring object. 4374 * @mask: Host attention register mask for this ring. 4375 * 4376 * This function is called from the worker thread when there is a ring event 4377 * for non-fcp rings. The caller does not hold any lock. The function will 4378 * remove each response iocb in the response ring and calls the handle 4379 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4380 **/ 4381 static void 4382 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4383 struct lpfc_sli_ring *pring, uint32_t mask) 4384 { 4385 struct lpfc_pgp *pgp; 4386 IOCB_t *entry; 4387 IOCB_t *irsp = NULL; 4388 struct lpfc_iocbq *rspiocbp = NULL; 4389 uint32_t portRspPut, portRspMax; 4390 unsigned long iflag; 4391 uint32_t status; 4392 4393 pgp = &phba->port_gp[pring->ringno]; 4394 spin_lock_irqsave(&phba->hbalock, iflag); 4395 pring->stats.iocb_event++; 4396 4397 /* 4398 * The next available response entry should never exceed the maximum 4399 * entries. If it does, treat it as an adapter hardware error. 4400 */ 4401 portRspMax = pring->sli.sli3.numRiocb; 4402 portRspPut = le32_to_cpu(pgp->rspPutInx); 4403 if (portRspPut >= portRspMax) { 4404 /* 4405 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4406 * rsp ring <portRspMax> 4407 */ 4408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4409 "0303 Ring %d handler: portRspPut %d " 4410 "is bigger than rsp ring %d\n", 4411 pring->ringno, portRspPut, portRspMax); 4412 4413 phba->link_state = LPFC_HBA_ERROR; 4414 spin_unlock_irqrestore(&phba->hbalock, iflag); 4415 4416 phba->work_hs = HS_FFER3; 4417 lpfc_handle_eratt(phba); 4418 4419 return; 4420 } 4421 4422 rmb(); 4423 while (pring->sli.sli3.rspidx != portRspPut) { 4424 /* 4425 * Build a completion list and call the appropriate handler. 4426 * The process is to get the next available response iocb, get 4427 * a free iocb from the list, copy the response data into the 4428 * free iocb, insert to the continuation list, and update the 4429 * next response index to slim. This process makes response 4430 * iocb's in the ring available to DMA as fast as possible but 4431 * pays a penalty for a copy operation. Since the iocb is 4432 * only 32 bytes, this penalty is considered small relative to 4433 * the PCI reads for register values and a slim write. When 4434 * the ulpLe field is set, the entire Command has been 4435 * received. 4436 */ 4437 entry = lpfc_resp_iocb(phba, pring); 4438 4439 phba->last_completion_time = jiffies; 4440 rspiocbp = __lpfc_sli_get_iocbq(phba); 4441 if (rspiocbp == NULL) { 4442 printk(KERN_ERR "%s: out of buffers! Failing " 4443 "completion.\n", __func__); 4444 break; 4445 } 4446 4447 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4448 phba->iocb_rsp_size); 4449 irsp = &rspiocbp->iocb; 4450 4451 if (++pring->sli.sli3.rspidx >= portRspMax) 4452 pring->sli.sli3.rspidx = 0; 4453 4454 if (pring->ringno == LPFC_ELS_RING) { 4455 lpfc_debugfs_slow_ring_trc(phba, 4456 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4457 *(((uint32_t *) irsp) + 4), 4458 *(((uint32_t *) irsp) + 6), 4459 *(((uint32_t *) irsp) + 7)); 4460 } 4461 4462 writel(pring->sli.sli3.rspidx, 4463 &phba->host_gp[pring->ringno].rspGetInx); 4464 4465 spin_unlock_irqrestore(&phba->hbalock, iflag); 4466 /* Handle the response IOCB */ 4467 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4468 spin_lock_irqsave(&phba->hbalock, iflag); 4469 4470 /* 4471 * If the port response put pointer has not been updated, sync 4472 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4473 * response put pointer. 4474 */ 4475 if (pring->sli.sli3.rspidx == portRspPut) { 4476 portRspPut = le32_to_cpu(pgp->rspPutInx); 4477 } 4478 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4479 4480 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4481 /* At least one response entry has been freed */ 4482 pring->stats.iocb_rsp_full++; 4483 /* SET RxRE_RSP in Chip Att register */ 4484 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4485 writel(status, phba->CAregaddr); 4486 readl(phba->CAregaddr); /* flush */ 4487 } 4488 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4489 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4490 pring->stats.iocb_cmd_empty++; 4491 4492 /* Force update of the local copy of cmdGetInx */ 4493 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4494 lpfc_sli_resume_iocb(phba, pring); 4495 4496 if ((pring->lpfc_sli_cmd_available)) 4497 (pring->lpfc_sli_cmd_available) (phba, pring); 4498 4499 } 4500 4501 spin_unlock_irqrestore(&phba->hbalock, iflag); 4502 return; 4503 } 4504 4505 /** 4506 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4507 * @phba: Pointer to HBA context object. 4508 * @pring: Pointer to driver SLI ring object. 4509 * @mask: Host attention register mask for this ring. 4510 * 4511 * This function is called from the worker thread when there is a pending 4512 * ELS response iocb on the driver internal slow-path response iocb worker 4513 * queue. The caller does not hold any lock. The function will remove each 4514 * response iocb from the response worker queue and calls the handle 4515 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4516 **/ 4517 static void 4518 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4519 struct lpfc_sli_ring *pring, uint32_t mask) 4520 { 4521 struct lpfc_iocbq *irspiocbq; 4522 struct hbq_dmabuf *dmabuf; 4523 struct lpfc_cq_event *cq_event; 4524 unsigned long iflag; 4525 int count = 0; 4526 4527 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4528 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4529 /* Get the response iocb from the head of work queue */ 4530 spin_lock_irqsave(&phba->hbalock, iflag); 4531 list_remove_head(&phba->sli4_hba.sp_queue_event, 4532 cq_event, struct lpfc_cq_event, list); 4533 spin_unlock_irqrestore(&phba->hbalock, iflag); 4534 4535 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4536 case CQE_CODE_COMPL_WQE: 4537 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4538 cq_event); 4539 /* Translate ELS WCQE to response IOCBQ */ 4540 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4541 irspiocbq); 4542 if (irspiocbq) 4543 lpfc_sli_sp_handle_rspiocb(phba, pring, 4544 irspiocbq); 4545 count++; 4546 break; 4547 case CQE_CODE_RECEIVE: 4548 case CQE_CODE_RECEIVE_V1: 4549 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4550 cq_event); 4551 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4552 count++; 4553 break; 4554 default: 4555 break; 4556 } 4557 4558 /* Limit the number of events to 64 to avoid soft lockups */ 4559 if (count == 64) 4560 break; 4561 } 4562 } 4563 4564 /** 4565 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4566 * @phba: Pointer to HBA context object. 4567 * @pring: Pointer to driver SLI ring object. 4568 * 4569 * This function aborts all iocbs in the given ring and frees all the iocb 4570 * objects in txq. This function issues an abort iocb for all the iocb commands 4571 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4572 * the return of this function. The caller is not required to hold any locks. 4573 **/ 4574 void 4575 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4576 { 4577 LIST_HEAD(tx_completions); 4578 LIST_HEAD(txcmplq_completions); 4579 struct lpfc_iocbq *iocb, *next_iocb; 4580 int offline; 4581 4582 if (pring->ringno == LPFC_ELS_RING) { 4583 lpfc_fabric_abort_hba(phba); 4584 } 4585 offline = pci_channel_offline(phba->pcidev); 4586 4587 /* Error everything on txq and txcmplq 4588 * First do the txq. 4589 */ 4590 if (phba->sli_rev >= LPFC_SLI_REV4) { 4591 spin_lock_irq(&pring->ring_lock); 4592 list_splice_init(&pring->txq, &tx_completions); 4593 pring->txq_cnt = 0; 4594 4595 if (offline) { 4596 list_splice_init(&pring->txcmplq, 4597 &txcmplq_completions); 4598 } else { 4599 /* Next issue ABTS for everything on the txcmplq */ 4600 list_for_each_entry_safe(iocb, next_iocb, 4601 &pring->txcmplq, list) 4602 lpfc_sli_issue_abort_iotag(phba, pring, 4603 iocb, NULL); 4604 } 4605 spin_unlock_irq(&pring->ring_lock); 4606 } else { 4607 spin_lock_irq(&phba->hbalock); 4608 list_splice_init(&pring->txq, &tx_completions); 4609 pring->txq_cnt = 0; 4610 4611 if (offline) { 4612 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4613 } else { 4614 /* Next issue ABTS for everything on the txcmplq */ 4615 list_for_each_entry_safe(iocb, next_iocb, 4616 &pring->txcmplq, list) 4617 lpfc_sli_issue_abort_iotag(phba, pring, 4618 iocb, NULL); 4619 } 4620 spin_unlock_irq(&phba->hbalock); 4621 } 4622 4623 if (offline) { 4624 /* Cancel all the IOCBs from the completions list */ 4625 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4626 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4627 } else { 4628 /* Make sure HBA is alive */ 4629 lpfc_issue_hb_tmo(phba); 4630 } 4631 /* Cancel all the IOCBs from the completions list */ 4632 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4633 IOERR_SLI_ABORTED); 4634 } 4635 4636 /** 4637 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4638 * @phba: Pointer to HBA context object. 4639 * 4640 * This function aborts all iocbs in FCP rings and frees all the iocb 4641 * objects in txq. This function issues an abort iocb for all the iocb commands 4642 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4643 * the return of this function. The caller is not required to hold any locks. 4644 **/ 4645 void 4646 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4647 { 4648 struct lpfc_sli *psli = &phba->sli; 4649 struct lpfc_sli_ring *pring; 4650 uint32_t i; 4651 4652 /* Look on all the FCP Rings for the iotag */ 4653 if (phba->sli_rev >= LPFC_SLI_REV4) { 4654 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4655 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4656 lpfc_sli_abort_iocb_ring(phba, pring); 4657 } 4658 } else { 4659 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4660 lpfc_sli_abort_iocb_ring(phba, pring); 4661 } 4662 } 4663 4664 /** 4665 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4666 * @phba: Pointer to HBA context object. 4667 * 4668 * This function flushes all iocbs in the IO ring and frees all the iocb 4669 * objects in txq and txcmplq. This function will not issue abort iocbs 4670 * for all the iocb commands in txcmplq, they will just be returned with 4671 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4672 * slot has been permanently disabled. 4673 **/ 4674 void 4675 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4676 { 4677 LIST_HEAD(txq); 4678 LIST_HEAD(txcmplq); 4679 struct lpfc_sli *psli = &phba->sli; 4680 struct lpfc_sli_ring *pring; 4681 uint32_t i; 4682 struct lpfc_iocbq *piocb, *next_iocb; 4683 4684 /* Indicate the I/O queues are flushed */ 4685 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4686 4687 /* Look on all the FCP Rings for the iotag */ 4688 if (phba->sli_rev >= LPFC_SLI_REV4) { 4689 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4690 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4691 4692 spin_lock_irq(&pring->ring_lock); 4693 /* Retrieve everything on txq */ 4694 list_splice_init(&pring->txq, &txq); 4695 list_for_each_entry_safe(piocb, next_iocb, 4696 &pring->txcmplq, list) 4697 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4698 /* Retrieve everything on the txcmplq */ 4699 list_splice_init(&pring->txcmplq, &txcmplq); 4700 pring->txq_cnt = 0; 4701 pring->txcmplq_cnt = 0; 4702 spin_unlock_irq(&pring->ring_lock); 4703 4704 /* Flush the txq */ 4705 lpfc_sli_cancel_iocbs(phba, &txq, 4706 IOSTAT_LOCAL_REJECT, 4707 IOERR_SLI_DOWN); 4708 /* Flush the txcmplq */ 4709 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4710 IOSTAT_LOCAL_REJECT, 4711 IOERR_SLI_DOWN); 4712 if (unlikely(pci_channel_offline(phba->pcidev))) 4713 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4714 } 4715 } else { 4716 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4717 4718 spin_lock_irq(&phba->hbalock); 4719 /* Retrieve everything on txq */ 4720 list_splice_init(&pring->txq, &txq); 4721 list_for_each_entry_safe(piocb, next_iocb, 4722 &pring->txcmplq, list) 4723 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4724 /* Retrieve everything on the txcmplq */ 4725 list_splice_init(&pring->txcmplq, &txcmplq); 4726 pring->txq_cnt = 0; 4727 pring->txcmplq_cnt = 0; 4728 spin_unlock_irq(&phba->hbalock); 4729 4730 /* Flush the txq */ 4731 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4732 IOERR_SLI_DOWN); 4733 /* Flush the txcmpq */ 4734 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4735 IOERR_SLI_DOWN); 4736 } 4737 } 4738 4739 /** 4740 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4741 * @phba: Pointer to HBA context object. 4742 * @mask: Bit mask to be checked. 4743 * 4744 * This function reads the host status register and compares 4745 * with the provided bit mask to check if HBA completed 4746 * the restart. This function will wait in a loop for the 4747 * HBA to complete restart. If the HBA does not restart within 4748 * 15 iterations, the function will reset the HBA again. The 4749 * function returns 1 when HBA fail to restart otherwise returns 4750 * zero. 4751 **/ 4752 static int 4753 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4754 { 4755 uint32_t status; 4756 int i = 0; 4757 int retval = 0; 4758 4759 /* Read the HBA Host Status Register */ 4760 if (lpfc_readl(phba->HSregaddr, &status)) 4761 return 1; 4762 4763 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4764 4765 /* 4766 * Check status register every 100ms for 5 retries, then every 4767 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4768 * every 2.5 sec for 4. 4769 * Break our of the loop if errors occurred during init. 4770 */ 4771 while (((status & mask) != mask) && 4772 !(status & HS_FFERM) && 4773 i++ < 20) { 4774 4775 if (i <= 5) 4776 msleep(10); 4777 else if (i <= 10) 4778 msleep(500); 4779 else 4780 msleep(2500); 4781 4782 if (i == 15) { 4783 /* Do post */ 4784 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4785 lpfc_sli_brdrestart(phba); 4786 } 4787 /* Read the HBA Host Status Register */ 4788 if (lpfc_readl(phba->HSregaddr, &status)) { 4789 retval = 1; 4790 break; 4791 } 4792 } 4793 4794 /* Check to see if any errors occurred during init */ 4795 if ((status & HS_FFERM) || (i >= 20)) { 4796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4797 "2751 Adapter failed to restart, " 4798 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4799 status, 4800 readl(phba->MBslimaddr + 0xa8), 4801 readl(phba->MBslimaddr + 0xac)); 4802 phba->link_state = LPFC_HBA_ERROR; 4803 retval = 1; 4804 } 4805 4806 return retval; 4807 } 4808 4809 /** 4810 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4811 * @phba: Pointer to HBA context object. 4812 * @mask: Bit mask to be checked. 4813 * 4814 * This function checks the host status register to check if HBA is 4815 * ready. This function will wait in a loop for the HBA to be ready 4816 * If the HBA is not ready , the function will will reset the HBA PCI 4817 * function again. The function returns 1 when HBA fail to be ready 4818 * otherwise returns zero. 4819 **/ 4820 static int 4821 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4822 { 4823 uint32_t status; 4824 int retval = 0; 4825 4826 /* Read the HBA Host Status Register */ 4827 status = lpfc_sli4_post_status_check(phba); 4828 4829 if (status) { 4830 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4831 lpfc_sli_brdrestart(phba); 4832 status = lpfc_sli4_post_status_check(phba); 4833 } 4834 4835 /* Check to see if any errors occurred during init */ 4836 if (status) { 4837 phba->link_state = LPFC_HBA_ERROR; 4838 retval = 1; 4839 } else 4840 phba->sli4_hba.intr_enable = 0; 4841 4842 clear_bit(HBA_SETUP, &phba->hba_flag); 4843 return retval; 4844 } 4845 4846 /** 4847 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4848 * @phba: Pointer to HBA context object. 4849 * @mask: Bit mask to be checked. 4850 * 4851 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4852 * from the API jump table function pointer from the lpfc_hba struct. 4853 **/ 4854 int 4855 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4856 { 4857 return phba->lpfc_sli_brdready(phba, mask); 4858 } 4859 4860 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4861 4862 /** 4863 * lpfc_reset_barrier - Make HBA ready for HBA reset 4864 * @phba: Pointer to HBA context object. 4865 * 4866 * This function is called before resetting an HBA. This function is called 4867 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4868 **/ 4869 void lpfc_reset_barrier(struct lpfc_hba *phba) 4870 { 4871 uint32_t __iomem *resp_buf; 4872 uint32_t __iomem *mbox_buf; 4873 volatile struct MAILBOX_word0 mbox; 4874 uint32_t hc_copy, ha_copy, resp_data; 4875 int i; 4876 uint8_t hdrtype; 4877 4878 lockdep_assert_held(&phba->hbalock); 4879 4880 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4881 if (hdrtype != PCI_HEADER_TYPE_MFD || 4882 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4883 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4884 return; 4885 4886 /* 4887 * Tell the other part of the chip to suspend temporarily all 4888 * its DMA activity. 4889 */ 4890 resp_buf = phba->MBslimaddr; 4891 4892 /* Disable the error attention */ 4893 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4894 return; 4895 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4896 readl(phba->HCregaddr); /* flush */ 4897 phba->link_flag |= LS_IGNORE_ERATT; 4898 4899 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4900 return; 4901 if (ha_copy & HA_ERATT) { 4902 /* Clear Chip error bit */ 4903 writel(HA_ERATT, phba->HAregaddr); 4904 phba->pport->stopped = 1; 4905 } 4906 4907 mbox.word0 = 0; 4908 mbox.mbxCommand = MBX_KILL_BOARD; 4909 mbox.mbxOwner = OWN_CHIP; 4910 4911 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4912 mbox_buf = phba->MBslimaddr; 4913 writel(mbox.word0, mbox_buf); 4914 4915 for (i = 0; i < 50; i++) { 4916 if (lpfc_readl((resp_buf + 1), &resp_data)) 4917 return; 4918 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4919 mdelay(1); 4920 else 4921 break; 4922 } 4923 resp_data = 0; 4924 if (lpfc_readl((resp_buf + 1), &resp_data)) 4925 return; 4926 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4927 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4928 phba->pport->stopped) 4929 goto restore_hc; 4930 else 4931 goto clear_errat; 4932 } 4933 4934 mbox.mbxOwner = OWN_HOST; 4935 resp_data = 0; 4936 for (i = 0; i < 500; i++) { 4937 if (lpfc_readl(resp_buf, &resp_data)) 4938 return; 4939 if (resp_data != mbox.word0) 4940 mdelay(1); 4941 else 4942 break; 4943 } 4944 4945 clear_errat: 4946 4947 while (++i < 500) { 4948 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4949 return; 4950 if (!(ha_copy & HA_ERATT)) 4951 mdelay(1); 4952 else 4953 break; 4954 } 4955 4956 if (readl(phba->HAregaddr) & HA_ERATT) { 4957 writel(HA_ERATT, phba->HAregaddr); 4958 phba->pport->stopped = 1; 4959 } 4960 4961 restore_hc: 4962 phba->link_flag &= ~LS_IGNORE_ERATT; 4963 writel(hc_copy, phba->HCregaddr); 4964 readl(phba->HCregaddr); /* flush */ 4965 } 4966 4967 /** 4968 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4969 * @phba: Pointer to HBA context object. 4970 * 4971 * This function issues a kill_board mailbox command and waits for 4972 * the error attention interrupt. This function is called for stopping 4973 * the firmware processing. The caller is not required to hold any 4974 * locks. This function calls lpfc_hba_down_post function to free 4975 * any pending commands after the kill. The function will return 1 when it 4976 * fails to kill the board else will return 0. 4977 **/ 4978 int 4979 lpfc_sli_brdkill(struct lpfc_hba *phba) 4980 { 4981 struct lpfc_sli *psli; 4982 LPFC_MBOXQ_t *pmb; 4983 uint32_t status; 4984 uint32_t ha_copy; 4985 int retval; 4986 int i = 0; 4987 4988 psli = &phba->sli; 4989 4990 /* Kill HBA */ 4991 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4992 "0329 Kill HBA Data: x%x x%x\n", 4993 phba->pport->port_state, psli->sli_flag); 4994 4995 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4996 if (!pmb) 4997 return 1; 4998 4999 /* Disable the error attention */ 5000 spin_lock_irq(&phba->hbalock); 5001 if (lpfc_readl(phba->HCregaddr, &status)) { 5002 spin_unlock_irq(&phba->hbalock); 5003 mempool_free(pmb, phba->mbox_mem_pool); 5004 return 1; 5005 } 5006 status &= ~HC_ERINT_ENA; 5007 writel(status, phba->HCregaddr); 5008 readl(phba->HCregaddr); /* flush */ 5009 phba->link_flag |= LS_IGNORE_ERATT; 5010 spin_unlock_irq(&phba->hbalock); 5011 5012 lpfc_kill_board(phba, pmb); 5013 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5014 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5015 5016 if (retval != MBX_SUCCESS) { 5017 if (retval != MBX_BUSY) 5018 mempool_free(pmb, phba->mbox_mem_pool); 5019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5020 "2752 KILL_BOARD command failed retval %d\n", 5021 retval); 5022 spin_lock_irq(&phba->hbalock); 5023 phba->link_flag &= ~LS_IGNORE_ERATT; 5024 spin_unlock_irq(&phba->hbalock); 5025 return 1; 5026 } 5027 5028 spin_lock_irq(&phba->hbalock); 5029 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5030 spin_unlock_irq(&phba->hbalock); 5031 5032 mempool_free(pmb, phba->mbox_mem_pool); 5033 5034 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5035 * attention every 100ms for 3 seconds. If we don't get ERATT after 5036 * 3 seconds we still set HBA_ERROR state because the status of the 5037 * board is now undefined. 5038 */ 5039 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5040 return 1; 5041 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5042 mdelay(100); 5043 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5044 return 1; 5045 } 5046 5047 del_timer_sync(&psli->mbox_tmo); 5048 if (ha_copy & HA_ERATT) { 5049 writel(HA_ERATT, phba->HAregaddr); 5050 phba->pport->stopped = 1; 5051 } 5052 spin_lock_irq(&phba->hbalock); 5053 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5054 psli->mbox_active = NULL; 5055 phba->link_flag &= ~LS_IGNORE_ERATT; 5056 spin_unlock_irq(&phba->hbalock); 5057 5058 lpfc_hba_down_post(phba); 5059 phba->link_state = LPFC_HBA_ERROR; 5060 5061 return ha_copy & HA_ERATT ? 0 : 1; 5062 } 5063 5064 /** 5065 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5066 * @phba: Pointer to HBA context object. 5067 * 5068 * This function resets the HBA by writing HC_INITFF to the control 5069 * register. After the HBA resets, this function resets all the iocb ring 5070 * indices. This function disables PCI layer parity checking during 5071 * the reset. 5072 * This function returns 0 always. 5073 * The caller is not required to hold any locks. 5074 **/ 5075 int 5076 lpfc_sli_brdreset(struct lpfc_hba *phba) 5077 { 5078 struct lpfc_sli *psli; 5079 struct lpfc_sli_ring *pring; 5080 uint16_t cfg_value; 5081 int i; 5082 5083 psli = &phba->sli; 5084 5085 /* Reset HBA */ 5086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5087 "0325 Reset HBA Data: x%x x%x\n", 5088 (phba->pport) ? phba->pport->port_state : 0, 5089 psli->sli_flag); 5090 5091 /* perform board reset */ 5092 phba->fc_eventTag = 0; 5093 phba->link_events = 0; 5094 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5095 if (phba->pport) { 5096 phba->pport->fc_myDID = 0; 5097 phba->pport->fc_prevDID = 0; 5098 } 5099 5100 /* Turn off parity checking and serr during the physical reset */ 5101 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5102 return -EIO; 5103 5104 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5105 (cfg_value & 5106 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5107 5108 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5109 5110 /* Now toggle INITFF bit in the Host Control Register */ 5111 writel(HC_INITFF, phba->HCregaddr); 5112 mdelay(1); 5113 readl(phba->HCregaddr); /* flush */ 5114 writel(0, phba->HCregaddr); 5115 readl(phba->HCregaddr); /* flush */ 5116 5117 /* Restore PCI cmd register */ 5118 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5119 5120 /* Initialize relevant SLI info */ 5121 for (i = 0; i < psli->num_rings; i++) { 5122 pring = &psli->sli3_ring[i]; 5123 pring->flag = 0; 5124 pring->sli.sli3.rspidx = 0; 5125 pring->sli.sli3.next_cmdidx = 0; 5126 pring->sli.sli3.local_getidx = 0; 5127 pring->sli.sli3.cmdidx = 0; 5128 pring->missbufcnt = 0; 5129 } 5130 5131 phba->link_state = LPFC_WARM_START; 5132 return 0; 5133 } 5134 5135 /** 5136 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5137 * @phba: Pointer to HBA context object. 5138 * 5139 * This function resets a SLI4 HBA. This function disables PCI layer parity 5140 * checking during resets the device. The caller is not required to hold 5141 * any locks. 5142 * 5143 * This function returns 0 on success else returns negative error code. 5144 **/ 5145 int 5146 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5147 { 5148 struct lpfc_sli *psli = &phba->sli; 5149 uint16_t cfg_value; 5150 int rc = 0; 5151 5152 /* Reset HBA */ 5153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5154 "0295 Reset HBA Data: x%x x%x x%lx\n", 5155 phba->pport->port_state, psli->sli_flag, 5156 phba->hba_flag); 5157 5158 /* perform board reset */ 5159 phba->fc_eventTag = 0; 5160 phba->link_events = 0; 5161 phba->pport->fc_myDID = 0; 5162 phba->pport->fc_prevDID = 0; 5163 clear_bit(HBA_SETUP, &phba->hba_flag); 5164 5165 spin_lock_irq(&phba->hbalock); 5166 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5167 phba->fcf.fcf_flag = 0; 5168 spin_unlock_irq(&phba->hbalock); 5169 5170 /* Now physically reset the device */ 5171 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5172 "0389 Performing PCI function reset!\n"); 5173 5174 /* Turn off parity checking and serr during the physical reset */ 5175 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5176 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5177 "3205 PCI read Config failed\n"); 5178 return -EIO; 5179 } 5180 5181 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5182 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5183 5184 /* Perform FCoE PCI function reset before freeing queue memory */ 5185 rc = lpfc_pci_function_reset(phba); 5186 5187 /* Restore PCI cmd register */ 5188 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5189 5190 return rc; 5191 } 5192 5193 /** 5194 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5195 * @phba: Pointer to HBA context object. 5196 * 5197 * This function is called in the SLI initialization code path to 5198 * restart the HBA. The caller is not required to hold any lock. 5199 * This function writes MBX_RESTART mailbox command to the SLIM and 5200 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5201 * function to free any pending commands. The function enables 5202 * POST only during the first initialization. The function returns zero. 5203 * The function does not guarantee completion of MBX_RESTART mailbox 5204 * command before the return of this function. 5205 **/ 5206 static int 5207 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5208 { 5209 volatile struct MAILBOX_word0 mb; 5210 struct lpfc_sli *psli; 5211 void __iomem *to_slim; 5212 5213 spin_lock_irq(&phba->hbalock); 5214 5215 psli = &phba->sli; 5216 5217 /* Restart HBA */ 5218 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5219 "0337 Restart HBA Data: x%x x%x\n", 5220 (phba->pport) ? phba->pport->port_state : 0, 5221 psli->sli_flag); 5222 5223 mb.word0 = 0; 5224 mb.mbxCommand = MBX_RESTART; 5225 mb.mbxHc = 1; 5226 5227 lpfc_reset_barrier(phba); 5228 5229 to_slim = phba->MBslimaddr; 5230 writel(mb.word0, to_slim); 5231 readl(to_slim); /* flush */ 5232 5233 /* Only skip post after fc_ffinit is completed */ 5234 if (phba->pport && phba->pport->port_state) 5235 mb.word0 = 1; /* This is really setting up word1 */ 5236 else 5237 mb.word0 = 0; /* This is really setting up word1 */ 5238 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5239 writel(mb.word0, to_slim); 5240 readl(to_slim); /* flush */ 5241 5242 lpfc_sli_brdreset(phba); 5243 if (phba->pport) 5244 phba->pport->stopped = 0; 5245 phba->link_state = LPFC_INIT_START; 5246 phba->hba_flag = 0; 5247 spin_unlock_irq(&phba->hbalock); 5248 5249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5250 psli->stats_start = ktime_get_seconds(); 5251 5252 /* Give the INITFF and Post time to settle. */ 5253 mdelay(100); 5254 5255 lpfc_hba_down_post(phba); 5256 5257 return 0; 5258 } 5259 5260 /** 5261 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5262 * @phba: Pointer to HBA context object. 5263 * 5264 * This function is called in the SLI initialization code path to restart 5265 * a SLI4 HBA. The caller is not required to hold any lock. 5266 * At the end of the function, it calls lpfc_hba_down_post function to 5267 * free any pending commands. 5268 **/ 5269 static int 5270 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5271 { 5272 struct lpfc_sli *psli = &phba->sli; 5273 int rc; 5274 5275 /* Restart HBA */ 5276 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5277 "0296 Restart HBA Data: x%x x%x\n", 5278 phba->pport->port_state, psli->sli_flag); 5279 5280 rc = lpfc_sli4_brdreset(phba); 5281 if (rc) { 5282 phba->link_state = LPFC_HBA_ERROR; 5283 goto hba_down_queue; 5284 } 5285 5286 spin_lock_irq(&phba->hbalock); 5287 phba->pport->stopped = 0; 5288 phba->link_state = LPFC_INIT_START; 5289 phba->hba_flag = 0; 5290 /* Preserve FA-PWWN expectation */ 5291 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5292 spin_unlock_irq(&phba->hbalock); 5293 5294 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5295 psli->stats_start = ktime_get_seconds(); 5296 5297 hba_down_queue: 5298 lpfc_hba_down_post(phba); 5299 lpfc_sli4_queue_destroy(phba); 5300 5301 return rc; 5302 } 5303 5304 /** 5305 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5306 * @phba: Pointer to HBA context object. 5307 * 5308 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5309 * API jump table function pointer from the lpfc_hba struct. 5310 **/ 5311 int 5312 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5313 { 5314 return phba->lpfc_sli_brdrestart(phba); 5315 } 5316 5317 /** 5318 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5319 * @phba: Pointer to HBA context object. 5320 * 5321 * This function is called after a HBA restart to wait for successful 5322 * restart of the HBA. Successful restart of the HBA is indicated by 5323 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5324 * iteration, the function will restart the HBA again. The function returns 5325 * zero if HBA successfully restarted else returns negative error code. 5326 **/ 5327 int 5328 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5329 { 5330 uint32_t status, i = 0; 5331 5332 /* Read the HBA Host Status Register */ 5333 if (lpfc_readl(phba->HSregaddr, &status)) 5334 return -EIO; 5335 5336 /* Check status register to see what current state is */ 5337 i = 0; 5338 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5339 5340 /* Check every 10ms for 10 retries, then every 100ms for 90 5341 * retries, then every 1 sec for 50 retires for a total of 5342 * ~60 seconds before reset the board again and check every 5343 * 1 sec for 50 retries. The up to 60 seconds before the 5344 * board ready is required by the Falcon FIPS zeroization 5345 * complete, and any reset the board in between shall cause 5346 * restart of zeroization, further delay the board ready. 5347 */ 5348 if (i++ >= 200) { 5349 /* Adapter failed to init, timeout, status reg 5350 <status> */ 5351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5352 "0436 Adapter failed to init, " 5353 "timeout, status reg x%x, " 5354 "FW Data: A8 x%x AC x%x\n", status, 5355 readl(phba->MBslimaddr + 0xa8), 5356 readl(phba->MBslimaddr + 0xac)); 5357 phba->link_state = LPFC_HBA_ERROR; 5358 return -ETIMEDOUT; 5359 } 5360 5361 /* Check to see if any errors occurred during init */ 5362 if (status & HS_FFERM) { 5363 /* ERROR: During chipset initialization */ 5364 /* Adapter failed to init, chipset, status reg 5365 <status> */ 5366 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5367 "0437 Adapter failed to init, " 5368 "chipset, status reg x%x, " 5369 "FW Data: A8 x%x AC x%x\n", status, 5370 readl(phba->MBslimaddr + 0xa8), 5371 readl(phba->MBslimaddr + 0xac)); 5372 phba->link_state = LPFC_HBA_ERROR; 5373 return -EIO; 5374 } 5375 5376 if (i <= 10) 5377 msleep(10); 5378 else if (i <= 100) 5379 msleep(100); 5380 else 5381 msleep(1000); 5382 5383 if (i == 150) { 5384 /* Do post */ 5385 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5386 lpfc_sli_brdrestart(phba); 5387 } 5388 /* Read the HBA Host Status Register */ 5389 if (lpfc_readl(phba->HSregaddr, &status)) 5390 return -EIO; 5391 } 5392 5393 /* Check to see if any errors occurred during init */ 5394 if (status & HS_FFERM) { 5395 /* ERROR: During chipset initialization */ 5396 /* Adapter failed to init, chipset, status reg <status> */ 5397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5398 "0438 Adapter failed to init, chipset, " 5399 "status reg x%x, " 5400 "FW Data: A8 x%x AC x%x\n", status, 5401 readl(phba->MBslimaddr + 0xa8), 5402 readl(phba->MBslimaddr + 0xac)); 5403 phba->link_state = LPFC_HBA_ERROR; 5404 return -EIO; 5405 } 5406 5407 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5408 5409 /* Clear all interrupt enable conditions */ 5410 writel(0, phba->HCregaddr); 5411 readl(phba->HCregaddr); /* flush */ 5412 5413 /* setup host attn register */ 5414 writel(0xffffffff, phba->HAregaddr); 5415 readl(phba->HAregaddr); /* flush */ 5416 return 0; 5417 } 5418 5419 /** 5420 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5421 * 5422 * This function calculates and returns the number of HBQs required to be 5423 * configured. 5424 **/ 5425 int 5426 lpfc_sli_hbq_count(void) 5427 { 5428 return ARRAY_SIZE(lpfc_hbq_defs); 5429 } 5430 5431 /** 5432 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5433 * 5434 * This function adds the number of hbq entries in every HBQ to get 5435 * the total number of hbq entries required for the HBA and returns 5436 * the total count. 5437 **/ 5438 static int 5439 lpfc_sli_hbq_entry_count(void) 5440 { 5441 int hbq_count = lpfc_sli_hbq_count(); 5442 int count = 0; 5443 int i; 5444 5445 for (i = 0; i < hbq_count; ++i) 5446 count += lpfc_hbq_defs[i]->entry_count; 5447 return count; 5448 } 5449 5450 /** 5451 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5452 * 5453 * This function calculates amount of memory required for all hbq entries 5454 * to be configured and returns the total memory required. 5455 **/ 5456 int 5457 lpfc_sli_hbq_size(void) 5458 { 5459 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5460 } 5461 5462 /** 5463 * lpfc_sli_hbq_setup - configure and initialize HBQs 5464 * @phba: Pointer to HBA context object. 5465 * 5466 * This function is called during the SLI initialization to configure 5467 * all the HBQs and post buffers to the HBQ. The caller is not 5468 * required to hold any locks. This function will return zero if successful 5469 * else it will return negative error code. 5470 **/ 5471 static int 5472 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5473 { 5474 int hbq_count = lpfc_sli_hbq_count(); 5475 LPFC_MBOXQ_t *pmb; 5476 MAILBOX_t *pmbox; 5477 uint32_t hbqno; 5478 uint32_t hbq_entry_index; 5479 5480 /* Get a Mailbox buffer to setup mailbox 5481 * commands for HBA initialization 5482 */ 5483 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5484 5485 if (!pmb) 5486 return -ENOMEM; 5487 5488 pmbox = &pmb->u.mb; 5489 5490 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5491 phba->link_state = LPFC_INIT_MBX_CMDS; 5492 phba->hbq_in_use = 1; 5493 5494 hbq_entry_index = 0; 5495 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5496 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5497 phba->hbqs[hbqno].hbqPutIdx = 0; 5498 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5499 phba->hbqs[hbqno].entry_count = 5500 lpfc_hbq_defs[hbqno]->entry_count; 5501 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5502 hbq_entry_index, pmb); 5503 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5504 5505 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5506 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5507 mbxStatus <status>, ring <num> */ 5508 5509 lpfc_printf_log(phba, KERN_ERR, 5510 LOG_SLI | LOG_VPORT, 5511 "1805 Adapter failed to init. " 5512 "Data: x%x x%x x%x\n", 5513 pmbox->mbxCommand, 5514 pmbox->mbxStatus, hbqno); 5515 5516 phba->link_state = LPFC_HBA_ERROR; 5517 mempool_free(pmb, phba->mbox_mem_pool); 5518 return -ENXIO; 5519 } 5520 } 5521 phba->hbq_count = hbq_count; 5522 5523 mempool_free(pmb, phba->mbox_mem_pool); 5524 5525 /* Initially populate or replenish the HBQs */ 5526 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5527 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5528 return 0; 5529 } 5530 5531 /** 5532 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5533 * @phba: Pointer to HBA context object. 5534 * 5535 * This function is called during the SLI initialization to configure 5536 * all the HBQs and post buffers to the HBQ. The caller is not 5537 * required to hold any locks. This function will return zero if successful 5538 * else it will return negative error code. 5539 **/ 5540 static int 5541 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5542 { 5543 phba->hbq_in_use = 1; 5544 /** 5545 * Specific case when the MDS diagnostics is enabled and supported. 5546 * The receive buffer count is truncated to manage the incoming 5547 * traffic. 5548 **/ 5549 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5550 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5551 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5552 else 5553 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5554 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5555 phba->hbq_count = 1; 5556 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5557 /* Initially populate or replenish the HBQs */ 5558 return 0; 5559 } 5560 5561 /** 5562 * lpfc_sli_config_port - Issue config port mailbox command 5563 * @phba: Pointer to HBA context object. 5564 * @sli_mode: sli mode - 2/3 5565 * 5566 * This function is called by the sli initialization code path 5567 * to issue config_port mailbox command. This function restarts the 5568 * HBA firmware and issues a config_port mailbox command to configure 5569 * the SLI interface in the sli mode specified by sli_mode 5570 * variable. The caller is not required to hold any locks. 5571 * The function returns 0 if successful, else returns negative error 5572 * code. 5573 **/ 5574 int 5575 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5576 { 5577 LPFC_MBOXQ_t *pmb; 5578 uint32_t resetcount = 0, rc = 0, done = 0; 5579 5580 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5581 if (!pmb) { 5582 phba->link_state = LPFC_HBA_ERROR; 5583 return -ENOMEM; 5584 } 5585 5586 phba->sli_rev = sli_mode; 5587 while (resetcount < 2 && !done) { 5588 spin_lock_irq(&phba->hbalock); 5589 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5590 spin_unlock_irq(&phba->hbalock); 5591 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5592 lpfc_sli_brdrestart(phba); 5593 rc = lpfc_sli_chipset_init(phba); 5594 if (rc) 5595 break; 5596 5597 spin_lock_irq(&phba->hbalock); 5598 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5599 spin_unlock_irq(&phba->hbalock); 5600 resetcount++; 5601 5602 /* Call pre CONFIG_PORT mailbox command initialization. A 5603 * value of 0 means the call was successful. Any other 5604 * nonzero value is a failure, but if ERESTART is returned, 5605 * the driver may reset the HBA and try again. 5606 */ 5607 rc = lpfc_config_port_prep(phba); 5608 if (rc == -ERESTART) { 5609 phba->link_state = LPFC_LINK_UNKNOWN; 5610 continue; 5611 } else if (rc) 5612 break; 5613 5614 phba->link_state = LPFC_INIT_MBX_CMDS; 5615 lpfc_config_port(phba, pmb); 5616 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5617 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5618 LPFC_SLI3_HBQ_ENABLED | 5619 LPFC_SLI3_CRP_ENABLED | 5620 LPFC_SLI3_DSS_ENABLED); 5621 if (rc != MBX_SUCCESS) { 5622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5623 "0442 Adapter failed to init, mbxCmd x%x " 5624 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5625 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5626 spin_lock_irq(&phba->hbalock); 5627 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5628 spin_unlock_irq(&phba->hbalock); 5629 rc = -ENXIO; 5630 } else { 5631 /* Allow asynchronous mailbox command to go through */ 5632 spin_lock_irq(&phba->hbalock); 5633 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5634 spin_unlock_irq(&phba->hbalock); 5635 done = 1; 5636 5637 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5638 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5640 "3110 Port did not grant ASABT\n"); 5641 } 5642 } 5643 if (!done) { 5644 rc = -EINVAL; 5645 goto do_prep_failed; 5646 } 5647 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5648 if (!pmb->u.mb.un.varCfgPort.cMA) { 5649 rc = -ENXIO; 5650 goto do_prep_failed; 5651 } 5652 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5653 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5654 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5655 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5656 phba->max_vpi : phba->max_vports; 5657 5658 } else 5659 phba->max_vpi = 0; 5660 if (pmb->u.mb.un.varCfgPort.gerbm) 5661 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5662 if (pmb->u.mb.un.varCfgPort.gcrp) 5663 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5664 5665 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5666 phba->port_gp = phba->mbox->us.s3_pgp.port; 5667 5668 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5669 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5670 phba->cfg_enable_bg = 0; 5671 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5673 "0443 Adapter did not grant " 5674 "BlockGuard\n"); 5675 } 5676 } 5677 } else { 5678 phba->hbq_get = NULL; 5679 phba->port_gp = phba->mbox->us.s2.port; 5680 phba->max_vpi = 0; 5681 } 5682 do_prep_failed: 5683 mempool_free(pmb, phba->mbox_mem_pool); 5684 return rc; 5685 } 5686 5687 5688 /** 5689 * lpfc_sli_hba_setup - SLI initialization function 5690 * @phba: Pointer to HBA context object. 5691 * 5692 * This function is the main SLI initialization function. This function 5693 * is called by the HBA initialization code, HBA reset code and HBA 5694 * error attention handler code. Caller is not required to hold any 5695 * locks. This function issues config_port mailbox command to configure 5696 * the SLI, setup iocb rings and HBQ rings. In the end the function 5697 * calls the config_port_post function to issue init_link mailbox 5698 * command and to start the discovery. The function will return zero 5699 * if successful, else it will return negative error code. 5700 **/ 5701 int 5702 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5703 { 5704 uint32_t rc; 5705 int i; 5706 int longs; 5707 5708 /* Enable ISR already does config_port because of config_msi mbx */ 5709 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5710 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5711 if (rc) 5712 return -EIO; 5713 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5714 } 5715 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5716 5717 if (phba->sli_rev == 3) { 5718 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5719 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5720 } else { 5721 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5722 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5723 phba->sli3_options = 0; 5724 } 5725 5726 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5727 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5728 phba->sli_rev, phba->max_vpi); 5729 rc = lpfc_sli_ring_map(phba); 5730 5731 if (rc) 5732 goto lpfc_sli_hba_setup_error; 5733 5734 /* Initialize VPIs. */ 5735 if (phba->sli_rev == LPFC_SLI_REV3) { 5736 /* 5737 * The VPI bitmask and physical ID array are allocated 5738 * and initialized once only - at driver load. A port 5739 * reset doesn't need to reinitialize this memory. 5740 */ 5741 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5742 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5743 phba->vpi_bmask = kcalloc(longs, 5744 sizeof(unsigned long), 5745 GFP_KERNEL); 5746 if (!phba->vpi_bmask) { 5747 rc = -ENOMEM; 5748 goto lpfc_sli_hba_setup_error; 5749 } 5750 5751 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5752 sizeof(uint16_t), 5753 GFP_KERNEL); 5754 if (!phba->vpi_ids) { 5755 kfree(phba->vpi_bmask); 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 for (i = 0; i < phba->max_vpi; i++) 5760 phba->vpi_ids[i] = i; 5761 } 5762 } 5763 5764 /* Init HBQs */ 5765 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5766 rc = lpfc_sli_hbq_setup(phba); 5767 if (rc) 5768 goto lpfc_sli_hba_setup_error; 5769 } 5770 spin_lock_irq(&phba->hbalock); 5771 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5772 spin_unlock_irq(&phba->hbalock); 5773 5774 rc = lpfc_config_port_post(phba); 5775 if (rc) 5776 goto lpfc_sli_hba_setup_error; 5777 5778 return rc; 5779 5780 lpfc_sli_hba_setup_error: 5781 phba->link_state = LPFC_HBA_ERROR; 5782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5783 "0445 Firmware initialization failed\n"); 5784 return rc; 5785 } 5786 5787 /** 5788 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5789 * @phba: Pointer to HBA context object. 5790 * 5791 * This function issue a dump mailbox command to read config region 5792 * 23 and parse the records in the region and populate driver 5793 * data structure. 5794 **/ 5795 static int 5796 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5797 { 5798 LPFC_MBOXQ_t *mboxq; 5799 struct lpfc_dmabuf *mp; 5800 struct lpfc_mqe *mqe; 5801 uint32_t data_length; 5802 int rc; 5803 5804 /* Program the default value of vlan_id and fc_map */ 5805 phba->valid_vlan = 0; 5806 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5807 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5808 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5809 5810 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5811 if (!mboxq) 5812 return -ENOMEM; 5813 5814 mqe = &mboxq->u.mqe; 5815 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5816 rc = -ENOMEM; 5817 goto out_free_mboxq; 5818 } 5819 5820 mp = mboxq->ctx_buf; 5821 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5822 5823 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5824 "(%d):2571 Mailbox cmd x%x Status x%x " 5825 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5826 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5827 "CQ: x%x x%x x%x x%x\n", 5828 mboxq->vport ? mboxq->vport->vpi : 0, 5829 bf_get(lpfc_mqe_command, mqe), 5830 bf_get(lpfc_mqe_status, mqe), 5831 mqe->un.mb_words[0], mqe->un.mb_words[1], 5832 mqe->un.mb_words[2], mqe->un.mb_words[3], 5833 mqe->un.mb_words[4], mqe->un.mb_words[5], 5834 mqe->un.mb_words[6], mqe->un.mb_words[7], 5835 mqe->un.mb_words[8], mqe->un.mb_words[9], 5836 mqe->un.mb_words[10], mqe->un.mb_words[11], 5837 mqe->un.mb_words[12], mqe->un.mb_words[13], 5838 mqe->un.mb_words[14], mqe->un.mb_words[15], 5839 mqe->un.mb_words[16], mqe->un.mb_words[50], 5840 mboxq->mcqe.word0, 5841 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5842 mboxq->mcqe.trailer); 5843 5844 if (rc) { 5845 rc = -EIO; 5846 goto out_free_mboxq; 5847 } 5848 data_length = mqe->un.mb_words[5]; 5849 if (data_length > DMP_RGN23_SIZE) { 5850 rc = -EIO; 5851 goto out_free_mboxq; 5852 } 5853 5854 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5855 rc = 0; 5856 5857 out_free_mboxq: 5858 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5859 return rc; 5860 } 5861 5862 /** 5863 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5864 * @phba: pointer to lpfc hba data structure. 5865 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5866 * @vpd: pointer to the memory to hold resulting port vpd data. 5867 * @vpd_size: On input, the number of bytes allocated to @vpd. 5868 * On output, the number of data bytes in @vpd. 5869 * 5870 * This routine executes a READ_REV SLI4 mailbox command. In 5871 * addition, this routine gets the port vpd data. 5872 * 5873 * Return codes 5874 * 0 - successful 5875 * -ENOMEM - could not allocated memory. 5876 **/ 5877 static int 5878 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5879 uint8_t *vpd, uint32_t *vpd_size) 5880 { 5881 int rc = 0; 5882 uint32_t dma_size; 5883 struct lpfc_dmabuf *dmabuf; 5884 struct lpfc_mqe *mqe; 5885 5886 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5887 if (!dmabuf) 5888 return -ENOMEM; 5889 5890 /* 5891 * Get a DMA buffer for the vpd data resulting from the READ_REV 5892 * mailbox command. 5893 */ 5894 dma_size = *vpd_size; 5895 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5896 &dmabuf->phys, GFP_KERNEL); 5897 if (!dmabuf->virt) { 5898 kfree(dmabuf); 5899 return -ENOMEM; 5900 } 5901 5902 /* 5903 * The SLI4 implementation of READ_REV conflicts at word1, 5904 * bits 31:16 and SLI4 adds vpd functionality not present 5905 * in SLI3. This code corrects the conflicts. 5906 */ 5907 lpfc_read_rev(phba, mboxq); 5908 mqe = &mboxq->u.mqe; 5909 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5910 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5911 mqe->un.read_rev.word1 &= 0x0000FFFF; 5912 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5913 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5914 5915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5916 if (rc) { 5917 dma_free_coherent(&phba->pcidev->dev, dma_size, 5918 dmabuf->virt, dmabuf->phys); 5919 kfree(dmabuf); 5920 return -EIO; 5921 } 5922 5923 /* 5924 * The available vpd length cannot be bigger than the 5925 * DMA buffer passed to the port. Catch the less than 5926 * case and update the caller's size. 5927 */ 5928 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5929 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5930 5931 memcpy(vpd, dmabuf->virt, *vpd_size); 5932 5933 dma_free_coherent(&phba->pcidev->dev, dma_size, 5934 dmabuf->virt, dmabuf->phys); 5935 kfree(dmabuf); 5936 return 0; 5937 } 5938 5939 /** 5940 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5941 * @phba: pointer to lpfc hba data structure. 5942 * 5943 * This routine retrieves SLI4 device physical port name this PCI function 5944 * is attached to. 5945 * 5946 * Return codes 5947 * 0 - successful 5948 * otherwise - failed to retrieve controller attributes 5949 **/ 5950 static int 5951 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5952 { 5953 LPFC_MBOXQ_t *mboxq; 5954 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5955 struct lpfc_controller_attribute *cntl_attr; 5956 void *virtaddr = NULL; 5957 uint32_t alloclen, reqlen; 5958 uint32_t shdr_status, shdr_add_status; 5959 union lpfc_sli4_cfg_shdr *shdr; 5960 int rc; 5961 5962 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5963 if (!mboxq) 5964 return -ENOMEM; 5965 5966 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5967 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5968 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5969 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5970 LPFC_SLI4_MBX_NEMBED); 5971 5972 if (alloclen < reqlen) { 5973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5974 "3084 Allocated DMA memory size (%d) is " 5975 "less than the requested DMA memory size " 5976 "(%d)\n", alloclen, reqlen); 5977 rc = -ENOMEM; 5978 goto out_free_mboxq; 5979 } 5980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5981 virtaddr = mboxq->sge_array->addr[0]; 5982 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5983 shdr = &mbx_cntl_attr->cfg_shdr; 5984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5986 if (shdr_status || shdr_add_status || rc) { 5987 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5988 "3085 Mailbox x%x (x%x/x%x) failed, " 5989 "rc:x%x, status:x%x, add_status:x%x\n", 5990 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5991 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5992 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5993 rc, shdr_status, shdr_add_status); 5994 rc = -ENXIO; 5995 goto out_free_mboxq; 5996 } 5997 5998 cntl_attr = &mbx_cntl_attr->cntl_attr; 5999 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6000 phba->sli4_hba.lnk_info.lnk_tp = 6001 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6002 phba->sli4_hba.lnk_info.lnk_no = 6003 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6004 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6005 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6006 6007 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6008 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6009 sizeof(phba->BIOSVersion)); 6010 6011 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6012 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6013 "flash_id: x%02x, asic_rev: x%02x\n", 6014 phba->sli4_hba.lnk_info.lnk_tp, 6015 phba->sli4_hba.lnk_info.lnk_no, 6016 phba->BIOSVersion, phba->sli4_hba.flash_id, 6017 phba->sli4_hba.asic_rev); 6018 out_free_mboxq: 6019 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6020 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6021 else 6022 mempool_free(mboxq, phba->mbox_mem_pool); 6023 return rc; 6024 } 6025 6026 /** 6027 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6028 * @phba: pointer to lpfc hba data structure. 6029 * 6030 * This routine retrieves SLI4 device physical port name this PCI function 6031 * is attached to. 6032 * 6033 * Return codes 6034 * 0 - successful 6035 * otherwise - failed to retrieve physical port name 6036 **/ 6037 static int 6038 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6039 { 6040 LPFC_MBOXQ_t *mboxq; 6041 struct lpfc_mbx_get_port_name *get_port_name; 6042 uint32_t shdr_status, shdr_add_status; 6043 union lpfc_sli4_cfg_shdr *shdr; 6044 char cport_name = 0; 6045 int rc; 6046 6047 /* We assume nothing at this point */ 6048 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6049 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6050 6051 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6052 if (!mboxq) 6053 return -ENOMEM; 6054 /* obtain link type and link number via READ_CONFIG */ 6055 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6056 lpfc_sli4_read_config(phba); 6057 6058 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6059 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6060 6061 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6062 goto retrieve_ppname; 6063 6064 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6065 rc = lpfc_sli4_get_ctl_attr(phba); 6066 if (rc) 6067 goto out_free_mboxq; 6068 6069 retrieve_ppname: 6070 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6071 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6072 sizeof(struct lpfc_mbx_get_port_name) - 6073 sizeof(struct lpfc_sli4_cfg_mhdr), 6074 LPFC_SLI4_MBX_EMBED); 6075 get_port_name = &mboxq->u.mqe.un.get_port_name; 6076 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6077 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6078 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6079 phba->sli4_hba.lnk_info.lnk_tp); 6080 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6081 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6082 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6083 if (shdr_status || shdr_add_status || rc) { 6084 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6085 "3087 Mailbox x%x (x%x/x%x) failed: " 6086 "rc:x%x, status:x%x, add_status:x%x\n", 6087 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6088 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6089 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6090 rc, shdr_status, shdr_add_status); 6091 rc = -ENXIO; 6092 goto out_free_mboxq; 6093 } 6094 switch (phba->sli4_hba.lnk_info.lnk_no) { 6095 case LPFC_LINK_NUMBER_0: 6096 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6097 &get_port_name->u.response); 6098 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6099 break; 6100 case LPFC_LINK_NUMBER_1: 6101 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6102 &get_port_name->u.response); 6103 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6104 break; 6105 case LPFC_LINK_NUMBER_2: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 case LPFC_LINK_NUMBER_3: 6111 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6112 &get_port_name->u.response); 6113 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6114 break; 6115 default: 6116 break; 6117 } 6118 6119 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6120 phba->Port[0] = cport_name; 6121 phba->Port[1] = '\0'; 6122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6123 "3091 SLI get port name: %s\n", phba->Port); 6124 } 6125 6126 out_free_mboxq: 6127 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6128 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6129 else 6130 mempool_free(mboxq, phba->mbox_mem_pool); 6131 return rc; 6132 } 6133 6134 /** 6135 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6136 * @phba: pointer to lpfc hba data structure. 6137 * 6138 * This routine is called to explicitly arm the SLI4 device's completion and 6139 * event queues 6140 **/ 6141 static void 6142 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6143 { 6144 int qidx; 6145 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6146 struct lpfc_sli4_hdw_queue *qp; 6147 struct lpfc_queue *eq; 6148 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6150 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6151 if (sli4_hba->nvmels_cq) 6152 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6153 LPFC_QUEUE_REARM); 6154 6155 if (sli4_hba->hdwq) { 6156 /* Loop thru all Hardware Queues */ 6157 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6158 qp = &sli4_hba->hdwq[qidx]; 6159 /* ARM the corresponding CQ */ 6160 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6161 LPFC_QUEUE_REARM); 6162 } 6163 6164 /* Loop thru all IRQ vectors */ 6165 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6166 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6167 /* ARM the corresponding EQ */ 6168 sli4_hba->sli4_write_eq_db(phba, eq, 6169 0, LPFC_QUEUE_REARM); 6170 } 6171 } 6172 6173 if (phba->nvmet_support) { 6174 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6175 sli4_hba->sli4_write_cq_db(phba, 6176 sli4_hba->nvmet_cqset[qidx], 0, 6177 LPFC_QUEUE_REARM); 6178 } 6179 } 6180 } 6181 6182 /** 6183 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6184 * @phba: Pointer to HBA context object. 6185 * @type: The resource extent type. 6186 * @extnt_count: buffer to hold port available extent count. 6187 * @extnt_size: buffer to hold element count per extent. 6188 * 6189 * This function calls the port and retrievs the number of available 6190 * extents and their size for a particular extent type. 6191 * 6192 * Returns: 0 if successful. Nonzero otherwise. 6193 **/ 6194 int 6195 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6196 uint16_t *extnt_count, uint16_t *extnt_size) 6197 { 6198 int rc = 0; 6199 uint32_t length; 6200 uint32_t mbox_tmo; 6201 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6202 LPFC_MBOXQ_t *mbox; 6203 6204 *extnt_count = 0; 6205 *extnt_size = 0; 6206 6207 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6208 if (!mbox) 6209 return -ENOMEM; 6210 6211 /* Find out how many extents are available for this resource type */ 6212 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6213 sizeof(struct lpfc_sli4_cfg_mhdr)); 6214 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6215 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6216 length, LPFC_SLI4_MBX_EMBED); 6217 6218 /* Send an extents count of 0 - the GET doesn't use it. */ 6219 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6220 LPFC_SLI4_MBX_EMBED); 6221 if (unlikely(rc)) { 6222 rc = -EIO; 6223 goto err_exit; 6224 } 6225 6226 if (!phba->sli4_hba.intr_enable) 6227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6228 else { 6229 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6230 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6231 } 6232 if (unlikely(rc)) { 6233 rc = -EIO; 6234 goto err_exit; 6235 } 6236 6237 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6238 if (bf_get(lpfc_mbox_hdr_status, 6239 &rsrc_info->header.cfg_shdr.response)) { 6240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6241 "2930 Failed to get resource extents " 6242 "Status 0x%x Add'l Status 0x%x\n", 6243 bf_get(lpfc_mbox_hdr_status, 6244 &rsrc_info->header.cfg_shdr.response), 6245 bf_get(lpfc_mbox_hdr_add_status, 6246 &rsrc_info->header.cfg_shdr.response)); 6247 rc = -EIO; 6248 goto err_exit; 6249 } 6250 6251 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6252 &rsrc_info->u.rsp); 6253 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6254 &rsrc_info->u.rsp); 6255 6256 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6257 "3162 Retrieved extents type-%d from port: count:%d, " 6258 "size:%d\n", type, *extnt_count, *extnt_size); 6259 6260 err_exit: 6261 mempool_free(mbox, phba->mbox_mem_pool); 6262 return rc; 6263 } 6264 6265 /** 6266 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6267 * @phba: Pointer to HBA context object. 6268 * @type: The extent type to check. 6269 * 6270 * This function reads the current available extents from the port and checks 6271 * if the extent count or extent size has changed since the last access. 6272 * Callers use this routine post port reset to understand if there is a 6273 * extent reprovisioning requirement. 6274 * 6275 * Returns: 6276 * -Error: error indicates problem. 6277 * 1: Extent count or size has changed. 6278 * 0: No changes. 6279 **/ 6280 static int 6281 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6282 { 6283 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6284 uint16_t size_diff, rsrc_ext_size; 6285 int rc = 0; 6286 struct lpfc_rsrc_blks *rsrc_entry; 6287 struct list_head *rsrc_blk_list = NULL; 6288 6289 size_diff = 0; 6290 curr_ext_cnt = 0; 6291 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6292 &rsrc_ext_cnt, 6293 &rsrc_ext_size); 6294 if (unlikely(rc)) 6295 return -EIO; 6296 6297 switch (type) { 6298 case LPFC_RSC_TYPE_FCOE_RPI: 6299 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_VPI: 6302 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6303 break; 6304 case LPFC_RSC_TYPE_FCOE_XRI: 6305 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6306 break; 6307 case LPFC_RSC_TYPE_FCOE_VFI: 6308 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6309 break; 6310 default: 6311 break; 6312 } 6313 6314 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6315 curr_ext_cnt++; 6316 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6317 size_diff++; 6318 } 6319 6320 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6321 rc = 1; 6322 6323 return rc; 6324 } 6325 6326 /** 6327 * lpfc_sli4_cfg_post_extnts - 6328 * @phba: Pointer to HBA context object. 6329 * @extnt_cnt: number of available extents. 6330 * @type: the extent type (rpi, xri, vfi, vpi). 6331 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6332 * @mbox: pointer to the caller's allocated mailbox structure. 6333 * 6334 * This function executes the extents allocation request. It also 6335 * takes care of the amount of memory needed to allocate or get the 6336 * allocated extents. It is the caller's responsibility to evaluate 6337 * the response. 6338 * 6339 * Returns: 6340 * -Error: Error value describes the condition found. 6341 * 0: if successful 6342 **/ 6343 static int 6344 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6345 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6346 { 6347 int rc = 0; 6348 uint32_t req_len; 6349 uint32_t emb_len; 6350 uint32_t alloc_len, mbox_tmo; 6351 6352 /* Calculate the total requested length of the dma memory */ 6353 req_len = extnt_cnt * sizeof(uint16_t); 6354 6355 /* 6356 * Calculate the size of an embedded mailbox. The uint32_t 6357 * accounts for extents-specific word. 6358 */ 6359 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6360 sizeof(uint32_t); 6361 6362 /* 6363 * Presume the allocation and response will fit into an embedded 6364 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6365 */ 6366 *emb = LPFC_SLI4_MBX_EMBED; 6367 if (req_len > emb_len) { 6368 req_len = extnt_cnt * sizeof(uint16_t) + 6369 sizeof(union lpfc_sli4_cfg_shdr) + 6370 sizeof(uint32_t); 6371 *emb = LPFC_SLI4_MBX_NEMBED; 6372 } 6373 6374 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6375 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6376 req_len, *emb); 6377 if (alloc_len < req_len) { 6378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6379 "2982 Allocated DMA memory size (x%x) is " 6380 "less than the requested DMA memory " 6381 "size (x%x)\n", alloc_len, req_len); 6382 return -ENOMEM; 6383 } 6384 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6385 if (unlikely(rc)) 6386 return -EIO; 6387 6388 if (!phba->sli4_hba.intr_enable) 6389 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6390 else { 6391 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6392 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6393 } 6394 6395 if (unlikely(rc)) 6396 rc = -EIO; 6397 return rc; 6398 } 6399 6400 /** 6401 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6402 * @phba: Pointer to HBA context object. 6403 * @type: The resource extent type to allocate. 6404 * 6405 * This function allocates the number of elements for the specified 6406 * resource type. 6407 **/ 6408 static int 6409 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6410 { 6411 bool emb = false; 6412 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6413 uint16_t rsrc_id, rsrc_start, j, k; 6414 uint16_t *ids; 6415 int i, rc; 6416 unsigned long longs; 6417 unsigned long *bmask; 6418 struct lpfc_rsrc_blks *rsrc_blks; 6419 LPFC_MBOXQ_t *mbox; 6420 uint32_t length; 6421 struct lpfc_id_range *id_array = NULL; 6422 void *virtaddr = NULL; 6423 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6424 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6425 struct list_head *ext_blk_list; 6426 6427 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6428 &rsrc_cnt, 6429 &rsrc_size); 6430 if (unlikely(rc)) 6431 return -EIO; 6432 6433 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6435 "3009 No available Resource Extents " 6436 "for resource type 0x%x: Count: 0x%x, " 6437 "Size 0x%x\n", type, rsrc_cnt, 6438 rsrc_size); 6439 return -ENOMEM; 6440 } 6441 6442 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6443 "2903 Post resource extents type-0x%x: " 6444 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6445 6446 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6447 if (!mbox) 6448 return -ENOMEM; 6449 6450 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6451 if (unlikely(rc)) { 6452 rc = -EIO; 6453 goto err_exit; 6454 } 6455 6456 /* 6457 * Figure out where the response is located. Then get local pointers 6458 * to the response data. The port does not guarantee to respond to 6459 * all extents counts request so update the local variable with the 6460 * allocated count from the port. 6461 */ 6462 if (emb == LPFC_SLI4_MBX_EMBED) { 6463 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6464 id_array = &rsrc_ext->u.rsp.id[0]; 6465 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6466 } else { 6467 virtaddr = mbox->sge_array->addr[0]; 6468 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6469 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6470 id_array = &n_rsrc->id; 6471 } 6472 6473 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6474 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6475 6476 /* 6477 * Based on the resource size and count, correct the base and max 6478 * resource values. 6479 */ 6480 length = sizeof(struct lpfc_rsrc_blks); 6481 switch (type) { 6482 case LPFC_RSC_TYPE_FCOE_RPI: 6483 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6484 sizeof(unsigned long), 6485 GFP_KERNEL); 6486 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6487 rc = -ENOMEM; 6488 goto err_exit; 6489 } 6490 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6491 sizeof(uint16_t), 6492 GFP_KERNEL); 6493 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6494 kfree(phba->sli4_hba.rpi_bmask); 6495 rc = -ENOMEM; 6496 goto err_exit; 6497 } 6498 6499 /* 6500 * The next_rpi was initialized with the maximum available 6501 * count but the port may allocate a smaller number. Catch 6502 * that case and update the next_rpi. 6503 */ 6504 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6505 6506 /* Initialize local ptrs for common extent processing later. */ 6507 bmask = phba->sli4_hba.rpi_bmask; 6508 ids = phba->sli4_hba.rpi_ids; 6509 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6510 break; 6511 case LPFC_RSC_TYPE_FCOE_VPI: 6512 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6513 GFP_KERNEL); 6514 if (unlikely(!phba->vpi_bmask)) { 6515 rc = -ENOMEM; 6516 goto err_exit; 6517 } 6518 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6519 GFP_KERNEL); 6520 if (unlikely(!phba->vpi_ids)) { 6521 kfree(phba->vpi_bmask); 6522 rc = -ENOMEM; 6523 goto err_exit; 6524 } 6525 6526 /* Initialize local ptrs for common extent processing later. */ 6527 bmask = phba->vpi_bmask; 6528 ids = phba->vpi_ids; 6529 ext_blk_list = &phba->lpfc_vpi_blk_list; 6530 break; 6531 case LPFC_RSC_TYPE_FCOE_XRI: 6532 phba->sli4_hba.xri_bmask = kcalloc(longs, 6533 sizeof(unsigned long), 6534 GFP_KERNEL); 6535 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 phba->sli4_hba.max_cfg_param.xri_used = 0; 6540 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6541 sizeof(uint16_t), 6542 GFP_KERNEL); 6543 if (unlikely(!phba->sli4_hba.xri_ids)) { 6544 kfree(phba->sli4_hba.xri_bmask); 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 6549 /* Initialize local ptrs for common extent processing later. */ 6550 bmask = phba->sli4_hba.xri_bmask; 6551 ids = phba->sli4_hba.xri_ids; 6552 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6553 break; 6554 case LPFC_RSC_TYPE_FCOE_VFI: 6555 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6556 sizeof(unsigned long), 6557 GFP_KERNEL); 6558 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6563 sizeof(uint16_t), 6564 GFP_KERNEL); 6565 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6566 kfree(phba->sli4_hba.vfi_bmask); 6567 rc = -ENOMEM; 6568 goto err_exit; 6569 } 6570 6571 /* Initialize local ptrs for common extent processing later. */ 6572 bmask = phba->sli4_hba.vfi_bmask; 6573 ids = phba->sli4_hba.vfi_ids; 6574 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6575 break; 6576 default: 6577 /* Unsupported Opcode. Fail call. */ 6578 id_array = NULL; 6579 bmask = NULL; 6580 ids = NULL; 6581 ext_blk_list = NULL; 6582 goto err_exit; 6583 } 6584 6585 /* 6586 * Complete initializing the extent configuration with the 6587 * allocated ids assigned to this function. The bitmask serves 6588 * as an index into the array and manages the available ids. The 6589 * array just stores the ids communicated to the port via the wqes. 6590 */ 6591 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6592 if ((i % 2) == 0) 6593 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6594 &id_array[k]); 6595 else 6596 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6597 &id_array[k]); 6598 6599 rsrc_blks = kzalloc(length, GFP_KERNEL); 6600 if (unlikely(!rsrc_blks)) { 6601 rc = -ENOMEM; 6602 kfree(bmask); 6603 kfree(ids); 6604 goto err_exit; 6605 } 6606 rsrc_blks->rsrc_start = rsrc_id; 6607 rsrc_blks->rsrc_size = rsrc_size; 6608 list_add_tail(&rsrc_blks->list, ext_blk_list); 6609 rsrc_start = rsrc_id; 6610 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6611 phba->sli4_hba.io_xri_start = rsrc_start + 6612 lpfc_sli4_get_iocb_cnt(phba); 6613 } 6614 6615 while (rsrc_id < (rsrc_start + rsrc_size)) { 6616 ids[j] = rsrc_id; 6617 rsrc_id++; 6618 j++; 6619 } 6620 /* Entire word processed. Get next word.*/ 6621 if ((i % 2) == 1) 6622 k++; 6623 } 6624 err_exit: 6625 lpfc_sli4_mbox_cmd_free(phba, mbox); 6626 return rc; 6627 } 6628 6629 6630 6631 /** 6632 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6633 * @phba: Pointer to HBA context object. 6634 * @type: the extent's type. 6635 * 6636 * This function deallocates all extents of a particular resource type. 6637 * SLI4 does not allow for deallocating a particular extent range. It 6638 * is the caller's responsibility to release all kernel memory resources. 6639 **/ 6640 static int 6641 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6642 { 6643 int rc; 6644 uint32_t length, mbox_tmo = 0; 6645 LPFC_MBOXQ_t *mbox; 6646 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6647 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6648 6649 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6650 if (!mbox) 6651 return -ENOMEM; 6652 6653 /* 6654 * This function sends an embedded mailbox because it only sends the 6655 * the resource type. All extents of this type are released by the 6656 * port. 6657 */ 6658 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6659 sizeof(struct lpfc_sli4_cfg_mhdr)); 6660 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6661 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6662 length, LPFC_SLI4_MBX_EMBED); 6663 6664 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6665 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6666 LPFC_SLI4_MBX_EMBED); 6667 if (unlikely(rc)) { 6668 rc = -EIO; 6669 goto out_free_mbox; 6670 } 6671 if (!phba->sli4_hba.intr_enable) 6672 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6673 else { 6674 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6675 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6676 } 6677 if (unlikely(rc)) { 6678 rc = -EIO; 6679 goto out_free_mbox; 6680 } 6681 6682 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6683 if (bf_get(lpfc_mbox_hdr_status, 6684 &dealloc_rsrc->header.cfg_shdr.response)) { 6685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6686 "2919 Failed to release resource extents " 6687 "for type %d - Status 0x%x Add'l Status 0x%x. " 6688 "Resource memory not released.\n", 6689 type, 6690 bf_get(lpfc_mbox_hdr_status, 6691 &dealloc_rsrc->header.cfg_shdr.response), 6692 bf_get(lpfc_mbox_hdr_add_status, 6693 &dealloc_rsrc->header.cfg_shdr.response)); 6694 rc = -EIO; 6695 goto out_free_mbox; 6696 } 6697 6698 /* Release kernel memory resources for the specific type. */ 6699 switch (type) { 6700 case LPFC_RSC_TYPE_FCOE_VPI: 6701 kfree(phba->vpi_bmask); 6702 kfree(phba->vpi_ids); 6703 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6704 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6705 &phba->lpfc_vpi_blk_list, list) { 6706 list_del_init(&rsrc_blk->list); 6707 kfree(rsrc_blk); 6708 } 6709 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6710 break; 6711 case LPFC_RSC_TYPE_FCOE_XRI: 6712 kfree(phba->sli4_hba.xri_bmask); 6713 kfree(phba->sli4_hba.xri_ids); 6714 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6715 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6716 list_del_init(&rsrc_blk->list); 6717 kfree(rsrc_blk); 6718 } 6719 break; 6720 case LPFC_RSC_TYPE_FCOE_VFI: 6721 kfree(phba->sli4_hba.vfi_bmask); 6722 kfree(phba->sli4_hba.vfi_ids); 6723 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6725 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6726 list_del_init(&rsrc_blk->list); 6727 kfree(rsrc_blk); 6728 } 6729 break; 6730 case LPFC_RSC_TYPE_FCOE_RPI: 6731 /* RPI bitmask and physical id array are cleaned up earlier. */ 6732 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6733 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6734 list_del_init(&rsrc_blk->list); 6735 kfree(rsrc_blk); 6736 } 6737 break; 6738 default: 6739 break; 6740 } 6741 6742 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6743 6744 out_free_mbox: 6745 mempool_free(mbox, phba->mbox_mem_pool); 6746 return rc; 6747 } 6748 6749 static void 6750 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6751 uint32_t feature) 6752 { 6753 uint32_t len; 6754 u32 sig_freq = 0; 6755 6756 len = sizeof(struct lpfc_mbx_set_feature) - 6757 sizeof(struct lpfc_sli4_cfg_mhdr); 6758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6759 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6760 LPFC_SLI4_MBX_EMBED); 6761 6762 switch (feature) { 6763 case LPFC_SET_UE_RECOVERY: 6764 bf_set(lpfc_mbx_set_feature_UER, 6765 &mbox->u.mqe.un.set_feature, 1); 6766 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6767 mbox->u.mqe.un.set_feature.param_len = 8; 6768 break; 6769 case LPFC_SET_MDS_DIAGS: 6770 bf_set(lpfc_mbx_set_feature_mds, 6771 &mbox->u.mqe.un.set_feature, 1); 6772 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6775 mbox->u.mqe.un.set_feature.param_len = 8; 6776 break; 6777 case LPFC_SET_CGN_SIGNAL: 6778 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6779 sig_freq = 0; 6780 else 6781 sig_freq = phba->cgn_sig_freq; 6782 6783 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6784 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6785 &mbox->u.mqe.un.set_feature, sig_freq); 6786 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6787 &mbox->u.mqe.un.set_feature, sig_freq); 6788 } 6789 6790 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6791 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6792 &mbox->u.mqe.un.set_feature, sig_freq); 6793 6794 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6795 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6796 sig_freq = 0; 6797 else 6798 sig_freq = lpfc_acqe_cgn_frequency; 6799 6800 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 6803 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6804 mbox->u.mqe.un.set_feature.param_len = 12; 6805 break; 6806 case LPFC_SET_DUAL_DUMP: 6807 bf_set(lpfc_mbx_set_feature_dd, 6808 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6809 bf_set(lpfc_mbx_set_feature_ddquery, 6810 &mbox->u.mqe.un.set_feature, 0); 6811 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6812 mbox->u.mqe.un.set_feature.param_len = 4; 6813 break; 6814 case LPFC_SET_ENABLE_MI: 6815 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6816 mbox->u.mqe.un.set_feature.param_len = 4; 6817 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6818 phba->pport->cfg_lun_queue_depth); 6819 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6820 phba->sli4_hba.pc_sli4_params.mi_ver); 6821 break; 6822 case LPFC_SET_LD_SIGNAL: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6824 mbox->u.mqe.un.set_feature.param_len = 16; 6825 bf_set(lpfc_mbx_set_feature_lds_qry, 6826 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6827 break; 6828 case LPFC_SET_ENABLE_CMF: 6829 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6830 mbox->u.mqe.un.set_feature.param_len = 4; 6831 bf_set(lpfc_mbx_set_feature_cmf, 6832 &mbox->u.mqe.un.set_feature, 1); 6833 break; 6834 } 6835 return; 6836 } 6837 6838 /** 6839 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6840 * @phba: Pointer to HBA context object. 6841 * 6842 * Disable FW logging into host memory on the adapter. To 6843 * be done before reading logs from the host memory. 6844 **/ 6845 void 6846 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6847 { 6848 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6849 6850 spin_lock_irq(&phba->ras_fwlog_lock); 6851 ras_fwlog->state = INACTIVE; 6852 spin_unlock_irq(&phba->ras_fwlog_lock); 6853 6854 /* Disable FW logging to host memory */ 6855 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6856 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6857 6858 /* Wait 10ms for firmware to stop using DMA buffer */ 6859 usleep_range(10 * 1000, 20 * 1000); 6860 } 6861 6862 /** 6863 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6864 * @phba: Pointer to HBA context object. 6865 * 6866 * This function is called to free memory allocated for RAS FW logging 6867 * support in the driver. 6868 **/ 6869 void 6870 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6871 { 6872 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6873 struct lpfc_dmabuf *dmabuf, *next; 6874 6875 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6876 list_for_each_entry_safe(dmabuf, next, 6877 &ras_fwlog->fwlog_buff_list, 6878 list) { 6879 list_del(&dmabuf->list); 6880 dma_free_coherent(&phba->pcidev->dev, 6881 LPFC_RAS_MAX_ENTRY_SIZE, 6882 dmabuf->virt, dmabuf->phys); 6883 kfree(dmabuf); 6884 } 6885 } 6886 6887 if (ras_fwlog->lwpd.virt) { 6888 dma_free_coherent(&phba->pcidev->dev, 6889 sizeof(uint32_t) * 2, 6890 ras_fwlog->lwpd.virt, 6891 ras_fwlog->lwpd.phys); 6892 ras_fwlog->lwpd.virt = NULL; 6893 } 6894 6895 spin_lock_irq(&phba->ras_fwlog_lock); 6896 ras_fwlog->state = INACTIVE; 6897 spin_unlock_irq(&phba->ras_fwlog_lock); 6898 } 6899 6900 /** 6901 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6902 * @phba: Pointer to HBA context object. 6903 * @fwlog_buff_count: Count of buffers to be created. 6904 * 6905 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6906 * to update FW log is posted to the adapter. 6907 * Buffer count is calculated based on module param ras_fwlog_buffsize 6908 * Size of each buffer posted to FW is 64K. 6909 **/ 6910 6911 static int 6912 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6913 uint32_t fwlog_buff_count) 6914 { 6915 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6916 struct lpfc_dmabuf *dmabuf; 6917 int rc = 0, i = 0; 6918 6919 /* Initialize List */ 6920 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6921 6922 /* Allocate memory for the LWPD */ 6923 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6924 sizeof(uint32_t) * 2, 6925 &ras_fwlog->lwpd.phys, 6926 GFP_KERNEL); 6927 if (!ras_fwlog->lwpd.virt) { 6928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6929 "6185 LWPD Memory Alloc Failed\n"); 6930 6931 return -ENOMEM; 6932 } 6933 6934 ras_fwlog->fw_buffcount = fwlog_buff_count; 6935 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6936 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6937 GFP_KERNEL); 6938 if (!dmabuf) { 6939 rc = -ENOMEM; 6940 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6941 "6186 Memory Alloc failed FW logging"); 6942 goto free_mem; 6943 } 6944 6945 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6946 LPFC_RAS_MAX_ENTRY_SIZE, 6947 &dmabuf->phys, GFP_KERNEL); 6948 if (!dmabuf->virt) { 6949 kfree(dmabuf); 6950 rc = -ENOMEM; 6951 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6952 "6187 DMA Alloc Failed FW logging"); 6953 goto free_mem; 6954 } 6955 dmabuf->buffer_tag = i; 6956 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6957 } 6958 6959 free_mem: 6960 if (rc) 6961 lpfc_sli4_ras_dma_free(phba); 6962 6963 return rc; 6964 } 6965 6966 /** 6967 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6968 * @phba: pointer to lpfc hba data structure. 6969 * @pmb: pointer to the driver internal queue element for mailbox command. 6970 * 6971 * Completion handler for driver's RAS MBX command to the device. 6972 **/ 6973 static void 6974 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6975 { 6976 MAILBOX_t *mb; 6977 union lpfc_sli4_cfg_shdr *shdr; 6978 uint32_t shdr_status, shdr_add_status; 6979 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6980 6981 mb = &pmb->u.mb; 6982 6983 shdr = (union lpfc_sli4_cfg_shdr *) 6984 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6985 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6986 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6987 6988 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6990 "6188 FW LOG mailbox " 6991 "completed with status x%x add_status x%x," 6992 " mbx status x%x\n", 6993 shdr_status, shdr_add_status, mb->mbxStatus); 6994 6995 ras_fwlog->ras_hwsupport = false; 6996 goto disable_ras; 6997 } 6998 6999 spin_lock_irq(&phba->ras_fwlog_lock); 7000 ras_fwlog->state = ACTIVE; 7001 spin_unlock_irq(&phba->ras_fwlog_lock); 7002 mempool_free(pmb, phba->mbox_mem_pool); 7003 7004 return; 7005 7006 disable_ras: 7007 /* Free RAS DMA memory */ 7008 lpfc_sli4_ras_dma_free(phba); 7009 mempool_free(pmb, phba->mbox_mem_pool); 7010 } 7011 7012 /** 7013 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7014 * @phba: pointer to lpfc hba data structure. 7015 * @fwlog_level: Logging verbosity level. 7016 * @fwlog_enable: Enable/Disable logging. 7017 * 7018 * Initialize memory and post mailbox command to enable FW logging in host 7019 * memory. 7020 **/ 7021 int 7022 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7023 uint32_t fwlog_level, 7024 uint32_t fwlog_enable) 7025 { 7026 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7027 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7028 struct lpfc_dmabuf *dmabuf; 7029 LPFC_MBOXQ_t *mbox; 7030 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7031 int rc = 0; 7032 7033 spin_lock_irq(&phba->ras_fwlog_lock); 7034 ras_fwlog->state = INACTIVE; 7035 spin_unlock_irq(&phba->ras_fwlog_lock); 7036 7037 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7038 phba->cfg_ras_fwlog_buffsize); 7039 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7040 7041 /* 7042 * If re-enabling FW logging support use earlier allocated 7043 * DMA buffers while posting MBX command. 7044 **/ 7045 if (!ras_fwlog->lwpd.virt) { 7046 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7047 if (rc) { 7048 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7049 "6189 FW Log Memory Allocation Failed"); 7050 return rc; 7051 } 7052 } 7053 7054 /* Setup Mailbox command */ 7055 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7056 if (!mbox) { 7057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7058 "6190 RAS MBX Alloc Failed"); 7059 rc = -ENOMEM; 7060 goto mem_free; 7061 } 7062 7063 ras_fwlog->fw_loglevel = fwlog_level; 7064 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7065 sizeof(struct lpfc_sli4_cfg_mhdr)); 7066 7067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7068 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7069 len, LPFC_SLI4_MBX_EMBED); 7070 7071 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7072 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7073 fwlog_enable); 7074 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7075 ras_fwlog->fw_loglevel); 7076 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7077 ras_fwlog->fw_buffcount); 7078 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7079 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7080 7081 /* Update DMA buffer address */ 7082 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7083 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7084 7085 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7086 putPaddrLow(dmabuf->phys); 7087 7088 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7089 putPaddrHigh(dmabuf->phys); 7090 } 7091 7092 /* Update LPWD address */ 7093 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7094 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7095 7096 spin_lock_irq(&phba->ras_fwlog_lock); 7097 ras_fwlog->state = REG_INPROGRESS; 7098 spin_unlock_irq(&phba->ras_fwlog_lock); 7099 mbox->vport = phba->pport; 7100 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7101 7102 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7103 7104 if (rc == MBX_NOT_FINISHED) { 7105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7106 "6191 FW-Log Mailbox failed. " 7107 "status %d mbxStatus : x%x", rc, 7108 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7109 mempool_free(mbox, phba->mbox_mem_pool); 7110 rc = -EIO; 7111 goto mem_free; 7112 } else 7113 rc = 0; 7114 mem_free: 7115 if (rc) 7116 lpfc_sli4_ras_dma_free(phba); 7117 7118 return rc; 7119 } 7120 7121 /** 7122 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7123 * @phba: Pointer to HBA context object. 7124 * 7125 * Check if RAS is supported on the adapter and initialize it. 7126 **/ 7127 void 7128 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7129 { 7130 /* Check RAS FW Log needs to be enabled or not */ 7131 if (lpfc_check_fwlog_support(phba)) 7132 return; 7133 7134 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7135 LPFC_RAS_ENABLE_LOGGING); 7136 } 7137 7138 /** 7139 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7140 * @phba: Pointer to HBA context object. 7141 * 7142 * This function allocates all SLI4 resource identifiers. 7143 **/ 7144 int 7145 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7146 { 7147 int i, rc, error = 0; 7148 uint16_t count, base; 7149 unsigned long longs; 7150 7151 if (!phba->sli4_hba.rpi_hdrs_in_use) 7152 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7153 if (phba->sli4_hba.extents_in_use) { 7154 /* 7155 * The port supports resource extents. The XRI, VPI, VFI, RPI 7156 * resource extent count must be read and allocated before 7157 * provisioning the resource id arrays. 7158 */ 7159 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7160 LPFC_IDX_RSRC_RDY) { 7161 /* 7162 * Extent-based resources are set - the driver could 7163 * be in a port reset. Figure out if any corrective 7164 * actions need to be taken. 7165 */ 7166 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7167 LPFC_RSC_TYPE_FCOE_VFI); 7168 if (rc != 0) 7169 error++; 7170 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7171 LPFC_RSC_TYPE_FCOE_VPI); 7172 if (rc != 0) 7173 error++; 7174 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7175 LPFC_RSC_TYPE_FCOE_XRI); 7176 if (rc != 0) 7177 error++; 7178 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7179 LPFC_RSC_TYPE_FCOE_RPI); 7180 if (rc != 0) 7181 error++; 7182 7183 /* 7184 * It's possible that the number of resources 7185 * provided to this port instance changed between 7186 * resets. Detect this condition and reallocate 7187 * resources. Otherwise, there is no action. 7188 */ 7189 if (error) { 7190 lpfc_printf_log(phba, KERN_INFO, 7191 LOG_MBOX | LOG_INIT, 7192 "2931 Detected extent resource " 7193 "change. Reallocating all " 7194 "extents.\n"); 7195 rc = lpfc_sli4_dealloc_extent(phba, 7196 LPFC_RSC_TYPE_FCOE_VFI); 7197 rc = lpfc_sli4_dealloc_extent(phba, 7198 LPFC_RSC_TYPE_FCOE_VPI); 7199 rc = lpfc_sli4_dealloc_extent(phba, 7200 LPFC_RSC_TYPE_FCOE_XRI); 7201 rc = lpfc_sli4_dealloc_extent(phba, 7202 LPFC_RSC_TYPE_FCOE_RPI); 7203 } else 7204 return 0; 7205 } 7206 7207 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7208 if (unlikely(rc)) 7209 goto err_exit; 7210 7211 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7212 if (unlikely(rc)) 7213 goto err_exit; 7214 7215 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7216 if (unlikely(rc)) 7217 goto err_exit; 7218 7219 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7220 if (unlikely(rc)) 7221 goto err_exit; 7222 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7223 LPFC_IDX_RSRC_RDY); 7224 return rc; 7225 } else { 7226 /* 7227 * The port does not support resource extents. The XRI, VPI, 7228 * VFI, RPI resource ids were determined from READ_CONFIG. 7229 * Just allocate the bitmasks and provision the resource id 7230 * arrays. If a port reset is active, the resources don't 7231 * need any action - just exit. 7232 */ 7233 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7234 LPFC_IDX_RSRC_RDY) { 7235 lpfc_sli4_dealloc_resource_identifiers(phba); 7236 lpfc_sli4_remove_rpis(phba); 7237 } 7238 /* RPIs. */ 7239 count = phba->sli4_hba.max_cfg_param.max_rpi; 7240 if (count <= 0) { 7241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7242 "3279 Invalid provisioning of " 7243 "rpi:%d\n", count); 7244 rc = -EINVAL; 7245 goto err_exit; 7246 } 7247 base = phba->sli4_hba.max_cfg_param.rpi_base; 7248 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7249 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7250 sizeof(unsigned long), 7251 GFP_KERNEL); 7252 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7253 rc = -ENOMEM; 7254 goto err_exit; 7255 } 7256 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7257 GFP_KERNEL); 7258 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7259 rc = -ENOMEM; 7260 goto free_rpi_bmask; 7261 } 7262 7263 for (i = 0; i < count; i++) 7264 phba->sli4_hba.rpi_ids[i] = base + i; 7265 7266 /* VPIs. */ 7267 count = phba->sli4_hba.max_cfg_param.max_vpi; 7268 if (count <= 0) { 7269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7270 "3280 Invalid provisioning of " 7271 "vpi:%d\n", count); 7272 rc = -EINVAL; 7273 goto free_rpi_ids; 7274 } 7275 base = phba->sli4_hba.max_cfg_param.vpi_base; 7276 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7277 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7278 GFP_KERNEL); 7279 if (unlikely(!phba->vpi_bmask)) { 7280 rc = -ENOMEM; 7281 goto free_rpi_ids; 7282 } 7283 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7284 GFP_KERNEL); 7285 if (unlikely(!phba->vpi_ids)) { 7286 rc = -ENOMEM; 7287 goto free_vpi_bmask; 7288 } 7289 7290 for (i = 0; i < count; i++) 7291 phba->vpi_ids[i] = base + i; 7292 7293 /* XRIs. */ 7294 count = phba->sli4_hba.max_cfg_param.max_xri; 7295 if (count <= 0) { 7296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7297 "3281 Invalid provisioning of " 7298 "xri:%d\n", count); 7299 rc = -EINVAL; 7300 goto free_vpi_ids; 7301 } 7302 base = phba->sli4_hba.max_cfg_param.xri_base; 7303 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7304 phba->sli4_hba.xri_bmask = kcalloc(longs, 7305 sizeof(unsigned long), 7306 GFP_KERNEL); 7307 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7308 rc = -ENOMEM; 7309 goto free_vpi_ids; 7310 } 7311 phba->sli4_hba.max_cfg_param.xri_used = 0; 7312 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7313 GFP_KERNEL); 7314 if (unlikely(!phba->sli4_hba.xri_ids)) { 7315 rc = -ENOMEM; 7316 goto free_xri_bmask; 7317 } 7318 7319 for (i = 0; i < count; i++) 7320 phba->sli4_hba.xri_ids[i] = base + i; 7321 7322 /* VFIs. */ 7323 count = phba->sli4_hba.max_cfg_param.max_vfi; 7324 if (count <= 0) { 7325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7326 "3282 Invalid provisioning of " 7327 "vfi:%d\n", count); 7328 rc = -EINVAL; 7329 goto free_xri_ids; 7330 } 7331 base = phba->sli4_hba.max_cfg_param.vfi_base; 7332 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7333 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7334 sizeof(unsigned long), 7335 GFP_KERNEL); 7336 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7337 rc = -ENOMEM; 7338 goto free_xri_ids; 7339 } 7340 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7341 GFP_KERNEL); 7342 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7343 rc = -ENOMEM; 7344 goto free_vfi_bmask; 7345 } 7346 7347 for (i = 0; i < count; i++) 7348 phba->sli4_hba.vfi_ids[i] = base + i; 7349 7350 /* 7351 * Mark all resources ready. An HBA reset doesn't need 7352 * to reset the initialization. 7353 */ 7354 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7355 LPFC_IDX_RSRC_RDY); 7356 return 0; 7357 } 7358 7359 free_vfi_bmask: 7360 kfree(phba->sli4_hba.vfi_bmask); 7361 phba->sli4_hba.vfi_bmask = NULL; 7362 free_xri_ids: 7363 kfree(phba->sli4_hba.xri_ids); 7364 phba->sli4_hba.xri_ids = NULL; 7365 free_xri_bmask: 7366 kfree(phba->sli4_hba.xri_bmask); 7367 phba->sli4_hba.xri_bmask = NULL; 7368 free_vpi_ids: 7369 kfree(phba->vpi_ids); 7370 phba->vpi_ids = NULL; 7371 free_vpi_bmask: 7372 kfree(phba->vpi_bmask); 7373 phba->vpi_bmask = NULL; 7374 free_rpi_ids: 7375 kfree(phba->sli4_hba.rpi_ids); 7376 phba->sli4_hba.rpi_ids = NULL; 7377 free_rpi_bmask: 7378 kfree(phba->sli4_hba.rpi_bmask); 7379 phba->sli4_hba.rpi_bmask = NULL; 7380 err_exit: 7381 return rc; 7382 } 7383 7384 /** 7385 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7386 * @phba: Pointer to HBA context object. 7387 * 7388 * This function allocates the number of elements for the specified 7389 * resource type. 7390 **/ 7391 int 7392 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7393 { 7394 if (phba->sli4_hba.extents_in_use) { 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7396 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7399 } else { 7400 kfree(phba->vpi_bmask); 7401 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7402 kfree(phba->vpi_ids); 7403 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7404 kfree(phba->sli4_hba.xri_bmask); 7405 kfree(phba->sli4_hba.xri_ids); 7406 kfree(phba->sli4_hba.vfi_bmask); 7407 kfree(phba->sli4_hba.vfi_ids); 7408 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7409 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7410 } 7411 7412 return 0; 7413 } 7414 7415 /** 7416 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7417 * @phba: Pointer to HBA context object. 7418 * @type: The resource extent type. 7419 * @extnt_cnt: buffer to hold port extent count response 7420 * @extnt_size: buffer to hold port extent size response. 7421 * 7422 * This function calls the port to read the host allocated extents 7423 * for a particular type. 7424 **/ 7425 int 7426 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7427 uint16_t *extnt_cnt, uint16_t *extnt_size) 7428 { 7429 bool emb; 7430 int rc = 0; 7431 uint16_t curr_blks = 0; 7432 uint32_t req_len, emb_len; 7433 uint32_t alloc_len, mbox_tmo; 7434 struct list_head *blk_list_head; 7435 struct lpfc_rsrc_blks *rsrc_blk; 7436 LPFC_MBOXQ_t *mbox; 7437 void *virtaddr = NULL; 7438 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7439 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7440 union lpfc_sli4_cfg_shdr *shdr; 7441 7442 switch (type) { 7443 case LPFC_RSC_TYPE_FCOE_VPI: 7444 blk_list_head = &phba->lpfc_vpi_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_XRI: 7447 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_VFI: 7450 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7451 break; 7452 case LPFC_RSC_TYPE_FCOE_RPI: 7453 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7454 break; 7455 default: 7456 return -EIO; 7457 } 7458 7459 /* Count the number of extents currently allocatd for this type. */ 7460 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7461 if (curr_blks == 0) { 7462 /* 7463 * The GET_ALLOCATED mailbox does not return the size, 7464 * just the count. The size should be just the size 7465 * stored in the current allocated block and all sizes 7466 * for an extent type are the same so set the return 7467 * value now. 7468 */ 7469 *extnt_size = rsrc_blk->rsrc_size; 7470 } 7471 curr_blks++; 7472 } 7473 7474 /* 7475 * Calculate the size of an embedded mailbox. The uint32_t 7476 * accounts for extents-specific word. 7477 */ 7478 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7479 sizeof(uint32_t); 7480 7481 /* 7482 * Presume the allocation and response will fit into an embedded 7483 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7484 */ 7485 emb = LPFC_SLI4_MBX_EMBED; 7486 req_len = emb_len; 7487 if (req_len > emb_len) { 7488 req_len = curr_blks * sizeof(uint16_t) + 7489 sizeof(union lpfc_sli4_cfg_shdr) + 7490 sizeof(uint32_t); 7491 emb = LPFC_SLI4_MBX_NEMBED; 7492 } 7493 7494 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7495 if (!mbox) 7496 return -ENOMEM; 7497 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7498 7499 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7500 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7501 req_len, emb); 7502 if (alloc_len < req_len) { 7503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7504 "2983 Allocated DMA memory size (x%x) is " 7505 "less than the requested DMA memory " 7506 "size (x%x)\n", alloc_len, req_len); 7507 rc = -ENOMEM; 7508 goto err_exit; 7509 } 7510 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7511 if (unlikely(rc)) { 7512 rc = -EIO; 7513 goto err_exit; 7514 } 7515 7516 if (!phba->sli4_hba.intr_enable) 7517 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7518 else { 7519 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7520 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7521 } 7522 7523 if (unlikely(rc)) { 7524 rc = -EIO; 7525 goto err_exit; 7526 } 7527 7528 /* 7529 * Figure out where the response is located. Then get local pointers 7530 * to the response data. The port does not guarantee to respond to 7531 * all extents counts request so update the local variable with the 7532 * allocated count from the port. 7533 */ 7534 if (emb == LPFC_SLI4_MBX_EMBED) { 7535 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7536 shdr = &rsrc_ext->header.cfg_shdr; 7537 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7538 } else { 7539 virtaddr = mbox->sge_array->addr[0]; 7540 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7541 shdr = &n_rsrc->cfg_shdr; 7542 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7543 } 7544 7545 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7547 "2984 Failed to read allocated resources " 7548 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7549 type, 7550 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7551 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7552 rc = -EIO; 7553 goto err_exit; 7554 } 7555 err_exit: 7556 lpfc_sli4_mbox_cmd_free(phba, mbox); 7557 return rc; 7558 } 7559 7560 /** 7561 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7562 * @phba: pointer to lpfc hba data structure. 7563 * @sgl_list: linked link of sgl buffers to post 7564 * @cnt: number of linked list buffers 7565 * 7566 * This routine walks the list of buffers that have been allocated and 7567 * repost them to the port by using SGL block post. This is needed after a 7568 * pci_function_reset/warm_start or start. It attempts to construct blocks 7569 * of buffer sgls which contains contiguous xris and uses the non-embedded 7570 * SGL block post mailbox commands to post them to the port. For single 7571 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7572 * mailbox command for posting. 7573 * 7574 * Returns: 0 = success, non-zero failure. 7575 **/ 7576 static int 7577 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7578 struct list_head *sgl_list, int cnt) 7579 { 7580 struct lpfc_sglq *sglq_entry = NULL; 7581 struct lpfc_sglq *sglq_entry_next = NULL; 7582 struct lpfc_sglq *sglq_entry_first = NULL; 7583 int status = 0, total_cnt; 7584 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7585 int last_xritag = NO_XRI; 7586 LIST_HEAD(prep_sgl_list); 7587 LIST_HEAD(blck_sgl_list); 7588 LIST_HEAD(allc_sgl_list); 7589 LIST_HEAD(post_sgl_list); 7590 LIST_HEAD(free_sgl_list); 7591 7592 spin_lock_irq(&phba->hbalock); 7593 spin_lock(&phba->sli4_hba.sgl_list_lock); 7594 list_splice_init(sgl_list, &allc_sgl_list); 7595 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7596 spin_unlock_irq(&phba->hbalock); 7597 7598 total_cnt = cnt; 7599 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7600 &allc_sgl_list, list) { 7601 list_del_init(&sglq_entry->list); 7602 block_cnt++; 7603 if ((last_xritag != NO_XRI) && 7604 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7605 /* a hole in xri block, form a sgl posting block */ 7606 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7607 post_cnt = block_cnt - 1; 7608 /* prepare list for next posting block */ 7609 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7610 block_cnt = 1; 7611 } else { 7612 /* prepare list for next posting block */ 7613 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7614 /* enough sgls for non-embed sgl mbox command */ 7615 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7616 list_splice_init(&prep_sgl_list, 7617 &blck_sgl_list); 7618 post_cnt = block_cnt; 7619 block_cnt = 0; 7620 } 7621 } 7622 num_posted++; 7623 7624 /* keep track of last sgl's xritag */ 7625 last_xritag = sglq_entry->sli4_xritag; 7626 7627 /* end of repost sgl list condition for buffers */ 7628 if (num_posted == total_cnt) { 7629 if (post_cnt == 0) { 7630 list_splice_init(&prep_sgl_list, 7631 &blck_sgl_list); 7632 post_cnt = block_cnt; 7633 } else if (block_cnt == 1) { 7634 status = lpfc_sli4_post_sgl(phba, 7635 sglq_entry->phys, 0, 7636 sglq_entry->sli4_xritag); 7637 if (!status) { 7638 /* successful, put sgl to posted list */ 7639 list_add_tail(&sglq_entry->list, 7640 &post_sgl_list); 7641 } else { 7642 /* Failure, put sgl to free list */ 7643 lpfc_printf_log(phba, KERN_WARNING, 7644 LOG_SLI, 7645 "3159 Failed to post " 7646 "sgl, xritag:x%x\n", 7647 sglq_entry->sli4_xritag); 7648 list_add_tail(&sglq_entry->list, 7649 &free_sgl_list); 7650 total_cnt--; 7651 } 7652 } 7653 } 7654 7655 /* continue until a nembed page worth of sgls */ 7656 if (post_cnt == 0) 7657 continue; 7658 7659 /* post the buffer list sgls as a block */ 7660 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7661 post_cnt); 7662 7663 if (!status) { 7664 /* success, put sgl list to posted sgl list */ 7665 list_splice_init(&blck_sgl_list, &post_sgl_list); 7666 } else { 7667 /* Failure, put sgl list to free sgl list */ 7668 sglq_entry_first = list_first_entry(&blck_sgl_list, 7669 struct lpfc_sglq, 7670 list); 7671 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7672 "3160 Failed to post sgl-list, " 7673 "xritag:x%x-x%x\n", 7674 sglq_entry_first->sli4_xritag, 7675 (sglq_entry_first->sli4_xritag + 7676 post_cnt - 1)); 7677 list_splice_init(&blck_sgl_list, &free_sgl_list); 7678 total_cnt -= post_cnt; 7679 } 7680 7681 /* don't reset xirtag due to hole in xri block */ 7682 if (block_cnt == 0) 7683 last_xritag = NO_XRI; 7684 7685 /* reset sgl post count for next round of posting */ 7686 post_cnt = 0; 7687 } 7688 7689 /* free the sgls failed to post */ 7690 lpfc_free_sgl_list(phba, &free_sgl_list); 7691 7692 /* push sgls posted to the available list */ 7693 if (!list_empty(&post_sgl_list)) { 7694 spin_lock_irq(&phba->hbalock); 7695 spin_lock(&phba->sli4_hba.sgl_list_lock); 7696 list_splice_init(&post_sgl_list, sgl_list); 7697 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7698 spin_unlock_irq(&phba->hbalock); 7699 } else { 7700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7701 "3161 Failure to post sgl to port,status %x " 7702 "blkcnt %d totalcnt %d postcnt %d\n", 7703 status, block_cnt, total_cnt, post_cnt); 7704 return -EIO; 7705 } 7706 7707 /* return the number of XRIs actually posted */ 7708 return total_cnt; 7709 } 7710 7711 /** 7712 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7713 * @phba: pointer to lpfc hba data structure. 7714 * 7715 * This routine walks the list of nvme buffers that have been allocated and 7716 * repost them to the port by using SGL block post. This is needed after a 7717 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7718 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7719 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7720 * 7721 * Returns: 0 = success, non-zero failure. 7722 **/ 7723 static int 7724 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7725 { 7726 LIST_HEAD(post_nblist); 7727 int num_posted, rc = 0; 7728 7729 /* get all NVME buffers need to repost to a local list */ 7730 lpfc_io_buf_flush(phba, &post_nblist); 7731 7732 /* post the list of nvme buffer sgls to port if available */ 7733 if (!list_empty(&post_nblist)) { 7734 num_posted = lpfc_sli4_post_io_sgl_list( 7735 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7736 /* failed to post any nvme buffer, return error */ 7737 if (num_posted == 0) 7738 rc = -EIO; 7739 } 7740 return rc; 7741 } 7742 7743 static void 7744 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7745 { 7746 uint32_t len; 7747 7748 len = sizeof(struct lpfc_mbx_set_host_data) - 7749 sizeof(struct lpfc_sli4_cfg_mhdr); 7750 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7751 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7752 LPFC_SLI4_MBX_EMBED); 7753 7754 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7755 mbox->u.mqe.un.set_host_data.param_len = 7756 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7757 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7758 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7759 "Linux %s v"LPFC_DRIVER_VERSION, 7760 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7761 } 7762 7763 int 7764 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7765 struct lpfc_queue *drq, int count, int idx) 7766 { 7767 int rc, i; 7768 struct lpfc_rqe hrqe; 7769 struct lpfc_rqe drqe; 7770 struct lpfc_rqb *rqbp; 7771 unsigned long flags; 7772 struct rqb_dmabuf *rqb_buffer; 7773 LIST_HEAD(rqb_buf_list); 7774 7775 rqbp = hrq->rqbp; 7776 for (i = 0; i < count; i++) { 7777 spin_lock_irqsave(&phba->hbalock, flags); 7778 /* IF RQ is already full, don't bother */ 7779 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7780 spin_unlock_irqrestore(&phba->hbalock, flags); 7781 break; 7782 } 7783 spin_unlock_irqrestore(&phba->hbalock, flags); 7784 7785 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7786 if (!rqb_buffer) 7787 break; 7788 rqb_buffer->hrq = hrq; 7789 rqb_buffer->drq = drq; 7790 rqb_buffer->idx = idx; 7791 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7792 } 7793 7794 spin_lock_irqsave(&phba->hbalock, flags); 7795 while (!list_empty(&rqb_buf_list)) { 7796 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7797 hbuf.list); 7798 7799 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7800 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7801 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7802 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7803 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7804 if (rc < 0) { 7805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7806 "6421 Cannot post to HRQ %d: %x %x %x " 7807 "DRQ %x %x\n", 7808 hrq->queue_id, 7809 hrq->host_index, 7810 hrq->hba_index, 7811 hrq->entry_count, 7812 drq->host_index, 7813 drq->hba_index); 7814 rqbp->rqb_free_buffer(phba, rqb_buffer); 7815 } else { 7816 list_add_tail(&rqb_buffer->hbuf.list, 7817 &rqbp->rqb_buffer_list); 7818 rqbp->buffer_count++; 7819 } 7820 } 7821 spin_unlock_irqrestore(&phba->hbalock, flags); 7822 return 1; 7823 } 7824 7825 static void 7826 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7827 { 7828 union lpfc_sli4_cfg_shdr *shdr; 7829 u32 shdr_status, shdr_add_status; 7830 7831 shdr = (union lpfc_sli4_cfg_shdr *) 7832 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7833 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7834 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7835 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7836 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7837 "4622 SET_FEATURE (x%x) mbox failed, " 7838 "status x%x add_status x%x, mbx status x%x\n", 7839 LPFC_SET_LD_SIGNAL, shdr_status, 7840 shdr_add_status, pmb->u.mb.mbxStatus); 7841 phba->degrade_activate_threshold = 0; 7842 phba->degrade_deactivate_threshold = 0; 7843 phba->fec_degrade_interval = 0; 7844 goto out; 7845 } 7846 7847 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7848 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7849 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7850 7851 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7852 "4624 Success: da x%x dd x%x interval x%x\n", 7853 phba->degrade_activate_threshold, 7854 phba->degrade_deactivate_threshold, 7855 phba->fec_degrade_interval); 7856 out: 7857 mempool_free(pmb, phba->mbox_mem_pool); 7858 } 7859 7860 int 7861 lpfc_read_lds_params(struct lpfc_hba *phba) 7862 { 7863 LPFC_MBOXQ_t *mboxq; 7864 int rc; 7865 7866 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7867 if (!mboxq) 7868 return -ENOMEM; 7869 7870 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7871 mboxq->vport = phba->pport; 7872 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7873 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7874 if (rc == MBX_NOT_FINISHED) { 7875 mempool_free(mboxq, phba->mbox_mem_pool); 7876 return -EIO; 7877 } 7878 return 0; 7879 } 7880 7881 static void 7882 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7883 { 7884 struct lpfc_vport *vport = pmb->vport; 7885 union lpfc_sli4_cfg_shdr *shdr; 7886 u32 shdr_status, shdr_add_status; 7887 u32 sig, acqe; 7888 7889 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7890 * is done. (2) Mailbox failed and send FPIN support only. 7891 */ 7892 shdr = (union lpfc_sli4_cfg_shdr *) 7893 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7894 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7895 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7896 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7897 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7898 "2516 CGN SET_FEATURE mbox failed with " 7899 "status x%x add_status x%x, mbx status x%x " 7900 "Reset Congestion to FPINs only\n", 7901 shdr_status, shdr_add_status, 7902 pmb->u.mb.mbxStatus); 7903 /* If there is a mbox error, move on to RDF */ 7904 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7905 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7906 goto out; 7907 } 7908 7909 /* Zero out Congestion Signal ACQE counter */ 7910 phba->cgn_acqe_cnt = 0; 7911 7912 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7913 &pmb->u.mqe.un.set_feature); 7914 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7915 &pmb->u.mqe.un.set_feature); 7916 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7917 "4620 SET_FEATURES Success: Freq: %ds %dms " 7918 " Reg: x%x x%x\n", acqe, sig, 7919 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7920 out: 7921 mempool_free(pmb, phba->mbox_mem_pool); 7922 7923 /* Register for FPIN events from the fabric now that the 7924 * EDC common_set_features has completed. 7925 */ 7926 lpfc_issue_els_rdf(vport, 0); 7927 } 7928 7929 int 7930 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7931 { 7932 LPFC_MBOXQ_t *mboxq; 7933 u32 rc; 7934 7935 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7936 if (!mboxq) 7937 goto out_rdf; 7938 7939 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7940 mboxq->vport = phba->pport; 7941 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7942 7943 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7944 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7945 "Reg: x%x x%x\n", 7946 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7947 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7948 7949 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7950 if (rc == MBX_NOT_FINISHED) 7951 goto out; 7952 return 0; 7953 7954 out: 7955 mempool_free(mboxq, phba->mbox_mem_pool); 7956 out_rdf: 7957 /* If there is a mbox error, move on to RDF */ 7958 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7959 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7960 lpfc_issue_els_rdf(phba->pport, 0); 7961 return -EIO; 7962 } 7963 7964 /** 7965 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7966 * @phba: pointer to lpfc hba data structure. 7967 * 7968 * This routine initializes the per-eq idle_stat to dynamically dictate 7969 * polling decisions. 7970 * 7971 * Return codes: 7972 * None 7973 **/ 7974 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7975 { 7976 int i; 7977 struct lpfc_sli4_hdw_queue *hdwq; 7978 struct lpfc_queue *eq; 7979 struct lpfc_idle_stat *idle_stat; 7980 u64 wall; 7981 7982 for_each_present_cpu(i) { 7983 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7984 eq = hdwq->hba_eq; 7985 7986 /* Skip if we've already handled this eq's primary CPU */ 7987 if (eq->chann != i) 7988 continue; 7989 7990 idle_stat = &phba->sli4_hba.idle_stat[i]; 7991 7992 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7993 idle_stat->prev_wall = wall; 7994 7995 if (phba->nvmet_support || 7996 phba->cmf_active_mode != LPFC_CFG_OFF || 7997 phba->intr_type != MSIX) 7998 eq->poll_mode = LPFC_QUEUE_WORK; 7999 else 8000 eq->poll_mode = LPFC_THREADED_IRQ; 8001 } 8002 8003 if (!phba->nvmet_support && phba->intr_type == MSIX) 8004 schedule_delayed_work(&phba->idle_stat_delay_work, 8005 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8006 } 8007 8008 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8009 { 8010 uint32_t if_type; 8011 8012 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8013 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8014 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8015 struct lpfc_register reg_data; 8016 8017 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8018 ®_data.word0)) 8019 return; 8020 8021 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8022 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8023 "2904 Firmware Dump Image Present" 8024 " on Adapter"); 8025 } 8026 } 8027 8028 /** 8029 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8030 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8031 * @entries: Number of rx_info_entry objects to allocate in ring 8032 * 8033 * Return: 8034 * 0 - Success 8035 * ENOMEM - Failure to kmalloc 8036 **/ 8037 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8038 u32 entries) 8039 { 8040 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8041 GFP_KERNEL); 8042 if (!rx_monitor->ring) 8043 return -ENOMEM; 8044 8045 rx_monitor->head_idx = 0; 8046 rx_monitor->tail_idx = 0; 8047 spin_lock_init(&rx_monitor->lock); 8048 rx_monitor->entries = entries; 8049 8050 return 0; 8051 } 8052 8053 /** 8054 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8055 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8056 * 8057 * Called after cancellation of cmf_timer. 8058 **/ 8059 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8060 { 8061 kfree(rx_monitor->ring); 8062 rx_monitor->ring = NULL; 8063 rx_monitor->entries = 0; 8064 rx_monitor->head_idx = 0; 8065 rx_monitor->tail_idx = 0; 8066 } 8067 8068 /** 8069 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8070 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8071 * @entry: Pointer to rx_info_entry 8072 * 8073 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8074 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8075 * 8076 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8077 * 8078 * In cases of old data overflow, we do a best effort of FIFO order. 8079 **/ 8080 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8081 struct rx_info_entry *entry) 8082 { 8083 struct rx_info_entry *ring = rx_monitor->ring; 8084 u32 *head_idx = &rx_monitor->head_idx; 8085 u32 *tail_idx = &rx_monitor->tail_idx; 8086 spinlock_t *ring_lock = &rx_monitor->lock; 8087 u32 ring_size = rx_monitor->entries; 8088 8089 spin_lock(ring_lock); 8090 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8091 *tail_idx = (*tail_idx + 1) % ring_size; 8092 8093 /* Best effort of FIFO saved data */ 8094 if (*tail_idx == *head_idx) 8095 *head_idx = (*head_idx + 1) % ring_size; 8096 8097 spin_unlock(ring_lock); 8098 } 8099 8100 /** 8101 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8102 * @phba: Pointer to lpfc_hba object 8103 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8104 * @buf: Pointer to char buffer that will contain rx monitor info data 8105 * @buf_len: Length buf including null char 8106 * @max_read_entries: Maximum number of entries to read out of ring 8107 * 8108 * Used to dump/read what's in rx_monitor's ring buffer. 8109 * 8110 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8111 * information to kmsg instead of filling out buf. 8112 * 8113 * Return: 8114 * Number of entries read out of the ring 8115 **/ 8116 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8117 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8118 u32 buf_len, u32 max_read_entries) 8119 { 8120 struct rx_info_entry *ring = rx_monitor->ring; 8121 struct rx_info_entry *entry; 8122 u32 *head_idx = &rx_monitor->head_idx; 8123 u32 *tail_idx = &rx_monitor->tail_idx; 8124 spinlock_t *ring_lock = &rx_monitor->lock; 8125 u32 ring_size = rx_monitor->entries; 8126 u32 cnt = 0; 8127 char tmp[DBG_LOG_STR_SZ] = {0}; 8128 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8129 8130 if (!log_to_kmsg) { 8131 /* clear the buffer to be sure */ 8132 memset(buf, 0, buf_len); 8133 8134 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8135 "%-8s%-8s%-8s%-16s\n", 8136 "MaxBPI", "Tot_Data_CMF", 8137 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8138 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8139 "IO_cnt", "Info", "BWutil(ms)"); 8140 } 8141 8142 /* Needs to be _irq because record is called from timer interrupt 8143 * context 8144 */ 8145 spin_lock_irq(ring_lock); 8146 while (*head_idx != *tail_idx) { 8147 entry = &ring[*head_idx]; 8148 8149 /* Read out this entry's data. */ 8150 if (!log_to_kmsg) { 8151 /* If !log_to_kmsg, then store to buf. */ 8152 scnprintf(tmp, sizeof(tmp), 8153 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8154 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8155 *head_idx, entry->max_bytes_per_interval, 8156 entry->cmf_bytes, entry->total_bytes, 8157 entry->rcv_bytes, entry->avg_io_latency, 8158 entry->avg_io_size, entry->max_read_cnt, 8159 entry->cmf_busy, entry->io_cnt, 8160 entry->cmf_info, entry->timer_utilization, 8161 entry->timer_interval); 8162 8163 /* Check for buffer overflow */ 8164 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8165 break; 8166 8167 /* Append entry's data to buffer */ 8168 strlcat(buf, tmp, buf_len); 8169 } else { 8170 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8171 "4410 %02u: MBPI %llu Xmit %llu " 8172 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8173 "BWUtil %u Int %u slot %u\n", 8174 cnt, entry->max_bytes_per_interval, 8175 entry->total_bytes, entry->rcv_bytes, 8176 entry->avg_io_latency, 8177 entry->avg_io_size, entry->cmf_info, 8178 entry->timer_utilization, 8179 entry->timer_interval, *head_idx); 8180 } 8181 8182 *head_idx = (*head_idx + 1) % ring_size; 8183 8184 /* Don't feed more than max_read_entries */ 8185 cnt++; 8186 if (cnt >= max_read_entries) 8187 break; 8188 } 8189 spin_unlock_irq(ring_lock); 8190 8191 return cnt; 8192 } 8193 8194 /** 8195 * lpfc_cmf_setup - Initialize idle_stat tracking 8196 * @phba: Pointer to HBA context object. 8197 * 8198 * This is called from HBA setup during driver load or when the HBA 8199 * comes online. this does all the initialization to support CMF and MI. 8200 **/ 8201 static int 8202 lpfc_cmf_setup(struct lpfc_hba *phba) 8203 { 8204 LPFC_MBOXQ_t *mboxq; 8205 struct lpfc_dmabuf *mp; 8206 struct lpfc_pc_sli4_params *sli4_params; 8207 int rc, cmf, mi_ver; 8208 8209 rc = lpfc_sli4_refresh_params(phba); 8210 if (unlikely(rc)) 8211 return rc; 8212 8213 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8214 if (!mboxq) 8215 return -ENOMEM; 8216 8217 sli4_params = &phba->sli4_hba.pc_sli4_params; 8218 8219 /* Always try to enable MI feature if we can */ 8220 if (sli4_params->mi_ver) { 8221 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8222 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8223 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8224 &mboxq->u.mqe.un.set_feature); 8225 8226 if (rc == MBX_SUCCESS) { 8227 if (mi_ver) { 8228 lpfc_printf_log(phba, 8229 KERN_WARNING, LOG_CGN_MGMT, 8230 "6215 MI is enabled\n"); 8231 sli4_params->mi_ver = mi_ver; 8232 } else { 8233 lpfc_printf_log(phba, 8234 KERN_WARNING, LOG_CGN_MGMT, 8235 "6338 MI is disabled\n"); 8236 sli4_params->mi_ver = 0; 8237 } 8238 } else { 8239 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8240 lpfc_printf_log(phba, KERN_INFO, 8241 LOG_CGN_MGMT | LOG_INIT, 8242 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8243 "failed, rc:x%x mi:x%x\n", 8244 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8245 lpfc_sli_config_mbox_subsys_get 8246 (phba, mboxq), 8247 lpfc_sli_config_mbox_opcode_get 8248 (phba, mboxq), 8249 rc, sli4_params->mi_ver); 8250 } 8251 } else { 8252 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8253 "6217 MI is disabled\n"); 8254 } 8255 8256 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8257 if (sli4_params->mi_ver) 8258 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8259 8260 /* Always try to enable CMF feature if we can */ 8261 if (sli4_params->cmf) { 8262 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8263 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8264 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8265 &mboxq->u.mqe.un.set_feature); 8266 if (rc == MBX_SUCCESS && cmf) { 8267 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8268 "6218 CMF is enabled: mode %d\n", 8269 phba->cmf_active_mode); 8270 } else { 8271 lpfc_printf_log(phba, KERN_WARNING, 8272 LOG_CGN_MGMT | LOG_INIT, 8273 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8274 "failed, rc:x%x dd:x%x\n", 8275 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8276 lpfc_sli_config_mbox_subsys_get 8277 (phba, mboxq), 8278 lpfc_sli_config_mbox_opcode_get 8279 (phba, mboxq), 8280 rc, cmf); 8281 sli4_params->cmf = 0; 8282 phba->cmf_active_mode = LPFC_CFG_OFF; 8283 goto no_cmf; 8284 } 8285 8286 /* Allocate Congestion Information Buffer */ 8287 if (!phba->cgn_i) { 8288 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8289 if (mp) 8290 mp->virt = dma_alloc_coherent 8291 (&phba->pcidev->dev, 8292 sizeof(struct lpfc_cgn_info), 8293 &mp->phys, GFP_KERNEL); 8294 if (!mp || !mp->virt) { 8295 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8296 "2640 Failed to alloc memory " 8297 "for Congestion Info\n"); 8298 kfree(mp); 8299 sli4_params->cmf = 0; 8300 phba->cmf_active_mode = LPFC_CFG_OFF; 8301 goto no_cmf; 8302 } 8303 phba->cgn_i = mp; 8304 8305 /* initialize congestion buffer info */ 8306 lpfc_init_congestion_buf(phba); 8307 lpfc_init_congestion_stat(phba); 8308 8309 /* Zero out Congestion Signal counters */ 8310 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8311 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8312 } 8313 8314 rc = lpfc_sli4_cgn_params_read(phba); 8315 if (rc < 0) { 8316 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8317 "6242 Error reading Cgn Params (%d)\n", 8318 rc); 8319 /* Ensure CGN Mode is off */ 8320 sli4_params->cmf = 0; 8321 } else if (!rc) { 8322 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8323 "6243 CGN Event empty object.\n"); 8324 /* Ensure CGN Mode is off */ 8325 sli4_params->cmf = 0; 8326 } 8327 } else { 8328 no_cmf: 8329 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8330 "6220 CMF is disabled\n"); 8331 } 8332 8333 /* Only register congestion buffer with firmware if BOTH 8334 * CMF and E2E are enabled. 8335 */ 8336 if (sli4_params->cmf && sli4_params->mi_ver) { 8337 rc = lpfc_reg_congestion_buf(phba); 8338 if (rc) { 8339 dma_free_coherent(&phba->pcidev->dev, 8340 sizeof(struct lpfc_cgn_info), 8341 phba->cgn_i->virt, phba->cgn_i->phys); 8342 kfree(phba->cgn_i); 8343 phba->cgn_i = NULL; 8344 /* Ensure CGN Mode is off */ 8345 phba->cmf_active_mode = LPFC_CFG_OFF; 8346 sli4_params->cmf = 0; 8347 return 0; 8348 } 8349 } 8350 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8351 "6470 Setup MI version %d CMF %d mode %d\n", 8352 sli4_params->mi_ver, sli4_params->cmf, 8353 phba->cmf_active_mode); 8354 8355 mempool_free(mboxq, phba->mbox_mem_pool); 8356 8357 /* Initialize atomic counters */ 8358 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8359 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8360 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8361 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8362 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8363 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8364 atomic64_set(&phba->cgn_latency_evt, 0); 8365 8366 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8367 8368 /* Allocate RX Monitor Buffer */ 8369 if (!phba->rx_monitor) { 8370 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8371 GFP_KERNEL); 8372 8373 if (!phba->rx_monitor) { 8374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8375 "2644 Failed to alloc memory " 8376 "for RX Monitor Buffer\n"); 8377 return -ENOMEM; 8378 } 8379 8380 /* Instruct the rx_monitor object to instantiate its ring */ 8381 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8382 LPFC_MAX_RXMONITOR_ENTRY)) { 8383 kfree(phba->rx_monitor); 8384 phba->rx_monitor = NULL; 8385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8386 "2645 Failed to alloc memory " 8387 "for RX Monitor's Ring\n"); 8388 return -ENOMEM; 8389 } 8390 } 8391 8392 return 0; 8393 } 8394 8395 static int 8396 lpfc_set_host_tm(struct lpfc_hba *phba) 8397 { 8398 LPFC_MBOXQ_t *mboxq; 8399 uint32_t len, rc; 8400 struct timespec64 cur_time; 8401 struct tm broken; 8402 uint32_t month, day, year; 8403 uint32_t hour, minute, second; 8404 struct lpfc_mbx_set_host_date_time *tm; 8405 8406 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8407 if (!mboxq) 8408 return -ENOMEM; 8409 8410 len = sizeof(struct lpfc_mbx_set_host_data) - 8411 sizeof(struct lpfc_sli4_cfg_mhdr); 8412 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8413 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8414 LPFC_SLI4_MBX_EMBED); 8415 8416 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8417 mboxq->u.mqe.un.set_host_data.param_len = 8418 sizeof(struct lpfc_mbx_set_host_date_time); 8419 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8420 ktime_get_real_ts64(&cur_time); 8421 time64_to_tm(cur_time.tv_sec, 0, &broken); 8422 month = broken.tm_mon + 1; 8423 day = broken.tm_mday; 8424 year = broken.tm_year - 100; 8425 hour = broken.tm_hour; 8426 minute = broken.tm_min; 8427 second = broken.tm_sec; 8428 bf_set(lpfc_mbx_set_host_month, tm, month); 8429 bf_set(lpfc_mbx_set_host_day, tm, day); 8430 bf_set(lpfc_mbx_set_host_year, tm, year); 8431 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8432 bf_set(lpfc_mbx_set_host_min, tm, minute); 8433 bf_set(lpfc_mbx_set_host_sec, tm, second); 8434 8435 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8436 mempool_free(mboxq, phba->mbox_mem_pool); 8437 return rc; 8438 } 8439 8440 /** 8441 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8442 * @phba: Pointer to HBA context object. 8443 * 8444 * This function is the main SLI4 device initialization PCI function. This 8445 * function is called by the HBA initialization code, HBA reset code and 8446 * HBA error attention handler code. Caller is not required to hold any 8447 * locks. 8448 **/ 8449 int 8450 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8451 { 8452 int rc, i, cnt, len, dd; 8453 LPFC_MBOXQ_t *mboxq; 8454 struct lpfc_mqe *mqe; 8455 uint8_t *vpd; 8456 uint32_t vpd_size; 8457 uint32_t ftr_rsp = 0; 8458 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8459 struct lpfc_vport *vport = phba->pport; 8460 struct lpfc_dmabuf *mp; 8461 struct lpfc_rqb *rqbp; 8462 u32 flg; 8463 8464 /* Perform a PCI function reset to start from clean */ 8465 rc = lpfc_pci_function_reset(phba); 8466 if (unlikely(rc)) 8467 return -ENODEV; 8468 8469 /* Check the HBA Host Status Register for readyness */ 8470 rc = lpfc_sli4_post_status_check(phba); 8471 if (unlikely(rc)) 8472 return -ENODEV; 8473 else { 8474 spin_lock_irq(&phba->hbalock); 8475 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8476 flg = phba->sli.sli_flag; 8477 spin_unlock_irq(&phba->hbalock); 8478 /* Allow a little time after setting SLI_ACTIVE for any polled 8479 * MBX commands to complete via BSG. 8480 */ 8481 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8482 msleep(20); 8483 spin_lock_irq(&phba->hbalock); 8484 flg = phba->sli.sli_flag; 8485 spin_unlock_irq(&phba->hbalock); 8486 } 8487 } 8488 clear_bit(HBA_SETUP, &phba->hba_flag); 8489 8490 lpfc_sli4_dip(phba); 8491 8492 /* 8493 * Allocate a single mailbox container for initializing the 8494 * port. 8495 */ 8496 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8497 if (!mboxq) 8498 return -ENOMEM; 8499 8500 /* Issue READ_REV to collect vpd and FW information. */ 8501 vpd_size = SLI4_PAGE_SIZE; 8502 vpd = kzalloc(vpd_size, GFP_KERNEL); 8503 if (!vpd) { 8504 rc = -ENOMEM; 8505 goto out_free_mbox; 8506 } 8507 8508 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8509 if (unlikely(rc)) { 8510 kfree(vpd); 8511 goto out_free_mbox; 8512 } 8513 8514 mqe = &mboxq->u.mqe; 8515 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8516 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8517 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8518 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8519 } else { 8520 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8521 } 8522 8523 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8524 LPFC_DCBX_CEE_MODE) 8525 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8526 else 8527 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8528 8529 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8530 8531 if (phba->sli_rev != LPFC_SLI_REV4) { 8532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8533 "0376 READ_REV Error. SLI Level %d " 8534 "FCoE enabled %d\n", 8535 phba->sli_rev, 8536 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8537 rc = -EIO; 8538 kfree(vpd); 8539 goto out_free_mbox; 8540 } 8541 8542 rc = lpfc_set_host_tm(phba); 8543 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8544 "6468 Set host date / time: Status x%x:\n", rc); 8545 8546 /* 8547 * Continue initialization with default values even if driver failed 8548 * to read FCoE param config regions, only read parameters if the 8549 * board is FCoE 8550 */ 8551 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8552 lpfc_sli4_read_fcoe_params(phba)) 8553 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8554 "2570 Failed to read FCoE parameters\n"); 8555 8556 /* 8557 * Retrieve sli4 device physical port name, failure of doing it 8558 * is considered as non-fatal. 8559 */ 8560 rc = lpfc_sli4_retrieve_pport_name(phba); 8561 if (!rc) 8562 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8563 "3080 Successful retrieving SLI4 device " 8564 "physical port name: %s.\n", phba->Port); 8565 8566 rc = lpfc_sli4_get_ctl_attr(phba); 8567 if (!rc) 8568 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8569 "8351 Successful retrieving SLI4 device " 8570 "CTL ATTR\n"); 8571 8572 /* 8573 * Evaluate the read rev and vpd data. Populate the driver 8574 * state with the results. If this routine fails, the failure 8575 * is not fatal as the driver will use generic values. 8576 */ 8577 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8578 if (unlikely(!rc)) 8579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8580 "0377 Error %d parsing vpd. " 8581 "Using defaults.\n", rc); 8582 kfree(vpd); 8583 8584 /* Save information as VPD data */ 8585 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8586 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8587 8588 /* 8589 * This is because first G7 ASIC doesn't support the standard 8590 * 0x5a NVME cmd descriptor type/subtype 8591 */ 8592 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8593 LPFC_SLI_INTF_IF_TYPE_6) && 8594 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8595 (phba->vpd.rev.smRev == 0) && 8596 (phba->cfg_nvme_embed_cmd == 1)) 8597 phba->cfg_nvme_embed_cmd = 0; 8598 8599 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8600 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8601 &mqe->un.read_rev); 8602 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8603 &mqe->un.read_rev); 8604 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8605 &mqe->un.read_rev); 8606 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8607 &mqe->un.read_rev); 8608 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8609 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8610 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8611 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8612 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8613 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8614 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8615 "(%d):0380 READ_REV Status x%x " 8616 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8617 mboxq->vport ? mboxq->vport->vpi : 0, 8618 bf_get(lpfc_mqe_status, mqe), 8619 phba->vpd.rev.opFwName, 8620 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8621 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8622 8623 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8624 LPFC_SLI_INTF_IF_TYPE_0) { 8625 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8626 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8627 if (rc == MBX_SUCCESS) { 8628 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8629 /* Set 1Sec interval to detect UE */ 8630 phba->eratt_poll_interval = 1; 8631 phba->sli4_hba.ue_to_sr = bf_get( 8632 lpfc_mbx_set_feature_UESR, 8633 &mboxq->u.mqe.un.set_feature); 8634 phba->sli4_hba.ue_to_rp = bf_get( 8635 lpfc_mbx_set_feature_UERP, 8636 &mboxq->u.mqe.un.set_feature); 8637 } 8638 } 8639 8640 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8641 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8642 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8643 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8644 if (rc != MBX_SUCCESS) 8645 phba->mds_diags_support = 0; 8646 } 8647 8648 /* 8649 * Discover the port's supported feature set and match it against the 8650 * hosts requests. 8651 */ 8652 lpfc_request_features(phba, mboxq); 8653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8654 if (unlikely(rc)) { 8655 rc = -EIO; 8656 goto out_free_mbox; 8657 } 8658 8659 /* Disable VMID if app header is not supported */ 8660 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8661 &mqe->un.req_ftrs))) { 8662 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8663 phba->cfg_vmid_app_header = 0; 8664 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8665 "1242 vmid feature not supported\n"); 8666 } 8667 8668 /* 8669 * The port must support FCP initiator mode as this is the 8670 * only mode running in the host. 8671 */ 8672 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8673 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8674 "0378 No support for fcpi mode.\n"); 8675 ftr_rsp++; 8676 } 8677 8678 /* Performance Hints are ONLY for FCoE */ 8679 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8680 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8681 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8682 else 8683 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8684 } 8685 8686 /* 8687 * If the port cannot support the host's requested features 8688 * then turn off the global config parameters to disable the 8689 * feature in the driver. This is not a fatal error. 8690 */ 8691 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8692 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8693 phba->cfg_enable_bg = 0; 8694 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8695 ftr_rsp++; 8696 } 8697 } 8698 8699 if (phba->max_vpi && phba->cfg_enable_npiv && 8700 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8701 ftr_rsp++; 8702 8703 if (ftr_rsp) { 8704 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8705 "0379 Feature Mismatch Data: x%08x %08x " 8706 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8707 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8708 phba->cfg_enable_npiv, phba->max_vpi); 8709 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8710 phba->cfg_enable_bg = 0; 8711 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8712 phba->cfg_enable_npiv = 0; 8713 } 8714 8715 /* These SLI3 features are assumed in SLI4 */ 8716 spin_lock_irq(&phba->hbalock); 8717 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8718 spin_unlock_irq(&phba->hbalock); 8719 8720 /* Always try to enable dual dump feature if we can */ 8721 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8723 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8724 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8725 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8726 "6448 Dual Dump is enabled\n"); 8727 else 8728 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8729 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8730 "rc:x%x dd:x%x\n", 8731 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8732 lpfc_sli_config_mbox_subsys_get( 8733 phba, mboxq), 8734 lpfc_sli_config_mbox_opcode_get( 8735 phba, mboxq), 8736 rc, dd); 8737 /* 8738 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8739 * calls depends on these resources to complete port setup. 8740 */ 8741 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8742 if (rc) { 8743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8744 "2920 Failed to alloc Resource IDs " 8745 "rc = x%x\n", rc); 8746 goto out_free_mbox; 8747 } 8748 8749 lpfc_set_host_data(phba, mboxq); 8750 8751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8752 if (rc) { 8753 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8754 "2134 Failed to set host os driver version %x", 8755 rc); 8756 } 8757 8758 /* Read the port's service parameters. */ 8759 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8760 if (rc) { 8761 phba->link_state = LPFC_HBA_ERROR; 8762 rc = -ENOMEM; 8763 goto out_free_mbox; 8764 } 8765 8766 mboxq->vport = vport; 8767 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8768 mp = mboxq->ctx_buf; 8769 if (rc == MBX_SUCCESS) { 8770 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8771 rc = 0; 8772 } 8773 8774 /* 8775 * This memory was allocated by the lpfc_read_sparam routine but is 8776 * no longer needed. It is released and ctx_buf NULLed to prevent 8777 * unintended pointer access as the mbox is reused. 8778 */ 8779 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8780 kfree(mp); 8781 mboxq->ctx_buf = NULL; 8782 if (unlikely(rc)) { 8783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8784 "0382 READ_SPARAM command failed " 8785 "status %d, mbxStatus x%x\n", 8786 rc, bf_get(lpfc_mqe_status, mqe)); 8787 phba->link_state = LPFC_HBA_ERROR; 8788 rc = -EIO; 8789 goto out_free_mbox; 8790 } 8791 8792 lpfc_update_vport_wwn(vport); 8793 8794 /* Update the fc_host data structures with new wwn. */ 8795 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8796 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8797 8798 /* Create all the SLI4 queues */ 8799 rc = lpfc_sli4_queue_create(phba); 8800 if (rc) { 8801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8802 "3089 Failed to allocate queues\n"); 8803 rc = -ENODEV; 8804 goto out_free_mbox; 8805 } 8806 /* Set up all the queues to the device */ 8807 rc = lpfc_sli4_queue_setup(phba); 8808 if (unlikely(rc)) { 8809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8810 "0381 Error %d during queue setup.\n ", rc); 8811 goto out_stop_timers; 8812 } 8813 /* Initialize the driver internal SLI layer lists. */ 8814 lpfc_sli4_setup(phba); 8815 lpfc_sli4_queue_init(phba); 8816 8817 /* update host els xri-sgl sizes and mappings */ 8818 rc = lpfc_sli4_els_sgl_update(phba); 8819 if (unlikely(rc)) { 8820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8821 "1400 Failed to update xri-sgl size and " 8822 "mapping: %d\n", rc); 8823 goto out_destroy_queue; 8824 } 8825 8826 /* register the els sgl pool to the port */ 8827 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8828 phba->sli4_hba.els_xri_cnt); 8829 if (unlikely(rc < 0)) { 8830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8831 "0582 Error %d during els sgl post " 8832 "operation\n", rc); 8833 rc = -ENODEV; 8834 goto out_destroy_queue; 8835 } 8836 phba->sli4_hba.els_xri_cnt = rc; 8837 8838 if (phba->nvmet_support) { 8839 /* update host nvmet xri-sgl sizes and mappings */ 8840 rc = lpfc_sli4_nvmet_sgl_update(phba); 8841 if (unlikely(rc)) { 8842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8843 "6308 Failed to update nvmet-sgl size " 8844 "and mapping: %d\n", rc); 8845 goto out_destroy_queue; 8846 } 8847 8848 /* register the nvmet sgl pool to the port */ 8849 rc = lpfc_sli4_repost_sgl_list( 8850 phba, 8851 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8852 phba->sli4_hba.nvmet_xri_cnt); 8853 if (unlikely(rc < 0)) { 8854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8855 "3117 Error %d during nvmet " 8856 "sgl post\n", rc); 8857 rc = -ENODEV; 8858 goto out_destroy_queue; 8859 } 8860 phba->sli4_hba.nvmet_xri_cnt = rc; 8861 8862 /* We allocate an iocbq for every receive context SGL. 8863 * The additional allocation is for abort and ls handling. 8864 */ 8865 cnt = phba->sli4_hba.nvmet_xri_cnt + 8866 phba->sli4_hba.max_cfg_param.max_xri; 8867 } else { 8868 /* update host common xri-sgl sizes and mappings */ 8869 rc = lpfc_sli4_io_sgl_update(phba); 8870 if (unlikely(rc)) { 8871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8872 "6082 Failed to update nvme-sgl size " 8873 "and mapping: %d\n", rc); 8874 goto out_destroy_queue; 8875 } 8876 8877 /* register the allocated common sgl pool to the port */ 8878 rc = lpfc_sli4_repost_io_sgl_list(phba); 8879 if (unlikely(rc)) { 8880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8881 "6116 Error %d during nvme sgl post " 8882 "operation\n", rc); 8883 /* Some NVME buffers were moved to abort nvme list */ 8884 /* A pci function reset will repost them */ 8885 rc = -ENODEV; 8886 goto out_destroy_queue; 8887 } 8888 /* Each lpfc_io_buf job structure has an iocbq element. 8889 * This cnt provides for abort, els, ct and ls requests. 8890 */ 8891 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8892 } 8893 8894 if (!phba->sli.iocbq_lookup) { 8895 /* Initialize and populate the iocb list per host */ 8896 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8897 "2821 initialize iocb list with %d entries\n", 8898 cnt); 8899 rc = lpfc_init_iocb_list(phba, cnt); 8900 if (rc) { 8901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8902 "1413 Failed to init iocb list.\n"); 8903 goto out_destroy_queue; 8904 } 8905 } 8906 8907 if (phba->nvmet_support) 8908 lpfc_nvmet_create_targetport(phba); 8909 8910 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8911 /* Post initial buffers to all RQs created */ 8912 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8913 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8914 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8915 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8916 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8917 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8918 rqbp->buffer_count = 0; 8919 8920 lpfc_post_rq_buffer( 8921 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8922 phba->sli4_hba.nvmet_mrq_data[i], 8923 phba->cfg_nvmet_mrq_post, i); 8924 } 8925 } 8926 8927 /* Post the rpi header region to the device. */ 8928 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8929 if (unlikely(rc)) { 8930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8931 "0393 Error %d during rpi post operation\n", 8932 rc); 8933 rc = -ENODEV; 8934 goto out_free_iocblist; 8935 } 8936 lpfc_sli4_node_prep(phba); 8937 8938 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8939 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8940 /* 8941 * The FC Port needs to register FCFI (index 0) 8942 */ 8943 lpfc_reg_fcfi(phba, mboxq); 8944 mboxq->vport = phba->pport; 8945 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8946 if (rc != MBX_SUCCESS) 8947 goto out_unset_queue; 8948 rc = 0; 8949 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8950 &mboxq->u.mqe.un.reg_fcfi); 8951 } else { 8952 /* We are a NVME Target mode with MRQ > 1 */ 8953 8954 /* First register the FCFI */ 8955 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8956 mboxq->vport = phba->pport; 8957 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8958 if (rc != MBX_SUCCESS) 8959 goto out_unset_queue; 8960 rc = 0; 8961 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8962 &mboxq->u.mqe.un.reg_fcfi_mrq); 8963 8964 /* Next register the MRQs */ 8965 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8966 mboxq->vport = phba->pport; 8967 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8968 if (rc != MBX_SUCCESS) 8969 goto out_unset_queue; 8970 rc = 0; 8971 } 8972 /* Check if the port is configured to be disabled */ 8973 lpfc_sli_read_link_ste(phba); 8974 } 8975 8976 /* Don't post more new bufs if repost already recovered 8977 * the nvme sgls. 8978 */ 8979 if (phba->nvmet_support == 0) { 8980 if (phba->sli4_hba.io_xri_cnt == 0) { 8981 len = lpfc_new_io_buf( 8982 phba, phba->sli4_hba.io_xri_max); 8983 if (len == 0) { 8984 rc = -ENOMEM; 8985 goto out_unset_queue; 8986 } 8987 8988 if (phba->cfg_xri_rebalancing) 8989 lpfc_create_multixri_pools(phba); 8990 } 8991 } else { 8992 phba->cfg_xri_rebalancing = 0; 8993 } 8994 8995 /* Allow asynchronous mailbox command to go through */ 8996 spin_lock_irq(&phba->hbalock); 8997 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8998 spin_unlock_irq(&phba->hbalock); 8999 9000 /* Post receive buffers to the device */ 9001 lpfc_sli4_rb_setup(phba); 9002 9003 /* Reset HBA FCF states after HBA reset */ 9004 phba->fcf.fcf_flag = 0; 9005 phba->fcf.current_rec.flag = 0; 9006 9007 /* Start the ELS watchdog timer */ 9008 mod_timer(&vport->els_tmofunc, 9009 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9010 9011 /* Start heart beat timer */ 9012 mod_timer(&phba->hb_tmofunc, 9013 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9014 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9015 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9016 phba->last_completion_time = jiffies; 9017 9018 /* start eq_delay heartbeat */ 9019 if (phba->cfg_auto_imax) 9020 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9021 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9022 9023 /* start per phba idle_stat_delay heartbeat */ 9024 lpfc_init_idle_stat_hb(phba); 9025 9026 /* Start error attention (ERATT) polling timer */ 9027 mod_timer(&phba->eratt_poll, 9028 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9029 9030 /* 9031 * The port is ready, set the host's link state to LINK_DOWN 9032 * in preparation for link interrupts. 9033 */ 9034 spin_lock_irq(&phba->hbalock); 9035 phba->link_state = LPFC_LINK_DOWN; 9036 9037 /* Check if physical ports are trunked */ 9038 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9039 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9040 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9041 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9042 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9043 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9044 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9045 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9046 spin_unlock_irq(&phba->hbalock); 9047 9048 /* Arm the CQs and then EQs on device */ 9049 lpfc_sli4_arm_cqeq_intr(phba); 9050 9051 /* Indicate device interrupt mode */ 9052 phba->sli4_hba.intr_enable = 1; 9053 9054 /* Setup CMF after HBA is initialized */ 9055 lpfc_cmf_setup(phba); 9056 9057 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9058 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9060 "3103 Adapter Link is disabled.\n"); 9061 lpfc_down_link(phba, mboxq); 9062 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9063 if (rc != MBX_SUCCESS) { 9064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9065 "3104 Adapter failed to issue " 9066 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9067 goto out_io_buff_free; 9068 } 9069 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9070 /* don't perform init_link on SLI4 FC port loopback test */ 9071 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9072 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9073 if (rc) 9074 goto out_io_buff_free; 9075 } 9076 } 9077 mempool_free(mboxq, phba->mbox_mem_pool); 9078 9079 /* Enable RAS FW log support */ 9080 lpfc_sli4_ras_setup(phba); 9081 9082 set_bit(HBA_SETUP, &phba->hba_flag); 9083 return rc; 9084 9085 out_io_buff_free: 9086 /* Free allocated IO Buffers */ 9087 lpfc_io_free(phba); 9088 out_unset_queue: 9089 /* Unset all the queues set up in this routine when error out */ 9090 lpfc_sli4_queue_unset(phba); 9091 out_free_iocblist: 9092 lpfc_free_iocb_list(phba); 9093 out_destroy_queue: 9094 lpfc_sli4_queue_destroy(phba); 9095 out_stop_timers: 9096 lpfc_stop_hba_timers(phba); 9097 out_free_mbox: 9098 mempool_free(mboxq, phba->mbox_mem_pool); 9099 return rc; 9100 } 9101 9102 /** 9103 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9104 * @t: Context to fetch pointer to hba structure from. 9105 * 9106 * This is the callback function for mailbox timer. The mailbox 9107 * timer is armed when a new mailbox command is issued and the timer 9108 * is deleted when the mailbox complete. The function is called by 9109 * the kernel timer code when a mailbox does not complete within 9110 * expected time. This function wakes up the worker thread to 9111 * process the mailbox timeout and returns. All the processing is 9112 * done by the worker thread function lpfc_mbox_timeout_handler. 9113 **/ 9114 void 9115 lpfc_mbox_timeout(struct timer_list *t) 9116 { 9117 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9118 unsigned long iflag; 9119 uint32_t tmo_posted; 9120 9121 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9122 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9123 if (!tmo_posted) 9124 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9125 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9126 9127 if (!tmo_posted) 9128 lpfc_worker_wake_up(phba); 9129 return; 9130 } 9131 9132 /** 9133 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9134 * are pending 9135 * @phba: Pointer to HBA context object. 9136 * 9137 * This function checks if any mailbox completions are present on the mailbox 9138 * completion queue. 9139 **/ 9140 static bool 9141 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9142 { 9143 9144 uint32_t idx; 9145 struct lpfc_queue *mcq; 9146 struct lpfc_mcqe *mcqe; 9147 bool pending_completions = false; 9148 uint8_t qe_valid; 9149 9150 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9151 return false; 9152 9153 /* Check for completions on mailbox completion queue */ 9154 9155 mcq = phba->sli4_hba.mbx_cq; 9156 idx = mcq->hba_index; 9157 qe_valid = mcq->qe_valid; 9158 while (bf_get_le32(lpfc_cqe_valid, 9159 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9160 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9161 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9162 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9163 pending_completions = true; 9164 break; 9165 } 9166 idx = (idx + 1) % mcq->entry_count; 9167 if (mcq->hba_index == idx) 9168 break; 9169 9170 /* if the index wrapped around, toggle the valid bit */ 9171 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9172 qe_valid = (qe_valid) ? 0 : 1; 9173 } 9174 return pending_completions; 9175 9176 } 9177 9178 /** 9179 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9180 * that were missed. 9181 * @phba: Pointer to HBA context object. 9182 * 9183 * For sli4, it is possible to miss an interrupt. As such mbox completions 9184 * maybe missed causing erroneous mailbox timeouts to occur. This function 9185 * checks to see if mbox completions are on the mailbox completion queue 9186 * and will process all the completions associated with the eq for the 9187 * mailbox completion queue. 9188 **/ 9189 static bool 9190 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9191 { 9192 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9193 uint32_t eqidx; 9194 struct lpfc_queue *fpeq = NULL; 9195 struct lpfc_queue *eq; 9196 bool mbox_pending; 9197 9198 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9199 return false; 9200 9201 /* Find the EQ associated with the mbox CQ */ 9202 if (sli4_hba->hdwq) { 9203 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9204 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9205 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9206 fpeq = eq; 9207 break; 9208 } 9209 } 9210 } 9211 if (!fpeq) 9212 return false; 9213 9214 /* Turn off interrupts from this EQ */ 9215 9216 sli4_hba->sli4_eq_clr_intr(fpeq); 9217 9218 /* Check to see if a mbox completion is pending */ 9219 9220 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9221 9222 /* 9223 * If a mbox completion is pending, process all the events on EQ 9224 * associated with the mbox completion queue (this could include 9225 * mailbox commands, async events, els commands, receive queue data 9226 * and fcp commands) 9227 */ 9228 9229 if (mbox_pending) 9230 /* process and rearm the EQ */ 9231 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9232 LPFC_QUEUE_WORK); 9233 else 9234 /* Always clear and re-arm the EQ */ 9235 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9236 9237 return mbox_pending; 9238 9239 } 9240 9241 /** 9242 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9243 * @phba: Pointer to HBA context object. 9244 * 9245 * This function is called from worker thread when a mailbox command times out. 9246 * The caller is not required to hold any locks. This function will reset the 9247 * HBA and recover all the pending commands. 9248 **/ 9249 void 9250 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9251 { 9252 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9253 MAILBOX_t *mb = NULL; 9254 9255 struct lpfc_sli *psli = &phba->sli; 9256 9257 /* If the mailbox completed, process the completion */ 9258 lpfc_sli4_process_missed_mbox_completions(phba); 9259 9260 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9261 return; 9262 9263 if (pmbox != NULL) 9264 mb = &pmbox->u.mb; 9265 /* Check the pmbox pointer first. There is a race condition 9266 * between the mbox timeout handler getting executed in the 9267 * worklist and the mailbox actually completing. When this 9268 * race condition occurs, the mbox_active will be NULL. 9269 */ 9270 spin_lock_irq(&phba->hbalock); 9271 if (pmbox == NULL) { 9272 lpfc_printf_log(phba, KERN_WARNING, 9273 LOG_MBOX | LOG_SLI, 9274 "0353 Active Mailbox cleared - mailbox timeout " 9275 "exiting\n"); 9276 spin_unlock_irq(&phba->hbalock); 9277 return; 9278 } 9279 9280 /* Mbox cmd <mbxCommand> timeout */ 9281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9282 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9283 mb->mbxCommand, 9284 phba->pport->port_state, 9285 phba->sli.sli_flag, 9286 phba->sli.mbox_active); 9287 spin_unlock_irq(&phba->hbalock); 9288 9289 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9290 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9291 * it to fail all outstanding SCSI IO. 9292 */ 9293 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9294 spin_lock_irq(&phba->pport->work_port_lock); 9295 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9296 spin_unlock_irq(&phba->pport->work_port_lock); 9297 spin_lock_irq(&phba->hbalock); 9298 phba->link_state = LPFC_LINK_UNKNOWN; 9299 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9300 spin_unlock_irq(&phba->hbalock); 9301 9302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9303 "0345 Resetting board due to mailbox timeout\n"); 9304 9305 /* Reset the HBA device */ 9306 lpfc_reset_hba(phba); 9307 } 9308 9309 /** 9310 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9311 * @phba: Pointer to HBA context object. 9312 * @pmbox: Pointer to mailbox object. 9313 * @flag: Flag indicating how the mailbox need to be processed. 9314 * 9315 * This function is called by discovery code and HBA management code 9316 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9317 * function gets the hbalock to protect the data structures. 9318 * The mailbox command can be submitted in polling mode, in which case 9319 * this function will wait in a polling loop for the completion of the 9320 * mailbox. 9321 * If the mailbox is submitted in no_wait mode (not polling) the 9322 * function will submit the command and returns immediately without waiting 9323 * for the mailbox completion. The no_wait is supported only when HBA 9324 * is in SLI2/SLI3 mode - interrupts are enabled. 9325 * The SLI interface allows only one mailbox pending at a time. If the 9326 * mailbox is issued in polling mode and there is already a mailbox 9327 * pending, then the function will return an error. If the mailbox is issued 9328 * in NO_WAIT mode and there is a mailbox pending already, the function 9329 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9330 * The sli layer owns the mailbox object until the completion of mailbox 9331 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9332 * return codes the caller owns the mailbox command after the return of 9333 * the function. 9334 **/ 9335 static int 9336 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9337 uint32_t flag) 9338 { 9339 MAILBOX_t *mbx; 9340 struct lpfc_sli *psli = &phba->sli; 9341 uint32_t status, evtctr; 9342 uint32_t ha_copy, hc_copy; 9343 int i; 9344 unsigned long timeout; 9345 unsigned long drvr_flag = 0; 9346 uint32_t word0, ldata; 9347 void __iomem *to_slim; 9348 int processing_queue = 0; 9349 9350 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9351 if (!pmbox) { 9352 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9353 /* processing mbox queue from intr_handler */ 9354 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9355 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9356 return MBX_SUCCESS; 9357 } 9358 processing_queue = 1; 9359 pmbox = lpfc_mbox_get(phba); 9360 if (!pmbox) { 9361 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9362 return MBX_SUCCESS; 9363 } 9364 } 9365 9366 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9367 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9368 if(!pmbox->vport) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 lpfc_printf_log(phba, KERN_ERR, 9371 LOG_MBOX | LOG_VPORT, 9372 "1806 Mbox x%x failed. No vport\n", 9373 pmbox->u.mb.mbxCommand); 9374 dump_stack(); 9375 goto out_not_finished; 9376 } 9377 } 9378 9379 /* If the PCI channel is in offline state, do not post mbox. */ 9380 if (unlikely(pci_channel_offline(phba->pcidev))) { 9381 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9382 goto out_not_finished; 9383 } 9384 9385 /* If HBA has a deferred error attention, fail the iocb. */ 9386 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9387 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9388 goto out_not_finished; 9389 } 9390 9391 psli = &phba->sli; 9392 9393 mbx = &pmbox->u.mb; 9394 status = MBX_SUCCESS; 9395 9396 if (phba->link_state == LPFC_HBA_ERROR) { 9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9398 9399 /* Mbox command <mbxCommand> cannot issue */ 9400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9401 "(%d):0311 Mailbox command x%x cannot " 9402 "issue Data: x%x x%x\n", 9403 pmbox->vport ? pmbox->vport->vpi : 0, 9404 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9405 goto out_not_finished; 9406 } 9407 9408 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9409 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9410 !(hc_copy & HC_MBINT_ENA)) { 9411 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9413 "(%d):2528 Mailbox command x%x cannot " 9414 "issue Data: x%x x%x\n", 9415 pmbox->vport ? pmbox->vport->vpi : 0, 9416 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9417 goto out_not_finished; 9418 } 9419 } 9420 9421 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9422 /* Polling for a mbox command when another one is already active 9423 * is not allowed in SLI. Also, the driver must have established 9424 * SLI2 mode to queue and process multiple mbox commands. 9425 */ 9426 9427 if (flag & MBX_POLL) { 9428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9429 9430 /* Mbox command <mbxCommand> cannot issue */ 9431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9432 "(%d):2529 Mailbox command x%x " 9433 "cannot issue Data: x%x x%x\n", 9434 pmbox->vport ? pmbox->vport->vpi : 0, 9435 pmbox->u.mb.mbxCommand, 9436 psli->sli_flag, flag); 9437 goto out_not_finished; 9438 } 9439 9440 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9442 /* Mbox command <mbxCommand> cannot issue */ 9443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9444 "(%d):2530 Mailbox command x%x " 9445 "cannot issue Data: x%x x%x\n", 9446 pmbox->vport ? pmbox->vport->vpi : 0, 9447 pmbox->u.mb.mbxCommand, 9448 psli->sli_flag, flag); 9449 goto out_not_finished; 9450 } 9451 9452 /* Another mailbox command is still being processed, queue this 9453 * command to be processed later. 9454 */ 9455 lpfc_mbox_put(phba, pmbox); 9456 9457 /* Mbox cmd issue - BUSY */ 9458 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9459 "(%d):0308 Mbox cmd issue - BUSY Data: " 9460 "x%x x%x x%x x%x\n", 9461 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9462 mbx->mbxCommand, 9463 phba->pport ? phba->pport->port_state : 0xff, 9464 psli->sli_flag, flag); 9465 9466 psli->slistat.mbox_busy++; 9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9468 9469 if (pmbox->vport) { 9470 lpfc_debugfs_disc_trc(pmbox->vport, 9471 LPFC_DISC_TRC_MBOX_VPORT, 9472 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9473 (uint32_t)mbx->mbxCommand, 9474 mbx->un.varWords[0], mbx->un.varWords[1]); 9475 } 9476 else { 9477 lpfc_debugfs_disc_trc(phba->pport, 9478 LPFC_DISC_TRC_MBOX, 9479 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9480 (uint32_t)mbx->mbxCommand, 9481 mbx->un.varWords[0], mbx->un.varWords[1]); 9482 } 9483 9484 return MBX_BUSY; 9485 } 9486 9487 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9488 9489 /* If we are not polling, we MUST be in SLI2 mode */ 9490 if (flag != MBX_POLL) { 9491 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9492 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9493 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9494 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9495 /* Mbox command <mbxCommand> cannot issue */ 9496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9497 "(%d):2531 Mailbox command x%x " 9498 "cannot issue Data: x%x x%x\n", 9499 pmbox->vport ? pmbox->vport->vpi : 0, 9500 pmbox->u.mb.mbxCommand, 9501 psli->sli_flag, flag); 9502 goto out_not_finished; 9503 } 9504 /* timeout active mbox command */ 9505 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9506 1000); 9507 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9508 } 9509 9510 /* Mailbox cmd <cmd> issue */ 9511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9512 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9513 "x%x\n", 9514 pmbox->vport ? pmbox->vport->vpi : 0, 9515 mbx->mbxCommand, 9516 phba->pport ? phba->pport->port_state : 0xff, 9517 psli->sli_flag, flag); 9518 9519 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9520 if (pmbox->vport) { 9521 lpfc_debugfs_disc_trc(pmbox->vport, 9522 LPFC_DISC_TRC_MBOX_VPORT, 9523 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9524 (uint32_t)mbx->mbxCommand, 9525 mbx->un.varWords[0], mbx->un.varWords[1]); 9526 } 9527 else { 9528 lpfc_debugfs_disc_trc(phba->pport, 9529 LPFC_DISC_TRC_MBOX, 9530 "MBOX Send: cmd:x%x mb:x%x x%x", 9531 (uint32_t)mbx->mbxCommand, 9532 mbx->un.varWords[0], mbx->un.varWords[1]); 9533 } 9534 } 9535 9536 psli->slistat.mbox_cmd++; 9537 evtctr = psli->slistat.mbox_event; 9538 9539 /* next set own bit for the adapter and copy over command word */ 9540 mbx->mbxOwner = OWN_CHIP; 9541 9542 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9543 /* Populate mbox extension offset word. */ 9544 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9545 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9546 = (uint8_t *)phba->mbox_ext 9547 - (uint8_t *)phba->mbox; 9548 } 9549 9550 /* Copy the mailbox extension data */ 9551 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9552 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9553 (uint8_t *)phba->mbox_ext, 9554 pmbox->in_ext_byte_len); 9555 } 9556 /* Copy command data to host SLIM area */ 9557 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9558 } else { 9559 /* Populate mbox extension offset word. */ 9560 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9561 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9562 = MAILBOX_HBA_EXT_OFFSET; 9563 9564 /* Copy the mailbox extension data */ 9565 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9566 lpfc_memcpy_to_slim(phba->MBslimaddr + 9567 MAILBOX_HBA_EXT_OFFSET, 9568 pmbox->ext_buf, pmbox->in_ext_byte_len); 9569 9570 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9571 /* copy command data into host mbox for cmpl */ 9572 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9573 MAILBOX_CMD_SIZE); 9574 9575 /* First copy mbox command data to HBA SLIM, skip past first 9576 word */ 9577 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9578 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9579 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9580 9581 /* Next copy over first word, with mbxOwner set */ 9582 ldata = *((uint32_t *)mbx); 9583 to_slim = phba->MBslimaddr; 9584 writel(ldata, to_slim); 9585 readl(to_slim); /* flush */ 9586 9587 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9588 /* switch over to host mailbox */ 9589 psli->sli_flag |= LPFC_SLI_ACTIVE; 9590 } 9591 9592 wmb(); 9593 9594 switch (flag) { 9595 case MBX_NOWAIT: 9596 /* Set up reference to mailbox command */ 9597 psli->mbox_active = pmbox; 9598 /* Interrupt board to do it */ 9599 writel(CA_MBATT, phba->CAregaddr); 9600 readl(phba->CAregaddr); /* flush */ 9601 /* Don't wait for it to finish, just return */ 9602 break; 9603 9604 case MBX_POLL: 9605 /* Set up null reference to mailbox command */ 9606 psli->mbox_active = NULL; 9607 /* Interrupt board to do it */ 9608 writel(CA_MBATT, phba->CAregaddr); 9609 readl(phba->CAregaddr); /* flush */ 9610 9611 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9612 /* First read mbox status word */ 9613 word0 = *((uint32_t *)phba->mbox); 9614 word0 = le32_to_cpu(word0); 9615 } else { 9616 /* First read mbox status word */ 9617 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9618 spin_unlock_irqrestore(&phba->hbalock, 9619 drvr_flag); 9620 goto out_not_finished; 9621 } 9622 } 9623 9624 /* Read the HBA Host Attention Register */ 9625 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9626 spin_unlock_irqrestore(&phba->hbalock, 9627 drvr_flag); 9628 goto out_not_finished; 9629 } 9630 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9631 1000) + jiffies; 9632 i = 0; 9633 /* Wait for command to complete */ 9634 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9635 (!(ha_copy & HA_MBATT) && 9636 (phba->link_state > LPFC_WARM_START))) { 9637 if (time_after(jiffies, timeout)) { 9638 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9639 spin_unlock_irqrestore(&phba->hbalock, 9640 drvr_flag); 9641 goto out_not_finished; 9642 } 9643 9644 /* Check if we took a mbox interrupt while we were 9645 polling */ 9646 if (((word0 & OWN_CHIP) != OWN_CHIP) 9647 && (evtctr != psli->slistat.mbox_event)) 9648 break; 9649 9650 if (i++ > 10) { 9651 spin_unlock_irqrestore(&phba->hbalock, 9652 drvr_flag); 9653 msleep(1); 9654 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9655 } 9656 9657 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9658 /* First copy command data */ 9659 word0 = *((uint32_t *)phba->mbox); 9660 word0 = le32_to_cpu(word0); 9661 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9662 MAILBOX_t *slimmb; 9663 uint32_t slimword0; 9664 /* Check real SLIM for any errors */ 9665 slimword0 = readl(phba->MBslimaddr); 9666 slimmb = (MAILBOX_t *) & slimword0; 9667 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9668 && slimmb->mbxStatus) { 9669 psli->sli_flag &= 9670 ~LPFC_SLI_ACTIVE; 9671 word0 = slimword0; 9672 } 9673 } 9674 } else { 9675 /* First copy command data */ 9676 word0 = readl(phba->MBslimaddr); 9677 } 9678 /* Read the HBA Host Attention Register */ 9679 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9680 spin_unlock_irqrestore(&phba->hbalock, 9681 drvr_flag); 9682 goto out_not_finished; 9683 } 9684 } 9685 9686 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9687 /* copy results back to user */ 9688 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9689 MAILBOX_CMD_SIZE); 9690 /* Copy the mailbox extension data */ 9691 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9692 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9693 pmbox->ext_buf, 9694 pmbox->out_ext_byte_len); 9695 } 9696 } else { 9697 /* First copy command data */ 9698 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9699 MAILBOX_CMD_SIZE); 9700 /* Copy the mailbox extension data */ 9701 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9702 lpfc_memcpy_from_slim( 9703 pmbox->ext_buf, 9704 phba->MBslimaddr + 9705 MAILBOX_HBA_EXT_OFFSET, 9706 pmbox->out_ext_byte_len); 9707 } 9708 } 9709 9710 writel(HA_MBATT, phba->HAregaddr); 9711 readl(phba->HAregaddr); /* flush */ 9712 9713 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9714 status = mbx->mbxStatus; 9715 } 9716 9717 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9718 return status; 9719 9720 out_not_finished: 9721 if (processing_queue) { 9722 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9723 lpfc_mbox_cmpl_put(phba, pmbox); 9724 } 9725 return MBX_NOT_FINISHED; 9726 } 9727 9728 /** 9729 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9730 * @phba: Pointer to HBA context object. 9731 * 9732 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9733 * the driver internal pending mailbox queue. It will then try to wait out the 9734 * possible outstanding mailbox command before return. 9735 * 9736 * Returns: 9737 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9738 * the outstanding mailbox command timed out. 9739 **/ 9740 static int 9741 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9742 { 9743 struct lpfc_sli *psli = &phba->sli; 9744 LPFC_MBOXQ_t *mboxq; 9745 int rc = 0; 9746 unsigned long timeout = 0; 9747 u32 sli_flag; 9748 u8 cmd, subsys, opcode; 9749 9750 /* Mark the asynchronous mailbox command posting as blocked */ 9751 spin_lock_irq(&phba->hbalock); 9752 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9753 /* Determine how long we might wait for the active mailbox 9754 * command to be gracefully completed by firmware. 9755 */ 9756 if (phba->sli.mbox_active) 9757 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9758 phba->sli.mbox_active) * 9759 1000) + jiffies; 9760 spin_unlock_irq(&phba->hbalock); 9761 9762 /* Make sure the mailbox is really active */ 9763 if (timeout) 9764 lpfc_sli4_process_missed_mbox_completions(phba); 9765 9766 /* Wait for the outstanding mailbox command to complete */ 9767 while (phba->sli.mbox_active) { 9768 /* Check active mailbox complete status every 2ms */ 9769 msleep(2); 9770 if (time_after(jiffies, timeout)) { 9771 /* Timeout, mark the outstanding cmd not complete */ 9772 9773 /* Sanity check sli.mbox_active has not completed or 9774 * cancelled from another context during last 2ms sleep, 9775 * so take hbalock to be sure before logging. 9776 */ 9777 spin_lock_irq(&phba->hbalock); 9778 if (phba->sli.mbox_active) { 9779 mboxq = phba->sli.mbox_active; 9780 cmd = mboxq->u.mb.mbxCommand; 9781 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9782 mboxq); 9783 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9784 mboxq); 9785 sli_flag = psli->sli_flag; 9786 spin_unlock_irq(&phba->hbalock); 9787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9788 "2352 Mailbox command x%x " 9789 "(x%x/x%x) sli_flag x%x could " 9790 "not complete\n", 9791 cmd, subsys, opcode, 9792 sli_flag); 9793 } else { 9794 spin_unlock_irq(&phba->hbalock); 9795 } 9796 9797 rc = 1; 9798 break; 9799 } 9800 } 9801 9802 /* Can not cleanly block async mailbox command, fails it */ 9803 if (rc) { 9804 spin_lock_irq(&phba->hbalock); 9805 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9806 spin_unlock_irq(&phba->hbalock); 9807 } 9808 return rc; 9809 } 9810 9811 /** 9812 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9813 * @phba: Pointer to HBA context object. 9814 * 9815 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9816 * commands from the driver internal pending mailbox queue. It makes sure 9817 * that there is no outstanding mailbox command before resuming posting 9818 * asynchronous mailbox commands. If, for any reason, there is outstanding 9819 * mailbox command, it will try to wait it out before resuming asynchronous 9820 * mailbox command posting. 9821 **/ 9822 static void 9823 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9824 { 9825 struct lpfc_sli *psli = &phba->sli; 9826 9827 spin_lock_irq(&phba->hbalock); 9828 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9829 /* Asynchronous mailbox posting is not blocked, do nothing */ 9830 spin_unlock_irq(&phba->hbalock); 9831 return; 9832 } 9833 9834 /* Outstanding synchronous mailbox command is guaranteed to be done, 9835 * successful or timeout, after timing-out the outstanding mailbox 9836 * command shall always be removed, so just unblock posting async 9837 * mailbox command and resume 9838 */ 9839 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9840 spin_unlock_irq(&phba->hbalock); 9841 9842 /* wake up worker thread to post asynchronous mailbox command */ 9843 lpfc_worker_wake_up(phba); 9844 } 9845 9846 /** 9847 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9848 * @phba: Pointer to HBA context object. 9849 * @mboxq: Pointer to mailbox object. 9850 * 9851 * The function waits for the bootstrap mailbox register ready bit from 9852 * port for twice the regular mailbox command timeout value. 9853 * 9854 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9855 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9856 * is in an unrecoverable state. 9857 **/ 9858 static int 9859 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9860 { 9861 uint32_t db_ready; 9862 unsigned long timeout; 9863 struct lpfc_register bmbx_reg; 9864 struct lpfc_register portstat_reg = {-1}; 9865 9866 /* Sanity check - there is no point to wait if the port is in an 9867 * unrecoverable state. 9868 */ 9869 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9870 LPFC_SLI_INTF_IF_TYPE_2) { 9871 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9872 &portstat_reg.word0) || 9873 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9875 "3858 Skipping bmbx ready because " 9876 "Port Status x%x\n", 9877 portstat_reg.word0); 9878 return MBXERR_ERROR; 9879 } 9880 } 9881 9882 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9883 * 1000) + jiffies; 9884 9885 do { 9886 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9887 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9888 if (!db_ready) 9889 mdelay(2); 9890 9891 if (time_after(jiffies, timeout)) 9892 return MBXERR_ERROR; 9893 } while (!db_ready); 9894 9895 return 0; 9896 } 9897 9898 /** 9899 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9900 * @phba: Pointer to HBA context object. 9901 * @mboxq: Pointer to mailbox object. 9902 * 9903 * The function posts a mailbox to the port. The mailbox is expected 9904 * to be comletely filled in and ready for the port to operate on it. 9905 * This routine executes a synchronous completion operation on the 9906 * mailbox by polling for its completion. 9907 * 9908 * The caller must not be holding any locks when calling this routine. 9909 * 9910 * Returns: 9911 * MBX_SUCCESS - mailbox posted successfully 9912 * Any of the MBX error values. 9913 **/ 9914 static int 9915 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9916 { 9917 int rc = MBX_SUCCESS; 9918 unsigned long iflag; 9919 uint32_t mcqe_status; 9920 uint32_t mbx_cmnd; 9921 struct lpfc_sli *psli = &phba->sli; 9922 struct lpfc_mqe *mb = &mboxq->u.mqe; 9923 struct lpfc_bmbx_create *mbox_rgn; 9924 struct dma_address *dma_address; 9925 9926 /* 9927 * Only one mailbox can be active to the bootstrap mailbox region 9928 * at a time and there is no queueing provided. 9929 */ 9930 spin_lock_irqsave(&phba->hbalock, iflag); 9931 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9932 spin_unlock_irqrestore(&phba->hbalock, iflag); 9933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9934 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9935 "cannot issue Data: x%x x%x\n", 9936 mboxq->vport ? mboxq->vport->vpi : 0, 9937 mboxq->u.mb.mbxCommand, 9938 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9939 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9940 psli->sli_flag, MBX_POLL); 9941 return MBXERR_ERROR; 9942 } 9943 /* The server grabs the token and owns it until release */ 9944 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9945 phba->sli.mbox_active = mboxq; 9946 spin_unlock_irqrestore(&phba->hbalock, iflag); 9947 9948 /* wait for bootstrap mbox register for readyness */ 9949 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9950 if (rc) 9951 goto exit; 9952 /* 9953 * Initialize the bootstrap memory region to avoid stale data areas 9954 * in the mailbox post. Then copy the caller's mailbox contents to 9955 * the bmbx mailbox region. 9956 */ 9957 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9958 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9959 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9960 sizeof(struct lpfc_mqe)); 9961 9962 /* Post the high mailbox dma address to the port and wait for ready. */ 9963 dma_address = &phba->sli4_hba.bmbx.dma_address; 9964 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9965 9966 /* wait for bootstrap mbox register for hi-address write done */ 9967 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9968 if (rc) 9969 goto exit; 9970 9971 /* Post the low mailbox dma address to the port. */ 9972 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9973 9974 /* wait for bootstrap mbox register for low address write done */ 9975 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9976 if (rc) 9977 goto exit; 9978 9979 /* 9980 * Read the CQ to ensure the mailbox has completed. 9981 * If so, update the mailbox status so that the upper layers 9982 * can complete the request normally. 9983 */ 9984 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9985 sizeof(struct lpfc_mqe)); 9986 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9987 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9988 sizeof(struct lpfc_mcqe)); 9989 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9990 /* 9991 * When the CQE status indicates a failure and the mailbox status 9992 * indicates success then copy the CQE status into the mailbox status 9993 * (and prefix it with x4000). 9994 */ 9995 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9996 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9997 bf_set(lpfc_mqe_status, mb, 9998 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9999 rc = MBXERR_ERROR; 10000 } else 10001 lpfc_sli4_swap_str(phba, mboxq); 10002 10003 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10004 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10005 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10006 " x%x x%x CQ: x%x x%x x%x x%x\n", 10007 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10008 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10009 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10010 bf_get(lpfc_mqe_status, mb), 10011 mb->un.mb_words[0], mb->un.mb_words[1], 10012 mb->un.mb_words[2], mb->un.mb_words[3], 10013 mb->un.mb_words[4], mb->un.mb_words[5], 10014 mb->un.mb_words[6], mb->un.mb_words[7], 10015 mb->un.mb_words[8], mb->un.mb_words[9], 10016 mb->un.mb_words[10], mb->un.mb_words[11], 10017 mb->un.mb_words[12], mboxq->mcqe.word0, 10018 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10019 mboxq->mcqe.trailer); 10020 exit: 10021 /* We are holding the token, no needed for lock when release */ 10022 spin_lock_irqsave(&phba->hbalock, iflag); 10023 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10024 phba->sli.mbox_active = NULL; 10025 spin_unlock_irqrestore(&phba->hbalock, iflag); 10026 return rc; 10027 } 10028 10029 /** 10030 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10031 * @phba: Pointer to HBA context object. 10032 * @mboxq: Pointer to mailbox object. 10033 * @flag: Flag indicating how the mailbox need to be processed. 10034 * 10035 * This function is called by discovery code and HBA management code to submit 10036 * a mailbox command to firmware with SLI-4 interface spec. 10037 * 10038 * Return codes the caller owns the mailbox command after the return of the 10039 * function. 10040 **/ 10041 static int 10042 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10043 uint32_t flag) 10044 { 10045 struct lpfc_sli *psli = &phba->sli; 10046 unsigned long iflags; 10047 int rc; 10048 10049 /* dump from issue mailbox command if setup */ 10050 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10051 10052 rc = lpfc_mbox_dev_check(phba); 10053 if (unlikely(rc)) { 10054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10055 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10056 "cannot issue Data: x%x x%x\n", 10057 mboxq->vport ? mboxq->vport->vpi : 0, 10058 mboxq->u.mb.mbxCommand, 10059 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10060 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10061 psli->sli_flag, flag); 10062 goto out_not_finished; 10063 } 10064 10065 /* Detect polling mode and jump to a handler */ 10066 if (!phba->sli4_hba.intr_enable) { 10067 if (flag == MBX_POLL) 10068 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10069 else 10070 rc = -EIO; 10071 if (rc != MBX_SUCCESS) 10072 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10073 "(%d):2541 Mailbox command x%x " 10074 "(x%x/x%x) failure: " 10075 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10076 "Data: x%x x%x\n", 10077 mboxq->vport ? mboxq->vport->vpi : 0, 10078 mboxq->u.mb.mbxCommand, 10079 lpfc_sli_config_mbox_subsys_get(phba, 10080 mboxq), 10081 lpfc_sli_config_mbox_opcode_get(phba, 10082 mboxq), 10083 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10084 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10085 bf_get(lpfc_mcqe_ext_status, 10086 &mboxq->mcqe), 10087 psli->sli_flag, flag); 10088 return rc; 10089 } else if (flag == MBX_POLL) { 10090 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10091 "(%d):2542 Try to issue mailbox command " 10092 "x%x (x%x/x%x) synchronously ahead of async " 10093 "mailbox command queue: x%x x%x\n", 10094 mboxq->vport ? mboxq->vport->vpi : 0, 10095 mboxq->u.mb.mbxCommand, 10096 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10097 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10098 psli->sli_flag, flag); 10099 /* Try to block the asynchronous mailbox posting */ 10100 rc = lpfc_sli4_async_mbox_block(phba); 10101 if (!rc) { 10102 /* Successfully blocked, now issue sync mbox cmd */ 10103 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10104 if (rc != MBX_SUCCESS) 10105 lpfc_printf_log(phba, KERN_WARNING, 10106 LOG_MBOX | LOG_SLI, 10107 "(%d):2597 Sync Mailbox command " 10108 "x%x (x%x/x%x) failure: " 10109 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10110 "Data: x%x x%x\n", 10111 mboxq->vport ? mboxq->vport->vpi : 0, 10112 mboxq->u.mb.mbxCommand, 10113 lpfc_sli_config_mbox_subsys_get(phba, 10114 mboxq), 10115 lpfc_sli_config_mbox_opcode_get(phba, 10116 mboxq), 10117 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10118 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10119 bf_get(lpfc_mcqe_ext_status, 10120 &mboxq->mcqe), 10121 psli->sli_flag, flag); 10122 /* Unblock the async mailbox posting afterward */ 10123 lpfc_sli4_async_mbox_unblock(phba); 10124 } 10125 return rc; 10126 } 10127 10128 /* Now, interrupt mode asynchronous mailbox command */ 10129 rc = lpfc_mbox_cmd_check(phba, mboxq); 10130 if (rc) { 10131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10132 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10133 "cannot issue Data: x%x x%x\n", 10134 mboxq->vport ? mboxq->vport->vpi : 0, 10135 mboxq->u.mb.mbxCommand, 10136 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10137 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10138 psli->sli_flag, flag); 10139 goto out_not_finished; 10140 } 10141 10142 /* Put the mailbox command to the driver internal FIFO */ 10143 psli->slistat.mbox_busy++; 10144 spin_lock_irqsave(&phba->hbalock, iflags); 10145 lpfc_mbox_put(phba, mboxq); 10146 spin_unlock_irqrestore(&phba->hbalock, iflags); 10147 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10148 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10149 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10150 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10151 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10152 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10153 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10154 mboxq->u.mb.un.varUnregLogin.rpi, 10155 phba->pport->port_state, 10156 psli->sli_flag, MBX_NOWAIT); 10157 /* Wake up worker thread to transport mailbox command from head */ 10158 lpfc_worker_wake_up(phba); 10159 10160 return MBX_BUSY; 10161 10162 out_not_finished: 10163 return MBX_NOT_FINISHED; 10164 } 10165 10166 /** 10167 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10168 * @phba: Pointer to HBA context object. 10169 * 10170 * This function is called by worker thread to send a mailbox command to 10171 * SLI4 HBA firmware. 10172 * 10173 **/ 10174 int 10175 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10176 { 10177 struct lpfc_sli *psli = &phba->sli; 10178 LPFC_MBOXQ_t *mboxq; 10179 int rc = MBX_SUCCESS; 10180 unsigned long iflags; 10181 struct lpfc_mqe *mqe; 10182 uint32_t mbx_cmnd; 10183 10184 /* Check interrupt mode before post async mailbox command */ 10185 if (unlikely(!phba->sli4_hba.intr_enable)) 10186 return MBX_NOT_FINISHED; 10187 10188 /* Check for mailbox command service token */ 10189 spin_lock_irqsave(&phba->hbalock, iflags); 10190 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10191 spin_unlock_irqrestore(&phba->hbalock, iflags); 10192 return MBX_NOT_FINISHED; 10193 } 10194 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10195 spin_unlock_irqrestore(&phba->hbalock, iflags); 10196 return MBX_NOT_FINISHED; 10197 } 10198 if (unlikely(phba->sli.mbox_active)) { 10199 spin_unlock_irqrestore(&phba->hbalock, iflags); 10200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10201 "0384 There is pending active mailbox cmd\n"); 10202 return MBX_NOT_FINISHED; 10203 } 10204 /* Take the mailbox command service token */ 10205 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10206 10207 /* Get the next mailbox command from head of queue */ 10208 mboxq = lpfc_mbox_get(phba); 10209 10210 /* If no more mailbox command waiting for post, we're done */ 10211 if (!mboxq) { 10212 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10213 spin_unlock_irqrestore(&phba->hbalock, iflags); 10214 return MBX_SUCCESS; 10215 } 10216 phba->sli.mbox_active = mboxq; 10217 spin_unlock_irqrestore(&phba->hbalock, iflags); 10218 10219 /* Check device readiness for posting mailbox command */ 10220 rc = lpfc_mbox_dev_check(phba); 10221 if (unlikely(rc)) 10222 /* Driver clean routine will clean up pending mailbox */ 10223 goto out_not_finished; 10224 10225 /* Prepare the mbox command to be posted */ 10226 mqe = &mboxq->u.mqe; 10227 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10228 10229 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10230 mod_timer(&psli->mbox_tmo, (jiffies + 10231 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10232 10233 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10234 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10235 "x%x x%x\n", 10236 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10237 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10238 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10239 phba->pport->port_state, psli->sli_flag); 10240 10241 if (mbx_cmnd != MBX_HEARTBEAT) { 10242 if (mboxq->vport) { 10243 lpfc_debugfs_disc_trc(mboxq->vport, 10244 LPFC_DISC_TRC_MBOX_VPORT, 10245 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10246 mbx_cmnd, mqe->un.mb_words[0], 10247 mqe->un.mb_words[1]); 10248 } else { 10249 lpfc_debugfs_disc_trc(phba->pport, 10250 LPFC_DISC_TRC_MBOX, 10251 "MBOX Send: cmd:x%x mb:x%x x%x", 10252 mbx_cmnd, mqe->un.mb_words[0], 10253 mqe->un.mb_words[1]); 10254 } 10255 } 10256 psli->slistat.mbox_cmd++; 10257 10258 /* Post the mailbox command to the port */ 10259 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10260 if (rc != MBX_SUCCESS) { 10261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10262 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10263 "cannot issue Data: x%x x%x\n", 10264 mboxq->vport ? mboxq->vport->vpi : 0, 10265 mboxq->u.mb.mbxCommand, 10266 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10267 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10268 psli->sli_flag, MBX_NOWAIT); 10269 goto out_not_finished; 10270 } 10271 10272 return rc; 10273 10274 out_not_finished: 10275 spin_lock_irqsave(&phba->hbalock, iflags); 10276 if (phba->sli.mbox_active) { 10277 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10278 __lpfc_mbox_cmpl_put(phba, mboxq); 10279 /* Release the token */ 10280 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10281 phba->sli.mbox_active = NULL; 10282 } 10283 spin_unlock_irqrestore(&phba->hbalock, iflags); 10284 10285 return MBX_NOT_FINISHED; 10286 } 10287 10288 /** 10289 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10290 * @phba: Pointer to HBA context object. 10291 * @pmbox: Pointer to mailbox object. 10292 * @flag: Flag indicating how the mailbox need to be processed. 10293 * 10294 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10295 * the API jump table function pointer from the lpfc_hba struct. 10296 * 10297 * Return codes the caller owns the mailbox command after the return of the 10298 * function. 10299 **/ 10300 int 10301 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10302 { 10303 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10304 } 10305 10306 /** 10307 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10308 * @phba: The hba struct for which this call is being executed. 10309 * @dev_grp: The HBA PCI-Device group number. 10310 * 10311 * This routine sets up the mbox interface API function jump table in @phba 10312 * struct. 10313 * Returns: 0 - success, -ENODEV - failure. 10314 **/ 10315 int 10316 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10317 { 10318 10319 switch (dev_grp) { 10320 case LPFC_PCI_DEV_LP: 10321 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10322 phba->lpfc_sli_handle_slow_ring_event = 10323 lpfc_sli_handle_slow_ring_event_s3; 10324 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10325 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10326 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10327 break; 10328 case LPFC_PCI_DEV_OC: 10329 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10330 phba->lpfc_sli_handle_slow_ring_event = 10331 lpfc_sli_handle_slow_ring_event_s4; 10332 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10333 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10334 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10335 break; 10336 default: 10337 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10338 "1420 Invalid HBA PCI-device group: 0x%x\n", 10339 dev_grp); 10340 return -ENODEV; 10341 } 10342 return 0; 10343 } 10344 10345 /** 10346 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10347 * @phba: Pointer to HBA context object. 10348 * @pring: Pointer to driver SLI ring object. 10349 * @piocb: Pointer to address of newly added command iocb. 10350 * 10351 * This function is called with hbalock held for SLI3 ports or 10352 * the ring lock held for SLI4 ports to add a command 10353 * iocb to the txq when SLI layer cannot submit the command iocb 10354 * to the ring. 10355 **/ 10356 void 10357 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10358 struct lpfc_iocbq *piocb) 10359 { 10360 if (phba->sli_rev == LPFC_SLI_REV4) 10361 lockdep_assert_held(&pring->ring_lock); 10362 else 10363 lockdep_assert_held(&phba->hbalock); 10364 /* Insert the caller's iocb in the txq tail for later processing. */ 10365 list_add_tail(&piocb->list, &pring->txq); 10366 } 10367 10368 /** 10369 * lpfc_sli_next_iocb - Get the next iocb in the txq 10370 * @phba: Pointer to HBA context object. 10371 * @pring: Pointer to driver SLI ring object. 10372 * @piocb: Pointer to address of newly added command iocb. 10373 * 10374 * This function is called with hbalock held before a new 10375 * iocb is submitted to the firmware. This function checks 10376 * txq to flush the iocbs in txq to Firmware before 10377 * submitting new iocbs to the Firmware. 10378 * If there are iocbs in the txq which need to be submitted 10379 * to firmware, lpfc_sli_next_iocb returns the first element 10380 * of the txq after dequeuing it from txq. 10381 * If there is no iocb in the txq then the function will return 10382 * *piocb and *piocb is set to NULL. Caller needs to check 10383 * *piocb to find if there are more commands in the txq. 10384 **/ 10385 static struct lpfc_iocbq * 10386 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10387 struct lpfc_iocbq **piocb) 10388 { 10389 struct lpfc_iocbq * nextiocb; 10390 10391 lockdep_assert_held(&phba->hbalock); 10392 10393 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10394 if (!nextiocb) { 10395 nextiocb = *piocb; 10396 *piocb = NULL; 10397 } 10398 10399 return nextiocb; 10400 } 10401 10402 /** 10403 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10404 * @phba: Pointer to HBA context object. 10405 * @ring_number: SLI ring number to issue iocb on. 10406 * @piocb: Pointer to command iocb. 10407 * @flag: Flag indicating if this command can be put into txq. 10408 * 10409 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10410 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10411 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10412 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10413 * this function allows only iocbs for posting buffers. This function finds 10414 * next available slot in the command ring and posts the command to the 10415 * available slot and writes the port attention register to request HBA start 10416 * processing new iocb. If there is no slot available in the ring and 10417 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10418 * the function returns IOCB_BUSY. 10419 * 10420 * This function is called with hbalock held. The function will return success 10421 * after it successfully submit the iocb to firmware or after adding to the 10422 * txq. 10423 **/ 10424 static int 10425 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10426 struct lpfc_iocbq *piocb, uint32_t flag) 10427 { 10428 struct lpfc_iocbq *nextiocb; 10429 IOCB_t *iocb; 10430 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10431 10432 lockdep_assert_held(&phba->hbalock); 10433 10434 if (piocb->cmd_cmpl && (!piocb->vport) && 10435 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10436 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10438 "1807 IOCB x%x failed. No vport\n", 10439 piocb->iocb.ulpCommand); 10440 dump_stack(); 10441 return IOCB_ERROR; 10442 } 10443 10444 10445 /* If the PCI channel is in offline state, do not post iocbs. */ 10446 if (unlikely(pci_channel_offline(phba->pcidev))) 10447 return IOCB_ERROR; 10448 10449 /* If HBA has a deferred error attention, fail the iocb. */ 10450 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10451 return IOCB_ERROR; 10452 10453 /* 10454 * We should never get an IOCB if we are in a < LINK_DOWN state 10455 */ 10456 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10457 return IOCB_ERROR; 10458 10459 /* 10460 * Check to see if we are blocking IOCB processing because of a 10461 * outstanding event. 10462 */ 10463 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10464 goto iocb_busy; 10465 10466 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10467 /* 10468 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10469 * can be issued if the link is not up. 10470 */ 10471 switch (piocb->iocb.ulpCommand) { 10472 case CMD_QUE_RING_BUF_CN: 10473 case CMD_QUE_RING_BUF64_CN: 10474 /* 10475 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10476 * completion, cmd_cmpl MUST be 0. 10477 */ 10478 if (piocb->cmd_cmpl) 10479 piocb->cmd_cmpl = NULL; 10480 fallthrough; 10481 case CMD_CREATE_XRI_CR: 10482 case CMD_CLOSE_XRI_CN: 10483 case CMD_CLOSE_XRI_CX: 10484 break; 10485 default: 10486 goto iocb_busy; 10487 } 10488 10489 /* 10490 * For FCP commands, we must be in a state where we can process link 10491 * attention events. 10492 */ 10493 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10494 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10495 goto iocb_busy; 10496 } 10497 10498 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10499 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10500 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10501 10502 if (iocb) 10503 lpfc_sli_update_ring(phba, pring); 10504 else 10505 lpfc_sli_update_full_ring(phba, pring); 10506 10507 if (!piocb) 10508 return IOCB_SUCCESS; 10509 10510 goto out_busy; 10511 10512 iocb_busy: 10513 pring->stats.iocb_cmd_delay++; 10514 10515 out_busy: 10516 10517 if (!(flag & SLI_IOCB_RET_IOCB)) { 10518 __lpfc_sli_ringtx_put(phba, pring, piocb); 10519 return IOCB_SUCCESS; 10520 } 10521 10522 return IOCB_BUSY; 10523 } 10524 10525 /** 10526 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10527 * @phba: Pointer to HBA context object. 10528 * @ring_number: SLI ring number to issue wqe on. 10529 * @piocb: Pointer to command iocb. 10530 * @flag: Flag indicating if this command can be put into txq. 10531 * 10532 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10533 * send an iocb command to an HBA with SLI-3 interface spec. 10534 * 10535 * This function takes the hbalock before invoking the lockless version. 10536 * The function will return success after it successfully submit the wqe to 10537 * firmware or after adding to the txq. 10538 **/ 10539 static int 10540 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10541 struct lpfc_iocbq *piocb, uint32_t flag) 10542 { 10543 unsigned long iflags; 10544 int rc; 10545 10546 spin_lock_irqsave(&phba->hbalock, iflags); 10547 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10548 spin_unlock_irqrestore(&phba->hbalock, iflags); 10549 10550 return rc; 10551 } 10552 10553 /** 10554 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10555 * @phba: Pointer to HBA context object. 10556 * @ring_number: SLI ring number to issue wqe on. 10557 * @piocb: Pointer to command iocb. 10558 * @flag: Flag indicating if this command can be put into txq. 10559 * 10560 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10561 * an wqe command to an HBA with SLI-4 interface spec. 10562 * 10563 * This function is a lockless version. The function will return success 10564 * after it successfully submit the wqe to firmware or after adding to the 10565 * txq. 10566 **/ 10567 static int 10568 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10569 struct lpfc_iocbq *piocb, uint32_t flag) 10570 { 10571 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10572 10573 lpfc_prep_embed_io(phba, lpfc_cmd); 10574 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10575 } 10576 10577 void 10578 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10579 { 10580 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10581 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10582 struct sli4_sge *sgl; 10583 10584 /* 128 byte wqe support here */ 10585 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10586 10587 if (phba->fcp_embed_io) { 10588 struct fcp_cmnd *fcp_cmnd; 10589 u32 *ptr; 10590 10591 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10592 10593 /* Word 0-2 - FCP_CMND */ 10594 wqe->generic.bde.tus.f.bdeFlags = 10595 BUFF_TYPE_BDE_IMMED; 10596 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10597 wqe->generic.bde.addrHigh = 0; 10598 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10599 10600 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10601 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10602 10603 /* Word 18-29 FCP CMND Payload */ 10604 ptr = &wqe->words[18]; 10605 memcpy(ptr, fcp_cmnd, sgl->sge_len); 10606 } else { 10607 /* Word 0-2 - Inline BDE */ 10608 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10609 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10610 wqe->generic.bde.addrHigh = sgl->addr_hi; 10611 wqe->generic.bde.addrLow = sgl->addr_lo; 10612 10613 /* Word 10 */ 10614 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10615 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10616 } 10617 10618 /* add the VMID tags as per switch response */ 10619 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10620 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10621 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10622 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10623 (piocb->vmid_tag.cs_ctl_vmid)); 10624 } else if (phba->cfg_vmid_app_header) { 10625 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10626 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10627 wqe->words[31] = piocb->vmid_tag.app_id; 10628 } 10629 } 10630 } 10631 10632 /** 10633 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10634 * @phba: Pointer to HBA context object. 10635 * @ring_number: SLI ring number to issue iocb on. 10636 * @piocb: Pointer to command iocb. 10637 * @flag: Flag indicating if this command can be put into txq. 10638 * 10639 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10640 * an iocb command to an HBA with SLI-4 interface spec. 10641 * 10642 * This function is called with ringlock held. The function will return success 10643 * after it successfully submit the iocb to firmware or after adding to the 10644 * txq. 10645 **/ 10646 static int 10647 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10648 struct lpfc_iocbq *piocb, uint32_t flag) 10649 { 10650 struct lpfc_sglq *sglq; 10651 union lpfc_wqe128 *wqe; 10652 struct lpfc_queue *wq; 10653 struct lpfc_sli_ring *pring; 10654 u32 ulp_command = get_job_cmnd(phba, piocb); 10655 10656 /* Get the WQ */ 10657 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10658 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10659 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10660 } else { 10661 wq = phba->sli4_hba.els_wq; 10662 } 10663 10664 /* Get corresponding ring */ 10665 pring = wq->pring; 10666 10667 /* 10668 * The WQE can be either 64 or 128 bytes, 10669 */ 10670 10671 lockdep_assert_held(&pring->ring_lock); 10672 wqe = &piocb->wqe; 10673 if (piocb->sli4_xritag == NO_XRI) { 10674 if (ulp_command == CMD_ABORT_XRI_CX) 10675 sglq = NULL; 10676 else { 10677 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10678 if (!sglq) { 10679 if (!(flag & SLI_IOCB_RET_IOCB)) { 10680 __lpfc_sli_ringtx_put(phba, 10681 pring, 10682 piocb); 10683 return IOCB_SUCCESS; 10684 } else { 10685 return IOCB_BUSY; 10686 } 10687 } 10688 } 10689 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10690 /* These IO's already have an XRI and a mapped sgl. */ 10691 sglq = NULL; 10692 } 10693 else { 10694 /* 10695 * This is a continuation of a commandi,(CX) so this 10696 * sglq is on the active list 10697 */ 10698 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10699 if (!sglq) 10700 return IOCB_ERROR; 10701 } 10702 10703 if (sglq) { 10704 piocb->sli4_lxritag = sglq->sli4_lxritag; 10705 piocb->sli4_xritag = sglq->sli4_xritag; 10706 10707 /* ABTS sent by initiator to CT exchange, the 10708 * RX_ID field will be filled with the newly 10709 * allocated responder XRI. 10710 */ 10711 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10712 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10713 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10714 piocb->sli4_xritag); 10715 10716 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10717 piocb->sli4_xritag); 10718 10719 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10720 return IOCB_ERROR; 10721 } 10722 10723 if (lpfc_sli4_wq_put(wq, wqe)) 10724 return IOCB_ERROR; 10725 10726 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10727 10728 return 0; 10729 } 10730 10731 /* 10732 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10733 * 10734 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10735 * or IOCB for sli-3 function. 10736 * pointer from the lpfc_hba struct. 10737 * 10738 * Return codes: 10739 * IOCB_ERROR - Error 10740 * IOCB_SUCCESS - Success 10741 * IOCB_BUSY - Busy 10742 **/ 10743 int 10744 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10745 struct lpfc_iocbq *piocb, uint32_t flag) 10746 { 10747 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10748 } 10749 10750 /* 10751 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10752 * 10753 * This routine wraps the actual lockless version for issusing IOCB function 10754 * pointer from the lpfc_hba struct. 10755 * 10756 * Return codes: 10757 * IOCB_ERROR - Error 10758 * IOCB_SUCCESS - Success 10759 * IOCB_BUSY - Busy 10760 **/ 10761 int 10762 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10763 struct lpfc_iocbq *piocb, uint32_t flag) 10764 { 10765 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10766 } 10767 10768 static void 10769 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10770 struct lpfc_vport *vport, 10771 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10772 u32 elscmd, u8 tmo, u8 expect_rsp) 10773 { 10774 struct lpfc_hba *phba = vport->phba; 10775 IOCB_t *cmd; 10776 10777 cmd = &cmdiocbq->iocb; 10778 memset(cmd, 0, sizeof(*cmd)); 10779 10780 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10781 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10782 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10783 10784 if (expect_rsp) { 10785 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10786 cmd->un.elsreq64.remoteID = did; /* DID */ 10787 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10788 cmd->ulpTimeout = tmo; 10789 } else { 10790 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10791 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10792 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10793 cmd->ulpPU = PARM_NPIV_DID; 10794 } 10795 cmd->ulpBdeCount = 1; 10796 cmd->ulpLe = 1; 10797 cmd->ulpClass = CLASS3; 10798 10799 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10800 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10801 if (expect_rsp) { 10802 cmd->un.elsreq64.myID = vport->fc_myDID; 10803 10804 /* For ELS_REQUEST64_CR, use the VPI by default */ 10805 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10806 } 10807 10808 cmd->ulpCt_h = 0; 10809 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10810 if (elscmd == ELS_CMD_ECHO) 10811 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10812 else 10813 cmd->ulpCt_l = 1; /* context = VPI */ 10814 } 10815 } 10816 10817 static void 10818 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10819 struct lpfc_vport *vport, 10820 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10821 u32 elscmd, u8 tmo, u8 expect_rsp) 10822 { 10823 struct lpfc_hba *phba = vport->phba; 10824 union lpfc_wqe128 *wqe; 10825 struct ulp_bde64_le *bde; 10826 u8 els_id; 10827 10828 wqe = &cmdiocbq->wqe; 10829 memset(wqe, 0, sizeof(*wqe)); 10830 10831 /* Word 0 - 2 BDE */ 10832 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10833 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10834 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10835 bde->type_size = cpu_to_le32(cmd_size); 10836 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10837 10838 if (expect_rsp) { 10839 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10840 10841 /* Transfer length */ 10842 wqe->els_req.payload_len = cmd_size; 10843 wqe->els_req.max_response_payload_len = FCELSSIZE; 10844 10845 /* DID */ 10846 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10847 10848 /* Word 11 - ELS_ID */ 10849 switch (elscmd) { 10850 case ELS_CMD_PLOGI: 10851 els_id = LPFC_ELS_ID_PLOGI; 10852 break; 10853 case ELS_CMD_FLOGI: 10854 els_id = LPFC_ELS_ID_FLOGI; 10855 break; 10856 case ELS_CMD_LOGO: 10857 els_id = LPFC_ELS_ID_LOGO; 10858 break; 10859 case ELS_CMD_FDISC: 10860 if (!vport->fc_myDID) { 10861 els_id = LPFC_ELS_ID_FDISC; 10862 break; 10863 } 10864 fallthrough; 10865 default: 10866 els_id = LPFC_ELS_ID_DEFAULT; 10867 break; 10868 } 10869 10870 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10871 } else { 10872 /* DID */ 10873 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10874 10875 /* Transfer length */ 10876 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10877 10878 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10879 CMD_XMIT_ELS_RSP64_WQE); 10880 } 10881 10882 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10883 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10884 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10885 10886 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10887 * For SLI4, since the driver controls VPIs we also want to include 10888 * all ELS pt2pt protocol traffic as well. 10889 */ 10890 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10891 test_bit(FC_PT2PT, &vport->fc_flag)) { 10892 if (expect_rsp) { 10893 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10894 10895 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10896 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10897 phba->vpi_ids[vport->vpi]); 10898 } 10899 10900 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10901 if (elscmd == ELS_CMD_ECHO) 10902 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10903 else 10904 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10905 } 10906 } 10907 10908 void 10909 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10910 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10911 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10912 u8 expect_rsp) 10913 { 10914 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10915 elscmd, tmo, expect_rsp); 10916 } 10917 10918 static void 10919 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10920 u16 rpi, u32 num_entry, u8 tmo) 10921 { 10922 IOCB_t *cmd; 10923 10924 cmd = &cmdiocbq->iocb; 10925 memset(cmd, 0, sizeof(*cmd)); 10926 10927 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10928 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10929 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10930 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10931 10932 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10933 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10934 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10935 10936 cmd->ulpContext = rpi; 10937 cmd->ulpClass = CLASS3; 10938 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10939 cmd->ulpBdeCount = 1; 10940 cmd->ulpLe = 1; 10941 cmd->ulpOwner = OWN_CHIP; 10942 cmd->ulpTimeout = tmo; 10943 } 10944 10945 static void 10946 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10947 u16 rpi, u32 num_entry, u8 tmo) 10948 { 10949 union lpfc_wqe128 *cmdwqe; 10950 struct ulp_bde64_le *bde, *bpl; 10951 u32 xmit_len = 0, total_len = 0, size, type, i; 10952 10953 cmdwqe = &cmdiocbq->wqe; 10954 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10955 10956 /* Calculate total_len and xmit_len */ 10957 bpl = (struct ulp_bde64_le *)bmp->virt; 10958 for (i = 0; i < num_entry; i++) { 10959 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10960 total_len += size; 10961 } 10962 for (i = 0; i < num_entry; i++) { 10963 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10964 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10965 if (type != ULP_BDE64_TYPE_BDE_64) 10966 break; 10967 xmit_len += size; 10968 } 10969 10970 /* Words 0 - 2 */ 10971 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10972 bde->addr_low = bpl->addr_low; 10973 bde->addr_high = bpl->addr_high; 10974 bde->type_size = cpu_to_le32(xmit_len); 10975 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10976 10977 /* Word 3 */ 10978 cmdwqe->gen_req.request_payload_len = xmit_len; 10979 10980 /* Word 5 */ 10981 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10982 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10983 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10984 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10985 10986 /* Word 6 */ 10987 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10988 10989 /* Word 7 */ 10990 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10991 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10992 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10993 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10994 10995 /* Word 12 */ 10996 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10997 } 10998 10999 void 11000 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11001 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11002 { 11003 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11004 } 11005 11006 static void 11007 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11008 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11009 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11010 { 11011 IOCB_t *icmd; 11012 11013 icmd = &cmdiocbq->iocb; 11014 memset(icmd, 0, sizeof(*icmd)); 11015 11016 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11017 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11018 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11019 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11020 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11021 if (last_seq) 11022 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11023 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11024 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11025 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11026 11027 icmd->ulpBdeCount = 1; 11028 icmd->ulpLe = 1; 11029 icmd->ulpClass = CLASS3; 11030 11031 switch (cr_cx_cmd) { 11032 case CMD_XMIT_SEQUENCE64_CR: 11033 icmd->ulpContext = rpi; 11034 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11035 break; 11036 case CMD_XMIT_SEQUENCE64_CX: 11037 icmd->ulpContext = ox_id; 11038 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11039 break; 11040 default: 11041 break; 11042 } 11043 } 11044 11045 static void 11046 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11047 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11048 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11049 { 11050 union lpfc_wqe128 *wqe; 11051 struct ulp_bde64 *bpl; 11052 11053 wqe = &cmdiocbq->wqe; 11054 memset(wqe, 0, sizeof(*wqe)); 11055 11056 /* Words 0 - 2 */ 11057 bpl = (struct ulp_bde64 *)bmp->virt; 11058 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11059 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11060 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11061 11062 /* Word 5 */ 11063 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11064 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11065 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11066 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11067 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11068 11069 /* Word 6 */ 11070 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11071 11072 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11073 CMD_XMIT_SEQUENCE64_WQE); 11074 11075 /* Word 7 */ 11076 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11077 11078 /* Word 9 */ 11079 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11080 11081 /* Word 12 */ 11082 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11083 wqe->xmit_sequence.xmit_len = full_size; 11084 else 11085 wqe->xmit_sequence.xmit_len = 11086 wqe->xmit_sequence.bde.tus.f.bdeSize; 11087 } 11088 11089 void 11090 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11091 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11092 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11093 { 11094 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11095 rctl, last_seq, cr_cx_cmd); 11096 } 11097 11098 static void 11099 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11100 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11101 bool wqec) 11102 { 11103 IOCB_t *icmd = NULL; 11104 11105 icmd = &cmdiocbq->iocb; 11106 memset(icmd, 0, sizeof(*icmd)); 11107 11108 /* Word 5 */ 11109 icmd->un.acxri.abortContextTag = ulp_context; 11110 icmd->un.acxri.abortIoTag = iotag; 11111 11112 if (ia) { 11113 /* Word 7 */ 11114 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11115 } else { 11116 /* Word 3 */ 11117 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11118 11119 /* Word 7 */ 11120 icmd->ulpClass = ulp_class; 11121 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11122 } 11123 11124 /* Word 7 */ 11125 icmd->ulpLe = 1; 11126 } 11127 11128 static void 11129 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11130 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11131 bool wqec) 11132 { 11133 union lpfc_wqe128 *wqe; 11134 11135 wqe = &cmdiocbq->wqe; 11136 memset(wqe, 0, sizeof(*wqe)); 11137 11138 /* Word 3 */ 11139 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11140 if (ia) 11141 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11142 else 11143 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11144 11145 /* Word 7 */ 11146 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11147 11148 /* Word 8 */ 11149 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11150 11151 /* Word 9 */ 11152 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11153 11154 /* Word 10 */ 11155 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11156 11157 /* Word 11 */ 11158 if (wqec) 11159 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11160 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11161 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11162 } 11163 11164 void 11165 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11166 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11167 bool ia, bool wqec) 11168 { 11169 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11170 cqid, ia, wqec); 11171 } 11172 11173 /** 11174 * lpfc_sli_api_table_setup - Set up sli api function jump table 11175 * @phba: The hba struct for which this call is being executed. 11176 * @dev_grp: The HBA PCI-Device group number. 11177 * 11178 * This routine sets up the SLI interface API function jump table in @phba 11179 * struct. 11180 * Returns: 0 - success, -ENODEV - failure. 11181 **/ 11182 int 11183 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11184 { 11185 11186 switch (dev_grp) { 11187 case LPFC_PCI_DEV_LP: 11188 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11189 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11190 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11191 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11192 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11193 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11194 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11195 break; 11196 case LPFC_PCI_DEV_OC: 11197 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11198 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11199 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11200 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11201 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11202 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11203 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11204 break; 11205 default: 11206 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11207 "1419 Invalid HBA PCI-device group: 0x%x\n", 11208 dev_grp); 11209 return -ENODEV; 11210 } 11211 return 0; 11212 } 11213 11214 /** 11215 * lpfc_sli4_calc_ring - Calculates which ring to use 11216 * @phba: Pointer to HBA context object. 11217 * @piocb: Pointer to command iocb. 11218 * 11219 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11220 * hba_wqidx, thus we need to calculate the corresponding ring. 11221 * Since ABORTS must go on the same WQ of the command they are 11222 * aborting, we use command's hba_wqidx. 11223 */ 11224 struct lpfc_sli_ring * 11225 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11226 { 11227 struct lpfc_io_buf *lpfc_cmd; 11228 11229 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11230 if (unlikely(!phba->sli4_hba.hdwq)) 11231 return NULL; 11232 /* 11233 * for abort iocb hba_wqidx should already 11234 * be setup based on what work queue we used. 11235 */ 11236 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11237 lpfc_cmd = piocb->io_buf; 11238 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11239 } 11240 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11241 } else { 11242 if (unlikely(!phba->sli4_hba.els_wq)) 11243 return NULL; 11244 piocb->hba_wqidx = 0; 11245 return phba->sli4_hba.els_wq->pring; 11246 } 11247 } 11248 11249 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11250 { 11251 struct lpfc_hba *phba = eq->phba; 11252 11253 /* 11254 * Unlocking an irq is one of the entry point to check 11255 * for re-schedule, but we are good for io submission 11256 * path as midlayer does a get_cpu to glue us in. Flush 11257 * out the invalidate queue so we can see the updated 11258 * value for flag. 11259 */ 11260 smp_rmb(); 11261 11262 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11263 /* We will not likely get the completion for the caller 11264 * during this iteration but i guess that's fine. 11265 * Future io's coming on this eq should be able to 11266 * pick it up. As for the case of single io's, they 11267 * will be handled through a sched from polling timer 11268 * function which is currently triggered every 1msec. 11269 */ 11270 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11271 LPFC_QUEUE_WORK); 11272 } 11273 11274 /** 11275 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11276 * @phba: Pointer to HBA context object. 11277 * @ring_number: Ring number 11278 * @piocb: Pointer to command iocb. 11279 * @flag: Flag indicating if this command can be put into txq. 11280 * 11281 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11282 * function. This function gets the hbalock and calls 11283 * __lpfc_sli_issue_iocb function and will return the error returned 11284 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11285 * functions which do not hold hbalock. 11286 **/ 11287 int 11288 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11289 struct lpfc_iocbq *piocb, uint32_t flag) 11290 { 11291 struct lpfc_sli_ring *pring; 11292 struct lpfc_queue *eq; 11293 unsigned long iflags; 11294 int rc; 11295 11296 /* If the PCI channel is in offline state, do not post iocbs. */ 11297 if (unlikely(pci_channel_offline(phba->pcidev))) 11298 return IOCB_ERROR; 11299 11300 if (phba->sli_rev == LPFC_SLI_REV4) { 11301 lpfc_sli_prep_wqe(phba, piocb); 11302 11303 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11304 11305 pring = lpfc_sli4_calc_ring(phba, piocb); 11306 if (unlikely(pring == NULL)) 11307 return IOCB_ERROR; 11308 11309 spin_lock_irqsave(&pring->ring_lock, iflags); 11310 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11311 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11312 11313 lpfc_sli4_poll_eq(eq); 11314 } else { 11315 /* For now, SLI2/3 will still use hbalock */ 11316 spin_lock_irqsave(&phba->hbalock, iflags); 11317 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11318 spin_unlock_irqrestore(&phba->hbalock, iflags); 11319 } 11320 return rc; 11321 } 11322 11323 /** 11324 * lpfc_extra_ring_setup - Extra ring setup function 11325 * @phba: Pointer to HBA context object. 11326 * 11327 * This function is called while driver attaches with the 11328 * HBA to setup the extra ring. The extra ring is used 11329 * only when driver needs to support target mode functionality 11330 * or IP over FC functionalities. 11331 * 11332 * This function is called with no lock held. SLI3 only. 11333 **/ 11334 static int 11335 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11336 { 11337 struct lpfc_sli *psli; 11338 struct lpfc_sli_ring *pring; 11339 11340 psli = &phba->sli; 11341 11342 /* Adjust cmd/rsp ring iocb entries more evenly */ 11343 11344 /* Take some away from the FCP ring */ 11345 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11346 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11347 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11348 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11349 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11350 11351 /* and give them to the extra ring */ 11352 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11353 11354 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11355 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11356 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11357 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11358 11359 /* Setup default profile for this ring */ 11360 pring->iotag_max = 4096; 11361 pring->num_mask = 1; 11362 pring->prt[0].profile = 0; /* Mask 0 */ 11363 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11364 pring->prt[0].type = phba->cfg_multi_ring_type; 11365 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11366 return 0; 11367 } 11368 11369 static void 11370 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11371 struct lpfc_nodelist *ndlp) 11372 { 11373 unsigned long iflags; 11374 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11375 11376 /* Hold a node reference for outstanding queued work */ 11377 if (!lpfc_nlp_get(ndlp)) 11378 return; 11379 11380 spin_lock_irqsave(&phba->hbalock, iflags); 11381 if (!list_empty(&evtp->evt_listp)) { 11382 spin_unlock_irqrestore(&phba->hbalock, iflags); 11383 lpfc_nlp_put(ndlp); 11384 return; 11385 } 11386 11387 evtp->evt_arg1 = ndlp; 11388 evtp->evt = LPFC_EVT_RECOVER_PORT; 11389 list_add_tail(&evtp->evt_listp, &phba->work_list); 11390 spin_unlock_irqrestore(&phba->hbalock, iflags); 11391 11392 lpfc_worker_wake_up(phba); 11393 } 11394 11395 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11396 * @phba: Pointer to HBA context object. 11397 * @iocbq: Pointer to iocb object. 11398 * 11399 * The async_event handler calls this routine when it receives 11400 * an ASYNC_STATUS_CN event from the port. The port generates 11401 * this event when an Abort Sequence request to an rport fails 11402 * twice in succession. The abort could be originated by the 11403 * driver or by the port. The ABTS could have been for an ELS 11404 * or FCP IO. The port only generates this event when an ABTS 11405 * fails to complete after one retry. 11406 */ 11407 static void 11408 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11409 struct lpfc_iocbq *iocbq) 11410 { 11411 struct lpfc_nodelist *ndlp = NULL; 11412 uint16_t rpi = 0, vpi = 0; 11413 struct lpfc_vport *vport = NULL; 11414 11415 /* The rpi in the ulpContext is vport-sensitive. */ 11416 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11417 rpi = iocbq->iocb.ulpContext; 11418 11419 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11420 "3092 Port generated ABTS async event " 11421 "on vpi %d rpi %d status 0x%x\n", 11422 vpi, rpi, iocbq->iocb.ulpStatus); 11423 11424 vport = lpfc_find_vport_by_vpid(phba, vpi); 11425 if (!vport) 11426 goto err_exit; 11427 ndlp = lpfc_findnode_rpi(vport, rpi); 11428 if (!ndlp) 11429 goto err_exit; 11430 11431 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11432 lpfc_sli_abts_recover_port(vport, ndlp); 11433 return; 11434 11435 err_exit: 11436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11437 "3095 Event Context not found, no " 11438 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11439 vpi, rpi, iocbq->iocb.ulpStatus, 11440 iocbq->iocb.ulpContext); 11441 } 11442 11443 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11444 * @phba: pointer to HBA context object. 11445 * @ndlp: nodelist pointer for the impacted rport. 11446 * @axri: pointer to the wcqe containing the failed exchange. 11447 * 11448 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11449 * port. The port generates this event when an abort exchange request to an 11450 * rport fails twice in succession with no reply. The abort could be originated 11451 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11452 */ 11453 void 11454 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11455 struct lpfc_nodelist *ndlp, 11456 struct sli4_wcqe_xri_aborted *axri) 11457 { 11458 uint32_t ext_status = 0; 11459 11460 if (!ndlp) { 11461 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11462 "3115 Node Context not found, driver " 11463 "ignoring abts err event\n"); 11464 return; 11465 } 11466 11467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11468 "3116 Port generated FCP XRI ABORT event on " 11469 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11470 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11471 bf_get(lpfc_wcqe_xa_xri, axri), 11472 bf_get(lpfc_wcqe_xa_status, axri), 11473 axri->parameter); 11474 11475 /* 11476 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11477 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11478 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11479 */ 11480 ext_status = axri->parameter & IOERR_PARAM_MASK; 11481 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11482 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11483 lpfc_sli_post_recovery_event(phba, ndlp); 11484 } 11485 11486 /** 11487 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11488 * @phba: Pointer to HBA context object. 11489 * @pring: Pointer to driver SLI ring object. 11490 * @iocbq: Pointer to iocb object. 11491 * 11492 * This function is called by the slow ring event handler 11493 * function when there is an ASYNC event iocb in the ring. 11494 * This function is called with no lock held. 11495 * Currently this function handles only temperature related 11496 * ASYNC events. The function decodes the temperature sensor 11497 * event message and posts events for the management applications. 11498 **/ 11499 static void 11500 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11501 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11502 { 11503 IOCB_t *icmd; 11504 uint16_t evt_code; 11505 struct temp_event temp_event_data; 11506 struct Scsi_Host *shost; 11507 uint32_t *iocb_w; 11508 11509 icmd = &iocbq->iocb; 11510 evt_code = icmd->un.asyncstat.evt_code; 11511 11512 switch (evt_code) { 11513 case ASYNC_TEMP_WARN: 11514 case ASYNC_TEMP_SAFE: 11515 temp_event_data.data = (uint32_t) icmd->ulpContext; 11516 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11517 if (evt_code == ASYNC_TEMP_WARN) { 11518 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11520 "0347 Adapter is very hot, please take " 11521 "corrective action. temperature : %d Celsius\n", 11522 (uint32_t) icmd->ulpContext); 11523 } else { 11524 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11526 "0340 Adapter temperature is OK now. " 11527 "temperature : %d Celsius\n", 11528 (uint32_t) icmd->ulpContext); 11529 } 11530 11531 /* Send temperature change event to applications */ 11532 shost = lpfc_shost_from_vport(phba->pport); 11533 fc_host_post_vendor_event(shost, fc_get_event_number(), 11534 sizeof(temp_event_data), (char *) &temp_event_data, 11535 LPFC_NL_VENDOR_ID); 11536 break; 11537 case ASYNC_STATUS_CN: 11538 lpfc_sli_abts_err_handler(phba, iocbq); 11539 break; 11540 default: 11541 iocb_w = (uint32_t *) icmd; 11542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11543 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11544 " evt_code 0x%x\n" 11545 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11546 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11547 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11548 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11549 pring->ringno, icmd->un.asyncstat.evt_code, 11550 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11551 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11552 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11553 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11554 11555 break; 11556 } 11557 } 11558 11559 11560 /** 11561 * lpfc_sli4_setup - SLI ring setup function 11562 * @phba: Pointer to HBA context object. 11563 * 11564 * lpfc_sli_setup sets up rings of the SLI interface with 11565 * number of iocbs per ring and iotags. This function is 11566 * called while driver attach to the HBA and before the 11567 * interrupts are enabled. So there is no need for locking. 11568 * 11569 * This function always returns 0. 11570 **/ 11571 int 11572 lpfc_sli4_setup(struct lpfc_hba *phba) 11573 { 11574 struct lpfc_sli_ring *pring; 11575 11576 pring = phba->sli4_hba.els_wq->pring; 11577 pring->num_mask = LPFC_MAX_RING_MASK; 11578 pring->prt[0].profile = 0; /* Mask 0 */ 11579 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11580 pring->prt[0].type = FC_TYPE_ELS; 11581 pring->prt[0].lpfc_sli_rcv_unsol_event = 11582 lpfc_els_unsol_event; 11583 pring->prt[1].profile = 0; /* Mask 1 */ 11584 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11585 pring->prt[1].type = FC_TYPE_ELS; 11586 pring->prt[1].lpfc_sli_rcv_unsol_event = 11587 lpfc_els_unsol_event; 11588 pring->prt[2].profile = 0; /* Mask 2 */ 11589 /* NameServer Inquiry */ 11590 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11591 /* NameServer */ 11592 pring->prt[2].type = FC_TYPE_CT; 11593 pring->prt[2].lpfc_sli_rcv_unsol_event = 11594 lpfc_ct_unsol_event; 11595 pring->prt[3].profile = 0; /* Mask 3 */ 11596 /* NameServer response */ 11597 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11598 /* NameServer */ 11599 pring->prt[3].type = FC_TYPE_CT; 11600 pring->prt[3].lpfc_sli_rcv_unsol_event = 11601 lpfc_ct_unsol_event; 11602 return 0; 11603 } 11604 11605 /** 11606 * lpfc_sli_setup - SLI ring setup function 11607 * @phba: Pointer to HBA context object. 11608 * 11609 * lpfc_sli_setup sets up rings of the SLI interface with 11610 * number of iocbs per ring and iotags. This function is 11611 * called while driver attach to the HBA and before the 11612 * interrupts are enabled. So there is no need for locking. 11613 * 11614 * This function always returns 0. SLI3 only. 11615 **/ 11616 int 11617 lpfc_sli_setup(struct lpfc_hba *phba) 11618 { 11619 int i, totiocbsize = 0; 11620 struct lpfc_sli *psli = &phba->sli; 11621 struct lpfc_sli_ring *pring; 11622 11623 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11624 psli->sli_flag = 0; 11625 11626 psli->iocbq_lookup = NULL; 11627 psli->iocbq_lookup_len = 0; 11628 psli->last_iotag = 0; 11629 11630 for (i = 0; i < psli->num_rings; i++) { 11631 pring = &psli->sli3_ring[i]; 11632 switch (i) { 11633 case LPFC_FCP_RING: /* ring 0 - FCP */ 11634 /* numCiocb and numRiocb are used in config_port */ 11635 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11636 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11637 pring->sli.sli3.numCiocb += 11638 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11639 pring->sli.sli3.numRiocb += 11640 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11641 pring->sli.sli3.numCiocb += 11642 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11643 pring->sli.sli3.numRiocb += 11644 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11645 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11646 SLI3_IOCB_CMD_SIZE : 11647 SLI2_IOCB_CMD_SIZE; 11648 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11649 SLI3_IOCB_RSP_SIZE : 11650 SLI2_IOCB_RSP_SIZE; 11651 pring->iotag_ctr = 0; 11652 pring->iotag_max = 11653 (phba->cfg_hba_queue_depth * 2); 11654 pring->fast_iotag = pring->iotag_max; 11655 pring->num_mask = 0; 11656 break; 11657 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11658 /* numCiocb and numRiocb are used in config_port */ 11659 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11660 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11661 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11662 SLI3_IOCB_CMD_SIZE : 11663 SLI2_IOCB_CMD_SIZE; 11664 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11665 SLI3_IOCB_RSP_SIZE : 11666 SLI2_IOCB_RSP_SIZE; 11667 pring->iotag_max = phba->cfg_hba_queue_depth; 11668 pring->num_mask = 0; 11669 break; 11670 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11671 /* numCiocb and numRiocb are used in config_port */ 11672 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11673 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11674 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11675 SLI3_IOCB_CMD_SIZE : 11676 SLI2_IOCB_CMD_SIZE; 11677 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11678 SLI3_IOCB_RSP_SIZE : 11679 SLI2_IOCB_RSP_SIZE; 11680 pring->fast_iotag = 0; 11681 pring->iotag_ctr = 0; 11682 pring->iotag_max = 4096; 11683 pring->lpfc_sli_rcv_async_status = 11684 lpfc_sli_async_event_handler; 11685 pring->num_mask = LPFC_MAX_RING_MASK; 11686 pring->prt[0].profile = 0; /* Mask 0 */ 11687 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11688 pring->prt[0].type = FC_TYPE_ELS; 11689 pring->prt[0].lpfc_sli_rcv_unsol_event = 11690 lpfc_els_unsol_event; 11691 pring->prt[1].profile = 0; /* Mask 1 */ 11692 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11693 pring->prt[1].type = FC_TYPE_ELS; 11694 pring->prt[1].lpfc_sli_rcv_unsol_event = 11695 lpfc_els_unsol_event; 11696 pring->prt[2].profile = 0; /* Mask 2 */ 11697 /* NameServer Inquiry */ 11698 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11699 /* NameServer */ 11700 pring->prt[2].type = FC_TYPE_CT; 11701 pring->prt[2].lpfc_sli_rcv_unsol_event = 11702 lpfc_ct_unsol_event; 11703 pring->prt[3].profile = 0; /* Mask 3 */ 11704 /* NameServer response */ 11705 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11706 /* NameServer */ 11707 pring->prt[3].type = FC_TYPE_CT; 11708 pring->prt[3].lpfc_sli_rcv_unsol_event = 11709 lpfc_ct_unsol_event; 11710 break; 11711 } 11712 totiocbsize += (pring->sli.sli3.numCiocb * 11713 pring->sli.sli3.sizeCiocb) + 11714 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11715 } 11716 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11717 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11718 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11719 "SLI2 SLIM Data: x%x x%lx\n", 11720 phba->brd_no, totiocbsize, 11721 (unsigned long) MAX_SLIM_IOCB_SIZE); 11722 } 11723 if (phba->cfg_multi_ring_support == 2) 11724 lpfc_extra_ring_setup(phba); 11725 11726 return 0; 11727 } 11728 11729 /** 11730 * lpfc_sli4_queue_init - Queue initialization function 11731 * @phba: Pointer to HBA context object. 11732 * 11733 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11734 * ring. This function also initializes ring indices of each ring. 11735 * This function is called during the initialization of the SLI 11736 * interface of an HBA. 11737 * This function is called with no lock held and always returns 11738 * 1. 11739 **/ 11740 void 11741 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11742 { 11743 struct lpfc_sli *psli; 11744 struct lpfc_sli_ring *pring; 11745 int i; 11746 11747 psli = &phba->sli; 11748 spin_lock_irq(&phba->hbalock); 11749 INIT_LIST_HEAD(&psli->mboxq); 11750 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11751 /* Initialize list headers for txq and txcmplq as double linked lists */ 11752 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11753 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11754 pring->flag = 0; 11755 pring->ringno = LPFC_FCP_RING; 11756 pring->txcmplq_cnt = 0; 11757 INIT_LIST_HEAD(&pring->txq); 11758 INIT_LIST_HEAD(&pring->txcmplq); 11759 INIT_LIST_HEAD(&pring->iocb_continueq); 11760 spin_lock_init(&pring->ring_lock); 11761 } 11762 pring = phba->sli4_hba.els_wq->pring; 11763 pring->flag = 0; 11764 pring->ringno = LPFC_ELS_RING; 11765 pring->txcmplq_cnt = 0; 11766 INIT_LIST_HEAD(&pring->txq); 11767 INIT_LIST_HEAD(&pring->txcmplq); 11768 INIT_LIST_HEAD(&pring->iocb_continueq); 11769 spin_lock_init(&pring->ring_lock); 11770 11771 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11772 pring = phba->sli4_hba.nvmels_wq->pring; 11773 pring->flag = 0; 11774 pring->ringno = LPFC_ELS_RING; 11775 pring->txcmplq_cnt = 0; 11776 INIT_LIST_HEAD(&pring->txq); 11777 INIT_LIST_HEAD(&pring->txcmplq); 11778 INIT_LIST_HEAD(&pring->iocb_continueq); 11779 spin_lock_init(&pring->ring_lock); 11780 } 11781 11782 spin_unlock_irq(&phba->hbalock); 11783 } 11784 11785 /** 11786 * lpfc_sli_queue_init - Queue initialization function 11787 * @phba: Pointer to HBA context object. 11788 * 11789 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11790 * ring. This function also initializes ring indices of each ring. 11791 * This function is called during the initialization of the SLI 11792 * interface of an HBA. 11793 * This function is called with no lock held and always returns 11794 * 1. 11795 **/ 11796 void 11797 lpfc_sli_queue_init(struct lpfc_hba *phba) 11798 { 11799 struct lpfc_sli *psli; 11800 struct lpfc_sli_ring *pring; 11801 int i; 11802 11803 psli = &phba->sli; 11804 spin_lock_irq(&phba->hbalock); 11805 INIT_LIST_HEAD(&psli->mboxq); 11806 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11807 /* Initialize list headers for txq and txcmplq as double linked lists */ 11808 for (i = 0; i < psli->num_rings; i++) { 11809 pring = &psli->sli3_ring[i]; 11810 pring->ringno = i; 11811 pring->sli.sli3.next_cmdidx = 0; 11812 pring->sli.sli3.local_getidx = 0; 11813 pring->sli.sli3.cmdidx = 0; 11814 INIT_LIST_HEAD(&pring->iocb_continueq); 11815 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11816 INIT_LIST_HEAD(&pring->postbufq); 11817 pring->flag = 0; 11818 INIT_LIST_HEAD(&pring->txq); 11819 INIT_LIST_HEAD(&pring->txcmplq); 11820 spin_lock_init(&pring->ring_lock); 11821 } 11822 spin_unlock_irq(&phba->hbalock); 11823 } 11824 11825 /** 11826 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11827 * @phba: Pointer to HBA context object. 11828 * 11829 * This routine flushes the mailbox command subsystem. It will unconditionally 11830 * flush all the mailbox commands in the three possible stages in the mailbox 11831 * command sub-system: pending mailbox command queue; the outstanding mailbox 11832 * command; and completed mailbox command queue. It is caller's responsibility 11833 * to make sure that the driver is in the proper state to flush the mailbox 11834 * command sub-system. Namely, the posting of mailbox commands into the 11835 * pending mailbox command queue from the various clients must be stopped; 11836 * either the HBA is in a state that it will never works on the outstanding 11837 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11838 * mailbox command has been completed. 11839 **/ 11840 static void 11841 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11842 { 11843 LIST_HEAD(completions); 11844 struct lpfc_sli *psli = &phba->sli; 11845 LPFC_MBOXQ_t *pmb; 11846 unsigned long iflag; 11847 11848 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11849 local_bh_disable(); 11850 11851 /* Flush all the mailbox commands in the mbox system */ 11852 spin_lock_irqsave(&phba->hbalock, iflag); 11853 11854 /* The pending mailbox command queue */ 11855 list_splice_init(&phba->sli.mboxq, &completions); 11856 /* The outstanding active mailbox command */ 11857 if (psli->mbox_active) { 11858 list_add_tail(&psli->mbox_active->list, &completions); 11859 psli->mbox_active = NULL; 11860 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11861 } 11862 /* The completed mailbox command queue */ 11863 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11864 spin_unlock_irqrestore(&phba->hbalock, iflag); 11865 11866 /* Enable softirqs again, done with phba->hbalock */ 11867 local_bh_enable(); 11868 11869 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11870 while (!list_empty(&completions)) { 11871 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11872 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11873 if (pmb->mbox_cmpl) 11874 pmb->mbox_cmpl(phba, pmb); 11875 } 11876 } 11877 11878 /** 11879 * lpfc_sli_host_down - Vport cleanup function 11880 * @vport: Pointer to virtual port object. 11881 * 11882 * lpfc_sli_host_down is called to clean up the resources 11883 * associated with a vport before destroying virtual 11884 * port data structures. 11885 * This function does following operations: 11886 * - Free discovery resources associated with this virtual 11887 * port. 11888 * - Free iocbs associated with this virtual port in 11889 * the txq. 11890 * - Send abort for all iocb commands associated with this 11891 * vport in txcmplq. 11892 * 11893 * This function is called with no lock held and always returns 1. 11894 **/ 11895 int 11896 lpfc_sli_host_down(struct lpfc_vport *vport) 11897 { 11898 LIST_HEAD(completions); 11899 struct lpfc_hba *phba = vport->phba; 11900 struct lpfc_sli *psli = &phba->sli; 11901 struct lpfc_queue *qp = NULL; 11902 struct lpfc_sli_ring *pring; 11903 struct lpfc_iocbq *iocb, *next_iocb; 11904 int i; 11905 unsigned long flags = 0; 11906 uint16_t prev_pring_flag; 11907 11908 lpfc_cleanup_discovery_resources(vport); 11909 11910 spin_lock_irqsave(&phba->hbalock, flags); 11911 11912 /* 11913 * Error everything on the txq since these iocbs 11914 * have not been given to the FW yet. 11915 * Also issue ABTS for everything on the txcmplq 11916 */ 11917 if (phba->sli_rev != LPFC_SLI_REV4) { 11918 for (i = 0; i < psli->num_rings; i++) { 11919 pring = &psli->sli3_ring[i]; 11920 prev_pring_flag = pring->flag; 11921 /* Only slow rings */ 11922 if (pring->ringno == LPFC_ELS_RING) { 11923 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11924 /* Set the lpfc data pending flag */ 11925 set_bit(LPFC_DATA_READY, &phba->data_flags); 11926 } 11927 list_for_each_entry_safe(iocb, next_iocb, 11928 &pring->txq, list) { 11929 if (iocb->vport != vport) 11930 continue; 11931 list_move_tail(&iocb->list, &completions); 11932 } 11933 list_for_each_entry_safe(iocb, next_iocb, 11934 &pring->txcmplq, list) { 11935 if (iocb->vport != vport) 11936 continue; 11937 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11938 NULL); 11939 } 11940 pring->flag = prev_pring_flag; 11941 } 11942 } else { 11943 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11944 pring = qp->pring; 11945 if (!pring) 11946 continue; 11947 if (pring == phba->sli4_hba.els_wq->pring) { 11948 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11949 /* Set the lpfc data pending flag */ 11950 set_bit(LPFC_DATA_READY, &phba->data_flags); 11951 } 11952 prev_pring_flag = pring->flag; 11953 spin_lock(&pring->ring_lock); 11954 list_for_each_entry_safe(iocb, next_iocb, 11955 &pring->txq, list) { 11956 if (iocb->vport != vport) 11957 continue; 11958 list_move_tail(&iocb->list, &completions); 11959 } 11960 spin_unlock(&pring->ring_lock); 11961 list_for_each_entry_safe(iocb, next_iocb, 11962 &pring->txcmplq, list) { 11963 if (iocb->vport != vport) 11964 continue; 11965 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11966 NULL); 11967 } 11968 pring->flag = prev_pring_flag; 11969 } 11970 } 11971 spin_unlock_irqrestore(&phba->hbalock, flags); 11972 11973 /* Make sure HBA is alive */ 11974 lpfc_issue_hb_tmo(phba); 11975 11976 /* Cancel all the IOCBs from the completions list */ 11977 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11978 IOERR_SLI_DOWN); 11979 return 1; 11980 } 11981 11982 /** 11983 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11984 * @phba: Pointer to HBA context object. 11985 * 11986 * This function cleans up all iocb, buffers, mailbox commands 11987 * while shutting down the HBA. This function is called with no 11988 * lock held and always returns 1. 11989 * This function does the following to cleanup driver resources: 11990 * - Free discovery resources for each virtual port 11991 * - Cleanup any pending fabric iocbs 11992 * - Iterate through the iocb txq and free each entry 11993 * in the list. 11994 * - Free up any buffer posted to the HBA 11995 * - Free mailbox commands in the mailbox queue. 11996 **/ 11997 int 11998 lpfc_sli_hba_down(struct lpfc_hba *phba) 11999 { 12000 LIST_HEAD(completions); 12001 struct lpfc_sli *psli = &phba->sli; 12002 struct lpfc_queue *qp = NULL; 12003 struct lpfc_sli_ring *pring; 12004 struct lpfc_dmabuf *buf_ptr; 12005 unsigned long flags = 0; 12006 int i; 12007 12008 /* Shutdown the mailbox command sub-system */ 12009 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12010 12011 lpfc_hba_down_prep(phba); 12012 12013 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12014 local_bh_disable(); 12015 12016 lpfc_fabric_abort_hba(phba); 12017 12018 spin_lock_irqsave(&phba->hbalock, flags); 12019 12020 /* 12021 * Error everything on the txq since these iocbs 12022 * have not been given to the FW yet. 12023 */ 12024 if (phba->sli_rev != LPFC_SLI_REV4) { 12025 for (i = 0; i < psli->num_rings; i++) { 12026 pring = &psli->sli3_ring[i]; 12027 /* Only slow rings */ 12028 if (pring->ringno == LPFC_ELS_RING) { 12029 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12030 /* Set the lpfc data pending flag */ 12031 set_bit(LPFC_DATA_READY, &phba->data_flags); 12032 } 12033 list_splice_init(&pring->txq, &completions); 12034 } 12035 } else { 12036 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12037 pring = qp->pring; 12038 if (!pring) 12039 continue; 12040 spin_lock(&pring->ring_lock); 12041 list_splice_init(&pring->txq, &completions); 12042 spin_unlock(&pring->ring_lock); 12043 if (pring == phba->sli4_hba.els_wq->pring) { 12044 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12045 /* Set the lpfc data pending flag */ 12046 set_bit(LPFC_DATA_READY, &phba->data_flags); 12047 } 12048 } 12049 } 12050 spin_unlock_irqrestore(&phba->hbalock, flags); 12051 12052 /* Cancel all the IOCBs from the completions list */ 12053 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12054 IOERR_SLI_DOWN); 12055 12056 spin_lock_irqsave(&phba->hbalock, flags); 12057 list_splice_init(&phba->elsbuf, &completions); 12058 phba->elsbuf_cnt = 0; 12059 phba->elsbuf_prev_cnt = 0; 12060 spin_unlock_irqrestore(&phba->hbalock, flags); 12061 12062 while (!list_empty(&completions)) { 12063 list_remove_head(&completions, buf_ptr, 12064 struct lpfc_dmabuf, list); 12065 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12066 kfree(buf_ptr); 12067 } 12068 12069 /* Enable softirqs again, done with phba->hbalock */ 12070 local_bh_enable(); 12071 12072 /* Return any active mbox cmds */ 12073 del_timer_sync(&psli->mbox_tmo); 12074 12075 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12076 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12077 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12078 12079 return 1; 12080 } 12081 12082 /** 12083 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12084 * @srcp: Source memory pointer. 12085 * @destp: Destination memory pointer. 12086 * @cnt: Number of words required to be copied. 12087 * 12088 * This function is used for copying data between driver memory 12089 * and the SLI memory. This function also changes the endianness 12090 * of each word if native endianness is different from SLI 12091 * endianness. This function can be called with or without 12092 * lock. 12093 **/ 12094 void 12095 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12096 { 12097 uint32_t *src = srcp; 12098 uint32_t *dest = destp; 12099 uint32_t ldata; 12100 int i; 12101 12102 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12103 ldata = *src; 12104 ldata = le32_to_cpu(ldata); 12105 *dest = ldata; 12106 src++; 12107 dest++; 12108 } 12109 } 12110 12111 12112 /** 12113 * lpfc_sli_bemem_bcopy - SLI memory copy function 12114 * @srcp: Source memory pointer. 12115 * @destp: Destination memory pointer. 12116 * @cnt: Number of words required to be copied. 12117 * 12118 * This function is used for copying data between a data structure 12119 * with big endian representation to local endianness. 12120 * This function can be called with or without lock. 12121 **/ 12122 void 12123 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12124 { 12125 uint32_t *src = srcp; 12126 uint32_t *dest = destp; 12127 uint32_t ldata; 12128 int i; 12129 12130 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12131 ldata = *src; 12132 ldata = be32_to_cpu(ldata); 12133 *dest = ldata; 12134 src++; 12135 dest++; 12136 } 12137 } 12138 12139 /** 12140 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12141 * @phba: Pointer to HBA context object. 12142 * @pring: Pointer to driver SLI ring object. 12143 * @mp: Pointer to driver buffer object. 12144 * 12145 * This function is called with no lock held. 12146 * It always return zero after adding the buffer to the postbufq 12147 * buffer list. 12148 **/ 12149 int 12150 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12151 struct lpfc_dmabuf *mp) 12152 { 12153 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12154 later */ 12155 spin_lock_irq(&phba->hbalock); 12156 list_add_tail(&mp->list, &pring->postbufq); 12157 pring->postbufq_cnt++; 12158 spin_unlock_irq(&phba->hbalock); 12159 return 0; 12160 } 12161 12162 /** 12163 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12164 * @phba: Pointer to HBA context object. 12165 * 12166 * When HBQ is enabled, buffers are searched based on tags. This function 12167 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12168 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12169 * does not conflict with tags of buffer posted for unsolicited events. 12170 * The function returns the allocated tag. The function is called with 12171 * no locks held. 12172 **/ 12173 uint32_t 12174 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12175 { 12176 spin_lock_irq(&phba->hbalock); 12177 phba->buffer_tag_count++; 12178 /* 12179 * Always set the QUE_BUFTAG_BIT to distiguish between 12180 * a tag assigned by HBQ. 12181 */ 12182 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12183 spin_unlock_irq(&phba->hbalock); 12184 return phba->buffer_tag_count; 12185 } 12186 12187 /** 12188 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12189 * @phba: Pointer to HBA context object. 12190 * @pring: Pointer to driver SLI ring object. 12191 * @tag: Buffer tag. 12192 * 12193 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12194 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12195 * iocb is posted to the response ring with the tag of the buffer. 12196 * This function searches the pring->postbufq list using the tag 12197 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12198 * iocb. If the buffer is found then lpfc_dmabuf object of the 12199 * buffer is returned to the caller else NULL is returned. 12200 * This function is called with no lock held. 12201 **/ 12202 struct lpfc_dmabuf * 12203 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12204 uint32_t tag) 12205 { 12206 struct lpfc_dmabuf *mp, *next_mp; 12207 struct list_head *slp = &pring->postbufq; 12208 12209 /* Search postbufq, from the beginning, looking for a match on tag */ 12210 spin_lock_irq(&phba->hbalock); 12211 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12212 if (mp->buffer_tag == tag) { 12213 list_del_init(&mp->list); 12214 pring->postbufq_cnt--; 12215 spin_unlock_irq(&phba->hbalock); 12216 return mp; 12217 } 12218 } 12219 12220 spin_unlock_irq(&phba->hbalock); 12221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12222 "0402 Cannot find virtual addr for buffer tag on " 12223 "ring %d Data x%lx x%px x%px x%x\n", 12224 pring->ringno, (unsigned long) tag, 12225 slp->next, slp->prev, pring->postbufq_cnt); 12226 12227 return NULL; 12228 } 12229 12230 /** 12231 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12232 * @phba: Pointer to HBA context object. 12233 * @pring: Pointer to driver SLI ring object. 12234 * @phys: DMA address of the buffer. 12235 * 12236 * This function searches the buffer list using the dma_address 12237 * of unsolicited event to find the driver's lpfc_dmabuf object 12238 * corresponding to the dma_address. The function returns the 12239 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12240 * This function is called by the ct and els unsolicited event 12241 * handlers to get the buffer associated with the unsolicited 12242 * event. 12243 * 12244 * This function is called with no lock held. 12245 **/ 12246 struct lpfc_dmabuf * 12247 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12248 dma_addr_t phys) 12249 { 12250 struct lpfc_dmabuf *mp, *next_mp; 12251 struct list_head *slp = &pring->postbufq; 12252 12253 /* Search postbufq, from the beginning, looking for a match on phys */ 12254 spin_lock_irq(&phba->hbalock); 12255 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12256 if (mp->phys == phys) { 12257 list_del_init(&mp->list); 12258 pring->postbufq_cnt--; 12259 spin_unlock_irq(&phba->hbalock); 12260 return mp; 12261 } 12262 } 12263 12264 spin_unlock_irq(&phba->hbalock); 12265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12266 "0410 Cannot find virtual addr for mapped buf on " 12267 "ring %d Data x%llx x%px x%px x%x\n", 12268 pring->ringno, (unsigned long long)phys, 12269 slp->next, slp->prev, pring->postbufq_cnt); 12270 return NULL; 12271 } 12272 12273 /** 12274 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12275 * @phba: Pointer to HBA context object. 12276 * @cmdiocb: Pointer to driver command iocb object. 12277 * @rspiocb: Pointer to driver response iocb object. 12278 * 12279 * This function is the completion handler for the abort iocbs for 12280 * ELS commands. This function is called from the ELS ring event 12281 * handler with no lock held. This function frees memory resources 12282 * associated with the abort iocb. 12283 **/ 12284 static void 12285 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12286 struct lpfc_iocbq *rspiocb) 12287 { 12288 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12289 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12290 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12291 12292 if (ulp_status) { 12293 /* 12294 * Assume that the port already completed and returned, or 12295 * will return the iocb. Just Log the message. 12296 */ 12297 if (phba->sli_rev < LPFC_SLI_REV4) { 12298 if (cmnd == CMD_ABORT_XRI_CX && 12299 ulp_status == IOSTAT_LOCAL_REJECT && 12300 ulp_word4 == IOERR_ABORT_REQUESTED) { 12301 goto release_iocb; 12302 } 12303 } 12304 12305 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12306 "0327 Cannot abort els iocb x%px " 12307 "with io cmd xri %x abort tag : x%x, " 12308 "abort status %x abort code %x\n", 12309 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12310 (phba->sli_rev == LPFC_SLI_REV4) ? 12311 get_wqe_reqtag(cmdiocb) : 12312 cmdiocb->iocb.un.acxri.abortContextTag, 12313 ulp_status, ulp_word4); 12314 12315 } 12316 release_iocb: 12317 lpfc_sli_release_iocbq(phba, cmdiocb); 12318 return; 12319 } 12320 12321 /** 12322 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12323 * @phba: Pointer to HBA context object. 12324 * @cmdiocb: Pointer to driver command iocb object. 12325 * @rspiocb: Pointer to driver response iocb object. 12326 * 12327 * The function is called from SLI ring event handler with no 12328 * lock held. This function is the completion handler for ELS commands 12329 * which are aborted. The function frees memory resources used for 12330 * the aborted ELS commands. 12331 **/ 12332 void 12333 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12334 struct lpfc_iocbq *rspiocb) 12335 { 12336 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12337 IOCB_t *irsp; 12338 LPFC_MBOXQ_t *mbox; 12339 u32 ulp_command, ulp_status, ulp_word4, iotag; 12340 12341 ulp_command = get_job_cmnd(phba, cmdiocb); 12342 ulp_status = get_job_ulpstatus(phba, rspiocb); 12343 ulp_word4 = get_job_word4(phba, rspiocb); 12344 12345 if (phba->sli_rev == LPFC_SLI_REV4) { 12346 iotag = get_wqe_reqtag(cmdiocb); 12347 } else { 12348 irsp = &rspiocb->iocb; 12349 iotag = irsp->ulpIoTag; 12350 12351 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12352 * The MBX_REG_LOGIN64 mbox command is freed back to the 12353 * mbox_mem_pool here. 12354 */ 12355 if (cmdiocb->context_un.mbox) { 12356 mbox = cmdiocb->context_un.mbox; 12357 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12358 cmdiocb->context_un.mbox = NULL; 12359 } 12360 } 12361 12362 /* ELS cmd tag <ulpIoTag> completes */ 12363 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12364 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12365 "x%x x%x x%x x%px\n", 12366 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12367 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12368 /* 12369 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12370 * if exchange is busy. 12371 */ 12372 if (ulp_command == CMD_GEN_REQUEST64_CR) 12373 lpfc_ct_free_iocb(phba, cmdiocb); 12374 else 12375 lpfc_els_free_iocb(phba, cmdiocb); 12376 12377 lpfc_nlp_put(ndlp); 12378 } 12379 12380 /** 12381 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12382 * @phba: Pointer to HBA context object. 12383 * @pring: Pointer to driver SLI ring object. 12384 * @cmdiocb: Pointer to driver command iocb object. 12385 * @cmpl: completion function. 12386 * 12387 * This function issues an abort iocb for the provided command iocb. In case 12388 * of unloading, the abort iocb will not be issued to commands on the ELS 12389 * ring. Instead, the callback function shall be changed to those commands 12390 * so that nothing happens when them finishes. This function is called with 12391 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12392 * when the command iocb is an abort request. 12393 * 12394 **/ 12395 int 12396 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12397 struct lpfc_iocbq *cmdiocb, void *cmpl) 12398 { 12399 struct lpfc_vport *vport = cmdiocb->vport; 12400 struct lpfc_iocbq *abtsiocbp; 12401 int retval = IOCB_ERROR; 12402 unsigned long iflags; 12403 struct lpfc_nodelist *ndlp = NULL; 12404 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12405 u16 ulp_context, iotag; 12406 bool ia; 12407 12408 /* 12409 * There are certain command types we don't want to abort. And we 12410 * don't want to abort commands that are already in the process of 12411 * being aborted. 12412 */ 12413 if (ulp_command == CMD_ABORT_XRI_WQE || 12414 ulp_command == CMD_ABORT_XRI_CN || 12415 ulp_command == CMD_CLOSE_XRI_CN || 12416 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12417 return IOCB_ABORTING; 12418 12419 if (!pring) { 12420 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12421 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12422 else 12423 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12424 return retval; 12425 } 12426 12427 /* 12428 * If we're unloading, don't abort iocb on the ELS ring, but change 12429 * the callback so that nothing happens when it finishes. 12430 */ 12431 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12432 pring->ringno == LPFC_ELS_RING) { 12433 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12434 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12435 else 12436 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12437 return retval; 12438 } 12439 12440 /* issue ABTS for this IOCB based on iotag */ 12441 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12442 if (abtsiocbp == NULL) 12443 return IOCB_NORESOURCE; 12444 12445 /* This signals the response to set the correct status 12446 * before calling the completion handler 12447 */ 12448 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12449 12450 if (phba->sli_rev == LPFC_SLI_REV4) { 12451 ulp_context = cmdiocb->sli4_xritag; 12452 iotag = abtsiocbp->iotag; 12453 } else { 12454 iotag = cmdiocb->iocb.ulpIoTag; 12455 if (pring->ringno == LPFC_ELS_RING) { 12456 ndlp = cmdiocb->ndlp; 12457 ulp_context = ndlp->nlp_rpi; 12458 } else { 12459 ulp_context = cmdiocb->iocb.ulpContext; 12460 } 12461 } 12462 12463 /* Just close the exchange under certain conditions. */ 12464 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12465 phba->link_state < LPFC_LINK_UP || 12466 (phba->sli_rev == LPFC_SLI_REV4 && 12467 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12468 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12469 ia = true; 12470 else 12471 ia = false; 12472 12473 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12474 cmdiocb->iocb.ulpClass, 12475 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12476 12477 abtsiocbp->vport = vport; 12478 12479 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12480 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12481 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12482 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12483 12484 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12485 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12486 12487 if (cmpl) 12488 abtsiocbp->cmd_cmpl = cmpl; 12489 else 12490 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12491 abtsiocbp->vport = vport; 12492 12493 if (phba->sli_rev == LPFC_SLI_REV4) { 12494 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12495 if (unlikely(pring == NULL)) 12496 goto abort_iotag_exit; 12497 /* Note: both hbalock and ring_lock need to be set here */ 12498 spin_lock_irqsave(&pring->ring_lock, iflags); 12499 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12500 abtsiocbp, 0); 12501 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12502 } else { 12503 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12504 abtsiocbp, 0); 12505 } 12506 12507 abort_iotag_exit: 12508 12509 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12510 "0339 Abort IO XRI x%x, Original iotag x%x, " 12511 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12512 "retval x%x : IA %d\n", 12513 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12514 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12515 retval, ia); 12516 if (retval) { 12517 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12518 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12519 } 12520 12521 /* 12522 * Caller to this routine should check for IOCB_ERROR 12523 * and handle it properly. This routine no longer removes 12524 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12525 */ 12526 return retval; 12527 } 12528 12529 /** 12530 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12531 * @phba: pointer to lpfc HBA data structure. 12532 * 12533 * This routine will abort all pending and outstanding iocbs to an HBA. 12534 **/ 12535 void 12536 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12537 { 12538 struct lpfc_sli *psli = &phba->sli; 12539 struct lpfc_sli_ring *pring; 12540 struct lpfc_queue *qp = NULL; 12541 int i; 12542 12543 if (phba->sli_rev != LPFC_SLI_REV4) { 12544 for (i = 0; i < psli->num_rings; i++) { 12545 pring = &psli->sli3_ring[i]; 12546 lpfc_sli_abort_iocb_ring(phba, pring); 12547 } 12548 return; 12549 } 12550 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12551 pring = qp->pring; 12552 if (!pring) 12553 continue; 12554 lpfc_sli_abort_iocb_ring(phba, pring); 12555 } 12556 } 12557 12558 /** 12559 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12560 * @iocbq: Pointer to iocb object. 12561 * @vport: Pointer to driver virtual port object. 12562 * 12563 * This function acts as an iocb filter for functions which abort FCP iocbs. 12564 * 12565 * Return values 12566 * -ENODEV, if a null iocb or vport ptr is encountered 12567 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12568 * driver already started the abort process, or is an abort iocb itself 12569 * 0, passes criteria for aborting the FCP I/O iocb 12570 **/ 12571 static int 12572 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12573 struct lpfc_vport *vport) 12574 { 12575 u8 ulp_command; 12576 12577 /* No null ptr vports */ 12578 if (!iocbq || iocbq->vport != vport) 12579 return -ENODEV; 12580 12581 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12582 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12583 */ 12584 ulp_command = get_job_cmnd(vport->phba, iocbq); 12585 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12586 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12587 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12588 (ulp_command == CMD_ABORT_XRI_CN || 12589 ulp_command == CMD_CLOSE_XRI_CN || 12590 ulp_command == CMD_ABORT_XRI_WQE)) 12591 return -EINVAL; 12592 12593 return 0; 12594 } 12595 12596 /** 12597 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12598 * @iocbq: Pointer to driver iocb object. 12599 * @vport: Pointer to driver virtual port object. 12600 * @tgt_id: SCSI ID of the target. 12601 * @lun_id: LUN ID of the scsi device. 12602 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12603 * 12604 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12605 * host. 12606 * 12607 * It will return 12608 * 0 if the filtering criteria is met for the given iocb and will return 12609 * 1 if the filtering criteria is not met. 12610 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12611 * given iocb is for the SCSI device specified by vport, tgt_id and 12612 * lun_id parameter. 12613 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12614 * given iocb is for the SCSI target specified by vport and tgt_id 12615 * parameters. 12616 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12617 * given iocb is for the SCSI host associated with the given vport. 12618 * This function is called with no locks held. 12619 **/ 12620 static int 12621 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12622 uint16_t tgt_id, uint64_t lun_id, 12623 lpfc_ctx_cmd ctx_cmd) 12624 { 12625 struct lpfc_io_buf *lpfc_cmd; 12626 int rc = 1; 12627 12628 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12629 12630 if (lpfc_cmd->pCmd == NULL) 12631 return rc; 12632 12633 switch (ctx_cmd) { 12634 case LPFC_CTX_LUN: 12635 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12636 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12637 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12638 rc = 0; 12639 break; 12640 case LPFC_CTX_TGT: 12641 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12642 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12643 rc = 0; 12644 break; 12645 case LPFC_CTX_HOST: 12646 rc = 0; 12647 break; 12648 default: 12649 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12650 __func__, ctx_cmd); 12651 break; 12652 } 12653 12654 return rc; 12655 } 12656 12657 /** 12658 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12659 * @vport: Pointer to virtual port. 12660 * @tgt_id: SCSI ID of the target. 12661 * @lun_id: LUN ID of the scsi device. 12662 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12663 * 12664 * This function returns number of FCP commands pending for the vport. 12665 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12666 * commands pending on the vport associated with SCSI device specified 12667 * by tgt_id and lun_id parameters. 12668 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12669 * commands pending on the vport associated with SCSI target specified 12670 * by tgt_id parameter. 12671 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12672 * commands pending on the vport. 12673 * This function returns the number of iocbs which satisfy the filter. 12674 * This function is called without any lock held. 12675 **/ 12676 int 12677 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12678 lpfc_ctx_cmd ctx_cmd) 12679 { 12680 struct lpfc_hba *phba = vport->phba; 12681 struct lpfc_iocbq *iocbq; 12682 int sum, i; 12683 unsigned long iflags; 12684 u8 ulp_command; 12685 12686 spin_lock_irqsave(&phba->hbalock, iflags); 12687 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12688 iocbq = phba->sli.iocbq_lookup[i]; 12689 12690 if (!iocbq || iocbq->vport != vport) 12691 continue; 12692 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12693 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12694 continue; 12695 12696 /* Include counting outstanding aborts */ 12697 ulp_command = get_job_cmnd(phba, iocbq); 12698 if (ulp_command == CMD_ABORT_XRI_CN || 12699 ulp_command == CMD_CLOSE_XRI_CN || 12700 ulp_command == CMD_ABORT_XRI_WQE) { 12701 sum++; 12702 continue; 12703 } 12704 12705 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12706 ctx_cmd) == 0) 12707 sum++; 12708 } 12709 spin_unlock_irqrestore(&phba->hbalock, iflags); 12710 12711 return sum; 12712 } 12713 12714 /** 12715 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12716 * @phba: Pointer to HBA context object 12717 * @cmdiocb: Pointer to command iocb object. 12718 * @rspiocb: Pointer to response iocb object. 12719 * 12720 * This function is called when an aborted FCP iocb completes. This 12721 * function is called by the ring event handler with no lock held. 12722 * This function frees the iocb. 12723 **/ 12724 void 12725 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12726 struct lpfc_iocbq *rspiocb) 12727 { 12728 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12729 "3096 ABORT_XRI_CX completing on rpi x%x " 12730 "original iotag x%x, abort cmd iotag x%x " 12731 "status 0x%x, reason 0x%x\n", 12732 (phba->sli_rev == LPFC_SLI_REV4) ? 12733 cmdiocb->sli4_xritag : 12734 cmdiocb->iocb.un.acxri.abortContextTag, 12735 get_job_abtsiotag(phba, cmdiocb), 12736 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12737 get_job_word4(phba, rspiocb)); 12738 lpfc_sli_release_iocbq(phba, cmdiocb); 12739 return; 12740 } 12741 12742 /** 12743 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12744 * @vport: Pointer to virtual port. 12745 * @tgt_id: SCSI ID of the target. 12746 * @lun_id: LUN ID of the scsi device. 12747 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12748 * 12749 * This function sends an abort command for every SCSI command 12750 * associated with the given virtual port pending on the ring 12751 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12752 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12753 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12754 * followed by lpfc_sli_validate_fcp_iocb. 12755 * 12756 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12757 * FCP iocbs associated with lun specified by tgt_id and lun_id 12758 * parameters 12759 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12760 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12761 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12762 * FCP iocbs associated with virtual port. 12763 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12764 * lpfc_sli4_calc_ring is used. 12765 * This function returns number of iocbs it failed to abort. 12766 * This function is called with no locks held. 12767 **/ 12768 int 12769 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12770 lpfc_ctx_cmd abort_cmd) 12771 { 12772 struct lpfc_hba *phba = vport->phba; 12773 struct lpfc_sli_ring *pring = NULL; 12774 struct lpfc_iocbq *iocbq; 12775 int errcnt = 0, ret_val = 0; 12776 unsigned long iflags; 12777 int i; 12778 12779 /* all I/Os are in process of being flushed */ 12780 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12781 return errcnt; 12782 12783 for (i = 1; i <= phba->sli.last_iotag; i++) { 12784 iocbq = phba->sli.iocbq_lookup[i]; 12785 12786 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12787 continue; 12788 12789 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12790 abort_cmd) != 0) 12791 continue; 12792 12793 spin_lock_irqsave(&phba->hbalock, iflags); 12794 if (phba->sli_rev == LPFC_SLI_REV3) { 12795 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12796 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12797 pring = lpfc_sli4_calc_ring(phba, iocbq); 12798 } 12799 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12800 lpfc_sli_abort_fcp_cmpl); 12801 spin_unlock_irqrestore(&phba->hbalock, iflags); 12802 if (ret_val != IOCB_SUCCESS) 12803 errcnt++; 12804 } 12805 12806 return errcnt; 12807 } 12808 12809 /** 12810 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12811 * @vport: Pointer to virtual port. 12812 * @pring: Pointer to driver SLI ring object. 12813 * @tgt_id: SCSI ID of the target. 12814 * @lun_id: LUN ID of the scsi device. 12815 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12816 * 12817 * This function sends an abort command for every SCSI command 12818 * associated with the given virtual port pending on the ring 12819 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12820 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12821 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12822 * followed by lpfc_sli_validate_fcp_iocb. 12823 * 12824 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12825 * FCP iocbs associated with lun specified by tgt_id and lun_id 12826 * parameters 12827 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12828 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12829 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12830 * FCP iocbs associated with virtual port. 12831 * This function returns number of iocbs it aborted . 12832 * This function is called with no locks held right after a taskmgmt 12833 * command is sent. 12834 **/ 12835 int 12836 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12837 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12838 { 12839 struct lpfc_hba *phba = vport->phba; 12840 struct lpfc_io_buf *lpfc_cmd; 12841 struct lpfc_iocbq *abtsiocbq; 12842 struct lpfc_nodelist *ndlp = NULL; 12843 struct lpfc_iocbq *iocbq; 12844 int sum, i, ret_val; 12845 unsigned long iflags; 12846 struct lpfc_sli_ring *pring_s4 = NULL; 12847 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12848 bool ia; 12849 12850 /* all I/Os are in process of being flushed */ 12851 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12852 return 0; 12853 12854 sum = 0; 12855 12856 spin_lock_irqsave(&phba->hbalock, iflags); 12857 for (i = 1; i <= phba->sli.last_iotag; i++) { 12858 iocbq = phba->sli.iocbq_lookup[i]; 12859 12860 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12861 continue; 12862 12863 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12864 cmd) != 0) 12865 continue; 12866 12867 /* Guard against IO completion being called at same time */ 12868 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12869 spin_lock(&lpfc_cmd->buf_lock); 12870 12871 if (!lpfc_cmd->pCmd) { 12872 spin_unlock(&lpfc_cmd->buf_lock); 12873 continue; 12874 } 12875 12876 if (phba->sli_rev == LPFC_SLI_REV4) { 12877 pring_s4 = 12878 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12879 if (!pring_s4) { 12880 spin_unlock(&lpfc_cmd->buf_lock); 12881 continue; 12882 } 12883 /* Note: both hbalock and ring_lock must be set here */ 12884 spin_lock(&pring_s4->ring_lock); 12885 } 12886 12887 /* 12888 * If the iocbq is already being aborted, don't take a second 12889 * action, but do count it. 12890 */ 12891 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12892 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12893 if (phba->sli_rev == LPFC_SLI_REV4) 12894 spin_unlock(&pring_s4->ring_lock); 12895 spin_unlock(&lpfc_cmd->buf_lock); 12896 continue; 12897 } 12898 12899 /* issue ABTS for this IOCB based on iotag */ 12900 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12901 if (!abtsiocbq) { 12902 if (phba->sli_rev == LPFC_SLI_REV4) 12903 spin_unlock(&pring_s4->ring_lock); 12904 spin_unlock(&lpfc_cmd->buf_lock); 12905 continue; 12906 } 12907 12908 if (phba->sli_rev == LPFC_SLI_REV4) { 12909 iotag = abtsiocbq->iotag; 12910 ulp_context = iocbq->sli4_xritag; 12911 cqid = lpfc_cmd->hdwq->io_cq_map; 12912 } else { 12913 iotag = iocbq->iocb.ulpIoTag; 12914 if (pring->ringno == LPFC_ELS_RING) { 12915 ndlp = iocbq->ndlp; 12916 ulp_context = ndlp->nlp_rpi; 12917 } else { 12918 ulp_context = iocbq->iocb.ulpContext; 12919 } 12920 } 12921 12922 ndlp = lpfc_cmd->rdata->pnode; 12923 12924 if (lpfc_is_link_up(phba) && 12925 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12926 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12927 ia = false; 12928 else 12929 ia = true; 12930 12931 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12932 iocbq->iocb.ulpClass, cqid, 12933 ia, false); 12934 12935 abtsiocbq->vport = vport; 12936 12937 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12938 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12939 if (iocbq->cmd_flag & LPFC_IO_FCP) 12940 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12941 if (iocbq->cmd_flag & LPFC_IO_FOF) 12942 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12943 12944 /* Setup callback routine and issue the command. */ 12945 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12946 12947 /* 12948 * Indicate the IO is being aborted by the driver and set 12949 * the caller's flag into the aborted IO. 12950 */ 12951 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12952 12953 if (phba->sli_rev == LPFC_SLI_REV4) { 12954 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12955 abtsiocbq, 0); 12956 spin_unlock(&pring_s4->ring_lock); 12957 } else { 12958 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12959 abtsiocbq, 0); 12960 } 12961 12962 spin_unlock(&lpfc_cmd->buf_lock); 12963 12964 if (ret_val == IOCB_ERROR) 12965 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12966 else 12967 sum++; 12968 } 12969 spin_unlock_irqrestore(&phba->hbalock, iflags); 12970 return sum; 12971 } 12972 12973 /** 12974 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12975 * @phba: Pointer to HBA context object. 12976 * @cmdiocbq: Pointer to command iocb. 12977 * @rspiocbq: Pointer to response iocb. 12978 * 12979 * This function is the completion handler for iocbs issued using 12980 * lpfc_sli_issue_iocb_wait function. This function is called by the 12981 * ring event handler function without any lock held. This function 12982 * can be called from both worker thread context and interrupt 12983 * context. This function also can be called from other thread which 12984 * cleans up the SLI layer objects. 12985 * This function copy the contents of the response iocb to the 12986 * response iocb memory object provided by the caller of 12987 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12988 * sleeps for the iocb completion. 12989 **/ 12990 static void 12991 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12992 struct lpfc_iocbq *cmdiocbq, 12993 struct lpfc_iocbq *rspiocbq) 12994 { 12995 wait_queue_head_t *pdone_q; 12996 unsigned long iflags; 12997 struct lpfc_io_buf *lpfc_cmd; 12998 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12999 13000 spin_lock_irqsave(&phba->hbalock, iflags); 13001 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13002 13003 /* 13004 * A time out has occurred for the iocb. If a time out 13005 * completion handler has been supplied, call it. Otherwise, 13006 * just free the iocbq. 13007 */ 13008 13009 spin_unlock_irqrestore(&phba->hbalock, iflags); 13010 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13011 cmdiocbq->wait_cmd_cmpl = NULL; 13012 if (cmdiocbq->cmd_cmpl) 13013 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13014 else 13015 lpfc_sli_release_iocbq(phba, cmdiocbq); 13016 return; 13017 } 13018 13019 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13020 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13021 if (cmdiocbq->rsp_iocb && rspiocbq) 13022 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13023 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13024 13025 /* Set the exchange busy flag for task management commands */ 13026 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13027 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13028 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13029 cur_iocbq); 13030 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13031 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13032 else 13033 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13034 } 13035 13036 pdone_q = cmdiocbq->context_un.wait_queue; 13037 if (pdone_q) 13038 wake_up(pdone_q); 13039 spin_unlock_irqrestore(&phba->hbalock, iflags); 13040 return; 13041 } 13042 13043 /** 13044 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13045 * @phba: Pointer to HBA context object.. 13046 * @piocbq: Pointer to command iocb. 13047 * @flag: Flag to test. 13048 * 13049 * This routine grabs the hbalock and then test the cmd_flag to 13050 * see if the passed in flag is set. 13051 * Returns: 13052 * 1 if flag is set. 13053 * 0 if flag is not set. 13054 **/ 13055 static int 13056 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13057 struct lpfc_iocbq *piocbq, uint32_t flag) 13058 { 13059 unsigned long iflags; 13060 int ret; 13061 13062 spin_lock_irqsave(&phba->hbalock, iflags); 13063 ret = piocbq->cmd_flag & flag; 13064 spin_unlock_irqrestore(&phba->hbalock, iflags); 13065 return ret; 13066 13067 } 13068 13069 /** 13070 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13071 * @phba: Pointer to HBA context object.. 13072 * @ring_number: Ring number 13073 * @piocb: Pointer to command iocb. 13074 * @prspiocbq: Pointer to response iocb. 13075 * @timeout: Timeout in number of seconds. 13076 * 13077 * This function issues the iocb to firmware and waits for the 13078 * iocb to complete. The cmd_cmpl field of the shall be used 13079 * to handle iocbs which time out. If the field is NULL, the 13080 * function shall free the iocbq structure. If more clean up is 13081 * needed, the caller is expected to provide a completion function 13082 * that will provide the needed clean up. If the iocb command is 13083 * not completed within timeout seconds, the function will either 13084 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13085 * completion function set in the cmd_cmpl field and then return 13086 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13087 * resources if this function returns IOCB_TIMEDOUT. 13088 * The function waits for the iocb completion using an 13089 * non-interruptible wait. 13090 * This function will sleep while waiting for iocb completion. 13091 * So, this function should not be called from any context which 13092 * does not allow sleeping. Due to the same reason, this function 13093 * cannot be called with interrupt disabled. 13094 * This function assumes that the iocb completions occur while 13095 * this function sleep. So, this function cannot be called from 13096 * the thread which process iocb completion for this ring. 13097 * This function clears the cmd_flag of the iocb object before 13098 * issuing the iocb and the iocb completion handler sets this 13099 * flag and wakes this thread when the iocb completes. 13100 * The contents of the response iocb will be copied to prspiocbq 13101 * by the completion handler when the command completes. 13102 * This function returns IOCB_SUCCESS when success. 13103 * This function is called with no lock held. 13104 **/ 13105 int 13106 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13107 uint32_t ring_number, 13108 struct lpfc_iocbq *piocb, 13109 struct lpfc_iocbq *prspiocbq, 13110 uint32_t timeout) 13111 { 13112 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13113 long timeleft, timeout_req = 0; 13114 int retval = IOCB_SUCCESS; 13115 uint32_t creg_val; 13116 struct lpfc_iocbq *iocb; 13117 int txq_cnt = 0; 13118 int txcmplq_cnt = 0; 13119 struct lpfc_sli_ring *pring; 13120 unsigned long iflags; 13121 bool iocb_completed = true; 13122 13123 if (phba->sli_rev >= LPFC_SLI_REV4) { 13124 lpfc_sli_prep_wqe(phba, piocb); 13125 13126 pring = lpfc_sli4_calc_ring(phba, piocb); 13127 } else 13128 pring = &phba->sli.sli3_ring[ring_number]; 13129 /* 13130 * If the caller has provided a response iocbq buffer, then rsp_iocb 13131 * is NULL or its an error. 13132 */ 13133 if (prspiocbq) { 13134 if (piocb->rsp_iocb) 13135 return IOCB_ERROR; 13136 piocb->rsp_iocb = prspiocbq; 13137 } 13138 13139 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13140 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13141 piocb->context_un.wait_queue = &done_q; 13142 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13143 13144 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13145 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13146 return IOCB_ERROR; 13147 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13148 writel(creg_val, phba->HCregaddr); 13149 readl(phba->HCregaddr); /* flush */ 13150 } 13151 13152 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13153 SLI_IOCB_RET_IOCB); 13154 if (retval == IOCB_SUCCESS) { 13155 timeout_req = msecs_to_jiffies(timeout * 1000); 13156 timeleft = wait_event_timeout(done_q, 13157 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13158 timeout_req); 13159 spin_lock_irqsave(&phba->hbalock, iflags); 13160 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13161 13162 /* 13163 * IOCB timed out. Inform the wake iocb wait 13164 * completion function and set local status 13165 */ 13166 13167 iocb_completed = false; 13168 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13169 } 13170 spin_unlock_irqrestore(&phba->hbalock, iflags); 13171 if (iocb_completed) { 13172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13173 "0331 IOCB wake signaled\n"); 13174 /* Note: we are not indicating if the IOCB has a success 13175 * status or not - that's for the caller to check. 13176 * IOCB_SUCCESS means just that the command was sent and 13177 * completed. Not that it completed successfully. 13178 * */ 13179 } else if (timeleft == 0) { 13180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13181 "0338 IOCB wait timeout error - no " 13182 "wake response Data x%x\n", timeout); 13183 retval = IOCB_TIMEDOUT; 13184 } else { 13185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13186 "0330 IOCB wake NOT set, " 13187 "Data x%x x%lx\n", 13188 timeout, (timeleft / jiffies)); 13189 retval = IOCB_TIMEDOUT; 13190 } 13191 } else if (retval == IOCB_BUSY) { 13192 if (phba->cfg_log_verbose & LOG_SLI) { 13193 list_for_each_entry(iocb, &pring->txq, list) { 13194 txq_cnt++; 13195 } 13196 list_for_each_entry(iocb, &pring->txcmplq, list) { 13197 txcmplq_cnt++; 13198 } 13199 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13200 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13201 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13202 } 13203 return retval; 13204 } else { 13205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13206 "0332 IOCB wait issue failed, Data x%x\n", 13207 retval); 13208 retval = IOCB_ERROR; 13209 } 13210 13211 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13212 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13213 return IOCB_ERROR; 13214 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13215 writel(creg_val, phba->HCregaddr); 13216 readl(phba->HCregaddr); /* flush */ 13217 } 13218 13219 if (prspiocbq) 13220 piocb->rsp_iocb = NULL; 13221 13222 piocb->context_un.wait_queue = NULL; 13223 piocb->cmd_cmpl = NULL; 13224 return retval; 13225 } 13226 13227 /** 13228 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13229 * @phba: Pointer to HBA context object. 13230 * @pmboxq: Pointer to driver mailbox object. 13231 * @timeout: Timeout in number of seconds. 13232 * 13233 * This function issues the mailbox to firmware and waits for the 13234 * mailbox command to complete. If the mailbox command is not 13235 * completed within timeout seconds, it returns MBX_TIMEOUT. 13236 * The function waits for the mailbox completion using an 13237 * interruptible wait. If the thread is woken up due to a 13238 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13239 * should not free the mailbox resources, if this function returns 13240 * MBX_TIMEOUT. 13241 * This function will sleep while waiting for mailbox completion. 13242 * So, this function should not be called from any context which 13243 * does not allow sleeping. Due to the same reason, this function 13244 * cannot be called with interrupt disabled. 13245 * This function assumes that the mailbox completion occurs while 13246 * this function sleep. So, this function cannot be called from 13247 * the worker thread which processes mailbox completion. 13248 * This function is called in the context of HBA management 13249 * applications. 13250 * This function returns MBX_SUCCESS when successful. 13251 * This function is called with no lock held. 13252 **/ 13253 int 13254 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13255 uint32_t timeout) 13256 { 13257 struct completion mbox_done; 13258 int retval; 13259 unsigned long flag; 13260 13261 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13262 /* setup wake call as IOCB callback */ 13263 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13264 13265 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13266 init_completion(&mbox_done); 13267 pmboxq->ctx_u.mbox_wait = &mbox_done; 13268 /* now issue the command */ 13269 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13270 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13271 wait_for_completion_timeout(&mbox_done, 13272 msecs_to_jiffies(timeout * 1000)); 13273 13274 spin_lock_irqsave(&phba->hbalock, flag); 13275 pmboxq->ctx_u.mbox_wait = NULL; 13276 /* 13277 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13278 * else do not free the resources. 13279 */ 13280 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13281 retval = MBX_SUCCESS; 13282 } else { 13283 retval = MBX_TIMEOUT; 13284 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13285 } 13286 spin_unlock_irqrestore(&phba->hbalock, flag); 13287 } 13288 return retval; 13289 } 13290 13291 /** 13292 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13293 * @phba: Pointer to HBA context. 13294 * @mbx_action: Mailbox shutdown options. 13295 * 13296 * This function is called to shutdown the driver's mailbox sub-system. 13297 * It first marks the mailbox sub-system is in a block state to prevent 13298 * the asynchronous mailbox command from issued off the pending mailbox 13299 * command queue. If the mailbox command sub-system shutdown is due to 13300 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13301 * the mailbox sub-system flush routine to forcefully bring down the 13302 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13303 * as with offline or HBA function reset), this routine will wait for the 13304 * outstanding mailbox command to complete before invoking the mailbox 13305 * sub-system flush routine to gracefully bring down mailbox sub-system. 13306 **/ 13307 void 13308 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13309 { 13310 struct lpfc_sli *psli = &phba->sli; 13311 unsigned long timeout; 13312 13313 if (mbx_action == LPFC_MBX_NO_WAIT) { 13314 /* delay 100ms for port state */ 13315 msleep(100); 13316 lpfc_sli_mbox_sys_flush(phba); 13317 return; 13318 } 13319 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13320 13321 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13322 local_bh_disable(); 13323 13324 spin_lock_irq(&phba->hbalock); 13325 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13326 13327 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13328 /* Determine how long we might wait for the active mailbox 13329 * command to be gracefully completed by firmware. 13330 */ 13331 if (phba->sli.mbox_active) 13332 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13333 phba->sli.mbox_active) * 13334 1000) + jiffies; 13335 spin_unlock_irq(&phba->hbalock); 13336 13337 /* Enable softirqs again, done with phba->hbalock */ 13338 local_bh_enable(); 13339 13340 while (phba->sli.mbox_active) { 13341 /* Check active mailbox complete status every 2ms */ 13342 msleep(2); 13343 if (time_after(jiffies, timeout)) 13344 /* Timeout, let the mailbox flush routine to 13345 * forcefully release active mailbox command 13346 */ 13347 break; 13348 } 13349 } else { 13350 spin_unlock_irq(&phba->hbalock); 13351 13352 /* Enable softirqs again, done with phba->hbalock */ 13353 local_bh_enable(); 13354 } 13355 13356 lpfc_sli_mbox_sys_flush(phba); 13357 } 13358 13359 /** 13360 * lpfc_sli_eratt_read - read sli-3 error attention events 13361 * @phba: Pointer to HBA context. 13362 * 13363 * This function is called to read the SLI3 device error attention registers 13364 * for possible error attention events. The caller must hold the hostlock 13365 * with spin_lock_irq(). 13366 * 13367 * This function returns 1 when there is Error Attention in the Host Attention 13368 * Register and returns 0 otherwise. 13369 **/ 13370 static int 13371 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13372 { 13373 uint32_t ha_copy; 13374 13375 /* Read chip Host Attention (HA) register */ 13376 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13377 goto unplug_err; 13378 13379 if (ha_copy & HA_ERATT) { 13380 /* Read host status register to retrieve error event */ 13381 if (lpfc_sli_read_hs(phba)) 13382 goto unplug_err; 13383 13384 /* Check if there is a deferred error condition is active */ 13385 if ((HS_FFER1 & phba->work_hs) && 13386 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13387 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13388 set_bit(DEFER_ERATT, &phba->hba_flag); 13389 /* Clear all interrupt enable conditions */ 13390 writel(0, phba->HCregaddr); 13391 readl(phba->HCregaddr); 13392 } 13393 13394 /* Set the driver HA work bitmap */ 13395 phba->work_ha |= HA_ERATT; 13396 /* Indicate polling handles this ERATT */ 13397 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13398 return 1; 13399 } 13400 return 0; 13401 13402 unplug_err: 13403 /* Set the driver HS work bitmap */ 13404 phba->work_hs |= UNPLUG_ERR; 13405 /* Set the driver HA work bitmap */ 13406 phba->work_ha |= HA_ERATT; 13407 /* Indicate polling handles this ERATT */ 13408 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13409 return 1; 13410 } 13411 13412 /** 13413 * lpfc_sli4_eratt_read - read sli-4 error attention events 13414 * @phba: Pointer to HBA context. 13415 * 13416 * This function is called to read the SLI4 device error attention registers 13417 * for possible error attention events. The caller must hold the hostlock 13418 * with spin_lock_irq(). 13419 * 13420 * This function returns 1 when there is Error Attention in the Host Attention 13421 * Register and returns 0 otherwise. 13422 **/ 13423 static int 13424 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13425 { 13426 uint32_t uerr_sta_hi, uerr_sta_lo; 13427 uint32_t if_type, portsmphr; 13428 struct lpfc_register portstat_reg; 13429 u32 logmask; 13430 13431 /* 13432 * For now, use the SLI4 device internal unrecoverable error 13433 * registers for error attention. This can be changed later. 13434 */ 13435 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13436 switch (if_type) { 13437 case LPFC_SLI_INTF_IF_TYPE_0: 13438 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13439 &uerr_sta_lo) || 13440 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13441 &uerr_sta_hi)) { 13442 phba->work_hs |= UNPLUG_ERR; 13443 phba->work_ha |= HA_ERATT; 13444 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13445 return 1; 13446 } 13447 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13448 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13450 "1423 HBA Unrecoverable error: " 13451 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13452 "ue_mask_lo_reg=0x%x, " 13453 "ue_mask_hi_reg=0x%x\n", 13454 uerr_sta_lo, uerr_sta_hi, 13455 phba->sli4_hba.ue_mask_lo, 13456 phba->sli4_hba.ue_mask_hi); 13457 phba->work_status[0] = uerr_sta_lo; 13458 phba->work_status[1] = uerr_sta_hi; 13459 phba->work_ha |= HA_ERATT; 13460 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13461 return 1; 13462 } 13463 break; 13464 case LPFC_SLI_INTF_IF_TYPE_2: 13465 case LPFC_SLI_INTF_IF_TYPE_6: 13466 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13467 &portstat_reg.word0) || 13468 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13469 &portsmphr)){ 13470 phba->work_hs |= UNPLUG_ERR; 13471 phba->work_ha |= HA_ERATT; 13472 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13473 return 1; 13474 } 13475 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13476 phba->work_status[0] = 13477 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13478 phba->work_status[1] = 13479 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13480 logmask = LOG_TRACE_EVENT; 13481 if (phba->work_status[0] == 13482 SLIPORT_ERR1_REG_ERR_CODE_2 && 13483 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13484 logmask = LOG_SLI; 13485 lpfc_printf_log(phba, KERN_ERR, logmask, 13486 "2885 Port Status Event: " 13487 "port status reg 0x%x, " 13488 "port smphr reg 0x%x, " 13489 "error 1=0x%x, error 2=0x%x\n", 13490 portstat_reg.word0, 13491 portsmphr, 13492 phba->work_status[0], 13493 phba->work_status[1]); 13494 phba->work_ha |= HA_ERATT; 13495 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13496 return 1; 13497 } 13498 break; 13499 case LPFC_SLI_INTF_IF_TYPE_1: 13500 default: 13501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13502 "2886 HBA Error Attention on unsupported " 13503 "if type %d.", if_type); 13504 return 1; 13505 } 13506 13507 return 0; 13508 } 13509 13510 /** 13511 * lpfc_sli_check_eratt - check error attention events 13512 * @phba: Pointer to HBA context. 13513 * 13514 * This function is called from timer soft interrupt context to check HBA's 13515 * error attention register bit for error attention events. 13516 * 13517 * This function returns 1 when there is Error Attention in the Host Attention 13518 * Register and returns 0 otherwise. 13519 **/ 13520 int 13521 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13522 { 13523 uint32_t ha_copy; 13524 13525 /* If somebody is waiting to handle an eratt, don't process it 13526 * here. The brdkill function will do this. 13527 */ 13528 if (phba->link_flag & LS_IGNORE_ERATT) 13529 return 0; 13530 13531 /* Check if interrupt handler handles this ERATT */ 13532 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13533 /* Interrupt handler has handled ERATT */ 13534 return 0; 13535 13536 /* 13537 * If there is deferred error attention, do not check for error 13538 * attention 13539 */ 13540 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13541 return 0; 13542 13543 spin_lock_irq(&phba->hbalock); 13544 /* If PCI channel is offline, don't process it */ 13545 if (unlikely(pci_channel_offline(phba->pcidev))) { 13546 spin_unlock_irq(&phba->hbalock); 13547 return 0; 13548 } 13549 13550 switch (phba->sli_rev) { 13551 case LPFC_SLI_REV2: 13552 case LPFC_SLI_REV3: 13553 /* Read chip Host Attention (HA) register */ 13554 ha_copy = lpfc_sli_eratt_read(phba); 13555 break; 13556 case LPFC_SLI_REV4: 13557 /* Read device Uncoverable Error (UERR) registers */ 13558 ha_copy = lpfc_sli4_eratt_read(phba); 13559 break; 13560 default: 13561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13562 "0299 Invalid SLI revision (%d)\n", 13563 phba->sli_rev); 13564 ha_copy = 0; 13565 break; 13566 } 13567 spin_unlock_irq(&phba->hbalock); 13568 13569 return ha_copy; 13570 } 13571 13572 /** 13573 * lpfc_intr_state_check - Check device state for interrupt handling 13574 * @phba: Pointer to HBA context. 13575 * 13576 * This inline routine checks whether a device or its PCI slot is in a state 13577 * that the interrupt should be handled. 13578 * 13579 * This function returns 0 if the device or the PCI slot is in a state that 13580 * interrupt should be handled, otherwise -EIO. 13581 */ 13582 static inline int 13583 lpfc_intr_state_check(struct lpfc_hba *phba) 13584 { 13585 /* If the pci channel is offline, ignore all the interrupts */ 13586 if (unlikely(pci_channel_offline(phba->pcidev))) 13587 return -EIO; 13588 13589 /* Update device level interrupt statistics */ 13590 phba->sli.slistat.sli_intr++; 13591 13592 /* Ignore all interrupts during initialization. */ 13593 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13594 return -EIO; 13595 13596 return 0; 13597 } 13598 13599 /** 13600 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13601 * @irq: Interrupt number. 13602 * @dev_id: The device context pointer. 13603 * 13604 * This function is directly called from the PCI layer as an interrupt 13605 * service routine when device with SLI-3 interface spec is enabled with 13606 * MSI-X multi-message interrupt mode and there are slow-path events in 13607 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13608 * interrupt mode, this function is called as part of the device-level 13609 * interrupt handler. When the PCI slot is in error recovery or the HBA 13610 * is undergoing initialization, the interrupt handler will not process 13611 * the interrupt. The link attention and ELS ring attention events are 13612 * handled by the worker thread. The interrupt handler signals the worker 13613 * thread and returns for these events. This function is called without 13614 * any lock held. It gets the hbalock to access and update SLI data 13615 * structures. 13616 * 13617 * This function returns IRQ_HANDLED when interrupt is handled else it 13618 * returns IRQ_NONE. 13619 **/ 13620 irqreturn_t 13621 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13622 { 13623 struct lpfc_hba *phba; 13624 uint32_t ha_copy, hc_copy; 13625 uint32_t work_ha_copy; 13626 unsigned long status; 13627 unsigned long iflag; 13628 uint32_t control; 13629 13630 MAILBOX_t *mbox, *pmbox; 13631 struct lpfc_vport *vport; 13632 struct lpfc_nodelist *ndlp; 13633 struct lpfc_dmabuf *mp; 13634 LPFC_MBOXQ_t *pmb; 13635 int rc; 13636 13637 /* 13638 * Get the driver's phba structure from the dev_id and 13639 * assume the HBA is not interrupting. 13640 */ 13641 phba = (struct lpfc_hba *)dev_id; 13642 13643 if (unlikely(!phba)) 13644 return IRQ_NONE; 13645 13646 /* 13647 * Stuff needs to be attented to when this function is invoked as an 13648 * individual interrupt handler in MSI-X multi-message interrupt mode 13649 */ 13650 if (phba->intr_type == MSIX) { 13651 /* Check device state for handling interrupt */ 13652 if (lpfc_intr_state_check(phba)) 13653 return IRQ_NONE; 13654 /* Need to read HA REG for slow-path events */ 13655 spin_lock_irqsave(&phba->hbalock, iflag); 13656 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13657 goto unplug_error; 13658 /* If somebody is waiting to handle an eratt don't process it 13659 * here. The brdkill function will do this. 13660 */ 13661 if (phba->link_flag & LS_IGNORE_ERATT) 13662 ha_copy &= ~HA_ERATT; 13663 /* Check the need for handling ERATT in interrupt handler */ 13664 if (ha_copy & HA_ERATT) { 13665 if (test_and_set_bit(HBA_ERATT_HANDLED, 13666 &phba->hba_flag)) 13667 /* ERATT polling has handled ERATT */ 13668 ha_copy &= ~HA_ERATT; 13669 } 13670 13671 /* 13672 * If there is deferred error attention, do not check for any 13673 * interrupt. 13674 */ 13675 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13676 spin_unlock_irqrestore(&phba->hbalock, iflag); 13677 return IRQ_NONE; 13678 } 13679 13680 /* Clear up only attention source related to slow-path */ 13681 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13682 goto unplug_error; 13683 13684 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13685 HC_LAINT_ENA | HC_ERINT_ENA), 13686 phba->HCregaddr); 13687 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13688 phba->HAregaddr); 13689 writel(hc_copy, phba->HCregaddr); 13690 readl(phba->HAregaddr); /* flush */ 13691 spin_unlock_irqrestore(&phba->hbalock, iflag); 13692 } else 13693 ha_copy = phba->ha_copy; 13694 13695 work_ha_copy = ha_copy & phba->work_ha_mask; 13696 13697 if (work_ha_copy) { 13698 if (work_ha_copy & HA_LATT) { 13699 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13700 /* 13701 * Turn off Link Attention interrupts 13702 * until CLEAR_LA done 13703 */ 13704 spin_lock_irqsave(&phba->hbalock, iflag); 13705 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13706 if (lpfc_readl(phba->HCregaddr, &control)) 13707 goto unplug_error; 13708 control &= ~HC_LAINT_ENA; 13709 writel(control, phba->HCregaddr); 13710 readl(phba->HCregaddr); /* flush */ 13711 spin_unlock_irqrestore(&phba->hbalock, iflag); 13712 } 13713 else 13714 work_ha_copy &= ~HA_LATT; 13715 } 13716 13717 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13718 /* 13719 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13720 * the only slow ring. 13721 */ 13722 status = (work_ha_copy & 13723 (HA_RXMASK << (4*LPFC_ELS_RING))); 13724 status >>= (4*LPFC_ELS_RING); 13725 if (status & HA_RXMASK) { 13726 spin_lock_irqsave(&phba->hbalock, iflag); 13727 if (lpfc_readl(phba->HCregaddr, &control)) 13728 goto unplug_error; 13729 13730 lpfc_debugfs_slow_ring_trc(phba, 13731 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13732 control, status, 13733 (uint32_t)phba->sli.slistat.sli_intr); 13734 13735 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13736 lpfc_debugfs_slow_ring_trc(phba, 13737 "ISR Disable ring:" 13738 "pwork:x%x hawork:x%x wait:x%x", 13739 phba->work_ha, work_ha_copy, 13740 (uint32_t)((unsigned long) 13741 &phba->work_waitq)); 13742 13743 control &= 13744 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13745 writel(control, phba->HCregaddr); 13746 readl(phba->HCregaddr); /* flush */ 13747 } 13748 else { 13749 lpfc_debugfs_slow_ring_trc(phba, 13750 "ISR slow ring: pwork:" 13751 "x%x hawork:x%x wait:x%x", 13752 phba->work_ha, work_ha_copy, 13753 (uint32_t)((unsigned long) 13754 &phba->work_waitq)); 13755 } 13756 spin_unlock_irqrestore(&phba->hbalock, iflag); 13757 } 13758 } 13759 spin_lock_irqsave(&phba->hbalock, iflag); 13760 if (work_ha_copy & HA_ERATT) { 13761 if (lpfc_sli_read_hs(phba)) 13762 goto unplug_error; 13763 /* 13764 * Check if there is a deferred error condition 13765 * is active 13766 */ 13767 if ((HS_FFER1 & phba->work_hs) && 13768 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13769 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13770 phba->work_hs)) { 13771 set_bit(DEFER_ERATT, &phba->hba_flag); 13772 /* Clear all interrupt enable conditions */ 13773 writel(0, phba->HCregaddr); 13774 readl(phba->HCregaddr); 13775 } 13776 } 13777 13778 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13779 pmb = phba->sli.mbox_active; 13780 pmbox = &pmb->u.mb; 13781 mbox = phba->mbox; 13782 vport = pmb->vport; 13783 13784 /* First check out the status word */ 13785 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13786 if (pmbox->mbxOwner != OWN_HOST) { 13787 spin_unlock_irqrestore(&phba->hbalock, iflag); 13788 /* 13789 * Stray Mailbox Interrupt, mbxCommand <cmd> 13790 * mbxStatus <status> 13791 */ 13792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13793 "(%d):0304 Stray Mailbox " 13794 "Interrupt mbxCommand x%x " 13795 "mbxStatus x%x\n", 13796 (vport ? vport->vpi : 0), 13797 pmbox->mbxCommand, 13798 pmbox->mbxStatus); 13799 /* clear mailbox attention bit */ 13800 work_ha_copy &= ~HA_MBATT; 13801 } else { 13802 phba->sli.mbox_active = NULL; 13803 spin_unlock_irqrestore(&phba->hbalock, iflag); 13804 phba->last_completion_time = jiffies; 13805 del_timer(&phba->sli.mbox_tmo); 13806 if (pmb->mbox_cmpl) { 13807 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13808 MAILBOX_CMD_SIZE); 13809 if (pmb->out_ext_byte_len && 13810 pmb->ext_buf) 13811 lpfc_sli_pcimem_bcopy( 13812 phba->mbox_ext, 13813 pmb->ext_buf, 13814 pmb->out_ext_byte_len); 13815 } 13816 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13817 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13818 13819 lpfc_debugfs_disc_trc(vport, 13820 LPFC_DISC_TRC_MBOX_VPORT, 13821 "MBOX dflt rpi: : " 13822 "status:x%x rpi:x%x", 13823 (uint32_t)pmbox->mbxStatus, 13824 pmbox->un.varWords[0], 0); 13825 13826 if (!pmbox->mbxStatus) { 13827 mp = pmb->ctx_buf; 13828 ndlp = pmb->ctx_ndlp; 13829 13830 /* Reg_LOGIN of dflt RPI was 13831 * successful. new lets get 13832 * rid of the RPI using the 13833 * same mbox buffer. 13834 */ 13835 lpfc_unreg_login(phba, 13836 vport->vpi, 13837 pmbox->un.varWords[0], 13838 pmb); 13839 pmb->mbox_cmpl = 13840 lpfc_mbx_cmpl_dflt_rpi; 13841 pmb->ctx_buf = mp; 13842 pmb->ctx_ndlp = ndlp; 13843 pmb->vport = vport; 13844 rc = lpfc_sli_issue_mbox(phba, 13845 pmb, 13846 MBX_NOWAIT); 13847 if (rc != MBX_BUSY) 13848 lpfc_printf_log(phba, 13849 KERN_ERR, 13850 LOG_TRACE_EVENT, 13851 "0350 rc should have" 13852 "been MBX_BUSY\n"); 13853 if (rc != MBX_NOT_FINISHED) 13854 goto send_current_mbox; 13855 } 13856 } 13857 spin_lock_irqsave( 13858 &phba->pport->work_port_lock, 13859 iflag); 13860 phba->pport->work_port_events &= 13861 ~WORKER_MBOX_TMO; 13862 spin_unlock_irqrestore( 13863 &phba->pport->work_port_lock, 13864 iflag); 13865 13866 /* Do NOT queue MBX_HEARTBEAT to the worker 13867 * thread for processing. 13868 */ 13869 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13870 /* Process mbox now */ 13871 phba->sli.mbox_active = NULL; 13872 phba->sli.sli_flag &= 13873 ~LPFC_SLI_MBOX_ACTIVE; 13874 if (pmb->mbox_cmpl) 13875 pmb->mbox_cmpl(phba, pmb); 13876 } else { 13877 /* Queue to worker thread to process */ 13878 lpfc_mbox_cmpl_put(phba, pmb); 13879 } 13880 } 13881 } else 13882 spin_unlock_irqrestore(&phba->hbalock, iflag); 13883 13884 if ((work_ha_copy & HA_MBATT) && 13885 (phba->sli.mbox_active == NULL)) { 13886 send_current_mbox: 13887 /* Process next mailbox command if there is one */ 13888 do { 13889 rc = lpfc_sli_issue_mbox(phba, NULL, 13890 MBX_NOWAIT); 13891 } while (rc == MBX_NOT_FINISHED); 13892 if (rc != MBX_SUCCESS) 13893 lpfc_printf_log(phba, KERN_ERR, 13894 LOG_TRACE_EVENT, 13895 "0349 rc should be " 13896 "MBX_SUCCESS\n"); 13897 } 13898 13899 spin_lock_irqsave(&phba->hbalock, iflag); 13900 phba->work_ha |= work_ha_copy; 13901 spin_unlock_irqrestore(&phba->hbalock, iflag); 13902 lpfc_worker_wake_up(phba); 13903 } 13904 return IRQ_HANDLED; 13905 unplug_error: 13906 spin_unlock_irqrestore(&phba->hbalock, iflag); 13907 return IRQ_HANDLED; 13908 13909 } /* lpfc_sli_sp_intr_handler */ 13910 13911 /** 13912 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13913 * @irq: Interrupt number. 13914 * @dev_id: The device context pointer. 13915 * 13916 * This function is directly called from the PCI layer as an interrupt 13917 * service routine when device with SLI-3 interface spec is enabled with 13918 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13919 * ring event in the HBA. However, when the device is enabled with either 13920 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13921 * device-level interrupt handler. When the PCI slot is in error recovery 13922 * or the HBA is undergoing initialization, the interrupt handler will not 13923 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13924 * the intrrupt context. This function is called without any lock held. 13925 * It gets the hbalock to access and update SLI data structures. 13926 * 13927 * This function returns IRQ_HANDLED when interrupt is handled else it 13928 * returns IRQ_NONE. 13929 **/ 13930 irqreturn_t 13931 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13932 { 13933 struct lpfc_hba *phba; 13934 uint32_t ha_copy; 13935 unsigned long status; 13936 unsigned long iflag; 13937 struct lpfc_sli_ring *pring; 13938 13939 /* Get the driver's phba structure from the dev_id and 13940 * assume the HBA is not interrupting. 13941 */ 13942 phba = (struct lpfc_hba *) dev_id; 13943 13944 if (unlikely(!phba)) 13945 return IRQ_NONE; 13946 13947 /* 13948 * Stuff needs to be attented to when this function is invoked as an 13949 * individual interrupt handler in MSI-X multi-message interrupt mode 13950 */ 13951 if (phba->intr_type == MSIX) { 13952 /* Check device state for handling interrupt */ 13953 if (lpfc_intr_state_check(phba)) 13954 return IRQ_NONE; 13955 /* Need to read HA REG for FCP ring and other ring events */ 13956 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13957 return IRQ_HANDLED; 13958 13959 /* 13960 * If there is deferred error attention, do not check for 13961 * any interrupt. 13962 */ 13963 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13964 return IRQ_NONE; 13965 13966 /* Clear up only attention source related to fast-path */ 13967 spin_lock_irqsave(&phba->hbalock, iflag); 13968 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13969 phba->HAregaddr); 13970 readl(phba->HAregaddr); /* flush */ 13971 spin_unlock_irqrestore(&phba->hbalock, iflag); 13972 } else 13973 ha_copy = phba->ha_copy; 13974 13975 /* 13976 * Process all events on FCP ring. Take the optimized path for FCP IO. 13977 */ 13978 ha_copy &= ~(phba->work_ha_mask); 13979 13980 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13981 status >>= (4*LPFC_FCP_RING); 13982 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13983 if (status & HA_RXMASK) 13984 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13985 13986 if (phba->cfg_multi_ring_support == 2) { 13987 /* 13988 * Process all events on extra ring. Take the optimized path 13989 * for extra ring IO. 13990 */ 13991 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13992 status >>= (4*LPFC_EXTRA_RING); 13993 if (status & HA_RXMASK) { 13994 lpfc_sli_handle_fast_ring_event(phba, 13995 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13996 status); 13997 } 13998 } 13999 return IRQ_HANDLED; 14000 } /* lpfc_sli_fp_intr_handler */ 14001 14002 /** 14003 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14004 * @irq: Interrupt number. 14005 * @dev_id: The device context pointer. 14006 * 14007 * This function is the HBA device-level interrupt handler to device with 14008 * SLI-3 interface spec, called from the PCI layer when either MSI or 14009 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14010 * requires driver attention. This function invokes the slow-path interrupt 14011 * attention handling function and fast-path interrupt attention handling 14012 * function in turn to process the relevant HBA attention events. This 14013 * function is called without any lock held. It gets the hbalock to access 14014 * and update SLI data structures. 14015 * 14016 * This function returns IRQ_HANDLED when interrupt is handled, else it 14017 * returns IRQ_NONE. 14018 **/ 14019 irqreturn_t 14020 lpfc_sli_intr_handler(int irq, void *dev_id) 14021 { 14022 struct lpfc_hba *phba; 14023 irqreturn_t sp_irq_rc, fp_irq_rc; 14024 unsigned long status1, status2; 14025 uint32_t hc_copy; 14026 14027 /* 14028 * Get the driver's phba structure from the dev_id and 14029 * assume the HBA is not interrupting. 14030 */ 14031 phba = (struct lpfc_hba *) dev_id; 14032 14033 if (unlikely(!phba)) 14034 return IRQ_NONE; 14035 14036 /* Check device state for handling interrupt */ 14037 if (lpfc_intr_state_check(phba)) 14038 return IRQ_NONE; 14039 14040 spin_lock(&phba->hbalock); 14041 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14042 spin_unlock(&phba->hbalock); 14043 return IRQ_HANDLED; 14044 } 14045 14046 if (unlikely(!phba->ha_copy)) { 14047 spin_unlock(&phba->hbalock); 14048 return IRQ_NONE; 14049 } else if (phba->ha_copy & HA_ERATT) { 14050 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14051 /* ERATT polling has handled ERATT */ 14052 phba->ha_copy &= ~HA_ERATT; 14053 } 14054 14055 /* 14056 * If there is deferred error attention, do not check for any interrupt. 14057 */ 14058 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14059 spin_unlock(&phba->hbalock); 14060 return IRQ_NONE; 14061 } 14062 14063 /* Clear attention sources except link and error attentions */ 14064 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14065 spin_unlock(&phba->hbalock); 14066 return IRQ_HANDLED; 14067 } 14068 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14069 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14070 phba->HCregaddr); 14071 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14072 writel(hc_copy, phba->HCregaddr); 14073 readl(phba->HAregaddr); /* flush */ 14074 spin_unlock(&phba->hbalock); 14075 14076 /* 14077 * Invokes slow-path host attention interrupt handling as appropriate. 14078 */ 14079 14080 /* status of events with mailbox and link attention */ 14081 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14082 14083 /* status of events with ELS ring */ 14084 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14085 status2 >>= (4*LPFC_ELS_RING); 14086 14087 if (status1 || (status2 & HA_RXMASK)) 14088 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14089 else 14090 sp_irq_rc = IRQ_NONE; 14091 14092 /* 14093 * Invoke fast-path host attention interrupt handling as appropriate. 14094 */ 14095 14096 /* status of events with FCP ring */ 14097 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14098 status1 >>= (4*LPFC_FCP_RING); 14099 14100 /* status of events with extra ring */ 14101 if (phba->cfg_multi_ring_support == 2) { 14102 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14103 status2 >>= (4*LPFC_EXTRA_RING); 14104 } else 14105 status2 = 0; 14106 14107 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14108 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14109 else 14110 fp_irq_rc = IRQ_NONE; 14111 14112 /* Return device-level interrupt handling status */ 14113 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14114 } /* lpfc_sli_intr_handler */ 14115 14116 /** 14117 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14118 * @phba: pointer to lpfc hba data structure. 14119 * 14120 * This routine is invoked by the worker thread to process all the pending 14121 * SLI4 els abort xri events. 14122 **/ 14123 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14124 { 14125 struct lpfc_cq_event *cq_event; 14126 unsigned long iflags; 14127 14128 /* First, declare the els xri abort event has been handled */ 14129 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14130 14131 /* Now, handle all the els xri abort events */ 14132 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14133 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14134 /* Get the first event from the head of the event queue */ 14135 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14136 cq_event, struct lpfc_cq_event, list); 14137 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14138 iflags); 14139 /* Notify aborted XRI for ELS work queue */ 14140 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14141 14142 /* Free the event processed back to the free pool */ 14143 lpfc_sli4_cq_event_release(phba, cq_event); 14144 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14145 iflags); 14146 } 14147 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14148 } 14149 14150 /** 14151 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14152 * @phba: Pointer to HBA context object. 14153 * @irspiocbq: Pointer to work-queue completion queue entry. 14154 * 14155 * This routine handles an ELS work-queue completion event and construct 14156 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14157 * discovery engine to handle. 14158 * 14159 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14160 **/ 14161 static struct lpfc_iocbq * 14162 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14163 struct lpfc_iocbq *irspiocbq) 14164 { 14165 struct lpfc_sli_ring *pring; 14166 struct lpfc_iocbq *cmdiocbq; 14167 struct lpfc_wcqe_complete *wcqe; 14168 unsigned long iflags; 14169 14170 pring = lpfc_phba_elsring(phba); 14171 if (unlikely(!pring)) 14172 return NULL; 14173 14174 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14175 spin_lock_irqsave(&pring->ring_lock, iflags); 14176 pring->stats.iocb_event++; 14177 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14178 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14179 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14180 if (unlikely(!cmdiocbq)) { 14181 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14182 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14183 "0386 ELS complete with no corresponding " 14184 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14185 wcqe->word0, wcqe->total_data_placed, 14186 wcqe->parameter, wcqe->word3); 14187 lpfc_sli_release_iocbq(phba, irspiocbq); 14188 return NULL; 14189 } 14190 14191 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14192 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14193 14194 /* Put the iocb back on the txcmplq */ 14195 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14196 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14197 14198 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14199 spin_lock_irqsave(&phba->hbalock, iflags); 14200 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14201 spin_unlock_irqrestore(&phba->hbalock, iflags); 14202 } 14203 14204 return irspiocbq; 14205 } 14206 14207 inline struct lpfc_cq_event * 14208 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14209 { 14210 struct lpfc_cq_event *cq_event; 14211 14212 /* Allocate a new internal CQ_EVENT entry */ 14213 cq_event = lpfc_sli4_cq_event_alloc(phba); 14214 if (!cq_event) { 14215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14216 "0602 Failed to alloc CQ_EVENT entry\n"); 14217 return NULL; 14218 } 14219 14220 /* Move the CQE into the event */ 14221 memcpy(&cq_event->cqe, entry, size); 14222 return cq_event; 14223 } 14224 14225 /** 14226 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14227 * @phba: Pointer to HBA context object. 14228 * @mcqe: Pointer to mailbox completion queue entry. 14229 * 14230 * This routine process a mailbox completion queue entry with asynchronous 14231 * event. 14232 * 14233 * Return: true if work posted to worker thread, otherwise false. 14234 **/ 14235 static bool 14236 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14237 { 14238 struct lpfc_cq_event *cq_event; 14239 unsigned long iflags; 14240 14241 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14242 "0392 Async Event: word0:x%x, word1:x%x, " 14243 "word2:x%x, word3:x%x\n", mcqe->word0, 14244 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14245 14246 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14247 if (!cq_event) 14248 return false; 14249 14250 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14251 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14252 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14253 14254 /* Set the async event flag */ 14255 set_bit(ASYNC_EVENT, &phba->hba_flag); 14256 14257 return true; 14258 } 14259 14260 /** 14261 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14262 * @phba: Pointer to HBA context object. 14263 * @mcqe: Pointer to mailbox completion queue entry. 14264 * 14265 * This routine process a mailbox completion queue entry with mailbox 14266 * completion event. 14267 * 14268 * Return: true if work posted to worker thread, otherwise false. 14269 **/ 14270 static bool 14271 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14272 { 14273 uint32_t mcqe_status; 14274 MAILBOX_t *mbox, *pmbox; 14275 struct lpfc_mqe *mqe; 14276 struct lpfc_vport *vport; 14277 struct lpfc_nodelist *ndlp; 14278 struct lpfc_dmabuf *mp; 14279 unsigned long iflags; 14280 LPFC_MBOXQ_t *pmb; 14281 bool workposted = false; 14282 int rc; 14283 14284 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14285 if (!bf_get(lpfc_trailer_completed, mcqe)) 14286 goto out_no_mqe_complete; 14287 14288 /* Get the reference to the active mbox command */ 14289 spin_lock_irqsave(&phba->hbalock, iflags); 14290 pmb = phba->sli.mbox_active; 14291 if (unlikely(!pmb)) { 14292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14293 "1832 No pending MBOX command to handle\n"); 14294 spin_unlock_irqrestore(&phba->hbalock, iflags); 14295 goto out_no_mqe_complete; 14296 } 14297 spin_unlock_irqrestore(&phba->hbalock, iflags); 14298 mqe = &pmb->u.mqe; 14299 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14300 mbox = phba->mbox; 14301 vport = pmb->vport; 14302 14303 /* Reset heartbeat timer */ 14304 phba->last_completion_time = jiffies; 14305 del_timer(&phba->sli.mbox_tmo); 14306 14307 /* Move mbox data to caller's mailbox region, do endian swapping */ 14308 if (pmb->mbox_cmpl && mbox) 14309 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14310 14311 /* 14312 * For mcqe errors, conditionally move a modified error code to 14313 * the mbox so that the error will not be missed. 14314 */ 14315 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14316 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14317 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14318 bf_set(lpfc_mqe_status, mqe, 14319 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14320 } 14321 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14322 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14323 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14324 "MBOX dflt rpi: status:x%x rpi:x%x", 14325 mcqe_status, 14326 pmbox->un.varWords[0], 0); 14327 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14328 mp = pmb->ctx_buf; 14329 ndlp = pmb->ctx_ndlp; 14330 14331 /* Reg_LOGIN of dflt RPI was successful. Mark the 14332 * node as having an UNREG_LOGIN in progress to stop 14333 * an unsolicited PLOGI from the same NPortId from 14334 * starting another mailbox transaction. 14335 */ 14336 spin_lock_irqsave(&ndlp->lock, iflags); 14337 ndlp->nlp_flag |= NLP_UNREG_INP; 14338 spin_unlock_irqrestore(&ndlp->lock, iflags); 14339 lpfc_unreg_login(phba, vport->vpi, 14340 pmbox->un.varWords[0], pmb); 14341 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14342 pmb->ctx_buf = mp; 14343 14344 /* No reference taken here. This is a default 14345 * RPI reg/immediate unreg cycle. The reference was 14346 * taken in the reg rpi path and is released when 14347 * this mailbox completes. 14348 */ 14349 pmb->ctx_ndlp = ndlp; 14350 pmb->vport = vport; 14351 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14352 if (rc != MBX_BUSY) 14353 lpfc_printf_log(phba, KERN_ERR, 14354 LOG_TRACE_EVENT, 14355 "0385 rc should " 14356 "have been MBX_BUSY\n"); 14357 if (rc != MBX_NOT_FINISHED) 14358 goto send_current_mbox; 14359 } 14360 } 14361 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14362 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14363 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14364 14365 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14366 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14367 spin_lock_irqsave(&phba->hbalock, iflags); 14368 /* Release the mailbox command posting token */ 14369 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14370 phba->sli.mbox_active = NULL; 14371 if (bf_get(lpfc_trailer_consumed, mcqe)) 14372 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14373 spin_unlock_irqrestore(&phba->hbalock, iflags); 14374 14375 /* Post the next mbox command, if there is one */ 14376 lpfc_sli4_post_async_mbox(phba); 14377 14378 /* Process cmpl now */ 14379 if (pmb->mbox_cmpl) 14380 pmb->mbox_cmpl(phba, pmb); 14381 return false; 14382 } 14383 14384 /* There is mailbox completion work to queue to the worker thread */ 14385 spin_lock_irqsave(&phba->hbalock, iflags); 14386 __lpfc_mbox_cmpl_put(phba, pmb); 14387 phba->work_ha |= HA_MBATT; 14388 spin_unlock_irqrestore(&phba->hbalock, iflags); 14389 workposted = true; 14390 14391 send_current_mbox: 14392 spin_lock_irqsave(&phba->hbalock, iflags); 14393 /* Release the mailbox command posting token */ 14394 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14395 /* Setting active mailbox pointer need to be in sync to flag clear */ 14396 phba->sli.mbox_active = NULL; 14397 if (bf_get(lpfc_trailer_consumed, mcqe)) 14398 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14399 spin_unlock_irqrestore(&phba->hbalock, iflags); 14400 /* Wake up worker thread to post the next pending mailbox command */ 14401 lpfc_worker_wake_up(phba); 14402 return workposted; 14403 14404 out_no_mqe_complete: 14405 spin_lock_irqsave(&phba->hbalock, iflags); 14406 if (bf_get(lpfc_trailer_consumed, mcqe)) 14407 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14408 spin_unlock_irqrestore(&phba->hbalock, iflags); 14409 return false; 14410 } 14411 14412 /** 14413 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14414 * @phba: Pointer to HBA context object. 14415 * @cq: Pointer to associated CQ 14416 * @cqe: Pointer to mailbox completion queue entry. 14417 * 14418 * This routine process a mailbox completion queue entry, it invokes the 14419 * proper mailbox complete handling or asynchronous event handling routine 14420 * according to the MCQE's async bit. 14421 * 14422 * Return: true if work posted to worker thread, otherwise false. 14423 **/ 14424 static bool 14425 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14426 struct lpfc_cqe *cqe) 14427 { 14428 struct lpfc_mcqe mcqe; 14429 bool workposted; 14430 14431 cq->CQ_mbox++; 14432 14433 /* Copy the mailbox MCQE and convert endian order as needed */ 14434 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14435 14436 /* Invoke the proper event handling routine */ 14437 if (!bf_get(lpfc_trailer_async, &mcqe)) 14438 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14439 else 14440 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14441 return workposted; 14442 } 14443 14444 /** 14445 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14446 * @phba: Pointer to HBA context object. 14447 * @cq: Pointer to associated CQ 14448 * @wcqe: Pointer to work-queue completion queue entry. 14449 * 14450 * This routine handles an ELS work-queue completion event. 14451 * 14452 * Return: true if work posted to worker thread, otherwise false. 14453 **/ 14454 static bool 14455 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14456 struct lpfc_wcqe_complete *wcqe) 14457 { 14458 struct lpfc_iocbq *irspiocbq; 14459 unsigned long iflags; 14460 struct lpfc_sli_ring *pring = cq->pring; 14461 int txq_cnt = 0; 14462 int txcmplq_cnt = 0; 14463 14464 /* Check for response status */ 14465 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14466 /* Log the error status */ 14467 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14468 "0357 ELS CQE error: status=x%x: " 14469 "CQE: %08x %08x %08x %08x\n", 14470 bf_get(lpfc_wcqe_c_status, wcqe), 14471 wcqe->word0, wcqe->total_data_placed, 14472 wcqe->parameter, wcqe->word3); 14473 } 14474 14475 /* Get an irspiocbq for later ELS response processing use */ 14476 irspiocbq = lpfc_sli_get_iocbq(phba); 14477 if (!irspiocbq) { 14478 if (!list_empty(&pring->txq)) 14479 txq_cnt++; 14480 if (!list_empty(&pring->txcmplq)) 14481 txcmplq_cnt++; 14482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14483 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14484 "els_txcmplq_cnt=%d\n", 14485 txq_cnt, phba->iocb_cnt, 14486 txcmplq_cnt); 14487 return false; 14488 } 14489 14490 /* Save off the slow-path queue event for work thread to process */ 14491 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14492 spin_lock_irqsave(&phba->hbalock, iflags); 14493 list_add_tail(&irspiocbq->cq_event.list, 14494 &phba->sli4_hba.sp_queue_event); 14495 spin_unlock_irqrestore(&phba->hbalock, iflags); 14496 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14497 14498 return true; 14499 } 14500 14501 /** 14502 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14503 * @phba: Pointer to HBA context object. 14504 * @wcqe: Pointer to work-queue completion queue entry. 14505 * 14506 * This routine handles slow-path WQ entry consumed event by invoking the 14507 * proper WQ release routine to the slow-path WQ. 14508 **/ 14509 static void 14510 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14511 struct lpfc_wcqe_release *wcqe) 14512 { 14513 /* sanity check on queue memory */ 14514 if (unlikely(!phba->sli4_hba.els_wq)) 14515 return; 14516 /* Check for the slow-path ELS work queue */ 14517 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14518 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14519 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14520 else 14521 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14522 "2579 Slow-path wqe consume event carries " 14523 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14524 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14525 phba->sli4_hba.els_wq->queue_id); 14526 } 14527 14528 /** 14529 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14530 * @phba: Pointer to HBA context object. 14531 * @cq: Pointer to a WQ completion queue. 14532 * @wcqe: Pointer to work-queue completion queue entry. 14533 * 14534 * This routine handles an XRI abort event. 14535 * 14536 * Return: true if work posted to worker thread, otherwise false. 14537 **/ 14538 static bool 14539 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14540 struct lpfc_queue *cq, 14541 struct sli4_wcqe_xri_aborted *wcqe) 14542 { 14543 bool workposted = false; 14544 struct lpfc_cq_event *cq_event; 14545 unsigned long iflags; 14546 14547 switch (cq->subtype) { 14548 case LPFC_IO: 14549 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14550 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14551 /* Notify aborted XRI for NVME work queue */ 14552 if (phba->nvmet_support) 14553 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14554 } 14555 workposted = false; 14556 break; 14557 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14558 case LPFC_ELS: 14559 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14560 if (!cq_event) { 14561 workposted = false; 14562 break; 14563 } 14564 cq_event->hdwq = cq->hdwq; 14565 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14566 iflags); 14567 list_add_tail(&cq_event->list, 14568 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14569 /* Set the els xri abort event flag */ 14570 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14571 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14572 iflags); 14573 workposted = true; 14574 break; 14575 default: 14576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14577 "0603 Invalid CQ subtype %d: " 14578 "%08x %08x %08x %08x\n", 14579 cq->subtype, wcqe->word0, wcqe->parameter, 14580 wcqe->word2, wcqe->word3); 14581 workposted = false; 14582 break; 14583 } 14584 return workposted; 14585 } 14586 14587 #define FC_RCTL_MDS_DIAGS 0xF4 14588 14589 /** 14590 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14591 * @phba: Pointer to HBA context object. 14592 * @rcqe: Pointer to receive-queue completion queue entry. 14593 * 14594 * This routine process a receive-queue completion queue entry. 14595 * 14596 * Return: true if work posted to worker thread, otherwise false. 14597 **/ 14598 static bool 14599 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14600 { 14601 bool workposted = false; 14602 struct fc_frame_header *fc_hdr; 14603 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14604 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14605 struct lpfc_nvmet_tgtport *tgtp; 14606 struct hbq_dmabuf *dma_buf; 14607 uint32_t status, rq_id; 14608 unsigned long iflags; 14609 14610 /* sanity check on queue memory */ 14611 if (unlikely(!hrq) || unlikely(!drq)) 14612 return workposted; 14613 14614 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14615 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14616 else 14617 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14618 if (rq_id != hrq->queue_id) 14619 goto out; 14620 14621 status = bf_get(lpfc_rcqe_status, rcqe); 14622 switch (status) { 14623 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14625 "2537 Receive Frame Truncated!!\n"); 14626 fallthrough; 14627 case FC_STATUS_RQ_SUCCESS: 14628 spin_lock_irqsave(&phba->hbalock, iflags); 14629 lpfc_sli4_rq_release(hrq, drq); 14630 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14631 if (!dma_buf) { 14632 hrq->RQ_no_buf_found++; 14633 spin_unlock_irqrestore(&phba->hbalock, iflags); 14634 goto out; 14635 } 14636 hrq->RQ_rcv_buf++; 14637 hrq->RQ_buf_posted--; 14638 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14639 14640 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14641 14642 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14643 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14644 spin_unlock_irqrestore(&phba->hbalock, iflags); 14645 /* Handle MDS Loopback frames */ 14646 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14647 lpfc_sli4_handle_mds_loopback(phba->pport, 14648 dma_buf); 14649 else 14650 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14651 break; 14652 } 14653 14654 /* save off the frame for the work thread to process */ 14655 list_add_tail(&dma_buf->cq_event.list, 14656 &phba->sli4_hba.sp_queue_event); 14657 spin_unlock_irqrestore(&phba->hbalock, iflags); 14658 /* Frame received */ 14659 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14660 workposted = true; 14661 break; 14662 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14663 if (phba->nvmet_support) { 14664 tgtp = phba->targetport->private; 14665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14666 "6402 RQE Error x%x, posted %d err_cnt " 14667 "%d: %x %x %x\n", 14668 status, hrq->RQ_buf_posted, 14669 hrq->RQ_no_posted_buf, 14670 atomic_read(&tgtp->rcv_fcp_cmd_in), 14671 atomic_read(&tgtp->rcv_fcp_cmd_out), 14672 atomic_read(&tgtp->xmt_fcp_release)); 14673 } 14674 fallthrough; 14675 14676 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14677 hrq->RQ_no_posted_buf++; 14678 /* Post more buffers if possible */ 14679 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14680 workposted = true; 14681 break; 14682 case FC_STATUS_RQ_DMA_FAILURE: 14683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14684 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14685 "x%08x\n", 14686 status, rcqe->word0, rcqe->word1, 14687 rcqe->word2, rcqe->word3); 14688 14689 /* If IV set, no further recovery */ 14690 if (bf_get(lpfc_rcqe_iv, rcqe)) 14691 break; 14692 14693 /* recycle consumed resource */ 14694 spin_lock_irqsave(&phba->hbalock, iflags); 14695 lpfc_sli4_rq_release(hrq, drq); 14696 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14697 if (!dma_buf) { 14698 hrq->RQ_no_buf_found++; 14699 spin_unlock_irqrestore(&phba->hbalock, iflags); 14700 break; 14701 } 14702 hrq->RQ_rcv_buf++; 14703 hrq->RQ_buf_posted--; 14704 spin_unlock_irqrestore(&phba->hbalock, iflags); 14705 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14706 break; 14707 default: 14708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14709 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14710 "x%08x x%08x x%08x\n", 14711 status, rcqe->word0, rcqe->word1, 14712 rcqe->word2, rcqe->word3); 14713 break; 14714 } 14715 out: 14716 return workposted; 14717 } 14718 14719 /** 14720 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14721 * @phba: Pointer to HBA context object. 14722 * @cq: Pointer to the completion queue. 14723 * @cqe: Pointer to a completion queue entry. 14724 * 14725 * This routine process a slow-path work-queue or receive queue completion queue 14726 * entry. 14727 * 14728 * Return: true if work posted to worker thread, otherwise false. 14729 **/ 14730 static bool 14731 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14732 struct lpfc_cqe *cqe) 14733 { 14734 struct lpfc_cqe cqevt; 14735 bool workposted = false; 14736 14737 /* Copy the work queue CQE and convert endian order if needed */ 14738 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14739 14740 /* Check and process for different type of WCQE and dispatch */ 14741 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14742 case CQE_CODE_COMPL_WQE: 14743 /* Process the WQ/RQ complete event */ 14744 phba->last_completion_time = jiffies; 14745 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14746 (struct lpfc_wcqe_complete *)&cqevt); 14747 break; 14748 case CQE_CODE_RELEASE_WQE: 14749 /* Process the WQ release event */ 14750 lpfc_sli4_sp_handle_rel_wcqe(phba, 14751 (struct lpfc_wcqe_release *)&cqevt); 14752 break; 14753 case CQE_CODE_XRI_ABORTED: 14754 /* Process the WQ XRI abort event */ 14755 phba->last_completion_time = jiffies; 14756 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14757 (struct sli4_wcqe_xri_aborted *)&cqevt); 14758 break; 14759 case CQE_CODE_RECEIVE: 14760 case CQE_CODE_RECEIVE_V1: 14761 /* Process the RQ event */ 14762 phba->last_completion_time = jiffies; 14763 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14764 (struct lpfc_rcqe *)&cqevt); 14765 break; 14766 default: 14767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14768 "0388 Not a valid WCQE code: x%x\n", 14769 bf_get(lpfc_cqe_code, &cqevt)); 14770 break; 14771 } 14772 return workposted; 14773 } 14774 14775 /** 14776 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14777 * @phba: Pointer to HBA context object. 14778 * @eqe: Pointer to fast-path event queue entry. 14779 * @speq: Pointer to slow-path event queue. 14780 * 14781 * This routine process a event queue entry from the slow-path event queue. 14782 * It will check the MajorCode and MinorCode to determine this is for a 14783 * completion event on a completion queue, if not, an error shall be logged 14784 * and just return. Otherwise, it will get to the corresponding completion 14785 * queue and process all the entries on that completion queue, rearm the 14786 * completion queue, and then return. 14787 * 14788 **/ 14789 static void 14790 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14791 struct lpfc_queue *speq) 14792 { 14793 struct lpfc_queue *cq = NULL, *childq; 14794 uint16_t cqid; 14795 int ret = 0; 14796 14797 /* Get the reference to the corresponding CQ */ 14798 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14799 14800 list_for_each_entry(childq, &speq->child_list, list) { 14801 if (childq->queue_id == cqid) { 14802 cq = childq; 14803 break; 14804 } 14805 } 14806 if (unlikely(!cq)) { 14807 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14809 "0365 Slow-path CQ identifier " 14810 "(%d) does not exist\n", cqid); 14811 return; 14812 } 14813 14814 /* Save EQ associated with this CQ */ 14815 cq->assoc_qp = speq; 14816 14817 if (is_kdump_kernel()) 14818 ret = queue_work(phba->wq, &cq->spwork); 14819 else 14820 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14821 14822 if (!ret) 14823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14824 "0390 Cannot schedule queue work " 14825 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14826 cqid, cq->queue_id, raw_smp_processor_id()); 14827 } 14828 14829 /** 14830 * __lpfc_sli4_process_cq - Process elements of a CQ 14831 * @phba: Pointer to HBA context object. 14832 * @cq: Pointer to CQ to be processed 14833 * @handler: Routine to process each cqe 14834 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14835 * 14836 * This routine processes completion queue entries in a CQ. While a valid 14837 * queue element is found, the handler is called. During processing checks 14838 * are made for periodic doorbell writes to let the hardware know of 14839 * element consumption. 14840 * 14841 * If the max limit on cqes to process is hit, or there are no more valid 14842 * entries, the loop stops. If we processed a sufficient number of elements, 14843 * meaning there is sufficient load, rather than rearming and generating 14844 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14845 * indicates no rescheduling. 14846 * 14847 * Returns True if work scheduled, False otherwise. 14848 **/ 14849 static bool 14850 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14851 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14852 struct lpfc_cqe *), unsigned long *delay) 14853 { 14854 struct lpfc_cqe *cqe; 14855 bool workposted = false; 14856 int count = 0, consumed = 0; 14857 bool arm = true; 14858 14859 /* default - no reschedule */ 14860 *delay = 0; 14861 14862 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14863 goto rearm_and_exit; 14864 14865 /* Process all the entries to the CQ */ 14866 cq->q_flag = 0; 14867 cqe = lpfc_sli4_cq_get(cq); 14868 while (cqe) { 14869 workposted |= handler(phba, cq, cqe); 14870 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14871 14872 consumed++; 14873 if (!(++count % cq->max_proc_limit)) 14874 break; 14875 14876 if (!(count % cq->notify_interval)) { 14877 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14878 LPFC_QUEUE_NOARM); 14879 consumed = 0; 14880 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14881 } 14882 14883 if (count == LPFC_NVMET_CQ_NOTIFY) 14884 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14885 14886 cqe = lpfc_sli4_cq_get(cq); 14887 } 14888 if (count >= phba->cfg_cq_poll_threshold) { 14889 *delay = 1; 14890 arm = false; 14891 } 14892 14893 /* Track the max number of CQEs processed in 1 EQ */ 14894 if (count > cq->CQ_max_cqe) 14895 cq->CQ_max_cqe = count; 14896 14897 cq->assoc_qp->EQ_cqe_cnt += count; 14898 14899 /* Catch the no cq entry condition */ 14900 if (unlikely(count == 0)) 14901 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14902 "0369 No entry from completion queue " 14903 "qid=%d\n", cq->queue_id); 14904 14905 xchg(&cq->queue_claimed, 0); 14906 14907 rearm_and_exit: 14908 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14909 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14910 14911 return workposted; 14912 } 14913 14914 /** 14915 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14916 * @cq: pointer to CQ to process 14917 * 14918 * This routine calls the cq processing routine with a handler specific 14919 * to the type of queue bound to it. 14920 * 14921 * The CQ routine returns two values: the first is the calling status, 14922 * which indicates whether work was queued to the background discovery 14923 * thread. If true, the routine should wakeup the discovery thread; 14924 * the second is the delay parameter. If non-zero, rather than rearming 14925 * the CQ and yet another interrupt, the CQ handler should be queued so 14926 * that it is processed in a subsequent polling action. The value of 14927 * the delay indicates when to reschedule it. 14928 **/ 14929 static void 14930 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14931 { 14932 struct lpfc_hba *phba = cq->phba; 14933 unsigned long delay; 14934 bool workposted = false; 14935 int ret = 0; 14936 14937 /* Process and rearm the CQ */ 14938 switch (cq->type) { 14939 case LPFC_MCQ: 14940 workposted |= __lpfc_sli4_process_cq(phba, cq, 14941 lpfc_sli4_sp_handle_mcqe, 14942 &delay); 14943 break; 14944 case LPFC_WCQ: 14945 if (cq->subtype == LPFC_IO) 14946 workposted |= __lpfc_sli4_process_cq(phba, cq, 14947 lpfc_sli4_fp_handle_cqe, 14948 &delay); 14949 else 14950 workposted |= __lpfc_sli4_process_cq(phba, cq, 14951 lpfc_sli4_sp_handle_cqe, 14952 &delay); 14953 break; 14954 default: 14955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14956 "0370 Invalid completion queue type (%d)\n", 14957 cq->type); 14958 return; 14959 } 14960 14961 if (delay) { 14962 if (is_kdump_kernel()) 14963 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14964 delay); 14965 else 14966 ret = queue_delayed_work_on(cq->chann, phba->wq, 14967 &cq->sched_spwork, delay); 14968 if (!ret) 14969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14970 "0394 Cannot schedule queue work " 14971 "for cqid=%d on CPU %d\n", 14972 cq->queue_id, cq->chann); 14973 } 14974 14975 /* wake up worker thread if there are works to be done */ 14976 if (workposted) 14977 lpfc_worker_wake_up(phba); 14978 } 14979 14980 /** 14981 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14982 * interrupt 14983 * @work: pointer to work element 14984 * 14985 * translates from the work handler and calls the slow-path handler. 14986 **/ 14987 static void 14988 lpfc_sli4_sp_process_cq(struct work_struct *work) 14989 { 14990 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14991 14992 __lpfc_sli4_sp_process_cq(cq); 14993 } 14994 14995 /** 14996 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14997 * @work: pointer to work element 14998 * 14999 * translates from the work handler and calls the slow-path handler. 15000 **/ 15001 static void 15002 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15003 { 15004 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15005 struct lpfc_queue, sched_spwork); 15006 15007 __lpfc_sli4_sp_process_cq(cq); 15008 } 15009 15010 /** 15011 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15012 * @phba: Pointer to HBA context object. 15013 * @cq: Pointer to associated CQ 15014 * @wcqe: Pointer to work-queue completion queue entry. 15015 * 15016 * This routine process a fast-path work queue completion entry from fast-path 15017 * event queue for FCP command response completion. 15018 **/ 15019 static void 15020 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15021 struct lpfc_wcqe_complete *wcqe) 15022 { 15023 struct lpfc_sli_ring *pring = cq->pring; 15024 struct lpfc_iocbq *cmdiocbq; 15025 unsigned long iflags; 15026 15027 /* Check for response status */ 15028 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15029 /* If resource errors reported from HBA, reduce queue 15030 * depth of the SCSI device. 15031 */ 15032 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15033 IOSTAT_LOCAL_REJECT)) && 15034 ((wcqe->parameter & IOERR_PARAM_MASK) == 15035 IOERR_NO_RESOURCES)) 15036 phba->lpfc_rampdown_queue_depth(phba); 15037 15038 /* Log the cmpl status */ 15039 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15040 "0373 FCP CQE cmpl: status=x%x: " 15041 "CQE: %08x %08x %08x %08x\n", 15042 bf_get(lpfc_wcqe_c_status, wcqe), 15043 wcqe->word0, wcqe->total_data_placed, 15044 wcqe->parameter, wcqe->word3); 15045 } 15046 15047 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15048 spin_lock_irqsave(&pring->ring_lock, iflags); 15049 pring->stats.iocb_event++; 15050 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15051 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15052 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15053 if (unlikely(!cmdiocbq)) { 15054 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15055 "0374 FCP complete with no corresponding " 15056 "cmdiocb: iotag (%d)\n", 15057 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15058 return; 15059 } 15060 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15061 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15062 #endif 15063 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15064 spin_lock_irqsave(&phba->hbalock, iflags); 15065 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15066 spin_unlock_irqrestore(&phba->hbalock, iflags); 15067 } 15068 15069 if (cmdiocbq->cmd_cmpl) { 15070 /* For FCP the flag is cleared in cmd_cmpl */ 15071 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15072 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15073 spin_lock_irqsave(&phba->hbalock, iflags); 15074 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15075 spin_unlock_irqrestore(&phba->hbalock, iflags); 15076 } 15077 15078 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15079 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15080 sizeof(struct lpfc_wcqe_complete)); 15081 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15082 } else { 15083 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15084 "0375 FCP cmdiocb not callback function " 15085 "iotag: (%d)\n", 15086 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15087 } 15088 } 15089 15090 /** 15091 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15092 * @phba: Pointer to HBA context object. 15093 * @cq: Pointer to completion queue. 15094 * @wcqe: Pointer to work-queue completion queue entry. 15095 * 15096 * This routine handles an fast-path WQ entry consumed event by invoking the 15097 * proper WQ release routine to the slow-path WQ. 15098 **/ 15099 static void 15100 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15101 struct lpfc_wcqe_release *wcqe) 15102 { 15103 struct lpfc_queue *childwq; 15104 bool wqid_matched = false; 15105 uint16_t hba_wqid; 15106 15107 /* Check for fast-path FCP work queue release */ 15108 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15109 list_for_each_entry(childwq, &cq->child_list, list) { 15110 if (childwq->queue_id == hba_wqid) { 15111 lpfc_sli4_wq_release(childwq, 15112 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15113 if (childwq->q_flag & HBA_NVMET_WQFULL) 15114 lpfc_nvmet_wqfull_process(phba, childwq); 15115 wqid_matched = true; 15116 break; 15117 } 15118 } 15119 /* Report warning log message if no match found */ 15120 if (wqid_matched != true) 15121 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15122 "2580 Fast-path wqe consume event carries " 15123 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15124 } 15125 15126 /** 15127 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15128 * @phba: Pointer to HBA context object. 15129 * @cq: Pointer to completion queue. 15130 * @rcqe: Pointer to receive-queue completion queue entry. 15131 * 15132 * This routine process a receive-queue completion queue entry. 15133 * 15134 * Return: true if work posted to worker thread, otherwise false. 15135 **/ 15136 static bool 15137 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15138 struct lpfc_rcqe *rcqe) 15139 { 15140 bool workposted = false; 15141 struct lpfc_queue *hrq; 15142 struct lpfc_queue *drq; 15143 struct rqb_dmabuf *dma_buf; 15144 struct fc_frame_header *fc_hdr; 15145 struct lpfc_nvmet_tgtport *tgtp; 15146 uint32_t status, rq_id; 15147 unsigned long iflags; 15148 uint32_t fctl, idx; 15149 15150 if ((phba->nvmet_support == 0) || 15151 (phba->sli4_hba.nvmet_cqset == NULL)) 15152 return workposted; 15153 15154 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15155 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15156 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15157 15158 /* sanity check on queue memory */ 15159 if (unlikely(!hrq) || unlikely(!drq)) 15160 return workposted; 15161 15162 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15163 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15164 else 15165 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15166 15167 if ((phba->nvmet_support == 0) || 15168 (rq_id != hrq->queue_id)) 15169 return workposted; 15170 15171 status = bf_get(lpfc_rcqe_status, rcqe); 15172 switch (status) { 15173 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15174 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15175 "6126 Receive Frame Truncated!!\n"); 15176 fallthrough; 15177 case FC_STATUS_RQ_SUCCESS: 15178 spin_lock_irqsave(&phba->hbalock, iflags); 15179 lpfc_sli4_rq_release(hrq, drq); 15180 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15181 if (!dma_buf) { 15182 hrq->RQ_no_buf_found++; 15183 spin_unlock_irqrestore(&phba->hbalock, iflags); 15184 goto out; 15185 } 15186 spin_unlock_irqrestore(&phba->hbalock, iflags); 15187 hrq->RQ_rcv_buf++; 15188 hrq->RQ_buf_posted--; 15189 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15190 15191 /* Just some basic sanity checks on FCP Command frame */ 15192 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15193 fc_hdr->fh_f_ctl[1] << 8 | 15194 fc_hdr->fh_f_ctl[2]); 15195 if (((fctl & 15196 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15197 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15198 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15199 goto drop; 15200 15201 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15202 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15203 lpfc_nvmet_unsol_fcp_event( 15204 phba, idx, dma_buf, cq->isr_timestamp, 15205 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15206 return false; 15207 } 15208 drop: 15209 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15210 break; 15211 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15212 if (phba->nvmet_support) { 15213 tgtp = phba->targetport->private; 15214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15215 "6401 RQE Error x%x, posted %d err_cnt " 15216 "%d: %x %x %x\n", 15217 status, hrq->RQ_buf_posted, 15218 hrq->RQ_no_posted_buf, 15219 atomic_read(&tgtp->rcv_fcp_cmd_in), 15220 atomic_read(&tgtp->rcv_fcp_cmd_out), 15221 atomic_read(&tgtp->xmt_fcp_release)); 15222 } 15223 fallthrough; 15224 15225 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15226 hrq->RQ_no_posted_buf++; 15227 /* Post more buffers if possible */ 15228 break; 15229 case FC_STATUS_RQ_DMA_FAILURE: 15230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15231 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15232 "x%08x\n", 15233 status, rcqe->word0, rcqe->word1, 15234 rcqe->word2, rcqe->word3); 15235 15236 /* If IV set, no further recovery */ 15237 if (bf_get(lpfc_rcqe_iv, rcqe)) 15238 break; 15239 15240 /* recycle consumed resource */ 15241 spin_lock_irqsave(&phba->hbalock, iflags); 15242 lpfc_sli4_rq_release(hrq, drq); 15243 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15244 if (!dma_buf) { 15245 hrq->RQ_no_buf_found++; 15246 spin_unlock_irqrestore(&phba->hbalock, iflags); 15247 break; 15248 } 15249 hrq->RQ_rcv_buf++; 15250 hrq->RQ_buf_posted--; 15251 spin_unlock_irqrestore(&phba->hbalock, iflags); 15252 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15253 break; 15254 default: 15255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15256 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15257 "x%08x x%08x x%08x\n", 15258 status, rcqe->word0, rcqe->word1, 15259 rcqe->word2, rcqe->word3); 15260 break; 15261 } 15262 out: 15263 return workposted; 15264 } 15265 15266 /** 15267 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15268 * @phba: adapter with cq 15269 * @cq: Pointer to the completion queue. 15270 * @cqe: Pointer to fast-path completion queue entry. 15271 * 15272 * This routine process a fast-path work queue completion entry from fast-path 15273 * event queue for FCP command response completion. 15274 * 15275 * Return: true if work posted to worker thread, otherwise false. 15276 **/ 15277 static bool 15278 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15279 struct lpfc_cqe *cqe) 15280 { 15281 struct lpfc_wcqe_release wcqe; 15282 bool workposted = false; 15283 15284 /* Copy the work queue CQE and convert endian order if needed */ 15285 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15286 15287 /* Check and process for different type of WCQE and dispatch */ 15288 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15289 case CQE_CODE_COMPL_WQE: 15290 case CQE_CODE_NVME_ERSP: 15291 cq->CQ_wq++; 15292 /* Process the WQ complete event */ 15293 phba->last_completion_time = jiffies; 15294 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15295 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15296 (struct lpfc_wcqe_complete *)&wcqe); 15297 break; 15298 case CQE_CODE_RELEASE_WQE: 15299 cq->CQ_release_wqe++; 15300 /* Process the WQ release event */ 15301 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15302 (struct lpfc_wcqe_release *)&wcqe); 15303 break; 15304 case CQE_CODE_XRI_ABORTED: 15305 cq->CQ_xri_aborted++; 15306 /* Process the WQ XRI abort event */ 15307 phba->last_completion_time = jiffies; 15308 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15309 (struct sli4_wcqe_xri_aborted *)&wcqe); 15310 break; 15311 case CQE_CODE_RECEIVE_V1: 15312 case CQE_CODE_RECEIVE: 15313 phba->last_completion_time = jiffies; 15314 if (cq->subtype == LPFC_NVMET) { 15315 workposted = lpfc_sli4_nvmet_handle_rcqe( 15316 phba, cq, (struct lpfc_rcqe *)&wcqe); 15317 } 15318 break; 15319 default: 15320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15321 "0144 Not a valid CQE code: x%x\n", 15322 bf_get(lpfc_wcqe_c_code, &wcqe)); 15323 break; 15324 } 15325 return workposted; 15326 } 15327 15328 /** 15329 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15330 * @cq: Pointer to CQ to be processed 15331 * 15332 * This routine calls the cq processing routine with the handler for 15333 * fast path CQEs. 15334 * 15335 * The CQ routine returns two values: the first is the calling status, 15336 * which indicates whether work was queued to the background discovery 15337 * thread. If true, the routine should wakeup the discovery thread; 15338 * the second is the delay parameter. If non-zero, rather than rearming 15339 * the CQ and yet another interrupt, the CQ handler should be queued so 15340 * that it is processed in a subsequent polling action. The value of 15341 * the delay indicates when to reschedule it. 15342 **/ 15343 static void 15344 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15345 { 15346 struct lpfc_hba *phba = cq->phba; 15347 unsigned long delay; 15348 bool workposted = false; 15349 int ret; 15350 15351 /* process and rearm the CQ */ 15352 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15353 &delay); 15354 15355 if (delay) { 15356 if (is_kdump_kernel()) 15357 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15358 delay); 15359 else 15360 ret = queue_delayed_work_on(cq->chann, phba->wq, 15361 &cq->sched_irqwork, delay); 15362 if (!ret) 15363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15364 "0367 Cannot schedule queue work " 15365 "for cqid=%d on CPU %d\n", 15366 cq->queue_id, cq->chann); 15367 } 15368 15369 /* wake up worker thread if there are works to be done */ 15370 if (workposted) 15371 lpfc_worker_wake_up(phba); 15372 } 15373 15374 /** 15375 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15376 * interrupt 15377 * @work: pointer to work element 15378 * 15379 * translates from the work handler and calls the fast-path handler. 15380 **/ 15381 static void 15382 lpfc_sli4_hba_process_cq(struct work_struct *work) 15383 { 15384 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15385 15386 __lpfc_sli4_hba_process_cq(cq); 15387 } 15388 15389 /** 15390 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15391 * @phba: Pointer to HBA context object. 15392 * @eq: Pointer to the queue structure. 15393 * @eqe: Pointer to fast-path event queue entry. 15394 * @poll_mode: poll_mode to execute processing the cq. 15395 * 15396 * This routine process a event queue entry from the fast-path event queue. 15397 * It will check the MajorCode and MinorCode to determine this is for a 15398 * completion event on a completion queue, if not, an error shall be logged 15399 * and just return. Otherwise, it will get to the corresponding completion 15400 * queue and process all the entries on the completion queue, rearm the 15401 * completion queue, and then return. 15402 **/ 15403 static void 15404 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15405 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15406 { 15407 struct lpfc_queue *cq = NULL; 15408 uint32_t qidx = eq->hdwq; 15409 uint16_t cqid, id; 15410 int ret; 15411 15412 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15414 "0366 Not a valid completion " 15415 "event: majorcode=x%x, minorcode=x%x\n", 15416 bf_get_le32(lpfc_eqe_major_code, eqe), 15417 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15418 return; 15419 } 15420 15421 /* Get the reference to the corresponding CQ */ 15422 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15423 15424 /* Use the fast lookup method first */ 15425 if (cqid <= phba->sli4_hba.cq_max) { 15426 cq = phba->sli4_hba.cq_lookup[cqid]; 15427 if (cq) 15428 goto work_cq; 15429 } 15430 15431 /* Next check for NVMET completion */ 15432 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15433 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15434 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15435 /* Process NVMET unsol rcv */ 15436 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15437 goto process_cq; 15438 } 15439 } 15440 15441 if (phba->sli4_hba.nvmels_cq && 15442 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15443 /* Process NVME unsol rcv */ 15444 cq = phba->sli4_hba.nvmels_cq; 15445 } 15446 15447 /* Otherwise this is a Slow path event */ 15448 if (cq == NULL) { 15449 lpfc_sli4_sp_handle_eqe(phba, eqe, 15450 phba->sli4_hba.hdwq[qidx].hba_eq); 15451 return; 15452 } 15453 15454 process_cq: 15455 if (unlikely(cqid != cq->queue_id)) { 15456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15457 "0368 Miss-matched fast-path completion " 15458 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15459 cqid, cq->queue_id); 15460 return; 15461 } 15462 15463 work_cq: 15464 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15465 if (phba->ktime_on) 15466 cq->isr_timestamp = ktime_get_ns(); 15467 else 15468 cq->isr_timestamp = 0; 15469 #endif 15470 15471 switch (poll_mode) { 15472 case LPFC_THREADED_IRQ: 15473 __lpfc_sli4_hba_process_cq(cq); 15474 break; 15475 case LPFC_QUEUE_WORK: 15476 default: 15477 if (is_kdump_kernel()) 15478 ret = queue_work(phba->wq, &cq->irqwork); 15479 else 15480 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15481 if (!ret) 15482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15483 "0383 Cannot schedule queue work " 15484 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15485 cqid, cq->queue_id, 15486 raw_smp_processor_id()); 15487 break; 15488 } 15489 } 15490 15491 /** 15492 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15493 * @work: pointer to work element 15494 * 15495 * translates from the work handler and calls the fast-path handler. 15496 **/ 15497 static void 15498 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15499 { 15500 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15501 struct lpfc_queue, sched_irqwork); 15502 15503 __lpfc_sli4_hba_process_cq(cq); 15504 } 15505 15506 /** 15507 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15508 * @irq: Interrupt number. 15509 * @dev_id: The device context pointer. 15510 * 15511 * This function is directly called from the PCI layer as an interrupt 15512 * service routine when device with SLI-4 interface spec is enabled with 15513 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15514 * ring event in the HBA. However, when the device is enabled with either 15515 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15516 * device-level interrupt handler. When the PCI slot is in error recovery 15517 * or the HBA is undergoing initialization, the interrupt handler will not 15518 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15519 * the intrrupt context. This function is called without any lock held. 15520 * It gets the hbalock to access and update SLI data structures. Note that, 15521 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15522 * equal to that of FCP CQ index. 15523 * 15524 * The link attention and ELS ring attention events are handled 15525 * by the worker thread. The interrupt handler signals the worker thread 15526 * and returns for these events. This function is called without any lock 15527 * held. It gets the hbalock to access and update SLI data structures. 15528 * 15529 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15530 * when interrupt is scheduled to be handled from a threaded irq context, or 15531 * else returns IRQ_NONE. 15532 **/ 15533 irqreturn_t 15534 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15535 { 15536 struct lpfc_hba *phba; 15537 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15538 struct lpfc_queue *fpeq; 15539 unsigned long iflag; 15540 int hba_eqidx; 15541 int ecount = 0; 15542 struct lpfc_eq_intr_info *eqi; 15543 15544 /* Get the driver's phba structure from the dev_id */ 15545 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15546 phba = hba_eq_hdl->phba; 15547 hba_eqidx = hba_eq_hdl->idx; 15548 15549 if (unlikely(!phba)) 15550 return IRQ_NONE; 15551 if (unlikely(!phba->sli4_hba.hdwq)) 15552 return IRQ_NONE; 15553 15554 /* Get to the EQ struct associated with this vector */ 15555 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15556 if (unlikely(!fpeq)) 15557 return IRQ_NONE; 15558 15559 /* Check device state for handling interrupt */ 15560 if (unlikely(lpfc_intr_state_check(phba))) { 15561 /* Check again for link_state with lock held */ 15562 spin_lock_irqsave(&phba->hbalock, iflag); 15563 if (phba->link_state < LPFC_LINK_DOWN) 15564 /* Flush, clear interrupt, and rearm the EQ */ 15565 lpfc_sli4_eqcq_flush(phba, fpeq); 15566 spin_unlock_irqrestore(&phba->hbalock, iflag); 15567 return IRQ_NONE; 15568 } 15569 15570 switch (fpeq->poll_mode) { 15571 case LPFC_THREADED_IRQ: 15572 /* CGN mgmt is mutually exclusive from irq processing */ 15573 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15574 return IRQ_WAKE_THREAD; 15575 fallthrough; 15576 case LPFC_QUEUE_WORK: 15577 default: 15578 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15579 eqi->icnt++; 15580 15581 fpeq->last_cpu = raw_smp_processor_id(); 15582 15583 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15584 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15585 phba->cfg_auto_imax && 15586 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15587 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15588 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15589 LPFC_MAX_AUTO_EQ_DELAY); 15590 15591 /* process and rearm the EQ */ 15592 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15593 LPFC_QUEUE_WORK); 15594 15595 if (unlikely(ecount == 0)) { 15596 fpeq->EQ_no_entry++; 15597 if (phba->intr_type == MSIX) 15598 /* MSI-X treated interrupt served as no EQ share INT */ 15599 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15600 "0358 MSI-X interrupt with no EQE\n"); 15601 else 15602 /* Non MSI-X treated on interrupt as EQ share INT */ 15603 return IRQ_NONE; 15604 } 15605 } 15606 15607 return IRQ_HANDLED; 15608 } /* lpfc_sli4_hba_intr_handler */ 15609 15610 /** 15611 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15612 * @irq: Interrupt number. 15613 * @dev_id: The device context pointer. 15614 * 15615 * This function is the device-level interrupt handler to device with SLI-4 15616 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15617 * interrupt mode is enabled and there is an event in the HBA which requires 15618 * driver attention. This function invokes the slow-path interrupt attention 15619 * handling function and fast-path interrupt attention handling function in 15620 * turn to process the relevant HBA attention events. This function is called 15621 * without any lock held. It gets the hbalock to access and update SLI data 15622 * structures. 15623 * 15624 * This function returns IRQ_HANDLED when interrupt is handled, else it 15625 * returns IRQ_NONE. 15626 **/ 15627 irqreturn_t 15628 lpfc_sli4_intr_handler(int irq, void *dev_id) 15629 { 15630 struct lpfc_hba *phba; 15631 irqreturn_t hba_irq_rc; 15632 bool hba_handled = false; 15633 int qidx; 15634 15635 /* Get the driver's phba structure from the dev_id */ 15636 phba = (struct lpfc_hba *)dev_id; 15637 15638 if (unlikely(!phba)) 15639 return IRQ_NONE; 15640 15641 /* 15642 * Invoke fast-path host attention interrupt handling as appropriate. 15643 */ 15644 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15645 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15646 &phba->sli4_hba.hba_eq_hdl[qidx]); 15647 if (hba_irq_rc == IRQ_HANDLED) 15648 hba_handled |= true; 15649 } 15650 15651 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15652 } /* lpfc_sli4_intr_handler */ 15653 15654 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15655 { 15656 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15657 struct lpfc_queue *eq; 15658 15659 rcu_read_lock(); 15660 15661 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15662 lpfc_sli4_poll_eq(eq); 15663 if (!list_empty(&phba->poll_list)) 15664 mod_timer(&phba->cpuhp_poll_timer, 15665 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15666 15667 rcu_read_unlock(); 15668 } 15669 15670 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15671 { 15672 struct lpfc_hba *phba = eq->phba; 15673 15674 /* kickstart slowpath processing if needed */ 15675 if (list_empty(&phba->poll_list)) 15676 mod_timer(&phba->cpuhp_poll_timer, 15677 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15678 15679 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15680 synchronize_rcu(); 15681 } 15682 15683 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15684 { 15685 struct lpfc_hba *phba = eq->phba; 15686 15687 /* Disable slowpath processing for this eq. Kick start the eq 15688 * by RE-ARMING the eq's ASAP 15689 */ 15690 list_del_rcu(&eq->_poll_list); 15691 synchronize_rcu(); 15692 15693 if (list_empty(&phba->poll_list)) 15694 del_timer_sync(&phba->cpuhp_poll_timer); 15695 } 15696 15697 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15698 { 15699 struct lpfc_queue *eq, *next; 15700 15701 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15702 list_del(&eq->_poll_list); 15703 15704 INIT_LIST_HEAD(&phba->poll_list); 15705 synchronize_rcu(); 15706 } 15707 15708 static inline void 15709 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15710 { 15711 if (mode == eq->mode) 15712 return; 15713 /* 15714 * currently this function is only called during a hotplug 15715 * event and the cpu on which this function is executing 15716 * is going offline. By now the hotplug has instructed 15717 * the scheduler to remove this cpu from cpu active mask. 15718 * So we don't need to work about being put aside by the 15719 * scheduler for a high priority process. Yes, the inte- 15720 * rrupts could come but they are known to retire ASAP. 15721 */ 15722 15723 /* Disable polling in the fastpath */ 15724 WRITE_ONCE(eq->mode, mode); 15725 /* flush out the store buffer */ 15726 smp_wmb(); 15727 15728 /* 15729 * Add this eq to the polling list and start polling. For 15730 * a grace period both interrupt handler and poller will 15731 * try to process the eq _but_ that's fine. We have a 15732 * synchronization mechanism in place (queue_claimed) to 15733 * deal with it. This is just a draining phase for int- 15734 * errupt handler (not eq's) as we have guranteed through 15735 * barrier that all the CPUs have seen the new CQ_POLLED 15736 * state. which will effectively disable the REARMING of 15737 * the EQ. The whole idea is eq's die off eventually as 15738 * we are not rearming EQ's anymore. 15739 */ 15740 mode ? lpfc_sli4_add_to_poll_list(eq) : 15741 lpfc_sli4_remove_from_poll_list(eq); 15742 } 15743 15744 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15745 { 15746 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15747 } 15748 15749 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15750 { 15751 struct lpfc_hba *phba = eq->phba; 15752 15753 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15754 15755 /* Kick start for the pending io's in h/w. 15756 * Once we switch back to interrupt processing on a eq 15757 * the io path completion will only arm eq's when it 15758 * receives a completion. But since eq's are in disa- 15759 * rmed state it doesn't receive a completion. This 15760 * creates a deadlock scenaro. 15761 */ 15762 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15763 } 15764 15765 /** 15766 * lpfc_sli4_queue_free - free a queue structure and associated memory 15767 * @queue: The queue structure to free. 15768 * 15769 * This function frees a queue structure and the DMAable memory used for 15770 * the host resident queue. This function must be called after destroying the 15771 * queue on the HBA. 15772 **/ 15773 void 15774 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15775 { 15776 struct lpfc_dmabuf *dmabuf; 15777 15778 if (!queue) 15779 return; 15780 15781 if (!list_empty(&queue->wq_list)) 15782 list_del(&queue->wq_list); 15783 15784 while (!list_empty(&queue->page_list)) { 15785 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15786 list); 15787 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15788 dmabuf->virt, dmabuf->phys); 15789 kfree(dmabuf); 15790 } 15791 if (queue->rqbp) { 15792 lpfc_free_rq_buffer(queue->phba, queue); 15793 kfree(queue->rqbp); 15794 } 15795 15796 if (!list_empty(&queue->cpu_list)) 15797 list_del(&queue->cpu_list); 15798 15799 kfree(queue); 15800 return; 15801 } 15802 15803 /** 15804 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15805 * @phba: The HBA that this queue is being created on. 15806 * @page_size: The size of a queue page 15807 * @entry_size: The size of each queue entry for this queue. 15808 * @entry_count: The number of entries that this queue will handle. 15809 * @cpu: The cpu that will primarily utilize this queue. 15810 * 15811 * This function allocates a queue structure and the DMAable memory used for 15812 * the host resident queue. This function must be called before creating the 15813 * queue on the HBA. 15814 **/ 15815 struct lpfc_queue * 15816 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15817 uint32_t entry_size, uint32_t entry_count, int cpu) 15818 { 15819 struct lpfc_queue *queue; 15820 struct lpfc_dmabuf *dmabuf; 15821 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15822 uint16_t x, pgcnt; 15823 15824 if (!phba->sli4_hba.pc_sli4_params.supported) 15825 hw_page_size = page_size; 15826 15827 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15828 15829 /* If needed, Adjust page count to match the max the adapter supports */ 15830 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15831 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15832 15833 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15834 GFP_KERNEL, cpu_to_node(cpu)); 15835 if (!queue) 15836 return NULL; 15837 15838 INIT_LIST_HEAD(&queue->list); 15839 INIT_LIST_HEAD(&queue->_poll_list); 15840 INIT_LIST_HEAD(&queue->wq_list); 15841 INIT_LIST_HEAD(&queue->wqfull_list); 15842 INIT_LIST_HEAD(&queue->page_list); 15843 INIT_LIST_HEAD(&queue->child_list); 15844 INIT_LIST_HEAD(&queue->cpu_list); 15845 15846 /* Set queue parameters now. If the system cannot provide memory 15847 * resources, the free routine needs to know what was allocated. 15848 */ 15849 queue->page_count = pgcnt; 15850 queue->q_pgs = (void **)&queue[1]; 15851 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15852 queue->entry_size = entry_size; 15853 queue->entry_count = entry_count; 15854 queue->page_size = hw_page_size; 15855 queue->phba = phba; 15856 15857 for (x = 0; x < queue->page_count; x++) { 15858 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15859 dev_to_node(&phba->pcidev->dev)); 15860 if (!dmabuf) 15861 goto out_fail; 15862 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15863 hw_page_size, &dmabuf->phys, 15864 GFP_KERNEL); 15865 if (!dmabuf->virt) { 15866 kfree(dmabuf); 15867 goto out_fail; 15868 } 15869 dmabuf->buffer_tag = x; 15870 list_add_tail(&dmabuf->list, &queue->page_list); 15871 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15872 queue->q_pgs[x] = dmabuf->virt; 15873 } 15874 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15875 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15876 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15877 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15878 15879 /* notify_interval will be set during q creation */ 15880 15881 return queue; 15882 out_fail: 15883 lpfc_sli4_queue_free(queue); 15884 return NULL; 15885 } 15886 15887 /** 15888 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15889 * @phba: HBA structure that indicates port to create a queue on. 15890 * @pci_barset: PCI BAR set flag. 15891 * 15892 * This function shall perform iomap of the specified PCI BAR address to host 15893 * memory address if not already done so and return it. The returned host 15894 * memory address can be NULL. 15895 */ 15896 static void __iomem * 15897 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15898 { 15899 if (!phba->pcidev) 15900 return NULL; 15901 15902 switch (pci_barset) { 15903 case WQ_PCI_BAR_0_AND_1: 15904 return phba->pci_bar0_memmap_p; 15905 case WQ_PCI_BAR_2_AND_3: 15906 return phba->pci_bar2_memmap_p; 15907 case WQ_PCI_BAR_4_AND_5: 15908 return phba->pci_bar4_memmap_p; 15909 default: 15910 break; 15911 } 15912 return NULL; 15913 } 15914 15915 /** 15916 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15917 * @phba: HBA structure that EQs are on. 15918 * @startq: The starting EQ index to modify 15919 * @numq: The number of EQs (consecutive indexes) to modify 15920 * @usdelay: amount of delay 15921 * 15922 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15923 * is set either by writing to a register (if supported by the SLI Port) 15924 * or by mailbox command. The mailbox command allows several EQs to be 15925 * updated at once. 15926 * 15927 * The @phba struct is used to send a mailbox command to HBA. The @startq 15928 * is used to get the starting EQ index to change. The @numq value is 15929 * used to specify how many consecutive EQ indexes, starting at EQ index, 15930 * are to be changed. This function is asynchronous and will wait for any 15931 * mailbox commands to finish before returning. 15932 * 15933 * On success this function will return a zero. If unable to allocate 15934 * enough memory this function will return -ENOMEM. If a mailbox command 15935 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15936 * have had their delay multipler changed. 15937 **/ 15938 void 15939 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15940 uint32_t numq, uint32_t usdelay) 15941 { 15942 struct lpfc_mbx_modify_eq_delay *eq_delay; 15943 LPFC_MBOXQ_t *mbox; 15944 struct lpfc_queue *eq; 15945 int cnt = 0, rc, length; 15946 uint32_t shdr_status, shdr_add_status; 15947 uint32_t dmult; 15948 int qidx; 15949 union lpfc_sli4_cfg_shdr *shdr; 15950 15951 if (startq >= phba->cfg_irq_chann) 15952 return; 15953 15954 if (usdelay > 0xFFFF) { 15955 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15956 "6429 usdelay %d too large. Scaled down to " 15957 "0xFFFF.\n", usdelay); 15958 usdelay = 0xFFFF; 15959 } 15960 15961 /* set values by EQ_DELAY register if supported */ 15962 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15963 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15964 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15965 if (!eq) 15966 continue; 15967 15968 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15969 15970 if (++cnt >= numq) 15971 break; 15972 } 15973 return; 15974 } 15975 15976 /* Otherwise, set values by mailbox cmd */ 15977 15978 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15979 if (!mbox) { 15980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15981 "6428 Failed allocating mailbox cmd buffer." 15982 " EQ delay was not set.\n"); 15983 return; 15984 } 15985 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15986 sizeof(struct lpfc_sli4_cfg_mhdr)); 15987 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15988 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15989 length, LPFC_SLI4_MBX_EMBED); 15990 eq_delay = &mbox->u.mqe.un.eq_delay; 15991 15992 /* Calculate delay multiper from maximum interrupt per second */ 15993 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15994 if (dmult) 15995 dmult--; 15996 if (dmult > LPFC_DMULT_MAX) 15997 dmult = LPFC_DMULT_MAX; 15998 15999 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16000 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16001 if (!eq) 16002 continue; 16003 eq->q_mode = usdelay; 16004 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16005 eq_delay->u.request.eq[cnt].phase = 0; 16006 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16007 16008 if (++cnt >= numq) 16009 break; 16010 } 16011 eq_delay->u.request.num_eq = cnt; 16012 16013 mbox->vport = phba->pport; 16014 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16015 mbox->ctx_ndlp = NULL; 16016 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16017 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16018 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16019 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16020 if (shdr_status || shdr_add_status || rc) { 16021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16022 "2512 MODIFY_EQ_DELAY mailbox failed with " 16023 "status x%x add_status x%x, mbx status x%x\n", 16024 shdr_status, shdr_add_status, rc); 16025 } 16026 mempool_free(mbox, phba->mbox_mem_pool); 16027 return; 16028 } 16029 16030 /** 16031 * lpfc_eq_create - Create an Event Queue on the HBA 16032 * @phba: HBA structure that indicates port to create a queue on. 16033 * @eq: The queue structure to use to create the event queue. 16034 * @imax: The maximum interrupt per second limit. 16035 * 16036 * This function creates an event queue, as detailed in @eq, on a port, 16037 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16038 * 16039 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16040 * is used to get the entry count and entry size that are necessary to 16041 * determine the number of pages to allocate and use for this queue. This 16042 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16043 * event queue. This function is asynchronous and will wait for the mailbox 16044 * command to finish before continuing. 16045 * 16046 * On success this function will return a zero. If unable to allocate enough 16047 * memory this function will return -ENOMEM. If the queue create mailbox command 16048 * fails this function will return -ENXIO. 16049 **/ 16050 int 16051 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16052 { 16053 struct lpfc_mbx_eq_create *eq_create; 16054 LPFC_MBOXQ_t *mbox; 16055 int rc, length, status = 0; 16056 struct lpfc_dmabuf *dmabuf; 16057 uint32_t shdr_status, shdr_add_status; 16058 union lpfc_sli4_cfg_shdr *shdr; 16059 uint16_t dmult; 16060 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16061 16062 /* sanity check on queue memory */ 16063 if (!eq) 16064 return -ENODEV; 16065 if (!phba->sli4_hba.pc_sli4_params.supported) 16066 hw_page_size = SLI4_PAGE_SIZE; 16067 16068 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16069 if (!mbox) 16070 return -ENOMEM; 16071 length = (sizeof(struct lpfc_mbx_eq_create) - 16072 sizeof(struct lpfc_sli4_cfg_mhdr)); 16073 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16074 LPFC_MBOX_OPCODE_EQ_CREATE, 16075 length, LPFC_SLI4_MBX_EMBED); 16076 eq_create = &mbox->u.mqe.un.eq_create; 16077 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16078 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16079 eq->page_count); 16080 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16081 LPFC_EQE_SIZE); 16082 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16083 16084 /* Use version 2 of CREATE_EQ if eqav is set */ 16085 if (phba->sli4_hba.pc_sli4_params.eqav) { 16086 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16087 LPFC_Q_CREATE_VERSION_2); 16088 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16089 phba->sli4_hba.pc_sli4_params.eqav); 16090 } 16091 16092 /* don't setup delay multiplier using EQ_CREATE */ 16093 dmult = 0; 16094 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16095 dmult); 16096 switch (eq->entry_count) { 16097 default: 16098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16099 "0360 Unsupported EQ count. (%d)\n", 16100 eq->entry_count); 16101 if (eq->entry_count < 256) { 16102 status = -EINVAL; 16103 goto out; 16104 } 16105 fallthrough; /* otherwise default to smallest count */ 16106 case 256: 16107 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16108 LPFC_EQ_CNT_256); 16109 break; 16110 case 512: 16111 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16112 LPFC_EQ_CNT_512); 16113 break; 16114 case 1024: 16115 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16116 LPFC_EQ_CNT_1024); 16117 break; 16118 case 2048: 16119 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16120 LPFC_EQ_CNT_2048); 16121 break; 16122 case 4096: 16123 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16124 LPFC_EQ_CNT_4096); 16125 break; 16126 } 16127 list_for_each_entry(dmabuf, &eq->page_list, list) { 16128 memset(dmabuf->virt, 0, hw_page_size); 16129 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16130 putPaddrLow(dmabuf->phys); 16131 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16132 putPaddrHigh(dmabuf->phys); 16133 } 16134 mbox->vport = phba->pport; 16135 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16136 mbox->ctx_buf = NULL; 16137 mbox->ctx_ndlp = NULL; 16138 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16139 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16140 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16141 if (shdr_status || shdr_add_status || rc) { 16142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16143 "2500 EQ_CREATE mailbox failed with " 16144 "status x%x add_status x%x, mbx status x%x\n", 16145 shdr_status, shdr_add_status, rc); 16146 status = -ENXIO; 16147 } 16148 eq->type = LPFC_EQ; 16149 eq->subtype = LPFC_NONE; 16150 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16151 if (eq->queue_id == 0xFFFF) 16152 status = -ENXIO; 16153 eq->host_index = 0; 16154 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16155 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16156 out: 16157 mempool_free(mbox, phba->mbox_mem_pool); 16158 return status; 16159 } 16160 16161 /** 16162 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16163 * @irq: Interrupt number. 16164 * @dev_id: The device context pointer. 16165 * 16166 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16167 * threaded irq context. 16168 * 16169 * Returns 16170 * IRQ_HANDLED - interrupt is handled 16171 * IRQ_NONE - otherwise 16172 **/ 16173 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16174 { 16175 struct lpfc_hba *phba; 16176 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16177 struct lpfc_queue *fpeq; 16178 int ecount = 0; 16179 int hba_eqidx; 16180 struct lpfc_eq_intr_info *eqi; 16181 16182 /* Get the driver's phba structure from the dev_id */ 16183 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16184 phba = hba_eq_hdl->phba; 16185 hba_eqidx = hba_eq_hdl->idx; 16186 16187 if (unlikely(!phba)) 16188 return IRQ_NONE; 16189 if (unlikely(!phba->sli4_hba.hdwq)) 16190 return IRQ_NONE; 16191 16192 /* Get to the EQ struct associated with this vector */ 16193 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16194 if (unlikely(!fpeq)) 16195 return IRQ_NONE; 16196 16197 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16198 eqi->icnt++; 16199 16200 fpeq->last_cpu = raw_smp_processor_id(); 16201 16202 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16203 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16204 phba->cfg_auto_imax && 16205 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16206 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16207 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16208 16209 /* process and rearm the EQ */ 16210 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16211 LPFC_THREADED_IRQ); 16212 16213 if (unlikely(ecount == 0)) { 16214 fpeq->EQ_no_entry++; 16215 if (phba->intr_type == MSIX) 16216 /* MSI-X treated interrupt served as no EQ share INT */ 16217 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16218 "3358 MSI-X interrupt with no EQE\n"); 16219 else 16220 /* Non MSI-X treated on interrupt as EQ share INT */ 16221 return IRQ_NONE; 16222 } 16223 return IRQ_HANDLED; 16224 } 16225 16226 /** 16227 * lpfc_cq_create - Create a Completion Queue on the HBA 16228 * @phba: HBA structure that indicates port to create a queue on. 16229 * @cq: The queue structure to use to create the completion queue. 16230 * @eq: The event queue to bind this completion queue to. 16231 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16232 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16233 * 16234 * This function creates a completion queue, as detailed in @wq, on a port, 16235 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16236 * 16237 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16238 * is used to get the entry count and entry size that are necessary to 16239 * determine the number of pages to allocate and use for this queue. The @eq 16240 * is used to indicate which event queue to bind this completion queue to. This 16241 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16242 * completion queue. This function is asynchronous and will wait for the mailbox 16243 * command to finish before continuing. 16244 * 16245 * On success this function will return a zero. If unable to allocate enough 16246 * memory this function will return -ENOMEM. If the queue create mailbox command 16247 * fails this function will return -ENXIO. 16248 **/ 16249 int 16250 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16251 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16252 { 16253 struct lpfc_mbx_cq_create *cq_create; 16254 struct lpfc_dmabuf *dmabuf; 16255 LPFC_MBOXQ_t *mbox; 16256 int rc, length, status = 0; 16257 uint32_t shdr_status, shdr_add_status; 16258 union lpfc_sli4_cfg_shdr *shdr; 16259 16260 /* sanity check on queue memory */ 16261 if (!cq || !eq) 16262 return -ENODEV; 16263 16264 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16265 if (!mbox) 16266 return -ENOMEM; 16267 length = (sizeof(struct lpfc_mbx_cq_create) - 16268 sizeof(struct lpfc_sli4_cfg_mhdr)); 16269 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16270 LPFC_MBOX_OPCODE_CQ_CREATE, 16271 length, LPFC_SLI4_MBX_EMBED); 16272 cq_create = &mbox->u.mqe.un.cq_create; 16273 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16274 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16275 cq->page_count); 16276 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16277 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16278 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16279 phba->sli4_hba.pc_sli4_params.cqv); 16280 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16281 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16282 (cq->page_size / SLI4_PAGE_SIZE)); 16283 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16284 eq->queue_id); 16285 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16286 phba->sli4_hba.pc_sli4_params.cqav); 16287 } else { 16288 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16289 eq->queue_id); 16290 } 16291 switch (cq->entry_count) { 16292 case 2048: 16293 case 4096: 16294 if (phba->sli4_hba.pc_sli4_params.cqv == 16295 LPFC_Q_CREATE_VERSION_2) { 16296 cq_create->u.request.context.lpfc_cq_context_count = 16297 cq->entry_count; 16298 bf_set(lpfc_cq_context_count, 16299 &cq_create->u.request.context, 16300 LPFC_CQ_CNT_WORD7); 16301 break; 16302 } 16303 fallthrough; 16304 default: 16305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16306 "0361 Unsupported CQ count: " 16307 "entry cnt %d sz %d pg cnt %d\n", 16308 cq->entry_count, cq->entry_size, 16309 cq->page_count); 16310 if (cq->entry_count < 256) { 16311 status = -EINVAL; 16312 goto out; 16313 } 16314 fallthrough; /* otherwise default to smallest count */ 16315 case 256: 16316 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16317 LPFC_CQ_CNT_256); 16318 break; 16319 case 512: 16320 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16321 LPFC_CQ_CNT_512); 16322 break; 16323 case 1024: 16324 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16325 LPFC_CQ_CNT_1024); 16326 break; 16327 } 16328 list_for_each_entry(dmabuf, &cq->page_list, list) { 16329 memset(dmabuf->virt, 0, cq->page_size); 16330 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16331 putPaddrLow(dmabuf->phys); 16332 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16333 putPaddrHigh(dmabuf->phys); 16334 } 16335 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16336 16337 /* The IOCTL status is embedded in the mailbox subheader. */ 16338 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16339 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16340 if (shdr_status || shdr_add_status || rc) { 16341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16342 "2501 CQ_CREATE mailbox failed with " 16343 "status x%x add_status x%x, mbx status x%x\n", 16344 shdr_status, shdr_add_status, rc); 16345 status = -ENXIO; 16346 goto out; 16347 } 16348 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16349 if (cq->queue_id == 0xFFFF) { 16350 status = -ENXIO; 16351 goto out; 16352 } 16353 /* link the cq onto the parent eq child list */ 16354 list_add_tail(&cq->list, &eq->child_list); 16355 /* Set up completion queue's type and subtype */ 16356 cq->type = type; 16357 cq->subtype = subtype; 16358 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16359 cq->assoc_qid = eq->queue_id; 16360 cq->assoc_qp = eq; 16361 cq->host_index = 0; 16362 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16363 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16364 16365 if (cq->queue_id > phba->sli4_hba.cq_max) 16366 phba->sli4_hba.cq_max = cq->queue_id; 16367 out: 16368 mempool_free(mbox, phba->mbox_mem_pool); 16369 return status; 16370 } 16371 16372 /** 16373 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16374 * @phba: HBA structure that indicates port to create a queue on. 16375 * @cqp: The queue structure array to use to create the completion queues. 16376 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16377 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16378 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16379 * 16380 * This function creates a set of completion queue, s to support MRQ 16381 * as detailed in @cqp, on a port, 16382 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16383 * 16384 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16385 * is used to get the entry count and entry size that are necessary to 16386 * determine the number of pages to allocate and use for this queue. The @eq 16387 * is used to indicate which event queue to bind this completion queue to. This 16388 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16389 * completion queue. This function is asynchronous and will wait for the mailbox 16390 * command to finish before continuing. 16391 * 16392 * On success this function will return a zero. If unable to allocate enough 16393 * memory this function will return -ENOMEM. If the queue create mailbox command 16394 * fails this function will return -ENXIO. 16395 **/ 16396 int 16397 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16398 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16399 uint32_t subtype) 16400 { 16401 struct lpfc_queue *cq; 16402 struct lpfc_queue *eq; 16403 struct lpfc_mbx_cq_create_set *cq_set; 16404 struct lpfc_dmabuf *dmabuf; 16405 LPFC_MBOXQ_t *mbox; 16406 int rc, length, alloclen, status = 0; 16407 int cnt, idx, numcq, page_idx = 0; 16408 uint32_t shdr_status, shdr_add_status; 16409 union lpfc_sli4_cfg_shdr *shdr; 16410 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16411 16412 /* sanity check on queue memory */ 16413 numcq = phba->cfg_nvmet_mrq; 16414 if (!cqp || !hdwq || !numcq) 16415 return -ENODEV; 16416 16417 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16418 if (!mbox) 16419 return -ENOMEM; 16420 16421 length = sizeof(struct lpfc_mbx_cq_create_set); 16422 length += ((numcq * cqp[0]->page_count) * 16423 sizeof(struct dma_address)); 16424 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16425 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16426 LPFC_SLI4_MBX_NEMBED); 16427 if (alloclen < length) { 16428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16429 "3098 Allocated DMA memory size (%d) is " 16430 "less than the requested DMA memory size " 16431 "(%d)\n", alloclen, length); 16432 status = -ENOMEM; 16433 goto out; 16434 } 16435 cq_set = mbox->sge_array->addr[0]; 16436 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16437 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16438 16439 for (idx = 0; idx < numcq; idx++) { 16440 cq = cqp[idx]; 16441 eq = hdwq[idx].hba_eq; 16442 if (!cq || !eq) { 16443 status = -ENOMEM; 16444 goto out; 16445 } 16446 if (!phba->sli4_hba.pc_sli4_params.supported) 16447 hw_page_size = cq->page_size; 16448 16449 switch (idx) { 16450 case 0: 16451 bf_set(lpfc_mbx_cq_create_set_page_size, 16452 &cq_set->u.request, 16453 (hw_page_size / SLI4_PAGE_SIZE)); 16454 bf_set(lpfc_mbx_cq_create_set_num_pages, 16455 &cq_set->u.request, cq->page_count); 16456 bf_set(lpfc_mbx_cq_create_set_evt, 16457 &cq_set->u.request, 1); 16458 bf_set(lpfc_mbx_cq_create_set_valid, 16459 &cq_set->u.request, 1); 16460 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16461 &cq_set->u.request, 0); 16462 bf_set(lpfc_mbx_cq_create_set_num_cq, 16463 &cq_set->u.request, numcq); 16464 bf_set(lpfc_mbx_cq_create_set_autovalid, 16465 &cq_set->u.request, 16466 phba->sli4_hba.pc_sli4_params.cqav); 16467 switch (cq->entry_count) { 16468 case 2048: 16469 case 4096: 16470 if (phba->sli4_hba.pc_sli4_params.cqv == 16471 LPFC_Q_CREATE_VERSION_2) { 16472 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16473 &cq_set->u.request, 16474 cq->entry_count); 16475 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16476 &cq_set->u.request, 16477 LPFC_CQ_CNT_WORD7); 16478 break; 16479 } 16480 fallthrough; 16481 default: 16482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16483 "3118 Bad CQ count. (%d)\n", 16484 cq->entry_count); 16485 if (cq->entry_count < 256) { 16486 status = -EINVAL; 16487 goto out; 16488 } 16489 fallthrough; /* otherwise default to smallest */ 16490 case 256: 16491 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16492 &cq_set->u.request, LPFC_CQ_CNT_256); 16493 break; 16494 case 512: 16495 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16496 &cq_set->u.request, LPFC_CQ_CNT_512); 16497 break; 16498 case 1024: 16499 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16500 &cq_set->u.request, LPFC_CQ_CNT_1024); 16501 break; 16502 } 16503 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16504 &cq_set->u.request, eq->queue_id); 16505 break; 16506 case 1: 16507 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16508 &cq_set->u.request, eq->queue_id); 16509 break; 16510 case 2: 16511 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16512 &cq_set->u.request, eq->queue_id); 16513 break; 16514 case 3: 16515 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16516 &cq_set->u.request, eq->queue_id); 16517 break; 16518 case 4: 16519 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16520 &cq_set->u.request, eq->queue_id); 16521 break; 16522 case 5: 16523 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16524 &cq_set->u.request, eq->queue_id); 16525 break; 16526 case 6: 16527 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16528 &cq_set->u.request, eq->queue_id); 16529 break; 16530 case 7: 16531 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16532 &cq_set->u.request, eq->queue_id); 16533 break; 16534 case 8: 16535 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16536 &cq_set->u.request, eq->queue_id); 16537 break; 16538 case 9: 16539 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16540 &cq_set->u.request, eq->queue_id); 16541 break; 16542 case 10: 16543 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16544 &cq_set->u.request, eq->queue_id); 16545 break; 16546 case 11: 16547 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16548 &cq_set->u.request, eq->queue_id); 16549 break; 16550 case 12: 16551 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16552 &cq_set->u.request, eq->queue_id); 16553 break; 16554 case 13: 16555 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16556 &cq_set->u.request, eq->queue_id); 16557 break; 16558 case 14: 16559 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16560 &cq_set->u.request, eq->queue_id); 16561 break; 16562 case 15: 16563 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16564 &cq_set->u.request, eq->queue_id); 16565 break; 16566 } 16567 16568 /* link the cq onto the parent eq child list */ 16569 list_add_tail(&cq->list, &eq->child_list); 16570 /* Set up completion queue's type and subtype */ 16571 cq->type = type; 16572 cq->subtype = subtype; 16573 cq->assoc_qid = eq->queue_id; 16574 cq->assoc_qp = eq; 16575 cq->host_index = 0; 16576 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16577 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16578 cq->entry_count); 16579 cq->chann = idx; 16580 16581 rc = 0; 16582 list_for_each_entry(dmabuf, &cq->page_list, list) { 16583 memset(dmabuf->virt, 0, hw_page_size); 16584 cnt = page_idx + dmabuf->buffer_tag; 16585 cq_set->u.request.page[cnt].addr_lo = 16586 putPaddrLow(dmabuf->phys); 16587 cq_set->u.request.page[cnt].addr_hi = 16588 putPaddrHigh(dmabuf->phys); 16589 rc++; 16590 } 16591 page_idx += rc; 16592 } 16593 16594 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16595 16596 /* The IOCTL status is embedded in the mailbox subheader. */ 16597 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16598 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16599 if (shdr_status || shdr_add_status || rc) { 16600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16601 "3119 CQ_CREATE_SET mailbox failed with " 16602 "status x%x add_status x%x, mbx status x%x\n", 16603 shdr_status, shdr_add_status, rc); 16604 status = -ENXIO; 16605 goto out; 16606 } 16607 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16608 if (rc == 0xFFFF) { 16609 status = -ENXIO; 16610 goto out; 16611 } 16612 16613 for (idx = 0; idx < numcq; idx++) { 16614 cq = cqp[idx]; 16615 cq->queue_id = rc + idx; 16616 if (cq->queue_id > phba->sli4_hba.cq_max) 16617 phba->sli4_hba.cq_max = cq->queue_id; 16618 } 16619 16620 out: 16621 lpfc_sli4_mbox_cmd_free(phba, mbox); 16622 return status; 16623 } 16624 16625 /** 16626 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16627 * @phba: HBA structure that indicates port to create a queue on. 16628 * @mq: The queue structure to use to create the mailbox queue. 16629 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16630 * @cq: The completion queue to associate with this cq. 16631 * 16632 * This function provides failback (fb) functionality when the 16633 * mq_create_ext fails on older FW generations. It's purpose is identical 16634 * to mq_create_ext otherwise. 16635 * 16636 * This routine cannot fail as all attributes were previously accessed and 16637 * initialized in mq_create_ext. 16638 **/ 16639 static void 16640 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16641 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16642 { 16643 struct lpfc_mbx_mq_create *mq_create; 16644 struct lpfc_dmabuf *dmabuf; 16645 int length; 16646 16647 length = (sizeof(struct lpfc_mbx_mq_create) - 16648 sizeof(struct lpfc_sli4_cfg_mhdr)); 16649 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16650 LPFC_MBOX_OPCODE_MQ_CREATE, 16651 length, LPFC_SLI4_MBX_EMBED); 16652 mq_create = &mbox->u.mqe.un.mq_create; 16653 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16654 mq->page_count); 16655 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16656 cq->queue_id); 16657 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16658 switch (mq->entry_count) { 16659 case 16: 16660 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16661 LPFC_MQ_RING_SIZE_16); 16662 break; 16663 case 32: 16664 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16665 LPFC_MQ_RING_SIZE_32); 16666 break; 16667 case 64: 16668 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16669 LPFC_MQ_RING_SIZE_64); 16670 break; 16671 case 128: 16672 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16673 LPFC_MQ_RING_SIZE_128); 16674 break; 16675 } 16676 list_for_each_entry(dmabuf, &mq->page_list, list) { 16677 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16678 putPaddrLow(dmabuf->phys); 16679 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16680 putPaddrHigh(dmabuf->phys); 16681 } 16682 } 16683 16684 /** 16685 * lpfc_mq_create - Create a mailbox Queue on the HBA 16686 * @phba: HBA structure that indicates port to create a queue on. 16687 * @mq: The queue structure to use to create the mailbox queue. 16688 * @cq: The completion queue to associate with this cq. 16689 * @subtype: The queue's subtype. 16690 * 16691 * This function creates a mailbox queue, as detailed in @mq, on a port, 16692 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16693 * 16694 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16695 * is used to get the entry count and entry size that are necessary to 16696 * determine the number of pages to allocate and use for this queue. This 16697 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16698 * mailbox queue. This function is asynchronous and will wait for the mailbox 16699 * command to finish before continuing. 16700 * 16701 * On success this function will return a zero. If unable to allocate enough 16702 * memory this function will return -ENOMEM. If the queue create mailbox command 16703 * fails this function will return -ENXIO. 16704 **/ 16705 int32_t 16706 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16707 struct lpfc_queue *cq, uint32_t subtype) 16708 { 16709 struct lpfc_mbx_mq_create *mq_create; 16710 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16711 struct lpfc_dmabuf *dmabuf; 16712 LPFC_MBOXQ_t *mbox; 16713 int rc, length, status = 0; 16714 uint32_t shdr_status, shdr_add_status; 16715 union lpfc_sli4_cfg_shdr *shdr; 16716 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16717 16718 /* sanity check on queue memory */ 16719 if (!mq || !cq) 16720 return -ENODEV; 16721 if (!phba->sli4_hba.pc_sli4_params.supported) 16722 hw_page_size = SLI4_PAGE_SIZE; 16723 16724 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16725 if (!mbox) 16726 return -ENOMEM; 16727 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16728 sizeof(struct lpfc_sli4_cfg_mhdr)); 16729 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16730 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16731 length, LPFC_SLI4_MBX_EMBED); 16732 16733 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16734 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16735 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16736 &mq_create_ext->u.request, mq->page_count); 16737 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16738 &mq_create_ext->u.request, 1); 16739 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16740 &mq_create_ext->u.request, 1); 16741 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16742 &mq_create_ext->u.request, 1); 16743 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16744 &mq_create_ext->u.request, 1); 16745 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16746 &mq_create_ext->u.request, 1); 16747 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16748 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16749 phba->sli4_hba.pc_sli4_params.mqv); 16750 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16751 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16752 cq->queue_id); 16753 else 16754 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16755 cq->queue_id); 16756 switch (mq->entry_count) { 16757 default: 16758 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16759 "0362 Unsupported MQ count. (%d)\n", 16760 mq->entry_count); 16761 if (mq->entry_count < 16) { 16762 status = -EINVAL; 16763 goto out; 16764 } 16765 fallthrough; /* otherwise default to smallest count */ 16766 case 16: 16767 bf_set(lpfc_mq_context_ring_size, 16768 &mq_create_ext->u.request.context, 16769 LPFC_MQ_RING_SIZE_16); 16770 break; 16771 case 32: 16772 bf_set(lpfc_mq_context_ring_size, 16773 &mq_create_ext->u.request.context, 16774 LPFC_MQ_RING_SIZE_32); 16775 break; 16776 case 64: 16777 bf_set(lpfc_mq_context_ring_size, 16778 &mq_create_ext->u.request.context, 16779 LPFC_MQ_RING_SIZE_64); 16780 break; 16781 case 128: 16782 bf_set(lpfc_mq_context_ring_size, 16783 &mq_create_ext->u.request.context, 16784 LPFC_MQ_RING_SIZE_128); 16785 break; 16786 } 16787 list_for_each_entry(dmabuf, &mq->page_list, list) { 16788 memset(dmabuf->virt, 0, hw_page_size); 16789 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16790 putPaddrLow(dmabuf->phys); 16791 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16792 putPaddrHigh(dmabuf->phys); 16793 } 16794 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16795 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16796 &mq_create_ext->u.response); 16797 if (rc != MBX_SUCCESS) { 16798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16799 "2795 MQ_CREATE_EXT failed with " 16800 "status x%x. Failback to MQ_CREATE.\n", 16801 rc); 16802 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16803 mq_create = &mbox->u.mqe.un.mq_create; 16804 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16805 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16806 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16807 &mq_create->u.response); 16808 } 16809 16810 /* The IOCTL status is embedded in the mailbox subheader. */ 16811 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16812 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16813 if (shdr_status || shdr_add_status || rc) { 16814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16815 "2502 MQ_CREATE mailbox failed with " 16816 "status x%x add_status x%x, mbx status x%x\n", 16817 shdr_status, shdr_add_status, rc); 16818 status = -ENXIO; 16819 goto out; 16820 } 16821 if (mq->queue_id == 0xFFFF) { 16822 status = -ENXIO; 16823 goto out; 16824 } 16825 mq->type = LPFC_MQ; 16826 mq->assoc_qid = cq->queue_id; 16827 mq->subtype = subtype; 16828 mq->host_index = 0; 16829 mq->hba_index = 0; 16830 16831 /* link the mq onto the parent cq child list */ 16832 list_add_tail(&mq->list, &cq->child_list); 16833 out: 16834 mempool_free(mbox, phba->mbox_mem_pool); 16835 return status; 16836 } 16837 16838 /** 16839 * lpfc_wq_create - Create a Work Queue on the HBA 16840 * @phba: HBA structure that indicates port to create a queue on. 16841 * @wq: The queue structure to use to create the work queue. 16842 * @cq: The completion queue to bind this work queue to. 16843 * @subtype: The subtype of the work queue indicating its functionality. 16844 * 16845 * This function creates a work queue, as detailed in @wq, on a port, described 16846 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16847 * 16848 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16849 * is used to get the entry count and entry size that are necessary to 16850 * determine the number of pages to allocate and use for this queue. The @cq 16851 * is used to indicate which completion queue to bind this work queue to. This 16852 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16853 * work queue. This function is asynchronous and will wait for the mailbox 16854 * command to finish before continuing. 16855 * 16856 * On success this function will return a zero. If unable to allocate enough 16857 * memory this function will return -ENOMEM. If the queue create mailbox command 16858 * fails this function will return -ENXIO. 16859 **/ 16860 int 16861 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16862 struct lpfc_queue *cq, uint32_t subtype) 16863 { 16864 struct lpfc_mbx_wq_create *wq_create; 16865 struct lpfc_dmabuf *dmabuf; 16866 LPFC_MBOXQ_t *mbox; 16867 int rc, length, status = 0; 16868 uint32_t shdr_status, shdr_add_status; 16869 union lpfc_sli4_cfg_shdr *shdr; 16870 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16871 struct dma_address *page; 16872 void __iomem *bar_memmap_p; 16873 uint32_t db_offset; 16874 uint16_t pci_barset; 16875 uint8_t dpp_barset; 16876 uint32_t dpp_offset; 16877 uint8_t wq_create_version; 16878 #ifdef CONFIG_X86 16879 unsigned long pg_addr; 16880 #endif 16881 16882 /* sanity check on queue memory */ 16883 if (!wq || !cq) 16884 return -ENODEV; 16885 if (!phba->sli4_hba.pc_sli4_params.supported) 16886 hw_page_size = wq->page_size; 16887 16888 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16889 if (!mbox) 16890 return -ENOMEM; 16891 length = (sizeof(struct lpfc_mbx_wq_create) - 16892 sizeof(struct lpfc_sli4_cfg_mhdr)); 16893 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16894 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16895 length, LPFC_SLI4_MBX_EMBED); 16896 wq_create = &mbox->u.mqe.un.wq_create; 16897 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16898 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16899 wq->page_count); 16900 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16901 cq->queue_id); 16902 16903 /* wqv is the earliest version supported, NOT the latest */ 16904 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16905 phba->sli4_hba.pc_sli4_params.wqv); 16906 16907 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16908 (wq->page_size > SLI4_PAGE_SIZE)) 16909 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16910 else 16911 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16912 16913 switch (wq_create_version) { 16914 case LPFC_Q_CREATE_VERSION_1: 16915 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16916 wq->entry_count); 16917 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16918 LPFC_Q_CREATE_VERSION_1); 16919 16920 switch (wq->entry_size) { 16921 default: 16922 case 64: 16923 bf_set(lpfc_mbx_wq_create_wqe_size, 16924 &wq_create->u.request_1, 16925 LPFC_WQ_WQE_SIZE_64); 16926 break; 16927 case 128: 16928 bf_set(lpfc_mbx_wq_create_wqe_size, 16929 &wq_create->u.request_1, 16930 LPFC_WQ_WQE_SIZE_128); 16931 break; 16932 } 16933 /* Request DPP by default */ 16934 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16935 bf_set(lpfc_mbx_wq_create_page_size, 16936 &wq_create->u.request_1, 16937 (wq->page_size / SLI4_PAGE_SIZE)); 16938 page = wq_create->u.request_1.page; 16939 break; 16940 default: 16941 page = wq_create->u.request.page; 16942 break; 16943 } 16944 16945 list_for_each_entry(dmabuf, &wq->page_list, list) { 16946 memset(dmabuf->virt, 0, hw_page_size); 16947 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16948 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16949 } 16950 16951 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16952 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16953 16954 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16955 /* The IOCTL status is embedded in the mailbox subheader. */ 16956 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16957 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16958 if (shdr_status || shdr_add_status || rc) { 16959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16960 "2503 WQ_CREATE mailbox failed with " 16961 "status x%x add_status x%x, mbx status x%x\n", 16962 shdr_status, shdr_add_status, rc); 16963 status = -ENXIO; 16964 goto out; 16965 } 16966 16967 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16968 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16969 &wq_create->u.response); 16970 else 16971 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16972 &wq_create->u.response_1); 16973 16974 if (wq->queue_id == 0xFFFF) { 16975 status = -ENXIO; 16976 goto out; 16977 } 16978 16979 wq->db_format = LPFC_DB_LIST_FORMAT; 16980 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16981 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16982 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16983 &wq_create->u.response); 16984 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16985 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16987 "3265 WQ[%d] doorbell format " 16988 "not supported: x%x\n", 16989 wq->queue_id, wq->db_format); 16990 status = -EINVAL; 16991 goto out; 16992 } 16993 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16994 &wq_create->u.response); 16995 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16996 pci_barset); 16997 if (!bar_memmap_p) { 16998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16999 "3263 WQ[%d] failed to memmap " 17000 "pci barset:x%x\n", 17001 wq->queue_id, pci_barset); 17002 status = -ENOMEM; 17003 goto out; 17004 } 17005 db_offset = wq_create->u.response.doorbell_offset; 17006 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17007 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17008 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17009 "3252 WQ[%d] doorbell offset " 17010 "not supported: x%x\n", 17011 wq->queue_id, db_offset); 17012 status = -EINVAL; 17013 goto out; 17014 } 17015 wq->db_regaddr = bar_memmap_p + db_offset; 17016 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17017 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17018 "format:x%x\n", wq->queue_id, 17019 pci_barset, db_offset, wq->db_format); 17020 } else 17021 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17022 } else { 17023 /* Check if DPP was honored by the firmware */ 17024 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17025 &wq_create->u.response_1); 17026 if (wq->dpp_enable) { 17027 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17028 &wq_create->u.response_1); 17029 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17030 pci_barset); 17031 if (!bar_memmap_p) { 17032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17033 "3267 WQ[%d] failed to memmap " 17034 "pci barset:x%x\n", 17035 wq->queue_id, pci_barset); 17036 status = -ENOMEM; 17037 goto out; 17038 } 17039 db_offset = wq_create->u.response_1.doorbell_offset; 17040 wq->db_regaddr = bar_memmap_p + db_offset; 17041 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17042 &wq_create->u.response_1); 17043 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17044 &wq_create->u.response_1); 17045 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17046 dpp_barset); 17047 if (!bar_memmap_p) { 17048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17049 "3268 WQ[%d] failed to memmap " 17050 "pci barset:x%x\n", 17051 wq->queue_id, dpp_barset); 17052 status = -ENOMEM; 17053 goto out; 17054 } 17055 dpp_offset = wq_create->u.response_1.dpp_offset; 17056 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17057 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17058 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17059 "dpp_id:x%x dpp_barset:x%x " 17060 "dpp_offset:x%x\n", 17061 wq->queue_id, pci_barset, db_offset, 17062 wq->dpp_id, dpp_barset, dpp_offset); 17063 17064 #ifdef CONFIG_X86 17065 /* Enable combined writes for DPP aperture */ 17066 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17067 rc = set_memory_wc(pg_addr, 1); 17068 if (rc) { 17069 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17070 "3272 Cannot setup Combined " 17071 "Write on WQ[%d] - disable DPP\n", 17072 wq->queue_id); 17073 phba->cfg_enable_dpp = 0; 17074 } 17075 #else 17076 phba->cfg_enable_dpp = 0; 17077 #endif 17078 } else 17079 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17080 } 17081 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17082 if (wq->pring == NULL) { 17083 status = -ENOMEM; 17084 goto out; 17085 } 17086 wq->type = LPFC_WQ; 17087 wq->assoc_qid = cq->queue_id; 17088 wq->subtype = subtype; 17089 wq->host_index = 0; 17090 wq->hba_index = 0; 17091 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17092 17093 /* link the wq onto the parent cq child list */ 17094 list_add_tail(&wq->list, &cq->child_list); 17095 out: 17096 mempool_free(mbox, phba->mbox_mem_pool); 17097 return status; 17098 } 17099 17100 /** 17101 * lpfc_rq_create - Create a Receive Queue on the HBA 17102 * @phba: HBA structure that indicates port to create a queue on. 17103 * @hrq: The queue structure to use to create the header receive queue. 17104 * @drq: The queue structure to use to create the data receive queue. 17105 * @cq: The completion queue to bind this work queue to. 17106 * @subtype: The subtype of the work queue indicating its functionality. 17107 * 17108 * This function creates a receive buffer queue pair , as detailed in @hrq and 17109 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17110 * to the HBA. 17111 * 17112 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17113 * struct is used to get the entry count that is necessary to determine the 17114 * number of pages to use for this queue. The @cq is used to indicate which 17115 * completion queue to bind received buffers that are posted to these queues to. 17116 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17117 * receive queue pair. This function is asynchronous and will wait for the 17118 * mailbox command to finish before continuing. 17119 * 17120 * On success this function will return a zero. If unable to allocate enough 17121 * memory this function will return -ENOMEM. If the queue create mailbox command 17122 * fails this function will return -ENXIO. 17123 **/ 17124 int 17125 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17126 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17127 { 17128 struct lpfc_mbx_rq_create *rq_create; 17129 struct lpfc_dmabuf *dmabuf; 17130 LPFC_MBOXQ_t *mbox; 17131 int rc, length, status = 0; 17132 uint32_t shdr_status, shdr_add_status; 17133 union lpfc_sli4_cfg_shdr *shdr; 17134 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17135 void __iomem *bar_memmap_p; 17136 uint32_t db_offset; 17137 uint16_t pci_barset; 17138 17139 /* sanity check on queue memory */ 17140 if (!hrq || !drq || !cq) 17141 return -ENODEV; 17142 if (!phba->sli4_hba.pc_sli4_params.supported) 17143 hw_page_size = SLI4_PAGE_SIZE; 17144 17145 if (hrq->entry_count != drq->entry_count) 17146 return -EINVAL; 17147 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17148 if (!mbox) 17149 return -ENOMEM; 17150 length = (sizeof(struct lpfc_mbx_rq_create) - 17151 sizeof(struct lpfc_sli4_cfg_mhdr)); 17152 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17153 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17154 length, LPFC_SLI4_MBX_EMBED); 17155 rq_create = &mbox->u.mqe.un.rq_create; 17156 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17157 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17158 phba->sli4_hba.pc_sli4_params.rqv); 17159 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17160 bf_set(lpfc_rq_context_rqe_count_1, 17161 &rq_create->u.request.context, 17162 hrq->entry_count); 17163 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17164 bf_set(lpfc_rq_context_rqe_size, 17165 &rq_create->u.request.context, 17166 LPFC_RQE_SIZE_8); 17167 bf_set(lpfc_rq_context_page_size, 17168 &rq_create->u.request.context, 17169 LPFC_RQ_PAGE_SIZE_4096); 17170 } else { 17171 switch (hrq->entry_count) { 17172 default: 17173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17174 "2535 Unsupported RQ count. (%d)\n", 17175 hrq->entry_count); 17176 if (hrq->entry_count < 512) { 17177 status = -EINVAL; 17178 goto out; 17179 } 17180 fallthrough; /* otherwise default to smallest count */ 17181 case 512: 17182 bf_set(lpfc_rq_context_rqe_count, 17183 &rq_create->u.request.context, 17184 LPFC_RQ_RING_SIZE_512); 17185 break; 17186 case 1024: 17187 bf_set(lpfc_rq_context_rqe_count, 17188 &rq_create->u.request.context, 17189 LPFC_RQ_RING_SIZE_1024); 17190 break; 17191 case 2048: 17192 bf_set(lpfc_rq_context_rqe_count, 17193 &rq_create->u.request.context, 17194 LPFC_RQ_RING_SIZE_2048); 17195 break; 17196 case 4096: 17197 bf_set(lpfc_rq_context_rqe_count, 17198 &rq_create->u.request.context, 17199 LPFC_RQ_RING_SIZE_4096); 17200 break; 17201 } 17202 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17203 LPFC_HDR_BUF_SIZE); 17204 } 17205 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17206 cq->queue_id); 17207 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17208 hrq->page_count); 17209 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17210 memset(dmabuf->virt, 0, hw_page_size); 17211 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17212 putPaddrLow(dmabuf->phys); 17213 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17214 putPaddrHigh(dmabuf->phys); 17215 } 17216 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17217 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17218 17219 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17220 /* The IOCTL status is embedded in the mailbox subheader. */ 17221 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17222 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17223 if (shdr_status || shdr_add_status || rc) { 17224 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17225 "2504 RQ_CREATE mailbox failed with " 17226 "status x%x add_status x%x, mbx status x%x\n", 17227 shdr_status, shdr_add_status, rc); 17228 status = -ENXIO; 17229 goto out; 17230 } 17231 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17232 if (hrq->queue_id == 0xFFFF) { 17233 status = -ENXIO; 17234 goto out; 17235 } 17236 17237 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17238 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17239 &rq_create->u.response); 17240 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17241 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17243 "3262 RQ [%d] doorbell format not " 17244 "supported: x%x\n", hrq->queue_id, 17245 hrq->db_format); 17246 status = -EINVAL; 17247 goto out; 17248 } 17249 17250 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17251 &rq_create->u.response); 17252 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17253 if (!bar_memmap_p) { 17254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17255 "3269 RQ[%d] failed to memmap pci " 17256 "barset:x%x\n", hrq->queue_id, 17257 pci_barset); 17258 status = -ENOMEM; 17259 goto out; 17260 } 17261 17262 db_offset = rq_create->u.response.doorbell_offset; 17263 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17264 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17266 "3270 RQ[%d] doorbell offset not " 17267 "supported: x%x\n", hrq->queue_id, 17268 db_offset); 17269 status = -EINVAL; 17270 goto out; 17271 } 17272 hrq->db_regaddr = bar_memmap_p + db_offset; 17273 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17274 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17275 "format:x%x\n", hrq->queue_id, pci_barset, 17276 db_offset, hrq->db_format); 17277 } else { 17278 hrq->db_format = LPFC_DB_RING_FORMAT; 17279 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17280 } 17281 hrq->type = LPFC_HRQ; 17282 hrq->assoc_qid = cq->queue_id; 17283 hrq->subtype = subtype; 17284 hrq->host_index = 0; 17285 hrq->hba_index = 0; 17286 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17287 17288 /* now create the data queue */ 17289 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17290 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17291 length, LPFC_SLI4_MBX_EMBED); 17292 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17293 phba->sli4_hba.pc_sli4_params.rqv); 17294 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17295 bf_set(lpfc_rq_context_rqe_count_1, 17296 &rq_create->u.request.context, hrq->entry_count); 17297 if (subtype == LPFC_NVMET) 17298 rq_create->u.request.context.buffer_size = 17299 LPFC_NVMET_DATA_BUF_SIZE; 17300 else 17301 rq_create->u.request.context.buffer_size = 17302 LPFC_DATA_BUF_SIZE; 17303 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17304 LPFC_RQE_SIZE_8); 17305 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17306 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17307 } else { 17308 switch (drq->entry_count) { 17309 default: 17310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17311 "2536 Unsupported RQ count. (%d)\n", 17312 drq->entry_count); 17313 if (drq->entry_count < 512) { 17314 status = -EINVAL; 17315 goto out; 17316 } 17317 fallthrough; /* otherwise default to smallest count */ 17318 case 512: 17319 bf_set(lpfc_rq_context_rqe_count, 17320 &rq_create->u.request.context, 17321 LPFC_RQ_RING_SIZE_512); 17322 break; 17323 case 1024: 17324 bf_set(lpfc_rq_context_rqe_count, 17325 &rq_create->u.request.context, 17326 LPFC_RQ_RING_SIZE_1024); 17327 break; 17328 case 2048: 17329 bf_set(lpfc_rq_context_rqe_count, 17330 &rq_create->u.request.context, 17331 LPFC_RQ_RING_SIZE_2048); 17332 break; 17333 case 4096: 17334 bf_set(lpfc_rq_context_rqe_count, 17335 &rq_create->u.request.context, 17336 LPFC_RQ_RING_SIZE_4096); 17337 break; 17338 } 17339 if (subtype == LPFC_NVMET) 17340 bf_set(lpfc_rq_context_buf_size, 17341 &rq_create->u.request.context, 17342 LPFC_NVMET_DATA_BUF_SIZE); 17343 else 17344 bf_set(lpfc_rq_context_buf_size, 17345 &rq_create->u.request.context, 17346 LPFC_DATA_BUF_SIZE); 17347 } 17348 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17349 cq->queue_id); 17350 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17351 drq->page_count); 17352 list_for_each_entry(dmabuf, &drq->page_list, list) { 17353 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17354 putPaddrLow(dmabuf->phys); 17355 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17356 putPaddrHigh(dmabuf->phys); 17357 } 17358 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17359 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17360 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17361 /* The IOCTL status is embedded in the mailbox subheader. */ 17362 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17363 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17364 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17365 if (shdr_status || shdr_add_status || rc) { 17366 status = -ENXIO; 17367 goto out; 17368 } 17369 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17370 if (drq->queue_id == 0xFFFF) { 17371 status = -ENXIO; 17372 goto out; 17373 } 17374 drq->type = LPFC_DRQ; 17375 drq->assoc_qid = cq->queue_id; 17376 drq->subtype = subtype; 17377 drq->host_index = 0; 17378 drq->hba_index = 0; 17379 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17380 17381 /* link the header and data RQs onto the parent cq child list */ 17382 list_add_tail(&hrq->list, &cq->child_list); 17383 list_add_tail(&drq->list, &cq->child_list); 17384 17385 out: 17386 mempool_free(mbox, phba->mbox_mem_pool); 17387 return status; 17388 } 17389 17390 /** 17391 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17392 * @phba: HBA structure that indicates port to create a queue on. 17393 * @hrqp: The queue structure array to use to create the header receive queues. 17394 * @drqp: The queue structure array to use to create the data receive queues. 17395 * @cqp: The completion queue array to bind these receive queues to. 17396 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17397 * 17398 * This function creates a receive buffer queue pair , as detailed in @hrq and 17399 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17400 * to the HBA. 17401 * 17402 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17403 * struct is used to get the entry count that is necessary to determine the 17404 * number of pages to use for this queue. The @cq is used to indicate which 17405 * completion queue to bind received buffers that are posted to these queues to. 17406 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17407 * receive queue pair. This function is asynchronous and will wait for the 17408 * mailbox command to finish before continuing. 17409 * 17410 * On success this function will return a zero. If unable to allocate enough 17411 * memory this function will return -ENOMEM. If the queue create mailbox command 17412 * fails this function will return -ENXIO. 17413 **/ 17414 int 17415 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17416 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17417 uint32_t subtype) 17418 { 17419 struct lpfc_queue *hrq, *drq, *cq; 17420 struct lpfc_mbx_rq_create_v2 *rq_create; 17421 struct lpfc_dmabuf *dmabuf; 17422 LPFC_MBOXQ_t *mbox; 17423 int rc, length, alloclen, status = 0; 17424 int cnt, idx, numrq, page_idx = 0; 17425 uint32_t shdr_status, shdr_add_status; 17426 union lpfc_sli4_cfg_shdr *shdr; 17427 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17428 17429 numrq = phba->cfg_nvmet_mrq; 17430 /* sanity check on array memory */ 17431 if (!hrqp || !drqp || !cqp || !numrq) 17432 return -ENODEV; 17433 if (!phba->sli4_hba.pc_sli4_params.supported) 17434 hw_page_size = SLI4_PAGE_SIZE; 17435 17436 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17437 if (!mbox) 17438 return -ENOMEM; 17439 17440 length = sizeof(struct lpfc_mbx_rq_create_v2); 17441 length += ((2 * numrq * hrqp[0]->page_count) * 17442 sizeof(struct dma_address)); 17443 17444 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17445 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17446 LPFC_SLI4_MBX_NEMBED); 17447 if (alloclen < length) { 17448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17449 "3099 Allocated DMA memory size (%d) is " 17450 "less than the requested DMA memory size " 17451 "(%d)\n", alloclen, length); 17452 status = -ENOMEM; 17453 goto out; 17454 } 17455 17456 17457 17458 rq_create = mbox->sge_array->addr[0]; 17459 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17460 17461 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17462 cnt = 0; 17463 17464 for (idx = 0; idx < numrq; idx++) { 17465 hrq = hrqp[idx]; 17466 drq = drqp[idx]; 17467 cq = cqp[idx]; 17468 17469 /* sanity check on queue memory */ 17470 if (!hrq || !drq || !cq) { 17471 status = -ENODEV; 17472 goto out; 17473 } 17474 17475 if (hrq->entry_count != drq->entry_count) { 17476 status = -EINVAL; 17477 goto out; 17478 } 17479 17480 if (idx == 0) { 17481 bf_set(lpfc_mbx_rq_create_num_pages, 17482 &rq_create->u.request, 17483 hrq->page_count); 17484 bf_set(lpfc_mbx_rq_create_rq_cnt, 17485 &rq_create->u.request, (numrq * 2)); 17486 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17487 1); 17488 bf_set(lpfc_rq_context_base_cq, 17489 &rq_create->u.request.context, 17490 cq->queue_id); 17491 bf_set(lpfc_rq_context_data_size, 17492 &rq_create->u.request.context, 17493 LPFC_NVMET_DATA_BUF_SIZE); 17494 bf_set(lpfc_rq_context_hdr_size, 17495 &rq_create->u.request.context, 17496 LPFC_HDR_BUF_SIZE); 17497 bf_set(lpfc_rq_context_rqe_count_1, 17498 &rq_create->u.request.context, 17499 hrq->entry_count); 17500 bf_set(lpfc_rq_context_rqe_size, 17501 &rq_create->u.request.context, 17502 LPFC_RQE_SIZE_8); 17503 bf_set(lpfc_rq_context_page_size, 17504 &rq_create->u.request.context, 17505 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17506 } 17507 rc = 0; 17508 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17509 memset(dmabuf->virt, 0, hw_page_size); 17510 cnt = page_idx + dmabuf->buffer_tag; 17511 rq_create->u.request.page[cnt].addr_lo = 17512 putPaddrLow(dmabuf->phys); 17513 rq_create->u.request.page[cnt].addr_hi = 17514 putPaddrHigh(dmabuf->phys); 17515 rc++; 17516 } 17517 page_idx += rc; 17518 17519 rc = 0; 17520 list_for_each_entry(dmabuf, &drq->page_list, list) { 17521 memset(dmabuf->virt, 0, hw_page_size); 17522 cnt = page_idx + dmabuf->buffer_tag; 17523 rq_create->u.request.page[cnt].addr_lo = 17524 putPaddrLow(dmabuf->phys); 17525 rq_create->u.request.page[cnt].addr_hi = 17526 putPaddrHigh(dmabuf->phys); 17527 rc++; 17528 } 17529 page_idx += rc; 17530 17531 hrq->db_format = LPFC_DB_RING_FORMAT; 17532 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17533 hrq->type = LPFC_HRQ; 17534 hrq->assoc_qid = cq->queue_id; 17535 hrq->subtype = subtype; 17536 hrq->host_index = 0; 17537 hrq->hba_index = 0; 17538 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17539 17540 drq->db_format = LPFC_DB_RING_FORMAT; 17541 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17542 drq->type = LPFC_DRQ; 17543 drq->assoc_qid = cq->queue_id; 17544 drq->subtype = subtype; 17545 drq->host_index = 0; 17546 drq->hba_index = 0; 17547 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17548 17549 list_add_tail(&hrq->list, &cq->child_list); 17550 list_add_tail(&drq->list, &cq->child_list); 17551 } 17552 17553 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17554 /* The IOCTL status is embedded in the mailbox subheader. */ 17555 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17556 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17557 if (shdr_status || shdr_add_status || rc) { 17558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17559 "3120 RQ_CREATE mailbox failed with " 17560 "status x%x add_status x%x, mbx status x%x\n", 17561 shdr_status, shdr_add_status, rc); 17562 status = -ENXIO; 17563 goto out; 17564 } 17565 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17566 if (rc == 0xFFFF) { 17567 status = -ENXIO; 17568 goto out; 17569 } 17570 17571 /* Initialize all RQs with associated queue id */ 17572 for (idx = 0; idx < numrq; idx++) { 17573 hrq = hrqp[idx]; 17574 hrq->queue_id = rc + (2 * idx); 17575 drq = drqp[idx]; 17576 drq->queue_id = rc + (2 * idx) + 1; 17577 } 17578 17579 out: 17580 lpfc_sli4_mbox_cmd_free(phba, mbox); 17581 return status; 17582 } 17583 17584 /** 17585 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17586 * @phba: HBA structure that indicates port to destroy a queue on. 17587 * @eq: The queue structure associated with the queue to destroy. 17588 * 17589 * This function destroys a queue, as detailed in @eq by sending an mailbox 17590 * command, specific to the type of queue, to the HBA. 17591 * 17592 * The @eq struct is used to get the queue ID of the queue to destroy. 17593 * 17594 * On success this function will return a zero. If the queue destroy mailbox 17595 * command fails this function will return -ENXIO. 17596 **/ 17597 int 17598 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17599 { 17600 LPFC_MBOXQ_t *mbox; 17601 int rc, length, status = 0; 17602 uint32_t shdr_status, shdr_add_status; 17603 union lpfc_sli4_cfg_shdr *shdr; 17604 17605 /* sanity check on queue memory */ 17606 if (!eq) 17607 return -ENODEV; 17608 17609 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17610 if (!mbox) 17611 return -ENOMEM; 17612 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17613 sizeof(struct lpfc_sli4_cfg_mhdr)); 17614 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17615 LPFC_MBOX_OPCODE_EQ_DESTROY, 17616 length, LPFC_SLI4_MBX_EMBED); 17617 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17618 eq->queue_id); 17619 mbox->vport = eq->phba->pport; 17620 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17621 17622 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17623 /* The IOCTL status is embedded in the mailbox subheader. */ 17624 shdr = (union lpfc_sli4_cfg_shdr *) 17625 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17626 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17627 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17628 if (shdr_status || shdr_add_status || rc) { 17629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17630 "2505 EQ_DESTROY mailbox failed with " 17631 "status x%x add_status x%x, mbx status x%x\n", 17632 shdr_status, shdr_add_status, rc); 17633 status = -ENXIO; 17634 } 17635 17636 /* Remove eq from any list */ 17637 list_del_init(&eq->list); 17638 mempool_free(mbox, eq->phba->mbox_mem_pool); 17639 return status; 17640 } 17641 17642 /** 17643 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17644 * @phba: HBA structure that indicates port to destroy a queue on. 17645 * @cq: The queue structure associated with the queue to destroy. 17646 * 17647 * This function destroys a queue, as detailed in @cq by sending an mailbox 17648 * command, specific to the type of queue, to the HBA. 17649 * 17650 * The @cq struct is used to get the queue ID of the queue to destroy. 17651 * 17652 * On success this function will return a zero. If the queue destroy mailbox 17653 * command fails this function will return -ENXIO. 17654 **/ 17655 int 17656 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17657 { 17658 LPFC_MBOXQ_t *mbox; 17659 int rc, length, status = 0; 17660 uint32_t shdr_status, shdr_add_status; 17661 union lpfc_sli4_cfg_shdr *shdr; 17662 17663 /* sanity check on queue memory */ 17664 if (!cq) 17665 return -ENODEV; 17666 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17667 if (!mbox) 17668 return -ENOMEM; 17669 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17670 sizeof(struct lpfc_sli4_cfg_mhdr)); 17671 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17672 LPFC_MBOX_OPCODE_CQ_DESTROY, 17673 length, LPFC_SLI4_MBX_EMBED); 17674 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17675 cq->queue_id); 17676 mbox->vport = cq->phba->pport; 17677 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17678 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17679 /* The IOCTL status is embedded in the mailbox subheader. */ 17680 shdr = (union lpfc_sli4_cfg_shdr *) 17681 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17682 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17683 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17684 if (shdr_status || shdr_add_status || rc) { 17685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17686 "2506 CQ_DESTROY mailbox failed with " 17687 "status x%x add_status x%x, mbx status x%x\n", 17688 shdr_status, shdr_add_status, rc); 17689 status = -ENXIO; 17690 } 17691 /* Remove cq from any list */ 17692 list_del_init(&cq->list); 17693 mempool_free(mbox, cq->phba->mbox_mem_pool); 17694 return status; 17695 } 17696 17697 /** 17698 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17699 * @phba: HBA structure that indicates port to destroy a queue on. 17700 * @mq: The queue structure associated with the queue to destroy. 17701 * 17702 * This function destroys a queue, as detailed in @mq by sending an mailbox 17703 * command, specific to the type of queue, to the HBA. 17704 * 17705 * The @mq struct is used to get the queue ID of the queue to destroy. 17706 * 17707 * On success this function will return a zero. If the queue destroy mailbox 17708 * command fails this function will return -ENXIO. 17709 **/ 17710 int 17711 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17712 { 17713 LPFC_MBOXQ_t *mbox; 17714 int rc, length, status = 0; 17715 uint32_t shdr_status, shdr_add_status; 17716 union lpfc_sli4_cfg_shdr *shdr; 17717 17718 /* sanity check on queue memory */ 17719 if (!mq) 17720 return -ENODEV; 17721 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17722 if (!mbox) 17723 return -ENOMEM; 17724 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17725 sizeof(struct lpfc_sli4_cfg_mhdr)); 17726 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17727 LPFC_MBOX_OPCODE_MQ_DESTROY, 17728 length, LPFC_SLI4_MBX_EMBED); 17729 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17730 mq->queue_id); 17731 mbox->vport = mq->phba->pport; 17732 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17733 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17734 /* The IOCTL status is embedded in the mailbox subheader. */ 17735 shdr = (union lpfc_sli4_cfg_shdr *) 17736 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17737 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17738 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17739 if (shdr_status || shdr_add_status || rc) { 17740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17741 "2507 MQ_DESTROY mailbox failed with " 17742 "status x%x add_status x%x, mbx status x%x\n", 17743 shdr_status, shdr_add_status, rc); 17744 status = -ENXIO; 17745 } 17746 /* Remove mq from any list */ 17747 list_del_init(&mq->list); 17748 mempool_free(mbox, mq->phba->mbox_mem_pool); 17749 return status; 17750 } 17751 17752 /** 17753 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17754 * @phba: HBA structure that indicates port to destroy a queue on. 17755 * @wq: The queue structure associated with the queue to destroy. 17756 * 17757 * This function destroys a queue, as detailed in @wq by sending an mailbox 17758 * command, specific to the type of queue, to the HBA. 17759 * 17760 * The @wq struct is used to get the queue ID of the queue to destroy. 17761 * 17762 * On success this function will return a zero. If the queue destroy mailbox 17763 * command fails this function will return -ENXIO. 17764 **/ 17765 int 17766 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17767 { 17768 LPFC_MBOXQ_t *mbox; 17769 int rc, length, status = 0; 17770 uint32_t shdr_status, shdr_add_status; 17771 union lpfc_sli4_cfg_shdr *shdr; 17772 17773 /* sanity check on queue memory */ 17774 if (!wq) 17775 return -ENODEV; 17776 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17777 if (!mbox) 17778 return -ENOMEM; 17779 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17780 sizeof(struct lpfc_sli4_cfg_mhdr)); 17781 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17782 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17783 length, LPFC_SLI4_MBX_EMBED); 17784 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17785 wq->queue_id); 17786 mbox->vport = wq->phba->pport; 17787 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17788 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17789 shdr = (union lpfc_sli4_cfg_shdr *) 17790 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17791 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17792 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17793 if (shdr_status || shdr_add_status || rc) { 17794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17795 "2508 WQ_DESTROY mailbox failed with " 17796 "status x%x add_status x%x, mbx status x%x\n", 17797 shdr_status, shdr_add_status, rc); 17798 status = -ENXIO; 17799 } 17800 /* Remove wq from any list */ 17801 list_del_init(&wq->list); 17802 kfree(wq->pring); 17803 wq->pring = NULL; 17804 mempool_free(mbox, wq->phba->mbox_mem_pool); 17805 return status; 17806 } 17807 17808 /** 17809 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17810 * @phba: HBA structure that indicates port to destroy a queue on. 17811 * @hrq: The queue structure associated with the queue to destroy. 17812 * @drq: The queue structure associated with the queue to destroy. 17813 * 17814 * This function destroys a queue, as detailed in @rq by sending an mailbox 17815 * command, specific to the type of queue, to the HBA. 17816 * 17817 * The @rq struct is used to get the queue ID of the queue to destroy. 17818 * 17819 * On success this function will return a zero. If the queue destroy mailbox 17820 * command fails this function will return -ENXIO. 17821 **/ 17822 int 17823 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17824 struct lpfc_queue *drq) 17825 { 17826 LPFC_MBOXQ_t *mbox; 17827 int rc, length, status = 0; 17828 uint32_t shdr_status, shdr_add_status; 17829 union lpfc_sli4_cfg_shdr *shdr; 17830 17831 /* sanity check on queue memory */ 17832 if (!hrq || !drq) 17833 return -ENODEV; 17834 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17835 if (!mbox) 17836 return -ENOMEM; 17837 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17838 sizeof(struct lpfc_sli4_cfg_mhdr)); 17839 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17840 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17841 length, LPFC_SLI4_MBX_EMBED); 17842 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17843 hrq->queue_id); 17844 mbox->vport = hrq->phba->pport; 17845 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17846 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17847 /* The IOCTL status is embedded in the mailbox subheader. */ 17848 shdr = (union lpfc_sli4_cfg_shdr *) 17849 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17850 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17851 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17852 if (shdr_status || shdr_add_status || rc) { 17853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17854 "2509 RQ_DESTROY mailbox failed with " 17855 "status x%x add_status x%x, mbx status x%x\n", 17856 shdr_status, shdr_add_status, rc); 17857 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17858 return -ENXIO; 17859 } 17860 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17861 drq->queue_id); 17862 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17863 shdr = (union lpfc_sli4_cfg_shdr *) 17864 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17865 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17866 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17867 if (shdr_status || shdr_add_status || rc) { 17868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17869 "2510 RQ_DESTROY mailbox failed with " 17870 "status x%x add_status x%x, mbx status x%x\n", 17871 shdr_status, shdr_add_status, rc); 17872 status = -ENXIO; 17873 } 17874 list_del_init(&hrq->list); 17875 list_del_init(&drq->list); 17876 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17877 return status; 17878 } 17879 17880 /** 17881 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17882 * @phba: The virtual port for which this call being executed. 17883 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17884 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17885 * @xritag: the xritag that ties this io to the SGL pages. 17886 * 17887 * This routine will post the sgl pages for the IO that has the xritag 17888 * that is in the iocbq structure. The xritag is assigned during iocbq 17889 * creation and persists for as long as the driver is loaded. 17890 * if the caller has fewer than 256 scatter gather segments to map then 17891 * pdma_phys_addr1 should be 0. 17892 * If the caller needs to map more than 256 scatter gather segment then 17893 * pdma_phys_addr1 should be a valid physical address. 17894 * physical address for SGLs must be 64 byte aligned. 17895 * If you are going to map 2 SGL's then the first one must have 256 entries 17896 * the second sgl can have between 1 and 256 entries. 17897 * 17898 * Return codes: 17899 * 0 - Success 17900 * -ENXIO, -ENOMEM - Failure 17901 **/ 17902 int 17903 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17904 dma_addr_t pdma_phys_addr0, 17905 dma_addr_t pdma_phys_addr1, 17906 uint16_t xritag) 17907 { 17908 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17909 LPFC_MBOXQ_t *mbox; 17910 int rc; 17911 uint32_t shdr_status, shdr_add_status; 17912 uint32_t mbox_tmo; 17913 union lpfc_sli4_cfg_shdr *shdr; 17914 17915 if (xritag == NO_XRI) { 17916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17917 "0364 Invalid param:\n"); 17918 return -EINVAL; 17919 } 17920 17921 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17922 if (!mbox) 17923 return -ENOMEM; 17924 17925 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17926 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17927 sizeof(struct lpfc_mbx_post_sgl_pages) - 17928 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17929 17930 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17931 &mbox->u.mqe.un.post_sgl_pages; 17932 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17933 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17934 17935 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17936 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17937 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17938 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17939 17940 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17941 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17942 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17943 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17944 if (!phba->sli4_hba.intr_enable) 17945 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17946 else { 17947 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17948 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17949 } 17950 /* The IOCTL status is embedded in the mailbox subheader. */ 17951 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17952 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17953 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17954 if (!phba->sli4_hba.intr_enable) 17955 mempool_free(mbox, phba->mbox_mem_pool); 17956 else if (rc != MBX_TIMEOUT) 17957 mempool_free(mbox, phba->mbox_mem_pool); 17958 if (shdr_status || shdr_add_status || rc) { 17959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17960 "2511 POST_SGL mailbox failed with " 17961 "status x%x add_status x%x, mbx status x%x\n", 17962 shdr_status, shdr_add_status, rc); 17963 } 17964 return 0; 17965 } 17966 17967 /** 17968 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17969 * @phba: pointer to lpfc hba data structure. 17970 * 17971 * This routine is invoked to post rpi header templates to the 17972 * HBA consistent with the SLI-4 interface spec. This routine 17973 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17974 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17975 * 17976 * Returns 17977 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17978 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17979 **/ 17980 static uint16_t 17981 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17982 { 17983 unsigned long xri; 17984 17985 /* 17986 * Fetch the next logical xri. Because this index is logical, 17987 * the driver starts at 0 each time. 17988 */ 17989 spin_lock_irq(&phba->hbalock); 17990 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17991 phba->sli4_hba.max_cfg_param.max_xri); 17992 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17993 spin_unlock_irq(&phba->hbalock); 17994 return NO_XRI; 17995 } else { 17996 set_bit(xri, phba->sli4_hba.xri_bmask); 17997 phba->sli4_hba.max_cfg_param.xri_used++; 17998 } 17999 spin_unlock_irq(&phba->hbalock); 18000 return xri; 18001 } 18002 18003 /** 18004 * __lpfc_sli4_free_xri - Release an xri for reuse. 18005 * @phba: pointer to lpfc hba data structure. 18006 * @xri: xri to release. 18007 * 18008 * This routine is invoked to release an xri to the pool of 18009 * available rpis maintained by the driver. 18010 **/ 18011 static void 18012 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18013 { 18014 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18015 phba->sli4_hba.max_cfg_param.xri_used--; 18016 } 18017 } 18018 18019 /** 18020 * lpfc_sli4_free_xri - Release an xri for reuse. 18021 * @phba: pointer to lpfc hba data structure. 18022 * @xri: xri to release. 18023 * 18024 * This routine is invoked to release an xri to the pool of 18025 * available rpis maintained by the driver. 18026 **/ 18027 void 18028 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18029 { 18030 spin_lock_irq(&phba->hbalock); 18031 __lpfc_sli4_free_xri(phba, xri); 18032 spin_unlock_irq(&phba->hbalock); 18033 } 18034 18035 /** 18036 * lpfc_sli4_next_xritag - Get an xritag for the io 18037 * @phba: Pointer to HBA context object. 18038 * 18039 * This function gets an xritag for the iocb. If there is no unused xritag 18040 * it will return 0xffff. 18041 * The function returns the allocated xritag if successful, else returns zero. 18042 * Zero is not a valid xritag. 18043 * The caller is not required to hold any lock. 18044 **/ 18045 uint16_t 18046 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18047 { 18048 uint16_t xri_index; 18049 18050 xri_index = lpfc_sli4_alloc_xri(phba); 18051 if (xri_index == NO_XRI) 18052 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18053 "2004 Failed to allocate XRI.last XRITAG is %d" 18054 " Max XRI is %d, Used XRI is %d\n", 18055 xri_index, 18056 phba->sli4_hba.max_cfg_param.max_xri, 18057 phba->sli4_hba.max_cfg_param.xri_used); 18058 return xri_index; 18059 } 18060 18061 /** 18062 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18063 * @phba: pointer to lpfc hba data structure. 18064 * @post_sgl_list: pointer to els sgl entry list. 18065 * @post_cnt: number of els sgl entries on the list. 18066 * 18067 * This routine is invoked to post a block of driver's sgl pages to the 18068 * HBA using non-embedded mailbox command. No Lock is held. This routine 18069 * is only called when the driver is loading and after all IO has been 18070 * stopped. 18071 **/ 18072 static int 18073 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18074 struct list_head *post_sgl_list, 18075 int post_cnt) 18076 { 18077 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18078 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18079 struct sgl_page_pairs *sgl_pg_pairs; 18080 void *viraddr; 18081 LPFC_MBOXQ_t *mbox; 18082 uint32_t reqlen, alloclen, pg_pairs; 18083 uint32_t mbox_tmo; 18084 uint16_t xritag_start = 0; 18085 int rc = 0; 18086 uint32_t shdr_status, shdr_add_status; 18087 union lpfc_sli4_cfg_shdr *shdr; 18088 18089 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18090 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18091 if (reqlen > SLI4_PAGE_SIZE) { 18092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18093 "2559 Block sgl registration required DMA " 18094 "size (%d) great than a page\n", reqlen); 18095 return -ENOMEM; 18096 } 18097 18098 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18099 if (!mbox) 18100 return -ENOMEM; 18101 18102 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18103 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18104 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18105 LPFC_SLI4_MBX_NEMBED); 18106 18107 if (alloclen < reqlen) { 18108 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18109 "0285 Allocated DMA memory size (%d) is " 18110 "less than the requested DMA memory " 18111 "size (%d)\n", alloclen, reqlen); 18112 lpfc_sli4_mbox_cmd_free(phba, mbox); 18113 return -ENOMEM; 18114 } 18115 /* Set up the SGL pages in the non-embedded DMA pages */ 18116 viraddr = mbox->sge_array->addr[0]; 18117 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18118 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18119 18120 pg_pairs = 0; 18121 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18122 /* Set up the sge entry */ 18123 sgl_pg_pairs->sgl_pg0_addr_lo = 18124 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18125 sgl_pg_pairs->sgl_pg0_addr_hi = 18126 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18127 sgl_pg_pairs->sgl_pg1_addr_lo = 18128 cpu_to_le32(putPaddrLow(0)); 18129 sgl_pg_pairs->sgl_pg1_addr_hi = 18130 cpu_to_le32(putPaddrHigh(0)); 18131 18132 /* Keep the first xritag on the list */ 18133 if (pg_pairs == 0) 18134 xritag_start = sglq_entry->sli4_xritag; 18135 sgl_pg_pairs++; 18136 pg_pairs++; 18137 } 18138 18139 /* Complete initialization and perform endian conversion. */ 18140 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18141 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18142 sgl->word0 = cpu_to_le32(sgl->word0); 18143 18144 if (!phba->sli4_hba.intr_enable) 18145 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18146 else { 18147 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18148 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18149 } 18150 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18151 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18152 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18153 if (!phba->sli4_hba.intr_enable) 18154 lpfc_sli4_mbox_cmd_free(phba, mbox); 18155 else if (rc != MBX_TIMEOUT) 18156 lpfc_sli4_mbox_cmd_free(phba, mbox); 18157 if (shdr_status || shdr_add_status || rc) { 18158 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18159 "2513 POST_SGL_BLOCK mailbox command failed " 18160 "status x%x add_status x%x mbx status x%x\n", 18161 shdr_status, shdr_add_status, rc); 18162 rc = -ENXIO; 18163 } 18164 return rc; 18165 } 18166 18167 /** 18168 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18169 * @phba: pointer to lpfc hba data structure. 18170 * @nblist: pointer to nvme buffer list. 18171 * @count: number of scsi buffers on the list. 18172 * 18173 * This routine is invoked to post a block of @count scsi sgl pages from a 18174 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18175 * No Lock is held. 18176 * 18177 **/ 18178 static int 18179 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18180 int count) 18181 { 18182 struct lpfc_io_buf *lpfc_ncmd; 18183 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18184 struct sgl_page_pairs *sgl_pg_pairs; 18185 void *viraddr; 18186 LPFC_MBOXQ_t *mbox; 18187 uint32_t reqlen, alloclen, pg_pairs; 18188 uint32_t mbox_tmo; 18189 uint16_t xritag_start = 0; 18190 int rc = 0; 18191 uint32_t shdr_status, shdr_add_status; 18192 dma_addr_t pdma_phys_bpl1; 18193 union lpfc_sli4_cfg_shdr *shdr; 18194 18195 /* Calculate the requested length of the dma memory */ 18196 reqlen = count * sizeof(struct sgl_page_pairs) + 18197 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18198 if (reqlen > SLI4_PAGE_SIZE) { 18199 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18200 "6118 Block sgl registration required DMA " 18201 "size (%d) great than a page\n", reqlen); 18202 return -ENOMEM; 18203 } 18204 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18205 if (!mbox) { 18206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18207 "6119 Failed to allocate mbox cmd memory\n"); 18208 return -ENOMEM; 18209 } 18210 18211 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18212 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18213 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18214 reqlen, LPFC_SLI4_MBX_NEMBED); 18215 18216 if (alloclen < reqlen) { 18217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18218 "6120 Allocated DMA memory size (%d) is " 18219 "less than the requested DMA memory " 18220 "size (%d)\n", alloclen, reqlen); 18221 lpfc_sli4_mbox_cmd_free(phba, mbox); 18222 return -ENOMEM; 18223 } 18224 18225 /* Get the first SGE entry from the non-embedded DMA memory */ 18226 viraddr = mbox->sge_array->addr[0]; 18227 18228 /* Set up the SGL pages in the non-embedded DMA pages */ 18229 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18230 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18231 18232 pg_pairs = 0; 18233 list_for_each_entry(lpfc_ncmd, nblist, list) { 18234 /* Set up the sge entry */ 18235 sgl_pg_pairs->sgl_pg0_addr_lo = 18236 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18237 sgl_pg_pairs->sgl_pg0_addr_hi = 18238 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18239 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18240 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18241 SGL_PAGE_SIZE; 18242 else 18243 pdma_phys_bpl1 = 0; 18244 sgl_pg_pairs->sgl_pg1_addr_lo = 18245 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18246 sgl_pg_pairs->sgl_pg1_addr_hi = 18247 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18248 /* Keep the first xritag on the list */ 18249 if (pg_pairs == 0) 18250 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18251 sgl_pg_pairs++; 18252 pg_pairs++; 18253 } 18254 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18255 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18256 /* Perform endian conversion if necessary */ 18257 sgl->word0 = cpu_to_le32(sgl->word0); 18258 18259 if (!phba->sli4_hba.intr_enable) { 18260 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18261 } else { 18262 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18263 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18264 } 18265 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18266 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18267 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18268 if (!phba->sli4_hba.intr_enable) 18269 lpfc_sli4_mbox_cmd_free(phba, mbox); 18270 else if (rc != MBX_TIMEOUT) 18271 lpfc_sli4_mbox_cmd_free(phba, mbox); 18272 if (shdr_status || shdr_add_status || rc) { 18273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18274 "6125 POST_SGL_BLOCK mailbox command failed " 18275 "status x%x add_status x%x mbx status x%x\n", 18276 shdr_status, shdr_add_status, rc); 18277 rc = -ENXIO; 18278 } 18279 return rc; 18280 } 18281 18282 /** 18283 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18284 * @phba: pointer to lpfc hba data structure. 18285 * @post_nblist: pointer to the nvme buffer list. 18286 * @sb_count: number of nvme buffers. 18287 * 18288 * This routine walks a list of nvme buffers that was passed in. It attempts 18289 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18290 * uses the non-embedded SGL block post mailbox commands to post to the port. 18291 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18292 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18293 * must be local list, thus no lock is needed when manipulate the list. 18294 * 18295 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18296 **/ 18297 int 18298 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18299 struct list_head *post_nblist, int sb_count) 18300 { 18301 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18302 int status, sgl_size; 18303 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18304 dma_addr_t pdma_phys_sgl1; 18305 int last_xritag = NO_XRI; 18306 int cur_xritag; 18307 LIST_HEAD(prep_nblist); 18308 LIST_HEAD(blck_nblist); 18309 LIST_HEAD(nvme_nblist); 18310 18311 /* sanity check */ 18312 if (sb_count <= 0) 18313 return -EINVAL; 18314 18315 sgl_size = phba->cfg_sg_dma_buf_size; 18316 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18317 list_del_init(&lpfc_ncmd->list); 18318 block_cnt++; 18319 if ((last_xritag != NO_XRI) && 18320 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18321 /* a hole in xri block, form a sgl posting block */ 18322 list_splice_init(&prep_nblist, &blck_nblist); 18323 post_cnt = block_cnt - 1; 18324 /* prepare list for next posting block */ 18325 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18326 block_cnt = 1; 18327 } else { 18328 /* prepare list for next posting block */ 18329 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18330 /* enough sgls for non-embed sgl mbox command */ 18331 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18332 list_splice_init(&prep_nblist, &blck_nblist); 18333 post_cnt = block_cnt; 18334 block_cnt = 0; 18335 } 18336 } 18337 num_posting++; 18338 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18339 18340 /* end of repost sgl list condition for NVME buffers */ 18341 if (num_posting == sb_count) { 18342 if (post_cnt == 0) { 18343 /* last sgl posting block */ 18344 list_splice_init(&prep_nblist, &blck_nblist); 18345 post_cnt = block_cnt; 18346 } else if (block_cnt == 1) { 18347 /* last single sgl with non-contiguous xri */ 18348 if (sgl_size > SGL_PAGE_SIZE) 18349 pdma_phys_sgl1 = 18350 lpfc_ncmd->dma_phys_sgl + 18351 SGL_PAGE_SIZE; 18352 else 18353 pdma_phys_sgl1 = 0; 18354 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18355 status = lpfc_sli4_post_sgl( 18356 phba, lpfc_ncmd->dma_phys_sgl, 18357 pdma_phys_sgl1, cur_xritag); 18358 if (status) { 18359 /* Post error. Buffer unavailable. */ 18360 lpfc_ncmd->flags |= 18361 LPFC_SBUF_NOT_POSTED; 18362 } else { 18363 /* Post success. Bffer available. */ 18364 lpfc_ncmd->flags &= 18365 ~LPFC_SBUF_NOT_POSTED; 18366 lpfc_ncmd->status = IOSTAT_SUCCESS; 18367 num_posted++; 18368 } 18369 /* success, put on NVME buffer sgl list */ 18370 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18371 } 18372 } 18373 18374 /* continue until a nembed page worth of sgls */ 18375 if (post_cnt == 0) 18376 continue; 18377 18378 /* post block of NVME buffer list sgls */ 18379 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18380 post_cnt); 18381 18382 /* don't reset xirtag due to hole in xri block */ 18383 if (block_cnt == 0) 18384 last_xritag = NO_XRI; 18385 18386 /* reset NVME buffer post count for next round of posting */ 18387 post_cnt = 0; 18388 18389 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18390 while (!list_empty(&blck_nblist)) { 18391 list_remove_head(&blck_nblist, lpfc_ncmd, 18392 struct lpfc_io_buf, list); 18393 if (status) { 18394 /* Post error. Mark buffer unavailable. */ 18395 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18396 } else { 18397 /* Post success, Mark buffer available. */ 18398 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18399 lpfc_ncmd->status = IOSTAT_SUCCESS; 18400 num_posted++; 18401 } 18402 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18403 } 18404 } 18405 /* Push NVME buffers with sgl posted to the available list */ 18406 lpfc_io_buf_replenish(phba, &nvme_nblist); 18407 18408 return num_posted; 18409 } 18410 18411 /** 18412 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18413 * @phba: pointer to lpfc_hba struct that the frame was received on 18414 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18415 * 18416 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18417 * valid type of frame that the LPFC driver will handle. This function will 18418 * return a zero if the frame is a valid frame or a non zero value when the 18419 * frame does not pass the check. 18420 **/ 18421 static int 18422 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18423 { 18424 /* make rctl_names static to save stack space */ 18425 struct fc_vft_header *fc_vft_hdr; 18426 uint32_t *header = (uint32_t *) fc_hdr; 18427 18428 #define FC_RCTL_MDS_DIAGS 0xF4 18429 18430 switch (fc_hdr->fh_r_ctl) { 18431 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18432 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18433 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18434 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18435 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18436 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18437 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18438 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18439 case FC_RCTL_ELS_REQ: /* extended link services request */ 18440 case FC_RCTL_ELS_REP: /* extended link services reply */ 18441 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18442 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18443 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18444 case FC_RCTL_BA_RMC: /* remove connection */ 18445 case FC_RCTL_BA_ACC: /* basic accept */ 18446 case FC_RCTL_BA_RJT: /* basic reject */ 18447 case FC_RCTL_BA_PRMT: 18448 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18449 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18450 case FC_RCTL_P_RJT: /* port reject */ 18451 case FC_RCTL_F_RJT: /* fabric reject */ 18452 case FC_RCTL_P_BSY: /* port busy */ 18453 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18454 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18455 case FC_RCTL_LCR: /* link credit reset */ 18456 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18457 case FC_RCTL_END: /* end */ 18458 break; 18459 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18460 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18461 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18462 return lpfc_fc_frame_check(phba, fc_hdr); 18463 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18464 default: 18465 goto drop; 18466 } 18467 18468 switch (fc_hdr->fh_type) { 18469 case FC_TYPE_BLS: 18470 case FC_TYPE_ELS: 18471 case FC_TYPE_FCP: 18472 case FC_TYPE_CT: 18473 case FC_TYPE_NVME: 18474 break; 18475 case FC_TYPE_IP: 18476 case FC_TYPE_ILS: 18477 default: 18478 goto drop; 18479 } 18480 18481 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18482 "2538 Received frame rctl:x%x, type:x%x, " 18483 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18484 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18485 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18486 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18487 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18488 be32_to_cpu(header[6])); 18489 return 0; 18490 drop: 18491 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18492 "2539 Dropped frame rctl:x%x type:x%x\n", 18493 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18494 return 1; 18495 } 18496 18497 /** 18498 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18499 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18500 * 18501 * This function processes the FC header to retrieve the VFI from the VF 18502 * header, if one exists. This function will return the VFI if one exists 18503 * or 0 if no VSAN Header exists. 18504 **/ 18505 static uint32_t 18506 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18507 { 18508 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18509 18510 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18511 return 0; 18512 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18513 } 18514 18515 /** 18516 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18517 * @phba: Pointer to the HBA structure to search for the vport on 18518 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18519 * @fcfi: The FC Fabric ID that the frame came from 18520 * @did: Destination ID to match against 18521 * 18522 * This function searches the @phba for a vport that matches the content of the 18523 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18524 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18525 * returns the matching vport pointer or NULL if unable to match frame to a 18526 * vport. 18527 **/ 18528 static struct lpfc_vport * 18529 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18530 uint16_t fcfi, uint32_t did) 18531 { 18532 struct lpfc_vport **vports; 18533 struct lpfc_vport *vport = NULL; 18534 int i; 18535 18536 if (did == Fabric_DID) 18537 return phba->pport; 18538 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18539 phba->link_state != LPFC_HBA_READY) 18540 return phba->pport; 18541 18542 vports = lpfc_create_vport_work_array(phba); 18543 if (vports != NULL) { 18544 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18545 if (phba->fcf.fcfi == fcfi && 18546 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18547 vports[i]->fc_myDID == did) { 18548 vport = vports[i]; 18549 break; 18550 } 18551 } 18552 } 18553 lpfc_destroy_vport_work_array(phba, vports); 18554 return vport; 18555 } 18556 18557 /** 18558 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18559 * @vport: The vport to work on. 18560 * 18561 * This function updates the receive sequence time stamp for this vport. The 18562 * receive sequence time stamp indicates the time that the last frame of the 18563 * the sequence that has been idle for the longest amount of time was received. 18564 * the driver uses this time stamp to indicate if any received sequences have 18565 * timed out. 18566 **/ 18567 static void 18568 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18569 { 18570 struct lpfc_dmabuf *h_buf; 18571 struct hbq_dmabuf *dmabuf = NULL; 18572 18573 /* get the oldest sequence on the rcv list */ 18574 h_buf = list_get_first(&vport->rcv_buffer_list, 18575 struct lpfc_dmabuf, list); 18576 if (!h_buf) 18577 return; 18578 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18579 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18580 } 18581 18582 /** 18583 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18584 * @vport: The vport that the received sequences were sent to. 18585 * 18586 * This function cleans up all outstanding received sequences. This is called 18587 * by the driver when a link event or user action invalidates all the received 18588 * sequences. 18589 **/ 18590 void 18591 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18592 { 18593 struct lpfc_dmabuf *h_buf, *hnext; 18594 struct lpfc_dmabuf *d_buf, *dnext; 18595 struct hbq_dmabuf *dmabuf = NULL; 18596 18597 /* start with the oldest sequence on the rcv list */ 18598 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18599 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18600 list_del_init(&dmabuf->hbuf.list); 18601 list_for_each_entry_safe(d_buf, dnext, 18602 &dmabuf->dbuf.list, list) { 18603 list_del_init(&d_buf->list); 18604 lpfc_in_buf_free(vport->phba, d_buf); 18605 } 18606 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18607 } 18608 } 18609 18610 /** 18611 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18612 * @vport: The vport that the received sequences were sent to. 18613 * 18614 * This function determines whether any received sequences have timed out by 18615 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18616 * indicates that there is at least one timed out sequence this routine will 18617 * go through the received sequences one at a time from most inactive to most 18618 * active to determine which ones need to be cleaned up. Once it has determined 18619 * that a sequence needs to be cleaned up it will simply free up the resources 18620 * without sending an abort. 18621 **/ 18622 void 18623 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18624 { 18625 struct lpfc_dmabuf *h_buf, *hnext; 18626 struct lpfc_dmabuf *d_buf, *dnext; 18627 struct hbq_dmabuf *dmabuf = NULL; 18628 unsigned long timeout; 18629 int abort_count = 0; 18630 18631 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18632 vport->rcv_buffer_time_stamp); 18633 if (list_empty(&vport->rcv_buffer_list) || 18634 time_before(jiffies, timeout)) 18635 return; 18636 /* start with the oldest sequence on the rcv list */ 18637 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18638 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18639 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18640 dmabuf->time_stamp); 18641 if (time_before(jiffies, timeout)) 18642 break; 18643 abort_count++; 18644 list_del_init(&dmabuf->hbuf.list); 18645 list_for_each_entry_safe(d_buf, dnext, 18646 &dmabuf->dbuf.list, list) { 18647 list_del_init(&d_buf->list); 18648 lpfc_in_buf_free(vport->phba, d_buf); 18649 } 18650 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18651 } 18652 if (abort_count) 18653 lpfc_update_rcv_time_stamp(vport); 18654 } 18655 18656 /** 18657 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18658 * @vport: pointer to a vitural port 18659 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18660 * 18661 * This function searches through the existing incomplete sequences that have 18662 * been sent to this @vport. If the frame matches one of the incomplete 18663 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18664 * make up that sequence. If no sequence is found that matches this frame then 18665 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18666 * This function returns a pointer to the first dmabuf in the sequence list that 18667 * the frame was linked to. 18668 **/ 18669 static struct hbq_dmabuf * 18670 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18671 { 18672 struct fc_frame_header *new_hdr; 18673 struct fc_frame_header *temp_hdr; 18674 struct lpfc_dmabuf *d_buf; 18675 struct lpfc_dmabuf *h_buf; 18676 struct hbq_dmabuf *seq_dmabuf = NULL; 18677 struct hbq_dmabuf *temp_dmabuf = NULL; 18678 uint8_t found = 0; 18679 18680 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18681 dmabuf->time_stamp = jiffies; 18682 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18683 18684 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18685 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18686 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18687 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18688 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18689 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18690 continue; 18691 /* found a pending sequence that matches this frame */ 18692 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18693 break; 18694 } 18695 if (!seq_dmabuf) { 18696 /* 18697 * This indicates first frame received for this sequence. 18698 * Queue the buffer on the vport's rcv_buffer_list. 18699 */ 18700 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18701 lpfc_update_rcv_time_stamp(vport); 18702 return dmabuf; 18703 } 18704 temp_hdr = seq_dmabuf->hbuf.virt; 18705 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18706 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18707 list_del_init(&seq_dmabuf->hbuf.list); 18708 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18709 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18710 lpfc_update_rcv_time_stamp(vport); 18711 return dmabuf; 18712 } 18713 /* move this sequence to the tail to indicate a young sequence */ 18714 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18715 seq_dmabuf->time_stamp = jiffies; 18716 lpfc_update_rcv_time_stamp(vport); 18717 if (list_empty(&seq_dmabuf->dbuf.list)) { 18718 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18719 return seq_dmabuf; 18720 } 18721 /* find the correct place in the sequence to insert this frame */ 18722 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18723 while (!found) { 18724 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18725 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18726 /* 18727 * If the frame's sequence count is greater than the frame on 18728 * the list then insert the frame right after this frame 18729 */ 18730 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18731 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18732 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18733 found = 1; 18734 break; 18735 } 18736 18737 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18738 break; 18739 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18740 } 18741 18742 if (found) 18743 return seq_dmabuf; 18744 return NULL; 18745 } 18746 18747 /** 18748 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18749 * @vport: pointer to a vitural port 18750 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18751 * 18752 * This function tries to abort from the partially assembed sequence, described 18753 * by the information from basic abbort @dmabuf. It checks to see whether such 18754 * partially assembled sequence held by the driver. If so, it shall free up all 18755 * the frames from the partially assembled sequence. 18756 * 18757 * Return 18758 * true -- if there is matching partially assembled sequence present and all 18759 * the frames freed with the sequence; 18760 * false -- if there is no matching partially assembled sequence present so 18761 * nothing got aborted in the lower layer driver 18762 **/ 18763 static bool 18764 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18765 struct hbq_dmabuf *dmabuf) 18766 { 18767 struct fc_frame_header *new_hdr; 18768 struct fc_frame_header *temp_hdr; 18769 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18770 struct hbq_dmabuf *seq_dmabuf = NULL; 18771 18772 /* Use the hdr_buf to find the sequence that matches this frame */ 18773 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18774 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18775 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18776 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18777 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18778 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18779 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18780 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18781 continue; 18782 /* found a pending sequence that matches this frame */ 18783 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18784 break; 18785 } 18786 18787 /* Free up all the frames from the partially assembled sequence */ 18788 if (seq_dmabuf) { 18789 list_for_each_entry_safe(d_buf, n_buf, 18790 &seq_dmabuf->dbuf.list, list) { 18791 list_del_init(&d_buf->list); 18792 lpfc_in_buf_free(vport->phba, d_buf); 18793 } 18794 return true; 18795 } 18796 return false; 18797 } 18798 18799 /** 18800 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18801 * @vport: pointer to a vitural port 18802 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18803 * 18804 * This function tries to abort from the assembed sequence from upper level 18805 * protocol, described by the information from basic abbort @dmabuf. It 18806 * checks to see whether such pending context exists at upper level protocol. 18807 * If so, it shall clean up the pending context. 18808 * 18809 * Return 18810 * true -- if there is matching pending context of the sequence cleaned 18811 * at ulp; 18812 * false -- if there is no matching pending context of the sequence present 18813 * at ulp. 18814 **/ 18815 static bool 18816 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18817 { 18818 struct lpfc_hba *phba = vport->phba; 18819 int handled; 18820 18821 /* Accepting abort at ulp with SLI4 only */ 18822 if (phba->sli_rev < LPFC_SLI_REV4) 18823 return false; 18824 18825 /* Register all caring upper level protocols to attend abort */ 18826 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18827 if (handled) 18828 return true; 18829 18830 return false; 18831 } 18832 18833 /** 18834 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18835 * @phba: Pointer to HBA context object. 18836 * @cmd_iocbq: pointer to the command iocbq structure. 18837 * @rsp_iocbq: pointer to the response iocbq structure. 18838 * 18839 * This function handles the sequence abort response iocb command complete 18840 * event. It properly releases the memory allocated to the sequence abort 18841 * accept iocb. 18842 **/ 18843 static void 18844 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18845 struct lpfc_iocbq *cmd_iocbq, 18846 struct lpfc_iocbq *rsp_iocbq) 18847 { 18848 if (cmd_iocbq) { 18849 lpfc_nlp_put(cmd_iocbq->ndlp); 18850 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18851 } 18852 18853 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18854 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18856 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18857 get_job_ulpstatus(phba, rsp_iocbq), 18858 get_job_word4(phba, rsp_iocbq)); 18859 } 18860 18861 /** 18862 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18863 * @phba: Pointer to HBA context object. 18864 * @xri: xri id in transaction. 18865 * 18866 * This function validates the xri maps to the known range of XRIs allocated an 18867 * used by the driver. 18868 **/ 18869 uint16_t 18870 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18871 uint16_t xri) 18872 { 18873 uint16_t i; 18874 18875 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18876 if (xri == phba->sli4_hba.xri_ids[i]) 18877 return i; 18878 } 18879 return NO_XRI; 18880 } 18881 18882 /** 18883 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18884 * @vport: pointer to a virtual port. 18885 * @fc_hdr: pointer to a FC frame header. 18886 * @aborted: was the partially assembled receive sequence successfully aborted 18887 * 18888 * This function sends a basic response to a previous unsol sequence abort 18889 * event after aborting the sequence handling. 18890 **/ 18891 void 18892 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18893 struct fc_frame_header *fc_hdr, bool aborted) 18894 { 18895 struct lpfc_hba *phba = vport->phba; 18896 struct lpfc_iocbq *ctiocb = NULL; 18897 struct lpfc_nodelist *ndlp; 18898 uint16_t oxid, rxid, xri, lxri; 18899 uint32_t sid, fctl; 18900 union lpfc_wqe128 *icmd; 18901 int rc; 18902 18903 if (!lpfc_is_link_up(phba)) 18904 return; 18905 18906 sid = sli4_sid_from_fc_hdr(fc_hdr); 18907 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18908 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18909 18910 ndlp = lpfc_findnode_did(vport, sid); 18911 if (!ndlp) { 18912 ndlp = lpfc_nlp_init(vport, sid); 18913 if (!ndlp) { 18914 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18915 "1268 Failed to allocate ndlp for " 18916 "oxid:x%x SID:x%x\n", oxid, sid); 18917 return; 18918 } 18919 /* Put ndlp onto vport node list */ 18920 lpfc_enqueue_node(vport, ndlp); 18921 } 18922 18923 /* Allocate buffer for rsp iocb */ 18924 ctiocb = lpfc_sli_get_iocbq(phba); 18925 if (!ctiocb) 18926 return; 18927 18928 icmd = &ctiocb->wqe; 18929 18930 /* Extract the F_CTL field from FC_HDR */ 18931 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18932 18933 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18934 if (!ctiocb->ndlp) { 18935 lpfc_sli_release_iocbq(phba, ctiocb); 18936 return; 18937 } 18938 18939 ctiocb->vport = vport; 18940 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18941 ctiocb->sli4_lxritag = NO_XRI; 18942 ctiocb->sli4_xritag = NO_XRI; 18943 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18944 18945 if (fctl & FC_FC_EX_CTX) 18946 /* Exchange responder sent the abort so we 18947 * own the oxid. 18948 */ 18949 xri = oxid; 18950 else 18951 xri = rxid; 18952 lxri = lpfc_sli4_xri_inrange(phba, xri); 18953 if (lxri != NO_XRI) 18954 lpfc_set_rrq_active(phba, ndlp, lxri, 18955 (xri == oxid) ? rxid : oxid, 0); 18956 /* For BA_ABTS from exchange responder, if the logical xri with 18957 * the oxid maps to the FCP XRI range, the port no longer has 18958 * that exchange context, send a BLS_RJT. Override the IOCB for 18959 * a BA_RJT. 18960 */ 18961 if ((fctl & FC_FC_EX_CTX) && 18962 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18963 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18964 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18965 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18966 FC_BA_RJT_INV_XID); 18967 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18968 FC_BA_RJT_UNABLE); 18969 } 18970 18971 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18972 * the driver no longer has that exchange, send a BLS_RJT. Override 18973 * the IOCB for a BA_RJT. 18974 */ 18975 if (aborted == false) { 18976 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18977 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18978 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18979 FC_BA_RJT_INV_XID); 18980 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18981 FC_BA_RJT_UNABLE); 18982 } 18983 18984 if (fctl & FC_FC_EX_CTX) { 18985 /* ABTS sent by responder to CT exchange, construction 18986 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18987 * field and RX_ID from ABTS for RX_ID field. 18988 */ 18989 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18990 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18991 } else { 18992 /* ABTS sent by initiator to CT exchange, construction 18993 * of BA_ACC will need to allocate a new XRI as for the 18994 * XRI_TAG field. 18995 */ 18996 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18997 } 18998 18999 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19000 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19001 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19002 19003 /* Use CT=VPI */ 19004 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19005 ndlp->nlp_DID); 19006 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19007 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19008 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19009 19010 /* Xmit CT abts response on exchange <xid> */ 19011 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19012 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19013 ctiocb->abort_rctl, oxid, phba->link_state); 19014 19015 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19016 if (rc == IOCB_ERROR) { 19017 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19018 "2925 Failed to issue CT ABTS RSP x%x on " 19019 "xri x%x, Data x%x\n", 19020 ctiocb->abort_rctl, oxid, 19021 phba->link_state); 19022 lpfc_nlp_put(ndlp); 19023 ctiocb->ndlp = NULL; 19024 lpfc_sli_release_iocbq(phba, ctiocb); 19025 } 19026 19027 /* if only usage of this nodelist is BLS response, release initial ref 19028 * to free ndlp when transmit completes 19029 */ 19030 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19031 !(ndlp->nlp_flag & NLP_DROPPED) && 19032 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19033 ndlp->nlp_flag |= NLP_DROPPED; 19034 lpfc_nlp_put(ndlp); 19035 } 19036 } 19037 19038 /** 19039 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19040 * @vport: Pointer to the vport on which this sequence was received 19041 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19042 * 19043 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19044 * receive sequence is only partially assembed by the driver, it shall abort 19045 * the partially assembled frames for the sequence. Otherwise, if the 19046 * unsolicited receive sequence has been completely assembled and passed to 19047 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19048 * unsolicited sequence has been aborted. After that, it will issue a basic 19049 * accept to accept the abort. 19050 **/ 19051 static void 19052 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19053 struct hbq_dmabuf *dmabuf) 19054 { 19055 struct lpfc_hba *phba = vport->phba; 19056 struct fc_frame_header fc_hdr; 19057 uint32_t fctl; 19058 bool aborted; 19059 19060 /* Make a copy of fc_hdr before the dmabuf being released */ 19061 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19062 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19063 19064 if (fctl & FC_FC_EX_CTX) { 19065 /* ABTS by responder to exchange, no cleanup needed */ 19066 aborted = true; 19067 } else { 19068 /* ABTS by initiator to exchange, need to do cleanup */ 19069 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19070 if (aborted == false) 19071 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19072 } 19073 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19074 19075 if (phba->nvmet_support) { 19076 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19077 return; 19078 } 19079 19080 /* Respond with BA_ACC or BA_RJT accordingly */ 19081 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19082 } 19083 19084 /** 19085 * lpfc_seq_complete - Indicates if a sequence is complete 19086 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19087 * 19088 * This function checks the sequence, starting with the frame described by 19089 * @dmabuf, to see if all the frames associated with this sequence are present. 19090 * the frames associated with this sequence are linked to the @dmabuf using the 19091 * dbuf list. This function looks for two major things. 1) That the first frame 19092 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19093 * set. 3) That there are no holes in the sequence count. The function will 19094 * return 1 when the sequence is complete, otherwise it will return 0. 19095 **/ 19096 static int 19097 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19098 { 19099 struct fc_frame_header *hdr; 19100 struct lpfc_dmabuf *d_buf; 19101 struct hbq_dmabuf *seq_dmabuf; 19102 uint32_t fctl; 19103 int seq_count = 0; 19104 19105 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19106 /* make sure first fame of sequence has a sequence count of zero */ 19107 if (hdr->fh_seq_cnt != seq_count) 19108 return 0; 19109 fctl = (hdr->fh_f_ctl[0] << 16 | 19110 hdr->fh_f_ctl[1] << 8 | 19111 hdr->fh_f_ctl[2]); 19112 /* If last frame of sequence we can return success. */ 19113 if (fctl & FC_FC_END_SEQ) 19114 return 1; 19115 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19116 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19117 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19118 /* If there is a hole in the sequence count then fail. */ 19119 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19120 return 0; 19121 fctl = (hdr->fh_f_ctl[0] << 16 | 19122 hdr->fh_f_ctl[1] << 8 | 19123 hdr->fh_f_ctl[2]); 19124 /* If last frame of sequence we can return success. */ 19125 if (fctl & FC_FC_END_SEQ) 19126 return 1; 19127 } 19128 return 0; 19129 } 19130 19131 /** 19132 * lpfc_prep_seq - Prep sequence for ULP processing 19133 * @vport: Pointer to the vport on which this sequence was received 19134 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19135 * 19136 * This function takes a sequence, described by a list of frames, and creates 19137 * a list of iocbq structures to describe the sequence. This iocbq list will be 19138 * used to issue to the generic unsolicited sequence handler. This routine 19139 * returns a pointer to the first iocbq in the list. If the function is unable 19140 * to allocate an iocbq then it throw out the received frames that were not 19141 * able to be described and return a pointer to the first iocbq. If unable to 19142 * allocate any iocbqs (including the first) this function will return NULL. 19143 **/ 19144 static struct lpfc_iocbq * 19145 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19146 { 19147 struct hbq_dmabuf *hbq_buf; 19148 struct lpfc_dmabuf *d_buf, *n_buf; 19149 struct lpfc_iocbq *first_iocbq, *iocbq; 19150 struct fc_frame_header *fc_hdr; 19151 uint32_t sid; 19152 uint32_t len, tot_len; 19153 19154 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19155 /* remove from receive buffer list */ 19156 list_del_init(&seq_dmabuf->hbuf.list); 19157 lpfc_update_rcv_time_stamp(vport); 19158 /* get the Remote Port's SID */ 19159 sid = sli4_sid_from_fc_hdr(fc_hdr); 19160 tot_len = 0; 19161 /* Get an iocbq struct to fill in. */ 19162 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19163 if (first_iocbq) { 19164 /* Initialize the first IOCB. */ 19165 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19166 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19167 IOSTAT_SUCCESS); 19168 first_iocbq->vport = vport; 19169 19170 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19171 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19172 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19173 sli4_did_from_fc_hdr(fc_hdr)); 19174 } 19175 19176 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19177 NO_XRI); 19178 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19179 be16_to_cpu(fc_hdr->fh_ox_id)); 19180 19181 /* put the first buffer into the first iocb */ 19182 tot_len = bf_get(lpfc_rcqe_length, 19183 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19184 19185 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19186 first_iocbq->bpl_dmabuf = NULL; 19187 /* Keep track of the BDE count */ 19188 first_iocbq->wcqe_cmpl.word3 = 1; 19189 19190 if (tot_len > LPFC_DATA_BUF_SIZE) 19191 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19192 LPFC_DATA_BUF_SIZE; 19193 else 19194 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19195 19196 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19197 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19198 sid); 19199 } 19200 iocbq = first_iocbq; 19201 /* 19202 * Each IOCBq can have two Buffers assigned, so go through the list 19203 * of buffers for this sequence and save two buffers in each IOCBq 19204 */ 19205 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19206 if (!iocbq) { 19207 lpfc_in_buf_free(vport->phba, d_buf); 19208 continue; 19209 } 19210 if (!iocbq->bpl_dmabuf) { 19211 iocbq->bpl_dmabuf = d_buf; 19212 iocbq->wcqe_cmpl.word3++; 19213 /* We need to get the size out of the right CQE */ 19214 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19215 len = bf_get(lpfc_rcqe_length, 19216 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19217 iocbq->unsol_rcv_len = len; 19218 iocbq->wcqe_cmpl.total_data_placed += len; 19219 tot_len += len; 19220 } else { 19221 iocbq = lpfc_sli_get_iocbq(vport->phba); 19222 if (!iocbq) { 19223 if (first_iocbq) { 19224 bf_set(lpfc_wcqe_c_status, 19225 &first_iocbq->wcqe_cmpl, 19226 IOSTAT_SUCCESS); 19227 first_iocbq->wcqe_cmpl.parameter = 19228 IOERR_NO_RESOURCES; 19229 } 19230 lpfc_in_buf_free(vport->phba, d_buf); 19231 continue; 19232 } 19233 /* We need to get the size out of the right CQE */ 19234 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19235 len = bf_get(lpfc_rcqe_length, 19236 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19237 iocbq->cmd_dmabuf = d_buf; 19238 iocbq->bpl_dmabuf = NULL; 19239 iocbq->wcqe_cmpl.word3 = 1; 19240 19241 if (len > LPFC_DATA_BUF_SIZE) 19242 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19243 LPFC_DATA_BUF_SIZE; 19244 else 19245 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19246 len; 19247 19248 tot_len += len; 19249 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19250 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19251 sid); 19252 list_add_tail(&iocbq->list, &first_iocbq->list); 19253 } 19254 } 19255 /* Free the sequence's header buffer */ 19256 if (!first_iocbq) 19257 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19258 19259 return first_iocbq; 19260 } 19261 19262 static void 19263 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19264 struct hbq_dmabuf *seq_dmabuf) 19265 { 19266 struct fc_frame_header *fc_hdr; 19267 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19268 struct lpfc_hba *phba = vport->phba; 19269 19270 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19271 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19272 if (!iocbq) { 19273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19274 "2707 Ring %d handler: Failed to allocate " 19275 "iocb Rctl x%x Type x%x received\n", 19276 LPFC_ELS_RING, 19277 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19278 return; 19279 } 19280 if (!lpfc_complete_unsol_iocb(phba, 19281 phba->sli4_hba.els_wq->pring, 19282 iocbq, fc_hdr->fh_r_ctl, 19283 fc_hdr->fh_type)) { 19284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19285 "2540 Ring %d handler: unexpected Rctl " 19286 "x%x Type x%x received\n", 19287 LPFC_ELS_RING, 19288 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19289 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19290 } 19291 19292 /* Free iocb created in lpfc_prep_seq */ 19293 list_for_each_entry_safe(curr_iocb, next_iocb, 19294 &iocbq->list, list) { 19295 list_del_init(&curr_iocb->list); 19296 lpfc_sli_release_iocbq(phba, curr_iocb); 19297 } 19298 lpfc_sli_release_iocbq(phba, iocbq); 19299 } 19300 19301 static void 19302 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19303 struct lpfc_iocbq *rspiocb) 19304 { 19305 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19306 19307 if (pcmd && pcmd->virt) 19308 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19309 kfree(pcmd); 19310 lpfc_sli_release_iocbq(phba, cmdiocb); 19311 lpfc_drain_txq(phba); 19312 } 19313 19314 static void 19315 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19316 struct hbq_dmabuf *dmabuf) 19317 { 19318 struct fc_frame_header *fc_hdr; 19319 struct lpfc_hba *phba = vport->phba; 19320 struct lpfc_iocbq *iocbq = NULL; 19321 union lpfc_wqe128 *pwqe; 19322 struct lpfc_dmabuf *pcmd = NULL; 19323 uint32_t frame_len; 19324 int rc; 19325 unsigned long iflags; 19326 19327 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19328 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19329 19330 /* Send the received frame back */ 19331 iocbq = lpfc_sli_get_iocbq(phba); 19332 if (!iocbq) { 19333 /* Queue cq event and wakeup worker thread to process it */ 19334 spin_lock_irqsave(&phba->hbalock, iflags); 19335 list_add_tail(&dmabuf->cq_event.list, 19336 &phba->sli4_hba.sp_queue_event); 19337 spin_unlock_irqrestore(&phba->hbalock, iflags); 19338 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19339 lpfc_worker_wake_up(phba); 19340 return; 19341 } 19342 19343 /* Allocate buffer for command payload */ 19344 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19345 if (pcmd) 19346 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19347 &pcmd->phys); 19348 if (!pcmd || !pcmd->virt) 19349 goto exit; 19350 19351 INIT_LIST_HEAD(&pcmd->list); 19352 19353 /* copyin the payload */ 19354 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19355 19356 iocbq->cmd_dmabuf = pcmd; 19357 iocbq->vport = vport; 19358 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19359 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19360 iocbq->num_bdes = 0; 19361 19362 pwqe = &iocbq->wqe; 19363 /* fill in BDE's for command */ 19364 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19365 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19366 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19367 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19368 19369 pwqe->send_frame.frame_len = frame_len; 19370 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19371 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19372 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19373 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19374 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19375 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19376 19377 pwqe->generic.wqe_com.word7 = 0; 19378 pwqe->generic.wqe_com.word10 = 0; 19379 19380 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19381 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19382 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19383 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19384 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19385 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19386 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19387 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19388 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19389 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19390 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19391 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19392 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19393 19394 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19395 19396 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19397 if (rc == IOCB_ERROR) 19398 goto exit; 19399 19400 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19401 return; 19402 19403 exit: 19404 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19405 "2023 Unable to process MDS loopback frame\n"); 19406 if (pcmd && pcmd->virt) 19407 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19408 kfree(pcmd); 19409 if (iocbq) 19410 lpfc_sli_release_iocbq(phba, iocbq); 19411 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19412 } 19413 19414 /** 19415 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19416 * @phba: Pointer to HBA context object. 19417 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19418 * 19419 * This function is called with no lock held. This function processes all 19420 * the received buffers and gives it to upper layers when a received buffer 19421 * indicates that it is the final frame in the sequence. The interrupt 19422 * service routine processes received buffers at interrupt contexts. 19423 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19424 * appropriate receive function when the final frame in a sequence is received. 19425 **/ 19426 void 19427 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19428 struct hbq_dmabuf *dmabuf) 19429 { 19430 struct hbq_dmabuf *seq_dmabuf; 19431 struct fc_frame_header *fc_hdr; 19432 struct lpfc_vport *vport; 19433 uint32_t fcfi; 19434 uint32_t did; 19435 19436 /* Process each received buffer */ 19437 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19438 19439 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19440 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19441 vport = phba->pport; 19442 /* Handle MDS Loopback frames */ 19443 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19444 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19445 else 19446 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19447 return; 19448 } 19449 19450 /* check to see if this a valid type of frame */ 19451 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19452 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19453 return; 19454 } 19455 19456 if ((bf_get(lpfc_cqe_code, 19457 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19458 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19459 &dmabuf->cq_event.cqe.rcqe_cmpl); 19460 else 19461 fcfi = bf_get(lpfc_rcqe_fcf_id, 19462 &dmabuf->cq_event.cqe.rcqe_cmpl); 19463 19464 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19465 vport = phba->pport; 19466 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19467 "2023 MDS Loopback %d bytes\n", 19468 bf_get(lpfc_rcqe_length, 19469 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19470 /* Handle MDS Loopback frames */ 19471 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19472 return; 19473 } 19474 19475 /* d_id this frame is directed to */ 19476 did = sli4_did_from_fc_hdr(fc_hdr); 19477 19478 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19479 if (!vport) { 19480 /* throw out the frame */ 19481 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19482 return; 19483 } 19484 19485 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19486 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19487 (did != Fabric_DID)) { 19488 /* 19489 * Throw out the frame if we are not pt2pt. 19490 * The pt2pt protocol allows for discovery frames 19491 * to be received without a registered VPI. 19492 */ 19493 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19494 phba->link_state == LPFC_HBA_READY) { 19495 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19496 return; 19497 } 19498 } 19499 19500 /* Handle the basic abort sequence (BA_ABTS) event */ 19501 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19502 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19503 return; 19504 } 19505 19506 /* Link this frame */ 19507 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19508 if (!seq_dmabuf) { 19509 /* unable to add frame to vport - throw it out */ 19510 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19511 return; 19512 } 19513 /* If not last frame in sequence continue processing frames. */ 19514 if (!lpfc_seq_complete(seq_dmabuf)) 19515 return; 19516 19517 /* Send the complete sequence to the upper layer protocol */ 19518 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19519 } 19520 19521 /** 19522 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19523 * @phba: pointer to lpfc hba data structure. 19524 * 19525 * This routine is invoked to post rpi header templates to the 19526 * HBA consistent with the SLI-4 interface spec. This routine 19527 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19528 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19529 * 19530 * This routine does not require any locks. It's usage is expected 19531 * to be driver load or reset recovery when the driver is 19532 * sequential. 19533 * 19534 * Return codes 19535 * 0 - successful 19536 * -EIO - The mailbox failed to complete successfully. 19537 * When this error occurs, the driver is not guaranteed 19538 * to have any rpi regions posted to the device and 19539 * must either attempt to repost the regions or take a 19540 * fatal error. 19541 **/ 19542 int 19543 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19544 { 19545 struct lpfc_rpi_hdr *rpi_page; 19546 uint32_t rc = 0; 19547 uint16_t lrpi = 0; 19548 19549 /* SLI4 ports that support extents do not require RPI headers. */ 19550 if (!phba->sli4_hba.rpi_hdrs_in_use) 19551 goto exit; 19552 if (phba->sli4_hba.extents_in_use) 19553 return -EIO; 19554 19555 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19556 /* 19557 * Assign the rpi headers a physical rpi only if the driver 19558 * has not initialized those resources. A port reset only 19559 * needs the headers posted. 19560 */ 19561 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19562 LPFC_RPI_RSRC_RDY) 19563 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19564 19565 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19566 if (rc != MBX_SUCCESS) { 19567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19568 "2008 Error %d posting all rpi " 19569 "headers\n", rc); 19570 rc = -EIO; 19571 break; 19572 } 19573 } 19574 19575 exit: 19576 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19577 LPFC_RPI_RSRC_RDY); 19578 return rc; 19579 } 19580 19581 /** 19582 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19583 * @phba: pointer to lpfc hba data structure. 19584 * @rpi_page: pointer to the rpi memory region. 19585 * 19586 * This routine is invoked to post a single rpi header to the 19587 * HBA consistent with the SLI-4 interface spec. This memory region 19588 * maps up to 64 rpi context regions. 19589 * 19590 * Return codes 19591 * 0 - successful 19592 * -ENOMEM - No available memory 19593 * -EIO - The mailbox failed to complete successfully. 19594 **/ 19595 int 19596 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19597 { 19598 LPFC_MBOXQ_t *mboxq; 19599 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19600 uint32_t rc = 0; 19601 uint32_t shdr_status, shdr_add_status; 19602 union lpfc_sli4_cfg_shdr *shdr; 19603 19604 /* SLI4 ports that support extents do not require RPI headers. */ 19605 if (!phba->sli4_hba.rpi_hdrs_in_use) 19606 return rc; 19607 if (phba->sli4_hba.extents_in_use) 19608 return -EIO; 19609 19610 /* The port is notified of the header region via a mailbox command. */ 19611 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19612 if (!mboxq) { 19613 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19614 "2001 Unable to allocate memory for issuing " 19615 "SLI_CONFIG_SPECIAL mailbox command\n"); 19616 return -ENOMEM; 19617 } 19618 19619 /* Post all rpi memory regions to the port. */ 19620 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19621 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19622 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19623 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19624 sizeof(struct lpfc_sli4_cfg_mhdr), 19625 LPFC_SLI4_MBX_EMBED); 19626 19627 19628 /* Post the physical rpi to the port for this rpi header. */ 19629 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19630 rpi_page->start_rpi); 19631 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19632 hdr_tmpl, rpi_page->page_count); 19633 19634 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19635 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19636 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19637 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19638 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19639 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19640 mempool_free(mboxq, phba->mbox_mem_pool); 19641 if (shdr_status || shdr_add_status || rc) { 19642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19643 "2514 POST_RPI_HDR mailbox failed with " 19644 "status x%x add_status x%x, mbx status x%x\n", 19645 shdr_status, shdr_add_status, rc); 19646 rc = -ENXIO; 19647 } else { 19648 /* 19649 * The next_rpi stores the next logical module-64 rpi value used 19650 * to post physical rpis in subsequent rpi postings. 19651 */ 19652 spin_lock_irq(&phba->hbalock); 19653 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19654 spin_unlock_irq(&phba->hbalock); 19655 } 19656 return rc; 19657 } 19658 19659 /** 19660 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19661 * @phba: pointer to lpfc hba data structure. 19662 * 19663 * This routine is invoked to post rpi header templates to the 19664 * HBA consistent with the SLI-4 interface spec. This routine 19665 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19666 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19667 * 19668 * Returns 19669 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19670 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19671 **/ 19672 int 19673 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19674 { 19675 unsigned long rpi; 19676 uint16_t max_rpi, rpi_limit; 19677 uint16_t rpi_remaining, lrpi = 0; 19678 struct lpfc_rpi_hdr *rpi_hdr; 19679 unsigned long iflag; 19680 19681 /* 19682 * Fetch the next logical rpi. Because this index is logical, 19683 * the driver starts at 0 each time. 19684 */ 19685 spin_lock_irqsave(&phba->hbalock, iflag); 19686 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19687 rpi_limit = phba->sli4_hba.next_rpi; 19688 19689 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19690 if (rpi >= rpi_limit) 19691 rpi = LPFC_RPI_ALLOC_ERROR; 19692 else { 19693 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19694 phba->sli4_hba.max_cfg_param.rpi_used++; 19695 phba->sli4_hba.rpi_count++; 19696 } 19697 lpfc_printf_log(phba, KERN_INFO, 19698 LOG_NODE | LOG_DISCOVERY, 19699 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19700 (int) rpi, max_rpi, rpi_limit); 19701 19702 /* 19703 * Don't try to allocate more rpi header regions if the device limit 19704 * has been exhausted. 19705 */ 19706 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19707 (phba->sli4_hba.rpi_count >= max_rpi)) { 19708 spin_unlock_irqrestore(&phba->hbalock, iflag); 19709 return rpi; 19710 } 19711 19712 /* 19713 * RPI header postings are not required for SLI4 ports capable of 19714 * extents. 19715 */ 19716 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19717 spin_unlock_irqrestore(&phba->hbalock, iflag); 19718 return rpi; 19719 } 19720 19721 /* 19722 * If the driver is running low on rpi resources, allocate another 19723 * page now. Note that the next_rpi value is used because 19724 * it represents how many are actually in use whereas max_rpi notes 19725 * how many are supported max by the device. 19726 */ 19727 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19728 spin_unlock_irqrestore(&phba->hbalock, iflag); 19729 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19730 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19731 if (!rpi_hdr) { 19732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19733 "2002 Error Could not grow rpi " 19734 "count\n"); 19735 } else { 19736 lrpi = rpi_hdr->start_rpi; 19737 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19738 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19739 } 19740 } 19741 19742 return rpi; 19743 } 19744 19745 /** 19746 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19747 * @phba: pointer to lpfc hba data structure. 19748 * @rpi: rpi to free 19749 * 19750 * This routine is invoked to release an rpi to the pool of 19751 * available rpis maintained by the driver. 19752 **/ 19753 static void 19754 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19755 { 19756 /* 19757 * if the rpi value indicates a prior unreg has already 19758 * been done, skip the unreg. 19759 */ 19760 if (rpi == LPFC_RPI_ALLOC_ERROR) 19761 return; 19762 19763 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19764 phba->sli4_hba.rpi_count--; 19765 phba->sli4_hba.max_cfg_param.rpi_used--; 19766 } else { 19767 lpfc_printf_log(phba, KERN_INFO, 19768 LOG_NODE | LOG_DISCOVERY, 19769 "2016 rpi %x not inuse\n", 19770 rpi); 19771 } 19772 } 19773 19774 /** 19775 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19776 * @phba: pointer to lpfc hba data structure. 19777 * @rpi: rpi to free 19778 * 19779 * This routine is invoked to release an rpi to the pool of 19780 * available rpis maintained by the driver. 19781 **/ 19782 void 19783 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19784 { 19785 spin_lock_irq(&phba->hbalock); 19786 __lpfc_sli4_free_rpi(phba, rpi); 19787 spin_unlock_irq(&phba->hbalock); 19788 } 19789 19790 /** 19791 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19792 * @phba: pointer to lpfc hba data structure. 19793 * 19794 * This routine is invoked to remove the memory region that 19795 * provided rpi via a bitmask. 19796 **/ 19797 void 19798 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19799 { 19800 kfree(phba->sli4_hba.rpi_bmask); 19801 kfree(phba->sli4_hba.rpi_ids); 19802 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19803 } 19804 19805 /** 19806 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19807 * @ndlp: pointer to lpfc nodelist data structure. 19808 * @cmpl: completion call-back. 19809 * @iocbq: data to load as mbox ctx_u information 19810 * 19811 * This routine is invoked to remove the memory region that 19812 * provided rpi via a bitmask. 19813 **/ 19814 int 19815 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19816 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19817 struct lpfc_iocbq *iocbq) 19818 { 19819 LPFC_MBOXQ_t *mboxq; 19820 struct lpfc_hba *phba = ndlp->phba; 19821 int rc; 19822 19823 /* The port is notified of the header region via a mailbox command. */ 19824 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19825 if (!mboxq) 19826 return -ENOMEM; 19827 19828 /* If cmpl assigned, then this nlp_get pairs with 19829 * lpfc_mbx_cmpl_resume_rpi. 19830 * 19831 * Else cmpl is NULL, then this nlp_get pairs with 19832 * lpfc_sli_def_mbox_cmpl. 19833 */ 19834 if (!lpfc_nlp_get(ndlp)) { 19835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19836 "2122 %s: Failed to get nlp ref\n", 19837 __func__); 19838 mempool_free(mboxq, phba->mbox_mem_pool); 19839 return -EIO; 19840 } 19841 19842 /* Post all rpi memory regions to the port. */ 19843 lpfc_resume_rpi(mboxq, ndlp); 19844 if (cmpl) { 19845 mboxq->mbox_cmpl = cmpl; 19846 mboxq->ctx_u.save_iocb = iocbq; 19847 } else 19848 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19849 mboxq->ctx_ndlp = ndlp; 19850 mboxq->vport = ndlp->vport; 19851 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19852 if (rc == MBX_NOT_FINISHED) { 19853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19854 "2010 Resume RPI Mailbox failed " 19855 "status %d, mbxStatus x%x\n", rc, 19856 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19857 lpfc_nlp_put(ndlp); 19858 mempool_free(mboxq, phba->mbox_mem_pool); 19859 return -EIO; 19860 } 19861 return 0; 19862 } 19863 19864 /** 19865 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19866 * @vport: Pointer to the vport for which the vpi is being initialized 19867 * 19868 * This routine is invoked to activate a vpi with the port. 19869 * 19870 * Returns: 19871 * 0 success 19872 * -Evalue otherwise 19873 **/ 19874 int 19875 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19876 { 19877 LPFC_MBOXQ_t *mboxq; 19878 int rc = 0; 19879 int retval = MBX_SUCCESS; 19880 uint32_t mbox_tmo; 19881 struct lpfc_hba *phba = vport->phba; 19882 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19883 if (!mboxq) 19884 return -ENOMEM; 19885 lpfc_init_vpi(phba, mboxq, vport->vpi); 19886 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19887 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19888 if (rc != MBX_SUCCESS) { 19889 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19890 "2022 INIT VPI Mailbox failed " 19891 "status %d, mbxStatus x%x\n", rc, 19892 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19893 retval = -EIO; 19894 } 19895 if (rc != MBX_TIMEOUT) 19896 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19897 19898 return retval; 19899 } 19900 19901 /** 19902 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19903 * @phba: pointer to lpfc hba data structure. 19904 * @mboxq: Pointer to mailbox object. 19905 * 19906 * This routine is invoked to manually add a single FCF record. The caller 19907 * must pass a completely initialized FCF_Record. This routine takes 19908 * care of the nonembedded mailbox operations. 19909 **/ 19910 static void 19911 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19912 { 19913 void *virt_addr; 19914 union lpfc_sli4_cfg_shdr *shdr; 19915 uint32_t shdr_status, shdr_add_status; 19916 19917 virt_addr = mboxq->sge_array->addr[0]; 19918 /* The IOCTL status is embedded in the mailbox subheader. */ 19919 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19920 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19921 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19922 19923 if ((shdr_status || shdr_add_status) && 19924 (shdr_status != STATUS_FCF_IN_USE)) 19925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19926 "2558 ADD_FCF_RECORD mailbox failed with " 19927 "status x%x add_status x%x\n", 19928 shdr_status, shdr_add_status); 19929 19930 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19931 } 19932 19933 /** 19934 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19935 * @phba: pointer to lpfc hba data structure. 19936 * @fcf_record: pointer to the initialized fcf record to add. 19937 * 19938 * This routine is invoked to manually add a single FCF record. The caller 19939 * must pass a completely initialized FCF_Record. This routine takes 19940 * care of the nonembedded mailbox operations. 19941 **/ 19942 int 19943 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19944 { 19945 int rc = 0; 19946 LPFC_MBOXQ_t *mboxq; 19947 uint8_t *bytep; 19948 void *virt_addr; 19949 struct lpfc_mbx_sge sge; 19950 uint32_t alloc_len, req_len; 19951 uint32_t fcfindex; 19952 19953 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19954 if (!mboxq) { 19955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19956 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19957 return -ENOMEM; 19958 } 19959 19960 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19961 sizeof(uint32_t); 19962 19963 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19964 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19965 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19966 req_len, LPFC_SLI4_MBX_NEMBED); 19967 if (alloc_len < req_len) { 19968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19969 "2523 Allocated DMA memory size (x%x) is " 19970 "less than the requested DMA memory " 19971 "size (x%x)\n", alloc_len, req_len); 19972 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19973 return -ENOMEM; 19974 } 19975 19976 /* 19977 * Get the first SGE entry from the non-embedded DMA memory. This 19978 * routine only uses a single SGE. 19979 */ 19980 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19981 virt_addr = mboxq->sge_array->addr[0]; 19982 /* 19983 * Configure the FCF record for FCFI 0. This is the driver's 19984 * hardcoded default and gets used in nonFIP mode. 19985 */ 19986 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19987 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19988 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19989 19990 /* 19991 * Copy the fcf_index and the FCF Record Data. The data starts after 19992 * the FCoE header plus word10. The data copy needs to be endian 19993 * correct. 19994 */ 19995 bytep += sizeof(uint32_t); 19996 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19997 mboxq->vport = phba->pport; 19998 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20000 if (rc == MBX_NOT_FINISHED) { 20001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20002 "2515 ADD_FCF_RECORD mailbox failed with " 20003 "status 0x%x\n", rc); 20004 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20005 rc = -EIO; 20006 } else 20007 rc = 0; 20008 20009 return rc; 20010 } 20011 20012 /** 20013 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20014 * @phba: pointer to lpfc hba data structure. 20015 * @fcf_record: pointer to the fcf record to write the default data. 20016 * @fcf_index: FCF table entry index. 20017 * 20018 * This routine is invoked to build the driver's default FCF record. The 20019 * values used are hardcoded. This routine handles memory initialization. 20020 * 20021 **/ 20022 void 20023 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20024 struct fcf_record *fcf_record, 20025 uint16_t fcf_index) 20026 { 20027 memset(fcf_record, 0, sizeof(struct fcf_record)); 20028 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20029 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20030 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20031 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20032 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20033 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20034 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20035 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20036 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20037 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20038 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20039 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20040 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20041 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20042 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20043 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20044 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20045 /* Set the VLAN bit map */ 20046 if (phba->valid_vlan) { 20047 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20048 = 1 << (phba->vlan_id % 8); 20049 } 20050 } 20051 20052 /** 20053 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20054 * @phba: pointer to lpfc hba data structure. 20055 * @fcf_index: FCF table entry offset. 20056 * 20057 * This routine is invoked to scan the entire FCF table by reading FCF 20058 * record and processing it one at a time starting from the @fcf_index 20059 * for initial FCF discovery or fast FCF failover rediscovery. 20060 * 20061 * Return 0 if the mailbox command is submitted successfully, none 0 20062 * otherwise. 20063 **/ 20064 int 20065 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20066 { 20067 int rc = 0, error; 20068 LPFC_MBOXQ_t *mboxq; 20069 20070 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20071 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20072 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20073 if (!mboxq) { 20074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20075 "2000 Failed to allocate mbox for " 20076 "READ_FCF cmd\n"); 20077 error = -ENOMEM; 20078 goto fail_fcf_scan; 20079 } 20080 /* Construct the read FCF record mailbox command */ 20081 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20082 if (rc) { 20083 error = -EINVAL; 20084 goto fail_fcf_scan; 20085 } 20086 /* Issue the mailbox command asynchronously */ 20087 mboxq->vport = phba->pport; 20088 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20089 20090 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20091 20092 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20093 if (rc == MBX_NOT_FINISHED) 20094 error = -EIO; 20095 else { 20096 /* Reset eligible FCF count for new scan */ 20097 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20098 phba->fcf.eligible_fcf_cnt = 0; 20099 error = 0; 20100 } 20101 fail_fcf_scan: 20102 if (error) { 20103 if (mboxq) 20104 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20105 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20106 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20107 } 20108 return error; 20109 } 20110 20111 /** 20112 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20113 * @phba: pointer to lpfc hba data structure. 20114 * @fcf_index: FCF table entry offset. 20115 * 20116 * This routine is invoked to read an FCF record indicated by @fcf_index 20117 * and to use it for FLOGI roundrobin FCF failover. 20118 * 20119 * Return 0 if the mailbox command is submitted successfully, none 0 20120 * otherwise. 20121 **/ 20122 int 20123 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20124 { 20125 int rc = 0, error; 20126 LPFC_MBOXQ_t *mboxq; 20127 20128 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20129 if (!mboxq) { 20130 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20131 "2763 Failed to allocate mbox for " 20132 "READ_FCF cmd\n"); 20133 error = -ENOMEM; 20134 goto fail_fcf_read; 20135 } 20136 /* Construct the read FCF record mailbox command */ 20137 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20138 if (rc) { 20139 error = -EINVAL; 20140 goto fail_fcf_read; 20141 } 20142 /* Issue the mailbox command asynchronously */ 20143 mboxq->vport = phba->pport; 20144 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20145 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20146 if (rc == MBX_NOT_FINISHED) 20147 error = -EIO; 20148 else 20149 error = 0; 20150 20151 fail_fcf_read: 20152 if (error && mboxq) 20153 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20154 return error; 20155 } 20156 20157 /** 20158 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20159 * @phba: pointer to lpfc hba data structure. 20160 * @fcf_index: FCF table entry offset. 20161 * 20162 * This routine is invoked to read an FCF record indicated by @fcf_index to 20163 * determine whether it's eligible for FLOGI roundrobin failover list. 20164 * 20165 * Return 0 if the mailbox command is submitted successfully, none 0 20166 * otherwise. 20167 **/ 20168 int 20169 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20170 { 20171 int rc = 0, error; 20172 LPFC_MBOXQ_t *mboxq; 20173 20174 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20175 if (!mboxq) { 20176 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20177 "2758 Failed to allocate mbox for " 20178 "READ_FCF cmd\n"); 20179 error = -ENOMEM; 20180 goto fail_fcf_read; 20181 } 20182 /* Construct the read FCF record mailbox command */ 20183 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20184 if (rc) { 20185 error = -EINVAL; 20186 goto fail_fcf_read; 20187 } 20188 /* Issue the mailbox command asynchronously */ 20189 mboxq->vport = phba->pport; 20190 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20191 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20192 if (rc == MBX_NOT_FINISHED) 20193 error = -EIO; 20194 else 20195 error = 0; 20196 20197 fail_fcf_read: 20198 if (error && mboxq) 20199 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20200 return error; 20201 } 20202 20203 /** 20204 * lpfc_check_next_fcf_pri_level 20205 * @phba: pointer to the lpfc_hba struct for this port. 20206 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20207 * routine when the rr_bmask is empty. The FCF indecies are put into the 20208 * rr_bmask based on their priority level. Starting from the highest priority 20209 * to the lowest. The most likely FCF candidate will be in the highest 20210 * priority group. When this routine is called it searches the fcf_pri list for 20211 * next lowest priority group and repopulates the rr_bmask with only those 20212 * fcf_indexes. 20213 * returns: 20214 * 1=success 0=failure 20215 **/ 20216 static int 20217 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20218 { 20219 uint16_t next_fcf_pri; 20220 uint16_t last_index; 20221 struct lpfc_fcf_pri *fcf_pri; 20222 int rc; 20223 int ret = 0; 20224 20225 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20226 LPFC_SLI4_FCF_TBL_INDX_MAX); 20227 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20228 "3060 Last IDX %d\n", last_index); 20229 20230 /* Verify the priority list has 2 or more entries */ 20231 spin_lock_irq(&phba->hbalock); 20232 if (list_empty(&phba->fcf.fcf_pri_list) || 20233 list_is_singular(&phba->fcf.fcf_pri_list)) { 20234 spin_unlock_irq(&phba->hbalock); 20235 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20236 "3061 Last IDX %d\n", last_index); 20237 return 0; /* Empty rr list */ 20238 } 20239 spin_unlock_irq(&phba->hbalock); 20240 20241 next_fcf_pri = 0; 20242 /* 20243 * Clear the rr_bmask and set all of the bits that are at this 20244 * priority. 20245 */ 20246 memset(phba->fcf.fcf_rr_bmask, 0, 20247 sizeof(*phba->fcf.fcf_rr_bmask)); 20248 spin_lock_irq(&phba->hbalock); 20249 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20250 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20251 continue; 20252 /* 20253 * the 1st priority that has not FLOGI failed 20254 * will be the highest. 20255 */ 20256 if (!next_fcf_pri) 20257 next_fcf_pri = fcf_pri->fcf_rec.priority; 20258 spin_unlock_irq(&phba->hbalock); 20259 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20260 rc = lpfc_sli4_fcf_rr_index_set(phba, 20261 fcf_pri->fcf_rec.fcf_index); 20262 if (rc) 20263 return 0; 20264 } 20265 spin_lock_irq(&phba->hbalock); 20266 } 20267 /* 20268 * if next_fcf_pri was not set above and the list is not empty then 20269 * we have failed flogis on all of them. So reset flogi failed 20270 * and start at the beginning. 20271 */ 20272 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20273 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20274 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20275 /* 20276 * the 1st priority that has not FLOGI failed 20277 * will be the highest. 20278 */ 20279 if (!next_fcf_pri) 20280 next_fcf_pri = fcf_pri->fcf_rec.priority; 20281 spin_unlock_irq(&phba->hbalock); 20282 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20283 rc = lpfc_sli4_fcf_rr_index_set(phba, 20284 fcf_pri->fcf_rec.fcf_index); 20285 if (rc) 20286 return 0; 20287 } 20288 spin_lock_irq(&phba->hbalock); 20289 } 20290 } else 20291 ret = 1; 20292 spin_unlock_irq(&phba->hbalock); 20293 20294 return ret; 20295 } 20296 /** 20297 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20298 * @phba: pointer to lpfc hba data structure. 20299 * 20300 * This routine is to get the next eligible FCF record index in a round 20301 * robin fashion. If the next eligible FCF record index equals to the 20302 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20303 * shall be returned, otherwise, the next eligible FCF record's index 20304 * shall be returned. 20305 **/ 20306 uint16_t 20307 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20308 { 20309 uint16_t next_fcf_index; 20310 20311 initial_priority: 20312 /* Search start from next bit of currently registered FCF index */ 20313 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20314 20315 next_priority: 20316 /* Determine the next fcf index to check */ 20317 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20318 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20319 LPFC_SLI4_FCF_TBL_INDX_MAX, 20320 next_fcf_index); 20321 20322 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20323 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20324 /* 20325 * If we have wrapped then we need to clear the bits that 20326 * have been tested so that we can detect when we should 20327 * change the priority level. 20328 */ 20329 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20330 LPFC_SLI4_FCF_TBL_INDX_MAX); 20331 } 20332 20333 20334 /* Check roundrobin failover list empty condition */ 20335 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20336 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20337 /* 20338 * If next fcf index is not found check if there are lower 20339 * Priority level fcf's in the fcf_priority list. 20340 * Set up the rr_bmask with all of the avaiable fcf bits 20341 * at that level and continue the selection process. 20342 */ 20343 if (lpfc_check_next_fcf_pri_level(phba)) 20344 goto initial_priority; 20345 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20346 "2844 No roundrobin failover FCF available\n"); 20347 20348 return LPFC_FCOE_FCF_NEXT_NONE; 20349 } 20350 20351 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20352 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20353 LPFC_FCF_FLOGI_FAILED) { 20354 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20355 return LPFC_FCOE_FCF_NEXT_NONE; 20356 20357 goto next_priority; 20358 } 20359 20360 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20361 "2845 Get next roundrobin failover FCF (x%x)\n", 20362 next_fcf_index); 20363 20364 return next_fcf_index; 20365 } 20366 20367 /** 20368 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20369 * @phba: pointer to lpfc hba data structure. 20370 * @fcf_index: index into the FCF table to 'set' 20371 * 20372 * This routine sets the FCF record index in to the eligible bmask for 20373 * roundrobin failover search. It checks to make sure that the index 20374 * does not go beyond the range of the driver allocated bmask dimension 20375 * before setting the bit. 20376 * 20377 * Returns 0 if the index bit successfully set, otherwise, it returns 20378 * -EINVAL. 20379 **/ 20380 int 20381 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20382 { 20383 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20384 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20385 "2610 FCF (x%x) reached driver's book " 20386 "keeping dimension:x%x\n", 20387 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20388 return -EINVAL; 20389 } 20390 /* Set the eligible FCF record index bmask */ 20391 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20392 20393 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20394 "2790 Set FCF (x%x) to roundrobin FCF failover " 20395 "bmask\n", fcf_index); 20396 20397 return 0; 20398 } 20399 20400 /** 20401 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20402 * @phba: pointer to lpfc hba data structure. 20403 * @fcf_index: index into the FCF table to 'clear' 20404 * 20405 * This routine clears the FCF record index from the eligible bmask for 20406 * roundrobin failover search. It checks to make sure that the index 20407 * does not go beyond the range of the driver allocated bmask dimension 20408 * before clearing the bit. 20409 **/ 20410 void 20411 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20412 { 20413 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20414 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20415 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20416 "2762 FCF (x%x) reached driver's book " 20417 "keeping dimension:x%x\n", 20418 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20419 return; 20420 } 20421 /* Clear the eligible FCF record index bmask */ 20422 spin_lock_irq(&phba->hbalock); 20423 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20424 list) { 20425 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20426 list_del_init(&fcf_pri->list); 20427 break; 20428 } 20429 } 20430 spin_unlock_irq(&phba->hbalock); 20431 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20432 20433 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20434 "2791 Clear FCF (x%x) from roundrobin failover " 20435 "bmask\n", fcf_index); 20436 } 20437 20438 /** 20439 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20440 * @phba: pointer to lpfc hba data structure. 20441 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20442 * 20443 * This routine is the completion routine for the rediscover FCF table mailbox 20444 * command. If the mailbox command returned failure, it will try to stop the 20445 * FCF rediscover wait timer. 20446 **/ 20447 static void 20448 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20449 { 20450 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20451 uint32_t shdr_status, shdr_add_status; 20452 20453 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20454 20455 shdr_status = bf_get(lpfc_mbox_hdr_status, 20456 &redisc_fcf->header.cfg_shdr.response); 20457 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20458 &redisc_fcf->header.cfg_shdr.response); 20459 if (shdr_status || shdr_add_status) { 20460 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20461 "2746 Requesting for FCF rediscovery failed " 20462 "status x%x add_status x%x\n", 20463 shdr_status, shdr_add_status); 20464 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20465 spin_lock_irq(&phba->hbalock); 20466 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20467 spin_unlock_irq(&phba->hbalock); 20468 /* 20469 * CVL event triggered FCF rediscover request failed, 20470 * last resort to re-try current registered FCF entry. 20471 */ 20472 lpfc_retry_pport_discovery(phba); 20473 } else { 20474 spin_lock_irq(&phba->hbalock); 20475 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20476 spin_unlock_irq(&phba->hbalock); 20477 /* 20478 * DEAD FCF event triggered FCF rediscover request 20479 * failed, last resort to fail over as a link down 20480 * to FCF registration. 20481 */ 20482 lpfc_sli4_fcf_dead_failthrough(phba); 20483 } 20484 } else { 20485 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20486 "2775 Start FCF rediscover quiescent timer\n"); 20487 /* 20488 * Start FCF rediscovery wait timer for pending FCF 20489 * before rescan FCF record table. 20490 */ 20491 lpfc_fcf_redisc_wait_start_timer(phba); 20492 } 20493 20494 mempool_free(mbox, phba->mbox_mem_pool); 20495 } 20496 20497 /** 20498 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20499 * @phba: pointer to lpfc hba data structure. 20500 * 20501 * This routine is invoked to request for rediscovery of the entire FCF table 20502 * by the port. 20503 **/ 20504 int 20505 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20506 { 20507 LPFC_MBOXQ_t *mbox; 20508 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20509 int rc, length; 20510 20511 /* Cancel retry delay timers to all vports before FCF rediscover */ 20512 lpfc_cancel_all_vport_retry_delay_timer(phba); 20513 20514 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20515 if (!mbox) { 20516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20517 "2745 Failed to allocate mbox for " 20518 "requesting FCF rediscover.\n"); 20519 return -ENOMEM; 20520 } 20521 20522 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20523 sizeof(struct lpfc_sli4_cfg_mhdr)); 20524 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20525 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20526 length, LPFC_SLI4_MBX_EMBED); 20527 20528 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20529 /* Set count to 0 for invalidating the entire FCF database */ 20530 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20531 20532 /* Issue the mailbox command asynchronously */ 20533 mbox->vport = phba->pport; 20534 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20535 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20536 20537 if (rc == MBX_NOT_FINISHED) { 20538 mempool_free(mbox, phba->mbox_mem_pool); 20539 return -EIO; 20540 } 20541 return 0; 20542 } 20543 20544 /** 20545 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20546 * @phba: pointer to lpfc hba data structure. 20547 * 20548 * This function is the failover routine as a last resort to the FCF DEAD 20549 * event when driver failed to perform fast FCF failover. 20550 **/ 20551 void 20552 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20553 { 20554 uint32_t link_state; 20555 20556 /* 20557 * Last resort as FCF DEAD event failover will treat this as 20558 * a link down, but save the link state because we don't want 20559 * it to be changed to Link Down unless it is already down. 20560 */ 20561 link_state = phba->link_state; 20562 lpfc_linkdown(phba); 20563 phba->link_state = link_state; 20564 20565 /* Unregister FCF if no devices connected to it */ 20566 lpfc_unregister_unused_fcf(phba); 20567 } 20568 20569 /** 20570 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20571 * @phba: pointer to lpfc hba data structure. 20572 * @rgn23_data: pointer to configure region 23 data. 20573 * 20574 * This function gets SLI3 port configure region 23 data through memory dump 20575 * mailbox command. When it successfully retrieves data, the size of the data 20576 * will be returned, otherwise, 0 will be returned. 20577 **/ 20578 static uint32_t 20579 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20580 { 20581 LPFC_MBOXQ_t *pmb = NULL; 20582 MAILBOX_t *mb; 20583 uint32_t offset = 0; 20584 int rc; 20585 20586 if (!rgn23_data) 20587 return 0; 20588 20589 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20590 if (!pmb) { 20591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20592 "2600 failed to allocate mailbox memory\n"); 20593 return 0; 20594 } 20595 mb = &pmb->u.mb; 20596 20597 do { 20598 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20599 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20600 20601 if (rc != MBX_SUCCESS) { 20602 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20603 "2601 failed to read config " 20604 "region 23, rc 0x%x Status 0x%x\n", 20605 rc, mb->mbxStatus); 20606 mb->un.varDmp.word_cnt = 0; 20607 } 20608 /* 20609 * dump mem may return a zero when finished or we got a 20610 * mailbox error, either way we are done. 20611 */ 20612 if (mb->un.varDmp.word_cnt == 0) 20613 break; 20614 20615 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20616 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20617 20618 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20619 rgn23_data + offset, 20620 mb->un.varDmp.word_cnt); 20621 offset += mb->un.varDmp.word_cnt; 20622 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20623 20624 mempool_free(pmb, phba->mbox_mem_pool); 20625 return offset; 20626 } 20627 20628 /** 20629 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20630 * @phba: pointer to lpfc hba data structure. 20631 * @rgn23_data: pointer to configure region 23 data. 20632 * 20633 * This function gets SLI4 port configure region 23 data through memory dump 20634 * mailbox command. When it successfully retrieves data, the size of the data 20635 * will be returned, otherwise, 0 will be returned. 20636 **/ 20637 static uint32_t 20638 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20639 { 20640 LPFC_MBOXQ_t *mboxq = NULL; 20641 struct lpfc_dmabuf *mp = NULL; 20642 struct lpfc_mqe *mqe; 20643 uint32_t data_length = 0; 20644 int rc; 20645 20646 if (!rgn23_data) 20647 return 0; 20648 20649 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20650 if (!mboxq) { 20651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20652 "3105 failed to allocate mailbox memory\n"); 20653 return 0; 20654 } 20655 20656 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20657 goto out; 20658 mqe = &mboxq->u.mqe; 20659 mp = mboxq->ctx_buf; 20660 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20661 if (rc) 20662 goto out; 20663 data_length = mqe->un.mb_words[5]; 20664 if (data_length == 0) 20665 goto out; 20666 if (data_length > DMP_RGN23_SIZE) { 20667 data_length = 0; 20668 goto out; 20669 } 20670 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20671 out: 20672 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20673 return data_length; 20674 } 20675 20676 /** 20677 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20678 * @phba: pointer to lpfc hba data structure. 20679 * 20680 * This function read region 23 and parse TLV for port status to 20681 * decide if the user disaled the port. If the TLV indicates the 20682 * port is disabled, the hba_flag is set accordingly. 20683 **/ 20684 void 20685 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20686 { 20687 uint8_t *rgn23_data = NULL; 20688 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20689 uint32_t offset = 0; 20690 20691 /* Get adapter Region 23 data */ 20692 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20693 if (!rgn23_data) 20694 goto out; 20695 20696 if (phba->sli_rev < LPFC_SLI_REV4) 20697 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20698 else { 20699 if_type = bf_get(lpfc_sli_intf_if_type, 20700 &phba->sli4_hba.sli_intf); 20701 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20702 goto out; 20703 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20704 } 20705 20706 if (!data_size) 20707 goto out; 20708 20709 /* Check the region signature first */ 20710 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20712 "2619 Config region 23 has bad signature\n"); 20713 goto out; 20714 } 20715 offset += 4; 20716 20717 /* Check the data structure version */ 20718 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20720 "2620 Config region 23 has bad version\n"); 20721 goto out; 20722 } 20723 offset += 4; 20724 20725 /* Parse TLV entries in the region */ 20726 while (offset < data_size) { 20727 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20728 break; 20729 /* 20730 * If the TLV is not driver specific TLV or driver id is 20731 * not linux driver id, skip the record. 20732 */ 20733 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20734 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20735 (rgn23_data[offset + 3] != 0)) { 20736 offset += rgn23_data[offset + 1] * 4 + 4; 20737 continue; 20738 } 20739 20740 /* Driver found a driver specific TLV in the config region */ 20741 sub_tlv_len = rgn23_data[offset + 1] * 4; 20742 offset += 4; 20743 tlv_offset = 0; 20744 20745 /* 20746 * Search for configured port state sub-TLV. 20747 */ 20748 while ((offset < data_size) && 20749 (tlv_offset < sub_tlv_len)) { 20750 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20751 offset += 4; 20752 tlv_offset += 4; 20753 break; 20754 } 20755 if (rgn23_data[offset] != PORT_STE_TYPE) { 20756 offset += rgn23_data[offset + 1] * 4 + 4; 20757 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20758 continue; 20759 } 20760 20761 /* This HBA contains PORT_STE configured */ 20762 if (!rgn23_data[offset + 2]) 20763 set_bit(LINK_DISABLED, &phba->hba_flag); 20764 20765 goto out; 20766 } 20767 } 20768 20769 out: 20770 kfree(rgn23_data); 20771 return; 20772 } 20773 20774 /** 20775 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20776 * @phba: pointer to lpfc hba data structure 20777 * @shdr_status: wr_object rsp's status field 20778 * @shdr_add_status: wr_object rsp's add_status field 20779 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20780 * @shdr_change_status: wr_object rsp's change_status field 20781 * @shdr_csf: wr_object rsp's csf bit 20782 * 20783 * This routine is intended to be called after a firmware write completes. 20784 * It will log next action items to be performed by the user to instantiate 20785 * the newly downloaded firmware or reason for incompatibility. 20786 **/ 20787 static void 20788 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20789 u32 shdr_add_status, u32 shdr_add_status_2, 20790 u32 shdr_change_status, u32 shdr_csf) 20791 { 20792 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20793 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20794 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20795 "change_status x%02x, csf %01x\n", __func__, 20796 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20797 shdr_status, shdr_add_status, shdr_add_status_2, 20798 shdr_change_status, shdr_csf); 20799 20800 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20801 switch (shdr_add_status_2) { 20802 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20803 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20804 "4199 Firmware write failed: " 20805 "image incompatible with flash x%02x\n", 20806 phba->sli4_hba.flash_id); 20807 break; 20808 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20809 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20810 "4200 Firmware write failed: " 20811 "image incompatible with ASIC " 20812 "architecture x%02x\n", 20813 phba->sli4_hba.asic_rev); 20814 break; 20815 default: 20816 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20817 "4210 Firmware write failed: " 20818 "add_status_2 x%02x\n", 20819 shdr_add_status_2); 20820 break; 20821 } 20822 } else if (!shdr_status && !shdr_add_status) { 20823 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20824 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20825 if (shdr_csf) 20826 shdr_change_status = 20827 LPFC_CHANGE_STATUS_PCI_RESET; 20828 } 20829 20830 switch (shdr_change_status) { 20831 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20832 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20833 "3198 Firmware write complete: System " 20834 "reboot required to instantiate\n"); 20835 break; 20836 case (LPFC_CHANGE_STATUS_FW_RESET): 20837 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20838 "3199 Firmware write complete: " 20839 "Firmware reset required to " 20840 "instantiate\n"); 20841 break; 20842 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20843 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20844 "3200 Firmware write complete: Port " 20845 "Migration or PCI Reset required to " 20846 "instantiate\n"); 20847 break; 20848 case (LPFC_CHANGE_STATUS_PCI_RESET): 20849 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20850 "3201 Firmware write complete: PCI " 20851 "Reset required to instantiate\n"); 20852 break; 20853 default: 20854 break; 20855 } 20856 } 20857 } 20858 20859 /** 20860 * lpfc_wr_object - write an object to the firmware 20861 * @phba: HBA structure that indicates port to create a queue on. 20862 * @dmabuf_list: list of dmabufs to write to the port. 20863 * @size: the total byte value of the objects to write to the port. 20864 * @offset: the current offset to be used to start the transfer. 20865 * 20866 * This routine will create a wr_object mailbox command to send to the port. 20867 * the mailbox command will be constructed using the dma buffers described in 20868 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20869 * BDEs that the imbedded mailbox can support. The @offset variable will be 20870 * used to indicate the starting offset of the transfer and will also return 20871 * the offset after the write object mailbox has completed. @size is used to 20872 * determine the end of the object and whether the eof bit should be set. 20873 * 20874 * Return 0 is successful and offset will contain the new offset to use 20875 * for the next write. 20876 * Return negative value for error cases. 20877 **/ 20878 int 20879 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20880 uint32_t size, uint32_t *offset) 20881 { 20882 struct lpfc_mbx_wr_object *wr_object; 20883 LPFC_MBOXQ_t *mbox; 20884 int rc = 0, i = 0; 20885 int mbox_status = 0; 20886 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20887 uint32_t shdr_change_status = 0, shdr_csf = 0; 20888 uint32_t mbox_tmo; 20889 struct lpfc_dmabuf *dmabuf; 20890 uint32_t written = 0; 20891 bool check_change_status = false; 20892 20893 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20894 if (!mbox) 20895 return -ENOMEM; 20896 20897 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20898 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20899 sizeof(struct lpfc_mbx_wr_object) - 20900 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20901 20902 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20903 wr_object->u.request.write_offset = *offset; 20904 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20905 wr_object->u.request.object_name[0] = 20906 cpu_to_le32(wr_object->u.request.object_name[0]); 20907 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20908 list_for_each_entry(dmabuf, dmabuf_list, list) { 20909 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20910 break; 20911 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20912 wr_object->u.request.bde[i].addrHigh = 20913 putPaddrHigh(dmabuf->phys); 20914 if (written + SLI4_PAGE_SIZE >= size) { 20915 wr_object->u.request.bde[i].tus.f.bdeSize = 20916 (size - written); 20917 written += (size - written); 20918 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20919 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20920 check_change_status = true; 20921 } else { 20922 wr_object->u.request.bde[i].tus.f.bdeSize = 20923 SLI4_PAGE_SIZE; 20924 written += SLI4_PAGE_SIZE; 20925 } 20926 i++; 20927 } 20928 wr_object->u.request.bde_count = i; 20929 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20930 if (!phba->sli4_hba.intr_enable) 20931 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20932 else { 20933 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20934 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20935 } 20936 20937 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20938 rc = mbox_status; 20939 20940 /* The IOCTL status is embedded in the mailbox subheader. */ 20941 shdr_status = bf_get(lpfc_mbox_hdr_status, 20942 &wr_object->header.cfg_shdr.response); 20943 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20944 &wr_object->header.cfg_shdr.response); 20945 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20946 &wr_object->header.cfg_shdr.response); 20947 if (check_change_status) { 20948 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20949 &wr_object->u.response); 20950 shdr_csf = bf_get(lpfc_wr_object_csf, 20951 &wr_object->u.response); 20952 } 20953 20954 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20956 "3025 Write Object mailbox failed with " 20957 "status x%x add_status x%x, add_status_2 x%x, " 20958 "mbx status x%x\n", 20959 shdr_status, shdr_add_status, shdr_add_status_2, 20960 rc); 20961 rc = -ENXIO; 20962 *offset = shdr_add_status; 20963 } else { 20964 *offset += wr_object->u.response.actual_write_length; 20965 } 20966 20967 if (rc || check_change_status) 20968 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20969 shdr_add_status_2, shdr_change_status, 20970 shdr_csf); 20971 20972 if (!phba->sli4_hba.intr_enable) 20973 mempool_free(mbox, phba->mbox_mem_pool); 20974 else if (mbox_status != MBX_TIMEOUT) 20975 mempool_free(mbox, phba->mbox_mem_pool); 20976 20977 return rc; 20978 } 20979 20980 /** 20981 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20982 * @vport: pointer to vport data structure. 20983 * 20984 * This function iterate through the mailboxq and clean up all REG_LOGIN 20985 * and REG_VPI mailbox commands associated with the vport. This function 20986 * is called when driver want to restart discovery of the vport due to 20987 * a Clear Virtual Link event. 20988 **/ 20989 void 20990 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20991 { 20992 struct lpfc_hba *phba = vport->phba; 20993 LPFC_MBOXQ_t *mb, *nextmb; 20994 struct lpfc_nodelist *ndlp; 20995 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20996 LIST_HEAD(mbox_cmd_list); 20997 uint8_t restart_loop; 20998 20999 /* Clean up internally queued mailbox commands with the vport */ 21000 spin_lock_irq(&phba->hbalock); 21001 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21002 if (mb->vport != vport) 21003 continue; 21004 21005 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21006 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21007 continue; 21008 21009 list_move_tail(&mb->list, &mbox_cmd_list); 21010 } 21011 /* Clean up active mailbox command with the vport */ 21012 mb = phba->sli.mbox_active; 21013 if (mb && (mb->vport == vport)) { 21014 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21015 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21016 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21017 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21018 act_mbx_ndlp = mb->ctx_ndlp; 21019 21020 /* This reference is local to this routine. The 21021 * reference is removed at routine exit. 21022 */ 21023 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21024 21025 /* Unregister the RPI when mailbox complete */ 21026 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21027 } 21028 } 21029 /* Cleanup any mailbox completions which are not yet processed */ 21030 do { 21031 restart_loop = 0; 21032 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21033 /* 21034 * If this mailox is already processed or it is 21035 * for another vport ignore it. 21036 */ 21037 if ((mb->vport != vport) || 21038 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21039 continue; 21040 21041 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21042 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21043 continue; 21044 21045 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21046 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21047 ndlp = mb->ctx_ndlp; 21048 /* Unregister the RPI when mailbox complete */ 21049 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21050 restart_loop = 1; 21051 spin_unlock_irq(&phba->hbalock); 21052 spin_lock(&ndlp->lock); 21053 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21054 spin_unlock(&ndlp->lock); 21055 spin_lock_irq(&phba->hbalock); 21056 break; 21057 } 21058 } 21059 } while (restart_loop); 21060 21061 spin_unlock_irq(&phba->hbalock); 21062 21063 /* Release the cleaned-up mailbox commands */ 21064 while (!list_empty(&mbox_cmd_list)) { 21065 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21066 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21067 ndlp = mb->ctx_ndlp; 21068 mb->ctx_ndlp = NULL; 21069 if (ndlp) { 21070 spin_lock(&ndlp->lock); 21071 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21072 spin_unlock(&ndlp->lock); 21073 lpfc_nlp_put(ndlp); 21074 } 21075 } 21076 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21077 } 21078 21079 /* Release the ndlp with the cleaned-up active mailbox command */ 21080 if (act_mbx_ndlp) { 21081 spin_lock(&act_mbx_ndlp->lock); 21082 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21083 spin_unlock(&act_mbx_ndlp->lock); 21084 lpfc_nlp_put(act_mbx_ndlp); 21085 } 21086 } 21087 21088 /** 21089 * lpfc_drain_txq - Drain the txq 21090 * @phba: Pointer to HBA context object. 21091 * 21092 * This function attempt to submit IOCBs on the txq 21093 * to the adapter. For SLI4 adapters, the txq contains 21094 * ELS IOCBs that have been deferred because the there 21095 * are no SGLs. This congestion can occur with large 21096 * vport counts during node discovery. 21097 **/ 21098 21099 uint32_t 21100 lpfc_drain_txq(struct lpfc_hba *phba) 21101 { 21102 LIST_HEAD(completions); 21103 struct lpfc_sli_ring *pring; 21104 struct lpfc_iocbq *piocbq = NULL; 21105 unsigned long iflags = 0; 21106 char *fail_msg = NULL; 21107 uint32_t txq_cnt = 0; 21108 struct lpfc_queue *wq; 21109 int ret = 0; 21110 21111 if (phba->link_flag & LS_MDS_LOOPBACK) { 21112 /* MDS WQE are posted only to first WQ*/ 21113 wq = phba->sli4_hba.hdwq[0].io_wq; 21114 if (unlikely(!wq)) 21115 return 0; 21116 pring = wq->pring; 21117 } else { 21118 wq = phba->sli4_hba.els_wq; 21119 if (unlikely(!wq)) 21120 return 0; 21121 pring = lpfc_phba_elsring(phba); 21122 } 21123 21124 if (unlikely(!pring) || list_empty(&pring->txq)) 21125 return 0; 21126 21127 spin_lock_irqsave(&pring->ring_lock, iflags); 21128 list_for_each_entry(piocbq, &pring->txq, list) { 21129 txq_cnt++; 21130 } 21131 21132 if (txq_cnt > pring->txq_max) 21133 pring->txq_max = txq_cnt; 21134 21135 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21136 21137 while (!list_empty(&pring->txq)) { 21138 spin_lock_irqsave(&pring->ring_lock, iflags); 21139 21140 piocbq = lpfc_sli_ringtx_get(phba, pring); 21141 if (!piocbq) { 21142 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21143 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21144 "2823 txq empty and txq_cnt is %d\n ", 21145 txq_cnt); 21146 break; 21147 } 21148 txq_cnt--; 21149 21150 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21151 21152 if (ret && ret != IOCB_BUSY) { 21153 fail_msg = " - Cannot send IO "; 21154 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21155 } 21156 if (fail_msg) { 21157 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21158 /* Failed means we can't issue and need to cancel */ 21159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21160 "2822 IOCB failed %s iotag 0x%x " 21161 "xri 0x%x %d flg x%x\n", 21162 fail_msg, piocbq->iotag, 21163 piocbq->sli4_xritag, ret, 21164 piocbq->cmd_flag); 21165 list_add_tail(&piocbq->list, &completions); 21166 fail_msg = NULL; 21167 } 21168 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21169 if (txq_cnt == 0 || ret == IOCB_BUSY) 21170 break; 21171 } 21172 /* Cancel all the IOCBs that cannot be issued */ 21173 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21174 IOERR_SLI_ABORTED); 21175 21176 return txq_cnt; 21177 } 21178 21179 /** 21180 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21181 * @phba: Pointer to HBA context object. 21182 * @pwqeq: Pointer to command WQE. 21183 * @sglq: Pointer to the scatter gather queue object. 21184 * 21185 * This routine converts the bpl or bde that is in the WQE 21186 * to a sgl list for the sli4 hardware. The physical address 21187 * of the bpl/bde is converted back to a virtual address. 21188 * If the WQE contains a BPL then the list of BDE's is 21189 * converted to sli4_sge's. If the WQE contains a single 21190 * BDE then it is converted to a single sli_sge. 21191 * The WQE is still in cpu endianness so the contents of 21192 * the bpl can be used without byte swapping. 21193 * 21194 * Returns valid XRI = Success, NO_XRI = Failure. 21195 */ 21196 static uint16_t 21197 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21198 struct lpfc_sglq *sglq) 21199 { 21200 uint16_t xritag = NO_XRI; 21201 struct ulp_bde64 *bpl = NULL; 21202 struct ulp_bde64 bde; 21203 struct sli4_sge *sgl = NULL; 21204 struct lpfc_dmabuf *dmabuf; 21205 union lpfc_wqe128 *wqe; 21206 int numBdes = 0; 21207 int i = 0; 21208 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21209 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21210 uint32_t cmd; 21211 21212 if (!pwqeq || !sglq) 21213 return xritag; 21214 21215 sgl = (struct sli4_sge *)sglq->sgl; 21216 wqe = &pwqeq->wqe; 21217 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21218 21219 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21220 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21221 return sglq->sli4_xritag; 21222 numBdes = pwqeq->num_bdes; 21223 if (numBdes) { 21224 /* The addrHigh and addrLow fields within the WQE 21225 * have not been byteswapped yet so there is no 21226 * need to swap them back. 21227 */ 21228 if (pwqeq->bpl_dmabuf) 21229 dmabuf = pwqeq->bpl_dmabuf; 21230 else 21231 return xritag; 21232 21233 bpl = (struct ulp_bde64 *)dmabuf->virt; 21234 if (!bpl) 21235 return xritag; 21236 21237 for (i = 0; i < numBdes; i++) { 21238 /* Should already be byte swapped. */ 21239 sgl->addr_hi = bpl->addrHigh; 21240 sgl->addr_lo = bpl->addrLow; 21241 21242 sgl->word2 = le32_to_cpu(sgl->word2); 21243 if ((i+1) == numBdes) 21244 bf_set(lpfc_sli4_sge_last, sgl, 1); 21245 else 21246 bf_set(lpfc_sli4_sge_last, sgl, 0); 21247 /* swap the size field back to the cpu so we 21248 * can assign it to the sgl. 21249 */ 21250 bde.tus.w = le32_to_cpu(bpl->tus.w); 21251 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21252 /* The offsets in the sgl need to be accumulated 21253 * separately for the request and reply lists. 21254 * The request is always first, the reply follows. 21255 */ 21256 switch (cmd) { 21257 case CMD_GEN_REQUEST64_WQE: 21258 /* add up the reply sg entries */ 21259 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21260 inbound++; 21261 /* first inbound? reset the offset */ 21262 if (inbound == 1) 21263 offset = 0; 21264 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21265 bf_set(lpfc_sli4_sge_type, sgl, 21266 LPFC_SGE_TYPE_DATA); 21267 offset += bde.tus.f.bdeSize; 21268 break; 21269 case CMD_FCP_TRSP64_WQE: 21270 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21271 bf_set(lpfc_sli4_sge_type, sgl, 21272 LPFC_SGE_TYPE_DATA); 21273 break; 21274 case CMD_FCP_TSEND64_WQE: 21275 case CMD_FCP_TRECEIVE64_WQE: 21276 bf_set(lpfc_sli4_sge_type, sgl, 21277 bpl->tus.f.bdeFlags); 21278 if (i < 3) 21279 offset = 0; 21280 else 21281 offset += bde.tus.f.bdeSize; 21282 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21283 break; 21284 } 21285 sgl->word2 = cpu_to_le32(sgl->word2); 21286 bpl++; 21287 sgl++; 21288 } 21289 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21290 /* The addrHigh and addrLow fields of the BDE have not 21291 * been byteswapped yet so they need to be swapped 21292 * before putting them in the sgl. 21293 */ 21294 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21295 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21296 sgl->word2 = le32_to_cpu(sgl->word2); 21297 bf_set(lpfc_sli4_sge_last, sgl, 1); 21298 sgl->word2 = cpu_to_le32(sgl->word2); 21299 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21300 } 21301 return sglq->sli4_xritag; 21302 } 21303 21304 /** 21305 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21306 * @phba: Pointer to HBA context object. 21307 * @qp: Pointer to HDW queue. 21308 * @pwqe: Pointer to command WQE. 21309 **/ 21310 int 21311 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21312 struct lpfc_iocbq *pwqe) 21313 { 21314 union lpfc_wqe128 *wqe = &pwqe->wqe; 21315 struct lpfc_async_xchg_ctx *ctxp; 21316 struct lpfc_queue *wq; 21317 struct lpfc_sglq *sglq; 21318 struct lpfc_sli_ring *pring; 21319 unsigned long iflags; 21320 uint32_t ret = 0; 21321 21322 /* NVME_LS and NVME_LS ABTS requests. */ 21323 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21324 pring = phba->sli4_hba.nvmels_wq->pring; 21325 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21326 qp, wq_access); 21327 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21328 if (!sglq) { 21329 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21330 return WQE_BUSY; 21331 } 21332 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21333 pwqe->sli4_xritag = sglq->sli4_xritag; 21334 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21335 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21336 return WQE_ERROR; 21337 } 21338 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21339 pwqe->sli4_xritag); 21340 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21341 if (ret) { 21342 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21343 return ret; 21344 } 21345 21346 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21347 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21348 21349 lpfc_sli4_poll_eq(qp->hba_eq); 21350 return 0; 21351 } 21352 21353 /* NVME_FCREQ and NVME_ABTS requests */ 21354 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21355 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21356 wq = qp->io_wq; 21357 pring = wq->pring; 21358 21359 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21360 21361 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21362 qp, wq_access); 21363 ret = lpfc_sli4_wq_put(wq, wqe); 21364 if (ret) { 21365 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21366 return ret; 21367 } 21368 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21369 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21370 21371 lpfc_sli4_poll_eq(qp->hba_eq); 21372 return 0; 21373 } 21374 21375 /* NVMET requests */ 21376 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21377 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21378 wq = qp->io_wq; 21379 pring = wq->pring; 21380 21381 ctxp = pwqe->context_un.axchg; 21382 sglq = ctxp->ctxbuf->sglq; 21383 if (pwqe->sli4_xritag == NO_XRI) { 21384 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21385 pwqe->sli4_xritag = sglq->sli4_xritag; 21386 } 21387 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21388 pwqe->sli4_xritag); 21389 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21390 21391 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21392 qp, wq_access); 21393 ret = lpfc_sli4_wq_put(wq, wqe); 21394 if (ret) { 21395 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21396 return ret; 21397 } 21398 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21399 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21400 21401 lpfc_sli4_poll_eq(qp->hba_eq); 21402 return 0; 21403 } 21404 return WQE_ERROR; 21405 } 21406 21407 /** 21408 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21409 * @phba: Pointer to HBA context object. 21410 * @cmdiocb: Pointer to driver command iocb object. 21411 * @cmpl: completion function. 21412 * 21413 * Fill the appropriate fields for the abort WQE and call 21414 * internal routine lpfc_sli4_issue_wqe to send the WQE 21415 * This function is called with hbalock held and no ring_lock held. 21416 * 21417 * RETURNS 0 - SUCCESS 21418 **/ 21419 21420 int 21421 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21422 void *cmpl) 21423 { 21424 struct lpfc_vport *vport = cmdiocb->vport; 21425 struct lpfc_iocbq *abtsiocb = NULL; 21426 union lpfc_wqe128 *abtswqe; 21427 struct lpfc_io_buf *lpfc_cmd; 21428 int retval = IOCB_ERROR; 21429 u16 xritag = cmdiocb->sli4_xritag; 21430 21431 /* 21432 * The scsi command can not be in txq and it is in flight because the 21433 * pCmd is still pointing at the SCSI command we have to abort. There 21434 * is no need to search the txcmplq. Just send an abort to the FW. 21435 */ 21436 21437 abtsiocb = __lpfc_sli_get_iocbq(phba); 21438 if (!abtsiocb) 21439 return WQE_NORESOURCE; 21440 21441 /* Indicate the IO is being aborted by the driver. */ 21442 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21443 21444 abtswqe = &abtsiocb->wqe; 21445 memset(abtswqe, 0, sizeof(*abtswqe)); 21446 21447 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21448 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21449 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21450 abtswqe->abort_cmd.rsrvd5 = 0; 21451 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21452 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21453 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21454 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21455 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21456 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21457 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21458 21459 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21460 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21461 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21462 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21463 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21464 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21465 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21466 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21467 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21468 abtsiocb->vport = vport; 21469 abtsiocb->cmd_cmpl = cmpl; 21470 21471 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21472 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21473 21474 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21475 "0359 Abort xri x%x, original iotag x%x, " 21476 "abort cmd iotag x%x retval x%x\n", 21477 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21478 21479 if (retval) { 21480 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21481 __lpfc_sli_release_iocbq(phba, abtsiocb); 21482 } 21483 21484 return retval; 21485 } 21486 21487 #ifdef LPFC_MXP_STAT 21488 /** 21489 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21490 * @phba: pointer to lpfc hba data structure. 21491 * @hwqid: belong to which HWQ. 21492 * 21493 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21494 * 15 seconds after a test case is running. 21495 * 21496 * The user should call lpfc_debugfs_multixripools_write before running a test 21497 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21498 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21499 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21500 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21501 **/ 21502 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21503 { 21504 struct lpfc_sli4_hdw_queue *qp; 21505 struct lpfc_multixri_pool *multixri_pool; 21506 struct lpfc_pvt_pool *pvt_pool; 21507 struct lpfc_pbl_pool *pbl_pool; 21508 u32 txcmplq_cnt; 21509 21510 qp = &phba->sli4_hba.hdwq[hwqid]; 21511 multixri_pool = qp->p_multixri_pool; 21512 if (!multixri_pool) 21513 return; 21514 21515 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21516 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21517 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21518 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21519 21520 multixri_pool->stat_pbl_count = pbl_pool->count; 21521 multixri_pool->stat_pvt_count = pvt_pool->count; 21522 multixri_pool->stat_busy_count = txcmplq_cnt; 21523 } 21524 21525 multixri_pool->stat_snapshot_taken++; 21526 } 21527 #endif 21528 21529 /** 21530 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21531 * @phba: pointer to lpfc hba data structure. 21532 * @hwqid: belong to which HWQ. 21533 * 21534 * This routine moves some XRIs from private to public pool when private pool 21535 * is not busy. 21536 **/ 21537 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21538 { 21539 struct lpfc_multixri_pool *multixri_pool; 21540 u32 io_req_count; 21541 u32 prev_io_req_count; 21542 21543 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21544 if (!multixri_pool) 21545 return; 21546 io_req_count = multixri_pool->io_req_count; 21547 prev_io_req_count = multixri_pool->prev_io_req_count; 21548 21549 if (prev_io_req_count != io_req_count) { 21550 /* Private pool is busy */ 21551 multixri_pool->prev_io_req_count = io_req_count; 21552 } else { 21553 /* Private pool is not busy. 21554 * Move XRIs from private to public pool. 21555 */ 21556 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21557 } 21558 } 21559 21560 /** 21561 * lpfc_adjust_high_watermark - Adjust high watermark 21562 * @phba: pointer to lpfc hba data structure. 21563 * @hwqid: belong to which HWQ. 21564 * 21565 * This routine sets high watermark as number of outstanding XRIs, 21566 * but make sure the new value is between xri_limit/2 and xri_limit. 21567 **/ 21568 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21569 { 21570 u32 new_watermark; 21571 u32 watermark_max; 21572 u32 watermark_min; 21573 u32 xri_limit; 21574 u32 txcmplq_cnt; 21575 u32 abts_io_bufs; 21576 struct lpfc_multixri_pool *multixri_pool; 21577 struct lpfc_sli4_hdw_queue *qp; 21578 21579 qp = &phba->sli4_hba.hdwq[hwqid]; 21580 multixri_pool = qp->p_multixri_pool; 21581 if (!multixri_pool) 21582 return; 21583 xri_limit = multixri_pool->xri_limit; 21584 21585 watermark_max = xri_limit; 21586 watermark_min = xri_limit / 2; 21587 21588 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21589 abts_io_bufs = qp->abts_scsi_io_bufs; 21590 abts_io_bufs += qp->abts_nvme_io_bufs; 21591 21592 new_watermark = txcmplq_cnt + abts_io_bufs; 21593 new_watermark = min(watermark_max, new_watermark); 21594 new_watermark = max(watermark_min, new_watermark); 21595 multixri_pool->pvt_pool.high_watermark = new_watermark; 21596 21597 #ifdef LPFC_MXP_STAT 21598 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21599 new_watermark); 21600 #endif 21601 } 21602 21603 /** 21604 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21605 * @phba: pointer to lpfc hba data structure. 21606 * @hwqid: belong to which HWQ. 21607 * 21608 * This routine is called from hearbeat timer when pvt_pool is idle. 21609 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21610 * The first step moves (all - low_watermark) amount of XRIs. 21611 * The second step moves the rest of XRIs. 21612 **/ 21613 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21614 { 21615 struct lpfc_pbl_pool *pbl_pool; 21616 struct lpfc_pvt_pool *pvt_pool; 21617 struct lpfc_sli4_hdw_queue *qp; 21618 struct lpfc_io_buf *lpfc_ncmd; 21619 struct lpfc_io_buf *lpfc_ncmd_next; 21620 unsigned long iflag; 21621 struct list_head tmp_list; 21622 u32 tmp_count; 21623 21624 qp = &phba->sli4_hba.hdwq[hwqid]; 21625 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21626 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21627 tmp_count = 0; 21628 21629 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21630 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21631 21632 if (pvt_pool->count > pvt_pool->low_watermark) { 21633 /* Step 1: move (all - low_watermark) from pvt_pool 21634 * to pbl_pool 21635 */ 21636 21637 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21638 INIT_LIST_HEAD(&tmp_list); 21639 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21640 &pvt_pool->list, list) { 21641 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21642 tmp_count++; 21643 if (tmp_count >= pvt_pool->low_watermark) 21644 break; 21645 } 21646 21647 /* Move all bufs from pvt_pool to pbl_pool */ 21648 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21649 21650 /* Move all bufs from tmp_list to pvt_pool */ 21651 list_splice(&tmp_list, &pvt_pool->list); 21652 21653 pbl_pool->count += (pvt_pool->count - tmp_count); 21654 pvt_pool->count = tmp_count; 21655 } else { 21656 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21657 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21658 pbl_pool->count += pvt_pool->count; 21659 pvt_pool->count = 0; 21660 } 21661 21662 spin_unlock(&pvt_pool->lock); 21663 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21664 } 21665 21666 /** 21667 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21668 * @phba: pointer to lpfc hba data structure 21669 * @qp: pointer to HDW queue 21670 * @pbl_pool: specified public free XRI pool 21671 * @pvt_pool: specified private free XRI pool 21672 * @count: number of XRIs to move 21673 * 21674 * This routine tries to move some free common bufs from the specified pbl_pool 21675 * to the specified pvt_pool. It might move less than count XRIs if there's not 21676 * enough in public pool. 21677 * 21678 * Return: 21679 * true - if XRIs are successfully moved from the specified pbl_pool to the 21680 * specified pvt_pool 21681 * false - if the specified pbl_pool is empty or locked by someone else 21682 **/ 21683 static bool 21684 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21685 struct lpfc_pbl_pool *pbl_pool, 21686 struct lpfc_pvt_pool *pvt_pool, u32 count) 21687 { 21688 struct lpfc_io_buf *lpfc_ncmd; 21689 struct lpfc_io_buf *lpfc_ncmd_next; 21690 unsigned long iflag; 21691 int ret; 21692 21693 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21694 if (ret) { 21695 if (pbl_pool->count) { 21696 /* Move a batch of XRIs from public to private pool */ 21697 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21698 list_for_each_entry_safe(lpfc_ncmd, 21699 lpfc_ncmd_next, 21700 &pbl_pool->list, 21701 list) { 21702 list_move_tail(&lpfc_ncmd->list, 21703 &pvt_pool->list); 21704 pvt_pool->count++; 21705 pbl_pool->count--; 21706 count--; 21707 if (count == 0) 21708 break; 21709 } 21710 21711 spin_unlock(&pvt_pool->lock); 21712 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21713 return true; 21714 } 21715 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21716 } 21717 21718 return false; 21719 } 21720 21721 /** 21722 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21723 * @phba: pointer to lpfc hba data structure. 21724 * @hwqid: belong to which HWQ. 21725 * @count: number of XRIs to move 21726 * 21727 * This routine tries to find some free common bufs in one of public pools with 21728 * Round Robin method. The search always starts from local hwqid, then the next 21729 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21730 * a batch of free common bufs are moved to private pool on hwqid. 21731 * It might move less than count XRIs if there's not enough in public pool. 21732 **/ 21733 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21734 { 21735 struct lpfc_multixri_pool *multixri_pool; 21736 struct lpfc_multixri_pool *next_multixri_pool; 21737 struct lpfc_pvt_pool *pvt_pool; 21738 struct lpfc_pbl_pool *pbl_pool; 21739 struct lpfc_sli4_hdw_queue *qp; 21740 u32 next_hwqid; 21741 u32 hwq_count; 21742 int ret; 21743 21744 qp = &phba->sli4_hba.hdwq[hwqid]; 21745 multixri_pool = qp->p_multixri_pool; 21746 pvt_pool = &multixri_pool->pvt_pool; 21747 pbl_pool = &multixri_pool->pbl_pool; 21748 21749 /* Check if local pbl_pool is available */ 21750 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21751 if (ret) { 21752 #ifdef LPFC_MXP_STAT 21753 multixri_pool->local_pbl_hit_count++; 21754 #endif 21755 return; 21756 } 21757 21758 hwq_count = phba->cfg_hdw_queue; 21759 21760 /* Get the next hwqid which was found last time */ 21761 next_hwqid = multixri_pool->rrb_next_hwqid; 21762 21763 do { 21764 /* Go to next hwq */ 21765 next_hwqid = (next_hwqid + 1) % hwq_count; 21766 21767 next_multixri_pool = 21768 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21769 pbl_pool = &next_multixri_pool->pbl_pool; 21770 21771 /* Check if the public free xri pool is available */ 21772 ret = _lpfc_move_xri_pbl_to_pvt( 21773 phba, qp, pbl_pool, pvt_pool, count); 21774 21775 /* Exit while-loop if success or all hwqid are checked */ 21776 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21777 21778 /* Starting point for the next time */ 21779 multixri_pool->rrb_next_hwqid = next_hwqid; 21780 21781 if (!ret) { 21782 /* stats: all public pools are empty*/ 21783 multixri_pool->pbl_empty_count++; 21784 } 21785 21786 #ifdef LPFC_MXP_STAT 21787 if (ret) { 21788 if (next_hwqid == hwqid) 21789 multixri_pool->local_pbl_hit_count++; 21790 else 21791 multixri_pool->other_pbl_hit_count++; 21792 } 21793 #endif 21794 } 21795 21796 /** 21797 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21798 * @phba: pointer to lpfc hba data structure. 21799 * @hwqid: belong to which HWQ. 21800 * 21801 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21802 * low watermark. 21803 **/ 21804 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21805 { 21806 struct lpfc_multixri_pool *multixri_pool; 21807 struct lpfc_pvt_pool *pvt_pool; 21808 21809 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21810 pvt_pool = &multixri_pool->pvt_pool; 21811 21812 if (pvt_pool->count < pvt_pool->low_watermark) 21813 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21814 } 21815 21816 /** 21817 * lpfc_release_io_buf - Return one IO buf back to free pool 21818 * @phba: pointer to lpfc hba data structure. 21819 * @lpfc_ncmd: IO buf to be returned. 21820 * @qp: belong to which HWQ. 21821 * 21822 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21823 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21824 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21825 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21826 * lpfc_io_buf_list_put. 21827 **/ 21828 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21829 struct lpfc_sli4_hdw_queue *qp) 21830 { 21831 unsigned long iflag; 21832 struct lpfc_pbl_pool *pbl_pool; 21833 struct lpfc_pvt_pool *pvt_pool; 21834 struct lpfc_epd_pool *epd_pool; 21835 u32 txcmplq_cnt; 21836 u32 xri_owned; 21837 u32 xri_limit; 21838 u32 abts_io_bufs; 21839 21840 /* MUST zero fields if buffer is reused by another protocol */ 21841 lpfc_ncmd->nvmeCmd = NULL; 21842 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21843 21844 if (phba->cfg_xpsgl && !phba->nvmet_support && 21845 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21846 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21847 21848 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21849 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21850 21851 if (phba->cfg_xri_rebalancing) { 21852 if (lpfc_ncmd->expedite) { 21853 /* Return to expedite pool */ 21854 epd_pool = &phba->epd_pool; 21855 spin_lock_irqsave(&epd_pool->lock, iflag); 21856 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21857 epd_pool->count++; 21858 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21859 return; 21860 } 21861 21862 /* Avoid invalid access if an IO sneaks in and is being rejected 21863 * just _after_ xri pools are destroyed in lpfc_offline. 21864 * Nothing much can be done at this point. 21865 */ 21866 if (!qp->p_multixri_pool) 21867 return; 21868 21869 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21870 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21871 21872 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21873 abts_io_bufs = qp->abts_scsi_io_bufs; 21874 abts_io_bufs += qp->abts_nvme_io_bufs; 21875 21876 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21877 xri_limit = qp->p_multixri_pool->xri_limit; 21878 21879 #ifdef LPFC_MXP_STAT 21880 if (xri_owned <= xri_limit) 21881 qp->p_multixri_pool->below_limit_count++; 21882 else 21883 qp->p_multixri_pool->above_limit_count++; 21884 #endif 21885 21886 /* XRI goes to either public or private free xri pool 21887 * based on watermark and xri_limit 21888 */ 21889 if ((pvt_pool->count < pvt_pool->low_watermark) || 21890 (xri_owned < xri_limit && 21891 pvt_pool->count < pvt_pool->high_watermark)) { 21892 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21893 qp, free_pvt_pool); 21894 list_add_tail(&lpfc_ncmd->list, 21895 &pvt_pool->list); 21896 pvt_pool->count++; 21897 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21898 } else { 21899 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21900 qp, free_pub_pool); 21901 list_add_tail(&lpfc_ncmd->list, 21902 &pbl_pool->list); 21903 pbl_pool->count++; 21904 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21905 } 21906 } else { 21907 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21908 qp, free_xri); 21909 list_add_tail(&lpfc_ncmd->list, 21910 &qp->lpfc_io_buf_list_put); 21911 qp->put_io_bufs++; 21912 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21913 iflag); 21914 } 21915 } 21916 21917 /** 21918 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21919 * @phba: pointer to lpfc hba data structure. 21920 * @qp: pointer to HDW queue 21921 * @pvt_pool: pointer to private pool data structure. 21922 * @ndlp: pointer to lpfc nodelist data structure. 21923 * 21924 * This routine tries to get one free IO buf from private pool. 21925 * 21926 * Return: 21927 * pointer to one free IO buf - if private pool is not empty 21928 * NULL - if private pool is empty 21929 **/ 21930 static struct lpfc_io_buf * 21931 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21932 struct lpfc_sli4_hdw_queue *qp, 21933 struct lpfc_pvt_pool *pvt_pool, 21934 struct lpfc_nodelist *ndlp) 21935 { 21936 struct lpfc_io_buf *lpfc_ncmd; 21937 struct lpfc_io_buf *lpfc_ncmd_next; 21938 unsigned long iflag; 21939 21940 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21941 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21942 &pvt_pool->list, list) { 21943 if (lpfc_test_rrq_active( 21944 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21945 continue; 21946 list_del(&lpfc_ncmd->list); 21947 pvt_pool->count--; 21948 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21949 return lpfc_ncmd; 21950 } 21951 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21952 21953 return NULL; 21954 } 21955 21956 /** 21957 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21958 * @phba: pointer to lpfc hba data structure. 21959 * 21960 * This routine tries to get one free IO buf from expedite pool. 21961 * 21962 * Return: 21963 * pointer to one free IO buf - if expedite pool is not empty 21964 * NULL - if expedite pool is empty 21965 **/ 21966 static struct lpfc_io_buf * 21967 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21968 { 21969 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21970 struct lpfc_io_buf *lpfc_ncmd_next; 21971 unsigned long iflag; 21972 struct lpfc_epd_pool *epd_pool; 21973 21974 epd_pool = &phba->epd_pool; 21975 21976 spin_lock_irqsave(&epd_pool->lock, iflag); 21977 if (epd_pool->count > 0) { 21978 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21979 &epd_pool->list, list) { 21980 list_del(&iter->list); 21981 epd_pool->count--; 21982 lpfc_ncmd = iter; 21983 break; 21984 } 21985 } 21986 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21987 21988 return lpfc_ncmd; 21989 } 21990 21991 /** 21992 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21993 * @phba: pointer to lpfc hba data structure. 21994 * @ndlp: pointer to lpfc nodelist data structure. 21995 * @hwqid: belong to which HWQ 21996 * @expedite: 1 means this request is urgent. 21997 * 21998 * This routine will do the following actions and then return a pointer to 21999 * one free IO buf. 22000 * 22001 * 1. If private free xri count is empty, move some XRIs from public to 22002 * private pool. 22003 * 2. Get one XRI from private free xri pool. 22004 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22005 * get one free xri from expedite pool. 22006 * 22007 * Note: ndlp is only used on SCSI side for RRQ testing. 22008 * The caller should pass NULL for ndlp on NVME side. 22009 * 22010 * Return: 22011 * pointer to one free IO buf - if private pool is not empty 22012 * NULL - if private pool is empty 22013 **/ 22014 static struct lpfc_io_buf * 22015 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22016 struct lpfc_nodelist *ndlp, 22017 int hwqid, int expedite) 22018 { 22019 struct lpfc_sli4_hdw_queue *qp; 22020 struct lpfc_multixri_pool *multixri_pool; 22021 struct lpfc_pvt_pool *pvt_pool; 22022 struct lpfc_io_buf *lpfc_ncmd; 22023 22024 qp = &phba->sli4_hba.hdwq[hwqid]; 22025 lpfc_ncmd = NULL; 22026 if (!qp) { 22027 lpfc_printf_log(phba, KERN_INFO, 22028 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22029 "5556 NULL qp for hwqid x%x\n", hwqid); 22030 return lpfc_ncmd; 22031 } 22032 multixri_pool = qp->p_multixri_pool; 22033 if (!multixri_pool) { 22034 lpfc_printf_log(phba, KERN_INFO, 22035 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22036 "5557 NULL multixri for hwqid x%x\n", hwqid); 22037 return lpfc_ncmd; 22038 } 22039 pvt_pool = &multixri_pool->pvt_pool; 22040 if (!pvt_pool) { 22041 lpfc_printf_log(phba, KERN_INFO, 22042 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22043 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22044 return lpfc_ncmd; 22045 } 22046 multixri_pool->io_req_count++; 22047 22048 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22049 if (pvt_pool->count == 0) 22050 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22051 22052 /* Get one XRI from private free xri pool */ 22053 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22054 22055 if (lpfc_ncmd) { 22056 lpfc_ncmd->hdwq = qp; 22057 lpfc_ncmd->hdwq_no = hwqid; 22058 } else if (expedite) { 22059 /* If we fail to get one from pvt_pool and this is an expedite 22060 * request, get one free xri from expedite pool. 22061 */ 22062 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22063 } 22064 22065 return lpfc_ncmd; 22066 } 22067 22068 static inline struct lpfc_io_buf * 22069 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22070 { 22071 struct lpfc_sli4_hdw_queue *qp; 22072 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22073 22074 qp = &phba->sli4_hba.hdwq[idx]; 22075 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22076 &qp->lpfc_io_buf_list_get, list) { 22077 if (lpfc_test_rrq_active(phba, ndlp, 22078 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22079 continue; 22080 22081 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22082 continue; 22083 22084 list_del_init(&lpfc_cmd->list); 22085 qp->get_io_bufs--; 22086 lpfc_cmd->hdwq = qp; 22087 lpfc_cmd->hdwq_no = idx; 22088 return lpfc_cmd; 22089 } 22090 return NULL; 22091 } 22092 22093 /** 22094 * lpfc_get_io_buf - Get one IO buffer from free pool 22095 * @phba: The HBA for which this call is being executed. 22096 * @ndlp: pointer to lpfc nodelist data structure. 22097 * @hwqid: belong to which HWQ 22098 * @expedite: 1 means this request is urgent. 22099 * 22100 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22101 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22102 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22103 * 22104 * Note: ndlp is only used on SCSI side for RRQ testing. 22105 * The caller should pass NULL for ndlp on NVME side. 22106 * 22107 * Return codes: 22108 * NULL - Error 22109 * Pointer to lpfc_io_buf - Success 22110 **/ 22111 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22112 struct lpfc_nodelist *ndlp, 22113 u32 hwqid, int expedite) 22114 { 22115 struct lpfc_sli4_hdw_queue *qp; 22116 unsigned long iflag; 22117 struct lpfc_io_buf *lpfc_cmd; 22118 22119 qp = &phba->sli4_hba.hdwq[hwqid]; 22120 lpfc_cmd = NULL; 22121 if (!qp) { 22122 lpfc_printf_log(phba, KERN_WARNING, 22123 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22124 "5555 NULL qp for hwqid x%x\n", hwqid); 22125 return lpfc_cmd; 22126 } 22127 22128 if (phba->cfg_xri_rebalancing) 22129 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22130 phba, ndlp, hwqid, expedite); 22131 else { 22132 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22133 qp, alloc_xri_get); 22134 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22135 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22136 if (!lpfc_cmd) { 22137 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22138 qp, alloc_xri_put); 22139 list_splice(&qp->lpfc_io_buf_list_put, 22140 &qp->lpfc_io_buf_list_get); 22141 qp->get_io_bufs += qp->put_io_bufs; 22142 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22143 qp->put_io_bufs = 0; 22144 spin_unlock(&qp->io_buf_list_put_lock); 22145 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22146 expedite) 22147 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22148 } 22149 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22150 } 22151 22152 return lpfc_cmd; 22153 } 22154 22155 /** 22156 * lpfc_read_object - Retrieve object data from HBA 22157 * @phba: The HBA for which this call is being executed. 22158 * @rdobject: Pathname of object data we want to read. 22159 * @datap: Pointer to where data will be copied to. 22160 * @datasz: size of data area 22161 * 22162 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22163 * The data will be truncated if datasz is not large enough. 22164 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22165 * Returns the actual bytes read from the object. 22166 * 22167 * This routine is hard coded to use a poll completion. Unlike other 22168 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22169 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22170 * to use interrupt-based completions, code is needed to fully cleanup 22171 * the memory. 22172 */ 22173 int 22174 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22175 uint32_t datasz) 22176 { 22177 struct lpfc_mbx_read_object *read_object; 22178 LPFC_MBOXQ_t *mbox; 22179 int rc, length, eof, j, byte_cnt = 0; 22180 uint32_t shdr_status, shdr_add_status; 22181 union lpfc_sli4_cfg_shdr *shdr; 22182 struct lpfc_dmabuf *pcmd; 22183 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22184 22185 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22186 if (!mbox) 22187 return -ENOMEM; 22188 length = (sizeof(struct lpfc_mbx_read_object) - 22189 sizeof(struct lpfc_sli4_cfg_mhdr)); 22190 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22191 LPFC_MBOX_OPCODE_READ_OBJECT, 22192 length, LPFC_SLI4_MBX_EMBED); 22193 read_object = &mbox->u.mqe.un.read_object; 22194 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22195 22196 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22197 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22198 read_object->u.request.rd_object_offset = 0; 22199 read_object->u.request.rd_object_cnt = 1; 22200 22201 memset((void *)read_object->u.request.rd_object_name, 0, 22202 LPFC_OBJ_NAME_SZ); 22203 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22204 for (j = 0; j < strlen(rdobject); j++) 22205 read_object->u.request.rd_object_name[j] = 22206 cpu_to_le32(rd_object_name[j]); 22207 22208 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22209 if (pcmd) 22210 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22211 if (!pcmd || !pcmd->virt) { 22212 kfree(pcmd); 22213 mempool_free(mbox, phba->mbox_mem_pool); 22214 return -ENOMEM; 22215 } 22216 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22217 read_object->u.request.rd_object_hbuf[0].pa_lo = 22218 putPaddrLow(pcmd->phys); 22219 read_object->u.request.rd_object_hbuf[0].pa_hi = 22220 putPaddrHigh(pcmd->phys); 22221 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22222 22223 mbox->vport = phba->pport; 22224 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22225 mbox->ctx_ndlp = NULL; 22226 22227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22228 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22229 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22230 22231 if (shdr_status == STATUS_FAILED && 22232 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22234 "4674 No port cfg file in FW.\n"); 22235 byte_cnt = -ENOENT; 22236 } else if (shdr_status || shdr_add_status || rc) { 22237 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22238 "2625 READ_OBJECT mailbox failed with " 22239 "status x%x add_status x%x, mbx status x%x\n", 22240 shdr_status, shdr_add_status, rc); 22241 byte_cnt = -ENXIO; 22242 } else { 22243 /* Success */ 22244 length = read_object->u.response.rd_object_actual_rlen; 22245 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22246 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22247 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22248 length, datasz, eof); 22249 22250 /* Detect the port config file exists but is empty */ 22251 if (!length && eof) { 22252 byte_cnt = 0; 22253 goto exit; 22254 } 22255 22256 byte_cnt = length; 22257 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22258 } 22259 22260 exit: 22261 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22262 * Free the pcmd and then cleanup with the correct routine. 22263 */ 22264 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22265 kfree(pcmd); 22266 lpfc_sli4_mbox_cmd_free(phba, mbox); 22267 return byte_cnt; 22268 } 22269 22270 /** 22271 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22272 * @phba: The HBA for which this call is being executed. 22273 * @lpfc_buf: IO buf structure to append the SGL chunk 22274 * 22275 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22276 * and will allocate an SGL chunk if the pool is empty. 22277 * 22278 * Return codes: 22279 * NULL - Error 22280 * Pointer to sli4_hybrid_sgl - Success 22281 **/ 22282 struct sli4_hybrid_sgl * 22283 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22284 { 22285 struct sli4_hybrid_sgl *list_entry = NULL; 22286 struct sli4_hybrid_sgl *tmp = NULL; 22287 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22288 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22289 struct list_head *buf_list = &hdwq->sgl_list; 22290 unsigned long iflags; 22291 22292 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22293 22294 if (likely(!list_empty(buf_list))) { 22295 /* break off 1 chunk from the sgl_list */ 22296 list_for_each_entry_safe(list_entry, tmp, 22297 buf_list, list_node) { 22298 list_move_tail(&list_entry->list_node, 22299 &lpfc_buf->dma_sgl_xtra_list); 22300 break; 22301 } 22302 } else { 22303 /* allocate more */ 22304 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22305 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22306 cpu_to_node(hdwq->io_wq->chann)); 22307 if (!tmp) { 22308 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22309 "8353 error kmalloc memory for HDWQ " 22310 "%d %s\n", 22311 lpfc_buf->hdwq_no, __func__); 22312 return NULL; 22313 } 22314 22315 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22316 GFP_ATOMIC, &tmp->dma_phys_sgl); 22317 if (!tmp->dma_sgl) { 22318 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22319 "8354 error pool_alloc memory for HDWQ " 22320 "%d %s\n", 22321 lpfc_buf->hdwq_no, __func__); 22322 kfree(tmp); 22323 return NULL; 22324 } 22325 22326 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22327 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22328 } 22329 22330 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22331 struct sli4_hybrid_sgl, 22332 list_node); 22333 22334 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22335 22336 return allocated_sgl; 22337 } 22338 22339 /** 22340 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22341 * @phba: The HBA for which this call is being executed. 22342 * @lpfc_buf: IO buf structure with the SGL chunk 22343 * 22344 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22345 * 22346 * Return codes: 22347 * 0 - Success 22348 * -EINVAL - Error 22349 **/ 22350 int 22351 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22352 { 22353 int rc = 0; 22354 struct sli4_hybrid_sgl *list_entry = NULL; 22355 struct sli4_hybrid_sgl *tmp = NULL; 22356 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22357 struct list_head *buf_list = &hdwq->sgl_list; 22358 unsigned long iflags; 22359 22360 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22361 22362 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22363 list_for_each_entry_safe(list_entry, tmp, 22364 &lpfc_buf->dma_sgl_xtra_list, 22365 list_node) { 22366 list_move_tail(&list_entry->list_node, 22367 buf_list); 22368 } 22369 } else { 22370 rc = -EINVAL; 22371 } 22372 22373 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22374 return rc; 22375 } 22376 22377 /** 22378 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22379 * @phba: phba object 22380 * @hdwq: hdwq to cleanup sgl buff resources on 22381 * 22382 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22383 * 22384 * Return codes: 22385 * None 22386 **/ 22387 void 22388 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22389 struct lpfc_sli4_hdw_queue *hdwq) 22390 { 22391 struct list_head *buf_list = &hdwq->sgl_list; 22392 struct sli4_hybrid_sgl *list_entry = NULL; 22393 struct sli4_hybrid_sgl *tmp = NULL; 22394 unsigned long iflags; 22395 22396 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22397 22398 /* Free sgl pool */ 22399 list_for_each_entry_safe(list_entry, tmp, 22400 buf_list, list_node) { 22401 list_del(&list_entry->list_node); 22402 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22403 list_entry->dma_sgl, 22404 list_entry->dma_phys_sgl); 22405 kfree(list_entry); 22406 } 22407 22408 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22409 } 22410 22411 /** 22412 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22413 * @phba: The HBA for which this call is being executed. 22414 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22415 * 22416 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22417 * and will allocate an CMD/RSP buffer if the pool is empty. 22418 * 22419 * Return codes: 22420 * NULL - Error 22421 * Pointer to fcp_cmd_rsp_buf - Success 22422 **/ 22423 struct fcp_cmd_rsp_buf * 22424 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22425 struct lpfc_io_buf *lpfc_buf) 22426 { 22427 struct fcp_cmd_rsp_buf *list_entry = NULL; 22428 struct fcp_cmd_rsp_buf *tmp = NULL; 22429 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22430 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22431 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22432 unsigned long iflags; 22433 22434 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22435 22436 if (likely(!list_empty(buf_list))) { 22437 /* break off 1 chunk from the list */ 22438 list_for_each_entry_safe(list_entry, tmp, 22439 buf_list, 22440 list_node) { 22441 list_move_tail(&list_entry->list_node, 22442 &lpfc_buf->dma_cmd_rsp_list); 22443 break; 22444 } 22445 } else { 22446 /* allocate more */ 22447 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22448 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22449 cpu_to_node(hdwq->io_wq->chann)); 22450 if (!tmp) { 22451 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22452 "8355 error kmalloc memory for HDWQ " 22453 "%d %s\n", 22454 lpfc_buf->hdwq_no, __func__); 22455 return NULL; 22456 } 22457 22458 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22459 GFP_ATOMIC, 22460 &tmp->fcp_cmd_rsp_dma_handle); 22461 22462 if (!tmp->fcp_cmnd) { 22463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22464 "8356 error pool_alloc memory for HDWQ " 22465 "%d %s\n", 22466 lpfc_buf->hdwq_no, __func__); 22467 kfree(tmp); 22468 return NULL; 22469 } 22470 22471 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22472 sizeof(struct fcp_cmnd32)); 22473 22474 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22475 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22476 } 22477 22478 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22479 struct fcp_cmd_rsp_buf, 22480 list_node); 22481 22482 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22483 22484 return allocated_buf; 22485 } 22486 22487 /** 22488 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22489 * @phba: The HBA for which this call is being executed. 22490 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22491 * 22492 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22493 * 22494 * Return codes: 22495 * 0 - Success 22496 * -EINVAL - Error 22497 **/ 22498 int 22499 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22500 struct lpfc_io_buf *lpfc_buf) 22501 { 22502 int rc = 0; 22503 struct fcp_cmd_rsp_buf *list_entry = NULL; 22504 struct fcp_cmd_rsp_buf *tmp = NULL; 22505 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22506 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22507 unsigned long iflags; 22508 22509 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22510 22511 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22512 list_for_each_entry_safe(list_entry, tmp, 22513 &lpfc_buf->dma_cmd_rsp_list, 22514 list_node) { 22515 list_move_tail(&list_entry->list_node, 22516 buf_list); 22517 } 22518 } else { 22519 rc = -EINVAL; 22520 } 22521 22522 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22523 return rc; 22524 } 22525 22526 /** 22527 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22528 * @phba: phba object 22529 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22530 * 22531 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22532 * 22533 * Return codes: 22534 * None 22535 **/ 22536 void 22537 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22538 struct lpfc_sli4_hdw_queue *hdwq) 22539 { 22540 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22541 struct fcp_cmd_rsp_buf *list_entry = NULL; 22542 struct fcp_cmd_rsp_buf *tmp = NULL; 22543 unsigned long iflags; 22544 22545 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22546 22547 /* Free cmd_rsp buf pool */ 22548 list_for_each_entry_safe(list_entry, tmp, 22549 buf_list, 22550 list_node) { 22551 list_del(&list_entry->list_node); 22552 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22553 list_entry->fcp_cmnd, 22554 list_entry->fcp_cmd_rsp_dma_handle); 22555 kfree(list_entry); 22556 } 22557 22558 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22559 } 22560 22561 /** 22562 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22563 * @phba: phba object 22564 * @job: job entry of the command to be posted. 22565 * 22566 * Fill the common fields of the wqe for each of the command. 22567 * 22568 * Return codes: 22569 * None 22570 **/ 22571 void 22572 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22573 { 22574 u8 cmnd; 22575 u32 *pcmd; 22576 u32 if_type = 0; 22577 u32 abort_tag; 22578 bool fip; 22579 struct lpfc_nodelist *ndlp = NULL; 22580 union lpfc_wqe128 *wqe = &job->wqe; 22581 u8 command_type = ELS_COMMAND_NON_FIP; 22582 22583 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22584 /* The fcp commands will set command type */ 22585 if (job->cmd_flag & LPFC_IO_FCP) 22586 command_type = FCP_COMMAND; 22587 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22588 command_type = ELS_COMMAND_FIP; 22589 else 22590 command_type = ELS_COMMAND_NON_FIP; 22591 22592 abort_tag = job->iotag; 22593 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22594 22595 switch (cmnd) { 22596 case CMD_ELS_REQUEST64_WQE: 22597 ndlp = job->ndlp; 22598 22599 if_type = bf_get(lpfc_sli_intf_if_type, 22600 &phba->sli4_hba.sli_intf); 22601 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22602 pcmd = (u32 *)job->cmd_dmabuf->virt; 22603 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22604 *pcmd == ELS_CMD_SCR || 22605 *pcmd == ELS_CMD_RDF || 22606 *pcmd == ELS_CMD_EDC || 22607 *pcmd == ELS_CMD_RSCN_XMT || 22608 *pcmd == ELS_CMD_FDISC || 22609 *pcmd == ELS_CMD_LOGO || 22610 *pcmd == ELS_CMD_QFPA || 22611 *pcmd == ELS_CMD_UVEM || 22612 *pcmd == ELS_CMD_PLOGI)) { 22613 bf_set(els_req64_sp, &wqe->els_req, 1); 22614 bf_set(els_req64_sid, &wqe->els_req, 22615 job->vport->fc_myDID); 22616 22617 if ((*pcmd == ELS_CMD_FLOGI) && 22618 !(phba->fc_topology == 22619 LPFC_TOPOLOGY_LOOP)) 22620 bf_set(els_req64_sid, &wqe->els_req, 0); 22621 22622 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22623 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22624 phba->vpi_ids[job->vport->vpi]); 22625 } else if (pcmd) { 22626 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22627 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22628 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22629 } 22630 } 22631 22632 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22633 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22634 22635 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22636 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22637 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22638 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22639 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22640 break; 22641 case CMD_XMIT_ELS_RSP64_WQE: 22642 ndlp = job->ndlp; 22643 22644 /* word4 */ 22645 wqe->xmit_els_rsp.word4 = 0; 22646 22647 if_type = bf_get(lpfc_sli_intf_if_type, 22648 &phba->sli4_hba.sli_intf); 22649 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22650 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22651 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22652 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22653 job->vport->fc_myDID); 22654 if (job->vport->fc_myDID == Fabric_DID) { 22655 bf_set(wqe_els_did, 22656 &wqe->xmit_els_rsp.wqe_dest, 0); 22657 } 22658 } 22659 } 22660 22661 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22662 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22663 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22664 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22665 LPFC_WQE_LENLOC_WORD3); 22666 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22667 22668 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22669 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22670 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22671 job->vport->fc_myDID); 22672 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22673 } 22674 22675 if (phba->sli_rev == LPFC_SLI_REV4) { 22676 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22677 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22678 22679 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22680 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22681 phba->vpi_ids[job->vport->vpi]); 22682 } 22683 command_type = OTHER_COMMAND; 22684 break; 22685 case CMD_GEN_REQUEST64_WQE: 22686 /* Word 10 */ 22687 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22688 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22689 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22690 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22691 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22692 command_type = OTHER_COMMAND; 22693 break; 22694 case CMD_XMIT_SEQUENCE64_WQE: 22695 if (phba->link_flag & LS_LOOPBACK_MODE) 22696 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22697 22698 wqe->xmit_sequence.rsvd3 = 0; 22699 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22700 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22701 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22702 LPFC_WQE_IOD_WRITE); 22703 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22704 LPFC_WQE_LENLOC_WORD12); 22705 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22706 command_type = OTHER_COMMAND; 22707 break; 22708 case CMD_XMIT_BLS_RSP64_WQE: 22709 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22710 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22711 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22712 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22713 phba->vpi_ids[phba->pport->vpi]); 22714 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22715 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22716 LPFC_WQE_LENLOC_NONE); 22717 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22718 command_type = OTHER_COMMAND; 22719 break; 22720 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22721 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22722 case CMD_SEND_FRAME: /* mds loopback */ 22723 /* cases already formatted for sli4 wqe - no chgs necessary */ 22724 return; 22725 default: 22726 dump_stack(); 22727 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22728 "6207 Invalid command 0x%x\n", 22729 cmnd); 22730 break; 22731 } 22732 22733 wqe->generic.wqe_com.abort_tag = abort_tag; 22734 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22735 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22736 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22737 } 22738