1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2009 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_transport_fc.h> 32 33 #include "lpfc_version.h" 34 #include "lpfc_hw4.h" 35 #include "lpfc_hw.h" 36 #include "lpfc_sli.h" 37 #include "lpfc_sli4.h" 38 #include "lpfc_nl.h" 39 #include "lpfc_disc.h" 40 #include "lpfc_scsi.h" 41 #include "lpfc.h" 42 #include "lpfc_logmsg.h" 43 #include "lpfc_crtn.h" 44 #include "lpfc_vport.h" 45 46 #define LPFC_RESET_WAIT 2 47 #define LPFC_ABORT_WAIT 2 48 49 int _dump_buf_done; 50 51 static char *dif_op_str[] = { 52 "SCSI_PROT_NORMAL", 53 "SCSI_PROT_READ_INSERT", 54 "SCSI_PROT_WRITE_STRIP", 55 "SCSI_PROT_READ_STRIP", 56 "SCSI_PROT_WRITE_INSERT", 57 "SCSI_PROT_READ_PASS", 58 "SCSI_PROT_WRITE_PASS", 59 }; 60 static void 61 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 62 63 static void 64 lpfc_debug_save_data(struct scsi_cmnd *cmnd) 65 { 66 void *src, *dst; 67 struct scatterlist *sgde = scsi_sglist(cmnd); 68 69 if (!_dump_buf_data) { 70 printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n", 71 __func__); 72 return; 73 } 74 75 76 if (!sgde) { 77 printk(KERN_ERR "BLKGRD ERROR: data scatterlist is null\n"); 78 return; 79 } 80 81 dst = (void *) _dump_buf_data; 82 while (sgde) { 83 src = sg_virt(sgde); 84 memcpy(dst, src, sgde->length); 85 dst += sgde->length; 86 sgde = sg_next(sgde); 87 } 88 } 89 90 static void 91 lpfc_debug_save_dif(struct scsi_cmnd *cmnd) 92 { 93 void *src, *dst; 94 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 95 96 if (!_dump_buf_dif) { 97 printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n", 98 __func__); 99 return; 100 } 101 102 if (!sgde) { 103 printk(KERN_ERR "BLKGRD ERROR: prot scatterlist is null\n"); 104 return; 105 } 106 107 dst = _dump_buf_dif; 108 while (sgde) { 109 src = sg_virt(sgde); 110 memcpy(dst, src, sgde->length); 111 dst += sgde->length; 112 sgde = sg_next(sgde); 113 } 114 } 115 116 /** 117 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 118 * @phba: Pointer to HBA object. 119 * @lpfc_cmd: lpfc scsi command object pointer. 120 * 121 * This function is called from the lpfc_prep_task_mgmt_cmd function to 122 * set the last bit in the response sge entry. 123 **/ 124 static void 125 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 126 struct lpfc_scsi_buf *lpfc_cmd) 127 { 128 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 129 if (sgl) { 130 sgl += 1; 131 sgl->word2 = le32_to_cpu(sgl->word2); 132 bf_set(lpfc_sli4_sge_last, sgl, 1); 133 sgl->word2 = cpu_to_le32(sgl->word2); 134 } 135 } 136 137 /** 138 * lpfc_update_stats - Update statistical data for the command completion 139 * @phba: Pointer to HBA object. 140 * @lpfc_cmd: lpfc scsi command object pointer. 141 * 142 * This function is called when there is a command completion and this 143 * function updates the statistical data for the command completion. 144 **/ 145 static void 146 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 147 { 148 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 149 struct lpfc_nodelist *pnode = rdata->pnode; 150 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 151 unsigned long flags; 152 struct Scsi_Host *shost = cmd->device->host; 153 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 154 unsigned long latency; 155 int i; 156 157 if (cmd->result) 158 return; 159 160 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 161 162 spin_lock_irqsave(shost->host_lock, flags); 163 if (!vport->stat_data_enabled || 164 vport->stat_data_blocked || 165 !pnode->lat_data || 166 (phba->bucket_type == LPFC_NO_BUCKET)) { 167 spin_unlock_irqrestore(shost->host_lock, flags); 168 return; 169 } 170 171 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 172 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 173 phba->bucket_step; 174 /* check array subscript bounds */ 175 if (i < 0) 176 i = 0; 177 else if (i >= LPFC_MAX_BUCKET_COUNT) 178 i = LPFC_MAX_BUCKET_COUNT - 1; 179 } else { 180 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 181 if (latency <= (phba->bucket_base + 182 ((1<<i)*phba->bucket_step))) 183 break; 184 } 185 186 pnode->lat_data[i].cmd_count++; 187 spin_unlock_irqrestore(shost->host_lock, flags); 188 } 189 190 /** 191 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 192 * @phba: Pointer to HBA context object. 193 * @vport: Pointer to vport object. 194 * @ndlp: Pointer to FC node associated with the target. 195 * @lun: Lun number of the scsi device. 196 * @old_val: Old value of the queue depth. 197 * @new_val: New value of the queue depth. 198 * 199 * This function sends an event to the mgmt application indicating 200 * there is a change in the scsi device queue depth. 201 **/ 202 static void 203 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 204 struct lpfc_vport *vport, 205 struct lpfc_nodelist *ndlp, 206 uint32_t lun, 207 uint32_t old_val, 208 uint32_t new_val) 209 { 210 struct lpfc_fast_path_event *fast_path_evt; 211 unsigned long flags; 212 213 fast_path_evt = lpfc_alloc_fast_evt(phba); 214 if (!fast_path_evt) 215 return; 216 217 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 218 FC_REG_SCSI_EVENT; 219 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 220 LPFC_EVENT_VARQUEDEPTH; 221 222 /* Report all luns with change in queue depth */ 223 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 224 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 225 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 226 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 227 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 228 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 229 } 230 231 fast_path_evt->un.queue_depth_evt.oldval = old_val; 232 fast_path_evt->un.queue_depth_evt.newval = new_val; 233 fast_path_evt->vport = vport; 234 235 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 236 spin_lock_irqsave(&phba->hbalock, flags); 237 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 238 spin_unlock_irqrestore(&phba->hbalock, flags); 239 lpfc_worker_wake_up(phba); 240 241 return; 242 } 243 244 /** 245 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 246 * @phba: The Hba for which this call is being executed. 247 * 248 * This routine is called when there is resource error in driver or firmware. 249 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 250 * posts at most 1 event each second. This routine wakes up worker thread of 251 * @phba to process WORKER_RAM_DOWN_EVENT event. 252 * 253 * This routine should be called with no lock held. 254 **/ 255 void 256 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 257 { 258 unsigned long flags; 259 uint32_t evt_posted; 260 261 spin_lock_irqsave(&phba->hbalock, flags); 262 atomic_inc(&phba->num_rsrc_err); 263 phba->last_rsrc_error_time = jiffies; 264 265 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 266 spin_unlock_irqrestore(&phba->hbalock, flags); 267 return; 268 } 269 270 phba->last_ramp_down_time = jiffies; 271 272 spin_unlock_irqrestore(&phba->hbalock, flags); 273 274 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 275 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 276 if (!evt_posted) 277 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 278 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 279 280 if (!evt_posted) 281 lpfc_worker_wake_up(phba); 282 return; 283 } 284 285 /** 286 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 287 * @phba: The Hba for which this call is being executed. 288 * 289 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 290 * post at most 1 event every 5 minute after last_ramp_up_time or 291 * last_rsrc_error_time. This routine wakes up worker thread of @phba 292 * to process WORKER_RAM_DOWN_EVENT event. 293 * 294 * This routine should be called with no lock held. 295 **/ 296 static inline void 297 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 298 uint32_t queue_depth) 299 { 300 unsigned long flags; 301 struct lpfc_hba *phba = vport->phba; 302 uint32_t evt_posted; 303 atomic_inc(&phba->num_cmd_success); 304 305 if (vport->cfg_lun_queue_depth <= queue_depth) 306 return; 307 spin_lock_irqsave(&phba->hbalock, flags); 308 if (((phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) > jiffies) || 309 ((phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL ) > jiffies)) { 310 spin_unlock_irqrestore(&phba->hbalock, flags); 311 return; 312 } 313 phba->last_ramp_up_time = jiffies; 314 spin_unlock_irqrestore(&phba->hbalock, flags); 315 316 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 317 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 318 if (!evt_posted) 319 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 320 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 321 322 if (!evt_posted) 323 lpfc_worker_wake_up(phba); 324 return; 325 } 326 327 /** 328 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 329 * @phba: The Hba for which this call is being executed. 330 * 331 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 332 * thread.This routine reduces queue depth for all scsi device on each vport 333 * associated with @phba. 334 **/ 335 void 336 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 337 { 338 struct lpfc_vport **vports; 339 struct Scsi_Host *shost; 340 struct scsi_device *sdev; 341 unsigned long new_queue_depth, old_queue_depth; 342 unsigned long num_rsrc_err, num_cmd_success; 343 int i; 344 struct lpfc_rport_data *rdata; 345 346 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 347 num_cmd_success = atomic_read(&phba->num_cmd_success); 348 349 vports = lpfc_create_vport_work_array(phba); 350 if (vports != NULL) 351 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 352 shost = lpfc_shost_from_vport(vports[i]); 353 shost_for_each_device(sdev, shost) { 354 new_queue_depth = 355 sdev->queue_depth * num_rsrc_err / 356 (num_rsrc_err + num_cmd_success); 357 if (!new_queue_depth) 358 new_queue_depth = sdev->queue_depth - 1; 359 else 360 new_queue_depth = sdev->queue_depth - 361 new_queue_depth; 362 old_queue_depth = sdev->queue_depth; 363 if (sdev->ordered_tags) 364 scsi_adjust_queue_depth(sdev, 365 MSG_ORDERED_TAG, 366 new_queue_depth); 367 else 368 scsi_adjust_queue_depth(sdev, 369 MSG_SIMPLE_TAG, 370 new_queue_depth); 371 rdata = sdev->hostdata; 372 if (rdata) 373 lpfc_send_sdev_queuedepth_change_event( 374 phba, vports[i], 375 rdata->pnode, 376 sdev->lun, old_queue_depth, 377 new_queue_depth); 378 } 379 } 380 lpfc_destroy_vport_work_array(phba, vports); 381 atomic_set(&phba->num_rsrc_err, 0); 382 atomic_set(&phba->num_cmd_success, 0); 383 } 384 385 /** 386 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 387 * @phba: The Hba for which this call is being executed. 388 * 389 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 390 * thread.This routine increases queue depth for all scsi device on each vport 391 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 392 * num_cmd_success to zero. 393 **/ 394 void 395 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 396 { 397 struct lpfc_vport **vports; 398 struct Scsi_Host *shost; 399 struct scsi_device *sdev; 400 int i; 401 struct lpfc_rport_data *rdata; 402 403 vports = lpfc_create_vport_work_array(phba); 404 if (vports != NULL) 405 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 406 shost = lpfc_shost_from_vport(vports[i]); 407 shost_for_each_device(sdev, shost) { 408 if (vports[i]->cfg_lun_queue_depth <= 409 sdev->queue_depth) 410 continue; 411 if (sdev->ordered_tags) 412 scsi_adjust_queue_depth(sdev, 413 MSG_ORDERED_TAG, 414 sdev->queue_depth+1); 415 else 416 scsi_adjust_queue_depth(sdev, 417 MSG_SIMPLE_TAG, 418 sdev->queue_depth+1); 419 rdata = sdev->hostdata; 420 if (rdata) 421 lpfc_send_sdev_queuedepth_change_event( 422 phba, vports[i], 423 rdata->pnode, 424 sdev->lun, 425 sdev->queue_depth - 1, 426 sdev->queue_depth); 427 } 428 } 429 lpfc_destroy_vport_work_array(phba, vports); 430 atomic_set(&phba->num_rsrc_err, 0); 431 atomic_set(&phba->num_cmd_success, 0); 432 } 433 434 /** 435 * lpfc_scsi_dev_block - set all scsi hosts to block state 436 * @phba: Pointer to HBA context object. 437 * 438 * This function walks vport list and set each SCSI host to block state 439 * by invoking fc_remote_port_delete() routine. This function is invoked 440 * with EEH when device's PCI slot has been permanently disabled. 441 **/ 442 void 443 lpfc_scsi_dev_block(struct lpfc_hba *phba) 444 { 445 struct lpfc_vport **vports; 446 struct Scsi_Host *shost; 447 struct scsi_device *sdev; 448 struct fc_rport *rport; 449 int i; 450 451 vports = lpfc_create_vport_work_array(phba); 452 if (vports != NULL) 453 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 454 shost = lpfc_shost_from_vport(vports[i]); 455 shost_for_each_device(sdev, shost) { 456 rport = starget_to_rport(scsi_target(sdev)); 457 fc_remote_port_delete(rport); 458 } 459 } 460 lpfc_destroy_vport_work_array(phba, vports); 461 } 462 463 /** 464 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 465 * @vport: The virtual port for which this call being executed. 466 * @num_to_allocate: The requested number of buffers to allocate. 467 * 468 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 469 * the scsi buffer contains all the necessary information needed to initiate 470 * a SCSI I/O. The non-DMAable buffer region contains information to build 471 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 472 * and the initial BPL. In addition to allocating memory, the FCP CMND and 473 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 474 * 475 * Return codes: 476 * int - number of scsi buffers that were allocated. 477 * 0 = failure, less than num_to_alloc is a partial failure. 478 **/ 479 static int 480 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 481 { 482 struct lpfc_hba *phba = vport->phba; 483 struct lpfc_scsi_buf *psb; 484 struct ulp_bde64 *bpl; 485 IOCB_t *iocb; 486 dma_addr_t pdma_phys_fcp_cmd; 487 dma_addr_t pdma_phys_fcp_rsp; 488 dma_addr_t pdma_phys_bpl; 489 uint16_t iotag; 490 int bcnt; 491 492 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 493 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 494 if (!psb) 495 break; 496 497 /* 498 * Get memory from the pci pool to map the virt space to pci 499 * bus space for an I/O. The DMA buffer includes space for the 500 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 501 * necessary to support the sg_tablesize. 502 */ 503 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 504 GFP_KERNEL, &psb->dma_handle); 505 if (!psb->data) { 506 kfree(psb); 507 break; 508 } 509 510 /* Initialize virtual ptrs to dma_buf region. */ 511 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 512 513 /* Allocate iotag for psb->cur_iocbq. */ 514 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 515 if (iotag == 0) { 516 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 517 psb->data, psb->dma_handle); 518 kfree(psb); 519 break; 520 } 521 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 522 523 psb->fcp_cmnd = psb->data; 524 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 525 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 526 sizeof(struct fcp_rsp); 527 528 /* Initialize local short-hand pointers. */ 529 bpl = psb->fcp_bpl; 530 pdma_phys_fcp_cmd = psb->dma_handle; 531 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 532 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 533 sizeof(struct fcp_rsp); 534 535 /* 536 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 537 * are sg list bdes. Initialize the first two and leave the 538 * rest for queuecommand. 539 */ 540 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 541 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 542 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 543 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 544 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 545 546 /* Setup the physical region for the FCP RSP */ 547 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 548 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 549 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 550 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 551 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 552 553 /* 554 * Since the IOCB for the FCP I/O is built into this 555 * lpfc_scsi_buf, initialize it with all known data now. 556 */ 557 iocb = &psb->cur_iocbq.iocb; 558 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 559 if ((phba->sli_rev == 3) && 560 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 561 /* fill in immediate fcp command BDE */ 562 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 563 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 564 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 565 unsli3.fcp_ext.icd); 566 iocb->un.fcpi64.bdl.addrHigh = 0; 567 iocb->ulpBdeCount = 0; 568 iocb->ulpLe = 0; 569 /* fill in responce BDE */ 570 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 571 BUFF_TYPE_BDE_64; 572 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 573 sizeof(struct fcp_rsp); 574 iocb->unsli3.fcp_ext.rbde.addrLow = 575 putPaddrLow(pdma_phys_fcp_rsp); 576 iocb->unsli3.fcp_ext.rbde.addrHigh = 577 putPaddrHigh(pdma_phys_fcp_rsp); 578 } else { 579 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 580 iocb->un.fcpi64.bdl.bdeSize = 581 (2 * sizeof(struct ulp_bde64)); 582 iocb->un.fcpi64.bdl.addrLow = 583 putPaddrLow(pdma_phys_bpl); 584 iocb->un.fcpi64.bdl.addrHigh = 585 putPaddrHigh(pdma_phys_bpl); 586 iocb->ulpBdeCount = 1; 587 iocb->ulpLe = 1; 588 } 589 iocb->ulpClass = CLASS3; 590 psb->status = IOSTAT_SUCCESS; 591 /* Put it back into the SCSI buffer list */ 592 lpfc_release_scsi_buf_s4(phba, psb); 593 594 } 595 596 return bcnt; 597 } 598 599 /** 600 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 601 * @phba: pointer to lpfc hba data structure. 602 * @axri: pointer to the fcp xri abort wcqe structure. 603 * 604 * This routine is invoked by the worker thread to process a SLI4 fast-path 605 * FCP aborted xri. 606 **/ 607 void 608 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 609 struct sli4_wcqe_xri_aborted *axri) 610 { 611 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 612 struct lpfc_scsi_buf *psb, *next_psb; 613 unsigned long iflag = 0; 614 615 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag); 616 list_for_each_entry_safe(psb, next_psb, 617 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 618 if (psb->cur_iocbq.sli4_xritag == xri) { 619 list_del(&psb->list); 620 psb->status = IOSTAT_SUCCESS; 621 spin_unlock_irqrestore( 622 &phba->sli4_hba.abts_scsi_buf_list_lock, 623 iflag); 624 lpfc_release_scsi_buf_s4(phba, psb); 625 return; 626 } 627 } 628 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 629 iflag); 630 } 631 632 /** 633 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 634 * @phba: pointer to lpfc hba data structure. 635 * 636 * This routine walks the list of scsi buffers that have been allocated and 637 * repost them to the HBA by using SGL block post. This is needed after a 638 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 639 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 640 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 641 * 642 * Returns: 0 = success, non-zero failure. 643 **/ 644 int 645 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 646 { 647 struct lpfc_scsi_buf *psb; 648 int index, status, bcnt = 0, rcnt = 0, rc = 0; 649 LIST_HEAD(sblist); 650 651 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 652 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 653 if (psb) { 654 /* Remove from SCSI buffer list */ 655 list_del(&psb->list); 656 /* Add it to a local SCSI buffer list */ 657 list_add_tail(&psb->list, &sblist); 658 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 659 bcnt = rcnt; 660 rcnt = 0; 661 } 662 } else 663 /* A hole present in the XRI array, need to skip */ 664 bcnt = rcnt; 665 666 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 667 /* End of XRI array for SCSI buffer, complete */ 668 bcnt = rcnt; 669 670 /* Continue until collect up to a nembed page worth of sgls */ 671 if (bcnt == 0) 672 continue; 673 /* Now, post the SCSI buffer list sgls as a block */ 674 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 675 /* Reset SCSI buffer count for next round of posting */ 676 bcnt = 0; 677 while (!list_empty(&sblist)) { 678 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 679 list); 680 if (status) { 681 /* Put this back on the abort scsi list */ 682 psb->status = IOSTAT_LOCAL_REJECT; 683 psb->result = IOERR_ABORT_REQUESTED; 684 rc++; 685 } else 686 psb->status = IOSTAT_SUCCESS; 687 /* Put it back into the SCSI buffer list */ 688 lpfc_release_scsi_buf_s4(phba, psb); 689 } 690 } 691 return rc; 692 } 693 694 /** 695 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 696 * @vport: The virtual port for which this call being executed. 697 * @num_to_allocate: The requested number of buffers to allocate. 698 * 699 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 700 * the scsi buffer contains all the necessary information needed to initiate 701 * a SCSI I/O. 702 * 703 * Return codes: 704 * int - number of scsi buffers that were allocated. 705 * 0 = failure, less than num_to_alloc is a partial failure. 706 **/ 707 static int 708 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 709 { 710 struct lpfc_hba *phba = vport->phba; 711 struct lpfc_scsi_buf *psb; 712 struct sli4_sge *sgl; 713 IOCB_t *iocb; 714 dma_addr_t pdma_phys_fcp_cmd; 715 dma_addr_t pdma_phys_fcp_rsp; 716 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 717 uint16_t iotag, last_xritag = NO_XRI; 718 int status = 0, index; 719 int bcnt; 720 int non_sequential_xri = 0; 721 int rc = 0; 722 LIST_HEAD(sblist); 723 724 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 725 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 726 if (!psb) 727 break; 728 729 /* 730 * Get memory from the pci pool to map the virt space to pci bus 731 * space for an I/O. The DMA buffer includes space for the 732 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 733 * necessary to support the sg_tablesize. 734 */ 735 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 736 GFP_KERNEL, &psb->dma_handle); 737 if (!psb->data) { 738 kfree(psb); 739 break; 740 } 741 742 /* Initialize virtual ptrs to dma_buf region. */ 743 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 744 745 /* Allocate iotag for psb->cur_iocbq. */ 746 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 747 if (iotag == 0) { 748 kfree(psb); 749 break; 750 } 751 752 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba); 753 if (psb->cur_iocbq.sli4_xritag == NO_XRI) { 754 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 755 psb->data, psb->dma_handle); 756 kfree(psb); 757 break; 758 } 759 if (last_xritag != NO_XRI 760 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 761 non_sequential_xri = 1; 762 } else 763 list_add_tail(&psb->list, &sblist); 764 last_xritag = psb->cur_iocbq.sli4_xritag; 765 766 index = phba->sli4_hba.scsi_xri_cnt++; 767 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 768 769 psb->fcp_bpl = psb->data; 770 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 771 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 772 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 773 sizeof(struct fcp_cmnd)); 774 775 /* Initialize local short-hand pointers. */ 776 sgl = (struct sli4_sge *)psb->fcp_bpl; 777 pdma_phys_bpl = psb->dma_handle; 778 pdma_phys_fcp_cmd = 779 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 780 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 781 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 782 783 /* 784 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 785 * are sg list bdes. Initialize the first two and leave the 786 * rest for queuecommand. 787 */ 788 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 789 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 790 bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_cmnd)); 791 bf_set(lpfc_sli4_sge_last, sgl, 0); 792 sgl->word2 = cpu_to_le32(sgl->word2); 793 sgl->word3 = cpu_to_le32(sgl->word3); 794 sgl++; 795 796 /* Setup the physical region for the FCP RSP */ 797 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 798 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 799 bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_rsp)); 800 bf_set(lpfc_sli4_sge_last, sgl, 1); 801 sgl->word2 = cpu_to_le32(sgl->word2); 802 sgl->word3 = cpu_to_le32(sgl->word3); 803 804 /* 805 * Since the IOCB for the FCP I/O is built into this 806 * lpfc_scsi_buf, initialize it with all known data now. 807 */ 808 iocb = &psb->cur_iocbq.iocb; 809 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 810 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 811 /* setting the BLP size to 2 * sizeof BDE may not be correct. 812 * We are setting the bpl to point to out sgl. An sgl's 813 * entries are 16 bytes, a bpl entries are 12 bytes. 814 */ 815 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 816 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 817 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 818 iocb->ulpBdeCount = 1; 819 iocb->ulpLe = 1; 820 iocb->ulpClass = CLASS3; 821 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 822 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 823 else 824 pdma_phys_bpl1 = 0; 825 psb->dma_phys_bpl = pdma_phys_bpl; 826 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 827 if (non_sequential_xri) { 828 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 829 pdma_phys_bpl1, 830 psb->cur_iocbq.sli4_xritag); 831 if (status) { 832 /* Put this back on the abort scsi list */ 833 psb->status = IOSTAT_LOCAL_REJECT; 834 psb->result = IOERR_ABORT_REQUESTED; 835 rc++; 836 } else 837 psb->status = IOSTAT_SUCCESS; 838 /* Put it back into the SCSI buffer list */ 839 lpfc_release_scsi_buf_s4(phba, psb); 840 break; 841 } 842 } 843 if (bcnt) { 844 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 845 /* Reset SCSI buffer count for next round of posting */ 846 while (!list_empty(&sblist)) { 847 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 848 list); 849 if (status) { 850 /* Put this back on the abort scsi list */ 851 psb->status = IOSTAT_LOCAL_REJECT; 852 psb->result = IOERR_ABORT_REQUESTED; 853 rc++; 854 } else 855 psb->status = IOSTAT_SUCCESS; 856 /* Put it back into the SCSI buffer list */ 857 lpfc_release_scsi_buf_s4(phba, psb); 858 } 859 } 860 861 return bcnt + non_sequential_xri - rc; 862 } 863 864 /** 865 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 866 * @vport: The virtual port for which this call being executed. 867 * @num_to_allocate: The requested number of buffers to allocate. 868 * 869 * This routine wraps the actual SCSI buffer allocator function pointer from 870 * the lpfc_hba struct. 871 * 872 * Return codes: 873 * int - number of scsi buffers that were allocated. 874 * 0 = failure, less than num_to_alloc is a partial failure. 875 **/ 876 static inline int 877 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 878 { 879 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 880 } 881 882 /** 883 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 884 * @phba: The HBA for which this call is being executed. 885 * 886 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 887 * and returns to caller. 888 * 889 * Return codes: 890 * NULL - Error 891 * Pointer to lpfc_scsi_buf - Success 892 **/ 893 static struct lpfc_scsi_buf* 894 lpfc_get_scsi_buf(struct lpfc_hba * phba) 895 { 896 struct lpfc_scsi_buf * lpfc_cmd = NULL; 897 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 898 unsigned long iflag = 0; 899 900 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 901 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 902 if (lpfc_cmd) { 903 lpfc_cmd->seg_cnt = 0; 904 lpfc_cmd->nonsg_phys = 0; 905 lpfc_cmd->prot_seg_cnt = 0; 906 } 907 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 908 return lpfc_cmd; 909 } 910 911 /** 912 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 913 * @phba: The Hba for which this call is being executed. 914 * @psb: The scsi buffer which is being released. 915 * 916 * This routine releases @psb scsi buffer by adding it to tail of @phba 917 * lpfc_scsi_buf_list list. 918 **/ 919 static void 920 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 921 { 922 unsigned long iflag = 0; 923 924 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 925 psb->pCmd = NULL; 926 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 927 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 928 } 929 930 /** 931 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 932 * @phba: The Hba for which this call is being executed. 933 * @psb: The scsi buffer which is being released. 934 * 935 * This routine releases @psb scsi buffer by adding it to tail of @phba 936 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 937 * and cannot be reused for at least RA_TOV amount of time if it was 938 * aborted. 939 **/ 940 static void 941 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 942 { 943 unsigned long iflag = 0; 944 945 if (psb->status == IOSTAT_LOCAL_REJECT 946 && psb->result == IOERR_ABORT_REQUESTED) { 947 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 948 iflag); 949 psb->pCmd = NULL; 950 list_add_tail(&psb->list, 951 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 952 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 953 iflag); 954 } else { 955 956 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 957 psb->pCmd = NULL; 958 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 959 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 960 } 961 } 962 963 /** 964 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 965 * @phba: The Hba for which this call is being executed. 966 * @psb: The scsi buffer which is being released. 967 * 968 * This routine releases @psb scsi buffer by adding it to tail of @phba 969 * lpfc_scsi_buf_list list. 970 **/ 971 static void 972 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 973 { 974 975 phba->lpfc_release_scsi_buf(phba, psb); 976 } 977 978 /** 979 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 980 * @phba: The Hba for which this call is being executed. 981 * @lpfc_cmd: The scsi buffer which is going to be mapped. 982 * 983 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 984 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 985 * through sg elements and format the bdea. This routine also initializes all 986 * IOCB fields which are dependent on scsi command request buffer. 987 * 988 * Return codes: 989 * 1 - Error 990 * 0 - Success 991 **/ 992 static int 993 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 994 { 995 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 996 struct scatterlist *sgel = NULL; 997 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 998 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 999 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1000 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1001 dma_addr_t physaddr; 1002 uint32_t num_bde = 0; 1003 int nseg, datadir = scsi_cmnd->sc_data_direction; 1004 1005 /* 1006 * There are three possibilities here - use scatter-gather segment, use 1007 * the single mapping, or neither. Start the lpfc command prep by 1008 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1009 * data bde entry. 1010 */ 1011 bpl += 2; 1012 if (scsi_sg_count(scsi_cmnd)) { 1013 /* 1014 * The driver stores the segment count returned from pci_map_sg 1015 * because this a count of dma-mappings used to map the use_sg 1016 * pages. They are not guaranteed to be the same for those 1017 * architectures that implement an IOMMU. 1018 */ 1019 1020 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1021 scsi_sg_count(scsi_cmnd), datadir); 1022 if (unlikely(!nseg)) 1023 return 1; 1024 1025 lpfc_cmd->seg_cnt = nseg; 1026 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1027 printk(KERN_ERR "%s: Too many sg segments from " 1028 "dma_map_sg. Config %d, seg_cnt %d\n", 1029 __func__, phba->cfg_sg_seg_cnt, 1030 lpfc_cmd->seg_cnt); 1031 scsi_dma_unmap(scsi_cmnd); 1032 return 1; 1033 } 1034 1035 /* 1036 * The driver established a maximum scatter-gather segment count 1037 * during probe that limits the number of sg elements in any 1038 * single scsi command. Just run through the seg_cnt and format 1039 * the bde's. 1040 * When using SLI-3 the driver will try to fit all the BDEs into 1041 * the IOCB. If it can't then the BDEs get added to a BPL as it 1042 * does for SLI-2 mode. 1043 */ 1044 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1045 physaddr = sg_dma_address(sgel); 1046 if (phba->sli_rev == 3 && 1047 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1048 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1049 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1050 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1051 data_bde->addrLow = putPaddrLow(physaddr); 1052 data_bde->addrHigh = putPaddrHigh(physaddr); 1053 data_bde++; 1054 } else { 1055 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1056 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1057 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1058 bpl->addrLow = 1059 le32_to_cpu(putPaddrLow(physaddr)); 1060 bpl->addrHigh = 1061 le32_to_cpu(putPaddrHigh(physaddr)); 1062 bpl++; 1063 } 1064 } 1065 } 1066 1067 /* 1068 * Finish initializing those IOCB fields that are dependent on the 1069 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1070 * explicitly reinitialized and for SLI-3 the extended bde count is 1071 * explicitly reinitialized since all iocb memory resources are reused. 1072 */ 1073 if (phba->sli_rev == 3 && 1074 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 1075 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1076 /* 1077 * The extended IOCB format can only fit 3 BDE or a BPL. 1078 * This I/O has more than 3 BDE so the 1st data bde will 1079 * be a BPL that is filled in here. 1080 */ 1081 physaddr = lpfc_cmd->dma_handle; 1082 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1083 data_bde->tus.f.bdeSize = (num_bde * 1084 sizeof(struct ulp_bde64)); 1085 physaddr += (sizeof(struct fcp_cmnd) + 1086 sizeof(struct fcp_rsp) + 1087 (2 * sizeof(struct ulp_bde64))); 1088 data_bde->addrHigh = putPaddrHigh(physaddr); 1089 data_bde->addrLow = putPaddrLow(physaddr); 1090 /* ebde count includes the responce bde and data bpl */ 1091 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1092 } else { 1093 /* ebde count includes the responce bde and data bdes */ 1094 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1095 } 1096 } else { 1097 iocb_cmd->un.fcpi64.bdl.bdeSize = 1098 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1099 } 1100 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1101 1102 /* 1103 * Due to difference in data length between DIF/non-DIF paths, 1104 * we need to set word 4 of IOCB here 1105 */ 1106 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1107 return 0; 1108 } 1109 1110 /* 1111 * Given a scsi cmnd, determine the BlockGuard profile to be used 1112 * with the cmd 1113 */ 1114 static int 1115 lpfc_sc_to_sli_prof(struct scsi_cmnd *sc) 1116 { 1117 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1118 uint8_t ret_prof = LPFC_PROF_INVALID; 1119 1120 if (guard_type == SHOST_DIX_GUARD_IP) { 1121 switch (scsi_get_prot_op(sc)) { 1122 case SCSI_PROT_READ_INSERT: 1123 case SCSI_PROT_WRITE_STRIP: 1124 ret_prof = LPFC_PROF_AST2; 1125 break; 1126 1127 case SCSI_PROT_READ_STRIP: 1128 case SCSI_PROT_WRITE_INSERT: 1129 ret_prof = LPFC_PROF_A1; 1130 break; 1131 1132 case SCSI_PROT_READ_PASS: 1133 case SCSI_PROT_WRITE_PASS: 1134 ret_prof = LPFC_PROF_AST1; 1135 break; 1136 1137 case SCSI_PROT_NORMAL: 1138 default: 1139 printk(KERN_ERR "Bad op/guard:%d/%d combination\n", 1140 scsi_get_prot_op(sc), guard_type); 1141 break; 1142 1143 } 1144 } else if (guard_type == SHOST_DIX_GUARD_CRC) { 1145 switch (scsi_get_prot_op(sc)) { 1146 case SCSI_PROT_READ_STRIP: 1147 case SCSI_PROT_WRITE_INSERT: 1148 ret_prof = LPFC_PROF_A1; 1149 break; 1150 1151 case SCSI_PROT_READ_PASS: 1152 case SCSI_PROT_WRITE_PASS: 1153 ret_prof = LPFC_PROF_C1; 1154 break; 1155 1156 case SCSI_PROT_READ_INSERT: 1157 case SCSI_PROT_WRITE_STRIP: 1158 case SCSI_PROT_NORMAL: 1159 default: 1160 printk(KERN_ERR "Bad op/guard:%d/%d combination\n", 1161 scsi_get_prot_op(sc), guard_type); 1162 break; 1163 } 1164 } else { 1165 /* unsupported format */ 1166 BUG(); 1167 } 1168 1169 return ret_prof; 1170 } 1171 1172 struct scsi_dif_tuple { 1173 __be16 guard_tag; /* Checksum */ 1174 __be16 app_tag; /* Opaque storage */ 1175 __be32 ref_tag; /* Target LBA or indirect LBA */ 1176 }; 1177 1178 static inline unsigned 1179 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1180 { 1181 return sc->device->sector_size; 1182 } 1183 1184 /** 1185 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command 1186 * @sc: in: SCSI command 1187 * @apptagmask: out: app tag mask 1188 * @apptagval: out: app tag value 1189 * @reftag: out: ref tag (reference tag) 1190 * 1191 * Description: 1192 * Extract DIF parameters from the command if possible. Otherwise, 1193 * use default parameters. 1194 * 1195 **/ 1196 static inline void 1197 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask, 1198 uint16_t *apptagval, uint32_t *reftag) 1199 { 1200 struct scsi_dif_tuple *spt; 1201 unsigned char op = scsi_get_prot_op(sc); 1202 unsigned int protcnt = scsi_prot_sg_count(sc); 1203 static int cnt; 1204 1205 if (protcnt && (op == SCSI_PROT_WRITE_STRIP || 1206 op == SCSI_PROT_WRITE_PASS)) { 1207 1208 cnt++; 1209 spt = page_address(sg_page(scsi_prot_sglist(sc))) + 1210 scsi_prot_sglist(sc)[0].offset; 1211 *apptagmask = 0; 1212 *apptagval = 0; 1213 *reftag = cpu_to_be32(spt->ref_tag); 1214 1215 } else { 1216 /* SBC defines ref tag to be lower 32bits of LBA */ 1217 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc)); 1218 *apptagmask = 0; 1219 *apptagval = 0; 1220 } 1221 } 1222 1223 /* 1224 * This function sets up buffer list for protection groups of 1225 * type LPFC_PG_TYPE_NO_DIF 1226 * 1227 * This is usually used when the HBA is instructed to generate 1228 * DIFs and insert them into data stream (or strip DIF from 1229 * incoming data stream) 1230 * 1231 * The buffer list consists of just one protection group described 1232 * below: 1233 * +-------------------------+ 1234 * start of prot group --> | PDE_1 | 1235 * +-------------------------+ 1236 * | Data BDE | 1237 * +-------------------------+ 1238 * |more Data BDE's ... (opt)| 1239 * +-------------------------+ 1240 * 1241 * @sc: pointer to scsi command we're working on 1242 * @bpl: pointer to buffer list for protection groups 1243 * @datacnt: number of segments of data that have been dma mapped 1244 * 1245 * Note: Data s/g buffers have been dma mapped 1246 */ 1247 static int 1248 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1249 struct ulp_bde64 *bpl, int datasegcnt) 1250 { 1251 struct scatterlist *sgde = NULL; /* s/g data entry */ 1252 struct lpfc_pde *pde1 = NULL; 1253 dma_addr_t physaddr; 1254 int i = 0, num_bde = 0; 1255 int datadir = sc->sc_data_direction; 1256 int prof = LPFC_PROF_INVALID; 1257 unsigned blksize; 1258 uint32_t reftag; 1259 uint16_t apptagmask, apptagval; 1260 1261 pde1 = (struct lpfc_pde *) bpl; 1262 prof = lpfc_sc_to_sli_prof(sc); 1263 1264 if (prof == LPFC_PROF_INVALID) 1265 goto out; 1266 1267 /* extract some info from the scsi command for PDE1*/ 1268 blksize = lpfc_cmd_blksize(sc); 1269 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1270 1271 /* setup PDE1 with what we have */ 1272 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, 1273 BG_EC_STOP_ERR); 1274 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); 1275 1276 num_bde++; 1277 bpl++; 1278 1279 /* assumption: caller has already run dma_map_sg on command data */ 1280 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1281 physaddr = sg_dma_address(sgde); 1282 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1283 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1284 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1285 if (datadir == DMA_TO_DEVICE) 1286 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1287 else 1288 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1289 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1290 bpl++; 1291 num_bde++; 1292 } 1293 1294 out: 1295 return num_bde; 1296 } 1297 1298 /* 1299 * This function sets up buffer list for protection groups of 1300 * type LPFC_PG_TYPE_DIF_BUF 1301 * 1302 * This is usually used when DIFs are in their own buffers, 1303 * separate from the data. The HBA can then by instructed 1304 * to place the DIFs in the outgoing stream. For read operations, 1305 * The HBA could extract the DIFs and place it in DIF buffers. 1306 * 1307 * The buffer list for this type consists of one or more of the 1308 * protection groups described below: 1309 * +-------------------------+ 1310 * start of first prot group --> | PDE_1 | 1311 * +-------------------------+ 1312 * | PDE_3 (Prot BDE) | 1313 * +-------------------------+ 1314 * | Data BDE | 1315 * +-------------------------+ 1316 * |more Data BDE's ... (opt)| 1317 * +-------------------------+ 1318 * start of new prot group --> | PDE_1 | 1319 * +-------------------------+ 1320 * | ... | 1321 * +-------------------------+ 1322 * 1323 * @sc: pointer to scsi command we're working on 1324 * @bpl: pointer to buffer list for protection groups 1325 * @datacnt: number of segments of data that have been dma mapped 1326 * @protcnt: number of segment of protection data that have been dma mapped 1327 * 1328 * Note: It is assumed that both data and protection s/g buffers have been 1329 * mapped for DMA 1330 */ 1331 static int 1332 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1333 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1334 { 1335 struct scatterlist *sgde = NULL; /* s/g data entry */ 1336 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1337 struct lpfc_pde *pde1 = NULL; 1338 struct ulp_bde64 *prot_bde = NULL; 1339 dma_addr_t dataphysaddr, protphysaddr; 1340 unsigned short curr_data = 0, curr_prot = 0; 1341 unsigned int split_offset, protgroup_len; 1342 unsigned int protgrp_blks, protgrp_bytes; 1343 unsigned int remainder, subtotal; 1344 int prof = LPFC_PROF_INVALID; 1345 int datadir = sc->sc_data_direction; 1346 unsigned char pgdone = 0, alldone = 0; 1347 unsigned blksize; 1348 uint32_t reftag; 1349 uint16_t apptagmask, apptagval; 1350 int num_bde = 0; 1351 1352 sgpe = scsi_prot_sglist(sc); 1353 sgde = scsi_sglist(sc); 1354 1355 if (!sgpe || !sgde) { 1356 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1357 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1358 sgpe, sgde); 1359 return 0; 1360 } 1361 1362 prof = lpfc_sc_to_sli_prof(sc); 1363 if (prof == LPFC_PROF_INVALID) 1364 goto out; 1365 1366 /* extract some info from the scsi command for PDE1*/ 1367 blksize = lpfc_cmd_blksize(sc); 1368 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1369 1370 split_offset = 0; 1371 do { 1372 /* setup the first PDE_1 */ 1373 pde1 = (struct lpfc_pde *) bpl; 1374 1375 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, 1376 BG_EC_STOP_ERR); 1377 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); 1378 1379 num_bde++; 1380 bpl++; 1381 1382 /* setup the first BDE that points to protection buffer */ 1383 prot_bde = (struct ulp_bde64 *) bpl; 1384 protphysaddr = sg_dma_address(sgpe); 1385 prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); 1386 prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); 1387 protgroup_len = sg_dma_len(sgpe); 1388 1389 1390 /* must be integer multiple of the DIF block length */ 1391 BUG_ON(protgroup_len % 8); 1392 1393 protgrp_blks = protgroup_len / 8; 1394 protgrp_bytes = protgrp_blks * blksize; 1395 1396 prot_bde->tus.f.bdeSize = protgroup_len; 1397 if (datadir == DMA_TO_DEVICE) 1398 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1399 else 1400 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1401 prot_bde->tus.w = le32_to_cpu(bpl->tus.w); 1402 1403 curr_prot++; 1404 num_bde++; 1405 1406 /* setup BDE's for data blocks associated with DIF data */ 1407 pgdone = 0; 1408 subtotal = 0; /* total bytes processed for current prot grp */ 1409 while (!pgdone) { 1410 if (!sgde) { 1411 printk(KERN_ERR "%s Invalid data segment\n", 1412 __func__); 1413 return 0; 1414 } 1415 bpl++; 1416 dataphysaddr = sg_dma_address(sgde) + split_offset; 1417 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1418 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1419 1420 remainder = sg_dma_len(sgde) - split_offset; 1421 1422 if ((subtotal + remainder) <= protgrp_bytes) { 1423 /* we can use this whole buffer */ 1424 bpl->tus.f.bdeSize = remainder; 1425 split_offset = 0; 1426 1427 if ((subtotal + remainder) == protgrp_bytes) 1428 pgdone = 1; 1429 } else { 1430 /* must split this buffer with next prot grp */ 1431 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1432 split_offset += bpl->tus.f.bdeSize; 1433 } 1434 1435 subtotal += bpl->tus.f.bdeSize; 1436 1437 if (datadir == DMA_TO_DEVICE) 1438 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1439 else 1440 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1441 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1442 1443 num_bde++; 1444 curr_data++; 1445 1446 if (split_offset) 1447 break; 1448 1449 /* Move to the next s/g segment if possible */ 1450 sgde = sg_next(sgde); 1451 } 1452 1453 /* are we done ? */ 1454 if (curr_prot == protcnt) { 1455 alldone = 1; 1456 } else if (curr_prot < protcnt) { 1457 /* advance to next prot buffer */ 1458 sgpe = sg_next(sgpe); 1459 bpl++; 1460 1461 /* update the reference tag */ 1462 reftag += protgrp_blks; 1463 } else { 1464 /* if we're here, we have a bug */ 1465 printk(KERN_ERR "BLKGRD: bug in %s\n", __func__); 1466 } 1467 1468 } while (!alldone); 1469 1470 out: 1471 1472 1473 return num_bde; 1474 } 1475 /* 1476 * Given a SCSI command that supports DIF, determine composition of protection 1477 * groups involved in setting up buffer lists 1478 * 1479 * Returns: 1480 * for DIF (for both read and write) 1481 * */ 1482 static int 1483 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1484 { 1485 int ret = LPFC_PG_TYPE_INVALID; 1486 unsigned char op = scsi_get_prot_op(sc); 1487 1488 switch (op) { 1489 case SCSI_PROT_READ_STRIP: 1490 case SCSI_PROT_WRITE_INSERT: 1491 ret = LPFC_PG_TYPE_NO_DIF; 1492 break; 1493 case SCSI_PROT_READ_INSERT: 1494 case SCSI_PROT_WRITE_STRIP: 1495 case SCSI_PROT_READ_PASS: 1496 case SCSI_PROT_WRITE_PASS: 1497 ret = LPFC_PG_TYPE_DIF_BUF; 1498 break; 1499 default: 1500 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1501 "9021 Unsupported protection op:%d\n", op); 1502 break; 1503 } 1504 1505 return ret; 1506 } 1507 1508 /* 1509 * This is the protection/DIF aware version of 1510 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1511 * two functions eventually, but for now, it's here 1512 */ 1513 static int 1514 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1515 struct lpfc_scsi_buf *lpfc_cmd) 1516 { 1517 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1518 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1519 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1520 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1521 uint32_t num_bde = 0; 1522 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1523 int prot_group_type = 0; 1524 int diflen, fcpdl; 1525 unsigned blksize; 1526 1527 /* 1528 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1529 * fcp_rsp regions to the first data bde entry 1530 */ 1531 bpl += 2; 1532 if (scsi_sg_count(scsi_cmnd)) { 1533 /* 1534 * The driver stores the segment count returned from pci_map_sg 1535 * because this a count of dma-mappings used to map the use_sg 1536 * pages. They are not guaranteed to be the same for those 1537 * architectures that implement an IOMMU. 1538 */ 1539 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1540 scsi_sglist(scsi_cmnd), 1541 scsi_sg_count(scsi_cmnd), datadir); 1542 if (unlikely(!datasegcnt)) 1543 return 1; 1544 1545 lpfc_cmd->seg_cnt = datasegcnt; 1546 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1547 printk(KERN_ERR "%s: Too many sg segments from " 1548 "dma_map_sg. Config %d, seg_cnt %d\n", 1549 __func__, phba->cfg_sg_seg_cnt, 1550 lpfc_cmd->seg_cnt); 1551 scsi_dma_unmap(scsi_cmnd); 1552 return 1; 1553 } 1554 1555 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1556 1557 switch (prot_group_type) { 1558 case LPFC_PG_TYPE_NO_DIF: 1559 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1560 datasegcnt); 1561 /* we shoud have 2 or more entries in buffer list */ 1562 if (num_bde < 2) 1563 goto err; 1564 break; 1565 case LPFC_PG_TYPE_DIF_BUF:{ 1566 /* 1567 * This type indicates that protection buffers are 1568 * passed to the driver, so that needs to be prepared 1569 * for DMA 1570 */ 1571 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1572 scsi_prot_sglist(scsi_cmnd), 1573 scsi_prot_sg_count(scsi_cmnd), datadir); 1574 if (unlikely(!protsegcnt)) { 1575 scsi_dma_unmap(scsi_cmnd); 1576 return 1; 1577 } 1578 1579 lpfc_cmd->prot_seg_cnt = protsegcnt; 1580 if (lpfc_cmd->prot_seg_cnt 1581 > phba->cfg_prot_sg_seg_cnt) { 1582 printk(KERN_ERR "%s: Too many prot sg segments " 1583 "from dma_map_sg. Config %d," 1584 "prot_seg_cnt %d\n", __func__, 1585 phba->cfg_prot_sg_seg_cnt, 1586 lpfc_cmd->prot_seg_cnt); 1587 dma_unmap_sg(&phba->pcidev->dev, 1588 scsi_prot_sglist(scsi_cmnd), 1589 scsi_prot_sg_count(scsi_cmnd), 1590 datadir); 1591 scsi_dma_unmap(scsi_cmnd); 1592 return 1; 1593 } 1594 1595 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1596 datasegcnt, protsegcnt); 1597 /* we shoud have 3 or more entries in buffer list */ 1598 if (num_bde < 3) 1599 goto err; 1600 break; 1601 } 1602 case LPFC_PG_TYPE_INVALID: 1603 default: 1604 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1605 "9022 Unexpected protection group %i\n", 1606 prot_group_type); 1607 return 1; 1608 } 1609 } 1610 1611 /* 1612 * Finish initializing those IOCB fields that are dependent on the 1613 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1614 * reinitialized since all iocb memory resources are used many times 1615 * for transmit, receive, and continuation bpl's. 1616 */ 1617 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 1618 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 1619 iocb_cmd->ulpBdeCount = 1; 1620 iocb_cmd->ulpLe = 1; 1621 1622 fcpdl = scsi_bufflen(scsi_cmnd); 1623 1624 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 1625 /* 1626 * We are in DIF Type 1 mode 1627 * Every data block has a 8 byte DIF (trailer) 1628 * attached to it. Must ajust FCP data length 1629 */ 1630 blksize = lpfc_cmd_blksize(scsi_cmnd); 1631 diflen = (fcpdl / blksize) * 8; 1632 fcpdl += diflen; 1633 } 1634 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 1635 1636 /* 1637 * Due to difference in data length between DIF/non-DIF paths, 1638 * we need to set word 4 of IOCB here 1639 */ 1640 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 1641 1642 return 0; 1643 err: 1644 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1645 "9023 Could not setup all needed BDE's" 1646 "prot_group_type=%d, num_bde=%d\n", 1647 prot_group_type, num_bde); 1648 return 1; 1649 } 1650 1651 /* 1652 * This function checks for BlockGuard errors detected by 1653 * the HBA. In case of errors, the ASC/ASCQ fields in the 1654 * sense buffer will be set accordingly, paired with 1655 * ILLEGAL_REQUEST to signal to the kernel that the HBA 1656 * detected corruption. 1657 * 1658 * Returns: 1659 * 0 - No error found 1660 * 1 - BlockGuard error found 1661 * -1 - Internal error (bad profile, ...etc) 1662 */ 1663 static int 1664 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 1665 struct lpfc_iocbq *pIocbOut) 1666 { 1667 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 1668 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 1669 int ret = 0; 1670 uint32_t bghm = bgf->bghm; 1671 uint32_t bgstat = bgf->bgstat; 1672 uint64_t failing_sector = 0; 1673 1674 printk(KERN_ERR "BG ERROR in cmd 0x%x lba 0x%llx blk cnt 0x%x " 1675 "bgstat=0x%x bghm=0x%x\n", 1676 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 1677 blk_rq_sectors(cmd->request), bgstat, bghm); 1678 1679 spin_lock(&_dump_buf_lock); 1680 if (!_dump_buf_done) { 1681 printk(KERN_ERR "Saving Data for %u blocks to debugfs\n", 1682 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1683 lpfc_debug_save_data(cmd); 1684 1685 /* If we have a prot sgl, save the DIF buffer */ 1686 if (lpfc_prot_group_type(phba, cmd) == 1687 LPFC_PG_TYPE_DIF_BUF) { 1688 printk(KERN_ERR "Saving DIF for %u blocks to debugfs\n", 1689 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1690 lpfc_debug_save_dif(cmd); 1691 } 1692 1693 _dump_buf_done = 1; 1694 } 1695 spin_unlock(&_dump_buf_lock); 1696 1697 if (lpfc_bgs_get_invalid_prof(bgstat)) { 1698 cmd->result = ScsiResult(DID_ERROR, 0); 1699 printk(KERN_ERR "Invalid BlockGuard profile. bgstat:0x%x\n", 1700 bgstat); 1701 ret = (-1); 1702 goto out; 1703 } 1704 1705 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 1706 cmd->result = ScsiResult(DID_ERROR, 0); 1707 printk(KERN_ERR "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 1708 bgstat); 1709 ret = (-1); 1710 goto out; 1711 } 1712 1713 if (lpfc_bgs_get_guard_err(bgstat)) { 1714 ret = 1; 1715 1716 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1717 0x10, 0x1); 1718 cmd->result = DRIVER_SENSE << 24 1719 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1720 phba->bg_guard_err_cnt++; 1721 printk(KERN_ERR "BLKGRD: guard_tag error\n"); 1722 } 1723 1724 if (lpfc_bgs_get_reftag_err(bgstat)) { 1725 ret = 1; 1726 1727 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1728 0x10, 0x3); 1729 cmd->result = DRIVER_SENSE << 24 1730 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1731 1732 phba->bg_reftag_err_cnt++; 1733 printk(KERN_ERR "BLKGRD: ref_tag error\n"); 1734 } 1735 1736 if (lpfc_bgs_get_apptag_err(bgstat)) { 1737 ret = 1; 1738 1739 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1740 0x10, 0x2); 1741 cmd->result = DRIVER_SENSE << 24 1742 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1743 1744 phba->bg_apptag_err_cnt++; 1745 printk(KERN_ERR "BLKGRD: app_tag error\n"); 1746 } 1747 1748 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 1749 /* 1750 * setup sense data descriptor 0 per SPC-4 as an information 1751 * field, and put the failing LBA in it 1752 */ 1753 cmd->sense_buffer[8] = 0; /* Information */ 1754 cmd->sense_buffer[9] = 0xa; /* Add. length */ 1755 bghm /= cmd->device->sector_size; 1756 1757 failing_sector = scsi_get_lba(cmd); 1758 failing_sector += bghm; 1759 1760 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]); 1761 } 1762 1763 if (!ret) { 1764 /* No error was reported - problem in FW? */ 1765 cmd->result = ScsiResult(DID_ERROR, 0); 1766 printk(KERN_ERR "BLKGRD: no errors reported!\n"); 1767 } 1768 1769 out: 1770 return ret; 1771 } 1772 1773 /** 1774 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 1775 * @phba: The Hba for which this call is being executed. 1776 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1777 * 1778 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1779 * field of @lpfc_cmd for device with SLI-4 interface spec. 1780 * 1781 * Return codes: 1782 * 1 - Error 1783 * 0 - Success 1784 **/ 1785 static int 1786 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1787 { 1788 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1789 struct scatterlist *sgel = NULL; 1790 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1791 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 1792 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1793 dma_addr_t physaddr; 1794 uint32_t num_bde = 0; 1795 uint32_t dma_len; 1796 uint32_t dma_offset = 0; 1797 int nseg; 1798 1799 /* 1800 * There are three possibilities here - use scatter-gather segment, use 1801 * the single mapping, or neither. Start the lpfc command prep by 1802 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1803 * data bde entry. 1804 */ 1805 if (scsi_sg_count(scsi_cmnd)) { 1806 /* 1807 * The driver stores the segment count returned from pci_map_sg 1808 * because this a count of dma-mappings used to map the use_sg 1809 * pages. They are not guaranteed to be the same for those 1810 * architectures that implement an IOMMU. 1811 */ 1812 1813 nseg = scsi_dma_map(scsi_cmnd); 1814 if (unlikely(!nseg)) 1815 return 1; 1816 sgl += 1; 1817 /* clear the last flag in the fcp_rsp map entry */ 1818 sgl->word2 = le32_to_cpu(sgl->word2); 1819 bf_set(lpfc_sli4_sge_last, sgl, 0); 1820 sgl->word2 = cpu_to_le32(sgl->word2); 1821 sgl += 1; 1822 1823 lpfc_cmd->seg_cnt = nseg; 1824 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1825 printk(KERN_ERR "%s: Too many sg segments from " 1826 "dma_map_sg. Config %d, seg_cnt %d\n", 1827 __func__, phba->cfg_sg_seg_cnt, 1828 lpfc_cmd->seg_cnt); 1829 scsi_dma_unmap(scsi_cmnd); 1830 return 1; 1831 } 1832 1833 /* 1834 * The driver established a maximum scatter-gather segment count 1835 * during probe that limits the number of sg elements in any 1836 * single scsi command. Just run through the seg_cnt and format 1837 * the sge's. 1838 * When using SLI-3 the driver will try to fit all the BDEs into 1839 * the IOCB. If it can't then the BDEs get added to a BPL as it 1840 * does for SLI-2 mode. 1841 */ 1842 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1843 physaddr = sg_dma_address(sgel); 1844 dma_len = sg_dma_len(sgel); 1845 bf_set(lpfc_sli4_sge_len, sgl, sg_dma_len(sgel)); 1846 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 1847 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 1848 if ((num_bde + 1) == nseg) 1849 bf_set(lpfc_sli4_sge_last, sgl, 1); 1850 else 1851 bf_set(lpfc_sli4_sge_last, sgl, 0); 1852 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 1853 sgl->word2 = cpu_to_le32(sgl->word2); 1854 sgl->word3 = cpu_to_le32(sgl->word3); 1855 dma_offset += dma_len; 1856 sgl++; 1857 } 1858 } else { 1859 sgl += 1; 1860 /* clear the last flag in the fcp_rsp map entry */ 1861 sgl->word2 = le32_to_cpu(sgl->word2); 1862 bf_set(lpfc_sli4_sge_last, sgl, 1); 1863 sgl->word2 = cpu_to_le32(sgl->word2); 1864 } 1865 1866 /* 1867 * Finish initializing those IOCB fields that are dependent on the 1868 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1869 * explicitly reinitialized. 1870 * all iocb memory resources are reused. 1871 */ 1872 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1873 1874 /* 1875 * Due to difference in data length between DIF/non-DIF paths, 1876 * we need to set word 4 of IOCB here 1877 */ 1878 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1879 return 0; 1880 } 1881 1882 /** 1883 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 1884 * @phba: The Hba for which this call is being executed. 1885 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1886 * 1887 * This routine wraps the actual DMA mapping function pointer from the 1888 * lpfc_hba struct. 1889 * 1890 * Return codes: 1891 * 1 - Error 1892 * 0 - Success 1893 **/ 1894 static inline int 1895 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1896 { 1897 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 1898 } 1899 1900 /** 1901 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 1902 * @phba: Pointer to hba context object. 1903 * @vport: Pointer to vport object. 1904 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 1905 * @rsp_iocb: Pointer to response iocb object which reported error. 1906 * 1907 * This function posts an event when there is a SCSI command reporting 1908 * error from the scsi device. 1909 **/ 1910 static void 1911 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 1912 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 1913 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 1914 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 1915 uint32_t resp_info = fcprsp->rspStatus2; 1916 uint32_t scsi_status = fcprsp->rspStatus3; 1917 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 1918 struct lpfc_fast_path_event *fast_path_evt = NULL; 1919 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 1920 unsigned long flags; 1921 1922 /* If there is queuefull or busy condition send a scsi event */ 1923 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 1924 (cmnd->result == SAM_STAT_BUSY)) { 1925 fast_path_evt = lpfc_alloc_fast_evt(phba); 1926 if (!fast_path_evt) 1927 return; 1928 fast_path_evt->un.scsi_evt.event_type = 1929 FC_REG_SCSI_EVENT; 1930 fast_path_evt->un.scsi_evt.subcategory = 1931 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 1932 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 1933 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 1934 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 1935 &pnode->nlp_portname, sizeof(struct lpfc_name)); 1936 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 1937 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 1938 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 1939 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 1940 fast_path_evt = lpfc_alloc_fast_evt(phba); 1941 if (!fast_path_evt) 1942 return; 1943 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 1944 FC_REG_SCSI_EVENT; 1945 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 1946 LPFC_EVENT_CHECK_COND; 1947 fast_path_evt->un.check_cond_evt.scsi_event.lun = 1948 cmnd->device->lun; 1949 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 1950 &pnode->nlp_portname, sizeof(struct lpfc_name)); 1951 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 1952 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 1953 fast_path_evt->un.check_cond_evt.sense_key = 1954 cmnd->sense_buffer[2] & 0xf; 1955 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 1956 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 1957 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 1958 fcpi_parm && 1959 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 1960 ((scsi_status == SAM_STAT_GOOD) && 1961 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 1962 /* 1963 * If status is good or resid does not match with fcp_param and 1964 * there is valid fcpi_parm, then there is a read_check error 1965 */ 1966 fast_path_evt = lpfc_alloc_fast_evt(phba); 1967 if (!fast_path_evt) 1968 return; 1969 fast_path_evt->un.read_check_error.header.event_type = 1970 FC_REG_FABRIC_EVENT; 1971 fast_path_evt->un.read_check_error.header.subcategory = 1972 LPFC_EVENT_FCPRDCHKERR; 1973 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 1974 &pnode->nlp_portname, sizeof(struct lpfc_name)); 1975 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 1976 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 1977 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 1978 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 1979 fast_path_evt->un.read_check_error.fcpiparam = 1980 fcpi_parm; 1981 } else 1982 return; 1983 1984 fast_path_evt->vport = vport; 1985 spin_lock_irqsave(&phba->hbalock, flags); 1986 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 1987 spin_unlock_irqrestore(&phba->hbalock, flags); 1988 lpfc_worker_wake_up(phba); 1989 return; 1990 } 1991 1992 /** 1993 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 1994 * @phba: The HBA for which this call is being executed. 1995 * @psb: The scsi buffer which is going to be un-mapped. 1996 * 1997 * This routine does DMA un-mapping of scatter gather list of scsi command 1998 * field of @lpfc_cmd for device with SLI-3 interface spec. 1999 **/ 2000 static void 2001 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2002 { 2003 /* 2004 * There are only two special cases to consider. (1) the scsi command 2005 * requested scatter-gather usage or (2) the scsi command allocated 2006 * a request buffer, but did not request use_sg. There is a third 2007 * case, but it does not require resource deallocation. 2008 */ 2009 if (psb->seg_cnt > 0) 2010 scsi_dma_unmap(psb->pCmd); 2011 if (psb->prot_seg_cnt > 0) 2012 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2013 scsi_prot_sg_count(psb->pCmd), 2014 psb->pCmd->sc_data_direction); 2015 } 2016 2017 /** 2018 * lpfc_handler_fcp_err - FCP response handler 2019 * @vport: The virtual port for which this call is being executed. 2020 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2021 * @rsp_iocb: The response IOCB which contains FCP error. 2022 * 2023 * This routine is called to process response IOCB with status field 2024 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2025 * based upon SCSI and FCP error. 2026 **/ 2027 static void 2028 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2029 struct lpfc_iocbq *rsp_iocb) 2030 { 2031 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2032 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2033 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2034 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2035 uint32_t resp_info = fcprsp->rspStatus2; 2036 uint32_t scsi_status = fcprsp->rspStatus3; 2037 uint32_t *lp; 2038 uint32_t host_status = DID_OK; 2039 uint32_t rsplen = 0; 2040 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2041 2042 2043 /* 2044 * If this is a task management command, there is no 2045 * scsi packet associated with this lpfc_cmd. The driver 2046 * consumes it. 2047 */ 2048 if (fcpcmd->fcpCntl2) { 2049 scsi_status = 0; 2050 goto out; 2051 } 2052 2053 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2054 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2055 if (snslen > SCSI_SENSE_BUFFERSIZE) 2056 snslen = SCSI_SENSE_BUFFERSIZE; 2057 2058 if (resp_info & RSP_LEN_VALID) 2059 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2060 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2061 } 2062 lp = (uint32_t *)cmnd->sense_buffer; 2063 2064 if (!scsi_status && (resp_info & RESID_UNDER)) 2065 logit = LOG_FCP; 2066 2067 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2068 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2069 "Data: x%x x%x x%x x%x x%x\n", 2070 cmnd->cmnd[0], scsi_status, 2071 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2072 be32_to_cpu(fcprsp->rspResId), 2073 be32_to_cpu(fcprsp->rspSnsLen), 2074 be32_to_cpu(fcprsp->rspRspLen), 2075 fcprsp->rspInfo3); 2076 2077 if (resp_info & RSP_LEN_VALID) { 2078 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2079 if ((rsplen != 0 && rsplen != 4 && rsplen != 8) || 2080 (fcprsp->rspInfo3 != RSP_NO_FAILURE)) { 2081 host_status = DID_ERROR; 2082 goto out; 2083 } 2084 } 2085 2086 scsi_set_resid(cmnd, 0); 2087 if (resp_info & RESID_UNDER) { 2088 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2089 2090 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2091 "9025 FCP Read Underrun, expected %d, " 2092 "residual %d Data: x%x x%x x%x\n", 2093 be32_to_cpu(fcpcmd->fcpDl), 2094 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2095 cmnd->underflow); 2096 2097 /* 2098 * If there is an under run check if under run reported by 2099 * storage array is same as the under run reported by HBA. 2100 * If this is not same, there is a dropped frame. 2101 */ 2102 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2103 fcpi_parm && 2104 (scsi_get_resid(cmnd) != fcpi_parm)) { 2105 lpfc_printf_vlog(vport, KERN_WARNING, 2106 LOG_FCP | LOG_FCP_ERROR, 2107 "9026 FCP Read Check Error " 2108 "and Underrun Data: x%x x%x x%x x%x\n", 2109 be32_to_cpu(fcpcmd->fcpDl), 2110 scsi_get_resid(cmnd), fcpi_parm, 2111 cmnd->cmnd[0]); 2112 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2113 host_status = DID_ERROR; 2114 } 2115 /* 2116 * The cmnd->underflow is the minimum number of bytes that must 2117 * be transfered for this command. Provided a sense condition 2118 * is not present, make sure the actual amount transferred is at 2119 * least the underflow value or fail. 2120 */ 2121 if (!(resp_info & SNS_LEN_VALID) && 2122 (scsi_status == SAM_STAT_GOOD) && 2123 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2124 < cmnd->underflow)) { 2125 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2126 "9027 FCP command x%x residual " 2127 "underrun converted to error " 2128 "Data: x%x x%x x%x\n", 2129 cmnd->cmnd[0], scsi_bufflen(cmnd), 2130 scsi_get_resid(cmnd), cmnd->underflow); 2131 host_status = DID_ERROR; 2132 } 2133 } else if (resp_info & RESID_OVER) { 2134 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2135 "9028 FCP command x%x residual overrun error. " 2136 "Data: x%x x%x\n", cmnd->cmnd[0], 2137 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2138 host_status = DID_ERROR; 2139 2140 /* 2141 * Check SLI validation that all the transfer was actually done 2142 * (fcpi_parm should be zero). Apply check only to reads. 2143 */ 2144 } else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm && 2145 (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2146 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2147 "9029 FCP Read Check Error Data: " 2148 "x%x x%x x%x x%x\n", 2149 be32_to_cpu(fcpcmd->fcpDl), 2150 be32_to_cpu(fcprsp->rspResId), 2151 fcpi_parm, cmnd->cmnd[0]); 2152 host_status = DID_ERROR; 2153 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2154 } 2155 2156 out: 2157 cmnd->result = ScsiResult(host_status, scsi_status); 2158 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2159 } 2160 2161 /** 2162 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2163 * @phba: The Hba for which this call is being executed. 2164 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2165 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2166 * 2167 * This routine assigns scsi command result by looking into response IOCB 2168 * status field appropriately. This routine handles QUEUE FULL condition as 2169 * well by ramping down device queue depth. 2170 **/ 2171 static void 2172 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2173 struct lpfc_iocbq *pIocbOut) 2174 { 2175 struct lpfc_scsi_buf *lpfc_cmd = 2176 (struct lpfc_scsi_buf *) pIocbIn->context1; 2177 struct lpfc_vport *vport = pIocbIn->vport; 2178 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2179 struct lpfc_nodelist *pnode = rdata->pnode; 2180 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 2181 int result; 2182 struct scsi_device *tmp_sdev; 2183 int depth = 0; 2184 unsigned long flags; 2185 struct lpfc_fast_path_event *fast_path_evt; 2186 struct Scsi_Host *shost = cmd->device->host; 2187 uint32_t queue_depth, scsi_id; 2188 2189 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2190 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2191 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2192 atomic_dec(&pnode->cmd_pending); 2193 2194 if (lpfc_cmd->status) { 2195 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2196 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2197 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2198 else if (lpfc_cmd->status >= IOSTAT_CNT) 2199 lpfc_cmd->status = IOSTAT_DEFAULT; 2200 2201 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2202 "9030 FCP cmd x%x failed <%d/%d> " 2203 "status: x%x result: x%x Data: x%x x%x\n", 2204 cmd->cmnd[0], 2205 cmd->device ? cmd->device->id : 0xffff, 2206 cmd->device ? cmd->device->lun : 0xffff, 2207 lpfc_cmd->status, lpfc_cmd->result, 2208 pIocbOut->iocb.ulpContext, 2209 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2210 2211 switch (lpfc_cmd->status) { 2212 case IOSTAT_FCP_RSP_ERROR: 2213 /* Call FCP RSP handler to determine result */ 2214 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2215 break; 2216 case IOSTAT_NPORT_BSY: 2217 case IOSTAT_FABRIC_BSY: 2218 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2219 fast_path_evt = lpfc_alloc_fast_evt(phba); 2220 if (!fast_path_evt) 2221 break; 2222 fast_path_evt->un.fabric_evt.event_type = 2223 FC_REG_FABRIC_EVENT; 2224 fast_path_evt->un.fabric_evt.subcategory = 2225 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2226 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2227 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2228 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2229 &pnode->nlp_portname, 2230 sizeof(struct lpfc_name)); 2231 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2232 &pnode->nlp_nodename, 2233 sizeof(struct lpfc_name)); 2234 } 2235 fast_path_evt->vport = vport; 2236 fast_path_evt->work_evt.evt = 2237 LPFC_EVT_FASTPATH_MGMT_EVT; 2238 spin_lock_irqsave(&phba->hbalock, flags); 2239 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2240 &phba->work_list); 2241 spin_unlock_irqrestore(&phba->hbalock, flags); 2242 lpfc_worker_wake_up(phba); 2243 break; 2244 case IOSTAT_LOCAL_REJECT: 2245 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2246 lpfc_cmd->result == IOERR_NO_RESOURCES || 2247 lpfc_cmd->result == IOERR_ABORT_REQUESTED) { 2248 cmd->result = ScsiResult(DID_REQUEUE, 0); 2249 break; 2250 } 2251 2252 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2253 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2254 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2255 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2256 /* 2257 * This is a response for a BG enabled 2258 * cmd. Parse BG error 2259 */ 2260 lpfc_parse_bg_err(phba, lpfc_cmd, 2261 pIocbOut); 2262 break; 2263 } else { 2264 lpfc_printf_vlog(vport, KERN_WARNING, 2265 LOG_BG, 2266 "9031 non-zero BGSTAT " 2267 "on unprotected cmd"); 2268 } 2269 } 2270 2271 /* else: fall through */ 2272 default: 2273 cmd->result = ScsiResult(DID_ERROR, 0); 2274 break; 2275 } 2276 2277 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2278 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2279 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2280 SAM_STAT_BUSY); 2281 } else { 2282 cmd->result = ScsiResult(DID_OK, 0); 2283 } 2284 2285 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2286 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2287 2288 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2289 "0710 Iodone <%d/%d> cmd %p, error " 2290 "x%x SNS x%x x%x Data: x%x x%x\n", 2291 cmd->device->id, cmd->device->lun, cmd, 2292 cmd->result, *lp, *(lp + 3), cmd->retries, 2293 scsi_get_resid(cmd)); 2294 } 2295 2296 lpfc_update_stats(phba, lpfc_cmd); 2297 result = cmd->result; 2298 if (vport->cfg_max_scsicmpl_time && 2299 time_after(jiffies, lpfc_cmd->start_time + 2300 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2301 spin_lock_irqsave(shost->host_lock, flags); 2302 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2303 if (pnode->cmd_qdepth > 2304 atomic_read(&pnode->cmd_pending) && 2305 (atomic_read(&pnode->cmd_pending) > 2306 LPFC_MIN_TGT_QDEPTH) && 2307 ((cmd->cmnd[0] == READ_10) || 2308 (cmd->cmnd[0] == WRITE_10))) 2309 pnode->cmd_qdepth = 2310 atomic_read(&pnode->cmd_pending); 2311 2312 pnode->last_change_time = jiffies; 2313 } 2314 spin_unlock_irqrestore(shost->host_lock, flags); 2315 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2316 if ((pnode->cmd_qdepth < LPFC_MAX_TGT_QDEPTH) && 2317 time_after(jiffies, pnode->last_change_time + 2318 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2319 spin_lock_irqsave(shost->host_lock, flags); 2320 pnode->cmd_qdepth += pnode->cmd_qdepth * 2321 LPFC_TGTQ_RAMPUP_PCENT / 100; 2322 if (pnode->cmd_qdepth > LPFC_MAX_TGT_QDEPTH) 2323 pnode->cmd_qdepth = LPFC_MAX_TGT_QDEPTH; 2324 pnode->last_change_time = jiffies; 2325 spin_unlock_irqrestore(shost->host_lock, flags); 2326 } 2327 } 2328 2329 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2330 2331 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2332 queue_depth = cmd->device->queue_depth; 2333 scsi_id = cmd->device->id; 2334 cmd->scsi_done(cmd); 2335 2336 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2337 /* 2338 * If there is a thread waiting for command completion 2339 * wake up the thread. 2340 */ 2341 spin_lock_irqsave(shost->host_lock, flags); 2342 lpfc_cmd->pCmd = NULL; 2343 if (lpfc_cmd->waitq) 2344 wake_up(lpfc_cmd->waitq); 2345 spin_unlock_irqrestore(shost->host_lock, flags); 2346 lpfc_release_scsi_buf(phba, lpfc_cmd); 2347 return; 2348 } 2349 2350 2351 if (!result) 2352 lpfc_rampup_queue_depth(vport, queue_depth); 2353 2354 if (!result && pnode && NLP_CHK_NODE_ACT(pnode) && 2355 ((jiffies - pnode->last_ramp_up_time) > 2356 LPFC_Q_RAMP_UP_INTERVAL * HZ) && 2357 ((jiffies - pnode->last_q_full_time) > 2358 LPFC_Q_RAMP_UP_INTERVAL * HZ) && 2359 (vport->cfg_lun_queue_depth > queue_depth)) { 2360 shost_for_each_device(tmp_sdev, shost) { 2361 if (vport->cfg_lun_queue_depth > tmp_sdev->queue_depth){ 2362 if (tmp_sdev->id != scsi_id) 2363 continue; 2364 if (tmp_sdev->ordered_tags) 2365 scsi_adjust_queue_depth(tmp_sdev, 2366 MSG_ORDERED_TAG, 2367 tmp_sdev->queue_depth+1); 2368 else 2369 scsi_adjust_queue_depth(tmp_sdev, 2370 MSG_SIMPLE_TAG, 2371 tmp_sdev->queue_depth+1); 2372 2373 pnode->last_ramp_up_time = jiffies; 2374 } 2375 } 2376 lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode, 2377 0xFFFFFFFF, 2378 queue_depth , queue_depth + 1); 2379 } 2380 2381 /* 2382 * Check for queue full. If the lun is reporting queue full, then 2383 * back off the lun queue depth to prevent target overloads. 2384 */ 2385 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2386 NLP_CHK_NODE_ACT(pnode)) { 2387 pnode->last_q_full_time = jiffies; 2388 2389 shost_for_each_device(tmp_sdev, shost) { 2390 if (tmp_sdev->id != scsi_id) 2391 continue; 2392 depth = scsi_track_queue_full(tmp_sdev, 2393 tmp_sdev->queue_depth - 1); 2394 } 2395 /* 2396 * The queue depth cannot be lowered any more. 2397 * Modify the returned error code to store 2398 * the final depth value set by 2399 * scsi_track_queue_full. 2400 */ 2401 if (depth == -1) 2402 depth = shost->cmd_per_lun; 2403 2404 if (depth) { 2405 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2406 "0711 detected queue full - lun queue " 2407 "depth adjusted to %d.\n", depth); 2408 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2409 pnode, 0xFFFFFFFF, 2410 depth+1, depth); 2411 } 2412 } 2413 2414 /* 2415 * If there is a thread waiting for command completion 2416 * wake up the thread. 2417 */ 2418 spin_lock_irqsave(shost->host_lock, flags); 2419 lpfc_cmd->pCmd = NULL; 2420 if (lpfc_cmd->waitq) 2421 wake_up(lpfc_cmd->waitq); 2422 spin_unlock_irqrestore(shost->host_lock, flags); 2423 2424 lpfc_release_scsi_buf(phba, lpfc_cmd); 2425 } 2426 2427 /** 2428 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2429 * @data: A pointer to the immediate command data portion of the IOCB. 2430 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2431 * 2432 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2433 * byte swapping the data to big endian format for transmission on the wire. 2434 **/ 2435 static void 2436 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2437 { 2438 int i, j; 2439 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2440 i += sizeof(uint32_t), j++) { 2441 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2442 } 2443 } 2444 2445 /** 2446 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2447 * @vport: The virtual port for which this call is being executed. 2448 * @lpfc_cmd: The scsi command which needs to send. 2449 * @pnode: Pointer to lpfc_nodelist. 2450 * 2451 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2452 * to transfer for device with SLI3 interface spec. 2453 **/ 2454 static void 2455 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2456 struct lpfc_nodelist *pnode) 2457 { 2458 struct lpfc_hba *phba = vport->phba; 2459 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2460 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2461 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2462 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2463 int datadir = scsi_cmnd->sc_data_direction; 2464 char tag[2]; 2465 2466 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2467 return; 2468 2469 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2470 /* clear task management bits */ 2471 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2472 2473 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2474 &lpfc_cmd->fcp_cmnd->fcp_lun); 2475 2476 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); 2477 2478 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2479 switch (tag[0]) { 2480 case HEAD_OF_QUEUE_TAG: 2481 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2482 break; 2483 case ORDERED_QUEUE_TAG: 2484 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2485 break; 2486 default: 2487 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2488 break; 2489 } 2490 } else 2491 fcp_cmnd->fcpCntl1 = 0; 2492 2493 /* 2494 * There are three possibilities here - use scatter-gather segment, use 2495 * the single mapping, or neither. Start the lpfc command prep by 2496 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2497 * data bde entry. 2498 */ 2499 if (scsi_sg_count(scsi_cmnd)) { 2500 if (datadir == DMA_TO_DEVICE) { 2501 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2502 if (phba->sli_rev < LPFC_SLI_REV4) { 2503 iocb_cmd->un.fcpi.fcpi_parm = 0; 2504 iocb_cmd->ulpPU = 0; 2505 } else 2506 iocb_cmd->ulpPU = PARM_READ_CHECK; 2507 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2508 phba->fc4OutputRequests++; 2509 } else { 2510 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2511 iocb_cmd->ulpPU = PARM_READ_CHECK; 2512 fcp_cmnd->fcpCntl3 = READ_DATA; 2513 phba->fc4InputRequests++; 2514 } 2515 } else { 2516 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2517 iocb_cmd->un.fcpi.fcpi_parm = 0; 2518 iocb_cmd->ulpPU = 0; 2519 fcp_cmnd->fcpCntl3 = 0; 2520 phba->fc4ControlRequests++; 2521 } 2522 if (phba->sli_rev == 3 && 2523 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2524 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2525 /* 2526 * Finish initializing those IOCB fields that are independent 2527 * of the scsi_cmnd request_buffer 2528 */ 2529 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2530 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2531 piocbq->iocb.ulpFCP2Rcvy = 1; 2532 else 2533 piocbq->iocb.ulpFCP2Rcvy = 0; 2534 2535 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2536 piocbq->context1 = lpfc_cmd; 2537 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2538 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2539 piocbq->vport = vport; 2540 } 2541 2542 /** 2543 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit 2544 * @vport: The virtual port for which this call is being executed. 2545 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2546 * @lun: Logical unit number. 2547 * @task_mgmt_cmd: SCSI task management command. 2548 * 2549 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2550 * for device with SLI-3 interface spec. 2551 * 2552 * Return codes: 2553 * 0 - Error 2554 * 1 - Success 2555 **/ 2556 static int 2557 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 2558 struct lpfc_scsi_buf *lpfc_cmd, 2559 unsigned int lun, 2560 uint8_t task_mgmt_cmd) 2561 { 2562 struct lpfc_iocbq *piocbq; 2563 IOCB_t *piocb; 2564 struct fcp_cmnd *fcp_cmnd; 2565 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2566 struct lpfc_nodelist *ndlp = rdata->pnode; 2567 2568 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2569 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 2570 return 0; 2571 2572 piocbq = &(lpfc_cmd->cur_iocbq); 2573 piocbq->vport = vport; 2574 2575 piocb = &piocbq->iocb; 2576 2577 fcp_cmnd = lpfc_cmd->fcp_cmnd; 2578 /* Clear out any old data in the FCP command area */ 2579 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 2580 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 2581 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 2582 if (vport->phba->sli_rev == 3 && 2583 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2584 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 2585 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 2586 piocb->ulpContext = ndlp->nlp_rpi; 2587 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 2588 piocb->ulpFCP2Rcvy = 1; 2589 } 2590 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 2591 2592 /* ulpTimeout is only one byte */ 2593 if (lpfc_cmd->timeout > 0xff) { 2594 /* 2595 * Do not timeout the command at the firmware level. 2596 * The driver will provide the timeout mechanism. 2597 */ 2598 piocb->ulpTimeout = 0; 2599 } else 2600 piocb->ulpTimeout = lpfc_cmd->timeout; 2601 2602 if (vport->phba->sli_rev == LPFC_SLI_REV4) 2603 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 2604 2605 return 1; 2606 } 2607 2608 /** 2609 * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table 2610 * @phba: The hba struct for which this call is being executed. 2611 * @dev_grp: The HBA PCI-Device group number. 2612 * 2613 * This routine sets up the SCSI interface API function jump table in @phba 2614 * struct. 2615 * Returns: 0 - success, -ENODEV - failure. 2616 **/ 2617 int 2618 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 2619 { 2620 2621 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 2622 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 2623 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2624 2625 switch (dev_grp) { 2626 case LPFC_PCI_DEV_LP: 2627 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 2628 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 2629 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 2630 break; 2631 case LPFC_PCI_DEV_OC: 2632 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 2633 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 2634 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 2635 break; 2636 default: 2637 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2638 "1418 Invalid HBA PCI-device group: 0x%x\n", 2639 dev_grp); 2640 return -ENODEV; 2641 break; 2642 } 2643 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2644 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 2645 return 0; 2646 } 2647 2648 /** 2649 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 2650 * @phba: The Hba for which this call is being executed. 2651 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 2652 * @rspiocbq: Pointer to lpfc_iocbq data structure. 2653 * 2654 * This routine is IOCB completion routine for device reset and target reset 2655 * routine. This routine release scsi buffer associated with lpfc_cmd. 2656 **/ 2657 static void 2658 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 2659 struct lpfc_iocbq *cmdiocbq, 2660 struct lpfc_iocbq *rspiocbq) 2661 { 2662 struct lpfc_scsi_buf *lpfc_cmd = 2663 (struct lpfc_scsi_buf *) cmdiocbq->context1; 2664 if (lpfc_cmd) 2665 lpfc_release_scsi_buf(phba, lpfc_cmd); 2666 return; 2667 } 2668 2669 /** 2670 * lpfc_info - Info entry point of scsi_host_template data structure 2671 * @host: The scsi host for which this call is being executed. 2672 * 2673 * This routine provides module information about hba. 2674 * 2675 * Reutrn code: 2676 * Pointer to char - Success. 2677 **/ 2678 const char * 2679 lpfc_info(struct Scsi_Host *host) 2680 { 2681 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 2682 struct lpfc_hba *phba = vport->phba; 2683 int len; 2684 static char lpfcinfobuf[384]; 2685 2686 memset(lpfcinfobuf,0,384); 2687 if (phba && phba->pcidev){ 2688 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 2689 len = strlen(lpfcinfobuf); 2690 snprintf(lpfcinfobuf + len, 2691 384-len, 2692 " on PCI bus %02x device %02x irq %d", 2693 phba->pcidev->bus->number, 2694 phba->pcidev->devfn, 2695 phba->pcidev->irq); 2696 len = strlen(lpfcinfobuf); 2697 if (phba->Port[0]) { 2698 snprintf(lpfcinfobuf + len, 2699 384-len, 2700 " port %s", 2701 phba->Port); 2702 } 2703 } 2704 return lpfcinfobuf; 2705 } 2706 2707 /** 2708 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 2709 * @phba: The Hba for which this call is being executed. 2710 * 2711 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 2712 * The default value of cfg_poll_tmo is 10 milliseconds. 2713 **/ 2714 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 2715 { 2716 unsigned long poll_tmo_expires = 2717 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 2718 2719 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 2720 mod_timer(&phba->fcp_poll_timer, 2721 poll_tmo_expires); 2722 } 2723 2724 /** 2725 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 2726 * @phba: The Hba for which this call is being executed. 2727 * 2728 * This routine starts the fcp_poll_timer of @phba. 2729 **/ 2730 void lpfc_poll_start_timer(struct lpfc_hba * phba) 2731 { 2732 lpfc_poll_rearm_timer(phba); 2733 } 2734 2735 /** 2736 * lpfc_poll_timeout - Restart polling timer 2737 * @ptr: Map to lpfc_hba data structure pointer. 2738 * 2739 * This routine restarts fcp_poll timer, when FCP ring polling is enable 2740 * and FCP Ring interrupt is disable. 2741 **/ 2742 2743 void lpfc_poll_timeout(unsigned long ptr) 2744 { 2745 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 2746 2747 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2748 lpfc_sli_poll_fcp_ring (phba); 2749 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 2750 lpfc_poll_rearm_timer(phba); 2751 } 2752 } 2753 2754 /** 2755 * lpfc_queuecommand - scsi_host_template queuecommand entry point 2756 * @cmnd: Pointer to scsi_cmnd data structure. 2757 * @done: Pointer to done routine. 2758 * 2759 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 2760 * This routine prepares an IOCB from scsi command and provides to firmware. 2761 * The @done callback is invoked after driver finished processing the command. 2762 * 2763 * Return value : 2764 * 0 - Success 2765 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 2766 **/ 2767 static int 2768 lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 2769 { 2770 struct Scsi_Host *shost = cmnd->device->host; 2771 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 2772 struct lpfc_hba *phba = vport->phba; 2773 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 2774 struct lpfc_nodelist *ndlp = rdata->pnode; 2775 struct lpfc_scsi_buf *lpfc_cmd; 2776 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 2777 int err; 2778 2779 err = fc_remote_port_chkready(rport); 2780 if (err) { 2781 cmnd->result = err; 2782 goto out_fail_command; 2783 } 2784 2785 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 2786 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2787 2788 printk(KERN_ERR "BLKGRD ERROR: rcvd protected cmd:%02x op:%02x " 2789 "str=%s without registering for BlockGuard - " 2790 "Rejecting command\n", 2791 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2792 dif_op_str[scsi_get_prot_op(cmnd)]); 2793 goto out_fail_command; 2794 } 2795 2796 /* 2797 * Catch race where our node has transitioned, but the 2798 * transport is still transitioning. 2799 */ 2800 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 2801 cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2802 goto out_fail_command; 2803 } 2804 if (vport->cfg_max_scsicmpl_time && 2805 (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)) 2806 goto out_host_busy; 2807 2808 lpfc_cmd = lpfc_get_scsi_buf(phba); 2809 if (lpfc_cmd == NULL) { 2810 lpfc_rampdown_queue_depth(phba); 2811 2812 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2813 "0707 driver's buffer pool is empty, " 2814 "IO busied\n"); 2815 goto out_host_busy; 2816 } 2817 2818 /* 2819 * Store the midlayer's command structure for the completion phase 2820 * and complete the command initialization. 2821 */ 2822 lpfc_cmd->pCmd = cmnd; 2823 lpfc_cmd->rdata = rdata; 2824 lpfc_cmd->timeout = 0; 2825 lpfc_cmd->start_time = jiffies; 2826 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 2827 cmnd->scsi_done = done; 2828 2829 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2830 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2831 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 2832 "str=%s\n", 2833 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2834 dif_op_str[scsi_get_prot_op(cmnd)]); 2835 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2836 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 2837 "%02x %02x %02x %02x %02x\n", 2838 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 2839 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 2840 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 2841 cmnd->cmnd[9]); 2842 if (cmnd->cmnd[0] == READ_10) 2843 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2844 "9035 BLKGRD: READ @ sector %llu, " 2845 "count %u\n", 2846 (unsigned long long)scsi_get_lba(cmnd), 2847 blk_rq_sectors(cmnd->request)); 2848 else if (cmnd->cmnd[0] == WRITE_10) 2849 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2850 "9036 BLKGRD: WRITE @ sector %llu, " 2851 "count %u cmd=%p\n", 2852 (unsigned long long)scsi_get_lba(cmnd), 2853 blk_rq_sectors(cmnd->request), 2854 cmnd); 2855 2856 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 2857 } else { 2858 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2859 "9038 BLKGRD: rcvd unprotected cmd:%02x op:%02x" 2860 " str=%s\n", 2861 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2862 dif_op_str[scsi_get_prot_op(cmnd)]); 2863 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2864 "9039 BLKGRD: CDB: %02x %02x %02x %02x %02x " 2865 "%02x %02x %02x %02x %02x\n", 2866 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 2867 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 2868 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 2869 cmnd->cmnd[9]); 2870 if (cmnd->cmnd[0] == READ_10) 2871 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2872 "9040 dbg: READ @ sector %llu, " 2873 "count %u\n", 2874 (unsigned long long)scsi_get_lba(cmnd), 2875 blk_rq_sectors(cmnd->request)); 2876 else if (cmnd->cmnd[0] == WRITE_10) 2877 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2878 "9041 dbg: WRITE @ sector %llu, " 2879 "count %u cmd=%p\n", 2880 (unsigned long long)scsi_get_lba(cmnd), 2881 blk_rq_sectors(cmnd->request), cmnd); 2882 else 2883 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2884 "9042 dbg: parser not implemented\n"); 2885 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2886 } 2887 2888 if (err) 2889 goto out_host_busy_free_buf; 2890 2891 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 2892 2893 atomic_inc(&ndlp->cmd_pending); 2894 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 2895 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 2896 if (err) { 2897 atomic_dec(&ndlp->cmd_pending); 2898 goto out_host_busy_free_buf; 2899 } 2900 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2901 lpfc_sli_poll_fcp_ring(phba); 2902 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 2903 lpfc_poll_rearm_timer(phba); 2904 } 2905 2906 return 0; 2907 2908 out_host_busy_free_buf: 2909 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2910 lpfc_release_scsi_buf(phba, lpfc_cmd); 2911 out_host_busy: 2912 return SCSI_MLQUEUE_HOST_BUSY; 2913 2914 out_fail_command: 2915 done(cmnd); 2916 return 0; 2917 } 2918 2919 /** 2920 * lpfc_block_error_handler - Routine to block error handler 2921 * @cmnd: Pointer to scsi_cmnd data structure. 2922 * 2923 * This routine blocks execution till fc_rport state is not FC_PORSTAT_BLCOEKD. 2924 **/ 2925 static void 2926 lpfc_block_error_handler(struct scsi_cmnd *cmnd) 2927 { 2928 struct Scsi_Host *shost = cmnd->device->host; 2929 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 2930 2931 spin_lock_irq(shost->host_lock); 2932 while (rport->port_state == FC_PORTSTATE_BLOCKED) { 2933 spin_unlock_irq(shost->host_lock); 2934 msleep(1000); 2935 spin_lock_irq(shost->host_lock); 2936 } 2937 spin_unlock_irq(shost->host_lock); 2938 return; 2939 } 2940 2941 /** 2942 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 2943 * @cmnd: Pointer to scsi_cmnd data structure. 2944 * 2945 * This routine aborts @cmnd pending in base driver. 2946 * 2947 * Return code : 2948 * 0x2003 - Error 2949 * 0x2002 - Success 2950 **/ 2951 static int 2952 lpfc_abort_handler(struct scsi_cmnd *cmnd) 2953 { 2954 struct Scsi_Host *shost = cmnd->device->host; 2955 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 2956 struct lpfc_hba *phba = vport->phba; 2957 struct lpfc_iocbq *iocb; 2958 struct lpfc_iocbq *abtsiocb; 2959 struct lpfc_scsi_buf *lpfc_cmd; 2960 IOCB_t *cmd, *icmd; 2961 int ret = SUCCESS; 2962 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 2963 2964 lpfc_block_error_handler(cmnd); 2965 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 2966 BUG_ON(!lpfc_cmd); 2967 2968 /* 2969 * If pCmd field of the corresponding lpfc_scsi_buf structure 2970 * points to a different SCSI command, then the driver has 2971 * already completed this command, but the midlayer did not 2972 * see the completion before the eh fired. Just return 2973 * SUCCESS. 2974 */ 2975 iocb = &lpfc_cmd->cur_iocbq; 2976 if (lpfc_cmd->pCmd != cmnd) 2977 goto out; 2978 2979 BUG_ON(iocb->context1 != lpfc_cmd); 2980 2981 abtsiocb = lpfc_sli_get_iocbq(phba); 2982 if (abtsiocb == NULL) { 2983 ret = FAILED; 2984 goto out; 2985 } 2986 2987 /* 2988 * The scsi command can not be in txq and it is in flight because the 2989 * pCmd is still pointig at the SCSI command we have to abort. There 2990 * is no need to search the txcmplq. Just send an abort to the FW. 2991 */ 2992 2993 cmd = &iocb->iocb; 2994 icmd = &abtsiocb->iocb; 2995 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 2996 icmd->un.acxri.abortContextTag = cmd->ulpContext; 2997 if (phba->sli_rev == LPFC_SLI_REV4) 2998 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 2999 else 3000 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 3001 3002 icmd->ulpLe = 1; 3003 icmd->ulpClass = cmd->ulpClass; 3004 if (lpfc_is_link_up(phba)) 3005 icmd->ulpCommand = CMD_ABORT_XRI_CN; 3006 else 3007 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 3008 3009 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3010 abtsiocb->vport = vport; 3011 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3012 IOCB_ERROR) { 3013 lpfc_sli_release_iocbq(phba, abtsiocb); 3014 ret = FAILED; 3015 goto out; 3016 } 3017 3018 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3019 lpfc_sli_poll_fcp_ring (phba); 3020 3021 lpfc_cmd->waitq = &waitq; 3022 /* Wait for abort to complete */ 3023 wait_event_timeout(waitq, 3024 (lpfc_cmd->pCmd != cmnd), 3025 (2*vport->cfg_devloss_tmo*HZ)); 3026 3027 spin_lock_irq(shost->host_lock); 3028 lpfc_cmd->waitq = NULL; 3029 spin_unlock_irq(shost->host_lock); 3030 3031 if (lpfc_cmd->pCmd == cmnd) { 3032 ret = FAILED; 3033 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3034 "0748 abort handler timed out waiting " 3035 "for abort to complete: ret %#x, ID %d, " 3036 "LUN %d, snum %#lx\n", 3037 ret, cmnd->device->id, cmnd->device->lun, 3038 cmnd->serial_number); 3039 } 3040 3041 out: 3042 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3043 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3044 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3045 cmnd->device->lun, cmnd->serial_number); 3046 return ret; 3047 } 3048 3049 static char * 3050 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3051 { 3052 switch (task_mgmt_cmd) { 3053 case FCP_ABORT_TASK_SET: 3054 return "ABORT_TASK_SET"; 3055 case FCP_CLEAR_TASK_SET: 3056 return "FCP_CLEAR_TASK_SET"; 3057 case FCP_BUS_RESET: 3058 return "FCP_BUS_RESET"; 3059 case FCP_LUN_RESET: 3060 return "FCP_LUN_RESET"; 3061 case FCP_TARGET_RESET: 3062 return "FCP_TARGET_RESET"; 3063 case FCP_CLEAR_ACA: 3064 return "FCP_CLEAR_ACA"; 3065 case FCP_TERMINATE_TASK: 3066 return "FCP_TERMINATE_TASK"; 3067 default: 3068 return "unknown"; 3069 } 3070 } 3071 3072 /** 3073 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3074 * @vport: The virtual port for which this call is being executed. 3075 * @rdata: Pointer to remote port local data 3076 * @tgt_id: Target ID of remote device. 3077 * @lun_id: Lun number for the TMF 3078 * @task_mgmt_cmd: type of TMF to send 3079 * 3080 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3081 * a remote port. 3082 * 3083 * Return Code: 3084 * 0x2003 - Error 3085 * 0x2002 - Success. 3086 **/ 3087 static int 3088 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3089 unsigned tgt_id, unsigned int lun_id, 3090 uint8_t task_mgmt_cmd) 3091 { 3092 struct lpfc_hba *phba = vport->phba; 3093 struct lpfc_scsi_buf *lpfc_cmd; 3094 struct lpfc_iocbq *iocbq; 3095 struct lpfc_iocbq *iocbqrsp; 3096 int ret; 3097 int status; 3098 3099 if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode)) 3100 return FAILED; 3101 3102 lpfc_cmd = lpfc_get_scsi_buf(phba); 3103 if (lpfc_cmd == NULL) 3104 return FAILED; 3105 lpfc_cmd->timeout = 60; 3106 lpfc_cmd->rdata = rdata; 3107 3108 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3109 task_mgmt_cmd); 3110 if (!status) { 3111 lpfc_release_scsi_buf(phba, lpfc_cmd); 3112 return FAILED; 3113 } 3114 3115 iocbq = &lpfc_cmd->cur_iocbq; 3116 iocbqrsp = lpfc_sli_get_iocbq(phba); 3117 if (iocbqrsp == NULL) { 3118 lpfc_release_scsi_buf(phba, lpfc_cmd); 3119 return FAILED; 3120 } 3121 3122 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3123 "0702 Issue %s to TGT %d LUN %d " 3124 "rpi x%x nlp_flag x%x\n", 3125 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3126 rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag); 3127 3128 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3129 iocbq, iocbqrsp, lpfc_cmd->timeout); 3130 if (status != IOCB_SUCCESS) { 3131 if (status == IOCB_TIMEDOUT) { 3132 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3133 ret = TIMEOUT_ERROR; 3134 } else 3135 ret = FAILED; 3136 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3137 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3138 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n", 3139 lpfc_taskmgmt_name(task_mgmt_cmd), 3140 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3141 iocbqrsp->iocb.un.ulpWord[4]); 3142 } else 3143 ret = SUCCESS; 3144 3145 lpfc_sli_release_iocbq(phba, iocbqrsp); 3146 3147 if (ret != TIMEOUT_ERROR) 3148 lpfc_release_scsi_buf(phba, lpfc_cmd); 3149 3150 return ret; 3151 } 3152 3153 /** 3154 * lpfc_chk_tgt_mapped - 3155 * @vport: The virtual port to check on 3156 * @cmnd: Pointer to scsi_cmnd data structure. 3157 * 3158 * This routine delays until the scsi target (aka rport) for the 3159 * command exists (is present and logged in) or we declare it non-existent. 3160 * 3161 * Return code : 3162 * 0x2003 - Error 3163 * 0x2002 - Success 3164 **/ 3165 static int 3166 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3167 { 3168 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3169 struct lpfc_nodelist *pnode = rdata->pnode; 3170 unsigned long later; 3171 3172 /* 3173 * If target is not in a MAPPED state, delay until 3174 * target is rediscovered or devloss timeout expires. 3175 */ 3176 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3177 while (time_after(later, jiffies)) { 3178 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3179 return FAILED; 3180 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3181 return SUCCESS; 3182 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3183 rdata = cmnd->device->hostdata; 3184 if (!rdata) 3185 return FAILED; 3186 pnode = rdata->pnode; 3187 } 3188 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3189 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3190 return FAILED; 3191 return SUCCESS; 3192 } 3193 3194 /** 3195 * lpfc_reset_flush_io_context - 3196 * @vport: The virtual port (scsi_host) for the flush context 3197 * @tgt_id: If aborting by Target contect - specifies the target id 3198 * @lun_id: If aborting by Lun context - specifies the lun id 3199 * @context: specifies the context level to flush at. 3200 * 3201 * After a reset condition via TMF, we need to flush orphaned i/o 3202 * contexts from the adapter. This routine aborts any contexts 3203 * outstanding, then waits for their completions. The wait is 3204 * bounded by devloss_tmo though. 3205 * 3206 * Return code : 3207 * 0x2003 - Error 3208 * 0x2002 - Success 3209 **/ 3210 static int 3211 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3212 uint64_t lun_id, lpfc_ctx_cmd context) 3213 { 3214 struct lpfc_hba *phba = vport->phba; 3215 unsigned long later; 3216 int cnt; 3217 3218 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3219 if (cnt) 3220 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3221 tgt_id, lun_id, context); 3222 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3223 while (time_after(later, jiffies) && cnt) { 3224 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3225 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3226 } 3227 if (cnt) { 3228 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3229 "0724 I/O flush failure for context %s : cnt x%x\n", 3230 ((context == LPFC_CTX_LUN) ? "LUN" : 3231 ((context == LPFC_CTX_TGT) ? "TGT" : 3232 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3233 cnt); 3234 return FAILED; 3235 } 3236 return SUCCESS; 3237 } 3238 3239 /** 3240 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3241 * @cmnd: Pointer to scsi_cmnd data structure. 3242 * 3243 * This routine does a device reset by sending a LUN_RESET task management 3244 * command. 3245 * 3246 * Return code : 3247 * 0x2003 - Error 3248 * 0x2002 - Success 3249 **/ 3250 static int 3251 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3252 { 3253 struct Scsi_Host *shost = cmnd->device->host; 3254 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3255 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3256 struct lpfc_nodelist *pnode = rdata->pnode; 3257 unsigned tgt_id = cmnd->device->id; 3258 unsigned int lun_id = cmnd->device->lun; 3259 struct lpfc_scsi_event_header scsi_event; 3260 int status; 3261 3262 lpfc_block_error_handler(cmnd); 3263 3264 status = lpfc_chk_tgt_mapped(vport, cmnd); 3265 if (status == FAILED) { 3266 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3267 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3268 return FAILED; 3269 } 3270 3271 scsi_event.event_type = FC_REG_SCSI_EVENT; 3272 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3273 scsi_event.lun = lun_id; 3274 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3275 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3276 3277 fc_host_post_vendor_event(shost, fc_get_event_number(), 3278 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3279 3280 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3281 FCP_LUN_RESET); 3282 3283 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3284 "0713 SCSI layer issued Device Reset (%d, %d) " 3285 "return x%x\n", tgt_id, lun_id, status); 3286 3287 /* 3288 * We have to clean up i/o as : they may be orphaned by the TMF; 3289 * or if the TMF failed, they may be in an indeterminate state. 3290 * So, continue on. 3291 * We will report success if all the i/o aborts successfully. 3292 */ 3293 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3294 LPFC_CTX_LUN); 3295 return status; 3296 } 3297 3298 /** 3299 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3300 * @cmnd: Pointer to scsi_cmnd data structure. 3301 * 3302 * This routine does a target reset by sending a TARGET_RESET task management 3303 * command. 3304 * 3305 * Return code : 3306 * 0x2003 - Error 3307 * 0x2002 - Success 3308 **/ 3309 static int 3310 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3311 { 3312 struct Scsi_Host *shost = cmnd->device->host; 3313 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3314 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3315 struct lpfc_nodelist *pnode = rdata->pnode; 3316 unsigned tgt_id = cmnd->device->id; 3317 unsigned int lun_id = cmnd->device->lun; 3318 struct lpfc_scsi_event_header scsi_event; 3319 int status; 3320 3321 lpfc_block_error_handler(cmnd); 3322 3323 status = lpfc_chk_tgt_mapped(vport, cmnd); 3324 if (status == FAILED) { 3325 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3326 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3327 return FAILED; 3328 } 3329 3330 scsi_event.event_type = FC_REG_SCSI_EVENT; 3331 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3332 scsi_event.lun = 0; 3333 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3334 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3335 3336 fc_host_post_vendor_event(shost, fc_get_event_number(), 3337 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3338 3339 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3340 FCP_TARGET_RESET); 3341 3342 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3343 "0723 SCSI layer issued Target Reset (%d, %d) " 3344 "return x%x\n", tgt_id, lun_id, status); 3345 3346 /* 3347 * We have to clean up i/o as : they may be orphaned by the TMF; 3348 * or if the TMF failed, they may be in an indeterminate state. 3349 * So, continue on. 3350 * We will report success if all the i/o aborts successfully. 3351 */ 3352 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3353 LPFC_CTX_TGT); 3354 return status; 3355 } 3356 3357 /** 3358 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3359 * @cmnd: Pointer to scsi_cmnd data structure. 3360 * 3361 * This routine does target reset to all targets on @cmnd->device->host. 3362 * This emulates Parallel SCSI Bus Reset Semantics. 3363 * 3364 * Return code : 3365 * 0x2003 - Error 3366 * 0x2002 - Success 3367 **/ 3368 static int 3369 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3370 { 3371 struct Scsi_Host *shost = cmnd->device->host; 3372 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3373 struct lpfc_nodelist *ndlp = NULL; 3374 struct lpfc_scsi_event_header scsi_event; 3375 int match; 3376 int ret = SUCCESS, status, i; 3377 3378 scsi_event.event_type = FC_REG_SCSI_EVENT; 3379 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3380 scsi_event.lun = 0; 3381 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3382 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3383 3384 fc_host_post_vendor_event(shost, fc_get_event_number(), 3385 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3386 3387 lpfc_block_error_handler(cmnd); 3388 3389 /* 3390 * Since the driver manages a single bus device, reset all 3391 * targets known to the driver. Should any target reset 3392 * fail, this routine returns failure to the midlayer. 3393 */ 3394 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3395 /* Search for mapped node by target ID */ 3396 match = 0; 3397 spin_lock_irq(shost->host_lock); 3398 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3399 if (!NLP_CHK_NODE_ACT(ndlp)) 3400 continue; 3401 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3402 ndlp->nlp_sid == i && 3403 ndlp->rport) { 3404 match = 1; 3405 break; 3406 } 3407 } 3408 spin_unlock_irq(shost->host_lock); 3409 if (!match) 3410 continue; 3411 3412 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3413 i, 0, FCP_TARGET_RESET); 3414 3415 if (status != SUCCESS) { 3416 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3417 "0700 Bus Reset on target %d failed\n", 3418 i); 3419 ret = FAILED; 3420 } 3421 } 3422 /* 3423 * We have to clean up i/o as : they may be orphaned by the TMFs 3424 * above; or if any of the TMFs failed, they may be in an 3425 * indeterminate state. 3426 * We will report success if all the i/o aborts successfully. 3427 */ 3428 3429 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3430 if (status != SUCCESS) 3431 ret = FAILED; 3432 3433 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3434 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3435 return ret; 3436 } 3437 3438 /** 3439 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3440 * @sdev: Pointer to scsi_device. 3441 * 3442 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3443 * globally available list of scsi buffers. This routine also makes sure scsi 3444 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3445 * of scsi buffer exists for the lifetime of the driver. 3446 * 3447 * Return codes: 3448 * non-0 - Error 3449 * 0 - Success 3450 **/ 3451 static int 3452 lpfc_slave_alloc(struct scsi_device *sdev) 3453 { 3454 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3455 struct lpfc_hba *phba = vport->phba; 3456 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3457 uint32_t total = 0; 3458 uint32_t num_to_alloc = 0; 3459 int num_allocated = 0; 3460 3461 if (!rport || fc_remote_port_chkready(rport)) 3462 return -ENXIO; 3463 3464 sdev->hostdata = rport->dd_data; 3465 3466 /* 3467 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3468 * available list of scsi buffers. Don't allocate more than the 3469 * HBA limit conveyed to the midlayer via the host structure. The 3470 * formula accounts for the lun_queue_depth + error handlers + 1 3471 * extra. This list of scsi bufs exists for the lifetime of the driver. 3472 */ 3473 total = phba->total_scsi_bufs; 3474 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3475 3476 /* Allow some exchanges to be available always to complete discovery */ 3477 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3478 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3479 "0704 At limitation of %d preallocated " 3480 "command buffers\n", total); 3481 return 0; 3482 /* Allow some exchanges to be available always to complete discovery */ 3483 } else if (total + num_to_alloc > 3484 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3485 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3486 "0705 Allocation request of %d " 3487 "command buffers will exceed max of %d. " 3488 "Reducing allocation request to %d.\n", 3489 num_to_alloc, phba->cfg_hba_queue_depth, 3490 (phba->cfg_hba_queue_depth - total)); 3491 num_to_alloc = phba->cfg_hba_queue_depth - total; 3492 } 3493 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 3494 if (num_to_alloc != num_allocated) { 3495 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3496 "0708 Allocation request of %d " 3497 "command buffers did not succeed. " 3498 "Allocated %d buffers.\n", 3499 num_to_alloc, num_allocated); 3500 } 3501 return 0; 3502 } 3503 3504 /** 3505 * lpfc_slave_configure - scsi_host_template slave_configure entry point 3506 * @sdev: Pointer to scsi_device. 3507 * 3508 * This routine configures following items 3509 * - Tag command queuing support for @sdev if supported. 3510 * - Dev loss time out value of fc_rport. 3511 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 3512 * 3513 * Return codes: 3514 * 0 - Success 3515 **/ 3516 static int 3517 lpfc_slave_configure(struct scsi_device *sdev) 3518 { 3519 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3520 struct lpfc_hba *phba = vport->phba; 3521 struct fc_rport *rport = starget_to_rport(sdev->sdev_target); 3522 3523 if (sdev->tagged_supported) 3524 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 3525 else 3526 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 3527 3528 /* 3529 * Initialize the fc transport attributes for the target 3530 * containing this scsi device. Also note that the driver's 3531 * target pointer is stored in the starget_data for the 3532 * driver's sysfs entry point functions. 3533 */ 3534 rport->dev_loss_tmo = vport->cfg_devloss_tmo; 3535 3536 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3537 lpfc_sli_poll_fcp_ring(phba); 3538 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3539 lpfc_poll_rearm_timer(phba); 3540 } 3541 3542 return 0; 3543 } 3544 3545 /** 3546 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 3547 * @sdev: Pointer to scsi_device. 3548 * 3549 * This routine sets @sdev hostatdata filed to null. 3550 **/ 3551 static void 3552 lpfc_slave_destroy(struct scsi_device *sdev) 3553 { 3554 sdev->hostdata = NULL; 3555 return; 3556 } 3557 3558 3559 struct scsi_host_template lpfc_template = { 3560 .module = THIS_MODULE, 3561 .name = LPFC_DRIVER_NAME, 3562 .info = lpfc_info, 3563 .queuecommand = lpfc_queuecommand, 3564 .eh_abort_handler = lpfc_abort_handler, 3565 .eh_device_reset_handler = lpfc_device_reset_handler, 3566 .eh_target_reset_handler = lpfc_target_reset_handler, 3567 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3568 .slave_alloc = lpfc_slave_alloc, 3569 .slave_configure = lpfc_slave_configure, 3570 .slave_destroy = lpfc_slave_destroy, 3571 .scan_finished = lpfc_scan_finished, 3572 .this_id = -1, 3573 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3574 .cmd_per_lun = LPFC_CMD_PER_LUN, 3575 .use_clustering = ENABLE_CLUSTERING, 3576 .shost_attrs = lpfc_hba_attrs, 3577 .max_sectors = 0xFFFF, 3578 .vendor_id = LPFC_NL_VENDOR_ID, 3579 }; 3580 3581 struct scsi_host_template lpfc_vport_template = { 3582 .module = THIS_MODULE, 3583 .name = LPFC_DRIVER_NAME, 3584 .info = lpfc_info, 3585 .queuecommand = lpfc_queuecommand, 3586 .eh_abort_handler = lpfc_abort_handler, 3587 .eh_device_reset_handler = lpfc_device_reset_handler, 3588 .eh_target_reset_handler = lpfc_target_reset_handler, 3589 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3590 .slave_alloc = lpfc_slave_alloc, 3591 .slave_configure = lpfc_slave_configure, 3592 .slave_destroy = lpfc_slave_destroy, 3593 .scan_finished = lpfc_scan_finished, 3594 .this_id = -1, 3595 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3596 .cmd_per_lun = LPFC_CMD_PER_LUN, 3597 .use_clustering = ENABLE_CLUSTERING, 3598 .shost_attrs = lpfc_vport_attrs, 3599 .max_sectors = 0xFFFF, 3600 }; 3601