xref: /linux/drivers/scsi/lpfc/lpfc_scsi.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2004-2009 Emulex.  All rights reserved.           *
5  * EMULEX and SLI are trademarks of Emulex.                        *
6  * www.emulex.com                                                  *
7  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
8  *                                                                 *
9  * This program is free software; you can redistribute it and/or   *
10  * modify it under the terms of version 2 of the GNU General       *
11  * Public License as published by the Free Software Foundation.    *
12  * This program is distributed in the hope that it will be useful. *
13  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
14  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
15  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
16  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
18  * more details, a copy of which can be found in the file COPYING  *
19  * included with this package.                                     *
20  *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 #include <scsi/scsi_tcq.h>
31 #include <scsi/scsi_transport_fc.h>
32 
33 #include "lpfc_version.h"
34 #include "lpfc_hw4.h"
35 #include "lpfc_hw.h"
36 #include "lpfc_sli.h"
37 #include "lpfc_sli4.h"
38 #include "lpfc_nl.h"
39 #include "lpfc_disc.h"
40 #include "lpfc_scsi.h"
41 #include "lpfc.h"
42 #include "lpfc_logmsg.h"
43 #include "lpfc_crtn.h"
44 #include "lpfc_vport.h"
45 
46 #define LPFC_RESET_WAIT  2
47 #define LPFC_ABORT_WAIT  2
48 
49 int _dump_buf_done;
50 
51 static char *dif_op_str[] = {
52 	"SCSI_PROT_NORMAL",
53 	"SCSI_PROT_READ_INSERT",
54 	"SCSI_PROT_WRITE_STRIP",
55 	"SCSI_PROT_READ_STRIP",
56 	"SCSI_PROT_WRITE_INSERT",
57 	"SCSI_PROT_READ_PASS",
58 	"SCSI_PROT_WRITE_PASS",
59 };
60 static void
61 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
62 
63 static void
64 lpfc_debug_save_data(struct scsi_cmnd *cmnd)
65 {
66 	void *src, *dst;
67 	struct scatterlist *sgde = scsi_sglist(cmnd);
68 
69 	if (!_dump_buf_data) {
70 		printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n",
71 				__func__);
72 		return;
73 	}
74 
75 
76 	if (!sgde) {
77 		printk(KERN_ERR "BLKGRD ERROR: data scatterlist is null\n");
78 		return;
79 	}
80 
81 	dst = (void *) _dump_buf_data;
82 	while (sgde) {
83 		src = sg_virt(sgde);
84 		memcpy(dst, src, sgde->length);
85 		dst += sgde->length;
86 		sgde = sg_next(sgde);
87 	}
88 }
89 
90 static void
91 lpfc_debug_save_dif(struct scsi_cmnd *cmnd)
92 {
93 	void *src, *dst;
94 	struct scatterlist *sgde = scsi_prot_sglist(cmnd);
95 
96 	if (!_dump_buf_dif) {
97 		printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n",
98 				__func__);
99 		return;
100 	}
101 
102 	if (!sgde) {
103 		printk(KERN_ERR "BLKGRD ERROR: prot scatterlist is null\n");
104 		return;
105 	}
106 
107 	dst = _dump_buf_dif;
108 	while (sgde) {
109 		src = sg_virt(sgde);
110 		memcpy(dst, src, sgde->length);
111 		dst += sgde->length;
112 		sgde = sg_next(sgde);
113 	}
114 }
115 
116 /**
117  * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
118  * @phba: Pointer to HBA object.
119  * @lpfc_cmd: lpfc scsi command object pointer.
120  *
121  * This function is called from the lpfc_prep_task_mgmt_cmd function to
122  * set the last bit in the response sge entry.
123  **/
124 static void
125 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
126 				struct lpfc_scsi_buf *lpfc_cmd)
127 {
128 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
129 	if (sgl) {
130 		sgl += 1;
131 		sgl->word2 = le32_to_cpu(sgl->word2);
132 		bf_set(lpfc_sli4_sge_last, sgl, 1);
133 		sgl->word2 = cpu_to_le32(sgl->word2);
134 	}
135 }
136 
137 /**
138  * lpfc_update_stats - Update statistical data for the command completion
139  * @phba: Pointer to HBA object.
140  * @lpfc_cmd: lpfc scsi command object pointer.
141  *
142  * This function is called when there is a command completion and this
143  * function updates the statistical data for the command completion.
144  **/
145 static void
146 lpfc_update_stats(struct lpfc_hba *phba, struct  lpfc_scsi_buf *lpfc_cmd)
147 {
148 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
149 	struct lpfc_nodelist *pnode = rdata->pnode;
150 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
151 	unsigned long flags;
152 	struct Scsi_Host  *shost = cmd->device->host;
153 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
154 	unsigned long latency;
155 	int i;
156 
157 	if (cmd->result)
158 		return;
159 
160 	latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
161 
162 	spin_lock_irqsave(shost->host_lock, flags);
163 	if (!vport->stat_data_enabled ||
164 		vport->stat_data_blocked ||
165 		!pnode->lat_data ||
166 		(phba->bucket_type == LPFC_NO_BUCKET)) {
167 		spin_unlock_irqrestore(shost->host_lock, flags);
168 		return;
169 	}
170 
171 	if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
172 		i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
173 			phba->bucket_step;
174 		/* check array subscript bounds */
175 		if (i < 0)
176 			i = 0;
177 		else if (i >= LPFC_MAX_BUCKET_COUNT)
178 			i = LPFC_MAX_BUCKET_COUNT - 1;
179 	} else {
180 		for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
181 			if (latency <= (phba->bucket_base +
182 				((1<<i)*phba->bucket_step)))
183 				break;
184 	}
185 
186 	pnode->lat_data[i].cmd_count++;
187 	spin_unlock_irqrestore(shost->host_lock, flags);
188 }
189 
190 /**
191  * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
192  * @phba: Pointer to HBA context object.
193  * @vport: Pointer to vport object.
194  * @ndlp: Pointer to FC node associated with the target.
195  * @lun: Lun number of the scsi device.
196  * @old_val: Old value of the queue depth.
197  * @new_val: New value of the queue depth.
198  *
199  * This function sends an event to the mgmt application indicating
200  * there is a change in the scsi device queue depth.
201  **/
202 static void
203 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
204 		struct lpfc_vport  *vport,
205 		struct lpfc_nodelist *ndlp,
206 		uint32_t lun,
207 		uint32_t old_val,
208 		uint32_t new_val)
209 {
210 	struct lpfc_fast_path_event *fast_path_evt;
211 	unsigned long flags;
212 
213 	fast_path_evt = lpfc_alloc_fast_evt(phba);
214 	if (!fast_path_evt)
215 		return;
216 
217 	fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
218 		FC_REG_SCSI_EVENT;
219 	fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
220 		LPFC_EVENT_VARQUEDEPTH;
221 
222 	/* Report all luns with change in queue depth */
223 	fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
224 	if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
225 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
226 			&ndlp->nlp_portname, sizeof(struct lpfc_name));
227 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
228 			&ndlp->nlp_nodename, sizeof(struct lpfc_name));
229 	}
230 
231 	fast_path_evt->un.queue_depth_evt.oldval = old_val;
232 	fast_path_evt->un.queue_depth_evt.newval = new_val;
233 	fast_path_evt->vport = vport;
234 
235 	fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
236 	spin_lock_irqsave(&phba->hbalock, flags);
237 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
238 	spin_unlock_irqrestore(&phba->hbalock, flags);
239 	lpfc_worker_wake_up(phba);
240 
241 	return;
242 }
243 
244 /**
245  * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
246  * @phba: The Hba for which this call is being executed.
247  *
248  * This routine is called when there is resource error in driver or firmware.
249  * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
250  * posts at most 1 event each second. This routine wakes up worker thread of
251  * @phba to process WORKER_RAM_DOWN_EVENT event.
252  *
253  * This routine should be called with no lock held.
254  **/
255 void
256 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
257 {
258 	unsigned long flags;
259 	uint32_t evt_posted;
260 
261 	spin_lock_irqsave(&phba->hbalock, flags);
262 	atomic_inc(&phba->num_rsrc_err);
263 	phba->last_rsrc_error_time = jiffies;
264 
265 	if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
266 		spin_unlock_irqrestore(&phba->hbalock, flags);
267 		return;
268 	}
269 
270 	phba->last_ramp_down_time = jiffies;
271 
272 	spin_unlock_irqrestore(&phba->hbalock, flags);
273 
274 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
275 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
276 	if (!evt_posted)
277 		phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
278 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
279 
280 	if (!evt_posted)
281 		lpfc_worker_wake_up(phba);
282 	return;
283 }
284 
285 /**
286  * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
287  * @phba: The Hba for which this call is being executed.
288  *
289  * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
290  * post at most 1 event every 5 minute after last_ramp_up_time or
291  * last_rsrc_error_time.  This routine wakes up worker thread of @phba
292  * to process WORKER_RAM_DOWN_EVENT event.
293  *
294  * This routine should be called with no lock held.
295  **/
296 static inline void
297 lpfc_rampup_queue_depth(struct lpfc_vport  *vport,
298 			uint32_t queue_depth)
299 {
300 	unsigned long flags;
301 	struct lpfc_hba *phba = vport->phba;
302 	uint32_t evt_posted;
303 	atomic_inc(&phba->num_cmd_success);
304 
305 	if (vport->cfg_lun_queue_depth <= queue_depth)
306 		return;
307 	spin_lock_irqsave(&phba->hbalock, flags);
308 	if (((phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) > jiffies) ||
309 	 ((phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL ) > jiffies)) {
310 		spin_unlock_irqrestore(&phba->hbalock, flags);
311 		return;
312 	}
313 	phba->last_ramp_up_time = jiffies;
314 	spin_unlock_irqrestore(&phba->hbalock, flags);
315 
316 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
317 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
318 	if (!evt_posted)
319 		phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
320 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
321 
322 	if (!evt_posted)
323 		lpfc_worker_wake_up(phba);
324 	return;
325 }
326 
327 /**
328  * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
329  * @phba: The Hba for which this call is being executed.
330  *
331  * This routine is called to  process WORKER_RAMP_DOWN_QUEUE event for worker
332  * thread.This routine reduces queue depth for all scsi device on each vport
333  * associated with @phba.
334  **/
335 void
336 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
337 {
338 	struct lpfc_vport **vports;
339 	struct Scsi_Host  *shost;
340 	struct scsi_device *sdev;
341 	unsigned long new_queue_depth, old_queue_depth;
342 	unsigned long num_rsrc_err, num_cmd_success;
343 	int i;
344 	struct lpfc_rport_data *rdata;
345 
346 	num_rsrc_err = atomic_read(&phba->num_rsrc_err);
347 	num_cmd_success = atomic_read(&phba->num_cmd_success);
348 
349 	vports = lpfc_create_vport_work_array(phba);
350 	if (vports != NULL)
351 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
352 			shost = lpfc_shost_from_vport(vports[i]);
353 			shost_for_each_device(sdev, shost) {
354 				new_queue_depth =
355 					sdev->queue_depth * num_rsrc_err /
356 					(num_rsrc_err + num_cmd_success);
357 				if (!new_queue_depth)
358 					new_queue_depth = sdev->queue_depth - 1;
359 				else
360 					new_queue_depth = sdev->queue_depth -
361 								new_queue_depth;
362 				old_queue_depth = sdev->queue_depth;
363 				if (sdev->ordered_tags)
364 					scsi_adjust_queue_depth(sdev,
365 							MSG_ORDERED_TAG,
366 							new_queue_depth);
367 				else
368 					scsi_adjust_queue_depth(sdev,
369 							MSG_SIMPLE_TAG,
370 							new_queue_depth);
371 				rdata = sdev->hostdata;
372 				if (rdata)
373 					lpfc_send_sdev_queuedepth_change_event(
374 						phba, vports[i],
375 						rdata->pnode,
376 						sdev->lun, old_queue_depth,
377 						new_queue_depth);
378 			}
379 		}
380 	lpfc_destroy_vport_work_array(phba, vports);
381 	atomic_set(&phba->num_rsrc_err, 0);
382 	atomic_set(&phba->num_cmd_success, 0);
383 }
384 
385 /**
386  * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
387  * @phba: The Hba for which this call is being executed.
388  *
389  * This routine is called to  process WORKER_RAMP_UP_QUEUE event for worker
390  * thread.This routine increases queue depth for all scsi device on each vport
391  * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
392  * num_cmd_success to zero.
393  **/
394 void
395 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
396 {
397 	struct lpfc_vport **vports;
398 	struct Scsi_Host  *shost;
399 	struct scsi_device *sdev;
400 	int i;
401 	struct lpfc_rport_data *rdata;
402 
403 	vports = lpfc_create_vport_work_array(phba);
404 	if (vports != NULL)
405 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
406 			shost = lpfc_shost_from_vport(vports[i]);
407 			shost_for_each_device(sdev, shost) {
408 				if (vports[i]->cfg_lun_queue_depth <=
409 				    sdev->queue_depth)
410 					continue;
411 				if (sdev->ordered_tags)
412 					scsi_adjust_queue_depth(sdev,
413 							MSG_ORDERED_TAG,
414 							sdev->queue_depth+1);
415 				else
416 					scsi_adjust_queue_depth(sdev,
417 							MSG_SIMPLE_TAG,
418 							sdev->queue_depth+1);
419 				rdata = sdev->hostdata;
420 				if (rdata)
421 					lpfc_send_sdev_queuedepth_change_event(
422 						phba, vports[i],
423 						rdata->pnode,
424 						sdev->lun,
425 						sdev->queue_depth - 1,
426 						sdev->queue_depth);
427 			}
428 		}
429 	lpfc_destroy_vport_work_array(phba, vports);
430 	atomic_set(&phba->num_rsrc_err, 0);
431 	atomic_set(&phba->num_cmd_success, 0);
432 }
433 
434 /**
435  * lpfc_scsi_dev_block - set all scsi hosts to block state
436  * @phba: Pointer to HBA context object.
437  *
438  * This function walks vport list and set each SCSI host to block state
439  * by invoking fc_remote_port_delete() routine. This function is invoked
440  * with EEH when device's PCI slot has been permanently disabled.
441  **/
442 void
443 lpfc_scsi_dev_block(struct lpfc_hba *phba)
444 {
445 	struct lpfc_vport **vports;
446 	struct Scsi_Host  *shost;
447 	struct scsi_device *sdev;
448 	struct fc_rport *rport;
449 	int i;
450 
451 	vports = lpfc_create_vport_work_array(phba);
452 	if (vports != NULL)
453 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
454 			shost = lpfc_shost_from_vport(vports[i]);
455 			shost_for_each_device(sdev, shost) {
456 				rport = starget_to_rport(scsi_target(sdev));
457 				fc_remote_port_delete(rport);
458 			}
459 		}
460 	lpfc_destroy_vport_work_array(phba, vports);
461 }
462 
463 /**
464  * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
465  * @vport: The virtual port for which this call being executed.
466  * @num_to_allocate: The requested number of buffers to allocate.
467  *
468  * This routine allocates a scsi buffer for device with SLI-3 interface spec,
469  * the scsi buffer contains all the necessary information needed to initiate
470  * a SCSI I/O. The non-DMAable buffer region contains information to build
471  * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
472  * and the initial BPL. In addition to allocating memory, the FCP CMND and
473  * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
474  *
475  * Return codes:
476  *   int - number of scsi buffers that were allocated.
477  *   0 = failure, less than num_to_alloc is a partial failure.
478  **/
479 static int
480 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
481 {
482 	struct lpfc_hba *phba = vport->phba;
483 	struct lpfc_scsi_buf *psb;
484 	struct ulp_bde64 *bpl;
485 	IOCB_t *iocb;
486 	dma_addr_t pdma_phys_fcp_cmd;
487 	dma_addr_t pdma_phys_fcp_rsp;
488 	dma_addr_t pdma_phys_bpl;
489 	uint16_t iotag;
490 	int bcnt;
491 
492 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
493 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
494 		if (!psb)
495 			break;
496 
497 		/*
498 		 * Get memory from the pci pool to map the virt space to pci
499 		 * bus space for an I/O.  The DMA buffer includes space for the
500 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
501 		 * necessary to support the sg_tablesize.
502 		 */
503 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
504 					GFP_KERNEL, &psb->dma_handle);
505 		if (!psb->data) {
506 			kfree(psb);
507 			break;
508 		}
509 
510 		/* Initialize virtual ptrs to dma_buf region. */
511 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
512 
513 		/* Allocate iotag for psb->cur_iocbq. */
514 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
515 		if (iotag == 0) {
516 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
517 					psb->data, psb->dma_handle);
518 			kfree(psb);
519 			break;
520 		}
521 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
522 
523 		psb->fcp_cmnd = psb->data;
524 		psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
525 		psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
526 			sizeof(struct fcp_rsp);
527 
528 		/* Initialize local short-hand pointers. */
529 		bpl = psb->fcp_bpl;
530 		pdma_phys_fcp_cmd = psb->dma_handle;
531 		pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
532 		pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
533 			sizeof(struct fcp_rsp);
534 
535 		/*
536 		 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
537 		 * are sg list bdes.  Initialize the first two and leave the
538 		 * rest for queuecommand.
539 		 */
540 		bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
541 		bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
542 		bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
543 		bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
544 		bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
545 
546 		/* Setup the physical region for the FCP RSP */
547 		bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
548 		bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
549 		bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
550 		bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
551 		bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
552 
553 		/*
554 		 * Since the IOCB for the FCP I/O is built into this
555 		 * lpfc_scsi_buf, initialize it with all known data now.
556 		 */
557 		iocb = &psb->cur_iocbq.iocb;
558 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
559 		if ((phba->sli_rev == 3) &&
560 				!(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
561 			/* fill in immediate fcp command BDE */
562 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
563 			iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
564 			iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
565 					unsli3.fcp_ext.icd);
566 			iocb->un.fcpi64.bdl.addrHigh = 0;
567 			iocb->ulpBdeCount = 0;
568 			iocb->ulpLe = 0;
569 			/* fill in responce BDE */
570 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
571 							BUFF_TYPE_BDE_64;
572 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
573 				sizeof(struct fcp_rsp);
574 			iocb->unsli3.fcp_ext.rbde.addrLow =
575 				putPaddrLow(pdma_phys_fcp_rsp);
576 			iocb->unsli3.fcp_ext.rbde.addrHigh =
577 				putPaddrHigh(pdma_phys_fcp_rsp);
578 		} else {
579 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
580 			iocb->un.fcpi64.bdl.bdeSize =
581 					(2 * sizeof(struct ulp_bde64));
582 			iocb->un.fcpi64.bdl.addrLow =
583 					putPaddrLow(pdma_phys_bpl);
584 			iocb->un.fcpi64.bdl.addrHigh =
585 					putPaddrHigh(pdma_phys_bpl);
586 			iocb->ulpBdeCount = 1;
587 			iocb->ulpLe = 1;
588 		}
589 		iocb->ulpClass = CLASS3;
590 		psb->status = IOSTAT_SUCCESS;
591 		/* Put it back into the SCSI buffer list */
592 		lpfc_release_scsi_buf_s4(phba, psb);
593 
594 	}
595 
596 	return bcnt;
597 }
598 
599 /**
600  * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
601  * @phba: pointer to lpfc hba data structure.
602  * @axri: pointer to the fcp xri abort wcqe structure.
603  *
604  * This routine is invoked by the worker thread to process a SLI4 fast-path
605  * FCP aborted xri.
606  **/
607 void
608 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
609 			  struct sli4_wcqe_xri_aborted *axri)
610 {
611 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
612 	struct lpfc_scsi_buf *psb, *next_psb;
613 	unsigned long iflag = 0;
614 
615 	spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag);
616 	list_for_each_entry_safe(psb, next_psb,
617 		&phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
618 		if (psb->cur_iocbq.sli4_xritag == xri) {
619 			list_del(&psb->list);
620 			psb->status = IOSTAT_SUCCESS;
621 			spin_unlock_irqrestore(
622 				&phba->sli4_hba.abts_scsi_buf_list_lock,
623 				iflag);
624 			lpfc_release_scsi_buf_s4(phba, psb);
625 			return;
626 		}
627 	}
628 	spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
629 				iflag);
630 }
631 
632 /**
633  * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
634  * @phba: pointer to lpfc hba data structure.
635  *
636  * This routine walks the list of scsi buffers that have been allocated and
637  * repost them to the HBA by using SGL block post. This is needed after a
638  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
639  * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
640  * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
641  *
642  * Returns: 0 = success, non-zero failure.
643  **/
644 int
645 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
646 {
647 	struct lpfc_scsi_buf *psb;
648 	int index, status, bcnt = 0, rcnt = 0, rc = 0;
649 	LIST_HEAD(sblist);
650 
651 	for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
652 		psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
653 		if (psb) {
654 			/* Remove from SCSI buffer list */
655 			list_del(&psb->list);
656 			/* Add it to a local SCSI buffer list */
657 			list_add_tail(&psb->list, &sblist);
658 			if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
659 				bcnt = rcnt;
660 				rcnt = 0;
661 			}
662 		} else
663 			/* A hole present in the XRI array, need to skip */
664 			bcnt = rcnt;
665 
666 		if (index == phba->sli4_hba.scsi_xri_cnt - 1)
667 			/* End of XRI array for SCSI buffer, complete */
668 			bcnt = rcnt;
669 
670 		/* Continue until collect up to a nembed page worth of sgls */
671 		if (bcnt == 0)
672 			continue;
673 		/* Now, post the SCSI buffer list sgls as a block */
674 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
675 		/* Reset SCSI buffer count for next round of posting */
676 		bcnt = 0;
677 		while (!list_empty(&sblist)) {
678 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
679 					 list);
680 			if (status) {
681 				/* Put this back on the abort scsi list */
682 				psb->status = IOSTAT_LOCAL_REJECT;
683 				psb->result = IOERR_ABORT_REQUESTED;
684 				rc++;
685 			} else
686 				psb->status = IOSTAT_SUCCESS;
687 			/* Put it back into the SCSI buffer list */
688 			lpfc_release_scsi_buf_s4(phba, psb);
689 		}
690 	}
691 	return rc;
692 }
693 
694 /**
695  * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
696  * @vport: The virtual port for which this call being executed.
697  * @num_to_allocate: The requested number of buffers to allocate.
698  *
699  * This routine allocates a scsi buffer for device with SLI-4 interface spec,
700  * the scsi buffer contains all the necessary information needed to initiate
701  * a SCSI I/O.
702  *
703  * Return codes:
704  *   int - number of scsi buffers that were allocated.
705  *   0 = failure, less than num_to_alloc is a partial failure.
706  **/
707 static int
708 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
709 {
710 	struct lpfc_hba *phba = vport->phba;
711 	struct lpfc_scsi_buf *psb;
712 	struct sli4_sge *sgl;
713 	IOCB_t *iocb;
714 	dma_addr_t pdma_phys_fcp_cmd;
715 	dma_addr_t pdma_phys_fcp_rsp;
716 	dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
717 	uint16_t iotag, last_xritag = NO_XRI;
718 	int status = 0, index;
719 	int bcnt;
720 	int non_sequential_xri = 0;
721 	int rc = 0;
722 	LIST_HEAD(sblist);
723 
724 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
725 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
726 		if (!psb)
727 			break;
728 
729 		/*
730 		 * Get memory from the pci pool to map the virt space to pci bus
731 		 * space for an I/O.  The DMA buffer includes space for the
732 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
733 		 * necessary to support the sg_tablesize.
734 		 */
735 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
736 						GFP_KERNEL, &psb->dma_handle);
737 		if (!psb->data) {
738 			kfree(psb);
739 			break;
740 		}
741 
742 		/* Initialize virtual ptrs to dma_buf region. */
743 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
744 
745 		/* Allocate iotag for psb->cur_iocbq. */
746 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
747 		if (iotag == 0) {
748 			kfree(psb);
749 			break;
750 		}
751 
752 		psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
753 		if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
754 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
755 			      psb->data, psb->dma_handle);
756 			kfree(psb);
757 			break;
758 		}
759 		if (last_xritag != NO_XRI
760 			&& psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
761 			non_sequential_xri = 1;
762 		} else
763 			list_add_tail(&psb->list, &sblist);
764 		last_xritag = psb->cur_iocbq.sli4_xritag;
765 
766 		index = phba->sli4_hba.scsi_xri_cnt++;
767 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
768 
769 		psb->fcp_bpl = psb->data;
770 		psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
771 			- (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
772 		psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
773 					sizeof(struct fcp_cmnd));
774 
775 		/* Initialize local short-hand pointers. */
776 		sgl = (struct sli4_sge *)psb->fcp_bpl;
777 		pdma_phys_bpl = psb->dma_handle;
778 		pdma_phys_fcp_cmd =
779 			(psb->dma_handle + phba->cfg_sg_dma_buf_size)
780 			 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
781 		pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
782 
783 		/*
784 		 * The first two bdes are the FCP_CMD and FCP_RSP.  The balance
785 		 * are sg list bdes.  Initialize the first two and leave the
786 		 * rest for queuecommand.
787 		 */
788 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
789 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
790 		bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_cmnd));
791 		bf_set(lpfc_sli4_sge_last, sgl, 0);
792 		sgl->word2 = cpu_to_le32(sgl->word2);
793 		sgl->word3 = cpu_to_le32(sgl->word3);
794 		sgl++;
795 
796 		/* Setup the physical region for the FCP RSP */
797 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
798 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
799 		bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_rsp));
800 		bf_set(lpfc_sli4_sge_last, sgl, 1);
801 		sgl->word2 = cpu_to_le32(sgl->word2);
802 		sgl->word3 = cpu_to_le32(sgl->word3);
803 
804 		/*
805 		 * Since the IOCB for the FCP I/O is built into this
806 		 * lpfc_scsi_buf, initialize it with all known data now.
807 		 */
808 		iocb = &psb->cur_iocbq.iocb;
809 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
810 		iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
811 		/* setting the BLP size to 2 * sizeof BDE may not be correct.
812 		 * We are setting the bpl to point to out sgl. An sgl's
813 		 * entries are 16 bytes, a bpl entries are 12 bytes.
814 		 */
815 		iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
816 		iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
817 		iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
818 		iocb->ulpBdeCount = 1;
819 		iocb->ulpLe = 1;
820 		iocb->ulpClass = CLASS3;
821 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
822 			pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
823 		else
824 			pdma_phys_bpl1 = 0;
825 		psb->dma_phys_bpl = pdma_phys_bpl;
826 		phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
827 		if (non_sequential_xri) {
828 			status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
829 						pdma_phys_bpl1,
830 						psb->cur_iocbq.sli4_xritag);
831 			if (status) {
832 				/* Put this back on the abort scsi list */
833 				psb->status = IOSTAT_LOCAL_REJECT;
834 				psb->result = IOERR_ABORT_REQUESTED;
835 				rc++;
836 			} else
837 				psb->status = IOSTAT_SUCCESS;
838 			/* Put it back into the SCSI buffer list */
839 			lpfc_release_scsi_buf_s4(phba, psb);
840 			break;
841 		}
842 	}
843 	if (bcnt) {
844 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
845 		/* Reset SCSI buffer count for next round of posting */
846 		while (!list_empty(&sblist)) {
847 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
848 				 list);
849 			if (status) {
850 				/* Put this back on the abort scsi list */
851 				psb->status = IOSTAT_LOCAL_REJECT;
852 				psb->result = IOERR_ABORT_REQUESTED;
853 				rc++;
854 			} else
855 				psb->status = IOSTAT_SUCCESS;
856 			/* Put it back into the SCSI buffer list */
857 			lpfc_release_scsi_buf_s4(phba, psb);
858 		}
859 	}
860 
861 	return bcnt + non_sequential_xri - rc;
862 }
863 
864 /**
865  * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
866  * @vport: The virtual port for which this call being executed.
867  * @num_to_allocate: The requested number of buffers to allocate.
868  *
869  * This routine wraps the actual SCSI buffer allocator function pointer from
870  * the lpfc_hba struct.
871  *
872  * Return codes:
873  *   int - number of scsi buffers that were allocated.
874  *   0 = failure, less than num_to_alloc is a partial failure.
875  **/
876 static inline int
877 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
878 {
879 	return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
880 }
881 
882 /**
883  * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
884  * @phba: The HBA for which this call is being executed.
885  *
886  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
887  * and returns to caller.
888  *
889  * Return codes:
890  *   NULL - Error
891  *   Pointer to lpfc_scsi_buf - Success
892  **/
893 static struct lpfc_scsi_buf*
894 lpfc_get_scsi_buf(struct lpfc_hba * phba)
895 {
896 	struct  lpfc_scsi_buf * lpfc_cmd = NULL;
897 	struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
898 	unsigned long iflag = 0;
899 
900 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
901 	list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
902 	if (lpfc_cmd) {
903 		lpfc_cmd->seg_cnt = 0;
904 		lpfc_cmd->nonsg_phys = 0;
905 		lpfc_cmd->prot_seg_cnt = 0;
906 	}
907 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
908 	return  lpfc_cmd;
909 }
910 
911 /**
912  * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
913  * @phba: The Hba for which this call is being executed.
914  * @psb: The scsi buffer which is being released.
915  *
916  * This routine releases @psb scsi buffer by adding it to tail of @phba
917  * lpfc_scsi_buf_list list.
918  **/
919 static void
920 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
921 {
922 	unsigned long iflag = 0;
923 
924 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
925 	psb->pCmd = NULL;
926 	list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
927 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
928 }
929 
930 /**
931  * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
932  * @phba: The Hba for which this call is being executed.
933  * @psb: The scsi buffer which is being released.
934  *
935  * This routine releases @psb scsi buffer by adding it to tail of @phba
936  * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
937  * and cannot be reused for at least RA_TOV amount of time if it was
938  * aborted.
939  **/
940 static void
941 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
942 {
943 	unsigned long iflag = 0;
944 
945 	if (psb->status == IOSTAT_LOCAL_REJECT
946 		&& psb->result == IOERR_ABORT_REQUESTED) {
947 		spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
948 					iflag);
949 		psb->pCmd = NULL;
950 		list_add_tail(&psb->list,
951 			&phba->sli4_hba.lpfc_abts_scsi_buf_list);
952 		spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
953 					iflag);
954 	} else {
955 
956 		spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
957 		psb->pCmd = NULL;
958 		list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
959 		spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
960 	}
961 }
962 
963 /**
964  * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
965  * @phba: The Hba for which this call is being executed.
966  * @psb: The scsi buffer which is being released.
967  *
968  * This routine releases @psb scsi buffer by adding it to tail of @phba
969  * lpfc_scsi_buf_list list.
970  **/
971 static void
972 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
973 {
974 
975 	phba->lpfc_release_scsi_buf(phba, psb);
976 }
977 
978 /**
979  * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
980  * @phba: The Hba for which this call is being executed.
981  * @lpfc_cmd: The scsi buffer which is going to be mapped.
982  *
983  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
984  * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
985  * through sg elements and format the bdea. This routine also initializes all
986  * IOCB fields which are dependent on scsi command request buffer.
987  *
988  * Return codes:
989  *   1 - Error
990  *   0 - Success
991  **/
992 static int
993 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
994 {
995 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
996 	struct scatterlist *sgel = NULL;
997 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
998 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
999 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1000 	struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1001 	dma_addr_t physaddr;
1002 	uint32_t num_bde = 0;
1003 	int nseg, datadir = scsi_cmnd->sc_data_direction;
1004 
1005 	/*
1006 	 * There are three possibilities here - use scatter-gather segment, use
1007 	 * the single mapping, or neither.  Start the lpfc command prep by
1008 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1009 	 * data bde entry.
1010 	 */
1011 	bpl += 2;
1012 	if (scsi_sg_count(scsi_cmnd)) {
1013 		/*
1014 		 * The driver stores the segment count returned from pci_map_sg
1015 		 * because this a count of dma-mappings used to map the use_sg
1016 		 * pages.  They are not guaranteed to be the same for those
1017 		 * architectures that implement an IOMMU.
1018 		 */
1019 
1020 		nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1021 				  scsi_sg_count(scsi_cmnd), datadir);
1022 		if (unlikely(!nseg))
1023 			return 1;
1024 
1025 		lpfc_cmd->seg_cnt = nseg;
1026 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1027 			printk(KERN_ERR "%s: Too many sg segments from "
1028 			       "dma_map_sg.  Config %d, seg_cnt %d\n",
1029 			       __func__, phba->cfg_sg_seg_cnt,
1030 			       lpfc_cmd->seg_cnt);
1031 			scsi_dma_unmap(scsi_cmnd);
1032 			return 1;
1033 		}
1034 
1035 		/*
1036 		 * The driver established a maximum scatter-gather segment count
1037 		 * during probe that limits the number of sg elements in any
1038 		 * single scsi command.  Just run through the seg_cnt and format
1039 		 * the bde's.
1040 		 * When using SLI-3 the driver will try to fit all the BDEs into
1041 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1042 		 * does for SLI-2 mode.
1043 		 */
1044 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1045 			physaddr = sg_dma_address(sgel);
1046 			if (phba->sli_rev == 3 &&
1047 			    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1048 			    nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1049 				data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1050 				data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1051 				data_bde->addrLow = putPaddrLow(physaddr);
1052 				data_bde->addrHigh = putPaddrHigh(physaddr);
1053 				data_bde++;
1054 			} else {
1055 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1056 				bpl->tus.f.bdeSize = sg_dma_len(sgel);
1057 				bpl->tus.w = le32_to_cpu(bpl->tus.w);
1058 				bpl->addrLow =
1059 					le32_to_cpu(putPaddrLow(physaddr));
1060 				bpl->addrHigh =
1061 					le32_to_cpu(putPaddrHigh(physaddr));
1062 				bpl++;
1063 			}
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * Finish initializing those IOCB fields that are dependent on the
1069 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1070 	 * explicitly reinitialized and for SLI-3 the extended bde count is
1071 	 * explicitly reinitialized since all iocb memory resources are reused.
1072 	 */
1073 	if (phba->sli_rev == 3 &&
1074 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
1075 		if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1076 			/*
1077 			 * The extended IOCB format can only fit 3 BDE or a BPL.
1078 			 * This I/O has more than 3 BDE so the 1st data bde will
1079 			 * be a BPL that is filled in here.
1080 			 */
1081 			physaddr = lpfc_cmd->dma_handle;
1082 			data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1083 			data_bde->tus.f.bdeSize = (num_bde *
1084 						   sizeof(struct ulp_bde64));
1085 			physaddr += (sizeof(struct fcp_cmnd) +
1086 				     sizeof(struct fcp_rsp) +
1087 				     (2 * sizeof(struct ulp_bde64)));
1088 			data_bde->addrHigh = putPaddrHigh(physaddr);
1089 			data_bde->addrLow = putPaddrLow(physaddr);
1090 			/* ebde count includes the responce bde and data bpl */
1091 			iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1092 		} else {
1093 			/* ebde count includes the responce bde and data bdes */
1094 			iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1095 		}
1096 	} else {
1097 		iocb_cmd->un.fcpi64.bdl.bdeSize =
1098 			((num_bde + 2) * sizeof(struct ulp_bde64));
1099 	}
1100 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1101 
1102 	/*
1103 	 * Due to difference in data length between DIF/non-DIF paths,
1104 	 * we need to set word 4 of IOCB here
1105 	 */
1106 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Given a scsi cmnd, determine the BlockGuard profile to be used
1112  * with the cmd
1113  */
1114 static int
1115 lpfc_sc_to_sli_prof(struct scsi_cmnd *sc)
1116 {
1117 	uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1118 	uint8_t ret_prof = LPFC_PROF_INVALID;
1119 
1120 	if (guard_type == SHOST_DIX_GUARD_IP) {
1121 		switch (scsi_get_prot_op(sc)) {
1122 		case SCSI_PROT_READ_INSERT:
1123 		case SCSI_PROT_WRITE_STRIP:
1124 			ret_prof = LPFC_PROF_AST2;
1125 			break;
1126 
1127 		case SCSI_PROT_READ_STRIP:
1128 		case SCSI_PROT_WRITE_INSERT:
1129 			ret_prof = LPFC_PROF_A1;
1130 			break;
1131 
1132 		case SCSI_PROT_READ_PASS:
1133 		case SCSI_PROT_WRITE_PASS:
1134 			ret_prof = LPFC_PROF_AST1;
1135 			break;
1136 
1137 		case SCSI_PROT_NORMAL:
1138 		default:
1139 			printk(KERN_ERR "Bad op/guard:%d/%d combination\n",
1140 					scsi_get_prot_op(sc), guard_type);
1141 			break;
1142 
1143 		}
1144 	} else if (guard_type == SHOST_DIX_GUARD_CRC) {
1145 		switch (scsi_get_prot_op(sc)) {
1146 		case SCSI_PROT_READ_STRIP:
1147 		case SCSI_PROT_WRITE_INSERT:
1148 			ret_prof = LPFC_PROF_A1;
1149 			break;
1150 
1151 		case SCSI_PROT_READ_PASS:
1152 		case SCSI_PROT_WRITE_PASS:
1153 			ret_prof = LPFC_PROF_C1;
1154 			break;
1155 
1156 		case SCSI_PROT_READ_INSERT:
1157 		case SCSI_PROT_WRITE_STRIP:
1158 		case SCSI_PROT_NORMAL:
1159 		default:
1160 			printk(KERN_ERR "Bad op/guard:%d/%d combination\n",
1161 					scsi_get_prot_op(sc), guard_type);
1162 			break;
1163 		}
1164 	} else {
1165 		/* unsupported format */
1166 		BUG();
1167 	}
1168 
1169 	return ret_prof;
1170 }
1171 
1172 struct scsi_dif_tuple {
1173 	__be16 guard_tag;       /* Checksum */
1174 	__be16 app_tag;         /* Opaque storage */
1175 	__be32 ref_tag;         /* Target LBA or indirect LBA */
1176 };
1177 
1178 static inline unsigned
1179 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1180 {
1181 	return sc->device->sector_size;
1182 }
1183 
1184 /**
1185  * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1186  * @sc:             in: SCSI command
1187  * @apptagmask:     out: app tag mask
1188  * @apptagval:      out: app tag value
1189  * @reftag:         out: ref tag (reference tag)
1190  *
1191  * Description:
1192  *   Extract DIF parameters from the command if possible.  Otherwise,
1193  *   use default parameters.
1194  *
1195  **/
1196 static inline void
1197 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1198 		uint16_t *apptagval, uint32_t *reftag)
1199 {
1200 	struct  scsi_dif_tuple *spt;
1201 	unsigned char op = scsi_get_prot_op(sc);
1202 	unsigned int protcnt = scsi_prot_sg_count(sc);
1203 	static int cnt;
1204 
1205 	if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1206 				op == SCSI_PROT_WRITE_PASS)) {
1207 
1208 		cnt++;
1209 		spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1210 			scsi_prot_sglist(sc)[0].offset;
1211 		*apptagmask = 0;
1212 		*apptagval = 0;
1213 		*reftag = cpu_to_be32(spt->ref_tag);
1214 
1215 	} else {
1216 		/* SBC defines ref tag to be lower 32bits of LBA */
1217 		*reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1218 		*apptagmask = 0;
1219 		*apptagval = 0;
1220 	}
1221 }
1222 
1223 /*
1224  * This function sets up buffer list for protection groups of
1225  * type LPFC_PG_TYPE_NO_DIF
1226  *
1227  * This is usually used when the HBA is instructed to generate
1228  * DIFs and insert them into data stream (or strip DIF from
1229  * incoming data stream)
1230  *
1231  * The buffer list consists of just one protection group described
1232  * below:
1233  *                                +-------------------------+
1234  *   start of prot group  -->     |          PDE_1          |
1235  *                                +-------------------------+
1236  *                                |         Data BDE        |
1237  *                                +-------------------------+
1238  *                                |more Data BDE's ... (opt)|
1239  *                                +-------------------------+
1240  *
1241  * @sc: pointer to scsi command we're working on
1242  * @bpl: pointer to buffer list for protection groups
1243  * @datacnt: number of segments of data that have been dma mapped
1244  *
1245  * Note: Data s/g buffers have been dma mapped
1246  */
1247 static int
1248 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1249 		struct ulp_bde64 *bpl, int datasegcnt)
1250 {
1251 	struct scatterlist *sgde = NULL; /* s/g data entry */
1252 	struct lpfc_pde *pde1 = NULL;
1253 	dma_addr_t physaddr;
1254 	int i = 0, num_bde = 0;
1255 	int datadir = sc->sc_data_direction;
1256 	int prof = LPFC_PROF_INVALID;
1257 	unsigned blksize;
1258 	uint32_t reftag;
1259 	uint16_t apptagmask, apptagval;
1260 
1261 	pde1 = (struct lpfc_pde *) bpl;
1262 	prof = lpfc_sc_to_sli_prof(sc);
1263 
1264 	if (prof == LPFC_PROF_INVALID)
1265 		goto out;
1266 
1267 	/* extract some info from the scsi command for PDE1*/
1268 	blksize = lpfc_cmd_blksize(sc);
1269 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1270 
1271 	/* setup PDE1 with what we have */
1272 	lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
1273 			BG_EC_STOP_ERR);
1274 	lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);
1275 
1276 	num_bde++;
1277 	bpl++;
1278 
1279 	/* assumption: caller has already run dma_map_sg on command data */
1280 	scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1281 		physaddr = sg_dma_address(sgde);
1282 		bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1283 		bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1284 		bpl->tus.f.bdeSize = sg_dma_len(sgde);
1285 		if (datadir == DMA_TO_DEVICE)
1286 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1287 		else
1288 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1289 		bpl->tus.w = le32_to_cpu(bpl->tus.w);
1290 		bpl++;
1291 		num_bde++;
1292 	}
1293 
1294 out:
1295 	return num_bde;
1296 }
1297 
1298 /*
1299  * This function sets up buffer list for protection groups of
1300  * type LPFC_PG_TYPE_DIF_BUF
1301  *
1302  * This is usually used when DIFs are in their own buffers,
1303  * separate from the data. The HBA can then by instructed
1304  * to place the DIFs in the outgoing stream.  For read operations,
1305  * The HBA could extract the DIFs and place it in DIF buffers.
1306  *
1307  * The buffer list for this type consists of one or more of the
1308  * protection groups described below:
1309  *                                    +-------------------------+
1310  *   start of first prot group  -->   |          PDE_1          |
1311  *                                    +-------------------------+
1312  *                                    |      PDE_3 (Prot BDE)   |
1313  *                                    +-------------------------+
1314  *                                    |        Data BDE         |
1315  *                                    +-------------------------+
1316  *                                    |more Data BDE's ... (opt)|
1317  *                                    +-------------------------+
1318  *   start of new  prot group  -->    |          PDE_1          |
1319  *                                    +-------------------------+
1320  *                                    |          ...            |
1321  *                                    +-------------------------+
1322  *
1323  * @sc: pointer to scsi command we're working on
1324  * @bpl: pointer to buffer list for protection groups
1325  * @datacnt: number of segments of data that have been dma mapped
1326  * @protcnt: number of segment of protection data that have been dma mapped
1327  *
1328  * Note: It is assumed that both data and protection s/g buffers have been
1329  *       mapped for DMA
1330  */
1331 static int
1332 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1333 		struct ulp_bde64 *bpl, int datacnt, int protcnt)
1334 {
1335 	struct scatterlist *sgde = NULL; /* s/g data entry */
1336 	struct scatterlist *sgpe = NULL; /* s/g prot entry */
1337 	struct lpfc_pde *pde1 = NULL;
1338 	struct ulp_bde64 *prot_bde = NULL;
1339 	dma_addr_t dataphysaddr, protphysaddr;
1340 	unsigned short curr_data = 0, curr_prot = 0;
1341 	unsigned int split_offset, protgroup_len;
1342 	unsigned int protgrp_blks, protgrp_bytes;
1343 	unsigned int remainder, subtotal;
1344 	int prof = LPFC_PROF_INVALID;
1345 	int datadir = sc->sc_data_direction;
1346 	unsigned char pgdone = 0, alldone = 0;
1347 	unsigned blksize;
1348 	uint32_t reftag;
1349 	uint16_t apptagmask, apptagval;
1350 	int num_bde = 0;
1351 
1352 	sgpe = scsi_prot_sglist(sc);
1353 	sgde = scsi_sglist(sc);
1354 
1355 	if (!sgpe || !sgde) {
1356 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1357 				"9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1358 				sgpe, sgde);
1359 		return 0;
1360 	}
1361 
1362 	prof = lpfc_sc_to_sli_prof(sc);
1363 	if (prof == LPFC_PROF_INVALID)
1364 		goto out;
1365 
1366 	/* extract some info from the scsi command for PDE1*/
1367 	blksize = lpfc_cmd_blksize(sc);
1368 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1369 
1370 	split_offset = 0;
1371 	do {
1372 		/* setup the first PDE_1 */
1373 		pde1 = (struct lpfc_pde *) bpl;
1374 
1375 		lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
1376 				BG_EC_STOP_ERR);
1377 		lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);
1378 
1379 		num_bde++;
1380 		bpl++;
1381 
1382 		/* setup the first BDE that points to protection buffer */
1383 		prot_bde = (struct ulp_bde64 *) bpl;
1384 		protphysaddr = sg_dma_address(sgpe);
1385 		prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr));
1386 		prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr));
1387 		protgroup_len = sg_dma_len(sgpe);
1388 
1389 
1390 		/* must be integer multiple of the DIF block length */
1391 		BUG_ON(protgroup_len % 8);
1392 
1393 		protgrp_blks = protgroup_len / 8;
1394 		protgrp_bytes = protgrp_blks * blksize;
1395 
1396 		prot_bde->tus.f.bdeSize = protgroup_len;
1397 		if (datadir == DMA_TO_DEVICE)
1398 			prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1399 		else
1400 			prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1401 		prot_bde->tus.w = le32_to_cpu(bpl->tus.w);
1402 
1403 		curr_prot++;
1404 		num_bde++;
1405 
1406 		/* setup BDE's for data blocks associated with DIF data */
1407 		pgdone = 0;
1408 		subtotal = 0; /* total bytes processed for current prot grp */
1409 		while (!pgdone) {
1410 			if (!sgde) {
1411 				printk(KERN_ERR "%s Invalid data segment\n",
1412 						__func__);
1413 				return 0;
1414 			}
1415 			bpl++;
1416 			dataphysaddr = sg_dma_address(sgde) + split_offset;
1417 			bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1418 			bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1419 
1420 			remainder = sg_dma_len(sgde) - split_offset;
1421 
1422 			if ((subtotal + remainder) <= protgrp_bytes) {
1423 				/* we can use this whole buffer */
1424 				bpl->tus.f.bdeSize = remainder;
1425 				split_offset = 0;
1426 
1427 				if ((subtotal + remainder) == protgrp_bytes)
1428 					pgdone = 1;
1429 			} else {
1430 				/* must split this buffer with next prot grp */
1431 				bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1432 				split_offset += bpl->tus.f.bdeSize;
1433 			}
1434 
1435 			subtotal += bpl->tus.f.bdeSize;
1436 
1437 			if (datadir == DMA_TO_DEVICE)
1438 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1439 			else
1440 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1441 			bpl->tus.w = le32_to_cpu(bpl->tus.w);
1442 
1443 			num_bde++;
1444 			curr_data++;
1445 
1446 			if (split_offset)
1447 				break;
1448 
1449 			/* Move to the next s/g segment if possible */
1450 			sgde = sg_next(sgde);
1451 		}
1452 
1453 		/* are we done ? */
1454 		if (curr_prot == protcnt) {
1455 			alldone = 1;
1456 		} else if (curr_prot < protcnt) {
1457 			/* advance to next prot buffer */
1458 			sgpe = sg_next(sgpe);
1459 			bpl++;
1460 
1461 			/* update the reference tag */
1462 			reftag += protgrp_blks;
1463 		} else {
1464 			/* if we're here, we have a bug */
1465 			printk(KERN_ERR "BLKGRD: bug in %s\n", __func__);
1466 		}
1467 
1468 	} while (!alldone);
1469 
1470 out:
1471 
1472 
1473 	return num_bde;
1474 }
1475 /*
1476  * Given a SCSI command that supports DIF, determine composition of protection
1477  * groups involved in setting up buffer lists
1478  *
1479  * Returns:
1480  *			      for DIF (for both read and write)
1481  * */
1482 static int
1483 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1484 {
1485 	int ret = LPFC_PG_TYPE_INVALID;
1486 	unsigned char op = scsi_get_prot_op(sc);
1487 
1488 	switch (op) {
1489 	case SCSI_PROT_READ_STRIP:
1490 	case SCSI_PROT_WRITE_INSERT:
1491 		ret = LPFC_PG_TYPE_NO_DIF;
1492 		break;
1493 	case SCSI_PROT_READ_INSERT:
1494 	case SCSI_PROT_WRITE_STRIP:
1495 	case SCSI_PROT_READ_PASS:
1496 	case SCSI_PROT_WRITE_PASS:
1497 		ret = LPFC_PG_TYPE_DIF_BUF;
1498 		break;
1499 	default:
1500 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1501 				"9021 Unsupported protection op:%d\n", op);
1502 		break;
1503 	}
1504 
1505 	return ret;
1506 }
1507 
1508 /*
1509  * This is the protection/DIF aware version of
1510  * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1511  * two functions eventually, but for now, it's here
1512  */
1513 static int
1514 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1515 		struct lpfc_scsi_buf *lpfc_cmd)
1516 {
1517 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1518 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1519 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1520 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1521 	uint32_t num_bde = 0;
1522 	int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1523 	int prot_group_type = 0;
1524 	int diflen, fcpdl;
1525 	unsigned blksize;
1526 
1527 	/*
1528 	 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1529 	 *  fcp_rsp regions to the first data bde entry
1530 	 */
1531 	bpl += 2;
1532 	if (scsi_sg_count(scsi_cmnd)) {
1533 		/*
1534 		 * The driver stores the segment count returned from pci_map_sg
1535 		 * because this a count of dma-mappings used to map the use_sg
1536 		 * pages.  They are not guaranteed to be the same for those
1537 		 * architectures that implement an IOMMU.
1538 		 */
1539 		datasegcnt = dma_map_sg(&phba->pcidev->dev,
1540 					scsi_sglist(scsi_cmnd),
1541 					scsi_sg_count(scsi_cmnd), datadir);
1542 		if (unlikely(!datasegcnt))
1543 			return 1;
1544 
1545 		lpfc_cmd->seg_cnt = datasegcnt;
1546 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1547 			printk(KERN_ERR "%s: Too many sg segments from "
1548 					"dma_map_sg.  Config %d, seg_cnt %d\n",
1549 					__func__, phba->cfg_sg_seg_cnt,
1550 					lpfc_cmd->seg_cnt);
1551 			scsi_dma_unmap(scsi_cmnd);
1552 			return 1;
1553 		}
1554 
1555 		prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1556 
1557 		switch (prot_group_type) {
1558 		case LPFC_PG_TYPE_NO_DIF:
1559 			num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1560 					datasegcnt);
1561 			/* we shoud have 2 or more entries in buffer list */
1562 			if (num_bde < 2)
1563 				goto err;
1564 			break;
1565 		case LPFC_PG_TYPE_DIF_BUF:{
1566 			/*
1567 			 * This type indicates that protection buffers are
1568 			 * passed to the driver, so that needs to be prepared
1569 			 * for DMA
1570 			 */
1571 			protsegcnt = dma_map_sg(&phba->pcidev->dev,
1572 					scsi_prot_sglist(scsi_cmnd),
1573 					scsi_prot_sg_count(scsi_cmnd), datadir);
1574 			if (unlikely(!protsegcnt)) {
1575 				scsi_dma_unmap(scsi_cmnd);
1576 				return 1;
1577 			}
1578 
1579 			lpfc_cmd->prot_seg_cnt = protsegcnt;
1580 			if (lpfc_cmd->prot_seg_cnt
1581 			    > phba->cfg_prot_sg_seg_cnt) {
1582 				printk(KERN_ERR "%s: Too many prot sg segments "
1583 						"from dma_map_sg.  Config %d,"
1584 						"prot_seg_cnt %d\n", __func__,
1585 						phba->cfg_prot_sg_seg_cnt,
1586 						lpfc_cmd->prot_seg_cnt);
1587 				dma_unmap_sg(&phba->pcidev->dev,
1588 					     scsi_prot_sglist(scsi_cmnd),
1589 					     scsi_prot_sg_count(scsi_cmnd),
1590 					     datadir);
1591 				scsi_dma_unmap(scsi_cmnd);
1592 				return 1;
1593 			}
1594 
1595 			num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1596 					datasegcnt, protsegcnt);
1597 			/* we shoud have 3 or more entries in buffer list */
1598 			if (num_bde < 3)
1599 				goto err;
1600 			break;
1601 		}
1602 		case LPFC_PG_TYPE_INVALID:
1603 		default:
1604 			lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1605 					"9022 Unexpected protection group %i\n",
1606 					prot_group_type);
1607 			return 1;
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * Finish initializing those IOCB fields that are dependent on the
1613 	 * scsi_cmnd request_buffer.  Note that the bdeSize is explicitly
1614 	 * reinitialized since all iocb memory resources are used many times
1615 	 * for transmit, receive, and continuation bpl's.
1616 	 */
1617 	iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1618 	iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1619 	iocb_cmd->ulpBdeCount = 1;
1620 	iocb_cmd->ulpLe = 1;
1621 
1622 	fcpdl = scsi_bufflen(scsi_cmnd);
1623 
1624 	if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1625 		/*
1626 		 * We are in DIF Type 1 mode
1627 		 * Every data block has a 8 byte DIF (trailer)
1628 		 * attached to it.  Must ajust FCP data length
1629 		 */
1630 		blksize = lpfc_cmd_blksize(scsi_cmnd);
1631 		diflen = (fcpdl / blksize) * 8;
1632 		fcpdl += diflen;
1633 	}
1634 	fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1635 
1636 	/*
1637 	 * Due to difference in data length between DIF/non-DIF paths,
1638 	 * we need to set word 4 of IOCB here
1639 	 */
1640 	iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1641 
1642 	return 0;
1643 err:
1644 	lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1645 			"9023 Could not setup all needed BDE's"
1646 			"prot_group_type=%d, num_bde=%d\n",
1647 			prot_group_type, num_bde);
1648 	return 1;
1649 }
1650 
1651 /*
1652  * This function checks for BlockGuard errors detected by
1653  * the HBA.  In case of errors, the ASC/ASCQ fields in the
1654  * sense buffer will be set accordingly, paired with
1655  * ILLEGAL_REQUEST to signal to the kernel that the HBA
1656  * detected corruption.
1657  *
1658  * Returns:
1659  *  0 - No error found
1660  *  1 - BlockGuard error found
1661  * -1 - Internal error (bad profile, ...etc)
1662  */
1663 static int
1664 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1665 			struct lpfc_iocbq *pIocbOut)
1666 {
1667 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1668 	struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1669 	int ret = 0;
1670 	uint32_t bghm = bgf->bghm;
1671 	uint32_t bgstat = bgf->bgstat;
1672 	uint64_t failing_sector = 0;
1673 
1674 	printk(KERN_ERR "BG ERROR in cmd 0x%x lba 0x%llx blk cnt 0x%x "
1675 			"bgstat=0x%x bghm=0x%x\n",
1676 			cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1677 			blk_rq_sectors(cmd->request), bgstat, bghm);
1678 
1679 	spin_lock(&_dump_buf_lock);
1680 	if (!_dump_buf_done) {
1681 		printk(KERN_ERR "Saving Data for %u blocks to debugfs\n",
1682 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1683 		lpfc_debug_save_data(cmd);
1684 
1685 		/* If we have a prot sgl, save the DIF buffer */
1686 		if (lpfc_prot_group_type(phba, cmd) ==
1687 				LPFC_PG_TYPE_DIF_BUF) {
1688 			printk(KERN_ERR "Saving DIF for %u blocks to debugfs\n",
1689 					(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1690 			lpfc_debug_save_dif(cmd);
1691 		}
1692 
1693 		_dump_buf_done = 1;
1694 	}
1695 	spin_unlock(&_dump_buf_lock);
1696 
1697 	if (lpfc_bgs_get_invalid_prof(bgstat)) {
1698 		cmd->result = ScsiResult(DID_ERROR, 0);
1699 		printk(KERN_ERR "Invalid BlockGuard profile. bgstat:0x%x\n",
1700 				bgstat);
1701 		ret = (-1);
1702 		goto out;
1703 	}
1704 
1705 	if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1706 		cmd->result = ScsiResult(DID_ERROR, 0);
1707 		printk(KERN_ERR "Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1708 				bgstat);
1709 		ret = (-1);
1710 		goto out;
1711 	}
1712 
1713 	if (lpfc_bgs_get_guard_err(bgstat)) {
1714 		ret = 1;
1715 
1716 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1717 				0x10, 0x1);
1718 		cmd->result = DRIVER_SENSE << 24
1719 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1720 		phba->bg_guard_err_cnt++;
1721 		printk(KERN_ERR "BLKGRD: guard_tag error\n");
1722 	}
1723 
1724 	if (lpfc_bgs_get_reftag_err(bgstat)) {
1725 		ret = 1;
1726 
1727 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1728 				0x10, 0x3);
1729 		cmd->result = DRIVER_SENSE << 24
1730 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1731 
1732 		phba->bg_reftag_err_cnt++;
1733 		printk(KERN_ERR "BLKGRD: ref_tag error\n");
1734 	}
1735 
1736 	if (lpfc_bgs_get_apptag_err(bgstat)) {
1737 		ret = 1;
1738 
1739 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1740 				0x10, 0x2);
1741 		cmd->result = DRIVER_SENSE << 24
1742 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1743 
1744 		phba->bg_apptag_err_cnt++;
1745 		printk(KERN_ERR "BLKGRD: app_tag error\n");
1746 	}
1747 
1748 	if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
1749 		/*
1750 		 * setup sense data descriptor 0 per SPC-4 as an information
1751 		 * field, and put the failing LBA in it
1752 		 */
1753 		cmd->sense_buffer[8] = 0;     /* Information */
1754 		cmd->sense_buffer[9] = 0xa;   /* Add. length */
1755 		bghm /= cmd->device->sector_size;
1756 
1757 		failing_sector = scsi_get_lba(cmd);
1758 		failing_sector += bghm;
1759 
1760 		put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
1761 	}
1762 
1763 	if (!ret) {
1764 		/* No error was reported - problem in FW? */
1765 		cmd->result = ScsiResult(DID_ERROR, 0);
1766 		printk(KERN_ERR "BLKGRD: no errors reported!\n");
1767 	}
1768 
1769 out:
1770 	return ret;
1771 }
1772 
1773 /**
1774  * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
1775  * @phba: The Hba for which this call is being executed.
1776  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1777  *
1778  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1779  * field of @lpfc_cmd for device with SLI-4 interface spec.
1780  *
1781  * Return codes:
1782  * 	1 - Error
1783  * 	0 - Success
1784  **/
1785 static int
1786 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1787 {
1788 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1789 	struct scatterlist *sgel = NULL;
1790 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1791 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
1792 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1793 	dma_addr_t physaddr;
1794 	uint32_t num_bde = 0;
1795 	uint32_t dma_len;
1796 	uint32_t dma_offset = 0;
1797 	int nseg;
1798 
1799 	/*
1800 	 * There are three possibilities here - use scatter-gather segment, use
1801 	 * the single mapping, or neither.  Start the lpfc command prep by
1802 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1803 	 * data bde entry.
1804 	 */
1805 	if (scsi_sg_count(scsi_cmnd)) {
1806 		/*
1807 		 * The driver stores the segment count returned from pci_map_sg
1808 		 * because this a count of dma-mappings used to map the use_sg
1809 		 * pages.  They are not guaranteed to be the same for those
1810 		 * architectures that implement an IOMMU.
1811 		 */
1812 
1813 		nseg = scsi_dma_map(scsi_cmnd);
1814 		if (unlikely(!nseg))
1815 			return 1;
1816 		sgl += 1;
1817 		/* clear the last flag in the fcp_rsp map entry */
1818 		sgl->word2 = le32_to_cpu(sgl->word2);
1819 		bf_set(lpfc_sli4_sge_last, sgl, 0);
1820 		sgl->word2 = cpu_to_le32(sgl->word2);
1821 		sgl += 1;
1822 
1823 		lpfc_cmd->seg_cnt = nseg;
1824 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1825 			printk(KERN_ERR "%s: Too many sg segments from "
1826 			       "dma_map_sg.  Config %d, seg_cnt %d\n",
1827 			       __func__, phba->cfg_sg_seg_cnt,
1828 			       lpfc_cmd->seg_cnt);
1829 			scsi_dma_unmap(scsi_cmnd);
1830 			return 1;
1831 		}
1832 
1833 		/*
1834 		 * The driver established a maximum scatter-gather segment count
1835 		 * during probe that limits the number of sg elements in any
1836 		 * single scsi command.  Just run through the seg_cnt and format
1837 		 * the sge's.
1838 		 * When using SLI-3 the driver will try to fit all the BDEs into
1839 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1840 		 * does for SLI-2 mode.
1841 		 */
1842 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1843 			physaddr = sg_dma_address(sgel);
1844 			dma_len = sg_dma_len(sgel);
1845 			bf_set(lpfc_sli4_sge_len, sgl, sg_dma_len(sgel));
1846 			sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
1847 			sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
1848 			if ((num_bde + 1) == nseg)
1849 				bf_set(lpfc_sli4_sge_last, sgl, 1);
1850 			else
1851 				bf_set(lpfc_sli4_sge_last, sgl, 0);
1852 			bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
1853 			sgl->word2 = cpu_to_le32(sgl->word2);
1854 			sgl->word3 = cpu_to_le32(sgl->word3);
1855 			dma_offset += dma_len;
1856 			sgl++;
1857 		}
1858 	} else {
1859 		sgl += 1;
1860 		/* clear the last flag in the fcp_rsp map entry */
1861 		sgl->word2 = le32_to_cpu(sgl->word2);
1862 		bf_set(lpfc_sli4_sge_last, sgl, 1);
1863 		sgl->word2 = cpu_to_le32(sgl->word2);
1864 	}
1865 
1866 	/*
1867 	 * Finish initializing those IOCB fields that are dependent on the
1868 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1869 	 * explicitly reinitialized.
1870 	 * all iocb memory resources are reused.
1871 	 */
1872 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1873 
1874 	/*
1875 	 * Due to difference in data length between DIF/non-DIF paths,
1876 	 * we need to set word 4 of IOCB here
1877 	 */
1878 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1879 	return 0;
1880 }
1881 
1882 /**
1883  * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
1884  * @phba: The Hba for which this call is being executed.
1885  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1886  *
1887  * This routine wraps the actual DMA mapping function pointer from the
1888  * lpfc_hba struct.
1889  *
1890  * Return codes:
1891  * 	1 - Error
1892  * 	0 - Success
1893  **/
1894 static inline int
1895 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1896 {
1897 	return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
1898 }
1899 
1900 /**
1901  * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
1902  * @phba: Pointer to hba context object.
1903  * @vport: Pointer to vport object.
1904  * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
1905  * @rsp_iocb: Pointer to response iocb object which reported error.
1906  *
1907  * This function posts an event when there is a SCSI command reporting
1908  * error from the scsi device.
1909  **/
1910 static void
1911 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
1912 		struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
1913 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
1914 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
1915 	uint32_t resp_info = fcprsp->rspStatus2;
1916 	uint32_t scsi_status = fcprsp->rspStatus3;
1917 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
1918 	struct lpfc_fast_path_event *fast_path_evt = NULL;
1919 	struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
1920 	unsigned long flags;
1921 
1922 	/* If there is queuefull or busy condition send a scsi event */
1923 	if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
1924 		(cmnd->result == SAM_STAT_BUSY)) {
1925 		fast_path_evt = lpfc_alloc_fast_evt(phba);
1926 		if (!fast_path_evt)
1927 			return;
1928 		fast_path_evt->un.scsi_evt.event_type =
1929 			FC_REG_SCSI_EVENT;
1930 		fast_path_evt->un.scsi_evt.subcategory =
1931 		(cmnd->result == SAM_STAT_TASK_SET_FULL) ?
1932 		LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
1933 		fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
1934 		memcpy(&fast_path_evt->un.scsi_evt.wwpn,
1935 			&pnode->nlp_portname, sizeof(struct lpfc_name));
1936 		memcpy(&fast_path_evt->un.scsi_evt.wwnn,
1937 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
1938 	} else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
1939 		((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
1940 		fast_path_evt = lpfc_alloc_fast_evt(phba);
1941 		if (!fast_path_evt)
1942 			return;
1943 		fast_path_evt->un.check_cond_evt.scsi_event.event_type =
1944 			FC_REG_SCSI_EVENT;
1945 		fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
1946 			LPFC_EVENT_CHECK_COND;
1947 		fast_path_evt->un.check_cond_evt.scsi_event.lun =
1948 			cmnd->device->lun;
1949 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
1950 			&pnode->nlp_portname, sizeof(struct lpfc_name));
1951 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
1952 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
1953 		fast_path_evt->un.check_cond_evt.sense_key =
1954 			cmnd->sense_buffer[2] & 0xf;
1955 		fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
1956 		fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
1957 	} else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
1958 		     fcpi_parm &&
1959 		     ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
1960 			((scsi_status == SAM_STAT_GOOD) &&
1961 			!(resp_info & (RESID_UNDER | RESID_OVER))))) {
1962 		/*
1963 		 * If status is good or resid does not match with fcp_param and
1964 		 * there is valid fcpi_parm, then there is a read_check error
1965 		 */
1966 		fast_path_evt = lpfc_alloc_fast_evt(phba);
1967 		if (!fast_path_evt)
1968 			return;
1969 		fast_path_evt->un.read_check_error.header.event_type =
1970 			FC_REG_FABRIC_EVENT;
1971 		fast_path_evt->un.read_check_error.header.subcategory =
1972 			LPFC_EVENT_FCPRDCHKERR;
1973 		memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
1974 			&pnode->nlp_portname, sizeof(struct lpfc_name));
1975 		memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
1976 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
1977 		fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
1978 		fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
1979 		fast_path_evt->un.read_check_error.fcpiparam =
1980 			fcpi_parm;
1981 	} else
1982 		return;
1983 
1984 	fast_path_evt->vport = vport;
1985 	spin_lock_irqsave(&phba->hbalock, flags);
1986 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
1987 	spin_unlock_irqrestore(&phba->hbalock, flags);
1988 	lpfc_worker_wake_up(phba);
1989 	return;
1990 }
1991 
1992 /**
1993  * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
1994  * @phba: The HBA for which this call is being executed.
1995  * @psb: The scsi buffer which is going to be un-mapped.
1996  *
1997  * This routine does DMA un-mapping of scatter gather list of scsi command
1998  * field of @lpfc_cmd for device with SLI-3 interface spec.
1999  **/
2000 static void
2001 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2002 {
2003 	/*
2004 	 * There are only two special cases to consider.  (1) the scsi command
2005 	 * requested scatter-gather usage or (2) the scsi command allocated
2006 	 * a request buffer, but did not request use_sg.  There is a third
2007 	 * case, but it does not require resource deallocation.
2008 	 */
2009 	if (psb->seg_cnt > 0)
2010 		scsi_dma_unmap(psb->pCmd);
2011 	if (psb->prot_seg_cnt > 0)
2012 		dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2013 				scsi_prot_sg_count(psb->pCmd),
2014 				psb->pCmd->sc_data_direction);
2015 }
2016 
2017 /**
2018  * lpfc_handler_fcp_err - FCP response handler
2019  * @vport: The virtual port for which this call is being executed.
2020  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2021  * @rsp_iocb: The response IOCB which contains FCP error.
2022  *
2023  * This routine is called to process response IOCB with status field
2024  * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2025  * based upon SCSI and FCP error.
2026  **/
2027 static void
2028 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2029 		    struct lpfc_iocbq *rsp_iocb)
2030 {
2031 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2032 	struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2033 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2034 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2035 	uint32_t resp_info = fcprsp->rspStatus2;
2036 	uint32_t scsi_status = fcprsp->rspStatus3;
2037 	uint32_t *lp;
2038 	uint32_t host_status = DID_OK;
2039 	uint32_t rsplen = 0;
2040 	uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2041 
2042 
2043 	/*
2044 	 *  If this is a task management command, there is no
2045 	 *  scsi packet associated with this lpfc_cmd.  The driver
2046 	 *  consumes it.
2047 	 */
2048 	if (fcpcmd->fcpCntl2) {
2049 		scsi_status = 0;
2050 		goto out;
2051 	}
2052 
2053 	if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2054 		uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2055 		if (snslen > SCSI_SENSE_BUFFERSIZE)
2056 			snslen = SCSI_SENSE_BUFFERSIZE;
2057 
2058 		if (resp_info & RSP_LEN_VALID)
2059 		  rsplen = be32_to_cpu(fcprsp->rspRspLen);
2060 		memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2061 	}
2062 	lp = (uint32_t *)cmnd->sense_buffer;
2063 
2064 	if (!scsi_status && (resp_info & RESID_UNDER))
2065 		logit = LOG_FCP;
2066 
2067 	lpfc_printf_vlog(vport, KERN_WARNING, logit,
2068 			 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2069 			 "Data: x%x x%x x%x x%x x%x\n",
2070 			 cmnd->cmnd[0], scsi_status,
2071 			 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2072 			 be32_to_cpu(fcprsp->rspResId),
2073 			 be32_to_cpu(fcprsp->rspSnsLen),
2074 			 be32_to_cpu(fcprsp->rspRspLen),
2075 			 fcprsp->rspInfo3);
2076 
2077 	if (resp_info & RSP_LEN_VALID) {
2078 		rsplen = be32_to_cpu(fcprsp->rspRspLen);
2079 		if ((rsplen != 0 && rsplen != 4 && rsplen != 8) ||
2080 		    (fcprsp->rspInfo3 != RSP_NO_FAILURE)) {
2081 			host_status = DID_ERROR;
2082 			goto out;
2083 		}
2084 	}
2085 
2086 	scsi_set_resid(cmnd, 0);
2087 	if (resp_info & RESID_UNDER) {
2088 		scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2089 
2090 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2091 				 "9025 FCP Read Underrun, expected %d, "
2092 				 "residual %d Data: x%x x%x x%x\n",
2093 				 be32_to_cpu(fcpcmd->fcpDl),
2094 				 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2095 				 cmnd->underflow);
2096 
2097 		/*
2098 		 * If there is an under run check if under run reported by
2099 		 * storage array is same as the under run reported by HBA.
2100 		 * If this is not same, there is a dropped frame.
2101 		 */
2102 		if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2103 			fcpi_parm &&
2104 			(scsi_get_resid(cmnd) != fcpi_parm)) {
2105 			lpfc_printf_vlog(vport, KERN_WARNING,
2106 					 LOG_FCP | LOG_FCP_ERROR,
2107 					 "9026 FCP Read Check Error "
2108 					 "and Underrun Data: x%x x%x x%x x%x\n",
2109 					 be32_to_cpu(fcpcmd->fcpDl),
2110 					 scsi_get_resid(cmnd), fcpi_parm,
2111 					 cmnd->cmnd[0]);
2112 			scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2113 			host_status = DID_ERROR;
2114 		}
2115 		/*
2116 		 * The cmnd->underflow is the minimum number of bytes that must
2117 		 * be transfered for this command.  Provided a sense condition
2118 		 * is not present, make sure the actual amount transferred is at
2119 		 * least the underflow value or fail.
2120 		 */
2121 		if (!(resp_info & SNS_LEN_VALID) &&
2122 		    (scsi_status == SAM_STAT_GOOD) &&
2123 		    (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2124 		     < cmnd->underflow)) {
2125 			lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2126 					 "9027 FCP command x%x residual "
2127 					 "underrun converted to error "
2128 					 "Data: x%x x%x x%x\n",
2129 					 cmnd->cmnd[0], scsi_bufflen(cmnd),
2130 					 scsi_get_resid(cmnd), cmnd->underflow);
2131 			host_status = DID_ERROR;
2132 		}
2133 	} else if (resp_info & RESID_OVER) {
2134 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2135 				 "9028 FCP command x%x residual overrun error. "
2136 				 "Data: x%x x%x\n", cmnd->cmnd[0],
2137 				 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2138 		host_status = DID_ERROR;
2139 
2140 	/*
2141 	 * Check SLI validation that all the transfer was actually done
2142 	 * (fcpi_parm should be zero). Apply check only to reads.
2143 	 */
2144 	} else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm &&
2145 			(cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2146 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2147 				 "9029 FCP Read Check Error Data: "
2148 				 "x%x x%x x%x x%x\n",
2149 				 be32_to_cpu(fcpcmd->fcpDl),
2150 				 be32_to_cpu(fcprsp->rspResId),
2151 				 fcpi_parm, cmnd->cmnd[0]);
2152 		host_status = DID_ERROR;
2153 		scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2154 	}
2155 
2156  out:
2157 	cmnd->result = ScsiResult(host_status, scsi_status);
2158 	lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2159 }
2160 
2161 /**
2162  * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2163  * @phba: The Hba for which this call is being executed.
2164  * @pIocbIn: The command IOCBQ for the scsi cmnd.
2165  * @pIocbOut: The response IOCBQ for the scsi cmnd.
2166  *
2167  * This routine assigns scsi command result by looking into response IOCB
2168  * status field appropriately. This routine handles QUEUE FULL condition as
2169  * well by ramping down device queue depth.
2170  **/
2171 static void
2172 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2173 			struct lpfc_iocbq *pIocbOut)
2174 {
2175 	struct lpfc_scsi_buf *lpfc_cmd =
2176 		(struct lpfc_scsi_buf *) pIocbIn->context1;
2177 	struct lpfc_vport      *vport = pIocbIn->vport;
2178 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2179 	struct lpfc_nodelist *pnode = rdata->pnode;
2180 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
2181 	int result;
2182 	struct scsi_device *tmp_sdev;
2183 	int depth = 0;
2184 	unsigned long flags;
2185 	struct lpfc_fast_path_event *fast_path_evt;
2186 	struct Scsi_Host *shost = cmd->device->host;
2187 	uint32_t queue_depth, scsi_id;
2188 
2189 	lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2190 	lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2191 	if (pnode && NLP_CHK_NODE_ACT(pnode))
2192 		atomic_dec(&pnode->cmd_pending);
2193 
2194 	if (lpfc_cmd->status) {
2195 		if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2196 		    (lpfc_cmd->result & IOERR_DRVR_MASK))
2197 			lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2198 		else if (lpfc_cmd->status >= IOSTAT_CNT)
2199 			lpfc_cmd->status = IOSTAT_DEFAULT;
2200 
2201 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2202 				 "9030 FCP cmd x%x failed <%d/%d> "
2203 				 "status: x%x result: x%x Data: x%x x%x\n",
2204 				 cmd->cmnd[0],
2205 				 cmd->device ? cmd->device->id : 0xffff,
2206 				 cmd->device ? cmd->device->lun : 0xffff,
2207 				 lpfc_cmd->status, lpfc_cmd->result,
2208 				 pIocbOut->iocb.ulpContext,
2209 				 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2210 
2211 		switch (lpfc_cmd->status) {
2212 		case IOSTAT_FCP_RSP_ERROR:
2213 			/* Call FCP RSP handler to determine result */
2214 			lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2215 			break;
2216 		case IOSTAT_NPORT_BSY:
2217 		case IOSTAT_FABRIC_BSY:
2218 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2219 			fast_path_evt = lpfc_alloc_fast_evt(phba);
2220 			if (!fast_path_evt)
2221 				break;
2222 			fast_path_evt->un.fabric_evt.event_type =
2223 				FC_REG_FABRIC_EVENT;
2224 			fast_path_evt->un.fabric_evt.subcategory =
2225 				(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2226 				LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2227 			if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2228 				memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2229 					&pnode->nlp_portname,
2230 					sizeof(struct lpfc_name));
2231 				memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2232 					&pnode->nlp_nodename,
2233 					sizeof(struct lpfc_name));
2234 			}
2235 			fast_path_evt->vport = vport;
2236 			fast_path_evt->work_evt.evt =
2237 				LPFC_EVT_FASTPATH_MGMT_EVT;
2238 			spin_lock_irqsave(&phba->hbalock, flags);
2239 			list_add_tail(&fast_path_evt->work_evt.evt_listp,
2240 				&phba->work_list);
2241 			spin_unlock_irqrestore(&phba->hbalock, flags);
2242 			lpfc_worker_wake_up(phba);
2243 			break;
2244 		case IOSTAT_LOCAL_REJECT:
2245 			if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2246 			    lpfc_cmd->result == IOERR_NO_RESOURCES ||
2247 			    lpfc_cmd->result == IOERR_ABORT_REQUESTED) {
2248 				cmd->result = ScsiResult(DID_REQUEUE, 0);
2249 				break;
2250 			}
2251 
2252 			if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2253 			     lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2254 			     pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2255 				if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2256 					/*
2257 					 * This is a response for a BG enabled
2258 					 * cmd. Parse BG error
2259 					 */
2260 					lpfc_parse_bg_err(phba, lpfc_cmd,
2261 							pIocbOut);
2262 					break;
2263 				} else {
2264 					lpfc_printf_vlog(vport, KERN_WARNING,
2265 							LOG_BG,
2266 							"9031 non-zero BGSTAT "
2267 							"on unprotected cmd");
2268 				}
2269 			}
2270 
2271 		/* else: fall through */
2272 		default:
2273 			cmd->result = ScsiResult(DID_ERROR, 0);
2274 			break;
2275 		}
2276 
2277 		if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2278 		    || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2279 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2280 						 SAM_STAT_BUSY);
2281 	} else {
2282 		cmd->result = ScsiResult(DID_OK, 0);
2283 	}
2284 
2285 	if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2286 		uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2287 
2288 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2289 				 "0710 Iodone <%d/%d> cmd %p, error "
2290 				 "x%x SNS x%x x%x Data: x%x x%x\n",
2291 				 cmd->device->id, cmd->device->lun, cmd,
2292 				 cmd->result, *lp, *(lp + 3), cmd->retries,
2293 				 scsi_get_resid(cmd));
2294 	}
2295 
2296 	lpfc_update_stats(phba, lpfc_cmd);
2297 	result = cmd->result;
2298 	if (vport->cfg_max_scsicmpl_time &&
2299 	   time_after(jiffies, lpfc_cmd->start_time +
2300 		msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2301 		spin_lock_irqsave(shost->host_lock, flags);
2302 		if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2303 			if (pnode->cmd_qdepth >
2304 				atomic_read(&pnode->cmd_pending) &&
2305 				(atomic_read(&pnode->cmd_pending) >
2306 				LPFC_MIN_TGT_QDEPTH) &&
2307 				((cmd->cmnd[0] == READ_10) ||
2308 				(cmd->cmnd[0] == WRITE_10)))
2309 				pnode->cmd_qdepth =
2310 					atomic_read(&pnode->cmd_pending);
2311 
2312 			pnode->last_change_time = jiffies;
2313 		}
2314 		spin_unlock_irqrestore(shost->host_lock, flags);
2315 	} else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2316 		if ((pnode->cmd_qdepth < LPFC_MAX_TGT_QDEPTH) &&
2317 		   time_after(jiffies, pnode->last_change_time +
2318 			      msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2319 			spin_lock_irqsave(shost->host_lock, flags);
2320 			pnode->cmd_qdepth += pnode->cmd_qdepth *
2321 				LPFC_TGTQ_RAMPUP_PCENT / 100;
2322 			if (pnode->cmd_qdepth > LPFC_MAX_TGT_QDEPTH)
2323 				pnode->cmd_qdepth = LPFC_MAX_TGT_QDEPTH;
2324 			pnode->last_change_time = jiffies;
2325 			spin_unlock_irqrestore(shost->host_lock, flags);
2326 		}
2327 	}
2328 
2329 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2330 
2331 	/* The sdev is not guaranteed to be valid post scsi_done upcall. */
2332 	queue_depth = cmd->device->queue_depth;
2333 	scsi_id = cmd->device->id;
2334 	cmd->scsi_done(cmd);
2335 
2336 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2337 		/*
2338 		 * If there is a thread waiting for command completion
2339 		 * wake up the thread.
2340 		 */
2341 		spin_lock_irqsave(shost->host_lock, flags);
2342 		lpfc_cmd->pCmd = NULL;
2343 		if (lpfc_cmd->waitq)
2344 			wake_up(lpfc_cmd->waitq);
2345 		spin_unlock_irqrestore(shost->host_lock, flags);
2346 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2347 		return;
2348 	}
2349 
2350 
2351 	if (!result)
2352 		lpfc_rampup_queue_depth(vport, queue_depth);
2353 
2354 	if (!result && pnode && NLP_CHK_NODE_ACT(pnode) &&
2355 	   ((jiffies - pnode->last_ramp_up_time) >
2356 		LPFC_Q_RAMP_UP_INTERVAL * HZ) &&
2357 	   ((jiffies - pnode->last_q_full_time) >
2358 		LPFC_Q_RAMP_UP_INTERVAL * HZ) &&
2359 	   (vport->cfg_lun_queue_depth > queue_depth)) {
2360 		shost_for_each_device(tmp_sdev, shost) {
2361 			if (vport->cfg_lun_queue_depth > tmp_sdev->queue_depth){
2362 				if (tmp_sdev->id != scsi_id)
2363 					continue;
2364 				if (tmp_sdev->ordered_tags)
2365 					scsi_adjust_queue_depth(tmp_sdev,
2366 						MSG_ORDERED_TAG,
2367 						tmp_sdev->queue_depth+1);
2368 				else
2369 					scsi_adjust_queue_depth(tmp_sdev,
2370 						MSG_SIMPLE_TAG,
2371 						tmp_sdev->queue_depth+1);
2372 
2373 				pnode->last_ramp_up_time = jiffies;
2374 			}
2375 		}
2376 		lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode,
2377 			0xFFFFFFFF,
2378 			queue_depth , queue_depth + 1);
2379 	}
2380 
2381 	/*
2382 	 * Check for queue full.  If the lun is reporting queue full, then
2383 	 * back off the lun queue depth to prevent target overloads.
2384 	 */
2385 	if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2386 	    NLP_CHK_NODE_ACT(pnode)) {
2387 		pnode->last_q_full_time = jiffies;
2388 
2389 		shost_for_each_device(tmp_sdev, shost) {
2390 			if (tmp_sdev->id != scsi_id)
2391 				continue;
2392 			depth = scsi_track_queue_full(tmp_sdev,
2393 					tmp_sdev->queue_depth - 1);
2394 		}
2395 		/*
2396 		 * The queue depth cannot be lowered any more.
2397 		 * Modify the returned error code to store
2398 		 * the final depth value set by
2399 		 * scsi_track_queue_full.
2400 		 */
2401 		if (depth == -1)
2402 			depth = shost->cmd_per_lun;
2403 
2404 		if (depth) {
2405 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2406 					 "0711 detected queue full - lun queue "
2407 					 "depth adjusted to %d.\n", depth);
2408 			lpfc_send_sdev_queuedepth_change_event(phba, vport,
2409 				pnode, 0xFFFFFFFF,
2410 				depth+1, depth);
2411 		}
2412 	}
2413 
2414 	/*
2415 	 * If there is a thread waiting for command completion
2416 	 * wake up the thread.
2417 	 */
2418 	spin_lock_irqsave(shost->host_lock, flags);
2419 	lpfc_cmd->pCmd = NULL;
2420 	if (lpfc_cmd->waitq)
2421 		wake_up(lpfc_cmd->waitq);
2422 	spin_unlock_irqrestore(shost->host_lock, flags);
2423 
2424 	lpfc_release_scsi_buf(phba, lpfc_cmd);
2425 }
2426 
2427 /**
2428  * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2429  * @data: A pointer to the immediate command data portion of the IOCB.
2430  * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2431  *
2432  * The routine copies the entire FCP command from @fcp_cmnd to @data while
2433  * byte swapping the data to big endian format for transmission on the wire.
2434  **/
2435 static void
2436 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2437 {
2438 	int i, j;
2439 	for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2440 	     i += sizeof(uint32_t), j++) {
2441 		((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2442 	}
2443 }
2444 
2445 /**
2446  * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2447  * @vport: The virtual port for which this call is being executed.
2448  * @lpfc_cmd: The scsi command which needs to send.
2449  * @pnode: Pointer to lpfc_nodelist.
2450  *
2451  * This routine initializes fcp_cmnd and iocb data structure from scsi command
2452  * to transfer for device with SLI3 interface spec.
2453  **/
2454 static void
2455 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2456 		    struct lpfc_nodelist *pnode)
2457 {
2458 	struct lpfc_hba *phba = vport->phba;
2459 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2460 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2461 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2462 	struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2463 	int datadir = scsi_cmnd->sc_data_direction;
2464 	char tag[2];
2465 
2466 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2467 		return;
2468 
2469 	lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2470 	/* clear task management bits */
2471 	lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2472 
2473 	int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2474 			&lpfc_cmd->fcp_cmnd->fcp_lun);
2475 
2476 	memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2477 
2478 	if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2479 		switch (tag[0]) {
2480 		case HEAD_OF_QUEUE_TAG:
2481 			fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2482 			break;
2483 		case ORDERED_QUEUE_TAG:
2484 			fcp_cmnd->fcpCntl1 = ORDERED_Q;
2485 			break;
2486 		default:
2487 			fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2488 			break;
2489 		}
2490 	} else
2491 		fcp_cmnd->fcpCntl1 = 0;
2492 
2493 	/*
2494 	 * There are three possibilities here - use scatter-gather segment, use
2495 	 * the single mapping, or neither.  Start the lpfc command prep by
2496 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2497 	 * data bde entry.
2498 	 */
2499 	if (scsi_sg_count(scsi_cmnd)) {
2500 		if (datadir == DMA_TO_DEVICE) {
2501 			iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2502 			if (phba->sli_rev < LPFC_SLI_REV4) {
2503 				iocb_cmd->un.fcpi.fcpi_parm = 0;
2504 				iocb_cmd->ulpPU = 0;
2505 			} else
2506 				iocb_cmd->ulpPU = PARM_READ_CHECK;
2507 			fcp_cmnd->fcpCntl3 = WRITE_DATA;
2508 			phba->fc4OutputRequests++;
2509 		} else {
2510 			iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2511 			iocb_cmd->ulpPU = PARM_READ_CHECK;
2512 			fcp_cmnd->fcpCntl3 = READ_DATA;
2513 			phba->fc4InputRequests++;
2514 		}
2515 	} else {
2516 		iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2517 		iocb_cmd->un.fcpi.fcpi_parm = 0;
2518 		iocb_cmd->ulpPU = 0;
2519 		fcp_cmnd->fcpCntl3 = 0;
2520 		phba->fc4ControlRequests++;
2521 	}
2522 	if (phba->sli_rev == 3 &&
2523 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2524 		lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2525 	/*
2526 	 * Finish initializing those IOCB fields that are independent
2527 	 * of the scsi_cmnd request_buffer
2528 	 */
2529 	piocbq->iocb.ulpContext = pnode->nlp_rpi;
2530 	if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2531 		piocbq->iocb.ulpFCP2Rcvy = 1;
2532 	else
2533 		piocbq->iocb.ulpFCP2Rcvy = 0;
2534 
2535 	piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2536 	piocbq->context1  = lpfc_cmd;
2537 	piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2538 	piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2539 	piocbq->vport = vport;
2540 }
2541 
2542 /**
2543  * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2544  * @vport: The virtual port for which this call is being executed.
2545  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2546  * @lun: Logical unit number.
2547  * @task_mgmt_cmd: SCSI task management command.
2548  *
2549  * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2550  * for device with SLI-3 interface spec.
2551  *
2552  * Return codes:
2553  *   0 - Error
2554  *   1 - Success
2555  **/
2556 static int
2557 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2558 			     struct lpfc_scsi_buf *lpfc_cmd,
2559 			     unsigned int lun,
2560 			     uint8_t task_mgmt_cmd)
2561 {
2562 	struct lpfc_iocbq *piocbq;
2563 	IOCB_t *piocb;
2564 	struct fcp_cmnd *fcp_cmnd;
2565 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2566 	struct lpfc_nodelist *ndlp = rdata->pnode;
2567 
2568 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2569 	    ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2570 		return 0;
2571 
2572 	piocbq = &(lpfc_cmd->cur_iocbq);
2573 	piocbq->vport = vport;
2574 
2575 	piocb = &piocbq->iocb;
2576 
2577 	fcp_cmnd = lpfc_cmd->fcp_cmnd;
2578 	/* Clear out any old data in the FCP command area */
2579 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2580 	int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2581 	fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2582 	if (vport->phba->sli_rev == 3 &&
2583 	    !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2584 		lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2585 	piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2586 	piocb->ulpContext = ndlp->nlp_rpi;
2587 	if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2588 		piocb->ulpFCP2Rcvy = 1;
2589 	}
2590 	piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2591 
2592 	/* ulpTimeout is only one byte */
2593 	if (lpfc_cmd->timeout > 0xff) {
2594 		/*
2595 		 * Do not timeout the command at the firmware level.
2596 		 * The driver will provide the timeout mechanism.
2597 		 */
2598 		piocb->ulpTimeout = 0;
2599 	} else
2600 		piocb->ulpTimeout = lpfc_cmd->timeout;
2601 
2602 	if (vport->phba->sli_rev == LPFC_SLI_REV4)
2603 		lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2604 
2605 	return 1;
2606 }
2607 
2608 /**
2609  * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table
2610  * @phba: The hba struct for which this call is being executed.
2611  * @dev_grp: The HBA PCI-Device group number.
2612  *
2613  * This routine sets up the SCSI interface API function jump table in @phba
2614  * struct.
2615  * Returns: 0 - success, -ENODEV - failure.
2616  **/
2617 int
2618 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2619 {
2620 
2621 	phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2622 	phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2623 	phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;
2624 
2625 	switch (dev_grp) {
2626 	case LPFC_PCI_DEV_LP:
2627 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2628 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2629 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2630 		break;
2631 	case LPFC_PCI_DEV_OC:
2632 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2633 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2634 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2635 		break;
2636 	default:
2637 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2638 				"1418 Invalid HBA PCI-device group: 0x%x\n",
2639 				dev_grp);
2640 		return -ENODEV;
2641 		break;
2642 	}
2643 	phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;
2644 	phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2645 	return 0;
2646 }
2647 
2648 /**
2649  * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2650  * @phba: The Hba for which this call is being executed.
2651  * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2652  * @rspiocbq: Pointer to lpfc_iocbq data structure.
2653  *
2654  * This routine is IOCB completion routine for device reset and target reset
2655  * routine. This routine release scsi buffer associated with lpfc_cmd.
2656  **/
2657 static void
2658 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2659 			struct lpfc_iocbq *cmdiocbq,
2660 			struct lpfc_iocbq *rspiocbq)
2661 {
2662 	struct lpfc_scsi_buf *lpfc_cmd =
2663 		(struct lpfc_scsi_buf *) cmdiocbq->context1;
2664 	if (lpfc_cmd)
2665 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2666 	return;
2667 }
2668 
2669 /**
2670  * lpfc_info - Info entry point of scsi_host_template data structure
2671  * @host: The scsi host for which this call is being executed.
2672  *
2673  * This routine provides module information about hba.
2674  *
2675  * Reutrn code:
2676  *   Pointer to char - Success.
2677  **/
2678 const char *
2679 lpfc_info(struct Scsi_Host *host)
2680 {
2681 	struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2682 	struct lpfc_hba   *phba = vport->phba;
2683 	int len;
2684 	static char  lpfcinfobuf[384];
2685 
2686 	memset(lpfcinfobuf,0,384);
2687 	if (phba && phba->pcidev){
2688 		strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2689 		len = strlen(lpfcinfobuf);
2690 		snprintf(lpfcinfobuf + len,
2691 			384-len,
2692 			" on PCI bus %02x device %02x irq %d",
2693 			phba->pcidev->bus->number,
2694 			phba->pcidev->devfn,
2695 			phba->pcidev->irq);
2696 		len = strlen(lpfcinfobuf);
2697 		if (phba->Port[0]) {
2698 			snprintf(lpfcinfobuf + len,
2699 				 384-len,
2700 				 " port %s",
2701 				 phba->Port);
2702 		}
2703 	}
2704 	return lpfcinfobuf;
2705 }
2706 
2707 /**
2708  * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2709  * @phba: The Hba for which this call is being executed.
2710  *
2711  * This routine modifies fcp_poll_timer  field of @phba by cfg_poll_tmo.
2712  * The default value of cfg_poll_tmo is 10 milliseconds.
2713  **/
2714 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
2715 {
2716 	unsigned long  poll_tmo_expires =
2717 		(jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
2718 
2719 	if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
2720 		mod_timer(&phba->fcp_poll_timer,
2721 			  poll_tmo_expires);
2722 }
2723 
2724 /**
2725  * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
2726  * @phba: The Hba for which this call is being executed.
2727  *
2728  * This routine starts the fcp_poll_timer of @phba.
2729  **/
2730 void lpfc_poll_start_timer(struct lpfc_hba * phba)
2731 {
2732 	lpfc_poll_rearm_timer(phba);
2733 }
2734 
2735 /**
2736  * lpfc_poll_timeout - Restart polling timer
2737  * @ptr: Map to lpfc_hba data structure pointer.
2738  *
2739  * This routine restarts fcp_poll timer, when FCP ring  polling is enable
2740  * and FCP Ring interrupt is disable.
2741  **/
2742 
2743 void lpfc_poll_timeout(unsigned long ptr)
2744 {
2745 	struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
2746 
2747 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2748 		lpfc_sli_poll_fcp_ring (phba);
2749 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
2750 			lpfc_poll_rearm_timer(phba);
2751 	}
2752 }
2753 
2754 /**
2755  * lpfc_queuecommand - scsi_host_template queuecommand entry point
2756  * @cmnd: Pointer to scsi_cmnd data structure.
2757  * @done: Pointer to done routine.
2758  *
2759  * Driver registers this routine to scsi midlayer to submit a @cmd to process.
2760  * This routine prepares an IOCB from scsi command and provides to firmware.
2761  * The @done callback is invoked after driver finished processing the command.
2762  *
2763  * Return value :
2764  *   0 - Success
2765  *   SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
2766  **/
2767 static int
2768 lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
2769 {
2770 	struct Scsi_Host  *shost = cmnd->device->host;
2771 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
2772 	struct lpfc_hba   *phba = vport->phba;
2773 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
2774 	struct lpfc_nodelist *ndlp = rdata->pnode;
2775 	struct lpfc_scsi_buf *lpfc_cmd;
2776 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
2777 	int err;
2778 
2779 	err = fc_remote_port_chkready(rport);
2780 	if (err) {
2781 		cmnd->result = err;
2782 		goto out_fail_command;
2783 	}
2784 
2785 	if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
2786 		scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
2787 
2788 		printk(KERN_ERR "BLKGRD ERROR: rcvd protected cmd:%02x op:%02x "
2789 				"str=%s without registering for BlockGuard - "
2790 				"Rejecting command\n",
2791 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2792 				dif_op_str[scsi_get_prot_op(cmnd)]);
2793 		goto out_fail_command;
2794 	}
2795 
2796 	/*
2797 	 * Catch race where our node has transitioned, but the
2798 	 * transport is still transitioning.
2799 	 */
2800 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
2801 		cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2802 		goto out_fail_command;
2803 	}
2804 	if (vport->cfg_max_scsicmpl_time &&
2805 		(atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth))
2806 		goto out_host_busy;
2807 
2808 	lpfc_cmd = lpfc_get_scsi_buf(phba);
2809 	if (lpfc_cmd == NULL) {
2810 		lpfc_rampdown_queue_depth(phba);
2811 
2812 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2813 				 "0707 driver's buffer pool is empty, "
2814 				 "IO busied\n");
2815 		goto out_host_busy;
2816 	}
2817 
2818 	/*
2819 	 * Store the midlayer's command structure for the completion phase
2820 	 * and complete the command initialization.
2821 	 */
2822 	lpfc_cmd->pCmd  = cmnd;
2823 	lpfc_cmd->rdata = rdata;
2824 	lpfc_cmd->timeout = 0;
2825 	lpfc_cmd->start_time = jiffies;
2826 	cmnd->host_scribble = (unsigned char *)lpfc_cmd;
2827 	cmnd->scsi_done = done;
2828 
2829 	if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
2830 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2831 				"9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
2832 				"str=%s\n",
2833 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2834 				dif_op_str[scsi_get_prot_op(cmnd)]);
2835 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2836 				"9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
2837 				"%02x %02x %02x %02x %02x\n",
2838 				cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
2839 				cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
2840 				cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
2841 				cmnd->cmnd[9]);
2842 		if (cmnd->cmnd[0] == READ_10)
2843 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2844 					"9035 BLKGRD: READ @ sector %llu, "
2845 					"count %u\n",
2846 					(unsigned long long)scsi_get_lba(cmnd),
2847 					blk_rq_sectors(cmnd->request));
2848 		else if (cmnd->cmnd[0] == WRITE_10)
2849 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2850 					"9036 BLKGRD: WRITE @ sector %llu, "
2851 					"count %u cmd=%p\n",
2852 					(unsigned long long)scsi_get_lba(cmnd),
2853 					blk_rq_sectors(cmnd->request),
2854 					cmnd);
2855 
2856 		err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
2857 	} else {
2858 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2859 				"9038 BLKGRD: rcvd unprotected cmd:%02x op:%02x"
2860 				" str=%s\n",
2861 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2862 				dif_op_str[scsi_get_prot_op(cmnd)]);
2863 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2864 				 "9039 BLKGRD: CDB: %02x %02x %02x %02x %02x "
2865 				 "%02x %02x %02x %02x %02x\n",
2866 				 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
2867 				 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
2868 				 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
2869 				 cmnd->cmnd[9]);
2870 		if (cmnd->cmnd[0] == READ_10)
2871 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2872 					 "9040 dbg: READ @ sector %llu, "
2873 					 "count %u\n",
2874 					 (unsigned long long)scsi_get_lba(cmnd),
2875 					 blk_rq_sectors(cmnd->request));
2876 		else if (cmnd->cmnd[0] == WRITE_10)
2877 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2878 					 "9041 dbg: WRITE @ sector %llu, "
2879 					 "count %u cmd=%p\n",
2880 					 (unsigned long long)scsi_get_lba(cmnd),
2881 					 blk_rq_sectors(cmnd->request), cmnd);
2882 		else
2883 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2884 					 "9042 dbg: parser not implemented\n");
2885 		err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2886 	}
2887 
2888 	if (err)
2889 		goto out_host_busy_free_buf;
2890 
2891 	lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
2892 
2893 	atomic_inc(&ndlp->cmd_pending);
2894 	err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
2895 				  &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
2896 	if (err) {
2897 		atomic_dec(&ndlp->cmd_pending);
2898 		goto out_host_busy_free_buf;
2899 	}
2900 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2901 		lpfc_sli_poll_fcp_ring(phba);
2902 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
2903 			lpfc_poll_rearm_timer(phba);
2904 	}
2905 
2906 	return 0;
2907 
2908  out_host_busy_free_buf:
2909 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2910 	lpfc_release_scsi_buf(phba, lpfc_cmd);
2911  out_host_busy:
2912 	return SCSI_MLQUEUE_HOST_BUSY;
2913 
2914  out_fail_command:
2915 	done(cmnd);
2916 	return 0;
2917 }
2918 
2919 /**
2920  * lpfc_block_error_handler - Routine to block error  handler
2921  * @cmnd: Pointer to scsi_cmnd data structure.
2922  *
2923  *  This routine blocks execution till fc_rport state is not FC_PORSTAT_BLCOEKD.
2924  **/
2925 static void
2926 lpfc_block_error_handler(struct scsi_cmnd *cmnd)
2927 {
2928 	struct Scsi_Host *shost = cmnd->device->host;
2929 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
2930 
2931 	spin_lock_irq(shost->host_lock);
2932 	while (rport->port_state == FC_PORTSTATE_BLOCKED) {
2933 		spin_unlock_irq(shost->host_lock);
2934 		msleep(1000);
2935 		spin_lock_irq(shost->host_lock);
2936 	}
2937 	spin_unlock_irq(shost->host_lock);
2938 	return;
2939 }
2940 
2941 /**
2942  * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
2943  * @cmnd: Pointer to scsi_cmnd data structure.
2944  *
2945  * This routine aborts @cmnd pending in base driver.
2946  *
2947  * Return code :
2948  *   0x2003 - Error
2949  *   0x2002 - Success
2950  **/
2951 static int
2952 lpfc_abort_handler(struct scsi_cmnd *cmnd)
2953 {
2954 	struct Scsi_Host  *shost = cmnd->device->host;
2955 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
2956 	struct lpfc_hba   *phba = vport->phba;
2957 	struct lpfc_iocbq *iocb;
2958 	struct lpfc_iocbq *abtsiocb;
2959 	struct lpfc_scsi_buf *lpfc_cmd;
2960 	IOCB_t *cmd, *icmd;
2961 	int ret = SUCCESS;
2962 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
2963 
2964 	lpfc_block_error_handler(cmnd);
2965 	lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
2966 	BUG_ON(!lpfc_cmd);
2967 
2968 	/*
2969 	 * If pCmd field of the corresponding lpfc_scsi_buf structure
2970 	 * points to a different SCSI command, then the driver has
2971 	 * already completed this command, but the midlayer did not
2972 	 * see the completion before the eh fired.  Just return
2973 	 * SUCCESS.
2974 	 */
2975 	iocb = &lpfc_cmd->cur_iocbq;
2976 	if (lpfc_cmd->pCmd != cmnd)
2977 		goto out;
2978 
2979 	BUG_ON(iocb->context1 != lpfc_cmd);
2980 
2981 	abtsiocb = lpfc_sli_get_iocbq(phba);
2982 	if (abtsiocb == NULL) {
2983 		ret = FAILED;
2984 		goto out;
2985 	}
2986 
2987 	/*
2988 	 * The scsi command can not be in txq and it is in flight because the
2989 	 * pCmd is still pointig at the SCSI command we have to abort. There
2990 	 * is no need to search the txcmplq. Just send an abort to the FW.
2991 	 */
2992 
2993 	cmd = &iocb->iocb;
2994 	icmd = &abtsiocb->iocb;
2995 	icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
2996 	icmd->un.acxri.abortContextTag = cmd->ulpContext;
2997 	if (phba->sli_rev == LPFC_SLI_REV4)
2998 		icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
2999 	else
3000 		icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3001 
3002 	icmd->ulpLe = 1;
3003 	icmd->ulpClass = cmd->ulpClass;
3004 	if (lpfc_is_link_up(phba))
3005 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
3006 	else
3007 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3008 
3009 	abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3010 	abtsiocb->vport = vport;
3011 	if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3012 	    IOCB_ERROR) {
3013 		lpfc_sli_release_iocbq(phba, abtsiocb);
3014 		ret = FAILED;
3015 		goto out;
3016 	}
3017 
3018 	if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3019 		lpfc_sli_poll_fcp_ring (phba);
3020 
3021 	lpfc_cmd->waitq = &waitq;
3022 	/* Wait for abort to complete */
3023 	wait_event_timeout(waitq,
3024 			  (lpfc_cmd->pCmd != cmnd),
3025 			   (2*vport->cfg_devloss_tmo*HZ));
3026 
3027 	spin_lock_irq(shost->host_lock);
3028 	lpfc_cmd->waitq = NULL;
3029 	spin_unlock_irq(shost->host_lock);
3030 
3031 	if (lpfc_cmd->pCmd == cmnd) {
3032 		ret = FAILED;
3033 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3034 				 "0748 abort handler timed out waiting "
3035 				 "for abort to complete: ret %#x, ID %d, "
3036 				 "LUN %d, snum %#lx\n",
3037 				 ret, cmnd->device->id, cmnd->device->lun,
3038 				 cmnd->serial_number);
3039 	}
3040 
3041  out:
3042 	lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3043 			 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3044 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3045 			 cmnd->device->lun, cmnd->serial_number);
3046 	return ret;
3047 }
3048 
3049 static char *
3050 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3051 {
3052 	switch (task_mgmt_cmd) {
3053 	case FCP_ABORT_TASK_SET:
3054 		return "ABORT_TASK_SET";
3055 	case FCP_CLEAR_TASK_SET:
3056 		return "FCP_CLEAR_TASK_SET";
3057 	case FCP_BUS_RESET:
3058 		return "FCP_BUS_RESET";
3059 	case FCP_LUN_RESET:
3060 		return "FCP_LUN_RESET";
3061 	case FCP_TARGET_RESET:
3062 		return "FCP_TARGET_RESET";
3063 	case FCP_CLEAR_ACA:
3064 		return "FCP_CLEAR_ACA";
3065 	case FCP_TERMINATE_TASK:
3066 		return "FCP_TERMINATE_TASK";
3067 	default:
3068 		return "unknown";
3069 	}
3070 }
3071 
3072 /**
3073  * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3074  * @vport: The virtual port for which this call is being executed.
3075  * @rdata: Pointer to remote port local data
3076  * @tgt_id: Target ID of remote device.
3077  * @lun_id: Lun number for the TMF
3078  * @task_mgmt_cmd: type of TMF to send
3079  *
3080  * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3081  * a remote port.
3082  *
3083  * Return Code:
3084  *   0x2003 - Error
3085  *   0x2002 - Success.
3086  **/
3087 static int
3088 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3089 		    unsigned  tgt_id, unsigned int lun_id,
3090 		    uint8_t task_mgmt_cmd)
3091 {
3092 	struct lpfc_hba   *phba = vport->phba;
3093 	struct lpfc_scsi_buf *lpfc_cmd;
3094 	struct lpfc_iocbq *iocbq;
3095 	struct lpfc_iocbq *iocbqrsp;
3096 	int ret;
3097 	int status;
3098 
3099 	if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode))
3100 		return FAILED;
3101 
3102 	lpfc_cmd = lpfc_get_scsi_buf(phba);
3103 	if (lpfc_cmd == NULL)
3104 		return FAILED;
3105 	lpfc_cmd->timeout = 60;
3106 	lpfc_cmd->rdata = rdata;
3107 
3108 	status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3109 					   task_mgmt_cmd);
3110 	if (!status) {
3111 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3112 		return FAILED;
3113 	}
3114 
3115 	iocbq = &lpfc_cmd->cur_iocbq;
3116 	iocbqrsp = lpfc_sli_get_iocbq(phba);
3117 	if (iocbqrsp == NULL) {
3118 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3119 		return FAILED;
3120 	}
3121 
3122 	lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3123 			 "0702 Issue %s to TGT %d LUN %d "
3124 			 "rpi x%x nlp_flag x%x\n",
3125 			 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3126 			 rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag);
3127 
3128 	status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3129 					  iocbq, iocbqrsp, lpfc_cmd->timeout);
3130 	if (status != IOCB_SUCCESS) {
3131 		if (status == IOCB_TIMEDOUT) {
3132 			iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3133 			ret = TIMEOUT_ERROR;
3134 		} else
3135 			ret = FAILED;
3136 		lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3137 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3138 			 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3139 			 lpfc_taskmgmt_name(task_mgmt_cmd),
3140 			 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3141 			 iocbqrsp->iocb.un.ulpWord[4]);
3142 	} else
3143 		ret = SUCCESS;
3144 
3145 	lpfc_sli_release_iocbq(phba, iocbqrsp);
3146 
3147 	if (ret != TIMEOUT_ERROR)
3148 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3149 
3150 	return ret;
3151 }
3152 
3153 /**
3154  * lpfc_chk_tgt_mapped -
3155  * @vport: The virtual port to check on
3156  * @cmnd: Pointer to scsi_cmnd data structure.
3157  *
3158  * This routine delays until the scsi target (aka rport) for the
3159  * command exists (is present and logged in) or we declare it non-existent.
3160  *
3161  * Return code :
3162  *  0x2003 - Error
3163  *  0x2002 - Success
3164  **/
3165 static int
3166 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3167 {
3168 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3169 	struct lpfc_nodelist *pnode = rdata->pnode;
3170 	unsigned long later;
3171 
3172 	/*
3173 	 * If target is not in a MAPPED state, delay until
3174 	 * target is rediscovered or devloss timeout expires.
3175 	 */
3176 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3177 	while (time_after(later, jiffies)) {
3178 		if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3179 			return FAILED;
3180 		if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3181 			return SUCCESS;
3182 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3183 		rdata = cmnd->device->hostdata;
3184 		if (!rdata)
3185 			return FAILED;
3186 		pnode = rdata->pnode;
3187 	}
3188 	if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3189 	    (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3190 		return FAILED;
3191 	return SUCCESS;
3192 }
3193 
3194 /**
3195  * lpfc_reset_flush_io_context -
3196  * @vport: The virtual port (scsi_host) for the flush context
3197  * @tgt_id: If aborting by Target contect - specifies the target id
3198  * @lun_id: If aborting by Lun context - specifies the lun id
3199  * @context: specifies the context level to flush at.
3200  *
3201  * After a reset condition via TMF, we need to flush orphaned i/o
3202  * contexts from the adapter. This routine aborts any contexts
3203  * outstanding, then waits for their completions. The wait is
3204  * bounded by devloss_tmo though.
3205  *
3206  * Return code :
3207  *  0x2003 - Error
3208  *  0x2002 - Success
3209  **/
3210 static int
3211 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3212 			uint64_t lun_id, lpfc_ctx_cmd context)
3213 {
3214 	struct lpfc_hba   *phba = vport->phba;
3215 	unsigned long later;
3216 	int cnt;
3217 
3218 	cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3219 	if (cnt)
3220 		lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3221 				    tgt_id, lun_id, context);
3222 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3223 	while (time_after(later, jiffies) && cnt) {
3224 		schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3225 		cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3226 	}
3227 	if (cnt) {
3228 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3229 			"0724 I/O flush failure for context %s : cnt x%x\n",
3230 			((context == LPFC_CTX_LUN) ? "LUN" :
3231 			 ((context == LPFC_CTX_TGT) ? "TGT" :
3232 			  ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3233 			cnt);
3234 		return FAILED;
3235 	}
3236 	return SUCCESS;
3237 }
3238 
3239 /**
3240  * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3241  * @cmnd: Pointer to scsi_cmnd data structure.
3242  *
3243  * This routine does a device reset by sending a LUN_RESET task management
3244  * command.
3245  *
3246  * Return code :
3247  *  0x2003 - Error
3248  *  0x2002 - Success
3249  **/
3250 static int
3251 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3252 {
3253 	struct Scsi_Host  *shost = cmnd->device->host;
3254 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3255 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3256 	struct lpfc_nodelist *pnode = rdata->pnode;
3257 	unsigned tgt_id = cmnd->device->id;
3258 	unsigned int lun_id = cmnd->device->lun;
3259 	struct lpfc_scsi_event_header scsi_event;
3260 	int status;
3261 
3262 	lpfc_block_error_handler(cmnd);
3263 
3264 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3265 	if (status == FAILED) {
3266 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3267 			"0721 Device Reset rport failure: rdata x%p\n", rdata);
3268 		return FAILED;
3269 	}
3270 
3271 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3272 	scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3273 	scsi_event.lun = lun_id;
3274 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3275 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3276 
3277 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3278 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3279 
3280 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3281 						FCP_LUN_RESET);
3282 
3283 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3284 			 "0713 SCSI layer issued Device Reset (%d, %d) "
3285 			 "return x%x\n", tgt_id, lun_id, status);
3286 
3287 	/*
3288 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3289 	 * or if the TMF failed, they may be in an indeterminate state.
3290 	 * So, continue on.
3291 	 * We will report success if all the i/o aborts successfully.
3292 	 */
3293 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3294 						LPFC_CTX_LUN);
3295 	return status;
3296 }
3297 
3298 /**
3299  * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3300  * @cmnd: Pointer to scsi_cmnd data structure.
3301  *
3302  * This routine does a target reset by sending a TARGET_RESET task management
3303  * command.
3304  *
3305  * Return code :
3306  *  0x2003 - Error
3307  *  0x2002 - Success
3308  **/
3309 static int
3310 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3311 {
3312 	struct Scsi_Host  *shost = cmnd->device->host;
3313 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3314 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3315 	struct lpfc_nodelist *pnode = rdata->pnode;
3316 	unsigned tgt_id = cmnd->device->id;
3317 	unsigned int lun_id = cmnd->device->lun;
3318 	struct lpfc_scsi_event_header scsi_event;
3319 	int status;
3320 
3321 	lpfc_block_error_handler(cmnd);
3322 
3323 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3324 	if (status == FAILED) {
3325 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3326 			"0722 Target Reset rport failure: rdata x%p\n", rdata);
3327 		return FAILED;
3328 	}
3329 
3330 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3331 	scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3332 	scsi_event.lun = 0;
3333 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3334 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3335 
3336 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3337 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3338 
3339 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3340 					FCP_TARGET_RESET);
3341 
3342 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3343 			 "0723 SCSI layer issued Target Reset (%d, %d) "
3344 			 "return x%x\n", tgt_id, lun_id, status);
3345 
3346 	/*
3347 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3348 	 * or if the TMF failed, they may be in an indeterminate state.
3349 	 * So, continue on.
3350 	 * We will report success if all the i/o aborts successfully.
3351 	 */
3352 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3353 					LPFC_CTX_TGT);
3354 	return status;
3355 }
3356 
3357 /**
3358  * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3359  * @cmnd: Pointer to scsi_cmnd data structure.
3360  *
3361  * This routine does target reset to all targets on @cmnd->device->host.
3362  * This emulates Parallel SCSI Bus Reset Semantics.
3363  *
3364  * Return code :
3365  *  0x2003 - Error
3366  *  0x2002 - Success
3367  **/
3368 static int
3369 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3370 {
3371 	struct Scsi_Host  *shost = cmnd->device->host;
3372 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3373 	struct lpfc_nodelist *ndlp = NULL;
3374 	struct lpfc_scsi_event_header scsi_event;
3375 	int match;
3376 	int ret = SUCCESS, status, i;
3377 
3378 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3379 	scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3380 	scsi_event.lun = 0;
3381 	memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3382 	memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3383 
3384 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3385 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3386 
3387 	lpfc_block_error_handler(cmnd);
3388 
3389 	/*
3390 	 * Since the driver manages a single bus device, reset all
3391 	 * targets known to the driver.  Should any target reset
3392 	 * fail, this routine returns failure to the midlayer.
3393 	 */
3394 	for (i = 0; i < LPFC_MAX_TARGET; i++) {
3395 		/* Search for mapped node by target ID */
3396 		match = 0;
3397 		spin_lock_irq(shost->host_lock);
3398 		list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3399 			if (!NLP_CHK_NODE_ACT(ndlp))
3400 				continue;
3401 			if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3402 			    ndlp->nlp_sid == i &&
3403 			    ndlp->rport) {
3404 				match = 1;
3405 				break;
3406 			}
3407 		}
3408 		spin_unlock_irq(shost->host_lock);
3409 		if (!match)
3410 			continue;
3411 
3412 		status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3413 					i, 0, FCP_TARGET_RESET);
3414 
3415 		if (status != SUCCESS) {
3416 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3417 					 "0700 Bus Reset on target %d failed\n",
3418 					 i);
3419 			ret = FAILED;
3420 		}
3421 	}
3422 	/*
3423 	 * We have to clean up i/o as : they may be orphaned by the TMFs
3424 	 * above; or if any of the TMFs failed, they may be in an
3425 	 * indeterminate state.
3426 	 * We will report success if all the i/o aborts successfully.
3427 	 */
3428 
3429 	status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3430 	if (status != SUCCESS)
3431 		ret = FAILED;
3432 
3433 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3434 			 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3435 	return ret;
3436 }
3437 
3438 /**
3439  * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3440  * @sdev: Pointer to scsi_device.
3441  *
3442  * This routine populates the cmds_per_lun count + 2 scsi_bufs into  this host's
3443  * globally available list of scsi buffers. This routine also makes sure scsi
3444  * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3445  * of scsi buffer exists for the lifetime of the driver.
3446  *
3447  * Return codes:
3448  *   non-0 - Error
3449  *   0 - Success
3450  **/
3451 static int
3452 lpfc_slave_alloc(struct scsi_device *sdev)
3453 {
3454 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3455 	struct lpfc_hba   *phba = vport->phba;
3456 	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3457 	uint32_t total = 0;
3458 	uint32_t num_to_alloc = 0;
3459 	int num_allocated = 0;
3460 
3461 	if (!rport || fc_remote_port_chkready(rport))
3462 		return -ENXIO;
3463 
3464 	sdev->hostdata = rport->dd_data;
3465 
3466 	/*
3467 	 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3468 	 * available list of scsi buffers.  Don't allocate more than the
3469 	 * HBA limit conveyed to the midlayer via the host structure.  The
3470 	 * formula accounts for the lun_queue_depth + error handlers + 1
3471 	 * extra.  This list of scsi bufs exists for the lifetime of the driver.
3472 	 */
3473 	total = phba->total_scsi_bufs;
3474 	num_to_alloc = vport->cfg_lun_queue_depth + 2;
3475 
3476 	/* Allow some exchanges to be available always to complete discovery */
3477 	if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3478 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3479 				 "0704 At limitation of %d preallocated "
3480 				 "command buffers\n", total);
3481 		return 0;
3482 	/* Allow some exchanges to be available always to complete discovery */
3483 	} else if (total + num_to_alloc >
3484 		phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3485 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3486 				 "0705 Allocation request of %d "
3487 				 "command buffers will exceed max of %d.  "
3488 				 "Reducing allocation request to %d.\n",
3489 				 num_to_alloc, phba->cfg_hba_queue_depth,
3490 				 (phba->cfg_hba_queue_depth - total));
3491 		num_to_alloc = phba->cfg_hba_queue_depth - total;
3492 	}
3493 	num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3494 	if (num_to_alloc != num_allocated) {
3495 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3496 				 "0708 Allocation request of %d "
3497 				 "command buffers did not succeed.  "
3498 				 "Allocated %d buffers.\n",
3499 				 num_to_alloc, num_allocated);
3500 	}
3501 	return 0;
3502 }
3503 
3504 /**
3505  * lpfc_slave_configure - scsi_host_template slave_configure entry point
3506  * @sdev: Pointer to scsi_device.
3507  *
3508  * This routine configures following items
3509  *   - Tag command queuing support for @sdev if supported.
3510  *   - Dev loss time out value of fc_rport.
3511  *   - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3512  *
3513  * Return codes:
3514  *   0 - Success
3515  **/
3516 static int
3517 lpfc_slave_configure(struct scsi_device *sdev)
3518 {
3519 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3520 	struct lpfc_hba   *phba = vport->phba;
3521 	struct fc_rport   *rport = starget_to_rport(sdev->sdev_target);
3522 
3523 	if (sdev->tagged_supported)
3524 		scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3525 	else
3526 		scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3527 
3528 	/*
3529 	 * Initialize the fc transport attributes for the target
3530 	 * containing this scsi device.  Also note that the driver's
3531 	 * target pointer is stored in the starget_data for the
3532 	 * driver's sysfs entry point functions.
3533 	 */
3534 	rport->dev_loss_tmo = vport->cfg_devloss_tmo;
3535 
3536 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3537 		lpfc_sli_poll_fcp_ring(phba);
3538 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3539 			lpfc_poll_rearm_timer(phba);
3540 	}
3541 
3542 	return 0;
3543 }
3544 
3545 /**
3546  * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3547  * @sdev: Pointer to scsi_device.
3548  *
3549  * This routine sets @sdev hostatdata filed to null.
3550  **/
3551 static void
3552 lpfc_slave_destroy(struct scsi_device *sdev)
3553 {
3554 	sdev->hostdata = NULL;
3555 	return;
3556 }
3557 
3558 
3559 struct scsi_host_template lpfc_template = {
3560 	.module			= THIS_MODULE,
3561 	.name			= LPFC_DRIVER_NAME,
3562 	.info			= lpfc_info,
3563 	.queuecommand		= lpfc_queuecommand,
3564 	.eh_abort_handler	= lpfc_abort_handler,
3565 	.eh_device_reset_handler = lpfc_device_reset_handler,
3566 	.eh_target_reset_handler = lpfc_target_reset_handler,
3567 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3568 	.slave_alloc		= lpfc_slave_alloc,
3569 	.slave_configure	= lpfc_slave_configure,
3570 	.slave_destroy		= lpfc_slave_destroy,
3571 	.scan_finished		= lpfc_scan_finished,
3572 	.this_id		= -1,
3573 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3574 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3575 	.use_clustering		= ENABLE_CLUSTERING,
3576 	.shost_attrs		= lpfc_hba_attrs,
3577 	.max_sectors		= 0xFFFF,
3578 	.vendor_id		= LPFC_NL_VENDOR_ID,
3579 };
3580 
3581 struct scsi_host_template lpfc_vport_template = {
3582 	.module			= THIS_MODULE,
3583 	.name			= LPFC_DRIVER_NAME,
3584 	.info			= lpfc_info,
3585 	.queuecommand		= lpfc_queuecommand,
3586 	.eh_abort_handler	= lpfc_abort_handler,
3587 	.eh_device_reset_handler = lpfc_device_reset_handler,
3588 	.eh_target_reset_handler = lpfc_target_reset_handler,
3589 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3590 	.slave_alloc		= lpfc_slave_alloc,
3591 	.slave_configure	= lpfc_slave_configure,
3592 	.slave_destroy		= lpfc_slave_destroy,
3593 	.scan_finished		= lpfc_scan_finished,
3594 	.this_id		= -1,
3595 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3596 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3597 	.use_clustering		= ENABLE_CLUSTERING,
3598 	.shost_attrs		= lpfc_vport_attrs,
3599 	.max_sectors		= 0xFFFF,
3600 };
3601