1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2011 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <linux/export.h> 25 #include <linux/delay.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_eh.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_tcq.h> 33 #include <scsi/scsi_transport_fc.h> 34 35 #include "lpfc_version.h" 36 #include "lpfc_hw4.h" 37 #include "lpfc_hw.h" 38 #include "lpfc_sli.h" 39 #include "lpfc_sli4.h" 40 #include "lpfc_nl.h" 41 #include "lpfc_disc.h" 42 #include "lpfc_scsi.h" 43 #include "lpfc.h" 44 #include "lpfc_logmsg.h" 45 #include "lpfc_crtn.h" 46 #include "lpfc_vport.h" 47 48 #define LPFC_RESET_WAIT 2 49 #define LPFC_ABORT_WAIT 2 50 51 int _dump_buf_done; 52 53 static char *dif_op_str[] = { 54 "SCSI_PROT_NORMAL", 55 "SCSI_PROT_READ_INSERT", 56 "SCSI_PROT_WRITE_STRIP", 57 "SCSI_PROT_READ_STRIP", 58 "SCSI_PROT_WRITE_INSERT", 59 "SCSI_PROT_READ_PASS", 60 "SCSI_PROT_WRITE_PASS", 61 }; 62 63 struct scsi_dif_tuple { 64 __be16 guard_tag; /* Checksum */ 65 __be16 app_tag; /* Opaque storage */ 66 __be32 ref_tag; /* Target LBA or indirect LBA */ 67 }; 68 69 static void 70 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 71 static void 72 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 73 74 static void 75 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 76 { 77 void *src, *dst; 78 struct scatterlist *sgde = scsi_sglist(cmnd); 79 80 if (!_dump_buf_data) { 81 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 82 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 83 __func__); 84 return; 85 } 86 87 88 if (!sgde) { 89 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 90 "9051 BLKGRD: ERROR: data scatterlist is null\n"); 91 return; 92 } 93 94 dst = (void *) _dump_buf_data; 95 while (sgde) { 96 src = sg_virt(sgde); 97 memcpy(dst, src, sgde->length); 98 dst += sgde->length; 99 sgde = sg_next(sgde); 100 } 101 } 102 103 static void 104 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 105 { 106 void *src, *dst; 107 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 108 109 if (!_dump_buf_dif) { 110 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 111 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 112 __func__); 113 return; 114 } 115 116 if (!sgde) { 117 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 118 "9053 BLKGRD: ERROR: prot scatterlist is null\n"); 119 return; 120 } 121 122 dst = _dump_buf_dif; 123 while (sgde) { 124 src = sg_virt(sgde); 125 memcpy(dst, src, sgde->length); 126 dst += sgde->length; 127 sgde = sg_next(sgde); 128 } 129 } 130 131 /** 132 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 133 * @phba: Pointer to HBA object. 134 * @lpfc_cmd: lpfc scsi command object pointer. 135 * 136 * This function is called from the lpfc_prep_task_mgmt_cmd function to 137 * set the last bit in the response sge entry. 138 **/ 139 static void 140 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 141 struct lpfc_scsi_buf *lpfc_cmd) 142 { 143 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 144 if (sgl) { 145 sgl += 1; 146 sgl->word2 = le32_to_cpu(sgl->word2); 147 bf_set(lpfc_sli4_sge_last, sgl, 1); 148 sgl->word2 = cpu_to_le32(sgl->word2); 149 } 150 } 151 152 /** 153 * lpfc_update_stats - Update statistical data for the command completion 154 * @phba: Pointer to HBA object. 155 * @lpfc_cmd: lpfc scsi command object pointer. 156 * 157 * This function is called when there is a command completion and this 158 * function updates the statistical data for the command completion. 159 **/ 160 static void 161 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 162 { 163 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 164 struct lpfc_nodelist *pnode = rdata->pnode; 165 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 166 unsigned long flags; 167 struct Scsi_Host *shost = cmd->device->host; 168 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 169 unsigned long latency; 170 int i; 171 172 if (cmd->result) 173 return; 174 175 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 176 177 spin_lock_irqsave(shost->host_lock, flags); 178 if (!vport->stat_data_enabled || 179 vport->stat_data_blocked || 180 !pnode || 181 !pnode->lat_data || 182 (phba->bucket_type == LPFC_NO_BUCKET)) { 183 spin_unlock_irqrestore(shost->host_lock, flags); 184 return; 185 } 186 187 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 188 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 189 phba->bucket_step; 190 /* check array subscript bounds */ 191 if (i < 0) 192 i = 0; 193 else if (i >= LPFC_MAX_BUCKET_COUNT) 194 i = LPFC_MAX_BUCKET_COUNT - 1; 195 } else { 196 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 197 if (latency <= (phba->bucket_base + 198 ((1<<i)*phba->bucket_step))) 199 break; 200 } 201 202 pnode->lat_data[i].cmd_count++; 203 spin_unlock_irqrestore(shost->host_lock, flags); 204 } 205 206 /** 207 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 208 * @phba: Pointer to HBA context object. 209 * @vport: Pointer to vport object. 210 * @ndlp: Pointer to FC node associated with the target. 211 * @lun: Lun number of the scsi device. 212 * @old_val: Old value of the queue depth. 213 * @new_val: New value of the queue depth. 214 * 215 * This function sends an event to the mgmt application indicating 216 * there is a change in the scsi device queue depth. 217 **/ 218 static void 219 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 220 struct lpfc_vport *vport, 221 struct lpfc_nodelist *ndlp, 222 uint32_t lun, 223 uint32_t old_val, 224 uint32_t new_val) 225 { 226 struct lpfc_fast_path_event *fast_path_evt; 227 unsigned long flags; 228 229 fast_path_evt = lpfc_alloc_fast_evt(phba); 230 if (!fast_path_evt) 231 return; 232 233 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 234 FC_REG_SCSI_EVENT; 235 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 236 LPFC_EVENT_VARQUEDEPTH; 237 238 /* Report all luns with change in queue depth */ 239 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 240 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 241 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 242 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 243 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 244 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 245 } 246 247 fast_path_evt->un.queue_depth_evt.oldval = old_val; 248 fast_path_evt->un.queue_depth_evt.newval = new_val; 249 fast_path_evt->vport = vport; 250 251 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 252 spin_lock_irqsave(&phba->hbalock, flags); 253 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 254 spin_unlock_irqrestore(&phba->hbalock, flags); 255 lpfc_worker_wake_up(phba); 256 257 return; 258 } 259 260 /** 261 * lpfc_change_queue_depth - Alter scsi device queue depth 262 * @sdev: Pointer the scsi device on which to change the queue depth. 263 * @qdepth: New queue depth to set the sdev to. 264 * @reason: The reason for the queue depth change. 265 * 266 * This function is called by the midlayer and the LLD to alter the queue 267 * depth for a scsi device. This function sets the queue depth to the new 268 * value and sends an event out to log the queue depth change. 269 **/ 270 int 271 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 272 { 273 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 274 struct lpfc_hba *phba = vport->phba; 275 struct lpfc_rport_data *rdata; 276 unsigned long new_queue_depth, old_queue_depth; 277 278 old_queue_depth = sdev->queue_depth; 279 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 280 new_queue_depth = sdev->queue_depth; 281 rdata = sdev->hostdata; 282 if (rdata) 283 lpfc_send_sdev_queuedepth_change_event(phba, vport, 284 rdata->pnode, sdev->lun, 285 old_queue_depth, 286 new_queue_depth); 287 return sdev->queue_depth; 288 } 289 290 /** 291 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 292 * @phba: The Hba for which this call is being executed. 293 * 294 * This routine is called when there is resource error in driver or firmware. 295 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 296 * posts at most 1 event each second. This routine wakes up worker thread of 297 * @phba to process WORKER_RAM_DOWN_EVENT event. 298 * 299 * This routine should be called with no lock held. 300 **/ 301 void 302 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 303 { 304 unsigned long flags; 305 uint32_t evt_posted; 306 307 spin_lock_irqsave(&phba->hbalock, flags); 308 atomic_inc(&phba->num_rsrc_err); 309 phba->last_rsrc_error_time = jiffies; 310 311 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 312 spin_unlock_irqrestore(&phba->hbalock, flags); 313 return; 314 } 315 316 phba->last_ramp_down_time = jiffies; 317 318 spin_unlock_irqrestore(&phba->hbalock, flags); 319 320 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 321 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 322 if (!evt_posted) 323 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 324 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 325 326 if (!evt_posted) 327 lpfc_worker_wake_up(phba); 328 return; 329 } 330 331 /** 332 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 333 * @phba: The Hba for which this call is being executed. 334 * 335 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 336 * post at most 1 event every 5 minute after last_ramp_up_time or 337 * last_rsrc_error_time. This routine wakes up worker thread of @phba 338 * to process WORKER_RAM_DOWN_EVENT event. 339 * 340 * This routine should be called with no lock held. 341 **/ 342 static inline void 343 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 344 uint32_t queue_depth) 345 { 346 unsigned long flags; 347 struct lpfc_hba *phba = vport->phba; 348 uint32_t evt_posted; 349 atomic_inc(&phba->num_cmd_success); 350 351 if (vport->cfg_lun_queue_depth <= queue_depth) 352 return; 353 spin_lock_irqsave(&phba->hbalock, flags); 354 if (time_before(jiffies, 355 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || 356 time_before(jiffies, 357 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { 358 spin_unlock_irqrestore(&phba->hbalock, flags); 359 return; 360 } 361 phba->last_ramp_up_time = jiffies; 362 spin_unlock_irqrestore(&phba->hbalock, flags); 363 364 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 365 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 366 if (!evt_posted) 367 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 368 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 369 370 if (!evt_posted) 371 lpfc_worker_wake_up(phba); 372 return; 373 } 374 375 /** 376 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 377 * @phba: The Hba for which this call is being executed. 378 * 379 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 380 * thread.This routine reduces queue depth for all scsi device on each vport 381 * associated with @phba. 382 **/ 383 void 384 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 385 { 386 struct lpfc_vport **vports; 387 struct Scsi_Host *shost; 388 struct scsi_device *sdev; 389 unsigned long new_queue_depth; 390 unsigned long num_rsrc_err, num_cmd_success; 391 int i; 392 393 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 394 num_cmd_success = atomic_read(&phba->num_cmd_success); 395 396 vports = lpfc_create_vport_work_array(phba); 397 if (vports != NULL) 398 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 399 shost = lpfc_shost_from_vport(vports[i]); 400 shost_for_each_device(sdev, shost) { 401 new_queue_depth = 402 sdev->queue_depth * num_rsrc_err / 403 (num_rsrc_err + num_cmd_success); 404 if (!new_queue_depth) 405 new_queue_depth = sdev->queue_depth - 1; 406 else 407 new_queue_depth = sdev->queue_depth - 408 new_queue_depth; 409 lpfc_change_queue_depth(sdev, new_queue_depth, 410 SCSI_QDEPTH_DEFAULT); 411 } 412 } 413 lpfc_destroy_vport_work_array(phba, vports); 414 atomic_set(&phba->num_rsrc_err, 0); 415 atomic_set(&phba->num_cmd_success, 0); 416 } 417 418 /** 419 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 420 * @phba: The Hba for which this call is being executed. 421 * 422 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 423 * thread.This routine increases queue depth for all scsi device on each vport 424 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 425 * num_cmd_success to zero. 426 **/ 427 void 428 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 429 { 430 struct lpfc_vport **vports; 431 struct Scsi_Host *shost; 432 struct scsi_device *sdev; 433 int i; 434 435 vports = lpfc_create_vport_work_array(phba); 436 if (vports != NULL) 437 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 438 shost = lpfc_shost_from_vport(vports[i]); 439 shost_for_each_device(sdev, shost) { 440 if (vports[i]->cfg_lun_queue_depth <= 441 sdev->queue_depth) 442 continue; 443 lpfc_change_queue_depth(sdev, 444 sdev->queue_depth+1, 445 SCSI_QDEPTH_RAMP_UP); 446 } 447 } 448 lpfc_destroy_vport_work_array(phba, vports); 449 atomic_set(&phba->num_rsrc_err, 0); 450 atomic_set(&phba->num_cmd_success, 0); 451 } 452 453 /** 454 * lpfc_scsi_dev_block - set all scsi hosts to block state 455 * @phba: Pointer to HBA context object. 456 * 457 * This function walks vport list and set each SCSI host to block state 458 * by invoking fc_remote_port_delete() routine. This function is invoked 459 * with EEH when device's PCI slot has been permanently disabled. 460 **/ 461 void 462 lpfc_scsi_dev_block(struct lpfc_hba *phba) 463 { 464 struct lpfc_vport **vports; 465 struct Scsi_Host *shost; 466 struct scsi_device *sdev; 467 struct fc_rport *rport; 468 int i; 469 470 vports = lpfc_create_vport_work_array(phba); 471 if (vports != NULL) 472 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 473 shost = lpfc_shost_from_vport(vports[i]); 474 shost_for_each_device(sdev, shost) { 475 rport = starget_to_rport(scsi_target(sdev)); 476 fc_remote_port_delete(rport); 477 } 478 } 479 lpfc_destroy_vport_work_array(phba, vports); 480 } 481 482 /** 483 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 484 * @vport: The virtual port for which this call being executed. 485 * @num_to_allocate: The requested number of buffers to allocate. 486 * 487 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 488 * the scsi buffer contains all the necessary information needed to initiate 489 * a SCSI I/O. The non-DMAable buffer region contains information to build 490 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 491 * and the initial BPL. In addition to allocating memory, the FCP CMND and 492 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 493 * 494 * Return codes: 495 * int - number of scsi buffers that were allocated. 496 * 0 = failure, less than num_to_alloc is a partial failure. 497 **/ 498 static int 499 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 500 { 501 struct lpfc_hba *phba = vport->phba; 502 struct lpfc_scsi_buf *psb; 503 struct ulp_bde64 *bpl; 504 IOCB_t *iocb; 505 dma_addr_t pdma_phys_fcp_cmd; 506 dma_addr_t pdma_phys_fcp_rsp; 507 dma_addr_t pdma_phys_bpl; 508 uint16_t iotag; 509 int bcnt; 510 511 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 512 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 513 if (!psb) 514 break; 515 516 /* 517 * Get memory from the pci pool to map the virt space to pci 518 * bus space for an I/O. The DMA buffer includes space for the 519 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 520 * necessary to support the sg_tablesize. 521 */ 522 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 523 GFP_KERNEL, &psb->dma_handle); 524 if (!psb->data) { 525 kfree(psb); 526 break; 527 } 528 529 /* Initialize virtual ptrs to dma_buf region. */ 530 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 531 532 /* Allocate iotag for psb->cur_iocbq. */ 533 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 534 if (iotag == 0) { 535 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 536 psb->data, psb->dma_handle); 537 kfree(psb); 538 break; 539 } 540 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 541 542 psb->fcp_cmnd = psb->data; 543 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 544 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 545 sizeof(struct fcp_rsp); 546 547 /* Initialize local short-hand pointers. */ 548 bpl = psb->fcp_bpl; 549 pdma_phys_fcp_cmd = psb->dma_handle; 550 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 551 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 552 sizeof(struct fcp_rsp); 553 554 /* 555 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 556 * are sg list bdes. Initialize the first two and leave the 557 * rest for queuecommand. 558 */ 559 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 560 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 561 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 562 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 563 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 564 565 /* Setup the physical region for the FCP RSP */ 566 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 567 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 568 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 569 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 570 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 571 572 /* 573 * Since the IOCB for the FCP I/O is built into this 574 * lpfc_scsi_buf, initialize it with all known data now. 575 */ 576 iocb = &psb->cur_iocbq.iocb; 577 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 578 if ((phba->sli_rev == 3) && 579 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 580 /* fill in immediate fcp command BDE */ 581 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 582 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 583 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 584 unsli3.fcp_ext.icd); 585 iocb->un.fcpi64.bdl.addrHigh = 0; 586 iocb->ulpBdeCount = 0; 587 iocb->ulpLe = 0; 588 /* fill in response BDE */ 589 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 590 BUFF_TYPE_BDE_64; 591 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 592 sizeof(struct fcp_rsp); 593 iocb->unsli3.fcp_ext.rbde.addrLow = 594 putPaddrLow(pdma_phys_fcp_rsp); 595 iocb->unsli3.fcp_ext.rbde.addrHigh = 596 putPaddrHigh(pdma_phys_fcp_rsp); 597 } else { 598 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 599 iocb->un.fcpi64.bdl.bdeSize = 600 (2 * sizeof(struct ulp_bde64)); 601 iocb->un.fcpi64.bdl.addrLow = 602 putPaddrLow(pdma_phys_bpl); 603 iocb->un.fcpi64.bdl.addrHigh = 604 putPaddrHigh(pdma_phys_bpl); 605 iocb->ulpBdeCount = 1; 606 iocb->ulpLe = 1; 607 } 608 iocb->ulpClass = CLASS3; 609 psb->status = IOSTAT_SUCCESS; 610 /* Put it back into the SCSI buffer list */ 611 psb->cur_iocbq.context1 = psb; 612 lpfc_release_scsi_buf_s3(phba, psb); 613 614 } 615 616 return bcnt; 617 } 618 619 /** 620 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport 621 * @vport: pointer to lpfc vport data structure. 622 * 623 * This routine is invoked by the vport cleanup for deletions and the cleanup 624 * for an ndlp on removal. 625 **/ 626 void 627 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport) 628 { 629 struct lpfc_hba *phba = vport->phba; 630 struct lpfc_scsi_buf *psb, *next_psb; 631 unsigned long iflag = 0; 632 633 spin_lock_irqsave(&phba->hbalock, iflag); 634 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 635 list_for_each_entry_safe(psb, next_psb, 636 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 637 if (psb->rdata && psb->rdata->pnode 638 && psb->rdata->pnode->vport == vport) 639 psb->rdata = NULL; 640 } 641 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 642 spin_unlock_irqrestore(&phba->hbalock, iflag); 643 } 644 645 /** 646 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 647 * @phba: pointer to lpfc hba data structure. 648 * @axri: pointer to the fcp xri abort wcqe structure. 649 * 650 * This routine is invoked by the worker thread to process a SLI4 fast-path 651 * FCP aborted xri. 652 **/ 653 void 654 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 655 struct sli4_wcqe_xri_aborted *axri) 656 { 657 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 658 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 659 struct lpfc_scsi_buf *psb, *next_psb; 660 unsigned long iflag = 0; 661 struct lpfc_iocbq *iocbq; 662 int i; 663 struct lpfc_nodelist *ndlp; 664 int rrq_empty = 0; 665 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 666 667 spin_lock_irqsave(&phba->hbalock, iflag); 668 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 669 list_for_each_entry_safe(psb, next_psb, 670 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 671 if (psb->cur_iocbq.sli4_xritag == xri) { 672 list_del(&psb->list); 673 psb->exch_busy = 0; 674 psb->status = IOSTAT_SUCCESS; 675 spin_unlock( 676 &phba->sli4_hba.abts_scsi_buf_list_lock); 677 if (psb->rdata && psb->rdata->pnode) 678 ndlp = psb->rdata->pnode; 679 else 680 ndlp = NULL; 681 682 rrq_empty = list_empty(&phba->active_rrq_list); 683 spin_unlock_irqrestore(&phba->hbalock, iflag); 684 if (ndlp) { 685 lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1); 686 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 687 } 688 lpfc_release_scsi_buf_s4(phba, psb); 689 if (rrq_empty) 690 lpfc_worker_wake_up(phba); 691 return; 692 } 693 } 694 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 695 for (i = 1; i <= phba->sli.last_iotag; i++) { 696 iocbq = phba->sli.iocbq_lookup[i]; 697 698 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 699 (iocbq->iocb_flag & LPFC_IO_LIBDFC)) 700 continue; 701 if (iocbq->sli4_xritag != xri) 702 continue; 703 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 704 psb->exch_busy = 0; 705 spin_unlock_irqrestore(&phba->hbalock, iflag); 706 if (pring->txq_cnt) 707 lpfc_worker_wake_up(phba); 708 return; 709 710 } 711 spin_unlock_irqrestore(&phba->hbalock, iflag); 712 } 713 714 /** 715 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 716 * @phba: pointer to lpfc hba data structure. 717 * 718 * This routine walks the list of scsi buffers that have been allocated and 719 * repost them to the HBA by using SGL block post. This is needed after a 720 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 721 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 722 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 723 * 724 * Returns: 0 = success, non-zero failure. 725 **/ 726 int 727 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 728 { 729 struct lpfc_scsi_buf *psb; 730 int index, status, bcnt = 0, rcnt = 0, rc = 0; 731 LIST_HEAD(sblist); 732 733 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 734 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 735 if (psb) { 736 /* Remove from SCSI buffer list */ 737 list_del(&psb->list); 738 /* Add it to a local SCSI buffer list */ 739 list_add_tail(&psb->list, &sblist); 740 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 741 bcnt = rcnt; 742 rcnt = 0; 743 } 744 } else 745 /* A hole present in the XRI array, need to skip */ 746 bcnt = rcnt; 747 748 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 749 /* End of XRI array for SCSI buffer, complete */ 750 bcnt = rcnt; 751 752 /* Continue until collect up to a nembed page worth of sgls */ 753 if (bcnt == 0) 754 continue; 755 /* Now, post the SCSI buffer list sgls as a block */ 756 if (!phba->sli4_hba.extents_in_use) 757 status = lpfc_sli4_post_scsi_sgl_block(phba, 758 &sblist, 759 bcnt); 760 else 761 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, 762 &sblist, 763 bcnt); 764 /* Reset SCSI buffer count for next round of posting */ 765 bcnt = 0; 766 while (!list_empty(&sblist)) { 767 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 768 list); 769 if (status) { 770 /* Put this back on the abort scsi list */ 771 psb->exch_busy = 1; 772 rc++; 773 } else { 774 psb->exch_busy = 0; 775 psb->status = IOSTAT_SUCCESS; 776 } 777 /* Put it back into the SCSI buffer list */ 778 lpfc_release_scsi_buf_s4(phba, psb); 779 } 780 } 781 return rc; 782 } 783 784 /** 785 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 786 * @vport: The virtual port for which this call being executed. 787 * @num_to_allocate: The requested number of buffers to allocate. 788 * 789 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 790 * the scsi buffer contains all the necessary information needed to initiate 791 * a SCSI I/O. 792 * 793 * Return codes: 794 * int - number of scsi buffers that were allocated. 795 * 0 = failure, less than num_to_alloc is a partial failure. 796 **/ 797 static int 798 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 799 { 800 struct lpfc_hba *phba = vport->phba; 801 struct lpfc_scsi_buf *psb; 802 struct sli4_sge *sgl; 803 IOCB_t *iocb; 804 dma_addr_t pdma_phys_fcp_cmd; 805 dma_addr_t pdma_phys_fcp_rsp; 806 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 807 uint16_t iotag, last_xritag = NO_XRI, lxri = 0; 808 int status = 0, index; 809 int bcnt; 810 int non_sequential_xri = 0; 811 LIST_HEAD(sblist); 812 813 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 814 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 815 if (!psb) 816 break; 817 818 /* 819 * Get memory from the pci pool to map the virt space to pci bus 820 * space for an I/O. The DMA buffer includes space for the 821 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 822 * necessary to support the sg_tablesize. 823 */ 824 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 825 GFP_KERNEL, &psb->dma_handle); 826 if (!psb->data) { 827 kfree(psb); 828 break; 829 } 830 831 /* Initialize virtual ptrs to dma_buf region. */ 832 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 833 834 /* Allocate iotag for psb->cur_iocbq. */ 835 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 836 if (iotag == 0) { 837 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 838 psb->data, psb->dma_handle); 839 kfree(psb); 840 break; 841 } 842 843 lxri = lpfc_sli4_next_xritag(phba); 844 if (lxri == NO_XRI) { 845 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 846 psb->data, psb->dma_handle); 847 kfree(psb); 848 break; 849 } 850 psb->cur_iocbq.sli4_lxritag = lxri; 851 psb->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 852 if (last_xritag != NO_XRI 853 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 854 non_sequential_xri = 1; 855 } else 856 list_add_tail(&psb->list, &sblist); 857 last_xritag = psb->cur_iocbq.sli4_xritag; 858 859 index = phba->sli4_hba.scsi_xri_cnt++; 860 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 861 862 psb->fcp_bpl = psb->data; 863 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 864 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 865 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 866 sizeof(struct fcp_cmnd)); 867 868 /* Initialize local short-hand pointers. */ 869 sgl = (struct sli4_sge *)psb->fcp_bpl; 870 pdma_phys_bpl = psb->dma_handle; 871 pdma_phys_fcp_cmd = 872 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 873 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 874 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 875 876 /* 877 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 878 * are sg list bdes. Initialize the first two and leave the 879 * rest for queuecommand. 880 */ 881 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 882 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 883 sgl->word2 = le32_to_cpu(sgl->word2); 884 bf_set(lpfc_sli4_sge_last, sgl, 0); 885 sgl->word2 = cpu_to_le32(sgl->word2); 886 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); 887 sgl++; 888 889 /* Setup the physical region for the FCP RSP */ 890 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 891 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 892 sgl->word2 = le32_to_cpu(sgl->word2); 893 bf_set(lpfc_sli4_sge_last, sgl, 1); 894 sgl->word2 = cpu_to_le32(sgl->word2); 895 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); 896 897 /* 898 * Since the IOCB for the FCP I/O is built into this 899 * lpfc_scsi_buf, initialize it with all known data now. 900 */ 901 iocb = &psb->cur_iocbq.iocb; 902 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 903 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 904 /* setting the BLP size to 2 * sizeof BDE may not be correct. 905 * We are setting the bpl to point to out sgl. An sgl's 906 * entries are 16 bytes, a bpl entries are 12 bytes. 907 */ 908 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 909 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 910 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 911 iocb->ulpBdeCount = 1; 912 iocb->ulpLe = 1; 913 iocb->ulpClass = CLASS3; 914 psb->cur_iocbq.context1 = psb; 915 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 916 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 917 else 918 pdma_phys_bpl1 = 0; 919 psb->dma_phys_bpl = pdma_phys_bpl; 920 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 921 if (non_sequential_xri) { 922 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 923 pdma_phys_bpl1, 924 psb->cur_iocbq.sli4_xritag); 925 if (status) { 926 /* Put this back on the abort scsi list */ 927 psb->exch_busy = 1; 928 } else { 929 psb->exch_busy = 0; 930 psb->status = IOSTAT_SUCCESS; 931 } 932 /* Put it back into the SCSI buffer list */ 933 lpfc_release_scsi_buf_s4(phba, psb); 934 break; 935 } 936 } 937 if (bcnt) { 938 if (!phba->sli4_hba.extents_in_use) 939 status = lpfc_sli4_post_scsi_sgl_block(phba, 940 &sblist, 941 bcnt); 942 else 943 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, 944 &sblist, 945 bcnt); 946 947 if (status) { 948 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 949 "3021 SCSI SGL post error %d\n", 950 status); 951 bcnt = 0; 952 } 953 /* Reset SCSI buffer count for next round of posting */ 954 while (!list_empty(&sblist)) { 955 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 956 list); 957 if (status) { 958 /* Put this back on the abort scsi list */ 959 psb->exch_busy = 1; 960 } else { 961 psb->exch_busy = 0; 962 psb->status = IOSTAT_SUCCESS; 963 } 964 /* Put it back into the SCSI buffer list */ 965 lpfc_release_scsi_buf_s4(phba, psb); 966 } 967 } 968 969 return bcnt + non_sequential_xri; 970 } 971 972 /** 973 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 974 * @vport: The virtual port for which this call being executed. 975 * @num_to_allocate: The requested number of buffers to allocate. 976 * 977 * This routine wraps the actual SCSI buffer allocator function pointer from 978 * the lpfc_hba struct. 979 * 980 * Return codes: 981 * int - number of scsi buffers that were allocated. 982 * 0 = failure, less than num_to_alloc is a partial failure. 983 **/ 984 static inline int 985 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 986 { 987 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 988 } 989 990 /** 991 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 992 * @phba: The HBA for which this call is being executed. 993 * 994 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 995 * and returns to caller. 996 * 997 * Return codes: 998 * NULL - Error 999 * Pointer to lpfc_scsi_buf - Success 1000 **/ 1001 static struct lpfc_scsi_buf* 1002 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1003 { 1004 struct lpfc_scsi_buf * lpfc_cmd = NULL; 1005 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 1006 unsigned long iflag = 0; 1007 1008 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1009 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 1010 if (lpfc_cmd) { 1011 lpfc_cmd->seg_cnt = 0; 1012 lpfc_cmd->nonsg_phys = 0; 1013 lpfc_cmd->prot_seg_cnt = 0; 1014 } 1015 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1016 return lpfc_cmd; 1017 } 1018 /** 1019 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 1020 * @phba: The HBA for which this call is being executed. 1021 * 1022 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 1023 * and returns to caller. 1024 * 1025 * Return codes: 1026 * NULL - Error 1027 * Pointer to lpfc_scsi_buf - Success 1028 **/ 1029 static struct lpfc_scsi_buf* 1030 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1031 { 1032 struct lpfc_scsi_buf *lpfc_cmd ; 1033 unsigned long iflag = 0; 1034 int found = 0; 1035 1036 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1037 list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list, 1038 list) { 1039 if (lpfc_test_rrq_active(phba, ndlp, 1040 lpfc_cmd->cur_iocbq.sli4_xritag)) 1041 continue; 1042 list_del(&lpfc_cmd->list); 1043 found = 1; 1044 lpfc_cmd->seg_cnt = 0; 1045 lpfc_cmd->nonsg_phys = 0; 1046 lpfc_cmd->prot_seg_cnt = 0; 1047 break; 1048 } 1049 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, 1050 iflag); 1051 if (!found) 1052 return NULL; 1053 else 1054 return lpfc_cmd; 1055 } 1056 /** 1057 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 1058 * @phba: The HBA for which this call is being executed. 1059 * 1060 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 1061 * and returns to caller. 1062 * 1063 * Return codes: 1064 * NULL - Error 1065 * Pointer to lpfc_scsi_buf - Success 1066 **/ 1067 static struct lpfc_scsi_buf* 1068 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1069 { 1070 return phba->lpfc_get_scsi_buf(phba, ndlp); 1071 } 1072 1073 /** 1074 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 1075 * @phba: The Hba for which this call is being executed. 1076 * @psb: The scsi buffer which is being released. 1077 * 1078 * This routine releases @psb scsi buffer by adding it to tail of @phba 1079 * lpfc_scsi_buf_list list. 1080 **/ 1081 static void 1082 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1083 { 1084 unsigned long iflag = 0; 1085 1086 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1087 psb->pCmd = NULL; 1088 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1089 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1090 } 1091 1092 /** 1093 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 1094 * @phba: The Hba for which this call is being executed. 1095 * @psb: The scsi buffer which is being released. 1096 * 1097 * This routine releases @psb scsi buffer by adding it to tail of @phba 1098 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 1099 * and cannot be reused for at least RA_TOV amount of time if it was 1100 * aborted. 1101 **/ 1102 static void 1103 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1104 { 1105 unsigned long iflag = 0; 1106 1107 if (psb->exch_busy) { 1108 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 1109 iflag); 1110 psb->pCmd = NULL; 1111 list_add_tail(&psb->list, 1112 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 1113 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 1114 iflag); 1115 } else { 1116 1117 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1118 psb->pCmd = NULL; 1119 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1120 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1121 } 1122 } 1123 1124 /** 1125 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 1126 * @phba: The Hba for which this call is being executed. 1127 * @psb: The scsi buffer which is being released. 1128 * 1129 * This routine releases @psb scsi buffer by adding it to tail of @phba 1130 * lpfc_scsi_buf_list list. 1131 **/ 1132 static void 1133 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1134 { 1135 1136 phba->lpfc_release_scsi_buf(phba, psb); 1137 } 1138 1139 /** 1140 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 1141 * @phba: The Hba for which this call is being executed. 1142 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1143 * 1144 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1145 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 1146 * through sg elements and format the bdea. This routine also initializes all 1147 * IOCB fields which are dependent on scsi command request buffer. 1148 * 1149 * Return codes: 1150 * 1 - Error 1151 * 0 - Success 1152 **/ 1153 static int 1154 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1155 { 1156 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1157 struct scatterlist *sgel = NULL; 1158 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1159 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1160 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; 1161 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1162 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1163 dma_addr_t physaddr; 1164 uint32_t num_bde = 0; 1165 int nseg, datadir = scsi_cmnd->sc_data_direction; 1166 1167 /* 1168 * There are three possibilities here - use scatter-gather segment, use 1169 * the single mapping, or neither. Start the lpfc command prep by 1170 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1171 * data bde entry. 1172 */ 1173 bpl += 2; 1174 if (scsi_sg_count(scsi_cmnd)) { 1175 /* 1176 * The driver stores the segment count returned from pci_map_sg 1177 * because this a count of dma-mappings used to map the use_sg 1178 * pages. They are not guaranteed to be the same for those 1179 * architectures that implement an IOMMU. 1180 */ 1181 1182 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1183 scsi_sg_count(scsi_cmnd), datadir); 1184 if (unlikely(!nseg)) 1185 return 1; 1186 1187 lpfc_cmd->seg_cnt = nseg; 1188 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1189 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1190 "9064 BLKGRD: %s: Too many sg segments from " 1191 "dma_map_sg. Config %d, seg_cnt %d\n", 1192 __func__, phba->cfg_sg_seg_cnt, 1193 lpfc_cmd->seg_cnt); 1194 scsi_dma_unmap(scsi_cmnd); 1195 return 1; 1196 } 1197 1198 /* 1199 * The driver established a maximum scatter-gather segment count 1200 * during probe that limits the number of sg elements in any 1201 * single scsi command. Just run through the seg_cnt and format 1202 * the bde's. 1203 * When using SLI-3 the driver will try to fit all the BDEs into 1204 * the IOCB. If it can't then the BDEs get added to a BPL as it 1205 * does for SLI-2 mode. 1206 */ 1207 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1208 physaddr = sg_dma_address(sgel); 1209 if (phba->sli_rev == 3 && 1210 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1211 !(iocbq->iocb_flag & DSS_SECURITY_OP) && 1212 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1213 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1214 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1215 data_bde->addrLow = putPaddrLow(physaddr); 1216 data_bde->addrHigh = putPaddrHigh(physaddr); 1217 data_bde++; 1218 } else { 1219 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1220 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1221 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1222 bpl->addrLow = 1223 le32_to_cpu(putPaddrLow(physaddr)); 1224 bpl->addrHigh = 1225 le32_to_cpu(putPaddrHigh(physaddr)); 1226 bpl++; 1227 } 1228 } 1229 } 1230 1231 /* 1232 * Finish initializing those IOCB fields that are dependent on the 1233 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1234 * explicitly reinitialized and for SLI-3 the extended bde count is 1235 * explicitly reinitialized since all iocb memory resources are reused. 1236 */ 1237 if (phba->sli_rev == 3 && 1238 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1239 !(iocbq->iocb_flag & DSS_SECURITY_OP)) { 1240 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1241 /* 1242 * The extended IOCB format can only fit 3 BDE or a BPL. 1243 * This I/O has more than 3 BDE so the 1st data bde will 1244 * be a BPL that is filled in here. 1245 */ 1246 physaddr = lpfc_cmd->dma_handle; 1247 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1248 data_bde->tus.f.bdeSize = (num_bde * 1249 sizeof(struct ulp_bde64)); 1250 physaddr += (sizeof(struct fcp_cmnd) + 1251 sizeof(struct fcp_rsp) + 1252 (2 * sizeof(struct ulp_bde64))); 1253 data_bde->addrHigh = putPaddrHigh(physaddr); 1254 data_bde->addrLow = putPaddrLow(physaddr); 1255 /* ebde count includes the response bde and data bpl */ 1256 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1257 } else { 1258 /* ebde count includes the response bde and data bdes */ 1259 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1260 } 1261 } else { 1262 iocb_cmd->un.fcpi64.bdl.bdeSize = 1263 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1264 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1265 } 1266 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1267 1268 /* 1269 * Due to difference in data length between DIF/non-DIF paths, 1270 * we need to set word 4 of IOCB here 1271 */ 1272 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1273 return 0; 1274 } 1275 1276 static inline unsigned 1277 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1278 { 1279 return sc->device->sector_size; 1280 } 1281 1282 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1283 /* 1284 * Given a scsi cmnd, determine the BlockGuard tags to be used with it 1285 * @sc: The SCSI command to examine 1286 * @reftag: (out) BlockGuard reference tag for transmitted data 1287 * @apptag: (out) BlockGuard application tag for transmitted data 1288 * @new_guard (in) Value to replace CRC with if needed 1289 * 1290 * Returns (1) if error injection was performed, (0) otherwise 1291 */ 1292 static int 1293 lpfc_bg_err_inject(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1294 uint32_t *reftag, uint16_t *apptag, uint32_t new_guard) 1295 { 1296 struct scatterlist *sgpe; /* s/g prot entry */ 1297 struct scatterlist *sgde; /* s/g data entry */ 1298 struct scsi_dif_tuple *src; 1299 uint32_t op = scsi_get_prot_op(sc); 1300 uint32_t blksize; 1301 uint32_t numblks; 1302 sector_t lba; 1303 int rc = 0; 1304 1305 if (op == SCSI_PROT_NORMAL) 1306 return 0; 1307 1308 lba = scsi_get_lba(sc); 1309 if (phba->lpfc_injerr_lba != LPFC_INJERR_LBA_OFF) { 1310 blksize = lpfc_cmd_blksize(sc); 1311 numblks = (scsi_bufflen(sc) + blksize - 1) / blksize; 1312 1313 /* Make sure we have the right LBA if one is specified */ 1314 if ((phba->lpfc_injerr_lba < lba) || 1315 (phba->lpfc_injerr_lba >= (lba + numblks))) 1316 return 0; 1317 } 1318 1319 sgpe = scsi_prot_sglist(sc); 1320 sgde = scsi_sglist(sc); 1321 1322 /* Should we change the Reference Tag */ 1323 if (reftag) { 1324 /* 1325 * If we are SCSI_PROT_WRITE_STRIP, the protection data is 1326 * being stripped from the wire, thus it doesn't matter. 1327 */ 1328 if ((op == SCSI_PROT_WRITE_PASS) || 1329 (op == SCSI_PROT_WRITE_INSERT)) { 1330 if (phba->lpfc_injerr_wref_cnt) { 1331 1332 /* DEADBEEF will be the reftag on the wire */ 1333 *reftag = 0xDEADBEEF; 1334 phba->lpfc_injerr_wref_cnt--; 1335 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1336 rc = 1; 1337 1338 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1339 "9081 BLKGRD: Injecting reftag error: " 1340 "write lba x%lx\n", (unsigned long)lba); 1341 } 1342 } else { 1343 if (phba->lpfc_injerr_rref_cnt) { 1344 *reftag = 0xDEADBEEF; 1345 phba->lpfc_injerr_rref_cnt--; 1346 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1347 rc = 1; 1348 1349 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1350 "9076 BLKGRD: Injecting reftag error: " 1351 "read lba x%lx\n", (unsigned long)lba); 1352 } 1353 } 1354 } 1355 1356 /* Should we change the Application Tag */ 1357 if (apptag) { 1358 /* 1359 * If we are SCSI_PROT_WRITE_STRIP, the protection data is 1360 * being stripped from the wire, thus it doesn't matter. 1361 */ 1362 if ((op == SCSI_PROT_WRITE_PASS) || 1363 (op == SCSI_PROT_WRITE_INSERT)) { 1364 if (phba->lpfc_injerr_wapp_cnt) { 1365 1366 /* DEAD will be the apptag on the wire */ 1367 *apptag = 0xDEAD; 1368 phba->lpfc_injerr_wapp_cnt--; 1369 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1370 rc = 1; 1371 1372 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1373 "9077 BLKGRD: Injecting apptag error: " 1374 "write lba x%lx\n", (unsigned long)lba); 1375 } 1376 } else { 1377 if (phba->lpfc_injerr_rapp_cnt) { 1378 *apptag = 0xDEAD; 1379 phba->lpfc_injerr_rapp_cnt--; 1380 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1381 rc = 1; 1382 1383 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1384 "9078 BLKGRD: Injecting apptag error: " 1385 "read lba x%lx\n", (unsigned long)lba); 1386 } 1387 } 1388 } 1389 1390 /* Should we change the Guard Tag */ 1391 1392 /* 1393 * If we are SCSI_PROT_WRITE_INSERT, the protection data is 1394 * being on the wire is being fully generated on the HBA. 1395 * The host cannot change it or force an error. 1396 */ 1397 if (((op == SCSI_PROT_WRITE_STRIP) || 1398 (op == SCSI_PROT_WRITE_PASS)) && 1399 phba->lpfc_injerr_wgrd_cnt) { 1400 if (sgpe) { 1401 src = (struct scsi_dif_tuple *)sg_virt(sgpe); 1402 /* 1403 * Just inject an error in the first 1404 * prot block. 1405 */ 1406 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1407 "9079 BLKGRD: Injecting guard error: " 1408 "write lba x%lx oldGuard x%x refTag x%x\n", 1409 (unsigned long)lba, src->guard_tag, 1410 src->ref_tag); 1411 1412 src->guard_tag = (uint16_t)new_guard; 1413 phba->lpfc_injerr_wgrd_cnt--; 1414 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1415 rc = 1; 1416 1417 } else { 1418 blksize = lpfc_cmd_blksize(sc); 1419 /* 1420 * Jump past the first data block 1421 * and inject an error in the 1422 * prot data. The prot data is already 1423 * embedded after the regular data. 1424 */ 1425 src = (struct scsi_dif_tuple *) 1426 (sg_virt(sgde) + blksize); 1427 1428 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1429 "9080 BLKGRD: Injecting guard error: " 1430 "write lba x%lx oldGuard x%x refTag x%x\n", 1431 (unsigned long)lba, src->guard_tag, 1432 src->ref_tag); 1433 1434 src->guard_tag = (uint16_t)new_guard; 1435 phba->lpfc_injerr_wgrd_cnt--; 1436 phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; 1437 rc = 1; 1438 } 1439 } 1440 return rc; 1441 } 1442 #endif 1443 1444 /* 1445 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it 1446 * @sc: The SCSI command to examine 1447 * @txopt: (out) BlockGuard operation for transmitted data 1448 * @rxopt: (out) BlockGuard operation for received data 1449 * 1450 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined 1451 * 1452 */ 1453 static int 1454 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1455 uint8_t *txop, uint8_t *rxop) 1456 { 1457 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1458 uint8_t ret = 0; 1459 1460 if (guard_type == SHOST_DIX_GUARD_IP) { 1461 switch (scsi_get_prot_op(sc)) { 1462 case SCSI_PROT_READ_INSERT: 1463 case SCSI_PROT_WRITE_STRIP: 1464 *txop = BG_OP_IN_CSUM_OUT_NODIF; 1465 *rxop = BG_OP_IN_NODIF_OUT_CSUM; 1466 break; 1467 1468 case SCSI_PROT_READ_STRIP: 1469 case SCSI_PROT_WRITE_INSERT: 1470 *txop = BG_OP_IN_NODIF_OUT_CRC; 1471 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1472 break; 1473 1474 case SCSI_PROT_READ_PASS: 1475 case SCSI_PROT_WRITE_PASS: 1476 *txop = BG_OP_IN_CSUM_OUT_CRC; 1477 *rxop = BG_OP_IN_CRC_OUT_CSUM; 1478 break; 1479 1480 case SCSI_PROT_NORMAL: 1481 default: 1482 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1483 "9063 BLKGRD: Bad op/guard:%d/IP combination\n", 1484 scsi_get_prot_op(sc)); 1485 ret = 1; 1486 break; 1487 1488 } 1489 } else { 1490 switch (scsi_get_prot_op(sc)) { 1491 case SCSI_PROT_READ_STRIP: 1492 case SCSI_PROT_WRITE_INSERT: 1493 *txop = BG_OP_IN_NODIF_OUT_CRC; 1494 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1495 break; 1496 1497 case SCSI_PROT_READ_PASS: 1498 case SCSI_PROT_WRITE_PASS: 1499 *txop = BG_OP_IN_CRC_OUT_CRC; 1500 *rxop = BG_OP_IN_CRC_OUT_CRC; 1501 break; 1502 1503 case SCSI_PROT_READ_INSERT: 1504 case SCSI_PROT_WRITE_STRIP: 1505 *txop = BG_OP_IN_CRC_OUT_NODIF; 1506 *rxop = BG_OP_IN_NODIF_OUT_CRC; 1507 break; 1508 1509 case SCSI_PROT_NORMAL: 1510 default: 1511 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1512 "9075 BLKGRD: Bad op/guard:%d/CRC combination\n", 1513 scsi_get_prot_op(sc)); 1514 ret = 1; 1515 break; 1516 } 1517 } 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * This function sets up buffer list for protection groups of 1524 * type LPFC_PG_TYPE_NO_DIF 1525 * 1526 * This is usually used when the HBA is instructed to generate 1527 * DIFs and insert them into data stream (or strip DIF from 1528 * incoming data stream) 1529 * 1530 * The buffer list consists of just one protection group described 1531 * below: 1532 * +-------------------------+ 1533 * start of prot group --> | PDE_5 | 1534 * +-------------------------+ 1535 * | PDE_6 | 1536 * +-------------------------+ 1537 * | Data BDE | 1538 * +-------------------------+ 1539 * |more Data BDE's ... (opt)| 1540 * +-------------------------+ 1541 * 1542 * @sc: pointer to scsi command we're working on 1543 * @bpl: pointer to buffer list for protection groups 1544 * @datacnt: number of segments of data that have been dma mapped 1545 * 1546 * Note: Data s/g buffers have been dma mapped 1547 */ 1548 static int 1549 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1550 struct ulp_bde64 *bpl, int datasegcnt) 1551 { 1552 struct scatterlist *sgde = NULL; /* s/g data entry */ 1553 struct lpfc_pde5 *pde5 = NULL; 1554 struct lpfc_pde6 *pde6 = NULL; 1555 dma_addr_t physaddr; 1556 int i = 0, num_bde = 0, status; 1557 int datadir = sc->sc_data_direction; 1558 uint32_t reftag; 1559 unsigned blksize; 1560 uint8_t txop, rxop; 1561 1562 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1563 if (status) 1564 goto out; 1565 1566 /* extract some info from the scsi command for pde*/ 1567 blksize = lpfc_cmd_blksize(sc); 1568 reftag = scsi_get_lba(sc) & 0xffffffff; 1569 1570 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1571 /* reftag is the only error we can inject here */ 1572 lpfc_bg_err_inject(phba, sc, &reftag, 0, 0); 1573 #endif 1574 1575 /* setup PDE5 with what we have */ 1576 pde5 = (struct lpfc_pde5 *) bpl; 1577 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1578 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1579 1580 /* Endianness conversion if necessary for PDE5 */ 1581 pde5->word0 = cpu_to_le32(pde5->word0); 1582 pde5->reftag = cpu_to_le32(reftag); 1583 1584 /* advance bpl and increment bde count */ 1585 num_bde++; 1586 bpl++; 1587 pde6 = (struct lpfc_pde6 *) bpl; 1588 1589 /* setup PDE6 with the rest of the info */ 1590 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1591 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1592 bf_set(pde6_optx, pde6, txop); 1593 bf_set(pde6_oprx, pde6, rxop); 1594 if (datadir == DMA_FROM_DEVICE) { 1595 bf_set(pde6_ce, pde6, 1); 1596 bf_set(pde6_re, pde6, 1); 1597 } 1598 bf_set(pde6_ai, pde6, 1); 1599 bf_set(pde6_ae, pde6, 0); 1600 bf_set(pde6_apptagval, pde6, 0); 1601 1602 /* Endianness conversion if necessary for PDE6 */ 1603 pde6->word0 = cpu_to_le32(pde6->word0); 1604 pde6->word1 = cpu_to_le32(pde6->word1); 1605 pde6->word2 = cpu_to_le32(pde6->word2); 1606 1607 /* advance bpl and increment bde count */ 1608 num_bde++; 1609 bpl++; 1610 1611 /* assumption: caller has already run dma_map_sg on command data */ 1612 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1613 physaddr = sg_dma_address(sgde); 1614 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1615 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1616 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1617 if (datadir == DMA_TO_DEVICE) 1618 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1619 else 1620 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1621 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1622 bpl++; 1623 num_bde++; 1624 } 1625 1626 out: 1627 return num_bde; 1628 } 1629 1630 /* 1631 * This function sets up buffer list for protection groups of 1632 * type LPFC_PG_TYPE_DIF_BUF 1633 * 1634 * This is usually used when DIFs are in their own buffers, 1635 * separate from the data. The HBA can then by instructed 1636 * to place the DIFs in the outgoing stream. For read operations, 1637 * The HBA could extract the DIFs and place it in DIF buffers. 1638 * 1639 * The buffer list for this type consists of one or more of the 1640 * protection groups described below: 1641 * +-------------------------+ 1642 * start of first prot group --> | PDE_5 | 1643 * +-------------------------+ 1644 * | PDE_6 | 1645 * +-------------------------+ 1646 * | PDE_7 (Prot BDE) | 1647 * +-------------------------+ 1648 * | Data BDE | 1649 * +-------------------------+ 1650 * |more Data BDE's ... (opt)| 1651 * +-------------------------+ 1652 * start of new prot group --> | PDE_5 | 1653 * +-------------------------+ 1654 * | ... | 1655 * +-------------------------+ 1656 * 1657 * @sc: pointer to scsi command we're working on 1658 * @bpl: pointer to buffer list for protection groups 1659 * @datacnt: number of segments of data that have been dma mapped 1660 * @protcnt: number of segment of protection data that have been dma mapped 1661 * 1662 * Note: It is assumed that both data and protection s/g buffers have been 1663 * mapped for DMA 1664 */ 1665 static int 1666 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1667 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1668 { 1669 struct scatterlist *sgde = NULL; /* s/g data entry */ 1670 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1671 struct lpfc_pde5 *pde5 = NULL; 1672 struct lpfc_pde6 *pde6 = NULL; 1673 struct lpfc_pde7 *pde7 = NULL; 1674 dma_addr_t dataphysaddr, protphysaddr; 1675 unsigned short curr_data = 0, curr_prot = 0; 1676 unsigned int split_offset; 1677 unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; 1678 unsigned int protgrp_blks, protgrp_bytes; 1679 unsigned int remainder, subtotal; 1680 int status; 1681 int datadir = sc->sc_data_direction; 1682 unsigned char pgdone = 0, alldone = 0; 1683 unsigned blksize; 1684 uint32_t reftag; 1685 uint8_t txop, rxop; 1686 int num_bde = 0; 1687 1688 sgpe = scsi_prot_sglist(sc); 1689 sgde = scsi_sglist(sc); 1690 1691 if (!sgpe || !sgde) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1693 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1694 sgpe, sgde); 1695 return 0; 1696 } 1697 1698 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1699 if (status) 1700 goto out; 1701 1702 /* extract some info from the scsi command */ 1703 blksize = lpfc_cmd_blksize(sc); 1704 reftag = scsi_get_lba(sc) & 0xffffffff; 1705 1706 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1707 /* reftag / guard tag are the only errors we can inject here */ 1708 lpfc_bg_err_inject(phba, sc, &reftag, 0, 0xDEAD); 1709 #endif 1710 1711 split_offset = 0; 1712 do { 1713 /* setup PDE5 with what we have */ 1714 pde5 = (struct lpfc_pde5 *) bpl; 1715 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1716 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1717 1718 /* Endianness conversion if necessary for PDE5 */ 1719 pde5->word0 = cpu_to_le32(pde5->word0); 1720 pde5->reftag = cpu_to_le32(reftag); 1721 1722 /* advance bpl and increment bde count */ 1723 num_bde++; 1724 bpl++; 1725 pde6 = (struct lpfc_pde6 *) bpl; 1726 1727 /* setup PDE6 with the rest of the info */ 1728 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1729 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1730 bf_set(pde6_optx, pde6, txop); 1731 bf_set(pde6_oprx, pde6, rxop); 1732 bf_set(pde6_ce, pde6, 1); 1733 bf_set(pde6_re, pde6, 1); 1734 bf_set(pde6_ai, pde6, 1); 1735 bf_set(pde6_ae, pde6, 0); 1736 bf_set(pde6_apptagval, pde6, 0); 1737 1738 /* Endianness conversion if necessary for PDE6 */ 1739 pde6->word0 = cpu_to_le32(pde6->word0); 1740 pde6->word1 = cpu_to_le32(pde6->word1); 1741 pde6->word2 = cpu_to_le32(pde6->word2); 1742 1743 /* advance bpl and increment bde count */ 1744 num_bde++; 1745 bpl++; 1746 1747 /* setup the first BDE that points to protection buffer */ 1748 protphysaddr = sg_dma_address(sgpe) + protgroup_offset; 1749 protgroup_len = sg_dma_len(sgpe) - protgroup_offset; 1750 1751 /* must be integer multiple of the DIF block length */ 1752 BUG_ON(protgroup_len % 8); 1753 1754 pde7 = (struct lpfc_pde7 *) bpl; 1755 memset(pde7, 0, sizeof(struct lpfc_pde7)); 1756 bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR); 1757 1758 pde7->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); 1759 pde7->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); 1760 1761 protgrp_blks = protgroup_len / 8; 1762 protgrp_bytes = protgrp_blks * blksize; 1763 1764 /* check if this pde is crossing the 4K boundary; if so split */ 1765 if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) { 1766 protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff); 1767 protgroup_offset += protgroup_remainder; 1768 protgrp_blks = protgroup_remainder / 8; 1769 protgrp_bytes = protgrp_blks * blksize; 1770 } else { 1771 protgroup_offset = 0; 1772 curr_prot++; 1773 } 1774 1775 num_bde++; 1776 1777 /* setup BDE's for data blocks associated with DIF data */ 1778 pgdone = 0; 1779 subtotal = 0; /* total bytes processed for current prot grp */ 1780 while (!pgdone) { 1781 if (!sgde) { 1782 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1783 "9065 BLKGRD:%s Invalid data segment\n", 1784 __func__); 1785 return 0; 1786 } 1787 bpl++; 1788 dataphysaddr = sg_dma_address(sgde) + split_offset; 1789 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1790 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1791 1792 remainder = sg_dma_len(sgde) - split_offset; 1793 1794 if ((subtotal + remainder) <= protgrp_bytes) { 1795 /* we can use this whole buffer */ 1796 bpl->tus.f.bdeSize = remainder; 1797 split_offset = 0; 1798 1799 if ((subtotal + remainder) == protgrp_bytes) 1800 pgdone = 1; 1801 } else { 1802 /* must split this buffer with next prot grp */ 1803 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1804 split_offset += bpl->tus.f.bdeSize; 1805 } 1806 1807 subtotal += bpl->tus.f.bdeSize; 1808 1809 if (datadir == DMA_TO_DEVICE) 1810 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1811 else 1812 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1813 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1814 1815 num_bde++; 1816 curr_data++; 1817 1818 if (split_offset) 1819 break; 1820 1821 /* Move to the next s/g segment if possible */ 1822 sgde = sg_next(sgde); 1823 1824 } 1825 1826 if (protgroup_offset) { 1827 /* update the reference tag */ 1828 reftag += protgrp_blks; 1829 bpl++; 1830 continue; 1831 } 1832 1833 /* are we done ? */ 1834 if (curr_prot == protcnt) { 1835 alldone = 1; 1836 } else if (curr_prot < protcnt) { 1837 /* advance to next prot buffer */ 1838 sgpe = sg_next(sgpe); 1839 bpl++; 1840 1841 /* update the reference tag */ 1842 reftag += protgrp_blks; 1843 } else { 1844 /* if we're here, we have a bug */ 1845 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1846 "9054 BLKGRD: bug in %s\n", __func__); 1847 } 1848 1849 } while (!alldone); 1850 out: 1851 1852 return num_bde; 1853 } 1854 1855 /* 1856 * Given a SCSI command that supports DIF, determine composition of protection 1857 * groups involved in setting up buffer lists 1858 * 1859 * Returns: 1860 * for DIF (for both read and write) 1861 * */ 1862 static int 1863 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1864 { 1865 int ret = LPFC_PG_TYPE_INVALID; 1866 unsigned char op = scsi_get_prot_op(sc); 1867 1868 switch (op) { 1869 case SCSI_PROT_READ_STRIP: 1870 case SCSI_PROT_WRITE_INSERT: 1871 ret = LPFC_PG_TYPE_NO_DIF; 1872 break; 1873 case SCSI_PROT_READ_INSERT: 1874 case SCSI_PROT_WRITE_STRIP: 1875 case SCSI_PROT_READ_PASS: 1876 case SCSI_PROT_WRITE_PASS: 1877 ret = LPFC_PG_TYPE_DIF_BUF; 1878 break; 1879 default: 1880 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1881 "9021 Unsupported protection op:%d\n", op); 1882 break; 1883 } 1884 1885 return ret; 1886 } 1887 1888 /* 1889 * This is the protection/DIF aware version of 1890 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1891 * two functions eventually, but for now, it's here 1892 */ 1893 static int 1894 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1895 struct lpfc_scsi_buf *lpfc_cmd) 1896 { 1897 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1898 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1899 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1900 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1901 uint32_t num_bde = 0; 1902 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1903 int prot_group_type = 0; 1904 int diflen, fcpdl; 1905 unsigned blksize; 1906 1907 /* 1908 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1909 * fcp_rsp regions to the first data bde entry 1910 */ 1911 bpl += 2; 1912 if (scsi_sg_count(scsi_cmnd)) { 1913 /* 1914 * The driver stores the segment count returned from pci_map_sg 1915 * because this a count of dma-mappings used to map the use_sg 1916 * pages. They are not guaranteed to be the same for those 1917 * architectures that implement an IOMMU. 1918 */ 1919 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1920 scsi_sglist(scsi_cmnd), 1921 scsi_sg_count(scsi_cmnd), datadir); 1922 if (unlikely(!datasegcnt)) 1923 return 1; 1924 1925 lpfc_cmd->seg_cnt = datasegcnt; 1926 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1927 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1928 "9067 BLKGRD: %s: Too many sg segments" 1929 " from dma_map_sg. Config %d, seg_cnt" 1930 " %d\n", 1931 __func__, phba->cfg_sg_seg_cnt, 1932 lpfc_cmd->seg_cnt); 1933 scsi_dma_unmap(scsi_cmnd); 1934 return 1; 1935 } 1936 1937 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1938 1939 switch (prot_group_type) { 1940 case LPFC_PG_TYPE_NO_DIF: 1941 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1942 datasegcnt); 1943 /* we should have 2 or more entries in buffer list */ 1944 if (num_bde < 2) 1945 goto err; 1946 break; 1947 case LPFC_PG_TYPE_DIF_BUF:{ 1948 /* 1949 * This type indicates that protection buffers are 1950 * passed to the driver, so that needs to be prepared 1951 * for DMA 1952 */ 1953 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1954 scsi_prot_sglist(scsi_cmnd), 1955 scsi_prot_sg_count(scsi_cmnd), datadir); 1956 if (unlikely(!protsegcnt)) { 1957 scsi_dma_unmap(scsi_cmnd); 1958 return 1; 1959 } 1960 1961 lpfc_cmd->prot_seg_cnt = protsegcnt; 1962 if (lpfc_cmd->prot_seg_cnt 1963 > phba->cfg_prot_sg_seg_cnt) { 1964 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1965 "9068 BLKGRD: %s: Too many prot sg " 1966 "segments from dma_map_sg. Config %d," 1967 "prot_seg_cnt %d\n", __func__, 1968 phba->cfg_prot_sg_seg_cnt, 1969 lpfc_cmd->prot_seg_cnt); 1970 dma_unmap_sg(&phba->pcidev->dev, 1971 scsi_prot_sglist(scsi_cmnd), 1972 scsi_prot_sg_count(scsi_cmnd), 1973 datadir); 1974 scsi_dma_unmap(scsi_cmnd); 1975 return 1; 1976 } 1977 1978 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1979 datasegcnt, protsegcnt); 1980 /* we should have 3 or more entries in buffer list */ 1981 if (num_bde < 3) 1982 goto err; 1983 break; 1984 } 1985 case LPFC_PG_TYPE_INVALID: 1986 default: 1987 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1988 "9022 Unexpected protection group %i\n", 1989 prot_group_type); 1990 return 1; 1991 } 1992 } 1993 1994 /* 1995 * Finish initializing those IOCB fields that are dependent on the 1996 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1997 * reinitialized since all iocb memory resources are used many times 1998 * for transmit, receive, and continuation bpl's. 1999 */ 2000 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 2001 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 2002 iocb_cmd->ulpBdeCount = 1; 2003 iocb_cmd->ulpLe = 1; 2004 2005 fcpdl = scsi_bufflen(scsi_cmnd); 2006 2007 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 2008 /* 2009 * We are in DIF Type 1 mode 2010 * Every data block has a 8 byte DIF (trailer) 2011 * attached to it. Must ajust FCP data length 2012 */ 2013 blksize = lpfc_cmd_blksize(scsi_cmnd); 2014 diflen = (fcpdl / blksize) * 8; 2015 fcpdl += diflen; 2016 } 2017 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 2018 2019 /* 2020 * Due to difference in data length between DIF/non-DIF paths, 2021 * we need to set word 4 of IOCB here 2022 */ 2023 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 2024 2025 return 0; 2026 err: 2027 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 2028 "9023 Could not setup all needed BDE's" 2029 "prot_group_type=%d, num_bde=%d\n", 2030 prot_group_type, num_bde); 2031 return 1; 2032 } 2033 2034 /* 2035 * This function checks for BlockGuard errors detected by 2036 * the HBA. In case of errors, the ASC/ASCQ fields in the 2037 * sense buffer will be set accordingly, paired with 2038 * ILLEGAL_REQUEST to signal to the kernel that the HBA 2039 * detected corruption. 2040 * 2041 * Returns: 2042 * 0 - No error found 2043 * 1 - BlockGuard error found 2044 * -1 - Internal error (bad profile, ...etc) 2045 */ 2046 static int 2047 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 2048 struct lpfc_iocbq *pIocbOut) 2049 { 2050 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 2051 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 2052 int ret = 0; 2053 uint32_t bghm = bgf->bghm; 2054 uint32_t bgstat = bgf->bgstat; 2055 uint64_t failing_sector = 0; 2056 2057 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" 2058 " 0x%x lba 0x%llx blk cnt 0x%x " 2059 "bgstat=0x%x bghm=0x%x\n", 2060 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 2061 blk_rq_sectors(cmd->request), bgstat, bghm); 2062 2063 spin_lock(&_dump_buf_lock); 2064 if (!_dump_buf_done) { 2065 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" 2066 " Data for %u blocks to debugfs\n", 2067 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 2068 lpfc_debug_save_data(phba, cmd); 2069 2070 /* If we have a prot sgl, save the DIF buffer */ 2071 if (lpfc_prot_group_type(phba, cmd) == 2072 LPFC_PG_TYPE_DIF_BUF) { 2073 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " 2074 "Saving DIF for %u blocks to debugfs\n", 2075 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 2076 lpfc_debug_save_dif(phba, cmd); 2077 } 2078 2079 _dump_buf_done = 1; 2080 } 2081 spin_unlock(&_dump_buf_lock); 2082 2083 if (lpfc_bgs_get_invalid_prof(bgstat)) { 2084 cmd->result = ScsiResult(DID_ERROR, 0); 2085 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" 2086 " BlockGuard profile. bgstat:0x%x\n", 2087 bgstat); 2088 ret = (-1); 2089 goto out; 2090 } 2091 2092 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 2093 cmd->result = ScsiResult(DID_ERROR, 0); 2094 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " 2095 "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 2096 bgstat); 2097 ret = (-1); 2098 goto out; 2099 } 2100 2101 if (lpfc_bgs_get_guard_err(bgstat)) { 2102 ret = 1; 2103 2104 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 2105 0x10, 0x1); 2106 cmd->result = DRIVER_SENSE << 24 2107 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 2108 phba->bg_guard_err_cnt++; 2109 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2110 "9055 BLKGRD: guard_tag error\n"); 2111 } 2112 2113 if (lpfc_bgs_get_reftag_err(bgstat)) { 2114 ret = 1; 2115 2116 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 2117 0x10, 0x3); 2118 cmd->result = DRIVER_SENSE << 24 2119 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 2120 2121 phba->bg_reftag_err_cnt++; 2122 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2123 "9056 BLKGRD: ref_tag error\n"); 2124 } 2125 2126 if (lpfc_bgs_get_apptag_err(bgstat)) { 2127 ret = 1; 2128 2129 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 2130 0x10, 0x2); 2131 cmd->result = DRIVER_SENSE << 24 2132 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 2133 2134 phba->bg_apptag_err_cnt++; 2135 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2136 "9061 BLKGRD: app_tag error\n"); 2137 } 2138 2139 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 2140 /* 2141 * setup sense data descriptor 0 per SPC-4 as an information 2142 * field, and put the failing LBA in it. 2143 * This code assumes there was also a guard/app/ref tag error 2144 * indication. 2145 */ 2146 cmd->sense_buffer[7] = 0xc; /* Additional sense length */ 2147 cmd->sense_buffer[8] = 0; /* Information descriptor type */ 2148 cmd->sense_buffer[9] = 0xa; /* Additional descriptor length */ 2149 cmd->sense_buffer[10] = 0x80; /* Validity bit */ 2150 bghm /= cmd->device->sector_size; 2151 2152 failing_sector = scsi_get_lba(cmd); 2153 failing_sector += bghm; 2154 2155 /* Descriptor Information */ 2156 put_unaligned_be64(failing_sector, &cmd->sense_buffer[12]); 2157 } 2158 2159 if (!ret) { 2160 /* No error was reported - problem in FW? */ 2161 cmd->result = ScsiResult(DID_ERROR, 0); 2162 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2163 "9057 BLKGRD: no errors reported!\n"); 2164 } 2165 2166 out: 2167 return ret; 2168 } 2169 2170 /** 2171 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 2172 * @phba: The Hba for which this call is being executed. 2173 * @lpfc_cmd: The scsi buffer which is going to be mapped. 2174 * 2175 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 2176 * field of @lpfc_cmd for device with SLI-4 interface spec. 2177 * 2178 * Return codes: 2179 * 1 - Error 2180 * 0 - Success 2181 **/ 2182 static int 2183 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2184 { 2185 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2186 struct scatterlist *sgel = NULL; 2187 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2188 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 2189 struct sli4_sge *first_data_sgl; 2190 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2191 dma_addr_t physaddr; 2192 uint32_t num_bde = 0; 2193 uint32_t dma_len; 2194 uint32_t dma_offset = 0; 2195 int nseg; 2196 struct ulp_bde64 *bde; 2197 2198 /* 2199 * There are three possibilities here - use scatter-gather segment, use 2200 * the single mapping, or neither. Start the lpfc command prep by 2201 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2202 * data bde entry. 2203 */ 2204 if (scsi_sg_count(scsi_cmnd)) { 2205 /* 2206 * The driver stores the segment count returned from pci_map_sg 2207 * because this a count of dma-mappings used to map the use_sg 2208 * pages. They are not guaranteed to be the same for those 2209 * architectures that implement an IOMMU. 2210 */ 2211 2212 nseg = scsi_dma_map(scsi_cmnd); 2213 if (unlikely(!nseg)) 2214 return 1; 2215 sgl += 1; 2216 /* clear the last flag in the fcp_rsp map entry */ 2217 sgl->word2 = le32_to_cpu(sgl->word2); 2218 bf_set(lpfc_sli4_sge_last, sgl, 0); 2219 sgl->word2 = cpu_to_le32(sgl->word2); 2220 sgl += 1; 2221 first_data_sgl = sgl; 2222 lpfc_cmd->seg_cnt = nseg; 2223 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 2224 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" 2225 " %s: Too many sg segments from " 2226 "dma_map_sg. Config %d, seg_cnt %d\n", 2227 __func__, phba->cfg_sg_seg_cnt, 2228 lpfc_cmd->seg_cnt); 2229 scsi_dma_unmap(scsi_cmnd); 2230 return 1; 2231 } 2232 2233 /* 2234 * The driver established a maximum scatter-gather segment count 2235 * during probe that limits the number of sg elements in any 2236 * single scsi command. Just run through the seg_cnt and format 2237 * the sge's. 2238 * When using SLI-3 the driver will try to fit all the BDEs into 2239 * the IOCB. If it can't then the BDEs get added to a BPL as it 2240 * does for SLI-2 mode. 2241 */ 2242 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 2243 physaddr = sg_dma_address(sgel); 2244 dma_len = sg_dma_len(sgel); 2245 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 2246 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 2247 sgl->word2 = le32_to_cpu(sgl->word2); 2248 if ((num_bde + 1) == nseg) 2249 bf_set(lpfc_sli4_sge_last, sgl, 1); 2250 else 2251 bf_set(lpfc_sli4_sge_last, sgl, 0); 2252 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 2253 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2254 sgl->word2 = cpu_to_le32(sgl->word2); 2255 sgl->sge_len = cpu_to_le32(dma_len); 2256 dma_offset += dma_len; 2257 sgl++; 2258 } 2259 /* setup the performance hint (first data BDE) if enabled */ 2260 if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) { 2261 bde = (struct ulp_bde64 *) 2262 &(iocb_cmd->unsli3.sli3Words[5]); 2263 bde->addrLow = first_data_sgl->addr_lo; 2264 bde->addrHigh = first_data_sgl->addr_hi; 2265 bde->tus.f.bdeSize = 2266 le32_to_cpu(first_data_sgl->sge_len); 2267 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2268 bde->tus.w = cpu_to_le32(bde->tus.w); 2269 } 2270 } else { 2271 sgl += 1; 2272 /* clear the last flag in the fcp_rsp map entry */ 2273 sgl->word2 = le32_to_cpu(sgl->word2); 2274 bf_set(lpfc_sli4_sge_last, sgl, 1); 2275 sgl->word2 = cpu_to_le32(sgl->word2); 2276 } 2277 2278 /* 2279 * Finish initializing those IOCB fields that are dependent on the 2280 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 2281 * explicitly reinitialized. 2282 * all iocb memory resources are reused. 2283 */ 2284 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 2285 2286 /* 2287 * Due to difference in data length between DIF/non-DIF paths, 2288 * we need to set word 4 of IOCB here 2289 */ 2290 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 2291 return 0; 2292 } 2293 2294 /** 2295 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 2296 * @phba: The Hba for which this call is being executed. 2297 * @lpfc_cmd: The scsi buffer which is going to be mapped. 2298 * 2299 * This routine wraps the actual DMA mapping function pointer from the 2300 * lpfc_hba struct. 2301 * 2302 * Return codes: 2303 * 1 - Error 2304 * 0 - Success 2305 **/ 2306 static inline int 2307 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2308 { 2309 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2310 } 2311 2312 /** 2313 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 2314 * @phba: Pointer to hba context object. 2315 * @vport: Pointer to vport object. 2316 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 2317 * @rsp_iocb: Pointer to response iocb object which reported error. 2318 * 2319 * This function posts an event when there is a SCSI command reporting 2320 * error from the scsi device. 2321 **/ 2322 static void 2323 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 2324 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 2325 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2326 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2327 uint32_t resp_info = fcprsp->rspStatus2; 2328 uint32_t scsi_status = fcprsp->rspStatus3; 2329 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2330 struct lpfc_fast_path_event *fast_path_evt = NULL; 2331 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 2332 unsigned long flags; 2333 2334 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2335 return; 2336 2337 /* If there is queuefull or busy condition send a scsi event */ 2338 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 2339 (cmnd->result == SAM_STAT_BUSY)) { 2340 fast_path_evt = lpfc_alloc_fast_evt(phba); 2341 if (!fast_path_evt) 2342 return; 2343 fast_path_evt->un.scsi_evt.event_type = 2344 FC_REG_SCSI_EVENT; 2345 fast_path_evt->un.scsi_evt.subcategory = 2346 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 2347 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 2348 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 2349 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 2350 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2351 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 2352 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2353 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 2354 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 2355 fast_path_evt = lpfc_alloc_fast_evt(phba); 2356 if (!fast_path_evt) 2357 return; 2358 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 2359 FC_REG_SCSI_EVENT; 2360 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 2361 LPFC_EVENT_CHECK_COND; 2362 fast_path_evt->un.check_cond_evt.scsi_event.lun = 2363 cmnd->device->lun; 2364 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 2365 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2366 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 2367 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2368 fast_path_evt->un.check_cond_evt.sense_key = 2369 cmnd->sense_buffer[2] & 0xf; 2370 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 2371 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 2372 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2373 fcpi_parm && 2374 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 2375 ((scsi_status == SAM_STAT_GOOD) && 2376 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 2377 /* 2378 * If status is good or resid does not match with fcp_param and 2379 * there is valid fcpi_parm, then there is a read_check error 2380 */ 2381 fast_path_evt = lpfc_alloc_fast_evt(phba); 2382 if (!fast_path_evt) 2383 return; 2384 fast_path_evt->un.read_check_error.header.event_type = 2385 FC_REG_FABRIC_EVENT; 2386 fast_path_evt->un.read_check_error.header.subcategory = 2387 LPFC_EVENT_FCPRDCHKERR; 2388 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 2389 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2390 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 2391 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2392 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 2393 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 2394 fast_path_evt->un.read_check_error.fcpiparam = 2395 fcpi_parm; 2396 } else 2397 return; 2398 2399 fast_path_evt->vport = vport; 2400 spin_lock_irqsave(&phba->hbalock, flags); 2401 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 2402 spin_unlock_irqrestore(&phba->hbalock, flags); 2403 lpfc_worker_wake_up(phba); 2404 return; 2405 } 2406 2407 /** 2408 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 2409 * @phba: The HBA for which this call is being executed. 2410 * @psb: The scsi buffer which is going to be un-mapped. 2411 * 2412 * This routine does DMA un-mapping of scatter gather list of scsi command 2413 * field of @lpfc_cmd for device with SLI-3 interface spec. 2414 **/ 2415 static void 2416 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2417 { 2418 /* 2419 * There are only two special cases to consider. (1) the scsi command 2420 * requested scatter-gather usage or (2) the scsi command allocated 2421 * a request buffer, but did not request use_sg. There is a third 2422 * case, but it does not require resource deallocation. 2423 */ 2424 if (psb->seg_cnt > 0) 2425 scsi_dma_unmap(psb->pCmd); 2426 if (psb->prot_seg_cnt > 0) 2427 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2428 scsi_prot_sg_count(psb->pCmd), 2429 psb->pCmd->sc_data_direction); 2430 } 2431 2432 /** 2433 * lpfc_handler_fcp_err - FCP response handler 2434 * @vport: The virtual port for which this call is being executed. 2435 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2436 * @rsp_iocb: The response IOCB which contains FCP error. 2437 * 2438 * This routine is called to process response IOCB with status field 2439 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2440 * based upon SCSI and FCP error. 2441 **/ 2442 static void 2443 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2444 struct lpfc_iocbq *rsp_iocb) 2445 { 2446 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2447 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2448 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2449 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2450 uint32_t resp_info = fcprsp->rspStatus2; 2451 uint32_t scsi_status = fcprsp->rspStatus3; 2452 uint32_t *lp; 2453 uint32_t host_status = DID_OK; 2454 uint32_t rsplen = 0; 2455 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2456 2457 2458 /* 2459 * If this is a task management command, there is no 2460 * scsi packet associated with this lpfc_cmd. The driver 2461 * consumes it. 2462 */ 2463 if (fcpcmd->fcpCntl2) { 2464 scsi_status = 0; 2465 goto out; 2466 } 2467 2468 if (resp_info & RSP_LEN_VALID) { 2469 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2470 if (rsplen != 0 && rsplen != 4 && rsplen != 8) { 2471 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2472 "2719 Invalid response length: " 2473 "tgt x%x lun x%x cmnd x%x rsplen x%x\n", 2474 cmnd->device->id, 2475 cmnd->device->lun, cmnd->cmnd[0], 2476 rsplen); 2477 host_status = DID_ERROR; 2478 goto out; 2479 } 2480 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { 2481 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2482 "2757 Protocol failure detected during " 2483 "processing of FCP I/O op: " 2484 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n", 2485 cmnd->device->id, 2486 cmnd->device->lun, cmnd->cmnd[0], 2487 fcprsp->rspInfo3); 2488 host_status = DID_ERROR; 2489 goto out; 2490 } 2491 } 2492 2493 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2494 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2495 if (snslen > SCSI_SENSE_BUFFERSIZE) 2496 snslen = SCSI_SENSE_BUFFERSIZE; 2497 2498 if (resp_info & RSP_LEN_VALID) 2499 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2500 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2501 } 2502 lp = (uint32_t *)cmnd->sense_buffer; 2503 2504 if (!scsi_status && (resp_info & RESID_UNDER) && 2505 vport->cfg_log_verbose & LOG_FCP_UNDER) 2506 logit = LOG_FCP_UNDER; 2507 2508 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2509 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2510 "Data: x%x x%x x%x x%x x%x\n", 2511 cmnd->cmnd[0], scsi_status, 2512 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2513 be32_to_cpu(fcprsp->rspResId), 2514 be32_to_cpu(fcprsp->rspSnsLen), 2515 be32_to_cpu(fcprsp->rspRspLen), 2516 fcprsp->rspInfo3); 2517 2518 scsi_set_resid(cmnd, 0); 2519 if (resp_info & RESID_UNDER) { 2520 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2521 2522 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_UNDER, 2523 "9025 FCP Read Underrun, expected %d, " 2524 "residual %d Data: x%x x%x x%x\n", 2525 be32_to_cpu(fcpcmd->fcpDl), 2526 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2527 cmnd->underflow); 2528 2529 /* 2530 * If there is an under run check if under run reported by 2531 * storage array is same as the under run reported by HBA. 2532 * If this is not same, there is a dropped frame. 2533 */ 2534 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2535 fcpi_parm && 2536 (scsi_get_resid(cmnd) != fcpi_parm)) { 2537 lpfc_printf_vlog(vport, KERN_WARNING, 2538 LOG_FCP | LOG_FCP_ERROR, 2539 "9026 FCP Read Check Error " 2540 "and Underrun Data: x%x x%x x%x x%x\n", 2541 be32_to_cpu(fcpcmd->fcpDl), 2542 scsi_get_resid(cmnd), fcpi_parm, 2543 cmnd->cmnd[0]); 2544 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2545 host_status = DID_ERROR; 2546 } 2547 /* 2548 * The cmnd->underflow is the minimum number of bytes that must 2549 * be transferred for this command. Provided a sense condition 2550 * is not present, make sure the actual amount transferred is at 2551 * least the underflow value or fail. 2552 */ 2553 if (!(resp_info & SNS_LEN_VALID) && 2554 (scsi_status == SAM_STAT_GOOD) && 2555 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2556 < cmnd->underflow)) { 2557 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2558 "9027 FCP command x%x residual " 2559 "underrun converted to error " 2560 "Data: x%x x%x x%x\n", 2561 cmnd->cmnd[0], scsi_bufflen(cmnd), 2562 scsi_get_resid(cmnd), cmnd->underflow); 2563 host_status = DID_ERROR; 2564 } 2565 } else if (resp_info & RESID_OVER) { 2566 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2567 "9028 FCP command x%x residual overrun error. " 2568 "Data: x%x x%x\n", cmnd->cmnd[0], 2569 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2570 host_status = DID_ERROR; 2571 2572 /* 2573 * Check SLI validation that all the transfer was actually done 2574 * (fcpi_parm should be zero). Apply check only to reads. 2575 */ 2576 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2577 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2578 "9029 FCP Read Check Error Data: " 2579 "x%x x%x x%x x%x x%x\n", 2580 be32_to_cpu(fcpcmd->fcpDl), 2581 be32_to_cpu(fcprsp->rspResId), 2582 fcpi_parm, cmnd->cmnd[0], scsi_status); 2583 switch (scsi_status) { 2584 case SAM_STAT_GOOD: 2585 case SAM_STAT_CHECK_CONDITION: 2586 /* Fabric dropped a data frame. Fail any successful 2587 * command in which we detected dropped frames. 2588 * A status of good or some check conditions could 2589 * be considered a successful command. 2590 */ 2591 host_status = DID_ERROR; 2592 break; 2593 } 2594 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2595 } 2596 2597 out: 2598 cmnd->result = ScsiResult(host_status, scsi_status); 2599 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2600 } 2601 2602 /** 2603 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2604 * @phba: The Hba for which this call is being executed. 2605 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2606 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2607 * 2608 * This routine assigns scsi command result by looking into response IOCB 2609 * status field appropriately. This routine handles QUEUE FULL condition as 2610 * well by ramping down device queue depth. 2611 **/ 2612 static void 2613 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2614 struct lpfc_iocbq *pIocbOut) 2615 { 2616 struct lpfc_scsi_buf *lpfc_cmd = 2617 (struct lpfc_scsi_buf *) pIocbIn->context1; 2618 struct lpfc_vport *vport = pIocbIn->vport; 2619 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2620 struct lpfc_nodelist *pnode = rdata->pnode; 2621 struct scsi_cmnd *cmd; 2622 int result; 2623 struct scsi_device *tmp_sdev; 2624 int depth; 2625 unsigned long flags; 2626 struct lpfc_fast_path_event *fast_path_evt; 2627 struct Scsi_Host *shost; 2628 uint32_t queue_depth, scsi_id; 2629 uint32_t logit = LOG_FCP; 2630 2631 /* Sanity check on return of outstanding command */ 2632 if (!(lpfc_cmd->pCmd)) 2633 return; 2634 cmd = lpfc_cmd->pCmd; 2635 shost = cmd->device->host; 2636 2637 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2638 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2639 /* pick up SLI4 exhange busy status from HBA */ 2640 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY; 2641 2642 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2643 atomic_dec(&pnode->cmd_pending); 2644 2645 if (lpfc_cmd->status) { 2646 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2647 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2648 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2649 else if (lpfc_cmd->status >= IOSTAT_CNT) 2650 lpfc_cmd->status = IOSTAT_DEFAULT; 2651 if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR 2652 && !lpfc_cmd->fcp_rsp->rspStatus3 2653 && (lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) 2654 && !(phba->cfg_log_verbose & LOG_FCP_UNDER)) 2655 logit = 0; 2656 else 2657 logit = LOG_FCP | LOG_FCP_UNDER; 2658 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2659 "9030 FCP cmd x%x failed <%d/%d> " 2660 "status: x%x result: x%x Data: x%x x%x\n", 2661 cmd->cmnd[0], 2662 cmd->device ? cmd->device->id : 0xffff, 2663 cmd->device ? cmd->device->lun : 0xffff, 2664 lpfc_cmd->status, lpfc_cmd->result, 2665 pIocbOut->iocb.ulpContext, 2666 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2667 2668 switch (lpfc_cmd->status) { 2669 case IOSTAT_FCP_RSP_ERROR: 2670 /* Call FCP RSP handler to determine result */ 2671 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2672 break; 2673 case IOSTAT_NPORT_BSY: 2674 case IOSTAT_FABRIC_BSY: 2675 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2676 fast_path_evt = lpfc_alloc_fast_evt(phba); 2677 if (!fast_path_evt) 2678 break; 2679 fast_path_evt->un.fabric_evt.event_type = 2680 FC_REG_FABRIC_EVENT; 2681 fast_path_evt->un.fabric_evt.subcategory = 2682 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2683 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2684 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2685 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2686 &pnode->nlp_portname, 2687 sizeof(struct lpfc_name)); 2688 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2689 &pnode->nlp_nodename, 2690 sizeof(struct lpfc_name)); 2691 } 2692 fast_path_evt->vport = vport; 2693 fast_path_evt->work_evt.evt = 2694 LPFC_EVT_FASTPATH_MGMT_EVT; 2695 spin_lock_irqsave(&phba->hbalock, flags); 2696 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2697 &phba->work_list); 2698 spin_unlock_irqrestore(&phba->hbalock, flags); 2699 lpfc_worker_wake_up(phba); 2700 break; 2701 case IOSTAT_LOCAL_REJECT: 2702 case IOSTAT_REMOTE_STOP: 2703 if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || 2704 lpfc_cmd->result == 2705 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || 2706 lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || 2707 lpfc_cmd->result == 2708 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { 2709 cmd->result = ScsiResult(DID_NO_CONNECT, 0); 2710 break; 2711 } 2712 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2713 lpfc_cmd->result == IOERR_NO_RESOURCES || 2714 lpfc_cmd->result == IOERR_ABORT_REQUESTED || 2715 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { 2716 cmd->result = ScsiResult(DID_REQUEUE, 0); 2717 break; 2718 } 2719 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2720 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2721 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2722 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2723 /* 2724 * This is a response for a BG enabled 2725 * cmd. Parse BG error 2726 */ 2727 lpfc_parse_bg_err(phba, lpfc_cmd, 2728 pIocbOut); 2729 break; 2730 } else { 2731 lpfc_printf_vlog(vport, KERN_WARNING, 2732 LOG_BG, 2733 "9031 non-zero BGSTAT " 2734 "on unprotected cmd\n"); 2735 } 2736 } 2737 if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP) 2738 && (phba->sli_rev == LPFC_SLI_REV4) 2739 && (pnode && NLP_CHK_NODE_ACT(pnode))) { 2740 /* This IO was aborted by the target, we don't 2741 * know the rxid and because we did not send the 2742 * ABTS we cannot generate and RRQ. 2743 */ 2744 lpfc_set_rrq_active(phba, pnode, 2745 lpfc_cmd->cur_iocbq.sli4_xritag, 2746 0, 0); 2747 } 2748 /* else: fall through */ 2749 default: 2750 cmd->result = ScsiResult(DID_ERROR, 0); 2751 break; 2752 } 2753 2754 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2755 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2756 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2757 SAM_STAT_BUSY); 2758 } else 2759 cmd->result = ScsiResult(DID_OK, 0); 2760 2761 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2762 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2763 2764 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2765 "0710 Iodone <%d/%d> cmd %p, error " 2766 "x%x SNS x%x x%x Data: x%x x%x\n", 2767 cmd->device->id, cmd->device->lun, cmd, 2768 cmd->result, *lp, *(lp + 3), cmd->retries, 2769 scsi_get_resid(cmd)); 2770 } 2771 2772 lpfc_update_stats(phba, lpfc_cmd); 2773 result = cmd->result; 2774 if (vport->cfg_max_scsicmpl_time && 2775 time_after(jiffies, lpfc_cmd->start_time + 2776 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2777 spin_lock_irqsave(shost->host_lock, flags); 2778 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2779 if (pnode->cmd_qdepth > 2780 atomic_read(&pnode->cmd_pending) && 2781 (atomic_read(&pnode->cmd_pending) > 2782 LPFC_MIN_TGT_QDEPTH) && 2783 ((cmd->cmnd[0] == READ_10) || 2784 (cmd->cmnd[0] == WRITE_10))) 2785 pnode->cmd_qdepth = 2786 atomic_read(&pnode->cmd_pending); 2787 2788 pnode->last_change_time = jiffies; 2789 } 2790 spin_unlock_irqrestore(shost->host_lock, flags); 2791 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2792 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) && 2793 time_after(jiffies, pnode->last_change_time + 2794 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2795 spin_lock_irqsave(shost->host_lock, flags); 2796 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT 2797 / 100; 2798 depth = depth ? depth : 1; 2799 pnode->cmd_qdepth += depth; 2800 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth) 2801 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth; 2802 pnode->last_change_time = jiffies; 2803 spin_unlock_irqrestore(shost->host_lock, flags); 2804 } 2805 } 2806 2807 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2808 2809 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2810 queue_depth = cmd->device->queue_depth; 2811 scsi_id = cmd->device->id; 2812 cmd->scsi_done(cmd); 2813 2814 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2815 /* 2816 * If there is a thread waiting for command completion 2817 * wake up the thread. 2818 */ 2819 spin_lock_irqsave(shost->host_lock, flags); 2820 lpfc_cmd->pCmd = NULL; 2821 if (lpfc_cmd->waitq) 2822 wake_up(lpfc_cmd->waitq); 2823 spin_unlock_irqrestore(shost->host_lock, flags); 2824 lpfc_release_scsi_buf(phba, lpfc_cmd); 2825 return; 2826 } 2827 2828 if (!result) 2829 lpfc_rampup_queue_depth(vport, queue_depth); 2830 2831 /* 2832 * Check for queue full. If the lun is reporting queue full, then 2833 * back off the lun queue depth to prevent target overloads. 2834 */ 2835 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2836 NLP_CHK_NODE_ACT(pnode)) { 2837 shost_for_each_device(tmp_sdev, shost) { 2838 if (tmp_sdev->id != scsi_id) 2839 continue; 2840 depth = scsi_track_queue_full(tmp_sdev, 2841 tmp_sdev->queue_depth-1); 2842 if (depth <= 0) 2843 continue; 2844 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2845 "0711 detected queue full - lun queue " 2846 "depth adjusted to %d.\n", depth); 2847 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2848 pnode, 2849 tmp_sdev->lun, 2850 depth+1, depth); 2851 } 2852 } 2853 2854 /* 2855 * If there is a thread waiting for command completion 2856 * wake up the thread. 2857 */ 2858 spin_lock_irqsave(shost->host_lock, flags); 2859 lpfc_cmd->pCmd = NULL; 2860 if (lpfc_cmd->waitq) 2861 wake_up(lpfc_cmd->waitq); 2862 spin_unlock_irqrestore(shost->host_lock, flags); 2863 2864 lpfc_release_scsi_buf(phba, lpfc_cmd); 2865 } 2866 2867 /** 2868 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2869 * @data: A pointer to the immediate command data portion of the IOCB. 2870 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2871 * 2872 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2873 * byte swapping the data to big endian format for transmission on the wire. 2874 **/ 2875 static void 2876 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2877 { 2878 int i, j; 2879 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2880 i += sizeof(uint32_t), j++) { 2881 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2882 } 2883 } 2884 2885 /** 2886 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2887 * @vport: The virtual port for which this call is being executed. 2888 * @lpfc_cmd: The scsi command which needs to send. 2889 * @pnode: Pointer to lpfc_nodelist. 2890 * 2891 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2892 * to transfer for device with SLI3 interface spec. 2893 **/ 2894 static void 2895 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2896 struct lpfc_nodelist *pnode) 2897 { 2898 struct lpfc_hba *phba = vport->phba; 2899 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2900 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2901 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2902 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2903 int datadir = scsi_cmnd->sc_data_direction; 2904 char tag[2]; 2905 2906 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2907 return; 2908 2909 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2910 /* clear task management bits */ 2911 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2912 2913 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2914 &lpfc_cmd->fcp_cmnd->fcp_lun); 2915 2916 memset(&fcp_cmnd->fcpCdb[0], 0, LPFC_FCP_CDB_LEN); 2917 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, scsi_cmnd->cmd_len); 2918 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2919 switch (tag[0]) { 2920 case HEAD_OF_QUEUE_TAG: 2921 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2922 break; 2923 case ORDERED_QUEUE_TAG: 2924 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2925 break; 2926 default: 2927 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2928 break; 2929 } 2930 } else 2931 fcp_cmnd->fcpCntl1 = 0; 2932 2933 /* 2934 * There are three possibilities here - use scatter-gather segment, use 2935 * the single mapping, or neither. Start the lpfc command prep by 2936 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2937 * data bde entry. 2938 */ 2939 if (scsi_sg_count(scsi_cmnd)) { 2940 if (datadir == DMA_TO_DEVICE) { 2941 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2942 if (phba->sli_rev < LPFC_SLI_REV4) { 2943 iocb_cmd->un.fcpi.fcpi_parm = 0; 2944 iocb_cmd->ulpPU = 0; 2945 } else 2946 iocb_cmd->ulpPU = PARM_READ_CHECK; 2947 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2948 phba->fc4OutputRequests++; 2949 } else { 2950 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2951 iocb_cmd->ulpPU = PARM_READ_CHECK; 2952 fcp_cmnd->fcpCntl3 = READ_DATA; 2953 phba->fc4InputRequests++; 2954 } 2955 } else { 2956 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2957 iocb_cmd->un.fcpi.fcpi_parm = 0; 2958 iocb_cmd->ulpPU = 0; 2959 fcp_cmnd->fcpCntl3 = 0; 2960 phba->fc4ControlRequests++; 2961 } 2962 if (phba->sli_rev == 3 && 2963 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2964 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2965 /* 2966 * Finish initializing those IOCB fields that are independent 2967 * of the scsi_cmnd request_buffer 2968 */ 2969 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2970 if (phba->sli_rev == LPFC_SLI_REV4) 2971 piocbq->iocb.ulpContext = 2972 phba->sli4_hba.rpi_ids[pnode->nlp_rpi]; 2973 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2974 piocbq->iocb.ulpFCP2Rcvy = 1; 2975 else 2976 piocbq->iocb.ulpFCP2Rcvy = 0; 2977 2978 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2979 piocbq->context1 = lpfc_cmd; 2980 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2981 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2982 piocbq->vport = vport; 2983 } 2984 2985 /** 2986 * lpfc_scsi_prep_task_mgmt_cmd - Convert SLI3 scsi TM cmd to FCP info unit 2987 * @vport: The virtual port for which this call is being executed. 2988 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2989 * @lun: Logical unit number. 2990 * @task_mgmt_cmd: SCSI task management command. 2991 * 2992 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2993 * for device with SLI-3 interface spec. 2994 * 2995 * Return codes: 2996 * 0 - Error 2997 * 1 - Success 2998 **/ 2999 static int 3000 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 3001 struct lpfc_scsi_buf *lpfc_cmd, 3002 unsigned int lun, 3003 uint8_t task_mgmt_cmd) 3004 { 3005 struct lpfc_iocbq *piocbq; 3006 IOCB_t *piocb; 3007 struct fcp_cmnd *fcp_cmnd; 3008 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 3009 struct lpfc_nodelist *ndlp = rdata->pnode; 3010 3011 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 3012 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 3013 return 0; 3014 3015 piocbq = &(lpfc_cmd->cur_iocbq); 3016 piocbq->vport = vport; 3017 3018 piocb = &piocbq->iocb; 3019 3020 fcp_cmnd = lpfc_cmd->fcp_cmnd; 3021 /* Clear out any old data in the FCP command area */ 3022 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 3023 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 3024 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 3025 if (vport->phba->sli_rev == 3 && 3026 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 3027 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 3028 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 3029 piocb->ulpContext = ndlp->nlp_rpi; 3030 if (vport->phba->sli_rev == LPFC_SLI_REV4) { 3031 piocb->ulpContext = 3032 vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 3033 } 3034 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 3035 piocb->ulpFCP2Rcvy = 1; 3036 } 3037 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 3038 3039 /* ulpTimeout is only one byte */ 3040 if (lpfc_cmd->timeout > 0xff) { 3041 /* 3042 * Do not timeout the command at the firmware level. 3043 * The driver will provide the timeout mechanism. 3044 */ 3045 piocb->ulpTimeout = 0; 3046 } else 3047 piocb->ulpTimeout = lpfc_cmd->timeout; 3048 3049 if (vport->phba->sli_rev == LPFC_SLI_REV4) 3050 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 3051 3052 return 1; 3053 } 3054 3055 /** 3056 * lpfc_scsi_api_table_setup - Set up scsi api function jump table 3057 * @phba: The hba struct for which this call is being executed. 3058 * @dev_grp: The HBA PCI-Device group number. 3059 * 3060 * This routine sets up the SCSI interface API function jump table in @phba 3061 * struct. 3062 * Returns: 0 - success, -ENODEV - failure. 3063 **/ 3064 int 3065 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 3066 { 3067 3068 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 3069 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 3070 3071 switch (dev_grp) { 3072 case LPFC_PCI_DEV_LP: 3073 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 3074 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 3075 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 3076 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3; 3077 break; 3078 case LPFC_PCI_DEV_OC: 3079 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 3080 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 3081 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 3082 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4; 3083 break; 3084 default: 3085 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3086 "1418 Invalid HBA PCI-device group: 0x%x\n", 3087 dev_grp); 3088 return -ENODEV; 3089 break; 3090 } 3091 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 3092 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 3093 return 0; 3094 } 3095 3096 /** 3097 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 3098 * @phba: The Hba for which this call is being executed. 3099 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 3100 * @rspiocbq: Pointer to lpfc_iocbq data structure. 3101 * 3102 * This routine is IOCB completion routine for device reset and target reset 3103 * routine. This routine release scsi buffer associated with lpfc_cmd. 3104 **/ 3105 static void 3106 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 3107 struct lpfc_iocbq *cmdiocbq, 3108 struct lpfc_iocbq *rspiocbq) 3109 { 3110 struct lpfc_scsi_buf *lpfc_cmd = 3111 (struct lpfc_scsi_buf *) cmdiocbq->context1; 3112 if (lpfc_cmd) 3113 lpfc_release_scsi_buf(phba, lpfc_cmd); 3114 return; 3115 } 3116 3117 /** 3118 * lpfc_info - Info entry point of scsi_host_template data structure 3119 * @host: The scsi host for which this call is being executed. 3120 * 3121 * This routine provides module information about hba. 3122 * 3123 * Reutrn code: 3124 * Pointer to char - Success. 3125 **/ 3126 const char * 3127 lpfc_info(struct Scsi_Host *host) 3128 { 3129 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 3130 struct lpfc_hba *phba = vport->phba; 3131 int len; 3132 static char lpfcinfobuf[384]; 3133 3134 memset(lpfcinfobuf,0,384); 3135 if (phba && phba->pcidev){ 3136 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 3137 len = strlen(lpfcinfobuf); 3138 snprintf(lpfcinfobuf + len, 3139 384-len, 3140 " on PCI bus %02x device %02x irq %d", 3141 phba->pcidev->bus->number, 3142 phba->pcidev->devfn, 3143 phba->pcidev->irq); 3144 len = strlen(lpfcinfobuf); 3145 if (phba->Port[0]) { 3146 snprintf(lpfcinfobuf + len, 3147 384-len, 3148 " port %s", 3149 phba->Port); 3150 } 3151 len = strlen(lpfcinfobuf); 3152 if (phba->sli4_hba.link_state.logical_speed) { 3153 snprintf(lpfcinfobuf + len, 3154 384-len, 3155 " Logical Link Speed: %d Mbps", 3156 phba->sli4_hba.link_state.logical_speed * 10); 3157 } 3158 } 3159 return lpfcinfobuf; 3160 } 3161 3162 /** 3163 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 3164 * @phba: The Hba for which this call is being executed. 3165 * 3166 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 3167 * The default value of cfg_poll_tmo is 10 milliseconds. 3168 **/ 3169 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 3170 { 3171 unsigned long poll_tmo_expires = 3172 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 3173 3174 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 3175 mod_timer(&phba->fcp_poll_timer, 3176 poll_tmo_expires); 3177 } 3178 3179 /** 3180 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 3181 * @phba: The Hba for which this call is being executed. 3182 * 3183 * This routine starts the fcp_poll_timer of @phba. 3184 **/ 3185 void lpfc_poll_start_timer(struct lpfc_hba * phba) 3186 { 3187 lpfc_poll_rearm_timer(phba); 3188 } 3189 3190 /** 3191 * lpfc_poll_timeout - Restart polling timer 3192 * @ptr: Map to lpfc_hba data structure pointer. 3193 * 3194 * This routine restarts fcp_poll timer, when FCP ring polling is enable 3195 * and FCP Ring interrupt is disable. 3196 **/ 3197 3198 void lpfc_poll_timeout(unsigned long ptr) 3199 { 3200 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 3201 3202 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3203 lpfc_sli_handle_fast_ring_event(phba, 3204 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3205 3206 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3207 lpfc_poll_rearm_timer(phba); 3208 } 3209 } 3210 3211 /** 3212 * lpfc_queuecommand - scsi_host_template queuecommand entry point 3213 * @cmnd: Pointer to scsi_cmnd data structure. 3214 * @done: Pointer to done routine. 3215 * 3216 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 3217 * This routine prepares an IOCB from scsi command and provides to firmware. 3218 * The @done callback is invoked after driver finished processing the command. 3219 * 3220 * Return value : 3221 * 0 - Success 3222 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 3223 **/ 3224 static int 3225 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 3226 { 3227 struct Scsi_Host *shost = cmnd->device->host; 3228 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3229 struct lpfc_hba *phba = vport->phba; 3230 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3231 struct lpfc_nodelist *ndlp; 3232 struct lpfc_scsi_buf *lpfc_cmd; 3233 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 3234 int err; 3235 3236 err = fc_remote_port_chkready(rport); 3237 if (err) { 3238 cmnd->result = err; 3239 goto out_fail_command; 3240 } 3241 /* 3242 * Do not let the mid-layer retry I/O too fast. If an I/O is retried 3243 * without waiting a bit then indicate that the device is busy. 3244 */ 3245 if (cmnd->retries && 3246 time_before(jiffies, (cmnd->jiffies_at_alloc + 3247 msecs_to_jiffies(LPFC_RETRY_PAUSE * 3248 cmnd->retries)))) 3249 return SCSI_MLQUEUE_DEVICE_BUSY; 3250 ndlp = rdata->pnode; 3251 3252 if ((scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) && 3253 (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) || 3254 (phba->sli_rev == LPFC_SLI_REV4))) { 3255 3256 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 3257 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" 3258 " op:%02x str=%s without registering for" 3259 " BlockGuard - Rejecting command\n", 3260 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3261 dif_op_str[scsi_get_prot_op(cmnd)]); 3262 goto out_fail_command; 3263 } 3264 3265 /* 3266 * Catch race where our node has transitioned, but the 3267 * transport is still transitioning. 3268 */ 3269 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 3270 cmnd->result = ScsiResult(DID_IMM_RETRY, 0); 3271 goto out_fail_command; 3272 } 3273 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) 3274 goto out_tgt_busy; 3275 3276 lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp); 3277 if (lpfc_cmd == NULL) { 3278 lpfc_rampdown_queue_depth(phba); 3279 3280 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3281 "0707 driver's buffer pool is empty, " 3282 "IO busied\n"); 3283 goto out_host_busy; 3284 } 3285 3286 /* 3287 * Store the midlayer's command structure for the completion phase 3288 * and complete the command initialization. 3289 */ 3290 lpfc_cmd->pCmd = cmnd; 3291 lpfc_cmd->rdata = rdata; 3292 lpfc_cmd->timeout = 0; 3293 lpfc_cmd->start_time = jiffies; 3294 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 3295 cmnd->scsi_done = done; 3296 3297 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 3298 if (vport->phba->cfg_enable_bg) { 3299 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3300 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 3301 "str=%s\n", 3302 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3303 dif_op_str[scsi_get_prot_op(cmnd)]); 3304 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3305 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 3306 "%02x %02x %02x %02x %02x\n", 3307 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 3308 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 3309 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 3310 cmnd->cmnd[9]); 3311 if (cmnd->cmnd[0] == READ_10) 3312 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3313 "9035 BLKGRD: READ @ sector %llu, " 3314 "count %u\n", 3315 (unsigned long long)scsi_get_lba(cmnd), 3316 blk_rq_sectors(cmnd->request)); 3317 else if (cmnd->cmnd[0] == WRITE_10) 3318 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3319 "9036 BLKGRD: WRITE @ sector %llu, " 3320 "count %u cmd=%p\n", 3321 (unsigned long long)scsi_get_lba(cmnd), 3322 blk_rq_sectors(cmnd->request), 3323 cmnd); 3324 } 3325 3326 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 3327 } else { 3328 if (vport->phba->cfg_enable_bg) { 3329 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3330 "9038 BLKGRD: rcvd unprotected cmd:" 3331 "%02x op:%02x str=%s\n", 3332 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3333 dif_op_str[scsi_get_prot_op(cmnd)]); 3334 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3335 "9039 BLKGRD: CDB: %02x %02x %02x " 3336 "%02x %02x %02x %02x %02x %02x %02x\n", 3337 cmnd->cmnd[0], cmnd->cmnd[1], 3338 cmnd->cmnd[2], cmnd->cmnd[3], 3339 cmnd->cmnd[4], cmnd->cmnd[5], 3340 cmnd->cmnd[6], cmnd->cmnd[7], 3341 cmnd->cmnd[8], cmnd->cmnd[9]); 3342 if (cmnd->cmnd[0] == READ_10) 3343 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3344 "9040 dbg: READ @ sector %llu, " 3345 "count %u\n", 3346 (unsigned long long)scsi_get_lba(cmnd), 3347 blk_rq_sectors(cmnd->request)); 3348 else if (cmnd->cmnd[0] == WRITE_10) 3349 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3350 "9041 dbg: WRITE @ sector %llu, " 3351 "count %u cmd=%p\n", 3352 (unsigned long long)scsi_get_lba(cmnd), 3353 blk_rq_sectors(cmnd->request), cmnd); 3354 else 3355 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3356 "9042 dbg: parser not implemented\n"); 3357 } 3358 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 3359 } 3360 3361 if (err) 3362 goto out_host_busy_free_buf; 3363 3364 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 3365 3366 atomic_inc(&ndlp->cmd_pending); 3367 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 3368 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 3369 if (err) { 3370 atomic_dec(&ndlp->cmd_pending); 3371 goto out_host_busy_free_buf; 3372 } 3373 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3374 spin_unlock(shost->host_lock); 3375 lpfc_sli_handle_fast_ring_event(phba, 3376 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3377 3378 spin_lock(shost->host_lock); 3379 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3380 lpfc_poll_rearm_timer(phba); 3381 } 3382 3383 return 0; 3384 3385 out_host_busy_free_buf: 3386 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 3387 lpfc_release_scsi_buf(phba, lpfc_cmd); 3388 out_host_busy: 3389 return SCSI_MLQUEUE_HOST_BUSY; 3390 3391 out_tgt_busy: 3392 return SCSI_MLQUEUE_TARGET_BUSY; 3393 3394 out_fail_command: 3395 done(cmnd); 3396 return 0; 3397 } 3398 3399 static DEF_SCSI_QCMD(lpfc_queuecommand) 3400 3401 /** 3402 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 3403 * @cmnd: Pointer to scsi_cmnd data structure. 3404 * 3405 * This routine aborts @cmnd pending in base driver. 3406 * 3407 * Return code : 3408 * 0x2003 - Error 3409 * 0x2002 - Success 3410 **/ 3411 static int 3412 lpfc_abort_handler(struct scsi_cmnd *cmnd) 3413 { 3414 struct Scsi_Host *shost = cmnd->device->host; 3415 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3416 struct lpfc_hba *phba = vport->phba; 3417 struct lpfc_iocbq *iocb; 3418 struct lpfc_iocbq *abtsiocb; 3419 struct lpfc_scsi_buf *lpfc_cmd; 3420 IOCB_t *cmd, *icmd; 3421 int ret = SUCCESS; 3422 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 3423 3424 ret = fc_block_scsi_eh(cmnd); 3425 if (ret) 3426 return ret; 3427 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 3428 if (!lpfc_cmd) { 3429 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3430 "2873 SCSI Layer I/O Abort Request IO CMPL Status " 3431 "x%x ID %d LUN %d\n", 3432 ret, cmnd->device->id, cmnd->device->lun); 3433 return SUCCESS; 3434 } 3435 3436 /* 3437 * If pCmd field of the corresponding lpfc_scsi_buf structure 3438 * points to a different SCSI command, then the driver has 3439 * already completed this command, but the midlayer did not 3440 * see the completion before the eh fired. Just return 3441 * SUCCESS. 3442 */ 3443 iocb = &lpfc_cmd->cur_iocbq; 3444 if (lpfc_cmd->pCmd != cmnd) 3445 goto out; 3446 3447 BUG_ON(iocb->context1 != lpfc_cmd); 3448 3449 abtsiocb = lpfc_sli_get_iocbq(phba); 3450 if (abtsiocb == NULL) { 3451 ret = FAILED; 3452 goto out; 3453 } 3454 3455 /* 3456 * The scsi command can not be in txq and it is in flight because the 3457 * pCmd is still pointig at the SCSI command we have to abort. There 3458 * is no need to search the txcmplq. Just send an abort to the FW. 3459 */ 3460 3461 cmd = &iocb->iocb; 3462 icmd = &abtsiocb->iocb; 3463 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 3464 icmd->un.acxri.abortContextTag = cmd->ulpContext; 3465 if (phba->sli_rev == LPFC_SLI_REV4) 3466 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 3467 else 3468 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 3469 3470 icmd->ulpLe = 1; 3471 icmd->ulpClass = cmd->ulpClass; 3472 3473 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3474 abtsiocb->fcp_wqidx = iocb->fcp_wqidx; 3475 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 3476 3477 if (lpfc_is_link_up(phba)) 3478 icmd->ulpCommand = CMD_ABORT_XRI_CN; 3479 else 3480 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 3481 3482 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3483 abtsiocb->vport = vport; 3484 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3485 IOCB_ERROR) { 3486 lpfc_sli_release_iocbq(phba, abtsiocb); 3487 ret = FAILED; 3488 goto out; 3489 } 3490 3491 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3492 lpfc_sli_handle_fast_ring_event(phba, 3493 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3494 3495 lpfc_cmd->waitq = &waitq; 3496 /* Wait for abort to complete */ 3497 wait_event_timeout(waitq, 3498 (lpfc_cmd->pCmd != cmnd), 3499 (2*vport->cfg_devloss_tmo*HZ)); 3500 3501 spin_lock_irq(shost->host_lock); 3502 lpfc_cmd->waitq = NULL; 3503 spin_unlock_irq(shost->host_lock); 3504 3505 if (lpfc_cmd->pCmd == cmnd) { 3506 ret = FAILED; 3507 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3508 "0748 abort handler timed out waiting " 3509 "for abort to complete: ret %#x, ID %d, " 3510 "LUN %d\n", 3511 ret, cmnd->device->id, cmnd->device->lun); 3512 } 3513 3514 out: 3515 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3516 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3517 "LUN %d\n", ret, cmnd->device->id, 3518 cmnd->device->lun); 3519 return ret; 3520 } 3521 3522 static char * 3523 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3524 { 3525 switch (task_mgmt_cmd) { 3526 case FCP_ABORT_TASK_SET: 3527 return "ABORT_TASK_SET"; 3528 case FCP_CLEAR_TASK_SET: 3529 return "FCP_CLEAR_TASK_SET"; 3530 case FCP_BUS_RESET: 3531 return "FCP_BUS_RESET"; 3532 case FCP_LUN_RESET: 3533 return "FCP_LUN_RESET"; 3534 case FCP_TARGET_RESET: 3535 return "FCP_TARGET_RESET"; 3536 case FCP_CLEAR_ACA: 3537 return "FCP_CLEAR_ACA"; 3538 case FCP_TERMINATE_TASK: 3539 return "FCP_TERMINATE_TASK"; 3540 default: 3541 return "unknown"; 3542 } 3543 } 3544 3545 /** 3546 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3547 * @vport: The virtual port for which this call is being executed. 3548 * @rdata: Pointer to remote port local data 3549 * @tgt_id: Target ID of remote device. 3550 * @lun_id: Lun number for the TMF 3551 * @task_mgmt_cmd: type of TMF to send 3552 * 3553 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3554 * a remote port. 3555 * 3556 * Return Code: 3557 * 0x2003 - Error 3558 * 0x2002 - Success. 3559 **/ 3560 static int 3561 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3562 unsigned tgt_id, unsigned int lun_id, 3563 uint8_t task_mgmt_cmd) 3564 { 3565 struct lpfc_hba *phba = vport->phba; 3566 struct lpfc_scsi_buf *lpfc_cmd; 3567 struct lpfc_iocbq *iocbq; 3568 struct lpfc_iocbq *iocbqrsp; 3569 struct lpfc_nodelist *pnode = rdata->pnode; 3570 int ret; 3571 int status; 3572 3573 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3574 return FAILED; 3575 3576 lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode); 3577 if (lpfc_cmd == NULL) 3578 return FAILED; 3579 lpfc_cmd->timeout = 60; 3580 lpfc_cmd->rdata = rdata; 3581 3582 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3583 task_mgmt_cmd); 3584 if (!status) { 3585 lpfc_release_scsi_buf(phba, lpfc_cmd); 3586 return FAILED; 3587 } 3588 3589 iocbq = &lpfc_cmd->cur_iocbq; 3590 iocbqrsp = lpfc_sli_get_iocbq(phba); 3591 if (iocbqrsp == NULL) { 3592 lpfc_release_scsi_buf(phba, lpfc_cmd); 3593 return FAILED; 3594 } 3595 3596 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3597 "0702 Issue %s to TGT %d LUN %d " 3598 "rpi x%x nlp_flag x%x Data: x%x x%x\n", 3599 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3600 pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag, 3601 iocbq->iocb_flag); 3602 3603 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3604 iocbq, iocbqrsp, lpfc_cmd->timeout); 3605 if (status != IOCB_SUCCESS) { 3606 if (status == IOCB_TIMEDOUT) { 3607 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3608 ret = TIMEOUT_ERROR; 3609 } else 3610 ret = FAILED; 3611 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3612 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3613 "0727 TMF %s to TGT %d LUN %d failed (%d, %d) " 3614 "iocb_flag x%x\n", 3615 lpfc_taskmgmt_name(task_mgmt_cmd), 3616 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3617 iocbqrsp->iocb.un.ulpWord[4], 3618 iocbq->iocb_flag); 3619 } else if (status == IOCB_BUSY) 3620 ret = FAILED; 3621 else 3622 ret = SUCCESS; 3623 3624 lpfc_sli_release_iocbq(phba, iocbqrsp); 3625 3626 if (ret != TIMEOUT_ERROR) 3627 lpfc_release_scsi_buf(phba, lpfc_cmd); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * lpfc_chk_tgt_mapped - 3634 * @vport: The virtual port to check on 3635 * @cmnd: Pointer to scsi_cmnd data structure. 3636 * 3637 * This routine delays until the scsi target (aka rport) for the 3638 * command exists (is present and logged in) or we declare it non-existent. 3639 * 3640 * Return code : 3641 * 0x2003 - Error 3642 * 0x2002 - Success 3643 **/ 3644 static int 3645 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3646 { 3647 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3648 struct lpfc_nodelist *pnode; 3649 unsigned long later; 3650 3651 if (!rdata) { 3652 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3653 "0797 Tgt Map rport failure: rdata x%p\n", rdata); 3654 return FAILED; 3655 } 3656 pnode = rdata->pnode; 3657 /* 3658 * If target is not in a MAPPED state, delay until 3659 * target is rediscovered or devloss timeout expires. 3660 */ 3661 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3662 while (time_after(later, jiffies)) { 3663 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3664 return FAILED; 3665 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3666 return SUCCESS; 3667 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3668 rdata = cmnd->device->hostdata; 3669 if (!rdata) 3670 return FAILED; 3671 pnode = rdata->pnode; 3672 } 3673 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3674 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3675 return FAILED; 3676 return SUCCESS; 3677 } 3678 3679 /** 3680 * lpfc_reset_flush_io_context - 3681 * @vport: The virtual port (scsi_host) for the flush context 3682 * @tgt_id: If aborting by Target contect - specifies the target id 3683 * @lun_id: If aborting by Lun context - specifies the lun id 3684 * @context: specifies the context level to flush at. 3685 * 3686 * After a reset condition via TMF, we need to flush orphaned i/o 3687 * contexts from the adapter. This routine aborts any contexts 3688 * outstanding, then waits for their completions. The wait is 3689 * bounded by devloss_tmo though. 3690 * 3691 * Return code : 3692 * 0x2003 - Error 3693 * 0x2002 - Success 3694 **/ 3695 static int 3696 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3697 uint64_t lun_id, lpfc_ctx_cmd context) 3698 { 3699 struct lpfc_hba *phba = vport->phba; 3700 unsigned long later; 3701 int cnt; 3702 3703 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3704 if (cnt) 3705 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3706 tgt_id, lun_id, context); 3707 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3708 while (time_after(later, jiffies) && cnt) { 3709 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3710 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3711 } 3712 if (cnt) { 3713 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3714 "0724 I/O flush failure for context %s : cnt x%x\n", 3715 ((context == LPFC_CTX_LUN) ? "LUN" : 3716 ((context == LPFC_CTX_TGT) ? "TGT" : 3717 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3718 cnt); 3719 return FAILED; 3720 } 3721 return SUCCESS; 3722 } 3723 3724 /** 3725 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3726 * @cmnd: Pointer to scsi_cmnd data structure. 3727 * 3728 * This routine does a device reset by sending a LUN_RESET task management 3729 * command. 3730 * 3731 * Return code : 3732 * 0x2003 - Error 3733 * 0x2002 - Success 3734 **/ 3735 static int 3736 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3737 { 3738 struct Scsi_Host *shost = cmnd->device->host; 3739 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3740 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3741 struct lpfc_nodelist *pnode; 3742 unsigned tgt_id = cmnd->device->id; 3743 unsigned int lun_id = cmnd->device->lun; 3744 struct lpfc_scsi_event_header scsi_event; 3745 int status; 3746 3747 if (!rdata) { 3748 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3749 "0798 Device Reset rport failure: rdata x%p\n", rdata); 3750 return FAILED; 3751 } 3752 pnode = rdata->pnode; 3753 status = fc_block_scsi_eh(cmnd); 3754 if (status) 3755 return status; 3756 3757 status = lpfc_chk_tgt_mapped(vport, cmnd); 3758 if (status == FAILED) { 3759 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3760 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3761 return FAILED; 3762 } 3763 3764 scsi_event.event_type = FC_REG_SCSI_EVENT; 3765 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3766 scsi_event.lun = lun_id; 3767 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3768 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3769 3770 fc_host_post_vendor_event(shost, fc_get_event_number(), 3771 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3772 3773 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3774 FCP_LUN_RESET); 3775 3776 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3777 "0713 SCSI layer issued Device Reset (%d, %d) " 3778 "return x%x\n", tgt_id, lun_id, status); 3779 3780 /* 3781 * We have to clean up i/o as : they may be orphaned by the TMF; 3782 * or if the TMF failed, they may be in an indeterminate state. 3783 * So, continue on. 3784 * We will report success if all the i/o aborts successfully. 3785 */ 3786 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3787 LPFC_CTX_LUN); 3788 return status; 3789 } 3790 3791 /** 3792 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3793 * @cmnd: Pointer to scsi_cmnd data structure. 3794 * 3795 * This routine does a target reset by sending a TARGET_RESET task management 3796 * command. 3797 * 3798 * Return code : 3799 * 0x2003 - Error 3800 * 0x2002 - Success 3801 **/ 3802 static int 3803 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3804 { 3805 struct Scsi_Host *shost = cmnd->device->host; 3806 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3807 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3808 struct lpfc_nodelist *pnode; 3809 unsigned tgt_id = cmnd->device->id; 3810 unsigned int lun_id = cmnd->device->lun; 3811 struct lpfc_scsi_event_header scsi_event; 3812 int status; 3813 3814 if (!rdata) { 3815 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3816 "0799 Target Reset rport failure: rdata x%p\n", rdata); 3817 return FAILED; 3818 } 3819 pnode = rdata->pnode; 3820 status = fc_block_scsi_eh(cmnd); 3821 if (status) 3822 return status; 3823 3824 status = lpfc_chk_tgt_mapped(vport, cmnd); 3825 if (status == FAILED) { 3826 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3827 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3828 return FAILED; 3829 } 3830 3831 scsi_event.event_type = FC_REG_SCSI_EVENT; 3832 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3833 scsi_event.lun = 0; 3834 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3835 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3836 3837 fc_host_post_vendor_event(shost, fc_get_event_number(), 3838 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3839 3840 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3841 FCP_TARGET_RESET); 3842 3843 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3844 "0723 SCSI layer issued Target Reset (%d, %d) " 3845 "return x%x\n", tgt_id, lun_id, status); 3846 3847 /* 3848 * We have to clean up i/o as : they may be orphaned by the TMF; 3849 * or if the TMF failed, they may be in an indeterminate state. 3850 * So, continue on. 3851 * We will report success if all the i/o aborts successfully. 3852 */ 3853 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3854 LPFC_CTX_TGT); 3855 return status; 3856 } 3857 3858 /** 3859 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3860 * @cmnd: Pointer to scsi_cmnd data structure. 3861 * 3862 * This routine does target reset to all targets on @cmnd->device->host. 3863 * This emulates Parallel SCSI Bus Reset Semantics. 3864 * 3865 * Return code : 3866 * 0x2003 - Error 3867 * 0x2002 - Success 3868 **/ 3869 static int 3870 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3871 { 3872 struct Scsi_Host *shost = cmnd->device->host; 3873 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3874 struct lpfc_nodelist *ndlp = NULL; 3875 struct lpfc_scsi_event_header scsi_event; 3876 int match; 3877 int ret = SUCCESS, status, i; 3878 3879 scsi_event.event_type = FC_REG_SCSI_EVENT; 3880 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3881 scsi_event.lun = 0; 3882 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3883 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3884 3885 fc_host_post_vendor_event(shost, fc_get_event_number(), 3886 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3887 3888 status = fc_block_scsi_eh(cmnd); 3889 if (status) 3890 return status; 3891 3892 /* 3893 * Since the driver manages a single bus device, reset all 3894 * targets known to the driver. Should any target reset 3895 * fail, this routine returns failure to the midlayer. 3896 */ 3897 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3898 /* Search for mapped node by target ID */ 3899 match = 0; 3900 spin_lock_irq(shost->host_lock); 3901 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3902 if (!NLP_CHK_NODE_ACT(ndlp)) 3903 continue; 3904 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3905 ndlp->nlp_sid == i && 3906 ndlp->rport) { 3907 match = 1; 3908 break; 3909 } 3910 } 3911 spin_unlock_irq(shost->host_lock); 3912 if (!match) 3913 continue; 3914 3915 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3916 i, 0, FCP_TARGET_RESET); 3917 3918 if (status != SUCCESS) { 3919 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3920 "0700 Bus Reset on target %d failed\n", 3921 i); 3922 ret = FAILED; 3923 } 3924 } 3925 /* 3926 * We have to clean up i/o as : they may be orphaned by the TMFs 3927 * above; or if any of the TMFs failed, they may be in an 3928 * indeterminate state. 3929 * We will report success if all the i/o aborts successfully. 3930 */ 3931 3932 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3933 if (status != SUCCESS) 3934 ret = FAILED; 3935 3936 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3937 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3938 return ret; 3939 } 3940 3941 /** 3942 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3943 * @sdev: Pointer to scsi_device. 3944 * 3945 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3946 * globally available list of scsi buffers. This routine also makes sure scsi 3947 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3948 * of scsi buffer exists for the lifetime of the driver. 3949 * 3950 * Return codes: 3951 * non-0 - Error 3952 * 0 - Success 3953 **/ 3954 static int 3955 lpfc_slave_alloc(struct scsi_device *sdev) 3956 { 3957 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3958 struct lpfc_hba *phba = vport->phba; 3959 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3960 uint32_t total = 0; 3961 uint32_t num_to_alloc = 0; 3962 int num_allocated = 0; 3963 uint32_t sdev_cnt; 3964 3965 if (!rport || fc_remote_port_chkready(rport)) 3966 return -ENXIO; 3967 3968 sdev->hostdata = rport->dd_data; 3969 sdev_cnt = atomic_inc_return(&phba->sdev_cnt); 3970 3971 /* 3972 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3973 * available list of scsi buffers. Don't allocate more than the 3974 * HBA limit conveyed to the midlayer via the host structure. The 3975 * formula accounts for the lun_queue_depth + error handlers + 1 3976 * extra. This list of scsi bufs exists for the lifetime of the driver. 3977 */ 3978 total = phba->total_scsi_bufs; 3979 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3980 3981 /* If allocated buffers are enough do nothing */ 3982 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) 3983 return 0; 3984 3985 /* Allow some exchanges to be available always to complete discovery */ 3986 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3987 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3988 "0704 At limitation of %d preallocated " 3989 "command buffers\n", total); 3990 return 0; 3991 /* Allow some exchanges to be available always to complete discovery */ 3992 } else if (total + num_to_alloc > 3993 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3994 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3995 "0705 Allocation request of %d " 3996 "command buffers will exceed max of %d. " 3997 "Reducing allocation request to %d.\n", 3998 num_to_alloc, phba->cfg_hba_queue_depth, 3999 (phba->cfg_hba_queue_depth - total)); 4000 num_to_alloc = phba->cfg_hba_queue_depth - total; 4001 } 4002 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 4003 if (num_to_alloc != num_allocated) { 4004 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 4005 "0708 Allocation request of %d " 4006 "command buffers did not succeed. " 4007 "Allocated %d buffers.\n", 4008 num_to_alloc, num_allocated); 4009 } 4010 if (num_allocated > 0) 4011 phba->total_scsi_bufs += num_allocated; 4012 return 0; 4013 } 4014 4015 /** 4016 * lpfc_slave_configure - scsi_host_template slave_configure entry point 4017 * @sdev: Pointer to scsi_device. 4018 * 4019 * This routine configures following items 4020 * - Tag command queuing support for @sdev if supported. 4021 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 4022 * 4023 * Return codes: 4024 * 0 - Success 4025 **/ 4026 static int 4027 lpfc_slave_configure(struct scsi_device *sdev) 4028 { 4029 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 4030 struct lpfc_hba *phba = vport->phba; 4031 4032 if (sdev->tagged_supported) 4033 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 4034 else 4035 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 4036 4037 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 4038 lpfc_sli_handle_fast_ring_event(phba, 4039 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 4040 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 4041 lpfc_poll_rearm_timer(phba); 4042 } 4043 4044 return 0; 4045 } 4046 4047 /** 4048 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 4049 * @sdev: Pointer to scsi_device. 4050 * 4051 * This routine sets @sdev hostatdata filed to null. 4052 **/ 4053 static void 4054 lpfc_slave_destroy(struct scsi_device *sdev) 4055 { 4056 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 4057 struct lpfc_hba *phba = vport->phba; 4058 atomic_dec(&phba->sdev_cnt); 4059 sdev->hostdata = NULL; 4060 return; 4061 } 4062 4063 4064 struct scsi_host_template lpfc_template = { 4065 .module = THIS_MODULE, 4066 .name = LPFC_DRIVER_NAME, 4067 .info = lpfc_info, 4068 .queuecommand = lpfc_queuecommand, 4069 .eh_abort_handler = lpfc_abort_handler, 4070 .eh_device_reset_handler = lpfc_device_reset_handler, 4071 .eh_target_reset_handler = lpfc_target_reset_handler, 4072 .eh_bus_reset_handler = lpfc_bus_reset_handler, 4073 .slave_alloc = lpfc_slave_alloc, 4074 .slave_configure = lpfc_slave_configure, 4075 .slave_destroy = lpfc_slave_destroy, 4076 .scan_finished = lpfc_scan_finished, 4077 .this_id = -1, 4078 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 4079 .cmd_per_lun = LPFC_CMD_PER_LUN, 4080 .use_clustering = ENABLE_CLUSTERING, 4081 .shost_attrs = lpfc_hba_attrs, 4082 .max_sectors = 0xFFFF, 4083 .vendor_id = LPFC_NL_VENDOR_ID, 4084 .change_queue_depth = lpfc_change_queue_depth, 4085 }; 4086 4087 struct scsi_host_template lpfc_vport_template = { 4088 .module = THIS_MODULE, 4089 .name = LPFC_DRIVER_NAME, 4090 .info = lpfc_info, 4091 .queuecommand = lpfc_queuecommand, 4092 .eh_abort_handler = lpfc_abort_handler, 4093 .eh_device_reset_handler = lpfc_device_reset_handler, 4094 .eh_target_reset_handler = lpfc_target_reset_handler, 4095 .eh_bus_reset_handler = lpfc_bus_reset_handler, 4096 .slave_alloc = lpfc_slave_alloc, 4097 .slave_configure = lpfc_slave_configure, 4098 .slave_destroy = lpfc_slave_destroy, 4099 .scan_finished = lpfc_scan_finished, 4100 .this_id = -1, 4101 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 4102 .cmd_per_lun = LPFC_CMD_PER_LUN, 4103 .use_clustering = ENABLE_CLUSTERING, 4104 .shost_attrs = lpfc_vport_attrs, 4105 .max_sectors = 0xFFFF, 4106 .change_queue_depth = lpfc_change_queue_depth, 4107 }; 4108