xref: /linux/drivers/scsi/lpfc/lpfc_scsi.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2004-2009 Emulex.  All rights reserved.           *
5  * EMULEX and SLI are trademarks of Emulex.                        *
6  * www.emulex.com                                                  *
7  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
8  *                                                                 *
9  * This program is free software; you can redistribute it and/or   *
10  * modify it under the terms of version 2 of the GNU General       *
11  * Public License as published by the Free Software Foundation.    *
12  * This program is distributed in the hope that it will be useful. *
13  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
14  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
15  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
16  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
18  * more details, a copy of which can be found in the file COPYING  *
19  * included with this package.                                     *
20  *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
33 
34 #include "lpfc_version.h"
35 #include "lpfc_hw4.h"
36 #include "lpfc_hw.h"
37 #include "lpfc_sli.h"
38 #include "lpfc_sli4.h"
39 #include "lpfc_nl.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
42 #include "lpfc.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
46 
47 #define LPFC_RESET_WAIT  2
48 #define LPFC_ABORT_WAIT  2
49 
50 int _dump_buf_done;
51 
52 static char *dif_op_str[] = {
53 	"SCSI_PROT_NORMAL",
54 	"SCSI_PROT_READ_INSERT",
55 	"SCSI_PROT_WRITE_STRIP",
56 	"SCSI_PROT_READ_STRIP",
57 	"SCSI_PROT_WRITE_INSERT",
58 	"SCSI_PROT_READ_PASS",
59 	"SCSI_PROT_WRITE_PASS",
60 };
61 static void
62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63 static void
64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65 
66 static void
67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68 {
69 	void *src, *dst;
70 	struct scatterlist *sgde = scsi_sglist(cmnd);
71 
72 	if (!_dump_buf_data) {
73 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 			"9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 				__func__);
76 		return;
77 	}
78 
79 
80 	if (!sgde) {
81 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 			"9051 BLKGRD: ERROR: data scatterlist is null\n");
83 		return;
84 	}
85 
86 	dst = (void *) _dump_buf_data;
87 	while (sgde) {
88 		src = sg_virt(sgde);
89 		memcpy(dst, src, sgde->length);
90 		dst += sgde->length;
91 		sgde = sg_next(sgde);
92 	}
93 }
94 
95 static void
96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97 {
98 	void *src, *dst;
99 	struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100 
101 	if (!_dump_buf_dif) {
102 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 			"9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 				__func__);
105 		return;
106 	}
107 
108 	if (!sgde) {
109 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 			"9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 		return;
112 	}
113 
114 	dst = _dump_buf_dif;
115 	while (sgde) {
116 		src = sg_virt(sgde);
117 		memcpy(dst, src, sgde->length);
118 		dst += sgde->length;
119 		sgde = sg_next(sgde);
120 	}
121 }
122 
123 /**
124  * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125  * @phba: Pointer to HBA object.
126  * @lpfc_cmd: lpfc scsi command object pointer.
127  *
128  * This function is called from the lpfc_prep_task_mgmt_cmd function to
129  * set the last bit in the response sge entry.
130  **/
131 static void
132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 				struct lpfc_scsi_buf *lpfc_cmd)
134 {
135 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 	if (sgl) {
137 		sgl += 1;
138 		sgl->word2 = le32_to_cpu(sgl->word2);
139 		bf_set(lpfc_sli4_sge_last, sgl, 1);
140 		sgl->word2 = cpu_to_le32(sgl->word2);
141 	}
142 }
143 
144 /**
145  * lpfc_update_stats - Update statistical data for the command completion
146  * @phba: Pointer to HBA object.
147  * @lpfc_cmd: lpfc scsi command object pointer.
148  *
149  * This function is called when there is a command completion and this
150  * function updates the statistical data for the command completion.
151  **/
152 static void
153 lpfc_update_stats(struct lpfc_hba *phba, struct  lpfc_scsi_buf *lpfc_cmd)
154 {
155 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 	struct lpfc_nodelist *pnode = rdata->pnode;
157 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 	unsigned long flags;
159 	struct Scsi_Host  *shost = cmd->device->host;
160 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 	unsigned long latency;
162 	int i;
163 
164 	if (cmd->result)
165 		return;
166 
167 	latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168 
169 	spin_lock_irqsave(shost->host_lock, flags);
170 	if (!vport->stat_data_enabled ||
171 		vport->stat_data_blocked ||
172 		!pnode->lat_data ||
173 		(phba->bucket_type == LPFC_NO_BUCKET)) {
174 		spin_unlock_irqrestore(shost->host_lock, flags);
175 		return;
176 	}
177 
178 	if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
179 		i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
180 			phba->bucket_step;
181 		/* check array subscript bounds */
182 		if (i < 0)
183 			i = 0;
184 		else if (i >= LPFC_MAX_BUCKET_COUNT)
185 			i = LPFC_MAX_BUCKET_COUNT - 1;
186 	} else {
187 		for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
188 			if (latency <= (phba->bucket_base +
189 				((1<<i)*phba->bucket_step)))
190 				break;
191 	}
192 
193 	pnode->lat_data[i].cmd_count++;
194 	spin_unlock_irqrestore(shost->host_lock, flags);
195 }
196 
197 /**
198  * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
199  * @phba: Pointer to HBA context object.
200  * @vport: Pointer to vport object.
201  * @ndlp: Pointer to FC node associated with the target.
202  * @lun: Lun number of the scsi device.
203  * @old_val: Old value of the queue depth.
204  * @new_val: New value of the queue depth.
205  *
206  * This function sends an event to the mgmt application indicating
207  * there is a change in the scsi device queue depth.
208  **/
209 static void
210 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
211 		struct lpfc_vport  *vport,
212 		struct lpfc_nodelist *ndlp,
213 		uint32_t lun,
214 		uint32_t old_val,
215 		uint32_t new_val)
216 {
217 	struct lpfc_fast_path_event *fast_path_evt;
218 	unsigned long flags;
219 
220 	fast_path_evt = lpfc_alloc_fast_evt(phba);
221 	if (!fast_path_evt)
222 		return;
223 
224 	fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
225 		FC_REG_SCSI_EVENT;
226 	fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
227 		LPFC_EVENT_VARQUEDEPTH;
228 
229 	/* Report all luns with change in queue depth */
230 	fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
231 	if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
232 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
233 			&ndlp->nlp_portname, sizeof(struct lpfc_name));
234 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
235 			&ndlp->nlp_nodename, sizeof(struct lpfc_name));
236 	}
237 
238 	fast_path_evt->un.queue_depth_evt.oldval = old_val;
239 	fast_path_evt->un.queue_depth_evt.newval = new_val;
240 	fast_path_evt->vport = vport;
241 
242 	fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
243 	spin_lock_irqsave(&phba->hbalock, flags);
244 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
245 	spin_unlock_irqrestore(&phba->hbalock, flags);
246 	lpfc_worker_wake_up(phba);
247 
248 	return;
249 }
250 
251 /**
252  * lpfc_change_queue_depth - Alter scsi device queue depth
253  * @sdev: Pointer the scsi device on which to change the queue depth.
254  * @qdepth: New queue depth to set the sdev to.
255  * @reason: The reason for the queue depth change.
256  *
257  * This function is called by the midlayer and the LLD to alter the queue
258  * depth for a scsi device. This function sets the queue depth to the new
259  * value and sends an event out to log the queue depth change.
260  **/
261 int
262 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
263 {
264 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
265 	struct lpfc_hba   *phba = vport->phba;
266 	struct lpfc_rport_data *rdata;
267 	unsigned long new_queue_depth, old_queue_depth;
268 
269 	old_queue_depth = sdev->queue_depth;
270 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
271 	new_queue_depth = sdev->queue_depth;
272 	rdata = sdev->hostdata;
273 	if (rdata)
274 		lpfc_send_sdev_queuedepth_change_event(phba, vport,
275 						       rdata->pnode, sdev->lun,
276 						       old_queue_depth,
277 						       new_queue_depth);
278 	return sdev->queue_depth;
279 }
280 
281 /**
282  * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
283  * @phba: The Hba for which this call is being executed.
284  *
285  * This routine is called when there is resource error in driver or firmware.
286  * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
287  * posts at most 1 event each second. This routine wakes up worker thread of
288  * @phba to process WORKER_RAM_DOWN_EVENT event.
289  *
290  * This routine should be called with no lock held.
291  **/
292 void
293 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
294 {
295 	unsigned long flags;
296 	uint32_t evt_posted;
297 
298 	spin_lock_irqsave(&phba->hbalock, flags);
299 	atomic_inc(&phba->num_rsrc_err);
300 	phba->last_rsrc_error_time = jiffies;
301 
302 	if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
303 		spin_unlock_irqrestore(&phba->hbalock, flags);
304 		return;
305 	}
306 
307 	phba->last_ramp_down_time = jiffies;
308 
309 	spin_unlock_irqrestore(&phba->hbalock, flags);
310 
311 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
312 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
313 	if (!evt_posted)
314 		phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
315 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
316 
317 	if (!evt_posted)
318 		lpfc_worker_wake_up(phba);
319 	return;
320 }
321 
322 /**
323  * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
324  * @phba: The Hba for which this call is being executed.
325  *
326  * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
327  * post at most 1 event every 5 minute after last_ramp_up_time or
328  * last_rsrc_error_time.  This routine wakes up worker thread of @phba
329  * to process WORKER_RAM_DOWN_EVENT event.
330  *
331  * This routine should be called with no lock held.
332  **/
333 static inline void
334 lpfc_rampup_queue_depth(struct lpfc_vport  *vport,
335 			uint32_t queue_depth)
336 {
337 	unsigned long flags;
338 	struct lpfc_hba *phba = vport->phba;
339 	uint32_t evt_posted;
340 	atomic_inc(&phba->num_cmd_success);
341 
342 	if (vport->cfg_lun_queue_depth <= queue_depth)
343 		return;
344 	spin_lock_irqsave(&phba->hbalock, flags);
345 	if (time_before(jiffies,
346 			phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
347 	    time_before(jiffies,
348 			phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
349 		spin_unlock_irqrestore(&phba->hbalock, flags);
350 		return;
351 	}
352 	phba->last_ramp_up_time = jiffies;
353 	spin_unlock_irqrestore(&phba->hbalock, flags);
354 
355 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
356 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
357 	if (!evt_posted)
358 		phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
359 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
360 
361 	if (!evt_posted)
362 		lpfc_worker_wake_up(phba);
363 	return;
364 }
365 
366 /**
367  * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
368  * @phba: The Hba for which this call is being executed.
369  *
370  * This routine is called to  process WORKER_RAMP_DOWN_QUEUE event for worker
371  * thread.This routine reduces queue depth for all scsi device on each vport
372  * associated with @phba.
373  **/
374 void
375 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
376 {
377 	struct lpfc_vport **vports;
378 	struct Scsi_Host  *shost;
379 	struct scsi_device *sdev;
380 	unsigned long new_queue_depth;
381 	unsigned long num_rsrc_err, num_cmd_success;
382 	int i;
383 
384 	num_rsrc_err = atomic_read(&phba->num_rsrc_err);
385 	num_cmd_success = atomic_read(&phba->num_cmd_success);
386 
387 	vports = lpfc_create_vport_work_array(phba);
388 	if (vports != NULL)
389 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
390 			shost = lpfc_shost_from_vport(vports[i]);
391 			shost_for_each_device(sdev, shost) {
392 				new_queue_depth =
393 					sdev->queue_depth * num_rsrc_err /
394 					(num_rsrc_err + num_cmd_success);
395 				if (!new_queue_depth)
396 					new_queue_depth = sdev->queue_depth - 1;
397 				else
398 					new_queue_depth = sdev->queue_depth -
399 								new_queue_depth;
400 				lpfc_change_queue_depth(sdev, new_queue_depth,
401 							SCSI_QDEPTH_DEFAULT);
402 			}
403 		}
404 	lpfc_destroy_vport_work_array(phba, vports);
405 	atomic_set(&phba->num_rsrc_err, 0);
406 	atomic_set(&phba->num_cmd_success, 0);
407 }
408 
409 /**
410  * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
411  * @phba: The Hba for which this call is being executed.
412  *
413  * This routine is called to  process WORKER_RAMP_UP_QUEUE event for worker
414  * thread.This routine increases queue depth for all scsi device on each vport
415  * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
416  * num_cmd_success to zero.
417  **/
418 void
419 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
420 {
421 	struct lpfc_vport **vports;
422 	struct Scsi_Host  *shost;
423 	struct scsi_device *sdev;
424 	int i;
425 
426 	vports = lpfc_create_vport_work_array(phba);
427 	if (vports != NULL)
428 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
429 			shost = lpfc_shost_from_vport(vports[i]);
430 			shost_for_each_device(sdev, shost) {
431 				if (vports[i]->cfg_lun_queue_depth <=
432 				    sdev->queue_depth)
433 					continue;
434 				lpfc_change_queue_depth(sdev,
435 							sdev->queue_depth+1,
436 							SCSI_QDEPTH_RAMP_UP);
437 			}
438 		}
439 	lpfc_destroy_vport_work_array(phba, vports);
440 	atomic_set(&phba->num_rsrc_err, 0);
441 	atomic_set(&phba->num_cmd_success, 0);
442 }
443 
444 /**
445  * lpfc_scsi_dev_block - set all scsi hosts to block state
446  * @phba: Pointer to HBA context object.
447  *
448  * This function walks vport list and set each SCSI host to block state
449  * by invoking fc_remote_port_delete() routine. This function is invoked
450  * with EEH when device's PCI slot has been permanently disabled.
451  **/
452 void
453 lpfc_scsi_dev_block(struct lpfc_hba *phba)
454 {
455 	struct lpfc_vport **vports;
456 	struct Scsi_Host  *shost;
457 	struct scsi_device *sdev;
458 	struct fc_rport *rport;
459 	int i;
460 
461 	vports = lpfc_create_vport_work_array(phba);
462 	if (vports != NULL)
463 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
464 			shost = lpfc_shost_from_vport(vports[i]);
465 			shost_for_each_device(sdev, shost) {
466 				rport = starget_to_rport(scsi_target(sdev));
467 				fc_remote_port_delete(rport);
468 			}
469 		}
470 	lpfc_destroy_vport_work_array(phba, vports);
471 }
472 
473 /**
474  * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
475  * @vport: The virtual port for which this call being executed.
476  * @num_to_allocate: The requested number of buffers to allocate.
477  *
478  * This routine allocates a scsi buffer for device with SLI-3 interface spec,
479  * the scsi buffer contains all the necessary information needed to initiate
480  * a SCSI I/O. The non-DMAable buffer region contains information to build
481  * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
482  * and the initial BPL. In addition to allocating memory, the FCP CMND and
483  * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
484  *
485  * Return codes:
486  *   int - number of scsi buffers that were allocated.
487  *   0 = failure, less than num_to_alloc is a partial failure.
488  **/
489 static int
490 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
491 {
492 	struct lpfc_hba *phba = vport->phba;
493 	struct lpfc_scsi_buf *psb;
494 	struct ulp_bde64 *bpl;
495 	IOCB_t *iocb;
496 	dma_addr_t pdma_phys_fcp_cmd;
497 	dma_addr_t pdma_phys_fcp_rsp;
498 	dma_addr_t pdma_phys_bpl;
499 	uint16_t iotag;
500 	int bcnt;
501 
502 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
503 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
504 		if (!psb)
505 			break;
506 
507 		/*
508 		 * Get memory from the pci pool to map the virt space to pci
509 		 * bus space for an I/O.  The DMA buffer includes space for the
510 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
511 		 * necessary to support the sg_tablesize.
512 		 */
513 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
514 					GFP_KERNEL, &psb->dma_handle);
515 		if (!psb->data) {
516 			kfree(psb);
517 			break;
518 		}
519 
520 		/* Initialize virtual ptrs to dma_buf region. */
521 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
522 
523 		/* Allocate iotag for psb->cur_iocbq. */
524 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
525 		if (iotag == 0) {
526 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
527 					psb->data, psb->dma_handle);
528 			kfree(psb);
529 			break;
530 		}
531 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
532 
533 		psb->fcp_cmnd = psb->data;
534 		psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
535 		psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
536 			sizeof(struct fcp_rsp);
537 
538 		/* Initialize local short-hand pointers. */
539 		bpl = psb->fcp_bpl;
540 		pdma_phys_fcp_cmd = psb->dma_handle;
541 		pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
542 		pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
543 			sizeof(struct fcp_rsp);
544 
545 		/*
546 		 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
547 		 * are sg list bdes.  Initialize the first two and leave the
548 		 * rest for queuecommand.
549 		 */
550 		bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
551 		bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
552 		bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
553 		bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
554 		bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
555 
556 		/* Setup the physical region for the FCP RSP */
557 		bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
558 		bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
559 		bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
560 		bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
561 		bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
562 
563 		/*
564 		 * Since the IOCB for the FCP I/O is built into this
565 		 * lpfc_scsi_buf, initialize it with all known data now.
566 		 */
567 		iocb = &psb->cur_iocbq.iocb;
568 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
569 		if ((phba->sli_rev == 3) &&
570 				!(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
571 			/* fill in immediate fcp command BDE */
572 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
573 			iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
574 			iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
575 					unsli3.fcp_ext.icd);
576 			iocb->un.fcpi64.bdl.addrHigh = 0;
577 			iocb->ulpBdeCount = 0;
578 			iocb->ulpLe = 0;
579 			/* fill in responce BDE */
580 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
581 							BUFF_TYPE_BDE_64;
582 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
583 				sizeof(struct fcp_rsp);
584 			iocb->unsli3.fcp_ext.rbde.addrLow =
585 				putPaddrLow(pdma_phys_fcp_rsp);
586 			iocb->unsli3.fcp_ext.rbde.addrHigh =
587 				putPaddrHigh(pdma_phys_fcp_rsp);
588 		} else {
589 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
590 			iocb->un.fcpi64.bdl.bdeSize =
591 					(2 * sizeof(struct ulp_bde64));
592 			iocb->un.fcpi64.bdl.addrLow =
593 					putPaddrLow(pdma_phys_bpl);
594 			iocb->un.fcpi64.bdl.addrHigh =
595 					putPaddrHigh(pdma_phys_bpl);
596 			iocb->ulpBdeCount = 1;
597 			iocb->ulpLe = 1;
598 		}
599 		iocb->ulpClass = CLASS3;
600 		psb->status = IOSTAT_SUCCESS;
601 		/* Put it back into the SCSI buffer list */
602 		lpfc_release_scsi_buf_s3(phba, psb);
603 
604 	}
605 
606 	return bcnt;
607 }
608 
609 /**
610  * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
611  * @phba: pointer to lpfc hba data structure.
612  * @axri: pointer to the fcp xri abort wcqe structure.
613  *
614  * This routine is invoked by the worker thread to process a SLI4 fast-path
615  * FCP aborted xri.
616  **/
617 void
618 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
619 			  struct sli4_wcqe_xri_aborted *axri)
620 {
621 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
622 	struct lpfc_scsi_buf *psb, *next_psb;
623 	unsigned long iflag = 0;
624 	struct lpfc_iocbq *iocbq;
625 	int i;
626 	struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
627 
628 	spin_lock_irqsave(&phba->hbalock, iflag);
629 	spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
630 	list_for_each_entry_safe(psb, next_psb,
631 		&phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
632 		if (psb->cur_iocbq.sli4_xritag == xri) {
633 			list_del(&psb->list);
634 			psb->exch_busy = 0;
635 			psb->status = IOSTAT_SUCCESS;
636 			spin_unlock(
637 				&phba->sli4_hba.abts_scsi_buf_list_lock);
638 			spin_unlock_irqrestore(&phba->hbalock, iflag);
639 			lpfc_release_scsi_buf_s4(phba, psb);
640 			return;
641 		}
642 	}
643 	spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
644 	for (i = 1; i <= phba->sli.last_iotag; i++) {
645 		iocbq = phba->sli.iocbq_lookup[i];
646 
647 		if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
648 			(iocbq->iocb_flag & LPFC_IO_LIBDFC))
649 			continue;
650 		if (iocbq->sli4_xritag != xri)
651 			continue;
652 		psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
653 		psb->exch_busy = 0;
654 		spin_unlock_irqrestore(&phba->hbalock, iflag);
655 		if (pring->txq_cnt)
656 			lpfc_worker_wake_up(phba);
657 		return;
658 
659 	}
660 	spin_unlock_irqrestore(&phba->hbalock, iflag);
661 }
662 
663 /**
664  * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
665  * @phba: pointer to lpfc hba data structure.
666  *
667  * This routine walks the list of scsi buffers that have been allocated and
668  * repost them to the HBA by using SGL block post. This is needed after a
669  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
670  * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
671  * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
672  *
673  * Returns: 0 = success, non-zero failure.
674  **/
675 int
676 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
677 {
678 	struct lpfc_scsi_buf *psb;
679 	int index, status, bcnt = 0, rcnt = 0, rc = 0;
680 	LIST_HEAD(sblist);
681 
682 	for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
683 		psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
684 		if (psb) {
685 			/* Remove from SCSI buffer list */
686 			list_del(&psb->list);
687 			/* Add it to a local SCSI buffer list */
688 			list_add_tail(&psb->list, &sblist);
689 			if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
690 				bcnt = rcnt;
691 				rcnt = 0;
692 			}
693 		} else
694 			/* A hole present in the XRI array, need to skip */
695 			bcnt = rcnt;
696 
697 		if (index == phba->sli4_hba.scsi_xri_cnt - 1)
698 			/* End of XRI array for SCSI buffer, complete */
699 			bcnt = rcnt;
700 
701 		/* Continue until collect up to a nembed page worth of sgls */
702 		if (bcnt == 0)
703 			continue;
704 		/* Now, post the SCSI buffer list sgls as a block */
705 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
706 		/* Reset SCSI buffer count for next round of posting */
707 		bcnt = 0;
708 		while (!list_empty(&sblist)) {
709 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
710 					 list);
711 			if (status) {
712 				/* Put this back on the abort scsi list */
713 				psb->exch_busy = 1;
714 				rc++;
715 			} else {
716 				psb->exch_busy = 0;
717 				psb->status = IOSTAT_SUCCESS;
718 			}
719 			/* Put it back into the SCSI buffer list */
720 			lpfc_release_scsi_buf_s4(phba, psb);
721 		}
722 	}
723 	return rc;
724 }
725 
726 /**
727  * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
728  * @vport: The virtual port for which this call being executed.
729  * @num_to_allocate: The requested number of buffers to allocate.
730  *
731  * This routine allocates a scsi buffer for device with SLI-4 interface spec,
732  * the scsi buffer contains all the necessary information needed to initiate
733  * a SCSI I/O.
734  *
735  * Return codes:
736  *   int - number of scsi buffers that were allocated.
737  *   0 = failure, less than num_to_alloc is a partial failure.
738  **/
739 static int
740 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
741 {
742 	struct lpfc_hba *phba = vport->phba;
743 	struct lpfc_scsi_buf *psb;
744 	struct sli4_sge *sgl;
745 	IOCB_t *iocb;
746 	dma_addr_t pdma_phys_fcp_cmd;
747 	dma_addr_t pdma_phys_fcp_rsp;
748 	dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
749 	uint16_t iotag, last_xritag = NO_XRI;
750 	int status = 0, index;
751 	int bcnt;
752 	int non_sequential_xri = 0;
753 	LIST_HEAD(sblist);
754 
755 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
756 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
757 		if (!psb)
758 			break;
759 
760 		/*
761 		 * Get memory from the pci pool to map the virt space to pci bus
762 		 * space for an I/O.  The DMA buffer includes space for the
763 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
764 		 * necessary to support the sg_tablesize.
765 		 */
766 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
767 						GFP_KERNEL, &psb->dma_handle);
768 		if (!psb->data) {
769 			kfree(psb);
770 			break;
771 		}
772 
773 		/* Initialize virtual ptrs to dma_buf region. */
774 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
775 
776 		/* Allocate iotag for psb->cur_iocbq. */
777 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
778 		if (iotag == 0) {
779 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
780 				psb->data, psb->dma_handle);
781 			kfree(psb);
782 			break;
783 		}
784 
785 		psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
786 		if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
787 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
788 			      psb->data, psb->dma_handle);
789 			kfree(psb);
790 			break;
791 		}
792 		if (last_xritag != NO_XRI
793 			&& psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
794 			non_sequential_xri = 1;
795 		} else
796 			list_add_tail(&psb->list, &sblist);
797 		last_xritag = psb->cur_iocbq.sli4_xritag;
798 
799 		index = phba->sli4_hba.scsi_xri_cnt++;
800 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
801 
802 		psb->fcp_bpl = psb->data;
803 		psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
804 			- (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
805 		psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
806 					sizeof(struct fcp_cmnd));
807 
808 		/* Initialize local short-hand pointers. */
809 		sgl = (struct sli4_sge *)psb->fcp_bpl;
810 		pdma_phys_bpl = psb->dma_handle;
811 		pdma_phys_fcp_cmd =
812 			(psb->dma_handle + phba->cfg_sg_dma_buf_size)
813 			 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
814 		pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
815 
816 		/*
817 		 * The first two bdes are the FCP_CMD and FCP_RSP.  The balance
818 		 * are sg list bdes.  Initialize the first two and leave the
819 		 * rest for queuecommand.
820 		 */
821 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
822 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
823 		bf_set(lpfc_sli4_sge_last, sgl, 0);
824 		sgl->word2 = cpu_to_le32(sgl->word2);
825 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
826 		sgl++;
827 
828 		/* Setup the physical region for the FCP RSP */
829 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
830 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
831 		bf_set(lpfc_sli4_sge_last, sgl, 1);
832 		sgl->word2 = cpu_to_le32(sgl->word2);
833 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
834 
835 		/*
836 		 * Since the IOCB for the FCP I/O is built into this
837 		 * lpfc_scsi_buf, initialize it with all known data now.
838 		 */
839 		iocb = &psb->cur_iocbq.iocb;
840 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
841 		iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
842 		/* setting the BLP size to 2 * sizeof BDE may not be correct.
843 		 * We are setting the bpl to point to out sgl. An sgl's
844 		 * entries are 16 bytes, a bpl entries are 12 bytes.
845 		 */
846 		iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
847 		iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
848 		iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
849 		iocb->ulpBdeCount = 1;
850 		iocb->ulpLe = 1;
851 		iocb->ulpClass = CLASS3;
852 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
853 			pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
854 		else
855 			pdma_phys_bpl1 = 0;
856 		psb->dma_phys_bpl = pdma_phys_bpl;
857 		phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
858 		if (non_sequential_xri) {
859 			status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
860 						pdma_phys_bpl1,
861 						psb->cur_iocbq.sli4_xritag);
862 			if (status) {
863 				/* Put this back on the abort scsi list */
864 				psb->exch_busy = 1;
865 			} else {
866 				psb->exch_busy = 0;
867 				psb->status = IOSTAT_SUCCESS;
868 			}
869 			/* Put it back into the SCSI buffer list */
870 			lpfc_release_scsi_buf_s4(phba, psb);
871 			break;
872 		}
873 	}
874 	if (bcnt) {
875 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
876 		/* Reset SCSI buffer count for next round of posting */
877 		while (!list_empty(&sblist)) {
878 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
879 				 list);
880 			if (status) {
881 				/* Put this back on the abort scsi list */
882 				psb->exch_busy = 1;
883 			} else {
884 				psb->exch_busy = 0;
885 				psb->status = IOSTAT_SUCCESS;
886 			}
887 			/* Put it back into the SCSI buffer list */
888 			lpfc_release_scsi_buf_s4(phba, psb);
889 		}
890 	}
891 
892 	return bcnt + non_sequential_xri;
893 }
894 
895 /**
896  * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
897  * @vport: The virtual port for which this call being executed.
898  * @num_to_allocate: The requested number of buffers to allocate.
899  *
900  * This routine wraps the actual SCSI buffer allocator function pointer from
901  * the lpfc_hba struct.
902  *
903  * Return codes:
904  *   int - number of scsi buffers that were allocated.
905  *   0 = failure, less than num_to_alloc is a partial failure.
906  **/
907 static inline int
908 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
909 {
910 	return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
911 }
912 
913 /**
914  * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
915  * @phba: The HBA for which this call is being executed.
916  *
917  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
918  * and returns to caller.
919  *
920  * Return codes:
921  *   NULL - Error
922  *   Pointer to lpfc_scsi_buf - Success
923  **/
924 static struct lpfc_scsi_buf*
925 lpfc_get_scsi_buf(struct lpfc_hba * phba)
926 {
927 	struct  lpfc_scsi_buf * lpfc_cmd = NULL;
928 	struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
929 	unsigned long iflag = 0;
930 
931 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
932 	list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
933 	if (lpfc_cmd) {
934 		lpfc_cmd->seg_cnt = 0;
935 		lpfc_cmd->nonsg_phys = 0;
936 		lpfc_cmd->prot_seg_cnt = 0;
937 	}
938 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
939 	return  lpfc_cmd;
940 }
941 
942 /**
943  * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
944  * @phba: The Hba for which this call is being executed.
945  * @psb: The scsi buffer which is being released.
946  *
947  * This routine releases @psb scsi buffer by adding it to tail of @phba
948  * lpfc_scsi_buf_list list.
949  **/
950 static void
951 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
952 {
953 	unsigned long iflag = 0;
954 
955 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
956 	psb->pCmd = NULL;
957 	list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
958 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
959 }
960 
961 /**
962  * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
963  * @phba: The Hba for which this call is being executed.
964  * @psb: The scsi buffer which is being released.
965  *
966  * This routine releases @psb scsi buffer by adding it to tail of @phba
967  * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
968  * and cannot be reused for at least RA_TOV amount of time if it was
969  * aborted.
970  **/
971 static void
972 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
973 {
974 	unsigned long iflag = 0;
975 
976 	if (psb->exch_busy) {
977 		spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
978 					iflag);
979 		psb->pCmd = NULL;
980 		list_add_tail(&psb->list,
981 			&phba->sli4_hba.lpfc_abts_scsi_buf_list);
982 		spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
983 					iflag);
984 	} else {
985 
986 		spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
987 		psb->pCmd = NULL;
988 		list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
989 		spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
990 	}
991 }
992 
993 /**
994  * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
995  * @phba: The Hba for which this call is being executed.
996  * @psb: The scsi buffer which is being released.
997  *
998  * This routine releases @psb scsi buffer by adding it to tail of @phba
999  * lpfc_scsi_buf_list list.
1000  **/
1001 static void
1002 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1003 {
1004 
1005 	phba->lpfc_release_scsi_buf(phba, psb);
1006 }
1007 
1008 /**
1009  * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1010  * @phba: The Hba for which this call is being executed.
1011  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1012  *
1013  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1014  * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1015  * through sg elements and format the bdea. This routine also initializes all
1016  * IOCB fields which are dependent on scsi command request buffer.
1017  *
1018  * Return codes:
1019  *   1 - Error
1020  *   0 - Success
1021  **/
1022 static int
1023 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1024 {
1025 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1026 	struct scatterlist *sgel = NULL;
1027 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1028 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1029 	struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1030 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1031 	struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1032 	dma_addr_t physaddr;
1033 	uint32_t num_bde = 0;
1034 	int nseg, datadir = scsi_cmnd->sc_data_direction;
1035 
1036 	/*
1037 	 * There are three possibilities here - use scatter-gather segment, use
1038 	 * the single mapping, or neither.  Start the lpfc command prep by
1039 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1040 	 * data bde entry.
1041 	 */
1042 	bpl += 2;
1043 	if (scsi_sg_count(scsi_cmnd)) {
1044 		/*
1045 		 * The driver stores the segment count returned from pci_map_sg
1046 		 * because this a count of dma-mappings used to map the use_sg
1047 		 * pages.  They are not guaranteed to be the same for those
1048 		 * architectures that implement an IOMMU.
1049 		 */
1050 
1051 		nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1052 				  scsi_sg_count(scsi_cmnd), datadir);
1053 		if (unlikely(!nseg))
1054 			return 1;
1055 
1056 		lpfc_cmd->seg_cnt = nseg;
1057 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1058 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1059 				"9064 BLKGRD: %s: Too many sg segments from "
1060 			       "dma_map_sg.  Config %d, seg_cnt %d\n",
1061 			       __func__, phba->cfg_sg_seg_cnt,
1062 			       lpfc_cmd->seg_cnt);
1063 			scsi_dma_unmap(scsi_cmnd);
1064 			return 1;
1065 		}
1066 
1067 		/*
1068 		 * The driver established a maximum scatter-gather segment count
1069 		 * during probe that limits the number of sg elements in any
1070 		 * single scsi command.  Just run through the seg_cnt and format
1071 		 * the bde's.
1072 		 * When using SLI-3 the driver will try to fit all the BDEs into
1073 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1074 		 * does for SLI-2 mode.
1075 		 */
1076 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1077 			physaddr = sg_dma_address(sgel);
1078 			if (phba->sli_rev == 3 &&
1079 			    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1080 			    !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1081 			    nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1082 				data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1083 				data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1084 				data_bde->addrLow = putPaddrLow(physaddr);
1085 				data_bde->addrHigh = putPaddrHigh(physaddr);
1086 				data_bde++;
1087 			} else {
1088 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1089 				bpl->tus.f.bdeSize = sg_dma_len(sgel);
1090 				bpl->tus.w = le32_to_cpu(bpl->tus.w);
1091 				bpl->addrLow =
1092 					le32_to_cpu(putPaddrLow(physaddr));
1093 				bpl->addrHigh =
1094 					le32_to_cpu(putPaddrHigh(physaddr));
1095 				bpl++;
1096 			}
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Finish initializing those IOCB fields that are dependent on the
1102 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1103 	 * explicitly reinitialized and for SLI-3 the extended bde count is
1104 	 * explicitly reinitialized since all iocb memory resources are reused.
1105 	 */
1106 	if (phba->sli_rev == 3 &&
1107 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1108 	    !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1109 		if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1110 			/*
1111 			 * The extended IOCB format can only fit 3 BDE or a BPL.
1112 			 * This I/O has more than 3 BDE so the 1st data bde will
1113 			 * be a BPL that is filled in here.
1114 			 */
1115 			physaddr = lpfc_cmd->dma_handle;
1116 			data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1117 			data_bde->tus.f.bdeSize = (num_bde *
1118 						   sizeof(struct ulp_bde64));
1119 			physaddr += (sizeof(struct fcp_cmnd) +
1120 				     sizeof(struct fcp_rsp) +
1121 				     (2 * sizeof(struct ulp_bde64)));
1122 			data_bde->addrHigh = putPaddrHigh(physaddr);
1123 			data_bde->addrLow = putPaddrLow(physaddr);
1124 			/* ebde count includes the responce bde and data bpl */
1125 			iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1126 		} else {
1127 			/* ebde count includes the responce bde and data bdes */
1128 			iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1129 		}
1130 	} else {
1131 		iocb_cmd->un.fcpi64.bdl.bdeSize =
1132 			((num_bde + 2) * sizeof(struct ulp_bde64));
1133 		iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1134 	}
1135 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1136 
1137 	/*
1138 	 * Due to difference in data length between DIF/non-DIF paths,
1139 	 * we need to set word 4 of IOCB here
1140 	 */
1141 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1147  * @sc: The SCSI command to examine
1148  * @txopt: (out) BlockGuard operation for transmitted data
1149  * @rxopt: (out) BlockGuard operation for received data
1150  *
1151  * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1152  *
1153  */
1154 static int
1155 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1156 		uint8_t *txop, uint8_t *rxop)
1157 {
1158 	uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1159 	uint8_t ret = 0;
1160 
1161 	if (guard_type == SHOST_DIX_GUARD_IP) {
1162 		switch (scsi_get_prot_op(sc)) {
1163 		case SCSI_PROT_READ_INSERT:
1164 		case SCSI_PROT_WRITE_STRIP:
1165 			*txop = BG_OP_IN_CSUM_OUT_NODIF;
1166 			*rxop = BG_OP_IN_NODIF_OUT_CSUM;
1167 			break;
1168 
1169 		case SCSI_PROT_READ_STRIP:
1170 		case SCSI_PROT_WRITE_INSERT:
1171 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1172 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1173 			break;
1174 
1175 		case SCSI_PROT_READ_PASS:
1176 		case SCSI_PROT_WRITE_PASS:
1177 			*txop = BG_OP_IN_CSUM_OUT_CRC;
1178 			*rxop = BG_OP_IN_CRC_OUT_CSUM;
1179 			break;
1180 
1181 		case SCSI_PROT_NORMAL:
1182 		default:
1183 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1184 				"9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1185 					scsi_get_prot_op(sc), guard_type);
1186 			ret = 1;
1187 			break;
1188 
1189 		}
1190 	} else if (guard_type == SHOST_DIX_GUARD_CRC) {
1191 		switch (scsi_get_prot_op(sc)) {
1192 		case SCSI_PROT_READ_STRIP:
1193 		case SCSI_PROT_WRITE_INSERT:
1194 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1195 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1196 			break;
1197 
1198 		case SCSI_PROT_READ_PASS:
1199 		case SCSI_PROT_WRITE_PASS:
1200 			*txop = BG_OP_IN_CRC_OUT_CRC;
1201 			*rxop = BG_OP_IN_CRC_OUT_CRC;
1202 			break;
1203 
1204 		case SCSI_PROT_READ_INSERT:
1205 		case SCSI_PROT_WRITE_STRIP:
1206 		case SCSI_PROT_NORMAL:
1207 		default:
1208 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1209 				"9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1210 					scsi_get_prot_op(sc), guard_type);
1211 			ret = 1;
1212 			break;
1213 		}
1214 	} else {
1215 		/* unsupported format */
1216 		BUG();
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 struct scsi_dif_tuple {
1223 	__be16 guard_tag;       /* Checksum */
1224 	__be16 app_tag;         /* Opaque storage */
1225 	__be32 ref_tag;         /* Target LBA or indirect LBA */
1226 };
1227 
1228 static inline unsigned
1229 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1230 {
1231 	return sc->device->sector_size;
1232 }
1233 
1234 /**
1235  * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1236  * @sc:             in: SCSI command
1237  * @apptagmask:     out: app tag mask
1238  * @apptagval:      out: app tag value
1239  * @reftag:         out: ref tag (reference tag)
1240  *
1241  * Description:
1242  *   Extract DIF parameters from the command if possible.  Otherwise,
1243  *   use default parameters.
1244  *
1245  **/
1246 static inline void
1247 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1248 		uint16_t *apptagval, uint32_t *reftag)
1249 {
1250 	struct  scsi_dif_tuple *spt;
1251 	unsigned char op = scsi_get_prot_op(sc);
1252 	unsigned int protcnt = scsi_prot_sg_count(sc);
1253 	static int cnt;
1254 
1255 	if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1256 				op == SCSI_PROT_WRITE_PASS)) {
1257 
1258 		cnt++;
1259 		spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1260 			scsi_prot_sglist(sc)[0].offset;
1261 		*apptagmask = 0;
1262 		*apptagval = 0;
1263 		*reftag = cpu_to_be32(spt->ref_tag);
1264 
1265 	} else {
1266 		/* SBC defines ref tag to be lower 32bits of LBA */
1267 		*reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1268 		*apptagmask = 0;
1269 		*apptagval = 0;
1270 	}
1271 }
1272 
1273 /*
1274  * This function sets up buffer list for protection groups of
1275  * type LPFC_PG_TYPE_NO_DIF
1276  *
1277  * This is usually used when the HBA is instructed to generate
1278  * DIFs and insert them into data stream (or strip DIF from
1279  * incoming data stream)
1280  *
1281  * The buffer list consists of just one protection group described
1282  * below:
1283  *                                +-------------------------+
1284  *   start of prot group  -->     |          PDE_5          |
1285  *                                +-------------------------+
1286  *                                |          PDE_6          |
1287  *                                +-------------------------+
1288  *                                |         Data BDE        |
1289  *                                +-------------------------+
1290  *                                |more Data BDE's ... (opt)|
1291  *                                +-------------------------+
1292  *
1293  * @sc: pointer to scsi command we're working on
1294  * @bpl: pointer to buffer list for protection groups
1295  * @datacnt: number of segments of data that have been dma mapped
1296  *
1297  * Note: Data s/g buffers have been dma mapped
1298  */
1299 static int
1300 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1301 		struct ulp_bde64 *bpl, int datasegcnt)
1302 {
1303 	struct scatterlist *sgde = NULL; /* s/g data entry */
1304 	struct lpfc_pde5 *pde5 = NULL;
1305 	struct lpfc_pde6 *pde6 = NULL;
1306 	dma_addr_t physaddr;
1307 	int i = 0, num_bde = 0, status;
1308 	int datadir = sc->sc_data_direction;
1309 	unsigned blksize;
1310 	uint32_t reftag;
1311 	uint16_t apptagmask, apptagval;
1312 	uint8_t txop, rxop;
1313 
1314 	status  = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1315 	if (status)
1316 		goto out;
1317 
1318 	/* extract some info from the scsi command for pde*/
1319 	blksize = lpfc_cmd_blksize(sc);
1320 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1321 
1322 	/* setup PDE5 with what we have */
1323 	pde5 = (struct lpfc_pde5 *) bpl;
1324 	memset(pde5, 0, sizeof(struct lpfc_pde5));
1325 	bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1326 	pde5->reftag = reftag;
1327 
1328 	/* Endianness conversion if necessary for PDE5 */
1329 	pde5->word0 = cpu_to_le32(pde5->word0);
1330 	pde5->reftag = cpu_to_le32(pde5->reftag);
1331 
1332 	/* advance bpl and increment bde count */
1333 	num_bde++;
1334 	bpl++;
1335 	pde6 = (struct lpfc_pde6 *) bpl;
1336 
1337 	/* setup PDE6 with the rest of the info */
1338 	memset(pde6, 0, sizeof(struct lpfc_pde6));
1339 	bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1340 	bf_set(pde6_optx, pde6, txop);
1341 	bf_set(pde6_oprx, pde6, rxop);
1342 	if (datadir == DMA_FROM_DEVICE) {
1343 		bf_set(pde6_ce, pde6, 1);
1344 		bf_set(pde6_re, pde6, 1);
1345 		bf_set(pde6_ae, pde6, 1);
1346 	}
1347 	bf_set(pde6_ai, pde6, 1);
1348 	bf_set(pde6_apptagval, pde6, apptagval);
1349 
1350 	/* Endianness conversion if necessary for PDE6 */
1351 	pde6->word0 = cpu_to_le32(pde6->word0);
1352 	pde6->word1 = cpu_to_le32(pde6->word1);
1353 	pde6->word2 = cpu_to_le32(pde6->word2);
1354 
1355 	/* advance bpl and increment bde count */
1356 	num_bde++;
1357 	bpl++;
1358 
1359 	/* assumption: caller has already run dma_map_sg on command data */
1360 	scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1361 		physaddr = sg_dma_address(sgde);
1362 		bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1363 		bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1364 		bpl->tus.f.bdeSize = sg_dma_len(sgde);
1365 		if (datadir == DMA_TO_DEVICE)
1366 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1367 		else
1368 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1369 		bpl->tus.w = le32_to_cpu(bpl->tus.w);
1370 		bpl++;
1371 		num_bde++;
1372 	}
1373 
1374 out:
1375 	return num_bde;
1376 }
1377 
1378 /*
1379  * This function sets up buffer list for protection groups of
1380  * type LPFC_PG_TYPE_DIF_BUF
1381  *
1382  * This is usually used when DIFs are in their own buffers,
1383  * separate from the data. The HBA can then by instructed
1384  * to place the DIFs in the outgoing stream.  For read operations,
1385  * The HBA could extract the DIFs and place it in DIF buffers.
1386  *
1387  * The buffer list for this type consists of one or more of the
1388  * protection groups described below:
1389  *                                    +-------------------------+
1390  *   start of first prot group  -->   |          PDE_5          |
1391  *                                    +-------------------------+
1392  *                                    |          PDE_6          |
1393  *                                    +-------------------------+
1394  *                                    |      PDE_7 (Prot BDE)   |
1395  *                                    +-------------------------+
1396  *                                    |        Data BDE         |
1397  *                                    +-------------------------+
1398  *                                    |more Data BDE's ... (opt)|
1399  *                                    +-------------------------+
1400  *   start of new  prot group  -->    |          PDE_5          |
1401  *                                    +-------------------------+
1402  *                                    |          ...            |
1403  *                                    +-------------------------+
1404  *
1405  * @sc: pointer to scsi command we're working on
1406  * @bpl: pointer to buffer list for protection groups
1407  * @datacnt: number of segments of data that have been dma mapped
1408  * @protcnt: number of segment of protection data that have been dma mapped
1409  *
1410  * Note: It is assumed that both data and protection s/g buffers have been
1411  *       mapped for DMA
1412  */
1413 static int
1414 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1415 		struct ulp_bde64 *bpl, int datacnt, int protcnt)
1416 {
1417 	struct scatterlist *sgde = NULL; /* s/g data entry */
1418 	struct scatterlist *sgpe = NULL; /* s/g prot entry */
1419 	struct lpfc_pde5 *pde5 = NULL;
1420 	struct lpfc_pde6 *pde6 = NULL;
1421 	struct ulp_bde64 *prot_bde = NULL;
1422 	dma_addr_t dataphysaddr, protphysaddr;
1423 	unsigned short curr_data = 0, curr_prot = 0;
1424 	unsigned int split_offset, protgroup_len;
1425 	unsigned int protgrp_blks, protgrp_bytes;
1426 	unsigned int remainder, subtotal;
1427 	int status;
1428 	int datadir = sc->sc_data_direction;
1429 	unsigned char pgdone = 0, alldone = 0;
1430 	unsigned blksize;
1431 	uint32_t reftag;
1432 	uint16_t apptagmask, apptagval;
1433 	uint8_t txop, rxop;
1434 	int num_bde = 0;
1435 
1436 	sgpe = scsi_prot_sglist(sc);
1437 	sgde = scsi_sglist(sc);
1438 
1439 	if (!sgpe || !sgde) {
1440 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1441 				"9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1442 				sgpe, sgde);
1443 		return 0;
1444 	}
1445 
1446 	status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1447 	if (status)
1448 		goto out;
1449 
1450 	/* extract some info from the scsi command */
1451 	blksize = lpfc_cmd_blksize(sc);
1452 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1453 
1454 	split_offset = 0;
1455 	do {
1456 		/* setup PDE5 with what we have */
1457 		pde5 = (struct lpfc_pde5 *) bpl;
1458 		memset(pde5, 0, sizeof(struct lpfc_pde5));
1459 		bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1460 		pde5->reftag = reftag;
1461 
1462 		/* Endianness conversion if necessary for PDE5 */
1463 		pde5->word0 = cpu_to_le32(pde5->word0);
1464 		pde5->reftag = cpu_to_le32(pde5->reftag);
1465 
1466 		/* advance bpl and increment bde count */
1467 		num_bde++;
1468 		bpl++;
1469 		pde6 = (struct lpfc_pde6 *) bpl;
1470 
1471 		/* setup PDE6 with the rest of the info */
1472 		memset(pde6, 0, sizeof(struct lpfc_pde6));
1473 		bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1474 		bf_set(pde6_optx, pde6, txop);
1475 		bf_set(pde6_oprx, pde6, rxop);
1476 		bf_set(pde6_ce, pde6, 1);
1477 		bf_set(pde6_re, pde6, 1);
1478 		bf_set(pde6_ae, pde6, 1);
1479 		bf_set(pde6_ai, pde6, 1);
1480 		bf_set(pde6_apptagval, pde6, apptagval);
1481 
1482 		/* Endianness conversion if necessary for PDE6 */
1483 		pde6->word0 = cpu_to_le32(pde6->word0);
1484 		pde6->word1 = cpu_to_le32(pde6->word1);
1485 		pde6->word2 = cpu_to_le32(pde6->word2);
1486 
1487 		/* advance bpl and increment bde count */
1488 		num_bde++;
1489 		bpl++;
1490 
1491 		/* setup the first BDE that points to protection buffer */
1492 		prot_bde = (struct ulp_bde64 *) bpl;
1493 		protphysaddr = sg_dma_address(sgpe);
1494 		prot_bde->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr));
1495 		prot_bde->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr));
1496 		protgroup_len = sg_dma_len(sgpe);
1497 
1498 		/* must be integer multiple of the DIF block length */
1499 		BUG_ON(protgroup_len % 8);
1500 
1501 		protgrp_blks = protgroup_len / 8;
1502 		protgrp_bytes = protgrp_blks * blksize;
1503 
1504 		prot_bde->tus.f.bdeSize = protgroup_len;
1505 		prot_bde->tus.f.bdeFlags = LPFC_PDE7_DESCRIPTOR;
1506 		prot_bde->tus.w = le32_to_cpu(bpl->tus.w);
1507 
1508 		curr_prot++;
1509 		num_bde++;
1510 
1511 		/* setup BDE's for data blocks associated with DIF data */
1512 		pgdone = 0;
1513 		subtotal = 0; /* total bytes processed for current prot grp */
1514 		while (!pgdone) {
1515 			if (!sgde) {
1516 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1517 					"9065 BLKGRD:%s Invalid data segment\n",
1518 						__func__);
1519 				return 0;
1520 			}
1521 			bpl++;
1522 			dataphysaddr = sg_dma_address(sgde) + split_offset;
1523 			bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1524 			bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1525 
1526 			remainder = sg_dma_len(sgde) - split_offset;
1527 
1528 			if ((subtotal + remainder) <= protgrp_bytes) {
1529 				/* we can use this whole buffer */
1530 				bpl->tus.f.bdeSize = remainder;
1531 				split_offset = 0;
1532 
1533 				if ((subtotal + remainder) == protgrp_bytes)
1534 					pgdone = 1;
1535 			} else {
1536 				/* must split this buffer with next prot grp */
1537 				bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1538 				split_offset += bpl->tus.f.bdeSize;
1539 			}
1540 
1541 			subtotal += bpl->tus.f.bdeSize;
1542 
1543 			if (datadir == DMA_TO_DEVICE)
1544 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1545 			else
1546 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1547 			bpl->tus.w = le32_to_cpu(bpl->tus.w);
1548 
1549 			num_bde++;
1550 			curr_data++;
1551 
1552 			if (split_offset)
1553 				break;
1554 
1555 			/* Move to the next s/g segment if possible */
1556 			sgde = sg_next(sgde);
1557 
1558 		}
1559 
1560 		/* are we done ? */
1561 		if (curr_prot == protcnt) {
1562 			alldone = 1;
1563 		} else if (curr_prot < protcnt) {
1564 			/* advance to next prot buffer */
1565 			sgpe = sg_next(sgpe);
1566 			bpl++;
1567 
1568 			/* update the reference tag */
1569 			reftag += protgrp_blks;
1570 		} else {
1571 			/* if we're here, we have a bug */
1572 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1573 				"9054 BLKGRD: bug in %s\n", __func__);
1574 		}
1575 
1576 	} while (!alldone);
1577 
1578 out:
1579 
1580 	return num_bde;
1581 }
1582 /*
1583  * Given a SCSI command that supports DIF, determine composition of protection
1584  * groups involved in setting up buffer lists
1585  *
1586  * Returns:
1587  *			      for DIF (for both read and write)
1588  * */
1589 static int
1590 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1591 {
1592 	int ret = LPFC_PG_TYPE_INVALID;
1593 	unsigned char op = scsi_get_prot_op(sc);
1594 
1595 	switch (op) {
1596 	case SCSI_PROT_READ_STRIP:
1597 	case SCSI_PROT_WRITE_INSERT:
1598 		ret = LPFC_PG_TYPE_NO_DIF;
1599 		break;
1600 	case SCSI_PROT_READ_INSERT:
1601 	case SCSI_PROT_WRITE_STRIP:
1602 	case SCSI_PROT_READ_PASS:
1603 	case SCSI_PROT_WRITE_PASS:
1604 		ret = LPFC_PG_TYPE_DIF_BUF;
1605 		break;
1606 	default:
1607 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1608 				"9021 Unsupported protection op:%d\n", op);
1609 		break;
1610 	}
1611 
1612 	return ret;
1613 }
1614 
1615 /*
1616  * This is the protection/DIF aware version of
1617  * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1618  * two functions eventually, but for now, it's here
1619  */
1620 static int
1621 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1622 		struct lpfc_scsi_buf *lpfc_cmd)
1623 {
1624 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1625 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1626 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1627 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1628 	uint32_t num_bde = 0;
1629 	int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1630 	int prot_group_type = 0;
1631 	int diflen, fcpdl;
1632 	unsigned blksize;
1633 
1634 	/*
1635 	 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1636 	 *  fcp_rsp regions to the first data bde entry
1637 	 */
1638 	bpl += 2;
1639 	if (scsi_sg_count(scsi_cmnd)) {
1640 		/*
1641 		 * The driver stores the segment count returned from pci_map_sg
1642 		 * because this a count of dma-mappings used to map the use_sg
1643 		 * pages.  They are not guaranteed to be the same for those
1644 		 * architectures that implement an IOMMU.
1645 		 */
1646 		datasegcnt = dma_map_sg(&phba->pcidev->dev,
1647 					scsi_sglist(scsi_cmnd),
1648 					scsi_sg_count(scsi_cmnd), datadir);
1649 		if (unlikely(!datasegcnt))
1650 			return 1;
1651 
1652 		lpfc_cmd->seg_cnt = datasegcnt;
1653 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1654 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1655 					"9067 BLKGRD: %s: Too many sg segments"
1656 					" from dma_map_sg.  Config %d, seg_cnt"
1657 					" %d\n",
1658 					__func__, phba->cfg_sg_seg_cnt,
1659 					lpfc_cmd->seg_cnt);
1660 			scsi_dma_unmap(scsi_cmnd);
1661 			return 1;
1662 		}
1663 
1664 		prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1665 
1666 		switch (prot_group_type) {
1667 		case LPFC_PG_TYPE_NO_DIF:
1668 			num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1669 					datasegcnt);
1670 			/* we should have 2 or more entries in buffer list */
1671 			if (num_bde < 2)
1672 				goto err;
1673 			break;
1674 		case LPFC_PG_TYPE_DIF_BUF:{
1675 			/*
1676 			 * This type indicates that protection buffers are
1677 			 * passed to the driver, so that needs to be prepared
1678 			 * for DMA
1679 			 */
1680 			protsegcnt = dma_map_sg(&phba->pcidev->dev,
1681 					scsi_prot_sglist(scsi_cmnd),
1682 					scsi_prot_sg_count(scsi_cmnd), datadir);
1683 			if (unlikely(!protsegcnt)) {
1684 				scsi_dma_unmap(scsi_cmnd);
1685 				return 1;
1686 			}
1687 
1688 			lpfc_cmd->prot_seg_cnt = protsegcnt;
1689 			if (lpfc_cmd->prot_seg_cnt
1690 			    > phba->cfg_prot_sg_seg_cnt) {
1691 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1692 					"9068 BLKGRD: %s: Too many prot sg "
1693 					"segments from dma_map_sg.  Config %d,"
1694 						"prot_seg_cnt %d\n", __func__,
1695 						phba->cfg_prot_sg_seg_cnt,
1696 						lpfc_cmd->prot_seg_cnt);
1697 				dma_unmap_sg(&phba->pcidev->dev,
1698 					     scsi_prot_sglist(scsi_cmnd),
1699 					     scsi_prot_sg_count(scsi_cmnd),
1700 					     datadir);
1701 				scsi_dma_unmap(scsi_cmnd);
1702 				return 1;
1703 			}
1704 
1705 			num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1706 					datasegcnt, protsegcnt);
1707 			/* we should have 3 or more entries in buffer list */
1708 			if (num_bde < 3)
1709 				goto err;
1710 			break;
1711 		}
1712 		case LPFC_PG_TYPE_INVALID:
1713 		default:
1714 			lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1715 					"9022 Unexpected protection group %i\n",
1716 					prot_group_type);
1717 			return 1;
1718 		}
1719 	}
1720 
1721 	/*
1722 	 * Finish initializing those IOCB fields that are dependent on the
1723 	 * scsi_cmnd request_buffer.  Note that the bdeSize is explicitly
1724 	 * reinitialized since all iocb memory resources are used many times
1725 	 * for transmit, receive, and continuation bpl's.
1726 	 */
1727 	iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1728 	iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1729 	iocb_cmd->ulpBdeCount = 1;
1730 	iocb_cmd->ulpLe = 1;
1731 
1732 	fcpdl = scsi_bufflen(scsi_cmnd);
1733 
1734 	if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1735 		/*
1736 		 * We are in DIF Type 1 mode
1737 		 * Every data block has a 8 byte DIF (trailer)
1738 		 * attached to it.  Must ajust FCP data length
1739 		 */
1740 		blksize = lpfc_cmd_blksize(scsi_cmnd);
1741 		diflen = (fcpdl / blksize) * 8;
1742 		fcpdl += diflen;
1743 	}
1744 	fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1745 
1746 	/*
1747 	 * Due to difference in data length between DIF/non-DIF paths,
1748 	 * we need to set word 4 of IOCB here
1749 	 */
1750 	iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1751 
1752 	return 0;
1753 err:
1754 	lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1755 			"9023 Could not setup all needed BDE's"
1756 			"prot_group_type=%d, num_bde=%d\n",
1757 			prot_group_type, num_bde);
1758 	return 1;
1759 }
1760 
1761 /*
1762  * This function checks for BlockGuard errors detected by
1763  * the HBA.  In case of errors, the ASC/ASCQ fields in the
1764  * sense buffer will be set accordingly, paired with
1765  * ILLEGAL_REQUEST to signal to the kernel that the HBA
1766  * detected corruption.
1767  *
1768  * Returns:
1769  *  0 - No error found
1770  *  1 - BlockGuard error found
1771  * -1 - Internal error (bad profile, ...etc)
1772  */
1773 static int
1774 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1775 			struct lpfc_iocbq *pIocbOut)
1776 {
1777 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1778 	struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1779 	int ret = 0;
1780 	uint32_t bghm = bgf->bghm;
1781 	uint32_t bgstat = bgf->bgstat;
1782 	uint64_t failing_sector = 0;
1783 
1784 	lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd"
1785 			" 0x%x lba 0x%llx blk cnt 0x%x "
1786 			"bgstat=0x%x bghm=0x%x\n",
1787 			cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1788 			blk_rq_sectors(cmd->request), bgstat, bghm);
1789 
1790 	spin_lock(&_dump_buf_lock);
1791 	if (!_dump_buf_done) {
1792 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,  "9070 BLKGRD: Saving"
1793 			" Data for %u blocks to debugfs\n",
1794 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1795 		lpfc_debug_save_data(phba, cmd);
1796 
1797 		/* If we have a prot sgl, save the DIF buffer */
1798 		if (lpfc_prot_group_type(phba, cmd) ==
1799 				LPFC_PG_TYPE_DIF_BUF) {
1800 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: "
1801 				"Saving DIF for %u blocks to debugfs\n",
1802 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1803 			lpfc_debug_save_dif(phba, cmd);
1804 		}
1805 
1806 		_dump_buf_done = 1;
1807 	}
1808 	spin_unlock(&_dump_buf_lock);
1809 
1810 	if (lpfc_bgs_get_invalid_prof(bgstat)) {
1811 		cmd->result = ScsiResult(DID_ERROR, 0);
1812 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid"
1813 			" BlockGuard profile. bgstat:0x%x\n",
1814 			bgstat);
1815 		ret = (-1);
1816 		goto out;
1817 	}
1818 
1819 	if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1820 		cmd->result = ScsiResult(DID_ERROR, 0);
1821 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: "
1822 				"Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1823 				bgstat);
1824 		ret = (-1);
1825 		goto out;
1826 	}
1827 
1828 	if (lpfc_bgs_get_guard_err(bgstat)) {
1829 		ret = 1;
1830 
1831 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1832 				0x10, 0x1);
1833 		cmd->result = DRIVER_SENSE << 24
1834 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1835 		phba->bg_guard_err_cnt++;
1836 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1837 			"9055 BLKGRD: guard_tag error\n");
1838 	}
1839 
1840 	if (lpfc_bgs_get_reftag_err(bgstat)) {
1841 		ret = 1;
1842 
1843 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1844 				0x10, 0x3);
1845 		cmd->result = DRIVER_SENSE << 24
1846 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1847 
1848 		phba->bg_reftag_err_cnt++;
1849 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1850 			"9056 BLKGRD: ref_tag error\n");
1851 	}
1852 
1853 	if (lpfc_bgs_get_apptag_err(bgstat)) {
1854 		ret = 1;
1855 
1856 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1857 				0x10, 0x2);
1858 		cmd->result = DRIVER_SENSE << 24
1859 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1860 
1861 		phba->bg_apptag_err_cnt++;
1862 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1863 			"9061 BLKGRD: app_tag error\n");
1864 	}
1865 
1866 	if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
1867 		/*
1868 		 * setup sense data descriptor 0 per SPC-4 as an information
1869 		 * field, and put the failing LBA in it
1870 		 */
1871 		cmd->sense_buffer[8] = 0;     /* Information */
1872 		cmd->sense_buffer[9] = 0xa;   /* Add. length */
1873 		bghm /= cmd->device->sector_size;
1874 
1875 		failing_sector = scsi_get_lba(cmd);
1876 		failing_sector += bghm;
1877 
1878 		put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
1879 	}
1880 
1881 	if (!ret) {
1882 		/* No error was reported - problem in FW? */
1883 		cmd->result = ScsiResult(DID_ERROR, 0);
1884 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1885 			"9057 BLKGRD: no errors reported!\n");
1886 	}
1887 
1888 out:
1889 	return ret;
1890 }
1891 
1892 /**
1893  * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
1894  * @phba: The Hba for which this call is being executed.
1895  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1896  *
1897  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1898  * field of @lpfc_cmd for device with SLI-4 interface spec.
1899  *
1900  * Return codes:
1901  *	1 - Error
1902  *	0 - Success
1903  **/
1904 static int
1905 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1906 {
1907 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1908 	struct scatterlist *sgel = NULL;
1909 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1910 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
1911 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1912 	dma_addr_t physaddr;
1913 	uint32_t num_bde = 0;
1914 	uint32_t dma_len;
1915 	uint32_t dma_offset = 0;
1916 	int nseg;
1917 
1918 	/*
1919 	 * There are three possibilities here - use scatter-gather segment, use
1920 	 * the single mapping, or neither.  Start the lpfc command prep by
1921 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1922 	 * data bde entry.
1923 	 */
1924 	if (scsi_sg_count(scsi_cmnd)) {
1925 		/*
1926 		 * The driver stores the segment count returned from pci_map_sg
1927 		 * because this a count of dma-mappings used to map the use_sg
1928 		 * pages.  They are not guaranteed to be the same for those
1929 		 * architectures that implement an IOMMU.
1930 		 */
1931 
1932 		nseg = scsi_dma_map(scsi_cmnd);
1933 		if (unlikely(!nseg))
1934 			return 1;
1935 		sgl += 1;
1936 		/* clear the last flag in the fcp_rsp map entry */
1937 		sgl->word2 = le32_to_cpu(sgl->word2);
1938 		bf_set(lpfc_sli4_sge_last, sgl, 0);
1939 		sgl->word2 = cpu_to_le32(sgl->word2);
1940 		sgl += 1;
1941 
1942 		lpfc_cmd->seg_cnt = nseg;
1943 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1944 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:"
1945 				" %s: Too many sg segments from "
1946 				"dma_map_sg.  Config %d, seg_cnt %d\n",
1947 				__func__, phba->cfg_sg_seg_cnt,
1948 			       lpfc_cmd->seg_cnt);
1949 			scsi_dma_unmap(scsi_cmnd);
1950 			return 1;
1951 		}
1952 
1953 		/*
1954 		 * The driver established a maximum scatter-gather segment count
1955 		 * during probe that limits the number of sg elements in any
1956 		 * single scsi command.  Just run through the seg_cnt and format
1957 		 * the sge's.
1958 		 * When using SLI-3 the driver will try to fit all the BDEs into
1959 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1960 		 * does for SLI-2 mode.
1961 		 */
1962 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1963 			physaddr = sg_dma_address(sgel);
1964 			dma_len = sg_dma_len(sgel);
1965 			sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
1966 			sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
1967 			if ((num_bde + 1) == nseg)
1968 				bf_set(lpfc_sli4_sge_last, sgl, 1);
1969 			else
1970 				bf_set(lpfc_sli4_sge_last, sgl, 0);
1971 			bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
1972 			sgl->word2 = cpu_to_le32(sgl->word2);
1973 			sgl->sge_len = cpu_to_le32(dma_len);
1974 			dma_offset += dma_len;
1975 			sgl++;
1976 		}
1977 	} else {
1978 		sgl += 1;
1979 		/* clear the last flag in the fcp_rsp map entry */
1980 		sgl->word2 = le32_to_cpu(sgl->word2);
1981 		bf_set(lpfc_sli4_sge_last, sgl, 1);
1982 		sgl->word2 = cpu_to_le32(sgl->word2);
1983 	}
1984 
1985 	/*
1986 	 * Finish initializing those IOCB fields that are dependent on the
1987 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1988 	 * explicitly reinitialized.
1989 	 * all iocb memory resources are reused.
1990 	 */
1991 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1992 
1993 	/*
1994 	 * Due to difference in data length between DIF/non-DIF paths,
1995 	 * we need to set word 4 of IOCB here
1996 	 */
1997 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1998 	return 0;
1999 }
2000 
2001 /**
2002  * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2003  * @phba: The Hba for which this call is being executed.
2004  * @lpfc_cmd: The scsi buffer which is going to be mapped.
2005  *
2006  * This routine wraps the actual DMA mapping function pointer from the
2007  * lpfc_hba struct.
2008  *
2009  * Return codes:
2010  *	1 - Error
2011  *	0 - Success
2012  **/
2013 static inline int
2014 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2015 {
2016 	return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2017 }
2018 
2019 /**
2020  * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2021  * @phba: Pointer to hba context object.
2022  * @vport: Pointer to vport object.
2023  * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2024  * @rsp_iocb: Pointer to response iocb object which reported error.
2025  *
2026  * This function posts an event when there is a SCSI command reporting
2027  * error from the scsi device.
2028  **/
2029 static void
2030 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
2031 		struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
2032 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2033 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2034 	uint32_t resp_info = fcprsp->rspStatus2;
2035 	uint32_t scsi_status = fcprsp->rspStatus3;
2036 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2037 	struct lpfc_fast_path_event *fast_path_evt = NULL;
2038 	struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
2039 	unsigned long flags;
2040 
2041 	/* If there is queuefull or busy condition send a scsi event */
2042 	if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
2043 		(cmnd->result == SAM_STAT_BUSY)) {
2044 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2045 		if (!fast_path_evt)
2046 			return;
2047 		fast_path_evt->un.scsi_evt.event_type =
2048 			FC_REG_SCSI_EVENT;
2049 		fast_path_evt->un.scsi_evt.subcategory =
2050 		(cmnd->result == SAM_STAT_TASK_SET_FULL) ?
2051 		LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
2052 		fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
2053 		memcpy(&fast_path_evt->un.scsi_evt.wwpn,
2054 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2055 		memcpy(&fast_path_evt->un.scsi_evt.wwnn,
2056 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2057 	} else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
2058 		((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
2059 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2060 		if (!fast_path_evt)
2061 			return;
2062 		fast_path_evt->un.check_cond_evt.scsi_event.event_type =
2063 			FC_REG_SCSI_EVENT;
2064 		fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
2065 			LPFC_EVENT_CHECK_COND;
2066 		fast_path_evt->un.check_cond_evt.scsi_event.lun =
2067 			cmnd->device->lun;
2068 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
2069 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2070 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
2071 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2072 		fast_path_evt->un.check_cond_evt.sense_key =
2073 			cmnd->sense_buffer[2] & 0xf;
2074 		fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
2075 		fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
2076 	} else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2077 		     fcpi_parm &&
2078 		     ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
2079 			((scsi_status == SAM_STAT_GOOD) &&
2080 			!(resp_info & (RESID_UNDER | RESID_OVER))))) {
2081 		/*
2082 		 * If status is good or resid does not match with fcp_param and
2083 		 * there is valid fcpi_parm, then there is a read_check error
2084 		 */
2085 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2086 		if (!fast_path_evt)
2087 			return;
2088 		fast_path_evt->un.read_check_error.header.event_type =
2089 			FC_REG_FABRIC_EVENT;
2090 		fast_path_evt->un.read_check_error.header.subcategory =
2091 			LPFC_EVENT_FCPRDCHKERR;
2092 		memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
2093 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2094 		memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
2095 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2096 		fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
2097 		fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
2098 		fast_path_evt->un.read_check_error.fcpiparam =
2099 			fcpi_parm;
2100 	} else
2101 		return;
2102 
2103 	fast_path_evt->vport = vport;
2104 	spin_lock_irqsave(&phba->hbalock, flags);
2105 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
2106 	spin_unlock_irqrestore(&phba->hbalock, flags);
2107 	lpfc_worker_wake_up(phba);
2108 	return;
2109 }
2110 
2111 /**
2112  * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2113  * @phba: The HBA for which this call is being executed.
2114  * @psb: The scsi buffer which is going to be un-mapped.
2115  *
2116  * This routine does DMA un-mapping of scatter gather list of scsi command
2117  * field of @lpfc_cmd for device with SLI-3 interface spec.
2118  **/
2119 static void
2120 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2121 {
2122 	/*
2123 	 * There are only two special cases to consider.  (1) the scsi command
2124 	 * requested scatter-gather usage or (2) the scsi command allocated
2125 	 * a request buffer, but did not request use_sg.  There is a third
2126 	 * case, but it does not require resource deallocation.
2127 	 */
2128 	if (psb->seg_cnt > 0)
2129 		scsi_dma_unmap(psb->pCmd);
2130 	if (psb->prot_seg_cnt > 0)
2131 		dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2132 				scsi_prot_sg_count(psb->pCmd),
2133 				psb->pCmd->sc_data_direction);
2134 }
2135 
2136 /**
2137  * lpfc_handler_fcp_err - FCP response handler
2138  * @vport: The virtual port for which this call is being executed.
2139  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2140  * @rsp_iocb: The response IOCB which contains FCP error.
2141  *
2142  * This routine is called to process response IOCB with status field
2143  * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2144  * based upon SCSI and FCP error.
2145  **/
2146 static void
2147 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2148 		    struct lpfc_iocbq *rsp_iocb)
2149 {
2150 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2151 	struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2152 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2153 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2154 	uint32_t resp_info = fcprsp->rspStatus2;
2155 	uint32_t scsi_status = fcprsp->rspStatus3;
2156 	uint32_t *lp;
2157 	uint32_t host_status = DID_OK;
2158 	uint32_t rsplen = 0;
2159 	uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2160 
2161 
2162 	/*
2163 	 *  If this is a task management command, there is no
2164 	 *  scsi packet associated with this lpfc_cmd.  The driver
2165 	 *  consumes it.
2166 	 */
2167 	if (fcpcmd->fcpCntl2) {
2168 		scsi_status = 0;
2169 		goto out;
2170 	}
2171 
2172 	if (resp_info & RSP_LEN_VALID) {
2173 		rsplen = be32_to_cpu(fcprsp->rspRspLen);
2174 		if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
2175 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2176 				 "2719 Invalid response length: "
2177 				 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2178 				 cmnd->device->id,
2179 				 cmnd->device->lun, cmnd->cmnd[0],
2180 				 rsplen);
2181 			host_status = DID_ERROR;
2182 			goto out;
2183 		}
2184 		if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
2185 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2186 				 "2757 Protocol failure detected during "
2187 				 "processing of FCP I/O op: "
2188 				 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2189 				 cmnd->device->id,
2190 				 cmnd->device->lun, cmnd->cmnd[0],
2191 				 fcprsp->rspInfo3);
2192 			host_status = DID_ERROR;
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2198 		uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2199 		if (snslen > SCSI_SENSE_BUFFERSIZE)
2200 			snslen = SCSI_SENSE_BUFFERSIZE;
2201 
2202 		if (resp_info & RSP_LEN_VALID)
2203 		  rsplen = be32_to_cpu(fcprsp->rspRspLen);
2204 		memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2205 	}
2206 	lp = (uint32_t *)cmnd->sense_buffer;
2207 
2208 	if (!scsi_status && (resp_info & RESID_UNDER))
2209 		logit = LOG_FCP;
2210 
2211 	lpfc_printf_vlog(vport, KERN_WARNING, logit,
2212 			 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2213 			 "Data: x%x x%x x%x x%x x%x\n",
2214 			 cmnd->cmnd[0], scsi_status,
2215 			 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2216 			 be32_to_cpu(fcprsp->rspResId),
2217 			 be32_to_cpu(fcprsp->rspSnsLen),
2218 			 be32_to_cpu(fcprsp->rspRspLen),
2219 			 fcprsp->rspInfo3);
2220 
2221 	scsi_set_resid(cmnd, 0);
2222 	if (resp_info & RESID_UNDER) {
2223 		scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2224 
2225 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2226 				 "9025 FCP Read Underrun, expected %d, "
2227 				 "residual %d Data: x%x x%x x%x\n",
2228 				 be32_to_cpu(fcpcmd->fcpDl),
2229 				 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2230 				 cmnd->underflow);
2231 
2232 		/*
2233 		 * If there is an under run check if under run reported by
2234 		 * storage array is same as the under run reported by HBA.
2235 		 * If this is not same, there is a dropped frame.
2236 		 */
2237 		if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2238 			fcpi_parm &&
2239 			(scsi_get_resid(cmnd) != fcpi_parm)) {
2240 			lpfc_printf_vlog(vport, KERN_WARNING,
2241 					 LOG_FCP | LOG_FCP_ERROR,
2242 					 "9026 FCP Read Check Error "
2243 					 "and Underrun Data: x%x x%x x%x x%x\n",
2244 					 be32_to_cpu(fcpcmd->fcpDl),
2245 					 scsi_get_resid(cmnd), fcpi_parm,
2246 					 cmnd->cmnd[0]);
2247 			scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2248 			host_status = DID_ERROR;
2249 		}
2250 		/*
2251 		 * The cmnd->underflow is the minimum number of bytes that must
2252 		 * be transfered for this command.  Provided a sense condition
2253 		 * is not present, make sure the actual amount transferred is at
2254 		 * least the underflow value or fail.
2255 		 */
2256 		if (!(resp_info & SNS_LEN_VALID) &&
2257 		    (scsi_status == SAM_STAT_GOOD) &&
2258 		    (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2259 		     < cmnd->underflow)) {
2260 			lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2261 					 "9027 FCP command x%x residual "
2262 					 "underrun converted to error "
2263 					 "Data: x%x x%x x%x\n",
2264 					 cmnd->cmnd[0], scsi_bufflen(cmnd),
2265 					 scsi_get_resid(cmnd), cmnd->underflow);
2266 			host_status = DID_ERROR;
2267 		}
2268 	} else if (resp_info & RESID_OVER) {
2269 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2270 				 "9028 FCP command x%x residual overrun error. "
2271 				 "Data: x%x x%x\n", cmnd->cmnd[0],
2272 				 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2273 		host_status = DID_ERROR;
2274 
2275 	/*
2276 	 * Check SLI validation that all the transfer was actually done
2277 	 * (fcpi_parm should be zero). Apply check only to reads.
2278 	 */
2279 	} else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm &&
2280 			(cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2281 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2282 				 "9029 FCP Read Check Error Data: "
2283 				 "x%x x%x x%x x%x\n",
2284 				 be32_to_cpu(fcpcmd->fcpDl),
2285 				 be32_to_cpu(fcprsp->rspResId),
2286 				 fcpi_parm, cmnd->cmnd[0]);
2287 		host_status = DID_ERROR;
2288 		scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2289 	}
2290 
2291  out:
2292 	cmnd->result = ScsiResult(host_status, scsi_status);
2293 	lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2294 }
2295 
2296 /**
2297  * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2298  * @phba: The Hba for which this call is being executed.
2299  * @pIocbIn: The command IOCBQ for the scsi cmnd.
2300  * @pIocbOut: The response IOCBQ for the scsi cmnd.
2301  *
2302  * This routine assigns scsi command result by looking into response IOCB
2303  * status field appropriately. This routine handles QUEUE FULL condition as
2304  * well by ramping down device queue depth.
2305  **/
2306 static void
2307 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2308 			struct lpfc_iocbq *pIocbOut)
2309 {
2310 	struct lpfc_scsi_buf *lpfc_cmd =
2311 		(struct lpfc_scsi_buf *) pIocbIn->context1;
2312 	struct lpfc_vport      *vport = pIocbIn->vport;
2313 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2314 	struct lpfc_nodelist *pnode = rdata->pnode;
2315 	struct scsi_cmnd *cmd;
2316 	int result;
2317 	struct scsi_device *tmp_sdev;
2318 	int depth;
2319 	unsigned long flags;
2320 	struct lpfc_fast_path_event *fast_path_evt;
2321 	struct Scsi_Host *shost;
2322 	uint32_t queue_depth, scsi_id;
2323 
2324 	/* Sanity check on return of outstanding command */
2325 	if (!(lpfc_cmd->pCmd))
2326 		return;
2327 	cmd = lpfc_cmd->pCmd;
2328 	shost = cmd->device->host;
2329 
2330 	lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2331 	lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2332 	/* pick up SLI4 exhange busy status from HBA */
2333 	lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY;
2334 
2335 	if (pnode && NLP_CHK_NODE_ACT(pnode))
2336 		atomic_dec(&pnode->cmd_pending);
2337 
2338 	if (lpfc_cmd->status) {
2339 		if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2340 		    (lpfc_cmd->result & IOERR_DRVR_MASK))
2341 			lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2342 		else if (lpfc_cmd->status >= IOSTAT_CNT)
2343 			lpfc_cmd->status = IOSTAT_DEFAULT;
2344 
2345 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2346 				 "9030 FCP cmd x%x failed <%d/%d> "
2347 				 "status: x%x result: x%x Data: x%x x%x\n",
2348 				 cmd->cmnd[0],
2349 				 cmd->device ? cmd->device->id : 0xffff,
2350 				 cmd->device ? cmd->device->lun : 0xffff,
2351 				 lpfc_cmd->status, lpfc_cmd->result,
2352 				 pIocbOut->iocb.ulpContext,
2353 				 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2354 
2355 		switch (lpfc_cmd->status) {
2356 		case IOSTAT_FCP_RSP_ERROR:
2357 			/* Call FCP RSP handler to determine result */
2358 			lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2359 			break;
2360 		case IOSTAT_NPORT_BSY:
2361 		case IOSTAT_FABRIC_BSY:
2362 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2363 			fast_path_evt = lpfc_alloc_fast_evt(phba);
2364 			if (!fast_path_evt)
2365 				break;
2366 			fast_path_evt->un.fabric_evt.event_type =
2367 				FC_REG_FABRIC_EVENT;
2368 			fast_path_evt->un.fabric_evt.subcategory =
2369 				(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2370 				LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2371 			if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2372 				memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2373 					&pnode->nlp_portname,
2374 					sizeof(struct lpfc_name));
2375 				memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2376 					&pnode->nlp_nodename,
2377 					sizeof(struct lpfc_name));
2378 			}
2379 			fast_path_evt->vport = vport;
2380 			fast_path_evt->work_evt.evt =
2381 				LPFC_EVT_FASTPATH_MGMT_EVT;
2382 			spin_lock_irqsave(&phba->hbalock, flags);
2383 			list_add_tail(&fast_path_evt->work_evt.evt_listp,
2384 				&phba->work_list);
2385 			spin_unlock_irqrestore(&phba->hbalock, flags);
2386 			lpfc_worker_wake_up(phba);
2387 			break;
2388 		case IOSTAT_LOCAL_REJECT:
2389 			if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2390 			    lpfc_cmd->result == IOERR_NO_RESOURCES ||
2391 			    lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
2392 			    lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
2393 				cmd->result = ScsiResult(DID_REQUEUE, 0);
2394 				break;
2395 			}
2396 
2397 			if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2398 			     lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2399 			     pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2400 				if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2401 					/*
2402 					 * This is a response for a BG enabled
2403 					 * cmd. Parse BG error
2404 					 */
2405 					lpfc_parse_bg_err(phba, lpfc_cmd,
2406 							pIocbOut);
2407 					break;
2408 				} else {
2409 					lpfc_printf_vlog(vport, KERN_WARNING,
2410 							LOG_BG,
2411 							"9031 non-zero BGSTAT "
2412 							"on unprotected cmd\n");
2413 				}
2414 			}
2415 
2416 		/* else: fall through */
2417 		default:
2418 			cmd->result = ScsiResult(DID_ERROR, 0);
2419 			break;
2420 		}
2421 
2422 		if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2423 		    || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2424 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2425 						 SAM_STAT_BUSY);
2426 	} else {
2427 		cmd->result = ScsiResult(DID_OK, 0);
2428 	}
2429 
2430 	if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2431 		uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2432 
2433 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2434 				 "0710 Iodone <%d/%d> cmd %p, error "
2435 				 "x%x SNS x%x x%x Data: x%x x%x\n",
2436 				 cmd->device->id, cmd->device->lun, cmd,
2437 				 cmd->result, *lp, *(lp + 3), cmd->retries,
2438 				 scsi_get_resid(cmd));
2439 	}
2440 
2441 	lpfc_update_stats(phba, lpfc_cmd);
2442 	result = cmd->result;
2443 	if (vport->cfg_max_scsicmpl_time &&
2444 	   time_after(jiffies, lpfc_cmd->start_time +
2445 		msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2446 		spin_lock_irqsave(shost->host_lock, flags);
2447 		if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2448 			if (pnode->cmd_qdepth >
2449 				atomic_read(&pnode->cmd_pending) &&
2450 				(atomic_read(&pnode->cmd_pending) >
2451 				LPFC_MIN_TGT_QDEPTH) &&
2452 				((cmd->cmnd[0] == READ_10) ||
2453 				(cmd->cmnd[0] == WRITE_10)))
2454 				pnode->cmd_qdepth =
2455 					atomic_read(&pnode->cmd_pending);
2456 
2457 			pnode->last_change_time = jiffies;
2458 		}
2459 		spin_unlock_irqrestore(shost->host_lock, flags);
2460 	} else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2461 		if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) &&
2462 		   time_after(jiffies, pnode->last_change_time +
2463 			      msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2464 			spin_lock_irqsave(shost->host_lock, flags);
2465 			depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT
2466 				/ 100;
2467 			depth = depth ? depth : 1;
2468 			pnode->cmd_qdepth += depth;
2469 			if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth)
2470 				pnode->cmd_qdepth = vport->cfg_tgt_queue_depth;
2471 			pnode->last_change_time = jiffies;
2472 			spin_unlock_irqrestore(shost->host_lock, flags);
2473 		}
2474 	}
2475 
2476 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2477 
2478 	/* The sdev is not guaranteed to be valid post scsi_done upcall. */
2479 	queue_depth = cmd->device->queue_depth;
2480 	scsi_id = cmd->device->id;
2481 	cmd->scsi_done(cmd);
2482 
2483 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2484 		/*
2485 		 * If there is a thread waiting for command completion
2486 		 * wake up the thread.
2487 		 */
2488 		spin_lock_irqsave(shost->host_lock, flags);
2489 		lpfc_cmd->pCmd = NULL;
2490 		if (lpfc_cmd->waitq)
2491 			wake_up(lpfc_cmd->waitq);
2492 		spin_unlock_irqrestore(shost->host_lock, flags);
2493 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2494 		return;
2495 	}
2496 
2497 	if (!result)
2498 		lpfc_rampup_queue_depth(vport, queue_depth);
2499 
2500 	/*
2501 	 * Check for queue full.  If the lun is reporting queue full, then
2502 	 * back off the lun queue depth to prevent target overloads.
2503 	 */
2504 	if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2505 	    NLP_CHK_NODE_ACT(pnode)) {
2506 		shost_for_each_device(tmp_sdev, shost) {
2507 			if (tmp_sdev->id != scsi_id)
2508 				continue;
2509 			depth = scsi_track_queue_full(tmp_sdev,
2510 						      tmp_sdev->queue_depth-1);
2511 			if (depth <= 0)
2512 				continue;
2513 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2514 					 "0711 detected queue full - lun queue "
2515 					 "depth adjusted to %d.\n", depth);
2516 			lpfc_send_sdev_queuedepth_change_event(phba, vport,
2517 							       pnode,
2518 							       tmp_sdev->lun,
2519 							       depth+1, depth);
2520 		}
2521 	}
2522 
2523 	/*
2524 	 * If there is a thread waiting for command completion
2525 	 * wake up the thread.
2526 	 */
2527 	spin_lock_irqsave(shost->host_lock, flags);
2528 	lpfc_cmd->pCmd = NULL;
2529 	if (lpfc_cmd->waitq)
2530 		wake_up(lpfc_cmd->waitq);
2531 	spin_unlock_irqrestore(shost->host_lock, flags);
2532 
2533 	lpfc_release_scsi_buf(phba, lpfc_cmd);
2534 }
2535 
2536 /**
2537  * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2538  * @data: A pointer to the immediate command data portion of the IOCB.
2539  * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2540  *
2541  * The routine copies the entire FCP command from @fcp_cmnd to @data while
2542  * byte swapping the data to big endian format for transmission on the wire.
2543  **/
2544 static void
2545 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2546 {
2547 	int i, j;
2548 	for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2549 	     i += sizeof(uint32_t), j++) {
2550 		((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2551 	}
2552 }
2553 
2554 /**
2555  * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2556  * @vport: The virtual port for which this call is being executed.
2557  * @lpfc_cmd: The scsi command which needs to send.
2558  * @pnode: Pointer to lpfc_nodelist.
2559  *
2560  * This routine initializes fcp_cmnd and iocb data structure from scsi command
2561  * to transfer for device with SLI3 interface spec.
2562  **/
2563 static void
2564 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2565 		    struct lpfc_nodelist *pnode)
2566 {
2567 	struct lpfc_hba *phba = vport->phba;
2568 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2569 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2570 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2571 	struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2572 	int datadir = scsi_cmnd->sc_data_direction;
2573 	char tag[2];
2574 
2575 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2576 		return;
2577 
2578 	lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2579 	/* clear task management bits */
2580 	lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2581 
2582 	int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2583 			&lpfc_cmd->fcp_cmnd->fcp_lun);
2584 
2585 	memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2586 
2587 	if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2588 		switch (tag[0]) {
2589 		case HEAD_OF_QUEUE_TAG:
2590 			fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2591 			break;
2592 		case ORDERED_QUEUE_TAG:
2593 			fcp_cmnd->fcpCntl1 = ORDERED_Q;
2594 			break;
2595 		default:
2596 			fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2597 			break;
2598 		}
2599 	} else
2600 		fcp_cmnd->fcpCntl1 = 0;
2601 
2602 	/*
2603 	 * There are three possibilities here - use scatter-gather segment, use
2604 	 * the single mapping, or neither.  Start the lpfc command prep by
2605 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2606 	 * data bde entry.
2607 	 */
2608 	if (scsi_sg_count(scsi_cmnd)) {
2609 		if (datadir == DMA_TO_DEVICE) {
2610 			iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2611 			if (phba->sli_rev < LPFC_SLI_REV4) {
2612 				iocb_cmd->un.fcpi.fcpi_parm = 0;
2613 				iocb_cmd->ulpPU = 0;
2614 			} else
2615 				iocb_cmd->ulpPU = PARM_READ_CHECK;
2616 			fcp_cmnd->fcpCntl3 = WRITE_DATA;
2617 			phba->fc4OutputRequests++;
2618 		} else {
2619 			iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2620 			iocb_cmd->ulpPU = PARM_READ_CHECK;
2621 			fcp_cmnd->fcpCntl3 = READ_DATA;
2622 			phba->fc4InputRequests++;
2623 		}
2624 	} else {
2625 		iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2626 		iocb_cmd->un.fcpi.fcpi_parm = 0;
2627 		iocb_cmd->ulpPU = 0;
2628 		fcp_cmnd->fcpCntl3 = 0;
2629 		phba->fc4ControlRequests++;
2630 	}
2631 	if (phba->sli_rev == 3 &&
2632 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2633 		lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2634 	/*
2635 	 * Finish initializing those IOCB fields that are independent
2636 	 * of the scsi_cmnd request_buffer
2637 	 */
2638 	piocbq->iocb.ulpContext = pnode->nlp_rpi;
2639 	if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2640 		piocbq->iocb.ulpFCP2Rcvy = 1;
2641 	else
2642 		piocbq->iocb.ulpFCP2Rcvy = 0;
2643 
2644 	piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2645 	piocbq->context1  = lpfc_cmd;
2646 	piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2647 	piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2648 	piocbq->vport = vport;
2649 }
2650 
2651 /**
2652  * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2653  * @vport: The virtual port for which this call is being executed.
2654  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2655  * @lun: Logical unit number.
2656  * @task_mgmt_cmd: SCSI task management command.
2657  *
2658  * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2659  * for device with SLI-3 interface spec.
2660  *
2661  * Return codes:
2662  *   0 - Error
2663  *   1 - Success
2664  **/
2665 static int
2666 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2667 			     struct lpfc_scsi_buf *lpfc_cmd,
2668 			     unsigned int lun,
2669 			     uint8_t task_mgmt_cmd)
2670 {
2671 	struct lpfc_iocbq *piocbq;
2672 	IOCB_t *piocb;
2673 	struct fcp_cmnd *fcp_cmnd;
2674 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2675 	struct lpfc_nodelist *ndlp = rdata->pnode;
2676 
2677 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2678 	    ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2679 		return 0;
2680 
2681 	piocbq = &(lpfc_cmd->cur_iocbq);
2682 	piocbq->vport = vport;
2683 
2684 	piocb = &piocbq->iocb;
2685 
2686 	fcp_cmnd = lpfc_cmd->fcp_cmnd;
2687 	/* Clear out any old data in the FCP command area */
2688 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2689 	int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2690 	fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2691 	if (vport->phba->sli_rev == 3 &&
2692 	    !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2693 		lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2694 	piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2695 	piocb->ulpContext = ndlp->nlp_rpi;
2696 	if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2697 		piocb->ulpFCP2Rcvy = 1;
2698 	}
2699 	piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2700 
2701 	/* ulpTimeout is only one byte */
2702 	if (lpfc_cmd->timeout > 0xff) {
2703 		/*
2704 		 * Do not timeout the command at the firmware level.
2705 		 * The driver will provide the timeout mechanism.
2706 		 */
2707 		piocb->ulpTimeout = 0;
2708 	} else
2709 		piocb->ulpTimeout = lpfc_cmd->timeout;
2710 
2711 	if (vport->phba->sli_rev == LPFC_SLI_REV4)
2712 		lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2713 
2714 	return 1;
2715 }
2716 
2717 /**
2718  * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table
2719  * @phba: The hba struct for which this call is being executed.
2720  * @dev_grp: The HBA PCI-Device group number.
2721  *
2722  * This routine sets up the SCSI interface API function jump table in @phba
2723  * struct.
2724  * Returns: 0 - success, -ENODEV - failure.
2725  **/
2726 int
2727 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2728 {
2729 
2730 	phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2731 	phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2732 	phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;
2733 
2734 	switch (dev_grp) {
2735 	case LPFC_PCI_DEV_LP:
2736 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2737 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2738 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2739 		break;
2740 	case LPFC_PCI_DEV_OC:
2741 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2742 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2743 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2744 		break;
2745 	default:
2746 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2747 				"1418 Invalid HBA PCI-device group: 0x%x\n",
2748 				dev_grp);
2749 		return -ENODEV;
2750 		break;
2751 	}
2752 	phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;
2753 	phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2754 	phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2755 	return 0;
2756 }
2757 
2758 /**
2759  * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2760  * @phba: The Hba for which this call is being executed.
2761  * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2762  * @rspiocbq: Pointer to lpfc_iocbq data structure.
2763  *
2764  * This routine is IOCB completion routine for device reset and target reset
2765  * routine. This routine release scsi buffer associated with lpfc_cmd.
2766  **/
2767 static void
2768 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2769 			struct lpfc_iocbq *cmdiocbq,
2770 			struct lpfc_iocbq *rspiocbq)
2771 {
2772 	struct lpfc_scsi_buf *lpfc_cmd =
2773 		(struct lpfc_scsi_buf *) cmdiocbq->context1;
2774 	if (lpfc_cmd)
2775 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2776 	return;
2777 }
2778 
2779 /**
2780  * lpfc_info - Info entry point of scsi_host_template data structure
2781  * @host: The scsi host for which this call is being executed.
2782  *
2783  * This routine provides module information about hba.
2784  *
2785  * Reutrn code:
2786  *   Pointer to char - Success.
2787  **/
2788 const char *
2789 lpfc_info(struct Scsi_Host *host)
2790 {
2791 	struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2792 	struct lpfc_hba   *phba = vport->phba;
2793 	int len;
2794 	static char  lpfcinfobuf[384];
2795 
2796 	memset(lpfcinfobuf,0,384);
2797 	if (phba && phba->pcidev){
2798 		strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2799 		len = strlen(lpfcinfobuf);
2800 		snprintf(lpfcinfobuf + len,
2801 			384-len,
2802 			" on PCI bus %02x device %02x irq %d",
2803 			phba->pcidev->bus->number,
2804 			phba->pcidev->devfn,
2805 			phba->pcidev->irq);
2806 		len = strlen(lpfcinfobuf);
2807 		if (phba->Port[0]) {
2808 			snprintf(lpfcinfobuf + len,
2809 				 384-len,
2810 				 " port %s",
2811 				 phba->Port);
2812 		}
2813 		len = strlen(lpfcinfobuf);
2814 		if (phba->sli4_hba.link_state.logical_speed) {
2815 			snprintf(lpfcinfobuf + len,
2816 				 384-len,
2817 				 " Logical Link Speed: %d Mbps",
2818 				 phba->sli4_hba.link_state.logical_speed * 10);
2819 		}
2820 	}
2821 	return lpfcinfobuf;
2822 }
2823 
2824 /**
2825  * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2826  * @phba: The Hba for which this call is being executed.
2827  *
2828  * This routine modifies fcp_poll_timer  field of @phba by cfg_poll_tmo.
2829  * The default value of cfg_poll_tmo is 10 milliseconds.
2830  **/
2831 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
2832 {
2833 	unsigned long  poll_tmo_expires =
2834 		(jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
2835 
2836 	if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
2837 		mod_timer(&phba->fcp_poll_timer,
2838 			  poll_tmo_expires);
2839 }
2840 
2841 /**
2842  * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
2843  * @phba: The Hba for which this call is being executed.
2844  *
2845  * This routine starts the fcp_poll_timer of @phba.
2846  **/
2847 void lpfc_poll_start_timer(struct lpfc_hba * phba)
2848 {
2849 	lpfc_poll_rearm_timer(phba);
2850 }
2851 
2852 /**
2853  * lpfc_poll_timeout - Restart polling timer
2854  * @ptr: Map to lpfc_hba data structure pointer.
2855  *
2856  * This routine restarts fcp_poll timer, when FCP ring  polling is enable
2857  * and FCP Ring interrupt is disable.
2858  **/
2859 
2860 void lpfc_poll_timeout(unsigned long ptr)
2861 {
2862 	struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
2863 
2864 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2865 		lpfc_sli_handle_fast_ring_event(phba,
2866 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
2867 
2868 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
2869 			lpfc_poll_rearm_timer(phba);
2870 	}
2871 }
2872 
2873 /**
2874  * lpfc_queuecommand - scsi_host_template queuecommand entry point
2875  * @cmnd: Pointer to scsi_cmnd data structure.
2876  * @done: Pointer to done routine.
2877  *
2878  * Driver registers this routine to scsi midlayer to submit a @cmd to process.
2879  * This routine prepares an IOCB from scsi command and provides to firmware.
2880  * The @done callback is invoked after driver finished processing the command.
2881  *
2882  * Return value :
2883  *   0 - Success
2884  *   SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
2885  **/
2886 static int
2887 lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
2888 {
2889 	struct Scsi_Host  *shost = cmnd->device->host;
2890 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
2891 	struct lpfc_hba   *phba = vport->phba;
2892 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
2893 	struct lpfc_nodelist *ndlp;
2894 	struct lpfc_scsi_buf *lpfc_cmd;
2895 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
2896 	int err;
2897 
2898 	err = fc_remote_port_chkready(rport);
2899 	if (err) {
2900 		cmnd->result = err;
2901 		goto out_fail_command;
2902 	}
2903 	ndlp = rdata->pnode;
2904 
2905 	if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
2906 		scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
2907 
2908 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2909 				"9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
2910 				" op:%02x str=%s without registering for"
2911 				" BlockGuard - Rejecting command\n",
2912 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2913 				dif_op_str[scsi_get_prot_op(cmnd)]);
2914 		goto out_fail_command;
2915 	}
2916 
2917 	/*
2918 	 * Catch race where our node has transitioned, but the
2919 	 * transport is still transitioning.
2920 	 */
2921 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
2922 		cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2923 		goto out_fail_command;
2924 	}
2925 	if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)
2926 		goto out_host_busy;
2927 
2928 	lpfc_cmd = lpfc_get_scsi_buf(phba);
2929 	if (lpfc_cmd == NULL) {
2930 		lpfc_rampdown_queue_depth(phba);
2931 
2932 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2933 				 "0707 driver's buffer pool is empty, "
2934 				 "IO busied\n");
2935 		goto out_host_busy;
2936 	}
2937 
2938 	/*
2939 	 * Store the midlayer's command structure for the completion phase
2940 	 * and complete the command initialization.
2941 	 */
2942 	lpfc_cmd->pCmd  = cmnd;
2943 	lpfc_cmd->rdata = rdata;
2944 	lpfc_cmd->timeout = 0;
2945 	lpfc_cmd->start_time = jiffies;
2946 	cmnd->host_scribble = (unsigned char *)lpfc_cmd;
2947 	cmnd->scsi_done = done;
2948 
2949 	if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
2950 		if (vport->phba->cfg_enable_bg) {
2951 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2952 				"9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
2953 				"str=%s\n",
2954 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2955 				dif_op_str[scsi_get_prot_op(cmnd)]);
2956 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2957 				"9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
2958 				"%02x %02x %02x %02x %02x\n",
2959 				cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
2960 				cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
2961 				cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
2962 				cmnd->cmnd[9]);
2963 			if (cmnd->cmnd[0] == READ_10)
2964 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2965 					"9035 BLKGRD: READ @ sector %llu, "
2966 					"count %u\n",
2967 					(unsigned long long)scsi_get_lba(cmnd),
2968 					blk_rq_sectors(cmnd->request));
2969 			else if (cmnd->cmnd[0] == WRITE_10)
2970 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2971 					"9036 BLKGRD: WRITE @ sector %llu, "
2972 					"count %u cmd=%p\n",
2973 					(unsigned long long)scsi_get_lba(cmnd),
2974 					blk_rq_sectors(cmnd->request),
2975 					cmnd);
2976 		}
2977 
2978 		err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
2979 	} else {
2980 		if (vport->phba->cfg_enable_bg) {
2981 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2982 					"9038 BLKGRD: rcvd unprotected cmd:"
2983 					"%02x op:%02x str=%s\n",
2984 					cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2985 					dif_op_str[scsi_get_prot_op(cmnd)]);
2986 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2987 					"9039 BLKGRD: CDB: %02x %02x %02x "
2988 					"%02x %02x %02x %02x %02x %02x %02x\n",
2989 					cmnd->cmnd[0], cmnd->cmnd[1],
2990 					cmnd->cmnd[2], cmnd->cmnd[3],
2991 					cmnd->cmnd[4], cmnd->cmnd[5],
2992 					cmnd->cmnd[6], cmnd->cmnd[7],
2993 					cmnd->cmnd[8], cmnd->cmnd[9]);
2994 			if (cmnd->cmnd[0] == READ_10)
2995 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
2996 					"9040 dbg: READ @ sector %llu, "
2997 					"count %u\n",
2998 					(unsigned long long)scsi_get_lba(cmnd),
2999 					 blk_rq_sectors(cmnd->request));
3000 			else if (cmnd->cmnd[0] == WRITE_10)
3001 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3002 					 "9041 dbg: WRITE @ sector %llu, "
3003 					 "count %u cmd=%p\n",
3004 					 (unsigned long long)scsi_get_lba(cmnd),
3005 					 blk_rq_sectors(cmnd->request), cmnd);
3006 			else
3007 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3008 					 "9042 dbg: parser not implemented\n");
3009 		}
3010 		err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
3011 	}
3012 
3013 	if (err)
3014 		goto out_host_busy_free_buf;
3015 
3016 	lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
3017 
3018 	atomic_inc(&ndlp->cmd_pending);
3019 	err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
3020 				  &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
3021 	if (err) {
3022 		atomic_dec(&ndlp->cmd_pending);
3023 		goto out_host_busy_free_buf;
3024 	}
3025 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3026 		spin_unlock(shost->host_lock);
3027 		lpfc_sli_handle_fast_ring_event(phba,
3028 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3029 
3030 		spin_lock(shost->host_lock);
3031 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3032 			lpfc_poll_rearm_timer(phba);
3033 	}
3034 
3035 	return 0;
3036 
3037  out_host_busy_free_buf:
3038 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
3039 	lpfc_release_scsi_buf(phba, lpfc_cmd);
3040  out_host_busy:
3041 	return SCSI_MLQUEUE_HOST_BUSY;
3042 
3043  out_fail_command:
3044 	done(cmnd);
3045 	return 0;
3046 }
3047 
3048 /**
3049  * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3050  * @cmnd: Pointer to scsi_cmnd data structure.
3051  *
3052  * This routine aborts @cmnd pending in base driver.
3053  *
3054  * Return code :
3055  *   0x2003 - Error
3056  *   0x2002 - Success
3057  **/
3058 static int
3059 lpfc_abort_handler(struct scsi_cmnd *cmnd)
3060 {
3061 	struct Scsi_Host  *shost = cmnd->device->host;
3062 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3063 	struct lpfc_hba   *phba = vport->phba;
3064 	struct lpfc_iocbq *iocb;
3065 	struct lpfc_iocbq *abtsiocb;
3066 	struct lpfc_scsi_buf *lpfc_cmd;
3067 	IOCB_t *cmd, *icmd;
3068 	int ret = SUCCESS;
3069 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
3070 
3071 	ret = fc_block_scsi_eh(cmnd);
3072 	if (ret)
3073 		return ret;
3074 	lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
3075 	BUG_ON(!lpfc_cmd);
3076 
3077 	/*
3078 	 * If pCmd field of the corresponding lpfc_scsi_buf structure
3079 	 * points to a different SCSI command, then the driver has
3080 	 * already completed this command, but the midlayer did not
3081 	 * see the completion before the eh fired.  Just return
3082 	 * SUCCESS.
3083 	 */
3084 	iocb = &lpfc_cmd->cur_iocbq;
3085 	if (lpfc_cmd->pCmd != cmnd)
3086 		goto out;
3087 
3088 	BUG_ON(iocb->context1 != lpfc_cmd);
3089 
3090 	abtsiocb = lpfc_sli_get_iocbq(phba);
3091 	if (abtsiocb == NULL) {
3092 		ret = FAILED;
3093 		goto out;
3094 	}
3095 
3096 	/*
3097 	 * The scsi command can not be in txq and it is in flight because the
3098 	 * pCmd is still pointig at the SCSI command we have to abort. There
3099 	 * is no need to search the txcmplq. Just send an abort to the FW.
3100 	 */
3101 
3102 	cmd = &iocb->iocb;
3103 	icmd = &abtsiocb->iocb;
3104 	icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
3105 	icmd->un.acxri.abortContextTag = cmd->ulpContext;
3106 	if (phba->sli_rev == LPFC_SLI_REV4)
3107 		icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
3108 	else
3109 		icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3110 
3111 	icmd->ulpLe = 1;
3112 	icmd->ulpClass = cmd->ulpClass;
3113 
3114 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
3115 	abtsiocb->fcp_wqidx = iocb->fcp_wqidx;
3116 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
3117 
3118 	if (lpfc_is_link_up(phba))
3119 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
3120 	else
3121 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3122 
3123 	abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3124 	abtsiocb->vport = vport;
3125 	if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3126 	    IOCB_ERROR) {
3127 		lpfc_sli_release_iocbq(phba, abtsiocb);
3128 		ret = FAILED;
3129 		goto out;
3130 	}
3131 
3132 	if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3133 		lpfc_sli_handle_fast_ring_event(phba,
3134 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3135 
3136 	lpfc_cmd->waitq = &waitq;
3137 	/* Wait for abort to complete */
3138 	wait_event_timeout(waitq,
3139 			  (lpfc_cmd->pCmd != cmnd),
3140 			   (2*vport->cfg_devloss_tmo*HZ));
3141 
3142 	spin_lock_irq(shost->host_lock);
3143 	lpfc_cmd->waitq = NULL;
3144 	spin_unlock_irq(shost->host_lock);
3145 
3146 	if (lpfc_cmd->pCmd == cmnd) {
3147 		ret = FAILED;
3148 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3149 				 "0748 abort handler timed out waiting "
3150 				 "for abort to complete: ret %#x, ID %d, "
3151 				 "LUN %d, snum %#lx\n",
3152 				 ret, cmnd->device->id, cmnd->device->lun,
3153 				 cmnd->serial_number);
3154 	}
3155 
3156  out:
3157 	lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3158 			 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3159 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3160 			 cmnd->device->lun, cmnd->serial_number);
3161 	return ret;
3162 }
3163 
3164 static char *
3165 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3166 {
3167 	switch (task_mgmt_cmd) {
3168 	case FCP_ABORT_TASK_SET:
3169 		return "ABORT_TASK_SET";
3170 	case FCP_CLEAR_TASK_SET:
3171 		return "FCP_CLEAR_TASK_SET";
3172 	case FCP_BUS_RESET:
3173 		return "FCP_BUS_RESET";
3174 	case FCP_LUN_RESET:
3175 		return "FCP_LUN_RESET";
3176 	case FCP_TARGET_RESET:
3177 		return "FCP_TARGET_RESET";
3178 	case FCP_CLEAR_ACA:
3179 		return "FCP_CLEAR_ACA";
3180 	case FCP_TERMINATE_TASK:
3181 		return "FCP_TERMINATE_TASK";
3182 	default:
3183 		return "unknown";
3184 	}
3185 }
3186 
3187 /**
3188  * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3189  * @vport: The virtual port for which this call is being executed.
3190  * @rdata: Pointer to remote port local data
3191  * @tgt_id: Target ID of remote device.
3192  * @lun_id: Lun number for the TMF
3193  * @task_mgmt_cmd: type of TMF to send
3194  *
3195  * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3196  * a remote port.
3197  *
3198  * Return Code:
3199  *   0x2003 - Error
3200  *   0x2002 - Success.
3201  **/
3202 static int
3203 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3204 		    unsigned  tgt_id, unsigned int lun_id,
3205 		    uint8_t task_mgmt_cmd)
3206 {
3207 	struct lpfc_hba   *phba = vport->phba;
3208 	struct lpfc_scsi_buf *lpfc_cmd;
3209 	struct lpfc_iocbq *iocbq;
3210 	struct lpfc_iocbq *iocbqrsp;
3211 	int ret;
3212 	int status;
3213 
3214 	if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode))
3215 		return FAILED;
3216 
3217 	lpfc_cmd = lpfc_get_scsi_buf(phba);
3218 	if (lpfc_cmd == NULL)
3219 		return FAILED;
3220 	lpfc_cmd->timeout = 60;
3221 	lpfc_cmd->rdata = rdata;
3222 
3223 	status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3224 					   task_mgmt_cmd);
3225 	if (!status) {
3226 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3227 		return FAILED;
3228 	}
3229 
3230 	iocbq = &lpfc_cmd->cur_iocbq;
3231 	iocbqrsp = lpfc_sli_get_iocbq(phba);
3232 	if (iocbqrsp == NULL) {
3233 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3234 		return FAILED;
3235 	}
3236 
3237 	lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3238 			 "0702 Issue %s to TGT %d LUN %d "
3239 			 "rpi x%x nlp_flag x%x\n",
3240 			 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3241 			 rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag);
3242 
3243 	status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3244 					  iocbq, iocbqrsp, lpfc_cmd->timeout);
3245 	if (status != IOCB_SUCCESS) {
3246 		if (status == IOCB_TIMEDOUT) {
3247 			iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3248 			ret = TIMEOUT_ERROR;
3249 		} else
3250 			ret = FAILED;
3251 		lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3252 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3253 			 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3254 			 lpfc_taskmgmt_name(task_mgmt_cmd),
3255 			 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3256 			 iocbqrsp->iocb.un.ulpWord[4]);
3257 	} else if (status == IOCB_BUSY)
3258 		ret = FAILED;
3259 	else
3260 		ret = SUCCESS;
3261 
3262 	lpfc_sli_release_iocbq(phba, iocbqrsp);
3263 
3264 	if (ret != TIMEOUT_ERROR)
3265 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3266 
3267 	return ret;
3268 }
3269 
3270 /**
3271  * lpfc_chk_tgt_mapped -
3272  * @vport: The virtual port to check on
3273  * @cmnd: Pointer to scsi_cmnd data structure.
3274  *
3275  * This routine delays until the scsi target (aka rport) for the
3276  * command exists (is present and logged in) or we declare it non-existent.
3277  *
3278  * Return code :
3279  *  0x2003 - Error
3280  *  0x2002 - Success
3281  **/
3282 static int
3283 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3284 {
3285 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3286 	struct lpfc_nodelist *pnode;
3287 	unsigned long later;
3288 
3289 	if (!rdata) {
3290 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3291 			"0797 Tgt Map rport failure: rdata x%p\n", rdata);
3292 		return FAILED;
3293 	}
3294 	pnode = rdata->pnode;
3295 	/*
3296 	 * If target is not in a MAPPED state, delay until
3297 	 * target is rediscovered or devloss timeout expires.
3298 	 */
3299 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3300 	while (time_after(later, jiffies)) {
3301 		if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3302 			return FAILED;
3303 		if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3304 			return SUCCESS;
3305 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3306 		rdata = cmnd->device->hostdata;
3307 		if (!rdata)
3308 			return FAILED;
3309 		pnode = rdata->pnode;
3310 	}
3311 	if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3312 	    (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3313 		return FAILED;
3314 	return SUCCESS;
3315 }
3316 
3317 /**
3318  * lpfc_reset_flush_io_context -
3319  * @vport: The virtual port (scsi_host) for the flush context
3320  * @tgt_id: If aborting by Target contect - specifies the target id
3321  * @lun_id: If aborting by Lun context - specifies the lun id
3322  * @context: specifies the context level to flush at.
3323  *
3324  * After a reset condition via TMF, we need to flush orphaned i/o
3325  * contexts from the adapter. This routine aborts any contexts
3326  * outstanding, then waits for their completions. The wait is
3327  * bounded by devloss_tmo though.
3328  *
3329  * Return code :
3330  *  0x2003 - Error
3331  *  0x2002 - Success
3332  **/
3333 static int
3334 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3335 			uint64_t lun_id, lpfc_ctx_cmd context)
3336 {
3337 	struct lpfc_hba   *phba = vport->phba;
3338 	unsigned long later;
3339 	int cnt;
3340 
3341 	cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3342 	if (cnt)
3343 		lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3344 				    tgt_id, lun_id, context);
3345 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3346 	while (time_after(later, jiffies) && cnt) {
3347 		schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3348 		cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3349 	}
3350 	if (cnt) {
3351 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3352 			"0724 I/O flush failure for context %s : cnt x%x\n",
3353 			((context == LPFC_CTX_LUN) ? "LUN" :
3354 			 ((context == LPFC_CTX_TGT) ? "TGT" :
3355 			  ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3356 			cnt);
3357 		return FAILED;
3358 	}
3359 	return SUCCESS;
3360 }
3361 
3362 /**
3363  * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3364  * @cmnd: Pointer to scsi_cmnd data structure.
3365  *
3366  * This routine does a device reset by sending a LUN_RESET task management
3367  * command.
3368  *
3369  * Return code :
3370  *  0x2003 - Error
3371  *  0x2002 - Success
3372  **/
3373 static int
3374 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3375 {
3376 	struct Scsi_Host  *shost = cmnd->device->host;
3377 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3378 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3379 	struct lpfc_nodelist *pnode;
3380 	unsigned tgt_id = cmnd->device->id;
3381 	unsigned int lun_id = cmnd->device->lun;
3382 	struct lpfc_scsi_event_header scsi_event;
3383 	int status;
3384 
3385 	if (!rdata) {
3386 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3387 			"0798 Device Reset rport failure: rdata x%p\n", rdata);
3388 		return FAILED;
3389 	}
3390 	pnode = rdata->pnode;
3391 	status = fc_block_scsi_eh(cmnd);
3392 	if (status)
3393 		return status;
3394 
3395 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3396 	if (status == FAILED) {
3397 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3398 			"0721 Device Reset rport failure: rdata x%p\n", rdata);
3399 		return FAILED;
3400 	}
3401 
3402 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3403 	scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3404 	scsi_event.lun = lun_id;
3405 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3406 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3407 
3408 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3409 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3410 
3411 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3412 						FCP_LUN_RESET);
3413 
3414 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3415 			 "0713 SCSI layer issued Device Reset (%d, %d) "
3416 			 "return x%x\n", tgt_id, lun_id, status);
3417 
3418 	/*
3419 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3420 	 * or if the TMF failed, they may be in an indeterminate state.
3421 	 * So, continue on.
3422 	 * We will report success if all the i/o aborts successfully.
3423 	 */
3424 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3425 						LPFC_CTX_LUN);
3426 	return status;
3427 }
3428 
3429 /**
3430  * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3431  * @cmnd: Pointer to scsi_cmnd data structure.
3432  *
3433  * This routine does a target reset by sending a TARGET_RESET task management
3434  * command.
3435  *
3436  * Return code :
3437  *  0x2003 - Error
3438  *  0x2002 - Success
3439  **/
3440 static int
3441 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3442 {
3443 	struct Scsi_Host  *shost = cmnd->device->host;
3444 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3445 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3446 	struct lpfc_nodelist *pnode;
3447 	unsigned tgt_id = cmnd->device->id;
3448 	unsigned int lun_id = cmnd->device->lun;
3449 	struct lpfc_scsi_event_header scsi_event;
3450 	int status;
3451 
3452 	if (!rdata) {
3453 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3454 			"0799 Target Reset rport failure: rdata x%p\n", rdata);
3455 		return FAILED;
3456 	}
3457 	pnode = rdata->pnode;
3458 	status = fc_block_scsi_eh(cmnd);
3459 	if (status)
3460 		return status;
3461 
3462 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3463 	if (status == FAILED) {
3464 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3465 			"0722 Target Reset rport failure: rdata x%p\n", rdata);
3466 		return FAILED;
3467 	}
3468 
3469 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3470 	scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3471 	scsi_event.lun = 0;
3472 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3473 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3474 
3475 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3476 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3477 
3478 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3479 					FCP_TARGET_RESET);
3480 
3481 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3482 			 "0723 SCSI layer issued Target Reset (%d, %d) "
3483 			 "return x%x\n", tgt_id, lun_id, status);
3484 
3485 	/*
3486 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3487 	 * or if the TMF failed, they may be in an indeterminate state.
3488 	 * So, continue on.
3489 	 * We will report success if all the i/o aborts successfully.
3490 	 */
3491 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3492 					LPFC_CTX_TGT);
3493 	return status;
3494 }
3495 
3496 /**
3497  * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3498  * @cmnd: Pointer to scsi_cmnd data structure.
3499  *
3500  * This routine does target reset to all targets on @cmnd->device->host.
3501  * This emulates Parallel SCSI Bus Reset Semantics.
3502  *
3503  * Return code :
3504  *  0x2003 - Error
3505  *  0x2002 - Success
3506  **/
3507 static int
3508 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3509 {
3510 	struct Scsi_Host  *shost = cmnd->device->host;
3511 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3512 	struct lpfc_nodelist *ndlp = NULL;
3513 	struct lpfc_scsi_event_header scsi_event;
3514 	int match;
3515 	int ret = SUCCESS, status, i;
3516 
3517 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3518 	scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3519 	scsi_event.lun = 0;
3520 	memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3521 	memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3522 
3523 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3524 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3525 
3526 	ret = fc_block_scsi_eh(cmnd);
3527 	if (ret)
3528 		return ret;
3529 
3530 	/*
3531 	 * Since the driver manages a single bus device, reset all
3532 	 * targets known to the driver.  Should any target reset
3533 	 * fail, this routine returns failure to the midlayer.
3534 	 */
3535 	for (i = 0; i < LPFC_MAX_TARGET; i++) {
3536 		/* Search for mapped node by target ID */
3537 		match = 0;
3538 		spin_lock_irq(shost->host_lock);
3539 		list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3540 			if (!NLP_CHK_NODE_ACT(ndlp))
3541 				continue;
3542 			if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3543 			    ndlp->nlp_sid == i &&
3544 			    ndlp->rport) {
3545 				match = 1;
3546 				break;
3547 			}
3548 		}
3549 		spin_unlock_irq(shost->host_lock);
3550 		if (!match)
3551 			continue;
3552 
3553 		status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3554 					i, 0, FCP_TARGET_RESET);
3555 
3556 		if (status != SUCCESS) {
3557 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3558 					 "0700 Bus Reset on target %d failed\n",
3559 					 i);
3560 			ret = FAILED;
3561 		}
3562 	}
3563 	/*
3564 	 * We have to clean up i/o as : they may be orphaned by the TMFs
3565 	 * above; or if any of the TMFs failed, they may be in an
3566 	 * indeterminate state.
3567 	 * We will report success if all the i/o aborts successfully.
3568 	 */
3569 
3570 	status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3571 	if (status != SUCCESS)
3572 		ret = FAILED;
3573 
3574 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3575 			 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3576 	return ret;
3577 }
3578 
3579 /**
3580  * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3581  * @sdev: Pointer to scsi_device.
3582  *
3583  * This routine populates the cmds_per_lun count + 2 scsi_bufs into  this host's
3584  * globally available list of scsi buffers. This routine also makes sure scsi
3585  * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3586  * of scsi buffer exists for the lifetime of the driver.
3587  *
3588  * Return codes:
3589  *   non-0 - Error
3590  *   0 - Success
3591  **/
3592 static int
3593 lpfc_slave_alloc(struct scsi_device *sdev)
3594 {
3595 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3596 	struct lpfc_hba   *phba = vport->phba;
3597 	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3598 	uint32_t total = 0;
3599 	uint32_t num_to_alloc = 0;
3600 	int num_allocated = 0;
3601 	uint32_t sdev_cnt;
3602 
3603 	if (!rport || fc_remote_port_chkready(rport))
3604 		return -ENXIO;
3605 
3606 	sdev->hostdata = rport->dd_data;
3607 	sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
3608 
3609 	/*
3610 	 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3611 	 * available list of scsi buffers.  Don't allocate more than the
3612 	 * HBA limit conveyed to the midlayer via the host structure.  The
3613 	 * formula accounts for the lun_queue_depth + error handlers + 1
3614 	 * extra.  This list of scsi bufs exists for the lifetime of the driver.
3615 	 */
3616 	total = phba->total_scsi_bufs;
3617 	num_to_alloc = vport->cfg_lun_queue_depth + 2;
3618 
3619 	/* If allocated buffers are enough do nothing */
3620 	if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
3621 		return 0;
3622 
3623 	/* Allow some exchanges to be available always to complete discovery */
3624 	if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3625 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3626 				 "0704 At limitation of %d preallocated "
3627 				 "command buffers\n", total);
3628 		return 0;
3629 	/* Allow some exchanges to be available always to complete discovery */
3630 	} else if (total + num_to_alloc >
3631 		phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3632 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3633 				 "0705 Allocation request of %d "
3634 				 "command buffers will exceed max of %d.  "
3635 				 "Reducing allocation request to %d.\n",
3636 				 num_to_alloc, phba->cfg_hba_queue_depth,
3637 				 (phba->cfg_hba_queue_depth - total));
3638 		num_to_alloc = phba->cfg_hba_queue_depth - total;
3639 	}
3640 	num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3641 	if (num_to_alloc != num_allocated) {
3642 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3643 				 "0708 Allocation request of %d "
3644 				 "command buffers did not succeed.  "
3645 				 "Allocated %d buffers.\n",
3646 				 num_to_alloc, num_allocated);
3647 	}
3648 	if (num_allocated > 0)
3649 		phba->total_scsi_bufs += num_allocated;
3650 	return 0;
3651 }
3652 
3653 /**
3654  * lpfc_slave_configure - scsi_host_template slave_configure entry point
3655  * @sdev: Pointer to scsi_device.
3656  *
3657  * This routine configures following items
3658  *   - Tag command queuing support for @sdev if supported.
3659  *   - Dev loss time out value of fc_rport.
3660  *   - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3661  *
3662  * Return codes:
3663  *   0 - Success
3664  **/
3665 static int
3666 lpfc_slave_configure(struct scsi_device *sdev)
3667 {
3668 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3669 	struct lpfc_hba   *phba = vport->phba;
3670 	struct fc_rport   *rport = starget_to_rport(sdev->sdev_target);
3671 
3672 	if (sdev->tagged_supported)
3673 		scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3674 	else
3675 		scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3676 
3677 	/*
3678 	 * Initialize the fc transport attributes for the target
3679 	 * containing this scsi device.  Also note that the driver's
3680 	 * target pointer is stored in the starget_data for the
3681 	 * driver's sysfs entry point functions.
3682 	 */
3683 	rport->dev_loss_tmo = vport->cfg_devloss_tmo;
3684 
3685 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3686 		lpfc_sli_handle_fast_ring_event(phba,
3687 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3688 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3689 			lpfc_poll_rearm_timer(phba);
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 /**
3696  * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3697  * @sdev: Pointer to scsi_device.
3698  *
3699  * This routine sets @sdev hostatdata filed to null.
3700  **/
3701 static void
3702 lpfc_slave_destroy(struct scsi_device *sdev)
3703 {
3704 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3705 	struct lpfc_hba   *phba = vport->phba;
3706 	atomic_dec(&phba->sdev_cnt);
3707 	sdev->hostdata = NULL;
3708 	return;
3709 }
3710 
3711 
3712 struct scsi_host_template lpfc_template = {
3713 	.module			= THIS_MODULE,
3714 	.name			= LPFC_DRIVER_NAME,
3715 	.info			= lpfc_info,
3716 	.queuecommand		= lpfc_queuecommand,
3717 	.eh_abort_handler	= lpfc_abort_handler,
3718 	.eh_device_reset_handler = lpfc_device_reset_handler,
3719 	.eh_target_reset_handler = lpfc_target_reset_handler,
3720 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3721 	.slave_alloc		= lpfc_slave_alloc,
3722 	.slave_configure	= lpfc_slave_configure,
3723 	.slave_destroy		= lpfc_slave_destroy,
3724 	.scan_finished		= lpfc_scan_finished,
3725 	.this_id		= -1,
3726 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3727 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3728 	.use_clustering		= ENABLE_CLUSTERING,
3729 	.shost_attrs		= lpfc_hba_attrs,
3730 	.max_sectors		= 0xFFFF,
3731 	.vendor_id		= LPFC_NL_VENDOR_ID,
3732 	.change_queue_depth	= lpfc_change_queue_depth,
3733 };
3734 
3735 struct scsi_host_template lpfc_vport_template = {
3736 	.module			= THIS_MODULE,
3737 	.name			= LPFC_DRIVER_NAME,
3738 	.info			= lpfc_info,
3739 	.queuecommand		= lpfc_queuecommand,
3740 	.eh_abort_handler	= lpfc_abort_handler,
3741 	.eh_device_reset_handler = lpfc_device_reset_handler,
3742 	.eh_target_reset_handler = lpfc_target_reset_handler,
3743 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3744 	.slave_alloc		= lpfc_slave_alloc,
3745 	.slave_configure	= lpfc_slave_configure,
3746 	.slave_destroy		= lpfc_slave_destroy,
3747 	.scan_finished		= lpfc_scan_finished,
3748 	.this_id		= -1,
3749 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3750 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3751 	.use_clustering		= ENABLE_CLUSTERING,
3752 	.shost_attrs		= lpfc_vport_attrs,
3753 	.max_sectors		= 0xFFFF,
3754 	.change_queue_depth	= lpfc_change_queue_depth,
3755 };
3756