1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2011 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_device.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 #include <scsi/scsi_tcq.h> 32 #include <scsi/scsi_transport_fc.h> 33 34 #include "lpfc_version.h" 35 #include "lpfc_hw4.h" 36 #include "lpfc_hw.h" 37 #include "lpfc_sli.h" 38 #include "lpfc_sli4.h" 39 #include "lpfc_nl.h" 40 #include "lpfc_disc.h" 41 #include "lpfc_scsi.h" 42 #include "lpfc.h" 43 #include "lpfc_logmsg.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_vport.h" 46 47 #define LPFC_RESET_WAIT 2 48 #define LPFC_ABORT_WAIT 2 49 50 int _dump_buf_done; 51 52 static char *dif_op_str[] = { 53 "SCSI_PROT_NORMAL", 54 "SCSI_PROT_READ_INSERT", 55 "SCSI_PROT_WRITE_STRIP", 56 "SCSI_PROT_READ_STRIP", 57 "SCSI_PROT_WRITE_INSERT", 58 "SCSI_PROT_READ_PASS", 59 "SCSI_PROT_WRITE_PASS", 60 }; 61 static void 62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 63 static void 64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 65 66 static void 67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 68 { 69 void *src, *dst; 70 struct scatterlist *sgde = scsi_sglist(cmnd); 71 72 if (!_dump_buf_data) { 73 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 75 __func__); 76 return; 77 } 78 79 80 if (!sgde) { 81 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 82 "9051 BLKGRD: ERROR: data scatterlist is null\n"); 83 return; 84 } 85 86 dst = (void *) _dump_buf_data; 87 while (sgde) { 88 src = sg_virt(sgde); 89 memcpy(dst, src, sgde->length); 90 dst += sgde->length; 91 sgde = sg_next(sgde); 92 } 93 } 94 95 static void 96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 97 { 98 void *src, *dst; 99 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 100 101 if (!_dump_buf_dif) { 102 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 104 __func__); 105 return; 106 } 107 108 if (!sgde) { 109 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 110 "9053 BLKGRD: ERROR: prot scatterlist is null\n"); 111 return; 112 } 113 114 dst = _dump_buf_dif; 115 while (sgde) { 116 src = sg_virt(sgde); 117 memcpy(dst, src, sgde->length); 118 dst += sgde->length; 119 sgde = sg_next(sgde); 120 } 121 } 122 123 /** 124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 125 * @phba: Pointer to HBA object. 126 * @lpfc_cmd: lpfc scsi command object pointer. 127 * 128 * This function is called from the lpfc_prep_task_mgmt_cmd function to 129 * set the last bit in the response sge entry. 130 **/ 131 static void 132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 133 struct lpfc_scsi_buf *lpfc_cmd) 134 { 135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 136 if (sgl) { 137 sgl += 1; 138 sgl->word2 = le32_to_cpu(sgl->word2); 139 bf_set(lpfc_sli4_sge_last, sgl, 1); 140 sgl->word2 = cpu_to_le32(sgl->word2); 141 } 142 } 143 144 /** 145 * lpfc_update_stats - Update statistical data for the command completion 146 * @phba: Pointer to HBA object. 147 * @lpfc_cmd: lpfc scsi command object pointer. 148 * 149 * This function is called when there is a command completion and this 150 * function updates the statistical data for the command completion. 151 **/ 152 static void 153 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 154 { 155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 156 struct lpfc_nodelist *pnode = rdata->pnode; 157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 158 unsigned long flags; 159 struct Scsi_Host *shost = cmd->device->host; 160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 161 unsigned long latency; 162 int i; 163 164 if (cmd->result) 165 return; 166 167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 168 169 spin_lock_irqsave(shost->host_lock, flags); 170 if (!vport->stat_data_enabled || 171 vport->stat_data_blocked || 172 !pnode || 173 !pnode->lat_data || 174 (phba->bucket_type == LPFC_NO_BUCKET)) { 175 spin_unlock_irqrestore(shost->host_lock, flags); 176 return; 177 } 178 179 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 180 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 181 phba->bucket_step; 182 /* check array subscript bounds */ 183 if (i < 0) 184 i = 0; 185 else if (i >= LPFC_MAX_BUCKET_COUNT) 186 i = LPFC_MAX_BUCKET_COUNT - 1; 187 } else { 188 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 189 if (latency <= (phba->bucket_base + 190 ((1<<i)*phba->bucket_step))) 191 break; 192 } 193 194 pnode->lat_data[i].cmd_count++; 195 spin_unlock_irqrestore(shost->host_lock, flags); 196 } 197 198 /** 199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 200 * @phba: Pointer to HBA context object. 201 * @vport: Pointer to vport object. 202 * @ndlp: Pointer to FC node associated with the target. 203 * @lun: Lun number of the scsi device. 204 * @old_val: Old value of the queue depth. 205 * @new_val: New value of the queue depth. 206 * 207 * This function sends an event to the mgmt application indicating 208 * there is a change in the scsi device queue depth. 209 **/ 210 static void 211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 212 struct lpfc_vport *vport, 213 struct lpfc_nodelist *ndlp, 214 uint32_t lun, 215 uint32_t old_val, 216 uint32_t new_val) 217 { 218 struct lpfc_fast_path_event *fast_path_evt; 219 unsigned long flags; 220 221 fast_path_evt = lpfc_alloc_fast_evt(phba); 222 if (!fast_path_evt) 223 return; 224 225 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 226 FC_REG_SCSI_EVENT; 227 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 228 LPFC_EVENT_VARQUEDEPTH; 229 230 /* Report all luns with change in queue depth */ 231 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 232 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 234 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 235 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 236 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 237 } 238 239 fast_path_evt->un.queue_depth_evt.oldval = old_val; 240 fast_path_evt->un.queue_depth_evt.newval = new_val; 241 fast_path_evt->vport = vport; 242 243 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 244 spin_lock_irqsave(&phba->hbalock, flags); 245 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 246 spin_unlock_irqrestore(&phba->hbalock, flags); 247 lpfc_worker_wake_up(phba); 248 249 return; 250 } 251 252 /** 253 * lpfc_change_queue_depth - Alter scsi device queue depth 254 * @sdev: Pointer the scsi device on which to change the queue depth. 255 * @qdepth: New queue depth to set the sdev to. 256 * @reason: The reason for the queue depth change. 257 * 258 * This function is called by the midlayer and the LLD to alter the queue 259 * depth for a scsi device. This function sets the queue depth to the new 260 * value and sends an event out to log the queue depth change. 261 **/ 262 int 263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 264 { 265 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 266 struct lpfc_hba *phba = vport->phba; 267 struct lpfc_rport_data *rdata; 268 unsigned long new_queue_depth, old_queue_depth; 269 270 old_queue_depth = sdev->queue_depth; 271 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 272 new_queue_depth = sdev->queue_depth; 273 rdata = sdev->hostdata; 274 if (rdata) 275 lpfc_send_sdev_queuedepth_change_event(phba, vport, 276 rdata->pnode, sdev->lun, 277 old_queue_depth, 278 new_queue_depth); 279 return sdev->queue_depth; 280 } 281 282 /** 283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 284 * @phba: The Hba for which this call is being executed. 285 * 286 * This routine is called when there is resource error in driver or firmware. 287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 288 * posts at most 1 event each second. This routine wakes up worker thread of 289 * @phba to process WORKER_RAM_DOWN_EVENT event. 290 * 291 * This routine should be called with no lock held. 292 **/ 293 void 294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 295 { 296 unsigned long flags; 297 uint32_t evt_posted; 298 299 spin_lock_irqsave(&phba->hbalock, flags); 300 atomic_inc(&phba->num_rsrc_err); 301 phba->last_rsrc_error_time = jiffies; 302 303 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 304 spin_unlock_irqrestore(&phba->hbalock, flags); 305 return; 306 } 307 308 phba->last_ramp_down_time = jiffies; 309 310 spin_unlock_irqrestore(&phba->hbalock, flags); 311 312 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 313 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 314 if (!evt_posted) 315 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 316 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 317 318 if (!evt_posted) 319 lpfc_worker_wake_up(phba); 320 return; 321 } 322 323 /** 324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 325 * @phba: The Hba for which this call is being executed. 326 * 327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 328 * post at most 1 event every 5 minute after last_ramp_up_time or 329 * last_rsrc_error_time. This routine wakes up worker thread of @phba 330 * to process WORKER_RAM_DOWN_EVENT event. 331 * 332 * This routine should be called with no lock held. 333 **/ 334 static inline void 335 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 336 uint32_t queue_depth) 337 { 338 unsigned long flags; 339 struct lpfc_hba *phba = vport->phba; 340 uint32_t evt_posted; 341 atomic_inc(&phba->num_cmd_success); 342 343 if (vport->cfg_lun_queue_depth <= queue_depth) 344 return; 345 spin_lock_irqsave(&phba->hbalock, flags); 346 if (time_before(jiffies, 347 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || 348 time_before(jiffies, 349 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { 350 spin_unlock_irqrestore(&phba->hbalock, flags); 351 return; 352 } 353 phba->last_ramp_up_time = jiffies; 354 spin_unlock_irqrestore(&phba->hbalock, flags); 355 356 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 357 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 358 if (!evt_posted) 359 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 360 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 361 362 if (!evt_posted) 363 lpfc_worker_wake_up(phba); 364 return; 365 } 366 367 /** 368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 369 * @phba: The Hba for which this call is being executed. 370 * 371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 372 * thread.This routine reduces queue depth for all scsi device on each vport 373 * associated with @phba. 374 **/ 375 void 376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 377 { 378 struct lpfc_vport **vports; 379 struct Scsi_Host *shost; 380 struct scsi_device *sdev; 381 unsigned long new_queue_depth; 382 unsigned long num_rsrc_err, num_cmd_success; 383 int i; 384 385 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 386 num_cmd_success = atomic_read(&phba->num_cmd_success); 387 388 vports = lpfc_create_vport_work_array(phba); 389 if (vports != NULL) 390 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 391 shost = lpfc_shost_from_vport(vports[i]); 392 shost_for_each_device(sdev, shost) { 393 new_queue_depth = 394 sdev->queue_depth * num_rsrc_err / 395 (num_rsrc_err + num_cmd_success); 396 if (!new_queue_depth) 397 new_queue_depth = sdev->queue_depth - 1; 398 else 399 new_queue_depth = sdev->queue_depth - 400 new_queue_depth; 401 lpfc_change_queue_depth(sdev, new_queue_depth, 402 SCSI_QDEPTH_DEFAULT); 403 } 404 } 405 lpfc_destroy_vport_work_array(phba, vports); 406 atomic_set(&phba->num_rsrc_err, 0); 407 atomic_set(&phba->num_cmd_success, 0); 408 } 409 410 /** 411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 412 * @phba: The Hba for which this call is being executed. 413 * 414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 415 * thread.This routine increases queue depth for all scsi device on each vport 416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 417 * num_cmd_success to zero. 418 **/ 419 void 420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 421 { 422 struct lpfc_vport **vports; 423 struct Scsi_Host *shost; 424 struct scsi_device *sdev; 425 int i; 426 427 vports = lpfc_create_vport_work_array(phba); 428 if (vports != NULL) 429 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 430 shost = lpfc_shost_from_vport(vports[i]); 431 shost_for_each_device(sdev, shost) { 432 if (vports[i]->cfg_lun_queue_depth <= 433 sdev->queue_depth) 434 continue; 435 lpfc_change_queue_depth(sdev, 436 sdev->queue_depth+1, 437 SCSI_QDEPTH_RAMP_UP); 438 } 439 } 440 lpfc_destroy_vport_work_array(phba, vports); 441 atomic_set(&phba->num_rsrc_err, 0); 442 atomic_set(&phba->num_cmd_success, 0); 443 } 444 445 /** 446 * lpfc_scsi_dev_block - set all scsi hosts to block state 447 * @phba: Pointer to HBA context object. 448 * 449 * This function walks vport list and set each SCSI host to block state 450 * by invoking fc_remote_port_delete() routine. This function is invoked 451 * with EEH when device's PCI slot has been permanently disabled. 452 **/ 453 void 454 lpfc_scsi_dev_block(struct lpfc_hba *phba) 455 { 456 struct lpfc_vport **vports; 457 struct Scsi_Host *shost; 458 struct scsi_device *sdev; 459 struct fc_rport *rport; 460 int i; 461 462 vports = lpfc_create_vport_work_array(phba); 463 if (vports != NULL) 464 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 465 shost = lpfc_shost_from_vport(vports[i]); 466 shost_for_each_device(sdev, shost) { 467 rport = starget_to_rport(scsi_target(sdev)); 468 fc_remote_port_delete(rport); 469 } 470 } 471 lpfc_destroy_vport_work_array(phba, vports); 472 } 473 474 /** 475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 476 * @vport: The virtual port for which this call being executed. 477 * @num_to_allocate: The requested number of buffers to allocate. 478 * 479 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 480 * the scsi buffer contains all the necessary information needed to initiate 481 * a SCSI I/O. The non-DMAable buffer region contains information to build 482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 483 * and the initial BPL. In addition to allocating memory, the FCP CMND and 484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 485 * 486 * Return codes: 487 * int - number of scsi buffers that were allocated. 488 * 0 = failure, less than num_to_alloc is a partial failure. 489 **/ 490 static int 491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 492 { 493 struct lpfc_hba *phba = vport->phba; 494 struct lpfc_scsi_buf *psb; 495 struct ulp_bde64 *bpl; 496 IOCB_t *iocb; 497 dma_addr_t pdma_phys_fcp_cmd; 498 dma_addr_t pdma_phys_fcp_rsp; 499 dma_addr_t pdma_phys_bpl; 500 uint16_t iotag; 501 int bcnt; 502 503 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 504 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 505 if (!psb) 506 break; 507 508 /* 509 * Get memory from the pci pool to map the virt space to pci 510 * bus space for an I/O. The DMA buffer includes space for the 511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 512 * necessary to support the sg_tablesize. 513 */ 514 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 515 GFP_KERNEL, &psb->dma_handle); 516 if (!psb->data) { 517 kfree(psb); 518 break; 519 } 520 521 /* Initialize virtual ptrs to dma_buf region. */ 522 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 523 524 /* Allocate iotag for psb->cur_iocbq. */ 525 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 526 if (iotag == 0) { 527 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 528 psb->data, psb->dma_handle); 529 kfree(psb); 530 break; 531 } 532 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 533 534 psb->fcp_cmnd = psb->data; 535 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 536 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 537 sizeof(struct fcp_rsp); 538 539 /* Initialize local short-hand pointers. */ 540 bpl = psb->fcp_bpl; 541 pdma_phys_fcp_cmd = psb->dma_handle; 542 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 543 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 544 sizeof(struct fcp_rsp); 545 546 /* 547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 548 * are sg list bdes. Initialize the first two and leave the 549 * rest for queuecommand. 550 */ 551 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 552 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 553 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 554 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 555 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 556 557 /* Setup the physical region for the FCP RSP */ 558 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 559 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 560 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 561 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 562 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 563 564 /* 565 * Since the IOCB for the FCP I/O is built into this 566 * lpfc_scsi_buf, initialize it with all known data now. 567 */ 568 iocb = &psb->cur_iocbq.iocb; 569 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 570 if ((phba->sli_rev == 3) && 571 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 572 /* fill in immediate fcp command BDE */ 573 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 574 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 575 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 576 unsli3.fcp_ext.icd); 577 iocb->un.fcpi64.bdl.addrHigh = 0; 578 iocb->ulpBdeCount = 0; 579 iocb->ulpLe = 0; 580 /* fill in response BDE */ 581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 582 BUFF_TYPE_BDE_64; 583 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 584 sizeof(struct fcp_rsp); 585 iocb->unsli3.fcp_ext.rbde.addrLow = 586 putPaddrLow(pdma_phys_fcp_rsp); 587 iocb->unsli3.fcp_ext.rbde.addrHigh = 588 putPaddrHigh(pdma_phys_fcp_rsp); 589 } else { 590 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 591 iocb->un.fcpi64.bdl.bdeSize = 592 (2 * sizeof(struct ulp_bde64)); 593 iocb->un.fcpi64.bdl.addrLow = 594 putPaddrLow(pdma_phys_bpl); 595 iocb->un.fcpi64.bdl.addrHigh = 596 putPaddrHigh(pdma_phys_bpl); 597 iocb->ulpBdeCount = 1; 598 iocb->ulpLe = 1; 599 } 600 iocb->ulpClass = CLASS3; 601 psb->status = IOSTAT_SUCCESS; 602 /* Put it back into the SCSI buffer list */ 603 psb->cur_iocbq.context1 = psb; 604 lpfc_release_scsi_buf_s3(phba, psb); 605 606 } 607 608 return bcnt; 609 } 610 611 /** 612 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport 613 * @vport: pointer to lpfc vport data structure. 614 * 615 * This routine is invoked by the vport cleanup for deletions and the cleanup 616 * for an ndlp on removal. 617 **/ 618 void 619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport) 620 { 621 struct lpfc_hba *phba = vport->phba; 622 struct lpfc_scsi_buf *psb, *next_psb; 623 unsigned long iflag = 0; 624 625 spin_lock_irqsave(&phba->hbalock, iflag); 626 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 627 list_for_each_entry_safe(psb, next_psb, 628 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 629 if (psb->rdata && psb->rdata->pnode 630 && psb->rdata->pnode->vport == vport) 631 psb->rdata = NULL; 632 } 633 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 634 spin_unlock_irqrestore(&phba->hbalock, iflag); 635 } 636 637 /** 638 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 639 * @phba: pointer to lpfc hba data structure. 640 * @axri: pointer to the fcp xri abort wcqe structure. 641 * 642 * This routine is invoked by the worker thread to process a SLI4 fast-path 643 * FCP aborted xri. 644 **/ 645 void 646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 647 struct sli4_wcqe_xri_aborted *axri) 648 { 649 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 650 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 651 struct lpfc_scsi_buf *psb, *next_psb; 652 unsigned long iflag = 0; 653 struct lpfc_iocbq *iocbq; 654 int i; 655 struct lpfc_nodelist *ndlp; 656 int rrq_empty = 0; 657 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 658 659 spin_lock_irqsave(&phba->hbalock, iflag); 660 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 661 list_for_each_entry_safe(psb, next_psb, 662 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 663 if (psb->cur_iocbq.sli4_xritag == xri) { 664 list_del(&psb->list); 665 psb->exch_busy = 0; 666 psb->status = IOSTAT_SUCCESS; 667 spin_unlock( 668 &phba->sli4_hba.abts_scsi_buf_list_lock); 669 if (psb->rdata && psb->rdata->pnode) 670 ndlp = psb->rdata->pnode; 671 else 672 ndlp = NULL; 673 674 rrq_empty = list_empty(&phba->active_rrq_list); 675 spin_unlock_irqrestore(&phba->hbalock, iflag); 676 if (ndlp) 677 lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1); 678 lpfc_release_scsi_buf_s4(phba, psb); 679 if (rrq_empty) 680 lpfc_worker_wake_up(phba); 681 return; 682 } 683 } 684 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 685 for (i = 1; i <= phba->sli.last_iotag; i++) { 686 iocbq = phba->sli.iocbq_lookup[i]; 687 688 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 689 (iocbq->iocb_flag & LPFC_IO_LIBDFC)) 690 continue; 691 if (iocbq->sli4_xritag != xri) 692 continue; 693 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 694 psb->exch_busy = 0; 695 spin_unlock_irqrestore(&phba->hbalock, iflag); 696 if (pring->txq_cnt) 697 lpfc_worker_wake_up(phba); 698 return; 699 700 } 701 spin_unlock_irqrestore(&phba->hbalock, iflag); 702 } 703 704 /** 705 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 706 * @phba: pointer to lpfc hba data structure. 707 * 708 * This routine walks the list of scsi buffers that have been allocated and 709 * repost them to the HBA by using SGL block post. This is needed after a 710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 711 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 712 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 713 * 714 * Returns: 0 = success, non-zero failure. 715 **/ 716 int 717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 718 { 719 struct lpfc_scsi_buf *psb; 720 int index, status, bcnt = 0, rcnt = 0, rc = 0; 721 LIST_HEAD(sblist); 722 723 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 724 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 725 if (psb) { 726 /* Remove from SCSI buffer list */ 727 list_del(&psb->list); 728 /* Add it to a local SCSI buffer list */ 729 list_add_tail(&psb->list, &sblist); 730 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 731 bcnt = rcnt; 732 rcnt = 0; 733 } 734 } else 735 /* A hole present in the XRI array, need to skip */ 736 bcnt = rcnt; 737 738 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 739 /* End of XRI array for SCSI buffer, complete */ 740 bcnt = rcnt; 741 742 /* Continue until collect up to a nembed page worth of sgls */ 743 if (bcnt == 0) 744 continue; 745 /* Now, post the SCSI buffer list sgls as a block */ 746 if (!phba->sli4_hba.extents_in_use) 747 status = lpfc_sli4_post_scsi_sgl_block(phba, 748 &sblist, 749 bcnt); 750 else 751 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, 752 &sblist, 753 bcnt); 754 /* Reset SCSI buffer count for next round of posting */ 755 bcnt = 0; 756 while (!list_empty(&sblist)) { 757 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 758 list); 759 if (status) { 760 /* Put this back on the abort scsi list */ 761 psb->exch_busy = 1; 762 rc++; 763 } else { 764 psb->exch_busy = 0; 765 psb->status = IOSTAT_SUCCESS; 766 } 767 /* Put it back into the SCSI buffer list */ 768 lpfc_release_scsi_buf_s4(phba, psb); 769 } 770 } 771 return rc; 772 } 773 774 /** 775 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 776 * @vport: The virtual port for which this call being executed. 777 * @num_to_allocate: The requested number of buffers to allocate. 778 * 779 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 780 * the scsi buffer contains all the necessary information needed to initiate 781 * a SCSI I/O. 782 * 783 * Return codes: 784 * int - number of scsi buffers that were allocated. 785 * 0 = failure, less than num_to_alloc is a partial failure. 786 **/ 787 static int 788 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 789 { 790 struct lpfc_hba *phba = vport->phba; 791 struct lpfc_scsi_buf *psb; 792 struct sli4_sge *sgl; 793 IOCB_t *iocb; 794 dma_addr_t pdma_phys_fcp_cmd; 795 dma_addr_t pdma_phys_fcp_rsp; 796 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 797 uint16_t iotag, last_xritag = NO_XRI, lxri = 0; 798 int status = 0, index; 799 int bcnt; 800 int non_sequential_xri = 0; 801 LIST_HEAD(sblist); 802 803 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 804 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 805 if (!psb) 806 break; 807 808 /* 809 * Get memory from the pci pool to map the virt space to pci bus 810 * space for an I/O. The DMA buffer includes space for the 811 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 812 * necessary to support the sg_tablesize. 813 */ 814 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 815 GFP_KERNEL, &psb->dma_handle); 816 if (!psb->data) { 817 kfree(psb); 818 break; 819 } 820 821 /* Initialize virtual ptrs to dma_buf region. */ 822 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 823 824 /* Allocate iotag for psb->cur_iocbq. */ 825 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 826 if (iotag == 0) { 827 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 828 psb->data, psb->dma_handle); 829 kfree(psb); 830 break; 831 } 832 833 lxri = lpfc_sli4_next_xritag(phba); 834 if (lxri == NO_XRI) { 835 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 836 psb->data, psb->dma_handle); 837 kfree(psb); 838 break; 839 } 840 psb->cur_iocbq.sli4_lxritag = lxri; 841 psb->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 842 if (last_xritag != NO_XRI 843 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 844 non_sequential_xri = 1; 845 } else 846 list_add_tail(&psb->list, &sblist); 847 last_xritag = psb->cur_iocbq.sli4_xritag; 848 849 index = phba->sli4_hba.scsi_xri_cnt++; 850 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 851 852 psb->fcp_bpl = psb->data; 853 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 854 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 855 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 856 sizeof(struct fcp_cmnd)); 857 858 /* Initialize local short-hand pointers. */ 859 sgl = (struct sli4_sge *)psb->fcp_bpl; 860 pdma_phys_bpl = psb->dma_handle; 861 pdma_phys_fcp_cmd = 862 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 863 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 864 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 865 866 /* 867 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 868 * are sg list bdes. Initialize the first two and leave the 869 * rest for queuecommand. 870 */ 871 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 872 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 873 sgl->word2 = le32_to_cpu(sgl->word2); 874 bf_set(lpfc_sli4_sge_last, sgl, 0); 875 sgl->word2 = cpu_to_le32(sgl->word2); 876 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); 877 sgl++; 878 879 /* Setup the physical region for the FCP RSP */ 880 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 881 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 882 sgl->word2 = le32_to_cpu(sgl->word2); 883 bf_set(lpfc_sli4_sge_last, sgl, 1); 884 sgl->word2 = cpu_to_le32(sgl->word2); 885 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); 886 887 /* 888 * Since the IOCB for the FCP I/O is built into this 889 * lpfc_scsi_buf, initialize it with all known data now. 890 */ 891 iocb = &psb->cur_iocbq.iocb; 892 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 893 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 894 /* setting the BLP size to 2 * sizeof BDE may not be correct. 895 * We are setting the bpl to point to out sgl. An sgl's 896 * entries are 16 bytes, a bpl entries are 12 bytes. 897 */ 898 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 899 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 900 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 901 iocb->ulpBdeCount = 1; 902 iocb->ulpLe = 1; 903 iocb->ulpClass = CLASS3; 904 psb->cur_iocbq.context1 = psb; 905 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 906 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 907 else 908 pdma_phys_bpl1 = 0; 909 psb->dma_phys_bpl = pdma_phys_bpl; 910 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 911 if (non_sequential_xri) { 912 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 913 pdma_phys_bpl1, 914 psb->cur_iocbq.sli4_xritag); 915 if (status) { 916 /* Put this back on the abort scsi list */ 917 psb->exch_busy = 1; 918 } else { 919 psb->exch_busy = 0; 920 psb->status = IOSTAT_SUCCESS; 921 } 922 /* Put it back into the SCSI buffer list */ 923 lpfc_release_scsi_buf_s4(phba, psb); 924 break; 925 } 926 } 927 if (bcnt) { 928 if (!phba->sli4_hba.extents_in_use) 929 status = lpfc_sli4_post_scsi_sgl_block(phba, 930 &sblist, 931 bcnt); 932 else 933 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, 934 &sblist, 935 bcnt); 936 937 if (status) { 938 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 939 "3021 SCSI SGL post error %d\n", 940 status); 941 bcnt = 0; 942 } 943 /* Reset SCSI buffer count for next round of posting */ 944 while (!list_empty(&sblist)) { 945 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 946 list); 947 if (status) { 948 /* Put this back on the abort scsi list */ 949 psb->exch_busy = 1; 950 } else { 951 psb->exch_busy = 0; 952 psb->status = IOSTAT_SUCCESS; 953 } 954 /* Put it back into the SCSI buffer list */ 955 lpfc_release_scsi_buf_s4(phba, psb); 956 } 957 } 958 959 return bcnt + non_sequential_xri; 960 } 961 962 /** 963 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 964 * @vport: The virtual port for which this call being executed. 965 * @num_to_allocate: The requested number of buffers to allocate. 966 * 967 * This routine wraps the actual SCSI buffer allocator function pointer from 968 * the lpfc_hba struct. 969 * 970 * Return codes: 971 * int - number of scsi buffers that were allocated. 972 * 0 = failure, less than num_to_alloc is a partial failure. 973 **/ 974 static inline int 975 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 976 { 977 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 978 } 979 980 /** 981 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 982 * @phba: The HBA for which this call is being executed. 983 * 984 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 985 * and returns to caller. 986 * 987 * Return codes: 988 * NULL - Error 989 * Pointer to lpfc_scsi_buf - Success 990 **/ 991 static struct lpfc_scsi_buf* 992 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 993 { 994 struct lpfc_scsi_buf * lpfc_cmd = NULL; 995 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 996 unsigned long iflag = 0; 997 998 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 999 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 1000 if (lpfc_cmd) { 1001 lpfc_cmd->seg_cnt = 0; 1002 lpfc_cmd->nonsg_phys = 0; 1003 lpfc_cmd->prot_seg_cnt = 0; 1004 } 1005 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1006 return lpfc_cmd; 1007 } 1008 /** 1009 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 1010 * @phba: The HBA for which this call is being executed. 1011 * 1012 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 1013 * and returns to caller. 1014 * 1015 * Return codes: 1016 * NULL - Error 1017 * Pointer to lpfc_scsi_buf - Success 1018 **/ 1019 static struct lpfc_scsi_buf* 1020 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1021 { 1022 struct lpfc_scsi_buf *lpfc_cmd ; 1023 unsigned long iflag = 0; 1024 int found = 0; 1025 1026 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1027 list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list, 1028 list) { 1029 if (lpfc_test_rrq_active(phba, ndlp, 1030 lpfc_cmd->cur_iocbq.sli4_xritag)) 1031 continue; 1032 list_del(&lpfc_cmd->list); 1033 found = 1; 1034 lpfc_cmd->seg_cnt = 0; 1035 lpfc_cmd->nonsg_phys = 0; 1036 lpfc_cmd->prot_seg_cnt = 0; 1037 break; 1038 } 1039 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, 1040 iflag); 1041 if (!found) 1042 return NULL; 1043 else 1044 return lpfc_cmd; 1045 } 1046 /** 1047 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 1048 * @phba: The HBA for which this call is being executed. 1049 * 1050 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 1051 * and returns to caller. 1052 * 1053 * Return codes: 1054 * NULL - Error 1055 * Pointer to lpfc_scsi_buf - Success 1056 **/ 1057 static struct lpfc_scsi_buf* 1058 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1059 { 1060 return phba->lpfc_get_scsi_buf(phba, ndlp); 1061 } 1062 1063 /** 1064 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 1065 * @phba: The Hba for which this call is being executed. 1066 * @psb: The scsi buffer which is being released. 1067 * 1068 * This routine releases @psb scsi buffer by adding it to tail of @phba 1069 * lpfc_scsi_buf_list list. 1070 **/ 1071 static void 1072 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1073 { 1074 unsigned long iflag = 0; 1075 1076 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1077 psb->pCmd = NULL; 1078 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1079 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1080 } 1081 1082 /** 1083 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 1084 * @phba: The Hba for which this call is being executed. 1085 * @psb: The scsi buffer which is being released. 1086 * 1087 * This routine releases @psb scsi buffer by adding it to tail of @phba 1088 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 1089 * and cannot be reused for at least RA_TOV amount of time if it was 1090 * aborted. 1091 **/ 1092 static void 1093 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1094 { 1095 unsigned long iflag = 0; 1096 1097 if (psb->exch_busy) { 1098 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 1099 iflag); 1100 psb->pCmd = NULL; 1101 list_add_tail(&psb->list, 1102 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 1103 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 1104 iflag); 1105 } else { 1106 1107 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1108 psb->pCmd = NULL; 1109 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1110 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1111 } 1112 } 1113 1114 /** 1115 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 1116 * @phba: The Hba for which this call is being executed. 1117 * @psb: The scsi buffer which is being released. 1118 * 1119 * This routine releases @psb scsi buffer by adding it to tail of @phba 1120 * lpfc_scsi_buf_list list. 1121 **/ 1122 static void 1123 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1124 { 1125 1126 phba->lpfc_release_scsi_buf(phba, psb); 1127 } 1128 1129 /** 1130 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 1131 * @phba: The Hba for which this call is being executed. 1132 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1133 * 1134 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1135 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 1136 * through sg elements and format the bdea. This routine also initializes all 1137 * IOCB fields which are dependent on scsi command request buffer. 1138 * 1139 * Return codes: 1140 * 1 - Error 1141 * 0 - Success 1142 **/ 1143 static int 1144 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1145 { 1146 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1147 struct scatterlist *sgel = NULL; 1148 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1149 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1150 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; 1151 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1152 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1153 dma_addr_t physaddr; 1154 uint32_t num_bde = 0; 1155 int nseg, datadir = scsi_cmnd->sc_data_direction; 1156 1157 /* 1158 * There are three possibilities here - use scatter-gather segment, use 1159 * the single mapping, or neither. Start the lpfc command prep by 1160 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1161 * data bde entry. 1162 */ 1163 bpl += 2; 1164 if (scsi_sg_count(scsi_cmnd)) { 1165 /* 1166 * The driver stores the segment count returned from pci_map_sg 1167 * because this a count of dma-mappings used to map the use_sg 1168 * pages. They are not guaranteed to be the same for those 1169 * architectures that implement an IOMMU. 1170 */ 1171 1172 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1173 scsi_sg_count(scsi_cmnd), datadir); 1174 if (unlikely(!nseg)) 1175 return 1; 1176 1177 lpfc_cmd->seg_cnt = nseg; 1178 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1179 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1180 "9064 BLKGRD: %s: Too many sg segments from " 1181 "dma_map_sg. Config %d, seg_cnt %d\n", 1182 __func__, phba->cfg_sg_seg_cnt, 1183 lpfc_cmd->seg_cnt); 1184 scsi_dma_unmap(scsi_cmnd); 1185 return 1; 1186 } 1187 1188 /* 1189 * The driver established a maximum scatter-gather segment count 1190 * during probe that limits the number of sg elements in any 1191 * single scsi command. Just run through the seg_cnt and format 1192 * the bde's. 1193 * When using SLI-3 the driver will try to fit all the BDEs into 1194 * the IOCB. If it can't then the BDEs get added to a BPL as it 1195 * does for SLI-2 mode. 1196 */ 1197 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1198 physaddr = sg_dma_address(sgel); 1199 if (phba->sli_rev == 3 && 1200 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1201 !(iocbq->iocb_flag & DSS_SECURITY_OP) && 1202 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1203 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1204 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1205 data_bde->addrLow = putPaddrLow(physaddr); 1206 data_bde->addrHigh = putPaddrHigh(physaddr); 1207 data_bde++; 1208 } else { 1209 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1210 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1211 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1212 bpl->addrLow = 1213 le32_to_cpu(putPaddrLow(physaddr)); 1214 bpl->addrHigh = 1215 le32_to_cpu(putPaddrHigh(physaddr)); 1216 bpl++; 1217 } 1218 } 1219 } 1220 1221 /* 1222 * Finish initializing those IOCB fields that are dependent on the 1223 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1224 * explicitly reinitialized and for SLI-3 the extended bde count is 1225 * explicitly reinitialized since all iocb memory resources are reused. 1226 */ 1227 if (phba->sli_rev == 3 && 1228 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1229 !(iocbq->iocb_flag & DSS_SECURITY_OP)) { 1230 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1231 /* 1232 * The extended IOCB format can only fit 3 BDE or a BPL. 1233 * This I/O has more than 3 BDE so the 1st data bde will 1234 * be a BPL that is filled in here. 1235 */ 1236 physaddr = lpfc_cmd->dma_handle; 1237 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1238 data_bde->tus.f.bdeSize = (num_bde * 1239 sizeof(struct ulp_bde64)); 1240 physaddr += (sizeof(struct fcp_cmnd) + 1241 sizeof(struct fcp_rsp) + 1242 (2 * sizeof(struct ulp_bde64))); 1243 data_bde->addrHigh = putPaddrHigh(physaddr); 1244 data_bde->addrLow = putPaddrLow(physaddr); 1245 /* ebde count includes the response bde and data bpl */ 1246 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1247 } else { 1248 /* ebde count includes the response bde and data bdes */ 1249 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1250 } 1251 } else { 1252 iocb_cmd->un.fcpi64.bdl.bdeSize = 1253 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1254 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1255 } 1256 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1257 1258 /* 1259 * Due to difference in data length between DIF/non-DIF paths, 1260 * we need to set word 4 of IOCB here 1261 */ 1262 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1263 return 0; 1264 } 1265 1266 /* 1267 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it 1268 * @sc: The SCSI command to examine 1269 * @txopt: (out) BlockGuard operation for transmitted data 1270 * @rxopt: (out) BlockGuard operation for received data 1271 * 1272 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined 1273 * 1274 */ 1275 static int 1276 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1277 uint8_t *txop, uint8_t *rxop) 1278 { 1279 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1280 uint8_t ret = 0; 1281 1282 if (guard_type == SHOST_DIX_GUARD_IP) { 1283 switch (scsi_get_prot_op(sc)) { 1284 case SCSI_PROT_READ_INSERT: 1285 case SCSI_PROT_WRITE_STRIP: 1286 *txop = BG_OP_IN_CSUM_OUT_NODIF; 1287 *rxop = BG_OP_IN_NODIF_OUT_CSUM; 1288 break; 1289 1290 case SCSI_PROT_READ_STRIP: 1291 case SCSI_PROT_WRITE_INSERT: 1292 *txop = BG_OP_IN_NODIF_OUT_CRC; 1293 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1294 break; 1295 1296 case SCSI_PROT_READ_PASS: 1297 case SCSI_PROT_WRITE_PASS: 1298 *txop = BG_OP_IN_CSUM_OUT_CRC; 1299 *rxop = BG_OP_IN_CRC_OUT_CSUM; 1300 break; 1301 1302 case SCSI_PROT_NORMAL: 1303 default: 1304 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1305 "9063 BLKGRD: Bad op/guard:%d/IP combination\n", 1306 scsi_get_prot_op(sc)); 1307 ret = 1; 1308 break; 1309 1310 } 1311 } else { 1312 switch (scsi_get_prot_op(sc)) { 1313 case SCSI_PROT_READ_STRIP: 1314 case SCSI_PROT_WRITE_INSERT: 1315 *txop = BG_OP_IN_NODIF_OUT_CRC; 1316 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1317 break; 1318 1319 case SCSI_PROT_READ_PASS: 1320 case SCSI_PROT_WRITE_PASS: 1321 *txop = BG_OP_IN_CRC_OUT_CRC; 1322 *rxop = BG_OP_IN_CRC_OUT_CRC; 1323 break; 1324 1325 case SCSI_PROT_READ_INSERT: 1326 case SCSI_PROT_WRITE_STRIP: 1327 *txop = BG_OP_IN_CRC_OUT_NODIF; 1328 *rxop = BG_OP_IN_NODIF_OUT_CRC; 1329 break; 1330 1331 case SCSI_PROT_NORMAL: 1332 default: 1333 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1334 "9075 BLKGRD: Bad op/guard:%d/CRC combination\n", 1335 scsi_get_prot_op(sc)); 1336 ret = 1; 1337 break; 1338 } 1339 } 1340 1341 return ret; 1342 } 1343 1344 struct scsi_dif_tuple { 1345 __be16 guard_tag; /* Checksum */ 1346 __be16 app_tag; /* Opaque storage */ 1347 __be32 ref_tag; /* Target LBA or indirect LBA */ 1348 }; 1349 1350 static inline unsigned 1351 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1352 { 1353 return sc->device->sector_size; 1354 } 1355 1356 /* 1357 * This function sets up buffer list for protection groups of 1358 * type LPFC_PG_TYPE_NO_DIF 1359 * 1360 * This is usually used when the HBA is instructed to generate 1361 * DIFs and insert them into data stream (or strip DIF from 1362 * incoming data stream) 1363 * 1364 * The buffer list consists of just one protection group described 1365 * below: 1366 * +-------------------------+ 1367 * start of prot group --> | PDE_5 | 1368 * +-------------------------+ 1369 * | PDE_6 | 1370 * +-------------------------+ 1371 * | Data BDE | 1372 * +-------------------------+ 1373 * |more Data BDE's ... (opt)| 1374 * +-------------------------+ 1375 * 1376 * @sc: pointer to scsi command we're working on 1377 * @bpl: pointer to buffer list for protection groups 1378 * @datacnt: number of segments of data that have been dma mapped 1379 * 1380 * Note: Data s/g buffers have been dma mapped 1381 */ 1382 static int 1383 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1384 struct ulp_bde64 *bpl, int datasegcnt) 1385 { 1386 struct scatterlist *sgde = NULL; /* s/g data entry */ 1387 struct lpfc_pde5 *pde5 = NULL; 1388 struct lpfc_pde6 *pde6 = NULL; 1389 dma_addr_t physaddr; 1390 int i = 0, num_bde = 0, status; 1391 int datadir = sc->sc_data_direction; 1392 uint32_t reftag; 1393 unsigned blksize; 1394 uint8_t txop, rxop; 1395 1396 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1397 if (status) 1398 goto out; 1399 1400 /* extract some info from the scsi command for pde*/ 1401 blksize = lpfc_cmd_blksize(sc); 1402 reftag = scsi_get_lba(sc) & 0xffffffff; 1403 1404 /* setup PDE5 with what we have */ 1405 pde5 = (struct lpfc_pde5 *) bpl; 1406 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1407 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1408 1409 /* Endianness conversion if necessary for PDE5 */ 1410 pde5->word0 = cpu_to_le32(pde5->word0); 1411 pde5->reftag = cpu_to_le32(reftag); 1412 1413 /* advance bpl and increment bde count */ 1414 num_bde++; 1415 bpl++; 1416 pde6 = (struct lpfc_pde6 *) bpl; 1417 1418 /* setup PDE6 with the rest of the info */ 1419 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1420 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1421 bf_set(pde6_optx, pde6, txop); 1422 bf_set(pde6_oprx, pde6, rxop); 1423 if (datadir == DMA_FROM_DEVICE) { 1424 bf_set(pde6_ce, pde6, 1); 1425 bf_set(pde6_re, pde6, 1); 1426 } 1427 bf_set(pde6_ai, pde6, 1); 1428 bf_set(pde6_ae, pde6, 0); 1429 bf_set(pde6_apptagval, pde6, 0); 1430 1431 /* Endianness conversion if necessary for PDE6 */ 1432 pde6->word0 = cpu_to_le32(pde6->word0); 1433 pde6->word1 = cpu_to_le32(pde6->word1); 1434 pde6->word2 = cpu_to_le32(pde6->word2); 1435 1436 /* advance bpl and increment bde count */ 1437 num_bde++; 1438 bpl++; 1439 1440 /* assumption: caller has already run dma_map_sg on command data */ 1441 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1442 physaddr = sg_dma_address(sgde); 1443 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1444 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1445 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1446 if (datadir == DMA_TO_DEVICE) 1447 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1448 else 1449 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1450 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1451 bpl++; 1452 num_bde++; 1453 } 1454 1455 out: 1456 return num_bde; 1457 } 1458 1459 /* 1460 * This function sets up buffer list for protection groups of 1461 * type LPFC_PG_TYPE_DIF_BUF 1462 * 1463 * This is usually used when DIFs are in their own buffers, 1464 * separate from the data. The HBA can then by instructed 1465 * to place the DIFs in the outgoing stream. For read operations, 1466 * The HBA could extract the DIFs and place it in DIF buffers. 1467 * 1468 * The buffer list for this type consists of one or more of the 1469 * protection groups described below: 1470 * +-------------------------+ 1471 * start of first prot group --> | PDE_5 | 1472 * +-------------------------+ 1473 * | PDE_6 | 1474 * +-------------------------+ 1475 * | PDE_7 (Prot BDE) | 1476 * +-------------------------+ 1477 * | Data BDE | 1478 * +-------------------------+ 1479 * |more Data BDE's ... (opt)| 1480 * +-------------------------+ 1481 * start of new prot group --> | PDE_5 | 1482 * +-------------------------+ 1483 * | ... | 1484 * +-------------------------+ 1485 * 1486 * @sc: pointer to scsi command we're working on 1487 * @bpl: pointer to buffer list for protection groups 1488 * @datacnt: number of segments of data that have been dma mapped 1489 * @protcnt: number of segment of protection data that have been dma mapped 1490 * 1491 * Note: It is assumed that both data and protection s/g buffers have been 1492 * mapped for DMA 1493 */ 1494 static int 1495 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1496 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1497 { 1498 struct scatterlist *sgde = NULL; /* s/g data entry */ 1499 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1500 struct lpfc_pde5 *pde5 = NULL; 1501 struct lpfc_pde6 *pde6 = NULL; 1502 struct lpfc_pde7 *pde7 = NULL; 1503 dma_addr_t dataphysaddr, protphysaddr; 1504 unsigned short curr_data = 0, curr_prot = 0; 1505 unsigned int split_offset; 1506 unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; 1507 unsigned int protgrp_blks, protgrp_bytes; 1508 unsigned int remainder, subtotal; 1509 int status; 1510 int datadir = sc->sc_data_direction; 1511 unsigned char pgdone = 0, alldone = 0; 1512 unsigned blksize; 1513 uint32_t reftag; 1514 uint8_t txop, rxop; 1515 int num_bde = 0; 1516 1517 sgpe = scsi_prot_sglist(sc); 1518 sgde = scsi_sglist(sc); 1519 1520 if (!sgpe || !sgde) { 1521 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1522 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1523 sgpe, sgde); 1524 return 0; 1525 } 1526 1527 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1528 if (status) 1529 goto out; 1530 1531 /* extract some info from the scsi command */ 1532 blksize = lpfc_cmd_blksize(sc); 1533 reftag = scsi_get_lba(sc) & 0xffffffff; 1534 1535 split_offset = 0; 1536 do { 1537 /* setup PDE5 with what we have */ 1538 pde5 = (struct lpfc_pde5 *) bpl; 1539 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1540 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1541 1542 /* Endianness conversion if necessary for PDE5 */ 1543 pde5->word0 = cpu_to_le32(pde5->word0); 1544 pde5->reftag = cpu_to_le32(reftag); 1545 1546 /* advance bpl and increment bde count */ 1547 num_bde++; 1548 bpl++; 1549 pde6 = (struct lpfc_pde6 *) bpl; 1550 1551 /* setup PDE6 with the rest of the info */ 1552 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1553 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1554 bf_set(pde6_optx, pde6, txop); 1555 bf_set(pde6_oprx, pde6, rxop); 1556 bf_set(pde6_ce, pde6, 1); 1557 bf_set(pde6_re, pde6, 1); 1558 bf_set(pde6_ai, pde6, 1); 1559 bf_set(pde6_ae, pde6, 0); 1560 bf_set(pde6_apptagval, pde6, 0); 1561 1562 /* Endianness conversion if necessary for PDE6 */ 1563 pde6->word0 = cpu_to_le32(pde6->word0); 1564 pde6->word1 = cpu_to_le32(pde6->word1); 1565 pde6->word2 = cpu_to_le32(pde6->word2); 1566 1567 /* advance bpl and increment bde count */ 1568 num_bde++; 1569 bpl++; 1570 1571 /* setup the first BDE that points to protection buffer */ 1572 protphysaddr = sg_dma_address(sgpe) + protgroup_offset; 1573 protgroup_len = sg_dma_len(sgpe) - protgroup_offset; 1574 1575 /* must be integer multiple of the DIF block length */ 1576 BUG_ON(protgroup_len % 8); 1577 1578 pde7 = (struct lpfc_pde7 *) bpl; 1579 memset(pde7, 0, sizeof(struct lpfc_pde7)); 1580 bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR); 1581 1582 pde7->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); 1583 pde7->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); 1584 1585 protgrp_blks = protgroup_len / 8; 1586 protgrp_bytes = protgrp_blks * blksize; 1587 1588 /* check if this pde is crossing the 4K boundary; if so split */ 1589 if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) { 1590 protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff); 1591 protgroup_offset += protgroup_remainder; 1592 protgrp_blks = protgroup_remainder / 8; 1593 protgrp_bytes = protgrp_blks * blksize; 1594 } else { 1595 protgroup_offset = 0; 1596 curr_prot++; 1597 } 1598 1599 num_bde++; 1600 1601 /* setup BDE's for data blocks associated with DIF data */ 1602 pgdone = 0; 1603 subtotal = 0; /* total bytes processed for current prot grp */ 1604 while (!pgdone) { 1605 if (!sgde) { 1606 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1607 "9065 BLKGRD:%s Invalid data segment\n", 1608 __func__); 1609 return 0; 1610 } 1611 bpl++; 1612 dataphysaddr = sg_dma_address(sgde) + split_offset; 1613 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1614 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1615 1616 remainder = sg_dma_len(sgde) - split_offset; 1617 1618 if ((subtotal + remainder) <= protgrp_bytes) { 1619 /* we can use this whole buffer */ 1620 bpl->tus.f.bdeSize = remainder; 1621 split_offset = 0; 1622 1623 if ((subtotal + remainder) == protgrp_bytes) 1624 pgdone = 1; 1625 } else { 1626 /* must split this buffer with next prot grp */ 1627 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1628 split_offset += bpl->tus.f.bdeSize; 1629 } 1630 1631 subtotal += bpl->tus.f.bdeSize; 1632 1633 if (datadir == DMA_TO_DEVICE) 1634 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1635 else 1636 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1637 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1638 1639 num_bde++; 1640 curr_data++; 1641 1642 if (split_offset) 1643 break; 1644 1645 /* Move to the next s/g segment if possible */ 1646 sgde = sg_next(sgde); 1647 1648 } 1649 1650 if (protgroup_offset) { 1651 /* update the reference tag */ 1652 reftag += protgrp_blks; 1653 bpl++; 1654 continue; 1655 } 1656 1657 /* are we done ? */ 1658 if (curr_prot == protcnt) { 1659 alldone = 1; 1660 } else if (curr_prot < protcnt) { 1661 /* advance to next prot buffer */ 1662 sgpe = sg_next(sgpe); 1663 bpl++; 1664 1665 /* update the reference tag */ 1666 reftag += protgrp_blks; 1667 } else { 1668 /* if we're here, we have a bug */ 1669 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1670 "9054 BLKGRD: bug in %s\n", __func__); 1671 } 1672 1673 } while (!alldone); 1674 1675 out: 1676 1677 return num_bde; 1678 } 1679 1680 /* 1681 * Given a SCSI command that supports DIF, determine composition of protection 1682 * groups involved in setting up buffer lists 1683 * 1684 * Returns: 1685 * for DIF (for both read and write) 1686 * */ 1687 static int 1688 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1689 { 1690 int ret = LPFC_PG_TYPE_INVALID; 1691 unsigned char op = scsi_get_prot_op(sc); 1692 1693 switch (op) { 1694 case SCSI_PROT_READ_STRIP: 1695 case SCSI_PROT_WRITE_INSERT: 1696 ret = LPFC_PG_TYPE_NO_DIF; 1697 break; 1698 case SCSI_PROT_READ_INSERT: 1699 case SCSI_PROT_WRITE_STRIP: 1700 case SCSI_PROT_READ_PASS: 1701 case SCSI_PROT_WRITE_PASS: 1702 ret = LPFC_PG_TYPE_DIF_BUF; 1703 break; 1704 default: 1705 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1706 "9021 Unsupported protection op:%d\n", op); 1707 break; 1708 } 1709 1710 return ret; 1711 } 1712 1713 /* 1714 * This is the protection/DIF aware version of 1715 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1716 * two functions eventually, but for now, it's here 1717 */ 1718 static int 1719 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1720 struct lpfc_scsi_buf *lpfc_cmd) 1721 { 1722 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1723 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1724 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1725 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1726 uint32_t num_bde = 0; 1727 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1728 int prot_group_type = 0; 1729 int diflen, fcpdl; 1730 unsigned blksize; 1731 1732 /* 1733 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1734 * fcp_rsp regions to the first data bde entry 1735 */ 1736 bpl += 2; 1737 if (scsi_sg_count(scsi_cmnd)) { 1738 /* 1739 * The driver stores the segment count returned from pci_map_sg 1740 * because this a count of dma-mappings used to map the use_sg 1741 * pages. They are not guaranteed to be the same for those 1742 * architectures that implement an IOMMU. 1743 */ 1744 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1745 scsi_sglist(scsi_cmnd), 1746 scsi_sg_count(scsi_cmnd), datadir); 1747 if (unlikely(!datasegcnt)) 1748 return 1; 1749 1750 lpfc_cmd->seg_cnt = datasegcnt; 1751 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1752 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1753 "9067 BLKGRD: %s: Too many sg segments" 1754 " from dma_map_sg. Config %d, seg_cnt" 1755 " %d\n", 1756 __func__, phba->cfg_sg_seg_cnt, 1757 lpfc_cmd->seg_cnt); 1758 scsi_dma_unmap(scsi_cmnd); 1759 return 1; 1760 } 1761 1762 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1763 1764 switch (prot_group_type) { 1765 case LPFC_PG_TYPE_NO_DIF: 1766 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1767 datasegcnt); 1768 /* we should have 2 or more entries in buffer list */ 1769 if (num_bde < 2) 1770 goto err; 1771 break; 1772 case LPFC_PG_TYPE_DIF_BUF:{ 1773 /* 1774 * This type indicates that protection buffers are 1775 * passed to the driver, so that needs to be prepared 1776 * for DMA 1777 */ 1778 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1779 scsi_prot_sglist(scsi_cmnd), 1780 scsi_prot_sg_count(scsi_cmnd), datadir); 1781 if (unlikely(!protsegcnt)) { 1782 scsi_dma_unmap(scsi_cmnd); 1783 return 1; 1784 } 1785 1786 lpfc_cmd->prot_seg_cnt = protsegcnt; 1787 if (lpfc_cmd->prot_seg_cnt 1788 > phba->cfg_prot_sg_seg_cnt) { 1789 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1790 "9068 BLKGRD: %s: Too many prot sg " 1791 "segments from dma_map_sg. Config %d," 1792 "prot_seg_cnt %d\n", __func__, 1793 phba->cfg_prot_sg_seg_cnt, 1794 lpfc_cmd->prot_seg_cnt); 1795 dma_unmap_sg(&phba->pcidev->dev, 1796 scsi_prot_sglist(scsi_cmnd), 1797 scsi_prot_sg_count(scsi_cmnd), 1798 datadir); 1799 scsi_dma_unmap(scsi_cmnd); 1800 return 1; 1801 } 1802 1803 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1804 datasegcnt, protsegcnt); 1805 /* we should have 3 or more entries in buffer list */ 1806 if (num_bde < 3) 1807 goto err; 1808 break; 1809 } 1810 case LPFC_PG_TYPE_INVALID: 1811 default: 1812 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1813 "9022 Unexpected protection group %i\n", 1814 prot_group_type); 1815 return 1; 1816 } 1817 } 1818 1819 /* 1820 * Finish initializing those IOCB fields that are dependent on the 1821 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1822 * reinitialized since all iocb memory resources are used many times 1823 * for transmit, receive, and continuation bpl's. 1824 */ 1825 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 1826 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 1827 iocb_cmd->ulpBdeCount = 1; 1828 iocb_cmd->ulpLe = 1; 1829 1830 fcpdl = scsi_bufflen(scsi_cmnd); 1831 1832 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 1833 /* 1834 * We are in DIF Type 1 mode 1835 * Every data block has a 8 byte DIF (trailer) 1836 * attached to it. Must ajust FCP data length 1837 */ 1838 blksize = lpfc_cmd_blksize(scsi_cmnd); 1839 diflen = (fcpdl / blksize) * 8; 1840 fcpdl += diflen; 1841 } 1842 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 1843 1844 /* 1845 * Due to difference in data length between DIF/non-DIF paths, 1846 * we need to set word 4 of IOCB here 1847 */ 1848 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 1849 1850 return 0; 1851 err: 1852 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1853 "9023 Could not setup all needed BDE's" 1854 "prot_group_type=%d, num_bde=%d\n", 1855 prot_group_type, num_bde); 1856 return 1; 1857 } 1858 1859 /* 1860 * This function checks for BlockGuard errors detected by 1861 * the HBA. In case of errors, the ASC/ASCQ fields in the 1862 * sense buffer will be set accordingly, paired with 1863 * ILLEGAL_REQUEST to signal to the kernel that the HBA 1864 * detected corruption. 1865 * 1866 * Returns: 1867 * 0 - No error found 1868 * 1 - BlockGuard error found 1869 * -1 - Internal error (bad profile, ...etc) 1870 */ 1871 static int 1872 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 1873 struct lpfc_iocbq *pIocbOut) 1874 { 1875 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 1876 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 1877 int ret = 0; 1878 uint32_t bghm = bgf->bghm; 1879 uint32_t bgstat = bgf->bgstat; 1880 uint64_t failing_sector = 0; 1881 1882 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" 1883 " 0x%x lba 0x%llx blk cnt 0x%x " 1884 "bgstat=0x%x bghm=0x%x\n", 1885 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 1886 blk_rq_sectors(cmd->request), bgstat, bghm); 1887 1888 spin_lock(&_dump_buf_lock); 1889 if (!_dump_buf_done) { 1890 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" 1891 " Data for %u blocks to debugfs\n", 1892 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1893 lpfc_debug_save_data(phba, cmd); 1894 1895 /* If we have a prot sgl, save the DIF buffer */ 1896 if (lpfc_prot_group_type(phba, cmd) == 1897 LPFC_PG_TYPE_DIF_BUF) { 1898 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " 1899 "Saving DIF for %u blocks to debugfs\n", 1900 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1901 lpfc_debug_save_dif(phba, cmd); 1902 } 1903 1904 _dump_buf_done = 1; 1905 } 1906 spin_unlock(&_dump_buf_lock); 1907 1908 if (lpfc_bgs_get_invalid_prof(bgstat)) { 1909 cmd->result = ScsiResult(DID_ERROR, 0); 1910 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" 1911 " BlockGuard profile. bgstat:0x%x\n", 1912 bgstat); 1913 ret = (-1); 1914 goto out; 1915 } 1916 1917 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 1918 cmd->result = ScsiResult(DID_ERROR, 0); 1919 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " 1920 "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 1921 bgstat); 1922 ret = (-1); 1923 goto out; 1924 } 1925 1926 if (lpfc_bgs_get_guard_err(bgstat)) { 1927 ret = 1; 1928 1929 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1930 0x10, 0x1); 1931 cmd->result = DRIVER_SENSE << 24 1932 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1933 phba->bg_guard_err_cnt++; 1934 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1935 "9055 BLKGRD: guard_tag error\n"); 1936 } 1937 1938 if (lpfc_bgs_get_reftag_err(bgstat)) { 1939 ret = 1; 1940 1941 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1942 0x10, 0x3); 1943 cmd->result = DRIVER_SENSE << 24 1944 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1945 1946 phba->bg_reftag_err_cnt++; 1947 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1948 "9056 BLKGRD: ref_tag error\n"); 1949 } 1950 1951 if (lpfc_bgs_get_apptag_err(bgstat)) { 1952 ret = 1; 1953 1954 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1955 0x10, 0x2); 1956 cmd->result = DRIVER_SENSE << 24 1957 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1958 1959 phba->bg_apptag_err_cnt++; 1960 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1961 "9061 BLKGRD: app_tag error\n"); 1962 } 1963 1964 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 1965 /* 1966 * setup sense data descriptor 0 per SPC-4 as an information 1967 * field, and put the failing LBA in it. 1968 * This code assumes there was also a guard/app/ref tag error 1969 * indication. 1970 */ 1971 cmd->sense_buffer[7] = 0xc; /* Additional sense length */ 1972 cmd->sense_buffer[8] = 0; /* Information descriptor type */ 1973 cmd->sense_buffer[9] = 0xa; /* Additional descriptor length */ 1974 cmd->sense_buffer[10] = 0x80; /* Validity bit */ 1975 bghm /= cmd->device->sector_size; 1976 1977 failing_sector = scsi_get_lba(cmd); 1978 failing_sector += bghm; 1979 1980 /* Descriptor Information */ 1981 put_unaligned_be64(failing_sector, &cmd->sense_buffer[12]); 1982 } 1983 1984 if (!ret) { 1985 /* No error was reported - problem in FW? */ 1986 cmd->result = ScsiResult(DID_ERROR, 0); 1987 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1988 "9057 BLKGRD: no errors reported!\n"); 1989 } 1990 1991 out: 1992 return ret; 1993 } 1994 1995 /** 1996 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 1997 * @phba: The Hba for which this call is being executed. 1998 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1999 * 2000 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 2001 * field of @lpfc_cmd for device with SLI-4 interface spec. 2002 * 2003 * Return codes: 2004 * 1 - Error 2005 * 0 - Success 2006 **/ 2007 static int 2008 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2009 { 2010 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2011 struct scatterlist *sgel = NULL; 2012 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2013 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 2014 struct sli4_sge *first_data_sgl; 2015 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2016 dma_addr_t physaddr; 2017 uint32_t num_bde = 0; 2018 uint32_t dma_len; 2019 uint32_t dma_offset = 0; 2020 int nseg; 2021 struct ulp_bde64 *bde; 2022 2023 /* 2024 * There are three possibilities here - use scatter-gather segment, use 2025 * the single mapping, or neither. Start the lpfc command prep by 2026 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2027 * data bde entry. 2028 */ 2029 if (scsi_sg_count(scsi_cmnd)) { 2030 /* 2031 * The driver stores the segment count returned from pci_map_sg 2032 * because this a count of dma-mappings used to map the use_sg 2033 * pages. They are not guaranteed to be the same for those 2034 * architectures that implement an IOMMU. 2035 */ 2036 2037 nseg = scsi_dma_map(scsi_cmnd); 2038 if (unlikely(!nseg)) 2039 return 1; 2040 sgl += 1; 2041 /* clear the last flag in the fcp_rsp map entry */ 2042 sgl->word2 = le32_to_cpu(sgl->word2); 2043 bf_set(lpfc_sli4_sge_last, sgl, 0); 2044 sgl->word2 = cpu_to_le32(sgl->word2); 2045 sgl += 1; 2046 first_data_sgl = sgl; 2047 lpfc_cmd->seg_cnt = nseg; 2048 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 2049 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" 2050 " %s: Too many sg segments from " 2051 "dma_map_sg. Config %d, seg_cnt %d\n", 2052 __func__, phba->cfg_sg_seg_cnt, 2053 lpfc_cmd->seg_cnt); 2054 scsi_dma_unmap(scsi_cmnd); 2055 return 1; 2056 } 2057 2058 /* 2059 * The driver established a maximum scatter-gather segment count 2060 * during probe that limits the number of sg elements in any 2061 * single scsi command. Just run through the seg_cnt and format 2062 * the sge's. 2063 * When using SLI-3 the driver will try to fit all the BDEs into 2064 * the IOCB. If it can't then the BDEs get added to a BPL as it 2065 * does for SLI-2 mode. 2066 */ 2067 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 2068 physaddr = sg_dma_address(sgel); 2069 dma_len = sg_dma_len(sgel); 2070 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 2071 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 2072 sgl->word2 = le32_to_cpu(sgl->word2); 2073 if ((num_bde + 1) == nseg) 2074 bf_set(lpfc_sli4_sge_last, sgl, 1); 2075 else 2076 bf_set(lpfc_sli4_sge_last, sgl, 0); 2077 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 2078 sgl->word2 = cpu_to_le32(sgl->word2); 2079 sgl->sge_len = cpu_to_le32(dma_len); 2080 dma_offset += dma_len; 2081 sgl++; 2082 } 2083 /* setup the performance hint (first data BDE) if enabled */ 2084 if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) { 2085 bde = (struct ulp_bde64 *) 2086 &(iocb_cmd->unsli3.sli3Words[5]); 2087 bde->addrLow = first_data_sgl->addr_lo; 2088 bde->addrHigh = first_data_sgl->addr_hi; 2089 bde->tus.f.bdeSize = 2090 le32_to_cpu(first_data_sgl->sge_len); 2091 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2092 bde->tus.w = cpu_to_le32(bde->tus.w); 2093 } 2094 } else { 2095 sgl += 1; 2096 /* clear the last flag in the fcp_rsp map entry */ 2097 sgl->word2 = le32_to_cpu(sgl->word2); 2098 bf_set(lpfc_sli4_sge_last, sgl, 1); 2099 sgl->word2 = cpu_to_le32(sgl->word2); 2100 } 2101 2102 /* 2103 * Finish initializing those IOCB fields that are dependent on the 2104 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 2105 * explicitly reinitialized. 2106 * all iocb memory resources are reused. 2107 */ 2108 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 2109 2110 /* 2111 * Due to difference in data length between DIF/non-DIF paths, 2112 * we need to set word 4 of IOCB here 2113 */ 2114 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 2115 return 0; 2116 } 2117 2118 /** 2119 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 2120 * @phba: The Hba for which this call is being executed. 2121 * @lpfc_cmd: The scsi buffer which is going to be mapped. 2122 * 2123 * This routine wraps the actual DMA mapping function pointer from the 2124 * lpfc_hba struct. 2125 * 2126 * Return codes: 2127 * 1 - Error 2128 * 0 - Success 2129 **/ 2130 static inline int 2131 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2132 { 2133 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2134 } 2135 2136 /** 2137 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 2138 * @phba: Pointer to hba context object. 2139 * @vport: Pointer to vport object. 2140 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 2141 * @rsp_iocb: Pointer to response iocb object which reported error. 2142 * 2143 * This function posts an event when there is a SCSI command reporting 2144 * error from the scsi device. 2145 **/ 2146 static void 2147 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 2148 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 2149 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2150 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2151 uint32_t resp_info = fcprsp->rspStatus2; 2152 uint32_t scsi_status = fcprsp->rspStatus3; 2153 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2154 struct lpfc_fast_path_event *fast_path_evt = NULL; 2155 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 2156 unsigned long flags; 2157 2158 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2159 return; 2160 2161 /* If there is queuefull or busy condition send a scsi event */ 2162 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 2163 (cmnd->result == SAM_STAT_BUSY)) { 2164 fast_path_evt = lpfc_alloc_fast_evt(phba); 2165 if (!fast_path_evt) 2166 return; 2167 fast_path_evt->un.scsi_evt.event_type = 2168 FC_REG_SCSI_EVENT; 2169 fast_path_evt->un.scsi_evt.subcategory = 2170 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 2171 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 2172 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 2173 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 2174 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2175 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 2176 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2177 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 2178 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 2179 fast_path_evt = lpfc_alloc_fast_evt(phba); 2180 if (!fast_path_evt) 2181 return; 2182 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 2183 FC_REG_SCSI_EVENT; 2184 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 2185 LPFC_EVENT_CHECK_COND; 2186 fast_path_evt->un.check_cond_evt.scsi_event.lun = 2187 cmnd->device->lun; 2188 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 2189 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2190 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 2191 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2192 fast_path_evt->un.check_cond_evt.sense_key = 2193 cmnd->sense_buffer[2] & 0xf; 2194 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 2195 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 2196 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2197 fcpi_parm && 2198 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 2199 ((scsi_status == SAM_STAT_GOOD) && 2200 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 2201 /* 2202 * If status is good or resid does not match with fcp_param and 2203 * there is valid fcpi_parm, then there is a read_check error 2204 */ 2205 fast_path_evt = lpfc_alloc_fast_evt(phba); 2206 if (!fast_path_evt) 2207 return; 2208 fast_path_evt->un.read_check_error.header.event_type = 2209 FC_REG_FABRIC_EVENT; 2210 fast_path_evt->un.read_check_error.header.subcategory = 2211 LPFC_EVENT_FCPRDCHKERR; 2212 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 2213 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2214 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 2215 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2216 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 2217 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 2218 fast_path_evt->un.read_check_error.fcpiparam = 2219 fcpi_parm; 2220 } else 2221 return; 2222 2223 fast_path_evt->vport = vport; 2224 spin_lock_irqsave(&phba->hbalock, flags); 2225 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 2226 spin_unlock_irqrestore(&phba->hbalock, flags); 2227 lpfc_worker_wake_up(phba); 2228 return; 2229 } 2230 2231 /** 2232 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 2233 * @phba: The HBA for which this call is being executed. 2234 * @psb: The scsi buffer which is going to be un-mapped. 2235 * 2236 * This routine does DMA un-mapping of scatter gather list of scsi command 2237 * field of @lpfc_cmd for device with SLI-3 interface spec. 2238 **/ 2239 static void 2240 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2241 { 2242 /* 2243 * There are only two special cases to consider. (1) the scsi command 2244 * requested scatter-gather usage or (2) the scsi command allocated 2245 * a request buffer, but did not request use_sg. There is a third 2246 * case, but it does not require resource deallocation. 2247 */ 2248 if (psb->seg_cnt > 0) 2249 scsi_dma_unmap(psb->pCmd); 2250 if (psb->prot_seg_cnt > 0) 2251 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2252 scsi_prot_sg_count(psb->pCmd), 2253 psb->pCmd->sc_data_direction); 2254 } 2255 2256 /** 2257 * lpfc_handler_fcp_err - FCP response handler 2258 * @vport: The virtual port for which this call is being executed. 2259 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2260 * @rsp_iocb: The response IOCB which contains FCP error. 2261 * 2262 * This routine is called to process response IOCB with status field 2263 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2264 * based upon SCSI and FCP error. 2265 **/ 2266 static void 2267 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2268 struct lpfc_iocbq *rsp_iocb) 2269 { 2270 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2271 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2272 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2273 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2274 uint32_t resp_info = fcprsp->rspStatus2; 2275 uint32_t scsi_status = fcprsp->rspStatus3; 2276 uint32_t *lp; 2277 uint32_t host_status = DID_OK; 2278 uint32_t rsplen = 0; 2279 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2280 2281 2282 /* 2283 * If this is a task management command, there is no 2284 * scsi packet associated with this lpfc_cmd. The driver 2285 * consumes it. 2286 */ 2287 if (fcpcmd->fcpCntl2) { 2288 scsi_status = 0; 2289 goto out; 2290 } 2291 2292 if (resp_info & RSP_LEN_VALID) { 2293 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2294 if (rsplen != 0 && rsplen != 4 && rsplen != 8) { 2295 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2296 "2719 Invalid response length: " 2297 "tgt x%x lun x%x cmnd x%x rsplen x%x\n", 2298 cmnd->device->id, 2299 cmnd->device->lun, cmnd->cmnd[0], 2300 rsplen); 2301 host_status = DID_ERROR; 2302 goto out; 2303 } 2304 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { 2305 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2306 "2757 Protocol failure detected during " 2307 "processing of FCP I/O op: " 2308 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n", 2309 cmnd->device->id, 2310 cmnd->device->lun, cmnd->cmnd[0], 2311 fcprsp->rspInfo3); 2312 host_status = DID_ERROR; 2313 goto out; 2314 } 2315 } 2316 2317 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2318 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2319 if (snslen > SCSI_SENSE_BUFFERSIZE) 2320 snslen = SCSI_SENSE_BUFFERSIZE; 2321 2322 if (resp_info & RSP_LEN_VALID) 2323 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2324 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2325 } 2326 lp = (uint32_t *)cmnd->sense_buffer; 2327 2328 if (!scsi_status && (resp_info & RESID_UNDER)) 2329 logit = LOG_FCP; 2330 2331 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2332 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2333 "Data: x%x x%x x%x x%x x%x\n", 2334 cmnd->cmnd[0], scsi_status, 2335 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2336 be32_to_cpu(fcprsp->rspResId), 2337 be32_to_cpu(fcprsp->rspSnsLen), 2338 be32_to_cpu(fcprsp->rspRspLen), 2339 fcprsp->rspInfo3); 2340 2341 scsi_set_resid(cmnd, 0); 2342 if (resp_info & RESID_UNDER) { 2343 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2344 2345 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2346 "9025 FCP Read Underrun, expected %d, " 2347 "residual %d Data: x%x x%x x%x\n", 2348 be32_to_cpu(fcpcmd->fcpDl), 2349 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2350 cmnd->underflow); 2351 2352 /* 2353 * If there is an under run check if under run reported by 2354 * storage array is same as the under run reported by HBA. 2355 * If this is not same, there is a dropped frame. 2356 */ 2357 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2358 fcpi_parm && 2359 (scsi_get_resid(cmnd) != fcpi_parm)) { 2360 lpfc_printf_vlog(vport, KERN_WARNING, 2361 LOG_FCP | LOG_FCP_ERROR, 2362 "9026 FCP Read Check Error " 2363 "and Underrun Data: x%x x%x x%x x%x\n", 2364 be32_to_cpu(fcpcmd->fcpDl), 2365 scsi_get_resid(cmnd), fcpi_parm, 2366 cmnd->cmnd[0]); 2367 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2368 host_status = DID_ERROR; 2369 } 2370 /* 2371 * The cmnd->underflow is the minimum number of bytes that must 2372 * be transferred for this command. Provided a sense condition 2373 * is not present, make sure the actual amount transferred is at 2374 * least the underflow value or fail. 2375 */ 2376 if (!(resp_info & SNS_LEN_VALID) && 2377 (scsi_status == SAM_STAT_GOOD) && 2378 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2379 < cmnd->underflow)) { 2380 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2381 "9027 FCP command x%x residual " 2382 "underrun converted to error " 2383 "Data: x%x x%x x%x\n", 2384 cmnd->cmnd[0], scsi_bufflen(cmnd), 2385 scsi_get_resid(cmnd), cmnd->underflow); 2386 host_status = DID_ERROR; 2387 } 2388 } else if (resp_info & RESID_OVER) { 2389 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2390 "9028 FCP command x%x residual overrun error. " 2391 "Data: x%x x%x\n", cmnd->cmnd[0], 2392 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2393 host_status = DID_ERROR; 2394 2395 /* 2396 * Check SLI validation that all the transfer was actually done 2397 * (fcpi_parm should be zero). Apply check only to reads. 2398 */ 2399 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2400 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2401 "9029 FCP Read Check Error Data: " 2402 "x%x x%x x%x x%x x%x\n", 2403 be32_to_cpu(fcpcmd->fcpDl), 2404 be32_to_cpu(fcprsp->rspResId), 2405 fcpi_parm, cmnd->cmnd[0], scsi_status); 2406 switch (scsi_status) { 2407 case SAM_STAT_GOOD: 2408 case SAM_STAT_CHECK_CONDITION: 2409 /* Fabric dropped a data frame. Fail any successful 2410 * command in which we detected dropped frames. 2411 * A status of good or some check conditions could 2412 * be considered a successful command. 2413 */ 2414 host_status = DID_ERROR; 2415 break; 2416 } 2417 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2418 } 2419 2420 out: 2421 cmnd->result = ScsiResult(host_status, scsi_status); 2422 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2423 } 2424 2425 /** 2426 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2427 * @phba: The Hba for which this call is being executed. 2428 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2429 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2430 * 2431 * This routine assigns scsi command result by looking into response IOCB 2432 * status field appropriately. This routine handles QUEUE FULL condition as 2433 * well by ramping down device queue depth. 2434 **/ 2435 static void 2436 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2437 struct lpfc_iocbq *pIocbOut) 2438 { 2439 struct lpfc_scsi_buf *lpfc_cmd = 2440 (struct lpfc_scsi_buf *) pIocbIn->context1; 2441 struct lpfc_vport *vport = pIocbIn->vport; 2442 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2443 struct lpfc_nodelist *pnode = rdata->pnode; 2444 struct scsi_cmnd *cmd; 2445 int result; 2446 struct scsi_device *tmp_sdev; 2447 int depth; 2448 unsigned long flags; 2449 struct lpfc_fast_path_event *fast_path_evt; 2450 struct Scsi_Host *shost; 2451 uint32_t queue_depth, scsi_id; 2452 2453 /* Sanity check on return of outstanding command */ 2454 if (!(lpfc_cmd->pCmd)) 2455 return; 2456 cmd = lpfc_cmd->pCmd; 2457 shost = cmd->device->host; 2458 2459 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2460 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2461 /* pick up SLI4 exhange busy status from HBA */ 2462 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY; 2463 2464 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2465 atomic_dec(&pnode->cmd_pending); 2466 2467 if (lpfc_cmd->status) { 2468 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2469 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2470 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2471 else if (lpfc_cmd->status >= IOSTAT_CNT) 2472 lpfc_cmd->status = IOSTAT_DEFAULT; 2473 2474 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2475 "9030 FCP cmd x%x failed <%d/%d> " 2476 "status: x%x result: x%x Data: x%x x%x\n", 2477 cmd->cmnd[0], 2478 cmd->device ? cmd->device->id : 0xffff, 2479 cmd->device ? cmd->device->lun : 0xffff, 2480 lpfc_cmd->status, lpfc_cmd->result, 2481 pIocbOut->iocb.ulpContext, 2482 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2483 2484 switch (lpfc_cmd->status) { 2485 case IOSTAT_FCP_RSP_ERROR: 2486 /* Call FCP RSP handler to determine result */ 2487 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2488 break; 2489 case IOSTAT_NPORT_BSY: 2490 case IOSTAT_FABRIC_BSY: 2491 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2492 fast_path_evt = lpfc_alloc_fast_evt(phba); 2493 if (!fast_path_evt) 2494 break; 2495 fast_path_evt->un.fabric_evt.event_type = 2496 FC_REG_FABRIC_EVENT; 2497 fast_path_evt->un.fabric_evt.subcategory = 2498 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2499 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2500 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2501 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2502 &pnode->nlp_portname, 2503 sizeof(struct lpfc_name)); 2504 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2505 &pnode->nlp_nodename, 2506 sizeof(struct lpfc_name)); 2507 } 2508 fast_path_evt->vport = vport; 2509 fast_path_evt->work_evt.evt = 2510 LPFC_EVT_FASTPATH_MGMT_EVT; 2511 spin_lock_irqsave(&phba->hbalock, flags); 2512 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2513 &phba->work_list); 2514 spin_unlock_irqrestore(&phba->hbalock, flags); 2515 lpfc_worker_wake_up(phba); 2516 break; 2517 case IOSTAT_LOCAL_REJECT: 2518 case IOSTAT_REMOTE_STOP: 2519 if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || 2520 lpfc_cmd->result == 2521 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || 2522 lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || 2523 lpfc_cmd->result == 2524 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { 2525 cmd->result = ScsiResult(DID_NO_CONNECT, 0); 2526 break; 2527 } 2528 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2529 lpfc_cmd->result == IOERR_NO_RESOURCES || 2530 lpfc_cmd->result == IOERR_ABORT_REQUESTED || 2531 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { 2532 cmd->result = ScsiResult(DID_REQUEUE, 0); 2533 break; 2534 } 2535 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2536 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2537 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2538 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2539 /* 2540 * This is a response for a BG enabled 2541 * cmd. Parse BG error 2542 */ 2543 lpfc_parse_bg_err(phba, lpfc_cmd, 2544 pIocbOut); 2545 break; 2546 } else { 2547 lpfc_printf_vlog(vport, KERN_WARNING, 2548 LOG_BG, 2549 "9031 non-zero BGSTAT " 2550 "on unprotected cmd\n"); 2551 } 2552 } 2553 if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP) 2554 && (phba->sli_rev == LPFC_SLI_REV4) 2555 && (pnode && NLP_CHK_NODE_ACT(pnode))) { 2556 /* This IO was aborted by the target, we don't 2557 * know the rxid and because we did not send the 2558 * ABTS we cannot generate and RRQ. 2559 */ 2560 lpfc_set_rrq_active(phba, pnode, 2561 lpfc_cmd->cur_iocbq.sli4_xritag, 2562 0, 0); 2563 } 2564 /* else: fall through */ 2565 default: 2566 cmd->result = ScsiResult(DID_ERROR, 0); 2567 break; 2568 } 2569 2570 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2571 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2572 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2573 SAM_STAT_BUSY); 2574 } else 2575 cmd->result = ScsiResult(DID_OK, 0); 2576 2577 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2578 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2579 2580 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2581 "0710 Iodone <%d/%d> cmd %p, error " 2582 "x%x SNS x%x x%x Data: x%x x%x\n", 2583 cmd->device->id, cmd->device->lun, cmd, 2584 cmd->result, *lp, *(lp + 3), cmd->retries, 2585 scsi_get_resid(cmd)); 2586 } 2587 2588 lpfc_update_stats(phba, lpfc_cmd); 2589 result = cmd->result; 2590 if (vport->cfg_max_scsicmpl_time && 2591 time_after(jiffies, lpfc_cmd->start_time + 2592 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2593 spin_lock_irqsave(shost->host_lock, flags); 2594 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2595 if (pnode->cmd_qdepth > 2596 atomic_read(&pnode->cmd_pending) && 2597 (atomic_read(&pnode->cmd_pending) > 2598 LPFC_MIN_TGT_QDEPTH) && 2599 ((cmd->cmnd[0] == READ_10) || 2600 (cmd->cmnd[0] == WRITE_10))) 2601 pnode->cmd_qdepth = 2602 atomic_read(&pnode->cmd_pending); 2603 2604 pnode->last_change_time = jiffies; 2605 } 2606 spin_unlock_irqrestore(shost->host_lock, flags); 2607 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2608 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) && 2609 time_after(jiffies, pnode->last_change_time + 2610 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2611 spin_lock_irqsave(shost->host_lock, flags); 2612 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT 2613 / 100; 2614 depth = depth ? depth : 1; 2615 pnode->cmd_qdepth += depth; 2616 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth) 2617 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth; 2618 pnode->last_change_time = jiffies; 2619 spin_unlock_irqrestore(shost->host_lock, flags); 2620 } 2621 } 2622 2623 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2624 2625 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2626 queue_depth = cmd->device->queue_depth; 2627 scsi_id = cmd->device->id; 2628 cmd->scsi_done(cmd); 2629 2630 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2631 /* 2632 * If there is a thread waiting for command completion 2633 * wake up the thread. 2634 */ 2635 spin_lock_irqsave(shost->host_lock, flags); 2636 lpfc_cmd->pCmd = NULL; 2637 if (lpfc_cmd->waitq) 2638 wake_up(lpfc_cmd->waitq); 2639 spin_unlock_irqrestore(shost->host_lock, flags); 2640 lpfc_release_scsi_buf(phba, lpfc_cmd); 2641 return; 2642 } 2643 2644 if (!result) 2645 lpfc_rampup_queue_depth(vport, queue_depth); 2646 2647 /* 2648 * Check for queue full. If the lun is reporting queue full, then 2649 * back off the lun queue depth to prevent target overloads. 2650 */ 2651 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2652 NLP_CHK_NODE_ACT(pnode)) { 2653 shost_for_each_device(tmp_sdev, shost) { 2654 if (tmp_sdev->id != scsi_id) 2655 continue; 2656 depth = scsi_track_queue_full(tmp_sdev, 2657 tmp_sdev->queue_depth-1); 2658 if (depth <= 0) 2659 continue; 2660 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2661 "0711 detected queue full - lun queue " 2662 "depth adjusted to %d.\n", depth); 2663 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2664 pnode, 2665 tmp_sdev->lun, 2666 depth+1, depth); 2667 } 2668 } 2669 2670 /* 2671 * If there is a thread waiting for command completion 2672 * wake up the thread. 2673 */ 2674 spin_lock_irqsave(shost->host_lock, flags); 2675 lpfc_cmd->pCmd = NULL; 2676 if (lpfc_cmd->waitq) 2677 wake_up(lpfc_cmd->waitq); 2678 spin_unlock_irqrestore(shost->host_lock, flags); 2679 2680 lpfc_release_scsi_buf(phba, lpfc_cmd); 2681 } 2682 2683 /** 2684 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2685 * @data: A pointer to the immediate command data portion of the IOCB. 2686 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2687 * 2688 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2689 * byte swapping the data to big endian format for transmission on the wire. 2690 **/ 2691 static void 2692 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2693 { 2694 int i, j; 2695 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2696 i += sizeof(uint32_t), j++) { 2697 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2698 } 2699 } 2700 2701 /** 2702 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2703 * @vport: The virtual port for which this call is being executed. 2704 * @lpfc_cmd: The scsi command which needs to send. 2705 * @pnode: Pointer to lpfc_nodelist. 2706 * 2707 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2708 * to transfer for device with SLI3 interface spec. 2709 **/ 2710 static void 2711 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2712 struct lpfc_nodelist *pnode) 2713 { 2714 struct lpfc_hba *phba = vport->phba; 2715 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2716 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2717 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2718 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2719 int datadir = scsi_cmnd->sc_data_direction; 2720 char tag[2]; 2721 2722 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2723 return; 2724 2725 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2726 /* clear task management bits */ 2727 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2728 2729 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2730 &lpfc_cmd->fcp_cmnd->fcp_lun); 2731 2732 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); 2733 2734 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2735 switch (tag[0]) { 2736 case HEAD_OF_QUEUE_TAG: 2737 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2738 break; 2739 case ORDERED_QUEUE_TAG: 2740 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2741 break; 2742 default: 2743 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2744 break; 2745 } 2746 } else 2747 fcp_cmnd->fcpCntl1 = 0; 2748 2749 /* 2750 * There are three possibilities here - use scatter-gather segment, use 2751 * the single mapping, or neither. Start the lpfc command prep by 2752 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2753 * data bde entry. 2754 */ 2755 if (scsi_sg_count(scsi_cmnd)) { 2756 if (datadir == DMA_TO_DEVICE) { 2757 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2758 if (phba->sli_rev < LPFC_SLI_REV4) { 2759 iocb_cmd->un.fcpi.fcpi_parm = 0; 2760 iocb_cmd->ulpPU = 0; 2761 } else 2762 iocb_cmd->ulpPU = PARM_READ_CHECK; 2763 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2764 phba->fc4OutputRequests++; 2765 } else { 2766 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2767 iocb_cmd->ulpPU = PARM_READ_CHECK; 2768 fcp_cmnd->fcpCntl3 = READ_DATA; 2769 phba->fc4InputRequests++; 2770 } 2771 } else { 2772 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2773 iocb_cmd->un.fcpi.fcpi_parm = 0; 2774 iocb_cmd->ulpPU = 0; 2775 fcp_cmnd->fcpCntl3 = 0; 2776 phba->fc4ControlRequests++; 2777 } 2778 if (phba->sli_rev == 3 && 2779 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2780 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2781 /* 2782 * Finish initializing those IOCB fields that are independent 2783 * of the scsi_cmnd request_buffer 2784 */ 2785 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2786 if (phba->sli_rev == LPFC_SLI_REV4) 2787 piocbq->iocb.ulpContext = 2788 phba->sli4_hba.rpi_ids[pnode->nlp_rpi]; 2789 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2790 piocbq->iocb.ulpFCP2Rcvy = 1; 2791 else 2792 piocbq->iocb.ulpFCP2Rcvy = 0; 2793 2794 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2795 piocbq->context1 = lpfc_cmd; 2796 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2797 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2798 piocbq->vport = vport; 2799 } 2800 2801 /** 2802 * lpfc_scsi_prep_task_mgmt_cmd - Convert SLI3 scsi TM cmd to FCP info unit 2803 * @vport: The virtual port for which this call is being executed. 2804 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2805 * @lun: Logical unit number. 2806 * @task_mgmt_cmd: SCSI task management command. 2807 * 2808 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2809 * for device with SLI-3 interface spec. 2810 * 2811 * Return codes: 2812 * 0 - Error 2813 * 1 - Success 2814 **/ 2815 static int 2816 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 2817 struct lpfc_scsi_buf *lpfc_cmd, 2818 unsigned int lun, 2819 uint8_t task_mgmt_cmd) 2820 { 2821 struct lpfc_iocbq *piocbq; 2822 IOCB_t *piocb; 2823 struct fcp_cmnd *fcp_cmnd; 2824 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2825 struct lpfc_nodelist *ndlp = rdata->pnode; 2826 2827 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2828 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 2829 return 0; 2830 2831 piocbq = &(lpfc_cmd->cur_iocbq); 2832 piocbq->vport = vport; 2833 2834 piocb = &piocbq->iocb; 2835 2836 fcp_cmnd = lpfc_cmd->fcp_cmnd; 2837 /* Clear out any old data in the FCP command area */ 2838 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 2839 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 2840 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 2841 if (vport->phba->sli_rev == 3 && 2842 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2843 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 2844 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 2845 piocb->ulpContext = ndlp->nlp_rpi; 2846 if (vport->phba->sli_rev == LPFC_SLI_REV4) { 2847 piocb->ulpContext = 2848 vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 2849 } 2850 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 2851 piocb->ulpFCP2Rcvy = 1; 2852 } 2853 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 2854 2855 /* ulpTimeout is only one byte */ 2856 if (lpfc_cmd->timeout > 0xff) { 2857 /* 2858 * Do not timeout the command at the firmware level. 2859 * The driver will provide the timeout mechanism. 2860 */ 2861 piocb->ulpTimeout = 0; 2862 } else 2863 piocb->ulpTimeout = lpfc_cmd->timeout; 2864 2865 if (vport->phba->sli_rev == LPFC_SLI_REV4) 2866 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 2867 2868 return 1; 2869 } 2870 2871 /** 2872 * lpfc_scsi_api_table_setup - Set up scsi api function jump table 2873 * @phba: The hba struct for which this call is being executed. 2874 * @dev_grp: The HBA PCI-Device group number. 2875 * 2876 * This routine sets up the SCSI interface API function jump table in @phba 2877 * struct. 2878 * Returns: 0 - success, -ENODEV - failure. 2879 **/ 2880 int 2881 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 2882 { 2883 2884 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 2885 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 2886 2887 switch (dev_grp) { 2888 case LPFC_PCI_DEV_LP: 2889 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 2890 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 2891 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 2892 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3; 2893 break; 2894 case LPFC_PCI_DEV_OC: 2895 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 2896 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 2897 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 2898 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4; 2899 break; 2900 default: 2901 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2902 "1418 Invalid HBA PCI-device group: 0x%x\n", 2903 dev_grp); 2904 return -ENODEV; 2905 break; 2906 } 2907 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 2908 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2909 return 0; 2910 } 2911 2912 /** 2913 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 2914 * @phba: The Hba for which this call is being executed. 2915 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 2916 * @rspiocbq: Pointer to lpfc_iocbq data structure. 2917 * 2918 * This routine is IOCB completion routine for device reset and target reset 2919 * routine. This routine release scsi buffer associated with lpfc_cmd. 2920 **/ 2921 static void 2922 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 2923 struct lpfc_iocbq *cmdiocbq, 2924 struct lpfc_iocbq *rspiocbq) 2925 { 2926 struct lpfc_scsi_buf *lpfc_cmd = 2927 (struct lpfc_scsi_buf *) cmdiocbq->context1; 2928 if (lpfc_cmd) 2929 lpfc_release_scsi_buf(phba, lpfc_cmd); 2930 return; 2931 } 2932 2933 /** 2934 * lpfc_info - Info entry point of scsi_host_template data structure 2935 * @host: The scsi host for which this call is being executed. 2936 * 2937 * This routine provides module information about hba. 2938 * 2939 * Reutrn code: 2940 * Pointer to char - Success. 2941 **/ 2942 const char * 2943 lpfc_info(struct Scsi_Host *host) 2944 { 2945 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 2946 struct lpfc_hba *phba = vport->phba; 2947 int len; 2948 static char lpfcinfobuf[384]; 2949 2950 memset(lpfcinfobuf,0,384); 2951 if (phba && phba->pcidev){ 2952 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 2953 len = strlen(lpfcinfobuf); 2954 snprintf(lpfcinfobuf + len, 2955 384-len, 2956 " on PCI bus %02x device %02x irq %d", 2957 phba->pcidev->bus->number, 2958 phba->pcidev->devfn, 2959 phba->pcidev->irq); 2960 len = strlen(lpfcinfobuf); 2961 if (phba->Port[0]) { 2962 snprintf(lpfcinfobuf + len, 2963 384-len, 2964 " port %s", 2965 phba->Port); 2966 } 2967 len = strlen(lpfcinfobuf); 2968 if (phba->sli4_hba.link_state.logical_speed) { 2969 snprintf(lpfcinfobuf + len, 2970 384-len, 2971 " Logical Link Speed: %d Mbps", 2972 phba->sli4_hba.link_state.logical_speed * 10); 2973 } 2974 } 2975 return lpfcinfobuf; 2976 } 2977 2978 /** 2979 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 2980 * @phba: The Hba for which this call is being executed. 2981 * 2982 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 2983 * The default value of cfg_poll_tmo is 10 milliseconds. 2984 **/ 2985 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 2986 { 2987 unsigned long poll_tmo_expires = 2988 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 2989 2990 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 2991 mod_timer(&phba->fcp_poll_timer, 2992 poll_tmo_expires); 2993 } 2994 2995 /** 2996 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 2997 * @phba: The Hba for which this call is being executed. 2998 * 2999 * This routine starts the fcp_poll_timer of @phba. 3000 **/ 3001 void lpfc_poll_start_timer(struct lpfc_hba * phba) 3002 { 3003 lpfc_poll_rearm_timer(phba); 3004 } 3005 3006 /** 3007 * lpfc_poll_timeout - Restart polling timer 3008 * @ptr: Map to lpfc_hba data structure pointer. 3009 * 3010 * This routine restarts fcp_poll timer, when FCP ring polling is enable 3011 * and FCP Ring interrupt is disable. 3012 **/ 3013 3014 void lpfc_poll_timeout(unsigned long ptr) 3015 { 3016 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 3017 3018 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3019 lpfc_sli_handle_fast_ring_event(phba, 3020 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3021 3022 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3023 lpfc_poll_rearm_timer(phba); 3024 } 3025 } 3026 3027 /** 3028 * lpfc_queuecommand - scsi_host_template queuecommand entry point 3029 * @cmnd: Pointer to scsi_cmnd data structure. 3030 * @done: Pointer to done routine. 3031 * 3032 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 3033 * This routine prepares an IOCB from scsi command and provides to firmware. 3034 * The @done callback is invoked after driver finished processing the command. 3035 * 3036 * Return value : 3037 * 0 - Success 3038 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 3039 **/ 3040 static int 3041 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 3042 { 3043 struct Scsi_Host *shost = cmnd->device->host; 3044 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3045 struct lpfc_hba *phba = vport->phba; 3046 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3047 struct lpfc_nodelist *ndlp; 3048 struct lpfc_scsi_buf *lpfc_cmd; 3049 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 3050 int err; 3051 3052 err = fc_remote_port_chkready(rport); 3053 if (err) { 3054 cmnd->result = err; 3055 goto out_fail_command; 3056 } 3057 ndlp = rdata->pnode; 3058 3059 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 3060 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 3061 3062 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 3063 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" 3064 " op:%02x str=%s without registering for" 3065 " BlockGuard - Rejecting command\n", 3066 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3067 dif_op_str[scsi_get_prot_op(cmnd)]); 3068 goto out_fail_command; 3069 } 3070 3071 /* 3072 * Catch race where our node has transitioned, but the 3073 * transport is still transitioning. 3074 */ 3075 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 3076 cmnd->result = ScsiResult(DID_IMM_RETRY, 0); 3077 goto out_fail_command; 3078 } 3079 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) 3080 goto out_tgt_busy; 3081 3082 lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp); 3083 if (lpfc_cmd == NULL) { 3084 lpfc_rampdown_queue_depth(phba); 3085 3086 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3087 "0707 driver's buffer pool is empty, " 3088 "IO busied\n"); 3089 goto out_host_busy; 3090 } 3091 3092 /* 3093 * Store the midlayer's command structure for the completion phase 3094 * and complete the command initialization. 3095 */ 3096 lpfc_cmd->pCmd = cmnd; 3097 lpfc_cmd->rdata = rdata; 3098 lpfc_cmd->timeout = 0; 3099 lpfc_cmd->start_time = jiffies; 3100 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 3101 cmnd->scsi_done = done; 3102 3103 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 3104 if (vport->phba->cfg_enable_bg) { 3105 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3106 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 3107 "str=%s\n", 3108 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3109 dif_op_str[scsi_get_prot_op(cmnd)]); 3110 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3111 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 3112 "%02x %02x %02x %02x %02x\n", 3113 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 3114 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 3115 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 3116 cmnd->cmnd[9]); 3117 if (cmnd->cmnd[0] == READ_10) 3118 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3119 "9035 BLKGRD: READ @ sector %llu, " 3120 "count %u\n", 3121 (unsigned long long)scsi_get_lba(cmnd), 3122 blk_rq_sectors(cmnd->request)); 3123 else if (cmnd->cmnd[0] == WRITE_10) 3124 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3125 "9036 BLKGRD: WRITE @ sector %llu, " 3126 "count %u cmd=%p\n", 3127 (unsigned long long)scsi_get_lba(cmnd), 3128 blk_rq_sectors(cmnd->request), 3129 cmnd); 3130 } 3131 3132 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 3133 } else { 3134 if (vport->phba->cfg_enable_bg) { 3135 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3136 "9038 BLKGRD: rcvd unprotected cmd:" 3137 "%02x op:%02x str=%s\n", 3138 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3139 dif_op_str[scsi_get_prot_op(cmnd)]); 3140 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3141 "9039 BLKGRD: CDB: %02x %02x %02x " 3142 "%02x %02x %02x %02x %02x %02x %02x\n", 3143 cmnd->cmnd[0], cmnd->cmnd[1], 3144 cmnd->cmnd[2], cmnd->cmnd[3], 3145 cmnd->cmnd[4], cmnd->cmnd[5], 3146 cmnd->cmnd[6], cmnd->cmnd[7], 3147 cmnd->cmnd[8], cmnd->cmnd[9]); 3148 if (cmnd->cmnd[0] == READ_10) 3149 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3150 "9040 dbg: READ @ sector %llu, " 3151 "count %u\n", 3152 (unsigned long long)scsi_get_lba(cmnd), 3153 blk_rq_sectors(cmnd->request)); 3154 else if (cmnd->cmnd[0] == WRITE_10) 3155 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3156 "9041 dbg: WRITE @ sector %llu, " 3157 "count %u cmd=%p\n", 3158 (unsigned long long)scsi_get_lba(cmnd), 3159 blk_rq_sectors(cmnd->request), cmnd); 3160 else 3161 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3162 "9042 dbg: parser not implemented\n"); 3163 } 3164 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 3165 } 3166 3167 if (err) 3168 goto out_host_busy_free_buf; 3169 3170 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 3171 3172 atomic_inc(&ndlp->cmd_pending); 3173 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 3174 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 3175 if (err) { 3176 atomic_dec(&ndlp->cmd_pending); 3177 goto out_host_busy_free_buf; 3178 } 3179 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3180 spin_unlock(shost->host_lock); 3181 lpfc_sli_handle_fast_ring_event(phba, 3182 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3183 3184 spin_lock(shost->host_lock); 3185 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3186 lpfc_poll_rearm_timer(phba); 3187 } 3188 3189 return 0; 3190 3191 out_host_busy_free_buf: 3192 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 3193 lpfc_release_scsi_buf(phba, lpfc_cmd); 3194 out_host_busy: 3195 return SCSI_MLQUEUE_HOST_BUSY; 3196 3197 out_tgt_busy: 3198 return SCSI_MLQUEUE_TARGET_BUSY; 3199 3200 out_fail_command: 3201 done(cmnd); 3202 return 0; 3203 } 3204 3205 static DEF_SCSI_QCMD(lpfc_queuecommand) 3206 3207 /** 3208 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 3209 * @cmnd: Pointer to scsi_cmnd data structure. 3210 * 3211 * This routine aborts @cmnd pending in base driver. 3212 * 3213 * Return code : 3214 * 0x2003 - Error 3215 * 0x2002 - Success 3216 **/ 3217 static int 3218 lpfc_abort_handler(struct scsi_cmnd *cmnd) 3219 { 3220 struct Scsi_Host *shost = cmnd->device->host; 3221 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3222 struct lpfc_hba *phba = vport->phba; 3223 struct lpfc_iocbq *iocb; 3224 struct lpfc_iocbq *abtsiocb; 3225 struct lpfc_scsi_buf *lpfc_cmd; 3226 IOCB_t *cmd, *icmd; 3227 int ret = SUCCESS; 3228 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 3229 3230 ret = fc_block_scsi_eh(cmnd); 3231 if (ret) 3232 return ret; 3233 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 3234 if (!lpfc_cmd) { 3235 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3236 "2873 SCSI Layer I/O Abort Request IO CMPL Status " 3237 "x%x ID %d LUN %d\n", 3238 ret, cmnd->device->id, cmnd->device->lun); 3239 return SUCCESS; 3240 } 3241 3242 /* 3243 * If pCmd field of the corresponding lpfc_scsi_buf structure 3244 * points to a different SCSI command, then the driver has 3245 * already completed this command, but the midlayer did not 3246 * see the completion before the eh fired. Just return 3247 * SUCCESS. 3248 */ 3249 iocb = &lpfc_cmd->cur_iocbq; 3250 if (lpfc_cmd->pCmd != cmnd) 3251 goto out; 3252 3253 BUG_ON(iocb->context1 != lpfc_cmd); 3254 3255 abtsiocb = lpfc_sli_get_iocbq(phba); 3256 if (abtsiocb == NULL) { 3257 ret = FAILED; 3258 goto out; 3259 } 3260 3261 /* 3262 * The scsi command can not be in txq and it is in flight because the 3263 * pCmd is still pointig at the SCSI command we have to abort. There 3264 * is no need to search the txcmplq. Just send an abort to the FW. 3265 */ 3266 3267 cmd = &iocb->iocb; 3268 icmd = &abtsiocb->iocb; 3269 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 3270 icmd->un.acxri.abortContextTag = cmd->ulpContext; 3271 if (phba->sli_rev == LPFC_SLI_REV4) 3272 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 3273 else 3274 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 3275 3276 icmd->ulpLe = 1; 3277 icmd->ulpClass = cmd->ulpClass; 3278 3279 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3280 abtsiocb->fcp_wqidx = iocb->fcp_wqidx; 3281 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 3282 3283 if (lpfc_is_link_up(phba)) 3284 icmd->ulpCommand = CMD_ABORT_XRI_CN; 3285 else 3286 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 3287 3288 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3289 abtsiocb->vport = vport; 3290 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3291 IOCB_ERROR) { 3292 lpfc_sli_release_iocbq(phba, abtsiocb); 3293 ret = FAILED; 3294 goto out; 3295 } 3296 3297 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3298 lpfc_sli_handle_fast_ring_event(phba, 3299 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3300 3301 lpfc_cmd->waitq = &waitq; 3302 /* Wait for abort to complete */ 3303 wait_event_timeout(waitq, 3304 (lpfc_cmd->pCmd != cmnd), 3305 (2*vport->cfg_devloss_tmo*HZ)); 3306 3307 spin_lock_irq(shost->host_lock); 3308 lpfc_cmd->waitq = NULL; 3309 spin_unlock_irq(shost->host_lock); 3310 3311 if (lpfc_cmd->pCmd == cmnd) { 3312 ret = FAILED; 3313 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3314 "0748 abort handler timed out waiting " 3315 "for abort to complete: ret %#x, ID %d, " 3316 "LUN %d\n", 3317 ret, cmnd->device->id, cmnd->device->lun); 3318 } 3319 3320 out: 3321 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3322 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3323 "LUN %d\n", ret, cmnd->device->id, 3324 cmnd->device->lun); 3325 return ret; 3326 } 3327 3328 static char * 3329 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3330 { 3331 switch (task_mgmt_cmd) { 3332 case FCP_ABORT_TASK_SET: 3333 return "ABORT_TASK_SET"; 3334 case FCP_CLEAR_TASK_SET: 3335 return "FCP_CLEAR_TASK_SET"; 3336 case FCP_BUS_RESET: 3337 return "FCP_BUS_RESET"; 3338 case FCP_LUN_RESET: 3339 return "FCP_LUN_RESET"; 3340 case FCP_TARGET_RESET: 3341 return "FCP_TARGET_RESET"; 3342 case FCP_CLEAR_ACA: 3343 return "FCP_CLEAR_ACA"; 3344 case FCP_TERMINATE_TASK: 3345 return "FCP_TERMINATE_TASK"; 3346 default: 3347 return "unknown"; 3348 } 3349 } 3350 3351 /** 3352 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3353 * @vport: The virtual port for which this call is being executed. 3354 * @rdata: Pointer to remote port local data 3355 * @tgt_id: Target ID of remote device. 3356 * @lun_id: Lun number for the TMF 3357 * @task_mgmt_cmd: type of TMF to send 3358 * 3359 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3360 * a remote port. 3361 * 3362 * Return Code: 3363 * 0x2003 - Error 3364 * 0x2002 - Success. 3365 **/ 3366 static int 3367 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3368 unsigned tgt_id, unsigned int lun_id, 3369 uint8_t task_mgmt_cmd) 3370 { 3371 struct lpfc_hba *phba = vport->phba; 3372 struct lpfc_scsi_buf *lpfc_cmd; 3373 struct lpfc_iocbq *iocbq; 3374 struct lpfc_iocbq *iocbqrsp; 3375 struct lpfc_nodelist *pnode = rdata->pnode; 3376 int ret; 3377 int status; 3378 3379 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3380 return FAILED; 3381 3382 lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode); 3383 if (lpfc_cmd == NULL) 3384 return FAILED; 3385 lpfc_cmd->timeout = 60; 3386 lpfc_cmd->rdata = rdata; 3387 3388 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3389 task_mgmt_cmd); 3390 if (!status) { 3391 lpfc_release_scsi_buf(phba, lpfc_cmd); 3392 return FAILED; 3393 } 3394 3395 iocbq = &lpfc_cmd->cur_iocbq; 3396 iocbqrsp = lpfc_sli_get_iocbq(phba); 3397 if (iocbqrsp == NULL) { 3398 lpfc_release_scsi_buf(phba, lpfc_cmd); 3399 return FAILED; 3400 } 3401 3402 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3403 "0702 Issue %s to TGT %d LUN %d " 3404 "rpi x%x nlp_flag x%x Data: x%x x%x\n", 3405 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3406 pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag, 3407 iocbq->iocb_flag); 3408 3409 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3410 iocbq, iocbqrsp, lpfc_cmd->timeout); 3411 if (status != IOCB_SUCCESS) { 3412 if (status == IOCB_TIMEDOUT) { 3413 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3414 ret = TIMEOUT_ERROR; 3415 } else 3416 ret = FAILED; 3417 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3418 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3419 "0727 TMF %s to TGT %d LUN %d failed (%d, %d) " 3420 "iocb_flag x%x\n", 3421 lpfc_taskmgmt_name(task_mgmt_cmd), 3422 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3423 iocbqrsp->iocb.un.ulpWord[4], 3424 iocbq->iocb_flag); 3425 } else if (status == IOCB_BUSY) 3426 ret = FAILED; 3427 else 3428 ret = SUCCESS; 3429 3430 lpfc_sli_release_iocbq(phba, iocbqrsp); 3431 3432 if (ret != TIMEOUT_ERROR) 3433 lpfc_release_scsi_buf(phba, lpfc_cmd); 3434 3435 return ret; 3436 } 3437 3438 /** 3439 * lpfc_chk_tgt_mapped - 3440 * @vport: The virtual port to check on 3441 * @cmnd: Pointer to scsi_cmnd data structure. 3442 * 3443 * This routine delays until the scsi target (aka rport) for the 3444 * command exists (is present and logged in) or we declare it non-existent. 3445 * 3446 * Return code : 3447 * 0x2003 - Error 3448 * 0x2002 - Success 3449 **/ 3450 static int 3451 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3452 { 3453 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3454 struct lpfc_nodelist *pnode; 3455 unsigned long later; 3456 3457 if (!rdata) { 3458 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3459 "0797 Tgt Map rport failure: rdata x%p\n", rdata); 3460 return FAILED; 3461 } 3462 pnode = rdata->pnode; 3463 /* 3464 * If target is not in a MAPPED state, delay until 3465 * target is rediscovered or devloss timeout expires. 3466 */ 3467 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3468 while (time_after(later, jiffies)) { 3469 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3470 return FAILED; 3471 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3472 return SUCCESS; 3473 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3474 rdata = cmnd->device->hostdata; 3475 if (!rdata) 3476 return FAILED; 3477 pnode = rdata->pnode; 3478 } 3479 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3480 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3481 return FAILED; 3482 return SUCCESS; 3483 } 3484 3485 /** 3486 * lpfc_reset_flush_io_context - 3487 * @vport: The virtual port (scsi_host) for the flush context 3488 * @tgt_id: If aborting by Target contect - specifies the target id 3489 * @lun_id: If aborting by Lun context - specifies the lun id 3490 * @context: specifies the context level to flush at. 3491 * 3492 * After a reset condition via TMF, we need to flush orphaned i/o 3493 * contexts from the adapter. This routine aborts any contexts 3494 * outstanding, then waits for their completions. The wait is 3495 * bounded by devloss_tmo though. 3496 * 3497 * Return code : 3498 * 0x2003 - Error 3499 * 0x2002 - Success 3500 **/ 3501 static int 3502 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3503 uint64_t lun_id, lpfc_ctx_cmd context) 3504 { 3505 struct lpfc_hba *phba = vport->phba; 3506 unsigned long later; 3507 int cnt; 3508 3509 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3510 if (cnt) 3511 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3512 tgt_id, lun_id, context); 3513 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3514 while (time_after(later, jiffies) && cnt) { 3515 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3516 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3517 } 3518 if (cnt) { 3519 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3520 "0724 I/O flush failure for context %s : cnt x%x\n", 3521 ((context == LPFC_CTX_LUN) ? "LUN" : 3522 ((context == LPFC_CTX_TGT) ? "TGT" : 3523 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3524 cnt); 3525 return FAILED; 3526 } 3527 return SUCCESS; 3528 } 3529 3530 /** 3531 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3532 * @cmnd: Pointer to scsi_cmnd data structure. 3533 * 3534 * This routine does a device reset by sending a LUN_RESET task management 3535 * command. 3536 * 3537 * Return code : 3538 * 0x2003 - Error 3539 * 0x2002 - Success 3540 **/ 3541 static int 3542 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3543 { 3544 struct Scsi_Host *shost = cmnd->device->host; 3545 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3546 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3547 struct lpfc_nodelist *pnode; 3548 unsigned tgt_id = cmnd->device->id; 3549 unsigned int lun_id = cmnd->device->lun; 3550 struct lpfc_scsi_event_header scsi_event; 3551 int status; 3552 3553 if (!rdata) { 3554 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3555 "0798 Device Reset rport failure: rdata x%p\n", rdata); 3556 return FAILED; 3557 } 3558 pnode = rdata->pnode; 3559 status = fc_block_scsi_eh(cmnd); 3560 if (status) 3561 return status; 3562 3563 status = lpfc_chk_tgt_mapped(vport, cmnd); 3564 if (status == FAILED) { 3565 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3566 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3567 return FAILED; 3568 } 3569 3570 scsi_event.event_type = FC_REG_SCSI_EVENT; 3571 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3572 scsi_event.lun = lun_id; 3573 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3574 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3575 3576 fc_host_post_vendor_event(shost, fc_get_event_number(), 3577 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3578 3579 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3580 FCP_LUN_RESET); 3581 3582 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3583 "0713 SCSI layer issued Device Reset (%d, %d) " 3584 "return x%x\n", tgt_id, lun_id, status); 3585 3586 /* 3587 * We have to clean up i/o as : they may be orphaned by the TMF; 3588 * or if the TMF failed, they may be in an indeterminate state. 3589 * So, continue on. 3590 * We will report success if all the i/o aborts successfully. 3591 */ 3592 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3593 LPFC_CTX_LUN); 3594 return status; 3595 } 3596 3597 /** 3598 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3599 * @cmnd: Pointer to scsi_cmnd data structure. 3600 * 3601 * This routine does a target reset by sending a TARGET_RESET task management 3602 * command. 3603 * 3604 * Return code : 3605 * 0x2003 - Error 3606 * 0x2002 - Success 3607 **/ 3608 static int 3609 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3610 { 3611 struct Scsi_Host *shost = cmnd->device->host; 3612 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3613 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3614 struct lpfc_nodelist *pnode; 3615 unsigned tgt_id = cmnd->device->id; 3616 unsigned int lun_id = cmnd->device->lun; 3617 struct lpfc_scsi_event_header scsi_event; 3618 int status; 3619 3620 if (!rdata) { 3621 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3622 "0799 Target Reset rport failure: rdata x%p\n", rdata); 3623 return FAILED; 3624 } 3625 pnode = rdata->pnode; 3626 status = fc_block_scsi_eh(cmnd); 3627 if (status) 3628 return status; 3629 3630 status = lpfc_chk_tgt_mapped(vport, cmnd); 3631 if (status == FAILED) { 3632 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3633 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3634 return FAILED; 3635 } 3636 3637 scsi_event.event_type = FC_REG_SCSI_EVENT; 3638 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3639 scsi_event.lun = 0; 3640 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3641 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3642 3643 fc_host_post_vendor_event(shost, fc_get_event_number(), 3644 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3645 3646 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3647 FCP_TARGET_RESET); 3648 3649 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3650 "0723 SCSI layer issued Target Reset (%d, %d) " 3651 "return x%x\n", tgt_id, lun_id, status); 3652 3653 /* 3654 * We have to clean up i/o as : they may be orphaned by the TMF; 3655 * or if the TMF failed, they may be in an indeterminate state. 3656 * So, continue on. 3657 * We will report success if all the i/o aborts successfully. 3658 */ 3659 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3660 LPFC_CTX_TGT); 3661 return status; 3662 } 3663 3664 /** 3665 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3666 * @cmnd: Pointer to scsi_cmnd data structure. 3667 * 3668 * This routine does target reset to all targets on @cmnd->device->host. 3669 * This emulates Parallel SCSI Bus Reset Semantics. 3670 * 3671 * Return code : 3672 * 0x2003 - Error 3673 * 0x2002 - Success 3674 **/ 3675 static int 3676 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3677 { 3678 struct Scsi_Host *shost = cmnd->device->host; 3679 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3680 struct lpfc_nodelist *ndlp = NULL; 3681 struct lpfc_scsi_event_header scsi_event; 3682 int match; 3683 int ret = SUCCESS, status, i; 3684 3685 scsi_event.event_type = FC_REG_SCSI_EVENT; 3686 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3687 scsi_event.lun = 0; 3688 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3689 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3690 3691 fc_host_post_vendor_event(shost, fc_get_event_number(), 3692 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3693 3694 ret = fc_block_scsi_eh(cmnd); 3695 if (ret) 3696 return ret; 3697 3698 /* 3699 * Since the driver manages a single bus device, reset all 3700 * targets known to the driver. Should any target reset 3701 * fail, this routine returns failure to the midlayer. 3702 */ 3703 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3704 /* Search for mapped node by target ID */ 3705 match = 0; 3706 spin_lock_irq(shost->host_lock); 3707 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3708 if (!NLP_CHK_NODE_ACT(ndlp)) 3709 continue; 3710 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3711 ndlp->nlp_sid == i && 3712 ndlp->rport) { 3713 match = 1; 3714 break; 3715 } 3716 } 3717 spin_unlock_irq(shost->host_lock); 3718 if (!match) 3719 continue; 3720 3721 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3722 i, 0, FCP_TARGET_RESET); 3723 3724 if (status != SUCCESS) { 3725 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3726 "0700 Bus Reset on target %d failed\n", 3727 i); 3728 ret = FAILED; 3729 } 3730 } 3731 /* 3732 * We have to clean up i/o as : they may be orphaned by the TMFs 3733 * above; or if any of the TMFs failed, they may be in an 3734 * indeterminate state. 3735 * We will report success if all the i/o aborts successfully. 3736 */ 3737 3738 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3739 if (status != SUCCESS) 3740 ret = FAILED; 3741 3742 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3743 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3744 return ret; 3745 } 3746 3747 /** 3748 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3749 * @sdev: Pointer to scsi_device. 3750 * 3751 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3752 * globally available list of scsi buffers. This routine also makes sure scsi 3753 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3754 * of scsi buffer exists for the lifetime of the driver. 3755 * 3756 * Return codes: 3757 * non-0 - Error 3758 * 0 - Success 3759 **/ 3760 static int 3761 lpfc_slave_alloc(struct scsi_device *sdev) 3762 { 3763 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3764 struct lpfc_hba *phba = vport->phba; 3765 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3766 uint32_t total = 0; 3767 uint32_t num_to_alloc = 0; 3768 int num_allocated = 0; 3769 uint32_t sdev_cnt; 3770 3771 if (!rport || fc_remote_port_chkready(rport)) 3772 return -ENXIO; 3773 3774 sdev->hostdata = rport->dd_data; 3775 sdev_cnt = atomic_inc_return(&phba->sdev_cnt); 3776 3777 /* 3778 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3779 * available list of scsi buffers. Don't allocate more than the 3780 * HBA limit conveyed to the midlayer via the host structure. The 3781 * formula accounts for the lun_queue_depth + error handlers + 1 3782 * extra. This list of scsi bufs exists for the lifetime of the driver. 3783 */ 3784 total = phba->total_scsi_bufs; 3785 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3786 3787 /* If allocated buffers are enough do nothing */ 3788 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) 3789 return 0; 3790 3791 /* Allow some exchanges to be available always to complete discovery */ 3792 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3793 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3794 "0704 At limitation of %d preallocated " 3795 "command buffers\n", total); 3796 return 0; 3797 /* Allow some exchanges to be available always to complete discovery */ 3798 } else if (total + num_to_alloc > 3799 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3800 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3801 "0705 Allocation request of %d " 3802 "command buffers will exceed max of %d. " 3803 "Reducing allocation request to %d.\n", 3804 num_to_alloc, phba->cfg_hba_queue_depth, 3805 (phba->cfg_hba_queue_depth - total)); 3806 num_to_alloc = phba->cfg_hba_queue_depth - total; 3807 } 3808 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 3809 if (num_to_alloc != num_allocated) { 3810 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3811 "0708 Allocation request of %d " 3812 "command buffers did not succeed. " 3813 "Allocated %d buffers.\n", 3814 num_to_alloc, num_allocated); 3815 } 3816 if (num_allocated > 0) 3817 phba->total_scsi_bufs += num_allocated; 3818 return 0; 3819 } 3820 3821 /** 3822 * lpfc_slave_configure - scsi_host_template slave_configure entry point 3823 * @sdev: Pointer to scsi_device. 3824 * 3825 * This routine configures following items 3826 * - Tag command queuing support for @sdev if supported. 3827 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 3828 * 3829 * Return codes: 3830 * 0 - Success 3831 **/ 3832 static int 3833 lpfc_slave_configure(struct scsi_device *sdev) 3834 { 3835 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3836 struct lpfc_hba *phba = vport->phba; 3837 3838 if (sdev->tagged_supported) 3839 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 3840 else 3841 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 3842 3843 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3844 lpfc_sli_handle_fast_ring_event(phba, 3845 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3846 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3847 lpfc_poll_rearm_timer(phba); 3848 } 3849 3850 return 0; 3851 } 3852 3853 /** 3854 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 3855 * @sdev: Pointer to scsi_device. 3856 * 3857 * This routine sets @sdev hostatdata filed to null. 3858 **/ 3859 static void 3860 lpfc_slave_destroy(struct scsi_device *sdev) 3861 { 3862 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3863 struct lpfc_hba *phba = vport->phba; 3864 atomic_dec(&phba->sdev_cnt); 3865 sdev->hostdata = NULL; 3866 return; 3867 } 3868 3869 3870 struct scsi_host_template lpfc_template = { 3871 .module = THIS_MODULE, 3872 .name = LPFC_DRIVER_NAME, 3873 .info = lpfc_info, 3874 .queuecommand = lpfc_queuecommand, 3875 .eh_abort_handler = lpfc_abort_handler, 3876 .eh_device_reset_handler = lpfc_device_reset_handler, 3877 .eh_target_reset_handler = lpfc_target_reset_handler, 3878 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3879 .slave_alloc = lpfc_slave_alloc, 3880 .slave_configure = lpfc_slave_configure, 3881 .slave_destroy = lpfc_slave_destroy, 3882 .scan_finished = lpfc_scan_finished, 3883 .this_id = -1, 3884 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3885 .cmd_per_lun = LPFC_CMD_PER_LUN, 3886 .use_clustering = ENABLE_CLUSTERING, 3887 .shost_attrs = lpfc_hba_attrs, 3888 .max_sectors = 0xFFFF, 3889 .vendor_id = LPFC_NL_VENDOR_ID, 3890 .change_queue_depth = lpfc_change_queue_depth, 3891 }; 3892 3893 struct scsi_host_template lpfc_vport_template = { 3894 .module = THIS_MODULE, 3895 .name = LPFC_DRIVER_NAME, 3896 .info = lpfc_info, 3897 .queuecommand = lpfc_queuecommand, 3898 .eh_abort_handler = lpfc_abort_handler, 3899 .eh_device_reset_handler = lpfc_device_reset_handler, 3900 .eh_target_reset_handler = lpfc_target_reset_handler, 3901 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3902 .slave_alloc = lpfc_slave_alloc, 3903 .slave_configure = lpfc_slave_configure, 3904 .slave_destroy = lpfc_slave_destroy, 3905 .scan_finished = lpfc_scan_finished, 3906 .this_id = -1, 3907 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3908 .cmd_per_lun = LPFC_CMD_PER_LUN, 3909 .use_clustering = ENABLE_CLUSTERING, 3910 .shost_attrs = lpfc_vport_attrs, 3911 .max_sectors = 0xFFFF, 3912 .change_queue_depth = lpfc_change_queue_depth, 3913 }; 3914