1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2009 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_device.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 #include <scsi/scsi_tcq.h> 32 #include <scsi/scsi_transport_fc.h> 33 34 #include "lpfc_version.h" 35 #include "lpfc_hw4.h" 36 #include "lpfc_hw.h" 37 #include "lpfc_sli.h" 38 #include "lpfc_sli4.h" 39 #include "lpfc_nl.h" 40 #include "lpfc_disc.h" 41 #include "lpfc_scsi.h" 42 #include "lpfc.h" 43 #include "lpfc_logmsg.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_vport.h" 46 47 #define LPFC_RESET_WAIT 2 48 #define LPFC_ABORT_WAIT 2 49 50 int _dump_buf_done; 51 52 static char *dif_op_str[] = { 53 "SCSI_PROT_NORMAL", 54 "SCSI_PROT_READ_INSERT", 55 "SCSI_PROT_WRITE_STRIP", 56 "SCSI_PROT_READ_STRIP", 57 "SCSI_PROT_WRITE_INSERT", 58 "SCSI_PROT_READ_PASS", 59 "SCSI_PROT_WRITE_PASS", 60 }; 61 static void 62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 63 static void 64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 65 66 static void 67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 68 { 69 void *src, *dst; 70 struct scatterlist *sgde = scsi_sglist(cmnd); 71 72 if (!_dump_buf_data) { 73 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 75 __func__); 76 return; 77 } 78 79 80 if (!sgde) { 81 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 82 "9051 BLKGRD: ERROR: data scatterlist is null\n"); 83 return; 84 } 85 86 dst = (void *) _dump_buf_data; 87 while (sgde) { 88 src = sg_virt(sgde); 89 memcpy(dst, src, sgde->length); 90 dst += sgde->length; 91 sgde = sg_next(sgde); 92 } 93 } 94 95 static void 96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 97 { 98 void *src, *dst; 99 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 100 101 if (!_dump_buf_dif) { 102 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 104 __func__); 105 return; 106 } 107 108 if (!sgde) { 109 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 110 "9053 BLKGRD: ERROR: prot scatterlist is null\n"); 111 return; 112 } 113 114 dst = _dump_buf_dif; 115 while (sgde) { 116 src = sg_virt(sgde); 117 memcpy(dst, src, sgde->length); 118 dst += sgde->length; 119 sgde = sg_next(sgde); 120 } 121 } 122 123 /** 124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 125 * @phba: Pointer to HBA object. 126 * @lpfc_cmd: lpfc scsi command object pointer. 127 * 128 * This function is called from the lpfc_prep_task_mgmt_cmd function to 129 * set the last bit in the response sge entry. 130 **/ 131 static void 132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 133 struct lpfc_scsi_buf *lpfc_cmd) 134 { 135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 136 if (sgl) { 137 sgl += 1; 138 sgl->word2 = le32_to_cpu(sgl->word2); 139 bf_set(lpfc_sli4_sge_last, sgl, 1); 140 sgl->word2 = cpu_to_le32(sgl->word2); 141 } 142 } 143 144 /** 145 * lpfc_update_stats - Update statistical data for the command completion 146 * @phba: Pointer to HBA object. 147 * @lpfc_cmd: lpfc scsi command object pointer. 148 * 149 * This function is called when there is a command completion and this 150 * function updates the statistical data for the command completion. 151 **/ 152 static void 153 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 154 { 155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 156 struct lpfc_nodelist *pnode = rdata->pnode; 157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 158 unsigned long flags; 159 struct Scsi_Host *shost = cmd->device->host; 160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 161 unsigned long latency; 162 int i; 163 164 if (cmd->result) 165 return; 166 167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 168 169 spin_lock_irqsave(shost->host_lock, flags); 170 if (!vport->stat_data_enabled || 171 vport->stat_data_blocked || 172 !pnode || 173 !pnode->lat_data || 174 (phba->bucket_type == LPFC_NO_BUCKET)) { 175 spin_unlock_irqrestore(shost->host_lock, flags); 176 return; 177 } 178 179 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 180 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 181 phba->bucket_step; 182 /* check array subscript bounds */ 183 if (i < 0) 184 i = 0; 185 else if (i >= LPFC_MAX_BUCKET_COUNT) 186 i = LPFC_MAX_BUCKET_COUNT - 1; 187 } else { 188 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 189 if (latency <= (phba->bucket_base + 190 ((1<<i)*phba->bucket_step))) 191 break; 192 } 193 194 pnode->lat_data[i].cmd_count++; 195 spin_unlock_irqrestore(shost->host_lock, flags); 196 } 197 198 /** 199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 200 * @phba: Pointer to HBA context object. 201 * @vport: Pointer to vport object. 202 * @ndlp: Pointer to FC node associated with the target. 203 * @lun: Lun number of the scsi device. 204 * @old_val: Old value of the queue depth. 205 * @new_val: New value of the queue depth. 206 * 207 * This function sends an event to the mgmt application indicating 208 * there is a change in the scsi device queue depth. 209 **/ 210 static void 211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 212 struct lpfc_vport *vport, 213 struct lpfc_nodelist *ndlp, 214 uint32_t lun, 215 uint32_t old_val, 216 uint32_t new_val) 217 { 218 struct lpfc_fast_path_event *fast_path_evt; 219 unsigned long flags; 220 221 fast_path_evt = lpfc_alloc_fast_evt(phba); 222 if (!fast_path_evt) 223 return; 224 225 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 226 FC_REG_SCSI_EVENT; 227 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 228 LPFC_EVENT_VARQUEDEPTH; 229 230 /* Report all luns with change in queue depth */ 231 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 232 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 234 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 235 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 236 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 237 } 238 239 fast_path_evt->un.queue_depth_evt.oldval = old_val; 240 fast_path_evt->un.queue_depth_evt.newval = new_val; 241 fast_path_evt->vport = vport; 242 243 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 244 spin_lock_irqsave(&phba->hbalock, flags); 245 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 246 spin_unlock_irqrestore(&phba->hbalock, flags); 247 lpfc_worker_wake_up(phba); 248 249 return; 250 } 251 252 /** 253 * lpfc_change_queue_depth - Alter scsi device queue depth 254 * @sdev: Pointer the scsi device on which to change the queue depth. 255 * @qdepth: New queue depth to set the sdev to. 256 * @reason: The reason for the queue depth change. 257 * 258 * This function is called by the midlayer and the LLD to alter the queue 259 * depth for a scsi device. This function sets the queue depth to the new 260 * value and sends an event out to log the queue depth change. 261 **/ 262 int 263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 264 { 265 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 266 struct lpfc_hba *phba = vport->phba; 267 struct lpfc_rport_data *rdata; 268 unsigned long new_queue_depth, old_queue_depth; 269 270 old_queue_depth = sdev->queue_depth; 271 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 272 new_queue_depth = sdev->queue_depth; 273 rdata = sdev->hostdata; 274 if (rdata) 275 lpfc_send_sdev_queuedepth_change_event(phba, vport, 276 rdata->pnode, sdev->lun, 277 old_queue_depth, 278 new_queue_depth); 279 return sdev->queue_depth; 280 } 281 282 /** 283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 284 * @phba: The Hba for which this call is being executed. 285 * 286 * This routine is called when there is resource error in driver or firmware. 287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 288 * posts at most 1 event each second. This routine wakes up worker thread of 289 * @phba to process WORKER_RAM_DOWN_EVENT event. 290 * 291 * This routine should be called with no lock held. 292 **/ 293 void 294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 295 { 296 unsigned long flags; 297 uint32_t evt_posted; 298 299 spin_lock_irqsave(&phba->hbalock, flags); 300 atomic_inc(&phba->num_rsrc_err); 301 phba->last_rsrc_error_time = jiffies; 302 303 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 304 spin_unlock_irqrestore(&phba->hbalock, flags); 305 return; 306 } 307 308 phba->last_ramp_down_time = jiffies; 309 310 spin_unlock_irqrestore(&phba->hbalock, flags); 311 312 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 313 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 314 if (!evt_posted) 315 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 316 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 317 318 if (!evt_posted) 319 lpfc_worker_wake_up(phba); 320 return; 321 } 322 323 /** 324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 325 * @phba: The Hba for which this call is being executed. 326 * 327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 328 * post at most 1 event every 5 minute after last_ramp_up_time or 329 * last_rsrc_error_time. This routine wakes up worker thread of @phba 330 * to process WORKER_RAM_DOWN_EVENT event. 331 * 332 * This routine should be called with no lock held. 333 **/ 334 static inline void 335 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 336 uint32_t queue_depth) 337 { 338 unsigned long flags; 339 struct lpfc_hba *phba = vport->phba; 340 uint32_t evt_posted; 341 atomic_inc(&phba->num_cmd_success); 342 343 if (vport->cfg_lun_queue_depth <= queue_depth) 344 return; 345 spin_lock_irqsave(&phba->hbalock, flags); 346 if (time_before(jiffies, 347 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || 348 time_before(jiffies, 349 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { 350 spin_unlock_irqrestore(&phba->hbalock, flags); 351 return; 352 } 353 phba->last_ramp_up_time = jiffies; 354 spin_unlock_irqrestore(&phba->hbalock, flags); 355 356 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 357 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 358 if (!evt_posted) 359 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 360 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 361 362 if (!evt_posted) 363 lpfc_worker_wake_up(phba); 364 return; 365 } 366 367 /** 368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 369 * @phba: The Hba for which this call is being executed. 370 * 371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 372 * thread.This routine reduces queue depth for all scsi device on each vport 373 * associated with @phba. 374 **/ 375 void 376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 377 { 378 struct lpfc_vport **vports; 379 struct Scsi_Host *shost; 380 struct scsi_device *sdev; 381 unsigned long new_queue_depth; 382 unsigned long num_rsrc_err, num_cmd_success; 383 int i; 384 385 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 386 num_cmd_success = atomic_read(&phba->num_cmd_success); 387 388 vports = lpfc_create_vport_work_array(phba); 389 if (vports != NULL) 390 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 391 shost = lpfc_shost_from_vport(vports[i]); 392 shost_for_each_device(sdev, shost) { 393 new_queue_depth = 394 sdev->queue_depth * num_rsrc_err / 395 (num_rsrc_err + num_cmd_success); 396 if (!new_queue_depth) 397 new_queue_depth = sdev->queue_depth - 1; 398 else 399 new_queue_depth = sdev->queue_depth - 400 new_queue_depth; 401 lpfc_change_queue_depth(sdev, new_queue_depth, 402 SCSI_QDEPTH_DEFAULT); 403 } 404 } 405 lpfc_destroy_vport_work_array(phba, vports); 406 atomic_set(&phba->num_rsrc_err, 0); 407 atomic_set(&phba->num_cmd_success, 0); 408 } 409 410 /** 411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 412 * @phba: The Hba for which this call is being executed. 413 * 414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 415 * thread.This routine increases queue depth for all scsi device on each vport 416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 417 * num_cmd_success to zero. 418 **/ 419 void 420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 421 { 422 struct lpfc_vport **vports; 423 struct Scsi_Host *shost; 424 struct scsi_device *sdev; 425 int i; 426 427 vports = lpfc_create_vport_work_array(phba); 428 if (vports != NULL) 429 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 430 shost = lpfc_shost_from_vport(vports[i]); 431 shost_for_each_device(sdev, shost) { 432 if (vports[i]->cfg_lun_queue_depth <= 433 sdev->queue_depth) 434 continue; 435 lpfc_change_queue_depth(sdev, 436 sdev->queue_depth+1, 437 SCSI_QDEPTH_RAMP_UP); 438 } 439 } 440 lpfc_destroy_vport_work_array(phba, vports); 441 atomic_set(&phba->num_rsrc_err, 0); 442 atomic_set(&phba->num_cmd_success, 0); 443 } 444 445 /** 446 * lpfc_scsi_dev_block - set all scsi hosts to block state 447 * @phba: Pointer to HBA context object. 448 * 449 * This function walks vport list and set each SCSI host to block state 450 * by invoking fc_remote_port_delete() routine. This function is invoked 451 * with EEH when device's PCI slot has been permanently disabled. 452 **/ 453 void 454 lpfc_scsi_dev_block(struct lpfc_hba *phba) 455 { 456 struct lpfc_vport **vports; 457 struct Scsi_Host *shost; 458 struct scsi_device *sdev; 459 struct fc_rport *rport; 460 int i; 461 462 vports = lpfc_create_vport_work_array(phba); 463 if (vports != NULL) 464 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 465 shost = lpfc_shost_from_vport(vports[i]); 466 shost_for_each_device(sdev, shost) { 467 rport = starget_to_rport(scsi_target(sdev)); 468 fc_remote_port_delete(rport); 469 } 470 } 471 lpfc_destroy_vport_work_array(phba, vports); 472 } 473 474 /** 475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 476 * @vport: The virtual port for which this call being executed. 477 * @num_to_allocate: The requested number of buffers to allocate. 478 * 479 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 480 * the scsi buffer contains all the necessary information needed to initiate 481 * a SCSI I/O. The non-DMAable buffer region contains information to build 482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 483 * and the initial BPL. In addition to allocating memory, the FCP CMND and 484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 485 * 486 * Return codes: 487 * int - number of scsi buffers that were allocated. 488 * 0 = failure, less than num_to_alloc is a partial failure. 489 **/ 490 static int 491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 492 { 493 struct lpfc_hba *phba = vport->phba; 494 struct lpfc_scsi_buf *psb; 495 struct ulp_bde64 *bpl; 496 IOCB_t *iocb; 497 dma_addr_t pdma_phys_fcp_cmd; 498 dma_addr_t pdma_phys_fcp_rsp; 499 dma_addr_t pdma_phys_bpl; 500 uint16_t iotag; 501 int bcnt; 502 503 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 504 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 505 if (!psb) 506 break; 507 508 /* 509 * Get memory from the pci pool to map the virt space to pci 510 * bus space for an I/O. The DMA buffer includes space for the 511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 512 * necessary to support the sg_tablesize. 513 */ 514 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 515 GFP_KERNEL, &psb->dma_handle); 516 if (!psb->data) { 517 kfree(psb); 518 break; 519 } 520 521 /* Initialize virtual ptrs to dma_buf region. */ 522 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 523 524 /* Allocate iotag for psb->cur_iocbq. */ 525 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 526 if (iotag == 0) { 527 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 528 psb->data, psb->dma_handle); 529 kfree(psb); 530 break; 531 } 532 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 533 534 psb->fcp_cmnd = psb->data; 535 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 536 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 537 sizeof(struct fcp_rsp); 538 539 /* Initialize local short-hand pointers. */ 540 bpl = psb->fcp_bpl; 541 pdma_phys_fcp_cmd = psb->dma_handle; 542 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 543 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 544 sizeof(struct fcp_rsp); 545 546 /* 547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 548 * are sg list bdes. Initialize the first two and leave the 549 * rest for queuecommand. 550 */ 551 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 552 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 553 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 554 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 555 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 556 557 /* Setup the physical region for the FCP RSP */ 558 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 559 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 560 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 561 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 562 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 563 564 /* 565 * Since the IOCB for the FCP I/O is built into this 566 * lpfc_scsi_buf, initialize it with all known data now. 567 */ 568 iocb = &psb->cur_iocbq.iocb; 569 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 570 if ((phba->sli_rev == 3) && 571 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 572 /* fill in immediate fcp command BDE */ 573 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 574 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 575 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 576 unsli3.fcp_ext.icd); 577 iocb->un.fcpi64.bdl.addrHigh = 0; 578 iocb->ulpBdeCount = 0; 579 iocb->ulpLe = 0; 580 /* fill in responce BDE */ 581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 582 BUFF_TYPE_BDE_64; 583 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 584 sizeof(struct fcp_rsp); 585 iocb->unsli3.fcp_ext.rbde.addrLow = 586 putPaddrLow(pdma_phys_fcp_rsp); 587 iocb->unsli3.fcp_ext.rbde.addrHigh = 588 putPaddrHigh(pdma_phys_fcp_rsp); 589 } else { 590 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 591 iocb->un.fcpi64.bdl.bdeSize = 592 (2 * sizeof(struct ulp_bde64)); 593 iocb->un.fcpi64.bdl.addrLow = 594 putPaddrLow(pdma_phys_bpl); 595 iocb->un.fcpi64.bdl.addrHigh = 596 putPaddrHigh(pdma_phys_bpl); 597 iocb->ulpBdeCount = 1; 598 iocb->ulpLe = 1; 599 } 600 iocb->ulpClass = CLASS3; 601 psb->status = IOSTAT_SUCCESS; 602 /* Put it back into the SCSI buffer list */ 603 psb->cur_iocbq.context1 = psb; 604 lpfc_release_scsi_buf_s3(phba, psb); 605 606 } 607 608 return bcnt; 609 } 610 611 /** 612 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport 613 * @vport: pointer to lpfc vport data structure. 614 * 615 * This routine is invoked by the vport cleanup for deletions and the cleanup 616 * for an ndlp on removal. 617 **/ 618 void 619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport) 620 { 621 struct lpfc_hba *phba = vport->phba; 622 struct lpfc_scsi_buf *psb, *next_psb; 623 unsigned long iflag = 0; 624 625 spin_lock_irqsave(&phba->hbalock, iflag); 626 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 627 list_for_each_entry_safe(psb, next_psb, 628 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 629 if (psb->rdata && psb->rdata->pnode 630 && psb->rdata->pnode->vport == vport) 631 psb->rdata = NULL; 632 } 633 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 634 spin_unlock_irqrestore(&phba->hbalock, iflag); 635 } 636 637 /** 638 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 639 * @phba: pointer to lpfc hba data structure. 640 * @axri: pointer to the fcp xri abort wcqe structure. 641 * 642 * This routine is invoked by the worker thread to process a SLI4 fast-path 643 * FCP aborted xri. 644 **/ 645 void 646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 647 struct sli4_wcqe_xri_aborted *axri) 648 { 649 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 650 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 651 struct lpfc_scsi_buf *psb, *next_psb; 652 unsigned long iflag = 0; 653 struct lpfc_iocbq *iocbq; 654 int i; 655 struct lpfc_nodelist *ndlp; 656 int rrq_empty = 0; 657 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 658 659 spin_lock_irqsave(&phba->hbalock, iflag); 660 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 661 list_for_each_entry_safe(psb, next_psb, 662 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 663 if (psb->cur_iocbq.sli4_xritag == xri) { 664 list_del(&psb->list); 665 psb->exch_busy = 0; 666 psb->status = IOSTAT_SUCCESS; 667 spin_unlock( 668 &phba->sli4_hba.abts_scsi_buf_list_lock); 669 if (psb->rdata && psb->rdata->pnode) 670 ndlp = psb->rdata->pnode; 671 else 672 ndlp = NULL; 673 674 rrq_empty = list_empty(&phba->active_rrq_list); 675 spin_unlock_irqrestore(&phba->hbalock, iflag); 676 if (ndlp) 677 lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1); 678 lpfc_release_scsi_buf_s4(phba, psb); 679 if (rrq_empty) 680 lpfc_worker_wake_up(phba); 681 return; 682 } 683 } 684 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 685 for (i = 1; i <= phba->sli.last_iotag; i++) { 686 iocbq = phba->sli.iocbq_lookup[i]; 687 688 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 689 (iocbq->iocb_flag & LPFC_IO_LIBDFC)) 690 continue; 691 if (iocbq->sli4_xritag != xri) 692 continue; 693 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 694 psb->exch_busy = 0; 695 spin_unlock_irqrestore(&phba->hbalock, iflag); 696 if (pring->txq_cnt) 697 lpfc_worker_wake_up(phba); 698 return; 699 700 } 701 spin_unlock_irqrestore(&phba->hbalock, iflag); 702 } 703 704 /** 705 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 706 * @phba: pointer to lpfc hba data structure. 707 * 708 * This routine walks the list of scsi buffers that have been allocated and 709 * repost them to the HBA by using SGL block post. This is needed after a 710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 711 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 712 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 713 * 714 * Returns: 0 = success, non-zero failure. 715 **/ 716 int 717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 718 { 719 struct lpfc_scsi_buf *psb; 720 int index, status, bcnt = 0, rcnt = 0, rc = 0; 721 LIST_HEAD(sblist); 722 723 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 724 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 725 if (psb) { 726 /* Remove from SCSI buffer list */ 727 list_del(&psb->list); 728 /* Add it to a local SCSI buffer list */ 729 list_add_tail(&psb->list, &sblist); 730 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 731 bcnt = rcnt; 732 rcnt = 0; 733 } 734 } else 735 /* A hole present in the XRI array, need to skip */ 736 bcnt = rcnt; 737 738 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 739 /* End of XRI array for SCSI buffer, complete */ 740 bcnt = rcnt; 741 742 /* Continue until collect up to a nembed page worth of sgls */ 743 if (bcnt == 0) 744 continue; 745 /* Now, post the SCSI buffer list sgls as a block */ 746 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 747 /* Reset SCSI buffer count for next round of posting */ 748 bcnt = 0; 749 while (!list_empty(&sblist)) { 750 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 751 list); 752 if (status) { 753 /* Put this back on the abort scsi list */ 754 psb->exch_busy = 1; 755 rc++; 756 } else { 757 psb->exch_busy = 0; 758 psb->status = IOSTAT_SUCCESS; 759 } 760 /* Put it back into the SCSI buffer list */ 761 lpfc_release_scsi_buf_s4(phba, psb); 762 } 763 } 764 return rc; 765 } 766 767 /** 768 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 769 * @vport: The virtual port for which this call being executed. 770 * @num_to_allocate: The requested number of buffers to allocate. 771 * 772 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 773 * the scsi buffer contains all the necessary information needed to initiate 774 * a SCSI I/O. 775 * 776 * Return codes: 777 * int - number of scsi buffers that were allocated. 778 * 0 = failure, less than num_to_alloc is a partial failure. 779 **/ 780 static int 781 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 782 { 783 struct lpfc_hba *phba = vport->phba; 784 struct lpfc_scsi_buf *psb; 785 struct sli4_sge *sgl; 786 IOCB_t *iocb; 787 dma_addr_t pdma_phys_fcp_cmd; 788 dma_addr_t pdma_phys_fcp_rsp; 789 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 790 uint16_t iotag, last_xritag = NO_XRI; 791 int status = 0, index; 792 int bcnt; 793 int non_sequential_xri = 0; 794 LIST_HEAD(sblist); 795 796 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 797 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 798 if (!psb) 799 break; 800 801 /* 802 * Get memory from the pci pool to map the virt space to pci bus 803 * space for an I/O. The DMA buffer includes space for the 804 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 805 * necessary to support the sg_tablesize. 806 */ 807 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 808 GFP_KERNEL, &psb->dma_handle); 809 if (!psb->data) { 810 kfree(psb); 811 break; 812 } 813 814 /* Initialize virtual ptrs to dma_buf region. */ 815 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 816 817 /* Allocate iotag for psb->cur_iocbq. */ 818 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 819 if (iotag == 0) { 820 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 821 psb->data, psb->dma_handle); 822 kfree(psb); 823 break; 824 } 825 826 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba); 827 if (psb->cur_iocbq.sli4_xritag == NO_XRI) { 828 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 829 psb->data, psb->dma_handle); 830 kfree(psb); 831 break; 832 } 833 if (last_xritag != NO_XRI 834 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 835 non_sequential_xri = 1; 836 } else 837 list_add_tail(&psb->list, &sblist); 838 last_xritag = psb->cur_iocbq.sli4_xritag; 839 840 index = phba->sli4_hba.scsi_xri_cnt++; 841 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 842 843 psb->fcp_bpl = psb->data; 844 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 845 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 846 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 847 sizeof(struct fcp_cmnd)); 848 849 /* Initialize local short-hand pointers. */ 850 sgl = (struct sli4_sge *)psb->fcp_bpl; 851 pdma_phys_bpl = psb->dma_handle; 852 pdma_phys_fcp_cmd = 853 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 854 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 855 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 856 857 /* 858 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 859 * are sg list bdes. Initialize the first two and leave the 860 * rest for queuecommand. 861 */ 862 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 863 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 864 bf_set(lpfc_sli4_sge_last, sgl, 0); 865 sgl->word2 = cpu_to_le32(sgl->word2); 866 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); 867 sgl++; 868 869 /* Setup the physical region for the FCP RSP */ 870 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 871 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 872 bf_set(lpfc_sli4_sge_last, sgl, 1); 873 sgl->word2 = cpu_to_le32(sgl->word2); 874 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); 875 876 /* 877 * Since the IOCB for the FCP I/O is built into this 878 * lpfc_scsi_buf, initialize it with all known data now. 879 */ 880 iocb = &psb->cur_iocbq.iocb; 881 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 882 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 883 /* setting the BLP size to 2 * sizeof BDE may not be correct. 884 * We are setting the bpl to point to out sgl. An sgl's 885 * entries are 16 bytes, a bpl entries are 12 bytes. 886 */ 887 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 888 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 889 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 890 iocb->ulpBdeCount = 1; 891 iocb->ulpLe = 1; 892 iocb->ulpClass = CLASS3; 893 psb->cur_iocbq.context1 = psb; 894 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 895 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 896 else 897 pdma_phys_bpl1 = 0; 898 psb->dma_phys_bpl = pdma_phys_bpl; 899 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 900 if (non_sequential_xri) { 901 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 902 pdma_phys_bpl1, 903 psb->cur_iocbq.sli4_xritag); 904 if (status) { 905 /* Put this back on the abort scsi list */ 906 psb->exch_busy = 1; 907 } else { 908 psb->exch_busy = 0; 909 psb->status = IOSTAT_SUCCESS; 910 } 911 /* Put it back into the SCSI buffer list */ 912 lpfc_release_scsi_buf_s4(phba, psb); 913 break; 914 } 915 } 916 if (bcnt) { 917 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 918 /* Reset SCSI buffer count for next round of posting */ 919 while (!list_empty(&sblist)) { 920 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 921 list); 922 if (status) { 923 /* Put this back on the abort scsi list */ 924 psb->exch_busy = 1; 925 } else { 926 psb->exch_busy = 0; 927 psb->status = IOSTAT_SUCCESS; 928 } 929 /* Put it back into the SCSI buffer list */ 930 lpfc_release_scsi_buf_s4(phba, psb); 931 } 932 } 933 934 return bcnt + non_sequential_xri; 935 } 936 937 /** 938 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 939 * @vport: The virtual port for which this call being executed. 940 * @num_to_allocate: The requested number of buffers to allocate. 941 * 942 * This routine wraps the actual SCSI buffer allocator function pointer from 943 * the lpfc_hba struct. 944 * 945 * Return codes: 946 * int - number of scsi buffers that were allocated. 947 * 0 = failure, less than num_to_alloc is a partial failure. 948 **/ 949 static inline int 950 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 951 { 952 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 953 } 954 955 /** 956 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 957 * @phba: The HBA for which this call is being executed. 958 * 959 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 960 * and returns to caller. 961 * 962 * Return codes: 963 * NULL - Error 964 * Pointer to lpfc_scsi_buf - Success 965 **/ 966 static struct lpfc_scsi_buf* 967 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 968 { 969 struct lpfc_scsi_buf * lpfc_cmd = NULL; 970 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 971 unsigned long iflag = 0; 972 973 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 974 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 975 if (lpfc_cmd) { 976 lpfc_cmd->seg_cnt = 0; 977 lpfc_cmd->nonsg_phys = 0; 978 lpfc_cmd->prot_seg_cnt = 0; 979 } 980 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 981 return lpfc_cmd; 982 } 983 /** 984 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 985 * @phba: The HBA for which this call is being executed. 986 * 987 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 988 * and returns to caller. 989 * 990 * Return codes: 991 * NULL - Error 992 * Pointer to lpfc_scsi_buf - Success 993 **/ 994 static struct lpfc_scsi_buf* 995 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 996 { 997 struct lpfc_scsi_buf *lpfc_cmd ; 998 unsigned long iflag = 0; 999 int found = 0; 1000 1001 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1002 list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list, 1003 list) { 1004 if (lpfc_test_rrq_active(phba, ndlp, 1005 lpfc_cmd->cur_iocbq.sli4_xritag)) 1006 continue; 1007 list_del(&lpfc_cmd->list); 1008 found = 1; 1009 lpfc_cmd->seg_cnt = 0; 1010 lpfc_cmd->nonsg_phys = 0; 1011 lpfc_cmd->prot_seg_cnt = 0; 1012 break; 1013 } 1014 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, 1015 iflag); 1016 if (!found) 1017 return NULL; 1018 else 1019 return lpfc_cmd; 1020 } 1021 /** 1022 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 1023 * @phba: The HBA for which this call is being executed. 1024 * 1025 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 1026 * and returns to caller. 1027 * 1028 * Return codes: 1029 * NULL - Error 1030 * Pointer to lpfc_scsi_buf - Success 1031 **/ 1032 static struct lpfc_scsi_buf* 1033 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 1034 { 1035 return phba->lpfc_get_scsi_buf(phba, ndlp); 1036 } 1037 1038 /** 1039 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 1040 * @phba: The Hba for which this call is being executed. 1041 * @psb: The scsi buffer which is being released. 1042 * 1043 * This routine releases @psb scsi buffer by adding it to tail of @phba 1044 * lpfc_scsi_buf_list list. 1045 **/ 1046 static void 1047 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1048 { 1049 unsigned long iflag = 0; 1050 1051 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1052 psb->pCmd = NULL; 1053 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1054 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1055 } 1056 1057 /** 1058 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 1059 * @phba: The Hba for which this call is being executed. 1060 * @psb: The scsi buffer which is being released. 1061 * 1062 * This routine releases @psb scsi buffer by adding it to tail of @phba 1063 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 1064 * and cannot be reused for at least RA_TOV amount of time if it was 1065 * aborted. 1066 **/ 1067 static void 1068 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1069 { 1070 unsigned long iflag = 0; 1071 1072 if (psb->exch_busy) { 1073 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 1074 iflag); 1075 psb->pCmd = NULL; 1076 list_add_tail(&psb->list, 1077 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 1078 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 1079 iflag); 1080 } else { 1081 1082 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 1083 psb->pCmd = NULL; 1084 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 1085 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 1086 } 1087 } 1088 1089 /** 1090 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 1091 * @phba: The Hba for which this call is being executed. 1092 * @psb: The scsi buffer which is being released. 1093 * 1094 * This routine releases @psb scsi buffer by adding it to tail of @phba 1095 * lpfc_scsi_buf_list list. 1096 **/ 1097 static void 1098 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1099 { 1100 1101 phba->lpfc_release_scsi_buf(phba, psb); 1102 } 1103 1104 /** 1105 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 1106 * @phba: The Hba for which this call is being executed. 1107 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1108 * 1109 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1110 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 1111 * through sg elements and format the bdea. This routine also initializes all 1112 * IOCB fields which are dependent on scsi command request buffer. 1113 * 1114 * Return codes: 1115 * 1 - Error 1116 * 0 - Success 1117 **/ 1118 static int 1119 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1120 { 1121 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1122 struct scatterlist *sgel = NULL; 1123 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1124 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1125 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; 1126 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1127 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1128 dma_addr_t physaddr; 1129 uint32_t num_bde = 0; 1130 int nseg, datadir = scsi_cmnd->sc_data_direction; 1131 1132 /* 1133 * There are three possibilities here - use scatter-gather segment, use 1134 * the single mapping, or neither. Start the lpfc command prep by 1135 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1136 * data bde entry. 1137 */ 1138 bpl += 2; 1139 if (scsi_sg_count(scsi_cmnd)) { 1140 /* 1141 * The driver stores the segment count returned from pci_map_sg 1142 * because this a count of dma-mappings used to map the use_sg 1143 * pages. They are not guaranteed to be the same for those 1144 * architectures that implement an IOMMU. 1145 */ 1146 1147 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1148 scsi_sg_count(scsi_cmnd), datadir); 1149 if (unlikely(!nseg)) 1150 return 1; 1151 1152 lpfc_cmd->seg_cnt = nseg; 1153 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1154 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1155 "9064 BLKGRD: %s: Too many sg segments from " 1156 "dma_map_sg. Config %d, seg_cnt %d\n", 1157 __func__, phba->cfg_sg_seg_cnt, 1158 lpfc_cmd->seg_cnt); 1159 scsi_dma_unmap(scsi_cmnd); 1160 return 1; 1161 } 1162 1163 /* 1164 * The driver established a maximum scatter-gather segment count 1165 * during probe that limits the number of sg elements in any 1166 * single scsi command. Just run through the seg_cnt and format 1167 * the bde's. 1168 * When using SLI-3 the driver will try to fit all the BDEs into 1169 * the IOCB. If it can't then the BDEs get added to a BPL as it 1170 * does for SLI-2 mode. 1171 */ 1172 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1173 physaddr = sg_dma_address(sgel); 1174 if (phba->sli_rev == 3 && 1175 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1176 !(iocbq->iocb_flag & DSS_SECURITY_OP) && 1177 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1178 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1179 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1180 data_bde->addrLow = putPaddrLow(physaddr); 1181 data_bde->addrHigh = putPaddrHigh(physaddr); 1182 data_bde++; 1183 } else { 1184 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1185 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1186 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1187 bpl->addrLow = 1188 le32_to_cpu(putPaddrLow(physaddr)); 1189 bpl->addrHigh = 1190 le32_to_cpu(putPaddrHigh(physaddr)); 1191 bpl++; 1192 } 1193 } 1194 } 1195 1196 /* 1197 * Finish initializing those IOCB fields that are dependent on the 1198 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1199 * explicitly reinitialized and for SLI-3 the extended bde count is 1200 * explicitly reinitialized since all iocb memory resources are reused. 1201 */ 1202 if (phba->sli_rev == 3 && 1203 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1204 !(iocbq->iocb_flag & DSS_SECURITY_OP)) { 1205 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1206 /* 1207 * The extended IOCB format can only fit 3 BDE or a BPL. 1208 * This I/O has more than 3 BDE so the 1st data bde will 1209 * be a BPL that is filled in here. 1210 */ 1211 physaddr = lpfc_cmd->dma_handle; 1212 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1213 data_bde->tus.f.bdeSize = (num_bde * 1214 sizeof(struct ulp_bde64)); 1215 physaddr += (sizeof(struct fcp_cmnd) + 1216 sizeof(struct fcp_rsp) + 1217 (2 * sizeof(struct ulp_bde64))); 1218 data_bde->addrHigh = putPaddrHigh(physaddr); 1219 data_bde->addrLow = putPaddrLow(physaddr); 1220 /* ebde count includes the responce bde and data bpl */ 1221 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1222 } else { 1223 /* ebde count includes the responce bde and data bdes */ 1224 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1225 } 1226 } else { 1227 iocb_cmd->un.fcpi64.bdl.bdeSize = 1228 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1229 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1230 } 1231 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1232 1233 /* 1234 * Due to difference in data length between DIF/non-DIF paths, 1235 * we need to set word 4 of IOCB here 1236 */ 1237 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1238 return 0; 1239 } 1240 1241 /* 1242 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it 1243 * @sc: The SCSI command to examine 1244 * @txopt: (out) BlockGuard operation for transmitted data 1245 * @rxopt: (out) BlockGuard operation for received data 1246 * 1247 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined 1248 * 1249 */ 1250 static int 1251 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1252 uint8_t *txop, uint8_t *rxop) 1253 { 1254 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1255 uint8_t ret = 0; 1256 1257 if (guard_type == SHOST_DIX_GUARD_IP) { 1258 switch (scsi_get_prot_op(sc)) { 1259 case SCSI_PROT_READ_INSERT: 1260 case SCSI_PROT_WRITE_STRIP: 1261 *txop = BG_OP_IN_CSUM_OUT_NODIF; 1262 *rxop = BG_OP_IN_NODIF_OUT_CSUM; 1263 break; 1264 1265 case SCSI_PROT_READ_STRIP: 1266 case SCSI_PROT_WRITE_INSERT: 1267 *txop = BG_OP_IN_NODIF_OUT_CRC; 1268 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1269 break; 1270 1271 case SCSI_PROT_READ_PASS: 1272 case SCSI_PROT_WRITE_PASS: 1273 *txop = BG_OP_IN_CSUM_OUT_CRC; 1274 *rxop = BG_OP_IN_CRC_OUT_CSUM; 1275 break; 1276 1277 case SCSI_PROT_NORMAL: 1278 default: 1279 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1280 "9063 BLKGRD: Bad op/guard:%d/%d combination\n", 1281 scsi_get_prot_op(sc), guard_type); 1282 ret = 1; 1283 break; 1284 1285 } 1286 } else if (guard_type == SHOST_DIX_GUARD_CRC) { 1287 switch (scsi_get_prot_op(sc)) { 1288 case SCSI_PROT_READ_STRIP: 1289 case SCSI_PROT_WRITE_INSERT: 1290 *txop = BG_OP_IN_NODIF_OUT_CRC; 1291 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1292 break; 1293 1294 case SCSI_PROT_READ_PASS: 1295 case SCSI_PROT_WRITE_PASS: 1296 *txop = BG_OP_IN_CRC_OUT_CRC; 1297 *rxop = BG_OP_IN_CRC_OUT_CRC; 1298 break; 1299 1300 case SCSI_PROT_READ_INSERT: 1301 case SCSI_PROT_WRITE_STRIP: 1302 case SCSI_PROT_NORMAL: 1303 default: 1304 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1305 "9075 BLKGRD: Bad op/guard:%d/%d combination\n", 1306 scsi_get_prot_op(sc), guard_type); 1307 ret = 1; 1308 break; 1309 } 1310 } else { 1311 /* unsupported format */ 1312 BUG(); 1313 } 1314 1315 return ret; 1316 } 1317 1318 struct scsi_dif_tuple { 1319 __be16 guard_tag; /* Checksum */ 1320 __be16 app_tag; /* Opaque storage */ 1321 __be32 ref_tag; /* Target LBA or indirect LBA */ 1322 }; 1323 1324 static inline unsigned 1325 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1326 { 1327 return sc->device->sector_size; 1328 } 1329 1330 /** 1331 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command 1332 * @sc: in: SCSI command 1333 * @apptagmask: out: app tag mask 1334 * @apptagval: out: app tag value 1335 * @reftag: out: ref tag (reference tag) 1336 * 1337 * Description: 1338 * Extract DIF parameters from the command if possible. Otherwise, 1339 * use default parameters. 1340 * 1341 **/ 1342 static inline void 1343 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask, 1344 uint16_t *apptagval, uint32_t *reftag) 1345 { 1346 struct scsi_dif_tuple *spt; 1347 unsigned char op = scsi_get_prot_op(sc); 1348 unsigned int protcnt = scsi_prot_sg_count(sc); 1349 static int cnt; 1350 1351 if (protcnt && (op == SCSI_PROT_WRITE_STRIP || 1352 op == SCSI_PROT_WRITE_PASS)) { 1353 1354 cnt++; 1355 spt = page_address(sg_page(scsi_prot_sglist(sc))) + 1356 scsi_prot_sglist(sc)[0].offset; 1357 *apptagmask = 0; 1358 *apptagval = 0; 1359 *reftag = cpu_to_be32(spt->ref_tag); 1360 1361 } else { 1362 /* SBC defines ref tag to be lower 32bits of LBA */ 1363 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc)); 1364 *apptagmask = 0; 1365 *apptagval = 0; 1366 } 1367 } 1368 1369 /* 1370 * This function sets up buffer list for protection groups of 1371 * type LPFC_PG_TYPE_NO_DIF 1372 * 1373 * This is usually used when the HBA is instructed to generate 1374 * DIFs and insert them into data stream (or strip DIF from 1375 * incoming data stream) 1376 * 1377 * The buffer list consists of just one protection group described 1378 * below: 1379 * +-------------------------+ 1380 * start of prot group --> | PDE_5 | 1381 * +-------------------------+ 1382 * | PDE_6 | 1383 * +-------------------------+ 1384 * | Data BDE | 1385 * +-------------------------+ 1386 * |more Data BDE's ... (opt)| 1387 * +-------------------------+ 1388 * 1389 * @sc: pointer to scsi command we're working on 1390 * @bpl: pointer to buffer list for protection groups 1391 * @datacnt: number of segments of data that have been dma mapped 1392 * 1393 * Note: Data s/g buffers have been dma mapped 1394 */ 1395 static int 1396 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1397 struct ulp_bde64 *bpl, int datasegcnt) 1398 { 1399 struct scatterlist *sgde = NULL; /* s/g data entry */ 1400 struct lpfc_pde5 *pde5 = NULL; 1401 struct lpfc_pde6 *pde6 = NULL; 1402 dma_addr_t physaddr; 1403 int i = 0, num_bde = 0, status; 1404 int datadir = sc->sc_data_direction; 1405 unsigned blksize; 1406 uint32_t reftag; 1407 uint16_t apptagmask, apptagval; 1408 uint8_t txop, rxop; 1409 1410 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1411 if (status) 1412 goto out; 1413 1414 /* extract some info from the scsi command for pde*/ 1415 blksize = lpfc_cmd_blksize(sc); 1416 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1417 1418 /* setup PDE5 with what we have */ 1419 pde5 = (struct lpfc_pde5 *) bpl; 1420 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1421 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1422 pde5->reftag = reftag; 1423 1424 /* Endianness conversion if necessary for PDE5 */ 1425 pde5->word0 = cpu_to_le32(pde5->word0); 1426 pde5->reftag = cpu_to_le32(pde5->reftag); 1427 1428 /* advance bpl and increment bde count */ 1429 num_bde++; 1430 bpl++; 1431 pde6 = (struct lpfc_pde6 *) bpl; 1432 1433 /* setup PDE6 with the rest of the info */ 1434 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1435 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1436 bf_set(pde6_optx, pde6, txop); 1437 bf_set(pde6_oprx, pde6, rxop); 1438 if (datadir == DMA_FROM_DEVICE) { 1439 bf_set(pde6_ce, pde6, 1); 1440 bf_set(pde6_re, pde6, 1); 1441 bf_set(pde6_ae, pde6, 1); 1442 } 1443 bf_set(pde6_ai, pde6, 1); 1444 bf_set(pde6_apptagval, pde6, apptagval); 1445 1446 /* Endianness conversion if necessary for PDE6 */ 1447 pde6->word0 = cpu_to_le32(pde6->word0); 1448 pde6->word1 = cpu_to_le32(pde6->word1); 1449 pde6->word2 = cpu_to_le32(pde6->word2); 1450 1451 /* advance bpl and increment bde count */ 1452 num_bde++; 1453 bpl++; 1454 1455 /* assumption: caller has already run dma_map_sg on command data */ 1456 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1457 physaddr = sg_dma_address(sgde); 1458 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1459 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1460 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1461 if (datadir == DMA_TO_DEVICE) 1462 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1463 else 1464 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1465 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1466 bpl++; 1467 num_bde++; 1468 } 1469 1470 out: 1471 return num_bde; 1472 } 1473 1474 /* 1475 * This function sets up buffer list for protection groups of 1476 * type LPFC_PG_TYPE_DIF_BUF 1477 * 1478 * This is usually used when DIFs are in their own buffers, 1479 * separate from the data. The HBA can then by instructed 1480 * to place the DIFs in the outgoing stream. For read operations, 1481 * The HBA could extract the DIFs and place it in DIF buffers. 1482 * 1483 * The buffer list for this type consists of one or more of the 1484 * protection groups described below: 1485 * +-------------------------+ 1486 * start of first prot group --> | PDE_5 | 1487 * +-------------------------+ 1488 * | PDE_6 | 1489 * +-------------------------+ 1490 * | PDE_7 (Prot BDE) | 1491 * +-------------------------+ 1492 * | Data BDE | 1493 * +-------------------------+ 1494 * |more Data BDE's ... (opt)| 1495 * +-------------------------+ 1496 * start of new prot group --> | PDE_5 | 1497 * +-------------------------+ 1498 * | ... | 1499 * +-------------------------+ 1500 * 1501 * @sc: pointer to scsi command we're working on 1502 * @bpl: pointer to buffer list for protection groups 1503 * @datacnt: number of segments of data that have been dma mapped 1504 * @protcnt: number of segment of protection data that have been dma mapped 1505 * 1506 * Note: It is assumed that both data and protection s/g buffers have been 1507 * mapped for DMA 1508 */ 1509 static int 1510 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1511 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1512 { 1513 struct scatterlist *sgde = NULL; /* s/g data entry */ 1514 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1515 struct lpfc_pde5 *pde5 = NULL; 1516 struct lpfc_pde6 *pde6 = NULL; 1517 struct ulp_bde64 *prot_bde = NULL; 1518 dma_addr_t dataphysaddr, protphysaddr; 1519 unsigned short curr_data = 0, curr_prot = 0; 1520 unsigned int split_offset, protgroup_len; 1521 unsigned int protgrp_blks, protgrp_bytes; 1522 unsigned int remainder, subtotal; 1523 int status; 1524 int datadir = sc->sc_data_direction; 1525 unsigned char pgdone = 0, alldone = 0; 1526 unsigned blksize; 1527 uint32_t reftag; 1528 uint16_t apptagmask, apptagval; 1529 uint8_t txop, rxop; 1530 int num_bde = 0; 1531 1532 sgpe = scsi_prot_sglist(sc); 1533 sgde = scsi_sglist(sc); 1534 1535 if (!sgpe || !sgde) { 1536 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1537 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1538 sgpe, sgde); 1539 return 0; 1540 } 1541 1542 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1543 if (status) 1544 goto out; 1545 1546 /* extract some info from the scsi command */ 1547 blksize = lpfc_cmd_blksize(sc); 1548 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1549 1550 split_offset = 0; 1551 do { 1552 /* setup PDE5 with what we have */ 1553 pde5 = (struct lpfc_pde5 *) bpl; 1554 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1555 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1556 pde5->reftag = reftag; 1557 1558 /* Endianness conversion if necessary for PDE5 */ 1559 pde5->word0 = cpu_to_le32(pde5->word0); 1560 pde5->reftag = cpu_to_le32(pde5->reftag); 1561 1562 /* advance bpl and increment bde count */ 1563 num_bde++; 1564 bpl++; 1565 pde6 = (struct lpfc_pde6 *) bpl; 1566 1567 /* setup PDE6 with the rest of the info */ 1568 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1569 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1570 bf_set(pde6_optx, pde6, txop); 1571 bf_set(pde6_oprx, pde6, rxop); 1572 bf_set(pde6_ce, pde6, 1); 1573 bf_set(pde6_re, pde6, 1); 1574 bf_set(pde6_ae, pde6, 1); 1575 bf_set(pde6_ai, pde6, 1); 1576 bf_set(pde6_apptagval, pde6, apptagval); 1577 1578 /* Endianness conversion if necessary for PDE6 */ 1579 pde6->word0 = cpu_to_le32(pde6->word0); 1580 pde6->word1 = cpu_to_le32(pde6->word1); 1581 pde6->word2 = cpu_to_le32(pde6->word2); 1582 1583 /* advance bpl and increment bde count */ 1584 num_bde++; 1585 bpl++; 1586 1587 /* setup the first BDE that points to protection buffer */ 1588 prot_bde = (struct ulp_bde64 *) bpl; 1589 protphysaddr = sg_dma_address(sgpe); 1590 prot_bde->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr)); 1591 prot_bde->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr)); 1592 protgroup_len = sg_dma_len(sgpe); 1593 1594 /* must be integer multiple of the DIF block length */ 1595 BUG_ON(protgroup_len % 8); 1596 1597 protgrp_blks = protgroup_len / 8; 1598 protgrp_bytes = protgrp_blks * blksize; 1599 1600 prot_bde->tus.f.bdeSize = protgroup_len; 1601 prot_bde->tus.f.bdeFlags = LPFC_PDE7_DESCRIPTOR; 1602 prot_bde->tus.w = le32_to_cpu(bpl->tus.w); 1603 1604 curr_prot++; 1605 num_bde++; 1606 1607 /* setup BDE's for data blocks associated with DIF data */ 1608 pgdone = 0; 1609 subtotal = 0; /* total bytes processed for current prot grp */ 1610 while (!pgdone) { 1611 if (!sgde) { 1612 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1613 "9065 BLKGRD:%s Invalid data segment\n", 1614 __func__); 1615 return 0; 1616 } 1617 bpl++; 1618 dataphysaddr = sg_dma_address(sgde) + split_offset; 1619 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1620 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1621 1622 remainder = sg_dma_len(sgde) - split_offset; 1623 1624 if ((subtotal + remainder) <= protgrp_bytes) { 1625 /* we can use this whole buffer */ 1626 bpl->tus.f.bdeSize = remainder; 1627 split_offset = 0; 1628 1629 if ((subtotal + remainder) == protgrp_bytes) 1630 pgdone = 1; 1631 } else { 1632 /* must split this buffer with next prot grp */ 1633 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1634 split_offset += bpl->tus.f.bdeSize; 1635 } 1636 1637 subtotal += bpl->tus.f.bdeSize; 1638 1639 if (datadir == DMA_TO_DEVICE) 1640 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1641 else 1642 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1643 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1644 1645 num_bde++; 1646 curr_data++; 1647 1648 if (split_offset) 1649 break; 1650 1651 /* Move to the next s/g segment if possible */ 1652 sgde = sg_next(sgde); 1653 1654 } 1655 1656 /* are we done ? */ 1657 if (curr_prot == protcnt) { 1658 alldone = 1; 1659 } else if (curr_prot < protcnt) { 1660 /* advance to next prot buffer */ 1661 sgpe = sg_next(sgpe); 1662 bpl++; 1663 1664 /* update the reference tag */ 1665 reftag += protgrp_blks; 1666 } else { 1667 /* if we're here, we have a bug */ 1668 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1669 "9054 BLKGRD: bug in %s\n", __func__); 1670 } 1671 1672 } while (!alldone); 1673 1674 out: 1675 1676 return num_bde; 1677 } 1678 /* 1679 * Given a SCSI command that supports DIF, determine composition of protection 1680 * groups involved in setting up buffer lists 1681 * 1682 * Returns: 1683 * for DIF (for both read and write) 1684 * */ 1685 static int 1686 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1687 { 1688 int ret = LPFC_PG_TYPE_INVALID; 1689 unsigned char op = scsi_get_prot_op(sc); 1690 1691 switch (op) { 1692 case SCSI_PROT_READ_STRIP: 1693 case SCSI_PROT_WRITE_INSERT: 1694 ret = LPFC_PG_TYPE_NO_DIF; 1695 break; 1696 case SCSI_PROT_READ_INSERT: 1697 case SCSI_PROT_WRITE_STRIP: 1698 case SCSI_PROT_READ_PASS: 1699 case SCSI_PROT_WRITE_PASS: 1700 ret = LPFC_PG_TYPE_DIF_BUF; 1701 break; 1702 default: 1703 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1704 "9021 Unsupported protection op:%d\n", op); 1705 break; 1706 } 1707 1708 return ret; 1709 } 1710 1711 /* 1712 * This is the protection/DIF aware version of 1713 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1714 * two functions eventually, but for now, it's here 1715 */ 1716 static int 1717 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1718 struct lpfc_scsi_buf *lpfc_cmd) 1719 { 1720 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1721 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1722 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1723 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1724 uint32_t num_bde = 0; 1725 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1726 int prot_group_type = 0; 1727 int diflen, fcpdl; 1728 unsigned blksize; 1729 1730 /* 1731 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1732 * fcp_rsp regions to the first data bde entry 1733 */ 1734 bpl += 2; 1735 if (scsi_sg_count(scsi_cmnd)) { 1736 /* 1737 * The driver stores the segment count returned from pci_map_sg 1738 * because this a count of dma-mappings used to map the use_sg 1739 * pages. They are not guaranteed to be the same for those 1740 * architectures that implement an IOMMU. 1741 */ 1742 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1743 scsi_sglist(scsi_cmnd), 1744 scsi_sg_count(scsi_cmnd), datadir); 1745 if (unlikely(!datasegcnt)) 1746 return 1; 1747 1748 lpfc_cmd->seg_cnt = datasegcnt; 1749 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1750 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1751 "9067 BLKGRD: %s: Too many sg segments" 1752 " from dma_map_sg. Config %d, seg_cnt" 1753 " %d\n", 1754 __func__, phba->cfg_sg_seg_cnt, 1755 lpfc_cmd->seg_cnt); 1756 scsi_dma_unmap(scsi_cmnd); 1757 return 1; 1758 } 1759 1760 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1761 1762 switch (prot_group_type) { 1763 case LPFC_PG_TYPE_NO_DIF: 1764 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1765 datasegcnt); 1766 /* we should have 2 or more entries in buffer list */ 1767 if (num_bde < 2) 1768 goto err; 1769 break; 1770 case LPFC_PG_TYPE_DIF_BUF:{ 1771 /* 1772 * This type indicates that protection buffers are 1773 * passed to the driver, so that needs to be prepared 1774 * for DMA 1775 */ 1776 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1777 scsi_prot_sglist(scsi_cmnd), 1778 scsi_prot_sg_count(scsi_cmnd), datadir); 1779 if (unlikely(!protsegcnt)) { 1780 scsi_dma_unmap(scsi_cmnd); 1781 return 1; 1782 } 1783 1784 lpfc_cmd->prot_seg_cnt = protsegcnt; 1785 if (lpfc_cmd->prot_seg_cnt 1786 > phba->cfg_prot_sg_seg_cnt) { 1787 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1788 "9068 BLKGRD: %s: Too many prot sg " 1789 "segments from dma_map_sg. Config %d," 1790 "prot_seg_cnt %d\n", __func__, 1791 phba->cfg_prot_sg_seg_cnt, 1792 lpfc_cmd->prot_seg_cnt); 1793 dma_unmap_sg(&phba->pcidev->dev, 1794 scsi_prot_sglist(scsi_cmnd), 1795 scsi_prot_sg_count(scsi_cmnd), 1796 datadir); 1797 scsi_dma_unmap(scsi_cmnd); 1798 return 1; 1799 } 1800 1801 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1802 datasegcnt, protsegcnt); 1803 /* we should have 3 or more entries in buffer list */ 1804 if (num_bde < 3) 1805 goto err; 1806 break; 1807 } 1808 case LPFC_PG_TYPE_INVALID: 1809 default: 1810 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1811 "9022 Unexpected protection group %i\n", 1812 prot_group_type); 1813 return 1; 1814 } 1815 } 1816 1817 /* 1818 * Finish initializing those IOCB fields that are dependent on the 1819 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1820 * reinitialized since all iocb memory resources are used many times 1821 * for transmit, receive, and continuation bpl's. 1822 */ 1823 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 1824 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 1825 iocb_cmd->ulpBdeCount = 1; 1826 iocb_cmd->ulpLe = 1; 1827 1828 fcpdl = scsi_bufflen(scsi_cmnd); 1829 1830 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 1831 /* 1832 * We are in DIF Type 1 mode 1833 * Every data block has a 8 byte DIF (trailer) 1834 * attached to it. Must ajust FCP data length 1835 */ 1836 blksize = lpfc_cmd_blksize(scsi_cmnd); 1837 diflen = (fcpdl / blksize) * 8; 1838 fcpdl += diflen; 1839 } 1840 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 1841 1842 /* 1843 * Due to difference in data length between DIF/non-DIF paths, 1844 * we need to set word 4 of IOCB here 1845 */ 1846 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 1847 1848 return 0; 1849 err: 1850 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1851 "9023 Could not setup all needed BDE's" 1852 "prot_group_type=%d, num_bde=%d\n", 1853 prot_group_type, num_bde); 1854 return 1; 1855 } 1856 1857 /* 1858 * This function checks for BlockGuard errors detected by 1859 * the HBA. In case of errors, the ASC/ASCQ fields in the 1860 * sense buffer will be set accordingly, paired with 1861 * ILLEGAL_REQUEST to signal to the kernel that the HBA 1862 * detected corruption. 1863 * 1864 * Returns: 1865 * 0 - No error found 1866 * 1 - BlockGuard error found 1867 * -1 - Internal error (bad profile, ...etc) 1868 */ 1869 static int 1870 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 1871 struct lpfc_iocbq *pIocbOut) 1872 { 1873 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 1874 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 1875 int ret = 0; 1876 uint32_t bghm = bgf->bghm; 1877 uint32_t bgstat = bgf->bgstat; 1878 uint64_t failing_sector = 0; 1879 1880 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" 1881 " 0x%x lba 0x%llx blk cnt 0x%x " 1882 "bgstat=0x%x bghm=0x%x\n", 1883 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 1884 blk_rq_sectors(cmd->request), bgstat, bghm); 1885 1886 spin_lock(&_dump_buf_lock); 1887 if (!_dump_buf_done) { 1888 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" 1889 " Data for %u blocks to debugfs\n", 1890 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1891 lpfc_debug_save_data(phba, cmd); 1892 1893 /* If we have a prot sgl, save the DIF buffer */ 1894 if (lpfc_prot_group_type(phba, cmd) == 1895 LPFC_PG_TYPE_DIF_BUF) { 1896 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " 1897 "Saving DIF for %u blocks to debugfs\n", 1898 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1899 lpfc_debug_save_dif(phba, cmd); 1900 } 1901 1902 _dump_buf_done = 1; 1903 } 1904 spin_unlock(&_dump_buf_lock); 1905 1906 if (lpfc_bgs_get_invalid_prof(bgstat)) { 1907 cmd->result = ScsiResult(DID_ERROR, 0); 1908 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" 1909 " BlockGuard profile. bgstat:0x%x\n", 1910 bgstat); 1911 ret = (-1); 1912 goto out; 1913 } 1914 1915 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 1916 cmd->result = ScsiResult(DID_ERROR, 0); 1917 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " 1918 "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 1919 bgstat); 1920 ret = (-1); 1921 goto out; 1922 } 1923 1924 if (lpfc_bgs_get_guard_err(bgstat)) { 1925 ret = 1; 1926 1927 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1928 0x10, 0x1); 1929 cmd->result = DRIVER_SENSE << 24 1930 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1931 phba->bg_guard_err_cnt++; 1932 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1933 "9055 BLKGRD: guard_tag error\n"); 1934 } 1935 1936 if (lpfc_bgs_get_reftag_err(bgstat)) { 1937 ret = 1; 1938 1939 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1940 0x10, 0x3); 1941 cmd->result = DRIVER_SENSE << 24 1942 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1943 1944 phba->bg_reftag_err_cnt++; 1945 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1946 "9056 BLKGRD: ref_tag error\n"); 1947 } 1948 1949 if (lpfc_bgs_get_apptag_err(bgstat)) { 1950 ret = 1; 1951 1952 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1953 0x10, 0x2); 1954 cmd->result = DRIVER_SENSE << 24 1955 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1956 1957 phba->bg_apptag_err_cnt++; 1958 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1959 "9061 BLKGRD: app_tag error\n"); 1960 } 1961 1962 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 1963 /* 1964 * setup sense data descriptor 0 per SPC-4 as an information 1965 * field, and put the failing LBA in it 1966 */ 1967 cmd->sense_buffer[8] = 0; /* Information */ 1968 cmd->sense_buffer[9] = 0xa; /* Add. length */ 1969 bghm /= cmd->device->sector_size; 1970 1971 failing_sector = scsi_get_lba(cmd); 1972 failing_sector += bghm; 1973 1974 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]); 1975 } 1976 1977 if (!ret) { 1978 /* No error was reported - problem in FW? */ 1979 cmd->result = ScsiResult(DID_ERROR, 0); 1980 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1981 "9057 BLKGRD: no errors reported!\n"); 1982 } 1983 1984 out: 1985 return ret; 1986 } 1987 1988 /** 1989 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 1990 * @phba: The Hba for which this call is being executed. 1991 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1992 * 1993 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1994 * field of @lpfc_cmd for device with SLI-4 interface spec. 1995 * 1996 * Return codes: 1997 * 1 - Error 1998 * 0 - Success 1999 **/ 2000 static int 2001 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2002 { 2003 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2004 struct scatterlist *sgel = NULL; 2005 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2006 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 2007 struct sli4_sge *first_data_sgl; 2008 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2009 dma_addr_t physaddr; 2010 uint32_t num_bde = 0; 2011 uint32_t dma_len; 2012 uint32_t dma_offset = 0; 2013 int nseg; 2014 struct ulp_bde64 *bde; 2015 2016 /* 2017 * There are three possibilities here - use scatter-gather segment, use 2018 * the single mapping, or neither. Start the lpfc command prep by 2019 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2020 * data bde entry. 2021 */ 2022 if (scsi_sg_count(scsi_cmnd)) { 2023 /* 2024 * The driver stores the segment count returned from pci_map_sg 2025 * because this a count of dma-mappings used to map the use_sg 2026 * pages. They are not guaranteed to be the same for those 2027 * architectures that implement an IOMMU. 2028 */ 2029 2030 nseg = scsi_dma_map(scsi_cmnd); 2031 if (unlikely(!nseg)) 2032 return 1; 2033 sgl += 1; 2034 /* clear the last flag in the fcp_rsp map entry */ 2035 sgl->word2 = le32_to_cpu(sgl->word2); 2036 bf_set(lpfc_sli4_sge_last, sgl, 0); 2037 sgl->word2 = cpu_to_le32(sgl->word2); 2038 sgl += 1; 2039 first_data_sgl = sgl; 2040 lpfc_cmd->seg_cnt = nseg; 2041 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 2042 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" 2043 " %s: Too many sg segments from " 2044 "dma_map_sg. Config %d, seg_cnt %d\n", 2045 __func__, phba->cfg_sg_seg_cnt, 2046 lpfc_cmd->seg_cnt); 2047 scsi_dma_unmap(scsi_cmnd); 2048 return 1; 2049 } 2050 2051 /* 2052 * The driver established a maximum scatter-gather segment count 2053 * during probe that limits the number of sg elements in any 2054 * single scsi command. Just run through the seg_cnt and format 2055 * the sge's. 2056 * When using SLI-3 the driver will try to fit all the BDEs into 2057 * the IOCB. If it can't then the BDEs get added to a BPL as it 2058 * does for SLI-2 mode. 2059 */ 2060 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 2061 physaddr = sg_dma_address(sgel); 2062 dma_len = sg_dma_len(sgel); 2063 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 2064 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 2065 if ((num_bde + 1) == nseg) 2066 bf_set(lpfc_sli4_sge_last, sgl, 1); 2067 else 2068 bf_set(lpfc_sli4_sge_last, sgl, 0); 2069 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 2070 sgl->word2 = cpu_to_le32(sgl->word2); 2071 sgl->sge_len = cpu_to_le32(dma_len); 2072 dma_offset += dma_len; 2073 sgl++; 2074 } 2075 /* setup the performance hint (first data BDE) if enabled */ 2076 if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) { 2077 bde = (struct ulp_bde64 *) 2078 &(iocb_cmd->unsli3.sli3Words[5]); 2079 bde->addrLow = first_data_sgl->addr_lo; 2080 bde->addrHigh = first_data_sgl->addr_hi; 2081 bde->tus.f.bdeSize = 2082 le32_to_cpu(first_data_sgl->sge_len); 2083 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2084 bde->tus.w = cpu_to_le32(bde->tus.w); 2085 } 2086 } else { 2087 sgl += 1; 2088 /* clear the last flag in the fcp_rsp map entry */ 2089 sgl->word2 = le32_to_cpu(sgl->word2); 2090 bf_set(lpfc_sli4_sge_last, sgl, 1); 2091 sgl->word2 = cpu_to_le32(sgl->word2); 2092 } 2093 2094 /* 2095 * Finish initializing those IOCB fields that are dependent on the 2096 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 2097 * explicitly reinitialized. 2098 * all iocb memory resources are reused. 2099 */ 2100 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 2101 2102 /* 2103 * Due to difference in data length between DIF/non-DIF paths, 2104 * we need to set word 4 of IOCB here 2105 */ 2106 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 2107 return 0; 2108 } 2109 2110 /** 2111 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 2112 * @phba: The Hba for which this call is being executed. 2113 * @lpfc_cmd: The scsi buffer which is going to be mapped. 2114 * 2115 * This routine wraps the actual DMA mapping function pointer from the 2116 * lpfc_hba struct. 2117 * 2118 * Return codes: 2119 * 1 - Error 2120 * 0 - Success 2121 **/ 2122 static inline int 2123 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2124 { 2125 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2126 } 2127 2128 /** 2129 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 2130 * @phba: Pointer to hba context object. 2131 * @vport: Pointer to vport object. 2132 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 2133 * @rsp_iocb: Pointer to response iocb object which reported error. 2134 * 2135 * This function posts an event when there is a SCSI command reporting 2136 * error from the scsi device. 2137 **/ 2138 static void 2139 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 2140 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 2141 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2142 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2143 uint32_t resp_info = fcprsp->rspStatus2; 2144 uint32_t scsi_status = fcprsp->rspStatus3; 2145 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2146 struct lpfc_fast_path_event *fast_path_evt = NULL; 2147 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 2148 unsigned long flags; 2149 2150 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2151 return; 2152 2153 /* If there is queuefull or busy condition send a scsi event */ 2154 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 2155 (cmnd->result == SAM_STAT_BUSY)) { 2156 fast_path_evt = lpfc_alloc_fast_evt(phba); 2157 if (!fast_path_evt) 2158 return; 2159 fast_path_evt->un.scsi_evt.event_type = 2160 FC_REG_SCSI_EVENT; 2161 fast_path_evt->un.scsi_evt.subcategory = 2162 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 2163 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 2164 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 2165 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 2166 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2167 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 2168 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2169 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 2170 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 2171 fast_path_evt = lpfc_alloc_fast_evt(phba); 2172 if (!fast_path_evt) 2173 return; 2174 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 2175 FC_REG_SCSI_EVENT; 2176 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 2177 LPFC_EVENT_CHECK_COND; 2178 fast_path_evt->un.check_cond_evt.scsi_event.lun = 2179 cmnd->device->lun; 2180 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 2181 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2182 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 2183 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2184 fast_path_evt->un.check_cond_evt.sense_key = 2185 cmnd->sense_buffer[2] & 0xf; 2186 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 2187 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 2188 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2189 fcpi_parm && 2190 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 2191 ((scsi_status == SAM_STAT_GOOD) && 2192 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 2193 /* 2194 * If status is good or resid does not match with fcp_param and 2195 * there is valid fcpi_parm, then there is a read_check error 2196 */ 2197 fast_path_evt = lpfc_alloc_fast_evt(phba); 2198 if (!fast_path_evt) 2199 return; 2200 fast_path_evt->un.read_check_error.header.event_type = 2201 FC_REG_FABRIC_EVENT; 2202 fast_path_evt->un.read_check_error.header.subcategory = 2203 LPFC_EVENT_FCPRDCHKERR; 2204 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 2205 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2206 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 2207 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2208 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 2209 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 2210 fast_path_evt->un.read_check_error.fcpiparam = 2211 fcpi_parm; 2212 } else 2213 return; 2214 2215 fast_path_evt->vport = vport; 2216 spin_lock_irqsave(&phba->hbalock, flags); 2217 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 2218 spin_unlock_irqrestore(&phba->hbalock, flags); 2219 lpfc_worker_wake_up(phba); 2220 return; 2221 } 2222 2223 /** 2224 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 2225 * @phba: The HBA for which this call is being executed. 2226 * @psb: The scsi buffer which is going to be un-mapped. 2227 * 2228 * This routine does DMA un-mapping of scatter gather list of scsi command 2229 * field of @lpfc_cmd for device with SLI-3 interface spec. 2230 **/ 2231 static void 2232 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2233 { 2234 /* 2235 * There are only two special cases to consider. (1) the scsi command 2236 * requested scatter-gather usage or (2) the scsi command allocated 2237 * a request buffer, but did not request use_sg. There is a third 2238 * case, but it does not require resource deallocation. 2239 */ 2240 if (psb->seg_cnt > 0) 2241 scsi_dma_unmap(psb->pCmd); 2242 if (psb->prot_seg_cnt > 0) 2243 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2244 scsi_prot_sg_count(psb->pCmd), 2245 psb->pCmd->sc_data_direction); 2246 } 2247 2248 /** 2249 * lpfc_handler_fcp_err - FCP response handler 2250 * @vport: The virtual port for which this call is being executed. 2251 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2252 * @rsp_iocb: The response IOCB which contains FCP error. 2253 * 2254 * This routine is called to process response IOCB with status field 2255 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2256 * based upon SCSI and FCP error. 2257 **/ 2258 static void 2259 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2260 struct lpfc_iocbq *rsp_iocb) 2261 { 2262 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2263 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2264 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2265 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2266 uint32_t resp_info = fcprsp->rspStatus2; 2267 uint32_t scsi_status = fcprsp->rspStatus3; 2268 uint32_t *lp; 2269 uint32_t host_status = DID_OK; 2270 uint32_t rsplen = 0; 2271 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2272 2273 2274 /* 2275 * If this is a task management command, there is no 2276 * scsi packet associated with this lpfc_cmd. The driver 2277 * consumes it. 2278 */ 2279 if (fcpcmd->fcpCntl2) { 2280 scsi_status = 0; 2281 goto out; 2282 } 2283 2284 if (resp_info & RSP_LEN_VALID) { 2285 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2286 if (rsplen != 0 && rsplen != 4 && rsplen != 8) { 2287 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2288 "2719 Invalid response length: " 2289 "tgt x%x lun x%x cmnd x%x rsplen x%x\n", 2290 cmnd->device->id, 2291 cmnd->device->lun, cmnd->cmnd[0], 2292 rsplen); 2293 host_status = DID_ERROR; 2294 goto out; 2295 } 2296 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { 2297 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2298 "2757 Protocol failure detected during " 2299 "processing of FCP I/O op: " 2300 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n", 2301 cmnd->device->id, 2302 cmnd->device->lun, cmnd->cmnd[0], 2303 fcprsp->rspInfo3); 2304 host_status = DID_ERROR; 2305 goto out; 2306 } 2307 } 2308 2309 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2310 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2311 if (snslen > SCSI_SENSE_BUFFERSIZE) 2312 snslen = SCSI_SENSE_BUFFERSIZE; 2313 2314 if (resp_info & RSP_LEN_VALID) 2315 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2316 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2317 } 2318 lp = (uint32_t *)cmnd->sense_buffer; 2319 2320 if (!scsi_status && (resp_info & RESID_UNDER)) 2321 logit = LOG_FCP; 2322 2323 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2324 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2325 "Data: x%x x%x x%x x%x x%x\n", 2326 cmnd->cmnd[0], scsi_status, 2327 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2328 be32_to_cpu(fcprsp->rspResId), 2329 be32_to_cpu(fcprsp->rspSnsLen), 2330 be32_to_cpu(fcprsp->rspRspLen), 2331 fcprsp->rspInfo3); 2332 2333 scsi_set_resid(cmnd, 0); 2334 if (resp_info & RESID_UNDER) { 2335 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2336 2337 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2338 "9025 FCP Read Underrun, expected %d, " 2339 "residual %d Data: x%x x%x x%x\n", 2340 be32_to_cpu(fcpcmd->fcpDl), 2341 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2342 cmnd->underflow); 2343 2344 /* 2345 * If there is an under run check if under run reported by 2346 * storage array is same as the under run reported by HBA. 2347 * If this is not same, there is a dropped frame. 2348 */ 2349 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2350 fcpi_parm && 2351 (scsi_get_resid(cmnd) != fcpi_parm)) { 2352 lpfc_printf_vlog(vport, KERN_WARNING, 2353 LOG_FCP | LOG_FCP_ERROR, 2354 "9026 FCP Read Check Error " 2355 "and Underrun Data: x%x x%x x%x x%x\n", 2356 be32_to_cpu(fcpcmd->fcpDl), 2357 scsi_get_resid(cmnd), fcpi_parm, 2358 cmnd->cmnd[0]); 2359 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2360 host_status = DID_ERROR; 2361 } 2362 /* 2363 * The cmnd->underflow is the minimum number of bytes that must 2364 * be transfered for this command. Provided a sense condition 2365 * is not present, make sure the actual amount transferred is at 2366 * least the underflow value or fail. 2367 */ 2368 if (!(resp_info & SNS_LEN_VALID) && 2369 (scsi_status == SAM_STAT_GOOD) && 2370 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2371 < cmnd->underflow)) { 2372 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2373 "9027 FCP command x%x residual " 2374 "underrun converted to error " 2375 "Data: x%x x%x x%x\n", 2376 cmnd->cmnd[0], scsi_bufflen(cmnd), 2377 scsi_get_resid(cmnd), cmnd->underflow); 2378 host_status = DID_ERROR; 2379 } 2380 } else if (resp_info & RESID_OVER) { 2381 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2382 "9028 FCP command x%x residual overrun error. " 2383 "Data: x%x x%x\n", cmnd->cmnd[0], 2384 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2385 host_status = DID_ERROR; 2386 2387 /* 2388 * Check SLI validation that all the transfer was actually done 2389 * (fcpi_parm should be zero). Apply check only to reads. 2390 */ 2391 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2392 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2393 "9029 FCP Read Check Error Data: " 2394 "x%x x%x x%x x%x x%x\n", 2395 be32_to_cpu(fcpcmd->fcpDl), 2396 be32_to_cpu(fcprsp->rspResId), 2397 fcpi_parm, cmnd->cmnd[0], scsi_status); 2398 switch (scsi_status) { 2399 case SAM_STAT_GOOD: 2400 case SAM_STAT_CHECK_CONDITION: 2401 /* Fabric dropped a data frame. Fail any successful 2402 * command in which we detected dropped frames. 2403 * A status of good or some check conditions could 2404 * be considered a successful command. 2405 */ 2406 host_status = DID_ERROR; 2407 break; 2408 } 2409 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2410 } 2411 2412 out: 2413 cmnd->result = ScsiResult(host_status, scsi_status); 2414 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2415 } 2416 2417 /** 2418 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2419 * @phba: The Hba for which this call is being executed. 2420 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2421 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2422 * 2423 * This routine assigns scsi command result by looking into response IOCB 2424 * status field appropriately. This routine handles QUEUE FULL condition as 2425 * well by ramping down device queue depth. 2426 **/ 2427 static void 2428 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2429 struct lpfc_iocbq *pIocbOut) 2430 { 2431 struct lpfc_scsi_buf *lpfc_cmd = 2432 (struct lpfc_scsi_buf *) pIocbIn->context1; 2433 struct lpfc_vport *vport = pIocbIn->vport; 2434 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2435 struct lpfc_nodelist *pnode = rdata->pnode; 2436 struct scsi_cmnd *cmd; 2437 int result; 2438 struct scsi_device *tmp_sdev; 2439 int depth; 2440 unsigned long flags; 2441 struct lpfc_fast_path_event *fast_path_evt; 2442 struct Scsi_Host *shost; 2443 uint32_t queue_depth, scsi_id; 2444 2445 /* Sanity check on return of outstanding command */ 2446 if (!(lpfc_cmd->pCmd)) 2447 return; 2448 cmd = lpfc_cmd->pCmd; 2449 shost = cmd->device->host; 2450 2451 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2452 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2453 /* pick up SLI4 exhange busy status from HBA */ 2454 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY; 2455 2456 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2457 atomic_dec(&pnode->cmd_pending); 2458 2459 if (lpfc_cmd->status) { 2460 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2461 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2462 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2463 else if (lpfc_cmd->status >= IOSTAT_CNT) 2464 lpfc_cmd->status = IOSTAT_DEFAULT; 2465 2466 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2467 "9030 FCP cmd x%x failed <%d/%d> " 2468 "status: x%x result: x%x Data: x%x x%x\n", 2469 cmd->cmnd[0], 2470 cmd->device ? cmd->device->id : 0xffff, 2471 cmd->device ? cmd->device->lun : 0xffff, 2472 lpfc_cmd->status, lpfc_cmd->result, 2473 pIocbOut->iocb.ulpContext, 2474 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2475 2476 switch (lpfc_cmd->status) { 2477 case IOSTAT_FCP_RSP_ERROR: 2478 /* Call FCP RSP handler to determine result */ 2479 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2480 break; 2481 case IOSTAT_NPORT_BSY: 2482 case IOSTAT_FABRIC_BSY: 2483 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2484 fast_path_evt = lpfc_alloc_fast_evt(phba); 2485 if (!fast_path_evt) 2486 break; 2487 fast_path_evt->un.fabric_evt.event_type = 2488 FC_REG_FABRIC_EVENT; 2489 fast_path_evt->un.fabric_evt.subcategory = 2490 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2491 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2492 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2493 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2494 &pnode->nlp_portname, 2495 sizeof(struct lpfc_name)); 2496 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2497 &pnode->nlp_nodename, 2498 sizeof(struct lpfc_name)); 2499 } 2500 fast_path_evt->vport = vport; 2501 fast_path_evt->work_evt.evt = 2502 LPFC_EVT_FASTPATH_MGMT_EVT; 2503 spin_lock_irqsave(&phba->hbalock, flags); 2504 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2505 &phba->work_list); 2506 spin_unlock_irqrestore(&phba->hbalock, flags); 2507 lpfc_worker_wake_up(phba); 2508 break; 2509 case IOSTAT_LOCAL_REJECT: 2510 case IOSTAT_REMOTE_STOP: 2511 if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || 2512 lpfc_cmd->result == 2513 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || 2514 lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || 2515 lpfc_cmd->result == 2516 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { 2517 cmd->result = ScsiResult(DID_NO_CONNECT, 0); 2518 break; 2519 } 2520 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2521 lpfc_cmd->result == IOERR_NO_RESOURCES || 2522 lpfc_cmd->result == IOERR_ABORT_REQUESTED || 2523 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { 2524 cmd->result = ScsiResult(DID_REQUEUE, 0); 2525 break; 2526 } 2527 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2528 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2529 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2530 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2531 /* 2532 * This is a response for a BG enabled 2533 * cmd. Parse BG error 2534 */ 2535 lpfc_parse_bg_err(phba, lpfc_cmd, 2536 pIocbOut); 2537 break; 2538 } else { 2539 lpfc_printf_vlog(vport, KERN_WARNING, 2540 LOG_BG, 2541 "9031 non-zero BGSTAT " 2542 "on unprotected cmd\n"); 2543 } 2544 } 2545 if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP) 2546 && (phba->sli_rev == LPFC_SLI_REV4) 2547 && (pnode && NLP_CHK_NODE_ACT(pnode))) { 2548 /* This IO was aborted by the target, we don't 2549 * know the rxid and because we did not send the 2550 * ABTS we cannot generate and RRQ. 2551 */ 2552 lpfc_set_rrq_active(phba, pnode, 2553 lpfc_cmd->cur_iocbq.sli4_xritag, 2554 0, 0); 2555 } 2556 /* else: fall through */ 2557 default: 2558 cmd->result = ScsiResult(DID_ERROR, 0); 2559 break; 2560 } 2561 2562 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2563 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2564 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2565 SAM_STAT_BUSY); 2566 } else 2567 cmd->result = ScsiResult(DID_OK, 0); 2568 2569 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2570 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2571 2572 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2573 "0710 Iodone <%d/%d> cmd %p, error " 2574 "x%x SNS x%x x%x Data: x%x x%x\n", 2575 cmd->device->id, cmd->device->lun, cmd, 2576 cmd->result, *lp, *(lp + 3), cmd->retries, 2577 scsi_get_resid(cmd)); 2578 } 2579 2580 lpfc_update_stats(phba, lpfc_cmd); 2581 result = cmd->result; 2582 if (vport->cfg_max_scsicmpl_time && 2583 time_after(jiffies, lpfc_cmd->start_time + 2584 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2585 spin_lock_irqsave(shost->host_lock, flags); 2586 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2587 if (pnode->cmd_qdepth > 2588 atomic_read(&pnode->cmd_pending) && 2589 (atomic_read(&pnode->cmd_pending) > 2590 LPFC_MIN_TGT_QDEPTH) && 2591 ((cmd->cmnd[0] == READ_10) || 2592 (cmd->cmnd[0] == WRITE_10))) 2593 pnode->cmd_qdepth = 2594 atomic_read(&pnode->cmd_pending); 2595 2596 pnode->last_change_time = jiffies; 2597 } 2598 spin_unlock_irqrestore(shost->host_lock, flags); 2599 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2600 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) && 2601 time_after(jiffies, pnode->last_change_time + 2602 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2603 spin_lock_irqsave(shost->host_lock, flags); 2604 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT 2605 / 100; 2606 depth = depth ? depth : 1; 2607 pnode->cmd_qdepth += depth; 2608 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth) 2609 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth; 2610 pnode->last_change_time = jiffies; 2611 spin_unlock_irqrestore(shost->host_lock, flags); 2612 } 2613 } 2614 2615 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2616 2617 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2618 queue_depth = cmd->device->queue_depth; 2619 scsi_id = cmd->device->id; 2620 cmd->scsi_done(cmd); 2621 2622 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2623 /* 2624 * If there is a thread waiting for command completion 2625 * wake up the thread. 2626 */ 2627 spin_lock_irqsave(shost->host_lock, flags); 2628 lpfc_cmd->pCmd = NULL; 2629 if (lpfc_cmd->waitq) 2630 wake_up(lpfc_cmd->waitq); 2631 spin_unlock_irqrestore(shost->host_lock, flags); 2632 lpfc_release_scsi_buf(phba, lpfc_cmd); 2633 return; 2634 } 2635 2636 if (!result) 2637 lpfc_rampup_queue_depth(vport, queue_depth); 2638 2639 /* 2640 * Check for queue full. If the lun is reporting queue full, then 2641 * back off the lun queue depth to prevent target overloads. 2642 */ 2643 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2644 NLP_CHK_NODE_ACT(pnode)) { 2645 shost_for_each_device(tmp_sdev, shost) { 2646 if (tmp_sdev->id != scsi_id) 2647 continue; 2648 depth = scsi_track_queue_full(tmp_sdev, 2649 tmp_sdev->queue_depth-1); 2650 if (depth <= 0) 2651 continue; 2652 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2653 "0711 detected queue full - lun queue " 2654 "depth adjusted to %d.\n", depth); 2655 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2656 pnode, 2657 tmp_sdev->lun, 2658 depth+1, depth); 2659 } 2660 } 2661 2662 /* 2663 * If there is a thread waiting for command completion 2664 * wake up the thread. 2665 */ 2666 spin_lock_irqsave(shost->host_lock, flags); 2667 lpfc_cmd->pCmd = NULL; 2668 if (lpfc_cmd->waitq) 2669 wake_up(lpfc_cmd->waitq); 2670 spin_unlock_irqrestore(shost->host_lock, flags); 2671 2672 lpfc_release_scsi_buf(phba, lpfc_cmd); 2673 } 2674 2675 /** 2676 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2677 * @data: A pointer to the immediate command data portion of the IOCB. 2678 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2679 * 2680 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2681 * byte swapping the data to big endian format for transmission on the wire. 2682 **/ 2683 static void 2684 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2685 { 2686 int i, j; 2687 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2688 i += sizeof(uint32_t), j++) { 2689 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2690 } 2691 } 2692 2693 /** 2694 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2695 * @vport: The virtual port for which this call is being executed. 2696 * @lpfc_cmd: The scsi command which needs to send. 2697 * @pnode: Pointer to lpfc_nodelist. 2698 * 2699 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2700 * to transfer for device with SLI3 interface spec. 2701 **/ 2702 static void 2703 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2704 struct lpfc_nodelist *pnode) 2705 { 2706 struct lpfc_hba *phba = vport->phba; 2707 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2708 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2709 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2710 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2711 int datadir = scsi_cmnd->sc_data_direction; 2712 char tag[2]; 2713 2714 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2715 return; 2716 2717 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2718 /* clear task management bits */ 2719 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2720 2721 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2722 &lpfc_cmd->fcp_cmnd->fcp_lun); 2723 2724 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); 2725 2726 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2727 switch (tag[0]) { 2728 case HEAD_OF_QUEUE_TAG: 2729 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2730 break; 2731 case ORDERED_QUEUE_TAG: 2732 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2733 break; 2734 default: 2735 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2736 break; 2737 } 2738 } else 2739 fcp_cmnd->fcpCntl1 = 0; 2740 2741 /* 2742 * There are three possibilities here - use scatter-gather segment, use 2743 * the single mapping, or neither. Start the lpfc command prep by 2744 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2745 * data bde entry. 2746 */ 2747 if (scsi_sg_count(scsi_cmnd)) { 2748 if (datadir == DMA_TO_DEVICE) { 2749 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2750 if (phba->sli_rev < LPFC_SLI_REV4) { 2751 iocb_cmd->un.fcpi.fcpi_parm = 0; 2752 iocb_cmd->ulpPU = 0; 2753 } else 2754 iocb_cmd->ulpPU = PARM_READ_CHECK; 2755 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2756 phba->fc4OutputRequests++; 2757 } else { 2758 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2759 iocb_cmd->ulpPU = PARM_READ_CHECK; 2760 fcp_cmnd->fcpCntl3 = READ_DATA; 2761 phba->fc4InputRequests++; 2762 } 2763 } else { 2764 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2765 iocb_cmd->un.fcpi.fcpi_parm = 0; 2766 iocb_cmd->ulpPU = 0; 2767 fcp_cmnd->fcpCntl3 = 0; 2768 phba->fc4ControlRequests++; 2769 } 2770 if (phba->sli_rev == 3 && 2771 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2772 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2773 /* 2774 * Finish initializing those IOCB fields that are independent 2775 * of the scsi_cmnd request_buffer 2776 */ 2777 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2778 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2779 piocbq->iocb.ulpFCP2Rcvy = 1; 2780 else 2781 piocbq->iocb.ulpFCP2Rcvy = 0; 2782 2783 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2784 piocbq->context1 = lpfc_cmd; 2785 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2786 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2787 piocbq->vport = vport; 2788 } 2789 2790 /** 2791 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit 2792 * @vport: The virtual port for which this call is being executed. 2793 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2794 * @lun: Logical unit number. 2795 * @task_mgmt_cmd: SCSI task management command. 2796 * 2797 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2798 * for device with SLI-3 interface spec. 2799 * 2800 * Return codes: 2801 * 0 - Error 2802 * 1 - Success 2803 **/ 2804 static int 2805 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 2806 struct lpfc_scsi_buf *lpfc_cmd, 2807 unsigned int lun, 2808 uint8_t task_mgmt_cmd) 2809 { 2810 struct lpfc_iocbq *piocbq; 2811 IOCB_t *piocb; 2812 struct fcp_cmnd *fcp_cmnd; 2813 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2814 struct lpfc_nodelist *ndlp = rdata->pnode; 2815 2816 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2817 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 2818 return 0; 2819 2820 piocbq = &(lpfc_cmd->cur_iocbq); 2821 piocbq->vport = vport; 2822 2823 piocb = &piocbq->iocb; 2824 2825 fcp_cmnd = lpfc_cmd->fcp_cmnd; 2826 /* Clear out any old data in the FCP command area */ 2827 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 2828 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 2829 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 2830 if (vport->phba->sli_rev == 3 && 2831 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2832 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 2833 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 2834 piocb->ulpContext = ndlp->nlp_rpi; 2835 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 2836 piocb->ulpFCP2Rcvy = 1; 2837 } 2838 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 2839 2840 /* ulpTimeout is only one byte */ 2841 if (lpfc_cmd->timeout > 0xff) { 2842 /* 2843 * Do not timeout the command at the firmware level. 2844 * The driver will provide the timeout mechanism. 2845 */ 2846 piocb->ulpTimeout = 0; 2847 } else 2848 piocb->ulpTimeout = lpfc_cmd->timeout; 2849 2850 if (vport->phba->sli_rev == LPFC_SLI_REV4) 2851 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 2852 2853 return 1; 2854 } 2855 2856 /** 2857 * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table 2858 * @phba: The hba struct for which this call is being executed. 2859 * @dev_grp: The HBA PCI-Device group number. 2860 * 2861 * This routine sets up the SCSI interface API function jump table in @phba 2862 * struct. 2863 * Returns: 0 - success, -ENODEV - failure. 2864 **/ 2865 int 2866 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 2867 { 2868 2869 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 2870 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 2871 2872 switch (dev_grp) { 2873 case LPFC_PCI_DEV_LP: 2874 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 2875 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 2876 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 2877 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3; 2878 break; 2879 case LPFC_PCI_DEV_OC: 2880 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 2881 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 2882 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 2883 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4; 2884 break; 2885 default: 2886 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2887 "1418 Invalid HBA PCI-device group: 0x%x\n", 2888 dev_grp); 2889 return -ENODEV; 2890 break; 2891 } 2892 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 2893 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2894 return 0; 2895 } 2896 2897 /** 2898 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 2899 * @phba: The Hba for which this call is being executed. 2900 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 2901 * @rspiocbq: Pointer to lpfc_iocbq data structure. 2902 * 2903 * This routine is IOCB completion routine for device reset and target reset 2904 * routine. This routine release scsi buffer associated with lpfc_cmd. 2905 **/ 2906 static void 2907 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 2908 struct lpfc_iocbq *cmdiocbq, 2909 struct lpfc_iocbq *rspiocbq) 2910 { 2911 struct lpfc_scsi_buf *lpfc_cmd = 2912 (struct lpfc_scsi_buf *) cmdiocbq->context1; 2913 if (lpfc_cmd) 2914 lpfc_release_scsi_buf(phba, lpfc_cmd); 2915 return; 2916 } 2917 2918 /** 2919 * lpfc_info - Info entry point of scsi_host_template data structure 2920 * @host: The scsi host for which this call is being executed. 2921 * 2922 * This routine provides module information about hba. 2923 * 2924 * Reutrn code: 2925 * Pointer to char - Success. 2926 **/ 2927 const char * 2928 lpfc_info(struct Scsi_Host *host) 2929 { 2930 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 2931 struct lpfc_hba *phba = vport->phba; 2932 int len; 2933 static char lpfcinfobuf[384]; 2934 2935 memset(lpfcinfobuf,0,384); 2936 if (phba && phba->pcidev){ 2937 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 2938 len = strlen(lpfcinfobuf); 2939 snprintf(lpfcinfobuf + len, 2940 384-len, 2941 " on PCI bus %02x device %02x irq %d", 2942 phba->pcidev->bus->number, 2943 phba->pcidev->devfn, 2944 phba->pcidev->irq); 2945 len = strlen(lpfcinfobuf); 2946 if (phba->Port[0]) { 2947 snprintf(lpfcinfobuf + len, 2948 384-len, 2949 " port %s", 2950 phba->Port); 2951 } 2952 len = strlen(lpfcinfobuf); 2953 if (phba->sli4_hba.link_state.logical_speed) { 2954 snprintf(lpfcinfobuf + len, 2955 384-len, 2956 " Logical Link Speed: %d Mbps", 2957 phba->sli4_hba.link_state.logical_speed * 10); 2958 } 2959 } 2960 return lpfcinfobuf; 2961 } 2962 2963 /** 2964 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 2965 * @phba: The Hba for which this call is being executed. 2966 * 2967 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 2968 * The default value of cfg_poll_tmo is 10 milliseconds. 2969 **/ 2970 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 2971 { 2972 unsigned long poll_tmo_expires = 2973 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 2974 2975 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 2976 mod_timer(&phba->fcp_poll_timer, 2977 poll_tmo_expires); 2978 } 2979 2980 /** 2981 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 2982 * @phba: The Hba for which this call is being executed. 2983 * 2984 * This routine starts the fcp_poll_timer of @phba. 2985 **/ 2986 void lpfc_poll_start_timer(struct lpfc_hba * phba) 2987 { 2988 lpfc_poll_rearm_timer(phba); 2989 } 2990 2991 /** 2992 * lpfc_poll_timeout - Restart polling timer 2993 * @ptr: Map to lpfc_hba data structure pointer. 2994 * 2995 * This routine restarts fcp_poll timer, when FCP ring polling is enable 2996 * and FCP Ring interrupt is disable. 2997 **/ 2998 2999 void lpfc_poll_timeout(unsigned long ptr) 3000 { 3001 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 3002 3003 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3004 lpfc_sli_handle_fast_ring_event(phba, 3005 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3006 3007 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3008 lpfc_poll_rearm_timer(phba); 3009 } 3010 } 3011 3012 /** 3013 * lpfc_queuecommand - scsi_host_template queuecommand entry point 3014 * @cmnd: Pointer to scsi_cmnd data structure. 3015 * @done: Pointer to done routine. 3016 * 3017 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 3018 * This routine prepares an IOCB from scsi command and provides to firmware. 3019 * The @done callback is invoked after driver finished processing the command. 3020 * 3021 * Return value : 3022 * 0 - Success 3023 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 3024 **/ 3025 static int 3026 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 3027 { 3028 struct Scsi_Host *shost = cmnd->device->host; 3029 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3030 struct lpfc_hba *phba = vport->phba; 3031 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3032 struct lpfc_nodelist *ndlp; 3033 struct lpfc_scsi_buf *lpfc_cmd; 3034 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 3035 int err; 3036 3037 err = fc_remote_port_chkready(rport); 3038 if (err) { 3039 cmnd->result = err; 3040 goto out_fail_command; 3041 } 3042 ndlp = rdata->pnode; 3043 3044 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 3045 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 3046 3047 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 3048 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" 3049 " op:%02x str=%s without registering for" 3050 " BlockGuard - Rejecting command\n", 3051 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3052 dif_op_str[scsi_get_prot_op(cmnd)]); 3053 goto out_fail_command; 3054 } 3055 3056 /* 3057 * Catch race where our node has transitioned, but the 3058 * transport is still transitioning. 3059 */ 3060 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 3061 cmnd->result = ScsiResult(DID_IMM_RETRY, 0); 3062 goto out_fail_command; 3063 } 3064 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) 3065 goto out_tgt_busy; 3066 3067 lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp); 3068 if (lpfc_cmd == NULL) { 3069 lpfc_rampdown_queue_depth(phba); 3070 3071 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3072 "0707 driver's buffer pool is empty, " 3073 "IO busied\n"); 3074 goto out_host_busy; 3075 } 3076 3077 /* 3078 * Store the midlayer's command structure for the completion phase 3079 * and complete the command initialization. 3080 */ 3081 lpfc_cmd->pCmd = cmnd; 3082 lpfc_cmd->rdata = rdata; 3083 lpfc_cmd->timeout = 0; 3084 lpfc_cmd->start_time = jiffies; 3085 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 3086 cmnd->scsi_done = done; 3087 3088 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 3089 if (vport->phba->cfg_enable_bg) { 3090 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3091 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 3092 "str=%s\n", 3093 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3094 dif_op_str[scsi_get_prot_op(cmnd)]); 3095 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3096 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 3097 "%02x %02x %02x %02x %02x\n", 3098 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 3099 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 3100 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 3101 cmnd->cmnd[9]); 3102 if (cmnd->cmnd[0] == READ_10) 3103 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3104 "9035 BLKGRD: READ @ sector %llu, " 3105 "count %u\n", 3106 (unsigned long long)scsi_get_lba(cmnd), 3107 blk_rq_sectors(cmnd->request)); 3108 else if (cmnd->cmnd[0] == WRITE_10) 3109 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3110 "9036 BLKGRD: WRITE @ sector %llu, " 3111 "count %u cmd=%p\n", 3112 (unsigned long long)scsi_get_lba(cmnd), 3113 blk_rq_sectors(cmnd->request), 3114 cmnd); 3115 } 3116 3117 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 3118 } else { 3119 if (vport->phba->cfg_enable_bg) { 3120 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3121 "9038 BLKGRD: rcvd unprotected cmd:" 3122 "%02x op:%02x str=%s\n", 3123 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3124 dif_op_str[scsi_get_prot_op(cmnd)]); 3125 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3126 "9039 BLKGRD: CDB: %02x %02x %02x " 3127 "%02x %02x %02x %02x %02x %02x %02x\n", 3128 cmnd->cmnd[0], cmnd->cmnd[1], 3129 cmnd->cmnd[2], cmnd->cmnd[3], 3130 cmnd->cmnd[4], cmnd->cmnd[5], 3131 cmnd->cmnd[6], cmnd->cmnd[7], 3132 cmnd->cmnd[8], cmnd->cmnd[9]); 3133 if (cmnd->cmnd[0] == READ_10) 3134 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3135 "9040 dbg: READ @ sector %llu, " 3136 "count %u\n", 3137 (unsigned long long)scsi_get_lba(cmnd), 3138 blk_rq_sectors(cmnd->request)); 3139 else if (cmnd->cmnd[0] == WRITE_10) 3140 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3141 "9041 dbg: WRITE @ sector %llu, " 3142 "count %u cmd=%p\n", 3143 (unsigned long long)scsi_get_lba(cmnd), 3144 blk_rq_sectors(cmnd->request), cmnd); 3145 else 3146 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3147 "9042 dbg: parser not implemented\n"); 3148 } 3149 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 3150 } 3151 3152 if (err) 3153 goto out_host_busy_free_buf; 3154 3155 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 3156 3157 atomic_inc(&ndlp->cmd_pending); 3158 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 3159 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 3160 if (err) { 3161 atomic_dec(&ndlp->cmd_pending); 3162 goto out_host_busy_free_buf; 3163 } 3164 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3165 spin_unlock(shost->host_lock); 3166 lpfc_sli_handle_fast_ring_event(phba, 3167 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3168 3169 spin_lock(shost->host_lock); 3170 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3171 lpfc_poll_rearm_timer(phba); 3172 } 3173 3174 return 0; 3175 3176 out_host_busy_free_buf: 3177 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 3178 lpfc_release_scsi_buf(phba, lpfc_cmd); 3179 out_host_busy: 3180 return SCSI_MLQUEUE_HOST_BUSY; 3181 3182 out_tgt_busy: 3183 return SCSI_MLQUEUE_TARGET_BUSY; 3184 3185 out_fail_command: 3186 done(cmnd); 3187 return 0; 3188 } 3189 3190 static DEF_SCSI_QCMD(lpfc_queuecommand) 3191 3192 /** 3193 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 3194 * @cmnd: Pointer to scsi_cmnd data structure. 3195 * 3196 * This routine aborts @cmnd pending in base driver. 3197 * 3198 * Return code : 3199 * 0x2003 - Error 3200 * 0x2002 - Success 3201 **/ 3202 static int 3203 lpfc_abort_handler(struct scsi_cmnd *cmnd) 3204 { 3205 struct Scsi_Host *shost = cmnd->device->host; 3206 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3207 struct lpfc_hba *phba = vport->phba; 3208 struct lpfc_iocbq *iocb; 3209 struct lpfc_iocbq *abtsiocb; 3210 struct lpfc_scsi_buf *lpfc_cmd; 3211 IOCB_t *cmd, *icmd; 3212 int ret = SUCCESS; 3213 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 3214 3215 ret = fc_block_scsi_eh(cmnd); 3216 if (ret) 3217 return ret; 3218 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 3219 if (!lpfc_cmd) { 3220 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3221 "2873 SCSI Layer I/O Abort Request IO CMPL Status " 3222 "x%x ID %d " 3223 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3224 cmnd->device->lun, cmnd->serial_number); 3225 return SUCCESS; 3226 } 3227 3228 /* 3229 * If pCmd field of the corresponding lpfc_scsi_buf structure 3230 * points to a different SCSI command, then the driver has 3231 * already completed this command, but the midlayer did not 3232 * see the completion before the eh fired. Just return 3233 * SUCCESS. 3234 */ 3235 iocb = &lpfc_cmd->cur_iocbq; 3236 if (lpfc_cmd->pCmd != cmnd) 3237 goto out; 3238 3239 BUG_ON(iocb->context1 != lpfc_cmd); 3240 3241 abtsiocb = lpfc_sli_get_iocbq(phba); 3242 if (abtsiocb == NULL) { 3243 ret = FAILED; 3244 goto out; 3245 } 3246 3247 /* 3248 * The scsi command can not be in txq and it is in flight because the 3249 * pCmd is still pointig at the SCSI command we have to abort. There 3250 * is no need to search the txcmplq. Just send an abort to the FW. 3251 */ 3252 3253 cmd = &iocb->iocb; 3254 icmd = &abtsiocb->iocb; 3255 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 3256 icmd->un.acxri.abortContextTag = cmd->ulpContext; 3257 if (phba->sli_rev == LPFC_SLI_REV4) 3258 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 3259 else 3260 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 3261 3262 icmd->ulpLe = 1; 3263 icmd->ulpClass = cmd->ulpClass; 3264 3265 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3266 abtsiocb->fcp_wqidx = iocb->fcp_wqidx; 3267 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 3268 3269 if (lpfc_is_link_up(phba)) 3270 icmd->ulpCommand = CMD_ABORT_XRI_CN; 3271 else 3272 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 3273 3274 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3275 abtsiocb->vport = vport; 3276 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3277 IOCB_ERROR) { 3278 lpfc_sli_release_iocbq(phba, abtsiocb); 3279 ret = FAILED; 3280 goto out; 3281 } 3282 3283 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3284 lpfc_sli_handle_fast_ring_event(phba, 3285 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3286 3287 lpfc_cmd->waitq = &waitq; 3288 /* Wait for abort to complete */ 3289 wait_event_timeout(waitq, 3290 (lpfc_cmd->pCmd != cmnd), 3291 (2*vport->cfg_devloss_tmo*HZ)); 3292 3293 spin_lock_irq(shost->host_lock); 3294 lpfc_cmd->waitq = NULL; 3295 spin_unlock_irq(shost->host_lock); 3296 3297 if (lpfc_cmd->pCmd == cmnd) { 3298 ret = FAILED; 3299 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3300 "0748 abort handler timed out waiting " 3301 "for abort to complete: ret %#x, ID %d, " 3302 "LUN %d, snum %#lx\n", 3303 ret, cmnd->device->id, cmnd->device->lun, 3304 cmnd->serial_number); 3305 } 3306 3307 out: 3308 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3309 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3310 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3311 cmnd->device->lun, cmnd->serial_number); 3312 return ret; 3313 } 3314 3315 static char * 3316 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3317 { 3318 switch (task_mgmt_cmd) { 3319 case FCP_ABORT_TASK_SET: 3320 return "ABORT_TASK_SET"; 3321 case FCP_CLEAR_TASK_SET: 3322 return "FCP_CLEAR_TASK_SET"; 3323 case FCP_BUS_RESET: 3324 return "FCP_BUS_RESET"; 3325 case FCP_LUN_RESET: 3326 return "FCP_LUN_RESET"; 3327 case FCP_TARGET_RESET: 3328 return "FCP_TARGET_RESET"; 3329 case FCP_CLEAR_ACA: 3330 return "FCP_CLEAR_ACA"; 3331 case FCP_TERMINATE_TASK: 3332 return "FCP_TERMINATE_TASK"; 3333 default: 3334 return "unknown"; 3335 } 3336 } 3337 3338 /** 3339 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3340 * @vport: The virtual port for which this call is being executed. 3341 * @rdata: Pointer to remote port local data 3342 * @tgt_id: Target ID of remote device. 3343 * @lun_id: Lun number for the TMF 3344 * @task_mgmt_cmd: type of TMF to send 3345 * 3346 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3347 * a remote port. 3348 * 3349 * Return Code: 3350 * 0x2003 - Error 3351 * 0x2002 - Success. 3352 **/ 3353 static int 3354 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3355 unsigned tgt_id, unsigned int lun_id, 3356 uint8_t task_mgmt_cmd) 3357 { 3358 struct lpfc_hba *phba = vport->phba; 3359 struct lpfc_scsi_buf *lpfc_cmd; 3360 struct lpfc_iocbq *iocbq; 3361 struct lpfc_iocbq *iocbqrsp; 3362 struct lpfc_nodelist *pnode = rdata->pnode; 3363 int ret; 3364 int status; 3365 3366 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3367 return FAILED; 3368 3369 lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode); 3370 if (lpfc_cmd == NULL) 3371 return FAILED; 3372 lpfc_cmd->timeout = 60; 3373 lpfc_cmd->rdata = rdata; 3374 3375 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3376 task_mgmt_cmd); 3377 if (!status) { 3378 lpfc_release_scsi_buf(phba, lpfc_cmd); 3379 return FAILED; 3380 } 3381 3382 iocbq = &lpfc_cmd->cur_iocbq; 3383 iocbqrsp = lpfc_sli_get_iocbq(phba); 3384 if (iocbqrsp == NULL) { 3385 lpfc_release_scsi_buf(phba, lpfc_cmd); 3386 return FAILED; 3387 } 3388 3389 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3390 "0702 Issue %s to TGT %d LUN %d " 3391 "rpi x%x nlp_flag x%x\n", 3392 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3393 pnode->nlp_rpi, pnode->nlp_flag); 3394 3395 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3396 iocbq, iocbqrsp, lpfc_cmd->timeout); 3397 if (status != IOCB_SUCCESS) { 3398 if (status == IOCB_TIMEDOUT) { 3399 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3400 ret = TIMEOUT_ERROR; 3401 } else 3402 ret = FAILED; 3403 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3404 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3405 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n", 3406 lpfc_taskmgmt_name(task_mgmt_cmd), 3407 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3408 iocbqrsp->iocb.un.ulpWord[4]); 3409 } else if (status == IOCB_BUSY) 3410 ret = FAILED; 3411 else 3412 ret = SUCCESS; 3413 3414 lpfc_sli_release_iocbq(phba, iocbqrsp); 3415 3416 if (ret != TIMEOUT_ERROR) 3417 lpfc_release_scsi_buf(phba, lpfc_cmd); 3418 3419 return ret; 3420 } 3421 3422 /** 3423 * lpfc_chk_tgt_mapped - 3424 * @vport: The virtual port to check on 3425 * @cmnd: Pointer to scsi_cmnd data structure. 3426 * 3427 * This routine delays until the scsi target (aka rport) for the 3428 * command exists (is present and logged in) or we declare it non-existent. 3429 * 3430 * Return code : 3431 * 0x2003 - Error 3432 * 0x2002 - Success 3433 **/ 3434 static int 3435 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3436 { 3437 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3438 struct lpfc_nodelist *pnode; 3439 unsigned long later; 3440 3441 if (!rdata) { 3442 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3443 "0797 Tgt Map rport failure: rdata x%p\n", rdata); 3444 return FAILED; 3445 } 3446 pnode = rdata->pnode; 3447 /* 3448 * If target is not in a MAPPED state, delay until 3449 * target is rediscovered or devloss timeout expires. 3450 */ 3451 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3452 while (time_after(later, jiffies)) { 3453 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3454 return FAILED; 3455 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3456 return SUCCESS; 3457 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3458 rdata = cmnd->device->hostdata; 3459 if (!rdata) 3460 return FAILED; 3461 pnode = rdata->pnode; 3462 } 3463 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3464 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3465 return FAILED; 3466 return SUCCESS; 3467 } 3468 3469 /** 3470 * lpfc_reset_flush_io_context - 3471 * @vport: The virtual port (scsi_host) for the flush context 3472 * @tgt_id: If aborting by Target contect - specifies the target id 3473 * @lun_id: If aborting by Lun context - specifies the lun id 3474 * @context: specifies the context level to flush at. 3475 * 3476 * After a reset condition via TMF, we need to flush orphaned i/o 3477 * contexts from the adapter. This routine aborts any contexts 3478 * outstanding, then waits for their completions. The wait is 3479 * bounded by devloss_tmo though. 3480 * 3481 * Return code : 3482 * 0x2003 - Error 3483 * 0x2002 - Success 3484 **/ 3485 static int 3486 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3487 uint64_t lun_id, lpfc_ctx_cmd context) 3488 { 3489 struct lpfc_hba *phba = vport->phba; 3490 unsigned long later; 3491 int cnt; 3492 3493 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3494 if (cnt) 3495 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3496 tgt_id, lun_id, context); 3497 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3498 while (time_after(later, jiffies) && cnt) { 3499 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3500 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3501 } 3502 if (cnt) { 3503 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3504 "0724 I/O flush failure for context %s : cnt x%x\n", 3505 ((context == LPFC_CTX_LUN) ? "LUN" : 3506 ((context == LPFC_CTX_TGT) ? "TGT" : 3507 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3508 cnt); 3509 return FAILED; 3510 } 3511 return SUCCESS; 3512 } 3513 3514 /** 3515 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3516 * @cmnd: Pointer to scsi_cmnd data structure. 3517 * 3518 * This routine does a device reset by sending a LUN_RESET task management 3519 * command. 3520 * 3521 * Return code : 3522 * 0x2003 - Error 3523 * 0x2002 - Success 3524 **/ 3525 static int 3526 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3527 { 3528 struct Scsi_Host *shost = cmnd->device->host; 3529 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3530 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3531 struct lpfc_nodelist *pnode; 3532 unsigned tgt_id = cmnd->device->id; 3533 unsigned int lun_id = cmnd->device->lun; 3534 struct lpfc_scsi_event_header scsi_event; 3535 int status; 3536 3537 if (!rdata) { 3538 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3539 "0798 Device Reset rport failure: rdata x%p\n", rdata); 3540 return FAILED; 3541 } 3542 pnode = rdata->pnode; 3543 status = fc_block_scsi_eh(cmnd); 3544 if (status) 3545 return status; 3546 3547 status = lpfc_chk_tgt_mapped(vport, cmnd); 3548 if (status == FAILED) { 3549 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3550 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3551 return FAILED; 3552 } 3553 3554 scsi_event.event_type = FC_REG_SCSI_EVENT; 3555 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3556 scsi_event.lun = lun_id; 3557 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3558 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3559 3560 fc_host_post_vendor_event(shost, fc_get_event_number(), 3561 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3562 3563 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3564 FCP_LUN_RESET); 3565 3566 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3567 "0713 SCSI layer issued Device Reset (%d, %d) " 3568 "return x%x\n", tgt_id, lun_id, status); 3569 3570 /* 3571 * We have to clean up i/o as : they may be orphaned by the TMF; 3572 * or if the TMF failed, they may be in an indeterminate state. 3573 * So, continue on. 3574 * We will report success if all the i/o aborts successfully. 3575 */ 3576 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3577 LPFC_CTX_LUN); 3578 return status; 3579 } 3580 3581 /** 3582 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3583 * @cmnd: Pointer to scsi_cmnd data structure. 3584 * 3585 * This routine does a target reset by sending a TARGET_RESET task management 3586 * command. 3587 * 3588 * Return code : 3589 * 0x2003 - Error 3590 * 0x2002 - Success 3591 **/ 3592 static int 3593 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3594 { 3595 struct Scsi_Host *shost = cmnd->device->host; 3596 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3597 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3598 struct lpfc_nodelist *pnode; 3599 unsigned tgt_id = cmnd->device->id; 3600 unsigned int lun_id = cmnd->device->lun; 3601 struct lpfc_scsi_event_header scsi_event; 3602 int status; 3603 3604 if (!rdata) { 3605 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3606 "0799 Target Reset rport failure: rdata x%p\n", rdata); 3607 return FAILED; 3608 } 3609 pnode = rdata->pnode; 3610 status = fc_block_scsi_eh(cmnd); 3611 if (status) 3612 return status; 3613 3614 status = lpfc_chk_tgt_mapped(vport, cmnd); 3615 if (status == FAILED) { 3616 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3617 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3618 return FAILED; 3619 } 3620 3621 scsi_event.event_type = FC_REG_SCSI_EVENT; 3622 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3623 scsi_event.lun = 0; 3624 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3625 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3626 3627 fc_host_post_vendor_event(shost, fc_get_event_number(), 3628 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3629 3630 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3631 FCP_TARGET_RESET); 3632 3633 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3634 "0723 SCSI layer issued Target Reset (%d, %d) " 3635 "return x%x\n", tgt_id, lun_id, status); 3636 3637 /* 3638 * We have to clean up i/o as : they may be orphaned by the TMF; 3639 * or if the TMF failed, they may be in an indeterminate state. 3640 * So, continue on. 3641 * We will report success if all the i/o aborts successfully. 3642 */ 3643 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3644 LPFC_CTX_TGT); 3645 return status; 3646 } 3647 3648 /** 3649 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3650 * @cmnd: Pointer to scsi_cmnd data structure. 3651 * 3652 * This routine does target reset to all targets on @cmnd->device->host. 3653 * This emulates Parallel SCSI Bus Reset Semantics. 3654 * 3655 * Return code : 3656 * 0x2003 - Error 3657 * 0x2002 - Success 3658 **/ 3659 static int 3660 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3661 { 3662 struct Scsi_Host *shost = cmnd->device->host; 3663 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3664 struct lpfc_nodelist *ndlp = NULL; 3665 struct lpfc_scsi_event_header scsi_event; 3666 int match; 3667 int ret = SUCCESS, status, i; 3668 3669 scsi_event.event_type = FC_REG_SCSI_EVENT; 3670 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3671 scsi_event.lun = 0; 3672 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3673 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3674 3675 fc_host_post_vendor_event(shost, fc_get_event_number(), 3676 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3677 3678 ret = fc_block_scsi_eh(cmnd); 3679 if (ret) 3680 return ret; 3681 3682 /* 3683 * Since the driver manages a single bus device, reset all 3684 * targets known to the driver. Should any target reset 3685 * fail, this routine returns failure to the midlayer. 3686 */ 3687 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3688 /* Search for mapped node by target ID */ 3689 match = 0; 3690 spin_lock_irq(shost->host_lock); 3691 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3692 if (!NLP_CHK_NODE_ACT(ndlp)) 3693 continue; 3694 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3695 ndlp->nlp_sid == i && 3696 ndlp->rport) { 3697 match = 1; 3698 break; 3699 } 3700 } 3701 spin_unlock_irq(shost->host_lock); 3702 if (!match) 3703 continue; 3704 3705 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3706 i, 0, FCP_TARGET_RESET); 3707 3708 if (status != SUCCESS) { 3709 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3710 "0700 Bus Reset on target %d failed\n", 3711 i); 3712 ret = FAILED; 3713 } 3714 } 3715 /* 3716 * We have to clean up i/o as : they may be orphaned by the TMFs 3717 * above; or if any of the TMFs failed, they may be in an 3718 * indeterminate state. 3719 * We will report success if all the i/o aborts successfully. 3720 */ 3721 3722 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3723 if (status != SUCCESS) 3724 ret = FAILED; 3725 3726 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3727 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3728 return ret; 3729 } 3730 3731 /** 3732 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3733 * @sdev: Pointer to scsi_device. 3734 * 3735 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3736 * globally available list of scsi buffers. This routine also makes sure scsi 3737 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3738 * of scsi buffer exists for the lifetime of the driver. 3739 * 3740 * Return codes: 3741 * non-0 - Error 3742 * 0 - Success 3743 **/ 3744 static int 3745 lpfc_slave_alloc(struct scsi_device *sdev) 3746 { 3747 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3748 struct lpfc_hba *phba = vport->phba; 3749 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3750 uint32_t total = 0; 3751 uint32_t num_to_alloc = 0; 3752 int num_allocated = 0; 3753 uint32_t sdev_cnt; 3754 3755 if (!rport || fc_remote_port_chkready(rport)) 3756 return -ENXIO; 3757 3758 sdev->hostdata = rport->dd_data; 3759 sdev_cnt = atomic_inc_return(&phba->sdev_cnt); 3760 3761 /* 3762 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3763 * available list of scsi buffers. Don't allocate more than the 3764 * HBA limit conveyed to the midlayer via the host structure. The 3765 * formula accounts for the lun_queue_depth + error handlers + 1 3766 * extra. This list of scsi bufs exists for the lifetime of the driver. 3767 */ 3768 total = phba->total_scsi_bufs; 3769 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3770 3771 /* If allocated buffers are enough do nothing */ 3772 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) 3773 return 0; 3774 3775 /* Allow some exchanges to be available always to complete discovery */ 3776 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3777 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3778 "0704 At limitation of %d preallocated " 3779 "command buffers\n", total); 3780 return 0; 3781 /* Allow some exchanges to be available always to complete discovery */ 3782 } else if (total + num_to_alloc > 3783 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3784 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3785 "0705 Allocation request of %d " 3786 "command buffers will exceed max of %d. " 3787 "Reducing allocation request to %d.\n", 3788 num_to_alloc, phba->cfg_hba_queue_depth, 3789 (phba->cfg_hba_queue_depth - total)); 3790 num_to_alloc = phba->cfg_hba_queue_depth - total; 3791 } 3792 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 3793 if (num_to_alloc != num_allocated) { 3794 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3795 "0708 Allocation request of %d " 3796 "command buffers did not succeed. " 3797 "Allocated %d buffers.\n", 3798 num_to_alloc, num_allocated); 3799 } 3800 if (num_allocated > 0) 3801 phba->total_scsi_bufs += num_allocated; 3802 return 0; 3803 } 3804 3805 /** 3806 * lpfc_slave_configure - scsi_host_template slave_configure entry point 3807 * @sdev: Pointer to scsi_device. 3808 * 3809 * This routine configures following items 3810 * - Tag command queuing support for @sdev if supported. 3811 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 3812 * 3813 * Return codes: 3814 * 0 - Success 3815 **/ 3816 static int 3817 lpfc_slave_configure(struct scsi_device *sdev) 3818 { 3819 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3820 struct lpfc_hba *phba = vport->phba; 3821 3822 if (sdev->tagged_supported) 3823 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 3824 else 3825 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 3826 3827 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3828 lpfc_sli_handle_fast_ring_event(phba, 3829 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3830 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3831 lpfc_poll_rearm_timer(phba); 3832 } 3833 3834 return 0; 3835 } 3836 3837 /** 3838 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 3839 * @sdev: Pointer to scsi_device. 3840 * 3841 * This routine sets @sdev hostatdata filed to null. 3842 **/ 3843 static void 3844 lpfc_slave_destroy(struct scsi_device *sdev) 3845 { 3846 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3847 struct lpfc_hba *phba = vport->phba; 3848 atomic_dec(&phba->sdev_cnt); 3849 sdev->hostdata = NULL; 3850 return; 3851 } 3852 3853 3854 struct scsi_host_template lpfc_template = { 3855 .module = THIS_MODULE, 3856 .name = LPFC_DRIVER_NAME, 3857 .info = lpfc_info, 3858 .queuecommand = lpfc_queuecommand, 3859 .eh_abort_handler = lpfc_abort_handler, 3860 .eh_device_reset_handler = lpfc_device_reset_handler, 3861 .eh_target_reset_handler = lpfc_target_reset_handler, 3862 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3863 .slave_alloc = lpfc_slave_alloc, 3864 .slave_configure = lpfc_slave_configure, 3865 .slave_destroy = lpfc_slave_destroy, 3866 .scan_finished = lpfc_scan_finished, 3867 .this_id = -1, 3868 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3869 .cmd_per_lun = LPFC_CMD_PER_LUN, 3870 .use_clustering = ENABLE_CLUSTERING, 3871 .shost_attrs = lpfc_hba_attrs, 3872 .max_sectors = 0xFFFF, 3873 .vendor_id = LPFC_NL_VENDOR_ID, 3874 .change_queue_depth = lpfc_change_queue_depth, 3875 }; 3876 3877 struct scsi_host_template lpfc_vport_template = { 3878 .module = THIS_MODULE, 3879 .name = LPFC_DRIVER_NAME, 3880 .info = lpfc_info, 3881 .queuecommand = lpfc_queuecommand, 3882 .eh_abort_handler = lpfc_abort_handler, 3883 .eh_device_reset_handler = lpfc_device_reset_handler, 3884 .eh_target_reset_handler = lpfc_target_reset_handler, 3885 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3886 .slave_alloc = lpfc_slave_alloc, 3887 .slave_configure = lpfc_slave_configure, 3888 .slave_destroy = lpfc_slave_destroy, 3889 .scan_finished = lpfc_scan_finished, 3890 .this_id = -1, 3891 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3892 .cmd_per_lun = LPFC_CMD_PER_LUN, 3893 .use_clustering = ENABLE_CLUSTERING, 3894 .shost_attrs = lpfc_vport_attrs, 3895 .max_sectors = 0xFFFF, 3896 .change_queue_depth = lpfc_change_queue_depth, 3897 }; 3898