1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/sched/clock.h> 34 #include <linux/ctype.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/irq.h> 40 #include <linux/bitops.h> 41 #include <linux/crash_dump.h> 42 #include <linux/cpu.h> 43 #include <linux/cpuhotplug.h> 44 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_transport_fc.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/fc/fc_fs.h> 51 52 #include "lpfc_hw4.h" 53 #include "lpfc_hw.h" 54 #include "lpfc_sli.h" 55 #include "lpfc_sli4.h" 56 #include "lpfc_nl.h" 57 #include "lpfc_disc.h" 58 #include "lpfc.h" 59 #include "lpfc_scsi.h" 60 #include "lpfc_nvme.h" 61 #include "lpfc_logmsg.h" 62 #include "lpfc_crtn.h" 63 #include "lpfc_vport.h" 64 #include "lpfc_version.h" 65 #include "lpfc_ids.h" 66 67 static enum cpuhp_state lpfc_cpuhp_state; 68 /* Used when mapping IRQ vectors in a driver centric manner */ 69 static uint32_t lpfc_present_cpu; 70 static bool lpfc_pldv_detect; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba); 98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 99 100 static struct scsi_transport_template *lpfc_transport_template = NULL; 101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 102 static DEFINE_IDR(lpfc_hba_index); 103 #define LPFC_NVMET_BUF_POST 254 104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts); 106 107 /** 108 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 109 * @phba: pointer to lpfc hba data structure. 110 * 111 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 112 * mailbox command. It retrieves the revision information from the HBA and 113 * collects the Vital Product Data (VPD) about the HBA for preparing the 114 * configuration of the HBA. 115 * 116 * Return codes: 117 * 0 - success. 118 * -ERESTART - requests the SLI layer to reset the HBA and try again. 119 * Any other value - indicates an error. 120 **/ 121 int 122 lpfc_config_port_prep(struct lpfc_hba *phba) 123 { 124 lpfc_vpd_t *vp = &phba->vpd; 125 int i = 0, rc; 126 LPFC_MBOXQ_t *pmb; 127 MAILBOX_t *mb; 128 char *lpfc_vpd_data = NULL; 129 uint16_t offset = 0; 130 static char licensed[56] = 131 "key unlock for use with gnu public licensed code only\0"; 132 static int init_key = 1; 133 134 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 135 if (!pmb) { 136 phba->link_state = LPFC_HBA_ERROR; 137 return -ENOMEM; 138 } 139 140 mb = &pmb->u.mb; 141 phba->link_state = LPFC_INIT_MBX_CMDS; 142 143 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 144 if (init_key) { 145 uint32_t *ptext = (uint32_t *) licensed; 146 147 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 148 *ptext = cpu_to_be32(*ptext); 149 init_key = 0; 150 } 151 152 lpfc_read_nv(phba, pmb); 153 memset((char*)mb->un.varRDnvp.rsvd3, 0, 154 sizeof (mb->un.varRDnvp.rsvd3)); 155 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 156 sizeof (licensed)); 157 158 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 159 160 if (rc != MBX_SUCCESS) { 161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 162 "0324 Config Port initialization " 163 "error, mbxCmd x%x READ_NVPARM, " 164 "mbxStatus x%x\n", 165 mb->mbxCommand, mb->mbxStatus); 166 mempool_free(pmb, phba->mbox_mem_pool); 167 return -ERESTART; 168 } 169 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 170 sizeof(phba->wwnn)); 171 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 172 sizeof(phba->wwpn)); 173 } 174 175 /* 176 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 177 * which was already set in lpfc_get_cfgparam() 178 */ 179 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 180 181 /* Setup and issue mailbox READ REV command */ 182 lpfc_read_rev(phba, pmb); 183 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 184 if (rc != MBX_SUCCESS) { 185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 186 "0439 Adapter failed to init, mbxCmd x%x " 187 "READ_REV, mbxStatus x%x\n", 188 mb->mbxCommand, mb->mbxStatus); 189 mempool_free( pmb, phba->mbox_mem_pool); 190 return -ERESTART; 191 } 192 193 194 /* 195 * The value of rr must be 1 since the driver set the cv field to 1. 196 * This setting requires the FW to set all revision fields. 197 */ 198 if (mb->un.varRdRev.rr == 0) { 199 vp->rev.rBit = 0; 200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 201 "0440 Adapter failed to init, READ_REV has " 202 "missing revision information.\n"); 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -ERESTART; 205 } 206 207 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 208 mempool_free(pmb, phba->mbox_mem_pool); 209 return -EINVAL; 210 } 211 212 /* Save information as VPD data */ 213 vp->rev.rBit = 1; 214 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 215 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 216 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 217 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 218 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 219 vp->rev.biuRev = mb->un.varRdRev.biuRev; 220 vp->rev.smRev = mb->un.varRdRev.smRev; 221 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 222 vp->rev.endecRev = mb->un.varRdRev.endecRev; 223 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 224 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 225 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 226 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 227 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 228 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 229 230 /* If the sli feature level is less then 9, we must 231 * tear down all RPIs and VPIs on link down if NPIV 232 * is enabled. 233 */ 234 if (vp->rev.feaLevelHigh < 9) 235 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 236 237 if (lpfc_is_LC_HBA(phba->pcidev->device)) 238 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 239 sizeof (phba->RandomData)); 240 241 /* Get adapter VPD information */ 242 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 243 if (!lpfc_vpd_data) 244 goto out_free_mbox; 245 do { 246 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 247 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 248 249 if (rc != MBX_SUCCESS) { 250 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 251 "0441 VPD not present on adapter, " 252 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 253 mb->mbxCommand, mb->mbxStatus); 254 mb->un.varDmp.word_cnt = 0; 255 } 256 /* dump mem may return a zero when finished or we got a 257 * mailbox error, either way we are done. 258 */ 259 if (mb->un.varDmp.word_cnt == 0) 260 break; 261 262 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 263 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 264 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 265 lpfc_vpd_data + offset, 266 mb->un.varDmp.word_cnt); 267 offset += mb->un.varDmp.word_cnt; 268 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 269 270 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 271 272 kfree(lpfc_vpd_data); 273 out_free_mbox: 274 mempool_free(pmb, phba->mbox_mem_pool); 275 return 0; 276 } 277 278 /** 279 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 280 * @phba: pointer to lpfc hba data structure. 281 * @pmboxq: pointer to the driver internal queue element for mailbox command. 282 * 283 * This is the completion handler for driver's configuring asynchronous event 284 * mailbox command to the device. If the mailbox command returns successfully, 285 * it will set internal async event support flag to 1; otherwise, it will 286 * set internal async event support flag to 0. 287 **/ 288 static void 289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 290 { 291 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 292 phba->temp_sensor_support = 1; 293 else 294 phba->temp_sensor_support = 0; 295 mempool_free(pmboxq, phba->mbox_mem_pool); 296 return; 297 } 298 299 /** 300 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 301 * @phba: pointer to lpfc hba data structure. 302 * @pmboxq: pointer to the driver internal queue element for mailbox command. 303 * 304 * This is the completion handler for dump mailbox command for getting 305 * wake up parameters. When this command complete, the response contain 306 * Option rom version of the HBA. This function translate the version number 307 * into a human readable string and store it in OptionROMVersion. 308 **/ 309 static void 310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 311 { 312 struct prog_id *prg; 313 uint32_t prog_id_word; 314 char dist = ' '; 315 /* character array used for decoding dist type. */ 316 char dist_char[] = "nabx"; 317 318 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 319 mempool_free(pmboxq, phba->mbox_mem_pool); 320 return; 321 } 322 323 prg = (struct prog_id *) &prog_id_word; 324 325 /* word 7 contain option rom version */ 326 prog_id_word = pmboxq->u.mb.un.varWords[7]; 327 328 /* Decode the Option rom version word to a readable string */ 329 dist = dist_char[prg->dist]; 330 331 if ((prg->dist == 3) && (prg->num == 0)) 332 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 333 prg->ver, prg->rev, prg->lev); 334 else 335 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 336 prg->ver, prg->rev, prg->lev, 337 dist, prg->num); 338 mempool_free(pmboxq, phba->mbox_mem_pool); 339 return; 340 } 341 342 /** 343 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 344 * @vport: pointer to lpfc vport data structure. 345 * 346 * 347 * Return codes 348 * None. 349 **/ 350 void 351 lpfc_update_vport_wwn(struct lpfc_vport *vport) 352 { 353 struct lpfc_hba *phba = vport->phba; 354 355 /* 356 * If the name is empty or there exists a soft name 357 * then copy the service params name, otherwise use the fc name 358 */ 359 if (vport->fc_nodename.u.wwn[0] == 0) 360 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 361 sizeof(struct lpfc_name)); 362 else 363 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 364 sizeof(struct lpfc_name)); 365 366 /* 367 * If the port name has changed, then set the Param changes flag 368 * to unreg the login 369 */ 370 if (vport->fc_portname.u.wwn[0] != 0 && 371 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 372 sizeof(struct lpfc_name))) { 373 vport->vport_flag |= FAWWPN_PARAM_CHG; 374 375 if (phba->sli_rev == LPFC_SLI_REV4 && 376 vport->port_type == LPFC_PHYSICAL_PORT && 377 phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { 378 if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)) 379 phba->sli4_hba.fawwpn_flag &= 380 ~LPFC_FAWWPN_FABRIC; 381 lpfc_printf_log(phba, KERN_INFO, 382 LOG_SLI | LOG_DISCOVERY | LOG_ELS, 383 "2701 FA-PWWN change WWPN from %llx to " 384 "%llx: vflag x%x fawwpn_flag x%x\n", 385 wwn_to_u64(vport->fc_portname.u.wwn), 386 wwn_to_u64 387 (vport->fc_sparam.portName.u.wwn), 388 vport->vport_flag, 389 phba->sli4_hba.fawwpn_flag); 390 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 391 sizeof(struct lpfc_name)); 392 } 393 } 394 395 if (vport->fc_portname.u.wwn[0] == 0) 396 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 397 sizeof(struct lpfc_name)); 398 else 399 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 400 sizeof(struct lpfc_name)); 401 } 402 403 /** 404 * lpfc_config_port_post - Perform lpfc initialization after config port 405 * @phba: pointer to lpfc hba data structure. 406 * 407 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 408 * command call. It performs all internal resource and state setups on the 409 * port: post IOCB buffers, enable appropriate host interrupt attentions, 410 * ELS ring timers, etc. 411 * 412 * Return codes 413 * 0 - success. 414 * Any other value - error. 415 **/ 416 int 417 lpfc_config_port_post(struct lpfc_hba *phba) 418 { 419 struct lpfc_vport *vport = phba->pport; 420 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 421 LPFC_MBOXQ_t *pmb; 422 MAILBOX_t *mb; 423 struct lpfc_dmabuf *mp; 424 struct lpfc_sli *psli = &phba->sli; 425 uint32_t status, timeout; 426 int i, j; 427 int rc; 428 429 spin_lock_irq(&phba->hbalock); 430 /* 431 * If the Config port completed correctly the HBA is not 432 * over heated any more. 433 */ 434 if (phba->over_temp_state == HBA_OVER_TEMP) 435 phba->over_temp_state = HBA_NORMAL_TEMP; 436 spin_unlock_irq(&phba->hbalock); 437 438 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 439 if (!pmb) { 440 phba->link_state = LPFC_HBA_ERROR; 441 return -ENOMEM; 442 } 443 mb = &pmb->u.mb; 444 445 /* Get login parameters for NID. */ 446 rc = lpfc_read_sparam(phba, pmb, 0); 447 if (rc) { 448 mempool_free(pmb, phba->mbox_mem_pool); 449 return -ENOMEM; 450 } 451 452 pmb->vport = vport; 453 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 455 "0448 Adapter failed init, mbxCmd x%x " 456 "READ_SPARM mbxStatus x%x\n", 457 mb->mbxCommand, mb->mbxStatus); 458 phba->link_state = LPFC_HBA_ERROR; 459 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 460 return -EIO; 461 } 462 463 mp = pmb->ctx_buf; 464 465 /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no 466 * longer needed. Prevent unintended ctx_buf access as the mbox is 467 * reused. 468 */ 469 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 470 lpfc_mbuf_free(phba, mp->virt, mp->phys); 471 kfree(mp); 472 pmb->ctx_buf = NULL; 473 lpfc_update_vport_wwn(vport); 474 475 /* Update the fc_host data structures with new wwn. */ 476 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 477 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 478 fc_host_max_npiv_vports(shost) = phba->max_vpi; 479 480 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 481 /* This should be consolidated into parse_vpd ? - mr */ 482 if (phba->SerialNumber[0] == 0) { 483 uint8_t *outptr; 484 485 outptr = &vport->fc_nodename.u.s.IEEE[0]; 486 for (i = 0; i < 12; i++) { 487 status = *outptr++; 488 j = ((status & 0xf0) >> 4); 489 if (j <= 9) 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x30 + (uint8_t) j); 492 else 493 phba->SerialNumber[i] = 494 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 495 i++; 496 j = (status & 0xf); 497 if (j <= 9) 498 phba->SerialNumber[i] = 499 (char)((uint8_t) 0x30 + (uint8_t) j); 500 else 501 phba->SerialNumber[i] = 502 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 503 } 504 } 505 506 lpfc_read_config(phba, pmb); 507 pmb->vport = vport; 508 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 509 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 510 "0453 Adapter failed to init, mbxCmd x%x " 511 "READ_CONFIG, mbxStatus x%x\n", 512 mb->mbxCommand, mb->mbxStatus); 513 phba->link_state = LPFC_HBA_ERROR; 514 mempool_free( pmb, phba->mbox_mem_pool); 515 return -EIO; 516 } 517 518 /* Check if the port is disabled */ 519 lpfc_sli_read_link_ste(phba); 520 521 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 522 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 524 "3359 HBA queue depth changed from %d to %d\n", 525 phba->cfg_hba_queue_depth, 526 mb->un.varRdConfig.max_xri); 527 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 528 } 529 530 phba->lmt = mb->un.varRdConfig.lmt; 531 532 /* Get the default values for Model Name and Description */ 533 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 534 535 phba->link_state = LPFC_LINK_DOWN; 536 537 /* Only process IOCBs on ELS ring till hba_state is READY */ 538 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 539 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 540 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 541 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 542 543 /* Post receive buffers for desired rings */ 544 if (phba->sli_rev != 3) 545 lpfc_post_rcv_buf(phba); 546 547 /* 548 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 549 */ 550 if (phba->intr_type == MSIX) { 551 rc = lpfc_config_msi(phba, pmb); 552 if (rc) { 553 mempool_free(pmb, phba->mbox_mem_pool); 554 return -EIO; 555 } 556 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 557 if (rc != MBX_SUCCESS) { 558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 559 "0352 Config MSI mailbox command " 560 "failed, mbxCmd x%x, mbxStatus x%x\n", 561 pmb->u.mb.mbxCommand, 562 pmb->u.mb.mbxStatus); 563 mempool_free(pmb, phba->mbox_mem_pool); 564 return -EIO; 565 } 566 } 567 568 spin_lock_irq(&phba->hbalock); 569 /* Initialize ERATT handling flag */ 570 clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 571 572 /* Enable appropriate host interrupts */ 573 if (lpfc_readl(phba->HCregaddr, &status)) { 574 spin_unlock_irq(&phba->hbalock); 575 return -EIO; 576 } 577 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 578 if (psli->num_rings > 0) 579 status |= HC_R0INT_ENA; 580 if (psli->num_rings > 1) 581 status |= HC_R1INT_ENA; 582 if (psli->num_rings > 2) 583 status |= HC_R2INT_ENA; 584 if (psli->num_rings > 3) 585 status |= HC_R3INT_ENA; 586 587 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 588 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 589 status &= ~(HC_R0INT_ENA); 590 591 writel(status, phba->HCregaddr); 592 readl(phba->HCregaddr); /* flush */ 593 spin_unlock_irq(&phba->hbalock); 594 595 /* Set up ring-0 (ELS) timer */ 596 timeout = phba->fc_ratov * 2; 597 mod_timer(&vport->els_tmofunc, 598 jiffies + msecs_to_jiffies(1000 * timeout)); 599 /* Set up heart beat (HB) timer */ 600 mod_timer(&phba->hb_tmofunc, 601 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 602 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 603 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 604 phba->last_completion_time = jiffies; 605 /* Set up error attention (ERATT) polling timer */ 606 mod_timer(&phba->eratt_poll, 607 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 608 609 if (test_bit(LINK_DISABLED, &phba->hba_flag)) { 610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 611 "2598 Adapter Link is disabled.\n"); 612 lpfc_down_link(phba, pmb); 613 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 614 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 615 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 617 "2599 Adapter failed to issue DOWN_LINK" 618 " mbox command rc 0x%x\n", rc); 619 620 mempool_free(pmb, phba->mbox_mem_pool); 621 return -EIO; 622 } 623 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 624 mempool_free(pmb, phba->mbox_mem_pool); 625 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 626 if (rc) 627 return rc; 628 } 629 /* MBOX buffer will be freed in mbox compl */ 630 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 631 if (!pmb) { 632 phba->link_state = LPFC_HBA_ERROR; 633 return -ENOMEM; 634 } 635 636 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 637 pmb->mbox_cmpl = lpfc_config_async_cmpl; 638 pmb->vport = phba->pport; 639 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 640 641 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 643 "0456 Adapter failed to issue " 644 "ASYNCEVT_ENABLE mbox status x%x\n", 645 rc); 646 mempool_free(pmb, phba->mbox_mem_pool); 647 } 648 649 /* Get Option rom version */ 650 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 651 if (!pmb) { 652 phba->link_state = LPFC_HBA_ERROR; 653 return -ENOMEM; 654 } 655 656 lpfc_dump_wakeup_param(phba, pmb); 657 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 658 pmb->vport = phba->pport; 659 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 660 661 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 663 "0435 Adapter failed " 664 "to get Option ROM version status x%x\n", rc); 665 mempool_free(pmb, phba->mbox_mem_pool); 666 } 667 668 return 0; 669 } 670 671 /** 672 * lpfc_sli4_refresh_params - update driver copy of params. 673 * @phba: Pointer to HBA context object. 674 * 675 * This is called to refresh driver copy of dynamic fields from the 676 * common_get_sli4_parameters descriptor. 677 **/ 678 int 679 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 680 { 681 LPFC_MBOXQ_t *mboxq; 682 struct lpfc_mqe *mqe; 683 struct lpfc_sli4_parameters *mbx_sli4_parameters; 684 int length, rc; 685 686 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 687 if (!mboxq) 688 return -ENOMEM; 689 690 mqe = &mboxq->u.mqe; 691 /* Read the port's SLI4 Config Parameters */ 692 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 693 sizeof(struct lpfc_sli4_cfg_mhdr)); 694 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 695 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 696 length, LPFC_SLI4_MBX_EMBED); 697 698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 699 if (unlikely(rc)) { 700 mempool_free(mboxq, phba->mbox_mem_pool); 701 return rc; 702 } 703 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 704 phba->sli4_hba.pc_sli4_params.mi_cap = 705 bf_get(cfg_mi_ver, mbx_sli4_parameters); 706 707 /* Are we forcing MI off via module parameter? */ 708 if (phba->cfg_enable_mi) 709 phba->sli4_hba.pc_sli4_params.mi_ver = 710 bf_get(cfg_mi_ver, mbx_sli4_parameters); 711 else 712 phba->sli4_hba.pc_sli4_params.mi_ver = 0; 713 714 phba->sli4_hba.pc_sli4_params.cmf = 715 bf_get(cfg_cmf, mbx_sli4_parameters); 716 phba->sli4_hba.pc_sli4_params.pls = 717 bf_get(cfg_pvl, mbx_sli4_parameters); 718 719 mempool_free(mboxq, phba->mbox_mem_pool); 720 return rc; 721 } 722 723 /** 724 * lpfc_hba_init_link - Initialize the FC link 725 * @phba: pointer to lpfc hba data structure. 726 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 727 * 728 * This routine will issue the INIT_LINK mailbox command call. 729 * It is available to other drivers through the lpfc_hba data 730 * structure for use as a delayed link up mechanism with the 731 * module parameter lpfc_suppress_link_up. 732 * 733 * Return code 734 * 0 - success 735 * Any other value - error 736 **/ 737 static int 738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 739 { 740 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 741 } 742 743 /** 744 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 745 * @phba: pointer to lpfc hba data structure. 746 * @fc_topology: desired fc topology. 747 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 748 * 749 * This routine will issue the INIT_LINK mailbox command call. 750 * It is available to other drivers through the lpfc_hba data 751 * structure for use as a delayed link up mechanism with the 752 * module parameter lpfc_suppress_link_up. 753 * 754 * Return code 755 * 0 - success 756 * Any other value - error 757 **/ 758 int 759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 760 uint32_t flag) 761 { 762 struct lpfc_vport *vport = phba->pport; 763 LPFC_MBOXQ_t *pmb; 764 MAILBOX_t *mb; 765 int rc; 766 767 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 768 if (!pmb) { 769 phba->link_state = LPFC_HBA_ERROR; 770 return -ENOMEM; 771 } 772 mb = &pmb->u.mb; 773 pmb->vport = vport; 774 775 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 776 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 777 !(phba->lmt & LMT_1Gb)) || 778 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 779 !(phba->lmt & LMT_2Gb)) || 780 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 781 !(phba->lmt & LMT_4Gb)) || 782 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 783 !(phba->lmt & LMT_8Gb)) || 784 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 785 !(phba->lmt & LMT_10Gb)) || 786 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 787 !(phba->lmt & LMT_16Gb)) || 788 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 789 !(phba->lmt & LMT_32Gb)) || 790 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 791 !(phba->lmt & LMT_64Gb))) { 792 /* Reset link speed to auto */ 793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 794 "1302 Invalid speed for this board:%d " 795 "Reset link speed to auto.\n", 796 phba->cfg_link_speed); 797 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 798 } 799 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 800 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 801 if (phba->sli_rev < LPFC_SLI_REV4) 802 lpfc_set_loopback_flag(phba); 803 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 804 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 806 "0498 Adapter failed to init, mbxCmd x%x " 807 "INIT_LINK, mbxStatus x%x\n", 808 mb->mbxCommand, mb->mbxStatus); 809 if (phba->sli_rev <= LPFC_SLI_REV3) { 810 /* Clear all interrupt enable conditions */ 811 writel(0, phba->HCregaddr); 812 readl(phba->HCregaddr); /* flush */ 813 /* Clear all pending interrupts */ 814 writel(0xffffffff, phba->HAregaddr); 815 readl(phba->HAregaddr); /* flush */ 816 } 817 phba->link_state = LPFC_HBA_ERROR; 818 if (rc != MBX_BUSY || flag == MBX_POLL) 819 mempool_free(pmb, phba->mbox_mem_pool); 820 return -EIO; 821 } 822 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 823 if (flag == MBX_POLL) 824 mempool_free(pmb, phba->mbox_mem_pool); 825 826 return 0; 827 } 828 829 /** 830 * lpfc_hba_down_link - this routine downs the FC link 831 * @phba: pointer to lpfc hba data structure. 832 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 833 * 834 * This routine will issue the DOWN_LINK mailbox command call. 835 * It is available to other drivers through the lpfc_hba data 836 * structure for use to stop the link. 837 * 838 * Return code 839 * 0 - success 840 * Any other value - error 841 **/ 842 static int 843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 844 { 845 LPFC_MBOXQ_t *pmb; 846 int rc; 847 848 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 849 if (!pmb) { 850 phba->link_state = LPFC_HBA_ERROR; 851 return -ENOMEM; 852 } 853 854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 855 "0491 Adapter Link is disabled.\n"); 856 lpfc_down_link(phba, pmb); 857 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 858 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 859 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 861 "2522 Adapter failed to issue DOWN_LINK" 862 " mbox command rc 0x%x\n", rc); 863 864 mempool_free(pmb, phba->mbox_mem_pool); 865 return -EIO; 866 } 867 if (flag == MBX_POLL) 868 mempool_free(pmb, phba->mbox_mem_pool); 869 870 return 0; 871 } 872 873 /** 874 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 875 * @phba: pointer to lpfc HBA data structure. 876 * 877 * This routine will do LPFC uninitialization before the HBA is reset when 878 * bringing down the SLI Layer. 879 * 880 * Return codes 881 * 0 - success. 882 * Any other value - error. 883 **/ 884 int 885 lpfc_hba_down_prep(struct lpfc_hba *phba) 886 { 887 struct lpfc_vport **vports; 888 int i; 889 890 if (phba->sli_rev <= LPFC_SLI_REV3) { 891 /* Disable interrupts */ 892 writel(0, phba->HCregaddr); 893 readl(phba->HCregaddr); /* flush */ 894 } 895 896 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 897 lpfc_cleanup_discovery_resources(phba->pport); 898 else { 899 vports = lpfc_create_vport_work_array(phba); 900 if (vports != NULL) 901 for (i = 0; i <= phba->max_vports && 902 vports[i] != NULL; i++) 903 lpfc_cleanup_discovery_resources(vports[i]); 904 lpfc_destroy_vport_work_array(phba, vports); 905 } 906 return 0; 907 } 908 909 /** 910 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 911 * rspiocb which got deferred 912 * 913 * @phba: pointer to lpfc HBA data structure. 914 * 915 * This routine will cleanup completed slow path events after HBA is reset 916 * when bringing down the SLI Layer. 917 * 918 * 919 * Return codes 920 * void. 921 **/ 922 static void 923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 924 { 925 struct lpfc_iocbq *rspiocbq; 926 struct hbq_dmabuf *dmabuf; 927 struct lpfc_cq_event *cq_event; 928 929 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 930 931 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 932 /* Get the response iocb from the head of work queue */ 933 spin_lock_irq(&phba->hbalock); 934 list_remove_head(&phba->sli4_hba.sp_queue_event, 935 cq_event, struct lpfc_cq_event, list); 936 spin_unlock_irq(&phba->hbalock); 937 938 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 939 case CQE_CODE_COMPL_WQE: 940 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 941 cq_event); 942 lpfc_sli_release_iocbq(phba, rspiocbq); 943 break; 944 case CQE_CODE_RECEIVE: 945 case CQE_CODE_RECEIVE_V1: 946 dmabuf = container_of(cq_event, struct hbq_dmabuf, 947 cq_event); 948 lpfc_in_buf_free(phba, &dmabuf->dbuf); 949 } 950 } 951 } 952 953 /** 954 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 955 * @phba: pointer to lpfc HBA data structure. 956 * 957 * This routine will cleanup posted ELS buffers after the HBA is reset 958 * when bringing down the SLI Layer. 959 * 960 * 961 * Return codes 962 * void. 963 **/ 964 static void 965 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 966 { 967 struct lpfc_sli *psli = &phba->sli; 968 struct lpfc_sli_ring *pring; 969 struct lpfc_dmabuf *mp, *next_mp; 970 LIST_HEAD(buflist); 971 int count; 972 973 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 974 lpfc_sli_hbqbuf_free_all(phba); 975 else { 976 /* Cleanup preposted buffers on the ELS ring */ 977 pring = &psli->sli3_ring[LPFC_ELS_RING]; 978 spin_lock_irq(&phba->hbalock); 979 list_splice_init(&pring->postbufq, &buflist); 980 spin_unlock_irq(&phba->hbalock); 981 982 count = 0; 983 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 984 list_del(&mp->list); 985 count++; 986 lpfc_mbuf_free(phba, mp->virt, mp->phys); 987 kfree(mp); 988 } 989 990 spin_lock_irq(&phba->hbalock); 991 pring->postbufq_cnt -= count; 992 spin_unlock_irq(&phba->hbalock); 993 } 994 } 995 996 /** 997 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 998 * @phba: pointer to lpfc HBA data structure. 999 * 1000 * This routine will cleanup the txcmplq after the HBA is reset when bringing 1001 * down the SLI Layer. 1002 * 1003 * Return codes 1004 * void 1005 **/ 1006 static void 1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 1008 { 1009 struct lpfc_sli *psli = &phba->sli; 1010 struct lpfc_queue *qp = NULL; 1011 struct lpfc_sli_ring *pring; 1012 LIST_HEAD(completions); 1013 int i; 1014 struct lpfc_iocbq *piocb, *next_iocb; 1015 1016 if (phba->sli_rev != LPFC_SLI_REV4) { 1017 for (i = 0; i < psli->num_rings; i++) { 1018 pring = &psli->sli3_ring[i]; 1019 spin_lock_irq(&phba->hbalock); 1020 /* At this point in time the HBA is either reset or DOA 1021 * Nothing should be on txcmplq as it will 1022 * NEVER complete. 1023 */ 1024 list_splice_init(&pring->txcmplq, &completions); 1025 pring->txcmplq_cnt = 0; 1026 spin_unlock_irq(&phba->hbalock); 1027 1028 lpfc_sli_abort_iocb_ring(phba, pring); 1029 } 1030 /* Cancel all the IOCBs from the completions list */ 1031 lpfc_sli_cancel_iocbs(phba, &completions, 1032 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1033 return; 1034 } 1035 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1036 pring = qp->pring; 1037 if (!pring) 1038 continue; 1039 spin_lock_irq(&pring->ring_lock); 1040 list_for_each_entry_safe(piocb, next_iocb, 1041 &pring->txcmplq, list) 1042 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1043 list_splice_init(&pring->txcmplq, &completions); 1044 pring->txcmplq_cnt = 0; 1045 spin_unlock_irq(&pring->ring_lock); 1046 lpfc_sli_abort_iocb_ring(phba, pring); 1047 } 1048 /* Cancel all the IOCBs from the completions list */ 1049 lpfc_sli_cancel_iocbs(phba, &completions, 1050 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1051 } 1052 1053 /** 1054 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1055 * @phba: pointer to lpfc HBA data structure. 1056 * 1057 * This routine will do uninitialization after the HBA is reset when bring 1058 * down the SLI Layer. 1059 * 1060 * Return codes 1061 * 0 - success. 1062 * Any other value - error. 1063 **/ 1064 static int 1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1066 { 1067 lpfc_hba_free_post_buf(phba); 1068 lpfc_hba_clean_txcmplq(phba); 1069 return 0; 1070 } 1071 1072 /** 1073 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1074 * @phba: pointer to lpfc HBA data structure. 1075 * 1076 * This routine will do uninitialization after the HBA is reset when bring 1077 * down the SLI Layer. 1078 * 1079 * Return codes 1080 * 0 - success. 1081 * Any other value - error. 1082 **/ 1083 static int 1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1085 { 1086 struct lpfc_io_buf *psb, *psb_next; 1087 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1088 struct lpfc_sli4_hdw_queue *qp; 1089 LIST_HEAD(aborts); 1090 LIST_HEAD(nvme_aborts); 1091 LIST_HEAD(nvmet_aborts); 1092 struct lpfc_sglq *sglq_entry = NULL; 1093 int cnt, idx; 1094 1095 1096 lpfc_sli_hbqbuf_free_all(phba); 1097 lpfc_hba_clean_txcmplq(phba); 1098 1099 /* At this point in time the HBA is either reset or DOA. Either 1100 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1101 * on the lpfc_els_sgl_list so that it can either be freed if the 1102 * driver is unloading or reposted if the driver is restarting 1103 * the port. 1104 */ 1105 1106 /* sgl_list_lock required because worker thread uses this 1107 * list. 1108 */ 1109 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1110 list_for_each_entry(sglq_entry, 1111 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1112 sglq_entry->state = SGL_FREED; 1113 1114 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1115 &phba->sli4_hba.lpfc_els_sgl_list); 1116 1117 1118 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1119 1120 /* abts_xxxx_buf_list_lock required because worker thread uses this 1121 * list. 1122 */ 1123 spin_lock_irq(&phba->hbalock); 1124 cnt = 0; 1125 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1126 qp = &phba->sli4_hba.hdwq[idx]; 1127 1128 spin_lock(&qp->abts_io_buf_list_lock); 1129 list_splice_init(&qp->lpfc_abts_io_buf_list, 1130 &aborts); 1131 1132 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1133 psb->pCmd = NULL; 1134 psb->status = IOSTAT_SUCCESS; 1135 cnt++; 1136 } 1137 spin_lock(&qp->io_buf_list_put_lock); 1138 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1139 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1140 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1141 qp->abts_scsi_io_bufs = 0; 1142 qp->abts_nvme_io_bufs = 0; 1143 spin_unlock(&qp->io_buf_list_put_lock); 1144 spin_unlock(&qp->abts_io_buf_list_lock); 1145 } 1146 spin_unlock_irq(&phba->hbalock); 1147 1148 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1149 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1150 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1151 &nvmet_aborts); 1152 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1153 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1154 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1155 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1156 } 1157 } 1158 1159 lpfc_sli4_free_sp_events(phba); 1160 return cnt; 1161 } 1162 1163 /** 1164 * lpfc_hba_down_post - Wrapper func for hba down post routine 1165 * @phba: pointer to lpfc HBA data structure. 1166 * 1167 * This routine wraps the actual SLI3 or SLI4 routine for performing 1168 * uninitialization after the HBA is reset when bring down the SLI Layer. 1169 * 1170 * Return codes 1171 * 0 - success. 1172 * Any other value - error. 1173 **/ 1174 int 1175 lpfc_hba_down_post(struct lpfc_hba *phba) 1176 { 1177 return (*phba->lpfc_hba_down_post)(phba); 1178 } 1179 1180 /** 1181 * lpfc_hb_timeout - The HBA-timer timeout handler 1182 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1183 * 1184 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1185 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1186 * work-port-events bitmap and the worker thread is notified. This timeout 1187 * event will be used by the worker thread to invoke the actual timeout 1188 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1189 * be performed in the timeout handler and the HBA timeout event bit shall 1190 * be cleared by the worker thread after it has taken the event bitmap out. 1191 **/ 1192 static void 1193 lpfc_hb_timeout(struct timer_list *t) 1194 { 1195 struct lpfc_hba *phba; 1196 uint32_t tmo_posted; 1197 unsigned long iflag; 1198 1199 phba = from_timer(phba, t, hb_tmofunc); 1200 1201 /* Check for heart beat timeout conditions */ 1202 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1203 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1204 if (!tmo_posted) 1205 phba->pport->work_port_events |= WORKER_HB_TMO; 1206 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1207 1208 /* Tell the worker thread there is work to do */ 1209 if (!tmo_posted) 1210 lpfc_worker_wake_up(phba); 1211 return; 1212 } 1213 1214 /** 1215 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1216 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1217 * 1218 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1219 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1220 * work-port-events bitmap and the worker thread is notified. This timeout 1221 * event will be used by the worker thread to invoke the actual timeout 1222 * handler routine, lpfc_rrq_handler. Any periodical operations will 1223 * be performed in the timeout handler and the RRQ timeout event bit shall 1224 * be cleared by the worker thread after it has taken the event bitmap out. 1225 **/ 1226 static void 1227 lpfc_rrq_timeout(struct timer_list *t) 1228 { 1229 struct lpfc_hba *phba; 1230 1231 phba = from_timer(phba, t, rrq_tmr); 1232 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1233 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1234 return; 1235 } 1236 1237 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1238 lpfc_worker_wake_up(phba); 1239 } 1240 1241 /** 1242 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1243 * @phba: pointer to lpfc hba data structure. 1244 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1245 * 1246 * This is the callback function to the lpfc heart-beat mailbox command. 1247 * If configured, the lpfc driver issues the heart-beat mailbox command to 1248 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1249 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1250 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1251 * heart-beat outstanding state. Once the mailbox command comes back and 1252 * no error conditions detected, the heart-beat mailbox command timer is 1253 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1254 * state is cleared for the next heart-beat. If the timer expired with the 1255 * heart-beat outstanding state set, the driver will put the HBA offline. 1256 **/ 1257 static void 1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1259 { 1260 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 1261 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1262 1263 /* Check and reset heart-beat timer if necessary */ 1264 mempool_free(pmboxq, phba->mbox_mem_pool); 1265 if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) && 1266 !(phba->link_state == LPFC_HBA_ERROR) && 1267 !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1268 mod_timer(&phba->hb_tmofunc, 1269 jiffies + 1270 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1271 return; 1272 } 1273 1274 /* 1275 * lpfc_idle_stat_delay_work - idle_stat tracking 1276 * 1277 * This routine tracks per-eq idle_stat and determines polling decisions. 1278 * 1279 * Return codes: 1280 * None 1281 **/ 1282 static void 1283 lpfc_idle_stat_delay_work(struct work_struct *work) 1284 { 1285 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1286 struct lpfc_hba, 1287 idle_stat_delay_work); 1288 struct lpfc_queue *eq; 1289 struct lpfc_sli4_hdw_queue *hdwq; 1290 struct lpfc_idle_stat *idle_stat; 1291 u32 i, idle_percent; 1292 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1293 1294 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1295 return; 1296 1297 if (phba->link_state == LPFC_HBA_ERROR || 1298 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) || 1299 phba->cmf_active_mode != LPFC_CFG_OFF) 1300 goto requeue; 1301 1302 for_each_present_cpu(i) { 1303 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1304 eq = hdwq->hba_eq; 1305 1306 /* Skip if we've already handled this eq's primary CPU */ 1307 if (eq->chann != i) 1308 continue; 1309 1310 idle_stat = &phba->sli4_hba.idle_stat[i]; 1311 1312 /* get_cpu_idle_time returns values as running counters. Thus, 1313 * to know the amount for this period, the prior counter values 1314 * need to be subtracted from the current counter values. 1315 * From there, the idle time stat can be calculated as a 1316 * percentage of 100 - the sum of the other consumption times. 1317 */ 1318 wall_idle = get_cpu_idle_time(i, &wall, 1); 1319 diff_idle = wall_idle - idle_stat->prev_idle; 1320 diff_wall = wall - idle_stat->prev_wall; 1321 1322 if (diff_wall <= diff_idle) 1323 busy_time = 0; 1324 else 1325 busy_time = diff_wall - diff_idle; 1326 1327 idle_percent = div64_u64(100 * busy_time, diff_wall); 1328 idle_percent = 100 - idle_percent; 1329 1330 if (idle_percent < 15) 1331 eq->poll_mode = LPFC_QUEUE_WORK; 1332 else 1333 eq->poll_mode = LPFC_THREADED_IRQ; 1334 1335 idle_stat->prev_idle = wall_idle; 1336 idle_stat->prev_wall = wall; 1337 } 1338 1339 requeue: 1340 schedule_delayed_work(&phba->idle_stat_delay_work, 1341 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1342 } 1343 1344 static void 1345 lpfc_hb_eq_delay_work(struct work_struct *work) 1346 { 1347 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1348 struct lpfc_hba, eq_delay_work); 1349 struct lpfc_eq_intr_info *eqi, *eqi_new; 1350 struct lpfc_queue *eq, *eq_next; 1351 unsigned char *ena_delay = NULL; 1352 uint32_t usdelay; 1353 int i; 1354 1355 if (!phba->cfg_auto_imax || 1356 test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1357 return; 1358 1359 if (phba->link_state == LPFC_HBA_ERROR || 1360 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1361 goto requeue; 1362 1363 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1364 GFP_KERNEL); 1365 if (!ena_delay) 1366 goto requeue; 1367 1368 for (i = 0; i < phba->cfg_irq_chann; i++) { 1369 /* Get the EQ corresponding to the IRQ vector */ 1370 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1371 if (!eq) 1372 continue; 1373 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1374 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1375 ena_delay[eq->last_cpu] = 1; 1376 } 1377 } 1378 1379 for_each_present_cpu(i) { 1380 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1381 if (ena_delay[i]) { 1382 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1383 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1384 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1385 } else { 1386 usdelay = 0; 1387 } 1388 1389 eqi->icnt = 0; 1390 1391 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1392 if (unlikely(eq->last_cpu != i)) { 1393 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1394 eq->last_cpu); 1395 list_move_tail(&eq->cpu_list, &eqi_new->list); 1396 continue; 1397 } 1398 if (usdelay != eq->q_mode) 1399 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1400 usdelay); 1401 } 1402 } 1403 1404 kfree(ena_delay); 1405 1406 requeue: 1407 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1408 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1409 } 1410 1411 /** 1412 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1413 * @phba: pointer to lpfc hba data structure. 1414 * 1415 * For each heartbeat, this routine does some heuristic methods to adjust 1416 * XRI distribution. The goal is to fully utilize free XRIs. 1417 **/ 1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1419 { 1420 u32 i; 1421 u32 hwq_count; 1422 1423 hwq_count = phba->cfg_hdw_queue; 1424 for (i = 0; i < hwq_count; i++) { 1425 /* Adjust XRIs in private pool */ 1426 lpfc_adjust_pvt_pool_count(phba, i); 1427 1428 /* Adjust high watermark */ 1429 lpfc_adjust_high_watermark(phba, i); 1430 1431 #ifdef LPFC_MXP_STAT 1432 /* Snapshot pbl, pvt and busy count */ 1433 lpfc_snapshot_mxp(phba, i); 1434 #endif 1435 } 1436 } 1437 1438 /** 1439 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1440 * @phba: pointer to lpfc hba data structure. 1441 * 1442 * If a HB mbox is not already in progrees, this routine will allocate 1443 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1444 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1445 **/ 1446 int 1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1448 { 1449 LPFC_MBOXQ_t *pmboxq; 1450 int retval; 1451 1452 /* Is a Heartbeat mbox already in progress */ 1453 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1454 return 0; 1455 1456 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1457 if (!pmboxq) 1458 return -ENOMEM; 1459 1460 lpfc_heart_beat(phba, pmboxq); 1461 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1462 pmboxq->vport = phba->pport; 1463 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1464 1465 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1466 mempool_free(pmboxq, phba->mbox_mem_pool); 1467 return -ENXIO; 1468 } 1469 set_bit(HBA_HBEAT_INP, &phba->hba_flag); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1476 * @phba: pointer to lpfc hba data structure. 1477 * 1478 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1479 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1480 * of the value of lpfc_enable_hba_heartbeat. 1481 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1482 * try to issue a MBX_HEARTBEAT mbox command. 1483 **/ 1484 void 1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1486 { 1487 if (phba->cfg_enable_hba_heartbeat) 1488 return; 1489 set_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1490 } 1491 1492 /** 1493 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1494 * @phba: pointer to lpfc hba data structure. 1495 * 1496 * This is the actual HBA-timer timeout handler to be invoked by the worker 1497 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1498 * handler performs any periodic operations needed for the device. If such 1499 * periodic event has already been attended to either in the interrupt handler 1500 * or by processing slow-ring or fast-ring events within the HBA-timer 1501 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1502 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1503 * is configured and there is no heart-beat mailbox command outstanding, a 1504 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1505 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1506 * to offline. 1507 **/ 1508 void 1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1510 { 1511 struct lpfc_vport **vports; 1512 struct lpfc_dmabuf *buf_ptr; 1513 int retval = 0; 1514 int i, tmo; 1515 struct lpfc_sli *psli = &phba->sli; 1516 LIST_HEAD(completions); 1517 1518 if (phba->cfg_xri_rebalancing) { 1519 /* Multi-XRI pools handler */ 1520 lpfc_hb_mxp_handler(phba); 1521 } 1522 1523 vports = lpfc_create_vport_work_array(phba); 1524 if (vports != NULL) 1525 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1526 lpfc_rcv_seq_check_edtov(vports[i]); 1527 lpfc_fdmi_change_check(vports[i]); 1528 } 1529 lpfc_destroy_vport_work_array(phba, vports); 1530 1531 if (phba->link_state == LPFC_HBA_ERROR || 1532 test_bit(FC_UNLOADING, &phba->pport->load_flag) || 1533 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1534 return; 1535 1536 if (phba->elsbuf_cnt && 1537 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1538 spin_lock_irq(&phba->hbalock); 1539 list_splice_init(&phba->elsbuf, &completions); 1540 phba->elsbuf_cnt = 0; 1541 phba->elsbuf_prev_cnt = 0; 1542 spin_unlock_irq(&phba->hbalock); 1543 1544 while (!list_empty(&completions)) { 1545 list_remove_head(&completions, buf_ptr, 1546 struct lpfc_dmabuf, list); 1547 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1548 kfree(buf_ptr); 1549 } 1550 } 1551 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1552 1553 /* If there is no heart beat outstanding, issue a heartbeat command */ 1554 if (phba->cfg_enable_hba_heartbeat) { 1555 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1556 spin_lock_irq(&phba->pport->work_port_lock); 1557 if (time_after(phba->last_completion_time + 1558 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1559 jiffies)) { 1560 spin_unlock_irq(&phba->pport->work_port_lock); 1561 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1562 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1563 else 1564 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1565 goto out; 1566 } 1567 spin_unlock_irq(&phba->pport->work_port_lock); 1568 1569 /* Check if a MBX_HEARTBEAT is already in progress */ 1570 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) { 1571 /* 1572 * If heart beat timeout called with HBA_HBEAT_INP set 1573 * we need to give the hb mailbox cmd a chance to 1574 * complete or TMO. 1575 */ 1576 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1577 "0459 Adapter heartbeat still outstanding: " 1578 "last compl time was %d ms.\n", 1579 jiffies_to_msecs(jiffies 1580 - phba->last_completion_time)); 1581 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1582 } else { 1583 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1584 (list_empty(&psli->mboxq))) { 1585 1586 retval = lpfc_issue_hb_mbox(phba); 1587 if (retval) { 1588 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1589 goto out; 1590 } 1591 phba->skipped_hb = 0; 1592 } else if (time_before_eq(phba->last_completion_time, 1593 phba->skipped_hb)) { 1594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1595 "2857 Last completion time not " 1596 " updated in %d ms\n", 1597 jiffies_to_msecs(jiffies 1598 - phba->last_completion_time)); 1599 } else 1600 phba->skipped_hb = jiffies; 1601 1602 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1603 goto out; 1604 } 1605 } else { 1606 /* Check to see if we want to force a MBX_HEARTBEAT */ 1607 if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) { 1608 retval = lpfc_issue_hb_mbox(phba); 1609 if (retval) 1610 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1611 else 1612 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1613 goto out; 1614 } 1615 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1616 } 1617 out: 1618 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1619 } 1620 1621 /** 1622 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1623 * @phba: pointer to lpfc hba data structure. 1624 * 1625 * This routine is called to bring the HBA offline when HBA hardware error 1626 * other than Port Error 6 has been detected. 1627 **/ 1628 static void 1629 lpfc_offline_eratt(struct lpfc_hba *phba) 1630 { 1631 struct lpfc_sli *psli = &phba->sli; 1632 1633 spin_lock_irq(&phba->hbalock); 1634 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1635 spin_unlock_irq(&phba->hbalock); 1636 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1637 1638 lpfc_offline(phba); 1639 lpfc_reset_barrier(phba); 1640 spin_lock_irq(&phba->hbalock); 1641 lpfc_sli_brdreset(phba); 1642 spin_unlock_irq(&phba->hbalock); 1643 lpfc_hba_down_post(phba); 1644 lpfc_sli_brdready(phba, HS_MBRDY); 1645 lpfc_unblock_mgmt_io(phba); 1646 phba->link_state = LPFC_HBA_ERROR; 1647 return; 1648 } 1649 1650 /** 1651 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1652 * @phba: pointer to lpfc hba data structure. 1653 * 1654 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1655 * other than Port Error 6 has been detected. 1656 **/ 1657 void 1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1659 { 1660 spin_lock_irq(&phba->hbalock); 1661 if (phba->link_state == LPFC_HBA_ERROR && 1662 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1663 spin_unlock_irq(&phba->hbalock); 1664 return; 1665 } 1666 phba->link_state = LPFC_HBA_ERROR; 1667 spin_unlock_irq(&phba->hbalock); 1668 1669 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1670 lpfc_sli_flush_io_rings(phba); 1671 lpfc_offline(phba); 1672 lpfc_hba_down_post(phba); 1673 lpfc_unblock_mgmt_io(phba); 1674 } 1675 1676 /** 1677 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1678 * @phba: pointer to lpfc hba data structure. 1679 * 1680 * This routine is invoked to handle the deferred HBA hardware error 1681 * conditions. This type of error is indicated by HBA by setting ER1 1682 * and another ER bit in the host status register. The driver will 1683 * wait until the ER1 bit clears before handling the error condition. 1684 **/ 1685 static void 1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1687 { 1688 uint32_t old_host_status = phba->work_hs; 1689 struct lpfc_sli *psli = &phba->sli; 1690 1691 /* If the pci channel is offline, ignore possible errors, 1692 * since we cannot communicate with the pci card anyway. 1693 */ 1694 if (pci_channel_offline(phba->pcidev)) { 1695 clear_bit(DEFER_ERATT, &phba->hba_flag); 1696 return; 1697 } 1698 1699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1700 "0479 Deferred Adapter Hardware Error " 1701 "Data: x%x x%x x%x\n", 1702 phba->work_hs, phba->work_status[0], 1703 phba->work_status[1]); 1704 1705 spin_lock_irq(&phba->hbalock); 1706 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1707 spin_unlock_irq(&phba->hbalock); 1708 1709 1710 /* 1711 * Firmware stops when it triggred erratt. That could cause the I/Os 1712 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1713 * SCSI layer retry it after re-establishing link. 1714 */ 1715 lpfc_sli_abort_fcp_rings(phba); 1716 1717 /* 1718 * There was a firmware error. Take the hba offline and then 1719 * attempt to restart it. 1720 */ 1721 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1722 lpfc_offline(phba); 1723 1724 /* Wait for the ER1 bit to clear.*/ 1725 while (phba->work_hs & HS_FFER1) { 1726 msleep(100); 1727 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1728 phba->work_hs = UNPLUG_ERR ; 1729 break; 1730 } 1731 /* If driver is unloading let the worker thread continue */ 1732 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1733 phba->work_hs = 0; 1734 break; 1735 } 1736 } 1737 1738 /* 1739 * This is to ptrotect against a race condition in which 1740 * first write to the host attention register clear the 1741 * host status register. 1742 */ 1743 if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1744 phba->work_hs = old_host_status & ~HS_FFER1; 1745 1746 clear_bit(DEFER_ERATT, &phba->hba_flag); 1747 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1748 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1749 } 1750 1751 static void 1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1753 { 1754 struct lpfc_board_event_header board_event; 1755 struct Scsi_Host *shost; 1756 1757 board_event.event_type = FC_REG_BOARD_EVENT; 1758 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1759 shost = lpfc_shost_from_vport(phba->pport); 1760 fc_host_post_vendor_event(shost, fc_get_event_number(), 1761 sizeof(board_event), 1762 (char *) &board_event, 1763 LPFC_NL_VENDOR_ID); 1764 } 1765 1766 /** 1767 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1768 * @phba: pointer to lpfc hba data structure. 1769 * 1770 * This routine is invoked to handle the following HBA hardware error 1771 * conditions: 1772 * 1 - HBA error attention interrupt 1773 * 2 - DMA ring index out of range 1774 * 3 - Mailbox command came back as unknown 1775 **/ 1776 static void 1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1778 { 1779 struct lpfc_vport *vport = phba->pport; 1780 struct lpfc_sli *psli = &phba->sli; 1781 uint32_t event_data; 1782 unsigned long temperature; 1783 struct temp_event temp_event_data; 1784 struct Scsi_Host *shost; 1785 1786 /* If the pci channel is offline, ignore possible errors, 1787 * since we cannot communicate with the pci card anyway. 1788 */ 1789 if (pci_channel_offline(phba->pcidev)) { 1790 clear_bit(DEFER_ERATT, &phba->hba_flag); 1791 return; 1792 } 1793 1794 /* If resets are disabled then leave the HBA alone and return */ 1795 if (!phba->cfg_enable_hba_reset) 1796 return; 1797 1798 /* Send an internal error event to mgmt application */ 1799 lpfc_board_errevt_to_mgmt(phba); 1800 1801 if (test_bit(DEFER_ERATT, &phba->hba_flag)) 1802 lpfc_handle_deferred_eratt(phba); 1803 1804 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1805 if (phba->work_hs & HS_FFER6) 1806 /* Re-establishing Link */ 1807 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1808 "1301 Re-establishing Link " 1809 "Data: x%x x%x x%x\n", 1810 phba->work_hs, phba->work_status[0], 1811 phba->work_status[1]); 1812 if (phba->work_hs & HS_FFER8) 1813 /* Device Zeroization */ 1814 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1815 "2861 Host Authentication device " 1816 "zeroization Data:x%x x%x x%x\n", 1817 phba->work_hs, phba->work_status[0], 1818 phba->work_status[1]); 1819 1820 spin_lock_irq(&phba->hbalock); 1821 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1822 spin_unlock_irq(&phba->hbalock); 1823 1824 /* 1825 * Firmware stops when it triggled erratt with HS_FFER6. 1826 * That could cause the I/Os dropped by the firmware. 1827 * Error iocb (I/O) on txcmplq and let the SCSI layer 1828 * retry it after re-establishing link. 1829 */ 1830 lpfc_sli_abort_fcp_rings(phba); 1831 1832 /* 1833 * There was a firmware error. Take the hba offline and then 1834 * attempt to restart it. 1835 */ 1836 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1837 lpfc_offline(phba); 1838 lpfc_sli_brdrestart(phba); 1839 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1840 lpfc_unblock_mgmt_io(phba); 1841 return; 1842 } 1843 lpfc_unblock_mgmt_io(phba); 1844 } else if (phba->work_hs & HS_CRIT_TEMP) { 1845 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1846 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1847 temp_event_data.event_code = LPFC_CRIT_TEMP; 1848 temp_event_data.data = (uint32_t)temperature; 1849 1850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1851 "0406 Adapter maximum temperature exceeded " 1852 "(%ld), taking this port offline " 1853 "Data: x%x x%x x%x\n", 1854 temperature, phba->work_hs, 1855 phba->work_status[0], phba->work_status[1]); 1856 1857 shost = lpfc_shost_from_vport(phba->pport); 1858 fc_host_post_vendor_event(shost, fc_get_event_number(), 1859 sizeof(temp_event_data), 1860 (char *) &temp_event_data, 1861 SCSI_NL_VID_TYPE_PCI 1862 | PCI_VENDOR_ID_EMULEX); 1863 1864 spin_lock_irq(&phba->hbalock); 1865 phba->over_temp_state = HBA_OVER_TEMP; 1866 spin_unlock_irq(&phba->hbalock); 1867 lpfc_offline_eratt(phba); 1868 1869 } else { 1870 /* The if clause above forces this code path when the status 1871 * failure is a value other than FFER6. Do not call the offline 1872 * twice. This is the adapter hardware error path. 1873 */ 1874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1875 "0457 Adapter Hardware Error " 1876 "Data: x%x x%x x%x\n", 1877 phba->work_hs, 1878 phba->work_status[0], phba->work_status[1]); 1879 1880 event_data = FC_REG_DUMP_EVENT; 1881 shost = lpfc_shost_from_vport(vport); 1882 fc_host_post_vendor_event(shost, fc_get_event_number(), 1883 sizeof(event_data), (char *) &event_data, 1884 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1885 1886 lpfc_offline_eratt(phba); 1887 } 1888 return; 1889 } 1890 1891 /** 1892 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1893 * @phba: pointer to lpfc hba data structure. 1894 * @mbx_action: flag for mailbox shutdown action. 1895 * @en_rn_msg: send reset/port recovery message. 1896 * This routine is invoked to perform an SLI4 port PCI function reset in 1897 * response to port status register polling attention. It waits for port 1898 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1899 * During this process, interrupt vectors are freed and later requested 1900 * for handling possible port resource change. 1901 **/ 1902 static int 1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1904 bool en_rn_msg) 1905 { 1906 int rc; 1907 uint32_t intr_mode; 1908 LPFC_MBOXQ_t *mboxq; 1909 1910 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1911 LPFC_SLI_INTF_IF_TYPE_2) { 1912 /* 1913 * On error status condition, driver need to wait for port 1914 * ready before performing reset. 1915 */ 1916 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1917 if (rc) 1918 return rc; 1919 } 1920 1921 /* need reset: attempt for port recovery */ 1922 if (en_rn_msg) 1923 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1924 "2887 Reset Needed: Attempting Port " 1925 "Recovery...\n"); 1926 1927 /* If we are no wait, the HBA has been reset and is not 1928 * functional, thus we should clear 1929 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1930 */ 1931 if (mbx_action == LPFC_MBX_NO_WAIT) { 1932 spin_lock_irq(&phba->hbalock); 1933 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1934 if (phba->sli.mbox_active) { 1935 mboxq = phba->sli.mbox_active; 1936 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1937 __lpfc_mbox_cmpl_put(phba, mboxq); 1938 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1939 phba->sli.mbox_active = NULL; 1940 } 1941 spin_unlock_irq(&phba->hbalock); 1942 } 1943 1944 lpfc_offline_prep(phba, mbx_action); 1945 lpfc_sli_flush_io_rings(phba); 1946 lpfc_offline(phba); 1947 /* release interrupt for possible resource change */ 1948 lpfc_sli4_disable_intr(phba); 1949 rc = lpfc_sli_brdrestart(phba); 1950 if (rc) { 1951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1952 "6309 Failed to restart board\n"); 1953 return rc; 1954 } 1955 /* request and enable interrupt */ 1956 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1957 if (intr_mode == LPFC_INTR_ERROR) { 1958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1959 "3175 Failed to enable interrupt\n"); 1960 return -EIO; 1961 } 1962 phba->intr_mode = intr_mode; 1963 rc = lpfc_online(phba); 1964 if (rc == 0) 1965 lpfc_unblock_mgmt_io(phba); 1966 1967 return rc; 1968 } 1969 1970 /** 1971 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1972 * @phba: pointer to lpfc hba data structure. 1973 * 1974 * This routine is invoked to handle the SLI4 HBA hardware error attention 1975 * conditions. 1976 **/ 1977 static void 1978 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1979 { 1980 struct lpfc_vport *vport = phba->pport; 1981 uint32_t event_data; 1982 struct Scsi_Host *shost; 1983 uint32_t if_type; 1984 struct lpfc_register portstat_reg = {0}; 1985 uint32_t reg_err1, reg_err2; 1986 uint32_t uerrlo_reg, uemasklo_reg; 1987 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1988 bool en_rn_msg = true; 1989 struct temp_event temp_event_data; 1990 struct lpfc_register portsmphr_reg; 1991 int rc, i; 1992 1993 /* If the pci channel is offline, ignore possible errors, since 1994 * we cannot communicate with the pci card anyway. 1995 */ 1996 if (pci_channel_offline(phba->pcidev)) { 1997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1998 "3166 pci channel is offline\n"); 1999 lpfc_sli_flush_io_rings(phba); 2000 return; 2001 } 2002 2003 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 2004 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 2005 switch (if_type) { 2006 case LPFC_SLI_INTF_IF_TYPE_0: 2007 pci_rd_rc1 = lpfc_readl( 2008 phba->sli4_hba.u.if_type0.UERRLOregaddr, 2009 &uerrlo_reg); 2010 pci_rd_rc2 = lpfc_readl( 2011 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2012 &uemasklo_reg); 2013 /* consider PCI bus read error as pci_channel_offline */ 2014 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2015 return; 2016 if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) { 2017 lpfc_sli4_offline_eratt(phba); 2018 return; 2019 } 2020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2021 "7623 Checking UE recoverable"); 2022 2023 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2024 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2025 &portsmphr_reg.word0)) 2026 continue; 2027 2028 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2029 &portsmphr_reg); 2030 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2031 LPFC_PORT_SEM_UE_RECOVERABLE) 2032 break; 2033 /*Sleep for 1Sec, before checking SEMAPHORE */ 2034 msleep(1000); 2035 } 2036 2037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2038 "4827 smphr_port_status x%x : Waited %dSec", 2039 smphr_port_status, i); 2040 2041 /* Recoverable UE, reset the HBA device */ 2042 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2043 LPFC_PORT_SEM_UE_RECOVERABLE) { 2044 for (i = 0; i < 20; i++) { 2045 msleep(1000); 2046 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2047 &portsmphr_reg.word0) && 2048 (LPFC_POST_STAGE_PORT_READY == 2049 bf_get(lpfc_port_smphr_port_status, 2050 &portsmphr_reg))) { 2051 rc = lpfc_sli4_port_sta_fn_reset(phba, 2052 LPFC_MBX_NO_WAIT, en_rn_msg); 2053 if (rc == 0) 2054 return; 2055 lpfc_printf_log(phba, KERN_ERR, 2056 LOG_TRACE_EVENT, 2057 "4215 Failed to recover UE"); 2058 break; 2059 } 2060 } 2061 } 2062 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2063 "7624 Firmware not ready: Failing UE recovery," 2064 " waited %dSec", i); 2065 phba->link_state = LPFC_HBA_ERROR; 2066 break; 2067 2068 case LPFC_SLI_INTF_IF_TYPE_2: 2069 case LPFC_SLI_INTF_IF_TYPE_6: 2070 pci_rd_rc1 = lpfc_readl( 2071 phba->sli4_hba.u.if_type2.STATUSregaddr, 2072 &portstat_reg.word0); 2073 /* consider PCI bus read error as pci_channel_offline */ 2074 if (pci_rd_rc1 == -EIO) { 2075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2076 "3151 PCI bus read access failure: x%x\n", 2077 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2078 lpfc_sli4_offline_eratt(phba); 2079 return; 2080 } 2081 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2082 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2083 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2084 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2085 "2889 Port Overtemperature event, " 2086 "taking port offline Data: x%x x%x\n", 2087 reg_err1, reg_err2); 2088 2089 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2090 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2091 temp_event_data.event_code = LPFC_CRIT_TEMP; 2092 temp_event_data.data = 0xFFFFFFFF; 2093 2094 shost = lpfc_shost_from_vport(phba->pport); 2095 fc_host_post_vendor_event(shost, fc_get_event_number(), 2096 sizeof(temp_event_data), 2097 (char *)&temp_event_data, 2098 SCSI_NL_VID_TYPE_PCI 2099 | PCI_VENDOR_ID_EMULEX); 2100 2101 spin_lock_irq(&phba->hbalock); 2102 phba->over_temp_state = HBA_OVER_TEMP; 2103 spin_unlock_irq(&phba->hbalock); 2104 lpfc_sli4_offline_eratt(phba); 2105 return; 2106 } 2107 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2108 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2109 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2110 "3143 Port Down: Firmware Update " 2111 "Detected\n"); 2112 en_rn_msg = false; 2113 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2114 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2115 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2116 "3144 Port Down: Debug Dump\n"); 2117 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2118 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2120 "3145 Port Down: Provisioning\n"); 2121 2122 /* If resets are disabled then leave the HBA alone and return */ 2123 if (!phba->cfg_enable_hba_reset) 2124 return; 2125 2126 /* Check port status register for function reset */ 2127 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2128 en_rn_msg); 2129 if (rc == 0) { 2130 /* don't report event on forced debug dump */ 2131 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2132 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2133 return; 2134 else 2135 break; 2136 } 2137 /* fall through for not able to recover */ 2138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2139 "3152 Unrecoverable error\n"); 2140 lpfc_sli4_offline_eratt(phba); 2141 break; 2142 case LPFC_SLI_INTF_IF_TYPE_1: 2143 default: 2144 break; 2145 } 2146 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2147 "3123 Report dump event to upper layer\n"); 2148 /* Send an internal error event to mgmt application */ 2149 lpfc_board_errevt_to_mgmt(phba); 2150 2151 event_data = FC_REG_DUMP_EVENT; 2152 shost = lpfc_shost_from_vport(vport); 2153 fc_host_post_vendor_event(shost, fc_get_event_number(), 2154 sizeof(event_data), (char *) &event_data, 2155 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2156 } 2157 2158 /** 2159 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2160 * @phba: pointer to lpfc HBA data structure. 2161 * 2162 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2163 * routine from the API jump table function pointer from the lpfc_hba struct. 2164 * 2165 * Return codes 2166 * 0 - success. 2167 * Any other value - error. 2168 **/ 2169 void 2170 lpfc_handle_eratt(struct lpfc_hba *phba) 2171 { 2172 (*phba->lpfc_handle_eratt)(phba); 2173 } 2174 2175 /** 2176 * lpfc_handle_latt - The HBA link event handler 2177 * @phba: pointer to lpfc hba data structure. 2178 * 2179 * This routine is invoked from the worker thread to handle a HBA host 2180 * attention link event. SLI3 only. 2181 **/ 2182 void 2183 lpfc_handle_latt(struct lpfc_hba *phba) 2184 { 2185 struct lpfc_vport *vport = phba->pport; 2186 struct lpfc_sli *psli = &phba->sli; 2187 LPFC_MBOXQ_t *pmb; 2188 volatile uint32_t control; 2189 int rc = 0; 2190 2191 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2192 if (!pmb) { 2193 rc = 1; 2194 goto lpfc_handle_latt_err_exit; 2195 } 2196 2197 rc = lpfc_mbox_rsrc_prep(phba, pmb); 2198 if (rc) { 2199 rc = 2; 2200 mempool_free(pmb, phba->mbox_mem_pool); 2201 goto lpfc_handle_latt_err_exit; 2202 } 2203 2204 /* Cleanup any outstanding ELS commands */ 2205 lpfc_els_flush_all_cmd(phba); 2206 psli->slistat.link_event++; 2207 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 2208 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2209 pmb->vport = vport; 2210 /* Block ELS IOCBs until we have processed this mbox command */ 2211 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2212 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2213 if (rc == MBX_NOT_FINISHED) { 2214 rc = 4; 2215 goto lpfc_handle_latt_free_mbuf; 2216 } 2217 2218 /* Clear Link Attention in HA REG */ 2219 spin_lock_irq(&phba->hbalock); 2220 writel(HA_LATT, phba->HAregaddr); 2221 readl(phba->HAregaddr); /* flush */ 2222 spin_unlock_irq(&phba->hbalock); 2223 2224 return; 2225 2226 lpfc_handle_latt_free_mbuf: 2227 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2228 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2229 lpfc_handle_latt_err_exit: 2230 /* Enable Link attention interrupts */ 2231 spin_lock_irq(&phba->hbalock); 2232 psli->sli_flag |= LPFC_PROCESS_LA; 2233 control = readl(phba->HCregaddr); 2234 control |= HC_LAINT_ENA; 2235 writel(control, phba->HCregaddr); 2236 readl(phba->HCregaddr); /* flush */ 2237 2238 /* Clear Link Attention in HA REG */ 2239 writel(HA_LATT, phba->HAregaddr); 2240 readl(phba->HAregaddr); /* flush */ 2241 spin_unlock_irq(&phba->hbalock); 2242 lpfc_linkdown(phba); 2243 phba->link_state = LPFC_HBA_ERROR; 2244 2245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2246 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2247 2248 return; 2249 } 2250 2251 static void 2252 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex) 2253 { 2254 int i, j; 2255 2256 while (length > 0) { 2257 /* Look for Serial Number */ 2258 if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) { 2259 *pindex += 2; 2260 i = vpd[*pindex]; 2261 *pindex += 1; 2262 j = 0; 2263 length -= (3+i); 2264 while (i--) { 2265 phba->SerialNumber[j++] = vpd[(*pindex)++]; 2266 if (j == 31) 2267 break; 2268 } 2269 phba->SerialNumber[j] = 0; 2270 continue; 2271 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) { 2272 phba->vpd_flag |= VPD_MODEL_DESC; 2273 *pindex += 2; 2274 i = vpd[*pindex]; 2275 *pindex += 1; 2276 j = 0; 2277 length -= (3+i); 2278 while (i--) { 2279 phba->ModelDesc[j++] = vpd[(*pindex)++]; 2280 if (j == 255) 2281 break; 2282 } 2283 phba->ModelDesc[j] = 0; 2284 continue; 2285 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) { 2286 phba->vpd_flag |= VPD_MODEL_NAME; 2287 *pindex += 2; 2288 i = vpd[*pindex]; 2289 *pindex += 1; 2290 j = 0; 2291 length -= (3+i); 2292 while (i--) { 2293 phba->ModelName[j++] = vpd[(*pindex)++]; 2294 if (j == 79) 2295 break; 2296 } 2297 phba->ModelName[j] = 0; 2298 continue; 2299 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) { 2300 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2301 *pindex += 2; 2302 i = vpd[*pindex]; 2303 *pindex += 1; 2304 j = 0; 2305 length -= (3+i); 2306 while (i--) { 2307 phba->ProgramType[j++] = vpd[(*pindex)++]; 2308 if (j == 255) 2309 break; 2310 } 2311 phba->ProgramType[j] = 0; 2312 continue; 2313 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) { 2314 phba->vpd_flag |= VPD_PORT; 2315 *pindex += 2; 2316 i = vpd[*pindex]; 2317 *pindex += 1; 2318 j = 0; 2319 length -= (3 + i); 2320 while (i--) { 2321 if ((phba->sli_rev == LPFC_SLI_REV4) && 2322 (phba->sli4_hba.pport_name_sta == 2323 LPFC_SLI4_PPNAME_GET)) { 2324 j++; 2325 (*pindex)++; 2326 } else 2327 phba->Port[j++] = vpd[(*pindex)++]; 2328 if (j == 19) 2329 break; 2330 } 2331 if ((phba->sli_rev != LPFC_SLI_REV4) || 2332 (phba->sli4_hba.pport_name_sta == 2333 LPFC_SLI4_PPNAME_NON)) 2334 phba->Port[j] = 0; 2335 continue; 2336 } else { 2337 *pindex += 2; 2338 i = vpd[*pindex]; 2339 *pindex += 1; 2340 *pindex += i; 2341 length -= (3 + i); 2342 } 2343 } 2344 } 2345 2346 /** 2347 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2348 * @phba: pointer to lpfc hba data structure. 2349 * @vpd: pointer to the vital product data. 2350 * @len: length of the vital product data in bytes. 2351 * 2352 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2353 * an array of characters. In this routine, the ModelName, ProgramType, and 2354 * ModelDesc, etc. fields of the phba data structure will be populated. 2355 * 2356 * Return codes 2357 * 0 - pointer to the VPD passed in is NULL 2358 * 1 - success 2359 **/ 2360 int 2361 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2362 { 2363 uint8_t lenlo, lenhi; 2364 int Length; 2365 int i; 2366 int finished = 0; 2367 int index = 0; 2368 2369 if (!vpd) 2370 return 0; 2371 2372 /* Vital Product */ 2373 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2374 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2375 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2376 (uint32_t) vpd[3]); 2377 while (!finished && (index < (len - 4))) { 2378 switch (vpd[index]) { 2379 case 0x82: 2380 case 0x91: 2381 index += 1; 2382 lenlo = vpd[index]; 2383 index += 1; 2384 lenhi = vpd[index]; 2385 index += 1; 2386 i = ((((unsigned short)lenhi) << 8) + lenlo); 2387 index += i; 2388 break; 2389 case 0x90: 2390 index += 1; 2391 lenlo = vpd[index]; 2392 index += 1; 2393 lenhi = vpd[index]; 2394 index += 1; 2395 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2396 if (Length > len - index) 2397 Length = len - index; 2398 2399 lpfc_fill_vpd(phba, vpd, Length, &index); 2400 finished = 0; 2401 break; 2402 case 0x78: 2403 finished = 1; 2404 break; 2405 default: 2406 index ++; 2407 break; 2408 } 2409 } 2410 2411 return(1); 2412 } 2413 2414 /** 2415 * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description 2416 * @phba: pointer to lpfc hba data structure. 2417 * @mdp: pointer to the data structure to hold the derived model name. 2418 * @descp: pointer to the data structure to hold the derived description. 2419 * 2420 * This routine retrieves HBA's description based on its registered PCI device 2421 * ID. The @descp passed into this function points to an array of 256 chars. It 2422 * shall be returned with the model name, maximum speed, and the host bus type. 2423 * The @mdp passed into this function points to an array of 80 chars. When the 2424 * function returns, the @mdp will be filled with the model name. 2425 **/ 2426 static void 2427 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2428 { 2429 uint16_t sub_dev_id = phba->pcidev->subsystem_device; 2430 char *model = "<Unknown>"; 2431 int tbolt = 0; 2432 2433 switch (sub_dev_id) { 2434 case PCI_DEVICE_ID_CLRY_161E: 2435 model = "161E"; 2436 break; 2437 case PCI_DEVICE_ID_CLRY_162E: 2438 model = "162E"; 2439 break; 2440 case PCI_DEVICE_ID_CLRY_164E: 2441 model = "164E"; 2442 break; 2443 case PCI_DEVICE_ID_CLRY_161P: 2444 model = "161P"; 2445 break; 2446 case PCI_DEVICE_ID_CLRY_162P: 2447 model = "162P"; 2448 break; 2449 case PCI_DEVICE_ID_CLRY_164P: 2450 model = "164P"; 2451 break; 2452 case PCI_DEVICE_ID_CLRY_321E: 2453 model = "321E"; 2454 break; 2455 case PCI_DEVICE_ID_CLRY_322E: 2456 model = "322E"; 2457 break; 2458 case PCI_DEVICE_ID_CLRY_324E: 2459 model = "324E"; 2460 break; 2461 case PCI_DEVICE_ID_CLRY_321P: 2462 model = "321P"; 2463 break; 2464 case PCI_DEVICE_ID_CLRY_322P: 2465 model = "322P"; 2466 break; 2467 case PCI_DEVICE_ID_CLRY_324P: 2468 model = "324P"; 2469 break; 2470 case PCI_DEVICE_ID_TLFC_2XX2: 2471 model = "2XX2"; 2472 tbolt = 1; 2473 break; 2474 case PCI_DEVICE_ID_TLFC_3162: 2475 model = "3162"; 2476 tbolt = 1; 2477 break; 2478 case PCI_DEVICE_ID_TLFC_3322: 2479 model = "3322"; 2480 tbolt = 1; 2481 break; 2482 default: 2483 model = "Unknown"; 2484 break; 2485 } 2486 2487 if (mdp && mdp[0] == '\0') 2488 snprintf(mdp, 79, "%s", model); 2489 2490 if (descp && descp[0] == '\0') 2491 snprintf(descp, 255, 2492 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", 2493 (tbolt) ? "ThunderLink FC " : "Celerity FC-", 2494 model, 2495 phba->Port); 2496 } 2497 2498 /** 2499 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2500 * @phba: pointer to lpfc hba data structure. 2501 * @mdp: pointer to the data structure to hold the derived model name. 2502 * @descp: pointer to the data structure to hold the derived description. 2503 * 2504 * This routine retrieves HBA's description based on its registered PCI device 2505 * ID. The @descp passed into this function points to an array of 256 chars. It 2506 * shall be returned with the model name, maximum speed, and the host bus type. 2507 * The @mdp passed into this function points to an array of 80 chars. When the 2508 * function returns, the @mdp will be filled with the model name. 2509 **/ 2510 static void 2511 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2512 { 2513 lpfc_vpd_t *vp; 2514 uint16_t dev_id = phba->pcidev->device; 2515 int max_speed; 2516 int GE = 0; 2517 int oneConnect = 0; /* default is not a oneConnect */ 2518 struct { 2519 char *name; 2520 char *bus; 2521 char *function; 2522 } m = {"<Unknown>", "", ""}; 2523 2524 if (mdp && mdp[0] != '\0' 2525 && descp && descp[0] != '\0') 2526 return; 2527 2528 if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { 2529 lpfc_get_atto_model_desc(phba, mdp, descp); 2530 return; 2531 } 2532 2533 if (phba->lmt & LMT_64Gb) 2534 max_speed = 64; 2535 else if (phba->lmt & LMT_32Gb) 2536 max_speed = 32; 2537 else if (phba->lmt & LMT_16Gb) 2538 max_speed = 16; 2539 else if (phba->lmt & LMT_10Gb) 2540 max_speed = 10; 2541 else if (phba->lmt & LMT_8Gb) 2542 max_speed = 8; 2543 else if (phba->lmt & LMT_4Gb) 2544 max_speed = 4; 2545 else if (phba->lmt & LMT_2Gb) 2546 max_speed = 2; 2547 else if (phba->lmt & LMT_1Gb) 2548 max_speed = 1; 2549 else 2550 max_speed = 0; 2551 2552 vp = &phba->vpd; 2553 2554 switch (dev_id) { 2555 case PCI_DEVICE_ID_FIREFLY: 2556 m = (typeof(m)){"LP6000", "PCI", 2557 "Obsolete, Unsupported Fibre Channel Adapter"}; 2558 break; 2559 case PCI_DEVICE_ID_SUPERFLY: 2560 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2561 m = (typeof(m)){"LP7000", "PCI", ""}; 2562 else 2563 m = (typeof(m)){"LP7000E", "PCI", ""}; 2564 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2565 break; 2566 case PCI_DEVICE_ID_DRAGONFLY: 2567 m = (typeof(m)){"LP8000", "PCI", 2568 "Obsolete, Unsupported Fibre Channel Adapter"}; 2569 break; 2570 case PCI_DEVICE_ID_CENTAUR: 2571 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2572 m = (typeof(m)){"LP9002", "PCI", ""}; 2573 else 2574 m = (typeof(m)){"LP9000", "PCI", ""}; 2575 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2576 break; 2577 case PCI_DEVICE_ID_RFLY: 2578 m = (typeof(m)){"LP952", "PCI", 2579 "Obsolete, Unsupported Fibre Channel Adapter"}; 2580 break; 2581 case PCI_DEVICE_ID_PEGASUS: 2582 m = (typeof(m)){"LP9802", "PCI-X", 2583 "Obsolete, Unsupported Fibre Channel Adapter"}; 2584 break; 2585 case PCI_DEVICE_ID_THOR: 2586 m = (typeof(m)){"LP10000", "PCI-X", 2587 "Obsolete, Unsupported Fibre Channel Adapter"}; 2588 break; 2589 case PCI_DEVICE_ID_VIPER: 2590 m = (typeof(m)){"LPX1000", "PCI-X", 2591 "Obsolete, Unsupported Fibre Channel Adapter"}; 2592 break; 2593 case PCI_DEVICE_ID_PFLY: 2594 m = (typeof(m)){"LP982", "PCI-X", 2595 "Obsolete, Unsupported Fibre Channel Adapter"}; 2596 break; 2597 case PCI_DEVICE_ID_TFLY: 2598 m = (typeof(m)){"LP1050", "PCI-X", 2599 "Obsolete, Unsupported Fibre Channel Adapter"}; 2600 break; 2601 case PCI_DEVICE_ID_HELIOS: 2602 m = (typeof(m)){"LP11000", "PCI-X2", 2603 "Obsolete, Unsupported Fibre Channel Adapter"}; 2604 break; 2605 case PCI_DEVICE_ID_HELIOS_SCSP: 2606 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2607 "Obsolete, Unsupported Fibre Channel Adapter"}; 2608 break; 2609 case PCI_DEVICE_ID_HELIOS_DCSP: 2610 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2611 "Obsolete, Unsupported Fibre Channel Adapter"}; 2612 break; 2613 case PCI_DEVICE_ID_NEPTUNE: 2614 m = (typeof(m)){"LPe1000", "PCIe", 2615 "Obsolete, Unsupported Fibre Channel Adapter"}; 2616 break; 2617 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2618 m = (typeof(m)){"LPe1000-SP", "PCIe", 2619 "Obsolete, Unsupported Fibre Channel Adapter"}; 2620 break; 2621 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2622 m = (typeof(m)){"LPe1002-SP", "PCIe", 2623 "Obsolete, Unsupported Fibre Channel Adapter"}; 2624 break; 2625 case PCI_DEVICE_ID_BMID: 2626 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2627 break; 2628 case PCI_DEVICE_ID_BSMB: 2629 m = (typeof(m)){"LP111", "PCI-X2", 2630 "Obsolete, Unsupported Fibre Channel Adapter"}; 2631 break; 2632 case PCI_DEVICE_ID_ZEPHYR: 2633 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2634 break; 2635 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2636 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2637 break; 2638 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2639 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2640 GE = 1; 2641 break; 2642 case PCI_DEVICE_ID_ZMID: 2643 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2644 break; 2645 case PCI_DEVICE_ID_ZSMB: 2646 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2647 break; 2648 case PCI_DEVICE_ID_LP101: 2649 m = (typeof(m)){"LP101", "PCI-X", 2650 "Obsolete, Unsupported Fibre Channel Adapter"}; 2651 break; 2652 case PCI_DEVICE_ID_LP10000S: 2653 m = (typeof(m)){"LP10000-S", "PCI", 2654 "Obsolete, Unsupported Fibre Channel Adapter"}; 2655 break; 2656 case PCI_DEVICE_ID_LP11000S: 2657 m = (typeof(m)){"LP11000-S", "PCI-X2", 2658 "Obsolete, Unsupported Fibre Channel Adapter"}; 2659 break; 2660 case PCI_DEVICE_ID_LPE11000S: 2661 m = (typeof(m)){"LPe11000-S", "PCIe", 2662 "Obsolete, Unsupported Fibre Channel Adapter"}; 2663 break; 2664 case PCI_DEVICE_ID_SAT: 2665 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2666 break; 2667 case PCI_DEVICE_ID_SAT_MID: 2668 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2669 break; 2670 case PCI_DEVICE_ID_SAT_SMB: 2671 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2672 break; 2673 case PCI_DEVICE_ID_SAT_DCSP: 2674 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2675 break; 2676 case PCI_DEVICE_ID_SAT_SCSP: 2677 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2678 break; 2679 case PCI_DEVICE_ID_SAT_S: 2680 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2681 break; 2682 case PCI_DEVICE_ID_PROTEUS_VF: 2683 m = (typeof(m)){"LPev12000", "PCIe IOV", 2684 "Obsolete, Unsupported Fibre Channel Adapter"}; 2685 break; 2686 case PCI_DEVICE_ID_PROTEUS_PF: 2687 m = (typeof(m)){"LPev12000", "PCIe IOV", 2688 "Obsolete, Unsupported Fibre Channel Adapter"}; 2689 break; 2690 case PCI_DEVICE_ID_PROTEUS_S: 2691 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2692 "Obsolete, Unsupported Fibre Channel Adapter"}; 2693 break; 2694 case PCI_DEVICE_ID_TIGERSHARK: 2695 oneConnect = 1; 2696 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2697 break; 2698 case PCI_DEVICE_ID_TOMCAT: 2699 oneConnect = 1; 2700 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2701 break; 2702 case PCI_DEVICE_ID_FALCON: 2703 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2704 "EmulexSecure Fibre"}; 2705 break; 2706 case PCI_DEVICE_ID_BALIUS: 2707 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2708 "Obsolete, Unsupported Fibre Channel Adapter"}; 2709 break; 2710 case PCI_DEVICE_ID_LANCER_FC: 2711 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2712 break; 2713 case PCI_DEVICE_ID_LANCER_FC_VF: 2714 m = (typeof(m)){"LPe16000", "PCIe", 2715 "Obsolete, Unsupported Fibre Channel Adapter"}; 2716 break; 2717 case PCI_DEVICE_ID_LANCER_FCOE: 2718 oneConnect = 1; 2719 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2720 break; 2721 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2722 oneConnect = 1; 2723 m = (typeof(m)){"OCe15100", "PCIe", 2724 "Obsolete, Unsupported FCoE"}; 2725 break; 2726 case PCI_DEVICE_ID_LANCER_G6_FC: 2727 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2728 break; 2729 case PCI_DEVICE_ID_LANCER_G7_FC: 2730 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2731 break; 2732 case PCI_DEVICE_ID_LANCER_G7P_FC: 2733 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2734 break; 2735 case PCI_DEVICE_ID_SKYHAWK: 2736 case PCI_DEVICE_ID_SKYHAWK_VF: 2737 oneConnect = 1; 2738 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2739 break; 2740 default: 2741 m = (typeof(m)){"Unknown", "", ""}; 2742 break; 2743 } 2744 2745 if (mdp && mdp[0] == '\0') 2746 snprintf(mdp, 79,"%s", m.name); 2747 /* 2748 * oneConnect hba requires special processing, they are all initiators 2749 * and we put the port number on the end 2750 */ 2751 if (descp && descp[0] == '\0') { 2752 if (oneConnect) 2753 snprintf(descp, 255, 2754 "Emulex OneConnect %s, %s Initiator %s", 2755 m.name, m.function, 2756 phba->Port); 2757 else if (max_speed == 0) 2758 snprintf(descp, 255, 2759 "Emulex %s %s %s", 2760 m.name, m.bus, m.function); 2761 else 2762 snprintf(descp, 255, 2763 "Emulex %s %d%s %s %s", 2764 m.name, max_speed, (GE) ? "GE" : "Gb", 2765 m.bus, m.function); 2766 } 2767 } 2768 2769 /** 2770 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2771 * @phba: pointer to lpfc hba data structure. 2772 * @pring: pointer to a IOCB ring. 2773 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2774 * 2775 * This routine posts a given number of IOCBs with the associated DMA buffer 2776 * descriptors specified by the cnt argument to the given IOCB ring. 2777 * 2778 * Return codes 2779 * The number of IOCBs NOT able to be posted to the IOCB ring. 2780 **/ 2781 int 2782 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2783 { 2784 IOCB_t *icmd; 2785 struct lpfc_iocbq *iocb; 2786 struct lpfc_dmabuf *mp1, *mp2; 2787 2788 cnt += pring->missbufcnt; 2789 2790 /* While there are buffers to post */ 2791 while (cnt > 0) { 2792 /* Allocate buffer for command iocb */ 2793 iocb = lpfc_sli_get_iocbq(phba); 2794 if (iocb == NULL) { 2795 pring->missbufcnt = cnt; 2796 return cnt; 2797 } 2798 icmd = &iocb->iocb; 2799 2800 /* 2 buffers can be posted per command */ 2801 /* Allocate buffer to post */ 2802 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2803 if (mp1) 2804 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2805 if (!mp1 || !mp1->virt) { 2806 kfree(mp1); 2807 lpfc_sli_release_iocbq(phba, iocb); 2808 pring->missbufcnt = cnt; 2809 return cnt; 2810 } 2811 2812 INIT_LIST_HEAD(&mp1->list); 2813 /* Allocate buffer to post */ 2814 if (cnt > 1) { 2815 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2816 if (mp2) 2817 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2818 &mp2->phys); 2819 if (!mp2 || !mp2->virt) { 2820 kfree(mp2); 2821 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2822 kfree(mp1); 2823 lpfc_sli_release_iocbq(phba, iocb); 2824 pring->missbufcnt = cnt; 2825 return cnt; 2826 } 2827 2828 INIT_LIST_HEAD(&mp2->list); 2829 } else { 2830 mp2 = NULL; 2831 } 2832 2833 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2834 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2835 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2836 icmd->ulpBdeCount = 1; 2837 cnt--; 2838 if (mp2) { 2839 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2840 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2841 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2842 cnt--; 2843 icmd->ulpBdeCount = 2; 2844 } 2845 2846 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2847 icmd->ulpLe = 1; 2848 2849 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2850 IOCB_ERROR) { 2851 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2852 kfree(mp1); 2853 cnt++; 2854 if (mp2) { 2855 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2856 kfree(mp2); 2857 cnt++; 2858 } 2859 lpfc_sli_release_iocbq(phba, iocb); 2860 pring->missbufcnt = cnt; 2861 return cnt; 2862 } 2863 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2864 if (mp2) 2865 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2866 } 2867 pring->missbufcnt = 0; 2868 return 0; 2869 } 2870 2871 /** 2872 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2873 * @phba: pointer to lpfc hba data structure. 2874 * 2875 * This routine posts initial receive IOCB buffers to the ELS ring. The 2876 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2877 * set to 64 IOCBs. SLI3 only. 2878 * 2879 * Return codes 2880 * 0 - success (currently always success) 2881 **/ 2882 static int 2883 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2884 { 2885 struct lpfc_sli *psli = &phba->sli; 2886 2887 /* Ring 0, ELS / CT buffers */ 2888 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2889 /* Ring 2 - FCP no buffers needed */ 2890 2891 return 0; 2892 } 2893 2894 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2895 2896 /** 2897 * lpfc_sha_init - Set up initial array of hash table entries 2898 * @HashResultPointer: pointer to an array as hash table. 2899 * 2900 * This routine sets up the initial values to the array of hash table entries 2901 * for the LC HBAs. 2902 **/ 2903 static void 2904 lpfc_sha_init(uint32_t * HashResultPointer) 2905 { 2906 HashResultPointer[0] = 0x67452301; 2907 HashResultPointer[1] = 0xEFCDAB89; 2908 HashResultPointer[2] = 0x98BADCFE; 2909 HashResultPointer[3] = 0x10325476; 2910 HashResultPointer[4] = 0xC3D2E1F0; 2911 } 2912 2913 /** 2914 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2915 * @HashResultPointer: pointer to an initial/result hash table. 2916 * @HashWorkingPointer: pointer to an working hash table. 2917 * 2918 * This routine iterates an initial hash table pointed by @HashResultPointer 2919 * with the values from the working hash table pointeed by @HashWorkingPointer. 2920 * The results are putting back to the initial hash table, returned through 2921 * the @HashResultPointer as the result hash table. 2922 **/ 2923 static void 2924 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2925 { 2926 int t; 2927 uint32_t TEMP; 2928 uint32_t A, B, C, D, E; 2929 t = 16; 2930 do { 2931 HashWorkingPointer[t] = 2932 S(1, 2933 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2934 8] ^ 2935 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2936 } while (++t <= 79); 2937 t = 0; 2938 A = HashResultPointer[0]; 2939 B = HashResultPointer[1]; 2940 C = HashResultPointer[2]; 2941 D = HashResultPointer[3]; 2942 E = HashResultPointer[4]; 2943 2944 do { 2945 if (t < 20) { 2946 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2947 } else if (t < 40) { 2948 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2949 } else if (t < 60) { 2950 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2951 } else { 2952 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2953 } 2954 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2955 E = D; 2956 D = C; 2957 C = S(30, B); 2958 B = A; 2959 A = TEMP; 2960 } while (++t <= 79); 2961 2962 HashResultPointer[0] += A; 2963 HashResultPointer[1] += B; 2964 HashResultPointer[2] += C; 2965 HashResultPointer[3] += D; 2966 HashResultPointer[4] += E; 2967 2968 } 2969 2970 /** 2971 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2972 * @RandomChallenge: pointer to the entry of host challenge random number array. 2973 * @HashWorking: pointer to the entry of the working hash array. 2974 * 2975 * This routine calculates the working hash array referred by @HashWorking 2976 * from the challenge random numbers associated with the host, referred by 2977 * @RandomChallenge. The result is put into the entry of the working hash 2978 * array and returned by reference through @HashWorking. 2979 **/ 2980 static void 2981 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2982 { 2983 *HashWorking = (*RandomChallenge ^ *HashWorking); 2984 } 2985 2986 /** 2987 * lpfc_hba_init - Perform special handling for LC HBA initialization 2988 * @phba: pointer to lpfc hba data structure. 2989 * @hbainit: pointer to an array of unsigned 32-bit integers. 2990 * 2991 * This routine performs the special handling for LC HBA initialization. 2992 **/ 2993 void 2994 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2995 { 2996 int t; 2997 uint32_t *HashWorking; 2998 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2999 3000 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 3001 if (!HashWorking) 3002 return; 3003 3004 HashWorking[0] = HashWorking[78] = *pwwnn++; 3005 HashWorking[1] = HashWorking[79] = *pwwnn; 3006 3007 for (t = 0; t < 7; t++) 3008 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 3009 3010 lpfc_sha_init(hbainit); 3011 lpfc_sha_iterate(hbainit, HashWorking); 3012 kfree(HashWorking); 3013 } 3014 3015 /** 3016 * lpfc_cleanup - Performs vport cleanups before deleting a vport 3017 * @vport: pointer to a virtual N_Port data structure. 3018 * 3019 * This routine performs the necessary cleanups before deleting the @vport. 3020 * It invokes the discovery state machine to perform necessary state 3021 * transitions and to release the ndlps associated with the @vport. Note, 3022 * the physical port is treated as @vport 0. 3023 **/ 3024 void 3025 lpfc_cleanup(struct lpfc_vport *vport) 3026 { 3027 struct lpfc_hba *phba = vport->phba; 3028 struct lpfc_nodelist *ndlp, *next_ndlp; 3029 int i = 0; 3030 3031 if (phba->link_state > LPFC_LINK_DOWN) 3032 lpfc_port_link_failure(vport); 3033 3034 /* Clean up VMID resources */ 3035 if (lpfc_is_vmid_enabled(phba)) 3036 lpfc_vmid_vport_cleanup(vport); 3037 3038 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 3039 if (vport->port_type != LPFC_PHYSICAL_PORT && 3040 ndlp->nlp_DID == Fabric_DID) { 3041 /* Just free up ndlp with Fabric_DID for vports */ 3042 lpfc_nlp_put(ndlp); 3043 continue; 3044 } 3045 3046 if (ndlp->nlp_DID == Fabric_Cntl_DID && 3047 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3048 lpfc_nlp_put(ndlp); 3049 continue; 3050 } 3051 3052 /* Fabric Ports not in UNMAPPED state are cleaned up in the 3053 * DEVICE_RM event. 3054 */ 3055 if (ndlp->nlp_type & NLP_FABRIC && 3056 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 3057 lpfc_disc_state_machine(vport, ndlp, NULL, 3058 NLP_EVT_DEVICE_RECOVERY); 3059 3060 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 3061 lpfc_disc_state_machine(vport, ndlp, NULL, 3062 NLP_EVT_DEVICE_RM); 3063 } 3064 3065 /* This is a special case flush to return all 3066 * IOs before entering this loop. There are 3067 * two points in the code where a flush is 3068 * avoided if the FC_UNLOADING flag is set. 3069 * one is in the multipool destroy, 3070 * (this prevents a crash) and the other is 3071 * in the nvme abort handler, ( also prevents 3072 * a crash). Both of these exceptions are 3073 * cases where the slot is still accessible. 3074 * The flush here is only when the pci slot 3075 * is offline. 3076 */ 3077 if (test_bit(FC_UNLOADING, &vport->load_flag) && 3078 pci_channel_offline(phba->pcidev)) 3079 lpfc_sli_flush_io_rings(vport->phba); 3080 3081 /* At this point, ALL ndlp's should be gone 3082 * because of the previous NLP_EVT_DEVICE_RM. 3083 * Lets wait for this to happen, if needed. 3084 */ 3085 while (!list_empty(&vport->fc_nodes)) { 3086 if (i++ > 3000) { 3087 lpfc_printf_vlog(vport, KERN_ERR, 3088 LOG_TRACE_EVENT, 3089 "0233 Nodelist not empty\n"); 3090 list_for_each_entry_safe(ndlp, next_ndlp, 3091 &vport->fc_nodes, nlp_listp) { 3092 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3093 LOG_DISCOVERY, 3094 "0282 did:x%x ndlp:x%px " 3095 "refcnt:%d xflags x%x nflag x%x\n", 3096 ndlp->nlp_DID, (void *)ndlp, 3097 kref_read(&ndlp->kref), 3098 ndlp->fc4_xpt_flags, 3099 ndlp->nlp_flag); 3100 } 3101 break; 3102 } 3103 3104 /* Wait for any activity on ndlps to settle */ 3105 msleep(10); 3106 } 3107 lpfc_cleanup_vports_rrqs(vport, NULL); 3108 } 3109 3110 /** 3111 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3112 * @vport: pointer to a virtual N_Port data structure. 3113 * 3114 * This routine stops all the timers associated with a @vport. This function 3115 * is invoked before disabling or deleting a @vport. Note that the physical 3116 * port is treated as @vport 0. 3117 **/ 3118 void 3119 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3120 { 3121 del_timer_sync(&vport->els_tmofunc); 3122 del_timer_sync(&vport->delayed_disc_tmo); 3123 lpfc_can_disctmo(vport); 3124 return; 3125 } 3126 3127 /** 3128 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3129 * @phba: pointer to lpfc hba data structure. 3130 * 3131 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3132 * caller of this routine should already hold the host lock. 3133 **/ 3134 void 3135 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3136 { 3137 /* Clear pending FCF rediscovery wait flag */ 3138 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3139 3140 /* Now, try to stop the timer */ 3141 del_timer(&phba->fcf.redisc_wait); 3142 } 3143 3144 /** 3145 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3146 * @phba: pointer to lpfc hba data structure. 3147 * 3148 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3149 * checks whether the FCF rediscovery wait timer is pending with the host 3150 * lock held before proceeding with disabling the timer and clearing the 3151 * wait timer pendig flag. 3152 **/ 3153 void 3154 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3155 { 3156 spin_lock_irq(&phba->hbalock); 3157 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3158 /* FCF rediscovery timer already fired or stopped */ 3159 spin_unlock_irq(&phba->hbalock); 3160 return; 3161 } 3162 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3163 /* Clear failover in progress flags */ 3164 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3165 spin_unlock_irq(&phba->hbalock); 3166 } 3167 3168 /** 3169 * lpfc_cmf_stop - Stop CMF processing 3170 * @phba: pointer to lpfc hba data structure. 3171 * 3172 * This is called when the link goes down or if CMF mode is turned OFF. 3173 * It is also called when going offline or unloaded just before the 3174 * congestion info buffer is unregistered. 3175 **/ 3176 void 3177 lpfc_cmf_stop(struct lpfc_hba *phba) 3178 { 3179 int cpu; 3180 struct lpfc_cgn_stat *cgs; 3181 3182 /* We only do something if CMF is enabled */ 3183 if (!phba->sli4_hba.pc_sli4_params.cmf) 3184 return; 3185 3186 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3187 "6221 Stop CMF / Cancel Timer\n"); 3188 3189 /* Cancel the CMF timer */ 3190 hrtimer_cancel(&phba->cmf_stats_timer); 3191 hrtimer_cancel(&phba->cmf_timer); 3192 3193 /* Zero CMF counters */ 3194 atomic_set(&phba->cmf_busy, 0); 3195 for_each_present_cpu(cpu) { 3196 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3197 atomic64_set(&cgs->total_bytes, 0); 3198 atomic64_set(&cgs->rcv_bytes, 0); 3199 atomic_set(&cgs->rx_io_cnt, 0); 3200 atomic64_set(&cgs->rx_latency, 0); 3201 } 3202 atomic_set(&phba->cmf_bw_wait, 0); 3203 3204 /* Resume any blocked IO - Queue unblock on workqueue */ 3205 queue_work(phba->wq, &phba->unblock_request_work); 3206 } 3207 3208 static inline uint64_t 3209 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3210 { 3211 uint64_t rate = lpfc_sli_port_speed_get(phba); 3212 3213 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3214 } 3215 3216 void 3217 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3218 { 3219 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3220 "6223 Signal CMF init\n"); 3221 3222 /* Use the new fc_linkspeed to recalculate */ 3223 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3224 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3225 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3226 phba->cmf_interval_rate, 1000); 3227 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3228 3229 /* This is a signal to firmware to sync up CMF BW with link speed */ 3230 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3231 } 3232 3233 /** 3234 * lpfc_cmf_start - Start CMF processing 3235 * @phba: pointer to lpfc hba data structure. 3236 * 3237 * This is called when the link comes up or if CMF mode is turned OFF 3238 * to Monitor or Managed. 3239 **/ 3240 void 3241 lpfc_cmf_start(struct lpfc_hba *phba) 3242 { 3243 struct lpfc_cgn_stat *cgs; 3244 int cpu; 3245 3246 /* We only do something if CMF is enabled */ 3247 if (!phba->sli4_hba.pc_sli4_params.cmf || 3248 phba->cmf_active_mode == LPFC_CFG_OFF) 3249 return; 3250 3251 /* Reinitialize congestion buffer info */ 3252 lpfc_init_congestion_buf(phba); 3253 3254 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3255 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3256 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3257 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3258 3259 atomic_set(&phba->cmf_busy, 0); 3260 for_each_present_cpu(cpu) { 3261 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3262 atomic64_set(&cgs->total_bytes, 0); 3263 atomic64_set(&cgs->rcv_bytes, 0); 3264 atomic_set(&cgs->rx_io_cnt, 0); 3265 atomic64_set(&cgs->rx_latency, 0); 3266 } 3267 phba->cmf_latency.tv_sec = 0; 3268 phba->cmf_latency.tv_nsec = 0; 3269 3270 lpfc_cmf_signal_init(phba); 3271 3272 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3273 "6222 Start CMF / Timer\n"); 3274 3275 phba->cmf_timer_cnt = 0; 3276 hrtimer_start(&phba->cmf_timer, 3277 ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC), 3278 HRTIMER_MODE_REL); 3279 hrtimer_start(&phba->cmf_stats_timer, 3280 ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC), 3281 HRTIMER_MODE_REL); 3282 /* Setup for latency check in IO cmpl routines */ 3283 ktime_get_real_ts64(&phba->cmf_latency); 3284 3285 atomic_set(&phba->cmf_bw_wait, 0); 3286 atomic_set(&phba->cmf_stop_io, 0); 3287 } 3288 3289 /** 3290 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3291 * @phba: pointer to lpfc hba data structure. 3292 * 3293 * This routine stops all the timers associated with a HBA. This function is 3294 * invoked before either putting a HBA offline or unloading the driver. 3295 **/ 3296 void 3297 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3298 { 3299 if (phba->pport) 3300 lpfc_stop_vport_timers(phba->pport); 3301 cancel_delayed_work_sync(&phba->eq_delay_work); 3302 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3303 del_timer_sync(&phba->sli.mbox_tmo); 3304 del_timer_sync(&phba->fabric_block_timer); 3305 del_timer_sync(&phba->eratt_poll); 3306 del_timer_sync(&phba->hb_tmofunc); 3307 if (phba->sli_rev == LPFC_SLI_REV4) { 3308 del_timer_sync(&phba->rrq_tmr); 3309 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 3310 } 3311 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 3312 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 3313 3314 switch (phba->pci_dev_grp) { 3315 case LPFC_PCI_DEV_LP: 3316 /* Stop any LightPulse device specific driver timers */ 3317 del_timer_sync(&phba->fcp_poll_timer); 3318 break; 3319 case LPFC_PCI_DEV_OC: 3320 /* Stop any OneConnect device specific driver timers */ 3321 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3322 break; 3323 default: 3324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3325 "0297 Invalid device group (x%x)\n", 3326 phba->pci_dev_grp); 3327 break; 3328 } 3329 return; 3330 } 3331 3332 /** 3333 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3334 * @phba: pointer to lpfc hba data structure. 3335 * @mbx_action: flag for mailbox no wait action. 3336 * 3337 * This routine marks a HBA's management interface as blocked. Once the HBA's 3338 * management interface is marked as blocked, all the user space access to 3339 * the HBA, whether they are from sysfs interface or libdfc interface will 3340 * all be blocked. The HBA is set to block the management interface when the 3341 * driver prepares the HBA interface for online or offline. 3342 **/ 3343 static void 3344 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3345 { 3346 unsigned long iflag; 3347 uint8_t actcmd = MBX_HEARTBEAT; 3348 unsigned long timeout; 3349 3350 spin_lock_irqsave(&phba->hbalock, iflag); 3351 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3352 spin_unlock_irqrestore(&phba->hbalock, iflag); 3353 if (mbx_action == LPFC_MBX_NO_WAIT) 3354 return; 3355 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3356 spin_lock_irqsave(&phba->hbalock, iflag); 3357 if (phba->sli.mbox_active) { 3358 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3359 /* Determine how long we might wait for the active mailbox 3360 * command to be gracefully completed by firmware. 3361 */ 3362 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3363 phba->sli.mbox_active) * 1000) + jiffies; 3364 } 3365 spin_unlock_irqrestore(&phba->hbalock, iflag); 3366 3367 /* Wait for the outstnading mailbox command to complete */ 3368 while (phba->sli.mbox_active) { 3369 /* Check active mailbox complete status every 2ms */ 3370 msleep(2); 3371 if (time_after(jiffies, timeout)) { 3372 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3373 "2813 Mgmt IO is Blocked %x " 3374 "- mbox cmd %x still active\n", 3375 phba->sli.sli_flag, actcmd); 3376 break; 3377 } 3378 } 3379 } 3380 3381 /** 3382 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3383 * @phba: pointer to lpfc hba data structure. 3384 * 3385 * Allocate RPIs for all active remote nodes. This is needed whenever 3386 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3387 * is to fixup the temporary rpi assignments. 3388 **/ 3389 void 3390 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3391 { 3392 struct lpfc_nodelist *ndlp, *next_ndlp; 3393 struct lpfc_vport **vports; 3394 int i, rpi; 3395 3396 if (phba->sli_rev != LPFC_SLI_REV4) 3397 return; 3398 3399 vports = lpfc_create_vport_work_array(phba); 3400 if (vports == NULL) 3401 return; 3402 3403 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3404 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3405 continue; 3406 3407 list_for_each_entry_safe(ndlp, next_ndlp, 3408 &vports[i]->fc_nodes, 3409 nlp_listp) { 3410 rpi = lpfc_sli4_alloc_rpi(phba); 3411 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3412 /* TODO print log? */ 3413 continue; 3414 } 3415 ndlp->nlp_rpi = rpi; 3416 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3417 LOG_NODE | LOG_DISCOVERY, 3418 "0009 Assign RPI x%x to ndlp x%px " 3419 "DID:x%06x flg:x%x\n", 3420 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3421 ndlp->nlp_flag); 3422 } 3423 } 3424 lpfc_destroy_vport_work_array(phba, vports); 3425 } 3426 3427 /** 3428 * lpfc_create_expedite_pool - create expedite pool 3429 * @phba: pointer to lpfc hba data structure. 3430 * 3431 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3432 * to expedite pool. Mark them as expedite. 3433 **/ 3434 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3435 { 3436 struct lpfc_sli4_hdw_queue *qp; 3437 struct lpfc_io_buf *lpfc_ncmd; 3438 struct lpfc_io_buf *lpfc_ncmd_next; 3439 struct lpfc_epd_pool *epd_pool; 3440 unsigned long iflag; 3441 3442 epd_pool = &phba->epd_pool; 3443 qp = &phba->sli4_hba.hdwq[0]; 3444 3445 spin_lock_init(&epd_pool->lock); 3446 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3447 spin_lock(&epd_pool->lock); 3448 INIT_LIST_HEAD(&epd_pool->list); 3449 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3450 &qp->lpfc_io_buf_list_put, list) { 3451 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3452 lpfc_ncmd->expedite = true; 3453 qp->put_io_bufs--; 3454 epd_pool->count++; 3455 if (epd_pool->count >= XRI_BATCH) 3456 break; 3457 } 3458 spin_unlock(&epd_pool->lock); 3459 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3460 } 3461 3462 /** 3463 * lpfc_destroy_expedite_pool - destroy expedite pool 3464 * @phba: pointer to lpfc hba data structure. 3465 * 3466 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3467 * of HWQ 0. Clear the mark. 3468 **/ 3469 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3470 { 3471 struct lpfc_sli4_hdw_queue *qp; 3472 struct lpfc_io_buf *lpfc_ncmd; 3473 struct lpfc_io_buf *lpfc_ncmd_next; 3474 struct lpfc_epd_pool *epd_pool; 3475 unsigned long iflag; 3476 3477 epd_pool = &phba->epd_pool; 3478 qp = &phba->sli4_hba.hdwq[0]; 3479 3480 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3481 spin_lock(&epd_pool->lock); 3482 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3483 &epd_pool->list, list) { 3484 list_move_tail(&lpfc_ncmd->list, 3485 &qp->lpfc_io_buf_list_put); 3486 lpfc_ncmd->flags = false; 3487 qp->put_io_bufs++; 3488 epd_pool->count--; 3489 } 3490 spin_unlock(&epd_pool->lock); 3491 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3492 } 3493 3494 /** 3495 * lpfc_create_multixri_pools - create multi-XRI pools 3496 * @phba: pointer to lpfc hba data structure. 3497 * 3498 * This routine initialize public, private per HWQ. Then, move XRIs from 3499 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3500 * Initialized. 3501 **/ 3502 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3503 { 3504 u32 i, j; 3505 u32 hwq_count; 3506 u32 count_per_hwq; 3507 struct lpfc_io_buf *lpfc_ncmd; 3508 struct lpfc_io_buf *lpfc_ncmd_next; 3509 unsigned long iflag; 3510 struct lpfc_sli4_hdw_queue *qp; 3511 struct lpfc_multixri_pool *multixri_pool; 3512 struct lpfc_pbl_pool *pbl_pool; 3513 struct lpfc_pvt_pool *pvt_pool; 3514 3515 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3516 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3517 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3518 phba->sli4_hba.io_xri_cnt); 3519 3520 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3521 lpfc_create_expedite_pool(phba); 3522 3523 hwq_count = phba->cfg_hdw_queue; 3524 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3525 3526 for (i = 0; i < hwq_count; i++) { 3527 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3528 3529 if (!multixri_pool) { 3530 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3531 "1238 Failed to allocate memory for " 3532 "multixri_pool\n"); 3533 3534 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3535 lpfc_destroy_expedite_pool(phba); 3536 3537 j = 0; 3538 while (j < i) { 3539 qp = &phba->sli4_hba.hdwq[j]; 3540 kfree(qp->p_multixri_pool); 3541 j++; 3542 } 3543 phba->cfg_xri_rebalancing = 0; 3544 return; 3545 } 3546 3547 qp = &phba->sli4_hba.hdwq[i]; 3548 qp->p_multixri_pool = multixri_pool; 3549 3550 multixri_pool->xri_limit = count_per_hwq; 3551 multixri_pool->rrb_next_hwqid = i; 3552 3553 /* Deal with public free xri pool */ 3554 pbl_pool = &multixri_pool->pbl_pool; 3555 spin_lock_init(&pbl_pool->lock); 3556 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3557 spin_lock(&pbl_pool->lock); 3558 INIT_LIST_HEAD(&pbl_pool->list); 3559 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3560 &qp->lpfc_io_buf_list_put, list) { 3561 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3562 qp->put_io_bufs--; 3563 pbl_pool->count++; 3564 } 3565 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3566 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3567 pbl_pool->count, i); 3568 spin_unlock(&pbl_pool->lock); 3569 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3570 3571 /* Deal with private free xri pool */ 3572 pvt_pool = &multixri_pool->pvt_pool; 3573 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3574 pvt_pool->low_watermark = XRI_BATCH; 3575 spin_lock_init(&pvt_pool->lock); 3576 spin_lock_irqsave(&pvt_pool->lock, iflag); 3577 INIT_LIST_HEAD(&pvt_pool->list); 3578 pvt_pool->count = 0; 3579 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3580 } 3581 } 3582 3583 /** 3584 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3585 * @phba: pointer to lpfc hba data structure. 3586 * 3587 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3588 **/ 3589 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3590 { 3591 u32 i; 3592 u32 hwq_count; 3593 struct lpfc_io_buf *lpfc_ncmd; 3594 struct lpfc_io_buf *lpfc_ncmd_next; 3595 unsigned long iflag; 3596 struct lpfc_sli4_hdw_queue *qp; 3597 struct lpfc_multixri_pool *multixri_pool; 3598 struct lpfc_pbl_pool *pbl_pool; 3599 struct lpfc_pvt_pool *pvt_pool; 3600 3601 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3602 lpfc_destroy_expedite_pool(phba); 3603 3604 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3605 lpfc_sli_flush_io_rings(phba); 3606 3607 hwq_count = phba->cfg_hdw_queue; 3608 3609 for (i = 0; i < hwq_count; i++) { 3610 qp = &phba->sli4_hba.hdwq[i]; 3611 multixri_pool = qp->p_multixri_pool; 3612 if (!multixri_pool) 3613 continue; 3614 3615 qp->p_multixri_pool = NULL; 3616 3617 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3618 3619 /* Deal with public free xri pool */ 3620 pbl_pool = &multixri_pool->pbl_pool; 3621 spin_lock(&pbl_pool->lock); 3622 3623 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3624 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3625 pbl_pool->count, i); 3626 3627 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3628 &pbl_pool->list, list) { 3629 list_move_tail(&lpfc_ncmd->list, 3630 &qp->lpfc_io_buf_list_put); 3631 qp->put_io_bufs++; 3632 pbl_pool->count--; 3633 } 3634 3635 INIT_LIST_HEAD(&pbl_pool->list); 3636 pbl_pool->count = 0; 3637 3638 spin_unlock(&pbl_pool->lock); 3639 3640 /* Deal with private free xri pool */ 3641 pvt_pool = &multixri_pool->pvt_pool; 3642 spin_lock(&pvt_pool->lock); 3643 3644 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3645 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3646 pvt_pool->count, i); 3647 3648 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3649 &pvt_pool->list, list) { 3650 list_move_tail(&lpfc_ncmd->list, 3651 &qp->lpfc_io_buf_list_put); 3652 qp->put_io_bufs++; 3653 pvt_pool->count--; 3654 } 3655 3656 INIT_LIST_HEAD(&pvt_pool->list); 3657 pvt_pool->count = 0; 3658 3659 spin_unlock(&pvt_pool->lock); 3660 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3661 3662 kfree(multixri_pool); 3663 } 3664 } 3665 3666 /** 3667 * lpfc_online - Initialize and bring a HBA online 3668 * @phba: pointer to lpfc hba data structure. 3669 * 3670 * This routine initializes the HBA and brings a HBA online. During this 3671 * process, the management interface is blocked to prevent user space access 3672 * to the HBA interfering with the driver initialization. 3673 * 3674 * Return codes 3675 * 0 - successful 3676 * 1 - failed 3677 **/ 3678 int 3679 lpfc_online(struct lpfc_hba *phba) 3680 { 3681 struct lpfc_vport *vport; 3682 struct lpfc_vport **vports; 3683 int i, error = 0; 3684 bool vpis_cleared = false; 3685 3686 if (!phba) 3687 return 0; 3688 vport = phba->pport; 3689 3690 if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3691 return 0; 3692 3693 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3694 "0458 Bring Adapter online\n"); 3695 3696 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3697 3698 if (phba->sli_rev == LPFC_SLI_REV4) { 3699 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3700 lpfc_unblock_mgmt_io(phba); 3701 return 1; 3702 } 3703 spin_lock_irq(&phba->hbalock); 3704 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3705 vpis_cleared = true; 3706 spin_unlock_irq(&phba->hbalock); 3707 3708 /* Reestablish the local initiator port. 3709 * The offline process destroyed the previous lport. 3710 */ 3711 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3712 !phba->nvmet_support) { 3713 error = lpfc_nvme_create_localport(phba->pport); 3714 if (error) 3715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3716 "6132 NVME restore reg failed " 3717 "on nvmei error x%x\n", error); 3718 } 3719 } else { 3720 lpfc_sli_queue_init(phba); 3721 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3722 lpfc_unblock_mgmt_io(phba); 3723 return 1; 3724 } 3725 } 3726 3727 vports = lpfc_create_vport_work_array(phba); 3728 if (vports != NULL) { 3729 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3730 clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3731 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3732 set_bit(FC_VPORT_NEEDS_REG_VPI, 3733 &vports[i]->fc_flag); 3734 if (phba->sli_rev == LPFC_SLI_REV4) { 3735 set_bit(FC_VPORT_NEEDS_INIT_VPI, 3736 &vports[i]->fc_flag); 3737 if ((vpis_cleared) && 3738 (vports[i]->port_type != 3739 LPFC_PHYSICAL_PORT)) 3740 vports[i]->vpi = 0; 3741 } 3742 } 3743 } 3744 lpfc_destroy_vport_work_array(phba, vports); 3745 3746 if (phba->cfg_xri_rebalancing) 3747 lpfc_create_multixri_pools(phba); 3748 3749 lpfc_cpuhp_add(phba); 3750 3751 lpfc_unblock_mgmt_io(phba); 3752 return 0; 3753 } 3754 3755 /** 3756 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3757 * @phba: pointer to lpfc hba data structure. 3758 * 3759 * This routine marks a HBA's management interface as not blocked. Once the 3760 * HBA's management interface is marked as not blocked, all the user space 3761 * access to the HBA, whether they are from sysfs interface or libdfc 3762 * interface will be allowed. The HBA is set to block the management interface 3763 * when the driver prepares the HBA interface for online or offline and then 3764 * set to unblock the management interface afterwards. 3765 **/ 3766 void 3767 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3768 { 3769 unsigned long iflag; 3770 3771 spin_lock_irqsave(&phba->hbalock, iflag); 3772 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3773 spin_unlock_irqrestore(&phba->hbalock, iflag); 3774 } 3775 3776 /** 3777 * lpfc_offline_prep - Prepare a HBA to be brought offline 3778 * @phba: pointer to lpfc hba data structure. 3779 * @mbx_action: flag for mailbox shutdown action. 3780 * 3781 * This routine is invoked to prepare a HBA to be brought offline. It performs 3782 * unregistration login to all the nodes on all vports and flushes the mailbox 3783 * queue to make it ready to be brought offline. 3784 **/ 3785 void 3786 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3787 { 3788 struct lpfc_vport *vport = phba->pport; 3789 struct lpfc_nodelist *ndlp, *next_ndlp; 3790 struct lpfc_vport **vports; 3791 struct Scsi_Host *shost; 3792 int i; 3793 int offline; 3794 bool hba_pci_err; 3795 3796 if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3797 return; 3798 3799 lpfc_block_mgmt_io(phba, mbx_action); 3800 3801 lpfc_linkdown(phba); 3802 3803 offline = pci_channel_offline(phba->pcidev); 3804 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3805 3806 /* Issue an unreg_login to all nodes on all vports */ 3807 vports = lpfc_create_vport_work_array(phba); 3808 if (vports != NULL) { 3809 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3810 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3811 continue; 3812 shost = lpfc_shost_from_vport(vports[i]); 3813 spin_lock_irq(shost->host_lock); 3814 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3815 spin_unlock_irq(shost->host_lock); 3816 set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag); 3817 clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag); 3818 3819 list_for_each_entry_safe(ndlp, next_ndlp, 3820 &vports[i]->fc_nodes, 3821 nlp_listp) { 3822 3823 spin_lock_irq(&ndlp->lock); 3824 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3825 spin_unlock_irq(&ndlp->lock); 3826 3827 if (offline || hba_pci_err) { 3828 spin_lock_irq(&ndlp->lock); 3829 ndlp->nlp_flag &= ~(NLP_UNREG_INP | 3830 NLP_RPI_REGISTERED); 3831 spin_unlock_irq(&ndlp->lock); 3832 if (phba->sli_rev == LPFC_SLI_REV4) 3833 lpfc_sli_rpi_release(vports[i], 3834 ndlp); 3835 } else { 3836 lpfc_unreg_rpi(vports[i], ndlp); 3837 } 3838 /* 3839 * Whenever an SLI4 port goes offline, free the 3840 * RPI. Get a new RPI when the adapter port 3841 * comes back online. 3842 */ 3843 if (phba->sli_rev == LPFC_SLI_REV4) { 3844 lpfc_printf_vlog(vports[i], KERN_INFO, 3845 LOG_NODE | LOG_DISCOVERY, 3846 "0011 Free RPI x%x on " 3847 "ndlp: x%px did x%x\n", 3848 ndlp->nlp_rpi, ndlp, 3849 ndlp->nlp_DID); 3850 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3851 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3852 } 3853 3854 if (ndlp->nlp_type & NLP_FABRIC) { 3855 lpfc_disc_state_machine(vports[i], ndlp, 3856 NULL, NLP_EVT_DEVICE_RECOVERY); 3857 3858 /* Don't remove the node unless the node 3859 * has been unregistered with the 3860 * transport, and we're not in recovery 3861 * before dev_loss_tmo triggered. 3862 * Otherwise, let dev_loss take care of 3863 * the node. 3864 */ 3865 if (!(ndlp->save_flags & 3866 NLP_IN_RECOV_POST_DEV_LOSS) && 3867 !(ndlp->fc4_xpt_flags & 3868 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3869 lpfc_disc_state_machine 3870 (vports[i], ndlp, 3871 NULL, 3872 NLP_EVT_DEVICE_RM); 3873 } 3874 } 3875 } 3876 } 3877 lpfc_destroy_vport_work_array(phba, vports); 3878 3879 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3880 3881 if (phba->wq) 3882 flush_workqueue(phba->wq); 3883 } 3884 3885 /** 3886 * lpfc_offline - Bring a HBA offline 3887 * @phba: pointer to lpfc hba data structure. 3888 * 3889 * This routine actually brings a HBA offline. It stops all the timers 3890 * associated with the HBA, brings down the SLI layer, and eventually 3891 * marks the HBA as in offline state for the upper layer protocol. 3892 **/ 3893 void 3894 lpfc_offline(struct lpfc_hba *phba) 3895 { 3896 struct Scsi_Host *shost; 3897 struct lpfc_vport **vports; 3898 int i; 3899 3900 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3901 return; 3902 3903 /* stop port and all timers associated with this hba */ 3904 lpfc_stop_port(phba); 3905 3906 /* Tear down the local and target port registrations. The 3907 * nvme transports need to cleanup. 3908 */ 3909 lpfc_nvmet_destroy_targetport(phba); 3910 lpfc_nvme_destroy_localport(phba->pport); 3911 3912 vports = lpfc_create_vport_work_array(phba); 3913 if (vports != NULL) 3914 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3915 lpfc_stop_vport_timers(vports[i]); 3916 lpfc_destroy_vport_work_array(phba, vports); 3917 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3918 "0460 Bring Adapter offline\n"); 3919 /* Bring down the SLI Layer and cleanup. The HBA is offline 3920 now. */ 3921 lpfc_sli_hba_down(phba); 3922 spin_lock_irq(&phba->hbalock); 3923 phba->work_ha = 0; 3924 spin_unlock_irq(&phba->hbalock); 3925 vports = lpfc_create_vport_work_array(phba); 3926 if (vports != NULL) 3927 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3928 shost = lpfc_shost_from_vport(vports[i]); 3929 spin_lock_irq(shost->host_lock); 3930 vports[i]->work_port_events = 0; 3931 spin_unlock_irq(shost->host_lock); 3932 set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3933 } 3934 lpfc_destroy_vport_work_array(phba, vports); 3935 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3936 * in hba_unset 3937 */ 3938 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3939 __lpfc_cpuhp_remove(phba); 3940 3941 if (phba->cfg_xri_rebalancing) 3942 lpfc_destroy_multixri_pools(phba); 3943 } 3944 3945 /** 3946 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3947 * @phba: pointer to lpfc hba data structure. 3948 * 3949 * This routine is to free all the SCSI buffers and IOCBs from the driver 3950 * list back to kernel. It is called from lpfc_pci_remove_one to free 3951 * the internal resources before the device is removed from the system. 3952 **/ 3953 static void 3954 lpfc_scsi_free(struct lpfc_hba *phba) 3955 { 3956 struct lpfc_io_buf *sb, *sb_next; 3957 3958 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3959 return; 3960 3961 spin_lock_irq(&phba->hbalock); 3962 3963 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3964 3965 spin_lock(&phba->scsi_buf_list_put_lock); 3966 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3967 list) { 3968 list_del(&sb->list); 3969 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3970 sb->dma_handle); 3971 kfree(sb); 3972 phba->total_scsi_bufs--; 3973 } 3974 spin_unlock(&phba->scsi_buf_list_put_lock); 3975 3976 spin_lock(&phba->scsi_buf_list_get_lock); 3977 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3978 list) { 3979 list_del(&sb->list); 3980 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3981 sb->dma_handle); 3982 kfree(sb); 3983 phba->total_scsi_bufs--; 3984 } 3985 spin_unlock(&phba->scsi_buf_list_get_lock); 3986 spin_unlock_irq(&phba->hbalock); 3987 } 3988 3989 /** 3990 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3991 * @phba: pointer to lpfc hba data structure. 3992 * 3993 * This routine is to free all the IO buffers and IOCBs from the driver 3994 * list back to kernel. It is called from lpfc_pci_remove_one to free 3995 * the internal resources before the device is removed from the system. 3996 **/ 3997 void 3998 lpfc_io_free(struct lpfc_hba *phba) 3999 { 4000 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 4001 struct lpfc_sli4_hdw_queue *qp; 4002 int idx; 4003 4004 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4005 qp = &phba->sli4_hba.hdwq[idx]; 4006 /* Release all the lpfc_nvme_bufs maintained by this host. */ 4007 spin_lock(&qp->io_buf_list_put_lock); 4008 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4009 &qp->lpfc_io_buf_list_put, 4010 list) { 4011 list_del(&lpfc_ncmd->list); 4012 qp->put_io_bufs--; 4013 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4014 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4015 if (phba->cfg_xpsgl && !phba->nvmet_support) 4016 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4017 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4018 kfree(lpfc_ncmd); 4019 qp->total_io_bufs--; 4020 } 4021 spin_unlock(&qp->io_buf_list_put_lock); 4022 4023 spin_lock(&qp->io_buf_list_get_lock); 4024 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4025 &qp->lpfc_io_buf_list_get, 4026 list) { 4027 list_del(&lpfc_ncmd->list); 4028 qp->get_io_bufs--; 4029 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4030 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4031 if (phba->cfg_xpsgl && !phba->nvmet_support) 4032 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4033 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4034 kfree(lpfc_ncmd); 4035 qp->total_io_bufs--; 4036 } 4037 spin_unlock(&qp->io_buf_list_get_lock); 4038 } 4039 } 4040 4041 /** 4042 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 4043 * @phba: pointer to lpfc hba data structure. 4044 * 4045 * This routine first calculates the sizes of the current els and allocated 4046 * scsi sgl lists, and then goes through all sgls to updates the physical 4047 * XRIs assigned due to port function reset. During port initialization, the 4048 * current els and allocated scsi sgl lists are 0s. 4049 * 4050 * Return codes 4051 * 0 - successful (for now, it always returns 0) 4052 **/ 4053 int 4054 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 4055 { 4056 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4057 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4058 LIST_HEAD(els_sgl_list); 4059 int rc; 4060 4061 /* 4062 * update on pci function's els xri-sgl list 4063 */ 4064 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4065 4066 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 4067 /* els xri-sgl expanded */ 4068 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 4069 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4070 "3157 ELS xri-sgl count increased from " 4071 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4072 els_xri_cnt); 4073 /* allocate the additional els sgls */ 4074 for (i = 0; i < xri_cnt; i++) { 4075 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4076 GFP_KERNEL); 4077 if (sglq_entry == NULL) { 4078 lpfc_printf_log(phba, KERN_ERR, 4079 LOG_TRACE_EVENT, 4080 "2562 Failure to allocate an " 4081 "ELS sgl entry:%d\n", i); 4082 rc = -ENOMEM; 4083 goto out_free_mem; 4084 } 4085 sglq_entry->buff_type = GEN_BUFF_TYPE; 4086 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 4087 &sglq_entry->phys); 4088 if (sglq_entry->virt == NULL) { 4089 kfree(sglq_entry); 4090 lpfc_printf_log(phba, KERN_ERR, 4091 LOG_TRACE_EVENT, 4092 "2563 Failure to allocate an " 4093 "ELS mbuf:%d\n", i); 4094 rc = -ENOMEM; 4095 goto out_free_mem; 4096 } 4097 sglq_entry->sgl = sglq_entry->virt; 4098 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4099 sglq_entry->state = SGL_FREED; 4100 list_add_tail(&sglq_entry->list, &els_sgl_list); 4101 } 4102 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4103 list_splice_init(&els_sgl_list, 4104 &phba->sli4_hba.lpfc_els_sgl_list); 4105 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4106 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4107 /* els xri-sgl shrinked */ 4108 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4110 "3158 ELS xri-sgl count decreased from " 4111 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4112 els_xri_cnt); 4113 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4114 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4115 &els_sgl_list); 4116 /* release extra els sgls from list */ 4117 for (i = 0; i < xri_cnt; i++) { 4118 list_remove_head(&els_sgl_list, 4119 sglq_entry, struct lpfc_sglq, list); 4120 if (sglq_entry) { 4121 __lpfc_mbuf_free(phba, sglq_entry->virt, 4122 sglq_entry->phys); 4123 kfree(sglq_entry); 4124 } 4125 } 4126 list_splice_init(&els_sgl_list, 4127 &phba->sli4_hba.lpfc_els_sgl_list); 4128 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4129 } else 4130 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4131 "3163 ELS xri-sgl count unchanged: %d\n", 4132 els_xri_cnt); 4133 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4134 4135 /* update xris to els sgls on the list */ 4136 sglq_entry = NULL; 4137 sglq_entry_next = NULL; 4138 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4139 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4140 lxri = lpfc_sli4_next_xritag(phba); 4141 if (lxri == NO_XRI) { 4142 lpfc_printf_log(phba, KERN_ERR, 4143 LOG_TRACE_EVENT, 4144 "2400 Failed to allocate xri for " 4145 "ELS sgl\n"); 4146 rc = -ENOMEM; 4147 goto out_free_mem; 4148 } 4149 sglq_entry->sli4_lxritag = lxri; 4150 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4151 } 4152 return 0; 4153 4154 out_free_mem: 4155 lpfc_free_els_sgl_list(phba); 4156 return rc; 4157 } 4158 4159 /** 4160 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4161 * @phba: pointer to lpfc hba data structure. 4162 * 4163 * This routine first calculates the sizes of the current els and allocated 4164 * scsi sgl lists, and then goes through all sgls to updates the physical 4165 * XRIs assigned due to port function reset. During port initialization, the 4166 * current els and allocated scsi sgl lists are 0s. 4167 * 4168 * Return codes 4169 * 0 - successful (for now, it always returns 0) 4170 **/ 4171 int 4172 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4173 { 4174 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4175 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4176 uint16_t nvmet_xri_cnt; 4177 LIST_HEAD(nvmet_sgl_list); 4178 int rc; 4179 4180 /* 4181 * update on pci function's nvmet xri-sgl list 4182 */ 4183 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4184 4185 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4186 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4187 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4188 /* els xri-sgl expanded */ 4189 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4190 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4191 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4192 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4193 /* allocate the additional nvmet sgls */ 4194 for (i = 0; i < xri_cnt; i++) { 4195 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4196 GFP_KERNEL); 4197 if (sglq_entry == NULL) { 4198 lpfc_printf_log(phba, KERN_ERR, 4199 LOG_TRACE_EVENT, 4200 "6303 Failure to allocate an " 4201 "NVMET sgl entry:%d\n", i); 4202 rc = -ENOMEM; 4203 goto out_free_mem; 4204 } 4205 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4206 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4207 &sglq_entry->phys); 4208 if (sglq_entry->virt == NULL) { 4209 kfree(sglq_entry); 4210 lpfc_printf_log(phba, KERN_ERR, 4211 LOG_TRACE_EVENT, 4212 "6304 Failure to allocate an " 4213 "NVMET buf:%d\n", i); 4214 rc = -ENOMEM; 4215 goto out_free_mem; 4216 } 4217 sglq_entry->sgl = sglq_entry->virt; 4218 memset(sglq_entry->sgl, 0, 4219 phba->cfg_sg_dma_buf_size); 4220 sglq_entry->state = SGL_FREED; 4221 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4222 } 4223 spin_lock_irq(&phba->hbalock); 4224 spin_lock(&phba->sli4_hba.sgl_list_lock); 4225 list_splice_init(&nvmet_sgl_list, 4226 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4227 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4228 spin_unlock_irq(&phba->hbalock); 4229 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4230 /* nvmet xri-sgl shrunk */ 4231 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4232 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4233 "6305 NVMET xri-sgl count decreased from " 4234 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4235 nvmet_xri_cnt); 4236 spin_lock_irq(&phba->hbalock); 4237 spin_lock(&phba->sli4_hba.sgl_list_lock); 4238 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4239 &nvmet_sgl_list); 4240 /* release extra nvmet sgls from list */ 4241 for (i = 0; i < xri_cnt; i++) { 4242 list_remove_head(&nvmet_sgl_list, 4243 sglq_entry, struct lpfc_sglq, list); 4244 if (sglq_entry) { 4245 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4246 sglq_entry->phys); 4247 kfree(sglq_entry); 4248 } 4249 } 4250 list_splice_init(&nvmet_sgl_list, 4251 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4252 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4253 spin_unlock_irq(&phba->hbalock); 4254 } else 4255 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4256 "6306 NVMET xri-sgl count unchanged: %d\n", 4257 nvmet_xri_cnt); 4258 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4259 4260 /* update xris to nvmet sgls on the list */ 4261 sglq_entry = NULL; 4262 sglq_entry_next = NULL; 4263 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4264 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4265 lxri = lpfc_sli4_next_xritag(phba); 4266 if (lxri == NO_XRI) { 4267 lpfc_printf_log(phba, KERN_ERR, 4268 LOG_TRACE_EVENT, 4269 "6307 Failed to allocate xri for " 4270 "NVMET sgl\n"); 4271 rc = -ENOMEM; 4272 goto out_free_mem; 4273 } 4274 sglq_entry->sli4_lxritag = lxri; 4275 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4276 } 4277 return 0; 4278 4279 out_free_mem: 4280 lpfc_free_nvmet_sgl_list(phba); 4281 return rc; 4282 } 4283 4284 int 4285 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4286 { 4287 LIST_HEAD(blist); 4288 struct lpfc_sli4_hdw_queue *qp; 4289 struct lpfc_io_buf *lpfc_cmd; 4290 struct lpfc_io_buf *iobufp, *prev_iobufp; 4291 int idx, cnt, xri, inserted; 4292 4293 cnt = 0; 4294 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4295 qp = &phba->sli4_hba.hdwq[idx]; 4296 spin_lock_irq(&qp->io_buf_list_get_lock); 4297 spin_lock(&qp->io_buf_list_put_lock); 4298 4299 /* Take everything off the get and put lists */ 4300 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4301 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4302 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4303 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4304 cnt += qp->get_io_bufs + qp->put_io_bufs; 4305 qp->get_io_bufs = 0; 4306 qp->put_io_bufs = 0; 4307 qp->total_io_bufs = 0; 4308 spin_unlock(&qp->io_buf_list_put_lock); 4309 spin_unlock_irq(&qp->io_buf_list_get_lock); 4310 } 4311 4312 /* 4313 * Take IO buffers off blist and put on cbuf sorted by XRI. 4314 * This is because POST_SGL takes a sequential range of XRIs 4315 * to post to the firmware. 4316 */ 4317 for (idx = 0; idx < cnt; idx++) { 4318 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4319 if (!lpfc_cmd) 4320 return cnt; 4321 if (idx == 0) { 4322 list_add_tail(&lpfc_cmd->list, cbuf); 4323 continue; 4324 } 4325 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4326 inserted = 0; 4327 prev_iobufp = NULL; 4328 list_for_each_entry(iobufp, cbuf, list) { 4329 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4330 if (prev_iobufp) 4331 list_add(&lpfc_cmd->list, 4332 &prev_iobufp->list); 4333 else 4334 list_add(&lpfc_cmd->list, cbuf); 4335 inserted = 1; 4336 break; 4337 } 4338 prev_iobufp = iobufp; 4339 } 4340 if (!inserted) 4341 list_add_tail(&lpfc_cmd->list, cbuf); 4342 } 4343 return cnt; 4344 } 4345 4346 int 4347 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4348 { 4349 struct lpfc_sli4_hdw_queue *qp; 4350 struct lpfc_io_buf *lpfc_cmd; 4351 int idx, cnt; 4352 unsigned long iflags; 4353 4354 qp = phba->sli4_hba.hdwq; 4355 cnt = 0; 4356 while (!list_empty(cbuf)) { 4357 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4358 list_remove_head(cbuf, lpfc_cmd, 4359 struct lpfc_io_buf, list); 4360 if (!lpfc_cmd) 4361 return cnt; 4362 cnt++; 4363 qp = &phba->sli4_hba.hdwq[idx]; 4364 lpfc_cmd->hdwq_no = idx; 4365 lpfc_cmd->hdwq = qp; 4366 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4367 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags); 4368 list_add_tail(&lpfc_cmd->list, 4369 &qp->lpfc_io_buf_list_put); 4370 qp->put_io_bufs++; 4371 qp->total_io_bufs++; 4372 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 4373 iflags); 4374 } 4375 } 4376 return cnt; 4377 } 4378 4379 /** 4380 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4381 * @phba: pointer to lpfc hba data structure. 4382 * 4383 * This routine first calculates the sizes of the current els and allocated 4384 * scsi sgl lists, and then goes through all sgls to updates the physical 4385 * XRIs assigned due to port function reset. During port initialization, the 4386 * current els and allocated scsi sgl lists are 0s. 4387 * 4388 * Return codes 4389 * 0 - successful (for now, it always returns 0) 4390 **/ 4391 int 4392 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4393 { 4394 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4395 uint16_t i, lxri, els_xri_cnt; 4396 uint16_t io_xri_cnt, io_xri_max; 4397 LIST_HEAD(io_sgl_list); 4398 int rc, cnt; 4399 4400 /* 4401 * update on pci function's allocated nvme xri-sgl list 4402 */ 4403 4404 /* maximum number of xris available for nvme buffers */ 4405 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4406 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4407 phba->sli4_hba.io_xri_max = io_xri_max; 4408 4409 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4410 "6074 Current allocated XRI sgl count:%d, " 4411 "maximum XRI count:%d els_xri_cnt:%d\n\n", 4412 phba->sli4_hba.io_xri_cnt, 4413 phba->sli4_hba.io_xri_max, 4414 els_xri_cnt); 4415 4416 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4417 4418 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4419 /* max nvme xri shrunk below the allocated nvme buffers */ 4420 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4421 phba->sli4_hba.io_xri_max; 4422 /* release the extra allocated nvme buffers */ 4423 for (i = 0; i < io_xri_cnt; i++) { 4424 list_remove_head(&io_sgl_list, lpfc_ncmd, 4425 struct lpfc_io_buf, list); 4426 if (lpfc_ncmd) { 4427 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4428 lpfc_ncmd->data, 4429 lpfc_ncmd->dma_handle); 4430 kfree(lpfc_ncmd); 4431 } 4432 } 4433 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4434 } 4435 4436 /* update xris associated to remaining allocated nvme buffers */ 4437 lpfc_ncmd = NULL; 4438 lpfc_ncmd_next = NULL; 4439 phba->sli4_hba.io_xri_cnt = cnt; 4440 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4441 &io_sgl_list, list) { 4442 lxri = lpfc_sli4_next_xritag(phba); 4443 if (lxri == NO_XRI) { 4444 lpfc_printf_log(phba, KERN_ERR, 4445 LOG_TRACE_EVENT, 4446 "6075 Failed to allocate xri for " 4447 "nvme buffer\n"); 4448 rc = -ENOMEM; 4449 goto out_free_mem; 4450 } 4451 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4452 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4453 } 4454 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4455 return 0; 4456 4457 out_free_mem: 4458 lpfc_io_free(phba); 4459 return rc; 4460 } 4461 4462 /** 4463 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4464 * @phba: Pointer to lpfc hba data structure. 4465 * @num_to_alloc: The requested number of buffers to allocate. 4466 * 4467 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4468 * the nvme buffer contains all the necessary information needed to initiate 4469 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4470 * them on a list, it post them to the port by using SGL block post. 4471 * 4472 * Return codes: 4473 * int - number of IO buffers that were allocated and posted. 4474 * 0 = failure, less than num_to_alloc is a partial failure. 4475 **/ 4476 int 4477 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4478 { 4479 struct lpfc_io_buf *lpfc_ncmd; 4480 struct lpfc_iocbq *pwqeq; 4481 uint16_t iotag, lxri = 0; 4482 int bcnt, num_posted; 4483 LIST_HEAD(prep_nblist); 4484 LIST_HEAD(post_nblist); 4485 LIST_HEAD(nvme_nblist); 4486 4487 phba->sli4_hba.io_xri_cnt = 0; 4488 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4489 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4490 if (!lpfc_ncmd) 4491 break; 4492 /* 4493 * Get memory from the pci pool to map the virt space to 4494 * pci bus space for an I/O. The DMA buffer includes the 4495 * number of SGE's necessary to support the sg_tablesize. 4496 */ 4497 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4498 GFP_KERNEL, 4499 &lpfc_ncmd->dma_handle); 4500 if (!lpfc_ncmd->data) { 4501 kfree(lpfc_ncmd); 4502 break; 4503 } 4504 4505 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4506 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4507 } else { 4508 /* 4509 * 4K Page alignment is CRITICAL to BlockGuard, double 4510 * check to be sure. 4511 */ 4512 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4513 (((unsigned long)(lpfc_ncmd->data) & 4514 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4515 lpfc_printf_log(phba, KERN_ERR, 4516 LOG_TRACE_EVENT, 4517 "3369 Memory alignment err: " 4518 "addr=%lx\n", 4519 (unsigned long)lpfc_ncmd->data); 4520 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4521 lpfc_ncmd->data, 4522 lpfc_ncmd->dma_handle); 4523 kfree(lpfc_ncmd); 4524 break; 4525 } 4526 } 4527 4528 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4529 4530 lxri = lpfc_sli4_next_xritag(phba); 4531 if (lxri == NO_XRI) { 4532 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4533 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4534 kfree(lpfc_ncmd); 4535 break; 4536 } 4537 pwqeq = &lpfc_ncmd->cur_iocbq; 4538 4539 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4540 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4541 if (iotag == 0) { 4542 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4543 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4544 kfree(lpfc_ncmd); 4545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4546 "6121 Failed to allocate IOTAG for" 4547 " XRI:0x%x\n", lxri); 4548 lpfc_sli4_free_xri(phba, lxri); 4549 break; 4550 } 4551 pwqeq->sli4_lxritag = lxri; 4552 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4553 4554 /* Initialize local short-hand pointers. */ 4555 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4556 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4557 lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; 4558 spin_lock_init(&lpfc_ncmd->buf_lock); 4559 4560 /* add the nvme buffer to a post list */ 4561 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4562 phba->sli4_hba.io_xri_cnt++; 4563 } 4564 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4565 "6114 Allocate %d out of %d requested new NVME " 4566 "buffers of size x%zu bytes\n", bcnt, num_to_alloc, 4567 sizeof(*lpfc_ncmd)); 4568 4569 4570 /* post the list of nvme buffer sgls to port if available */ 4571 if (!list_empty(&post_nblist)) 4572 num_posted = lpfc_sli4_post_io_sgl_list( 4573 phba, &post_nblist, bcnt); 4574 else 4575 num_posted = 0; 4576 4577 return num_posted; 4578 } 4579 4580 static uint64_t 4581 lpfc_get_wwpn(struct lpfc_hba *phba) 4582 { 4583 uint64_t wwn; 4584 int rc; 4585 LPFC_MBOXQ_t *mboxq; 4586 MAILBOX_t *mb; 4587 4588 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4589 GFP_KERNEL); 4590 if (!mboxq) 4591 return (uint64_t)-1; 4592 4593 /* First get WWN of HBA instance */ 4594 lpfc_read_nv(phba, mboxq); 4595 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4596 if (rc != MBX_SUCCESS) { 4597 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4598 "6019 Mailbox failed , mbxCmd x%x " 4599 "READ_NV, mbxStatus x%x\n", 4600 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4601 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4602 mempool_free(mboxq, phba->mbox_mem_pool); 4603 return (uint64_t) -1; 4604 } 4605 mb = &mboxq->u.mb; 4606 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4607 /* wwn is WWPN of HBA instance */ 4608 mempool_free(mboxq, phba->mbox_mem_pool); 4609 if (phba->sli_rev == LPFC_SLI_REV4) 4610 return be64_to_cpu(wwn); 4611 else 4612 return rol64(wwn, 32); 4613 } 4614 4615 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba) 4616 { 4617 if (phba->sli_rev == LPFC_SLI_REV4) 4618 if (phba->cfg_xpsgl && !phba->nvmet_support) 4619 return LPFC_MAX_SG_TABLESIZE; 4620 else 4621 return phba->cfg_scsi_seg_cnt; 4622 else 4623 return phba->cfg_sg_seg_cnt; 4624 } 4625 4626 /** 4627 * lpfc_vmid_res_alloc - Allocates resources for VMID 4628 * @phba: pointer to lpfc hba data structure. 4629 * @vport: pointer to vport data structure 4630 * 4631 * This routine allocated the resources needed for the VMID. 4632 * 4633 * Return codes 4634 * 0 on Success 4635 * Non-0 on Failure 4636 */ 4637 static int 4638 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4639 { 4640 /* VMID feature is supported only on SLI4 */ 4641 if (phba->sli_rev == LPFC_SLI_REV3) { 4642 phba->cfg_vmid_app_header = 0; 4643 phba->cfg_vmid_priority_tagging = 0; 4644 } 4645 4646 if (lpfc_is_vmid_enabled(phba)) { 4647 vport->vmid = 4648 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4649 GFP_KERNEL); 4650 if (!vport->vmid) 4651 return -ENOMEM; 4652 4653 rwlock_init(&vport->vmid_lock); 4654 4655 /* Set the VMID parameters for the vport */ 4656 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4657 vport->vmid_inactivity_timeout = 4658 phba->cfg_vmid_inactivity_timeout; 4659 vport->max_vmid = phba->cfg_max_vmid; 4660 vport->cur_vmid_cnt = 0; 4661 4662 vport->vmid_priority_range = bitmap_zalloc 4663 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4664 4665 if (!vport->vmid_priority_range) { 4666 kfree(vport->vmid); 4667 return -ENOMEM; 4668 } 4669 4670 hash_init(vport->hash_table); 4671 } 4672 return 0; 4673 } 4674 4675 /** 4676 * lpfc_create_port - Create an FC port 4677 * @phba: pointer to lpfc hba data structure. 4678 * @instance: a unique integer ID to this FC port. 4679 * @dev: pointer to the device data structure. 4680 * 4681 * This routine creates a FC port for the upper layer protocol. The FC port 4682 * can be created on top of either a physical port or a virtual port provided 4683 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4684 * and associates the FC port created before adding the shost into the SCSI 4685 * layer. 4686 * 4687 * Return codes 4688 * @vport - pointer to the virtual N_Port data structure. 4689 * NULL - port create failed. 4690 **/ 4691 struct lpfc_vport * 4692 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4693 { 4694 struct lpfc_vport *vport; 4695 struct Scsi_Host *shost = NULL; 4696 struct scsi_host_template *template; 4697 int error = 0; 4698 int i; 4699 uint64_t wwn; 4700 bool use_no_reset_hba = false; 4701 int rc; 4702 4703 if (lpfc_no_hba_reset_cnt) { 4704 if (phba->sli_rev < LPFC_SLI_REV4 && 4705 dev == &phba->pcidev->dev) { 4706 /* Reset the port first */ 4707 lpfc_sli_brdrestart(phba); 4708 rc = lpfc_sli_chipset_init(phba); 4709 if (rc) 4710 return NULL; 4711 } 4712 wwn = lpfc_get_wwpn(phba); 4713 } 4714 4715 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4716 if (wwn == lpfc_no_hba_reset[i]) { 4717 lpfc_printf_log(phba, KERN_ERR, 4718 LOG_TRACE_EVENT, 4719 "6020 Setting use_no_reset port=%llx\n", 4720 wwn); 4721 use_no_reset_hba = true; 4722 break; 4723 } 4724 } 4725 4726 /* Seed template for SCSI host registration */ 4727 if (dev == &phba->pcidev->dev) { 4728 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4729 /* Seed physical port template */ 4730 template = &lpfc_template; 4731 4732 if (use_no_reset_hba) 4733 /* template is for a no reset SCSI Host */ 4734 template->eh_host_reset_handler = NULL; 4735 4736 /* Seed updated value of sg_tablesize */ 4737 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4738 } else { 4739 /* NVMET is for physical port only */ 4740 template = &lpfc_template_nvme; 4741 } 4742 } else { 4743 /* Seed vport template */ 4744 template = &lpfc_vport_template; 4745 4746 /* Seed updated value of sg_tablesize */ 4747 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4748 } 4749 4750 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4751 if (!shost) 4752 goto out; 4753 4754 vport = (struct lpfc_vport *) shost->hostdata; 4755 vport->phba = phba; 4756 set_bit(FC_LOADING, &vport->load_flag); 4757 set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 4758 vport->fc_rscn_flush = 0; 4759 atomic_set(&vport->fc_plogi_cnt, 0); 4760 atomic_set(&vport->fc_adisc_cnt, 0); 4761 atomic_set(&vport->fc_reglogin_cnt, 0); 4762 atomic_set(&vport->fc_prli_cnt, 0); 4763 atomic_set(&vport->fc_unmap_cnt, 0); 4764 atomic_set(&vport->fc_map_cnt, 0); 4765 atomic_set(&vport->fc_npr_cnt, 0); 4766 atomic_set(&vport->fc_unused_cnt, 0); 4767 lpfc_get_vport_cfgparam(vport); 4768 4769 /* Adjust value in vport */ 4770 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4771 4772 shost->unique_id = instance; 4773 shost->max_id = LPFC_MAX_TARGET; 4774 shost->max_lun = vport->cfg_max_luns; 4775 shost->this_id = -1; 4776 if (phba->sli_rev == LPFC_SLI_REV4) 4777 shost->max_cmd_len = LPFC_FCP_CDB_LEN_32; 4778 else 4779 shost->max_cmd_len = LPFC_FCP_CDB_LEN; 4780 4781 if (phba->sli_rev == LPFC_SLI_REV4) { 4782 if (!phba->cfg_fcp_mq_threshold || 4783 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4784 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4785 4786 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4787 phba->cfg_fcp_mq_threshold); 4788 4789 shost->dma_boundary = 4790 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4791 } else 4792 /* SLI-3 has a limited number of hardware queues (3), 4793 * thus there is only one for FCP processing. 4794 */ 4795 shost->nr_hw_queues = 1; 4796 4797 /* 4798 * Set initial can_queue value since 0 is no longer supported and 4799 * scsi_add_host will fail. This will be adjusted later based on the 4800 * max xri value determined in hba setup. 4801 */ 4802 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4803 if (dev != &phba->pcidev->dev) { 4804 shost->transportt = lpfc_vport_transport_template; 4805 vport->port_type = LPFC_NPIV_PORT; 4806 } else { 4807 shost->transportt = lpfc_transport_template; 4808 vport->port_type = LPFC_PHYSICAL_PORT; 4809 } 4810 4811 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4812 "9081 CreatePort TMPLATE type %x TBLsize %d " 4813 "SEGcnt %d/%d\n", 4814 vport->port_type, shost->sg_tablesize, 4815 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4816 4817 /* Allocate the resources for VMID */ 4818 rc = lpfc_vmid_res_alloc(phba, vport); 4819 4820 if (rc) 4821 goto out_put_shost; 4822 4823 /* Initialize all internally managed lists. */ 4824 INIT_LIST_HEAD(&vport->fc_nodes); 4825 spin_lock_init(&vport->fc_nodes_list_lock); 4826 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4827 spin_lock_init(&vport->work_port_lock); 4828 4829 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4830 4831 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4832 4833 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4834 4835 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4836 lpfc_setup_bg(phba, shost); 4837 4838 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4839 if (error) 4840 goto out_free_vmid; 4841 4842 spin_lock_irq(&phba->port_list_lock); 4843 list_add_tail(&vport->listentry, &phba->port_list); 4844 spin_unlock_irq(&phba->port_list_lock); 4845 return vport; 4846 4847 out_free_vmid: 4848 kfree(vport->vmid); 4849 bitmap_free(vport->vmid_priority_range); 4850 out_put_shost: 4851 scsi_host_put(shost); 4852 out: 4853 return NULL; 4854 } 4855 4856 /** 4857 * destroy_port - destroy an FC port 4858 * @vport: pointer to an lpfc virtual N_Port data structure. 4859 * 4860 * This routine destroys a FC port from the upper layer protocol. All the 4861 * resources associated with the port are released. 4862 **/ 4863 void 4864 destroy_port(struct lpfc_vport *vport) 4865 { 4866 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4867 struct lpfc_hba *phba = vport->phba; 4868 4869 lpfc_debugfs_terminate(vport); 4870 fc_remove_host(shost); 4871 scsi_remove_host(shost); 4872 4873 spin_lock_irq(&phba->port_list_lock); 4874 list_del_init(&vport->listentry); 4875 spin_unlock_irq(&phba->port_list_lock); 4876 4877 lpfc_cleanup(vport); 4878 return; 4879 } 4880 4881 /** 4882 * lpfc_get_instance - Get a unique integer ID 4883 * 4884 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4885 * uses the kernel idr facility to perform the task. 4886 * 4887 * Return codes: 4888 * instance - a unique integer ID allocated as the new instance. 4889 * -1 - lpfc get instance failed. 4890 **/ 4891 int 4892 lpfc_get_instance(void) 4893 { 4894 int ret; 4895 4896 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4897 return ret < 0 ? -1 : ret; 4898 } 4899 4900 /** 4901 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4902 * @shost: pointer to SCSI host data structure. 4903 * @time: elapsed time of the scan in jiffies. 4904 * 4905 * This routine is called by the SCSI layer with a SCSI host to determine 4906 * whether the scan host is finished. 4907 * 4908 * Note: there is no scan_start function as adapter initialization will have 4909 * asynchronously kicked off the link initialization. 4910 * 4911 * Return codes 4912 * 0 - SCSI host scan is not over yet. 4913 * 1 - SCSI host scan is over. 4914 **/ 4915 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4916 { 4917 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4918 struct lpfc_hba *phba = vport->phba; 4919 int stat = 0; 4920 4921 spin_lock_irq(shost->host_lock); 4922 4923 if (test_bit(FC_UNLOADING, &vport->load_flag)) { 4924 stat = 1; 4925 goto finished; 4926 } 4927 if (time >= msecs_to_jiffies(30 * 1000)) { 4928 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4929 "0461 Scanning longer than 30 " 4930 "seconds. Continuing initialization\n"); 4931 stat = 1; 4932 goto finished; 4933 } 4934 if (time >= msecs_to_jiffies(15 * 1000) && 4935 phba->link_state <= LPFC_LINK_DOWN) { 4936 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4937 "0465 Link down longer than 15 " 4938 "seconds. Continuing initialization\n"); 4939 stat = 1; 4940 goto finished; 4941 } 4942 4943 if (vport->port_state != LPFC_VPORT_READY) 4944 goto finished; 4945 if (vport->num_disc_nodes || vport->fc_prli_sent) 4946 goto finished; 4947 if (!atomic_read(&vport->fc_map_cnt) && 4948 time < msecs_to_jiffies(2 * 1000)) 4949 goto finished; 4950 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4951 goto finished; 4952 4953 stat = 1; 4954 4955 finished: 4956 spin_unlock_irq(shost->host_lock); 4957 return stat; 4958 } 4959 4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4961 { 4962 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4963 struct lpfc_hba *phba = vport->phba; 4964 4965 fc_host_supported_speeds(shost) = 0; 4966 /* 4967 * Avoid reporting supported link speed for FCoE as it can't be 4968 * controlled via FCoE. 4969 */ 4970 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) 4971 return; 4972 4973 if (phba->lmt & LMT_256Gb) 4974 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4975 if (phba->lmt & LMT_128Gb) 4976 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4977 if (phba->lmt & LMT_64Gb) 4978 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4979 if (phba->lmt & LMT_32Gb) 4980 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4981 if (phba->lmt & LMT_16Gb) 4982 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4983 if (phba->lmt & LMT_10Gb) 4984 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4985 if (phba->lmt & LMT_8Gb) 4986 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4987 if (phba->lmt & LMT_4Gb) 4988 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4989 if (phba->lmt & LMT_2Gb) 4990 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4991 if (phba->lmt & LMT_1Gb) 4992 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4993 } 4994 4995 /** 4996 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4997 * @shost: pointer to SCSI host data structure. 4998 * 4999 * This routine initializes a given SCSI host attributes on a FC port. The 5000 * SCSI host can be either on top of a physical port or a virtual port. 5001 **/ 5002 void lpfc_host_attrib_init(struct Scsi_Host *shost) 5003 { 5004 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 5005 struct lpfc_hba *phba = vport->phba; 5006 /* 5007 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 5008 */ 5009 5010 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 5011 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 5012 fc_host_supported_classes(shost) = FC_COS_CLASS3; 5013 5014 memset(fc_host_supported_fc4s(shost), 0, 5015 sizeof(fc_host_supported_fc4s(shost))); 5016 fc_host_supported_fc4s(shost)[2] = 1; 5017 fc_host_supported_fc4s(shost)[7] = 1; 5018 5019 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 5020 sizeof fc_host_symbolic_name(shost)); 5021 5022 lpfc_host_supported_speeds_set(shost); 5023 5024 fc_host_maxframe_size(shost) = 5025 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 5026 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 5027 5028 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 5029 5030 /* This value is also unchanging */ 5031 memset(fc_host_active_fc4s(shost), 0, 5032 sizeof(fc_host_active_fc4s(shost))); 5033 fc_host_active_fc4s(shost)[2] = 1; 5034 fc_host_active_fc4s(shost)[7] = 1; 5035 5036 fc_host_max_npiv_vports(shost) = phba->max_vpi; 5037 clear_bit(FC_LOADING, &vport->load_flag); 5038 } 5039 5040 /** 5041 * lpfc_stop_port_s3 - Stop SLI3 device port 5042 * @phba: pointer to lpfc hba data structure. 5043 * 5044 * This routine is invoked to stop an SLI3 device port, it stops the device 5045 * from generating interrupts and stops the device driver's timers for the 5046 * device. 5047 **/ 5048 static void 5049 lpfc_stop_port_s3(struct lpfc_hba *phba) 5050 { 5051 /* Clear all interrupt enable conditions */ 5052 writel(0, phba->HCregaddr); 5053 readl(phba->HCregaddr); /* flush */ 5054 /* Clear all pending interrupts */ 5055 writel(0xffffffff, phba->HAregaddr); 5056 readl(phba->HAregaddr); /* flush */ 5057 5058 /* Reset some HBA SLI setup states */ 5059 lpfc_stop_hba_timers(phba); 5060 phba->pport->work_port_events = 0; 5061 } 5062 5063 /** 5064 * lpfc_stop_port_s4 - Stop SLI4 device port 5065 * @phba: pointer to lpfc hba data structure. 5066 * 5067 * This routine is invoked to stop an SLI4 device port, it stops the device 5068 * from generating interrupts and stops the device driver's timers for the 5069 * device. 5070 **/ 5071 static void 5072 lpfc_stop_port_s4(struct lpfc_hba *phba) 5073 { 5074 /* Reset some HBA SLI4 setup states */ 5075 lpfc_stop_hba_timers(phba); 5076 if (phba->pport) 5077 phba->pport->work_port_events = 0; 5078 phba->sli4_hba.intr_enable = 0; 5079 } 5080 5081 /** 5082 * lpfc_stop_port - Wrapper function for stopping hba port 5083 * @phba: Pointer to HBA context object. 5084 * 5085 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 5086 * the API jump table function pointer from the lpfc_hba struct. 5087 **/ 5088 void 5089 lpfc_stop_port(struct lpfc_hba *phba) 5090 { 5091 phba->lpfc_stop_port(phba); 5092 5093 if (phba->wq) 5094 flush_workqueue(phba->wq); 5095 } 5096 5097 /** 5098 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5099 * @phba: Pointer to hba for which this call is being executed. 5100 * 5101 * This routine starts the timer waiting for the FCF rediscovery to complete. 5102 **/ 5103 void 5104 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5105 { 5106 unsigned long fcf_redisc_wait_tmo = 5107 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5108 /* Start fcf rediscovery wait period timer */ 5109 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5110 spin_lock_irq(&phba->hbalock); 5111 /* Allow action to new fcf asynchronous event */ 5112 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5113 /* Mark the FCF rediscovery pending state */ 5114 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5115 spin_unlock_irq(&phba->hbalock); 5116 } 5117 5118 /** 5119 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5120 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5121 * 5122 * This routine is invoked when waiting for FCF table rediscover has been 5123 * timed out. If new FCF record(s) has (have) been discovered during the 5124 * wait period, a new FCF event shall be added to the FCOE async event 5125 * list, and then worker thread shall be waked up for processing from the 5126 * worker thread context. 5127 **/ 5128 static void 5129 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5130 { 5131 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 5132 5133 /* Don't send FCF rediscovery event if timer cancelled */ 5134 spin_lock_irq(&phba->hbalock); 5135 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5136 spin_unlock_irq(&phba->hbalock); 5137 return; 5138 } 5139 /* Clear FCF rediscovery timer pending flag */ 5140 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5141 /* FCF rediscovery event to worker thread */ 5142 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5143 spin_unlock_irq(&phba->hbalock); 5144 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5145 "2776 FCF rediscover quiescent timer expired\n"); 5146 /* wake up worker thread */ 5147 lpfc_worker_wake_up(phba); 5148 } 5149 5150 /** 5151 * lpfc_vmid_poll - VMID timeout detection 5152 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5153 * 5154 * This routine is invoked when there is no I/O on by a VM for the specified 5155 * amount of time. When this situation is detected, the VMID has to be 5156 * deregistered from the switch and all the local resources freed. The VMID 5157 * will be reassigned to the VM once the I/O begins. 5158 **/ 5159 static void 5160 lpfc_vmid_poll(struct timer_list *t) 5161 { 5162 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 5163 u32 wake_up = 0; 5164 5165 /* check if there is a need to issue QFPA */ 5166 if (phba->pport->vmid_priority_tagging) { 5167 wake_up = 1; 5168 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5169 } 5170 5171 /* Is the vmid inactivity timer enabled */ 5172 if (phba->pport->vmid_inactivity_timeout || 5173 test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) { 5174 wake_up = 1; 5175 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5176 } 5177 5178 if (wake_up) 5179 lpfc_worker_wake_up(phba); 5180 5181 /* restart the timer for the next iteration */ 5182 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * 5183 LPFC_VMID_TIMER)); 5184 } 5185 5186 /** 5187 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5188 * @phba: pointer to lpfc hba data structure. 5189 * @acqe_link: pointer to the async link completion queue entry. 5190 * 5191 * This routine is to parse the SLI4 link-attention link fault code. 5192 **/ 5193 static void 5194 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5195 struct lpfc_acqe_link *acqe_link) 5196 { 5197 switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) { 5198 case LPFC_FC_LA_TYPE_LINK_DOWN: 5199 case LPFC_FC_LA_TYPE_TRUNKING_EVENT: 5200 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 5201 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 5202 break; 5203 default: 5204 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5205 case LPFC_ASYNC_LINK_FAULT_NONE: 5206 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5207 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5208 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5209 break; 5210 default: 5211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5212 "0398 Unknown link fault code: x%x\n", 5213 bf_get(lpfc_acqe_link_fault, acqe_link)); 5214 break; 5215 } 5216 break; 5217 } 5218 } 5219 5220 /** 5221 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5222 * @phba: pointer to lpfc hba data structure. 5223 * @acqe_link: pointer to the async link completion queue entry. 5224 * 5225 * This routine is to parse the SLI4 link attention type and translate it 5226 * into the base driver's link attention type coding. 5227 * 5228 * Return: Link attention type in terms of base driver's coding. 5229 **/ 5230 static uint8_t 5231 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5232 struct lpfc_acqe_link *acqe_link) 5233 { 5234 uint8_t att_type; 5235 5236 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5237 case LPFC_ASYNC_LINK_STATUS_DOWN: 5238 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5239 att_type = LPFC_ATT_LINK_DOWN; 5240 break; 5241 case LPFC_ASYNC_LINK_STATUS_UP: 5242 /* Ignore physical link up events - wait for logical link up */ 5243 att_type = LPFC_ATT_RESERVED; 5244 break; 5245 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5246 att_type = LPFC_ATT_LINK_UP; 5247 break; 5248 default: 5249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5250 "0399 Invalid link attention type: x%x\n", 5251 bf_get(lpfc_acqe_link_status, acqe_link)); 5252 att_type = LPFC_ATT_RESERVED; 5253 break; 5254 } 5255 return att_type; 5256 } 5257 5258 /** 5259 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5260 * @phba: pointer to lpfc hba data structure. 5261 * 5262 * This routine is to get an SLI3 FC port's link speed in Mbps. 5263 * 5264 * Return: link speed in terms of Mbps. 5265 **/ 5266 uint32_t 5267 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5268 { 5269 uint32_t link_speed; 5270 5271 if (!lpfc_is_link_up(phba)) 5272 return 0; 5273 5274 if (phba->sli_rev <= LPFC_SLI_REV3) { 5275 switch (phba->fc_linkspeed) { 5276 case LPFC_LINK_SPEED_1GHZ: 5277 link_speed = 1000; 5278 break; 5279 case LPFC_LINK_SPEED_2GHZ: 5280 link_speed = 2000; 5281 break; 5282 case LPFC_LINK_SPEED_4GHZ: 5283 link_speed = 4000; 5284 break; 5285 case LPFC_LINK_SPEED_8GHZ: 5286 link_speed = 8000; 5287 break; 5288 case LPFC_LINK_SPEED_10GHZ: 5289 link_speed = 10000; 5290 break; 5291 case LPFC_LINK_SPEED_16GHZ: 5292 link_speed = 16000; 5293 break; 5294 default: 5295 link_speed = 0; 5296 } 5297 } else { 5298 if (phba->sli4_hba.link_state.logical_speed) 5299 link_speed = 5300 phba->sli4_hba.link_state.logical_speed; 5301 else 5302 link_speed = phba->sli4_hba.link_state.speed; 5303 } 5304 return link_speed; 5305 } 5306 5307 /** 5308 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5309 * @phba: pointer to lpfc hba data structure. 5310 * @evt_code: asynchronous event code. 5311 * @speed_code: asynchronous event link speed code. 5312 * 5313 * This routine is to parse the giving SLI4 async event link speed code into 5314 * value of Mbps for the link speed. 5315 * 5316 * Return: link speed in terms of Mbps. 5317 **/ 5318 static uint32_t 5319 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5320 uint8_t speed_code) 5321 { 5322 uint32_t port_speed; 5323 5324 switch (evt_code) { 5325 case LPFC_TRAILER_CODE_LINK: 5326 switch (speed_code) { 5327 case LPFC_ASYNC_LINK_SPEED_ZERO: 5328 port_speed = 0; 5329 break; 5330 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5331 port_speed = 10; 5332 break; 5333 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5334 port_speed = 100; 5335 break; 5336 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5337 port_speed = 1000; 5338 break; 5339 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5340 port_speed = 10000; 5341 break; 5342 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5343 port_speed = 20000; 5344 break; 5345 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5346 port_speed = 25000; 5347 break; 5348 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5349 port_speed = 40000; 5350 break; 5351 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5352 port_speed = 100000; 5353 break; 5354 default: 5355 port_speed = 0; 5356 } 5357 break; 5358 case LPFC_TRAILER_CODE_FC: 5359 switch (speed_code) { 5360 case LPFC_FC_LA_SPEED_UNKNOWN: 5361 port_speed = 0; 5362 break; 5363 case LPFC_FC_LA_SPEED_1G: 5364 port_speed = 1000; 5365 break; 5366 case LPFC_FC_LA_SPEED_2G: 5367 port_speed = 2000; 5368 break; 5369 case LPFC_FC_LA_SPEED_4G: 5370 port_speed = 4000; 5371 break; 5372 case LPFC_FC_LA_SPEED_8G: 5373 port_speed = 8000; 5374 break; 5375 case LPFC_FC_LA_SPEED_10G: 5376 port_speed = 10000; 5377 break; 5378 case LPFC_FC_LA_SPEED_16G: 5379 port_speed = 16000; 5380 break; 5381 case LPFC_FC_LA_SPEED_32G: 5382 port_speed = 32000; 5383 break; 5384 case LPFC_FC_LA_SPEED_64G: 5385 port_speed = 64000; 5386 break; 5387 case LPFC_FC_LA_SPEED_128G: 5388 port_speed = 128000; 5389 break; 5390 case LPFC_FC_LA_SPEED_256G: 5391 port_speed = 256000; 5392 break; 5393 default: 5394 port_speed = 0; 5395 } 5396 break; 5397 default: 5398 port_speed = 0; 5399 } 5400 return port_speed; 5401 } 5402 5403 /** 5404 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5405 * @phba: pointer to lpfc hba data structure. 5406 * @acqe_link: pointer to the async link completion queue entry. 5407 * 5408 * This routine is to handle the SLI4 asynchronous FCoE link event. 5409 **/ 5410 static void 5411 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5412 struct lpfc_acqe_link *acqe_link) 5413 { 5414 LPFC_MBOXQ_t *pmb; 5415 MAILBOX_t *mb; 5416 struct lpfc_mbx_read_top *la; 5417 uint8_t att_type; 5418 int rc; 5419 5420 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5421 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5422 return; 5423 phba->fcoe_eventtag = acqe_link->event_tag; 5424 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5425 if (!pmb) { 5426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5427 "0395 The mboxq allocation failed\n"); 5428 return; 5429 } 5430 5431 rc = lpfc_mbox_rsrc_prep(phba, pmb); 5432 if (rc) { 5433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5434 "0396 mailbox allocation failed\n"); 5435 goto out_free_pmb; 5436 } 5437 5438 /* Cleanup any outstanding ELS commands */ 5439 lpfc_els_flush_all_cmd(phba); 5440 5441 /* Block ELS IOCBs until we have done process link event */ 5442 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5443 5444 /* Update link event statistics */ 5445 phba->sli.slistat.link_event++; 5446 5447 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5448 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 5449 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5450 pmb->vport = phba->pport; 5451 5452 /* Keep the link status for extra SLI4 state machine reference */ 5453 phba->sli4_hba.link_state.speed = 5454 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5455 bf_get(lpfc_acqe_link_speed, acqe_link)); 5456 phba->sli4_hba.link_state.duplex = 5457 bf_get(lpfc_acqe_link_duplex, acqe_link); 5458 phba->sli4_hba.link_state.status = 5459 bf_get(lpfc_acqe_link_status, acqe_link); 5460 phba->sli4_hba.link_state.type = 5461 bf_get(lpfc_acqe_link_type, acqe_link); 5462 phba->sli4_hba.link_state.number = 5463 bf_get(lpfc_acqe_link_number, acqe_link); 5464 phba->sli4_hba.link_state.fault = 5465 bf_get(lpfc_acqe_link_fault, acqe_link); 5466 phba->sli4_hba.link_state.logical_speed = 5467 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5468 5469 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5470 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5471 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5472 "Logical speed:%dMbps Fault:%d\n", 5473 phba->sli4_hba.link_state.speed, 5474 phba->sli4_hba.link_state.topology, 5475 phba->sli4_hba.link_state.status, 5476 phba->sli4_hba.link_state.type, 5477 phba->sli4_hba.link_state.number, 5478 phba->sli4_hba.link_state.logical_speed, 5479 phba->sli4_hba.link_state.fault); 5480 /* 5481 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5482 * topology info. Note: Optional for non FC-AL ports. 5483 */ 5484 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 5485 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5486 if (rc == MBX_NOT_FINISHED) 5487 goto out_free_pmb; 5488 return; 5489 } 5490 /* 5491 * For FCoE Mode: fill in all the topology information we need and call 5492 * the READ_TOPOLOGY completion routine to continue without actually 5493 * sending the READ_TOPOLOGY mailbox command to the port. 5494 */ 5495 /* Initialize completion status */ 5496 mb = &pmb->u.mb; 5497 mb->mbxStatus = MBX_SUCCESS; 5498 5499 /* Parse port fault information field */ 5500 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5501 5502 /* Parse and translate link attention fields */ 5503 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5504 la->eventTag = acqe_link->event_tag; 5505 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5506 bf_set(lpfc_mbx_read_top_link_spd, la, 5507 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5508 5509 /* Fake the following irrelevant fields */ 5510 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5511 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5512 bf_set(lpfc_mbx_read_top_il, la, 0); 5513 bf_set(lpfc_mbx_read_top_pb, la, 0); 5514 bf_set(lpfc_mbx_read_top_fa, la, 0); 5515 bf_set(lpfc_mbx_read_top_mm, la, 0); 5516 5517 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5518 lpfc_mbx_cmpl_read_topology(phba, pmb); 5519 5520 return; 5521 5522 out_free_pmb: 5523 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 5524 } 5525 5526 /** 5527 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5528 * topology. 5529 * @phba: pointer to lpfc hba data structure. 5530 * @speed_code: asynchronous event link speed code. 5531 * 5532 * This routine is to parse the giving SLI4 async event link speed code into 5533 * value of Read topology link speed. 5534 * 5535 * Return: link speed in terms of Read topology. 5536 **/ 5537 static uint8_t 5538 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5539 { 5540 uint8_t port_speed; 5541 5542 switch (speed_code) { 5543 case LPFC_FC_LA_SPEED_1G: 5544 port_speed = LPFC_LINK_SPEED_1GHZ; 5545 break; 5546 case LPFC_FC_LA_SPEED_2G: 5547 port_speed = LPFC_LINK_SPEED_2GHZ; 5548 break; 5549 case LPFC_FC_LA_SPEED_4G: 5550 port_speed = LPFC_LINK_SPEED_4GHZ; 5551 break; 5552 case LPFC_FC_LA_SPEED_8G: 5553 port_speed = LPFC_LINK_SPEED_8GHZ; 5554 break; 5555 case LPFC_FC_LA_SPEED_16G: 5556 port_speed = LPFC_LINK_SPEED_16GHZ; 5557 break; 5558 case LPFC_FC_LA_SPEED_32G: 5559 port_speed = LPFC_LINK_SPEED_32GHZ; 5560 break; 5561 case LPFC_FC_LA_SPEED_64G: 5562 port_speed = LPFC_LINK_SPEED_64GHZ; 5563 break; 5564 case LPFC_FC_LA_SPEED_128G: 5565 port_speed = LPFC_LINK_SPEED_128GHZ; 5566 break; 5567 case LPFC_FC_LA_SPEED_256G: 5568 port_speed = LPFC_LINK_SPEED_256GHZ; 5569 break; 5570 default: 5571 port_speed = 0; 5572 break; 5573 } 5574 5575 return port_speed; 5576 } 5577 5578 void 5579 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5580 { 5581 if (!phba->rx_monitor) { 5582 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5583 "4411 Rx Monitor Info is empty.\n"); 5584 } else { 5585 lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0, 5586 LPFC_MAX_RXMONITOR_DUMP); 5587 } 5588 } 5589 5590 /** 5591 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5592 * @phba: pointer to lpfc hba data structure. 5593 * @dtag: FPIN descriptor received 5594 * 5595 * Increment the FPIN received counter/time when it happens. 5596 */ 5597 void 5598 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5599 { 5600 struct lpfc_cgn_info *cp; 5601 u32 value; 5602 5603 /* Make sure we have a congestion info buffer */ 5604 if (!phba->cgn_i) 5605 return; 5606 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5607 5608 /* Update congestion statistics */ 5609 switch (dtag) { 5610 case ELS_DTAG_LNK_INTEGRITY: 5611 le32_add_cpu(&cp->link_integ_notification, 1); 5612 lpfc_cgn_update_tstamp(phba, &cp->stat_lnk); 5613 break; 5614 case ELS_DTAG_DELIVERY: 5615 le32_add_cpu(&cp->delivery_notification, 1); 5616 lpfc_cgn_update_tstamp(phba, &cp->stat_delivery); 5617 break; 5618 case ELS_DTAG_PEER_CONGEST: 5619 le32_add_cpu(&cp->cgn_peer_notification, 1); 5620 lpfc_cgn_update_tstamp(phba, &cp->stat_peer); 5621 break; 5622 case ELS_DTAG_CONGESTION: 5623 le32_add_cpu(&cp->cgn_notification, 1); 5624 lpfc_cgn_update_tstamp(phba, &cp->stat_fpin); 5625 } 5626 if (phba->cgn_fpin_frequency && 5627 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5628 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5629 cp->cgn_stat_npm = value; 5630 } 5631 5632 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5633 LPFC_CGN_CRC32_SEED); 5634 cp->cgn_info_crc = cpu_to_le32(value); 5635 } 5636 5637 /** 5638 * lpfc_cgn_update_tstamp - Update cmf timestamp 5639 * @phba: pointer to lpfc hba data structure. 5640 * @ts: structure to write the timestamp to. 5641 */ 5642 void 5643 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts) 5644 { 5645 struct timespec64 cur_time; 5646 struct tm tm_val; 5647 5648 ktime_get_real_ts64(&cur_time); 5649 time64_to_tm(cur_time.tv_sec, 0, &tm_val); 5650 5651 ts->month = tm_val.tm_mon + 1; 5652 ts->day = tm_val.tm_mday; 5653 ts->year = tm_val.tm_year - 100; 5654 ts->hour = tm_val.tm_hour; 5655 ts->minute = tm_val.tm_min; 5656 ts->second = tm_val.tm_sec; 5657 5658 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5659 "2646 Updated CMF timestamp : " 5660 "%u/%u/%u %u:%u:%u\n", 5661 ts->day, ts->month, 5662 ts->year, ts->hour, 5663 ts->minute, ts->second); 5664 } 5665 5666 /** 5667 * lpfc_cmf_stats_timer - Save data into registered congestion buffer 5668 * @timer: Timer cookie to access lpfc private data 5669 * 5670 * Save the congestion event data every minute. 5671 * On the hour collapse all the minute data into hour data. Every day 5672 * collapse all the hour data into daily data. Separate driver 5673 * and fabrc congestion event counters that will be saved out 5674 * to the registered congestion buffer every minute. 5675 */ 5676 static enum hrtimer_restart 5677 lpfc_cmf_stats_timer(struct hrtimer *timer) 5678 { 5679 struct lpfc_hba *phba; 5680 struct lpfc_cgn_info *cp; 5681 uint32_t i, index; 5682 uint16_t value, mvalue; 5683 uint64_t bps; 5684 uint32_t mbps; 5685 uint32_t dvalue, wvalue, lvalue, avalue; 5686 uint64_t latsum; 5687 __le16 *ptr; 5688 __le32 *lptr; 5689 __le16 *mptr; 5690 5691 phba = container_of(timer, struct lpfc_hba, cmf_stats_timer); 5692 /* Make sure we have a congestion info buffer */ 5693 if (!phba->cgn_i) 5694 return HRTIMER_NORESTART; 5695 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5696 5697 phba->cgn_evt_timestamp = jiffies + 5698 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5699 phba->cgn_evt_minute++; 5700 5701 /* We should get to this point in the routine on 1 minute intervals */ 5702 lpfc_cgn_update_tstamp(phba, &cp->base_time); 5703 5704 if (phba->cgn_fpin_frequency && 5705 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5706 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5707 cp->cgn_stat_npm = value; 5708 } 5709 5710 /* Read and clear the latency counters for this minute */ 5711 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5712 latsum = atomic64_read(&phba->cgn_latency_evt); 5713 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5714 atomic64_set(&phba->cgn_latency_evt, 0); 5715 5716 /* We need to store MB/sec bandwidth in the congestion information. 5717 * block_cnt is count of 512 byte blocks for the entire minute, 5718 * bps will get bytes per sec before finally converting to MB/sec. 5719 */ 5720 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5721 phba->rx_block_cnt = 0; 5722 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5723 5724 /* Every minute */ 5725 /* cgn parameters */ 5726 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5727 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5728 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5729 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5730 5731 /* Fill in default LUN qdepth */ 5732 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5733 cp->cgn_lunq = cpu_to_le16(value); 5734 5735 /* Record congestion buffer info - every minute 5736 * cgn_driver_evt_cnt (Driver events) 5737 * cgn_fabric_warn_cnt (Congestion Warnings) 5738 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5739 * cgn_fabric_alarm_cnt (Congestion Alarms) 5740 */ 5741 index = ++cp->cgn_index_minute; 5742 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5743 cp->cgn_index_minute = 0; 5744 index = 0; 5745 } 5746 5747 /* Get the number of driver events in this sample and reset counter */ 5748 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5749 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5750 5751 /* Get the number of warning events - FPIN and Signal for this minute */ 5752 wvalue = 0; 5753 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5754 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5755 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5756 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5757 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5758 5759 /* Get the number of alarm events - FPIN and Signal for this minute */ 5760 avalue = 0; 5761 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5762 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5763 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5764 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5765 5766 /* Collect the driver, warning, alarm and latency counts for this 5767 * minute into the driver congestion buffer. 5768 */ 5769 ptr = &cp->cgn_drvr_min[index]; 5770 value = (uint16_t)dvalue; 5771 *ptr = cpu_to_le16(value); 5772 5773 ptr = &cp->cgn_warn_min[index]; 5774 value = (uint16_t)wvalue; 5775 *ptr = cpu_to_le16(value); 5776 5777 ptr = &cp->cgn_alarm_min[index]; 5778 value = (uint16_t)avalue; 5779 *ptr = cpu_to_le16(value); 5780 5781 lptr = &cp->cgn_latency_min[index]; 5782 if (lvalue) { 5783 lvalue = (uint32_t)div_u64(latsum, lvalue); 5784 *lptr = cpu_to_le32(lvalue); 5785 } else { 5786 *lptr = 0; 5787 } 5788 5789 /* Collect the bandwidth value into the driver's congesion buffer. */ 5790 mptr = &cp->cgn_bw_min[index]; 5791 *mptr = cpu_to_le16(mvalue); 5792 5793 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5794 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5795 index, dvalue, wvalue, *lptr, mvalue, avalue); 5796 5797 /* Every hour */ 5798 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5799 /* Record congestion buffer info - every hour 5800 * Collapse all minutes into an hour 5801 */ 5802 index = ++cp->cgn_index_hour; 5803 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5804 cp->cgn_index_hour = 0; 5805 index = 0; 5806 } 5807 5808 dvalue = 0; 5809 wvalue = 0; 5810 lvalue = 0; 5811 avalue = 0; 5812 mvalue = 0; 5813 mbps = 0; 5814 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5815 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5816 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5817 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5818 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5819 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5820 } 5821 if (lvalue) /* Avg of latency averages */ 5822 lvalue /= LPFC_MIN_HOUR; 5823 if (mbps) /* Avg of Bandwidth averages */ 5824 mvalue = mbps / LPFC_MIN_HOUR; 5825 5826 lptr = &cp->cgn_drvr_hr[index]; 5827 *lptr = cpu_to_le32(dvalue); 5828 lptr = &cp->cgn_warn_hr[index]; 5829 *lptr = cpu_to_le32(wvalue); 5830 lptr = &cp->cgn_latency_hr[index]; 5831 *lptr = cpu_to_le32(lvalue); 5832 mptr = &cp->cgn_bw_hr[index]; 5833 *mptr = cpu_to_le16(mvalue); 5834 lptr = &cp->cgn_alarm_hr[index]; 5835 *lptr = cpu_to_le32(avalue); 5836 5837 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5838 "2419 Congestion Info - hour " 5839 "(%d): %d %d %d %d %d\n", 5840 index, dvalue, wvalue, lvalue, mvalue, avalue); 5841 } 5842 5843 /* Every day */ 5844 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5845 /* Record congestion buffer info - every hour 5846 * Collapse all hours into a day. Rotate days 5847 * after LPFC_MAX_CGN_DAYS. 5848 */ 5849 index = ++cp->cgn_index_day; 5850 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5851 cp->cgn_index_day = 0; 5852 index = 0; 5853 } 5854 5855 dvalue = 0; 5856 wvalue = 0; 5857 lvalue = 0; 5858 mvalue = 0; 5859 mbps = 0; 5860 avalue = 0; 5861 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5862 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5863 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5864 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5865 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5866 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5867 } 5868 if (lvalue) /* Avg of latency averages */ 5869 lvalue /= LPFC_HOUR_DAY; 5870 if (mbps) /* Avg of Bandwidth averages */ 5871 mvalue = mbps / LPFC_HOUR_DAY; 5872 5873 lptr = &cp->cgn_drvr_day[index]; 5874 *lptr = cpu_to_le32(dvalue); 5875 lptr = &cp->cgn_warn_day[index]; 5876 *lptr = cpu_to_le32(wvalue); 5877 lptr = &cp->cgn_latency_day[index]; 5878 *lptr = cpu_to_le32(lvalue); 5879 mptr = &cp->cgn_bw_day[index]; 5880 *mptr = cpu_to_le16(mvalue); 5881 lptr = &cp->cgn_alarm_day[index]; 5882 *lptr = cpu_to_le32(avalue); 5883 5884 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5885 "2420 Congestion Info - daily (%d): " 5886 "%d %d %d %d %d\n", 5887 index, dvalue, wvalue, lvalue, mvalue, avalue); 5888 } 5889 5890 /* Use the frequency found in the last rcv'ed FPIN */ 5891 value = phba->cgn_fpin_frequency; 5892 cp->cgn_warn_freq = cpu_to_le16(value); 5893 cp->cgn_alarm_freq = cpu_to_le16(value); 5894 5895 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5896 LPFC_CGN_CRC32_SEED); 5897 cp->cgn_info_crc = cpu_to_le32(lvalue); 5898 5899 hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC)); 5900 5901 return HRTIMER_RESTART; 5902 } 5903 5904 /** 5905 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5906 * @phba: The Hba for which this call is being executed. 5907 * 5908 * The routine calculates the latency from the beginning of the CMF timer 5909 * interval to the current point in time. It is called from IO completion 5910 * when we exceed our Bandwidth limitation for the time interval. 5911 */ 5912 uint32_t 5913 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5914 { 5915 struct timespec64 cmpl_time; 5916 uint32_t msec = 0; 5917 5918 ktime_get_real_ts64(&cmpl_time); 5919 5920 /* This routine works on a ms granularity so sec and usec are 5921 * converted accordingly. 5922 */ 5923 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5924 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5925 NSEC_PER_MSEC; 5926 } else { 5927 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5928 msec = (cmpl_time.tv_sec - 5929 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5930 msec += ((cmpl_time.tv_nsec - 5931 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5932 } else { 5933 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5934 1) * MSEC_PER_SEC; 5935 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5936 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5937 } 5938 } 5939 return msec; 5940 } 5941 5942 /** 5943 * lpfc_cmf_timer - This is the timer function for one congestion 5944 * rate interval. 5945 * @timer: Pointer to the high resolution timer that expired 5946 */ 5947 static enum hrtimer_restart 5948 lpfc_cmf_timer(struct hrtimer *timer) 5949 { 5950 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5951 cmf_timer); 5952 struct rx_info_entry entry; 5953 uint32_t io_cnt; 5954 uint32_t busy, max_read; 5955 uint64_t total, rcv, lat, mbpi, extra, cnt; 5956 int timer_interval = LPFC_CMF_INTERVAL; 5957 uint32_t ms; 5958 struct lpfc_cgn_stat *cgs; 5959 int cpu; 5960 5961 /* Only restart the timer if congestion mgmt is on */ 5962 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5963 !phba->cmf_latency.tv_sec) { 5964 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5965 "6224 CMF timer exit: %d %lld\n", 5966 phba->cmf_active_mode, 5967 (uint64_t)phba->cmf_latency.tv_sec); 5968 return HRTIMER_NORESTART; 5969 } 5970 5971 /* If pport is not ready yet, just exit and wait for 5972 * the next timer cycle to hit. 5973 */ 5974 if (!phba->pport) 5975 goto skip; 5976 5977 /* Do not block SCSI IO while in the timer routine since 5978 * total_bytes will be cleared 5979 */ 5980 atomic_set(&phba->cmf_stop_io, 1); 5981 5982 /* First we need to calculate the actual ms between 5983 * the last timer interrupt and this one. We ask for 5984 * LPFC_CMF_INTERVAL, however the actual time may 5985 * vary depending on system overhead. 5986 */ 5987 ms = lpfc_calc_cmf_latency(phba); 5988 5989 5990 /* Immediately after we calculate the time since the last 5991 * timer interrupt, set the start time for the next 5992 * interrupt 5993 */ 5994 ktime_get_real_ts64(&phba->cmf_latency); 5995 5996 phba->cmf_link_byte_count = 5997 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 5998 5999 /* Collect all the stats from the prior timer interval */ 6000 total = 0; 6001 io_cnt = 0; 6002 lat = 0; 6003 rcv = 0; 6004 for_each_present_cpu(cpu) { 6005 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 6006 total += atomic64_xchg(&cgs->total_bytes, 0); 6007 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 6008 lat += atomic64_xchg(&cgs->rx_latency, 0); 6009 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 6010 } 6011 6012 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6013 * returned from the last CMF_SYNC_WQE issued, from 6014 * cmf_last_sync_bw. This will be the target BW for 6015 * this next timer interval. 6016 */ 6017 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6018 phba->link_state != LPFC_LINK_DOWN && 6019 test_bit(HBA_SETUP, &phba->hba_flag)) { 6020 mbpi = phba->cmf_last_sync_bw; 6021 phba->cmf_last_sync_bw = 0; 6022 extra = 0; 6023 6024 /* Calculate any extra bytes needed to account for the 6025 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6026 * calculate the adjustment needed for total to reflect 6027 * a full LPFC_CMF_INTERVAL. 6028 */ 6029 if (ms && ms < LPFC_CMF_INTERVAL) { 6030 cnt = div_u64(total, ms); /* bytes per ms */ 6031 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6032 extra = cnt - total; 6033 } 6034 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6035 } else { 6036 /* For Monitor mode or link down we want mbpi 6037 * to be the full link speed 6038 */ 6039 mbpi = phba->cmf_link_byte_count; 6040 extra = 0; 6041 } 6042 phba->cmf_timer_cnt++; 6043 6044 if (io_cnt) { 6045 /* Update congestion info buffer latency in us */ 6046 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6047 atomic64_add(lat, &phba->cgn_latency_evt); 6048 } 6049 busy = atomic_xchg(&phba->cmf_busy, 0); 6050 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6051 6052 /* Calculate MBPI for the next timer interval */ 6053 if (mbpi) { 6054 if (mbpi > phba->cmf_link_byte_count || 6055 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6056 mbpi = phba->cmf_link_byte_count; 6057 6058 /* Change max_bytes_per_interval to what the prior 6059 * CMF_SYNC_WQE cmpl indicated. 6060 */ 6061 if (mbpi != phba->cmf_max_bytes_per_interval) 6062 phba->cmf_max_bytes_per_interval = mbpi; 6063 } 6064 6065 /* Save rxmonitor information for debug */ 6066 if (phba->rx_monitor) { 6067 entry.total_bytes = total; 6068 entry.cmf_bytes = total + extra; 6069 entry.rcv_bytes = rcv; 6070 entry.cmf_busy = busy; 6071 entry.cmf_info = phba->cmf_active_info; 6072 if (io_cnt) { 6073 entry.avg_io_latency = div_u64(lat, io_cnt); 6074 entry.avg_io_size = div_u64(rcv, io_cnt); 6075 } else { 6076 entry.avg_io_latency = 0; 6077 entry.avg_io_size = 0; 6078 } 6079 entry.max_read_cnt = max_read; 6080 entry.io_cnt = io_cnt; 6081 entry.max_bytes_per_interval = mbpi; 6082 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6083 entry.timer_utilization = phba->cmf_last_ts; 6084 else 6085 entry.timer_utilization = ms; 6086 entry.timer_interval = ms; 6087 phba->cmf_last_ts = 0; 6088 6089 lpfc_rx_monitor_record(phba->rx_monitor, &entry); 6090 } 6091 6092 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6093 /* If Monitor mode, check if we are oversubscribed 6094 * against the full line rate. 6095 */ 6096 if (mbpi && total > mbpi) 6097 atomic_inc(&phba->cgn_driver_evt_cnt); 6098 } 6099 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6100 6101 /* Since total_bytes has already been zero'ed, its okay to unblock 6102 * after max_bytes_per_interval is setup. 6103 */ 6104 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6105 queue_work(phba->wq, &phba->unblock_request_work); 6106 6107 /* SCSI IO is now unblocked */ 6108 atomic_set(&phba->cmf_stop_io, 0); 6109 6110 skip: 6111 hrtimer_forward_now(timer, 6112 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6113 return HRTIMER_RESTART; 6114 } 6115 6116 #define trunk_link_status(__idx)\ 6117 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6118 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6119 "Link up" : "Link down") : "NA" 6120 /* Did port __idx reported an error */ 6121 #define trunk_port_fault(__idx)\ 6122 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6123 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6124 6125 static void 6126 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6127 struct lpfc_acqe_fc_la *acqe_fc) 6128 { 6129 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6130 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6131 u8 cnt = 0; 6132 6133 phba->sli4_hba.link_state.speed = 6134 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6135 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6136 6137 phba->sli4_hba.link_state.logical_speed = 6138 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6139 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6140 phba->fc_linkspeed = 6141 lpfc_async_link_speed_to_read_top( 6142 phba, 6143 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6144 6145 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6146 phba->trunk_link.link0.state = 6147 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6148 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6149 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6150 cnt++; 6151 } 6152 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6153 phba->trunk_link.link1.state = 6154 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6155 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6156 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6157 cnt++; 6158 } 6159 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6160 phba->trunk_link.link2.state = 6161 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6162 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6163 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6164 cnt++; 6165 } 6166 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6167 phba->trunk_link.link3.state = 6168 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6169 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6170 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6171 cnt++; 6172 } 6173 6174 if (cnt) 6175 phba->trunk_link.phy_lnk_speed = 6176 phba->sli4_hba.link_state.logical_speed / (cnt * 1000); 6177 else 6178 phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN; 6179 6180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6181 "2910 Async FC Trunking Event - Speed:%d\n" 6182 "\tLogical speed:%d " 6183 "port0: %s port1: %s port2: %s port3: %s\n", 6184 phba->sli4_hba.link_state.speed, 6185 phba->sli4_hba.link_state.logical_speed, 6186 trunk_link_status(0), trunk_link_status(1), 6187 trunk_link_status(2), trunk_link_status(3)); 6188 6189 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6190 lpfc_cmf_signal_init(phba); 6191 6192 if (port_fault) 6193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6194 "3202 trunk error:0x%x (%s) seen on port0:%s " 6195 /* 6196 * SLI-4: We have only 0xA error codes 6197 * defined as of now. print an appropriate 6198 * message in case driver needs to be updated. 6199 */ 6200 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6201 "UNDEFINED. update driver." : trunk_errmsg[err], 6202 trunk_port_fault(0), trunk_port_fault(1), 6203 trunk_port_fault(2), trunk_port_fault(3)); 6204 } 6205 6206 6207 /** 6208 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6209 * @phba: pointer to lpfc hba data structure. 6210 * @acqe_fc: pointer to the async fc completion queue entry. 6211 * 6212 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6213 * that the event was received and then issue a read_topology mailbox command so 6214 * that the rest of the driver will treat it the same as SLI3. 6215 **/ 6216 static void 6217 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6218 { 6219 LPFC_MBOXQ_t *pmb; 6220 MAILBOX_t *mb; 6221 struct lpfc_mbx_read_top *la; 6222 char *log_level; 6223 int rc; 6224 6225 if (bf_get(lpfc_trailer_type, acqe_fc) != 6226 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6228 "2895 Non FC link Event detected.(%d)\n", 6229 bf_get(lpfc_trailer_type, acqe_fc)); 6230 return; 6231 } 6232 6233 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6234 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6235 lpfc_update_trunk_link_status(phba, acqe_fc); 6236 return; 6237 } 6238 6239 /* Keep the link status for extra SLI4 state machine reference */ 6240 phba->sli4_hba.link_state.speed = 6241 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6242 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6243 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6244 phba->sli4_hba.link_state.topology = 6245 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6246 phba->sli4_hba.link_state.status = 6247 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6248 phba->sli4_hba.link_state.type = 6249 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6250 phba->sli4_hba.link_state.number = 6251 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6252 phba->sli4_hba.link_state.fault = 6253 bf_get(lpfc_acqe_link_fault, acqe_fc); 6254 phba->sli4_hba.link_state.link_status = 6255 bf_get(lpfc_acqe_fc_la_link_status, acqe_fc); 6256 6257 /* 6258 * Only select attention types need logical speed modification to what 6259 * was previously set. 6260 */ 6261 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP && 6262 phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6263 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6264 LPFC_FC_LA_TYPE_LINK_DOWN) 6265 phba->sli4_hba.link_state.logical_speed = 0; 6266 else if (!phba->sli4_hba.conf_trunk) 6267 phba->sli4_hba.link_state.logical_speed = 6268 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6269 } 6270 6271 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6272 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6273 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6274 "%dMbps Fault:x%x Link Status:x%x\n", 6275 phba->sli4_hba.link_state.speed, 6276 phba->sli4_hba.link_state.topology, 6277 phba->sli4_hba.link_state.status, 6278 phba->sli4_hba.link_state.type, 6279 phba->sli4_hba.link_state.number, 6280 phba->sli4_hba.link_state.logical_speed, 6281 phba->sli4_hba.link_state.fault, 6282 phba->sli4_hba.link_state.link_status); 6283 6284 /* 6285 * The following attention types are informational only, providing 6286 * further details about link status. Overwrite the value of 6287 * link_state.status appropriately. No further action is required. 6288 */ 6289 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6290 switch (phba->sli4_hba.link_state.status) { 6291 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 6292 log_level = KERN_WARNING; 6293 phba->sli4_hba.link_state.status = 6294 LPFC_FC_LA_TYPE_LINK_DOWN; 6295 break; 6296 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 6297 /* 6298 * During bb credit recovery establishment, receiving 6299 * this attention type is normal. Link Up attention 6300 * type is expected to occur before this informational 6301 * attention type so keep the Link Up status. 6302 */ 6303 log_level = KERN_INFO; 6304 phba->sli4_hba.link_state.status = 6305 LPFC_FC_LA_TYPE_LINK_UP; 6306 break; 6307 default: 6308 log_level = KERN_INFO; 6309 break; 6310 } 6311 lpfc_log_msg(phba, log_level, LOG_SLI, 6312 "2992 Async FC event - Informational Link " 6313 "Attention Type x%x\n", 6314 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc)); 6315 return; 6316 } 6317 6318 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6319 if (!pmb) { 6320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6321 "2897 The mboxq allocation failed\n"); 6322 return; 6323 } 6324 rc = lpfc_mbox_rsrc_prep(phba, pmb); 6325 if (rc) { 6326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6327 "2898 The mboxq prep failed\n"); 6328 goto out_free_pmb; 6329 } 6330 6331 /* Cleanup any outstanding ELS commands */ 6332 lpfc_els_flush_all_cmd(phba); 6333 6334 /* Block ELS IOCBs until we have done process link event */ 6335 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6336 6337 /* Update link event statistics */ 6338 phba->sli.slistat.link_event++; 6339 6340 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6341 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 6342 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6343 pmb->vport = phba->pport; 6344 6345 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6346 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6347 6348 switch (phba->sli4_hba.link_state.status) { 6349 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6350 phba->link_flag |= LS_MDS_LINK_DOWN; 6351 break; 6352 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6353 phba->link_flag |= LS_MDS_LOOPBACK; 6354 break; 6355 default: 6356 break; 6357 } 6358 6359 /* Initialize completion status */ 6360 mb = &pmb->u.mb; 6361 mb->mbxStatus = MBX_SUCCESS; 6362 6363 /* Parse port fault information field */ 6364 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6365 6366 /* Parse and translate link attention fields */ 6367 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6368 la->eventTag = acqe_fc->event_tag; 6369 6370 if (phba->sli4_hba.link_state.status == 6371 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6372 bf_set(lpfc_mbx_read_top_att_type, la, 6373 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6374 } else { 6375 bf_set(lpfc_mbx_read_top_att_type, la, 6376 LPFC_FC_LA_TYPE_LINK_DOWN); 6377 } 6378 /* Invoke the mailbox command callback function */ 6379 lpfc_mbx_cmpl_read_topology(phba, pmb); 6380 6381 return; 6382 } 6383 6384 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6385 if (rc == MBX_NOT_FINISHED) 6386 goto out_free_pmb; 6387 return; 6388 6389 out_free_pmb: 6390 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 6391 } 6392 6393 /** 6394 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6395 * @phba: pointer to lpfc hba data structure. 6396 * @acqe_sli: pointer to the async SLI completion queue entry. 6397 * 6398 * This routine is to handle the SLI4 asynchronous SLI events. 6399 **/ 6400 static void 6401 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6402 { 6403 char port_name; 6404 char message[128]; 6405 uint8_t status; 6406 uint8_t evt_type; 6407 uint8_t operational = 0; 6408 struct temp_event temp_event_data; 6409 struct lpfc_acqe_misconfigured_event *misconfigured; 6410 struct lpfc_acqe_cgn_signal *cgn_signal; 6411 struct Scsi_Host *shost; 6412 struct lpfc_vport **vports; 6413 int rc, i, cnt; 6414 6415 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6416 6417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6418 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6419 "x%08x x%08x x%08x\n", evt_type, 6420 acqe_sli->event_data1, acqe_sli->event_data2, 6421 acqe_sli->event_data3, acqe_sli->trailer); 6422 6423 port_name = phba->Port[0]; 6424 if (port_name == 0x00) 6425 port_name = '?'; /* get port name is empty */ 6426 6427 switch (evt_type) { 6428 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6429 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6430 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6431 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6432 6433 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6434 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6435 acqe_sli->event_data1, port_name); 6436 6437 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6438 shost = lpfc_shost_from_vport(phba->pport); 6439 fc_host_post_vendor_event(shost, fc_get_event_number(), 6440 sizeof(temp_event_data), 6441 (char *)&temp_event_data, 6442 SCSI_NL_VID_TYPE_PCI 6443 | PCI_VENDOR_ID_EMULEX); 6444 break; 6445 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6446 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6447 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6448 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6449 6450 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT, 6451 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6452 acqe_sli->event_data1, port_name); 6453 6454 shost = lpfc_shost_from_vport(phba->pport); 6455 fc_host_post_vendor_event(shost, fc_get_event_number(), 6456 sizeof(temp_event_data), 6457 (char *)&temp_event_data, 6458 SCSI_NL_VID_TYPE_PCI 6459 | PCI_VENDOR_ID_EMULEX); 6460 break; 6461 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6462 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6463 &acqe_sli->event_data1; 6464 6465 /* fetch the status for this port */ 6466 switch (phba->sli4_hba.lnk_info.lnk_no) { 6467 case LPFC_LINK_NUMBER_0: 6468 status = bf_get(lpfc_sli_misconfigured_port0_state, 6469 &misconfigured->theEvent); 6470 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6471 &misconfigured->theEvent); 6472 break; 6473 case LPFC_LINK_NUMBER_1: 6474 status = bf_get(lpfc_sli_misconfigured_port1_state, 6475 &misconfigured->theEvent); 6476 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6477 &misconfigured->theEvent); 6478 break; 6479 case LPFC_LINK_NUMBER_2: 6480 status = bf_get(lpfc_sli_misconfigured_port2_state, 6481 &misconfigured->theEvent); 6482 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6483 &misconfigured->theEvent); 6484 break; 6485 case LPFC_LINK_NUMBER_3: 6486 status = bf_get(lpfc_sli_misconfigured_port3_state, 6487 &misconfigured->theEvent); 6488 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6489 &misconfigured->theEvent); 6490 break; 6491 default: 6492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6493 "3296 " 6494 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6495 "event: Invalid link %d", 6496 phba->sli4_hba.lnk_info.lnk_no); 6497 return; 6498 } 6499 6500 /* Skip if optic state unchanged */ 6501 if (phba->sli4_hba.lnk_info.optic_state == status) 6502 return; 6503 6504 switch (status) { 6505 case LPFC_SLI_EVENT_STATUS_VALID: 6506 sprintf(message, "Physical Link is functional"); 6507 break; 6508 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6509 sprintf(message, "Optics faulted/incorrectly " 6510 "installed/not installed - Reseat optics, " 6511 "if issue not resolved, replace."); 6512 break; 6513 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6514 sprintf(message, 6515 "Optics of two types installed - Remove one " 6516 "optic or install matching pair of optics."); 6517 break; 6518 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6519 sprintf(message, "Incompatible optics - Replace with " 6520 "compatible optics for card to function."); 6521 break; 6522 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6523 sprintf(message, "Unqualified optics - Replace with " 6524 "Avago optics for Warranty and Technical " 6525 "Support - Link is%s operational", 6526 (operational) ? " not" : ""); 6527 break; 6528 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6529 sprintf(message, "Uncertified optics - Replace with " 6530 "Avago-certified optics to enable link " 6531 "operation - Link is%s operational", 6532 (operational) ? " not" : ""); 6533 break; 6534 default: 6535 /* firmware is reporting a status we don't know about */ 6536 sprintf(message, "Unknown event status x%02x", status); 6537 break; 6538 } 6539 6540 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6541 rc = lpfc_sli4_read_config(phba); 6542 if (rc) { 6543 phba->lmt = 0; 6544 lpfc_printf_log(phba, KERN_ERR, 6545 LOG_TRACE_EVENT, 6546 "3194 Unable to retrieve supported " 6547 "speeds, rc = 0x%x\n", rc); 6548 } 6549 rc = lpfc_sli4_refresh_params(phba); 6550 if (rc) { 6551 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6552 "3174 Unable to update pls support, " 6553 "rc x%x\n", rc); 6554 } 6555 vports = lpfc_create_vport_work_array(phba); 6556 if (vports != NULL) { 6557 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6558 i++) { 6559 shost = lpfc_shost_from_vport(vports[i]); 6560 lpfc_host_supported_speeds_set(shost); 6561 } 6562 } 6563 lpfc_destroy_vport_work_array(phba, vports); 6564 6565 phba->sli4_hba.lnk_info.optic_state = status; 6566 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6567 "3176 Port Name %c %s\n", port_name, message); 6568 break; 6569 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6570 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6571 "3192 Remote DPort Test Initiated - " 6572 "Event Data1:x%08x Event Data2: x%08x\n", 6573 acqe_sli->event_data1, acqe_sli->event_data2); 6574 break; 6575 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6576 /* Call FW to obtain active parms */ 6577 lpfc_sli4_cgn_parm_chg_evt(phba); 6578 break; 6579 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6580 /* Misconfigured WWN. Reports that the SLI Port is configured 6581 * to use FA-WWN, but the attached device doesn’t support it. 6582 * Event Data1 - N.A, Event Data2 - N.A 6583 * This event only happens on the physical port. 6584 */ 6585 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, 6586 "2699 Misconfigured FA-PWWN - Attached device " 6587 "does not support FA-PWWN\n"); 6588 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; 6589 memset(phba->pport->fc_portname.u.wwn, 0, 6590 sizeof(struct lpfc_name)); 6591 break; 6592 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6593 /* EEPROM failure. No driver action is required */ 6594 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6595 "2518 EEPROM failure - " 6596 "Event Data1: x%08x Event Data2: x%08x\n", 6597 acqe_sli->event_data1, acqe_sli->event_data2); 6598 break; 6599 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6600 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6601 break; 6602 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6603 &acqe_sli->event_data1; 6604 phba->cgn_acqe_cnt++; 6605 6606 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6607 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6608 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6609 6610 /* no threshold for CMF, even 1 signal will trigger an event */ 6611 6612 /* Alarm overrides warning, so check that first */ 6613 if (cgn_signal->alarm_cnt) { 6614 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6615 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6616 atomic_add(cgn_signal->alarm_cnt, 6617 &phba->cgn_sync_alarm_cnt); 6618 } 6619 } else if (cnt) { 6620 /* signal action needs to be taken */ 6621 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6622 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6623 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6624 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6625 } 6626 } 6627 break; 6628 case LPFC_SLI_EVENT_TYPE_RD_SIGNAL: 6629 /* May be accompanied by a temperature event */ 6630 lpfc_printf_log(phba, KERN_INFO, 6631 LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT, 6632 "2902 Remote Degrade Signaling: x%08x x%08x " 6633 "x%08x\n", 6634 acqe_sli->event_data1, acqe_sli->event_data2, 6635 acqe_sli->event_data3); 6636 break; 6637 case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS: 6638 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 6639 "2905 Reset CM statistics\n"); 6640 lpfc_sli4_async_cmstat_evt(phba); 6641 break; 6642 default: 6643 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6644 "3193 Unrecognized SLI event, type: 0x%x", 6645 evt_type); 6646 break; 6647 } 6648 } 6649 6650 /** 6651 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6652 * @vport: pointer to vport data structure. 6653 * 6654 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6655 * response to a CVL event. 6656 * 6657 * Return the pointer to the ndlp with the vport if successful, otherwise 6658 * return NULL. 6659 **/ 6660 static struct lpfc_nodelist * 6661 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6662 { 6663 struct lpfc_nodelist *ndlp; 6664 struct Scsi_Host *shost; 6665 struct lpfc_hba *phba; 6666 6667 if (!vport) 6668 return NULL; 6669 phba = vport->phba; 6670 if (!phba) 6671 return NULL; 6672 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6673 if (!ndlp) { 6674 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6675 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6676 if (!ndlp) 6677 return NULL; 6678 /* Set the node type */ 6679 ndlp->nlp_type |= NLP_FABRIC; 6680 /* Put ndlp onto node list */ 6681 lpfc_enqueue_node(vport, ndlp); 6682 } 6683 if ((phba->pport->port_state < LPFC_FLOGI) && 6684 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6685 return NULL; 6686 /* If virtual link is not yet instantiated ignore CVL */ 6687 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6688 && (vport->port_state != LPFC_VPORT_FAILED)) 6689 return NULL; 6690 shost = lpfc_shost_from_vport(vport); 6691 if (!shost) 6692 return NULL; 6693 lpfc_linkdown_port(vport); 6694 lpfc_cleanup_pending_mbox(vport); 6695 set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag); 6696 6697 return ndlp; 6698 } 6699 6700 /** 6701 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6702 * @phba: pointer to lpfc hba data structure. 6703 * 6704 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6705 * response to a FCF dead event. 6706 **/ 6707 static void 6708 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6709 { 6710 struct lpfc_vport **vports; 6711 int i; 6712 6713 vports = lpfc_create_vport_work_array(phba); 6714 if (vports) 6715 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6716 lpfc_sli4_perform_vport_cvl(vports[i]); 6717 lpfc_destroy_vport_work_array(phba, vports); 6718 } 6719 6720 /** 6721 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6722 * @phba: pointer to lpfc hba data structure. 6723 * @acqe_fip: pointer to the async fcoe completion queue entry. 6724 * 6725 * This routine is to handle the SLI4 asynchronous fcoe event. 6726 **/ 6727 static void 6728 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6729 struct lpfc_acqe_fip *acqe_fip) 6730 { 6731 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6732 int rc; 6733 struct lpfc_vport *vport; 6734 struct lpfc_nodelist *ndlp; 6735 int active_vlink_present; 6736 struct lpfc_vport **vports; 6737 int i; 6738 6739 phba->fc_eventTag = acqe_fip->event_tag; 6740 phba->fcoe_eventtag = acqe_fip->event_tag; 6741 switch (event_type) { 6742 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6743 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6744 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6746 "2546 New FCF event, evt_tag:x%x, " 6747 "index:x%x\n", 6748 acqe_fip->event_tag, 6749 acqe_fip->index); 6750 else 6751 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6752 LOG_DISCOVERY, 6753 "2788 FCF param modified event, " 6754 "evt_tag:x%x, index:x%x\n", 6755 acqe_fip->event_tag, 6756 acqe_fip->index); 6757 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6758 /* 6759 * During period of FCF discovery, read the FCF 6760 * table record indexed by the event to update 6761 * FCF roundrobin failover eligible FCF bmask. 6762 */ 6763 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6764 LOG_DISCOVERY, 6765 "2779 Read FCF (x%x) for updating " 6766 "roundrobin FCF failover bmask\n", 6767 acqe_fip->index); 6768 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6769 } 6770 6771 /* If the FCF discovery is in progress, do nothing. */ 6772 if (test_bit(FCF_TS_INPROG, &phba->hba_flag)) 6773 break; 6774 spin_lock_irq(&phba->hbalock); 6775 /* If fast FCF failover rescan event is pending, do nothing */ 6776 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6777 spin_unlock_irq(&phba->hbalock); 6778 break; 6779 } 6780 6781 /* If the FCF has been in discovered state, do nothing. */ 6782 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6783 spin_unlock_irq(&phba->hbalock); 6784 break; 6785 } 6786 spin_unlock_irq(&phba->hbalock); 6787 6788 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6789 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6790 "2770 Start FCF table scan per async FCF " 6791 "event, evt_tag:x%x, index:x%x\n", 6792 acqe_fip->event_tag, acqe_fip->index); 6793 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6794 LPFC_FCOE_FCF_GET_FIRST); 6795 if (rc) 6796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6797 "2547 Issue FCF scan read FCF mailbox " 6798 "command failed (x%x)\n", rc); 6799 break; 6800 6801 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6803 "2548 FCF Table full count 0x%x tag 0x%x\n", 6804 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6805 acqe_fip->event_tag); 6806 break; 6807 6808 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6809 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6811 "2549 FCF (x%x) disconnected from network, " 6812 "tag:x%x\n", acqe_fip->index, 6813 acqe_fip->event_tag); 6814 /* 6815 * If we are in the middle of FCF failover process, clear 6816 * the corresponding FCF bit in the roundrobin bitmap. 6817 */ 6818 spin_lock_irq(&phba->hbalock); 6819 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6820 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6821 spin_unlock_irq(&phba->hbalock); 6822 /* Update FLOGI FCF failover eligible FCF bmask */ 6823 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6824 break; 6825 } 6826 spin_unlock_irq(&phba->hbalock); 6827 6828 /* If the event is not for currently used fcf do nothing */ 6829 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6830 break; 6831 6832 /* 6833 * Otherwise, request the port to rediscover the entire FCF 6834 * table for a fast recovery from case that the current FCF 6835 * is no longer valid as we are not in the middle of FCF 6836 * failover process already. 6837 */ 6838 spin_lock_irq(&phba->hbalock); 6839 /* Mark the fast failover process in progress */ 6840 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6841 spin_unlock_irq(&phba->hbalock); 6842 6843 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6844 "2771 Start FCF fast failover process due to " 6845 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6846 "\n", acqe_fip->event_tag, acqe_fip->index); 6847 rc = lpfc_sli4_redisc_fcf_table(phba); 6848 if (rc) { 6849 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6850 LOG_TRACE_EVENT, 6851 "2772 Issue FCF rediscover mailbox " 6852 "command failed, fail through to FCF " 6853 "dead event\n"); 6854 spin_lock_irq(&phba->hbalock); 6855 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6856 spin_unlock_irq(&phba->hbalock); 6857 /* 6858 * Last resort will fail over by treating this 6859 * as a link down to FCF registration. 6860 */ 6861 lpfc_sli4_fcf_dead_failthrough(phba); 6862 } else { 6863 /* Reset FCF roundrobin bmask for new discovery */ 6864 lpfc_sli4_clear_fcf_rr_bmask(phba); 6865 /* 6866 * Handling fast FCF failover to a DEAD FCF event is 6867 * considered equalivant to receiving CVL to all vports. 6868 */ 6869 lpfc_sli4_perform_all_vport_cvl(phba); 6870 } 6871 break; 6872 case LPFC_FIP_EVENT_TYPE_CVL: 6873 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6874 lpfc_printf_log(phba, KERN_ERR, 6875 LOG_TRACE_EVENT, 6876 "2718 Clear Virtual Link Received for VPI 0x%x" 6877 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6878 6879 vport = lpfc_find_vport_by_vpid(phba, 6880 acqe_fip->index); 6881 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6882 if (!ndlp) 6883 break; 6884 active_vlink_present = 0; 6885 6886 vports = lpfc_create_vport_work_array(phba); 6887 if (vports) { 6888 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6889 i++) { 6890 if (!test_bit(FC_VPORT_CVL_RCVD, 6891 &vports[i]->fc_flag) && 6892 vports[i]->port_state > LPFC_FDISC) { 6893 active_vlink_present = 1; 6894 break; 6895 } 6896 } 6897 lpfc_destroy_vport_work_array(phba, vports); 6898 } 6899 6900 /* 6901 * Don't re-instantiate if vport is marked for deletion. 6902 * If we are here first then vport_delete is going to wait 6903 * for discovery to complete. 6904 */ 6905 if (!test_bit(FC_UNLOADING, &vport->load_flag) && 6906 active_vlink_present) { 6907 /* 6908 * If there are other active VLinks present, 6909 * re-instantiate the Vlink using FDISC. 6910 */ 6911 mod_timer(&ndlp->nlp_delayfunc, 6912 jiffies + msecs_to_jiffies(1000)); 6913 spin_lock_irq(&ndlp->lock); 6914 ndlp->nlp_flag |= NLP_DELAY_TMO; 6915 spin_unlock_irq(&ndlp->lock); 6916 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6917 vport->port_state = LPFC_FDISC; 6918 } else { 6919 /* 6920 * Otherwise, we request port to rediscover 6921 * the entire FCF table for a fast recovery 6922 * from possible case that the current FCF 6923 * is no longer valid if we are not already 6924 * in the FCF failover process. 6925 */ 6926 spin_lock_irq(&phba->hbalock); 6927 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6928 spin_unlock_irq(&phba->hbalock); 6929 break; 6930 } 6931 /* Mark the fast failover process in progress */ 6932 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6933 spin_unlock_irq(&phba->hbalock); 6934 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6935 LOG_DISCOVERY, 6936 "2773 Start FCF failover per CVL, " 6937 "evt_tag:x%x\n", acqe_fip->event_tag); 6938 rc = lpfc_sli4_redisc_fcf_table(phba); 6939 if (rc) { 6940 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6941 LOG_TRACE_EVENT, 6942 "2774 Issue FCF rediscover " 6943 "mailbox command failed, " 6944 "through to CVL event\n"); 6945 spin_lock_irq(&phba->hbalock); 6946 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6947 spin_unlock_irq(&phba->hbalock); 6948 /* 6949 * Last resort will be re-try on the 6950 * the current registered FCF entry. 6951 */ 6952 lpfc_retry_pport_discovery(phba); 6953 } else 6954 /* 6955 * Reset FCF roundrobin bmask for new 6956 * discovery. 6957 */ 6958 lpfc_sli4_clear_fcf_rr_bmask(phba); 6959 } 6960 break; 6961 default: 6962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6963 "0288 Unknown FCoE event type 0x%x event tag " 6964 "0x%x\n", event_type, acqe_fip->event_tag); 6965 break; 6966 } 6967 } 6968 6969 /** 6970 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6971 * @phba: pointer to lpfc hba data structure. 6972 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6973 * 6974 * This routine is to handle the SLI4 asynchronous dcbx event. 6975 **/ 6976 static void 6977 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6978 struct lpfc_acqe_dcbx *acqe_dcbx) 6979 { 6980 phba->fc_eventTag = acqe_dcbx->event_tag; 6981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6982 "0290 The SLI4 DCBX asynchronous event is not " 6983 "handled yet\n"); 6984 } 6985 6986 /** 6987 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6988 * @phba: pointer to lpfc hba data structure. 6989 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6990 * 6991 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6992 * is an asynchronous notified of a logical link speed change. The Port 6993 * reports the logical link speed in units of 10Mbps. 6994 **/ 6995 static void 6996 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 6997 struct lpfc_acqe_grp5 *acqe_grp5) 6998 { 6999 uint16_t prev_ll_spd; 7000 7001 phba->fc_eventTag = acqe_grp5->event_tag; 7002 phba->fcoe_eventtag = acqe_grp5->event_tag; 7003 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 7004 phba->sli4_hba.link_state.logical_speed = 7005 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 7006 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 7007 "2789 GRP5 Async Event: Updating logical link speed " 7008 "from %dMbps to %dMbps\n", prev_ll_spd, 7009 phba->sli4_hba.link_state.logical_speed); 7010 } 7011 7012 /** 7013 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 7014 * @phba: pointer to lpfc hba data structure. 7015 * 7016 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 7017 * is an asynchronous notification of a request to reset CM stats. 7018 **/ 7019 static void 7020 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 7021 { 7022 if (!phba->cgn_i) 7023 return; 7024 lpfc_init_congestion_stat(phba); 7025 } 7026 7027 /** 7028 * lpfc_cgn_params_val - Validate FW congestion parameters. 7029 * @phba: pointer to lpfc hba data structure. 7030 * @p_cfg_param: pointer to FW provided congestion parameters. 7031 * 7032 * This routine validates the congestion parameters passed 7033 * by the FW to the driver via an ACQE event. 7034 **/ 7035 static void 7036 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7037 { 7038 spin_lock_irq(&phba->hbalock); 7039 7040 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7041 LPFC_CFG_MONITOR)) { 7042 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7043 "6225 CMF mode param out of range: %d\n", 7044 p_cfg_param->cgn_param_mode); 7045 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7046 } 7047 7048 spin_unlock_irq(&phba->hbalock); 7049 } 7050 7051 static const char * const lpfc_cmf_mode_to_str[] = { 7052 "OFF", 7053 "MANAGED", 7054 "MONITOR", 7055 }; 7056 7057 /** 7058 * lpfc_cgn_params_parse - Process a FW cong parm change event 7059 * @phba: pointer to lpfc hba data structure. 7060 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7061 * @len: the size of pdata in bytes. 7062 * 7063 * This routine validates the congestion management buffer signature 7064 * from the FW, validates the contents and makes corrections for 7065 * valid, in-range values. If the signature magic is correct and 7066 * after parameter validation, the contents are copied to the driver's 7067 * @phba structure. If the magic is incorrect, an error message is 7068 * logged. 7069 **/ 7070 static void 7071 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7072 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7073 { 7074 struct lpfc_cgn_info *cp; 7075 uint32_t crc, oldmode; 7076 char acr_string[4] = {0}; 7077 7078 /* Make sure the FW has encoded the correct magic number to 7079 * validate the congestion parameter in FW memory. 7080 */ 7081 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7082 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7083 "4668 FW cgn parm buffer data: " 7084 "magic 0x%x version %d mode %d " 7085 "level0 %d level1 %d " 7086 "level2 %d byte13 %d " 7087 "byte14 %d byte15 %d " 7088 "byte11 %d byte12 %d activeMode %d\n", 7089 p_cgn_param->cgn_param_magic, 7090 p_cgn_param->cgn_param_version, 7091 p_cgn_param->cgn_param_mode, 7092 p_cgn_param->cgn_param_level0, 7093 p_cgn_param->cgn_param_level1, 7094 p_cgn_param->cgn_param_level2, 7095 p_cgn_param->byte13, 7096 p_cgn_param->byte14, 7097 p_cgn_param->byte15, 7098 p_cgn_param->byte11, 7099 p_cgn_param->byte12, 7100 phba->cmf_active_mode); 7101 7102 oldmode = phba->cmf_active_mode; 7103 7104 /* Any parameters out of range are corrected to defaults 7105 * by this routine. No need to fail. 7106 */ 7107 lpfc_cgn_params_val(phba, p_cgn_param); 7108 7109 /* Parameters are verified, move them into driver storage */ 7110 spin_lock_irq(&phba->hbalock); 7111 memcpy(&phba->cgn_p, p_cgn_param, 7112 sizeof(struct lpfc_cgn_param)); 7113 7114 /* Update parameters in congestion info buffer now */ 7115 if (phba->cgn_i) { 7116 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7117 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7118 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7119 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7120 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7121 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7122 LPFC_CGN_CRC32_SEED); 7123 cp->cgn_info_crc = cpu_to_le32(crc); 7124 } 7125 spin_unlock_irq(&phba->hbalock); 7126 7127 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7128 7129 switch (oldmode) { 7130 case LPFC_CFG_OFF: 7131 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7132 /* Turning CMF on */ 7133 lpfc_cmf_start(phba); 7134 7135 if (phba->link_state >= LPFC_LINK_UP) { 7136 phba->cgn_reg_fpin = 7137 phba->cgn_init_reg_fpin; 7138 phba->cgn_reg_signal = 7139 phba->cgn_init_reg_signal; 7140 lpfc_issue_els_edc(phba->pport, 0); 7141 } 7142 } 7143 break; 7144 case LPFC_CFG_MANAGED: 7145 switch (phba->cgn_p.cgn_param_mode) { 7146 case LPFC_CFG_OFF: 7147 /* Turning CMF off */ 7148 lpfc_cmf_stop(phba); 7149 if (phba->link_state >= LPFC_LINK_UP) 7150 lpfc_issue_els_edc(phba->pport, 0); 7151 break; 7152 case LPFC_CFG_MONITOR: 7153 phba->cmf_max_bytes_per_interval = 7154 phba->cmf_link_byte_count; 7155 7156 /* Resume blocked IO - unblock on workqueue */ 7157 queue_work(phba->wq, 7158 &phba->unblock_request_work); 7159 break; 7160 } 7161 break; 7162 case LPFC_CFG_MONITOR: 7163 switch (phba->cgn_p.cgn_param_mode) { 7164 case LPFC_CFG_OFF: 7165 /* Turning CMF off */ 7166 lpfc_cmf_stop(phba); 7167 if (phba->link_state >= LPFC_LINK_UP) 7168 lpfc_issue_els_edc(phba->pport, 0); 7169 break; 7170 case LPFC_CFG_MANAGED: 7171 lpfc_cmf_signal_init(phba); 7172 break; 7173 } 7174 break; 7175 } 7176 if (oldmode != LPFC_CFG_OFF || 7177 oldmode != phba->cgn_p.cgn_param_mode) { 7178 if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED) 7179 scnprintf(acr_string, sizeof(acr_string), "%u", 7180 phba->cgn_p.cgn_param_level0); 7181 else 7182 scnprintf(acr_string, sizeof(acr_string), "NA"); 7183 7184 dev_info(&phba->pcidev->dev, "%d: " 7185 "4663 CMF: Mode %s acr %s\n", 7186 phba->brd_no, 7187 lpfc_cmf_mode_to_str 7188 [phba->cgn_p.cgn_param_mode], 7189 acr_string); 7190 } 7191 } else { 7192 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7193 "4669 FW cgn parm buf wrong magic 0x%x " 7194 "version %d\n", p_cgn_param->cgn_param_magic, 7195 p_cgn_param->cgn_param_version); 7196 } 7197 } 7198 7199 /** 7200 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7201 * @phba: pointer to lpfc hba data structure. 7202 * 7203 * This routine issues a read_object mailbox command to 7204 * get the congestion management parameters from the FW 7205 * parses it and updates the driver maintained values. 7206 * 7207 * Returns 7208 * 0 if the object was empty 7209 * -Eval if an error was encountered 7210 * Count if bytes were read from object 7211 **/ 7212 int 7213 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7214 { 7215 int ret = 0; 7216 struct lpfc_cgn_param *p_cgn_param = NULL; 7217 u32 *pdata = NULL; 7218 u32 len = 0; 7219 7220 /* Find out if the FW has a new set of congestion parameters. */ 7221 len = sizeof(struct lpfc_cgn_param); 7222 pdata = kzalloc(len, GFP_KERNEL); 7223 if (!pdata) 7224 return -ENOMEM; 7225 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7226 pdata, len); 7227 7228 /* 0 means no data. A negative means error. A positive means 7229 * bytes were copied. 7230 */ 7231 if (!ret) { 7232 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7233 "4670 CGN RD OBJ returns no data\n"); 7234 goto rd_obj_err; 7235 } else if (ret < 0) { 7236 /* Some error. Just exit and return it to the caller.*/ 7237 goto rd_obj_err; 7238 } 7239 7240 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7241 "6234 READ CGN PARAMS Successful %d\n", len); 7242 7243 /* Parse data pointer over len and update the phba congestion 7244 * parameters with values passed back. The receive rate values 7245 * may have been altered in FW, but take no action here. 7246 */ 7247 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7248 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7249 7250 rd_obj_err: 7251 kfree(pdata); 7252 return ret; 7253 } 7254 7255 /** 7256 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7257 * @phba: pointer to lpfc hba data structure. 7258 * 7259 * The FW generated Async ACQE SLI event calls this routine when 7260 * the event type is an SLI Internal Port Event and the Event Code 7261 * indicates a change to the FW maintained congestion parameters. 7262 * 7263 * This routine executes a Read_Object mailbox call to obtain the 7264 * current congestion parameters maintained in FW and corrects 7265 * the driver's active congestion parameters. 7266 * 7267 * The acqe event is not passed because there is no further data 7268 * required. 7269 * 7270 * Returns nonzero error if event processing encountered an error. 7271 * Zero otherwise for success. 7272 **/ 7273 static int 7274 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7275 { 7276 int ret = 0; 7277 7278 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7279 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7280 "4664 Cgn Evt when E2E off. Drop event\n"); 7281 return -EACCES; 7282 } 7283 7284 /* If the event is claiming an empty object, it's ok. A write 7285 * could have cleared it. Only error is a negative return 7286 * status. 7287 */ 7288 ret = lpfc_sli4_cgn_params_read(phba); 7289 if (ret < 0) { 7290 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7291 "4667 Error reading Cgn Params (%d)\n", 7292 ret); 7293 } else if (!ret) { 7294 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7295 "4673 CGN Event empty object.\n"); 7296 } 7297 return ret; 7298 } 7299 7300 /** 7301 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7302 * @phba: pointer to lpfc hba data structure. 7303 * 7304 * This routine is invoked by the worker thread to process all the pending 7305 * SLI4 asynchronous events. 7306 **/ 7307 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7308 { 7309 struct lpfc_cq_event *cq_event; 7310 unsigned long iflags; 7311 7312 /* First, declare the async event has been handled */ 7313 clear_bit(ASYNC_EVENT, &phba->hba_flag); 7314 7315 /* Now, handle all the async events */ 7316 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7317 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7318 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7319 cq_event, struct lpfc_cq_event, list); 7320 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7321 iflags); 7322 7323 /* Process the asynchronous event */ 7324 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7325 case LPFC_TRAILER_CODE_LINK: 7326 lpfc_sli4_async_link_evt(phba, 7327 &cq_event->cqe.acqe_link); 7328 break; 7329 case LPFC_TRAILER_CODE_FCOE: 7330 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7331 break; 7332 case LPFC_TRAILER_CODE_DCBX: 7333 lpfc_sli4_async_dcbx_evt(phba, 7334 &cq_event->cqe.acqe_dcbx); 7335 break; 7336 case LPFC_TRAILER_CODE_GRP5: 7337 lpfc_sli4_async_grp5_evt(phba, 7338 &cq_event->cqe.acqe_grp5); 7339 break; 7340 case LPFC_TRAILER_CODE_FC: 7341 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7342 break; 7343 case LPFC_TRAILER_CODE_SLI: 7344 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7345 break; 7346 default: 7347 lpfc_printf_log(phba, KERN_ERR, 7348 LOG_TRACE_EVENT, 7349 "1804 Invalid asynchronous event code: " 7350 "x%x\n", bf_get(lpfc_trailer_code, 7351 &cq_event->cqe.mcqe_cmpl)); 7352 break; 7353 } 7354 7355 /* Free the completion event processed to the free pool */ 7356 lpfc_sli4_cq_event_release(phba, cq_event); 7357 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7358 } 7359 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7360 } 7361 7362 /** 7363 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7364 * @phba: pointer to lpfc hba data structure. 7365 * 7366 * This routine is invoked by the worker thread to process FCF table 7367 * rediscovery pending completion event. 7368 **/ 7369 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7370 { 7371 int rc; 7372 7373 spin_lock_irq(&phba->hbalock); 7374 /* Clear FCF rediscovery timeout event */ 7375 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7376 /* Clear driver fast failover FCF record flag */ 7377 phba->fcf.failover_rec.flag = 0; 7378 /* Set state for FCF fast failover */ 7379 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7380 spin_unlock_irq(&phba->hbalock); 7381 7382 /* Scan FCF table from the first entry to re-discover SAN */ 7383 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7384 "2777 Start post-quiescent FCF table scan\n"); 7385 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7386 if (rc) 7387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7388 "2747 Issue FCF scan read FCF mailbox " 7389 "command failed 0x%x\n", rc); 7390 } 7391 7392 /** 7393 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7394 * @phba: pointer to lpfc hba data structure. 7395 * @dev_grp: The HBA PCI-Device group number. 7396 * 7397 * This routine is invoked to set up the per HBA PCI-Device group function 7398 * API jump table entries. 7399 * 7400 * Return: 0 if success, otherwise -ENODEV 7401 **/ 7402 int 7403 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7404 { 7405 int rc; 7406 7407 /* Set up lpfc PCI-device group */ 7408 phba->pci_dev_grp = dev_grp; 7409 7410 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7411 if (dev_grp == LPFC_PCI_DEV_OC) 7412 phba->sli_rev = LPFC_SLI_REV4; 7413 7414 /* Set up device INIT API function jump table */ 7415 rc = lpfc_init_api_table_setup(phba, dev_grp); 7416 if (rc) 7417 return -ENODEV; 7418 /* Set up SCSI API function jump table */ 7419 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7420 if (rc) 7421 return -ENODEV; 7422 /* Set up SLI API function jump table */ 7423 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7424 if (rc) 7425 return -ENODEV; 7426 /* Set up MBOX API function jump table */ 7427 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7428 if (rc) 7429 return -ENODEV; 7430 7431 return 0; 7432 } 7433 7434 /** 7435 * lpfc_log_intr_mode - Log the active interrupt mode 7436 * @phba: pointer to lpfc hba data structure. 7437 * @intr_mode: active interrupt mode adopted. 7438 * 7439 * This routine it invoked to log the currently used active interrupt mode 7440 * to the device. 7441 **/ 7442 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7443 { 7444 switch (intr_mode) { 7445 case 0: 7446 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7447 "0470 Enable INTx interrupt mode.\n"); 7448 break; 7449 case 1: 7450 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7451 "0481 Enabled MSI interrupt mode.\n"); 7452 break; 7453 case 2: 7454 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7455 "0480 Enabled MSI-X interrupt mode.\n"); 7456 break; 7457 default: 7458 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7459 "0482 Illegal interrupt mode.\n"); 7460 break; 7461 } 7462 return; 7463 } 7464 7465 /** 7466 * lpfc_enable_pci_dev - Enable a generic PCI device. 7467 * @phba: pointer to lpfc hba data structure. 7468 * 7469 * This routine is invoked to enable the PCI device that is common to all 7470 * PCI devices. 7471 * 7472 * Return codes 7473 * 0 - successful 7474 * other values - error 7475 **/ 7476 static int 7477 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7478 { 7479 struct pci_dev *pdev; 7480 7481 /* Obtain PCI device reference */ 7482 if (!phba->pcidev) 7483 goto out_error; 7484 else 7485 pdev = phba->pcidev; 7486 /* Enable PCI device */ 7487 if (pci_enable_device_mem(pdev)) 7488 goto out_error; 7489 /* Request PCI resource for the device */ 7490 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7491 goto out_disable_device; 7492 /* Set up device as PCI master and save state for EEH */ 7493 pci_set_master(pdev); 7494 pci_try_set_mwi(pdev); 7495 pci_save_state(pdev); 7496 7497 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7498 if (pci_is_pcie(pdev)) 7499 pdev->needs_freset = 1; 7500 7501 return 0; 7502 7503 out_disable_device: 7504 pci_disable_device(pdev); 7505 out_error: 7506 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7507 "1401 Failed to enable pci device\n"); 7508 return -ENODEV; 7509 } 7510 7511 /** 7512 * lpfc_disable_pci_dev - Disable a generic PCI device. 7513 * @phba: pointer to lpfc hba data structure. 7514 * 7515 * This routine is invoked to disable the PCI device that is common to all 7516 * PCI devices. 7517 **/ 7518 static void 7519 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7520 { 7521 struct pci_dev *pdev; 7522 7523 /* Obtain PCI device reference */ 7524 if (!phba->pcidev) 7525 return; 7526 else 7527 pdev = phba->pcidev; 7528 /* Release PCI resource and disable PCI device */ 7529 pci_release_mem_regions(pdev); 7530 pci_disable_device(pdev); 7531 7532 return; 7533 } 7534 7535 /** 7536 * lpfc_reset_hba - Reset a hba 7537 * @phba: pointer to lpfc hba data structure. 7538 * 7539 * This routine is invoked to reset a hba device. It brings the HBA 7540 * offline, performs a board restart, and then brings the board back 7541 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7542 * on outstanding mailbox commands. 7543 **/ 7544 void 7545 lpfc_reset_hba(struct lpfc_hba *phba) 7546 { 7547 int rc = 0; 7548 7549 /* If resets are disabled then set error state and return. */ 7550 if (!phba->cfg_enable_hba_reset) { 7551 phba->link_state = LPFC_HBA_ERROR; 7552 return; 7553 } 7554 7555 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7556 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7557 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7558 } else { 7559 if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) { 7560 /* Perform a PCI function reset to start from clean */ 7561 rc = lpfc_pci_function_reset(phba); 7562 lpfc_els_flush_all_cmd(phba); 7563 } 7564 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7565 lpfc_sli_flush_io_rings(phba); 7566 } 7567 lpfc_offline(phba); 7568 clear_bit(MBX_TMO_ERR, &phba->bit_flags); 7569 if (unlikely(rc)) { 7570 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7571 "8888 PCI function reset failed rc %x\n", 7572 rc); 7573 } else { 7574 lpfc_sli_brdrestart(phba); 7575 lpfc_online(phba); 7576 lpfc_unblock_mgmt_io(phba); 7577 } 7578 } 7579 7580 /** 7581 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7582 * @phba: pointer to lpfc hba data structure. 7583 * 7584 * This function enables the PCI SR-IOV virtual functions to a physical 7585 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7586 * enable the number of virtual functions to the physical function. As 7587 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7588 * API call does not considered as an error condition for most of the device. 7589 **/ 7590 uint16_t 7591 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7592 { 7593 struct pci_dev *pdev = phba->pcidev; 7594 uint16_t nr_virtfn; 7595 int pos; 7596 7597 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7598 if (pos == 0) 7599 return 0; 7600 7601 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7602 return nr_virtfn; 7603 } 7604 7605 /** 7606 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7607 * @phba: pointer to lpfc hba data structure. 7608 * @nr_vfn: number of virtual functions to be enabled. 7609 * 7610 * This function enables the PCI SR-IOV virtual functions to a physical 7611 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7612 * enable the number of virtual functions to the physical function. As 7613 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7614 * API call does not considered as an error condition for most of the device. 7615 **/ 7616 int 7617 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7618 { 7619 struct pci_dev *pdev = phba->pcidev; 7620 uint16_t max_nr_vfn; 7621 int rc; 7622 7623 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7624 if (nr_vfn > max_nr_vfn) { 7625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7626 "3057 Requested vfs (%d) greater than " 7627 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7628 return -EINVAL; 7629 } 7630 7631 rc = pci_enable_sriov(pdev, nr_vfn); 7632 if (rc) { 7633 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7634 "2806 Failed to enable sriov on this device " 7635 "with vfn number nr_vf:%d, rc:%d\n", 7636 nr_vfn, rc); 7637 } else 7638 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7639 "2807 Successful enable sriov on this device " 7640 "with vfn number nr_vf:%d\n", nr_vfn); 7641 return rc; 7642 } 7643 7644 static void 7645 lpfc_unblock_requests_work(struct work_struct *work) 7646 { 7647 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7648 unblock_request_work); 7649 7650 lpfc_unblock_requests(phba); 7651 } 7652 7653 /** 7654 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7655 * @phba: pointer to lpfc hba data structure. 7656 * 7657 * This routine is invoked to set up the driver internal resources before the 7658 * device specific resource setup to support the HBA device it attached to. 7659 * 7660 * Return codes 7661 * 0 - successful 7662 * other values - error 7663 **/ 7664 static int 7665 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7666 { 7667 struct lpfc_sli *psli = &phba->sli; 7668 7669 /* 7670 * Driver resources common to all SLI revisions 7671 */ 7672 atomic_set(&phba->fast_event_count, 0); 7673 atomic_set(&phba->dbg_log_idx, 0); 7674 atomic_set(&phba->dbg_log_cnt, 0); 7675 atomic_set(&phba->dbg_log_dmping, 0); 7676 spin_lock_init(&phba->hbalock); 7677 7678 /* Initialize port_list spinlock */ 7679 spin_lock_init(&phba->port_list_lock); 7680 INIT_LIST_HEAD(&phba->port_list); 7681 7682 INIT_LIST_HEAD(&phba->work_list); 7683 7684 /* Initialize the wait queue head for the kernel thread */ 7685 init_waitqueue_head(&phba->work_waitq); 7686 7687 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7688 "1403 Protocols supported %s %s %s\n", 7689 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7690 "SCSI" : " "), 7691 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7692 "NVME" : " "), 7693 (phba->nvmet_support ? "NVMET" : " ")); 7694 7695 /* ras_fwlog state */ 7696 spin_lock_init(&phba->ras_fwlog_lock); 7697 7698 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7699 spin_lock_init(&phba->scsi_buf_list_get_lock); 7700 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7701 spin_lock_init(&phba->scsi_buf_list_put_lock); 7702 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7703 7704 /* Initialize the fabric iocb list */ 7705 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7706 7707 /* Initialize list to save ELS buffers */ 7708 INIT_LIST_HEAD(&phba->elsbuf); 7709 7710 /* Initialize FCF connection rec list */ 7711 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7712 7713 /* Initialize OAS configuration list */ 7714 spin_lock_init(&phba->devicelock); 7715 INIT_LIST_HEAD(&phba->luns); 7716 7717 /* MBOX heartbeat timer */ 7718 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7719 /* Fabric block timer */ 7720 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7721 /* EA polling mode timer */ 7722 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7723 /* Heartbeat timer */ 7724 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7725 7726 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7727 7728 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7729 lpfc_idle_stat_delay_work); 7730 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7731 return 0; 7732 } 7733 7734 /** 7735 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7736 * @phba: pointer to lpfc hba data structure. 7737 * 7738 * This routine is invoked to set up the driver internal resources specific to 7739 * support the SLI-3 HBA device it attached to. 7740 * 7741 * Return codes 7742 * 0 - successful 7743 * other values - error 7744 **/ 7745 static int 7746 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7747 { 7748 int rc, entry_sz; 7749 7750 /* 7751 * Initialize timers used by driver 7752 */ 7753 7754 /* FCP polling mode timer */ 7755 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7756 7757 /* Host attention work mask setup */ 7758 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7759 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7760 7761 /* Get all the module params for configuring this host */ 7762 lpfc_get_cfgparam(phba); 7763 /* Set up phase-1 common device driver resources */ 7764 7765 rc = lpfc_setup_driver_resource_phase1(phba); 7766 if (rc) 7767 return -ENODEV; 7768 7769 if (!phba->sli.sli3_ring) 7770 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7771 sizeof(struct lpfc_sli_ring), 7772 GFP_KERNEL); 7773 if (!phba->sli.sli3_ring) 7774 return -ENOMEM; 7775 7776 /* 7777 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7778 * used to create the sg_dma_buf_pool must be dynamically calculated. 7779 */ 7780 7781 if (phba->sli_rev == LPFC_SLI_REV4) 7782 entry_sz = sizeof(struct sli4_sge); 7783 else 7784 entry_sz = sizeof(struct ulp_bde64); 7785 7786 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7787 if (phba->cfg_enable_bg) { 7788 /* 7789 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7790 * the FCP rsp, and a BDE for each. Sice we have no control 7791 * over how many protection data segments the SCSI Layer 7792 * will hand us (ie: there could be one for every block 7793 * in the IO), we just allocate enough BDEs to accomidate 7794 * our max amount and we need to limit lpfc_sg_seg_cnt to 7795 * minimize the risk of running out. 7796 */ 7797 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7798 sizeof(struct fcp_rsp) + 7799 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7800 7801 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7802 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7803 7804 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7805 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7806 } else { 7807 /* 7808 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7809 * the FCP rsp, a BDE for each, and a BDE for up to 7810 * cfg_sg_seg_cnt data segments. 7811 */ 7812 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7813 sizeof(struct fcp_rsp) + 7814 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7815 7816 /* Total BDEs in BPL for scsi_sg_list */ 7817 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7818 } 7819 7820 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7821 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7822 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7823 phba->cfg_total_seg_cnt); 7824 7825 phba->max_vpi = LPFC_MAX_VPI; 7826 /* This will be set to correct value after config_port mbox */ 7827 phba->max_vports = 0; 7828 7829 /* 7830 * Initialize the SLI Layer to run with lpfc HBAs. 7831 */ 7832 lpfc_sli_setup(phba); 7833 lpfc_sli_queue_init(phba); 7834 7835 /* Allocate device driver memory */ 7836 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7837 return -ENOMEM; 7838 7839 phba->lpfc_sg_dma_buf_pool = 7840 dma_pool_create("lpfc_sg_dma_buf_pool", 7841 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7842 BPL_ALIGN_SZ, 0); 7843 7844 if (!phba->lpfc_sg_dma_buf_pool) 7845 goto fail_free_mem; 7846 7847 phba->lpfc_cmd_rsp_buf_pool = 7848 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7849 &phba->pcidev->dev, 7850 sizeof(struct fcp_cmnd) + 7851 sizeof(struct fcp_rsp), 7852 BPL_ALIGN_SZ, 0); 7853 7854 if (!phba->lpfc_cmd_rsp_buf_pool) 7855 goto fail_free_dma_buf_pool; 7856 7857 /* 7858 * Enable sr-iov virtual functions if supported and configured 7859 * through the module parameter. 7860 */ 7861 if (phba->cfg_sriov_nr_virtfn > 0) { 7862 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7863 phba->cfg_sriov_nr_virtfn); 7864 if (rc) { 7865 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7866 "2808 Requested number of SR-IOV " 7867 "virtual functions (%d) is not " 7868 "supported\n", 7869 phba->cfg_sriov_nr_virtfn); 7870 phba->cfg_sriov_nr_virtfn = 0; 7871 } 7872 } 7873 7874 return 0; 7875 7876 fail_free_dma_buf_pool: 7877 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7878 phba->lpfc_sg_dma_buf_pool = NULL; 7879 fail_free_mem: 7880 lpfc_mem_free(phba); 7881 return -ENOMEM; 7882 } 7883 7884 /** 7885 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7886 * @phba: pointer to lpfc hba data structure. 7887 * 7888 * This routine is invoked to unset the driver internal resources set up 7889 * specific for supporting the SLI-3 HBA device it attached to. 7890 **/ 7891 static void 7892 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7893 { 7894 /* Free device driver memory allocated */ 7895 lpfc_mem_free_all(phba); 7896 7897 return; 7898 } 7899 7900 /** 7901 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7902 * @phba: pointer to lpfc hba data structure. 7903 * 7904 * This routine is invoked to set up the driver internal resources specific to 7905 * support the SLI-4 HBA device it attached to. 7906 * 7907 * Return codes 7908 * 0 - successful 7909 * other values - error 7910 **/ 7911 static int 7912 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7913 { 7914 LPFC_MBOXQ_t *mboxq; 7915 MAILBOX_t *mb; 7916 int rc, i, max_buf_size; 7917 int longs; 7918 int extra; 7919 uint64_t wwn; 7920 u32 if_type; 7921 u32 if_fam; 7922 7923 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7924 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7925 phba->sli4_hba.curr_disp_cpu = 0; 7926 7927 /* Get all the module params for configuring this host */ 7928 lpfc_get_cfgparam(phba); 7929 7930 /* Set up phase-1 common device driver resources */ 7931 rc = lpfc_setup_driver_resource_phase1(phba); 7932 if (rc) 7933 return -ENODEV; 7934 7935 /* Before proceed, wait for POST done and device ready */ 7936 rc = lpfc_sli4_post_status_check(phba); 7937 if (rc) 7938 return -ENODEV; 7939 7940 /* Allocate all driver workqueues here */ 7941 7942 /* The lpfc_wq workqueue for deferred irq use */ 7943 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7944 if (!phba->wq) 7945 return -ENOMEM; 7946 7947 /* 7948 * Initialize timers used by driver 7949 */ 7950 7951 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7952 7953 /* FCF rediscover timer */ 7954 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7955 7956 /* CMF congestion timer */ 7957 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7958 phba->cmf_timer.function = lpfc_cmf_timer; 7959 /* CMF 1 minute stats collection timer */ 7960 hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7961 phba->cmf_stats_timer.function = lpfc_cmf_stats_timer; 7962 7963 /* 7964 * Control structure for handling external multi-buffer mailbox 7965 * command pass-through. 7966 */ 7967 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7968 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7969 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7970 7971 phba->max_vpi = LPFC_MAX_VPI; 7972 7973 /* This will be set to correct value after the read_config mbox */ 7974 phba->max_vports = 0; 7975 7976 /* Program the default value of vlan_id and fc_map */ 7977 phba->valid_vlan = 0; 7978 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7979 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7980 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7981 7982 /* 7983 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7984 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7985 * The WQ create will allocate the ring. 7986 */ 7987 7988 /* Initialize buffer queue management fields */ 7989 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7990 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7991 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7992 7993 /* for VMID idle timeout if VMID is enabled */ 7994 if (lpfc_is_vmid_enabled(phba)) 7995 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7996 7997 /* 7998 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 7999 */ 8000 /* Initialize the Abort buffer list used by driver */ 8001 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 8002 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 8003 8004 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8005 /* Initialize the Abort nvme buffer list used by driver */ 8006 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 8007 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8008 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 8009 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 8010 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 8011 } 8012 8013 /* This abort list used by worker thread */ 8014 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 8015 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 8016 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 8017 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 8018 8019 /* 8020 * Initialize driver internal slow-path work queues 8021 */ 8022 8023 /* Driver internel slow-path CQ Event pool */ 8024 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 8025 /* Response IOCB work queue list */ 8026 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 8027 /* Asynchronous event CQ Event work queue list */ 8028 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 8029 /* Slow-path XRI aborted CQ Event work queue list */ 8030 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 8031 /* Receive queue CQ Event work queue list */ 8032 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 8033 8034 /* Initialize extent block lists. */ 8035 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 8036 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 8037 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 8038 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 8039 8040 /* Initialize mboxq lists. If the early init routines fail 8041 * these lists need to be correctly initialized. 8042 */ 8043 INIT_LIST_HEAD(&phba->sli.mboxq); 8044 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 8045 8046 /* initialize optic_state to 0xFF */ 8047 phba->sli4_hba.lnk_info.optic_state = 0xff; 8048 8049 /* Allocate device driver memory */ 8050 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8051 if (rc) 8052 goto out_destroy_workqueue; 8053 8054 /* IF Type 2 ports get initialized now. */ 8055 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8056 LPFC_SLI_INTF_IF_TYPE_2) { 8057 rc = lpfc_pci_function_reset(phba); 8058 if (unlikely(rc)) { 8059 rc = -ENODEV; 8060 goto out_free_mem; 8061 } 8062 phba->temp_sensor_support = 1; 8063 } 8064 8065 /* Create the bootstrap mailbox command */ 8066 rc = lpfc_create_bootstrap_mbox(phba); 8067 if (unlikely(rc)) 8068 goto out_free_mem; 8069 8070 /* Set up the host's endian order with the device. */ 8071 rc = lpfc_setup_endian_order(phba); 8072 if (unlikely(rc)) 8073 goto out_free_bsmbx; 8074 8075 /* Set up the hba's configuration parameters. */ 8076 rc = lpfc_sli4_read_config(phba); 8077 if (unlikely(rc)) 8078 goto out_free_bsmbx; 8079 8080 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { 8081 /* Right now the link is down, if FA-PWWN is configured the 8082 * firmware will try FLOGI before the driver gets a link up. 8083 * If it fails, the driver should get a MISCONFIGURED async 8084 * event which will clear this flag. The only notification 8085 * the driver gets is if it fails, if it succeeds there is no 8086 * notification given. Assume success. 8087 */ 8088 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 8089 } 8090 8091 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8092 if (unlikely(rc)) 8093 goto out_free_bsmbx; 8094 8095 /* IF Type 0 ports get initialized now. */ 8096 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8097 LPFC_SLI_INTF_IF_TYPE_0) { 8098 rc = lpfc_pci_function_reset(phba); 8099 if (unlikely(rc)) 8100 goto out_free_bsmbx; 8101 } 8102 8103 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8104 GFP_KERNEL); 8105 if (!mboxq) { 8106 rc = -ENOMEM; 8107 goto out_free_bsmbx; 8108 } 8109 8110 /* Check for NVMET being configured */ 8111 phba->nvmet_support = 0; 8112 if (lpfc_enable_nvmet_cnt) { 8113 8114 /* First get WWN of HBA instance */ 8115 lpfc_read_nv(phba, mboxq); 8116 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8117 if (rc != MBX_SUCCESS) { 8118 lpfc_printf_log(phba, KERN_ERR, 8119 LOG_TRACE_EVENT, 8120 "6016 Mailbox failed , mbxCmd x%x " 8121 "READ_NV, mbxStatus x%x\n", 8122 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8123 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8124 mempool_free(mboxq, phba->mbox_mem_pool); 8125 rc = -EIO; 8126 goto out_free_bsmbx; 8127 } 8128 mb = &mboxq->u.mb; 8129 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8130 sizeof(uint64_t)); 8131 wwn = cpu_to_be64(wwn); 8132 phba->sli4_hba.wwnn.u.name = wwn; 8133 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8134 sizeof(uint64_t)); 8135 /* wwn is WWPN of HBA instance */ 8136 wwn = cpu_to_be64(wwn); 8137 phba->sli4_hba.wwpn.u.name = wwn; 8138 8139 /* Check to see if it matches any module parameter */ 8140 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8141 if (wwn == lpfc_enable_nvmet[i]) { 8142 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8143 if (lpfc_nvmet_mem_alloc(phba)) 8144 break; 8145 8146 phba->nvmet_support = 1; /* a match */ 8147 8148 lpfc_printf_log(phba, KERN_ERR, 8149 LOG_TRACE_EVENT, 8150 "6017 NVME Target %016llx\n", 8151 wwn); 8152 #else 8153 lpfc_printf_log(phba, KERN_ERR, 8154 LOG_TRACE_EVENT, 8155 "6021 Can't enable NVME Target." 8156 " NVME_TARGET_FC infrastructure" 8157 " is not in kernel\n"); 8158 #endif 8159 /* Not supported for NVMET */ 8160 phba->cfg_xri_rebalancing = 0; 8161 if (phba->irq_chann_mode == NHT_MODE) { 8162 phba->cfg_irq_chann = 8163 phba->sli4_hba.num_present_cpu; 8164 phba->cfg_hdw_queue = 8165 phba->sli4_hba.num_present_cpu; 8166 phba->irq_chann_mode = NORMAL_MODE; 8167 } 8168 break; 8169 } 8170 } 8171 } 8172 8173 lpfc_nvme_mod_param_dep(phba); 8174 8175 /* 8176 * Get sli4 parameters that override parameters from Port capabilities. 8177 * If this call fails, it isn't critical unless the SLI4 parameters come 8178 * back in conflict. 8179 */ 8180 rc = lpfc_get_sli4_parameters(phba, mboxq); 8181 if (rc) { 8182 if_type = bf_get(lpfc_sli_intf_if_type, 8183 &phba->sli4_hba.sli_intf); 8184 if_fam = bf_get(lpfc_sli_intf_sli_family, 8185 &phba->sli4_hba.sli_intf); 8186 if (phba->sli4_hba.extents_in_use && 8187 phba->sli4_hba.rpi_hdrs_in_use) { 8188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8189 "2999 Unsupported SLI4 Parameters " 8190 "Extents and RPI headers enabled.\n"); 8191 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8192 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8193 mempool_free(mboxq, phba->mbox_mem_pool); 8194 rc = -EIO; 8195 goto out_free_bsmbx; 8196 } 8197 } 8198 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8199 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8200 mempool_free(mboxq, phba->mbox_mem_pool); 8201 rc = -EIO; 8202 goto out_free_bsmbx; 8203 } 8204 } 8205 8206 /* 8207 * 1 for cmd, 1 for rsp, NVME adds an extra one 8208 * for boundary conditions in its max_sgl_segment template. 8209 */ 8210 extra = 2; 8211 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8212 extra++; 8213 8214 /* 8215 * It doesn't matter what family our adapter is in, we are 8216 * limited to 2 Pages, 512 SGEs, for our SGL. 8217 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8218 */ 8219 max_buf_size = (2 * SLI4_PAGE_SIZE); 8220 8221 /* 8222 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8223 * used to create the sg_dma_buf_pool must be calculated. 8224 */ 8225 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8226 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8227 8228 /* 8229 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8230 * the FCP rsp, and a SGE. Sice we have no control 8231 * over how many protection segments the SCSI Layer 8232 * will hand us (ie: there could be one for every block 8233 * in the IO), just allocate enough SGEs to accomidate 8234 * our max amount and we need to limit lpfc_sg_seg_cnt 8235 * to minimize the risk of running out. 8236 */ 8237 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8238 sizeof(struct fcp_rsp) + max_buf_size; 8239 8240 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8241 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8242 8243 /* 8244 * If supporting DIF, reduce the seg count for scsi to 8245 * allow room for the DIF sges. 8246 */ 8247 if (phba->cfg_enable_bg && 8248 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8249 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8250 else 8251 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8252 8253 } else { 8254 /* 8255 * The scsi_buf for a regular I/O holds the FCP cmnd, 8256 * the FCP rsp, a SGE for each, and a SGE for up to 8257 * cfg_sg_seg_cnt data segments. 8258 */ 8259 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8260 sizeof(struct fcp_rsp) + 8261 ((phba->cfg_sg_seg_cnt + extra) * 8262 sizeof(struct sli4_sge)); 8263 8264 /* Total SGEs for scsi_sg_list */ 8265 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8266 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8267 8268 /* 8269 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8270 * need to post 1 page for the SGL. 8271 */ 8272 } 8273 8274 if (phba->cfg_xpsgl && !phba->nvmet_support) 8275 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8276 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8277 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8278 else 8279 phba->cfg_sg_dma_buf_size = 8280 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8281 8282 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8283 sizeof(struct sli4_sge); 8284 8285 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8286 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8287 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8288 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8289 "6300 Reducing NVME sg segment " 8290 "cnt to %d\n", 8291 LPFC_MAX_NVME_SEG_CNT); 8292 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8293 } else 8294 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8295 } 8296 8297 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8298 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8299 "total:%d scsi:%d nvme:%d\n", 8300 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8301 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8302 phba->cfg_nvme_seg_cnt); 8303 8304 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8305 i = phba->cfg_sg_dma_buf_size; 8306 else 8307 i = SLI4_PAGE_SIZE; 8308 8309 phba->lpfc_sg_dma_buf_pool = 8310 dma_pool_create("lpfc_sg_dma_buf_pool", 8311 &phba->pcidev->dev, 8312 phba->cfg_sg_dma_buf_size, 8313 i, 0); 8314 if (!phba->lpfc_sg_dma_buf_pool) { 8315 rc = -ENOMEM; 8316 goto out_free_bsmbx; 8317 } 8318 8319 phba->lpfc_cmd_rsp_buf_pool = 8320 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8321 &phba->pcidev->dev, 8322 sizeof(struct fcp_cmnd32) + 8323 sizeof(struct fcp_rsp), 8324 i, 0); 8325 if (!phba->lpfc_cmd_rsp_buf_pool) { 8326 rc = -ENOMEM; 8327 goto out_free_sg_dma_buf; 8328 } 8329 8330 mempool_free(mboxq, phba->mbox_mem_pool); 8331 8332 /* Verify OAS is supported */ 8333 lpfc_sli4_oas_verify(phba); 8334 8335 /* Verify RAS support on adapter */ 8336 lpfc_sli4_ras_init(phba); 8337 8338 /* Verify all the SLI4 queues */ 8339 rc = lpfc_sli4_queue_verify(phba); 8340 if (rc) 8341 goto out_free_cmd_rsp_buf; 8342 8343 /* Create driver internal CQE event pool */ 8344 rc = lpfc_sli4_cq_event_pool_create(phba); 8345 if (rc) 8346 goto out_free_cmd_rsp_buf; 8347 8348 /* Initialize sgl lists per host */ 8349 lpfc_init_sgl_list(phba); 8350 8351 /* Allocate and initialize active sgl array */ 8352 rc = lpfc_init_active_sgl_array(phba); 8353 if (rc) { 8354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8355 "1430 Failed to initialize sgl list.\n"); 8356 goto out_destroy_cq_event_pool; 8357 } 8358 rc = lpfc_sli4_init_rpi_hdrs(phba); 8359 if (rc) { 8360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8361 "1432 Failed to initialize rpi headers.\n"); 8362 goto out_free_active_sgl; 8363 } 8364 8365 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8366 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8367 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8368 GFP_KERNEL); 8369 if (!phba->fcf.fcf_rr_bmask) { 8370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8371 "2759 Failed allocate memory for FCF round " 8372 "robin failover bmask\n"); 8373 rc = -ENOMEM; 8374 goto out_remove_rpi_hdrs; 8375 } 8376 8377 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8378 sizeof(struct lpfc_hba_eq_hdl), 8379 GFP_KERNEL); 8380 if (!phba->sli4_hba.hba_eq_hdl) { 8381 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8382 "2572 Failed allocate memory for " 8383 "fast-path per-EQ handle array\n"); 8384 rc = -ENOMEM; 8385 goto out_free_fcf_rr_bmask; 8386 } 8387 8388 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8389 sizeof(struct lpfc_vector_map_info), 8390 GFP_KERNEL); 8391 if (!phba->sli4_hba.cpu_map) { 8392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8393 "3327 Failed allocate memory for msi-x " 8394 "interrupt vector mapping\n"); 8395 rc = -ENOMEM; 8396 goto out_free_hba_eq_hdl; 8397 } 8398 8399 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8400 if (!phba->sli4_hba.eq_info) { 8401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8402 "3321 Failed allocation for per_cpu stats\n"); 8403 rc = -ENOMEM; 8404 goto out_free_hba_cpu_map; 8405 } 8406 8407 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8408 sizeof(*phba->sli4_hba.idle_stat), 8409 GFP_KERNEL); 8410 if (!phba->sli4_hba.idle_stat) { 8411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8412 "3390 Failed allocation for idle_stat\n"); 8413 rc = -ENOMEM; 8414 goto out_free_hba_eq_info; 8415 } 8416 8417 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8418 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8419 if (!phba->sli4_hba.c_stat) { 8420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8421 "3332 Failed allocating per cpu hdwq stats\n"); 8422 rc = -ENOMEM; 8423 goto out_free_hba_idle_stat; 8424 } 8425 #endif 8426 8427 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8428 if (!phba->cmf_stat) { 8429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8430 "3331 Failed allocating per cpu cgn stats\n"); 8431 rc = -ENOMEM; 8432 goto out_free_hba_hdwq_info; 8433 } 8434 8435 /* 8436 * Enable sr-iov virtual functions if supported and configured 8437 * through the module parameter. 8438 */ 8439 if (phba->cfg_sriov_nr_virtfn > 0) { 8440 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8441 phba->cfg_sriov_nr_virtfn); 8442 if (rc) { 8443 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8444 "3020 Requested number of SR-IOV " 8445 "virtual functions (%d) is not " 8446 "supported\n", 8447 phba->cfg_sriov_nr_virtfn); 8448 phba->cfg_sriov_nr_virtfn = 0; 8449 } 8450 } 8451 8452 return 0; 8453 8454 out_free_hba_hdwq_info: 8455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8456 free_percpu(phba->sli4_hba.c_stat); 8457 out_free_hba_idle_stat: 8458 #endif 8459 kfree(phba->sli4_hba.idle_stat); 8460 out_free_hba_eq_info: 8461 free_percpu(phba->sli4_hba.eq_info); 8462 out_free_hba_cpu_map: 8463 kfree(phba->sli4_hba.cpu_map); 8464 out_free_hba_eq_hdl: 8465 kfree(phba->sli4_hba.hba_eq_hdl); 8466 out_free_fcf_rr_bmask: 8467 kfree(phba->fcf.fcf_rr_bmask); 8468 out_remove_rpi_hdrs: 8469 lpfc_sli4_remove_rpi_hdrs(phba); 8470 out_free_active_sgl: 8471 lpfc_free_active_sgl(phba); 8472 out_destroy_cq_event_pool: 8473 lpfc_sli4_cq_event_pool_destroy(phba); 8474 out_free_cmd_rsp_buf: 8475 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8476 phba->lpfc_cmd_rsp_buf_pool = NULL; 8477 out_free_sg_dma_buf: 8478 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8479 phba->lpfc_sg_dma_buf_pool = NULL; 8480 out_free_bsmbx: 8481 lpfc_destroy_bootstrap_mbox(phba); 8482 out_free_mem: 8483 lpfc_mem_free(phba); 8484 out_destroy_workqueue: 8485 destroy_workqueue(phba->wq); 8486 phba->wq = NULL; 8487 return rc; 8488 } 8489 8490 /** 8491 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8492 * @phba: pointer to lpfc hba data structure. 8493 * 8494 * This routine is invoked to unset the driver internal resources set up 8495 * specific for supporting the SLI-4 HBA device it attached to. 8496 **/ 8497 static void 8498 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8499 { 8500 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8501 8502 free_percpu(phba->sli4_hba.eq_info); 8503 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8504 free_percpu(phba->sli4_hba.c_stat); 8505 #endif 8506 free_percpu(phba->cmf_stat); 8507 kfree(phba->sli4_hba.idle_stat); 8508 8509 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8510 kfree(phba->sli4_hba.cpu_map); 8511 phba->sli4_hba.num_possible_cpu = 0; 8512 phba->sli4_hba.num_present_cpu = 0; 8513 phba->sli4_hba.curr_disp_cpu = 0; 8514 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8515 8516 /* Free memory allocated for fast-path work queue handles */ 8517 kfree(phba->sli4_hba.hba_eq_hdl); 8518 8519 /* Free the allocated rpi headers. */ 8520 lpfc_sli4_remove_rpi_hdrs(phba); 8521 lpfc_sli4_remove_rpis(phba); 8522 8523 /* Free eligible FCF index bmask */ 8524 kfree(phba->fcf.fcf_rr_bmask); 8525 8526 /* Free the ELS sgl list */ 8527 lpfc_free_active_sgl(phba); 8528 lpfc_free_els_sgl_list(phba); 8529 lpfc_free_nvmet_sgl_list(phba); 8530 8531 /* Free the completion queue EQ event pool */ 8532 lpfc_sli4_cq_event_release_all(phba); 8533 lpfc_sli4_cq_event_pool_destroy(phba); 8534 8535 /* Release resource identifiers. */ 8536 lpfc_sli4_dealloc_resource_identifiers(phba); 8537 8538 /* Free the bsmbx region. */ 8539 lpfc_destroy_bootstrap_mbox(phba); 8540 8541 /* Free the SLI Layer memory with SLI4 HBAs */ 8542 lpfc_mem_free_all(phba); 8543 8544 /* Free the current connect table */ 8545 list_for_each_entry_safe(conn_entry, next_conn_entry, 8546 &phba->fcf_conn_rec_list, list) { 8547 list_del_init(&conn_entry->list); 8548 kfree(conn_entry); 8549 } 8550 8551 return; 8552 } 8553 8554 /** 8555 * lpfc_init_api_table_setup - Set up init api function jump table 8556 * @phba: The hba struct for which this call is being executed. 8557 * @dev_grp: The HBA PCI-Device group number. 8558 * 8559 * This routine sets up the device INIT interface API function jump table 8560 * in @phba struct. 8561 * 8562 * Returns: 0 - success, -ENODEV - failure. 8563 **/ 8564 int 8565 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8566 { 8567 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8568 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8569 phba->lpfc_selective_reset = lpfc_selective_reset; 8570 switch (dev_grp) { 8571 case LPFC_PCI_DEV_LP: 8572 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8573 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8574 phba->lpfc_stop_port = lpfc_stop_port_s3; 8575 break; 8576 case LPFC_PCI_DEV_OC: 8577 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8578 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8579 phba->lpfc_stop_port = lpfc_stop_port_s4; 8580 break; 8581 default: 8582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8583 "1431 Invalid HBA PCI-device group: 0x%x\n", 8584 dev_grp); 8585 return -ENODEV; 8586 } 8587 return 0; 8588 } 8589 8590 /** 8591 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8592 * @phba: pointer to lpfc hba data structure. 8593 * 8594 * This routine is invoked to set up the driver internal resources after the 8595 * device specific resource setup to support the HBA device it attached to. 8596 * 8597 * Return codes 8598 * 0 - successful 8599 * other values - error 8600 **/ 8601 static int 8602 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8603 { 8604 int error; 8605 8606 /* Startup the kernel thread for this host adapter. */ 8607 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8608 "lpfc_worker_%d", phba->brd_no); 8609 if (IS_ERR(phba->worker_thread)) { 8610 error = PTR_ERR(phba->worker_thread); 8611 return error; 8612 } 8613 8614 return 0; 8615 } 8616 8617 /** 8618 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8619 * @phba: pointer to lpfc hba data structure. 8620 * 8621 * This routine is invoked to unset the driver internal resources set up after 8622 * the device specific resource setup for supporting the HBA device it 8623 * attached to. 8624 **/ 8625 static void 8626 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8627 { 8628 if (phba->wq) { 8629 destroy_workqueue(phba->wq); 8630 phba->wq = NULL; 8631 } 8632 8633 /* Stop kernel worker thread */ 8634 if (phba->worker_thread) 8635 kthread_stop(phba->worker_thread); 8636 } 8637 8638 /** 8639 * lpfc_free_iocb_list - Free iocb list. 8640 * @phba: pointer to lpfc hba data structure. 8641 * 8642 * This routine is invoked to free the driver's IOCB list and memory. 8643 **/ 8644 void 8645 lpfc_free_iocb_list(struct lpfc_hba *phba) 8646 { 8647 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8648 8649 spin_lock_irq(&phba->hbalock); 8650 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8651 &phba->lpfc_iocb_list, list) { 8652 list_del(&iocbq_entry->list); 8653 kfree(iocbq_entry); 8654 phba->total_iocbq_bufs--; 8655 } 8656 spin_unlock_irq(&phba->hbalock); 8657 8658 return; 8659 } 8660 8661 /** 8662 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8663 * @phba: pointer to lpfc hba data structure. 8664 * @iocb_count: number of requested iocbs 8665 * 8666 * This routine is invoked to allocate and initizlize the driver's IOCB 8667 * list and set up the IOCB tag array accordingly. 8668 * 8669 * Return codes 8670 * 0 - successful 8671 * other values - error 8672 **/ 8673 int 8674 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8675 { 8676 struct lpfc_iocbq *iocbq_entry = NULL; 8677 uint16_t iotag; 8678 int i; 8679 8680 /* Initialize and populate the iocb list per host. */ 8681 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8682 for (i = 0; i < iocb_count; i++) { 8683 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8684 if (iocbq_entry == NULL) { 8685 printk(KERN_ERR "%s: only allocated %d iocbs of " 8686 "expected %d count. Unloading driver.\n", 8687 __func__, i, iocb_count); 8688 goto out_free_iocbq; 8689 } 8690 8691 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8692 if (iotag == 0) { 8693 kfree(iocbq_entry); 8694 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8695 "Unloading driver.\n", __func__); 8696 goto out_free_iocbq; 8697 } 8698 iocbq_entry->sli4_lxritag = NO_XRI; 8699 iocbq_entry->sli4_xritag = NO_XRI; 8700 8701 spin_lock_irq(&phba->hbalock); 8702 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8703 phba->total_iocbq_bufs++; 8704 spin_unlock_irq(&phba->hbalock); 8705 } 8706 8707 return 0; 8708 8709 out_free_iocbq: 8710 lpfc_free_iocb_list(phba); 8711 8712 return -ENOMEM; 8713 } 8714 8715 /** 8716 * lpfc_free_sgl_list - Free a given sgl list. 8717 * @phba: pointer to lpfc hba data structure. 8718 * @sglq_list: pointer to the head of sgl list. 8719 * 8720 * This routine is invoked to free a give sgl list and memory. 8721 **/ 8722 void 8723 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8724 { 8725 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8726 8727 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8728 list_del(&sglq_entry->list); 8729 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8730 kfree(sglq_entry); 8731 } 8732 } 8733 8734 /** 8735 * lpfc_free_els_sgl_list - Free els sgl list. 8736 * @phba: pointer to lpfc hba data structure. 8737 * 8738 * This routine is invoked to free the driver's els sgl list and memory. 8739 **/ 8740 static void 8741 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8742 { 8743 LIST_HEAD(sglq_list); 8744 8745 /* Retrieve all els sgls from driver list */ 8746 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8747 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8748 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8749 8750 /* Now free the sgl list */ 8751 lpfc_free_sgl_list(phba, &sglq_list); 8752 } 8753 8754 /** 8755 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8756 * @phba: pointer to lpfc hba data structure. 8757 * 8758 * This routine is invoked to free the driver's nvmet sgl list and memory. 8759 **/ 8760 static void 8761 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8762 { 8763 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8764 LIST_HEAD(sglq_list); 8765 8766 /* Retrieve all nvmet sgls from driver list */ 8767 spin_lock_irq(&phba->hbalock); 8768 spin_lock(&phba->sli4_hba.sgl_list_lock); 8769 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8770 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8771 spin_unlock_irq(&phba->hbalock); 8772 8773 /* Now free the sgl list */ 8774 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8775 list_del(&sglq_entry->list); 8776 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8777 kfree(sglq_entry); 8778 } 8779 8780 /* Update the nvmet_xri_cnt to reflect no current sgls. 8781 * The next initialization cycle sets the count and allocates 8782 * the sgls over again. 8783 */ 8784 phba->sli4_hba.nvmet_xri_cnt = 0; 8785 } 8786 8787 /** 8788 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8789 * @phba: pointer to lpfc hba data structure. 8790 * 8791 * This routine is invoked to allocate the driver's active sgl memory. 8792 * This array will hold the sglq_entry's for active IOs. 8793 **/ 8794 static int 8795 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8796 { 8797 int size; 8798 size = sizeof(struct lpfc_sglq *); 8799 size *= phba->sli4_hba.max_cfg_param.max_xri; 8800 8801 phba->sli4_hba.lpfc_sglq_active_list = 8802 kzalloc(size, GFP_KERNEL); 8803 if (!phba->sli4_hba.lpfc_sglq_active_list) 8804 return -ENOMEM; 8805 return 0; 8806 } 8807 8808 /** 8809 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8810 * @phba: pointer to lpfc hba data structure. 8811 * 8812 * This routine is invoked to walk through the array of active sglq entries 8813 * and free all of the resources. 8814 * This is just a place holder for now. 8815 **/ 8816 static void 8817 lpfc_free_active_sgl(struct lpfc_hba *phba) 8818 { 8819 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8820 } 8821 8822 /** 8823 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8824 * @phba: pointer to lpfc hba data structure. 8825 * 8826 * This routine is invoked to allocate and initizlize the driver's sgl 8827 * list and set up the sgl xritag tag array accordingly. 8828 * 8829 **/ 8830 static void 8831 lpfc_init_sgl_list(struct lpfc_hba *phba) 8832 { 8833 /* Initialize and populate the sglq list per host/VF. */ 8834 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8835 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8836 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8837 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8838 8839 /* els xri-sgl book keeping */ 8840 phba->sli4_hba.els_xri_cnt = 0; 8841 8842 /* nvme xri-buffer book keeping */ 8843 phba->sli4_hba.io_xri_cnt = 0; 8844 } 8845 8846 /** 8847 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8848 * @phba: pointer to lpfc hba data structure. 8849 * 8850 * This routine is invoked to post rpi header templates to the 8851 * port for those SLI4 ports that do not support extents. This routine 8852 * posts a PAGE_SIZE memory region to the port to hold up to 8853 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8854 * and should be called only when interrupts are disabled. 8855 * 8856 * Return codes 8857 * 0 - successful 8858 * -ERROR - otherwise. 8859 **/ 8860 int 8861 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8862 { 8863 int rc = 0; 8864 struct lpfc_rpi_hdr *rpi_hdr; 8865 8866 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8867 if (!phba->sli4_hba.rpi_hdrs_in_use) 8868 return rc; 8869 if (phba->sli4_hba.extents_in_use) 8870 return -EIO; 8871 8872 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8873 if (!rpi_hdr) { 8874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8875 "0391 Error during rpi post operation\n"); 8876 lpfc_sli4_remove_rpis(phba); 8877 rc = -ENODEV; 8878 } 8879 8880 return rc; 8881 } 8882 8883 /** 8884 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8885 * @phba: pointer to lpfc hba data structure. 8886 * 8887 * This routine is invoked to allocate a single 4KB memory region to 8888 * support rpis and stores them in the phba. This single region 8889 * provides support for up to 64 rpis. The region is used globally 8890 * by the device. 8891 * 8892 * Returns: 8893 * A valid rpi hdr on success. 8894 * A NULL pointer on any failure. 8895 **/ 8896 struct lpfc_rpi_hdr * 8897 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8898 { 8899 uint16_t rpi_limit, curr_rpi_range; 8900 struct lpfc_dmabuf *dmabuf; 8901 struct lpfc_rpi_hdr *rpi_hdr; 8902 8903 /* 8904 * If the SLI4 port supports extents, posting the rpi header isn't 8905 * required. Set the expected maximum count and let the actual value 8906 * get set when extents are fully allocated. 8907 */ 8908 if (!phba->sli4_hba.rpi_hdrs_in_use) 8909 return NULL; 8910 if (phba->sli4_hba.extents_in_use) 8911 return NULL; 8912 8913 /* The limit on the logical index is just the max_rpi count. */ 8914 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8915 8916 spin_lock_irq(&phba->hbalock); 8917 /* 8918 * Establish the starting RPI in this header block. The starting 8919 * rpi is normalized to a zero base because the physical rpi is 8920 * port based. 8921 */ 8922 curr_rpi_range = phba->sli4_hba.next_rpi; 8923 spin_unlock_irq(&phba->hbalock); 8924 8925 /* Reached full RPI range */ 8926 if (curr_rpi_range == rpi_limit) 8927 return NULL; 8928 8929 /* 8930 * First allocate the protocol header region for the port. The 8931 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8932 */ 8933 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8934 if (!dmabuf) 8935 return NULL; 8936 8937 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8938 LPFC_HDR_TEMPLATE_SIZE, 8939 &dmabuf->phys, GFP_KERNEL); 8940 if (!dmabuf->virt) { 8941 rpi_hdr = NULL; 8942 goto err_free_dmabuf; 8943 } 8944 8945 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8946 rpi_hdr = NULL; 8947 goto err_free_coherent; 8948 } 8949 8950 /* Save the rpi header data for cleanup later. */ 8951 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8952 if (!rpi_hdr) 8953 goto err_free_coherent; 8954 8955 rpi_hdr->dmabuf = dmabuf; 8956 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8957 rpi_hdr->page_count = 1; 8958 spin_lock_irq(&phba->hbalock); 8959 8960 /* The rpi_hdr stores the logical index only. */ 8961 rpi_hdr->start_rpi = curr_rpi_range; 8962 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8963 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8964 8965 spin_unlock_irq(&phba->hbalock); 8966 return rpi_hdr; 8967 8968 err_free_coherent: 8969 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8970 dmabuf->virt, dmabuf->phys); 8971 err_free_dmabuf: 8972 kfree(dmabuf); 8973 return NULL; 8974 } 8975 8976 /** 8977 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8978 * @phba: pointer to lpfc hba data structure. 8979 * 8980 * This routine is invoked to remove all memory resources allocated 8981 * to support rpis for SLI4 ports not supporting extents. This routine 8982 * presumes the caller has released all rpis consumed by fabric or port 8983 * logins and is prepared to have the header pages removed. 8984 **/ 8985 void 8986 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8987 { 8988 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8989 8990 if (!phba->sli4_hba.rpi_hdrs_in_use) 8991 goto exit; 8992 8993 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8994 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8995 list_del(&rpi_hdr->list); 8996 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 8997 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 8998 kfree(rpi_hdr->dmabuf); 8999 kfree(rpi_hdr); 9000 } 9001 exit: 9002 /* There are no rpis available to the port now. */ 9003 phba->sli4_hba.next_rpi = 0; 9004 } 9005 9006 /** 9007 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 9008 * @pdev: pointer to pci device data structure. 9009 * 9010 * This routine is invoked to allocate the driver hba data structure for an 9011 * HBA device. If the allocation is successful, the phba reference to the 9012 * PCI device data structure is set. 9013 * 9014 * Return codes 9015 * pointer to @phba - successful 9016 * NULL - error 9017 **/ 9018 static struct lpfc_hba * 9019 lpfc_hba_alloc(struct pci_dev *pdev) 9020 { 9021 struct lpfc_hba *phba; 9022 9023 /* Allocate memory for HBA structure */ 9024 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 9025 if (!phba) { 9026 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 9027 return NULL; 9028 } 9029 9030 /* Set reference to PCI device in HBA structure */ 9031 phba->pcidev = pdev; 9032 9033 /* Assign an unused board number */ 9034 phba->brd_no = lpfc_get_instance(); 9035 if (phba->brd_no < 0) { 9036 kfree(phba); 9037 return NULL; 9038 } 9039 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 9040 9041 spin_lock_init(&phba->ct_ev_lock); 9042 INIT_LIST_HEAD(&phba->ct_ev_waiters); 9043 9044 return phba; 9045 } 9046 9047 /** 9048 * lpfc_hba_free - Free driver hba data structure with a device. 9049 * @phba: pointer to lpfc hba data structure. 9050 * 9051 * This routine is invoked to free the driver hba data structure with an 9052 * HBA device. 9053 **/ 9054 static void 9055 lpfc_hba_free(struct lpfc_hba *phba) 9056 { 9057 if (phba->sli_rev == LPFC_SLI_REV4) 9058 kfree(phba->sli4_hba.hdwq); 9059 9060 /* Release the driver assigned board number */ 9061 idr_remove(&lpfc_hba_index, phba->brd_no); 9062 9063 /* Free memory allocated with sli3 rings */ 9064 kfree(phba->sli.sli3_ring); 9065 phba->sli.sli3_ring = NULL; 9066 9067 kfree(phba); 9068 return; 9069 } 9070 9071 /** 9072 * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes 9073 * @vport: pointer to lpfc vport data structure. 9074 * 9075 * This routine is will setup initial FDMI attribute masks for 9076 * FDMI2 or SmartSAN depending on module parameters. The driver will attempt 9077 * to get these attributes first before falling back, the attribute 9078 * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 9079 **/ 9080 void 9081 lpfc_setup_fdmi_mask(struct lpfc_vport *vport) 9082 { 9083 struct lpfc_hba *phba = vport->phba; 9084 9085 set_bit(FC_ALLOW_FDMI, &vport->load_flag); 9086 if (phba->cfg_enable_SmartSAN || 9087 phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { 9088 /* Setup appropriate attribute masks */ 9089 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9090 if (phba->cfg_enable_SmartSAN) 9091 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9092 else 9093 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9094 } 9095 9096 lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY, 9097 "6077 Setup FDMI mask: hba x%x port x%x\n", 9098 vport->fdmi_hba_mask, vport->fdmi_port_mask); 9099 } 9100 9101 /** 9102 * lpfc_create_shost - Create hba physical port with associated scsi host. 9103 * @phba: pointer to lpfc hba data structure. 9104 * 9105 * This routine is invoked to create HBA physical port and associate a SCSI 9106 * host with it. 9107 * 9108 * Return codes 9109 * 0 - successful 9110 * other values - error 9111 **/ 9112 static int 9113 lpfc_create_shost(struct lpfc_hba *phba) 9114 { 9115 struct lpfc_vport *vport; 9116 struct Scsi_Host *shost; 9117 9118 /* Initialize HBA FC structure */ 9119 phba->fc_edtov = FF_DEF_EDTOV; 9120 phba->fc_ratov = FF_DEF_RATOV; 9121 phba->fc_altov = FF_DEF_ALTOV; 9122 phba->fc_arbtov = FF_DEF_ARBTOV; 9123 9124 atomic_set(&phba->sdev_cnt, 0); 9125 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9126 if (!vport) 9127 return -ENODEV; 9128 9129 shost = lpfc_shost_from_vport(vport); 9130 phba->pport = vport; 9131 9132 if (phba->nvmet_support) { 9133 /* Only 1 vport (pport) will support NVME target */ 9134 phba->targetport = NULL; 9135 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9136 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9137 "6076 NVME Target Found\n"); 9138 } 9139 9140 lpfc_debugfs_initialize(vport); 9141 /* Put reference to SCSI host to driver's device private data */ 9142 pci_set_drvdata(phba->pcidev, shost); 9143 9144 lpfc_setup_fdmi_mask(vport); 9145 9146 /* 9147 * At this point we are fully registered with PSA. In addition, 9148 * any initial discovery should be completed. 9149 */ 9150 return 0; 9151 } 9152 9153 /** 9154 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9155 * @phba: pointer to lpfc hba data structure. 9156 * 9157 * This routine is invoked to destroy HBA physical port and the associated 9158 * SCSI host. 9159 **/ 9160 static void 9161 lpfc_destroy_shost(struct lpfc_hba *phba) 9162 { 9163 struct lpfc_vport *vport = phba->pport; 9164 9165 /* Destroy physical port that associated with the SCSI host */ 9166 destroy_port(vport); 9167 9168 return; 9169 } 9170 9171 /** 9172 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9173 * @phba: pointer to lpfc hba data structure. 9174 * @shost: the shost to be used to detect Block guard settings. 9175 * 9176 * This routine sets up the local Block guard protocol settings for @shost. 9177 * This routine also allocates memory for debugging bg buffers. 9178 **/ 9179 static void 9180 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9181 { 9182 uint32_t old_mask; 9183 uint32_t old_guard; 9184 9185 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9186 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9187 "1478 Registering BlockGuard with the " 9188 "SCSI layer\n"); 9189 9190 old_mask = phba->cfg_prot_mask; 9191 old_guard = phba->cfg_prot_guard; 9192 9193 /* Only allow supported values */ 9194 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9195 SHOST_DIX_TYPE0_PROTECTION | 9196 SHOST_DIX_TYPE1_PROTECTION); 9197 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9198 SHOST_DIX_GUARD_CRC); 9199 9200 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9201 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9202 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9203 9204 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9205 if ((old_mask != phba->cfg_prot_mask) || 9206 (old_guard != phba->cfg_prot_guard)) 9207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9208 "1475 Registering BlockGuard with the " 9209 "SCSI layer: mask %d guard %d\n", 9210 phba->cfg_prot_mask, 9211 phba->cfg_prot_guard); 9212 9213 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9214 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9215 } else 9216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9217 "1479 Not Registering BlockGuard with the SCSI " 9218 "layer, Bad protection parameters: %d %d\n", 9219 old_mask, old_guard); 9220 } 9221 } 9222 9223 /** 9224 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9225 * @phba: pointer to lpfc hba data structure. 9226 * 9227 * This routine is invoked to perform all the necessary post initialization 9228 * setup for the device. 9229 **/ 9230 static void 9231 lpfc_post_init_setup(struct lpfc_hba *phba) 9232 { 9233 struct Scsi_Host *shost; 9234 struct lpfc_adapter_event_header adapter_event; 9235 9236 /* Get the default values for Model Name and Description */ 9237 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9238 9239 /* 9240 * hba setup may have changed the hba_queue_depth so we need to 9241 * adjust the value of can_queue. 9242 */ 9243 shost = pci_get_drvdata(phba->pcidev); 9244 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9245 9246 lpfc_host_attrib_init(shost); 9247 9248 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9249 spin_lock_irq(shost->host_lock); 9250 lpfc_poll_start_timer(phba); 9251 spin_unlock_irq(shost->host_lock); 9252 } 9253 9254 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9255 "0428 Perform SCSI scan\n"); 9256 /* Send board arrival event to upper layer */ 9257 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9258 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9259 fc_host_post_vendor_event(shost, fc_get_event_number(), 9260 sizeof(adapter_event), 9261 (char *) &adapter_event, 9262 LPFC_NL_VENDOR_ID); 9263 return; 9264 } 9265 9266 /** 9267 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9268 * @phba: pointer to lpfc hba data structure. 9269 * 9270 * This routine is invoked to set up the PCI device memory space for device 9271 * with SLI-3 interface spec. 9272 * 9273 * Return codes 9274 * 0 - successful 9275 * other values - error 9276 **/ 9277 static int 9278 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9279 { 9280 struct pci_dev *pdev = phba->pcidev; 9281 unsigned long bar0map_len, bar2map_len; 9282 int i, hbq_count; 9283 void *ptr; 9284 int error; 9285 9286 if (!pdev) 9287 return -ENODEV; 9288 9289 /* Set the device DMA mask size */ 9290 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9291 if (error) 9292 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9293 if (error) 9294 return error; 9295 error = -ENODEV; 9296 9297 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9298 * required by each mapping. 9299 */ 9300 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9301 bar0map_len = pci_resource_len(pdev, 0); 9302 9303 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9304 bar2map_len = pci_resource_len(pdev, 2); 9305 9306 /* Map HBA SLIM to a kernel virtual address. */ 9307 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9308 if (!phba->slim_memmap_p) { 9309 dev_printk(KERN_ERR, &pdev->dev, 9310 "ioremap failed for SLIM memory.\n"); 9311 goto out; 9312 } 9313 9314 /* Map HBA Control Registers to a kernel virtual address. */ 9315 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9316 if (!phba->ctrl_regs_memmap_p) { 9317 dev_printk(KERN_ERR, &pdev->dev, 9318 "ioremap failed for HBA control registers.\n"); 9319 goto out_iounmap_slim; 9320 } 9321 9322 /* Allocate memory for SLI-2 structures */ 9323 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9324 &phba->slim2p.phys, GFP_KERNEL); 9325 if (!phba->slim2p.virt) 9326 goto out_iounmap; 9327 9328 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9329 phba->mbox_ext = (phba->slim2p.virt + 9330 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9331 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9332 phba->IOCBs = (phba->slim2p.virt + 9333 offsetof(struct lpfc_sli2_slim, IOCBs)); 9334 9335 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9336 lpfc_sli_hbq_size(), 9337 &phba->hbqslimp.phys, 9338 GFP_KERNEL); 9339 if (!phba->hbqslimp.virt) 9340 goto out_free_slim; 9341 9342 hbq_count = lpfc_sli_hbq_count(); 9343 ptr = phba->hbqslimp.virt; 9344 for (i = 0; i < hbq_count; ++i) { 9345 phba->hbqs[i].hbq_virt = ptr; 9346 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9347 ptr += (lpfc_hbq_defs[i]->entry_count * 9348 sizeof(struct lpfc_hbq_entry)); 9349 } 9350 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9351 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9352 9353 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9354 9355 phba->MBslimaddr = phba->slim_memmap_p; 9356 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9357 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9358 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9359 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9360 9361 return 0; 9362 9363 out_free_slim: 9364 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9365 phba->slim2p.virt, phba->slim2p.phys); 9366 out_iounmap: 9367 iounmap(phba->ctrl_regs_memmap_p); 9368 out_iounmap_slim: 9369 iounmap(phba->slim_memmap_p); 9370 out: 9371 return error; 9372 } 9373 9374 /** 9375 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9376 * @phba: pointer to lpfc hba data structure. 9377 * 9378 * This routine is invoked to unset the PCI device memory space for device 9379 * with SLI-3 interface spec. 9380 **/ 9381 static void 9382 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9383 { 9384 struct pci_dev *pdev; 9385 9386 /* Obtain PCI device reference */ 9387 if (!phba->pcidev) 9388 return; 9389 else 9390 pdev = phba->pcidev; 9391 9392 /* Free coherent DMA memory allocated */ 9393 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9394 phba->hbqslimp.virt, phba->hbqslimp.phys); 9395 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9396 phba->slim2p.virt, phba->slim2p.phys); 9397 9398 /* I/O memory unmap */ 9399 iounmap(phba->ctrl_regs_memmap_p); 9400 iounmap(phba->slim_memmap_p); 9401 9402 return; 9403 } 9404 9405 /** 9406 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9407 * @phba: pointer to lpfc hba data structure. 9408 * 9409 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9410 * done and check status. 9411 * 9412 * Return 0 if successful, otherwise -ENODEV. 9413 **/ 9414 int 9415 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9416 { 9417 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9418 struct lpfc_register reg_data; 9419 int i, port_error = 0; 9420 uint32_t if_type; 9421 9422 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9423 memset(®_data, 0, sizeof(reg_data)); 9424 if (!phba->sli4_hba.PSMPHRregaddr) 9425 return -ENODEV; 9426 9427 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9428 for (i = 0; i < 3000; i++) { 9429 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9430 &portsmphr_reg.word0) || 9431 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9432 /* Port has a fatal POST error, break out */ 9433 port_error = -ENODEV; 9434 break; 9435 } 9436 if (LPFC_POST_STAGE_PORT_READY == 9437 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9438 break; 9439 msleep(10); 9440 } 9441 9442 /* 9443 * If there was a port error during POST, then don't proceed with 9444 * other register reads as the data may not be valid. Just exit. 9445 */ 9446 if (port_error) { 9447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9448 "1408 Port Failed POST - portsmphr=0x%x, " 9449 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9450 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9451 portsmphr_reg.word0, 9452 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9453 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9454 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9455 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9456 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9457 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9458 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9459 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9460 } else { 9461 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9462 "2534 Device Info: SLIFamily=0x%x, " 9463 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9464 "SLIHint_2=0x%x, FT=0x%x\n", 9465 bf_get(lpfc_sli_intf_sli_family, 9466 &phba->sli4_hba.sli_intf), 9467 bf_get(lpfc_sli_intf_slirev, 9468 &phba->sli4_hba.sli_intf), 9469 bf_get(lpfc_sli_intf_if_type, 9470 &phba->sli4_hba.sli_intf), 9471 bf_get(lpfc_sli_intf_sli_hint1, 9472 &phba->sli4_hba.sli_intf), 9473 bf_get(lpfc_sli_intf_sli_hint2, 9474 &phba->sli4_hba.sli_intf), 9475 bf_get(lpfc_sli_intf_func_type, 9476 &phba->sli4_hba.sli_intf)); 9477 /* 9478 * Check for other Port errors during the initialization 9479 * process. Fail the load if the port did not come up 9480 * correctly. 9481 */ 9482 if_type = bf_get(lpfc_sli_intf_if_type, 9483 &phba->sli4_hba.sli_intf); 9484 switch (if_type) { 9485 case LPFC_SLI_INTF_IF_TYPE_0: 9486 phba->sli4_hba.ue_mask_lo = 9487 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9488 phba->sli4_hba.ue_mask_hi = 9489 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9490 uerrlo_reg.word0 = 9491 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9492 uerrhi_reg.word0 = 9493 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9494 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9495 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9496 lpfc_printf_log(phba, KERN_ERR, 9497 LOG_TRACE_EVENT, 9498 "1422 Unrecoverable Error " 9499 "Detected during POST " 9500 "uerr_lo_reg=0x%x, " 9501 "uerr_hi_reg=0x%x, " 9502 "ue_mask_lo_reg=0x%x, " 9503 "ue_mask_hi_reg=0x%x\n", 9504 uerrlo_reg.word0, 9505 uerrhi_reg.word0, 9506 phba->sli4_hba.ue_mask_lo, 9507 phba->sli4_hba.ue_mask_hi); 9508 port_error = -ENODEV; 9509 } 9510 break; 9511 case LPFC_SLI_INTF_IF_TYPE_2: 9512 case LPFC_SLI_INTF_IF_TYPE_6: 9513 /* Final checks. The port status should be clean. */ 9514 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9515 ®_data.word0) || 9516 lpfc_sli4_unrecoverable_port(®_data)) { 9517 phba->work_status[0] = 9518 readl(phba->sli4_hba.u.if_type2. 9519 ERR1regaddr); 9520 phba->work_status[1] = 9521 readl(phba->sli4_hba.u.if_type2. 9522 ERR2regaddr); 9523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9524 "2888 Unrecoverable port error " 9525 "following POST: port status reg " 9526 "0x%x, port_smphr reg 0x%x, " 9527 "error 1=0x%x, error 2=0x%x\n", 9528 reg_data.word0, 9529 portsmphr_reg.word0, 9530 phba->work_status[0], 9531 phba->work_status[1]); 9532 port_error = -ENODEV; 9533 break; 9534 } 9535 9536 if (lpfc_pldv_detect && 9537 bf_get(lpfc_sli_intf_sli_family, 9538 &phba->sli4_hba.sli_intf) == 9539 LPFC_SLI_INTF_FAMILY_G6) 9540 pci_write_config_byte(phba->pcidev, 9541 LPFC_SLI_INTF, CFG_PLD); 9542 break; 9543 case LPFC_SLI_INTF_IF_TYPE_1: 9544 default: 9545 break; 9546 } 9547 } 9548 return port_error; 9549 } 9550 9551 /** 9552 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9553 * @phba: pointer to lpfc hba data structure. 9554 * @if_type: The SLI4 interface type getting configured. 9555 * 9556 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9557 * memory map. 9558 **/ 9559 static void 9560 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9561 { 9562 switch (if_type) { 9563 case LPFC_SLI_INTF_IF_TYPE_0: 9564 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9565 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9566 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9567 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9568 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9569 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9570 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9571 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9572 phba->sli4_hba.SLIINTFregaddr = 9573 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9574 break; 9575 case LPFC_SLI_INTF_IF_TYPE_2: 9576 phba->sli4_hba.u.if_type2.EQDregaddr = 9577 phba->sli4_hba.conf_regs_memmap_p + 9578 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9579 phba->sli4_hba.u.if_type2.ERR1regaddr = 9580 phba->sli4_hba.conf_regs_memmap_p + 9581 LPFC_CTL_PORT_ER1_OFFSET; 9582 phba->sli4_hba.u.if_type2.ERR2regaddr = 9583 phba->sli4_hba.conf_regs_memmap_p + 9584 LPFC_CTL_PORT_ER2_OFFSET; 9585 phba->sli4_hba.u.if_type2.CTRLregaddr = 9586 phba->sli4_hba.conf_regs_memmap_p + 9587 LPFC_CTL_PORT_CTL_OFFSET; 9588 phba->sli4_hba.u.if_type2.STATUSregaddr = 9589 phba->sli4_hba.conf_regs_memmap_p + 9590 LPFC_CTL_PORT_STA_OFFSET; 9591 phba->sli4_hba.SLIINTFregaddr = 9592 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9593 phba->sli4_hba.PSMPHRregaddr = 9594 phba->sli4_hba.conf_regs_memmap_p + 9595 LPFC_CTL_PORT_SEM_OFFSET; 9596 phba->sli4_hba.RQDBregaddr = 9597 phba->sli4_hba.conf_regs_memmap_p + 9598 LPFC_ULP0_RQ_DOORBELL; 9599 phba->sli4_hba.WQDBregaddr = 9600 phba->sli4_hba.conf_regs_memmap_p + 9601 LPFC_ULP0_WQ_DOORBELL; 9602 phba->sli4_hba.CQDBregaddr = 9603 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9604 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9605 phba->sli4_hba.MQDBregaddr = 9606 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9607 phba->sli4_hba.BMBXregaddr = 9608 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9609 break; 9610 case LPFC_SLI_INTF_IF_TYPE_6: 9611 phba->sli4_hba.u.if_type2.EQDregaddr = 9612 phba->sli4_hba.conf_regs_memmap_p + 9613 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9614 phba->sli4_hba.u.if_type2.ERR1regaddr = 9615 phba->sli4_hba.conf_regs_memmap_p + 9616 LPFC_CTL_PORT_ER1_OFFSET; 9617 phba->sli4_hba.u.if_type2.ERR2regaddr = 9618 phba->sli4_hba.conf_regs_memmap_p + 9619 LPFC_CTL_PORT_ER2_OFFSET; 9620 phba->sli4_hba.u.if_type2.CTRLregaddr = 9621 phba->sli4_hba.conf_regs_memmap_p + 9622 LPFC_CTL_PORT_CTL_OFFSET; 9623 phba->sli4_hba.u.if_type2.STATUSregaddr = 9624 phba->sli4_hba.conf_regs_memmap_p + 9625 LPFC_CTL_PORT_STA_OFFSET; 9626 phba->sli4_hba.PSMPHRregaddr = 9627 phba->sli4_hba.conf_regs_memmap_p + 9628 LPFC_CTL_PORT_SEM_OFFSET; 9629 phba->sli4_hba.BMBXregaddr = 9630 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9631 break; 9632 case LPFC_SLI_INTF_IF_TYPE_1: 9633 default: 9634 dev_printk(KERN_ERR, &phba->pcidev->dev, 9635 "FATAL - unsupported SLI4 interface type - %d\n", 9636 if_type); 9637 break; 9638 } 9639 } 9640 9641 /** 9642 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9643 * @phba: pointer to lpfc hba data structure. 9644 * @if_type: sli if type to operate on. 9645 * 9646 * This routine is invoked to set up SLI4 BAR1 register memory map. 9647 **/ 9648 static void 9649 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9650 { 9651 switch (if_type) { 9652 case LPFC_SLI_INTF_IF_TYPE_0: 9653 phba->sli4_hba.PSMPHRregaddr = 9654 phba->sli4_hba.ctrl_regs_memmap_p + 9655 LPFC_SLIPORT_IF0_SMPHR; 9656 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9657 LPFC_HST_ISR0; 9658 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9659 LPFC_HST_IMR0; 9660 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9661 LPFC_HST_ISCR0; 9662 break; 9663 case LPFC_SLI_INTF_IF_TYPE_6: 9664 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9665 LPFC_IF6_RQ_DOORBELL; 9666 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9667 LPFC_IF6_WQ_DOORBELL; 9668 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9669 LPFC_IF6_CQ_DOORBELL; 9670 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9671 LPFC_IF6_EQ_DOORBELL; 9672 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9673 LPFC_IF6_MQ_DOORBELL; 9674 break; 9675 case LPFC_SLI_INTF_IF_TYPE_2: 9676 case LPFC_SLI_INTF_IF_TYPE_1: 9677 default: 9678 dev_err(&phba->pcidev->dev, 9679 "FATAL - unsupported SLI4 interface type - %d\n", 9680 if_type); 9681 break; 9682 } 9683 } 9684 9685 /** 9686 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9687 * @phba: pointer to lpfc hba data structure. 9688 * @vf: virtual function number 9689 * 9690 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9691 * based on the given viftual function number, @vf. 9692 * 9693 * Return 0 if successful, otherwise -ENODEV. 9694 **/ 9695 static int 9696 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9697 { 9698 if (vf > LPFC_VIR_FUNC_MAX) 9699 return -ENODEV; 9700 9701 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9702 vf * LPFC_VFR_PAGE_SIZE + 9703 LPFC_ULP0_RQ_DOORBELL); 9704 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9705 vf * LPFC_VFR_PAGE_SIZE + 9706 LPFC_ULP0_WQ_DOORBELL); 9707 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9708 vf * LPFC_VFR_PAGE_SIZE + 9709 LPFC_EQCQ_DOORBELL); 9710 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9711 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9712 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9713 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9714 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9715 return 0; 9716 } 9717 9718 /** 9719 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9720 * @phba: pointer to lpfc hba data structure. 9721 * 9722 * This routine is invoked to create the bootstrap mailbox 9723 * region consistent with the SLI-4 interface spec. This 9724 * routine allocates all memory necessary to communicate 9725 * mailbox commands to the port and sets up all alignment 9726 * needs. No locks are expected to be held when calling 9727 * this routine. 9728 * 9729 * Return codes 9730 * 0 - successful 9731 * -ENOMEM - could not allocated memory. 9732 **/ 9733 static int 9734 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9735 { 9736 uint32_t bmbx_size; 9737 struct lpfc_dmabuf *dmabuf; 9738 struct dma_address *dma_address; 9739 uint32_t pa_addr; 9740 uint64_t phys_addr; 9741 9742 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9743 if (!dmabuf) 9744 return -ENOMEM; 9745 9746 /* 9747 * The bootstrap mailbox region is comprised of 2 parts 9748 * plus an alignment restriction of 16 bytes. 9749 */ 9750 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9751 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9752 &dmabuf->phys, GFP_KERNEL); 9753 if (!dmabuf->virt) { 9754 kfree(dmabuf); 9755 return -ENOMEM; 9756 } 9757 9758 /* 9759 * Initialize the bootstrap mailbox pointers now so that the register 9760 * operations are simple later. The mailbox dma address is required 9761 * to be 16-byte aligned. Also align the virtual memory as each 9762 * maibox is copied into the bmbx mailbox region before issuing the 9763 * command to the port. 9764 */ 9765 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9766 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9767 9768 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9769 LPFC_ALIGN_16_BYTE); 9770 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9771 LPFC_ALIGN_16_BYTE); 9772 9773 /* 9774 * Set the high and low physical addresses now. The SLI4 alignment 9775 * requirement is 16 bytes and the mailbox is posted to the port 9776 * as two 30-bit addresses. The other data is a bit marking whether 9777 * the 30-bit address is the high or low address. 9778 * Upcast bmbx aphys to 64bits so shift instruction compiles 9779 * clean on 32 bit machines. 9780 */ 9781 dma_address = &phba->sli4_hba.bmbx.dma_address; 9782 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9783 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9784 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9785 LPFC_BMBX_BIT1_ADDR_HI); 9786 9787 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9788 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9789 LPFC_BMBX_BIT1_ADDR_LO); 9790 return 0; 9791 } 9792 9793 /** 9794 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9795 * @phba: pointer to lpfc hba data structure. 9796 * 9797 * This routine is invoked to teardown the bootstrap mailbox 9798 * region and release all host resources. This routine requires 9799 * the caller to ensure all mailbox commands recovered, no 9800 * additional mailbox comands are sent, and interrupts are disabled 9801 * before calling this routine. 9802 * 9803 **/ 9804 static void 9805 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9806 { 9807 dma_free_coherent(&phba->pcidev->dev, 9808 phba->sli4_hba.bmbx.bmbx_size, 9809 phba->sli4_hba.bmbx.dmabuf->virt, 9810 phba->sli4_hba.bmbx.dmabuf->phys); 9811 9812 kfree(phba->sli4_hba.bmbx.dmabuf); 9813 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9814 } 9815 9816 static const char * const lpfc_topo_to_str[] = { 9817 "Loop then P2P", 9818 "Loopback", 9819 "P2P Only", 9820 "Unsupported", 9821 "Loop Only", 9822 "Unsupported", 9823 "P2P then Loop", 9824 }; 9825 9826 #define LINK_FLAGS_DEF 0x0 9827 #define LINK_FLAGS_P2P 0x1 9828 #define LINK_FLAGS_LOOP 0x2 9829 /** 9830 * lpfc_map_topology - Map the topology read from READ_CONFIG 9831 * @phba: pointer to lpfc hba data structure. 9832 * @rd_config: pointer to read config data 9833 * 9834 * This routine is invoked to map the topology values as read 9835 * from the read config mailbox command. If the persistent 9836 * topology feature is supported, the firmware will provide the 9837 * saved topology information to be used in INIT_LINK 9838 **/ 9839 static void 9840 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9841 { 9842 u8 ptv, tf, pt; 9843 9844 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9845 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9846 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9847 9848 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9849 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9850 ptv, tf, pt); 9851 if (!ptv) { 9852 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9853 "2019 FW does not support persistent topology " 9854 "Using driver parameter defined value [%s]", 9855 lpfc_topo_to_str[phba->cfg_topology]); 9856 return; 9857 } 9858 /* FW supports persistent topology - override module parameter value */ 9859 set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9860 9861 /* if ASIC_GEN_NUM >= 0xC) */ 9862 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9863 LPFC_SLI_INTF_IF_TYPE_6) || 9864 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9865 LPFC_SLI_INTF_FAMILY_G6)) { 9866 if (!tf) 9867 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9868 ? FLAGS_TOPOLOGY_MODE_LOOP 9869 : FLAGS_TOPOLOGY_MODE_PT_PT); 9870 else 9871 clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9872 } else { /* G5 */ 9873 if (tf) 9874 /* If topology failover set - pt is '0' or '1' */ 9875 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9876 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9877 else 9878 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9879 ? FLAGS_TOPOLOGY_MODE_PT_PT 9880 : FLAGS_TOPOLOGY_MODE_LOOP); 9881 } 9882 if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag)) 9883 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9884 "2020 Using persistent topology value [%s]", 9885 lpfc_topo_to_str[phba->cfg_topology]); 9886 else 9887 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9888 "2021 Invalid topology values from FW " 9889 "Using driver parameter defined value [%s]", 9890 lpfc_topo_to_str[phba->cfg_topology]); 9891 } 9892 9893 /** 9894 * lpfc_sli4_read_config - Get the config parameters. 9895 * @phba: pointer to lpfc hba data structure. 9896 * 9897 * This routine is invoked to read the configuration parameters from the HBA. 9898 * The configuration parameters are used to set the base and maximum values 9899 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9900 * allocation for the port. 9901 * 9902 * Return codes 9903 * 0 - successful 9904 * -ENOMEM - No available memory 9905 * -EIO - The mailbox failed to complete successfully. 9906 **/ 9907 int 9908 lpfc_sli4_read_config(struct lpfc_hba *phba) 9909 { 9910 LPFC_MBOXQ_t *pmb; 9911 struct lpfc_mbx_read_config *rd_config; 9912 union lpfc_sli4_cfg_shdr *shdr; 9913 uint32_t shdr_status, shdr_add_status; 9914 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9915 struct lpfc_rsrc_desc_fcfcoe *desc; 9916 char *pdesc_0; 9917 uint16_t forced_link_speed; 9918 uint32_t if_type, qmin, fawwpn; 9919 int length, i, rc = 0, rc2; 9920 9921 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9922 if (!pmb) { 9923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9924 "2011 Unable to allocate memory for issuing " 9925 "SLI_CONFIG_SPECIAL mailbox command\n"); 9926 return -ENOMEM; 9927 } 9928 9929 lpfc_read_config(phba, pmb); 9930 9931 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9932 if (rc != MBX_SUCCESS) { 9933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9934 "2012 Mailbox failed , mbxCmd x%x " 9935 "READ_CONFIG, mbxStatus x%x\n", 9936 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9937 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9938 rc = -EIO; 9939 } else { 9940 rd_config = &pmb->u.mqe.un.rd_config; 9941 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9942 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9943 phba->sli4_hba.lnk_info.lnk_tp = 9944 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9945 phba->sli4_hba.lnk_info.lnk_no = 9946 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9947 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9948 "3081 lnk_type:%d, lnk_numb:%d\n", 9949 phba->sli4_hba.lnk_info.lnk_tp, 9950 phba->sli4_hba.lnk_info.lnk_no); 9951 } else 9952 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9953 "3082 Mailbox (x%x) returned ldv:x0\n", 9954 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9955 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9956 phba->bbcredit_support = 1; 9957 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9958 } 9959 9960 fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); 9961 9962 if (fawwpn) { 9963 lpfc_printf_log(phba, KERN_INFO, 9964 LOG_INIT | LOG_DISCOVERY, 9965 "2702 READ_CONFIG: FA-PWWN is " 9966 "configured on\n"); 9967 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; 9968 } else { 9969 /* Clear FW configured flag, preserve driver flag */ 9970 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG; 9971 } 9972 9973 phba->sli4_hba.conf_trunk = 9974 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9975 phba->sli4_hba.extents_in_use = 9976 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9977 9978 phba->sli4_hba.max_cfg_param.max_xri = 9979 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9980 /* Reduce resource usage in kdump environment */ 9981 if (is_kdump_kernel() && 9982 phba->sli4_hba.max_cfg_param.max_xri > 512) 9983 phba->sli4_hba.max_cfg_param.max_xri = 512; 9984 phba->sli4_hba.max_cfg_param.xri_base = 9985 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9986 phba->sli4_hba.max_cfg_param.max_vpi = 9987 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9988 /* Limit the max we support */ 9989 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9990 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9991 phba->sli4_hba.max_cfg_param.vpi_base = 9992 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9993 phba->sli4_hba.max_cfg_param.max_rpi = 9994 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 9995 phba->sli4_hba.max_cfg_param.rpi_base = 9996 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 9997 phba->sli4_hba.max_cfg_param.max_vfi = 9998 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 9999 phba->sli4_hba.max_cfg_param.vfi_base = 10000 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 10001 phba->sli4_hba.max_cfg_param.max_fcfi = 10002 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 10003 phba->sli4_hba.max_cfg_param.max_eq = 10004 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 10005 phba->sli4_hba.max_cfg_param.max_rq = 10006 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 10007 phba->sli4_hba.max_cfg_param.max_wq = 10008 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 10009 phba->sli4_hba.max_cfg_param.max_cq = 10010 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 10011 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 10012 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 10013 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 10014 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 10015 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 10016 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 10017 phba->max_vports = phba->max_vpi; 10018 10019 /* Next decide on FPIN or Signal E2E CGN support 10020 * For congestion alarms and warnings valid combination are: 10021 * 1. FPIN alarms / FPIN warnings 10022 * 2. Signal alarms / Signal warnings 10023 * 3. FPIN alarms / Signal warnings 10024 * 4. Signal alarms / FPIN warnings 10025 * 10026 * Initialize the adapter frequency to 100 mSecs 10027 */ 10028 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10029 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 10030 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 10031 10032 if (lpfc_use_cgn_signal) { 10033 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 10034 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 10035 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 10036 } 10037 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 10038 /* MUST support both alarm and warning 10039 * because EDC does not support alarm alone. 10040 */ 10041 if (phba->cgn_reg_signal != 10042 EDC_CG_SIG_WARN_ONLY) { 10043 /* Must support both or none */ 10044 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10045 phba->cgn_reg_signal = 10046 EDC_CG_SIG_NOTSUPPORTED; 10047 } else { 10048 phba->cgn_reg_signal = 10049 EDC_CG_SIG_WARN_ALARM; 10050 phba->cgn_reg_fpin = 10051 LPFC_CGN_FPIN_NONE; 10052 } 10053 } 10054 } 10055 10056 /* Set the congestion initial signal and fpin values. */ 10057 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 10058 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 10059 10060 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 10061 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 10062 phba->cgn_reg_signal, phba->cgn_reg_fpin); 10063 10064 lpfc_map_topology(phba, rd_config); 10065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10066 "2003 cfg params Extents? %d " 10067 "XRI(B:%d M:%d), " 10068 "VPI(B:%d M:%d) " 10069 "VFI(B:%d M:%d) " 10070 "RPI(B:%d M:%d) " 10071 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 10072 phba->sli4_hba.extents_in_use, 10073 phba->sli4_hba.max_cfg_param.xri_base, 10074 phba->sli4_hba.max_cfg_param.max_xri, 10075 phba->sli4_hba.max_cfg_param.vpi_base, 10076 phba->sli4_hba.max_cfg_param.max_vpi, 10077 phba->sli4_hba.max_cfg_param.vfi_base, 10078 phba->sli4_hba.max_cfg_param.max_vfi, 10079 phba->sli4_hba.max_cfg_param.rpi_base, 10080 phba->sli4_hba.max_cfg_param.max_rpi, 10081 phba->sli4_hba.max_cfg_param.max_fcfi, 10082 phba->sli4_hba.max_cfg_param.max_eq, 10083 phba->sli4_hba.max_cfg_param.max_cq, 10084 phba->sli4_hba.max_cfg_param.max_wq, 10085 phba->sli4_hba.max_cfg_param.max_rq, 10086 phba->lmt); 10087 10088 /* 10089 * Calculate queue resources based on how 10090 * many WQ/CQ/EQs are available. 10091 */ 10092 qmin = phba->sli4_hba.max_cfg_param.max_wq; 10093 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 10094 qmin = phba->sli4_hba.max_cfg_param.max_cq; 10095 /* 10096 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and 10097 * the remainder can be used for NVME / FCP. 10098 */ 10099 qmin -= 4; 10100 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 10101 qmin = phba->sli4_hba.max_cfg_param.max_eq; 10102 10103 /* Check to see if there is enough for default cfg */ 10104 if ((phba->cfg_irq_chann > qmin) || 10105 (phba->cfg_hdw_queue > qmin)) { 10106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10107 "2005 Reducing Queues - " 10108 "FW resource limitation: " 10109 "WQ %d CQ %d EQ %d: min %d: " 10110 "IRQ %d HDWQ %d\n", 10111 phba->sli4_hba.max_cfg_param.max_wq, 10112 phba->sli4_hba.max_cfg_param.max_cq, 10113 phba->sli4_hba.max_cfg_param.max_eq, 10114 qmin, phba->cfg_irq_chann, 10115 phba->cfg_hdw_queue); 10116 10117 if (phba->cfg_irq_chann > qmin) 10118 phba->cfg_irq_chann = qmin; 10119 if (phba->cfg_hdw_queue > qmin) 10120 phba->cfg_hdw_queue = qmin; 10121 } 10122 } 10123 10124 if (rc) 10125 goto read_cfg_out; 10126 10127 /* Update link speed if forced link speed is supported */ 10128 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10129 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10130 forced_link_speed = 10131 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10132 if (forced_link_speed) { 10133 set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag); 10134 10135 switch (forced_link_speed) { 10136 case LINK_SPEED_1G: 10137 phba->cfg_link_speed = 10138 LPFC_USER_LINK_SPEED_1G; 10139 break; 10140 case LINK_SPEED_2G: 10141 phba->cfg_link_speed = 10142 LPFC_USER_LINK_SPEED_2G; 10143 break; 10144 case LINK_SPEED_4G: 10145 phba->cfg_link_speed = 10146 LPFC_USER_LINK_SPEED_4G; 10147 break; 10148 case LINK_SPEED_8G: 10149 phba->cfg_link_speed = 10150 LPFC_USER_LINK_SPEED_8G; 10151 break; 10152 case LINK_SPEED_10G: 10153 phba->cfg_link_speed = 10154 LPFC_USER_LINK_SPEED_10G; 10155 break; 10156 case LINK_SPEED_16G: 10157 phba->cfg_link_speed = 10158 LPFC_USER_LINK_SPEED_16G; 10159 break; 10160 case LINK_SPEED_32G: 10161 phba->cfg_link_speed = 10162 LPFC_USER_LINK_SPEED_32G; 10163 break; 10164 case LINK_SPEED_64G: 10165 phba->cfg_link_speed = 10166 LPFC_USER_LINK_SPEED_64G; 10167 break; 10168 case 0xffff: 10169 phba->cfg_link_speed = 10170 LPFC_USER_LINK_SPEED_AUTO; 10171 break; 10172 default: 10173 lpfc_printf_log(phba, KERN_ERR, 10174 LOG_TRACE_EVENT, 10175 "0047 Unrecognized link " 10176 "speed : %d\n", 10177 forced_link_speed); 10178 phba->cfg_link_speed = 10179 LPFC_USER_LINK_SPEED_AUTO; 10180 } 10181 } 10182 } 10183 10184 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10185 length = phba->sli4_hba.max_cfg_param.max_xri - 10186 lpfc_sli4_get_els_iocb_cnt(phba); 10187 if (phba->cfg_hba_queue_depth > length) { 10188 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10189 "3361 HBA queue depth changed from %d to %d\n", 10190 phba->cfg_hba_queue_depth, length); 10191 phba->cfg_hba_queue_depth = length; 10192 } 10193 10194 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10195 LPFC_SLI_INTF_IF_TYPE_2) 10196 goto read_cfg_out; 10197 10198 /* get the pf# and vf# for SLI4 if_type 2 port */ 10199 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10200 sizeof(struct lpfc_sli4_cfg_mhdr)); 10201 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10202 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10203 length, LPFC_SLI4_MBX_EMBED); 10204 10205 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10206 shdr = (union lpfc_sli4_cfg_shdr *) 10207 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10210 if (rc2 || shdr_status || shdr_add_status) { 10211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10212 "3026 Mailbox failed , mbxCmd x%x " 10213 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10214 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10215 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10216 goto read_cfg_out; 10217 } 10218 10219 /* search for fc_fcoe resrouce descriptor */ 10220 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10221 10222 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10223 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10224 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10225 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10226 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10227 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10228 goto read_cfg_out; 10229 10230 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10231 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10232 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10233 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10234 phba->sli4_hba.iov.pf_number = 10235 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10236 phba->sli4_hba.iov.vf_number = 10237 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10238 break; 10239 } 10240 } 10241 10242 if (i < LPFC_RSRC_DESC_MAX_NUM) 10243 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10244 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10245 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10246 phba->sli4_hba.iov.vf_number); 10247 else 10248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10249 "3028 GET_FUNCTION_CONFIG: failed to find " 10250 "Resource Descriptor:x%x\n", 10251 LPFC_RSRC_DESC_TYPE_FCFCOE); 10252 10253 read_cfg_out: 10254 mempool_free(pmb, phba->mbox_mem_pool); 10255 return rc; 10256 } 10257 10258 /** 10259 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10260 * @phba: pointer to lpfc hba data structure. 10261 * 10262 * This routine is invoked to setup the port-side endian order when 10263 * the port if_type is 0. This routine has no function for other 10264 * if_types. 10265 * 10266 * Return codes 10267 * 0 - successful 10268 * -ENOMEM - No available memory 10269 * -EIO - The mailbox failed to complete successfully. 10270 **/ 10271 static int 10272 lpfc_setup_endian_order(struct lpfc_hba *phba) 10273 { 10274 LPFC_MBOXQ_t *mboxq; 10275 uint32_t if_type, rc = 0; 10276 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10277 HOST_ENDIAN_HIGH_WORD1}; 10278 10279 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10280 switch (if_type) { 10281 case LPFC_SLI_INTF_IF_TYPE_0: 10282 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10283 GFP_KERNEL); 10284 if (!mboxq) { 10285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10286 "0492 Unable to allocate memory for " 10287 "issuing SLI_CONFIG_SPECIAL mailbox " 10288 "command\n"); 10289 return -ENOMEM; 10290 } 10291 10292 /* 10293 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10294 * two words to contain special data values and no other data. 10295 */ 10296 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10297 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10298 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10299 if (rc != MBX_SUCCESS) { 10300 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10301 "0493 SLI_CONFIG_SPECIAL mailbox " 10302 "failed with status x%x\n", 10303 rc); 10304 rc = -EIO; 10305 } 10306 mempool_free(mboxq, phba->mbox_mem_pool); 10307 break; 10308 case LPFC_SLI_INTF_IF_TYPE_6: 10309 case LPFC_SLI_INTF_IF_TYPE_2: 10310 case LPFC_SLI_INTF_IF_TYPE_1: 10311 default: 10312 break; 10313 } 10314 return rc; 10315 } 10316 10317 /** 10318 * lpfc_sli4_queue_verify - Verify and update EQ counts 10319 * @phba: pointer to lpfc hba data structure. 10320 * 10321 * This routine is invoked to check the user settable queue counts for EQs. 10322 * After this routine is called the counts will be set to valid values that 10323 * adhere to the constraints of the system's interrupt vectors and the port's 10324 * queue resources. 10325 * 10326 * Return codes 10327 * 0 - successful 10328 * -ENOMEM - No available memory 10329 **/ 10330 static int 10331 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10332 { 10333 /* 10334 * Sanity check for configured queue parameters against the run-time 10335 * device parameters 10336 */ 10337 10338 if (phba->nvmet_support) { 10339 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10340 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10341 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10342 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10343 } 10344 10345 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10346 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10347 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10348 phba->cfg_nvmet_mrq); 10349 10350 /* Get EQ depth from module parameter, fake the default for now */ 10351 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10352 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10353 10354 /* Get CQ depth from module parameter, fake the default for now */ 10355 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10356 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10357 return 0; 10358 } 10359 10360 static int 10361 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10362 { 10363 struct lpfc_queue *qdesc; 10364 u32 wqesize; 10365 int cpu; 10366 10367 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10368 /* Create Fast Path IO CQs */ 10369 if (phba->enab_exp_wqcq_pages) 10370 /* Increase the CQ size when WQEs contain an embedded cdb */ 10371 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10372 phba->sli4_hba.cq_esize, 10373 LPFC_CQE_EXP_COUNT, cpu); 10374 10375 else 10376 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10377 phba->sli4_hba.cq_esize, 10378 phba->sli4_hba.cq_ecount, cpu); 10379 if (!qdesc) { 10380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10381 "0499 Failed allocate fast-path IO CQ (%d)\n", 10382 idx); 10383 return 1; 10384 } 10385 qdesc->qe_valid = 1; 10386 qdesc->hdwq = idx; 10387 qdesc->chann = cpu; 10388 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10389 10390 /* Create Fast Path IO WQs */ 10391 if (phba->enab_exp_wqcq_pages) { 10392 /* Increase the WQ size when WQEs contain an embedded cdb */ 10393 wqesize = (phba->fcp_embed_io) ? 10394 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10395 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10396 wqesize, 10397 LPFC_WQE_EXP_COUNT, cpu); 10398 } else 10399 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10400 phba->sli4_hba.wq_esize, 10401 phba->sli4_hba.wq_ecount, cpu); 10402 10403 if (!qdesc) { 10404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10405 "0503 Failed allocate fast-path IO WQ (%d)\n", 10406 idx); 10407 return 1; 10408 } 10409 qdesc->hdwq = idx; 10410 qdesc->chann = cpu; 10411 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10412 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10413 return 0; 10414 } 10415 10416 /** 10417 * lpfc_sli4_queue_create - Create all the SLI4 queues 10418 * @phba: pointer to lpfc hba data structure. 10419 * 10420 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10421 * operation. For each SLI4 queue type, the parameters such as queue entry 10422 * count (queue depth) shall be taken from the module parameter. For now, 10423 * we just use some constant number as place holder. 10424 * 10425 * Return codes 10426 * 0 - successful 10427 * -ENOMEM - No availble memory 10428 * -EIO - The mailbox failed to complete successfully. 10429 **/ 10430 int 10431 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10432 { 10433 struct lpfc_queue *qdesc; 10434 int idx, cpu, eqcpu; 10435 struct lpfc_sli4_hdw_queue *qp; 10436 struct lpfc_vector_map_info *cpup; 10437 struct lpfc_vector_map_info *eqcpup; 10438 struct lpfc_eq_intr_info *eqi; 10439 10440 /* 10441 * Create HBA Record arrays. 10442 * Both NVME and FCP will share that same vectors / EQs 10443 */ 10444 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10445 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10446 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10447 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10448 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10449 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10450 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10451 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10452 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10453 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10454 10455 if (!phba->sli4_hba.hdwq) { 10456 phba->sli4_hba.hdwq = kcalloc( 10457 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10458 GFP_KERNEL); 10459 if (!phba->sli4_hba.hdwq) { 10460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10461 "6427 Failed allocate memory for " 10462 "fast-path Hardware Queue array\n"); 10463 goto out_error; 10464 } 10465 /* Prepare hardware queues to take IO buffers */ 10466 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10467 qp = &phba->sli4_hba.hdwq[idx]; 10468 spin_lock_init(&qp->io_buf_list_get_lock); 10469 spin_lock_init(&qp->io_buf_list_put_lock); 10470 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10471 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10472 qp->get_io_bufs = 0; 10473 qp->put_io_bufs = 0; 10474 qp->total_io_bufs = 0; 10475 spin_lock_init(&qp->abts_io_buf_list_lock); 10476 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10477 qp->abts_scsi_io_bufs = 0; 10478 qp->abts_nvme_io_bufs = 0; 10479 INIT_LIST_HEAD(&qp->sgl_list); 10480 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10481 spin_lock_init(&qp->hdwq_lock); 10482 } 10483 } 10484 10485 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10486 if (phba->nvmet_support) { 10487 phba->sli4_hba.nvmet_cqset = kcalloc( 10488 phba->cfg_nvmet_mrq, 10489 sizeof(struct lpfc_queue *), 10490 GFP_KERNEL); 10491 if (!phba->sli4_hba.nvmet_cqset) { 10492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10493 "3121 Fail allocate memory for " 10494 "fast-path CQ set array\n"); 10495 goto out_error; 10496 } 10497 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10498 phba->cfg_nvmet_mrq, 10499 sizeof(struct lpfc_queue *), 10500 GFP_KERNEL); 10501 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10503 "3122 Fail allocate memory for " 10504 "fast-path RQ set hdr array\n"); 10505 goto out_error; 10506 } 10507 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10508 phba->cfg_nvmet_mrq, 10509 sizeof(struct lpfc_queue *), 10510 GFP_KERNEL); 10511 if (!phba->sli4_hba.nvmet_mrq_data) { 10512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10513 "3124 Fail allocate memory for " 10514 "fast-path RQ set data array\n"); 10515 goto out_error; 10516 } 10517 } 10518 } 10519 10520 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10521 10522 /* Create HBA Event Queues (EQs) */ 10523 for_each_present_cpu(cpu) { 10524 /* We only want to create 1 EQ per vector, even though 10525 * multiple CPUs might be using that vector. so only 10526 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10527 */ 10528 cpup = &phba->sli4_hba.cpu_map[cpu]; 10529 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10530 continue; 10531 10532 /* Get a ptr to the Hardware Queue associated with this CPU */ 10533 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10534 10535 /* Allocate an EQ */ 10536 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10537 phba->sli4_hba.eq_esize, 10538 phba->sli4_hba.eq_ecount, cpu); 10539 if (!qdesc) { 10540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10541 "0497 Failed allocate EQ (%d)\n", 10542 cpup->hdwq); 10543 goto out_error; 10544 } 10545 qdesc->qe_valid = 1; 10546 qdesc->hdwq = cpup->hdwq; 10547 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10548 qdesc->last_cpu = qdesc->chann; 10549 10550 /* Save the allocated EQ in the Hardware Queue */ 10551 qp->hba_eq = qdesc; 10552 10553 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10554 list_add(&qdesc->cpu_list, &eqi->list); 10555 } 10556 10557 /* Now we need to populate the other Hardware Queues, that share 10558 * an IRQ vector, with the associated EQ ptr. 10559 */ 10560 for_each_present_cpu(cpu) { 10561 cpup = &phba->sli4_hba.cpu_map[cpu]; 10562 10563 /* Check for EQ already allocated in previous loop */ 10564 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10565 continue; 10566 10567 /* Check for multiple CPUs per hdwq */ 10568 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10569 if (qp->hba_eq) 10570 continue; 10571 10572 /* We need to share an EQ for this hdwq */ 10573 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10574 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10575 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10576 } 10577 10578 /* Allocate IO Path SLI4 CQ/WQs */ 10579 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10580 if (lpfc_alloc_io_wq_cq(phba, idx)) 10581 goto out_error; 10582 } 10583 10584 if (phba->nvmet_support) { 10585 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10586 cpu = lpfc_find_cpu_handle(phba, idx, 10587 LPFC_FIND_BY_HDWQ); 10588 qdesc = lpfc_sli4_queue_alloc(phba, 10589 LPFC_DEFAULT_PAGE_SIZE, 10590 phba->sli4_hba.cq_esize, 10591 phba->sli4_hba.cq_ecount, 10592 cpu); 10593 if (!qdesc) { 10594 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10595 "3142 Failed allocate NVME " 10596 "CQ Set (%d)\n", idx); 10597 goto out_error; 10598 } 10599 qdesc->qe_valid = 1; 10600 qdesc->hdwq = idx; 10601 qdesc->chann = cpu; 10602 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10603 } 10604 } 10605 10606 /* 10607 * Create Slow Path Completion Queues (CQs) 10608 */ 10609 10610 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10611 /* Create slow-path Mailbox Command Complete Queue */ 10612 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10613 phba->sli4_hba.cq_esize, 10614 phba->sli4_hba.cq_ecount, cpu); 10615 if (!qdesc) { 10616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10617 "0500 Failed allocate slow-path mailbox CQ\n"); 10618 goto out_error; 10619 } 10620 qdesc->qe_valid = 1; 10621 phba->sli4_hba.mbx_cq = qdesc; 10622 10623 /* Create slow-path ELS Complete Queue */ 10624 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10625 phba->sli4_hba.cq_esize, 10626 phba->sli4_hba.cq_ecount, cpu); 10627 if (!qdesc) { 10628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10629 "0501 Failed allocate slow-path ELS CQ\n"); 10630 goto out_error; 10631 } 10632 qdesc->qe_valid = 1; 10633 qdesc->chann = cpu; 10634 phba->sli4_hba.els_cq = qdesc; 10635 10636 10637 /* 10638 * Create Slow Path Work Queues (WQs) 10639 */ 10640 10641 /* Create Mailbox Command Queue */ 10642 10643 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10644 phba->sli4_hba.mq_esize, 10645 phba->sli4_hba.mq_ecount, cpu); 10646 if (!qdesc) { 10647 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10648 "0505 Failed allocate slow-path MQ\n"); 10649 goto out_error; 10650 } 10651 qdesc->chann = cpu; 10652 phba->sli4_hba.mbx_wq = qdesc; 10653 10654 /* 10655 * Create ELS Work Queues 10656 */ 10657 10658 /* Create slow-path ELS Work Queue */ 10659 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10660 phba->sli4_hba.wq_esize, 10661 phba->sli4_hba.wq_ecount, cpu); 10662 if (!qdesc) { 10663 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10664 "0504 Failed allocate slow-path ELS WQ\n"); 10665 goto out_error; 10666 } 10667 qdesc->chann = cpu; 10668 phba->sli4_hba.els_wq = qdesc; 10669 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10670 10671 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10672 /* Create NVME LS Complete Queue */ 10673 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10674 phba->sli4_hba.cq_esize, 10675 phba->sli4_hba.cq_ecount, cpu); 10676 if (!qdesc) { 10677 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10678 "6079 Failed allocate NVME LS CQ\n"); 10679 goto out_error; 10680 } 10681 qdesc->chann = cpu; 10682 qdesc->qe_valid = 1; 10683 phba->sli4_hba.nvmels_cq = qdesc; 10684 10685 /* Create NVME LS Work Queue */ 10686 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10687 phba->sli4_hba.wq_esize, 10688 phba->sli4_hba.wq_ecount, cpu); 10689 if (!qdesc) { 10690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10691 "6080 Failed allocate NVME LS WQ\n"); 10692 goto out_error; 10693 } 10694 qdesc->chann = cpu; 10695 phba->sli4_hba.nvmels_wq = qdesc; 10696 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10697 } 10698 10699 /* 10700 * Create Receive Queue (RQ) 10701 */ 10702 10703 /* Create Receive Queue for header */ 10704 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10705 phba->sli4_hba.rq_esize, 10706 phba->sli4_hba.rq_ecount, cpu); 10707 if (!qdesc) { 10708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10709 "0506 Failed allocate receive HRQ\n"); 10710 goto out_error; 10711 } 10712 phba->sli4_hba.hdr_rq = qdesc; 10713 10714 /* Create Receive Queue for data */ 10715 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10716 phba->sli4_hba.rq_esize, 10717 phba->sli4_hba.rq_ecount, cpu); 10718 if (!qdesc) { 10719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10720 "0507 Failed allocate receive DRQ\n"); 10721 goto out_error; 10722 } 10723 phba->sli4_hba.dat_rq = qdesc; 10724 10725 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10726 phba->nvmet_support) { 10727 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10728 cpu = lpfc_find_cpu_handle(phba, idx, 10729 LPFC_FIND_BY_HDWQ); 10730 /* Create NVMET Receive Queue for header */ 10731 qdesc = lpfc_sli4_queue_alloc(phba, 10732 LPFC_DEFAULT_PAGE_SIZE, 10733 phba->sli4_hba.rq_esize, 10734 LPFC_NVMET_RQE_DEF_COUNT, 10735 cpu); 10736 if (!qdesc) { 10737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10738 "3146 Failed allocate " 10739 "receive HRQ\n"); 10740 goto out_error; 10741 } 10742 qdesc->hdwq = idx; 10743 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10744 10745 /* Only needed for header of RQ pair */ 10746 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10747 GFP_KERNEL, 10748 cpu_to_node(cpu)); 10749 if (qdesc->rqbp == NULL) { 10750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10751 "6131 Failed allocate " 10752 "Header RQBP\n"); 10753 goto out_error; 10754 } 10755 10756 /* Put list in known state in case driver load fails. */ 10757 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10758 10759 /* Create NVMET Receive Queue for data */ 10760 qdesc = lpfc_sli4_queue_alloc(phba, 10761 LPFC_DEFAULT_PAGE_SIZE, 10762 phba->sli4_hba.rq_esize, 10763 LPFC_NVMET_RQE_DEF_COUNT, 10764 cpu); 10765 if (!qdesc) { 10766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10767 "3156 Failed allocate " 10768 "receive DRQ\n"); 10769 goto out_error; 10770 } 10771 qdesc->hdwq = idx; 10772 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10773 } 10774 } 10775 10776 /* Clear NVME stats */ 10777 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10778 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10779 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10780 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10781 } 10782 } 10783 10784 /* Clear SCSI stats */ 10785 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10786 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10787 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10788 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10789 } 10790 } 10791 10792 return 0; 10793 10794 out_error: 10795 lpfc_sli4_queue_destroy(phba); 10796 return -ENOMEM; 10797 } 10798 10799 static inline void 10800 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10801 { 10802 if (*qp != NULL) { 10803 lpfc_sli4_queue_free(*qp); 10804 *qp = NULL; 10805 } 10806 } 10807 10808 static inline void 10809 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10810 { 10811 int idx; 10812 10813 if (*qs == NULL) 10814 return; 10815 10816 for (idx = 0; idx < max; idx++) 10817 __lpfc_sli4_release_queue(&(*qs)[idx]); 10818 10819 kfree(*qs); 10820 *qs = NULL; 10821 } 10822 10823 static inline void 10824 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10825 { 10826 struct lpfc_sli4_hdw_queue *hdwq; 10827 struct lpfc_queue *eq; 10828 uint32_t idx; 10829 10830 hdwq = phba->sli4_hba.hdwq; 10831 10832 /* Loop thru all Hardware Queues */ 10833 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10834 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10835 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10836 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10837 hdwq[idx].hba_eq = NULL; 10838 hdwq[idx].io_cq = NULL; 10839 hdwq[idx].io_wq = NULL; 10840 if (phba->cfg_xpsgl && !phba->nvmet_support) 10841 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10842 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10843 } 10844 /* Loop thru all IRQ vectors */ 10845 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10846 /* Free the EQ corresponding to the IRQ vector */ 10847 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10848 lpfc_sli4_queue_free(eq); 10849 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10850 } 10851 } 10852 10853 /** 10854 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10855 * @phba: pointer to lpfc hba data structure. 10856 * 10857 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10858 * operation. 10859 * 10860 * Return codes 10861 * 0 - successful 10862 * -ENOMEM - No available memory 10863 * -EIO - The mailbox failed to complete successfully. 10864 **/ 10865 void 10866 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10867 { 10868 /* 10869 * Set FREE_INIT before beginning to free the queues. 10870 * Wait until the users of queues to acknowledge to 10871 * release queues by clearing FREE_WAIT. 10872 */ 10873 spin_lock_irq(&phba->hbalock); 10874 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10875 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10876 spin_unlock_irq(&phba->hbalock); 10877 msleep(20); 10878 spin_lock_irq(&phba->hbalock); 10879 } 10880 spin_unlock_irq(&phba->hbalock); 10881 10882 lpfc_sli4_cleanup_poll_list(phba); 10883 10884 /* Release HBA eqs */ 10885 if (phba->sli4_hba.hdwq) 10886 lpfc_sli4_release_hdwq(phba); 10887 10888 if (phba->nvmet_support) { 10889 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10890 phba->cfg_nvmet_mrq); 10891 10892 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10893 phba->cfg_nvmet_mrq); 10894 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10895 phba->cfg_nvmet_mrq); 10896 } 10897 10898 /* Release mailbox command work queue */ 10899 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10900 10901 /* Release ELS work queue */ 10902 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10903 10904 /* Release ELS work queue */ 10905 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10906 10907 /* Release unsolicited receive queue */ 10908 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10909 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10910 10911 /* Release ELS complete queue */ 10912 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10913 10914 /* Release NVME LS complete queue */ 10915 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10916 10917 /* Release mailbox command complete queue */ 10918 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10919 10920 /* Everything on this list has been freed */ 10921 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10922 10923 /* Done with freeing the queues */ 10924 spin_lock_irq(&phba->hbalock); 10925 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10926 spin_unlock_irq(&phba->hbalock); 10927 } 10928 10929 int 10930 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10931 { 10932 struct lpfc_rqb *rqbp; 10933 struct lpfc_dmabuf *h_buf; 10934 struct rqb_dmabuf *rqb_buffer; 10935 10936 rqbp = rq->rqbp; 10937 while (!list_empty(&rqbp->rqb_buffer_list)) { 10938 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10939 struct lpfc_dmabuf, list); 10940 10941 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10942 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10943 rqbp->buffer_count--; 10944 } 10945 return 1; 10946 } 10947 10948 static int 10949 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10950 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10951 int qidx, uint32_t qtype) 10952 { 10953 struct lpfc_sli_ring *pring; 10954 int rc; 10955 10956 if (!eq || !cq || !wq) { 10957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10958 "6085 Fast-path %s (%d) not allocated\n", 10959 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10960 return -ENOMEM; 10961 } 10962 10963 /* create the Cq first */ 10964 rc = lpfc_cq_create(phba, cq, eq, 10965 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10966 if (rc) { 10967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10968 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10969 qidx, (uint32_t)rc); 10970 return rc; 10971 } 10972 10973 if (qtype != LPFC_MBOX) { 10974 /* Setup cq_map for fast lookup */ 10975 if (cq_map) 10976 *cq_map = cq->queue_id; 10977 10978 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10979 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10980 qidx, cq->queue_id, qidx, eq->queue_id); 10981 10982 /* create the wq */ 10983 rc = lpfc_wq_create(phba, wq, cq, qtype); 10984 if (rc) { 10985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10986 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10987 qidx, (uint32_t)rc); 10988 /* no need to tear down cq - caller will do so */ 10989 return rc; 10990 } 10991 10992 /* Bind this CQ/WQ to the NVME ring */ 10993 pring = wq->pring; 10994 pring->sli.sli4.wqp = (void *)wq; 10995 cq->pring = pring; 10996 10997 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10998 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 10999 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 11000 } else { 11001 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 11002 if (rc) { 11003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11004 "0539 Failed setup of slow-path MQ: " 11005 "rc = 0x%x\n", rc); 11006 /* no need to tear down cq - caller will do so */ 11007 return rc; 11008 } 11009 11010 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11011 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 11012 phba->sli4_hba.mbx_wq->queue_id, 11013 phba->sli4_hba.mbx_cq->queue_id); 11014 } 11015 11016 return 0; 11017 } 11018 11019 /** 11020 * lpfc_setup_cq_lookup - Setup the CQ lookup table 11021 * @phba: pointer to lpfc hba data structure. 11022 * 11023 * This routine will populate the cq_lookup table by all 11024 * available CQ queue_id's. 11025 **/ 11026 static void 11027 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 11028 { 11029 struct lpfc_queue *eq, *childq; 11030 int qidx; 11031 11032 memset(phba->sli4_hba.cq_lookup, 0, 11033 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 11034 /* Loop thru all IRQ vectors */ 11035 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11036 /* Get the EQ corresponding to the IRQ vector */ 11037 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11038 if (!eq) 11039 continue; 11040 /* Loop through all CQs associated with that EQ */ 11041 list_for_each_entry(childq, &eq->child_list, list) { 11042 if (childq->queue_id > phba->sli4_hba.cq_max) 11043 continue; 11044 if (childq->subtype == LPFC_IO) 11045 phba->sli4_hba.cq_lookup[childq->queue_id] = 11046 childq; 11047 } 11048 } 11049 } 11050 11051 /** 11052 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 11053 * @phba: pointer to lpfc hba data structure. 11054 * 11055 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 11056 * operation. 11057 * 11058 * Return codes 11059 * 0 - successful 11060 * -ENOMEM - No available memory 11061 * -EIO - The mailbox failed to complete successfully. 11062 **/ 11063 int 11064 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 11065 { 11066 uint32_t shdr_status, shdr_add_status; 11067 union lpfc_sli4_cfg_shdr *shdr; 11068 struct lpfc_vector_map_info *cpup; 11069 struct lpfc_sli4_hdw_queue *qp; 11070 LPFC_MBOXQ_t *mboxq; 11071 int qidx, cpu; 11072 uint32_t length, usdelay; 11073 int rc = -ENOMEM; 11074 11075 /* Check for dual-ULP support */ 11076 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11077 if (!mboxq) { 11078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11079 "3249 Unable to allocate memory for " 11080 "QUERY_FW_CFG mailbox command\n"); 11081 return -ENOMEM; 11082 } 11083 length = (sizeof(struct lpfc_mbx_query_fw_config) - 11084 sizeof(struct lpfc_sli4_cfg_mhdr)); 11085 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11086 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 11087 length, LPFC_SLI4_MBX_EMBED); 11088 11089 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11090 11091 shdr = (union lpfc_sli4_cfg_shdr *) 11092 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11093 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11094 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 11095 if (shdr_status || shdr_add_status || rc) { 11096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11097 "3250 QUERY_FW_CFG mailbox failed with status " 11098 "x%x add_status x%x, mbx status x%x\n", 11099 shdr_status, shdr_add_status, rc); 11100 mempool_free(mboxq, phba->mbox_mem_pool); 11101 rc = -ENXIO; 11102 goto out_error; 11103 } 11104 11105 phba->sli4_hba.fw_func_mode = 11106 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11107 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 11108 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 11109 phba->sli4_hba.physical_port = 11110 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11112 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 11113 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 11114 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 11115 11116 mempool_free(mboxq, phba->mbox_mem_pool); 11117 11118 /* 11119 * Set up HBA Event Queues (EQs) 11120 */ 11121 qp = phba->sli4_hba.hdwq; 11122 11123 /* Set up HBA event queue */ 11124 if (!qp) { 11125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11126 "3147 Fast-path EQs not allocated\n"); 11127 rc = -ENOMEM; 11128 goto out_error; 11129 } 11130 11131 /* Loop thru all IRQ vectors */ 11132 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11133 /* Create HBA Event Queues (EQs) in order */ 11134 for_each_present_cpu(cpu) { 11135 cpup = &phba->sli4_hba.cpu_map[cpu]; 11136 11137 /* Look for the CPU thats using that vector with 11138 * LPFC_CPU_FIRST_IRQ set. 11139 */ 11140 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11141 continue; 11142 if (qidx != cpup->eq) 11143 continue; 11144 11145 /* Create an EQ for that vector */ 11146 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11147 phba->cfg_fcp_imax); 11148 if (rc) { 11149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11150 "0523 Failed setup of fast-path" 11151 " EQ (%d), rc = 0x%x\n", 11152 cpup->eq, (uint32_t)rc); 11153 goto out_destroy; 11154 } 11155 11156 /* Save the EQ for that vector in the hba_eq_hdl */ 11157 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11158 qp[cpup->hdwq].hba_eq; 11159 11160 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11161 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11162 cpup->eq, 11163 qp[cpup->hdwq].hba_eq->queue_id); 11164 } 11165 } 11166 11167 /* Loop thru all Hardware Queues */ 11168 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11169 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11170 cpup = &phba->sli4_hba.cpu_map[cpu]; 11171 11172 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11173 rc = lpfc_create_wq_cq(phba, 11174 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11175 qp[qidx].io_cq, 11176 qp[qidx].io_wq, 11177 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11178 qidx, 11179 LPFC_IO); 11180 if (rc) { 11181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11182 "0535 Failed to setup fastpath " 11183 "IO WQ/CQ (%d), rc = 0x%x\n", 11184 qidx, (uint32_t)rc); 11185 goto out_destroy; 11186 } 11187 } 11188 11189 /* 11190 * Set up Slow Path Complete Queues (CQs) 11191 */ 11192 11193 /* Set up slow-path MBOX CQ/MQ */ 11194 11195 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11197 "0528 %s not allocated\n", 11198 phba->sli4_hba.mbx_cq ? 11199 "Mailbox WQ" : "Mailbox CQ"); 11200 rc = -ENOMEM; 11201 goto out_destroy; 11202 } 11203 11204 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11205 phba->sli4_hba.mbx_cq, 11206 phba->sli4_hba.mbx_wq, 11207 NULL, 0, LPFC_MBOX); 11208 if (rc) { 11209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11210 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11211 (uint32_t)rc); 11212 goto out_destroy; 11213 } 11214 if (phba->nvmet_support) { 11215 if (!phba->sli4_hba.nvmet_cqset) { 11216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11217 "3165 Fast-path NVME CQ Set " 11218 "array not allocated\n"); 11219 rc = -ENOMEM; 11220 goto out_destroy; 11221 } 11222 if (phba->cfg_nvmet_mrq > 1) { 11223 rc = lpfc_cq_create_set(phba, 11224 phba->sli4_hba.nvmet_cqset, 11225 qp, 11226 LPFC_WCQ, LPFC_NVMET); 11227 if (rc) { 11228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11229 "3164 Failed setup of NVME CQ " 11230 "Set, rc = 0x%x\n", 11231 (uint32_t)rc); 11232 goto out_destroy; 11233 } 11234 } else { 11235 /* Set up NVMET Receive Complete Queue */ 11236 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11237 qp[0].hba_eq, 11238 LPFC_WCQ, LPFC_NVMET); 11239 if (rc) { 11240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11241 "6089 Failed setup NVMET CQ: " 11242 "rc = 0x%x\n", (uint32_t)rc); 11243 goto out_destroy; 11244 } 11245 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11246 11247 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11248 "6090 NVMET CQ setup: cq-id=%d, " 11249 "parent eq-id=%d\n", 11250 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11251 qp[0].hba_eq->queue_id); 11252 } 11253 } 11254 11255 /* Set up slow-path ELS WQ/CQ */ 11256 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11258 "0530 ELS %s not allocated\n", 11259 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11260 rc = -ENOMEM; 11261 goto out_destroy; 11262 } 11263 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11264 phba->sli4_hba.els_cq, 11265 phba->sli4_hba.els_wq, 11266 NULL, 0, LPFC_ELS); 11267 if (rc) { 11268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11269 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11270 (uint32_t)rc); 11271 goto out_destroy; 11272 } 11273 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11274 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11275 phba->sli4_hba.els_wq->queue_id, 11276 phba->sli4_hba.els_cq->queue_id); 11277 11278 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11279 /* Set up NVME LS Complete Queue */ 11280 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11282 "6091 LS %s not allocated\n", 11283 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11284 rc = -ENOMEM; 11285 goto out_destroy; 11286 } 11287 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11288 phba->sli4_hba.nvmels_cq, 11289 phba->sli4_hba.nvmels_wq, 11290 NULL, 0, LPFC_NVME_LS); 11291 if (rc) { 11292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11293 "0526 Failed setup of NVVME LS WQ/CQ: " 11294 "rc = 0x%x\n", (uint32_t)rc); 11295 goto out_destroy; 11296 } 11297 11298 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11299 "6096 ELS WQ setup: wq-id=%d, " 11300 "parent cq-id=%d\n", 11301 phba->sli4_hba.nvmels_wq->queue_id, 11302 phba->sli4_hba.nvmels_cq->queue_id); 11303 } 11304 11305 /* 11306 * Create NVMET Receive Queue (RQ) 11307 */ 11308 if (phba->nvmet_support) { 11309 if ((!phba->sli4_hba.nvmet_cqset) || 11310 (!phba->sli4_hba.nvmet_mrq_hdr) || 11311 (!phba->sli4_hba.nvmet_mrq_data)) { 11312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11313 "6130 MRQ CQ Queues not " 11314 "allocated\n"); 11315 rc = -ENOMEM; 11316 goto out_destroy; 11317 } 11318 if (phba->cfg_nvmet_mrq > 1) { 11319 rc = lpfc_mrq_create(phba, 11320 phba->sli4_hba.nvmet_mrq_hdr, 11321 phba->sli4_hba.nvmet_mrq_data, 11322 phba->sli4_hba.nvmet_cqset, 11323 LPFC_NVMET); 11324 if (rc) { 11325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11326 "6098 Failed setup of NVMET " 11327 "MRQ: rc = 0x%x\n", 11328 (uint32_t)rc); 11329 goto out_destroy; 11330 } 11331 11332 } else { 11333 rc = lpfc_rq_create(phba, 11334 phba->sli4_hba.nvmet_mrq_hdr[0], 11335 phba->sli4_hba.nvmet_mrq_data[0], 11336 phba->sli4_hba.nvmet_cqset[0], 11337 LPFC_NVMET); 11338 if (rc) { 11339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11340 "6057 Failed setup of NVMET " 11341 "Receive Queue: rc = 0x%x\n", 11342 (uint32_t)rc); 11343 goto out_destroy; 11344 } 11345 11346 lpfc_printf_log( 11347 phba, KERN_INFO, LOG_INIT, 11348 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11349 "dat-rq-id=%d parent cq-id=%d\n", 11350 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11351 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11352 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11353 11354 } 11355 } 11356 11357 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11358 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11359 "0540 Receive Queue not allocated\n"); 11360 rc = -ENOMEM; 11361 goto out_destroy; 11362 } 11363 11364 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11365 phba->sli4_hba.els_cq, LPFC_USOL); 11366 if (rc) { 11367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11368 "0541 Failed setup of Receive Queue: " 11369 "rc = 0x%x\n", (uint32_t)rc); 11370 goto out_destroy; 11371 } 11372 11373 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11374 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11375 "parent cq-id=%d\n", 11376 phba->sli4_hba.hdr_rq->queue_id, 11377 phba->sli4_hba.dat_rq->queue_id, 11378 phba->sli4_hba.els_cq->queue_id); 11379 11380 if (phba->cfg_fcp_imax) 11381 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11382 else 11383 usdelay = 0; 11384 11385 for (qidx = 0; qidx < phba->cfg_irq_chann; 11386 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11387 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11388 usdelay); 11389 11390 if (phba->sli4_hba.cq_max) { 11391 kfree(phba->sli4_hba.cq_lookup); 11392 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11393 sizeof(struct lpfc_queue *), GFP_KERNEL); 11394 if (!phba->sli4_hba.cq_lookup) { 11395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11396 "0549 Failed setup of CQ Lookup table: " 11397 "size 0x%x\n", phba->sli4_hba.cq_max); 11398 rc = -ENOMEM; 11399 goto out_destroy; 11400 } 11401 lpfc_setup_cq_lookup(phba); 11402 } 11403 return 0; 11404 11405 out_destroy: 11406 lpfc_sli4_queue_unset(phba); 11407 out_error: 11408 return rc; 11409 } 11410 11411 /** 11412 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11413 * @phba: pointer to lpfc hba data structure. 11414 * 11415 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11416 * operation. 11417 * 11418 * Return codes 11419 * 0 - successful 11420 * -ENOMEM - No available memory 11421 * -EIO - The mailbox failed to complete successfully. 11422 **/ 11423 void 11424 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11425 { 11426 struct lpfc_sli4_hdw_queue *qp; 11427 struct lpfc_queue *eq; 11428 int qidx; 11429 11430 /* Unset mailbox command work queue */ 11431 if (phba->sli4_hba.mbx_wq) 11432 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11433 11434 /* Unset NVME LS work queue */ 11435 if (phba->sli4_hba.nvmels_wq) 11436 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11437 11438 /* Unset ELS work queue */ 11439 if (phba->sli4_hba.els_wq) 11440 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11441 11442 /* Unset unsolicited receive queue */ 11443 if (phba->sli4_hba.hdr_rq) 11444 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11445 phba->sli4_hba.dat_rq); 11446 11447 /* Unset mailbox command complete queue */ 11448 if (phba->sli4_hba.mbx_cq) 11449 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11450 11451 /* Unset ELS complete queue */ 11452 if (phba->sli4_hba.els_cq) 11453 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11454 11455 /* Unset NVME LS complete queue */ 11456 if (phba->sli4_hba.nvmels_cq) 11457 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11458 11459 if (phba->nvmet_support) { 11460 /* Unset NVMET MRQ queue */ 11461 if (phba->sli4_hba.nvmet_mrq_hdr) { 11462 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11463 lpfc_rq_destroy( 11464 phba, 11465 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11466 phba->sli4_hba.nvmet_mrq_data[qidx]); 11467 } 11468 11469 /* Unset NVMET CQ Set complete queue */ 11470 if (phba->sli4_hba.nvmet_cqset) { 11471 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11472 lpfc_cq_destroy( 11473 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11474 } 11475 } 11476 11477 /* Unset fast-path SLI4 queues */ 11478 if (phba->sli4_hba.hdwq) { 11479 /* Loop thru all Hardware Queues */ 11480 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11481 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11482 qp = &phba->sli4_hba.hdwq[qidx]; 11483 lpfc_wq_destroy(phba, qp->io_wq); 11484 lpfc_cq_destroy(phba, qp->io_cq); 11485 } 11486 /* Loop thru all IRQ vectors */ 11487 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11488 /* Destroy the EQ corresponding to the IRQ vector */ 11489 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11490 lpfc_eq_destroy(phba, eq); 11491 } 11492 } 11493 11494 kfree(phba->sli4_hba.cq_lookup); 11495 phba->sli4_hba.cq_lookup = NULL; 11496 phba->sli4_hba.cq_max = 0; 11497 } 11498 11499 /** 11500 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11501 * @phba: pointer to lpfc hba data structure. 11502 * 11503 * This routine is invoked to allocate and set up a pool of completion queue 11504 * events. The body of the completion queue event is a completion queue entry 11505 * CQE. For now, this pool is used for the interrupt service routine to queue 11506 * the following HBA completion queue events for the worker thread to process: 11507 * - Mailbox asynchronous events 11508 * - Receive queue completion unsolicited events 11509 * Later, this can be used for all the slow-path events. 11510 * 11511 * Return codes 11512 * 0 - successful 11513 * -ENOMEM - No available memory 11514 **/ 11515 static int 11516 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11517 { 11518 struct lpfc_cq_event *cq_event; 11519 int i; 11520 11521 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11522 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11523 if (!cq_event) 11524 goto out_pool_create_fail; 11525 list_add_tail(&cq_event->list, 11526 &phba->sli4_hba.sp_cqe_event_pool); 11527 } 11528 return 0; 11529 11530 out_pool_create_fail: 11531 lpfc_sli4_cq_event_pool_destroy(phba); 11532 return -ENOMEM; 11533 } 11534 11535 /** 11536 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11537 * @phba: pointer to lpfc hba data structure. 11538 * 11539 * This routine is invoked to free the pool of completion queue events at 11540 * driver unload time. Note that, it is the responsibility of the driver 11541 * cleanup routine to free all the outstanding completion-queue events 11542 * allocated from this pool back into the pool before invoking this routine 11543 * to destroy the pool. 11544 **/ 11545 static void 11546 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11547 { 11548 struct lpfc_cq_event *cq_event, *next_cq_event; 11549 11550 list_for_each_entry_safe(cq_event, next_cq_event, 11551 &phba->sli4_hba.sp_cqe_event_pool, list) { 11552 list_del(&cq_event->list); 11553 kfree(cq_event); 11554 } 11555 } 11556 11557 /** 11558 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11559 * @phba: pointer to lpfc hba data structure. 11560 * 11561 * This routine is the lock free version of the API invoked to allocate a 11562 * completion-queue event from the free pool. 11563 * 11564 * Return: Pointer to the newly allocated completion-queue event if successful 11565 * NULL otherwise. 11566 **/ 11567 struct lpfc_cq_event * 11568 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11569 { 11570 struct lpfc_cq_event *cq_event = NULL; 11571 11572 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11573 struct lpfc_cq_event, list); 11574 return cq_event; 11575 } 11576 11577 /** 11578 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11579 * @phba: pointer to lpfc hba data structure. 11580 * 11581 * This routine is the lock version of the API invoked to allocate a 11582 * completion-queue event from the free pool. 11583 * 11584 * Return: Pointer to the newly allocated completion-queue event if successful 11585 * NULL otherwise. 11586 **/ 11587 struct lpfc_cq_event * 11588 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11589 { 11590 struct lpfc_cq_event *cq_event; 11591 unsigned long iflags; 11592 11593 spin_lock_irqsave(&phba->hbalock, iflags); 11594 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11595 spin_unlock_irqrestore(&phba->hbalock, iflags); 11596 return cq_event; 11597 } 11598 11599 /** 11600 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11601 * @phba: pointer to lpfc hba data structure. 11602 * @cq_event: pointer to the completion queue event to be freed. 11603 * 11604 * This routine is the lock free version of the API invoked to release a 11605 * completion-queue event back into the free pool. 11606 **/ 11607 void 11608 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11609 struct lpfc_cq_event *cq_event) 11610 { 11611 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11612 } 11613 11614 /** 11615 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11616 * @phba: pointer to lpfc hba data structure. 11617 * @cq_event: pointer to the completion queue event to be freed. 11618 * 11619 * This routine is the lock version of the API invoked to release a 11620 * completion-queue event back into the free pool. 11621 **/ 11622 void 11623 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11624 struct lpfc_cq_event *cq_event) 11625 { 11626 unsigned long iflags; 11627 spin_lock_irqsave(&phba->hbalock, iflags); 11628 __lpfc_sli4_cq_event_release(phba, cq_event); 11629 spin_unlock_irqrestore(&phba->hbalock, iflags); 11630 } 11631 11632 /** 11633 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11634 * @phba: pointer to lpfc hba data structure. 11635 * 11636 * This routine is to free all the pending completion-queue events to the 11637 * back into the free pool for device reset. 11638 **/ 11639 static void 11640 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11641 { 11642 LIST_HEAD(cq_event_list); 11643 struct lpfc_cq_event *cq_event; 11644 unsigned long iflags; 11645 11646 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11647 11648 /* Pending ELS XRI abort events */ 11649 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11650 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11651 &cq_event_list); 11652 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11653 11654 /* Pending asynnc events */ 11655 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11656 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11657 &cq_event_list); 11658 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11659 11660 while (!list_empty(&cq_event_list)) { 11661 list_remove_head(&cq_event_list, cq_event, 11662 struct lpfc_cq_event, list); 11663 lpfc_sli4_cq_event_release(phba, cq_event); 11664 } 11665 } 11666 11667 /** 11668 * lpfc_pci_function_reset - Reset pci function. 11669 * @phba: pointer to lpfc hba data structure. 11670 * 11671 * This routine is invoked to request a PCI function reset. It will destroys 11672 * all resources assigned to the PCI function which originates this request. 11673 * 11674 * Return codes 11675 * 0 - successful 11676 * -ENOMEM - No available memory 11677 * -EIO - The mailbox failed to complete successfully. 11678 **/ 11679 int 11680 lpfc_pci_function_reset(struct lpfc_hba *phba) 11681 { 11682 LPFC_MBOXQ_t *mboxq; 11683 uint32_t rc = 0, if_type; 11684 uint32_t shdr_status, shdr_add_status; 11685 uint32_t rdy_chk; 11686 uint32_t port_reset = 0; 11687 union lpfc_sli4_cfg_shdr *shdr; 11688 struct lpfc_register reg_data; 11689 uint16_t devid; 11690 11691 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11692 switch (if_type) { 11693 case LPFC_SLI_INTF_IF_TYPE_0: 11694 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11695 GFP_KERNEL); 11696 if (!mboxq) { 11697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11698 "0494 Unable to allocate memory for " 11699 "issuing SLI_FUNCTION_RESET mailbox " 11700 "command\n"); 11701 return -ENOMEM; 11702 } 11703 11704 /* Setup PCI function reset mailbox-ioctl command */ 11705 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11706 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11707 LPFC_SLI4_MBX_EMBED); 11708 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11709 shdr = (union lpfc_sli4_cfg_shdr *) 11710 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11711 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11712 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11713 &shdr->response); 11714 mempool_free(mboxq, phba->mbox_mem_pool); 11715 if (shdr_status || shdr_add_status || rc) { 11716 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11717 "0495 SLI_FUNCTION_RESET mailbox " 11718 "failed with status x%x add_status x%x," 11719 " mbx status x%x\n", 11720 shdr_status, shdr_add_status, rc); 11721 rc = -ENXIO; 11722 } 11723 break; 11724 case LPFC_SLI_INTF_IF_TYPE_2: 11725 case LPFC_SLI_INTF_IF_TYPE_6: 11726 wait: 11727 /* 11728 * Poll the Port Status Register and wait for RDY for 11729 * up to 30 seconds. If the port doesn't respond, treat 11730 * it as an error. 11731 */ 11732 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11733 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11734 STATUSregaddr, ®_data.word0)) { 11735 rc = -ENODEV; 11736 goto out; 11737 } 11738 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11739 break; 11740 msleep(20); 11741 } 11742 11743 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11744 phba->work_status[0] = readl( 11745 phba->sli4_hba.u.if_type2.ERR1regaddr); 11746 phba->work_status[1] = readl( 11747 phba->sli4_hba.u.if_type2.ERR2regaddr); 11748 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11749 "2890 Port not ready, port status reg " 11750 "0x%x error 1=0x%x, error 2=0x%x\n", 11751 reg_data.word0, 11752 phba->work_status[0], 11753 phba->work_status[1]); 11754 rc = -ENODEV; 11755 goto out; 11756 } 11757 11758 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11759 lpfc_pldv_detect = true; 11760 11761 if (!port_reset) { 11762 /* 11763 * Reset the port now 11764 */ 11765 reg_data.word0 = 0; 11766 bf_set(lpfc_sliport_ctrl_end, ®_data, 11767 LPFC_SLIPORT_LITTLE_ENDIAN); 11768 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11769 LPFC_SLIPORT_INIT_PORT); 11770 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11771 CTRLregaddr); 11772 /* flush */ 11773 pci_read_config_word(phba->pcidev, 11774 PCI_DEVICE_ID, &devid); 11775 11776 port_reset = 1; 11777 msleep(20); 11778 goto wait; 11779 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11780 rc = -ENODEV; 11781 goto out; 11782 } 11783 break; 11784 11785 case LPFC_SLI_INTF_IF_TYPE_1: 11786 default: 11787 break; 11788 } 11789 11790 out: 11791 /* Catch the not-ready port failure after a port reset. */ 11792 if (rc) { 11793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11794 "3317 HBA not functional: IP Reset Failed " 11795 "try: echo fw_reset > board_mode\n"); 11796 rc = -ENODEV; 11797 } 11798 11799 return rc; 11800 } 11801 11802 /** 11803 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11804 * @phba: pointer to lpfc hba data structure. 11805 * 11806 * This routine is invoked to set up the PCI device memory space for device 11807 * with SLI-4 interface spec. 11808 * 11809 * Return codes 11810 * 0 - successful 11811 * other values - error 11812 **/ 11813 static int 11814 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11815 { 11816 struct pci_dev *pdev = phba->pcidev; 11817 unsigned long bar0map_len, bar1map_len, bar2map_len; 11818 int error; 11819 uint32_t if_type; 11820 11821 if (!pdev) 11822 return -ENODEV; 11823 11824 /* Set the device DMA mask size */ 11825 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11826 if (error) 11827 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11828 if (error) 11829 return error; 11830 11831 /* 11832 * The BARs and register set definitions and offset locations are 11833 * dependent on the if_type. 11834 */ 11835 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11836 &phba->sli4_hba.sli_intf.word0)) { 11837 return -ENODEV; 11838 } 11839 11840 /* There is no SLI3 failback for SLI4 devices. */ 11841 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11842 LPFC_SLI_INTF_VALID) { 11843 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11844 "2894 SLI_INTF reg contents invalid " 11845 "sli_intf reg 0x%x\n", 11846 phba->sli4_hba.sli_intf.word0); 11847 return -ENODEV; 11848 } 11849 11850 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11851 /* 11852 * Get the bus address of SLI4 device Bar regions and the 11853 * number of bytes required by each mapping. The mapping of the 11854 * particular PCI BARs regions is dependent on the type of 11855 * SLI4 device. 11856 */ 11857 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11858 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11859 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11860 11861 /* 11862 * Map SLI4 PCI Config Space Register base to a kernel virtual 11863 * addr 11864 */ 11865 phba->sli4_hba.conf_regs_memmap_p = 11866 ioremap(phba->pci_bar0_map, bar0map_len); 11867 if (!phba->sli4_hba.conf_regs_memmap_p) { 11868 dev_printk(KERN_ERR, &pdev->dev, 11869 "ioremap failed for SLI4 PCI config " 11870 "registers.\n"); 11871 return -ENODEV; 11872 } 11873 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11874 /* Set up BAR0 PCI config space register memory map */ 11875 lpfc_sli4_bar0_register_memmap(phba, if_type); 11876 } else { 11877 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11878 bar0map_len = pci_resource_len(pdev, 1); 11879 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11880 dev_printk(KERN_ERR, &pdev->dev, 11881 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11882 return -ENODEV; 11883 } 11884 phba->sli4_hba.conf_regs_memmap_p = 11885 ioremap(phba->pci_bar0_map, bar0map_len); 11886 if (!phba->sli4_hba.conf_regs_memmap_p) { 11887 dev_printk(KERN_ERR, &pdev->dev, 11888 "ioremap failed for SLI4 PCI config " 11889 "registers.\n"); 11890 return -ENODEV; 11891 } 11892 lpfc_sli4_bar0_register_memmap(phba, if_type); 11893 } 11894 11895 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11896 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11897 /* 11898 * Map SLI4 if type 0 HBA Control Register base to a 11899 * kernel virtual address and setup the registers. 11900 */ 11901 phba->pci_bar1_map = pci_resource_start(pdev, 11902 PCI_64BIT_BAR2); 11903 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11904 phba->sli4_hba.ctrl_regs_memmap_p = 11905 ioremap(phba->pci_bar1_map, 11906 bar1map_len); 11907 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11908 dev_err(&pdev->dev, 11909 "ioremap failed for SLI4 HBA " 11910 "control registers.\n"); 11911 error = -ENOMEM; 11912 goto out_iounmap_conf; 11913 } 11914 phba->pci_bar2_memmap_p = 11915 phba->sli4_hba.ctrl_regs_memmap_p; 11916 lpfc_sli4_bar1_register_memmap(phba, if_type); 11917 } else { 11918 error = -ENOMEM; 11919 goto out_iounmap_conf; 11920 } 11921 } 11922 11923 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11924 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11925 /* 11926 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11927 * virtual address and setup the registers. 11928 */ 11929 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11930 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11931 phba->sli4_hba.drbl_regs_memmap_p = 11932 ioremap(phba->pci_bar1_map, bar1map_len); 11933 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11934 dev_err(&pdev->dev, 11935 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11936 error = -ENOMEM; 11937 goto out_iounmap_conf; 11938 } 11939 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11940 lpfc_sli4_bar1_register_memmap(phba, if_type); 11941 } 11942 11943 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11944 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11945 /* 11946 * Map SLI4 if type 0 HBA Doorbell Register base to 11947 * a kernel virtual address and setup the registers. 11948 */ 11949 phba->pci_bar2_map = pci_resource_start(pdev, 11950 PCI_64BIT_BAR4); 11951 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11952 phba->sli4_hba.drbl_regs_memmap_p = 11953 ioremap(phba->pci_bar2_map, 11954 bar2map_len); 11955 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11956 dev_err(&pdev->dev, 11957 "ioremap failed for SLI4 HBA" 11958 " doorbell registers.\n"); 11959 error = -ENOMEM; 11960 goto out_iounmap_ctrl; 11961 } 11962 phba->pci_bar4_memmap_p = 11963 phba->sli4_hba.drbl_regs_memmap_p; 11964 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11965 if (error) 11966 goto out_iounmap_all; 11967 } else { 11968 error = -ENOMEM; 11969 goto out_iounmap_ctrl; 11970 } 11971 } 11972 11973 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11974 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11975 /* 11976 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11977 * virtual address and setup the registers. 11978 */ 11979 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11980 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11981 phba->sli4_hba.dpp_regs_memmap_p = 11982 ioremap(phba->pci_bar2_map, bar2map_len); 11983 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11984 dev_err(&pdev->dev, 11985 "ioremap failed for SLI4 HBA dpp registers.\n"); 11986 error = -ENOMEM; 11987 goto out_iounmap_all; 11988 } 11989 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11990 } 11991 11992 /* Set up the EQ/CQ register handeling functions now */ 11993 switch (if_type) { 11994 case LPFC_SLI_INTF_IF_TYPE_0: 11995 case LPFC_SLI_INTF_IF_TYPE_2: 11996 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 11997 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 11998 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 11999 break; 12000 case LPFC_SLI_INTF_IF_TYPE_6: 12001 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 12002 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 12003 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 12004 break; 12005 default: 12006 break; 12007 } 12008 12009 return 0; 12010 12011 out_iounmap_all: 12012 if (phba->sli4_hba.drbl_regs_memmap_p) 12013 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12014 out_iounmap_ctrl: 12015 if (phba->sli4_hba.ctrl_regs_memmap_p) 12016 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12017 out_iounmap_conf: 12018 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12019 12020 return error; 12021 } 12022 12023 /** 12024 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 12025 * @phba: pointer to lpfc hba data structure. 12026 * 12027 * This routine is invoked to unset the PCI device memory space for device 12028 * with SLI-4 interface spec. 12029 **/ 12030 static void 12031 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 12032 { 12033 uint32_t if_type; 12034 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12035 12036 switch (if_type) { 12037 case LPFC_SLI_INTF_IF_TYPE_0: 12038 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12039 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12040 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12041 break; 12042 case LPFC_SLI_INTF_IF_TYPE_2: 12043 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12044 break; 12045 case LPFC_SLI_INTF_IF_TYPE_6: 12046 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12047 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12048 if (phba->sli4_hba.dpp_regs_memmap_p) 12049 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 12050 break; 12051 case LPFC_SLI_INTF_IF_TYPE_1: 12052 break; 12053 default: 12054 dev_printk(KERN_ERR, &phba->pcidev->dev, 12055 "FATAL - unsupported SLI4 interface type - %d\n", 12056 if_type); 12057 break; 12058 } 12059 } 12060 12061 /** 12062 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 12063 * @phba: pointer to lpfc hba data structure. 12064 * 12065 * This routine is invoked to enable the MSI-X interrupt vectors to device 12066 * with SLI-3 interface specs. 12067 * 12068 * Return codes 12069 * 0 - successful 12070 * other values - error 12071 **/ 12072 static int 12073 lpfc_sli_enable_msix(struct lpfc_hba *phba) 12074 { 12075 int rc; 12076 LPFC_MBOXQ_t *pmb; 12077 12078 /* Set up MSI-X multi-message vectors */ 12079 rc = pci_alloc_irq_vectors(phba->pcidev, 12080 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 12081 if (rc < 0) { 12082 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12083 "0420 PCI enable MSI-X failed (%d)\n", rc); 12084 goto vec_fail_out; 12085 } 12086 12087 /* 12088 * Assign MSI-X vectors to interrupt handlers 12089 */ 12090 12091 /* vector-0 is associated to slow-path handler */ 12092 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 12093 &lpfc_sli_sp_intr_handler, 0, 12094 LPFC_SP_DRIVER_HANDLER_NAME, phba); 12095 if (rc) { 12096 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12097 "0421 MSI-X slow-path request_irq failed " 12098 "(%d)\n", rc); 12099 goto msi_fail_out; 12100 } 12101 12102 /* vector-1 is associated to fast-path handler */ 12103 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12104 &lpfc_sli_fp_intr_handler, 0, 12105 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12106 12107 if (rc) { 12108 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12109 "0429 MSI-X fast-path request_irq failed " 12110 "(%d)\n", rc); 12111 goto irq_fail_out; 12112 } 12113 12114 /* 12115 * Configure HBA MSI-X attention conditions to messages 12116 */ 12117 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12118 12119 if (!pmb) { 12120 rc = -ENOMEM; 12121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12122 "0474 Unable to allocate memory for issuing " 12123 "MBOX_CONFIG_MSI command\n"); 12124 goto mem_fail_out; 12125 } 12126 rc = lpfc_config_msi(phba, pmb); 12127 if (rc) 12128 goto mbx_fail_out; 12129 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12130 if (rc != MBX_SUCCESS) { 12131 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12132 "0351 Config MSI mailbox command failed, " 12133 "mbxCmd x%x, mbxStatus x%x\n", 12134 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12135 goto mbx_fail_out; 12136 } 12137 12138 /* Free memory allocated for mailbox command */ 12139 mempool_free(pmb, phba->mbox_mem_pool); 12140 return rc; 12141 12142 mbx_fail_out: 12143 /* Free memory allocated for mailbox command */ 12144 mempool_free(pmb, phba->mbox_mem_pool); 12145 12146 mem_fail_out: 12147 /* free the irq already requested */ 12148 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12149 12150 irq_fail_out: 12151 /* free the irq already requested */ 12152 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12153 12154 msi_fail_out: 12155 /* Unconfigure MSI-X capability structure */ 12156 pci_free_irq_vectors(phba->pcidev); 12157 12158 vec_fail_out: 12159 return rc; 12160 } 12161 12162 /** 12163 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12164 * @phba: pointer to lpfc hba data structure. 12165 * 12166 * This routine is invoked to enable the MSI interrupt mode to device with 12167 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12168 * enable the MSI vector. The device driver is responsible for calling the 12169 * request_irq() to register MSI vector with a interrupt the handler, which 12170 * is done in this function. 12171 * 12172 * Return codes 12173 * 0 - successful 12174 * other values - error 12175 */ 12176 static int 12177 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12178 { 12179 int rc; 12180 12181 rc = pci_enable_msi(phba->pcidev); 12182 if (!rc) 12183 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12184 "0012 PCI enable MSI mode success.\n"); 12185 else { 12186 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12187 "0471 PCI enable MSI mode failed (%d)\n", rc); 12188 return rc; 12189 } 12190 12191 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12192 0, LPFC_DRIVER_NAME, phba); 12193 if (rc) { 12194 pci_disable_msi(phba->pcidev); 12195 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12196 "0478 MSI request_irq failed (%d)\n", rc); 12197 } 12198 return rc; 12199 } 12200 12201 /** 12202 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12203 * @phba: pointer to lpfc hba data structure. 12204 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12205 * 12206 * This routine is invoked to enable device interrupt and associate driver's 12207 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12208 * spec. Depends on the interrupt mode configured to the driver, the driver 12209 * will try to fallback from the configured interrupt mode to an interrupt 12210 * mode which is supported by the platform, kernel, and device in the order 12211 * of: 12212 * MSI-X -> MSI -> IRQ. 12213 * 12214 * Return codes 12215 * 0 - successful 12216 * other values - error 12217 **/ 12218 static uint32_t 12219 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12220 { 12221 uint32_t intr_mode = LPFC_INTR_ERROR; 12222 int retval; 12223 12224 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12225 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12226 if (retval) 12227 return intr_mode; 12228 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 12229 12230 if (cfg_mode == 2) { 12231 /* Now, try to enable MSI-X interrupt mode */ 12232 retval = lpfc_sli_enable_msix(phba); 12233 if (!retval) { 12234 /* Indicate initialization to MSI-X mode */ 12235 phba->intr_type = MSIX; 12236 intr_mode = 2; 12237 } 12238 } 12239 12240 /* Fallback to MSI if MSI-X initialization failed */ 12241 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12242 retval = lpfc_sli_enable_msi(phba); 12243 if (!retval) { 12244 /* Indicate initialization to MSI mode */ 12245 phba->intr_type = MSI; 12246 intr_mode = 1; 12247 } 12248 } 12249 12250 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12251 if (phba->intr_type == NONE) { 12252 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12253 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12254 if (!retval) { 12255 /* Indicate initialization to INTx mode */ 12256 phba->intr_type = INTx; 12257 intr_mode = 0; 12258 } 12259 } 12260 return intr_mode; 12261 } 12262 12263 /** 12264 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12265 * @phba: pointer to lpfc hba data structure. 12266 * 12267 * This routine is invoked to disable device interrupt and disassociate the 12268 * driver's interrupt handler(s) from interrupt vector(s) to device with 12269 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12270 * release the interrupt vector(s) for the message signaled interrupt. 12271 **/ 12272 static void 12273 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12274 { 12275 int nr_irqs, i; 12276 12277 if (phba->intr_type == MSIX) 12278 nr_irqs = LPFC_MSIX_VECTORS; 12279 else 12280 nr_irqs = 1; 12281 12282 for (i = 0; i < nr_irqs; i++) 12283 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12284 pci_free_irq_vectors(phba->pcidev); 12285 12286 /* Reset interrupt management states */ 12287 phba->intr_type = NONE; 12288 phba->sli.slistat.sli_intr = 0; 12289 } 12290 12291 /** 12292 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12293 * @phba: pointer to lpfc hba data structure. 12294 * @id: EQ vector index or Hardware Queue index 12295 * @match: LPFC_FIND_BY_EQ = match by EQ 12296 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12297 * Return the CPU that matches the selection criteria 12298 */ 12299 static uint16_t 12300 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12301 { 12302 struct lpfc_vector_map_info *cpup; 12303 int cpu; 12304 12305 /* Loop through all CPUs */ 12306 for_each_present_cpu(cpu) { 12307 cpup = &phba->sli4_hba.cpu_map[cpu]; 12308 12309 /* If we are matching by EQ, there may be multiple CPUs using 12310 * using the same vector, so select the one with 12311 * LPFC_CPU_FIRST_IRQ set. 12312 */ 12313 if ((match == LPFC_FIND_BY_EQ) && 12314 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12315 (cpup->eq == id)) 12316 return cpu; 12317 12318 /* If matching by HDWQ, select the first CPU that matches */ 12319 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12320 return cpu; 12321 } 12322 return 0; 12323 } 12324 12325 #ifdef CONFIG_X86 12326 /** 12327 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12328 * @phba: pointer to lpfc hba data structure. 12329 * @cpu: CPU map index 12330 * @phys_id: CPU package physical id 12331 * @core_id: CPU core id 12332 */ 12333 static int 12334 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12335 uint16_t phys_id, uint16_t core_id) 12336 { 12337 struct lpfc_vector_map_info *cpup; 12338 int idx; 12339 12340 for_each_present_cpu(idx) { 12341 cpup = &phba->sli4_hba.cpu_map[idx]; 12342 /* Does the cpup match the one we are looking for */ 12343 if ((cpup->phys_id == phys_id) && 12344 (cpup->core_id == core_id) && 12345 (cpu != idx)) 12346 return 1; 12347 } 12348 return 0; 12349 } 12350 #endif 12351 12352 /* 12353 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12354 * @phba: pointer to lpfc hba data structure. 12355 * @eqidx: index for eq and irq vector 12356 * @flag: flags to set for vector_map structure 12357 * @cpu: cpu used to index vector_map structure 12358 * 12359 * The routine assigns eq info into vector_map structure 12360 */ 12361 static inline void 12362 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12363 unsigned int cpu) 12364 { 12365 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12366 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12367 12368 cpup->eq = eqidx; 12369 cpup->flag |= flag; 12370 12371 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12372 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12373 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12374 } 12375 12376 /** 12377 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12378 * @phba: pointer to lpfc hba data structure. 12379 * 12380 * The routine initializes the cpu_map array structure 12381 */ 12382 static void 12383 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12384 { 12385 struct lpfc_vector_map_info *cpup; 12386 struct lpfc_eq_intr_info *eqi; 12387 int cpu; 12388 12389 for_each_possible_cpu(cpu) { 12390 cpup = &phba->sli4_hba.cpu_map[cpu]; 12391 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12392 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12393 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12394 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12395 cpup->flag = 0; 12396 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12397 INIT_LIST_HEAD(&eqi->list); 12398 eqi->icnt = 0; 12399 } 12400 } 12401 12402 /** 12403 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12404 * @phba: pointer to lpfc hba data structure. 12405 * 12406 * The routine initializes the hba_eq_hdl array structure 12407 */ 12408 static void 12409 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12410 { 12411 struct lpfc_hba_eq_hdl *eqhdl; 12412 int i; 12413 12414 for (i = 0; i < phba->cfg_irq_chann; i++) { 12415 eqhdl = lpfc_get_eq_hdl(i); 12416 eqhdl->irq = LPFC_IRQ_EMPTY; 12417 eqhdl->phba = phba; 12418 } 12419 } 12420 12421 /** 12422 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12423 * @phba: pointer to lpfc hba data structure. 12424 * @vectors: number of msix vectors allocated. 12425 * 12426 * The routine will figure out the CPU affinity assignment for every 12427 * MSI-X vector allocated for the HBA. 12428 * In addition, the CPU to IO channel mapping will be calculated 12429 * and the phba->sli4_hba.cpu_map array will reflect this. 12430 */ 12431 static void 12432 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12433 { 12434 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12435 int max_phys_id, min_phys_id; 12436 int max_core_id, min_core_id; 12437 struct lpfc_vector_map_info *cpup; 12438 struct lpfc_vector_map_info *new_cpup; 12439 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12440 struct lpfc_hdwq_stat *c_stat; 12441 #endif 12442 12443 max_phys_id = 0; 12444 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12445 max_core_id = 0; 12446 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12447 12448 /* Update CPU map with physical id and core id of each CPU */ 12449 for_each_present_cpu(cpu) { 12450 cpup = &phba->sli4_hba.cpu_map[cpu]; 12451 #ifdef CONFIG_X86 12452 cpup->phys_id = topology_physical_package_id(cpu); 12453 cpup->core_id = topology_core_id(cpu); 12454 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12455 cpup->flag |= LPFC_CPU_MAP_HYPER; 12456 #else 12457 /* No distinction between CPUs for other platforms */ 12458 cpup->phys_id = 0; 12459 cpup->core_id = cpu; 12460 #endif 12461 12462 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12463 "3328 CPU %d physid %d coreid %d flag x%x\n", 12464 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12465 12466 if (cpup->phys_id > max_phys_id) 12467 max_phys_id = cpup->phys_id; 12468 if (cpup->phys_id < min_phys_id) 12469 min_phys_id = cpup->phys_id; 12470 12471 if (cpup->core_id > max_core_id) 12472 max_core_id = cpup->core_id; 12473 if (cpup->core_id < min_core_id) 12474 min_core_id = cpup->core_id; 12475 } 12476 12477 /* After looking at each irq vector assigned to this pcidev, its 12478 * possible to see that not ALL CPUs have been accounted for. 12479 * Next we will set any unassigned (unaffinitized) cpu map 12480 * entries to a IRQ on the same phys_id. 12481 */ 12482 first_cpu = cpumask_first(cpu_present_mask); 12483 start_cpu = first_cpu; 12484 12485 for_each_present_cpu(cpu) { 12486 cpup = &phba->sli4_hba.cpu_map[cpu]; 12487 12488 /* Is this CPU entry unassigned */ 12489 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12490 /* Mark CPU as IRQ not assigned by the kernel */ 12491 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12492 12493 /* If so, find a new_cpup that is on the SAME 12494 * phys_id as cpup. start_cpu will start where we 12495 * left off so all unassigned entries don't get assgined 12496 * the IRQ of the first entry. 12497 */ 12498 new_cpu = start_cpu; 12499 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12500 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12501 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12502 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12503 (new_cpup->phys_id == cpup->phys_id)) 12504 goto found_same; 12505 new_cpu = lpfc_next_present_cpu(new_cpu); 12506 } 12507 /* At this point, we leave the CPU as unassigned */ 12508 continue; 12509 found_same: 12510 /* We found a matching phys_id, so copy the IRQ info */ 12511 cpup->eq = new_cpup->eq; 12512 12513 /* Bump start_cpu to the next slot to minmize the 12514 * chance of having multiple unassigned CPU entries 12515 * selecting the same IRQ. 12516 */ 12517 start_cpu = lpfc_next_present_cpu(new_cpu); 12518 12519 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12520 "3337 Set Affinity: CPU %d " 12521 "eq %d from peer cpu %d same " 12522 "phys_id (%d)\n", 12523 cpu, cpup->eq, new_cpu, 12524 cpup->phys_id); 12525 } 12526 } 12527 12528 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12529 start_cpu = first_cpu; 12530 12531 for_each_present_cpu(cpu) { 12532 cpup = &phba->sli4_hba.cpu_map[cpu]; 12533 12534 /* Is this entry unassigned */ 12535 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12536 /* Mark it as IRQ not assigned by the kernel */ 12537 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12538 12539 /* If so, find a new_cpup thats on ANY phys_id 12540 * as the cpup. start_cpu will start where we 12541 * left off so all unassigned entries don't get 12542 * assigned the IRQ of the first entry. 12543 */ 12544 new_cpu = start_cpu; 12545 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12546 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12547 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12548 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12549 goto found_any; 12550 new_cpu = lpfc_next_present_cpu(new_cpu); 12551 } 12552 /* We should never leave an entry unassigned */ 12553 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12554 "3339 Set Affinity: CPU %d " 12555 "eq %d UNASSIGNED\n", 12556 cpup->hdwq, cpup->eq); 12557 continue; 12558 found_any: 12559 /* We found an available entry, copy the IRQ info */ 12560 cpup->eq = new_cpup->eq; 12561 12562 /* Bump start_cpu to the next slot to minmize the 12563 * chance of having multiple unassigned CPU entries 12564 * selecting the same IRQ. 12565 */ 12566 start_cpu = lpfc_next_present_cpu(new_cpu); 12567 12568 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12569 "3338 Set Affinity: CPU %d " 12570 "eq %d from peer cpu %d (%d/%d)\n", 12571 cpu, cpup->eq, new_cpu, 12572 new_cpup->phys_id, new_cpup->core_id); 12573 } 12574 } 12575 12576 /* Assign hdwq indices that are unique across all cpus in the map 12577 * that are also FIRST_CPUs. 12578 */ 12579 idx = 0; 12580 for_each_present_cpu(cpu) { 12581 cpup = &phba->sli4_hba.cpu_map[cpu]; 12582 12583 /* Only FIRST IRQs get a hdwq index assignment. */ 12584 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12585 continue; 12586 12587 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12588 cpup->hdwq = idx; 12589 idx++; 12590 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12591 "3333 Set Affinity: CPU %d (phys %d core %d): " 12592 "hdwq %d eq %d flg x%x\n", 12593 cpu, cpup->phys_id, cpup->core_id, 12594 cpup->hdwq, cpup->eq, cpup->flag); 12595 } 12596 /* Associate a hdwq with each cpu_map entry 12597 * This will be 1 to 1 - hdwq to cpu, unless there are less 12598 * hardware queues then CPUs. For that case we will just round-robin 12599 * the available hardware queues as they get assigned to CPUs. 12600 * The next_idx is the idx from the FIRST_CPU loop above to account 12601 * for irq_chann < hdwq. The idx is used for round-robin assignments 12602 * and needs to start at 0. 12603 */ 12604 next_idx = idx; 12605 start_cpu = 0; 12606 idx = 0; 12607 for_each_present_cpu(cpu) { 12608 cpup = &phba->sli4_hba.cpu_map[cpu]; 12609 12610 /* FIRST cpus are already mapped. */ 12611 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12612 continue; 12613 12614 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12615 * of the unassigned cpus to the next idx so that all 12616 * hdw queues are fully utilized. 12617 */ 12618 if (next_idx < phba->cfg_hdw_queue) { 12619 cpup->hdwq = next_idx; 12620 next_idx++; 12621 continue; 12622 } 12623 12624 /* Not a First CPU and all hdw_queues are used. Reuse a 12625 * Hardware Queue for another CPU, so be smart about it 12626 * and pick one that has its IRQ/EQ mapped to the same phys_id 12627 * (CPU package) and core_id. 12628 */ 12629 new_cpu = start_cpu; 12630 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12631 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12632 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12633 new_cpup->phys_id == cpup->phys_id && 12634 new_cpup->core_id == cpup->core_id) { 12635 goto found_hdwq; 12636 } 12637 new_cpu = lpfc_next_present_cpu(new_cpu); 12638 } 12639 12640 /* If we can't match both phys_id and core_id, 12641 * settle for just a phys_id match. 12642 */ 12643 new_cpu = start_cpu; 12644 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12645 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12646 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12647 new_cpup->phys_id == cpup->phys_id) 12648 goto found_hdwq; 12649 new_cpu = lpfc_next_present_cpu(new_cpu); 12650 } 12651 12652 /* Otherwise just round robin on cfg_hdw_queue */ 12653 cpup->hdwq = idx % phba->cfg_hdw_queue; 12654 idx++; 12655 goto logit; 12656 found_hdwq: 12657 /* We found an available entry, copy the IRQ info */ 12658 start_cpu = lpfc_next_present_cpu(new_cpu); 12659 cpup->hdwq = new_cpup->hdwq; 12660 logit: 12661 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12662 "3335 Set Affinity: CPU %d (phys %d core %d): " 12663 "hdwq %d eq %d flg x%x\n", 12664 cpu, cpup->phys_id, cpup->core_id, 12665 cpup->hdwq, cpup->eq, cpup->flag); 12666 } 12667 12668 /* 12669 * Initialize the cpu_map slots for not-present cpus in case 12670 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12671 */ 12672 idx = 0; 12673 for_each_possible_cpu(cpu) { 12674 cpup = &phba->sli4_hba.cpu_map[cpu]; 12675 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12676 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12677 c_stat->hdwq_no = cpup->hdwq; 12678 #endif 12679 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12680 continue; 12681 12682 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12683 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12684 c_stat->hdwq_no = cpup->hdwq; 12685 #endif 12686 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12687 "3340 Set Affinity: not present " 12688 "CPU %d hdwq %d\n", 12689 cpu, cpup->hdwq); 12690 } 12691 12692 /* The cpu_map array will be used later during initialization 12693 * when EQ / CQ / WQs are allocated and configured. 12694 */ 12695 return; 12696 } 12697 12698 /** 12699 * lpfc_cpuhp_get_eq 12700 * 12701 * @phba: pointer to lpfc hba data structure. 12702 * @cpu: cpu going offline 12703 * @eqlist: eq list to append to 12704 */ 12705 static int 12706 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12707 struct list_head *eqlist) 12708 { 12709 const struct cpumask *maskp; 12710 struct lpfc_queue *eq; 12711 struct cpumask *tmp; 12712 u16 idx; 12713 12714 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12715 if (!tmp) 12716 return -ENOMEM; 12717 12718 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12719 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12720 if (!maskp) 12721 continue; 12722 /* 12723 * if irq is not affinitized to the cpu going 12724 * then we don't need to poll the eq attached 12725 * to it. 12726 */ 12727 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12728 continue; 12729 /* get the cpus that are online and are affini- 12730 * tized to this irq vector. If the count is 12731 * more than 1 then cpuhp is not going to shut- 12732 * down this vector. Since this cpu has not 12733 * gone offline yet, we need >1. 12734 */ 12735 cpumask_and(tmp, maskp, cpu_online_mask); 12736 if (cpumask_weight(tmp) > 1) 12737 continue; 12738 12739 /* Now that we have an irq to shutdown, get the eq 12740 * mapped to this irq. Note: multiple hdwq's in 12741 * the software can share an eq, but eventually 12742 * only eq will be mapped to this vector 12743 */ 12744 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12745 list_add(&eq->_poll_list, eqlist); 12746 } 12747 kfree(tmp); 12748 return 0; 12749 } 12750 12751 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12752 { 12753 if (phba->sli_rev != LPFC_SLI_REV4) 12754 return; 12755 12756 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12757 &phba->cpuhp); 12758 /* 12759 * unregistering the instance doesn't stop the polling 12760 * timer. Wait for the poll timer to retire. 12761 */ 12762 synchronize_rcu(); 12763 del_timer_sync(&phba->cpuhp_poll_timer); 12764 } 12765 12766 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12767 { 12768 if (phba->pport && 12769 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 12770 return; 12771 12772 __lpfc_cpuhp_remove(phba); 12773 } 12774 12775 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12776 { 12777 if (phba->sli_rev != LPFC_SLI_REV4) 12778 return; 12779 12780 rcu_read_lock(); 12781 12782 if (!list_empty(&phba->poll_list)) 12783 mod_timer(&phba->cpuhp_poll_timer, 12784 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12785 12786 rcu_read_unlock(); 12787 12788 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12789 &phba->cpuhp); 12790 } 12791 12792 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12793 { 12794 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 12795 *retval = -EAGAIN; 12796 return true; 12797 } 12798 12799 if (phba->sli_rev != LPFC_SLI_REV4) { 12800 *retval = 0; 12801 return true; 12802 } 12803 12804 /* proceed with the hotplug */ 12805 return false; 12806 } 12807 12808 /** 12809 * lpfc_irq_set_aff - set IRQ affinity 12810 * @eqhdl: EQ handle 12811 * @cpu: cpu to set affinity 12812 * 12813 **/ 12814 static inline void 12815 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12816 { 12817 cpumask_clear(&eqhdl->aff_mask); 12818 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12819 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12820 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12821 } 12822 12823 /** 12824 * lpfc_irq_clear_aff - clear IRQ affinity 12825 * @eqhdl: EQ handle 12826 * 12827 **/ 12828 static inline void 12829 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12830 { 12831 cpumask_clear(&eqhdl->aff_mask); 12832 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12833 } 12834 12835 /** 12836 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12837 * @phba: pointer to HBA context object. 12838 * @cpu: cpu going offline/online 12839 * @offline: true, cpu is going offline. false, cpu is coming online. 12840 * 12841 * If cpu is going offline, we'll try our best effort to find the next 12842 * online cpu on the phba's original_mask and migrate all offlining IRQ 12843 * affinities. 12844 * 12845 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12846 * 12847 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12848 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12849 * 12850 **/ 12851 static void 12852 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12853 { 12854 struct lpfc_vector_map_info *cpup; 12855 struct cpumask *aff_mask; 12856 unsigned int cpu_select, cpu_next, idx; 12857 const struct cpumask *orig_mask; 12858 12859 if (phba->irq_chann_mode == NORMAL_MODE) 12860 return; 12861 12862 orig_mask = &phba->sli4_hba.irq_aff_mask; 12863 12864 if (!cpumask_test_cpu(cpu, orig_mask)) 12865 return; 12866 12867 cpup = &phba->sli4_hba.cpu_map[cpu]; 12868 12869 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12870 return; 12871 12872 if (offline) { 12873 /* Find next online CPU on original mask */ 12874 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 12875 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12876 12877 /* Found a valid CPU */ 12878 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12879 /* Go through each eqhdl and ensure offlining 12880 * cpu aff_mask is migrated 12881 */ 12882 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12883 aff_mask = lpfc_get_aff_mask(idx); 12884 12885 /* Migrate affinity */ 12886 if (cpumask_test_cpu(cpu, aff_mask)) 12887 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12888 cpu_select); 12889 } 12890 } else { 12891 /* Rely on irqbalance if no online CPUs left on NUMA */ 12892 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12893 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12894 } 12895 } else { 12896 /* Migrate affinity back to this CPU */ 12897 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12898 } 12899 } 12900 12901 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12902 { 12903 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12904 struct lpfc_queue *eq, *next; 12905 LIST_HEAD(eqlist); 12906 int retval; 12907 12908 if (!phba) { 12909 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12910 return 0; 12911 } 12912 12913 if (__lpfc_cpuhp_checks(phba, &retval)) 12914 return retval; 12915 12916 lpfc_irq_rebalance(phba, cpu, true); 12917 12918 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12919 if (retval) 12920 return retval; 12921 12922 /* start polling on these eq's */ 12923 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12924 list_del_init(&eq->_poll_list); 12925 lpfc_sli4_start_polling(eq); 12926 } 12927 12928 return 0; 12929 } 12930 12931 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12932 { 12933 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12934 struct lpfc_queue *eq, *next; 12935 unsigned int n; 12936 int retval; 12937 12938 if (!phba) { 12939 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12940 return 0; 12941 } 12942 12943 if (__lpfc_cpuhp_checks(phba, &retval)) 12944 return retval; 12945 12946 lpfc_irq_rebalance(phba, cpu, false); 12947 12948 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12949 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12950 if (n == cpu) 12951 lpfc_sli4_stop_polling(eq); 12952 } 12953 12954 return 0; 12955 } 12956 12957 /** 12958 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12959 * @phba: pointer to lpfc hba data structure. 12960 * 12961 * This routine is invoked to enable the MSI-X interrupt vectors to device 12962 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12963 * to cpus on the system. 12964 * 12965 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12966 * the number of cpus on the same numa node as this adapter. The vectors are 12967 * allocated without requesting OS affinity mapping. A vector will be 12968 * allocated and assigned to each online and offline cpu. If the cpu is 12969 * online, then affinity will be set to that cpu. If the cpu is offline, then 12970 * affinity will be set to the nearest peer cpu within the numa node that is 12971 * online. If there are no online cpus within the numa node, affinity is not 12972 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12973 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12974 * configured. 12975 * 12976 * If numa mode is not enabled and there is more than 1 vector allocated, then 12977 * the driver relies on the managed irq interface where the OS assigns vector to 12978 * cpu affinity. The driver will then use that affinity mapping to setup its 12979 * cpu mapping table. 12980 * 12981 * Return codes 12982 * 0 - successful 12983 * other values - error 12984 **/ 12985 static int 12986 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12987 { 12988 int vectors, rc, index; 12989 char *name; 12990 const struct cpumask *aff_mask = NULL; 12991 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 12992 struct lpfc_vector_map_info *cpup; 12993 struct lpfc_hba_eq_hdl *eqhdl; 12994 const struct cpumask *maskp; 12995 unsigned int flags = PCI_IRQ_MSIX; 12996 12997 /* Set up MSI-X multi-message vectors */ 12998 vectors = phba->cfg_irq_chann; 12999 13000 if (phba->irq_chann_mode != NORMAL_MODE) 13001 aff_mask = &phba->sli4_hba.irq_aff_mask; 13002 13003 if (aff_mask) { 13004 cpu_cnt = cpumask_weight(aff_mask); 13005 vectors = min(phba->cfg_irq_chann, cpu_cnt); 13006 13007 /* cpu: iterates over aff_mask including offline or online 13008 * cpu_select: iterates over online aff_mask to set affinity 13009 */ 13010 cpu = cpumask_first(aff_mask); 13011 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13012 } else { 13013 flags |= PCI_IRQ_AFFINITY; 13014 } 13015 13016 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 13017 if (rc < 0) { 13018 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13019 "0484 PCI enable MSI-X failed (%d)\n", rc); 13020 goto vec_fail_out; 13021 } 13022 vectors = rc; 13023 13024 /* Assign MSI-X vectors to interrupt handlers */ 13025 for (index = 0; index < vectors; index++) { 13026 eqhdl = lpfc_get_eq_hdl(index); 13027 name = eqhdl->handler_name; 13028 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 13029 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 13030 LPFC_DRIVER_HANDLER_NAME"%d", index); 13031 13032 eqhdl->idx = index; 13033 rc = pci_irq_vector(phba->pcidev, index); 13034 if (rc < 0) { 13035 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13036 "0489 MSI-X fast-path (%d) " 13037 "pci_irq_vec failed (%d)\n", index, rc); 13038 goto cfg_fail_out; 13039 } 13040 eqhdl->irq = rc; 13041 13042 rc = request_threaded_irq(eqhdl->irq, 13043 &lpfc_sli4_hba_intr_handler, 13044 &lpfc_sli4_hba_intr_handler_th, 13045 0, name, eqhdl); 13046 if (rc) { 13047 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13048 "0486 MSI-X fast-path (%d) " 13049 "request_irq failed (%d)\n", index, rc); 13050 goto cfg_fail_out; 13051 } 13052 13053 if (aff_mask) { 13054 /* If found a neighboring online cpu, set affinity */ 13055 if (cpu_select < nr_cpu_ids) 13056 lpfc_irq_set_aff(eqhdl, cpu_select); 13057 13058 /* Assign EQ to cpu_map */ 13059 lpfc_assign_eq_map_info(phba, index, 13060 LPFC_CPU_FIRST_IRQ, 13061 cpu); 13062 13063 /* Iterate to next offline or online cpu in aff_mask */ 13064 cpu = cpumask_next(cpu, aff_mask); 13065 13066 /* Find next online cpu in aff_mask to set affinity */ 13067 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13068 } else if (vectors == 1) { 13069 cpu = cpumask_first(cpu_present_mask); 13070 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 13071 cpu); 13072 } else { 13073 maskp = pci_irq_get_affinity(phba->pcidev, index); 13074 13075 /* Loop through all CPUs associated with vector index */ 13076 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 13077 cpup = &phba->sli4_hba.cpu_map[cpu]; 13078 13079 /* If this is the first CPU thats assigned to 13080 * this vector, set LPFC_CPU_FIRST_IRQ. 13081 * 13082 * With certain platforms its possible that irq 13083 * vectors are affinitized to all the cpu's. 13084 * This can result in each cpu_map.eq to be set 13085 * to the last vector, resulting in overwrite 13086 * of all the previous cpu_map.eq. Ensure that 13087 * each vector receives a place in cpu_map. 13088 * Later call to lpfc_cpu_affinity_check will 13089 * ensure we are nicely balanced out. 13090 */ 13091 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13092 continue; 13093 lpfc_assign_eq_map_info(phba, index, 13094 LPFC_CPU_FIRST_IRQ, 13095 cpu); 13096 break; 13097 } 13098 } 13099 } 13100 13101 if (vectors != phba->cfg_irq_chann) { 13102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13103 "3238 Reducing IO channels to match number of " 13104 "MSI-X vectors, requested %d got %d\n", 13105 phba->cfg_irq_chann, vectors); 13106 if (phba->cfg_irq_chann > vectors) 13107 phba->cfg_irq_chann = vectors; 13108 } 13109 13110 return rc; 13111 13112 cfg_fail_out: 13113 /* free the irq already requested */ 13114 for (--index; index >= 0; index--) { 13115 eqhdl = lpfc_get_eq_hdl(index); 13116 lpfc_irq_clear_aff(eqhdl); 13117 free_irq(eqhdl->irq, eqhdl); 13118 } 13119 13120 /* Unconfigure MSI-X capability structure */ 13121 pci_free_irq_vectors(phba->pcidev); 13122 13123 vec_fail_out: 13124 return rc; 13125 } 13126 13127 /** 13128 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13129 * @phba: pointer to lpfc hba data structure. 13130 * 13131 * This routine is invoked to enable the MSI interrupt mode to device with 13132 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13133 * called to enable the MSI vector. The device driver is responsible for 13134 * calling the request_irq() to register MSI vector with a interrupt the 13135 * handler, which is done in this function. 13136 * 13137 * Return codes 13138 * 0 - successful 13139 * other values - error 13140 **/ 13141 static int 13142 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13143 { 13144 int rc, index; 13145 unsigned int cpu; 13146 struct lpfc_hba_eq_hdl *eqhdl; 13147 13148 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13149 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13150 if (rc > 0) 13151 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13152 "0487 PCI enable MSI mode success.\n"); 13153 else { 13154 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13155 "0488 PCI enable MSI mode failed (%d)\n", rc); 13156 return rc ? rc : -1; 13157 } 13158 13159 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13160 0, LPFC_DRIVER_NAME, phba); 13161 if (rc) { 13162 pci_free_irq_vectors(phba->pcidev); 13163 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13164 "0490 MSI request_irq failed (%d)\n", rc); 13165 return rc; 13166 } 13167 13168 eqhdl = lpfc_get_eq_hdl(0); 13169 rc = pci_irq_vector(phba->pcidev, 0); 13170 if (rc < 0) { 13171 pci_free_irq_vectors(phba->pcidev); 13172 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13173 "0496 MSI pci_irq_vec failed (%d)\n", rc); 13174 return rc; 13175 } 13176 eqhdl->irq = rc; 13177 13178 cpu = cpumask_first(cpu_present_mask); 13179 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13180 13181 for (index = 0; index < phba->cfg_irq_chann; index++) { 13182 eqhdl = lpfc_get_eq_hdl(index); 13183 eqhdl->idx = index; 13184 } 13185 13186 return 0; 13187 } 13188 13189 /** 13190 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13191 * @phba: pointer to lpfc hba data structure. 13192 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13193 * 13194 * This routine is invoked to enable device interrupt and associate driver's 13195 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13196 * interface spec. Depends on the interrupt mode configured to the driver, 13197 * the driver will try to fallback from the configured interrupt mode to an 13198 * interrupt mode which is supported by the platform, kernel, and device in 13199 * the order of: 13200 * MSI-X -> MSI -> IRQ. 13201 * 13202 * Return codes 13203 * Interrupt mode (2, 1, 0) - successful 13204 * LPFC_INTR_ERROR - error 13205 **/ 13206 static uint32_t 13207 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13208 { 13209 uint32_t intr_mode = LPFC_INTR_ERROR; 13210 int retval, idx; 13211 13212 if (cfg_mode == 2) { 13213 /* Preparation before conf_msi mbox cmd */ 13214 retval = 0; 13215 if (!retval) { 13216 /* Now, try to enable MSI-X interrupt mode */ 13217 retval = lpfc_sli4_enable_msix(phba); 13218 if (!retval) { 13219 /* Indicate initialization to MSI-X mode */ 13220 phba->intr_type = MSIX; 13221 intr_mode = 2; 13222 } 13223 } 13224 } 13225 13226 /* Fallback to MSI if MSI-X initialization failed */ 13227 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13228 retval = lpfc_sli4_enable_msi(phba); 13229 if (!retval) { 13230 /* Indicate initialization to MSI mode */ 13231 phba->intr_type = MSI; 13232 intr_mode = 1; 13233 } 13234 } 13235 13236 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13237 if (phba->intr_type == NONE) { 13238 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13239 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13240 if (!retval) { 13241 struct lpfc_hba_eq_hdl *eqhdl; 13242 unsigned int cpu; 13243 13244 /* Indicate initialization to INTx mode */ 13245 phba->intr_type = INTx; 13246 intr_mode = 0; 13247 13248 eqhdl = lpfc_get_eq_hdl(0); 13249 retval = pci_irq_vector(phba->pcidev, 0); 13250 if (retval < 0) { 13251 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13252 "0502 INTR pci_irq_vec failed (%d)\n", 13253 retval); 13254 return LPFC_INTR_ERROR; 13255 } 13256 eqhdl->irq = retval; 13257 13258 cpu = cpumask_first(cpu_present_mask); 13259 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13260 cpu); 13261 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13262 eqhdl = lpfc_get_eq_hdl(idx); 13263 eqhdl->idx = idx; 13264 } 13265 } 13266 } 13267 return intr_mode; 13268 } 13269 13270 /** 13271 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13272 * @phba: pointer to lpfc hba data structure. 13273 * 13274 * This routine is invoked to disable device interrupt and disassociate 13275 * the driver's interrupt handler(s) from interrupt vector(s) to device 13276 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13277 * will release the interrupt vector(s) for the message signaled interrupt. 13278 **/ 13279 static void 13280 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13281 { 13282 /* Disable the currently initialized interrupt mode */ 13283 if (phba->intr_type == MSIX) { 13284 int index; 13285 struct lpfc_hba_eq_hdl *eqhdl; 13286 13287 /* Free up MSI-X multi-message vectors */ 13288 for (index = 0; index < phba->cfg_irq_chann; index++) { 13289 eqhdl = lpfc_get_eq_hdl(index); 13290 lpfc_irq_clear_aff(eqhdl); 13291 free_irq(eqhdl->irq, eqhdl); 13292 } 13293 } else { 13294 free_irq(phba->pcidev->irq, phba); 13295 } 13296 13297 pci_free_irq_vectors(phba->pcidev); 13298 13299 /* Reset interrupt management states */ 13300 phba->intr_type = NONE; 13301 phba->sli.slistat.sli_intr = 0; 13302 } 13303 13304 /** 13305 * lpfc_unset_hba - Unset SLI3 hba device initialization 13306 * @phba: pointer to lpfc hba data structure. 13307 * 13308 * This routine is invoked to unset the HBA device initialization steps to 13309 * a device with SLI-3 interface spec. 13310 **/ 13311 static void 13312 lpfc_unset_hba(struct lpfc_hba *phba) 13313 { 13314 set_bit(FC_UNLOADING, &phba->pport->load_flag); 13315 13316 kfree(phba->vpi_bmask); 13317 kfree(phba->vpi_ids); 13318 13319 lpfc_stop_hba_timers(phba); 13320 13321 phba->pport->work_port_events = 0; 13322 13323 lpfc_sli_hba_down(phba); 13324 13325 lpfc_sli_brdrestart(phba); 13326 13327 lpfc_sli_disable_intr(phba); 13328 13329 return; 13330 } 13331 13332 /** 13333 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13334 * @phba: Pointer to HBA context object. 13335 * 13336 * This function is called in the SLI4 code path to wait for completion 13337 * of device's XRIs exchange busy. It will check the XRI exchange busy 13338 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13339 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13340 * I/Os every 30 seconds, log error message, and wait forever. Only when 13341 * all XRI exchange busy complete, the driver unload shall proceed with 13342 * invoking the function reset ioctl mailbox command to the CNA and the 13343 * the rest of the driver unload resource release. 13344 **/ 13345 static void 13346 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13347 { 13348 struct lpfc_sli4_hdw_queue *qp; 13349 int idx, ccnt; 13350 int wait_time = 0; 13351 int io_xri_cmpl = 1; 13352 int nvmet_xri_cmpl = 1; 13353 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13354 13355 /* Driver just aborted IOs during the hba_unset process. Pause 13356 * here to give the HBA time to complete the IO and get entries 13357 * into the abts lists. 13358 */ 13359 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13360 13361 /* Wait for NVME pending IO to flush back to transport. */ 13362 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13363 lpfc_nvme_wait_for_io_drain(phba); 13364 13365 ccnt = 0; 13366 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13367 qp = &phba->sli4_hba.hdwq[idx]; 13368 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13369 if (!io_xri_cmpl) /* if list is NOT empty */ 13370 ccnt++; 13371 } 13372 if (ccnt) 13373 io_xri_cmpl = 0; 13374 13375 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13376 nvmet_xri_cmpl = 13377 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13378 } 13379 13380 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13381 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13382 if (!nvmet_xri_cmpl) 13383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13384 "6424 NVMET XRI exchange busy " 13385 "wait time: %d seconds.\n", 13386 wait_time/1000); 13387 if (!io_xri_cmpl) 13388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13389 "6100 IO XRI exchange busy " 13390 "wait time: %d seconds.\n", 13391 wait_time/1000); 13392 if (!els_xri_cmpl) 13393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13394 "2878 ELS XRI exchange busy " 13395 "wait time: %d seconds.\n", 13396 wait_time/1000); 13397 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13398 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13399 } else { 13400 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13401 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13402 } 13403 13404 ccnt = 0; 13405 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13406 qp = &phba->sli4_hba.hdwq[idx]; 13407 io_xri_cmpl = list_empty( 13408 &qp->lpfc_abts_io_buf_list); 13409 if (!io_xri_cmpl) /* if list is NOT empty */ 13410 ccnt++; 13411 } 13412 if (ccnt) 13413 io_xri_cmpl = 0; 13414 13415 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13416 nvmet_xri_cmpl = list_empty( 13417 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13418 } 13419 els_xri_cmpl = 13420 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13421 13422 } 13423 } 13424 13425 /** 13426 * lpfc_sli4_hba_unset - Unset the fcoe hba 13427 * @phba: Pointer to HBA context object. 13428 * 13429 * This function is called in the SLI4 code path to reset the HBA's FCoE 13430 * function. The caller is not required to hold any lock. This routine 13431 * issues PCI function reset mailbox command to reset the FCoE function. 13432 * At the end of the function, it calls lpfc_hba_down_post function to 13433 * free any pending commands. 13434 **/ 13435 static void 13436 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13437 { 13438 int wait_cnt = 0; 13439 LPFC_MBOXQ_t *mboxq; 13440 struct pci_dev *pdev = phba->pcidev; 13441 13442 lpfc_stop_hba_timers(phba); 13443 hrtimer_cancel(&phba->cmf_stats_timer); 13444 hrtimer_cancel(&phba->cmf_timer); 13445 13446 if (phba->pport) 13447 phba->sli4_hba.intr_enable = 0; 13448 13449 /* 13450 * Gracefully wait out the potential current outstanding asynchronous 13451 * mailbox command. 13452 */ 13453 13454 /* First, block any pending async mailbox command from posted */ 13455 spin_lock_irq(&phba->hbalock); 13456 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13457 spin_unlock_irq(&phba->hbalock); 13458 /* Now, trying to wait it out if we can */ 13459 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13460 msleep(10); 13461 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13462 break; 13463 } 13464 /* Forcefully release the outstanding mailbox command if timed out */ 13465 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13466 spin_lock_irq(&phba->hbalock); 13467 mboxq = phba->sli.mbox_active; 13468 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13469 __lpfc_mbox_cmpl_put(phba, mboxq); 13470 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13471 phba->sli.mbox_active = NULL; 13472 spin_unlock_irq(&phba->hbalock); 13473 } 13474 13475 /* Abort all iocbs associated with the hba */ 13476 lpfc_sli_hba_iocb_abort(phba); 13477 13478 if (!pci_channel_offline(phba->pcidev)) 13479 /* Wait for completion of device XRI exchange busy */ 13480 lpfc_sli4_xri_exchange_busy_wait(phba); 13481 13482 /* per-phba callback de-registration for hotplug event */ 13483 if (phba->pport) 13484 lpfc_cpuhp_remove(phba); 13485 13486 /* Disable PCI subsystem interrupt */ 13487 lpfc_sli4_disable_intr(phba); 13488 13489 /* Disable SR-IOV if enabled */ 13490 if (phba->cfg_sriov_nr_virtfn) 13491 pci_disable_sriov(pdev); 13492 13493 /* Stop kthread signal shall trigger work_done one more time */ 13494 kthread_stop(phba->worker_thread); 13495 13496 /* Disable FW logging to host memory */ 13497 lpfc_ras_stop_fwlog(phba); 13498 13499 /* Reset SLI4 HBA FCoE function */ 13500 lpfc_pci_function_reset(phba); 13501 13502 /* release all queue allocated resources. */ 13503 lpfc_sli4_queue_destroy(phba); 13504 13505 /* Free RAS DMA memory */ 13506 if (phba->ras_fwlog.ras_enabled) 13507 lpfc_sli4_ras_dma_free(phba); 13508 13509 /* Stop the SLI4 device port */ 13510 if (phba->pport) 13511 phba->pport->work_port_events = 0; 13512 } 13513 13514 static uint32_t 13515 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13516 { 13517 uint32_t msb = 0; 13518 uint32_t bit; 13519 13520 for (bit = 0; bit < 8; bit++) { 13521 msb = (crc >> 31) & 1; 13522 crc <<= 1; 13523 13524 if (msb ^ (byte & 1)) { 13525 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13526 crc |= 1; 13527 } 13528 byte >>= 1; 13529 } 13530 return crc; 13531 } 13532 13533 static uint32_t 13534 lpfc_cgn_reverse_bits(uint32_t wd) 13535 { 13536 uint32_t result = 0; 13537 uint32_t i; 13538 13539 for (i = 0; i < 32; i++) { 13540 result <<= 1; 13541 result |= (1 & (wd >> i)); 13542 } 13543 return result; 13544 } 13545 13546 /* 13547 * The routine corresponds with the algorithm the HBA firmware 13548 * uses to validate the data integrity. 13549 */ 13550 uint32_t 13551 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13552 { 13553 uint32_t i; 13554 uint32_t result; 13555 uint8_t *data = (uint8_t *)ptr; 13556 13557 for (i = 0; i < byteLen; ++i) 13558 crc = lpfc_cgn_crc32(crc, data[i]); 13559 13560 result = ~lpfc_cgn_reverse_bits(crc); 13561 return result; 13562 } 13563 13564 void 13565 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13566 { 13567 struct lpfc_cgn_info *cp; 13568 uint16_t size; 13569 uint32_t crc; 13570 13571 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13572 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13573 13574 if (!phba->cgn_i) 13575 return; 13576 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13577 13578 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13579 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13580 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13581 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13582 13583 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13584 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13585 atomic64_set(&phba->cgn_latency_evt, 0); 13586 phba->cgn_evt_minute = 0; 13587 13588 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13589 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13590 cp->cgn_info_version = LPFC_CGN_INFO_V4; 13591 13592 /* cgn parameters */ 13593 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13594 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13595 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13596 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13597 13598 lpfc_cgn_update_tstamp(phba, &cp->base_time); 13599 13600 /* Fill in default LUN qdepth */ 13601 if (phba->pport) { 13602 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13603 cp->cgn_lunq = cpu_to_le16(size); 13604 } 13605 13606 /* last used Index initialized to 0xff already */ 13607 13608 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13609 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13610 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13611 cp->cgn_info_crc = cpu_to_le32(crc); 13612 13613 phba->cgn_evt_timestamp = jiffies + 13614 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13615 } 13616 13617 void 13618 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13619 { 13620 struct lpfc_cgn_info *cp; 13621 uint32_t crc; 13622 13623 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13624 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13625 13626 if (!phba->cgn_i) 13627 return; 13628 13629 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13630 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13631 13632 lpfc_cgn_update_tstamp(phba, &cp->stat_start); 13633 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13634 cp->cgn_info_crc = cpu_to_le32(crc); 13635 } 13636 13637 /** 13638 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13639 * @phba: Pointer to hba context object. 13640 * @reg: flag to determine register or unregister. 13641 */ 13642 static int 13643 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13644 { 13645 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13646 union lpfc_sli4_cfg_shdr *shdr; 13647 uint32_t shdr_status, shdr_add_status; 13648 LPFC_MBOXQ_t *mboxq; 13649 int length, rc; 13650 13651 if (!phba->cgn_i) 13652 return -ENXIO; 13653 13654 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13655 if (!mboxq) { 13656 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13657 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13658 "HBA state x%x reg %d\n", 13659 phba->pport->port_state, reg); 13660 return -ENOMEM; 13661 } 13662 13663 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13664 sizeof(struct lpfc_sli4_cfg_mhdr)); 13665 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13666 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13667 LPFC_SLI4_MBX_EMBED); 13668 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13669 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13670 if (reg > 0) 13671 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13672 else 13673 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13674 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13675 reg_congestion_buf->addr_lo = 13676 putPaddrLow(phba->cgn_i->phys); 13677 reg_congestion_buf->addr_hi = 13678 putPaddrHigh(phba->cgn_i->phys); 13679 13680 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13681 shdr = (union lpfc_sli4_cfg_shdr *) 13682 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13685 &shdr->response); 13686 mempool_free(mboxq, phba->mbox_mem_pool); 13687 if (shdr_status || shdr_add_status || rc) { 13688 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13689 "2642 REG_CONGESTION_BUF mailbox " 13690 "failed with status x%x add_status x%x," 13691 " mbx status x%x reg %d\n", 13692 shdr_status, shdr_add_status, rc, reg); 13693 return -ENXIO; 13694 } 13695 return 0; 13696 } 13697 13698 int 13699 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13700 { 13701 lpfc_cmf_stop(phba); 13702 return __lpfc_reg_congestion_buf(phba, 0); 13703 } 13704 13705 int 13706 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13707 { 13708 return __lpfc_reg_congestion_buf(phba, 1); 13709 } 13710 13711 /** 13712 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13713 * @phba: Pointer to HBA context object. 13714 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13715 * 13716 * This function is called in the SLI4 code path to read the port's 13717 * sli4 capabilities. 13718 * 13719 * This function may be be called from any context that can block-wait 13720 * for the completion. The expectation is that this routine is called 13721 * typically from probe_one or from the online routine. 13722 **/ 13723 int 13724 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13725 { 13726 int rc; 13727 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13728 struct lpfc_pc_sli4_params *sli4_params; 13729 uint32_t mbox_tmo; 13730 int length; 13731 bool exp_wqcq_pages = true; 13732 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13733 13734 /* 13735 * By default, the driver assumes the SLI4 port requires RPI 13736 * header postings. The SLI4_PARAM response will correct this 13737 * assumption. 13738 */ 13739 phba->sli4_hba.rpi_hdrs_in_use = 1; 13740 13741 /* Read the port's SLI4 Config Parameters */ 13742 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13743 sizeof(struct lpfc_sli4_cfg_mhdr)); 13744 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13745 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13746 length, LPFC_SLI4_MBX_EMBED); 13747 if (!phba->sli4_hba.intr_enable) 13748 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13749 else { 13750 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13751 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13752 } 13753 if (unlikely(rc)) 13754 return rc; 13755 sli4_params = &phba->sli4_hba.pc_sli4_params; 13756 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13757 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13758 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13759 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13760 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13761 mbx_sli4_parameters); 13762 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13763 mbx_sli4_parameters); 13764 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13765 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13766 else 13767 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13768 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13769 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13770 mbx_sli4_parameters); 13771 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13772 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13773 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13774 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13775 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13776 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13777 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13778 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13779 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13780 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13781 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13782 mbx_sli4_parameters); 13783 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13784 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13785 mbx_sli4_parameters); 13786 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13787 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13788 sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); 13789 13790 /* Check for Extended Pre-Registered SGL support */ 13791 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13792 13793 /* Check for firmware nvme support */ 13794 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13795 bf_get(cfg_xib, mbx_sli4_parameters)); 13796 13797 if (rc) { 13798 /* Save this to indicate the Firmware supports NVME */ 13799 sli4_params->nvme = 1; 13800 13801 /* Firmware NVME support, check driver FC4 NVME support */ 13802 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13804 "6133 Disabling NVME support: " 13805 "FC4 type not supported: x%x\n", 13806 phba->cfg_enable_fc4_type); 13807 goto fcponly; 13808 } 13809 } else { 13810 /* No firmware NVME support, check driver FC4 NVME support */ 13811 sli4_params->nvme = 0; 13812 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13814 "6101 Disabling NVME support: Not " 13815 "supported by firmware (%d %d) x%x\n", 13816 bf_get(cfg_nvme, mbx_sli4_parameters), 13817 bf_get(cfg_xib, mbx_sli4_parameters), 13818 phba->cfg_enable_fc4_type); 13819 fcponly: 13820 phba->nvmet_support = 0; 13821 phba->cfg_nvmet_mrq = 0; 13822 phba->cfg_nvme_seg_cnt = 0; 13823 13824 /* If no FC4 type support, move to just SCSI support */ 13825 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13826 return -ENODEV; 13827 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13828 } 13829 } 13830 13831 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13832 * accommodate 512K and 1M IOs in a single nvme buf. 13833 */ 13834 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13835 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13836 13837 /* Enable embedded Payload BDE if support is indicated */ 13838 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13839 phba->cfg_enable_pbde = 1; 13840 else 13841 phba->cfg_enable_pbde = 0; 13842 13843 /* 13844 * To support Suppress Response feature we must satisfy 3 conditions. 13845 * lpfc_suppress_rsp module parameter must be set (default). 13846 * In SLI4-Parameters Descriptor: 13847 * Extended Inline Buffers (XIB) must be supported. 13848 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13849 * (double negative). 13850 */ 13851 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13852 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13853 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13854 else 13855 phba->cfg_suppress_rsp = 0; 13856 13857 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13858 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13859 13860 /* Make sure that sge_supp_len can be handled by the driver */ 13861 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13862 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13863 13864 dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len); 13865 13866 /* 13867 * Check whether the adapter supports an embedded copy of the 13868 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13869 * to use this option, 128-byte WQEs must be used. 13870 */ 13871 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13872 phba->fcp_embed_io = 1; 13873 else 13874 phba->fcp_embed_io = 0; 13875 13876 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13877 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13878 bf_get(cfg_xib, mbx_sli4_parameters), 13879 phba->cfg_enable_pbde, 13880 phba->fcp_embed_io, sli4_params->nvme, 13881 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13882 13883 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13884 LPFC_SLI_INTF_IF_TYPE_2) && 13885 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13886 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13887 exp_wqcq_pages = false; 13888 13889 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13890 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13891 exp_wqcq_pages && 13892 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13893 phba->enab_exp_wqcq_pages = 1; 13894 else 13895 phba->enab_exp_wqcq_pages = 0; 13896 /* 13897 * Check if the SLI port supports MDS Diagnostics 13898 */ 13899 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13900 phba->mds_diags_support = 1; 13901 else 13902 phba->mds_diags_support = 0; 13903 13904 /* 13905 * Check if the SLI port supports NSLER 13906 */ 13907 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13908 phba->nsler = 1; 13909 else 13910 phba->nsler = 0; 13911 13912 return 0; 13913 } 13914 13915 /** 13916 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13917 * @pdev: pointer to PCI device 13918 * @pid: pointer to PCI device identifier 13919 * 13920 * This routine is to be called to attach a device with SLI-3 interface spec 13921 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13922 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13923 * information of the device and driver to see if the driver state that it can 13924 * support this kind of device. If the match is successful, the driver core 13925 * invokes this routine. If this routine determines it can claim the HBA, it 13926 * does all the initialization that it needs to do to handle the HBA properly. 13927 * 13928 * Return code 13929 * 0 - driver can claim the device 13930 * negative value - driver can not claim the device 13931 **/ 13932 static int 13933 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13934 { 13935 struct lpfc_hba *phba; 13936 struct lpfc_vport *vport = NULL; 13937 struct Scsi_Host *shost = NULL; 13938 int error; 13939 uint32_t cfg_mode, intr_mode; 13940 13941 /* Allocate memory for HBA structure */ 13942 phba = lpfc_hba_alloc(pdev); 13943 if (!phba) 13944 return -ENOMEM; 13945 13946 /* Perform generic PCI device enabling operation */ 13947 error = lpfc_enable_pci_dev(phba); 13948 if (error) 13949 goto out_free_phba; 13950 13951 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13952 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13953 if (error) 13954 goto out_disable_pci_dev; 13955 13956 /* Set up SLI-3 specific device PCI memory space */ 13957 error = lpfc_sli_pci_mem_setup(phba); 13958 if (error) { 13959 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13960 "1402 Failed to set up pci memory space.\n"); 13961 goto out_disable_pci_dev; 13962 } 13963 13964 /* Set up SLI-3 specific device driver resources */ 13965 error = lpfc_sli_driver_resource_setup(phba); 13966 if (error) { 13967 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13968 "1404 Failed to set up driver resource.\n"); 13969 goto out_unset_pci_mem_s3; 13970 } 13971 13972 /* Initialize and populate the iocb list per host */ 13973 13974 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13975 if (error) { 13976 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13977 "1405 Failed to initialize iocb list.\n"); 13978 goto out_unset_driver_resource_s3; 13979 } 13980 13981 /* Set up common device driver resources */ 13982 error = lpfc_setup_driver_resource_phase2(phba); 13983 if (error) { 13984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13985 "1406 Failed to set up driver resource.\n"); 13986 goto out_free_iocb_list; 13987 } 13988 13989 /* Get the default values for Model Name and Description */ 13990 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13991 13992 /* Create SCSI host to the physical port */ 13993 error = lpfc_create_shost(phba); 13994 if (error) { 13995 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13996 "1407 Failed to create scsi host.\n"); 13997 goto out_unset_driver_resource; 13998 } 13999 14000 /* Configure sysfs attributes */ 14001 vport = phba->pport; 14002 error = lpfc_alloc_sysfs_attr(vport); 14003 if (error) { 14004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14005 "1476 Failed to allocate sysfs attr\n"); 14006 goto out_destroy_shost; 14007 } 14008 14009 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14010 /* Now, trying to enable interrupt and bring up the device */ 14011 cfg_mode = phba->cfg_use_msi; 14012 while (true) { 14013 /* Put device to a known state before enabling interrupt */ 14014 lpfc_stop_port(phba); 14015 /* Configure and enable interrupt */ 14016 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 14017 if (intr_mode == LPFC_INTR_ERROR) { 14018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14019 "0431 Failed to enable interrupt.\n"); 14020 error = -ENODEV; 14021 goto out_free_sysfs_attr; 14022 } 14023 /* SLI-3 HBA setup */ 14024 if (lpfc_sli_hba_setup(phba)) { 14025 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14026 "1477 Failed to set up hba\n"); 14027 error = -ENODEV; 14028 goto out_remove_device; 14029 } 14030 14031 /* Wait 50ms for the interrupts of previous mailbox commands */ 14032 msleep(50); 14033 /* Check active interrupts on message signaled interrupts */ 14034 if (intr_mode == 0 || 14035 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 14036 /* Log the current active interrupt mode */ 14037 phba->intr_mode = intr_mode; 14038 lpfc_log_intr_mode(phba, intr_mode); 14039 break; 14040 } else { 14041 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14042 "0447 Configure interrupt mode (%d) " 14043 "failed active interrupt test.\n", 14044 intr_mode); 14045 /* Disable the current interrupt mode */ 14046 lpfc_sli_disable_intr(phba); 14047 /* Try next level of interrupt mode */ 14048 cfg_mode = --intr_mode; 14049 } 14050 } 14051 14052 /* Perform post initialization setup */ 14053 lpfc_post_init_setup(phba); 14054 14055 /* Check if there are static vports to be created. */ 14056 lpfc_create_static_vport(phba); 14057 14058 return 0; 14059 14060 out_remove_device: 14061 lpfc_unset_hba(phba); 14062 out_free_sysfs_attr: 14063 lpfc_free_sysfs_attr(vport); 14064 out_destroy_shost: 14065 lpfc_destroy_shost(phba); 14066 out_unset_driver_resource: 14067 lpfc_unset_driver_resource_phase2(phba); 14068 out_free_iocb_list: 14069 lpfc_free_iocb_list(phba); 14070 out_unset_driver_resource_s3: 14071 lpfc_sli_driver_resource_unset(phba); 14072 out_unset_pci_mem_s3: 14073 lpfc_sli_pci_mem_unset(phba); 14074 out_disable_pci_dev: 14075 lpfc_disable_pci_dev(phba); 14076 if (shost) 14077 scsi_host_put(shost); 14078 out_free_phba: 14079 lpfc_hba_free(phba); 14080 return error; 14081 } 14082 14083 /** 14084 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14085 * @pdev: pointer to PCI device 14086 * 14087 * This routine is to be called to disattach a device with SLI-3 interface 14088 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14089 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14090 * device to be removed from the PCI subsystem properly. 14091 **/ 14092 static void 14093 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14094 { 14095 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14096 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14097 struct lpfc_vport **vports; 14098 struct lpfc_hba *phba = vport->phba; 14099 int i; 14100 14101 set_bit(FC_UNLOADING, &vport->load_flag); 14102 14103 lpfc_free_sysfs_attr(vport); 14104 14105 /* Release all the vports against this physical port */ 14106 vports = lpfc_create_vport_work_array(phba); 14107 if (vports != NULL) 14108 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14109 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14110 continue; 14111 fc_vport_terminate(vports[i]->fc_vport); 14112 } 14113 lpfc_destroy_vport_work_array(phba, vports); 14114 14115 /* Remove FC host with the physical port */ 14116 fc_remove_host(shost); 14117 scsi_remove_host(shost); 14118 14119 /* Clean up all nodes, mailboxes and IOs. */ 14120 lpfc_cleanup(vport); 14121 14122 /* 14123 * Bring down the SLI Layer. This step disable all interrupts, 14124 * clears the rings, discards all mailbox commands, and resets 14125 * the HBA. 14126 */ 14127 14128 /* HBA interrupt will be disabled after this call */ 14129 lpfc_sli_hba_down(phba); 14130 /* Stop kthread signal shall trigger work_done one more time */ 14131 kthread_stop(phba->worker_thread); 14132 /* Final cleanup of txcmplq and reset the HBA */ 14133 lpfc_sli_brdrestart(phba); 14134 14135 kfree(phba->vpi_bmask); 14136 kfree(phba->vpi_ids); 14137 14138 lpfc_stop_hba_timers(phba); 14139 spin_lock_irq(&phba->port_list_lock); 14140 list_del_init(&vport->listentry); 14141 spin_unlock_irq(&phba->port_list_lock); 14142 14143 lpfc_debugfs_terminate(vport); 14144 14145 /* Disable SR-IOV if enabled */ 14146 if (phba->cfg_sriov_nr_virtfn) 14147 pci_disable_sriov(pdev); 14148 14149 /* Disable interrupt */ 14150 lpfc_sli_disable_intr(phba); 14151 14152 scsi_host_put(shost); 14153 14154 /* 14155 * Call scsi_free before mem_free since scsi bufs are released to their 14156 * corresponding pools here. 14157 */ 14158 lpfc_scsi_free(phba); 14159 lpfc_free_iocb_list(phba); 14160 14161 lpfc_mem_free_all(phba); 14162 14163 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14164 phba->hbqslimp.virt, phba->hbqslimp.phys); 14165 14166 /* Free resources associated with SLI2 interface */ 14167 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14168 phba->slim2p.virt, phba->slim2p.phys); 14169 14170 /* unmap adapter SLIM and Control Registers */ 14171 iounmap(phba->ctrl_regs_memmap_p); 14172 iounmap(phba->slim_memmap_p); 14173 14174 lpfc_hba_free(phba); 14175 14176 pci_release_mem_regions(pdev); 14177 pci_disable_device(pdev); 14178 } 14179 14180 /** 14181 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14182 * @dev_d: pointer to device 14183 * 14184 * This routine is to be called from the kernel's PCI subsystem to support 14185 * system Power Management (PM) to device with SLI-3 interface spec. When 14186 * PM invokes this method, it quiesces the device by stopping the driver's 14187 * worker thread for the device, turning off device's interrupt and DMA, 14188 * and bring the device offline. Note that as the driver implements the 14189 * minimum PM requirements to a power-aware driver's PM support for the 14190 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14191 * to the suspend() method call will be treated as SUSPEND and the driver will 14192 * fully reinitialize its device during resume() method call, the driver will 14193 * set device to PCI_D3hot state in PCI config space instead of setting it 14194 * according to the @msg provided by the PM. 14195 * 14196 * Return code 14197 * 0 - driver suspended the device 14198 * Error otherwise 14199 **/ 14200 static int __maybe_unused 14201 lpfc_pci_suspend_one_s3(struct device *dev_d) 14202 { 14203 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14204 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14205 14206 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14207 "0473 PCI device Power Management suspend.\n"); 14208 14209 /* Bring down the device */ 14210 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14211 lpfc_offline(phba); 14212 kthread_stop(phba->worker_thread); 14213 14214 /* Disable interrupt from device */ 14215 lpfc_sli_disable_intr(phba); 14216 14217 return 0; 14218 } 14219 14220 /** 14221 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14222 * @dev_d: pointer to device 14223 * 14224 * This routine is to be called from the kernel's PCI subsystem to support 14225 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14226 * invokes this method, it restores the device's PCI config space state and 14227 * fully reinitializes the device and brings it online. Note that as the 14228 * driver implements the minimum PM requirements to a power-aware driver's 14229 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14230 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14231 * driver will fully reinitialize its device during resume() method call, 14232 * the device will be set to PCI_D0 directly in PCI config space before 14233 * restoring the state. 14234 * 14235 * Return code 14236 * 0 - driver suspended the device 14237 * Error otherwise 14238 **/ 14239 static int __maybe_unused 14240 lpfc_pci_resume_one_s3(struct device *dev_d) 14241 { 14242 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14243 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14244 uint32_t intr_mode; 14245 int error; 14246 14247 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14248 "0452 PCI device Power Management resume.\n"); 14249 14250 /* Startup the kernel thread for this host adapter. */ 14251 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14252 "lpfc_worker_%d", phba->brd_no); 14253 if (IS_ERR(phba->worker_thread)) { 14254 error = PTR_ERR(phba->worker_thread); 14255 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14256 "0434 PM resume failed to start worker " 14257 "thread: error=x%x.\n", error); 14258 return error; 14259 } 14260 14261 /* Init cpu_map array */ 14262 lpfc_cpu_map_array_init(phba); 14263 /* Init hba_eq_hdl array */ 14264 lpfc_hba_eq_hdl_array_init(phba); 14265 /* Configure and enable interrupt */ 14266 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14267 if (intr_mode == LPFC_INTR_ERROR) { 14268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14269 "0430 PM resume Failed to enable interrupt\n"); 14270 return -EIO; 14271 } else 14272 phba->intr_mode = intr_mode; 14273 14274 /* Restart HBA and bring it online */ 14275 lpfc_sli_brdrestart(phba); 14276 lpfc_online(phba); 14277 14278 /* Log the current active interrupt mode */ 14279 lpfc_log_intr_mode(phba, phba->intr_mode); 14280 14281 return 0; 14282 } 14283 14284 /** 14285 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14286 * @phba: pointer to lpfc hba data structure. 14287 * 14288 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14289 * aborts all the outstanding SCSI I/Os to the pci device. 14290 **/ 14291 static void 14292 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14293 { 14294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14295 "2723 PCI channel I/O abort preparing for recovery\n"); 14296 14297 /* 14298 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14299 * and let the SCSI mid-layer to retry them to recover. 14300 */ 14301 lpfc_sli_abort_fcp_rings(phba); 14302 } 14303 14304 /** 14305 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14306 * @phba: pointer to lpfc hba data structure. 14307 * 14308 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14309 * disables the device interrupt and pci device, and aborts the internal FCP 14310 * pending I/Os. 14311 **/ 14312 static void 14313 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14314 { 14315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14316 "2710 PCI channel disable preparing for reset\n"); 14317 14318 /* Block any management I/Os to the device */ 14319 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14320 14321 /* Block all SCSI devices' I/Os on the host */ 14322 lpfc_scsi_dev_block(phba); 14323 14324 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14325 lpfc_sli_flush_io_rings(phba); 14326 14327 /* stop all timers */ 14328 lpfc_stop_hba_timers(phba); 14329 14330 /* Disable interrupt and pci device */ 14331 lpfc_sli_disable_intr(phba); 14332 pci_disable_device(phba->pcidev); 14333 } 14334 14335 /** 14336 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14337 * @phba: pointer to lpfc hba data structure. 14338 * 14339 * This routine is called to prepare the SLI3 device for PCI slot permanently 14340 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14341 * pending I/Os. 14342 **/ 14343 static void 14344 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14345 { 14346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14347 "2711 PCI channel permanent disable for failure\n"); 14348 /* Block all SCSI devices' I/Os on the host */ 14349 lpfc_scsi_dev_block(phba); 14350 lpfc_sli4_prep_dev_for_reset(phba); 14351 14352 /* stop all timers */ 14353 lpfc_stop_hba_timers(phba); 14354 14355 /* Clean up all driver's outstanding SCSI I/Os */ 14356 lpfc_sli_flush_io_rings(phba); 14357 } 14358 14359 /** 14360 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14361 * @pdev: pointer to PCI device. 14362 * @state: the current PCI connection state. 14363 * 14364 * This routine is called from the PCI subsystem for I/O error handling to 14365 * device with SLI-3 interface spec. This function is called by the PCI 14366 * subsystem after a PCI bus error affecting this device has been detected. 14367 * When this function is invoked, it will need to stop all the I/Os and 14368 * interrupt(s) to the device. Once that is done, it will return 14369 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14370 * as desired. 14371 * 14372 * Return codes 14373 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14374 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14375 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14376 **/ 14377 static pci_ers_result_t 14378 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14379 { 14380 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14381 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14382 14383 switch (state) { 14384 case pci_channel_io_normal: 14385 /* Non-fatal error, prepare for recovery */ 14386 lpfc_sli_prep_dev_for_recover(phba); 14387 return PCI_ERS_RESULT_CAN_RECOVER; 14388 case pci_channel_io_frozen: 14389 /* Fatal error, prepare for slot reset */ 14390 lpfc_sli_prep_dev_for_reset(phba); 14391 return PCI_ERS_RESULT_NEED_RESET; 14392 case pci_channel_io_perm_failure: 14393 /* Permanent failure, prepare for device down */ 14394 lpfc_sli_prep_dev_for_perm_failure(phba); 14395 return PCI_ERS_RESULT_DISCONNECT; 14396 default: 14397 /* Unknown state, prepare and request slot reset */ 14398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14399 "0472 Unknown PCI error state: x%x\n", state); 14400 lpfc_sli_prep_dev_for_reset(phba); 14401 return PCI_ERS_RESULT_NEED_RESET; 14402 } 14403 } 14404 14405 /** 14406 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14407 * @pdev: pointer to PCI device. 14408 * 14409 * This routine is called from the PCI subsystem for error handling to 14410 * device with SLI-3 interface spec. This is called after PCI bus has been 14411 * reset to restart the PCI card from scratch, as if from a cold-boot. 14412 * During the PCI subsystem error recovery, after driver returns 14413 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14414 * recovery and then call this routine before calling the .resume method 14415 * to recover the device. This function will initialize the HBA device, 14416 * enable the interrupt, but it will just put the HBA to offline state 14417 * without passing any I/O traffic. 14418 * 14419 * Return codes 14420 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14421 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14422 */ 14423 static pci_ers_result_t 14424 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14425 { 14426 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14427 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14428 struct lpfc_sli *psli = &phba->sli; 14429 uint32_t intr_mode; 14430 14431 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14432 if (pci_enable_device_mem(pdev)) { 14433 printk(KERN_ERR "lpfc: Cannot re-enable " 14434 "PCI device after reset.\n"); 14435 return PCI_ERS_RESULT_DISCONNECT; 14436 } 14437 14438 pci_restore_state(pdev); 14439 14440 /* 14441 * As the new kernel behavior of pci_restore_state() API call clears 14442 * device saved_state flag, need to save the restored state again. 14443 */ 14444 pci_save_state(pdev); 14445 14446 if (pdev->is_busmaster) 14447 pci_set_master(pdev); 14448 14449 spin_lock_irq(&phba->hbalock); 14450 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14451 spin_unlock_irq(&phba->hbalock); 14452 14453 /* Configure and enable interrupt */ 14454 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14455 if (intr_mode == LPFC_INTR_ERROR) { 14456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14457 "0427 Cannot re-enable interrupt after " 14458 "slot reset.\n"); 14459 return PCI_ERS_RESULT_DISCONNECT; 14460 } else 14461 phba->intr_mode = intr_mode; 14462 14463 /* Take device offline, it will perform cleanup */ 14464 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14465 lpfc_offline(phba); 14466 lpfc_sli_brdrestart(phba); 14467 14468 /* Log the current active interrupt mode */ 14469 lpfc_log_intr_mode(phba, phba->intr_mode); 14470 14471 return PCI_ERS_RESULT_RECOVERED; 14472 } 14473 14474 /** 14475 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14476 * @pdev: pointer to PCI device 14477 * 14478 * This routine is called from the PCI subsystem for error handling to device 14479 * with SLI-3 interface spec. It is called when kernel error recovery tells 14480 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14481 * error recovery. After this call, traffic can start to flow from this device 14482 * again. 14483 */ 14484 static void 14485 lpfc_io_resume_s3(struct pci_dev *pdev) 14486 { 14487 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14488 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14489 14490 /* Bring device online, it will be no-op for non-fatal error resume */ 14491 lpfc_online(phba); 14492 } 14493 14494 /** 14495 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14496 * @phba: pointer to lpfc hba data structure. 14497 * 14498 * returns the number of ELS/CT IOCBs to reserve 14499 **/ 14500 int 14501 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14502 { 14503 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14504 14505 if (phba->sli_rev == LPFC_SLI_REV4) { 14506 if (max_xri <= 100) 14507 return 10; 14508 else if (max_xri <= 256) 14509 return 25; 14510 else if (max_xri <= 512) 14511 return 50; 14512 else if (max_xri <= 1024) 14513 return 100; 14514 else if (max_xri <= 1536) 14515 return 150; 14516 else if (max_xri <= 2048) 14517 return 200; 14518 else 14519 return 250; 14520 } else 14521 return 0; 14522 } 14523 14524 /** 14525 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14526 * @phba: pointer to lpfc hba data structure. 14527 * 14528 * returns the number of ELS/CT + NVMET IOCBs to reserve 14529 **/ 14530 int 14531 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14532 { 14533 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14534 14535 if (phba->nvmet_support) 14536 max_xri += LPFC_NVMET_BUF_POST; 14537 return max_xri; 14538 } 14539 14540 14541 static int 14542 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14543 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14544 const struct firmware *fw) 14545 { 14546 int rc; 14547 u8 sli_family; 14548 14549 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14550 /* Three cases: (1) FW was not supported on the detected adapter. 14551 * (2) FW update has been locked out administratively. 14552 * (3) Some other error during FW update. 14553 * In each case, an unmaskable message is written to the console 14554 * for admin diagnosis. 14555 */ 14556 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14557 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14558 magic_number != MAGIC_NUMBER_G6) || 14559 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14560 magic_number != MAGIC_NUMBER_G7) || 14561 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14562 magic_number != MAGIC_NUMBER_G7P)) { 14563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14564 "3030 This firmware version is not supported on" 14565 " this HBA model. Device:%x Magic:%x Type:%x " 14566 "ID:%x Size %d %zd\n", 14567 phba->pcidev->device, magic_number, ftype, fid, 14568 fsize, fw->size); 14569 rc = -EINVAL; 14570 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14572 "3021 Firmware downloads have been prohibited " 14573 "by a system configuration setting on " 14574 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14575 "%zd\n", 14576 phba->pcidev->device, magic_number, ftype, fid, 14577 fsize, fw->size); 14578 rc = -EACCES; 14579 } else { 14580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14581 "3022 FW Download failed. Add Status x%x " 14582 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14583 "%zd\n", 14584 offset, phba->pcidev->device, magic_number, 14585 ftype, fid, fsize, fw->size); 14586 rc = -EIO; 14587 } 14588 return rc; 14589 } 14590 14591 /** 14592 * lpfc_write_firmware - attempt to write a firmware image to the port 14593 * @fw: pointer to firmware image returned from request_firmware. 14594 * @context: pointer to firmware image returned from request_firmware. 14595 * 14596 **/ 14597 static void 14598 lpfc_write_firmware(const struct firmware *fw, void *context) 14599 { 14600 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14601 char fwrev[FW_REV_STR_SIZE]; 14602 struct lpfc_grp_hdr *image; 14603 struct list_head dma_buffer_list; 14604 int i, rc = 0; 14605 struct lpfc_dmabuf *dmabuf, *next; 14606 uint32_t offset = 0, temp_offset = 0; 14607 uint32_t magic_number, ftype, fid, fsize; 14608 14609 /* It can be null in no-wait mode, sanity check */ 14610 if (!fw) { 14611 rc = -ENXIO; 14612 goto out; 14613 } 14614 image = (struct lpfc_grp_hdr *)fw->data; 14615 14616 magic_number = be32_to_cpu(image->magic_number); 14617 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14618 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14619 fsize = be32_to_cpu(image->size); 14620 14621 INIT_LIST_HEAD(&dma_buffer_list); 14622 lpfc_decode_firmware_rev(phba, fwrev, 1); 14623 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14624 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14625 "3023 Updating Firmware, Current Version:%s " 14626 "New Version:%s\n", 14627 fwrev, image->revision); 14628 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14629 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14630 GFP_KERNEL); 14631 if (!dmabuf) { 14632 rc = -ENOMEM; 14633 goto release_out; 14634 } 14635 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14636 SLI4_PAGE_SIZE, 14637 &dmabuf->phys, 14638 GFP_KERNEL); 14639 if (!dmabuf->virt) { 14640 kfree(dmabuf); 14641 rc = -ENOMEM; 14642 goto release_out; 14643 } 14644 list_add_tail(&dmabuf->list, &dma_buffer_list); 14645 } 14646 while (offset < fw->size) { 14647 temp_offset = offset; 14648 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14649 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14650 memcpy(dmabuf->virt, 14651 fw->data + temp_offset, 14652 fw->size - temp_offset); 14653 temp_offset = fw->size; 14654 break; 14655 } 14656 memcpy(dmabuf->virt, fw->data + temp_offset, 14657 SLI4_PAGE_SIZE); 14658 temp_offset += SLI4_PAGE_SIZE; 14659 } 14660 rc = lpfc_wr_object(phba, &dma_buffer_list, 14661 (fw->size - offset), &offset); 14662 if (rc) { 14663 rc = lpfc_log_write_firmware_error(phba, offset, 14664 magic_number, 14665 ftype, 14666 fid, 14667 fsize, 14668 fw); 14669 goto release_out; 14670 } 14671 } 14672 rc = offset; 14673 } else 14674 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14675 "3029 Skipped Firmware update, Current " 14676 "Version:%s New Version:%s\n", 14677 fwrev, image->revision); 14678 14679 release_out: 14680 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14681 list_del(&dmabuf->list); 14682 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14683 dmabuf->virt, dmabuf->phys); 14684 kfree(dmabuf); 14685 } 14686 release_firmware(fw); 14687 out: 14688 if (rc < 0) 14689 lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI, 14690 "3062 Firmware update error, status %d.\n", rc); 14691 else 14692 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14693 "3024 Firmware update success: size %d.\n", rc); 14694 } 14695 14696 /** 14697 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14698 * @phba: pointer to lpfc hba data structure. 14699 * @fw_upgrade: which firmware to update. 14700 * 14701 * This routine is called to perform Linux generic firmware upgrade on device 14702 * that supports such feature. 14703 **/ 14704 int 14705 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14706 { 14707 char file_name[ELX_FW_NAME_SIZE] = {0}; 14708 int ret; 14709 const struct firmware *fw; 14710 14711 /* Only supported on SLI4 interface type 2 for now */ 14712 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14713 LPFC_SLI_INTF_IF_TYPE_2) 14714 return -EPERM; 14715 14716 scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName); 14717 14718 if (fw_upgrade == INT_FW_UPGRADE) { 14719 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14720 file_name, &phba->pcidev->dev, 14721 GFP_KERNEL, (void *)phba, 14722 lpfc_write_firmware); 14723 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14724 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14725 if (!ret) 14726 lpfc_write_firmware(fw, (void *)phba); 14727 } else { 14728 ret = -EINVAL; 14729 } 14730 14731 return ret; 14732 } 14733 14734 /** 14735 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14736 * @pdev: pointer to PCI device 14737 * @pid: pointer to PCI device identifier 14738 * 14739 * This routine is called from the kernel's PCI subsystem to device with 14740 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14741 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14742 * information of the device and driver to see if the driver state that it 14743 * can support this kind of device. If the match is successful, the driver 14744 * core invokes this routine. If this routine determines it can claim the HBA, 14745 * it does all the initialization that it needs to do to handle the HBA 14746 * properly. 14747 * 14748 * Return code 14749 * 0 - driver can claim the device 14750 * negative value - driver can not claim the device 14751 **/ 14752 static int 14753 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14754 { 14755 struct lpfc_hba *phba; 14756 struct lpfc_vport *vport = NULL; 14757 struct Scsi_Host *shost = NULL; 14758 int error; 14759 uint32_t cfg_mode, intr_mode; 14760 14761 /* Allocate memory for HBA structure */ 14762 phba = lpfc_hba_alloc(pdev); 14763 if (!phba) 14764 return -ENOMEM; 14765 14766 INIT_LIST_HEAD(&phba->poll_list); 14767 14768 /* Perform generic PCI device enabling operation */ 14769 error = lpfc_enable_pci_dev(phba); 14770 if (error) 14771 goto out_free_phba; 14772 14773 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14774 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14775 if (error) 14776 goto out_disable_pci_dev; 14777 14778 /* Set up SLI-4 specific device PCI memory space */ 14779 error = lpfc_sli4_pci_mem_setup(phba); 14780 if (error) { 14781 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14782 "1410 Failed to set up pci memory space.\n"); 14783 goto out_disable_pci_dev; 14784 } 14785 14786 /* Set up SLI-4 Specific device driver resources */ 14787 error = lpfc_sli4_driver_resource_setup(phba); 14788 if (error) { 14789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14790 "1412 Failed to set up driver resource.\n"); 14791 goto out_unset_pci_mem_s4; 14792 } 14793 14794 spin_lock_init(&phba->rrq_list_lock); 14795 INIT_LIST_HEAD(&phba->active_rrq_list); 14796 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14797 14798 /* Set up common device driver resources */ 14799 error = lpfc_setup_driver_resource_phase2(phba); 14800 if (error) { 14801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14802 "1414 Failed to set up driver resource.\n"); 14803 goto out_unset_driver_resource_s4; 14804 } 14805 14806 /* Get the default values for Model Name and Description */ 14807 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14808 14809 /* Now, trying to enable interrupt and bring up the device */ 14810 cfg_mode = phba->cfg_use_msi; 14811 14812 /* Put device to a known state before enabling interrupt */ 14813 phba->pport = NULL; 14814 lpfc_stop_port(phba); 14815 14816 /* Init cpu_map array */ 14817 lpfc_cpu_map_array_init(phba); 14818 14819 /* Init hba_eq_hdl array */ 14820 lpfc_hba_eq_hdl_array_init(phba); 14821 14822 /* Configure and enable interrupt */ 14823 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14824 if (intr_mode == LPFC_INTR_ERROR) { 14825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14826 "0426 Failed to enable interrupt.\n"); 14827 error = -ENODEV; 14828 goto out_unset_driver_resource; 14829 } 14830 /* Default to single EQ for non-MSI-X */ 14831 if (phba->intr_type != MSIX) { 14832 phba->cfg_irq_chann = 1; 14833 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14834 if (phba->nvmet_support) 14835 phba->cfg_nvmet_mrq = 1; 14836 } 14837 } 14838 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14839 14840 /* Create SCSI host to the physical port */ 14841 error = lpfc_create_shost(phba); 14842 if (error) { 14843 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14844 "1415 Failed to create scsi host.\n"); 14845 goto out_disable_intr; 14846 } 14847 vport = phba->pport; 14848 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14849 14850 /* Configure sysfs attributes */ 14851 error = lpfc_alloc_sysfs_attr(vport); 14852 if (error) { 14853 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14854 "1416 Failed to allocate sysfs attr\n"); 14855 goto out_destroy_shost; 14856 } 14857 14858 /* Set up SLI-4 HBA */ 14859 if (lpfc_sli4_hba_setup(phba)) { 14860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14861 "1421 Failed to set up hba\n"); 14862 error = -ENODEV; 14863 goto out_free_sysfs_attr; 14864 } 14865 14866 /* Log the current active interrupt mode */ 14867 phba->intr_mode = intr_mode; 14868 lpfc_log_intr_mode(phba, intr_mode); 14869 14870 /* Perform post initialization setup */ 14871 lpfc_post_init_setup(phba); 14872 14873 /* NVME support in FW earlier in the driver load corrects the 14874 * FC4 type making a check for nvme_support unnecessary. 14875 */ 14876 if (phba->nvmet_support == 0) { 14877 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14878 /* Create NVME binding with nvme_fc_transport. This 14879 * ensures the vport is initialized. If the localport 14880 * create fails, it should not unload the driver to 14881 * support field issues. 14882 */ 14883 error = lpfc_nvme_create_localport(vport); 14884 if (error) { 14885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14886 "6004 NVME registration " 14887 "failed, error x%x\n", 14888 error); 14889 } 14890 } 14891 } 14892 14893 /* check for firmware upgrade or downgrade */ 14894 if (phba->cfg_request_firmware_upgrade) 14895 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14896 14897 /* Check if there are static vports to be created. */ 14898 lpfc_create_static_vport(phba); 14899 14900 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14901 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14902 14903 return 0; 14904 14905 out_free_sysfs_attr: 14906 lpfc_free_sysfs_attr(vport); 14907 out_destroy_shost: 14908 lpfc_destroy_shost(phba); 14909 out_disable_intr: 14910 lpfc_sli4_disable_intr(phba); 14911 out_unset_driver_resource: 14912 lpfc_unset_driver_resource_phase2(phba); 14913 out_unset_driver_resource_s4: 14914 lpfc_sli4_driver_resource_unset(phba); 14915 out_unset_pci_mem_s4: 14916 lpfc_sli4_pci_mem_unset(phba); 14917 out_disable_pci_dev: 14918 lpfc_disable_pci_dev(phba); 14919 if (shost) 14920 scsi_host_put(shost); 14921 out_free_phba: 14922 lpfc_hba_free(phba); 14923 return error; 14924 } 14925 14926 /** 14927 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14928 * @pdev: pointer to PCI device 14929 * 14930 * This routine is called from the kernel's PCI subsystem to device with 14931 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14932 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14933 * device to be removed from the PCI subsystem properly. 14934 **/ 14935 static void 14936 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14937 { 14938 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14939 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14940 struct lpfc_vport **vports; 14941 struct lpfc_hba *phba = vport->phba; 14942 int i; 14943 14944 /* Mark the device unloading flag */ 14945 set_bit(FC_UNLOADING, &vport->load_flag); 14946 if (phba->cgn_i) 14947 lpfc_unreg_congestion_buf(phba); 14948 14949 lpfc_free_sysfs_attr(vport); 14950 14951 /* Release all the vports against this physical port */ 14952 vports = lpfc_create_vport_work_array(phba); 14953 if (vports != NULL) 14954 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14955 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14956 continue; 14957 fc_vport_terminate(vports[i]->fc_vport); 14958 } 14959 lpfc_destroy_vport_work_array(phba, vports); 14960 14961 /* Remove FC host with the physical port */ 14962 fc_remove_host(shost); 14963 scsi_remove_host(shost); 14964 14965 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14966 * localports are destroyed after to cleanup all transport memory. 14967 */ 14968 lpfc_cleanup(vport); 14969 lpfc_nvmet_destroy_targetport(phba); 14970 lpfc_nvme_destroy_localport(vport); 14971 14972 /* De-allocate multi-XRI pools */ 14973 if (phba->cfg_xri_rebalancing) 14974 lpfc_destroy_multixri_pools(phba); 14975 14976 /* 14977 * Bring down the SLI Layer. This step disables all interrupts, 14978 * clears the rings, discards all mailbox commands, and resets 14979 * the HBA FCoE function. 14980 */ 14981 lpfc_debugfs_terminate(vport); 14982 14983 lpfc_stop_hba_timers(phba); 14984 spin_lock_irq(&phba->port_list_lock); 14985 list_del_init(&vport->listentry); 14986 spin_unlock_irq(&phba->port_list_lock); 14987 14988 /* Perform scsi free before driver resource_unset since scsi 14989 * buffers are released to their corresponding pools here. 14990 */ 14991 lpfc_io_free(phba); 14992 lpfc_free_iocb_list(phba); 14993 lpfc_sli4_hba_unset(phba); 14994 14995 lpfc_unset_driver_resource_phase2(phba); 14996 lpfc_sli4_driver_resource_unset(phba); 14997 14998 /* Unmap adapter Control and Doorbell registers */ 14999 lpfc_sli4_pci_mem_unset(phba); 15000 15001 /* Release PCI resources and disable device's PCI function */ 15002 scsi_host_put(shost); 15003 lpfc_disable_pci_dev(phba); 15004 15005 /* Finally, free the driver's device data structure */ 15006 lpfc_hba_free(phba); 15007 15008 return; 15009 } 15010 15011 /** 15012 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 15013 * @dev_d: pointer to device 15014 * 15015 * This routine is called from the kernel's PCI subsystem to support system 15016 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 15017 * this method, it quiesces the device by stopping the driver's worker 15018 * thread for the device, turning off device's interrupt and DMA, and bring 15019 * the device offline. Note that as the driver implements the minimum PM 15020 * requirements to a power-aware driver's PM support for suspend/resume -- all 15021 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 15022 * method call will be treated as SUSPEND and the driver will fully 15023 * reinitialize its device during resume() method call, the driver will set 15024 * device to PCI_D3hot state in PCI config space instead of setting it 15025 * according to the @msg provided by the PM. 15026 * 15027 * Return code 15028 * 0 - driver suspended the device 15029 * Error otherwise 15030 **/ 15031 static int __maybe_unused 15032 lpfc_pci_suspend_one_s4(struct device *dev_d) 15033 { 15034 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15035 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15036 15037 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15038 "2843 PCI device Power Management suspend.\n"); 15039 15040 /* Bring down the device */ 15041 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15042 lpfc_offline(phba); 15043 kthread_stop(phba->worker_thread); 15044 15045 /* Disable interrupt from device */ 15046 lpfc_sli4_disable_intr(phba); 15047 lpfc_sli4_queue_destroy(phba); 15048 15049 return 0; 15050 } 15051 15052 /** 15053 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 15054 * @dev_d: pointer to device 15055 * 15056 * This routine is called from the kernel's PCI subsystem to support system 15057 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 15058 * this method, it restores the device's PCI config space state and fully 15059 * reinitializes the device and brings it online. Note that as the driver 15060 * implements the minimum PM requirements to a power-aware driver's PM for 15061 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15062 * to the suspend() method call will be treated as SUSPEND and the driver 15063 * will fully reinitialize its device during resume() method call, the device 15064 * will be set to PCI_D0 directly in PCI config space before restoring the 15065 * state. 15066 * 15067 * Return code 15068 * 0 - driver suspended the device 15069 * Error otherwise 15070 **/ 15071 static int __maybe_unused 15072 lpfc_pci_resume_one_s4(struct device *dev_d) 15073 { 15074 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15075 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15076 uint32_t intr_mode; 15077 int error; 15078 15079 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15080 "0292 PCI device Power Management resume.\n"); 15081 15082 /* Startup the kernel thread for this host adapter. */ 15083 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15084 "lpfc_worker_%d", phba->brd_no); 15085 if (IS_ERR(phba->worker_thread)) { 15086 error = PTR_ERR(phba->worker_thread); 15087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15088 "0293 PM resume failed to start worker " 15089 "thread: error=x%x.\n", error); 15090 return error; 15091 } 15092 15093 /* Configure and enable interrupt */ 15094 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15095 if (intr_mode == LPFC_INTR_ERROR) { 15096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15097 "0294 PM resume Failed to enable interrupt\n"); 15098 return -EIO; 15099 } else 15100 phba->intr_mode = intr_mode; 15101 15102 /* Restart HBA and bring it online */ 15103 lpfc_sli_brdrestart(phba); 15104 lpfc_online(phba); 15105 15106 /* Log the current active interrupt mode */ 15107 lpfc_log_intr_mode(phba, phba->intr_mode); 15108 15109 return 0; 15110 } 15111 15112 /** 15113 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15114 * @phba: pointer to lpfc hba data structure. 15115 * 15116 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15117 * aborts all the outstanding SCSI I/Os to the pci device. 15118 **/ 15119 static void 15120 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15121 { 15122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15123 "2828 PCI channel I/O abort preparing for recovery\n"); 15124 /* 15125 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15126 * and let the SCSI mid-layer to retry them to recover. 15127 */ 15128 lpfc_sli_abort_fcp_rings(phba); 15129 } 15130 15131 /** 15132 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15133 * @phba: pointer to lpfc hba data structure. 15134 * 15135 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15136 * disables the device interrupt and pci device, and aborts the internal FCP 15137 * pending I/Os. 15138 **/ 15139 static void 15140 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15141 { 15142 int offline = pci_channel_offline(phba->pcidev); 15143 15144 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15145 "2826 PCI channel disable preparing for reset offline" 15146 " %d\n", offline); 15147 15148 /* Block any management I/Os to the device */ 15149 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15150 15151 15152 /* HBA_PCI_ERR was set in io_error_detect */ 15153 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15154 /* Flush all driver's outstanding I/Os as we are to reset */ 15155 lpfc_sli_flush_io_rings(phba); 15156 lpfc_offline(phba); 15157 15158 /* stop all timers */ 15159 lpfc_stop_hba_timers(phba); 15160 15161 lpfc_sli4_queue_destroy(phba); 15162 /* Disable interrupt and pci device */ 15163 lpfc_sli4_disable_intr(phba); 15164 pci_disable_device(phba->pcidev); 15165 } 15166 15167 /** 15168 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15169 * @phba: pointer to lpfc hba data structure. 15170 * 15171 * This routine is called to prepare the SLI4 device for PCI slot permanently 15172 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15173 * pending I/Os. 15174 **/ 15175 static void 15176 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15177 { 15178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15179 "2827 PCI channel permanent disable for failure\n"); 15180 15181 /* Block all SCSI devices' I/Os on the host */ 15182 lpfc_scsi_dev_block(phba); 15183 15184 /* stop all timers */ 15185 lpfc_stop_hba_timers(phba); 15186 15187 /* Clean up all driver's outstanding I/Os */ 15188 lpfc_sli_flush_io_rings(phba); 15189 } 15190 15191 /** 15192 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15193 * @pdev: pointer to PCI device. 15194 * @state: the current PCI connection state. 15195 * 15196 * This routine is called from the PCI subsystem for error handling to device 15197 * with SLI-4 interface spec. This function is called by the PCI subsystem 15198 * after a PCI bus error affecting this device has been detected. When this 15199 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15200 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15201 * for the PCI subsystem to perform proper recovery as desired. 15202 * 15203 * Return codes 15204 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15205 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15206 **/ 15207 static pci_ers_result_t 15208 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15209 { 15210 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15211 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15212 bool hba_pci_err; 15213 15214 switch (state) { 15215 case pci_channel_io_normal: 15216 /* Non-fatal error, prepare for recovery */ 15217 lpfc_sli4_prep_dev_for_recover(phba); 15218 return PCI_ERS_RESULT_CAN_RECOVER; 15219 case pci_channel_io_frozen: 15220 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15221 /* Fatal error, prepare for slot reset */ 15222 if (!hba_pci_err) 15223 lpfc_sli4_prep_dev_for_reset(phba); 15224 else 15225 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15226 "2832 Already handling PCI error " 15227 "state: x%x\n", state); 15228 return PCI_ERS_RESULT_NEED_RESET; 15229 case pci_channel_io_perm_failure: 15230 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15231 /* Permanent failure, prepare for device down */ 15232 lpfc_sli4_prep_dev_for_perm_failure(phba); 15233 return PCI_ERS_RESULT_DISCONNECT; 15234 default: 15235 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15236 if (!hba_pci_err) 15237 lpfc_sli4_prep_dev_for_reset(phba); 15238 /* Unknown state, prepare and request slot reset */ 15239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15240 "2825 Unknown PCI error state: x%x\n", state); 15241 lpfc_sli4_prep_dev_for_reset(phba); 15242 return PCI_ERS_RESULT_NEED_RESET; 15243 } 15244 } 15245 15246 /** 15247 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15248 * @pdev: pointer to PCI device. 15249 * 15250 * This routine is called from the PCI subsystem for error handling to device 15251 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15252 * restart the PCI card from scratch, as if from a cold-boot. During the 15253 * PCI subsystem error recovery, after the driver returns 15254 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15255 * recovery and then call this routine before calling the .resume method to 15256 * recover the device. This function will initialize the HBA device, enable 15257 * the interrupt, but it will just put the HBA to offline state without 15258 * passing any I/O traffic. 15259 * 15260 * Return codes 15261 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15262 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15263 */ 15264 static pci_ers_result_t 15265 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15266 { 15267 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15268 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15269 struct lpfc_sli *psli = &phba->sli; 15270 uint32_t intr_mode; 15271 bool hba_pci_err; 15272 15273 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15274 if (pci_enable_device_mem(pdev)) { 15275 printk(KERN_ERR "lpfc: Cannot re-enable " 15276 "PCI device after reset.\n"); 15277 return PCI_ERS_RESULT_DISCONNECT; 15278 } 15279 15280 pci_restore_state(pdev); 15281 15282 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15283 if (!hba_pci_err) 15284 dev_info(&pdev->dev, 15285 "hba_pci_err was not set, recovering slot reset.\n"); 15286 /* 15287 * As the new kernel behavior of pci_restore_state() API call clears 15288 * device saved_state flag, need to save the restored state again. 15289 */ 15290 pci_save_state(pdev); 15291 15292 if (pdev->is_busmaster) 15293 pci_set_master(pdev); 15294 15295 spin_lock_irq(&phba->hbalock); 15296 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15297 spin_unlock_irq(&phba->hbalock); 15298 15299 /* Init cpu_map array */ 15300 lpfc_cpu_map_array_init(phba); 15301 /* Configure and enable interrupt */ 15302 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15303 if (intr_mode == LPFC_INTR_ERROR) { 15304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15305 "2824 Cannot re-enable interrupt after " 15306 "slot reset.\n"); 15307 return PCI_ERS_RESULT_DISCONNECT; 15308 } else 15309 phba->intr_mode = intr_mode; 15310 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15311 15312 /* Log the current active interrupt mode */ 15313 lpfc_log_intr_mode(phba, phba->intr_mode); 15314 15315 return PCI_ERS_RESULT_RECOVERED; 15316 } 15317 15318 /** 15319 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15320 * @pdev: pointer to PCI device 15321 * 15322 * This routine is called from the PCI subsystem for error handling to device 15323 * with SLI-4 interface spec. It is called when kernel error recovery tells 15324 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15325 * error recovery. After this call, traffic can start to flow from this device 15326 * again. 15327 **/ 15328 static void 15329 lpfc_io_resume_s4(struct pci_dev *pdev) 15330 { 15331 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15332 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15333 15334 /* 15335 * In case of slot reset, as function reset is performed through 15336 * mailbox command which needs DMA to be enabled, this operation 15337 * has to be moved to the io resume phase. Taking device offline 15338 * will perform the necessary cleanup. 15339 */ 15340 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15341 /* Perform device reset */ 15342 lpfc_sli_brdrestart(phba); 15343 /* Bring the device back online */ 15344 lpfc_online(phba); 15345 } 15346 } 15347 15348 /** 15349 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15350 * @pdev: pointer to PCI device 15351 * @pid: pointer to PCI device identifier 15352 * 15353 * This routine is to be registered to the kernel's PCI subsystem. When an 15354 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15355 * at PCI device-specific information of the device and driver to see if the 15356 * driver state that it can support this kind of device. If the match is 15357 * successful, the driver core invokes this routine. This routine dispatches 15358 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15359 * do all the initialization that it needs to do to handle the HBA device 15360 * properly. 15361 * 15362 * Return code 15363 * 0 - driver can claim the device 15364 * negative value - driver can not claim the device 15365 **/ 15366 static int 15367 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15368 { 15369 int rc; 15370 struct lpfc_sli_intf intf; 15371 15372 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15373 return -ENODEV; 15374 15375 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15376 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15377 rc = lpfc_pci_probe_one_s4(pdev, pid); 15378 else 15379 rc = lpfc_pci_probe_one_s3(pdev, pid); 15380 15381 return rc; 15382 } 15383 15384 /** 15385 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15386 * @pdev: pointer to PCI device 15387 * 15388 * This routine is to be registered to the kernel's PCI subsystem. When an 15389 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15390 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15391 * remove routine, which will perform all the necessary cleanup for the 15392 * device to be removed from the PCI subsystem properly. 15393 **/ 15394 static void 15395 lpfc_pci_remove_one(struct pci_dev *pdev) 15396 { 15397 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15398 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15399 15400 switch (phba->pci_dev_grp) { 15401 case LPFC_PCI_DEV_LP: 15402 lpfc_pci_remove_one_s3(pdev); 15403 break; 15404 case LPFC_PCI_DEV_OC: 15405 lpfc_pci_remove_one_s4(pdev); 15406 break; 15407 default: 15408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15409 "1424 Invalid PCI device group: 0x%x\n", 15410 phba->pci_dev_grp); 15411 break; 15412 } 15413 return; 15414 } 15415 15416 /** 15417 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15418 * @dev: pointer to device 15419 * 15420 * This routine is to be registered to the kernel's PCI subsystem to support 15421 * system Power Management (PM). When PM invokes this method, it dispatches 15422 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15423 * suspend the device. 15424 * 15425 * Return code 15426 * 0 - driver suspended the device 15427 * Error otherwise 15428 **/ 15429 static int __maybe_unused 15430 lpfc_pci_suspend_one(struct device *dev) 15431 { 15432 struct Scsi_Host *shost = dev_get_drvdata(dev); 15433 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15434 int rc = -ENODEV; 15435 15436 switch (phba->pci_dev_grp) { 15437 case LPFC_PCI_DEV_LP: 15438 rc = lpfc_pci_suspend_one_s3(dev); 15439 break; 15440 case LPFC_PCI_DEV_OC: 15441 rc = lpfc_pci_suspend_one_s4(dev); 15442 break; 15443 default: 15444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15445 "1425 Invalid PCI device group: 0x%x\n", 15446 phba->pci_dev_grp); 15447 break; 15448 } 15449 return rc; 15450 } 15451 15452 /** 15453 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15454 * @dev: pointer to device 15455 * 15456 * This routine is to be registered to the kernel's PCI subsystem to support 15457 * system Power Management (PM). When PM invokes this method, it dispatches 15458 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15459 * resume the device. 15460 * 15461 * Return code 15462 * 0 - driver suspended the device 15463 * Error otherwise 15464 **/ 15465 static int __maybe_unused 15466 lpfc_pci_resume_one(struct device *dev) 15467 { 15468 struct Scsi_Host *shost = dev_get_drvdata(dev); 15469 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15470 int rc = -ENODEV; 15471 15472 switch (phba->pci_dev_grp) { 15473 case LPFC_PCI_DEV_LP: 15474 rc = lpfc_pci_resume_one_s3(dev); 15475 break; 15476 case LPFC_PCI_DEV_OC: 15477 rc = lpfc_pci_resume_one_s4(dev); 15478 break; 15479 default: 15480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15481 "1426 Invalid PCI device group: 0x%x\n", 15482 phba->pci_dev_grp); 15483 break; 15484 } 15485 return rc; 15486 } 15487 15488 /** 15489 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15490 * @pdev: pointer to PCI device. 15491 * @state: the current PCI connection state. 15492 * 15493 * This routine is registered to the PCI subsystem for error handling. This 15494 * function is called by the PCI subsystem after a PCI bus error affecting 15495 * this device has been detected. When this routine is invoked, it dispatches 15496 * the action to the proper SLI-3 or SLI-4 device error detected handling 15497 * routine, which will perform the proper error detected operation. 15498 * 15499 * Return codes 15500 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15501 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15502 **/ 15503 static pci_ers_result_t 15504 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15505 { 15506 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15507 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15508 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15509 15510 if (phba->link_state == LPFC_HBA_ERROR && 15511 test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 15512 return PCI_ERS_RESULT_NEED_RESET; 15513 15514 switch (phba->pci_dev_grp) { 15515 case LPFC_PCI_DEV_LP: 15516 rc = lpfc_io_error_detected_s3(pdev, state); 15517 break; 15518 case LPFC_PCI_DEV_OC: 15519 rc = lpfc_io_error_detected_s4(pdev, state); 15520 break; 15521 default: 15522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15523 "1427 Invalid PCI device group: 0x%x\n", 15524 phba->pci_dev_grp); 15525 break; 15526 } 15527 return rc; 15528 } 15529 15530 /** 15531 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15532 * @pdev: pointer to PCI device. 15533 * 15534 * This routine is registered to the PCI subsystem for error handling. This 15535 * function is called after PCI bus has been reset to restart the PCI card 15536 * from scratch, as if from a cold-boot. When this routine is invoked, it 15537 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15538 * routine, which will perform the proper device reset. 15539 * 15540 * Return codes 15541 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15542 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15543 **/ 15544 static pci_ers_result_t 15545 lpfc_io_slot_reset(struct pci_dev *pdev) 15546 { 15547 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15548 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15549 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15550 15551 switch (phba->pci_dev_grp) { 15552 case LPFC_PCI_DEV_LP: 15553 rc = lpfc_io_slot_reset_s3(pdev); 15554 break; 15555 case LPFC_PCI_DEV_OC: 15556 rc = lpfc_io_slot_reset_s4(pdev); 15557 break; 15558 default: 15559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15560 "1428 Invalid PCI device group: 0x%x\n", 15561 phba->pci_dev_grp); 15562 break; 15563 } 15564 return rc; 15565 } 15566 15567 /** 15568 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15569 * @pdev: pointer to PCI device 15570 * 15571 * This routine is registered to the PCI subsystem for error handling. It 15572 * is called when kernel error recovery tells the lpfc driver that it is 15573 * OK to resume normal PCI operation after PCI bus error recovery. When 15574 * this routine is invoked, it dispatches the action to the proper SLI-3 15575 * or SLI-4 device io_resume routine, which will resume the device operation. 15576 **/ 15577 static void 15578 lpfc_io_resume(struct pci_dev *pdev) 15579 { 15580 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15581 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15582 15583 switch (phba->pci_dev_grp) { 15584 case LPFC_PCI_DEV_LP: 15585 lpfc_io_resume_s3(pdev); 15586 break; 15587 case LPFC_PCI_DEV_OC: 15588 lpfc_io_resume_s4(pdev); 15589 break; 15590 default: 15591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15592 "1429 Invalid PCI device group: 0x%x\n", 15593 phba->pci_dev_grp); 15594 break; 15595 } 15596 return; 15597 } 15598 15599 /** 15600 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15601 * @phba: pointer to lpfc hba data structure. 15602 * 15603 * This routine checks to see if OAS is supported for this adapter. If 15604 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15605 * the enable oas flag is cleared and the pool created for OAS device data 15606 * is destroyed. 15607 * 15608 **/ 15609 static void 15610 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15611 { 15612 15613 if (!phba->cfg_EnableXLane) 15614 return; 15615 15616 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15617 phba->cfg_fof = 1; 15618 } else { 15619 phba->cfg_fof = 0; 15620 mempool_destroy(phba->device_data_mem_pool); 15621 phba->device_data_mem_pool = NULL; 15622 } 15623 15624 return; 15625 } 15626 15627 /** 15628 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15629 * @phba: pointer to lpfc hba data structure. 15630 * 15631 * This routine checks to see if RAS is supported by the adapter. Check the 15632 * function through which RAS support enablement is to be done. 15633 **/ 15634 void 15635 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15636 { 15637 /* if ASIC_GEN_NUM >= 0xC) */ 15638 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15639 LPFC_SLI_INTF_IF_TYPE_6) || 15640 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15641 LPFC_SLI_INTF_FAMILY_G6)) { 15642 phba->ras_fwlog.ras_hwsupport = true; 15643 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15644 phba->cfg_ras_fwlog_buffsize) 15645 phba->ras_fwlog.ras_enabled = true; 15646 else 15647 phba->ras_fwlog.ras_enabled = false; 15648 } else { 15649 phba->ras_fwlog.ras_hwsupport = false; 15650 } 15651 } 15652 15653 15654 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15655 15656 static const struct pci_error_handlers lpfc_err_handler = { 15657 .error_detected = lpfc_io_error_detected, 15658 .slot_reset = lpfc_io_slot_reset, 15659 .resume = lpfc_io_resume, 15660 }; 15661 15662 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15663 lpfc_pci_suspend_one, 15664 lpfc_pci_resume_one); 15665 15666 static struct pci_driver lpfc_driver = { 15667 .name = LPFC_DRIVER_NAME, 15668 .id_table = lpfc_id_table, 15669 .probe = lpfc_pci_probe_one, 15670 .remove = lpfc_pci_remove_one, 15671 .shutdown = lpfc_pci_remove_one, 15672 .driver.pm = &lpfc_pci_pm_ops_one, 15673 .err_handler = &lpfc_err_handler, 15674 }; 15675 15676 static const struct file_operations lpfc_mgmt_fop = { 15677 .owner = THIS_MODULE, 15678 }; 15679 15680 static struct miscdevice lpfc_mgmt_dev = { 15681 .minor = MISC_DYNAMIC_MINOR, 15682 .name = "lpfcmgmt", 15683 .fops = &lpfc_mgmt_fop, 15684 }; 15685 15686 /** 15687 * lpfc_init - lpfc module initialization routine 15688 * 15689 * This routine is to be invoked when the lpfc module is loaded into the 15690 * kernel. The special kernel macro module_init() is used to indicate the 15691 * role of this routine to the kernel as lpfc module entry point. 15692 * 15693 * Return codes 15694 * 0 - successful 15695 * -ENOMEM - FC attach transport failed 15696 * all others - failed 15697 */ 15698 static int __init 15699 lpfc_init(void) 15700 { 15701 int error = 0; 15702 15703 pr_info(LPFC_MODULE_DESC "\n"); 15704 pr_info(LPFC_COPYRIGHT "\n"); 15705 15706 error = misc_register(&lpfc_mgmt_dev); 15707 if (error) 15708 printk(KERN_ERR "Could not register lpfcmgmt device, " 15709 "misc_register returned with status %d", error); 15710 15711 error = -ENOMEM; 15712 lpfc_transport_functions.vport_create = lpfc_vport_create; 15713 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15714 lpfc_transport_template = 15715 fc_attach_transport(&lpfc_transport_functions); 15716 if (lpfc_transport_template == NULL) 15717 goto unregister; 15718 lpfc_vport_transport_template = 15719 fc_attach_transport(&lpfc_vport_transport_functions); 15720 if (lpfc_vport_transport_template == NULL) { 15721 fc_release_transport(lpfc_transport_template); 15722 goto unregister; 15723 } 15724 lpfc_wqe_cmd_template(); 15725 lpfc_nvmet_cmd_template(); 15726 15727 /* Initialize in case vector mapping is needed */ 15728 lpfc_present_cpu = num_present_cpus(); 15729 15730 lpfc_pldv_detect = false; 15731 15732 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15733 "lpfc/sli4:online", 15734 lpfc_cpu_online, lpfc_cpu_offline); 15735 if (error < 0) 15736 goto cpuhp_failure; 15737 lpfc_cpuhp_state = error; 15738 15739 error = pci_register_driver(&lpfc_driver); 15740 if (error) 15741 goto unwind; 15742 15743 return error; 15744 15745 unwind: 15746 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15747 cpuhp_failure: 15748 fc_release_transport(lpfc_transport_template); 15749 fc_release_transport(lpfc_vport_transport_template); 15750 unregister: 15751 misc_deregister(&lpfc_mgmt_dev); 15752 15753 return error; 15754 } 15755 15756 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15757 { 15758 unsigned int start_idx; 15759 unsigned int dbg_cnt; 15760 unsigned int temp_idx; 15761 int i; 15762 int j = 0; 15763 unsigned long rem_nsec; 15764 15765 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15766 return; 15767 15768 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15769 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15770 if (!dbg_cnt) 15771 goto out; 15772 temp_idx = start_idx; 15773 if (dbg_cnt >= DBG_LOG_SZ) { 15774 dbg_cnt = DBG_LOG_SZ; 15775 temp_idx -= 1; 15776 } else { 15777 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15778 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15779 } else { 15780 if (start_idx < dbg_cnt) 15781 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15782 else 15783 start_idx -= dbg_cnt; 15784 } 15785 } 15786 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15787 start_idx, temp_idx, dbg_cnt); 15788 15789 for (i = 0; i < dbg_cnt; i++) { 15790 if ((start_idx + i) < DBG_LOG_SZ) 15791 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15792 else 15793 temp_idx = j++; 15794 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15795 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15796 temp_idx, 15797 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15798 rem_nsec / 1000, 15799 phba->dbg_log[temp_idx].log); 15800 } 15801 out: 15802 atomic_set(&phba->dbg_log_cnt, 0); 15803 atomic_set(&phba->dbg_log_dmping, 0); 15804 } 15805 15806 __printf(2, 3) 15807 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15808 { 15809 unsigned int idx; 15810 va_list args; 15811 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15812 struct va_format vaf; 15813 15814 15815 va_start(args, fmt); 15816 if (unlikely(dbg_dmping)) { 15817 vaf.fmt = fmt; 15818 vaf.va = &args; 15819 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15820 va_end(args); 15821 return; 15822 } 15823 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15824 DBG_LOG_SZ; 15825 15826 atomic_inc(&phba->dbg_log_cnt); 15827 15828 vscnprintf(phba->dbg_log[idx].log, 15829 sizeof(phba->dbg_log[idx].log), fmt, args); 15830 va_end(args); 15831 15832 phba->dbg_log[idx].t_ns = local_clock(); 15833 } 15834 15835 /** 15836 * lpfc_exit - lpfc module removal routine 15837 * 15838 * This routine is invoked when the lpfc module is removed from the kernel. 15839 * The special kernel macro module_exit() is used to indicate the role of 15840 * this routine to the kernel as lpfc module exit point. 15841 */ 15842 static void __exit 15843 lpfc_exit(void) 15844 { 15845 misc_deregister(&lpfc_mgmt_dev); 15846 pci_unregister_driver(&lpfc_driver); 15847 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15848 fc_release_transport(lpfc_transport_template); 15849 fc_release_transport(lpfc_vport_transport_template); 15850 idr_destroy(&lpfc_hba_index); 15851 } 15852 15853 module_init(lpfc_init); 15854 module_exit(lpfc_exit); 15855 MODULE_LICENSE("GPL"); 15856 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15857 MODULE_AUTHOR("Broadcom"); 15858 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15859