xref: /linux/drivers/scsi/lpfc/lpfc_init.c (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
106 
107 /**
108  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
109  * @phba: pointer to lpfc hba data structure.
110  *
111  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
112  * mailbox command. It retrieves the revision information from the HBA and
113  * collects the Vital Product Data (VPD) about the HBA for preparing the
114  * configuration of the HBA.
115  *
116  * Return codes:
117  *   0 - success.
118  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
119  *   Any other value - indicates an error.
120  **/
121 int
122 lpfc_config_port_prep(struct lpfc_hba *phba)
123 {
124 	lpfc_vpd_t *vp = &phba->vpd;
125 	int i = 0, rc;
126 	LPFC_MBOXQ_t *pmb;
127 	MAILBOX_t *mb;
128 	char *lpfc_vpd_data = NULL;
129 	uint16_t offset = 0;
130 	static char licensed[56] =
131 		    "key unlock for use with gnu public licensed code only\0";
132 	static int init_key = 1;
133 
134 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
135 	if (!pmb) {
136 		phba->link_state = LPFC_HBA_ERROR;
137 		return -ENOMEM;
138 	}
139 
140 	mb = &pmb->u.mb;
141 	phba->link_state = LPFC_INIT_MBX_CMDS;
142 
143 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
144 		if (init_key) {
145 			uint32_t *ptext = (uint32_t *) licensed;
146 
147 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
148 				*ptext = cpu_to_be32(*ptext);
149 			init_key = 0;
150 		}
151 
152 		lpfc_read_nv(phba, pmb);
153 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
154 			sizeof (mb->un.varRDnvp.rsvd3));
155 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
156 			 sizeof (licensed));
157 
158 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
159 
160 		if (rc != MBX_SUCCESS) {
161 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
162 					"0324 Config Port initialization "
163 					"error, mbxCmd x%x READ_NVPARM, "
164 					"mbxStatus x%x\n",
165 					mb->mbxCommand, mb->mbxStatus);
166 			mempool_free(pmb, phba->mbox_mem_pool);
167 			return -ERESTART;
168 		}
169 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
170 		       sizeof(phba->wwnn));
171 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
172 		       sizeof(phba->wwpn));
173 	}
174 
175 	/*
176 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
177 	 * which was already set in lpfc_get_cfgparam()
178 	 */
179 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
180 
181 	/* Setup and issue mailbox READ REV command */
182 	lpfc_read_rev(phba, pmb);
183 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
184 	if (rc != MBX_SUCCESS) {
185 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
186 				"0439 Adapter failed to init, mbxCmd x%x "
187 				"READ_REV, mbxStatus x%x\n",
188 				mb->mbxCommand, mb->mbxStatus);
189 		mempool_free( pmb, phba->mbox_mem_pool);
190 		return -ERESTART;
191 	}
192 
193 
194 	/*
195 	 * The value of rr must be 1 since the driver set the cv field to 1.
196 	 * This setting requires the FW to set all revision fields.
197 	 */
198 	if (mb->un.varRdRev.rr == 0) {
199 		vp->rev.rBit = 0;
200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
201 				"0440 Adapter failed to init, READ_REV has "
202 				"missing revision information.\n");
203 		mempool_free(pmb, phba->mbox_mem_pool);
204 		return -ERESTART;
205 	}
206 
207 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
208 		mempool_free(pmb, phba->mbox_mem_pool);
209 		return -EINVAL;
210 	}
211 
212 	/* Save information as VPD data */
213 	vp->rev.rBit = 1;
214 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
215 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
216 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
217 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
218 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
219 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
220 	vp->rev.smRev = mb->un.varRdRev.smRev;
221 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
222 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
223 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
224 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
225 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
226 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
227 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
228 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
229 
230 	/* If the sli feature level is less then 9, we must
231 	 * tear down all RPIs and VPIs on link down if NPIV
232 	 * is enabled.
233 	 */
234 	if (vp->rev.feaLevelHigh < 9)
235 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
236 
237 	if (lpfc_is_LC_HBA(phba->pcidev->device))
238 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
239 						sizeof (phba->RandomData));
240 
241 	/* Get adapter VPD information */
242 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
243 	if (!lpfc_vpd_data)
244 		goto out_free_mbox;
245 	do {
246 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
247 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
248 
249 		if (rc != MBX_SUCCESS) {
250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
251 					"0441 VPD not present on adapter, "
252 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
253 					mb->mbxCommand, mb->mbxStatus);
254 			mb->un.varDmp.word_cnt = 0;
255 		}
256 		/* dump mem may return a zero when finished or we got a
257 		 * mailbox error, either way we are done.
258 		 */
259 		if (mb->un.varDmp.word_cnt == 0)
260 			break;
261 
262 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
263 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
264 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
265 				      lpfc_vpd_data + offset,
266 				      mb->un.varDmp.word_cnt);
267 		offset += mb->un.varDmp.word_cnt;
268 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
269 
270 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
271 
272 	kfree(lpfc_vpd_data);
273 out_free_mbox:
274 	mempool_free(pmb, phba->mbox_mem_pool);
275 	return 0;
276 }
277 
278 /**
279  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
280  * @phba: pointer to lpfc hba data structure.
281  * @pmboxq: pointer to the driver internal queue element for mailbox command.
282  *
283  * This is the completion handler for driver's configuring asynchronous event
284  * mailbox command to the device. If the mailbox command returns successfully,
285  * it will set internal async event support flag to 1; otherwise, it will
286  * set internal async event support flag to 0.
287  **/
288 static void
289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
290 {
291 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
292 		phba->temp_sensor_support = 1;
293 	else
294 		phba->temp_sensor_support = 0;
295 	mempool_free(pmboxq, phba->mbox_mem_pool);
296 	return;
297 }
298 
299 /**
300  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
301  * @phba: pointer to lpfc hba data structure.
302  * @pmboxq: pointer to the driver internal queue element for mailbox command.
303  *
304  * This is the completion handler for dump mailbox command for getting
305  * wake up parameters. When this command complete, the response contain
306  * Option rom version of the HBA. This function translate the version number
307  * into a human readable string and store it in OptionROMVersion.
308  **/
309 static void
310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
311 {
312 	struct prog_id *prg;
313 	uint32_t prog_id_word;
314 	char dist = ' ';
315 	/* character array used for decoding dist type. */
316 	char dist_char[] = "nabx";
317 
318 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
319 		mempool_free(pmboxq, phba->mbox_mem_pool);
320 		return;
321 	}
322 
323 	prg = (struct prog_id *) &prog_id_word;
324 
325 	/* word 7 contain option rom version */
326 	prog_id_word = pmboxq->u.mb.un.varWords[7];
327 
328 	/* Decode the Option rom version word to a readable string */
329 	dist = dist_char[prg->dist];
330 
331 	if ((prg->dist == 3) && (prg->num == 0))
332 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333 			prg->ver, prg->rev, prg->lev);
334 	else
335 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336 			prg->ver, prg->rev, prg->lev,
337 			dist, prg->num);
338 	mempool_free(pmboxq, phba->mbox_mem_pool);
339 	return;
340 }
341 
342 /**
343  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	struct lpfc_hba *phba = vport->phba;
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 		       sizeof(struct lpfc_name))) {
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 		if (phba->sli_rev == LPFC_SLI_REV4 &&
376 		    vport->port_type == LPFC_PHYSICAL_PORT &&
377 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379 				phba->sli4_hba.fawwpn_flag &=
380 						~LPFC_FAWWPN_FABRIC;
381 			lpfc_printf_log(phba, KERN_INFO,
382 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383 					"2701 FA-PWWN change WWPN from %llx to "
384 					"%llx: vflag x%x fawwpn_flag x%x\n",
385 					wwn_to_u64(vport->fc_portname.u.wwn),
386 					wwn_to_u64
387 					   (vport->fc_sparam.portName.u.wwn),
388 					vport->vport_flag,
389 					phba->sli4_hba.fawwpn_flag);
390 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391 			       sizeof(struct lpfc_name));
392 		}
393 	}
394 
395 	if (vport->fc_portname.u.wwn[0] == 0)
396 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397 		       sizeof(struct lpfc_name));
398 	else
399 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400 		       sizeof(struct lpfc_name));
401 }
402 
403 /**
404  * lpfc_config_port_post - Perform lpfc initialization after config port
405  * @phba: pointer to lpfc hba data structure.
406  *
407  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408  * command call. It performs all internal resource and state setups on the
409  * port: post IOCB buffers, enable appropriate host interrupt attentions,
410  * ELS ring timers, etc.
411  *
412  * Return codes
413  *   0 - success.
414  *   Any other value - error.
415  **/
416 int
417 lpfc_config_port_post(struct lpfc_hba *phba)
418 {
419 	struct lpfc_vport *vport = phba->pport;
420 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421 	LPFC_MBOXQ_t *pmb;
422 	MAILBOX_t *mb;
423 	struct lpfc_dmabuf *mp;
424 	struct lpfc_sli *psli = &phba->sli;
425 	uint32_t status, timeout;
426 	int i, j;
427 	int rc;
428 
429 	spin_lock_irq(&phba->hbalock);
430 	/*
431 	 * If the Config port completed correctly the HBA is not
432 	 * over heated any more.
433 	 */
434 	if (phba->over_temp_state == HBA_OVER_TEMP)
435 		phba->over_temp_state = HBA_NORMAL_TEMP;
436 	spin_unlock_irq(&phba->hbalock);
437 
438 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439 	if (!pmb) {
440 		phba->link_state = LPFC_HBA_ERROR;
441 		return -ENOMEM;
442 	}
443 	mb = &pmb->u.mb;
444 
445 	/* Get login parameters for NID.  */
446 	rc = lpfc_read_sparam(phba, pmb, 0);
447 	if (rc) {
448 		mempool_free(pmb, phba->mbox_mem_pool);
449 		return -ENOMEM;
450 	}
451 
452 	pmb->vport = vport;
453 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455 				"0448 Adapter failed init, mbxCmd x%x "
456 				"READ_SPARM mbxStatus x%x\n",
457 				mb->mbxCommand, mb->mbxStatus);
458 		phba->link_state = LPFC_HBA_ERROR;
459 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460 		return -EIO;
461 	}
462 
463 	mp = pmb->ctx_buf;
464 
465 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467 	 * reused.
468 	 */
469 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471 	kfree(mp);
472 	pmb->ctx_buf = NULL;
473 	lpfc_update_vport_wwn(vport);
474 
475 	/* Update the fc_host data structures with new wwn. */
476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479 
480 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481 	/* This should be consolidated into parse_vpd ? - mr */
482 	if (phba->SerialNumber[0] == 0) {
483 		uint8_t *outptr;
484 
485 		outptr = &vport->fc_nodename.u.s.IEEE[0];
486 		for (i = 0; i < 12; i++) {
487 			status = *outptr++;
488 			j = ((status & 0xf0) >> 4);
489 			if (j <= 9)
490 				phba->SerialNumber[i] =
491 				    (char)((uint8_t) 0x30 + (uint8_t) j);
492 			else
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495 			i++;
496 			j = (status & 0xf);
497 			if (j <= 9)
498 				phba->SerialNumber[i] =
499 				    (char)((uint8_t) 0x30 + (uint8_t) j);
500 			else
501 				phba->SerialNumber[i] =
502 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503 		}
504 	}
505 
506 	lpfc_read_config(phba, pmb);
507 	pmb->vport = vport;
508 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510 				"0453 Adapter failed to init, mbxCmd x%x "
511 				"READ_CONFIG, mbxStatus x%x\n",
512 				mb->mbxCommand, mb->mbxStatus);
513 		phba->link_state = LPFC_HBA_ERROR;
514 		mempool_free( pmb, phba->mbox_mem_pool);
515 		return -EIO;
516 	}
517 
518 	/* Check if the port is disabled */
519 	lpfc_sli_read_link_ste(phba);
520 
521 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524 				"3359 HBA queue depth changed from %d to %d\n",
525 				phba->cfg_hba_queue_depth,
526 				mb->un.varRdConfig.max_xri);
527 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528 	}
529 
530 	phba->lmt = mb->un.varRdConfig.lmt;
531 
532 	/* Get the default values for Model Name and Description */
533 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534 
535 	phba->link_state = LPFC_LINK_DOWN;
536 
537 	/* Only process IOCBs on ELS ring till hba_state is READY */
538 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542 
543 	/* Post receive buffers for desired rings */
544 	if (phba->sli_rev != 3)
545 		lpfc_post_rcv_buf(phba);
546 
547 	/*
548 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549 	 */
550 	if (phba->intr_type == MSIX) {
551 		rc = lpfc_config_msi(phba, pmb);
552 		if (rc) {
553 			mempool_free(pmb, phba->mbox_mem_pool);
554 			return -EIO;
555 		}
556 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557 		if (rc != MBX_SUCCESS) {
558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559 					"0352 Config MSI mailbox command "
560 					"failed, mbxCmd x%x, mbxStatus x%x\n",
561 					pmb->u.mb.mbxCommand,
562 					pmb->u.mb.mbxStatus);
563 			mempool_free(pmb, phba->mbox_mem_pool);
564 			return -EIO;
565 		}
566 	}
567 
568 	spin_lock_irq(&phba->hbalock);
569 	/* Initialize ERATT handling flag */
570 	clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
571 
572 	/* Enable appropriate host interrupts */
573 	if (lpfc_readl(phba->HCregaddr, &status)) {
574 		spin_unlock_irq(&phba->hbalock);
575 		return -EIO;
576 	}
577 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578 	if (psli->num_rings > 0)
579 		status |= HC_R0INT_ENA;
580 	if (psli->num_rings > 1)
581 		status |= HC_R1INT_ENA;
582 	if (psli->num_rings > 2)
583 		status |= HC_R2INT_ENA;
584 	if (psli->num_rings > 3)
585 		status |= HC_R3INT_ENA;
586 
587 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589 		status &= ~(HC_R0INT_ENA);
590 
591 	writel(status, phba->HCregaddr);
592 	readl(phba->HCregaddr); /* flush */
593 	spin_unlock_irq(&phba->hbalock);
594 
595 	/* Set up ring-0 (ELS) timer */
596 	timeout = phba->fc_ratov * 2;
597 	mod_timer(&vport->els_tmofunc,
598 		  jiffies + msecs_to_jiffies(1000 * timeout));
599 	/* Set up heart beat (HB) timer */
600 	mod_timer(&phba->hb_tmofunc,
601 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
602 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
603 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
604 	phba->last_completion_time = jiffies;
605 	/* Set up error attention (ERATT) polling timer */
606 	mod_timer(&phba->eratt_poll,
607 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
608 
609 	if (test_bit(LINK_DISABLED, &phba->hba_flag)) {
610 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611 				"2598 Adapter Link is disabled.\n");
612 		lpfc_down_link(phba, pmb);
613 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
614 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
615 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
616 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
617 					"2599 Adapter failed to issue DOWN_LINK"
618 					" mbox command rc 0x%x\n", rc);
619 
620 			mempool_free(pmb, phba->mbox_mem_pool);
621 			return -EIO;
622 		}
623 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
624 		mempool_free(pmb, phba->mbox_mem_pool);
625 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
626 		if (rc)
627 			return rc;
628 	}
629 	/* MBOX buffer will be freed in mbox compl */
630 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
631 	if (!pmb) {
632 		phba->link_state = LPFC_HBA_ERROR;
633 		return -ENOMEM;
634 	}
635 
636 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
637 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
638 	pmb->vport = phba->pport;
639 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
640 
641 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
642 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
643 				"0456 Adapter failed to issue "
644 				"ASYNCEVT_ENABLE mbox status x%x\n",
645 				rc);
646 		mempool_free(pmb, phba->mbox_mem_pool);
647 	}
648 
649 	/* Get Option rom version */
650 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
651 	if (!pmb) {
652 		phba->link_state = LPFC_HBA_ERROR;
653 		return -ENOMEM;
654 	}
655 
656 	lpfc_dump_wakeup_param(phba, pmb);
657 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
658 	pmb->vport = phba->pport;
659 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
660 
661 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
662 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
663 				"0435 Adapter failed "
664 				"to get Option ROM version status x%x\n", rc);
665 		mempool_free(pmb, phba->mbox_mem_pool);
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  * lpfc_sli4_refresh_params - update driver copy of params.
673  * @phba: Pointer to HBA context object.
674  *
675  * This is called to refresh driver copy of dynamic fields from the
676  * common_get_sli4_parameters descriptor.
677  **/
678 int
679 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
680 {
681 	LPFC_MBOXQ_t *mboxq;
682 	struct lpfc_mqe *mqe;
683 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
684 	int length, rc;
685 
686 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
687 	if (!mboxq)
688 		return -ENOMEM;
689 
690 	mqe = &mboxq->u.mqe;
691 	/* Read the port's SLI4 Config Parameters */
692 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
693 		  sizeof(struct lpfc_sli4_cfg_mhdr));
694 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
695 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
696 			 length, LPFC_SLI4_MBX_EMBED);
697 
698 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
699 	if (unlikely(rc)) {
700 		mempool_free(mboxq, phba->mbox_mem_pool);
701 		return rc;
702 	}
703 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
704 	phba->sli4_hba.pc_sli4_params.mi_cap =
705 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
706 
707 	/* Are we forcing MI off via module parameter? */
708 	if (phba->cfg_enable_mi)
709 		phba->sli4_hba.pc_sli4_params.mi_ver =
710 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
711 	else
712 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
713 
714 	phba->sli4_hba.pc_sli4_params.cmf =
715 			bf_get(cfg_cmf, mbx_sli4_parameters);
716 	phba->sli4_hba.pc_sli4_params.pls =
717 			bf_get(cfg_pvl, mbx_sli4_parameters);
718 
719 	mempool_free(mboxq, phba->mbox_mem_pool);
720 	return rc;
721 }
722 
723 /**
724  * lpfc_hba_init_link - Initialize the FC link
725  * @phba: pointer to lpfc hba data structure.
726  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
727  *
728  * This routine will issue the INIT_LINK mailbox command call.
729  * It is available to other drivers through the lpfc_hba data
730  * structure for use as a delayed link up mechanism with the
731  * module parameter lpfc_suppress_link_up.
732  *
733  * Return code
734  *		0 - success
735  *		Any other value - error
736  **/
737 static int
738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
739 {
740 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
741 }
742 
743 /**
744  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
745  * @phba: pointer to lpfc hba data structure.
746  * @fc_topology: desired fc topology.
747  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
748  *
749  * This routine will issue the INIT_LINK mailbox command call.
750  * It is available to other drivers through the lpfc_hba data
751  * structure for use as a delayed link up mechanism with the
752  * module parameter lpfc_suppress_link_up.
753  *
754  * Return code
755  *              0 - success
756  *              Any other value - error
757  **/
758 int
759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
760 			       uint32_t flag)
761 {
762 	struct lpfc_vport *vport = phba->pport;
763 	LPFC_MBOXQ_t *pmb;
764 	MAILBOX_t *mb;
765 	int rc;
766 
767 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
768 	if (!pmb) {
769 		phba->link_state = LPFC_HBA_ERROR;
770 		return -ENOMEM;
771 	}
772 	mb = &pmb->u.mb;
773 	pmb->vport = vport;
774 
775 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
777 	     !(phba->lmt & LMT_1Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
779 	     !(phba->lmt & LMT_2Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
781 	     !(phba->lmt & LMT_4Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
783 	     !(phba->lmt & LMT_8Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
785 	     !(phba->lmt & LMT_10Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
787 	     !(phba->lmt & LMT_16Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
789 	     !(phba->lmt & LMT_32Gb)) ||
790 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
791 	     !(phba->lmt & LMT_64Gb))) {
792 		/* Reset link speed to auto */
793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
794 				"1302 Invalid speed for this board:%d "
795 				"Reset link speed to auto.\n",
796 				phba->cfg_link_speed);
797 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
798 	}
799 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
800 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
801 	if (phba->sli_rev < LPFC_SLI_REV4)
802 		lpfc_set_loopback_flag(phba);
803 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
804 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
805 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
806 				"0498 Adapter failed to init, mbxCmd x%x "
807 				"INIT_LINK, mbxStatus x%x\n",
808 				mb->mbxCommand, mb->mbxStatus);
809 		if (phba->sli_rev <= LPFC_SLI_REV3) {
810 			/* Clear all interrupt enable conditions */
811 			writel(0, phba->HCregaddr);
812 			readl(phba->HCregaddr); /* flush */
813 			/* Clear all pending interrupts */
814 			writel(0xffffffff, phba->HAregaddr);
815 			readl(phba->HAregaddr); /* flush */
816 		}
817 		phba->link_state = LPFC_HBA_ERROR;
818 		if (rc != MBX_BUSY || flag == MBX_POLL)
819 			mempool_free(pmb, phba->mbox_mem_pool);
820 		return -EIO;
821 	}
822 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
823 	if (flag == MBX_POLL)
824 		mempool_free(pmb, phba->mbox_mem_pool);
825 
826 	return 0;
827 }
828 
829 /**
830  * lpfc_hba_down_link - this routine downs the FC link
831  * @phba: pointer to lpfc hba data structure.
832  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
833  *
834  * This routine will issue the DOWN_LINK mailbox command call.
835  * It is available to other drivers through the lpfc_hba data
836  * structure for use to stop the link.
837  *
838  * Return code
839  *		0 - success
840  *		Any other value - error
841  **/
842 static int
843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
844 {
845 	LPFC_MBOXQ_t *pmb;
846 	int rc;
847 
848 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
849 	if (!pmb) {
850 		phba->link_state = LPFC_HBA_ERROR;
851 		return -ENOMEM;
852 	}
853 
854 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
855 			"0491 Adapter Link is disabled.\n");
856 	lpfc_down_link(phba, pmb);
857 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
858 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
859 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
861 				"2522 Adapter failed to issue DOWN_LINK"
862 				" mbox command rc 0x%x\n", rc);
863 
864 		mempool_free(pmb, phba->mbox_mem_pool);
865 		return -EIO;
866 	}
867 	if (flag == MBX_POLL)
868 		mempool_free(pmb, phba->mbox_mem_pool);
869 
870 	return 0;
871 }
872 
873 /**
874  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
875  * @phba: pointer to lpfc HBA data structure.
876  *
877  * This routine will do LPFC uninitialization before the HBA is reset when
878  * bringing down the SLI Layer.
879  *
880  * Return codes
881  *   0 - success.
882  *   Any other value - error.
883  **/
884 int
885 lpfc_hba_down_prep(struct lpfc_hba *phba)
886 {
887 	struct lpfc_vport **vports;
888 	int i;
889 
890 	if (phba->sli_rev <= LPFC_SLI_REV3) {
891 		/* Disable interrupts */
892 		writel(0, phba->HCregaddr);
893 		readl(phba->HCregaddr); /* flush */
894 	}
895 
896 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
897 		lpfc_cleanup_discovery_resources(phba->pport);
898 	else {
899 		vports = lpfc_create_vport_work_array(phba);
900 		if (vports != NULL)
901 			for (i = 0; i <= phba->max_vports &&
902 				vports[i] != NULL; i++)
903 				lpfc_cleanup_discovery_resources(vports[i]);
904 		lpfc_destroy_vport_work_array(phba, vports);
905 	}
906 	return 0;
907 }
908 
909 /**
910  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
911  * rspiocb which got deferred
912  *
913  * @phba: pointer to lpfc HBA data structure.
914  *
915  * This routine will cleanup completed slow path events after HBA is reset
916  * when bringing down the SLI Layer.
917  *
918  *
919  * Return codes
920  *   void.
921  **/
922 static void
923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
924 {
925 	struct lpfc_iocbq *rspiocbq;
926 	struct hbq_dmabuf *dmabuf;
927 	struct lpfc_cq_event *cq_event;
928 
929 	clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1233 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1234 		return;
1235 	}
1236 
1237 	set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1238 	lpfc_worker_wake_up(phba);
1239 }
1240 
1241 /**
1242  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1243  * @phba: pointer to lpfc hba data structure.
1244  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1245  *
1246  * This is the callback function to the lpfc heart-beat mailbox command.
1247  * If configured, the lpfc driver issues the heart-beat mailbox command to
1248  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1249  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1250  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1251  * heart-beat outstanding state. Once the mailbox command comes back and
1252  * no error conditions detected, the heart-beat mailbox command timer is
1253  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1254  * state is cleared for the next heart-beat. If the timer expired with the
1255  * heart-beat outstanding state set, the driver will put the HBA offline.
1256  **/
1257 static void
1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1259 {
1260 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
1261 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1262 
1263 	/* Check and reset heart-beat timer if necessary */
1264 	mempool_free(pmboxq, phba->mbox_mem_pool);
1265 	if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) &&
1266 	    !(phba->link_state == LPFC_HBA_ERROR) &&
1267 	    !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1268 		mod_timer(&phba->hb_tmofunc,
1269 			  jiffies +
1270 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1271 	return;
1272 }
1273 
1274 /*
1275  * lpfc_idle_stat_delay_work - idle_stat tracking
1276  *
1277  * This routine tracks per-eq idle_stat and determines polling decisions.
1278  *
1279  * Return codes:
1280  *   None
1281  **/
1282 static void
1283 lpfc_idle_stat_delay_work(struct work_struct *work)
1284 {
1285 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1286 					     struct lpfc_hba,
1287 					     idle_stat_delay_work);
1288 	struct lpfc_queue *eq;
1289 	struct lpfc_sli4_hdw_queue *hdwq;
1290 	struct lpfc_idle_stat *idle_stat;
1291 	u32 i, idle_percent;
1292 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1293 
1294 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1295 		return;
1296 
1297 	if (phba->link_state == LPFC_HBA_ERROR ||
1298 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) ||
1299 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1300 		goto requeue;
1301 
1302 	for_each_present_cpu(i) {
1303 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1304 		eq = hdwq->hba_eq;
1305 
1306 		/* Skip if we've already handled this eq's primary CPU */
1307 		if (eq->chann != i)
1308 			continue;
1309 
1310 		idle_stat = &phba->sli4_hba.idle_stat[i];
1311 
1312 		/* get_cpu_idle_time returns values as running counters. Thus,
1313 		 * to know the amount for this period, the prior counter values
1314 		 * need to be subtracted from the current counter values.
1315 		 * From there, the idle time stat can be calculated as a
1316 		 * percentage of 100 - the sum of the other consumption times.
1317 		 */
1318 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1319 		diff_idle = wall_idle - idle_stat->prev_idle;
1320 		diff_wall = wall - idle_stat->prev_wall;
1321 
1322 		if (diff_wall <= diff_idle)
1323 			busy_time = 0;
1324 		else
1325 			busy_time = diff_wall - diff_idle;
1326 
1327 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1328 		idle_percent = 100 - idle_percent;
1329 
1330 		if (idle_percent < 15)
1331 			eq->poll_mode = LPFC_QUEUE_WORK;
1332 		else
1333 			eq->poll_mode = LPFC_THREADED_IRQ;
1334 
1335 		idle_stat->prev_idle = wall_idle;
1336 		idle_stat->prev_wall = wall;
1337 	}
1338 
1339 requeue:
1340 	schedule_delayed_work(&phba->idle_stat_delay_work,
1341 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1342 }
1343 
1344 static void
1345 lpfc_hb_eq_delay_work(struct work_struct *work)
1346 {
1347 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1348 					     struct lpfc_hba, eq_delay_work);
1349 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1350 	struct lpfc_queue *eq, *eq_next;
1351 	unsigned char *ena_delay = NULL;
1352 	uint32_t usdelay;
1353 	int i;
1354 
1355 	if (!phba->cfg_auto_imax ||
1356 	    test_bit(FC_UNLOADING, &phba->pport->load_flag))
1357 		return;
1358 
1359 	if (phba->link_state == LPFC_HBA_ERROR ||
1360 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1361 		goto requeue;
1362 
1363 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1364 			    GFP_KERNEL);
1365 	if (!ena_delay)
1366 		goto requeue;
1367 
1368 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1369 		/* Get the EQ corresponding to the IRQ vector */
1370 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1371 		if (!eq)
1372 			continue;
1373 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1374 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1375 			ena_delay[eq->last_cpu] = 1;
1376 		}
1377 	}
1378 
1379 	for_each_present_cpu(i) {
1380 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1381 		if (ena_delay[i]) {
1382 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1383 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1384 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1385 		} else {
1386 			usdelay = 0;
1387 		}
1388 
1389 		eqi->icnt = 0;
1390 
1391 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1392 			if (unlikely(eq->last_cpu != i)) {
1393 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1394 						      eq->last_cpu);
1395 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1396 				continue;
1397 			}
1398 			if (usdelay != eq->q_mode)
1399 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1400 							 usdelay);
1401 		}
1402 	}
1403 
1404 	kfree(ena_delay);
1405 
1406 requeue:
1407 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1408 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1409 }
1410 
1411 /**
1412  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1413  * @phba: pointer to lpfc hba data structure.
1414  *
1415  * For each heartbeat, this routine does some heuristic methods to adjust
1416  * XRI distribution. The goal is to fully utilize free XRIs.
1417  **/
1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1419 {
1420 	u32 i;
1421 	u32 hwq_count;
1422 
1423 	hwq_count = phba->cfg_hdw_queue;
1424 	for (i = 0; i < hwq_count; i++) {
1425 		/* Adjust XRIs in private pool */
1426 		lpfc_adjust_pvt_pool_count(phba, i);
1427 
1428 		/* Adjust high watermark */
1429 		lpfc_adjust_high_watermark(phba, i);
1430 
1431 #ifdef LPFC_MXP_STAT
1432 		/* Snapshot pbl, pvt and busy count */
1433 		lpfc_snapshot_mxp(phba, i);
1434 #endif
1435 	}
1436 }
1437 
1438 /**
1439  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1440  * @phba: pointer to lpfc hba data structure.
1441  *
1442  * If a HB mbox is not already in progrees, this routine will allocate
1443  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1444  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1445  **/
1446 int
1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1448 {
1449 	LPFC_MBOXQ_t *pmboxq;
1450 	int retval;
1451 
1452 	/* Is a Heartbeat mbox already in progress */
1453 	if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1454 		return 0;
1455 
1456 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1457 	if (!pmboxq)
1458 		return -ENOMEM;
1459 
1460 	lpfc_heart_beat(phba, pmboxq);
1461 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1462 	pmboxq->vport = phba->pport;
1463 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1464 
1465 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1466 		mempool_free(pmboxq, phba->mbox_mem_pool);
1467 		return -ENXIO;
1468 	}
1469 	set_bit(HBA_HBEAT_INP, &phba->hba_flag);
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1476  * @phba: pointer to lpfc hba data structure.
1477  *
1478  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1479  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1480  * of the value of lpfc_enable_hba_heartbeat.
1481  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1482  * try to issue a MBX_HEARTBEAT mbox command.
1483  **/
1484 void
1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1486 {
1487 	if (phba->cfg_enable_hba_heartbeat)
1488 		return;
1489 	set_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1490 }
1491 
1492 /**
1493  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1494  * @phba: pointer to lpfc hba data structure.
1495  *
1496  * This is the actual HBA-timer timeout handler to be invoked by the worker
1497  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1498  * handler performs any periodic operations needed for the device. If such
1499  * periodic event has already been attended to either in the interrupt handler
1500  * or by processing slow-ring or fast-ring events within the HBA-timer
1501  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1502  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1503  * is configured and there is no heart-beat mailbox command outstanding, a
1504  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1505  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1506  * to offline.
1507  **/
1508 void
1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1510 {
1511 	struct lpfc_vport **vports;
1512 	struct lpfc_dmabuf *buf_ptr;
1513 	int retval = 0;
1514 	int i, tmo;
1515 	struct lpfc_sli *psli = &phba->sli;
1516 	LIST_HEAD(completions);
1517 
1518 	if (phba->cfg_xri_rebalancing) {
1519 		/* Multi-XRI pools handler */
1520 		lpfc_hb_mxp_handler(phba);
1521 	}
1522 
1523 	vports = lpfc_create_vport_work_array(phba);
1524 	if (vports != NULL)
1525 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1526 			lpfc_rcv_seq_check_edtov(vports[i]);
1527 			lpfc_fdmi_change_check(vports[i]);
1528 		}
1529 	lpfc_destroy_vport_work_array(phba, vports);
1530 
1531 	if (phba->link_state == LPFC_HBA_ERROR ||
1532 	    test_bit(FC_UNLOADING, &phba->pport->load_flag) ||
1533 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1534 		return;
1535 
1536 	if (phba->elsbuf_cnt &&
1537 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1538 		spin_lock_irq(&phba->hbalock);
1539 		list_splice_init(&phba->elsbuf, &completions);
1540 		phba->elsbuf_cnt = 0;
1541 		phba->elsbuf_prev_cnt = 0;
1542 		spin_unlock_irq(&phba->hbalock);
1543 
1544 		while (!list_empty(&completions)) {
1545 			list_remove_head(&completions, buf_ptr,
1546 				struct lpfc_dmabuf, list);
1547 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1548 			kfree(buf_ptr);
1549 		}
1550 	}
1551 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1552 
1553 	/* If there is no heart beat outstanding, issue a heartbeat command */
1554 	if (phba->cfg_enable_hba_heartbeat) {
1555 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1556 		spin_lock_irq(&phba->pport->work_port_lock);
1557 		if (time_after(phba->last_completion_time +
1558 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1559 				jiffies)) {
1560 			spin_unlock_irq(&phba->pport->work_port_lock);
1561 			if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1562 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1563 			else
1564 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1565 			goto out;
1566 		}
1567 		spin_unlock_irq(&phba->pport->work_port_lock);
1568 
1569 		/* Check if a MBX_HEARTBEAT is already in progress */
1570 		if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) {
1571 			/*
1572 			 * If heart beat timeout called with HBA_HBEAT_INP set
1573 			 * we need to give the hb mailbox cmd a chance to
1574 			 * complete or TMO.
1575 			 */
1576 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1577 				"0459 Adapter heartbeat still outstanding: "
1578 				"last compl time was %d ms.\n",
1579 				jiffies_to_msecs(jiffies
1580 					 - phba->last_completion_time));
1581 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1582 		} else {
1583 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1584 				(list_empty(&psli->mboxq))) {
1585 
1586 				retval = lpfc_issue_hb_mbox(phba);
1587 				if (retval) {
1588 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1589 					goto out;
1590 				}
1591 				phba->skipped_hb = 0;
1592 			} else if (time_before_eq(phba->last_completion_time,
1593 					phba->skipped_hb)) {
1594 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1595 					"2857 Last completion time not "
1596 					" updated in %d ms\n",
1597 					jiffies_to_msecs(jiffies
1598 						 - phba->last_completion_time));
1599 			} else
1600 				phba->skipped_hb = jiffies;
1601 
1602 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1603 			goto out;
1604 		}
1605 	} else {
1606 		/* Check to see if we want to force a MBX_HEARTBEAT */
1607 		if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) {
1608 			retval = lpfc_issue_hb_mbox(phba);
1609 			if (retval)
1610 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1611 			else
1612 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1613 			goto out;
1614 		}
1615 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 	}
1617 out:
1618 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1619 }
1620 
1621 /**
1622  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1623  * @phba: pointer to lpfc hba data structure.
1624  *
1625  * This routine is called to bring the HBA offline when HBA hardware error
1626  * other than Port Error 6 has been detected.
1627  **/
1628 static void
1629 lpfc_offline_eratt(struct lpfc_hba *phba)
1630 {
1631 	struct lpfc_sli   *psli = &phba->sli;
1632 
1633 	spin_lock_irq(&phba->hbalock);
1634 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1635 	spin_unlock_irq(&phba->hbalock);
1636 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1637 
1638 	lpfc_offline(phba);
1639 	lpfc_reset_barrier(phba);
1640 	spin_lock_irq(&phba->hbalock);
1641 	lpfc_sli_brdreset(phba);
1642 	spin_unlock_irq(&phba->hbalock);
1643 	lpfc_hba_down_post(phba);
1644 	lpfc_sli_brdready(phba, HS_MBRDY);
1645 	lpfc_unblock_mgmt_io(phba);
1646 	phba->link_state = LPFC_HBA_ERROR;
1647 	return;
1648 }
1649 
1650 /**
1651  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1652  * @phba: pointer to lpfc hba data structure.
1653  *
1654  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1655  * other than Port Error 6 has been detected.
1656  **/
1657 void
1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1659 {
1660 	spin_lock_irq(&phba->hbalock);
1661 	if (phba->link_state == LPFC_HBA_ERROR &&
1662 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1663 		spin_unlock_irq(&phba->hbalock);
1664 		return;
1665 	}
1666 	phba->link_state = LPFC_HBA_ERROR;
1667 	spin_unlock_irq(&phba->hbalock);
1668 
1669 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1670 	lpfc_sli_flush_io_rings(phba);
1671 	lpfc_offline(phba);
1672 	lpfc_hba_down_post(phba);
1673 	lpfc_unblock_mgmt_io(phba);
1674 }
1675 
1676 /**
1677  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1678  * @phba: pointer to lpfc hba data structure.
1679  *
1680  * This routine is invoked to handle the deferred HBA hardware error
1681  * conditions. This type of error is indicated by HBA by setting ER1
1682  * and another ER bit in the host status register. The driver will
1683  * wait until the ER1 bit clears before handling the error condition.
1684  **/
1685 static void
1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1687 {
1688 	uint32_t old_host_status = phba->work_hs;
1689 	struct lpfc_sli *psli = &phba->sli;
1690 
1691 	/* If the pci channel is offline, ignore possible errors,
1692 	 * since we cannot communicate with the pci card anyway.
1693 	 */
1694 	if (pci_channel_offline(phba->pcidev)) {
1695 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1696 		return;
1697 	}
1698 
1699 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1700 			"0479 Deferred Adapter Hardware Error "
1701 			"Data: x%x x%x x%x\n",
1702 			phba->work_hs, phba->work_status[0],
1703 			phba->work_status[1]);
1704 
1705 	spin_lock_irq(&phba->hbalock);
1706 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1707 	spin_unlock_irq(&phba->hbalock);
1708 
1709 
1710 	/*
1711 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1712 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1713 	 * SCSI layer retry it after re-establishing link.
1714 	 */
1715 	lpfc_sli_abort_fcp_rings(phba);
1716 
1717 	/*
1718 	 * There was a firmware error. Take the hba offline and then
1719 	 * attempt to restart it.
1720 	 */
1721 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1722 	lpfc_offline(phba);
1723 
1724 	/* Wait for the ER1 bit to clear.*/
1725 	while (phba->work_hs & HS_FFER1) {
1726 		msleep(100);
1727 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1728 			phba->work_hs = UNPLUG_ERR ;
1729 			break;
1730 		}
1731 		/* If driver is unloading let the worker thread continue */
1732 		if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1733 			phba->work_hs = 0;
1734 			break;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * This is to ptrotect against a race condition in which
1740 	 * first write to the host attention register clear the
1741 	 * host status register.
1742 	 */
1743 	if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1744 		phba->work_hs = old_host_status & ~HS_FFER1;
1745 
1746 	clear_bit(DEFER_ERATT, &phba->hba_flag);
1747 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1748 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1749 }
1750 
1751 static void
1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1753 {
1754 	struct lpfc_board_event_header board_event;
1755 	struct Scsi_Host *shost;
1756 
1757 	board_event.event_type = FC_REG_BOARD_EVENT;
1758 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1759 	shost = lpfc_shost_from_vport(phba->pport);
1760 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1761 				  sizeof(board_event),
1762 				  (char *) &board_event,
1763 				  LPFC_NL_VENDOR_ID);
1764 }
1765 
1766 /**
1767  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1768  * @phba: pointer to lpfc hba data structure.
1769  *
1770  * This routine is invoked to handle the following HBA hardware error
1771  * conditions:
1772  * 1 - HBA error attention interrupt
1773  * 2 - DMA ring index out of range
1774  * 3 - Mailbox command came back as unknown
1775  **/
1776 static void
1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1778 {
1779 	struct lpfc_vport *vport = phba->pport;
1780 	struct lpfc_sli   *psli = &phba->sli;
1781 	uint32_t event_data;
1782 	unsigned long temperature;
1783 	struct temp_event temp_event_data;
1784 	struct Scsi_Host  *shost;
1785 
1786 	/* If the pci channel is offline, ignore possible errors,
1787 	 * since we cannot communicate with the pci card anyway.
1788 	 */
1789 	if (pci_channel_offline(phba->pcidev)) {
1790 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1791 		return;
1792 	}
1793 
1794 	/* If resets are disabled then leave the HBA alone and return */
1795 	if (!phba->cfg_enable_hba_reset)
1796 		return;
1797 
1798 	/* Send an internal error event to mgmt application */
1799 	lpfc_board_errevt_to_mgmt(phba);
1800 
1801 	if (test_bit(DEFER_ERATT, &phba->hba_flag))
1802 		lpfc_handle_deferred_eratt(phba);
1803 
1804 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1805 		if (phba->work_hs & HS_FFER6)
1806 			/* Re-establishing Link */
1807 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1808 					"1301 Re-establishing Link "
1809 					"Data: x%x x%x x%x\n",
1810 					phba->work_hs, phba->work_status[0],
1811 					phba->work_status[1]);
1812 		if (phba->work_hs & HS_FFER8)
1813 			/* Device Zeroization */
1814 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1815 					"2861 Host Authentication device "
1816 					"zeroization Data:x%x x%x x%x\n",
1817 					phba->work_hs, phba->work_status[0],
1818 					phba->work_status[1]);
1819 
1820 		spin_lock_irq(&phba->hbalock);
1821 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1822 		spin_unlock_irq(&phba->hbalock);
1823 
1824 		/*
1825 		* Firmware stops when it triggled erratt with HS_FFER6.
1826 		* That could cause the I/Os dropped by the firmware.
1827 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1828 		* retry it after re-establishing link.
1829 		*/
1830 		lpfc_sli_abort_fcp_rings(phba);
1831 
1832 		/*
1833 		 * There was a firmware error.  Take the hba offline and then
1834 		 * attempt to restart it.
1835 		 */
1836 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1837 		lpfc_offline(phba);
1838 		lpfc_sli_brdrestart(phba);
1839 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1840 			lpfc_unblock_mgmt_io(phba);
1841 			return;
1842 		}
1843 		lpfc_unblock_mgmt_io(phba);
1844 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1845 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1846 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1847 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1848 		temp_event_data.data = (uint32_t)temperature;
1849 
1850 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1851 				"0406 Adapter maximum temperature exceeded "
1852 				"(%ld), taking this port offline "
1853 				"Data: x%x x%x x%x\n",
1854 				temperature, phba->work_hs,
1855 				phba->work_status[0], phba->work_status[1]);
1856 
1857 		shost = lpfc_shost_from_vport(phba->pport);
1858 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1859 					  sizeof(temp_event_data),
1860 					  (char *) &temp_event_data,
1861 					  SCSI_NL_VID_TYPE_PCI
1862 					  | PCI_VENDOR_ID_EMULEX);
1863 
1864 		spin_lock_irq(&phba->hbalock);
1865 		phba->over_temp_state = HBA_OVER_TEMP;
1866 		spin_unlock_irq(&phba->hbalock);
1867 		lpfc_offline_eratt(phba);
1868 
1869 	} else {
1870 		/* The if clause above forces this code path when the status
1871 		 * failure is a value other than FFER6. Do not call the offline
1872 		 * twice. This is the adapter hardware error path.
1873 		 */
1874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1875 				"0457 Adapter Hardware Error "
1876 				"Data: x%x x%x x%x\n",
1877 				phba->work_hs,
1878 				phba->work_status[0], phba->work_status[1]);
1879 
1880 		event_data = FC_REG_DUMP_EVENT;
1881 		shost = lpfc_shost_from_vport(vport);
1882 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1883 				sizeof(event_data), (char *) &event_data,
1884 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1885 
1886 		lpfc_offline_eratt(phba);
1887 	}
1888 	return;
1889 }
1890 
1891 /**
1892  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1893  * @phba: pointer to lpfc hba data structure.
1894  * @mbx_action: flag for mailbox shutdown action.
1895  * @en_rn_msg: send reset/port recovery message.
1896  * This routine is invoked to perform an SLI4 port PCI function reset in
1897  * response to port status register polling attention. It waits for port
1898  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1899  * During this process, interrupt vectors are freed and later requested
1900  * for handling possible port resource change.
1901  **/
1902 static int
1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1904 			    bool en_rn_msg)
1905 {
1906 	int rc;
1907 	uint32_t intr_mode;
1908 	LPFC_MBOXQ_t *mboxq;
1909 
1910 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1911 	    LPFC_SLI_INTF_IF_TYPE_2) {
1912 		/*
1913 		 * On error status condition, driver need to wait for port
1914 		 * ready before performing reset.
1915 		 */
1916 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1917 		if (rc)
1918 			return rc;
1919 	}
1920 
1921 	/* need reset: attempt for port recovery */
1922 	if (en_rn_msg)
1923 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1924 				"2887 Reset Needed: Attempting Port "
1925 				"Recovery...\n");
1926 
1927 	/* If we are no wait, the HBA has been reset and is not
1928 	 * functional, thus we should clear
1929 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1930 	 */
1931 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1932 		spin_lock_irq(&phba->hbalock);
1933 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1934 		if (phba->sli.mbox_active) {
1935 			mboxq = phba->sli.mbox_active;
1936 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1937 			__lpfc_mbox_cmpl_put(phba, mboxq);
1938 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1939 			phba->sli.mbox_active = NULL;
1940 		}
1941 		spin_unlock_irq(&phba->hbalock);
1942 	}
1943 
1944 	lpfc_offline_prep(phba, mbx_action);
1945 	lpfc_sli_flush_io_rings(phba);
1946 	lpfc_offline(phba);
1947 	/* release interrupt for possible resource change */
1948 	lpfc_sli4_disable_intr(phba);
1949 	rc = lpfc_sli_brdrestart(phba);
1950 	if (rc) {
1951 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1952 				"6309 Failed to restart board\n");
1953 		return rc;
1954 	}
1955 	/* request and enable interrupt */
1956 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1957 	if (intr_mode == LPFC_INTR_ERROR) {
1958 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1959 				"3175 Failed to enable interrupt\n");
1960 		return -EIO;
1961 	}
1962 	phba->intr_mode = intr_mode;
1963 	rc = lpfc_online(phba);
1964 	if (rc == 0)
1965 		lpfc_unblock_mgmt_io(phba);
1966 
1967 	return rc;
1968 }
1969 
1970 /**
1971  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1972  * @phba: pointer to lpfc hba data structure.
1973  *
1974  * This routine is invoked to handle the SLI4 HBA hardware error attention
1975  * conditions.
1976  **/
1977 static void
1978 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1979 {
1980 	struct lpfc_vport *vport = phba->pport;
1981 	uint32_t event_data;
1982 	struct Scsi_Host *shost;
1983 	uint32_t if_type;
1984 	struct lpfc_register portstat_reg = {0};
1985 	uint32_t reg_err1, reg_err2;
1986 	uint32_t uerrlo_reg, uemasklo_reg;
1987 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1988 	bool en_rn_msg = true;
1989 	struct temp_event temp_event_data;
1990 	struct lpfc_register portsmphr_reg;
1991 	int rc, i;
1992 
1993 	/* If the pci channel is offline, ignore possible errors, since
1994 	 * we cannot communicate with the pci card anyway.
1995 	 */
1996 	if (pci_channel_offline(phba->pcidev)) {
1997 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1998 				"3166 pci channel is offline\n");
1999 		lpfc_sli_flush_io_rings(phba);
2000 		return;
2001 	}
2002 
2003 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2004 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2005 	switch (if_type) {
2006 	case LPFC_SLI_INTF_IF_TYPE_0:
2007 		pci_rd_rc1 = lpfc_readl(
2008 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2009 				&uerrlo_reg);
2010 		pci_rd_rc2 = lpfc_readl(
2011 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2012 				&uemasklo_reg);
2013 		/* consider PCI bus read error as pci_channel_offline */
2014 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2015 			return;
2016 		if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) {
2017 			lpfc_sli4_offline_eratt(phba);
2018 			return;
2019 		}
2020 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2021 				"7623 Checking UE recoverable");
2022 
2023 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2024 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2025 				       &portsmphr_reg.word0))
2026 				continue;
2027 
2028 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2029 						   &portsmphr_reg);
2030 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2031 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2032 				break;
2033 			/*Sleep for 1Sec, before checking SEMAPHORE */
2034 			msleep(1000);
2035 		}
2036 
2037 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2038 				"4827 smphr_port_status x%x : Waited %dSec",
2039 				smphr_port_status, i);
2040 
2041 		/* Recoverable UE, reset the HBA device */
2042 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2043 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2044 			for (i = 0; i < 20; i++) {
2045 				msleep(1000);
2046 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2047 				    &portsmphr_reg.word0) &&
2048 				    (LPFC_POST_STAGE_PORT_READY ==
2049 				     bf_get(lpfc_port_smphr_port_status,
2050 				     &portsmphr_reg))) {
2051 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2052 						LPFC_MBX_NO_WAIT, en_rn_msg);
2053 					if (rc == 0)
2054 						return;
2055 					lpfc_printf_log(phba, KERN_ERR,
2056 						LOG_TRACE_EVENT,
2057 						"4215 Failed to recover UE");
2058 					break;
2059 				}
2060 			}
2061 		}
2062 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2063 				"7624 Firmware not ready: Failing UE recovery,"
2064 				" waited %dSec", i);
2065 		phba->link_state = LPFC_HBA_ERROR;
2066 		break;
2067 
2068 	case LPFC_SLI_INTF_IF_TYPE_2:
2069 	case LPFC_SLI_INTF_IF_TYPE_6:
2070 		pci_rd_rc1 = lpfc_readl(
2071 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2072 				&portstat_reg.word0);
2073 		/* consider PCI bus read error as pci_channel_offline */
2074 		if (pci_rd_rc1 == -EIO) {
2075 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2076 				"3151 PCI bus read access failure: x%x\n",
2077 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2078 			lpfc_sli4_offline_eratt(phba);
2079 			return;
2080 		}
2081 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2082 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2083 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2084 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2085 					"2889 Port Overtemperature event, "
2086 					"taking port offline Data: x%x x%x\n",
2087 					reg_err1, reg_err2);
2088 
2089 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2090 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2091 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2092 			temp_event_data.data = 0xFFFFFFFF;
2093 
2094 			shost = lpfc_shost_from_vport(phba->pport);
2095 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2096 						  sizeof(temp_event_data),
2097 						  (char *)&temp_event_data,
2098 						  SCSI_NL_VID_TYPE_PCI
2099 						  | PCI_VENDOR_ID_EMULEX);
2100 
2101 			spin_lock_irq(&phba->hbalock);
2102 			phba->over_temp_state = HBA_OVER_TEMP;
2103 			spin_unlock_irq(&phba->hbalock);
2104 			lpfc_sli4_offline_eratt(phba);
2105 			return;
2106 		}
2107 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2108 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2109 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2110 					"3143 Port Down: Firmware Update "
2111 					"Detected\n");
2112 			en_rn_msg = false;
2113 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2114 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2115 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2116 					"3144 Port Down: Debug Dump\n");
2117 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2120 					"3145 Port Down: Provisioning\n");
2121 
2122 		/* If resets are disabled then leave the HBA alone and return */
2123 		if (!phba->cfg_enable_hba_reset)
2124 			return;
2125 
2126 		/* Check port status register for function reset */
2127 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2128 				en_rn_msg);
2129 		if (rc == 0) {
2130 			/* don't report event on forced debug dump */
2131 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2132 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2133 				return;
2134 			else
2135 				break;
2136 		}
2137 		/* fall through for not able to recover */
2138 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2139 				"3152 Unrecoverable error\n");
2140 		lpfc_sli4_offline_eratt(phba);
2141 		break;
2142 	case LPFC_SLI_INTF_IF_TYPE_1:
2143 	default:
2144 		break;
2145 	}
2146 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2147 			"3123 Report dump event to upper layer\n");
2148 	/* Send an internal error event to mgmt application */
2149 	lpfc_board_errevt_to_mgmt(phba);
2150 
2151 	event_data = FC_REG_DUMP_EVENT;
2152 	shost = lpfc_shost_from_vport(vport);
2153 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2154 				  sizeof(event_data), (char *) &event_data,
2155 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2156 }
2157 
2158 /**
2159  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2160  * @phba: pointer to lpfc HBA data structure.
2161  *
2162  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2163  * routine from the API jump table function pointer from the lpfc_hba struct.
2164  *
2165  * Return codes
2166  *   0 - success.
2167  *   Any other value - error.
2168  **/
2169 void
2170 lpfc_handle_eratt(struct lpfc_hba *phba)
2171 {
2172 	(*phba->lpfc_handle_eratt)(phba);
2173 }
2174 
2175 /**
2176  * lpfc_handle_latt - The HBA link event handler
2177  * @phba: pointer to lpfc hba data structure.
2178  *
2179  * This routine is invoked from the worker thread to handle a HBA host
2180  * attention link event. SLI3 only.
2181  **/
2182 void
2183 lpfc_handle_latt(struct lpfc_hba *phba)
2184 {
2185 	struct lpfc_vport *vport = phba->pport;
2186 	struct lpfc_sli   *psli = &phba->sli;
2187 	LPFC_MBOXQ_t *pmb;
2188 	volatile uint32_t control;
2189 	int rc = 0;
2190 
2191 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2192 	if (!pmb) {
2193 		rc = 1;
2194 		goto lpfc_handle_latt_err_exit;
2195 	}
2196 
2197 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2198 	if (rc) {
2199 		rc = 2;
2200 		mempool_free(pmb, phba->mbox_mem_pool);
2201 		goto lpfc_handle_latt_err_exit;
2202 	}
2203 
2204 	/* Cleanup any outstanding ELS commands */
2205 	lpfc_els_flush_all_cmd(phba);
2206 	psli->slistat.link_event++;
2207 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
2208 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2209 	pmb->vport = vport;
2210 	/* Block ELS IOCBs until we have processed this mbox command */
2211 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2212 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2213 	if (rc == MBX_NOT_FINISHED) {
2214 		rc = 4;
2215 		goto lpfc_handle_latt_free_mbuf;
2216 	}
2217 
2218 	/* Clear Link Attention in HA REG */
2219 	spin_lock_irq(&phba->hbalock);
2220 	writel(HA_LATT, phba->HAregaddr);
2221 	readl(phba->HAregaddr); /* flush */
2222 	spin_unlock_irq(&phba->hbalock);
2223 
2224 	return;
2225 
2226 lpfc_handle_latt_free_mbuf:
2227 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2228 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2229 lpfc_handle_latt_err_exit:
2230 	/* Enable Link attention interrupts */
2231 	spin_lock_irq(&phba->hbalock);
2232 	psli->sli_flag |= LPFC_PROCESS_LA;
2233 	control = readl(phba->HCregaddr);
2234 	control |= HC_LAINT_ENA;
2235 	writel(control, phba->HCregaddr);
2236 	readl(phba->HCregaddr); /* flush */
2237 
2238 	/* Clear Link Attention in HA REG */
2239 	writel(HA_LATT, phba->HAregaddr);
2240 	readl(phba->HAregaddr); /* flush */
2241 	spin_unlock_irq(&phba->hbalock);
2242 	lpfc_linkdown(phba);
2243 	phba->link_state = LPFC_HBA_ERROR;
2244 
2245 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2246 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2247 
2248 	return;
2249 }
2250 
2251 static void
2252 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2253 {
2254 	int i, j;
2255 
2256 	while (length > 0) {
2257 		/* Look for Serial Number */
2258 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2259 			*pindex += 2;
2260 			i = vpd[*pindex];
2261 			*pindex += 1;
2262 			j = 0;
2263 			length -= (3+i);
2264 			while (i--) {
2265 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2266 				if (j == 31)
2267 					break;
2268 			}
2269 			phba->SerialNumber[j] = 0;
2270 			continue;
2271 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2272 			phba->vpd_flag |= VPD_MODEL_DESC;
2273 			*pindex += 2;
2274 			i = vpd[*pindex];
2275 			*pindex += 1;
2276 			j = 0;
2277 			length -= (3+i);
2278 			while (i--) {
2279 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2280 				if (j == 255)
2281 					break;
2282 			}
2283 			phba->ModelDesc[j] = 0;
2284 			continue;
2285 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2286 			phba->vpd_flag |= VPD_MODEL_NAME;
2287 			*pindex += 2;
2288 			i = vpd[*pindex];
2289 			*pindex += 1;
2290 			j = 0;
2291 			length -= (3+i);
2292 			while (i--) {
2293 				phba->ModelName[j++] = vpd[(*pindex)++];
2294 				if (j == 79)
2295 					break;
2296 			}
2297 			phba->ModelName[j] = 0;
2298 			continue;
2299 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2300 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2301 			*pindex += 2;
2302 			i = vpd[*pindex];
2303 			*pindex += 1;
2304 			j = 0;
2305 			length -= (3+i);
2306 			while (i--) {
2307 				phba->ProgramType[j++] = vpd[(*pindex)++];
2308 				if (j == 255)
2309 					break;
2310 			}
2311 			phba->ProgramType[j] = 0;
2312 			continue;
2313 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2314 			phba->vpd_flag |= VPD_PORT;
2315 			*pindex += 2;
2316 			i = vpd[*pindex];
2317 			*pindex += 1;
2318 			j = 0;
2319 			length -= (3 + i);
2320 			while (i--) {
2321 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2322 				    (phba->sli4_hba.pport_name_sta ==
2323 				     LPFC_SLI4_PPNAME_GET)) {
2324 					j++;
2325 					(*pindex)++;
2326 				} else
2327 					phba->Port[j++] = vpd[(*pindex)++];
2328 				if (j == 19)
2329 					break;
2330 			}
2331 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2332 			    (phba->sli4_hba.pport_name_sta ==
2333 			     LPFC_SLI4_PPNAME_NON))
2334 				phba->Port[j] = 0;
2335 			continue;
2336 		} else {
2337 			*pindex += 2;
2338 			i = vpd[*pindex];
2339 			*pindex += 1;
2340 			*pindex += i;
2341 			length -= (3 + i);
2342 		}
2343 	}
2344 }
2345 
2346 /**
2347  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2348  * @phba: pointer to lpfc hba data structure.
2349  * @vpd: pointer to the vital product data.
2350  * @len: length of the vital product data in bytes.
2351  *
2352  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2353  * an array of characters. In this routine, the ModelName, ProgramType, and
2354  * ModelDesc, etc. fields of the phba data structure will be populated.
2355  *
2356  * Return codes
2357  *   0 - pointer to the VPD passed in is NULL
2358  *   1 - success
2359  **/
2360 int
2361 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2362 {
2363 	uint8_t lenlo, lenhi;
2364 	int Length;
2365 	int i;
2366 	int finished = 0;
2367 	int index = 0;
2368 
2369 	if (!vpd)
2370 		return 0;
2371 
2372 	/* Vital Product */
2373 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2374 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2375 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2376 			(uint32_t) vpd[3]);
2377 	while (!finished && (index < (len - 4))) {
2378 		switch (vpd[index]) {
2379 		case 0x82:
2380 		case 0x91:
2381 			index += 1;
2382 			lenlo = vpd[index];
2383 			index += 1;
2384 			lenhi = vpd[index];
2385 			index += 1;
2386 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2387 			index += i;
2388 			break;
2389 		case 0x90:
2390 			index += 1;
2391 			lenlo = vpd[index];
2392 			index += 1;
2393 			lenhi = vpd[index];
2394 			index += 1;
2395 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2396 			if (Length > len - index)
2397 				Length = len - index;
2398 
2399 			lpfc_fill_vpd(phba, vpd, Length, &index);
2400 			finished = 0;
2401 			break;
2402 		case 0x78:
2403 			finished = 1;
2404 			break;
2405 		default:
2406 			index ++;
2407 			break;
2408 		}
2409 	}
2410 
2411 	return(1);
2412 }
2413 
2414 /**
2415  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2416  * @phba: pointer to lpfc hba data structure.
2417  * @mdp: pointer to the data structure to hold the derived model name.
2418  * @descp: pointer to the data structure to hold the derived description.
2419  *
2420  * This routine retrieves HBA's description based on its registered PCI device
2421  * ID. The @descp passed into this function points to an array of 256 chars. It
2422  * shall be returned with the model name, maximum speed, and the host bus type.
2423  * The @mdp passed into this function points to an array of 80 chars. When the
2424  * function returns, the @mdp will be filled with the model name.
2425  **/
2426 static void
2427 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2428 {
2429 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2430 	char *model = "<Unknown>";
2431 	int tbolt = 0;
2432 
2433 	switch (sub_dev_id) {
2434 	case PCI_DEVICE_ID_CLRY_161E:
2435 		model = "161E";
2436 		break;
2437 	case PCI_DEVICE_ID_CLRY_162E:
2438 		model = "162E";
2439 		break;
2440 	case PCI_DEVICE_ID_CLRY_164E:
2441 		model = "164E";
2442 		break;
2443 	case PCI_DEVICE_ID_CLRY_161P:
2444 		model = "161P";
2445 		break;
2446 	case PCI_DEVICE_ID_CLRY_162P:
2447 		model = "162P";
2448 		break;
2449 	case PCI_DEVICE_ID_CLRY_164P:
2450 		model = "164P";
2451 		break;
2452 	case PCI_DEVICE_ID_CLRY_321E:
2453 		model = "321E";
2454 		break;
2455 	case PCI_DEVICE_ID_CLRY_322E:
2456 		model = "322E";
2457 		break;
2458 	case PCI_DEVICE_ID_CLRY_324E:
2459 		model = "324E";
2460 		break;
2461 	case PCI_DEVICE_ID_CLRY_321P:
2462 		model = "321P";
2463 		break;
2464 	case PCI_DEVICE_ID_CLRY_322P:
2465 		model = "322P";
2466 		break;
2467 	case PCI_DEVICE_ID_CLRY_324P:
2468 		model = "324P";
2469 		break;
2470 	case PCI_DEVICE_ID_TLFC_2XX2:
2471 		model = "2XX2";
2472 		tbolt = 1;
2473 		break;
2474 	case PCI_DEVICE_ID_TLFC_3162:
2475 		model = "3162";
2476 		tbolt = 1;
2477 		break;
2478 	case PCI_DEVICE_ID_TLFC_3322:
2479 		model = "3322";
2480 		tbolt = 1;
2481 		break;
2482 	default:
2483 		model = "Unknown";
2484 		break;
2485 	}
2486 
2487 	if (mdp && mdp[0] == '\0')
2488 		snprintf(mdp, 79, "%s", model);
2489 
2490 	if (descp && descp[0] == '\0')
2491 		snprintf(descp, 255,
2492 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2493 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2494 			 model,
2495 			 phba->Port);
2496 }
2497 
2498 /**
2499  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2500  * @phba: pointer to lpfc hba data structure.
2501  * @mdp: pointer to the data structure to hold the derived model name.
2502  * @descp: pointer to the data structure to hold the derived description.
2503  *
2504  * This routine retrieves HBA's description based on its registered PCI device
2505  * ID. The @descp passed into this function points to an array of 256 chars. It
2506  * shall be returned with the model name, maximum speed, and the host bus type.
2507  * The @mdp passed into this function points to an array of 80 chars. When the
2508  * function returns, the @mdp will be filled with the model name.
2509  **/
2510 static void
2511 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2512 {
2513 	lpfc_vpd_t *vp;
2514 	uint16_t dev_id = phba->pcidev->device;
2515 	int max_speed;
2516 	int GE = 0;
2517 	int oneConnect = 0; /* default is not a oneConnect */
2518 	struct {
2519 		char *name;
2520 		char *bus;
2521 		char *function;
2522 	} m = {"<Unknown>", "", ""};
2523 
2524 	if (mdp && mdp[0] != '\0'
2525 		&& descp && descp[0] != '\0')
2526 		return;
2527 
2528 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2529 		lpfc_get_atto_model_desc(phba, mdp, descp);
2530 		return;
2531 	}
2532 
2533 	if (phba->lmt & LMT_64Gb)
2534 		max_speed = 64;
2535 	else if (phba->lmt & LMT_32Gb)
2536 		max_speed = 32;
2537 	else if (phba->lmt & LMT_16Gb)
2538 		max_speed = 16;
2539 	else if (phba->lmt & LMT_10Gb)
2540 		max_speed = 10;
2541 	else if (phba->lmt & LMT_8Gb)
2542 		max_speed = 8;
2543 	else if (phba->lmt & LMT_4Gb)
2544 		max_speed = 4;
2545 	else if (phba->lmt & LMT_2Gb)
2546 		max_speed = 2;
2547 	else if (phba->lmt & LMT_1Gb)
2548 		max_speed = 1;
2549 	else
2550 		max_speed = 0;
2551 
2552 	vp = &phba->vpd;
2553 
2554 	switch (dev_id) {
2555 	case PCI_DEVICE_ID_FIREFLY:
2556 		m = (typeof(m)){"LP6000", "PCI",
2557 				"Obsolete, Unsupported Fibre Channel Adapter"};
2558 		break;
2559 	case PCI_DEVICE_ID_SUPERFLY:
2560 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2561 			m = (typeof(m)){"LP7000", "PCI", ""};
2562 		else
2563 			m = (typeof(m)){"LP7000E", "PCI", ""};
2564 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2565 		break;
2566 	case PCI_DEVICE_ID_DRAGONFLY:
2567 		m = (typeof(m)){"LP8000", "PCI",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_CENTAUR:
2571 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2572 			m = (typeof(m)){"LP9002", "PCI", ""};
2573 		else
2574 			m = (typeof(m)){"LP9000", "PCI", ""};
2575 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576 		break;
2577 	case PCI_DEVICE_ID_RFLY:
2578 		m = (typeof(m)){"LP952", "PCI",
2579 				"Obsolete, Unsupported Fibre Channel Adapter"};
2580 		break;
2581 	case PCI_DEVICE_ID_PEGASUS:
2582 		m = (typeof(m)){"LP9802", "PCI-X",
2583 				"Obsolete, Unsupported Fibre Channel Adapter"};
2584 		break;
2585 	case PCI_DEVICE_ID_THOR:
2586 		m = (typeof(m)){"LP10000", "PCI-X",
2587 				"Obsolete, Unsupported Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_VIPER:
2590 		m = (typeof(m)){"LPX1000",  "PCI-X",
2591 				"Obsolete, Unsupported Fibre Channel Adapter"};
2592 		break;
2593 	case PCI_DEVICE_ID_PFLY:
2594 		m = (typeof(m)){"LP982", "PCI-X",
2595 				"Obsolete, Unsupported Fibre Channel Adapter"};
2596 		break;
2597 	case PCI_DEVICE_ID_TFLY:
2598 		m = (typeof(m)){"LP1050", "PCI-X",
2599 				"Obsolete, Unsupported Fibre Channel Adapter"};
2600 		break;
2601 	case PCI_DEVICE_ID_HELIOS:
2602 		m = (typeof(m)){"LP11000", "PCI-X2",
2603 				"Obsolete, Unsupported Fibre Channel Adapter"};
2604 		break;
2605 	case PCI_DEVICE_ID_HELIOS_SCSP:
2606 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2607 				"Obsolete, Unsupported Fibre Channel Adapter"};
2608 		break;
2609 	case PCI_DEVICE_ID_HELIOS_DCSP:
2610 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2611 				"Obsolete, Unsupported Fibre Channel Adapter"};
2612 		break;
2613 	case PCI_DEVICE_ID_NEPTUNE:
2614 		m = (typeof(m)){"LPe1000", "PCIe",
2615 				"Obsolete, Unsupported Fibre Channel Adapter"};
2616 		break;
2617 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2618 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2619 				"Obsolete, Unsupported Fibre Channel Adapter"};
2620 		break;
2621 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2622 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2623 				"Obsolete, Unsupported Fibre Channel Adapter"};
2624 		break;
2625 	case PCI_DEVICE_ID_BMID:
2626 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_BSMB:
2629 		m = (typeof(m)){"LP111", "PCI-X2",
2630 				"Obsolete, Unsupported Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_ZEPHYR:
2633 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2634 		break;
2635 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2636 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2639 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2640 		GE = 1;
2641 		break;
2642 	case PCI_DEVICE_ID_ZMID:
2643 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZSMB:
2646 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_LP101:
2649 		m = (typeof(m)){"LP101", "PCI-X",
2650 				"Obsolete, Unsupported Fibre Channel Adapter"};
2651 		break;
2652 	case PCI_DEVICE_ID_LP10000S:
2653 		m = (typeof(m)){"LP10000-S", "PCI",
2654 				"Obsolete, Unsupported Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_LP11000S:
2657 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2658 				"Obsolete, Unsupported Fibre Channel Adapter"};
2659 		break;
2660 	case PCI_DEVICE_ID_LPE11000S:
2661 		m = (typeof(m)){"LPe11000-S", "PCIe",
2662 				"Obsolete, Unsupported Fibre Channel Adapter"};
2663 		break;
2664 	case PCI_DEVICE_ID_SAT:
2665 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2666 		break;
2667 	case PCI_DEVICE_ID_SAT_MID:
2668 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_SAT_SMB:
2671 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2672 		break;
2673 	case PCI_DEVICE_ID_SAT_DCSP:
2674 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2675 		break;
2676 	case PCI_DEVICE_ID_SAT_SCSP:
2677 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2678 		break;
2679 	case PCI_DEVICE_ID_SAT_S:
2680 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2681 		break;
2682 	case PCI_DEVICE_ID_PROTEUS_VF:
2683 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2684 				"Obsolete, Unsupported Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_PROTEUS_PF:
2687 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2688 				"Obsolete, Unsupported Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_PROTEUS_S:
2691 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2692 				"Obsolete, Unsupported Fibre Channel Adapter"};
2693 		break;
2694 	case PCI_DEVICE_ID_TIGERSHARK:
2695 		oneConnect = 1;
2696 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2697 		break;
2698 	case PCI_DEVICE_ID_TOMCAT:
2699 		oneConnect = 1;
2700 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2701 		break;
2702 	case PCI_DEVICE_ID_FALCON:
2703 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2704 				"EmulexSecure Fibre"};
2705 		break;
2706 	case PCI_DEVICE_ID_BALIUS:
2707 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2708 				"Obsolete, Unsupported Fibre Channel Adapter"};
2709 		break;
2710 	case PCI_DEVICE_ID_LANCER_FC:
2711 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2712 		break;
2713 	case PCI_DEVICE_ID_LANCER_FC_VF:
2714 		m = (typeof(m)){"LPe16000", "PCIe",
2715 				"Obsolete, Unsupported Fibre Channel Adapter"};
2716 		break;
2717 	case PCI_DEVICE_ID_LANCER_FCOE:
2718 		oneConnect = 1;
2719 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2722 		oneConnect = 1;
2723 		m = (typeof(m)){"OCe15100", "PCIe",
2724 				"Obsolete, Unsupported FCoE"};
2725 		break;
2726 	case PCI_DEVICE_ID_LANCER_G6_FC:
2727 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2728 		break;
2729 	case PCI_DEVICE_ID_LANCER_G7_FC:
2730 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2733 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2734 		break;
2735 	case PCI_DEVICE_ID_SKYHAWK:
2736 	case PCI_DEVICE_ID_SKYHAWK_VF:
2737 		oneConnect = 1;
2738 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2739 		break;
2740 	default:
2741 		m = (typeof(m)){"Unknown", "", ""};
2742 		break;
2743 	}
2744 
2745 	if (mdp && mdp[0] == '\0')
2746 		snprintf(mdp, 79,"%s", m.name);
2747 	/*
2748 	 * oneConnect hba requires special processing, they are all initiators
2749 	 * and we put the port number on the end
2750 	 */
2751 	if (descp && descp[0] == '\0') {
2752 		if (oneConnect)
2753 			snprintf(descp, 255,
2754 				"Emulex OneConnect %s, %s Initiator %s",
2755 				m.name, m.function,
2756 				phba->Port);
2757 		else if (max_speed == 0)
2758 			snprintf(descp, 255,
2759 				"Emulex %s %s %s",
2760 				m.name, m.bus, m.function);
2761 		else
2762 			snprintf(descp, 255,
2763 				"Emulex %s %d%s %s %s",
2764 				m.name, max_speed, (GE) ? "GE" : "Gb",
2765 				m.bus, m.function);
2766 	}
2767 }
2768 
2769 /**
2770  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2771  * @phba: pointer to lpfc hba data structure.
2772  * @pring: pointer to a IOCB ring.
2773  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2774  *
2775  * This routine posts a given number of IOCBs with the associated DMA buffer
2776  * descriptors specified by the cnt argument to the given IOCB ring.
2777  *
2778  * Return codes
2779  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2780  **/
2781 int
2782 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2783 {
2784 	IOCB_t *icmd;
2785 	struct lpfc_iocbq *iocb;
2786 	struct lpfc_dmabuf *mp1, *mp2;
2787 
2788 	cnt += pring->missbufcnt;
2789 
2790 	/* While there are buffers to post */
2791 	while (cnt > 0) {
2792 		/* Allocate buffer for  command iocb */
2793 		iocb = lpfc_sli_get_iocbq(phba);
2794 		if (iocb == NULL) {
2795 			pring->missbufcnt = cnt;
2796 			return cnt;
2797 		}
2798 		icmd = &iocb->iocb;
2799 
2800 		/* 2 buffers can be posted per command */
2801 		/* Allocate buffer to post */
2802 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2803 		if (mp1)
2804 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2805 		if (!mp1 || !mp1->virt) {
2806 			kfree(mp1);
2807 			lpfc_sli_release_iocbq(phba, iocb);
2808 			pring->missbufcnt = cnt;
2809 			return cnt;
2810 		}
2811 
2812 		INIT_LIST_HEAD(&mp1->list);
2813 		/* Allocate buffer to post */
2814 		if (cnt > 1) {
2815 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2816 			if (mp2)
2817 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2818 							    &mp2->phys);
2819 			if (!mp2 || !mp2->virt) {
2820 				kfree(mp2);
2821 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2822 				kfree(mp1);
2823 				lpfc_sli_release_iocbq(phba, iocb);
2824 				pring->missbufcnt = cnt;
2825 				return cnt;
2826 			}
2827 
2828 			INIT_LIST_HEAD(&mp2->list);
2829 		} else {
2830 			mp2 = NULL;
2831 		}
2832 
2833 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2834 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2835 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2836 		icmd->ulpBdeCount = 1;
2837 		cnt--;
2838 		if (mp2) {
2839 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2840 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2841 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2842 			cnt--;
2843 			icmd->ulpBdeCount = 2;
2844 		}
2845 
2846 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2847 		icmd->ulpLe = 1;
2848 
2849 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2850 		    IOCB_ERROR) {
2851 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2852 			kfree(mp1);
2853 			cnt++;
2854 			if (mp2) {
2855 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2856 				kfree(mp2);
2857 				cnt++;
2858 			}
2859 			lpfc_sli_release_iocbq(phba, iocb);
2860 			pring->missbufcnt = cnt;
2861 			return cnt;
2862 		}
2863 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2864 		if (mp2)
2865 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2866 	}
2867 	pring->missbufcnt = 0;
2868 	return 0;
2869 }
2870 
2871 /**
2872  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2873  * @phba: pointer to lpfc hba data structure.
2874  *
2875  * This routine posts initial receive IOCB buffers to the ELS ring. The
2876  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2877  * set to 64 IOCBs. SLI3 only.
2878  *
2879  * Return codes
2880  *   0 - success (currently always success)
2881  **/
2882 static int
2883 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2884 {
2885 	struct lpfc_sli *psli = &phba->sli;
2886 
2887 	/* Ring 0, ELS / CT buffers */
2888 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2889 	/* Ring 2 - FCP no buffers needed */
2890 
2891 	return 0;
2892 }
2893 
2894 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2895 
2896 /**
2897  * lpfc_sha_init - Set up initial array of hash table entries
2898  * @HashResultPointer: pointer to an array as hash table.
2899  *
2900  * This routine sets up the initial values to the array of hash table entries
2901  * for the LC HBAs.
2902  **/
2903 static void
2904 lpfc_sha_init(uint32_t * HashResultPointer)
2905 {
2906 	HashResultPointer[0] = 0x67452301;
2907 	HashResultPointer[1] = 0xEFCDAB89;
2908 	HashResultPointer[2] = 0x98BADCFE;
2909 	HashResultPointer[3] = 0x10325476;
2910 	HashResultPointer[4] = 0xC3D2E1F0;
2911 }
2912 
2913 /**
2914  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2915  * @HashResultPointer: pointer to an initial/result hash table.
2916  * @HashWorkingPointer: pointer to an working hash table.
2917  *
2918  * This routine iterates an initial hash table pointed by @HashResultPointer
2919  * with the values from the working hash table pointeed by @HashWorkingPointer.
2920  * The results are putting back to the initial hash table, returned through
2921  * the @HashResultPointer as the result hash table.
2922  **/
2923 static void
2924 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2925 {
2926 	int t;
2927 	uint32_t TEMP;
2928 	uint32_t A, B, C, D, E;
2929 	t = 16;
2930 	do {
2931 		HashWorkingPointer[t] =
2932 		    S(1,
2933 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2934 								     8] ^
2935 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2936 	} while (++t <= 79);
2937 	t = 0;
2938 	A = HashResultPointer[0];
2939 	B = HashResultPointer[1];
2940 	C = HashResultPointer[2];
2941 	D = HashResultPointer[3];
2942 	E = HashResultPointer[4];
2943 
2944 	do {
2945 		if (t < 20) {
2946 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2947 		} else if (t < 40) {
2948 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2949 		} else if (t < 60) {
2950 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2951 		} else {
2952 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2953 		}
2954 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2955 		E = D;
2956 		D = C;
2957 		C = S(30, B);
2958 		B = A;
2959 		A = TEMP;
2960 	} while (++t <= 79);
2961 
2962 	HashResultPointer[0] += A;
2963 	HashResultPointer[1] += B;
2964 	HashResultPointer[2] += C;
2965 	HashResultPointer[3] += D;
2966 	HashResultPointer[4] += E;
2967 
2968 }
2969 
2970 /**
2971  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2972  * @RandomChallenge: pointer to the entry of host challenge random number array.
2973  * @HashWorking: pointer to the entry of the working hash array.
2974  *
2975  * This routine calculates the working hash array referred by @HashWorking
2976  * from the challenge random numbers associated with the host, referred by
2977  * @RandomChallenge. The result is put into the entry of the working hash
2978  * array and returned by reference through @HashWorking.
2979  **/
2980 static void
2981 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2982 {
2983 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2984 }
2985 
2986 /**
2987  * lpfc_hba_init - Perform special handling for LC HBA initialization
2988  * @phba: pointer to lpfc hba data structure.
2989  * @hbainit: pointer to an array of unsigned 32-bit integers.
2990  *
2991  * This routine performs the special handling for LC HBA initialization.
2992  **/
2993 void
2994 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2995 {
2996 	int t;
2997 	uint32_t *HashWorking;
2998 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2999 
3000 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3001 	if (!HashWorking)
3002 		return;
3003 
3004 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3005 	HashWorking[1] = HashWorking[79] = *pwwnn;
3006 
3007 	for (t = 0; t < 7; t++)
3008 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3009 
3010 	lpfc_sha_init(hbainit);
3011 	lpfc_sha_iterate(hbainit, HashWorking);
3012 	kfree(HashWorking);
3013 }
3014 
3015 /**
3016  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3017  * @vport: pointer to a virtual N_Port data structure.
3018  *
3019  * This routine performs the necessary cleanups before deleting the @vport.
3020  * It invokes the discovery state machine to perform necessary state
3021  * transitions and to release the ndlps associated with the @vport. Note,
3022  * the physical port is treated as @vport 0.
3023  **/
3024 void
3025 lpfc_cleanup(struct lpfc_vport *vport)
3026 {
3027 	struct lpfc_hba   *phba = vport->phba;
3028 	struct lpfc_nodelist *ndlp, *next_ndlp;
3029 	int i = 0;
3030 
3031 	if (phba->link_state > LPFC_LINK_DOWN)
3032 		lpfc_port_link_failure(vport);
3033 
3034 	/* Clean up VMID resources */
3035 	if (lpfc_is_vmid_enabled(phba))
3036 		lpfc_vmid_vport_cleanup(vport);
3037 
3038 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3039 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3040 		    ndlp->nlp_DID == Fabric_DID) {
3041 			/* Just free up ndlp with Fabric_DID for vports */
3042 			lpfc_nlp_put(ndlp);
3043 			continue;
3044 		}
3045 
3046 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3047 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3048 			lpfc_nlp_put(ndlp);
3049 			continue;
3050 		}
3051 
3052 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3053 		 * DEVICE_RM event.
3054 		 */
3055 		if (ndlp->nlp_type & NLP_FABRIC &&
3056 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3057 			lpfc_disc_state_machine(vport, ndlp, NULL,
3058 					NLP_EVT_DEVICE_RECOVERY);
3059 
3060 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3061 			lpfc_disc_state_machine(vport, ndlp, NULL,
3062 					NLP_EVT_DEVICE_RM);
3063 	}
3064 
3065 	/* This is a special case flush to return all
3066 	 * IOs before entering this loop. There are
3067 	 * two points in the code where a flush is
3068 	 * avoided if the FC_UNLOADING flag is set.
3069 	 * one is in the multipool destroy,
3070 	 * (this prevents a crash) and the other is
3071 	 * in the nvme abort handler, ( also prevents
3072 	 * a crash). Both of these exceptions are
3073 	 * cases where the slot is still accessible.
3074 	 * The flush here is only when the pci slot
3075 	 * is offline.
3076 	 */
3077 	if (test_bit(FC_UNLOADING, &vport->load_flag) &&
3078 	    pci_channel_offline(phba->pcidev))
3079 		lpfc_sli_flush_io_rings(vport->phba);
3080 
3081 	/* At this point, ALL ndlp's should be gone
3082 	 * because of the previous NLP_EVT_DEVICE_RM.
3083 	 * Lets wait for this to happen, if needed.
3084 	 */
3085 	while (!list_empty(&vport->fc_nodes)) {
3086 		if (i++ > 3000) {
3087 			lpfc_printf_vlog(vport, KERN_ERR,
3088 					 LOG_TRACE_EVENT,
3089 				"0233 Nodelist not empty\n");
3090 			list_for_each_entry_safe(ndlp, next_ndlp,
3091 						&vport->fc_nodes, nlp_listp) {
3092 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3093 						 LOG_DISCOVERY,
3094 						 "0282 did:x%x ndlp:x%px "
3095 						 "refcnt:%d xflags x%x nflag x%x\n",
3096 						 ndlp->nlp_DID, (void *)ndlp,
3097 						 kref_read(&ndlp->kref),
3098 						 ndlp->fc4_xpt_flags,
3099 						 ndlp->nlp_flag);
3100 			}
3101 			break;
3102 		}
3103 
3104 		/* Wait for any activity on ndlps to settle */
3105 		msleep(10);
3106 	}
3107 	lpfc_cleanup_vports_rrqs(vport, NULL);
3108 }
3109 
3110 /**
3111  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3112  * @vport: pointer to a virtual N_Port data structure.
3113  *
3114  * This routine stops all the timers associated with a @vport. This function
3115  * is invoked before disabling or deleting a @vport. Note that the physical
3116  * port is treated as @vport 0.
3117  **/
3118 void
3119 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3120 {
3121 	del_timer_sync(&vport->els_tmofunc);
3122 	del_timer_sync(&vport->delayed_disc_tmo);
3123 	lpfc_can_disctmo(vport);
3124 	return;
3125 }
3126 
3127 /**
3128  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3129  * @phba: pointer to lpfc hba data structure.
3130  *
3131  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3132  * caller of this routine should already hold the host lock.
3133  **/
3134 void
3135 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3136 {
3137 	/* Clear pending FCF rediscovery wait flag */
3138 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3139 
3140 	/* Now, try to stop the timer */
3141 	del_timer(&phba->fcf.redisc_wait);
3142 }
3143 
3144 /**
3145  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3146  * @phba: pointer to lpfc hba data structure.
3147  *
3148  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3149  * checks whether the FCF rediscovery wait timer is pending with the host
3150  * lock held before proceeding with disabling the timer and clearing the
3151  * wait timer pendig flag.
3152  **/
3153 void
3154 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3155 {
3156 	spin_lock_irq(&phba->hbalock);
3157 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3158 		/* FCF rediscovery timer already fired or stopped */
3159 		spin_unlock_irq(&phba->hbalock);
3160 		return;
3161 	}
3162 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3163 	/* Clear failover in progress flags */
3164 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3165 	spin_unlock_irq(&phba->hbalock);
3166 }
3167 
3168 /**
3169  * lpfc_cmf_stop - Stop CMF processing
3170  * @phba: pointer to lpfc hba data structure.
3171  *
3172  * This is called when the link goes down or if CMF mode is turned OFF.
3173  * It is also called when going offline or unloaded just before the
3174  * congestion info buffer is unregistered.
3175  **/
3176 void
3177 lpfc_cmf_stop(struct lpfc_hba *phba)
3178 {
3179 	int cpu;
3180 	struct lpfc_cgn_stat *cgs;
3181 
3182 	/* We only do something if CMF is enabled */
3183 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3184 		return;
3185 
3186 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3187 			"6221 Stop CMF / Cancel Timer\n");
3188 
3189 	/* Cancel the CMF timer */
3190 	hrtimer_cancel(&phba->cmf_stats_timer);
3191 	hrtimer_cancel(&phba->cmf_timer);
3192 
3193 	/* Zero CMF counters */
3194 	atomic_set(&phba->cmf_busy, 0);
3195 	for_each_present_cpu(cpu) {
3196 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3197 		atomic64_set(&cgs->total_bytes, 0);
3198 		atomic64_set(&cgs->rcv_bytes, 0);
3199 		atomic_set(&cgs->rx_io_cnt, 0);
3200 		atomic64_set(&cgs->rx_latency, 0);
3201 	}
3202 	atomic_set(&phba->cmf_bw_wait, 0);
3203 
3204 	/* Resume any blocked IO - Queue unblock on workqueue */
3205 	queue_work(phba->wq, &phba->unblock_request_work);
3206 }
3207 
3208 static inline uint64_t
3209 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3210 {
3211 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3212 
3213 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3214 }
3215 
3216 void
3217 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3218 {
3219 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3220 			"6223 Signal CMF init\n");
3221 
3222 	/* Use the new fc_linkspeed to recalculate */
3223 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3224 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3225 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3226 					    phba->cmf_interval_rate, 1000);
3227 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3228 
3229 	/* This is a signal to firmware to sync up CMF BW with link speed */
3230 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3231 }
3232 
3233 /**
3234  * lpfc_cmf_start - Start CMF processing
3235  * @phba: pointer to lpfc hba data structure.
3236  *
3237  * This is called when the link comes up or if CMF mode is turned OFF
3238  * to Monitor or Managed.
3239  **/
3240 void
3241 lpfc_cmf_start(struct lpfc_hba *phba)
3242 {
3243 	struct lpfc_cgn_stat *cgs;
3244 	int cpu;
3245 
3246 	/* We only do something if CMF is enabled */
3247 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3248 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3249 		return;
3250 
3251 	/* Reinitialize congestion buffer info */
3252 	lpfc_init_congestion_buf(phba);
3253 
3254 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3255 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3256 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3257 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3258 
3259 	atomic_set(&phba->cmf_busy, 0);
3260 	for_each_present_cpu(cpu) {
3261 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3262 		atomic64_set(&cgs->total_bytes, 0);
3263 		atomic64_set(&cgs->rcv_bytes, 0);
3264 		atomic_set(&cgs->rx_io_cnt, 0);
3265 		atomic64_set(&cgs->rx_latency, 0);
3266 	}
3267 	phba->cmf_latency.tv_sec = 0;
3268 	phba->cmf_latency.tv_nsec = 0;
3269 
3270 	lpfc_cmf_signal_init(phba);
3271 
3272 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3273 			"6222 Start CMF / Timer\n");
3274 
3275 	phba->cmf_timer_cnt = 0;
3276 	hrtimer_start(&phba->cmf_timer,
3277 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3278 		      HRTIMER_MODE_REL);
3279 	hrtimer_start(&phba->cmf_stats_timer,
3280 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3281 		      HRTIMER_MODE_REL);
3282 	/* Setup for latency check in IO cmpl routines */
3283 	ktime_get_real_ts64(&phba->cmf_latency);
3284 
3285 	atomic_set(&phba->cmf_bw_wait, 0);
3286 	atomic_set(&phba->cmf_stop_io, 0);
3287 }
3288 
3289 /**
3290  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3291  * @phba: pointer to lpfc hba data structure.
3292  *
3293  * This routine stops all the timers associated with a HBA. This function is
3294  * invoked before either putting a HBA offline or unloading the driver.
3295  **/
3296 void
3297 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3298 {
3299 	if (phba->pport)
3300 		lpfc_stop_vport_timers(phba->pport);
3301 	cancel_delayed_work_sync(&phba->eq_delay_work);
3302 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3303 	del_timer_sync(&phba->sli.mbox_tmo);
3304 	del_timer_sync(&phba->fabric_block_timer);
3305 	del_timer_sync(&phba->eratt_poll);
3306 	del_timer_sync(&phba->hb_tmofunc);
3307 	if (phba->sli_rev == LPFC_SLI_REV4) {
3308 		del_timer_sync(&phba->rrq_tmr);
3309 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
3310 	}
3311 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
3312 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
3313 
3314 	switch (phba->pci_dev_grp) {
3315 	case LPFC_PCI_DEV_LP:
3316 		/* Stop any LightPulse device specific driver timers */
3317 		del_timer_sync(&phba->fcp_poll_timer);
3318 		break;
3319 	case LPFC_PCI_DEV_OC:
3320 		/* Stop any OneConnect device specific driver timers */
3321 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3322 		break;
3323 	default:
3324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3325 				"0297 Invalid device group (x%x)\n",
3326 				phba->pci_dev_grp);
3327 		break;
3328 	}
3329 	return;
3330 }
3331 
3332 /**
3333  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3334  * @phba: pointer to lpfc hba data structure.
3335  * @mbx_action: flag for mailbox no wait action.
3336  *
3337  * This routine marks a HBA's management interface as blocked. Once the HBA's
3338  * management interface is marked as blocked, all the user space access to
3339  * the HBA, whether they are from sysfs interface or libdfc interface will
3340  * all be blocked. The HBA is set to block the management interface when the
3341  * driver prepares the HBA interface for online or offline.
3342  **/
3343 static void
3344 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3345 {
3346 	unsigned long iflag;
3347 	uint8_t actcmd = MBX_HEARTBEAT;
3348 	unsigned long timeout;
3349 
3350 	spin_lock_irqsave(&phba->hbalock, iflag);
3351 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3352 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3353 	if (mbx_action == LPFC_MBX_NO_WAIT)
3354 		return;
3355 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3356 	spin_lock_irqsave(&phba->hbalock, iflag);
3357 	if (phba->sli.mbox_active) {
3358 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3359 		/* Determine how long we might wait for the active mailbox
3360 		 * command to be gracefully completed by firmware.
3361 		 */
3362 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3363 				phba->sli.mbox_active) * 1000) + jiffies;
3364 	}
3365 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3366 
3367 	/* Wait for the outstnading mailbox command to complete */
3368 	while (phba->sli.mbox_active) {
3369 		/* Check active mailbox complete status every 2ms */
3370 		msleep(2);
3371 		if (time_after(jiffies, timeout)) {
3372 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3373 					"2813 Mgmt IO is Blocked %x "
3374 					"- mbox cmd %x still active\n",
3375 					phba->sli.sli_flag, actcmd);
3376 			break;
3377 		}
3378 	}
3379 }
3380 
3381 /**
3382  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3383  * @phba: pointer to lpfc hba data structure.
3384  *
3385  * Allocate RPIs for all active remote nodes. This is needed whenever
3386  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3387  * is to fixup the temporary rpi assignments.
3388  **/
3389 void
3390 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3391 {
3392 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3393 	struct lpfc_vport **vports;
3394 	int i, rpi;
3395 
3396 	if (phba->sli_rev != LPFC_SLI_REV4)
3397 		return;
3398 
3399 	vports = lpfc_create_vport_work_array(phba);
3400 	if (vports == NULL)
3401 		return;
3402 
3403 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3404 		if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3405 			continue;
3406 
3407 		list_for_each_entry_safe(ndlp, next_ndlp,
3408 					 &vports[i]->fc_nodes,
3409 					 nlp_listp) {
3410 			rpi = lpfc_sli4_alloc_rpi(phba);
3411 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3412 				/* TODO print log? */
3413 				continue;
3414 			}
3415 			ndlp->nlp_rpi = rpi;
3416 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3417 					 LOG_NODE | LOG_DISCOVERY,
3418 					 "0009 Assign RPI x%x to ndlp x%px "
3419 					 "DID:x%06x flg:x%x\n",
3420 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3421 					 ndlp->nlp_flag);
3422 		}
3423 	}
3424 	lpfc_destroy_vport_work_array(phba, vports);
3425 }
3426 
3427 /**
3428  * lpfc_create_expedite_pool - create expedite pool
3429  * @phba: pointer to lpfc hba data structure.
3430  *
3431  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3432  * to expedite pool. Mark them as expedite.
3433  **/
3434 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3435 {
3436 	struct lpfc_sli4_hdw_queue *qp;
3437 	struct lpfc_io_buf *lpfc_ncmd;
3438 	struct lpfc_io_buf *lpfc_ncmd_next;
3439 	struct lpfc_epd_pool *epd_pool;
3440 	unsigned long iflag;
3441 
3442 	epd_pool = &phba->epd_pool;
3443 	qp = &phba->sli4_hba.hdwq[0];
3444 
3445 	spin_lock_init(&epd_pool->lock);
3446 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3447 	spin_lock(&epd_pool->lock);
3448 	INIT_LIST_HEAD(&epd_pool->list);
3449 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3450 				 &qp->lpfc_io_buf_list_put, list) {
3451 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3452 		lpfc_ncmd->expedite = true;
3453 		qp->put_io_bufs--;
3454 		epd_pool->count++;
3455 		if (epd_pool->count >= XRI_BATCH)
3456 			break;
3457 	}
3458 	spin_unlock(&epd_pool->lock);
3459 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3460 }
3461 
3462 /**
3463  * lpfc_destroy_expedite_pool - destroy expedite pool
3464  * @phba: pointer to lpfc hba data structure.
3465  *
3466  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3467  * of HWQ 0. Clear the mark.
3468  **/
3469 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3470 {
3471 	struct lpfc_sli4_hdw_queue *qp;
3472 	struct lpfc_io_buf *lpfc_ncmd;
3473 	struct lpfc_io_buf *lpfc_ncmd_next;
3474 	struct lpfc_epd_pool *epd_pool;
3475 	unsigned long iflag;
3476 
3477 	epd_pool = &phba->epd_pool;
3478 	qp = &phba->sli4_hba.hdwq[0];
3479 
3480 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3481 	spin_lock(&epd_pool->lock);
3482 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3483 				 &epd_pool->list, list) {
3484 		list_move_tail(&lpfc_ncmd->list,
3485 			       &qp->lpfc_io_buf_list_put);
3486 		lpfc_ncmd->flags = false;
3487 		qp->put_io_bufs++;
3488 		epd_pool->count--;
3489 	}
3490 	spin_unlock(&epd_pool->lock);
3491 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3492 }
3493 
3494 /**
3495  * lpfc_create_multixri_pools - create multi-XRI pools
3496  * @phba: pointer to lpfc hba data structure.
3497  *
3498  * This routine initialize public, private per HWQ. Then, move XRIs from
3499  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3500  * Initialized.
3501  **/
3502 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3503 {
3504 	u32 i, j;
3505 	u32 hwq_count;
3506 	u32 count_per_hwq;
3507 	struct lpfc_io_buf *lpfc_ncmd;
3508 	struct lpfc_io_buf *lpfc_ncmd_next;
3509 	unsigned long iflag;
3510 	struct lpfc_sli4_hdw_queue *qp;
3511 	struct lpfc_multixri_pool *multixri_pool;
3512 	struct lpfc_pbl_pool *pbl_pool;
3513 	struct lpfc_pvt_pool *pvt_pool;
3514 
3515 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3516 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3517 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3518 			phba->sli4_hba.io_xri_cnt);
3519 
3520 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3521 		lpfc_create_expedite_pool(phba);
3522 
3523 	hwq_count = phba->cfg_hdw_queue;
3524 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3525 
3526 	for (i = 0; i < hwq_count; i++) {
3527 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3528 
3529 		if (!multixri_pool) {
3530 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3531 					"1238 Failed to allocate memory for "
3532 					"multixri_pool\n");
3533 
3534 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3535 				lpfc_destroy_expedite_pool(phba);
3536 
3537 			j = 0;
3538 			while (j < i) {
3539 				qp = &phba->sli4_hba.hdwq[j];
3540 				kfree(qp->p_multixri_pool);
3541 				j++;
3542 			}
3543 			phba->cfg_xri_rebalancing = 0;
3544 			return;
3545 		}
3546 
3547 		qp = &phba->sli4_hba.hdwq[i];
3548 		qp->p_multixri_pool = multixri_pool;
3549 
3550 		multixri_pool->xri_limit = count_per_hwq;
3551 		multixri_pool->rrb_next_hwqid = i;
3552 
3553 		/* Deal with public free xri pool */
3554 		pbl_pool = &multixri_pool->pbl_pool;
3555 		spin_lock_init(&pbl_pool->lock);
3556 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3557 		spin_lock(&pbl_pool->lock);
3558 		INIT_LIST_HEAD(&pbl_pool->list);
3559 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3560 					 &qp->lpfc_io_buf_list_put, list) {
3561 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3562 			qp->put_io_bufs--;
3563 			pbl_pool->count++;
3564 		}
3565 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3566 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3567 				pbl_pool->count, i);
3568 		spin_unlock(&pbl_pool->lock);
3569 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3570 
3571 		/* Deal with private free xri pool */
3572 		pvt_pool = &multixri_pool->pvt_pool;
3573 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3574 		pvt_pool->low_watermark = XRI_BATCH;
3575 		spin_lock_init(&pvt_pool->lock);
3576 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3577 		INIT_LIST_HEAD(&pvt_pool->list);
3578 		pvt_pool->count = 0;
3579 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3580 	}
3581 }
3582 
3583 /**
3584  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3585  * @phba: pointer to lpfc hba data structure.
3586  *
3587  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3588  **/
3589 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3590 {
3591 	u32 i;
3592 	u32 hwq_count;
3593 	struct lpfc_io_buf *lpfc_ncmd;
3594 	struct lpfc_io_buf *lpfc_ncmd_next;
3595 	unsigned long iflag;
3596 	struct lpfc_sli4_hdw_queue *qp;
3597 	struct lpfc_multixri_pool *multixri_pool;
3598 	struct lpfc_pbl_pool *pbl_pool;
3599 	struct lpfc_pvt_pool *pvt_pool;
3600 
3601 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3602 		lpfc_destroy_expedite_pool(phba);
3603 
3604 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
3605 		lpfc_sli_flush_io_rings(phba);
3606 
3607 	hwq_count = phba->cfg_hdw_queue;
3608 
3609 	for (i = 0; i < hwq_count; i++) {
3610 		qp = &phba->sli4_hba.hdwq[i];
3611 		multixri_pool = qp->p_multixri_pool;
3612 		if (!multixri_pool)
3613 			continue;
3614 
3615 		qp->p_multixri_pool = NULL;
3616 
3617 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3618 
3619 		/* Deal with public free xri pool */
3620 		pbl_pool = &multixri_pool->pbl_pool;
3621 		spin_lock(&pbl_pool->lock);
3622 
3623 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3624 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3625 				pbl_pool->count, i);
3626 
3627 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3628 					 &pbl_pool->list, list) {
3629 			list_move_tail(&lpfc_ncmd->list,
3630 				       &qp->lpfc_io_buf_list_put);
3631 			qp->put_io_bufs++;
3632 			pbl_pool->count--;
3633 		}
3634 
3635 		INIT_LIST_HEAD(&pbl_pool->list);
3636 		pbl_pool->count = 0;
3637 
3638 		spin_unlock(&pbl_pool->lock);
3639 
3640 		/* Deal with private free xri pool */
3641 		pvt_pool = &multixri_pool->pvt_pool;
3642 		spin_lock(&pvt_pool->lock);
3643 
3644 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3645 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3646 				pvt_pool->count, i);
3647 
3648 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3649 					 &pvt_pool->list, list) {
3650 			list_move_tail(&lpfc_ncmd->list,
3651 				       &qp->lpfc_io_buf_list_put);
3652 			qp->put_io_bufs++;
3653 			pvt_pool->count--;
3654 		}
3655 
3656 		INIT_LIST_HEAD(&pvt_pool->list);
3657 		pvt_pool->count = 0;
3658 
3659 		spin_unlock(&pvt_pool->lock);
3660 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3661 
3662 		kfree(multixri_pool);
3663 	}
3664 }
3665 
3666 /**
3667  * lpfc_online - Initialize and bring a HBA online
3668  * @phba: pointer to lpfc hba data structure.
3669  *
3670  * This routine initializes the HBA and brings a HBA online. During this
3671  * process, the management interface is blocked to prevent user space access
3672  * to the HBA interfering with the driver initialization.
3673  *
3674  * Return codes
3675  *   0 - successful
3676  *   1 - failed
3677  **/
3678 int
3679 lpfc_online(struct lpfc_hba *phba)
3680 {
3681 	struct lpfc_vport *vport;
3682 	struct lpfc_vport **vports;
3683 	int i, error = 0;
3684 	bool vpis_cleared = false;
3685 
3686 	if (!phba)
3687 		return 0;
3688 	vport = phba->pport;
3689 
3690 	if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3691 		return 0;
3692 
3693 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3694 			"0458 Bring Adapter online\n");
3695 
3696 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3697 
3698 	if (phba->sli_rev == LPFC_SLI_REV4) {
3699 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3700 			lpfc_unblock_mgmt_io(phba);
3701 			return 1;
3702 		}
3703 		spin_lock_irq(&phba->hbalock);
3704 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3705 			vpis_cleared = true;
3706 		spin_unlock_irq(&phba->hbalock);
3707 
3708 		/* Reestablish the local initiator port.
3709 		 * The offline process destroyed the previous lport.
3710 		 */
3711 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3712 				!phba->nvmet_support) {
3713 			error = lpfc_nvme_create_localport(phba->pport);
3714 			if (error)
3715 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3716 					"6132 NVME restore reg failed "
3717 					"on nvmei error x%x\n", error);
3718 		}
3719 	} else {
3720 		lpfc_sli_queue_init(phba);
3721 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3722 			lpfc_unblock_mgmt_io(phba);
3723 			return 1;
3724 		}
3725 	}
3726 
3727 	vports = lpfc_create_vport_work_array(phba);
3728 	if (vports != NULL) {
3729 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3730 			clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3731 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3732 				set_bit(FC_VPORT_NEEDS_REG_VPI,
3733 					&vports[i]->fc_flag);
3734 			if (phba->sli_rev == LPFC_SLI_REV4) {
3735 				set_bit(FC_VPORT_NEEDS_INIT_VPI,
3736 					&vports[i]->fc_flag);
3737 				if ((vpis_cleared) &&
3738 				    (vports[i]->port_type !=
3739 					LPFC_PHYSICAL_PORT))
3740 					vports[i]->vpi = 0;
3741 			}
3742 		}
3743 	}
3744 	lpfc_destroy_vport_work_array(phba, vports);
3745 
3746 	if (phba->cfg_xri_rebalancing)
3747 		lpfc_create_multixri_pools(phba);
3748 
3749 	lpfc_cpuhp_add(phba);
3750 
3751 	lpfc_unblock_mgmt_io(phba);
3752 	return 0;
3753 }
3754 
3755 /**
3756  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3757  * @phba: pointer to lpfc hba data structure.
3758  *
3759  * This routine marks a HBA's management interface as not blocked. Once the
3760  * HBA's management interface is marked as not blocked, all the user space
3761  * access to the HBA, whether they are from sysfs interface or libdfc
3762  * interface will be allowed. The HBA is set to block the management interface
3763  * when the driver prepares the HBA interface for online or offline and then
3764  * set to unblock the management interface afterwards.
3765  **/
3766 void
3767 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3768 {
3769 	unsigned long iflag;
3770 
3771 	spin_lock_irqsave(&phba->hbalock, iflag);
3772 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3773 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3774 }
3775 
3776 /**
3777  * lpfc_offline_prep - Prepare a HBA to be brought offline
3778  * @phba: pointer to lpfc hba data structure.
3779  * @mbx_action: flag for mailbox shutdown action.
3780  *
3781  * This routine is invoked to prepare a HBA to be brought offline. It performs
3782  * unregistration login to all the nodes on all vports and flushes the mailbox
3783  * queue to make it ready to be brought offline.
3784  **/
3785 void
3786 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3787 {
3788 	struct lpfc_vport *vport = phba->pport;
3789 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3790 	struct lpfc_vport **vports;
3791 	struct Scsi_Host *shost;
3792 	int i;
3793 	int offline;
3794 	bool hba_pci_err;
3795 
3796 	if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3797 		return;
3798 
3799 	lpfc_block_mgmt_io(phba, mbx_action);
3800 
3801 	lpfc_linkdown(phba);
3802 
3803 	offline =  pci_channel_offline(phba->pcidev);
3804 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3805 
3806 	/* Issue an unreg_login to all nodes on all vports */
3807 	vports = lpfc_create_vport_work_array(phba);
3808 	if (vports != NULL) {
3809 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3810 			if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3811 				continue;
3812 			shost = lpfc_shost_from_vport(vports[i]);
3813 			spin_lock_irq(shost->host_lock);
3814 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3815 			spin_unlock_irq(shost->host_lock);
3816 			set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag);
3817 			clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag);
3818 
3819 			list_for_each_entry_safe(ndlp, next_ndlp,
3820 						 &vports[i]->fc_nodes,
3821 						 nlp_listp) {
3822 
3823 				spin_lock_irq(&ndlp->lock);
3824 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3825 				spin_unlock_irq(&ndlp->lock);
3826 
3827 				if (offline || hba_pci_err) {
3828 					spin_lock_irq(&ndlp->lock);
3829 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3830 							    NLP_RPI_REGISTERED);
3831 					spin_unlock_irq(&ndlp->lock);
3832 					if (phba->sli_rev == LPFC_SLI_REV4)
3833 						lpfc_sli_rpi_release(vports[i],
3834 								     ndlp);
3835 				} else {
3836 					lpfc_unreg_rpi(vports[i], ndlp);
3837 				}
3838 				/*
3839 				 * Whenever an SLI4 port goes offline, free the
3840 				 * RPI. Get a new RPI when the adapter port
3841 				 * comes back online.
3842 				 */
3843 				if (phba->sli_rev == LPFC_SLI_REV4) {
3844 					lpfc_printf_vlog(vports[i], KERN_INFO,
3845 						 LOG_NODE | LOG_DISCOVERY,
3846 						 "0011 Free RPI x%x on "
3847 						 "ndlp: x%px did x%x\n",
3848 						 ndlp->nlp_rpi, ndlp,
3849 						 ndlp->nlp_DID);
3850 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3851 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3852 				}
3853 
3854 				if (ndlp->nlp_type & NLP_FABRIC) {
3855 					lpfc_disc_state_machine(vports[i], ndlp,
3856 						NULL, NLP_EVT_DEVICE_RECOVERY);
3857 
3858 					/* Don't remove the node unless the node
3859 					 * has been unregistered with the
3860 					 * transport, and we're not in recovery
3861 					 * before dev_loss_tmo triggered.
3862 					 * Otherwise, let dev_loss take care of
3863 					 * the node.
3864 					 */
3865 					if (!(ndlp->save_flags &
3866 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3867 					    !(ndlp->fc4_xpt_flags &
3868 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3869 						lpfc_disc_state_machine
3870 							(vports[i], ndlp,
3871 							 NULL,
3872 							 NLP_EVT_DEVICE_RM);
3873 				}
3874 			}
3875 		}
3876 	}
3877 	lpfc_destroy_vport_work_array(phba, vports);
3878 
3879 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3880 
3881 	if (phba->wq)
3882 		flush_workqueue(phba->wq);
3883 }
3884 
3885 /**
3886  * lpfc_offline - Bring a HBA offline
3887  * @phba: pointer to lpfc hba data structure.
3888  *
3889  * This routine actually brings a HBA offline. It stops all the timers
3890  * associated with the HBA, brings down the SLI layer, and eventually
3891  * marks the HBA as in offline state for the upper layer protocol.
3892  **/
3893 void
3894 lpfc_offline(struct lpfc_hba *phba)
3895 {
3896 	struct Scsi_Host  *shost;
3897 	struct lpfc_vport **vports;
3898 	int i;
3899 
3900 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3901 		return;
3902 
3903 	/* stop port and all timers associated with this hba */
3904 	lpfc_stop_port(phba);
3905 
3906 	/* Tear down the local and target port registrations.  The
3907 	 * nvme transports need to cleanup.
3908 	 */
3909 	lpfc_nvmet_destroy_targetport(phba);
3910 	lpfc_nvme_destroy_localport(phba->pport);
3911 
3912 	vports = lpfc_create_vport_work_array(phba);
3913 	if (vports != NULL)
3914 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3915 			lpfc_stop_vport_timers(vports[i]);
3916 	lpfc_destroy_vport_work_array(phba, vports);
3917 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3918 			"0460 Bring Adapter offline\n");
3919 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3920 	   now.  */
3921 	lpfc_sli_hba_down(phba);
3922 	spin_lock_irq(&phba->hbalock);
3923 	phba->work_ha = 0;
3924 	spin_unlock_irq(&phba->hbalock);
3925 	vports = lpfc_create_vport_work_array(phba);
3926 	if (vports != NULL)
3927 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3928 			shost = lpfc_shost_from_vport(vports[i]);
3929 			spin_lock_irq(shost->host_lock);
3930 			vports[i]->work_port_events = 0;
3931 			spin_unlock_irq(shost->host_lock);
3932 			set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3933 		}
3934 	lpfc_destroy_vport_work_array(phba, vports);
3935 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3936 	 * in hba_unset
3937 	 */
3938 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3939 		__lpfc_cpuhp_remove(phba);
3940 
3941 	if (phba->cfg_xri_rebalancing)
3942 		lpfc_destroy_multixri_pools(phba);
3943 }
3944 
3945 /**
3946  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3947  * @phba: pointer to lpfc hba data structure.
3948  *
3949  * This routine is to free all the SCSI buffers and IOCBs from the driver
3950  * list back to kernel. It is called from lpfc_pci_remove_one to free
3951  * the internal resources before the device is removed from the system.
3952  **/
3953 static void
3954 lpfc_scsi_free(struct lpfc_hba *phba)
3955 {
3956 	struct lpfc_io_buf *sb, *sb_next;
3957 
3958 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3959 		return;
3960 
3961 	spin_lock_irq(&phba->hbalock);
3962 
3963 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3964 
3965 	spin_lock(&phba->scsi_buf_list_put_lock);
3966 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3967 				 list) {
3968 		list_del(&sb->list);
3969 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3970 			      sb->dma_handle);
3971 		kfree(sb);
3972 		phba->total_scsi_bufs--;
3973 	}
3974 	spin_unlock(&phba->scsi_buf_list_put_lock);
3975 
3976 	spin_lock(&phba->scsi_buf_list_get_lock);
3977 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3978 				 list) {
3979 		list_del(&sb->list);
3980 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3981 			      sb->dma_handle);
3982 		kfree(sb);
3983 		phba->total_scsi_bufs--;
3984 	}
3985 	spin_unlock(&phba->scsi_buf_list_get_lock);
3986 	spin_unlock_irq(&phba->hbalock);
3987 }
3988 
3989 /**
3990  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3991  * @phba: pointer to lpfc hba data structure.
3992  *
3993  * This routine is to free all the IO buffers and IOCBs from the driver
3994  * list back to kernel. It is called from lpfc_pci_remove_one to free
3995  * the internal resources before the device is removed from the system.
3996  **/
3997 void
3998 lpfc_io_free(struct lpfc_hba *phba)
3999 {
4000 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4001 	struct lpfc_sli4_hdw_queue *qp;
4002 	int idx;
4003 
4004 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4005 		qp = &phba->sli4_hba.hdwq[idx];
4006 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4007 		spin_lock(&qp->io_buf_list_put_lock);
4008 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4009 					 &qp->lpfc_io_buf_list_put,
4010 					 list) {
4011 			list_del(&lpfc_ncmd->list);
4012 			qp->put_io_bufs--;
4013 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4014 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4015 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4016 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4017 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4018 			kfree(lpfc_ncmd);
4019 			qp->total_io_bufs--;
4020 		}
4021 		spin_unlock(&qp->io_buf_list_put_lock);
4022 
4023 		spin_lock(&qp->io_buf_list_get_lock);
4024 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4025 					 &qp->lpfc_io_buf_list_get,
4026 					 list) {
4027 			list_del(&lpfc_ncmd->list);
4028 			qp->get_io_bufs--;
4029 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4030 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4031 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4032 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4033 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4034 			kfree(lpfc_ncmd);
4035 			qp->total_io_bufs--;
4036 		}
4037 		spin_unlock(&qp->io_buf_list_get_lock);
4038 	}
4039 }
4040 
4041 /**
4042  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4043  * @phba: pointer to lpfc hba data structure.
4044  *
4045  * This routine first calculates the sizes of the current els and allocated
4046  * scsi sgl lists, and then goes through all sgls to updates the physical
4047  * XRIs assigned due to port function reset. During port initialization, the
4048  * current els and allocated scsi sgl lists are 0s.
4049  *
4050  * Return codes
4051  *   0 - successful (for now, it always returns 0)
4052  **/
4053 int
4054 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4055 {
4056 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4057 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4058 	LIST_HEAD(els_sgl_list);
4059 	int rc;
4060 
4061 	/*
4062 	 * update on pci function's els xri-sgl list
4063 	 */
4064 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4065 
4066 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4067 		/* els xri-sgl expanded */
4068 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4069 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4070 				"3157 ELS xri-sgl count increased from "
4071 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4072 				els_xri_cnt);
4073 		/* allocate the additional els sgls */
4074 		for (i = 0; i < xri_cnt; i++) {
4075 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4076 					     GFP_KERNEL);
4077 			if (sglq_entry == NULL) {
4078 				lpfc_printf_log(phba, KERN_ERR,
4079 						LOG_TRACE_EVENT,
4080 						"2562 Failure to allocate an "
4081 						"ELS sgl entry:%d\n", i);
4082 				rc = -ENOMEM;
4083 				goto out_free_mem;
4084 			}
4085 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4086 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4087 							   &sglq_entry->phys);
4088 			if (sglq_entry->virt == NULL) {
4089 				kfree(sglq_entry);
4090 				lpfc_printf_log(phba, KERN_ERR,
4091 						LOG_TRACE_EVENT,
4092 						"2563 Failure to allocate an "
4093 						"ELS mbuf:%d\n", i);
4094 				rc = -ENOMEM;
4095 				goto out_free_mem;
4096 			}
4097 			sglq_entry->sgl = sglq_entry->virt;
4098 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4099 			sglq_entry->state = SGL_FREED;
4100 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4101 		}
4102 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4103 		list_splice_init(&els_sgl_list,
4104 				 &phba->sli4_hba.lpfc_els_sgl_list);
4105 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4106 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4107 		/* els xri-sgl shrinked */
4108 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4109 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4110 				"3158 ELS xri-sgl count decreased from "
4111 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4112 				els_xri_cnt);
4113 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4114 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4115 				 &els_sgl_list);
4116 		/* release extra els sgls from list */
4117 		for (i = 0; i < xri_cnt; i++) {
4118 			list_remove_head(&els_sgl_list,
4119 					 sglq_entry, struct lpfc_sglq, list);
4120 			if (sglq_entry) {
4121 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4122 						 sglq_entry->phys);
4123 				kfree(sglq_entry);
4124 			}
4125 		}
4126 		list_splice_init(&els_sgl_list,
4127 				 &phba->sli4_hba.lpfc_els_sgl_list);
4128 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4129 	} else
4130 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4131 				"3163 ELS xri-sgl count unchanged: %d\n",
4132 				els_xri_cnt);
4133 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4134 
4135 	/* update xris to els sgls on the list */
4136 	sglq_entry = NULL;
4137 	sglq_entry_next = NULL;
4138 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4139 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4140 		lxri = lpfc_sli4_next_xritag(phba);
4141 		if (lxri == NO_XRI) {
4142 			lpfc_printf_log(phba, KERN_ERR,
4143 					LOG_TRACE_EVENT,
4144 					"2400 Failed to allocate xri for "
4145 					"ELS sgl\n");
4146 			rc = -ENOMEM;
4147 			goto out_free_mem;
4148 		}
4149 		sglq_entry->sli4_lxritag = lxri;
4150 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4151 	}
4152 	return 0;
4153 
4154 out_free_mem:
4155 	lpfc_free_els_sgl_list(phba);
4156 	return rc;
4157 }
4158 
4159 /**
4160  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4161  * @phba: pointer to lpfc hba data structure.
4162  *
4163  * This routine first calculates the sizes of the current els and allocated
4164  * scsi sgl lists, and then goes through all sgls to updates the physical
4165  * XRIs assigned due to port function reset. During port initialization, the
4166  * current els and allocated scsi sgl lists are 0s.
4167  *
4168  * Return codes
4169  *   0 - successful (for now, it always returns 0)
4170  **/
4171 int
4172 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4173 {
4174 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4175 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4176 	uint16_t nvmet_xri_cnt;
4177 	LIST_HEAD(nvmet_sgl_list);
4178 	int rc;
4179 
4180 	/*
4181 	 * update on pci function's nvmet xri-sgl list
4182 	 */
4183 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4184 
4185 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4186 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4187 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4188 		/* els xri-sgl expanded */
4189 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4190 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4191 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4192 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4193 		/* allocate the additional nvmet sgls */
4194 		for (i = 0; i < xri_cnt; i++) {
4195 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4196 					     GFP_KERNEL);
4197 			if (sglq_entry == NULL) {
4198 				lpfc_printf_log(phba, KERN_ERR,
4199 						LOG_TRACE_EVENT,
4200 						"6303 Failure to allocate an "
4201 						"NVMET sgl entry:%d\n", i);
4202 				rc = -ENOMEM;
4203 				goto out_free_mem;
4204 			}
4205 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4206 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4207 							   &sglq_entry->phys);
4208 			if (sglq_entry->virt == NULL) {
4209 				kfree(sglq_entry);
4210 				lpfc_printf_log(phba, KERN_ERR,
4211 						LOG_TRACE_EVENT,
4212 						"6304 Failure to allocate an "
4213 						"NVMET buf:%d\n", i);
4214 				rc = -ENOMEM;
4215 				goto out_free_mem;
4216 			}
4217 			sglq_entry->sgl = sglq_entry->virt;
4218 			memset(sglq_entry->sgl, 0,
4219 			       phba->cfg_sg_dma_buf_size);
4220 			sglq_entry->state = SGL_FREED;
4221 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4222 		}
4223 		spin_lock_irq(&phba->hbalock);
4224 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4225 		list_splice_init(&nvmet_sgl_list,
4226 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4227 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4228 		spin_unlock_irq(&phba->hbalock);
4229 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4230 		/* nvmet xri-sgl shrunk */
4231 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4232 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4233 				"6305 NVMET xri-sgl count decreased from "
4234 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4235 				nvmet_xri_cnt);
4236 		spin_lock_irq(&phba->hbalock);
4237 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4238 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4239 				 &nvmet_sgl_list);
4240 		/* release extra nvmet sgls from list */
4241 		for (i = 0; i < xri_cnt; i++) {
4242 			list_remove_head(&nvmet_sgl_list,
4243 					 sglq_entry, struct lpfc_sglq, list);
4244 			if (sglq_entry) {
4245 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4246 						    sglq_entry->phys);
4247 				kfree(sglq_entry);
4248 			}
4249 		}
4250 		list_splice_init(&nvmet_sgl_list,
4251 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4252 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4253 		spin_unlock_irq(&phba->hbalock);
4254 	} else
4255 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4256 				"6306 NVMET xri-sgl count unchanged: %d\n",
4257 				nvmet_xri_cnt);
4258 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4259 
4260 	/* update xris to nvmet sgls on the list */
4261 	sglq_entry = NULL;
4262 	sglq_entry_next = NULL;
4263 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4264 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4265 		lxri = lpfc_sli4_next_xritag(phba);
4266 		if (lxri == NO_XRI) {
4267 			lpfc_printf_log(phba, KERN_ERR,
4268 					LOG_TRACE_EVENT,
4269 					"6307 Failed to allocate xri for "
4270 					"NVMET sgl\n");
4271 			rc = -ENOMEM;
4272 			goto out_free_mem;
4273 		}
4274 		sglq_entry->sli4_lxritag = lxri;
4275 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4276 	}
4277 	return 0;
4278 
4279 out_free_mem:
4280 	lpfc_free_nvmet_sgl_list(phba);
4281 	return rc;
4282 }
4283 
4284 int
4285 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4286 {
4287 	LIST_HEAD(blist);
4288 	struct lpfc_sli4_hdw_queue *qp;
4289 	struct lpfc_io_buf *lpfc_cmd;
4290 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4291 	int idx, cnt, xri, inserted;
4292 
4293 	cnt = 0;
4294 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4295 		qp = &phba->sli4_hba.hdwq[idx];
4296 		spin_lock_irq(&qp->io_buf_list_get_lock);
4297 		spin_lock(&qp->io_buf_list_put_lock);
4298 
4299 		/* Take everything off the get and put lists */
4300 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4301 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4302 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4303 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4304 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4305 		qp->get_io_bufs = 0;
4306 		qp->put_io_bufs = 0;
4307 		qp->total_io_bufs = 0;
4308 		spin_unlock(&qp->io_buf_list_put_lock);
4309 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4310 	}
4311 
4312 	/*
4313 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4314 	 * This is because POST_SGL takes a sequential range of XRIs
4315 	 * to post to the firmware.
4316 	 */
4317 	for (idx = 0; idx < cnt; idx++) {
4318 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4319 		if (!lpfc_cmd)
4320 			return cnt;
4321 		if (idx == 0) {
4322 			list_add_tail(&lpfc_cmd->list, cbuf);
4323 			continue;
4324 		}
4325 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4326 		inserted = 0;
4327 		prev_iobufp = NULL;
4328 		list_for_each_entry(iobufp, cbuf, list) {
4329 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4330 				if (prev_iobufp)
4331 					list_add(&lpfc_cmd->list,
4332 						 &prev_iobufp->list);
4333 				else
4334 					list_add(&lpfc_cmd->list, cbuf);
4335 				inserted = 1;
4336 				break;
4337 			}
4338 			prev_iobufp = iobufp;
4339 		}
4340 		if (!inserted)
4341 			list_add_tail(&lpfc_cmd->list, cbuf);
4342 	}
4343 	return cnt;
4344 }
4345 
4346 int
4347 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4348 {
4349 	struct lpfc_sli4_hdw_queue *qp;
4350 	struct lpfc_io_buf *lpfc_cmd;
4351 	int idx, cnt;
4352 	unsigned long iflags;
4353 
4354 	qp = phba->sli4_hba.hdwq;
4355 	cnt = 0;
4356 	while (!list_empty(cbuf)) {
4357 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4358 			list_remove_head(cbuf, lpfc_cmd,
4359 					 struct lpfc_io_buf, list);
4360 			if (!lpfc_cmd)
4361 				return cnt;
4362 			cnt++;
4363 			qp = &phba->sli4_hba.hdwq[idx];
4364 			lpfc_cmd->hdwq_no = idx;
4365 			lpfc_cmd->hdwq = qp;
4366 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4367 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4368 			list_add_tail(&lpfc_cmd->list,
4369 				      &qp->lpfc_io_buf_list_put);
4370 			qp->put_io_bufs++;
4371 			qp->total_io_bufs++;
4372 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4373 					       iflags);
4374 		}
4375 	}
4376 	return cnt;
4377 }
4378 
4379 /**
4380  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4381  * @phba: pointer to lpfc hba data structure.
4382  *
4383  * This routine first calculates the sizes of the current els and allocated
4384  * scsi sgl lists, and then goes through all sgls to updates the physical
4385  * XRIs assigned due to port function reset. During port initialization, the
4386  * current els and allocated scsi sgl lists are 0s.
4387  *
4388  * Return codes
4389  *   0 - successful (for now, it always returns 0)
4390  **/
4391 int
4392 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4393 {
4394 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4395 	uint16_t i, lxri, els_xri_cnt;
4396 	uint16_t io_xri_cnt, io_xri_max;
4397 	LIST_HEAD(io_sgl_list);
4398 	int rc, cnt;
4399 
4400 	/*
4401 	 * update on pci function's allocated nvme xri-sgl list
4402 	 */
4403 
4404 	/* maximum number of xris available for nvme buffers */
4405 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4406 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4407 	phba->sli4_hba.io_xri_max = io_xri_max;
4408 
4409 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4410 			"6074 Current allocated XRI sgl count:%d, "
4411 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4412 			phba->sli4_hba.io_xri_cnt,
4413 			phba->sli4_hba.io_xri_max,
4414 			els_xri_cnt);
4415 
4416 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4417 
4418 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4419 		/* max nvme xri shrunk below the allocated nvme buffers */
4420 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4421 					phba->sli4_hba.io_xri_max;
4422 		/* release the extra allocated nvme buffers */
4423 		for (i = 0; i < io_xri_cnt; i++) {
4424 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4425 					 struct lpfc_io_buf, list);
4426 			if (lpfc_ncmd) {
4427 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4428 					      lpfc_ncmd->data,
4429 					      lpfc_ncmd->dma_handle);
4430 				kfree(lpfc_ncmd);
4431 			}
4432 		}
4433 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4434 	}
4435 
4436 	/* update xris associated to remaining allocated nvme buffers */
4437 	lpfc_ncmd = NULL;
4438 	lpfc_ncmd_next = NULL;
4439 	phba->sli4_hba.io_xri_cnt = cnt;
4440 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4441 				 &io_sgl_list, list) {
4442 		lxri = lpfc_sli4_next_xritag(phba);
4443 		if (lxri == NO_XRI) {
4444 			lpfc_printf_log(phba, KERN_ERR,
4445 					LOG_TRACE_EVENT,
4446 					"6075 Failed to allocate xri for "
4447 					"nvme buffer\n");
4448 			rc = -ENOMEM;
4449 			goto out_free_mem;
4450 		}
4451 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4452 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4453 	}
4454 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4455 	return 0;
4456 
4457 out_free_mem:
4458 	lpfc_io_free(phba);
4459 	return rc;
4460 }
4461 
4462 /**
4463  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4464  * @phba: Pointer to lpfc hba data structure.
4465  * @num_to_alloc: The requested number of buffers to allocate.
4466  *
4467  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4468  * the nvme buffer contains all the necessary information needed to initiate
4469  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4470  * them on a list, it post them to the port by using SGL block post.
4471  *
4472  * Return codes:
4473  *   int - number of IO buffers that were allocated and posted.
4474  *   0 = failure, less than num_to_alloc is a partial failure.
4475  **/
4476 int
4477 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4478 {
4479 	struct lpfc_io_buf *lpfc_ncmd;
4480 	struct lpfc_iocbq *pwqeq;
4481 	uint16_t iotag, lxri = 0;
4482 	int bcnt, num_posted;
4483 	LIST_HEAD(prep_nblist);
4484 	LIST_HEAD(post_nblist);
4485 	LIST_HEAD(nvme_nblist);
4486 
4487 	phba->sli4_hba.io_xri_cnt = 0;
4488 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4489 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4490 		if (!lpfc_ncmd)
4491 			break;
4492 		/*
4493 		 * Get memory from the pci pool to map the virt space to
4494 		 * pci bus space for an I/O. The DMA buffer includes the
4495 		 * number of SGE's necessary to support the sg_tablesize.
4496 		 */
4497 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4498 						  GFP_KERNEL,
4499 						  &lpfc_ncmd->dma_handle);
4500 		if (!lpfc_ncmd->data) {
4501 			kfree(lpfc_ncmd);
4502 			break;
4503 		}
4504 
4505 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4506 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4507 		} else {
4508 			/*
4509 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4510 			 * check to be sure.
4511 			 */
4512 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4513 			    (((unsigned long)(lpfc_ncmd->data) &
4514 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4515 				lpfc_printf_log(phba, KERN_ERR,
4516 						LOG_TRACE_EVENT,
4517 						"3369 Memory alignment err: "
4518 						"addr=%lx\n",
4519 						(unsigned long)lpfc_ncmd->data);
4520 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4521 					      lpfc_ncmd->data,
4522 					      lpfc_ncmd->dma_handle);
4523 				kfree(lpfc_ncmd);
4524 				break;
4525 			}
4526 		}
4527 
4528 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4529 
4530 		lxri = lpfc_sli4_next_xritag(phba);
4531 		if (lxri == NO_XRI) {
4532 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4533 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4534 			kfree(lpfc_ncmd);
4535 			break;
4536 		}
4537 		pwqeq = &lpfc_ncmd->cur_iocbq;
4538 
4539 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4540 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4541 		if (iotag == 0) {
4542 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4543 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4544 			kfree(lpfc_ncmd);
4545 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4546 					"6121 Failed to allocate IOTAG for"
4547 					" XRI:0x%x\n", lxri);
4548 			lpfc_sli4_free_xri(phba, lxri);
4549 			break;
4550 		}
4551 		pwqeq->sli4_lxritag = lxri;
4552 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4553 
4554 		/* Initialize local short-hand pointers. */
4555 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4556 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4557 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4558 		spin_lock_init(&lpfc_ncmd->buf_lock);
4559 
4560 		/* add the nvme buffer to a post list */
4561 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4562 		phba->sli4_hba.io_xri_cnt++;
4563 	}
4564 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4565 			"6114 Allocate %d out of %d requested new NVME "
4566 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4567 			sizeof(*lpfc_ncmd));
4568 
4569 
4570 	/* post the list of nvme buffer sgls to port if available */
4571 	if (!list_empty(&post_nblist))
4572 		num_posted = lpfc_sli4_post_io_sgl_list(
4573 				phba, &post_nblist, bcnt);
4574 	else
4575 		num_posted = 0;
4576 
4577 	return num_posted;
4578 }
4579 
4580 static uint64_t
4581 lpfc_get_wwpn(struct lpfc_hba *phba)
4582 {
4583 	uint64_t wwn;
4584 	int rc;
4585 	LPFC_MBOXQ_t *mboxq;
4586 	MAILBOX_t *mb;
4587 
4588 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4589 						GFP_KERNEL);
4590 	if (!mboxq)
4591 		return (uint64_t)-1;
4592 
4593 	/* First get WWN of HBA instance */
4594 	lpfc_read_nv(phba, mboxq);
4595 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4596 	if (rc != MBX_SUCCESS) {
4597 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4598 				"6019 Mailbox failed , mbxCmd x%x "
4599 				"READ_NV, mbxStatus x%x\n",
4600 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4601 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4602 		mempool_free(mboxq, phba->mbox_mem_pool);
4603 		return (uint64_t) -1;
4604 	}
4605 	mb = &mboxq->u.mb;
4606 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4607 	/* wwn is WWPN of HBA instance */
4608 	mempool_free(mboxq, phba->mbox_mem_pool);
4609 	if (phba->sli_rev == LPFC_SLI_REV4)
4610 		return be64_to_cpu(wwn);
4611 	else
4612 		return rol64(wwn, 32);
4613 }
4614 
4615 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4616 {
4617 	if (phba->sli_rev == LPFC_SLI_REV4)
4618 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4619 			return LPFC_MAX_SG_TABLESIZE;
4620 		else
4621 			return phba->cfg_scsi_seg_cnt;
4622 	else
4623 		return phba->cfg_sg_seg_cnt;
4624 }
4625 
4626 /**
4627  * lpfc_vmid_res_alloc - Allocates resources for VMID
4628  * @phba: pointer to lpfc hba data structure.
4629  * @vport: pointer to vport data structure
4630  *
4631  * This routine allocated the resources needed for the VMID.
4632  *
4633  * Return codes
4634  *	0 on Success
4635  *	Non-0 on Failure
4636  */
4637 static int
4638 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4639 {
4640 	/* VMID feature is supported only on SLI4 */
4641 	if (phba->sli_rev == LPFC_SLI_REV3) {
4642 		phba->cfg_vmid_app_header = 0;
4643 		phba->cfg_vmid_priority_tagging = 0;
4644 	}
4645 
4646 	if (lpfc_is_vmid_enabled(phba)) {
4647 		vport->vmid =
4648 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4649 			    GFP_KERNEL);
4650 		if (!vport->vmid)
4651 			return -ENOMEM;
4652 
4653 		rwlock_init(&vport->vmid_lock);
4654 
4655 		/* Set the VMID parameters for the vport */
4656 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4657 		vport->vmid_inactivity_timeout =
4658 		    phba->cfg_vmid_inactivity_timeout;
4659 		vport->max_vmid = phba->cfg_max_vmid;
4660 		vport->cur_vmid_cnt = 0;
4661 
4662 		vport->vmid_priority_range = bitmap_zalloc
4663 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4664 
4665 		if (!vport->vmid_priority_range) {
4666 			kfree(vport->vmid);
4667 			return -ENOMEM;
4668 		}
4669 
4670 		hash_init(vport->hash_table);
4671 	}
4672 	return 0;
4673 }
4674 
4675 /**
4676  * lpfc_create_port - Create an FC port
4677  * @phba: pointer to lpfc hba data structure.
4678  * @instance: a unique integer ID to this FC port.
4679  * @dev: pointer to the device data structure.
4680  *
4681  * This routine creates a FC port for the upper layer protocol. The FC port
4682  * can be created on top of either a physical port or a virtual port provided
4683  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4684  * and associates the FC port created before adding the shost into the SCSI
4685  * layer.
4686  *
4687  * Return codes
4688  *   @vport - pointer to the virtual N_Port data structure.
4689  *   NULL - port create failed.
4690  **/
4691 struct lpfc_vport *
4692 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4693 {
4694 	struct lpfc_vport *vport;
4695 	struct Scsi_Host  *shost = NULL;
4696 	struct scsi_host_template *template;
4697 	int error = 0;
4698 	int i;
4699 	uint64_t wwn;
4700 	bool use_no_reset_hba = false;
4701 	int rc;
4702 
4703 	if (lpfc_no_hba_reset_cnt) {
4704 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4705 		    dev == &phba->pcidev->dev) {
4706 			/* Reset the port first */
4707 			lpfc_sli_brdrestart(phba);
4708 			rc = lpfc_sli_chipset_init(phba);
4709 			if (rc)
4710 				return NULL;
4711 		}
4712 		wwn = lpfc_get_wwpn(phba);
4713 	}
4714 
4715 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4716 		if (wwn == lpfc_no_hba_reset[i]) {
4717 			lpfc_printf_log(phba, KERN_ERR,
4718 					LOG_TRACE_EVENT,
4719 					"6020 Setting use_no_reset port=%llx\n",
4720 					wwn);
4721 			use_no_reset_hba = true;
4722 			break;
4723 		}
4724 	}
4725 
4726 	/* Seed template for SCSI host registration */
4727 	if (dev == &phba->pcidev->dev) {
4728 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4729 			/* Seed physical port template */
4730 			template = &lpfc_template;
4731 
4732 			if (use_no_reset_hba)
4733 				/* template is for a no reset SCSI Host */
4734 				template->eh_host_reset_handler = NULL;
4735 
4736 			/* Seed updated value of sg_tablesize */
4737 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4738 		} else {
4739 			/* NVMET is for physical port only */
4740 			template = &lpfc_template_nvme;
4741 		}
4742 	} else {
4743 		/* Seed vport template */
4744 		template = &lpfc_vport_template;
4745 
4746 		/* Seed updated value of sg_tablesize */
4747 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4748 	}
4749 
4750 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4751 	if (!shost)
4752 		goto out;
4753 
4754 	vport = (struct lpfc_vport *) shost->hostdata;
4755 	vport->phba = phba;
4756 	set_bit(FC_LOADING, &vport->load_flag);
4757 	set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
4758 	vport->fc_rscn_flush = 0;
4759 	atomic_set(&vport->fc_plogi_cnt, 0);
4760 	atomic_set(&vport->fc_adisc_cnt, 0);
4761 	atomic_set(&vport->fc_reglogin_cnt, 0);
4762 	atomic_set(&vport->fc_prli_cnt, 0);
4763 	atomic_set(&vport->fc_unmap_cnt, 0);
4764 	atomic_set(&vport->fc_map_cnt, 0);
4765 	atomic_set(&vport->fc_npr_cnt, 0);
4766 	atomic_set(&vport->fc_unused_cnt, 0);
4767 	lpfc_get_vport_cfgparam(vport);
4768 
4769 	/* Adjust value in vport */
4770 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4771 
4772 	shost->unique_id = instance;
4773 	shost->max_id = LPFC_MAX_TARGET;
4774 	shost->max_lun = vport->cfg_max_luns;
4775 	shost->this_id = -1;
4776 	if (phba->sli_rev == LPFC_SLI_REV4)
4777 		shost->max_cmd_len = LPFC_FCP_CDB_LEN_32;
4778 	else
4779 		shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4780 
4781 	if (phba->sli_rev == LPFC_SLI_REV4) {
4782 		if (!phba->cfg_fcp_mq_threshold ||
4783 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4784 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4785 
4786 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4787 					    phba->cfg_fcp_mq_threshold);
4788 
4789 		shost->dma_boundary =
4790 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4791 	} else
4792 		/* SLI-3 has a limited number of hardware queues (3),
4793 		 * thus there is only one for FCP processing.
4794 		 */
4795 		shost->nr_hw_queues = 1;
4796 
4797 	/*
4798 	 * Set initial can_queue value since 0 is no longer supported and
4799 	 * scsi_add_host will fail. This will be adjusted later based on the
4800 	 * max xri value determined in hba setup.
4801 	 */
4802 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4803 	if (dev != &phba->pcidev->dev) {
4804 		shost->transportt = lpfc_vport_transport_template;
4805 		vport->port_type = LPFC_NPIV_PORT;
4806 	} else {
4807 		shost->transportt = lpfc_transport_template;
4808 		vport->port_type = LPFC_PHYSICAL_PORT;
4809 	}
4810 
4811 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4812 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4813 			"SEGcnt %d/%d\n",
4814 			vport->port_type, shost->sg_tablesize,
4815 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4816 
4817 	/* Allocate the resources for VMID */
4818 	rc = lpfc_vmid_res_alloc(phba, vport);
4819 
4820 	if (rc)
4821 		goto out_put_shost;
4822 
4823 	/* Initialize all internally managed lists. */
4824 	INIT_LIST_HEAD(&vport->fc_nodes);
4825 	spin_lock_init(&vport->fc_nodes_list_lock);
4826 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4827 	spin_lock_init(&vport->work_port_lock);
4828 
4829 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4830 
4831 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4832 
4833 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4834 
4835 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4836 		lpfc_setup_bg(phba, shost);
4837 
4838 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4839 	if (error)
4840 		goto out_free_vmid;
4841 
4842 	spin_lock_irq(&phba->port_list_lock);
4843 	list_add_tail(&vport->listentry, &phba->port_list);
4844 	spin_unlock_irq(&phba->port_list_lock);
4845 	return vport;
4846 
4847 out_free_vmid:
4848 	kfree(vport->vmid);
4849 	bitmap_free(vport->vmid_priority_range);
4850 out_put_shost:
4851 	scsi_host_put(shost);
4852 out:
4853 	return NULL;
4854 }
4855 
4856 /**
4857  * destroy_port -  destroy an FC port
4858  * @vport: pointer to an lpfc virtual N_Port data structure.
4859  *
4860  * This routine destroys a FC port from the upper layer protocol. All the
4861  * resources associated with the port are released.
4862  **/
4863 void
4864 destroy_port(struct lpfc_vport *vport)
4865 {
4866 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4867 	struct lpfc_hba  *phba = vport->phba;
4868 
4869 	lpfc_debugfs_terminate(vport);
4870 	fc_remove_host(shost);
4871 	scsi_remove_host(shost);
4872 
4873 	spin_lock_irq(&phba->port_list_lock);
4874 	list_del_init(&vport->listentry);
4875 	spin_unlock_irq(&phba->port_list_lock);
4876 
4877 	lpfc_cleanup(vport);
4878 	return;
4879 }
4880 
4881 /**
4882  * lpfc_get_instance - Get a unique integer ID
4883  *
4884  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4885  * uses the kernel idr facility to perform the task.
4886  *
4887  * Return codes:
4888  *   instance - a unique integer ID allocated as the new instance.
4889  *   -1 - lpfc get instance failed.
4890  **/
4891 int
4892 lpfc_get_instance(void)
4893 {
4894 	int ret;
4895 
4896 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4897 	return ret < 0 ? -1 : ret;
4898 }
4899 
4900 /**
4901  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4902  * @shost: pointer to SCSI host data structure.
4903  * @time: elapsed time of the scan in jiffies.
4904  *
4905  * This routine is called by the SCSI layer with a SCSI host to determine
4906  * whether the scan host is finished.
4907  *
4908  * Note: there is no scan_start function as adapter initialization will have
4909  * asynchronously kicked off the link initialization.
4910  *
4911  * Return codes
4912  *   0 - SCSI host scan is not over yet.
4913  *   1 - SCSI host scan is over.
4914  **/
4915 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4916 {
4917 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4918 	struct lpfc_hba   *phba = vport->phba;
4919 	int stat = 0;
4920 
4921 	spin_lock_irq(shost->host_lock);
4922 
4923 	if (test_bit(FC_UNLOADING, &vport->load_flag)) {
4924 		stat = 1;
4925 		goto finished;
4926 	}
4927 	if (time >= msecs_to_jiffies(30 * 1000)) {
4928 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4929 				"0461 Scanning longer than 30 "
4930 				"seconds.  Continuing initialization\n");
4931 		stat = 1;
4932 		goto finished;
4933 	}
4934 	if (time >= msecs_to_jiffies(15 * 1000) &&
4935 	    phba->link_state <= LPFC_LINK_DOWN) {
4936 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4937 				"0465 Link down longer than 15 "
4938 				"seconds.  Continuing initialization\n");
4939 		stat = 1;
4940 		goto finished;
4941 	}
4942 
4943 	if (vport->port_state != LPFC_VPORT_READY)
4944 		goto finished;
4945 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4946 		goto finished;
4947 	if (!atomic_read(&vport->fc_map_cnt) &&
4948 	    time < msecs_to_jiffies(2 * 1000))
4949 		goto finished;
4950 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4951 		goto finished;
4952 
4953 	stat = 1;
4954 
4955 finished:
4956 	spin_unlock_irq(shost->host_lock);
4957 	return stat;
4958 }
4959 
4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4961 {
4962 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4963 	struct lpfc_hba   *phba = vport->phba;
4964 
4965 	fc_host_supported_speeds(shost) = 0;
4966 	/*
4967 	 * Avoid reporting supported link speed for FCoE as it can't be
4968 	 * controlled via FCoE.
4969 	 */
4970 	if (test_bit(HBA_FCOE_MODE, &phba->hba_flag))
4971 		return;
4972 
4973 	if (phba->lmt & LMT_256Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4975 	if (phba->lmt & LMT_128Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4977 	if (phba->lmt & LMT_64Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4979 	if (phba->lmt & LMT_32Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4981 	if (phba->lmt & LMT_16Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4983 	if (phba->lmt & LMT_10Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4985 	if (phba->lmt & LMT_8Gb)
4986 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4987 	if (phba->lmt & LMT_4Gb)
4988 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4989 	if (phba->lmt & LMT_2Gb)
4990 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4991 	if (phba->lmt & LMT_1Gb)
4992 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4993 }
4994 
4995 /**
4996  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4997  * @shost: pointer to SCSI host data structure.
4998  *
4999  * This routine initializes a given SCSI host attributes on a FC port. The
5000  * SCSI host can be either on top of a physical port or a virtual port.
5001  **/
5002 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5003 {
5004 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5005 	struct lpfc_hba   *phba = vport->phba;
5006 	/*
5007 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5008 	 */
5009 
5010 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5011 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5012 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5013 
5014 	memset(fc_host_supported_fc4s(shost), 0,
5015 	       sizeof(fc_host_supported_fc4s(shost)));
5016 	fc_host_supported_fc4s(shost)[2] = 1;
5017 	fc_host_supported_fc4s(shost)[7] = 1;
5018 
5019 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5020 				 sizeof fc_host_symbolic_name(shost));
5021 
5022 	lpfc_host_supported_speeds_set(shost);
5023 
5024 	fc_host_maxframe_size(shost) =
5025 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5026 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5027 
5028 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5029 
5030 	/* This value is also unchanging */
5031 	memset(fc_host_active_fc4s(shost), 0,
5032 	       sizeof(fc_host_active_fc4s(shost)));
5033 	fc_host_active_fc4s(shost)[2] = 1;
5034 	fc_host_active_fc4s(shost)[7] = 1;
5035 
5036 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5037 	clear_bit(FC_LOADING, &vport->load_flag);
5038 }
5039 
5040 /**
5041  * lpfc_stop_port_s3 - Stop SLI3 device port
5042  * @phba: pointer to lpfc hba data structure.
5043  *
5044  * This routine is invoked to stop an SLI3 device port, it stops the device
5045  * from generating interrupts and stops the device driver's timers for the
5046  * device.
5047  **/
5048 static void
5049 lpfc_stop_port_s3(struct lpfc_hba *phba)
5050 {
5051 	/* Clear all interrupt enable conditions */
5052 	writel(0, phba->HCregaddr);
5053 	readl(phba->HCregaddr); /* flush */
5054 	/* Clear all pending interrupts */
5055 	writel(0xffffffff, phba->HAregaddr);
5056 	readl(phba->HAregaddr); /* flush */
5057 
5058 	/* Reset some HBA SLI setup states */
5059 	lpfc_stop_hba_timers(phba);
5060 	phba->pport->work_port_events = 0;
5061 }
5062 
5063 /**
5064  * lpfc_stop_port_s4 - Stop SLI4 device port
5065  * @phba: pointer to lpfc hba data structure.
5066  *
5067  * This routine is invoked to stop an SLI4 device port, it stops the device
5068  * from generating interrupts and stops the device driver's timers for the
5069  * device.
5070  **/
5071 static void
5072 lpfc_stop_port_s4(struct lpfc_hba *phba)
5073 {
5074 	/* Reset some HBA SLI4 setup states */
5075 	lpfc_stop_hba_timers(phba);
5076 	if (phba->pport)
5077 		phba->pport->work_port_events = 0;
5078 	phba->sli4_hba.intr_enable = 0;
5079 }
5080 
5081 /**
5082  * lpfc_stop_port - Wrapper function for stopping hba port
5083  * @phba: Pointer to HBA context object.
5084  *
5085  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5086  * the API jump table function pointer from the lpfc_hba struct.
5087  **/
5088 void
5089 lpfc_stop_port(struct lpfc_hba *phba)
5090 {
5091 	phba->lpfc_stop_port(phba);
5092 
5093 	if (phba->wq)
5094 		flush_workqueue(phba->wq);
5095 }
5096 
5097 /**
5098  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5099  * @phba: Pointer to hba for which this call is being executed.
5100  *
5101  * This routine starts the timer waiting for the FCF rediscovery to complete.
5102  **/
5103 void
5104 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5105 {
5106 	unsigned long fcf_redisc_wait_tmo =
5107 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5108 	/* Start fcf rediscovery wait period timer */
5109 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5110 	spin_lock_irq(&phba->hbalock);
5111 	/* Allow action to new fcf asynchronous event */
5112 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5113 	/* Mark the FCF rediscovery pending state */
5114 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5115 	spin_unlock_irq(&phba->hbalock);
5116 }
5117 
5118 /**
5119  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5120  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5121  *
5122  * This routine is invoked when waiting for FCF table rediscover has been
5123  * timed out. If new FCF record(s) has (have) been discovered during the
5124  * wait period, a new FCF event shall be added to the FCOE async event
5125  * list, and then worker thread shall be waked up for processing from the
5126  * worker thread context.
5127  **/
5128 static void
5129 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5130 {
5131 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5132 
5133 	/* Don't send FCF rediscovery event if timer cancelled */
5134 	spin_lock_irq(&phba->hbalock);
5135 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5136 		spin_unlock_irq(&phba->hbalock);
5137 		return;
5138 	}
5139 	/* Clear FCF rediscovery timer pending flag */
5140 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5141 	/* FCF rediscovery event to worker thread */
5142 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5143 	spin_unlock_irq(&phba->hbalock);
5144 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5145 			"2776 FCF rediscover quiescent timer expired\n");
5146 	/* wake up worker thread */
5147 	lpfc_worker_wake_up(phba);
5148 }
5149 
5150 /**
5151  * lpfc_vmid_poll - VMID timeout detection
5152  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5153  *
5154  * This routine is invoked when there is no I/O on by a VM for the specified
5155  * amount of time. When this situation is detected, the VMID has to be
5156  * deregistered from the switch and all the local resources freed. The VMID
5157  * will be reassigned to the VM once the I/O begins.
5158  **/
5159 static void
5160 lpfc_vmid_poll(struct timer_list *t)
5161 {
5162 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5163 	u32 wake_up = 0;
5164 
5165 	/* check if there is a need to issue QFPA */
5166 	if (phba->pport->vmid_priority_tagging) {
5167 		wake_up = 1;
5168 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5169 	}
5170 
5171 	/* Is the vmid inactivity timer enabled */
5172 	if (phba->pport->vmid_inactivity_timeout ||
5173 	    test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) {
5174 		wake_up = 1;
5175 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5176 	}
5177 
5178 	if (wake_up)
5179 		lpfc_worker_wake_up(phba);
5180 
5181 	/* restart the timer for the next iteration */
5182 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5183 							LPFC_VMID_TIMER));
5184 }
5185 
5186 /**
5187  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5188  * @phba: pointer to lpfc hba data structure.
5189  * @acqe_link: pointer to the async link completion queue entry.
5190  *
5191  * This routine is to parse the SLI4 link-attention link fault code.
5192  **/
5193 static void
5194 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5195 			   struct lpfc_acqe_link *acqe_link)
5196 {
5197 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5198 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5199 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5200 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5201 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5202 		break;
5203 	default:
5204 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5205 		case LPFC_ASYNC_LINK_FAULT_NONE:
5206 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5207 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5208 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5209 			break;
5210 		default:
5211 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5212 					"0398 Unknown link fault code: x%x\n",
5213 					bf_get(lpfc_acqe_link_fault, acqe_link));
5214 			break;
5215 		}
5216 		break;
5217 	}
5218 }
5219 
5220 /**
5221  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5222  * @phba: pointer to lpfc hba data structure.
5223  * @acqe_link: pointer to the async link completion queue entry.
5224  *
5225  * This routine is to parse the SLI4 link attention type and translate it
5226  * into the base driver's link attention type coding.
5227  *
5228  * Return: Link attention type in terms of base driver's coding.
5229  **/
5230 static uint8_t
5231 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5232 			  struct lpfc_acqe_link *acqe_link)
5233 {
5234 	uint8_t att_type;
5235 
5236 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5237 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5238 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5239 		att_type = LPFC_ATT_LINK_DOWN;
5240 		break;
5241 	case LPFC_ASYNC_LINK_STATUS_UP:
5242 		/* Ignore physical link up events - wait for logical link up */
5243 		att_type = LPFC_ATT_RESERVED;
5244 		break;
5245 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5246 		att_type = LPFC_ATT_LINK_UP;
5247 		break;
5248 	default:
5249 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5250 				"0399 Invalid link attention type: x%x\n",
5251 				bf_get(lpfc_acqe_link_status, acqe_link));
5252 		att_type = LPFC_ATT_RESERVED;
5253 		break;
5254 	}
5255 	return att_type;
5256 }
5257 
5258 /**
5259  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5260  * @phba: pointer to lpfc hba data structure.
5261  *
5262  * This routine is to get an SLI3 FC port's link speed in Mbps.
5263  *
5264  * Return: link speed in terms of Mbps.
5265  **/
5266 uint32_t
5267 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5268 {
5269 	uint32_t link_speed;
5270 
5271 	if (!lpfc_is_link_up(phba))
5272 		return 0;
5273 
5274 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5275 		switch (phba->fc_linkspeed) {
5276 		case LPFC_LINK_SPEED_1GHZ:
5277 			link_speed = 1000;
5278 			break;
5279 		case LPFC_LINK_SPEED_2GHZ:
5280 			link_speed = 2000;
5281 			break;
5282 		case LPFC_LINK_SPEED_4GHZ:
5283 			link_speed = 4000;
5284 			break;
5285 		case LPFC_LINK_SPEED_8GHZ:
5286 			link_speed = 8000;
5287 			break;
5288 		case LPFC_LINK_SPEED_10GHZ:
5289 			link_speed = 10000;
5290 			break;
5291 		case LPFC_LINK_SPEED_16GHZ:
5292 			link_speed = 16000;
5293 			break;
5294 		default:
5295 			link_speed = 0;
5296 		}
5297 	} else {
5298 		if (phba->sli4_hba.link_state.logical_speed)
5299 			link_speed =
5300 			      phba->sli4_hba.link_state.logical_speed;
5301 		else
5302 			link_speed = phba->sli4_hba.link_state.speed;
5303 	}
5304 	return link_speed;
5305 }
5306 
5307 /**
5308  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5309  * @phba: pointer to lpfc hba data structure.
5310  * @evt_code: asynchronous event code.
5311  * @speed_code: asynchronous event link speed code.
5312  *
5313  * This routine is to parse the giving SLI4 async event link speed code into
5314  * value of Mbps for the link speed.
5315  *
5316  * Return: link speed in terms of Mbps.
5317  **/
5318 static uint32_t
5319 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5320 			   uint8_t speed_code)
5321 {
5322 	uint32_t port_speed;
5323 
5324 	switch (evt_code) {
5325 	case LPFC_TRAILER_CODE_LINK:
5326 		switch (speed_code) {
5327 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5328 			port_speed = 0;
5329 			break;
5330 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5331 			port_speed = 10;
5332 			break;
5333 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5334 			port_speed = 100;
5335 			break;
5336 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5337 			port_speed = 1000;
5338 			break;
5339 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5340 			port_speed = 10000;
5341 			break;
5342 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5343 			port_speed = 20000;
5344 			break;
5345 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5346 			port_speed = 25000;
5347 			break;
5348 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5349 			port_speed = 40000;
5350 			break;
5351 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5352 			port_speed = 100000;
5353 			break;
5354 		default:
5355 			port_speed = 0;
5356 		}
5357 		break;
5358 	case LPFC_TRAILER_CODE_FC:
5359 		switch (speed_code) {
5360 		case LPFC_FC_LA_SPEED_UNKNOWN:
5361 			port_speed = 0;
5362 			break;
5363 		case LPFC_FC_LA_SPEED_1G:
5364 			port_speed = 1000;
5365 			break;
5366 		case LPFC_FC_LA_SPEED_2G:
5367 			port_speed = 2000;
5368 			break;
5369 		case LPFC_FC_LA_SPEED_4G:
5370 			port_speed = 4000;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_8G:
5373 			port_speed = 8000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_10G:
5376 			port_speed = 10000;
5377 			break;
5378 		case LPFC_FC_LA_SPEED_16G:
5379 			port_speed = 16000;
5380 			break;
5381 		case LPFC_FC_LA_SPEED_32G:
5382 			port_speed = 32000;
5383 			break;
5384 		case LPFC_FC_LA_SPEED_64G:
5385 			port_speed = 64000;
5386 			break;
5387 		case LPFC_FC_LA_SPEED_128G:
5388 			port_speed = 128000;
5389 			break;
5390 		case LPFC_FC_LA_SPEED_256G:
5391 			port_speed = 256000;
5392 			break;
5393 		default:
5394 			port_speed = 0;
5395 		}
5396 		break;
5397 	default:
5398 		port_speed = 0;
5399 	}
5400 	return port_speed;
5401 }
5402 
5403 /**
5404  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5405  * @phba: pointer to lpfc hba data structure.
5406  * @acqe_link: pointer to the async link completion queue entry.
5407  *
5408  * This routine is to handle the SLI4 asynchronous FCoE link event.
5409  **/
5410 static void
5411 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5412 			 struct lpfc_acqe_link *acqe_link)
5413 {
5414 	LPFC_MBOXQ_t *pmb;
5415 	MAILBOX_t *mb;
5416 	struct lpfc_mbx_read_top *la;
5417 	uint8_t att_type;
5418 	int rc;
5419 
5420 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5421 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5422 		return;
5423 	phba->fcoe_eventtag = acqe_link->event_tag;
5424 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5425 	if (!pmb) {
5426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5427 				"0395 The mboxq allocation failed\n");
5428 		return;
5429 	}
5430 
5431 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5432 	if (rc) {
5433 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5434 				"0396 mailbox allocation failed\n");
5435 		goto out_free_pmb;
5436 	}
5437 
5438 	/* Cleanup any outstanding ELS commands */
5439 	lpfc_els_flush_all_cmd(phba);
5440 
5441 	/* Block ELS IOCBs until we have done process link event */
5442 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5443 
5444 	/* Update link event statistics */
5445 	phba->sli.slistat.link_event++;
5446 
5447 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5448 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
5449 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5450 	pmb->vport = phba->pport;
5451 
5452 	/* Keep the link status for extra SLI4 state machine reference */
5453 	phba->sli4_hba.link_state.speed =
5454 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5455 				bf_get(lpfc_acqe_link_speed, acqe_link));
5456 	phba->sli4_hba.link_state.duplex =
5457 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5458 	phba->sli4_hba.link_state.status =
5459 				bf_get(lpfc_acqe_link_status, acqe_link);
5460 	phba->sli4_hba.link_state.type =
5461 				bf_get(lpfc_acqe_link_type, acqe_link);
5462 	phba->sli4_hba.link_state.number =
5463 				bf_get(lpfc_acqe_link_number, acqe_link);
5464 	phba->sli4_hba.link_state.fault =
5465 				bf_get(lpfc_acqe_link_fault, acqe_link);
5466 	phba->sli4_hba.link_state.logical_speed =
5467 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5468 
5469 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5470 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5471 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5472 			"Logical speed:%dMbps Fault:%d\n",
5473 			phba->sli4_hba.link_state.speed,
5474 			phba->sli4_hba.link_state.topology,
5475 			phba->sli4_hba.link_state.status,
5476 			phba->sli4_hba.link_state.type,
5477 			phba->sli4_hba.link_state.number,
5478 			phba->sli4_hba.link_state.logical_speed,
5479 			phba->sli4_hba.link_state.fault);
5480 	/*
5481 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5482 	 * topology info. Note: Optional for non FC-AL ports.
5483 	 */
5484 	if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
5485 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5486 		if (rc == MBX_NOT_FINISHED)
5487 			goto out_free_pmb;
5488 		return;
5489 	}
5490 	/*
5491 	 * For FCoE Mode: fill in all the topology information we need and call
5492 	 * the READ_TOPOLOGY completion routine to continue without actually
5493 	 * sending the READ_TOPOLOGY mailbox command to the port.
5494 	 */
5495 	/* Initialize completion status */
5496 	mb = &pmb->u.mb;
5497 	mb->mbxStatus = MBX_SUCCESS;
5498 
5499 	/* Parse port fault information field */
5500 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5501 
5502 	/* Parse and translate link attention fields */
5503 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5504 	la->eventTag = acqe_link->event_tag;
5505 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5506 	bf_set(lpfc_mbx_read_top_link_spd, la,
5507 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5508 
5509 	/* Fake the following irrelevant fields */
5510 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5511 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5512 	bf_set(lpfc_mbx_read_top_il, la, 0);
5513 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5514 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5515 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5516 
5517 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5518 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5519 
5520 	return;
5521 
5522 out_free_pmb:
5523 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5524 }
5525 
5526 /**
5527  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5528  * topology.
5529  * @phba: pointer to lpfc hba data structure.
5530  * @speed_code: asynchronous event link speed code.
5531  *
5532  * This routine is to parse the giving SLI4 async event link speed code into
5533  * value of Read topology link speed.
5534  *
5535  * Return: link speed in terms of Read topology.
5536  **/
5537 static uint8_t
5538 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5539 {
5540 	uint8_t port_speed;
5541 
5542 	switch (speed_code) {
5543 	case LPFC_FC_LA_SPEED_1G:
5544 		port_speed = LPFC_LINK_SPEED_1GHZ;
5545 		break;
5546 	case LPFC_FC_LA_SPEED_2G:
5547 		port_speed = LPFC_LINK_SPEED_2GHZ;
5548 		break;
5549 	case LPFC_FC_LA_SPEED_4G:
5550 		port_speed = LPFC_LINK_SPEED_4GHZ;
5551 		break;
5552 	case LPFC_FC_LA_SPEED_8G:
5553 		port_speed = LPFC_LINK_SPEED_8GHZ;
5554 		break;
5555 	case LPFC_FC_LA_SPEED_16G:
5556 		port_speed = LPFC_LINK_SPEED_16GHZ;
5557 		break;
5558 	case LPFC_FC_LA_SPEED_32G:
5559 		port_speed = LPFC_LINK_SPEED_32GHZ;
5560 		break;
5561 	case LPFC_FC_LA_SPEED_64G:
5562 		port_speed = LPFC_LINK_SPEED_64GHZ;
5563 		break;
5564 	case LPFC_FC_LA_SPEED_128G:
5565 		port_speed = LPFC_LINK_SPEED_128GHZ;
5566 		break;
5567 	case LPFC_FC_LA_SPEED_256G:
5568 		port_speed = LPFC_LINK_SPEED_256GHZ;
5569 		break;
5570 	default:
5571 		port_speed = 0;
5572 		break;
5573 	}
5574 
5575 	return port_speed;
5576 }
5577 
5578 void
5579 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5580 {
5581 	if (!phba->rx_monitor) {
5582 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5583 				"4411 Rx Monitor Info is empty.\n");
5584 	} else {
5585 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5586 				       LPFC_MAX_RXMONITOR_DUMP);
5587 	}
5588 }
5589 
5590 /**
5591  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5592  * @phba: pointer to lpfc hba data structure.
5593  * @dtag: FPIN descriptor received
5594  *
5595  * Increment the FPIN received counter/time when it happens.
5596  */
5597 void
5598 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5599 {
5600 	struct lpfc_cgn_info *cp;
5601 	u32 value;
5602 
5603 	/* Make sure we have a congestion info buffer */
5604 	if (!phba->cgn_i)
5605 		return;
5606 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5607 
5608 	/* Update congestion statistics */
5609 	switch (dtag) {
5610 	case ELS_DTAG_LNK_INTEGRITY:
5611 		le32_add_cpu(&cp->link_integ_notification, 1);
5612 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5613 		break;
5614 	case ELS_DTAG_DELIVERY:
5615 		le32_add_cpu(&cp->delivery_notification, 1);
5616 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5617 		break;
5618 	case ELS_DTAG_PEER_CONGEST:
5619 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5620 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5621 		break;
5622 	case ELS_DTAG_CONGESTION:
5623 		le32_add_cpu(&cp->cgn_notification, 1);
5624 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5625 	}
5626 	if (phba->cgn_fpin_frequency &&
5627 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5628 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5629 		cp->cgn_stat_npm = value;
5630 	}
5631 
5632 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5633 				    LPFC_CGN_CRC32_SEED);
5634 	cp->cgn_info_crc = cpu_to_le32(value);
5635 }
5636 
5637 /**
5638  * lpfc_cgn_update_tstamp - Update cmf timestamp
5639  * @phba: pointer to lpfc hba data structure.
5640  * @ts: structure to write the timestamp to.
5641  */
5642 void
5643 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5644 {
5645 	struct timespec64 cur_time;
5646 	struct tm tm_val;
5647 
5648 	ktime_get_real_ts64(&cur_time);
5649 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5650 
5651 	ts->month = tm_val.tm_mon + 1;
5652 	ts->day	= tm_val.tm_mday;
5653 	ts->year = tm_val.tm_year - 100;
5654 	ts->hour = tm_val.tm_hour;
5655 	ts->minute = tm_val.tm_min;
5656 	ts->second = tm_val.tm_sec;
5657 
5658 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5659 			"2646 Updated CMF timestamp : "
5660 			"%u/%u/%u %u:%u:%u\n",
5661 			ts->day, ts->month,
5662 			ts->year, ts->hour,
5663 			ts->minute, ts->second);
5664 }
5665 
5666 /**
5667  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5668  * @timer: Timer cookie to access lpfc private data
5669  *
5670  * Save the congestion event data every minute.
5671  * On the hour collapse all the minute data into hour data. Every day
5672  * collapse all the hour data into daily data. Separate driver
5673  * and fabrc congestion event counters that will be saved out
5674  * to the registered congestion buffer every minute.
5675  */
5676 static enum hrtimer_restart
5677 lpfc_cmf_stats_timer(struct hrtimer *timer)
5678 {
5679 	struct lpfc_hba *phba;
5680 	struct lpfc_cgn_info *cp;
5681 	uint32_t i, index;
5682 	uint16_t value, mvalue;
5683 	uint64_t bps;
5684 	uint32_t mbps;
5685 	uint32_t dvalue, wvalue, lvalue, avalue;
5686 	uint64_t latsum;
5687 	__le16 *ptr;
5688 	__le32 *lptr;
5689 	__le16 *mptr;
5690 
5691 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5692 	/* Make sure we have a congestion info buffer */
5693 	if (!phba->cgn_i)
5694 		return HRTIMER_NORESTART;
5695 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5696 
5697 	phba->cgn_evt_timestamp = jiffies +
5698 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5699 	phba->cgn_evt_minute++;
5700 
5701 	/* We should get to this point in the routine on 1 minute intervals */
5702 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5703 
5704 	if (phba->cgn_fpin_frequency &&
5705 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5706 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5707 		cp->cgn_stat_npm = value;
5708 	}
5709 
5710 	/* Read and clear the latency counters for this minute */
5711 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5712 	latsum = atomic64_read(&phba->cgn_latency_evt);
5713 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5714 	atomic64_set(&phba->cgn_latency_evt, 0);
5715 
5716 	/* We need to store MB/sec bandwidth in the congestion information.
5717 	 * block_cnt is count of 512 byte blocks for the entire minute,
5718 	 * bps will get bytes per sec before finally converting to MB/sec.
5719 	 */
5720 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5721 	phba->rx_block_cnt = 0;
5722 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5723 
5724 	/* Every minute */
5725 	/* cgn parameters */
5726 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5727 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5728 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5729 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5730 
5731 	/* Fill in default LUN qdepth */
5732 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5733 	cp->cgn_lunq = cpu_to_le16(value);
5734 
5735 	/* Record congestion buffer info - every minute
5736 	 * cgn_driver_evt_cnt (Driver events)
5737 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5738 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5739 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5740 	 */
5741 	index = ++cp->cgn_index_minute;
5742 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5743 		cp->cgn_index_minute = 0;
5744 		index = 0;
5745 	}
5746 
5747 	/* Get the number of driver events in this sample and reset counter */
5748 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5749 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5750 
5751 	/* Get the number of warning events - FPIN and Signal for this minute */
5752 	wvalue = 0;
5753 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5754 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5755 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5756 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5757 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5758 
5759 	/* Get the number of alarm events - FPIN and Signal for this minute */
5760 	avalue = 0;
5761 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5762 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5763 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5764 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5765 
5766 	/* Collect the driver, warning, alarm and latency counts for this
5767 	 * minute into the driver congestion buffer.
5768 	 */
5769 	ptr = &cp->cgn_drvr_min[index];
5770 	value = (uint16_t)dvalue;
5771 	*ptr = cpu_to_le16(value);
5772 
5773 	ptr = &cp->cgn_warn_min[index];
5774 	value = (uint16_t)wvalue;
5775 	*ptr = cpu_to_le16(value);
5776 
5777 	ptr = &cp->cgn_alarm_min[index];
5778 	value = (uint16_t)avalue;
5779 	*ptr = cpu_to_le16(value);
5780 
5781 	lptr = &cp->cgn_latency_min[index];
5782 	if (lvalue) {
5783 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5784 		*lptr = cpu_to_le32(lvalue);
5785 	} else {
5786 		*lptr = 0;
5787 	}
5788 
5789 	/* Collect the bandwidth value into the driver's congesion buffer. */
5790 	mptr = &cp->cgn_bw_min[index];
5791 	*mptr = cpu_to_le16(mvalue);
5792 
5793 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5794 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5795 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5796 
5797 	/* Every hour */
5798 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5799 		/* Record congestion buffer info - every hour
5800 		 * Collapse all minutes into an hour
5801 		 */
5802 		index = ++cp->cgn_index_hour;
5803 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5804 			cp->cgn_index_hour = 0;
5805 			index = 0;
5806 		}
5807 
5808 		dvalue = 0;
5809 		wvalue = 0;
5810 		lvalue = 0;
5811 		avalue = 0;
5812 		mvalue = 0;
5813 		mbps = 0;
5814 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5815 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5816 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5817 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5818 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5819 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5820 		}
5821 		if (lvalue)		/* Avg of latency averages */
5822 			lvalue /= LPFC_MIN_HOUR;
5823 		if (mbps)		/* Avg of Bandwidth averages */
5824 			mvalue = mbps / LPFC_MIN_HOUR;
5825 
5826 		lptr = &cp->cgn_drvr_hr[index];
5827 		*lptr = cpu_to_le32(dvalue);
5828 		lptr = &cp->cgn_warn_hr[index];
5829 		*lptr = cpu_to_le32(wvalue);
5830 		lptr = &cp->cgn_latency_hr[index];
5831 		*lptr = cpu_to_le32(lvalue);
5832 		mptr = &cp->cgn_bw_hr[index];
5833 		*mptr = cpu_to_le16(mvalue);
5834 		lptr = &cp->cgn_alarm_hr[index];
5835 		*lptr = cpu_to_le32(avalue);
5836 
5837 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5838 				"2419 Congestion Info - hour "
5839 				"(%d): %d %d %d %d %d\n",
5840 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5841 	}
5842 
5843 	/* Every day */
5844 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5845 		/* Record congestion buffer info - every hour
5846 		 * Collapse all hours into a day. Rotate days
5847 		 * after LPFC_MAX_CGN_DAYS.
5848 		 */
5849 		index = ++cp->cgn_index_day;
5850 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5851 			cp->cgn_index_day = 0;
5852 			index = 0;
5853 		}
5854 
5855 		dvalue = 0;
5856 		wvalue = 0;
5857 		lvalue = 0;
5858 		mvalue = 0;
5859 		mbps = 0;
5860 		avalue = 0;
5861 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5862 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5863 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5864 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5865 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5866 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5867 		}
5868 		if (lvalue)		/* Avg of latency averages */
5869 			lvalue /= LPFC_HOUR_DAY;
5870 		if (mbps)		/* Avg of Bandwidth averages */
5871 			mvalue = mbps / LPFC_HOUR_DAY;
5872 
5873 		lptr = &cp->cgn_drvr_day[index];
5874 		*lptr = cpu_to_le32(dvalue);
5875 		lptr = &cp->cgn_warn_day[index];
5876 		*lptr = cpu_to_le32(wvalue);
5877 		lptr = &cp->cgn_latency_day[index];
5878 		*lptr = cpu_to_le32(lvalue);
5879 		mptr = &cp->cgn_bw_day[index];
5880 		*mptr = cpu_to_le16(mvalue);
5881 		lptr = &cp->cgn_alarm_day[index];
5882 		*lptr = cpu_to_le32(avalue);
5883 
5884 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5885 				"2420 Congestion Info - daily (%d): "
5886 				"%d %d %d %d %d\n",
5887 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5888 	}
5889 
5890 	/* Use the frequency found in the last rcv'ed FPIN */
5891 	value = phba->cgn_fpin_frequency;
5892 	cp->cgn_warn_freq = cpu_to_le16(value);
5893 	cp->cgn_alarm_freq = cpu_to_le16(value);
5894 
5895 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5896 				     LPFC_CGN_CRC32_SEED);
5897 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5898 
5899 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5900 
5901 	return HRTIMER_RESTART;
5902 }
5903 
5904 /**
5905  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5906  * @phba: The Hba for which this call is being executed.
5907  *
5908  * The routine calculates the latency from the beginning of the CMF timer
5909  * interval to the current point in time. It is called from IO completion
5910  * when we exceed our Bandwidth limitation for the time interval.
5911  */
5912 uint32_t
5913 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5914 {
5915 	struct timespec64 cmpl_time;
5916 	uint32_t msec = 0;
5917 
5918 	ktime_get_real_ts64(&cmpl_time);
5919 
5920 	/* This routine works on a ms granularity so sec and usec are
5921 	 * converted accordingly.
5922 	 */
5923 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5924 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5925 			NSEC_PER_MSEC;
5926 	} else {
5927 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5928 			msec = (cmpl_time.tv_sec -
5929 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5930 			msec += ((cmpl_time.tv_nsec -
5931 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5932 		} else {
5933 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5934 				1) * MSEC_PER_SEC;
5935 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5936 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5937 		}
5938 	}
5939 	return msec;
5940 }
5941 
5942 /**
5943  * lpfc_cmf_timer -  This is the timer function for one congestion
5944  * rate interval.
5945  * @timer: Pointer to the high resolution timer that expired
5946  */
5947 static enum hrtimer_restart
5948 lpfc_cmf_timer(struct hrtimer *timer)
5949 {
5950 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5951 					     cmf_timer);
5952 	struct rx_info_entry entry;
5953 	uint32_t io_cnt;
5954 	uint32_t busy, max_read;
5955 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5956 	int timer_interval = LPFC_CMF_INTERVAL;
5957 	uint32_t ms;
5958 	struct lpfc_cgn_stat *cgs;
5959 	int cpu;
5960 
5961 	/* Only restart the timer if congestion mgmt is on */
5962 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5963 	    !phba->cmf_latency.tv_sec) {
5964 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5965 				"6224 CMF timer exit: %d %lld\n",
5966 				phba->cmf_active_mode,
5967 				(uint64_t)phba->cmf_latency.tv_sec);
5968 		return HRTIMER_NORESTART;
5969 	}
5970 
5971 	/* If pport is not ready yet, just exit and wait for
5972 	 * the next timer cycle to hit.
5973 	 */
5974 	if (!phba->pport)
5975 		goto skip;
5976 
5977 	/* Do not block SCSI IO while in the timer routine since
5978 	 * total_bytes will be cleared
5979 	 */
5980 	atomic_set(&phba->cmf_stop_io, 1);
5981 
5982 	/* First we need to calculate the actual ms between
5983 	 * the last timer interrupt and this one. We ask for
5984 	 * LPFC_CMF_INTERVAL, however the actual time may
5985 	 * vary depending on system overhead.
5986 	 */
5987 	ms = lpfc_calc_cmf_latency(phba);
5988 
5989 
5990 	/* Immediately after we calculate the time since the last
5991 	 * timer interrupt, set the start time for the next
5992 	 * interrupt
5993 	 */
5994 	ktime_get_real_ts64(&phba->cmf_latency);
5995 
5996 	phba->cmf_link_byte_count =
5997 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5998 
5999 	/* Collect all the stats from the prior timer interval */
6000 	total = 0;
6001 	io_cnt = 0;
6002 	lat = 0;
6003 	rcv = 0;
6004 	for_each_present_cpu(cpu) {
6005 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6006 		total += atomic64_xchg(&cgs->total_bytes, 0);
6007 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6008 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6009 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6010 	}
6011 
6012 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6013 	 * returned from the last CMF_SYNC_WQE issued, from
6014 	 * cmf_last_sync_bw. This will be the target BW for
6015 	 * this next timer interval.
6016 	 */
6017 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6018 	    phba->link_state != LPFC_LINK_DOWN &&
6019 	    test_bit(HBA_SETUP, &phba->hba_flag)) {
6020 		mbpi = phba->cmf_last_sync_bw;
6021 		phba->cmf_last_sync_bw = 0;
6022 		extra = 0;
6023 
6024 		/* Calculate any extra bytes needed to account for the
6025 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6026 		 * calculate the adjustment needed for total to reflect
6027 		 * a full LPFC_CMF_INTERVAL.
6028 		 */
6029 		if (ms && ms < LPFC_CMF_INTERVAL) {
6030 			cnt = div_u64(total, ms); /* bytes per ms */
6031 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6032 			extra = cnt - total;
6033 		}
6034 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6035 	} else {
6036 		/* For Monitor mode or link down we want mbpi
6037 		 * to be the full link speed
6038 		 */
6039 		mbpi = phba->cmf_link_byte_count;
6040 		extra = 0;
6041 	}
6042 	phba->cmf_timer_cnt++;
6043 
6044 	if (io_cnt) {
6045 		/* Update congestion info buffer latency in us */
6046 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6047 		atomic64_add(lat, &phba->cgn_latency_evt);
6048 	}
6049 	busy = atomic_xchg(&phba->cmf_busy, 0);
6050 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6051 
6052 	/* Calculate MBPI for the next timer interval */
6053 	if (mbpi) {
6054 		if (mbpi > phba->cmf_link_byte_count ||
6055 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6056 			mbpi = phba->cmf_link_byte_count;
6057 
6058 		/* Change max_bytes_per_interval to what the prior
6059 		 * CMF_SYNC_WQE cmpl indicated.
6060 		 */
6061 		if (mbpi != phba->cmf_max_bytes_per_interval)
6062 			phba->cmf_max_bytes_per_interval = mbpi;
6063 	}
6064 
6065 	/* Save rxmonitor information for debug */
6066 	if (phba->rx_monitor) {
6067 		entry.total_bytes = total;
6068 		entry.cmf_bytes = total + extra;
6069 		entry.rcv_bytes = rcv;
6070 		entry.cmf_busy = busy;
6071 		entry.cmf_info = phba->cmf_active_info;
6072 		if (io_cnt) {
6073 			entry.avg_io_latency = div_u64(lat, io_cnt);
6074 			entry.avg_io_size = div_u64(rcv, io_cnt);
6075 		} else {
6076 			entry.avg_io_latency = 0;
6077 			entry.avg_io_size = 0;
6078 		}
6079 		entry.max_read_cnt = max_read;
6080 		entry.io_cnt = io_cnt;
6081 		entry.max_bytes_per_interval = mbpi;
6082 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6083 			entry.timer_utilization = phba->cmf_last_ts;
6084 		else
6085 			entry.timer_utilization = ms;
6086 		entry.timer_interval = ms;
6087 		phba->cmf_last_ts = 0;
6088 
6089 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6090 	}
6091 
6092 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6093 		/* If Monitor mode, check if we are oversubscribed
6094 		 * against the full line rate.
6095 		 */
6096 		if (mbpi && total > mbpi)
6097 			atomic_inc(&phba->cgn_driver_evt_cnt);
6098 	}
6099 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6100 
6101 	/* Since total_bytes has already been zero'ed, its okay to unblock
6102 	 * after max_bytes_per_interval is setup.
6103 	 */
6104 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6105 		queue_work(phba->wq, &phba->unblock_request_work);
6106 
6107 	/* SCSI IO is now unblocked */
6108 	atomic_set(&phba->cmf_stop_io, 0);
6109 
6110 skip:
6111 	hrtimer_forward_now(timer,
6112 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6113 	return HRTIMER_RESTART;
6114 }
6115 
6116 #define trunk_link_status(__idx)\
6117 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6118 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6119 		"Link up" : "Link down") : "NA"
6120 /* Did port __idx reported an error */
6121 #define trunk_port_fault(__idx)\
6122 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6123 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6124 
6125 static void
6126 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6127 			      struct lpfc_acqe_fc_la *acqe_fc)
6128 {
6129 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6130 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6131 	u8 cnt = 0;
6132 
6133 	phba->sli4_hba.link_state.speed =
6134 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6135 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6136 
6137 	phba->sli4_hba.link_state.logical_speed =
6138 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6139 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6140 	phba->fc_linkspeed =
6141 		 lpfc_async_link_speed_to_read_top(
6142 				phba,
6143 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6144 
6145 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6146 		phba->trunk_link.link0.state =
6147 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6148 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6149 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6150 		cnt++;
6151 	}
6152 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6153 		phba->trunk_link.link1.state =
6154 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6155 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6156 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6157 		cnt++;
6158 	}
6159 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6160 		phba->trunk_link.link2.state =
6161 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6162 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6163 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6164 		cnt++;
6165 	}
6166 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6167 		phba->trunk_link.link3.state =
6168 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6169 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6170 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6171 		cnt++;
6172 	}
6173 
6174 	if (cnt)
6175 		phba->trunk_link.phy_lnk_speed =
6176 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6177 	else
6178 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6179 
6180 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6181 			"2910 Async FC Trunking Event - Speed:%d\n"
6182 			"\tLogical speed:%d "
6183 			"port0: %s port1: %s port2: %s port3: %s\n",
6184 			phba->sli4_hba.link_state.speed,
6185 			phba->sli4_hba.link_state.logical_speed,
6186 			trunk_link_status(0), trunk_link_status(1),
6187 			trunk_link_status(2), trunk_link_status(3));
6188 
6189 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6190 		lpfc_cmf_signal_init(phba);
6191 
6192 	if (port_fault)
6193 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6194 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6195 				/*
6196 				 * SLI-4: We have only 0xA error codes
6197 				 * defined as of now. print an appropriate
6198 				 * message in case driver needs to be updated.
6199 				 */
6200 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6201 				"UNDEFINED. update driver." : trunk_errmsg[err],
6202 				trunk_port_fault(0), trunk_port_fault(1),
6203 				trunk_port_fault(2), trunk_port_fault(3));
6204 }
6205 
6206 
6207 /**
6208  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6209  * @phba: pointer to lpfc hba data structure.
6210  * @acqe_fc: pointer to the async fc completion queue entry.
6211  *
6212  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6213  * that the event was received and then issue a read_topology mailbox command so
6214  * that the rest of the driver will treat it the same as SLI3.
6215  **/
6216 static void
6217 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6218 {
6219 	LPFC_MBOXQ_t *pmb;
6220 	MAILBOX_t *mb;
6221 	struct lpfc_mbx_read_top *la;
6222 	char *log_level;
6223 	int rc;
6224 
6225 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6226 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6227 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6228 				"2895 Non FC link Event detected.(%d)\n",
6229 				bf_get(lpfc_trailer_type, acqe_fc));
6230 		return;
6231 	}
6232 
6233 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6234 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6235 		lpfc_update_trunk_link_status(phba, acqe_fc);
6236 		return;
6237 	}
6238 
6239 	/* Keep the link status for extra SLI4 state machine reference */
6240 	phba->sli4_hba.link_state.speed =
6241 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6242 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6243 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6244 	phba->sli4_hba.link_state.topology =
6245 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6246 	phba->sli4_hba.link_state.status =
6247 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6248 	phba->sli4_hba.link_state.type =
6249 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6250 	phba->sli4_hba.link_state.number =
6251 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6252 	phba->sli4_hba.link_state.fault =
6253 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6254 	phba->sli4_hba.link_state.link_status =
6255 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6256 
6257 	/*
6258 	 * Only select attention types need logical speed modification to what
6259 	 * was previously set.
6260 	 */
6261 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6262 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6263 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6264 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6265 			phba->sli4_hba.link_state.logical_speed = 0;
6266 		else if (!phba->sli4_hba.conf_trunk)
6267 			phba->sli4_hba.link_state.logical_speed =
6268 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6269 	}
6270 
6271 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6272 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6273 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6274 			"%dMbps Fault:x%x Link Status:x%x\n",
6275 			phba->sli4_hba.link_state.speed,
6276 			phba->sli4_hba.link_state.topology,
6277 			phba->sli4_hba.link_state.status,
6278 			phba->sli4_hba.link_state.type,
6279 			phba->sli4_hba.link_state.number,
6280 			phba->sli4_hba.link_state.logical_speed,
6281 			phba->sli4_hba.link_state.fault,
6282 			phba->sli4_hba.link_state.link_status);
6283 
6284 	/*
6285 	 * The following attention types are informational only, providing
6286 	 * further details about link status.  Overwrite the value of
6287 	 * link_state.status appropriately.  No further action is required.
6288 	 */
6289 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6290 		switch (phba->sli4_hba.link_state.status) {
6291 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6292 			log_level = KERN_WARNING;
6293 			phba->sli4_hba.link_state.status =
6294 					LPFC_FC_LA_TYPE_LINK_DOWN;
6295 			break;
6296 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6297 			/*
6298 			 * During bb credit recovery establishment, receiving
6299 			 * this attention type is normal.  Link Up attention
6300 			 * type is expected to occur before this informational
6301 			 * attention type so keep the Link Up status.
6302 			 */
6303 			log_level = KERN_INFO;
6304 			phba->sli4_hba.link_state.status =
6305 					LPFC_FC_LA_TYPE_LINK_UP;
6306 			break;
6307 		default:
6308 			log_level = KERN_INFO;
6309 			break;
6310 		}
6311 		lpfc_log_msg(phba, log_level, LOG_SLI,
6312 			     "2992 Async FC event - Informational Link "
6313 			     "Attention Type x%x\n",
6314 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6315 		return;
6316 	}
6317 
6318 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6319 	if (!pmb) {
6320 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6321 				"2897 The mboxq allocation failed\n");
6322 		return;
6323 	}
6324 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6325 	if (rc) {
6326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6327 				"2898 The mboxq prep failed\n");
6328 		goto out_free_pmb;
6329 	}
6330 
6331 	/* Cleanup any outstanding ELS commands */
6332 	lpfc_els_flush_all_cmd(phba);
6333 
6334 	/* Block ELS IOCBs until we have done process link event */
6335 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6336 
6337 	/* Update link event statistics */
6338 	phba->sli.slistat.link_event++;
6339 
6340 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6341 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
6342 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6343 	pmb->vport = phba->pport;
6344 
6345 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6346 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6347 
6348 		switch (phba->sli4_hba.link_state.status) {
6349 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6350 			phba->link_flag |= LS_MDS_LINK_DOWN;
6351 			break;
6352 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6353 			phba->link_flag |= LS_MDS_LOOPBACK;
6354 			break;
6355 		default:
6356 			break;
6357 		}
6358 
6359 		/* Initialize completion status */
6360 		mb = &pmb->u.mb;
6361 		mb->mbxStatus = MBX_SUCCESS;
6362 
6363 		/* Parse port fault information field */
6364 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6365 
6366 		/* Parse and translate link attention fields */
6367 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6368 		la->eventTag = acqe_fc->event_tag;
6369 
6370 		if (phba->sli4_hba.link_state.status ==
6371 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6372 			bf_set(lpfc_mbx_read_top_att_type, la,
6373 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6374 		} else {
6375 			bf_set(lpfc_mbx_read_top_att_type, la,
6376 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6377 		}
6378 		/* Invoke the mailbox command callback function */
6379 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6380 
6381 		return;
6382 	}
6383 
6384 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6385 	if (rc == MBX_NOT_FINISHED)
6386 		goto out_free_pmb;
6387 	return;
6388 
6389 out_free_pmb:
6390 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6391 }
6392 
6393 /**
6394  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6395  * @phba: pointer to lpfc hba data structure.
6396  * @acqe_sli: pointer to the async SLI completion queue entry.
6397  *
6398  * This routine is to handle the SLI4 asynchronous SLI events.
6399  **/
6400 static void
6401 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6402 {
6403 	char port_name;
6404 	char message[128];
6405 	uint8_t status;
6406 	uint8_t evt_type;
6407 	uint8_t operational = 0;
6408 	struct temp_event temp_event_data;
6409 	struct lpfc_acqe_misconfigured_event *misconfigured;
6410 	struct lpfc_acqe_cgn_signal *cgn_signal;
6411 	struct Scsi_Host  *shost;
6412 	struct lpfc_vport **vports;
6413 	int rc, i, cnt;
6414 
6415 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6416 
6417 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6418 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6419 			"x%08x x%08x x%08x\n", evt_type,
6420 			acqe_sli->event_data1, acqe_sli->event_data2,
6421 			acqe_sli->event_data3, acqe_sli->trailer);
6422 
6423 	port_name = phba->Port[0];
6424 	if (port_name == 0x00)
6425 		port_name = '?'; /* get port name is empty */
6426 
6427 	switch (evt_type) {
6428 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6429 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6430 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6431 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6432 
6433 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6434 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6435 				acqe_sli->event_data1, port_name);
6436 
6437 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6438 		shost = lpfc_shost_from_vport(phba->pport);
6439 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6440 					  sizeof(temp_event_data),
6441 					  (char *)&temp_event_data,
6442 					  SCSI_NL_VID_TYPE_PCI
6443 					  | PCI_VENDOR_ID_EMULEX);
6444 		break;
6445 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6446 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6447 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6448 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6449 
6450 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6451 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6452 				acqe_sli->event_data1, port_name);
6453 
6454 		shost = lpfc_shost_from_vport(phba->pport);
6455 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6456 					  sizeof(temp_event_data),
6457 					  (char *)&temp_event_data,
6458 					  SCSI_NL_VID_TYPE_PCI
6459 					  | PCI_VENDOR_ID_EMULEX);
6460 		break;
6461 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6462 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6463 					&acqe_sli->event_data1;
6464 
6465 		/* fetch the status for this port */
6466 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6467 		case LPFC_LINK_NUMBER_0:
6468 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6469 					&misconfigured->theEvent);
6470 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6471 					&misconfigured->theEvent);
6472 			break;
6473 		case LPFC_LINK_NUMBER_1:
6474 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6475 					&misconfigured->theEvent);
6476 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6477 					&misconfigured->theEvent);
6478 			break;
6479 		case LPFC_LINK_NUMBER_2:
6480 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6481 					&misconfigured->theEvent);
6482 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6483 					&misconfigured->theEvent);
6484 			break;
6485 		case LPFC_LINK_NUMBER_3:
6486 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6487 					&misconfigured->theEvent);
6488 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6489 					&misconfigured->theEvent);
6490 			break;
6491 		default:
6492 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6493 					"3296 "
6494 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6495 					"event: Invalid link %d",
6496 					phba->sli4_hba.lnk_info.lnk_no);
6497 			return;
6498 		}
6499 
6500 		/* Skip if optic state unchanged */
6501 		if (phba->sli4_hba.lnk_info.optic_state == status)
6502 			return;
6503 
6504 		switch (status) {
6505 		case LPFC_SLI_EVENT_STATUS_VALID:
6506 			sprintf(message, "Physical Link is functional");
6507 			break;
6508 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6509 			sprintf(message, "Optics faulted/incorrectly "
6510 				"installed/not installed - Reseat optics, "
6511 				"if issue not resolved, replace.");
6512 			break;
6513 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6514 			sprintf(message,
6515 				"Optics of two types installed - Remove one "
6516 				"optic or install matching pair of optics.");
6517 			break;
6518 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6519 			sprintf(message, "Incompatible optics - Replace with "
6520 				"compatible optics for card to function.");
6521 			break;
6522 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6523 			sprintf(message, "Unqualified optics - Replace with "
6524 				"Avago optics for Warranty and Technical "
6525 				"Support - Link is%s operational",
6526 				(operational) ? " not" : "");
6527 			break;
6528 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6529 			sprintf(message, "Uncertified optics - Replace with "
6530 				"Avago-certified optics to enable link "
6531 				"operation - Link is%s operational",
6532 				(operational) ? " not" : "");
6533 			break;
6534 		default:
6535 			/* firmware is reporting a status we don't know about */
6536 			sprintf(message, "Unknown event status x%02x", status);
6537 			break;
6538 		}
6539 
6540 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6541 		rc = lpfc_sli4_read_config(phba);
6542 		if (rc) {
6543 			phba->lmt = 0;
6544 			lpfc_printf_log(phba, KERN_ERR,
6545 					LOG_TRACE_EVENT,
6546 					"3194 Unable to retrieve supported "
6547 					"speeds, rc = 0x%x\n", rc);
6548 		}
6549 		rc = lpfc_sli4_refresh_params(phba);
6550 		if (rc) {
6551 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6552 					"3174 Unable to update pls support, "
6553 					"rc x%x\n", rc);
6554 		}
6555 		vports = lpfc_create_vport_work_array(phba);
6556 		if (vports != NULL) {
6557 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6558 					i++) {
6559 				shost = lpfc_shost_from_vport(vports[i]);
6560 				lpfc_host_supported_speeds_set(shost);
6561 			}
6562 		}
6563 		lpfc_destroy_vport_work_array(phba, vports);
6564 
6565 		phba->sli4_hba.lnk_info.optic_state = status;
6566 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6567 				"3176 Port Name %c %s\n", port_name, message);
6568 		break;
6569 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6570 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6571 				"3192 Remote DPort Test Initiated - "
6572 				"Event Data1:x%08x Event Data2: x%08x\n",
6573 				acqe_sli->event_data1, acqe_sli->event_data2);
6574 		break;
6575 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6576 		/* Call FW to obtain active parms */
6577 		lpfc_sli4_cgn_parm_chg_evt(phba);
6578 		break;
6579 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6580 		/* Misconfigured WWN. Reports that the SLI Port is configured
6581 		 * to use FA-WWN, but the attached device doesn’t support it.
6582 		 * Event Data1 - N.A, Event Data2 - N.A
6583 		 * This event only happens on the physical port.
6584 		 */
6585 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6586 			     "2699 Misconfigured FA-PWWN - Attached device "
6587 			     "does not support FA-PWWN\n");
6588 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6589 		memset(phba->pport->fc_portname.u.wwn, 0,
6590 		       sizeof(struct lpfc_name));
6591 		break;
6592 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6593 		/* EEPROM failure. No driver action is required */
6594 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6595 			     "2518 EEPROM failure - "
6596 			     "Event Data1: x%08x Event Data2: x%08x\n",
6597 			     acqe_sli->event_data1, acqe_sli->event_data2);
6598 		break;
6599 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6600 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6601 			break;
6602 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6603 					&acqe_sli->event_data1;
6604 		phba->cgn_acqe_cnt++;
6605 
6606 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6607 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6608 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6609 
6610 		/* no threshold for CMF, even 1 signal will trigger an event */
6611 
6612 		/* Alarm overrides warning, so check that first */
6613 		if (cgn_signal->alarm_cnt) {
6614 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6615 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6616 				atomic_add(cgn_signal->alarm_cnt,
6617 					   &phba->cgn_sync_alarm_cnt);
6618 			}
6619 		} else if (cnt) {
6620 			/* signal action needs to be taken */
6621 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6622 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6623 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6624 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6625 			}
6626 		}
6627 		break;
6628 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6629 		/* May be accompanied by a temperature event */
6630 		lpfc_printf_log(phba, KERN_INFO,
6631 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6632 				"2902 Remote Degrade Signaling: x%08x x%08x "
6633 				"x%08x\n",
6634 				acqe_sli->event_data1, acqe_sli->event_data2,
6635 				acqe_sli->event_data3);
6636 		break;
6637 	case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS:
6638 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6639 				"2905 Reset CM statistics\n");
6640 		lpfc_sli4_async_cmstat_evt(phba);
6641 		break;
6642 	default:
6643 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6644 				"3193 Unrecognized SLI event, type: 0x%x",
6645 				evt_type);
6646 		break;
6647 	}
6648 }
6649 
6650 /**
6651  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6652  * @vport: pointer to vport data structure.
6653  *
6654  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6655  * response to a CVL event.
6656  *
6657  * Return the pointer to the ndlp with the vport if successful, otherwise
6658  * return NULL.
6659  **/
6660 static struct lpfc_nodelist *
6661 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6662 {
6663 	struct lpfc_nodelist *ndlp;
6664 	struct Scsi_Host *shost;
6665 	struct lpfc_hba *phba;
6666 
6667 	if (!vport)
6668 		return NULL;
6669 	phba = vport->phba;
6670 	if (!phba)
6671 		return NULL;
6672 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6673 	if (!ndlp) {
6674 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6675 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6676 		if (!ndlp)
6677 			return NULL;
6678 		/* Set the node type */
6679 		ndlp->nlp_type |= NLP_FABRIC;
6680 		/* Put ndlp onto node list */
6681 		lpfc_enqueue_node(vport, ndlp);
6682 	}
6683 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6684 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6685 		return NULL;
6686 	/* If virtual link is not yet instantiated ignore CVL */
6687 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6688 		&& (vport->port_state != LPFC_VPORT_FAILED))
6689 		return NULL;
6690 	shost = lpfc_shost_from_vport(vport);
6691 	if (!shost)
6692 		return NULL;
6693 	lpfc_linkdown_port(vport);
6694 	lpfc_cleanup_pending_mbox(vport);
6695 	set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag);
6696 
6697 	return ndlp;
6698 }
6699 
6700 /**
6701  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6702  * @phba: pointer to lpfc hba data structure.
6703  *
6704  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6705  * response to a FCF dead event.
6706  **/
6707 static void
6708 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6709 {
6710 	struct lpfc_vport **vports;
6711 	int i;
6712 
6713 	vports = lpfc_create_vport_work_array(phba);
6714 	if (vports)
6715 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6716 			lpfc_sli4_perform_vport_cvl(vports[i]);
6717 	lpfc_destroy_vport_work_array(phba, vports);
6718 }
6719 
6720 /**
6721  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6722  * @phba: pointer to lpfc hba data structure.
6723  * @acqe_fip: pointer to the async fcoe completion queue entry.
6724  *
6725  * This routine is to handle the SLI4 asynchronous fcoe event.
6726  **/
6727 static void
6728 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6729 			struct lpfc_acqe_fip *acqe_fip)
6730 {
6731 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6732 	int rc;
6733 	struct lpfc_vport *vport;
6734 	struct lpfc_nodelist *ndlp;
6735 	int active_vlink_present;
6736 	struct lpfc_vport **vports;
6737 	int i;
6738 
6739 	phba->fc_eventTag = acqe_fip->event_tag;
6740 	phba->fcoe_eventtag = acqe_fip->event_tag;
6741 	switch (event_type) {
6742 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6743 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6744 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6745 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6746 					"2546 New FCF event, evt_tag:x%x, "
6747 					"index:x%x\n",
6748 					acqe_fip->event_tag,
6749 					acqe_fip->index);
6750 		else
6751 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6752 					LOG_DISCOVERY,
6753 					"2788 FCF param modified event, "
6754 					"evt_tag:x%x, index:x%x\n",
6755 					acqe_fip->event_tag,
6756 					acqe_fip->index);
6757 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6758 			/*
6759 			 * During period of FCF discovery, read the FCF
6760 			 * table record indexed by the event to update
6761 			 * FCF roundrobin failover eligible FCF bmask.
6762 			 */
6763 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6764 					LOG_DISCOVERY,
6765 					"2779 Read FCF (x%x) for updating "
6766 					"roundrobin FCF failover bmask\n",
6767 					acqe_fip->index);
6768 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6769 		}
6770 
6771 		/* If the FCF discovery is in progress, do nothing. */
6772 		if (test_bit(FCF_TS_INPROG, &phba->hba_flag))
6773 			break;
6774 		spin_lock_irq(&phba->hbalock);
6775 		/* If fast FCF failover rescan event is pending, do nothing */
6776 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6777 			spin_unlock_irq(&phba->hbalock);
6778 			break;
6779 		}
6780 
6781 		/* If the FCF has been in discovered state, do nothing. */
6782 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6783 			spin_unlock_irq(&phba->hbalock);
6784 			break;
6785 		}
6786 		spin_unlock_irq(&phba->hbalock);
6787 
6788 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6789 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6790 				"2770 Start FCF table scan per async FCF "
6791 				"event, evt_tag:x%x, index:x%x\n",
6792 				acqe_fip->event_tag, acqe_fip->index);
6793 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6794 						     LPFC_FCOE_FCF_GET_FIRST);
6795 		if (rc)
6796 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6797 					"2547 Issue FCF scan read FCF mailbox "
6798 					"command failed (x%x)\n", rc);
6799 		break;
6800 
6801 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6803 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6804 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6805 				acqe_fip->event_tag);
6806 		break;
6807 
6808 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6809 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6810 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6811 				"2549 FCF (x%x) disconnected from network, "
6812 				 "tag:x%x\n", acqe_fip->index,
6813 				 acqe_fip->event_tag);
6814 		/*
6815 		 * If we are in the middle of FCF failover process, clear
6816 		 * the corresponding FCF bit in the roundrobin bitmap.
6817 		 */
6818 		spin_lock_irq(&phba->hbalock);
6819 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6820 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6821 			spin_unlock_irq(&phba->hbalock);
6822 			/* Update FLOGI FCF failover eligible FCF bmask */
6823 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6824 			break;
6825 		}
6826 		spin_unlock_irq(&phba->hbalock);
6827 
6828 		/* If the event is not for currently used fcf do nothing */
6829 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6830 			break;
6831 
6832 		/*
6833 		 * Otherwise, request the port to rediscover the entire FCF
6834 		 * table for a fast recovery from case that the current FCF
6835 		 * is no longer valid as we are not in the middle of FCF
6836 		 * failover process already.
6837 		 */
6838 		spin_lock_irq(&phba->hbalock);
6839 		/* Mark the fast failover process in progress */
6840 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6841 		spin_unlock_irq(&phba->hbalock);
6842 
6843 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6844 				"2771 Start FCF fast failover process due to "
6845 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6846 				"\n", acqe_fip->event_tag, acqe_fip->index);
6847 		rc = lpfc_sli4_redisc_fcf_table(phba);
6848 		if (rc) {
6849 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6850 					LOG_TRACE_EVENT,
6851 					"2772 Issue FCF rediscover mailbox "
6852 					"command failed, fail through to FCF "
6853 					"dead event\n");
6854 			spin_lock_irq(&phba->hbalock);
6855 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6856 			spin_unlock_irq(&phba->hbalock);
6857 			/*
6858 			 * Last resort will fail over by treating this
6859 			 * as a link down to FCF registration.
6860 			 */
6861 			lpfc_sli4_fcf_dead_failthrough(phba);
6862 		} else {
6863 			/* Reset FCF roundrobin bmask for new discovery */
6864 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6865 			/*
6866 			 * Handling fast FCF failover to a DEAD FCF event is
6867 			 * considered equalivant to receiving CVL to all vports.
6868 			 */
6869 			lpfc_sli4_perform_all_vport_cvl(phba);
6870 		}
6871 		break;
6872 	case LPFC_FIP_EVENT_TYPE_CVL:
6873 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6874 		lpfc_printf_log(phba, KERN_ERR,
6875 				LOG_TRACE_EVENT,
6876 			"2718 Clear Virtual Link Received for VPI 0x%x"
6877 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6878 
6879 		vport = lpfc_find_vport_by_vpid(phba,
6880 						acqe_fip->index);
6881 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6882 		if (!ndlp)
6883 			break;
6884 		active_vlink_present = 0;
6885 
6886 		vports = lpfc_create_vport_work_array(phba);
6887 		if (vports) {
6888 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6889 					i++) {
6890 				if (!test_bit(FC_VPORT_CVL_RCVD,
6891 					      &vports[i]->fc_flag) &&
6892 				    vports[i]->port_state > LPFC_FDISC) {
6893 					active_vlink_present = 1;
6894 					break;
6895 				}
6896 			}
6897 			lpfc_destroy_vport_work_array(phba, vports);
6898 		}
6899 
6900 		/*
6901 		 * Don't re-instantiate if vport is marked for deletion.
6902 		 * If we are here first then vport_delete is going to wait
6903 		 * for discovery to complete.
6904 		 */
6905 		if (!test_bit(FC_UNLOADING, &vport->load_flag) &&
6906 		    active_vlink_present) {
6907 			/*
6908 			 * If there are other active VLinks present,
6909 			 * re-instantiate the Vlink using FDISC.
6910 			 */
6911 			mod_timer(&ndlp->nlp_delayfunc,
6912 				  jiffies + msecs_to_jiffies(1000));
6913 			spin_lock_irq(&ndlp->lock);
6914 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6915 			spin_unlock_irq(&ndlp->lock);
6916 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6917 			vport->port_state = LPFC_FDISC;
6918 		} else {
6919 			/*
6920 			 * Otherwise, we request port to rediscover
6921 			 * the entire FCF table for a fast recovery
6922 			 * from possible case that the current FCF
6923 			 * is no longer valid if we are not already
6924 			 * in the FCF failover process.
6925 			 */
6926 			spin_lock_irq(&phba->hbalock);
6927 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6928 				spin_unlock_irq(&phba->hbalock);
6929 				break;
6930 			}
6931 			/* Mark the fast failover process in progress */
6932 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6933 			spin_unlock_irq(&phba->hbalock);
6934 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6935 					LOG_DISCOVERY,
6936 					"2773 Start FCF failover per CVL, "
6937 					"evt_tag:x%x\n", acqe_fip->event_tag);
6938 			rc = lpfc_sli4_redisc_fcf_table(phba);
6939 			if (rc) {
6940 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6941 						LOG_TRACE_EVENT,
6942 						"2774 Issue FCF rediscover "
6943 						"mailbox command failed, "
6944 						"through to CVL event\n");
6945 				spin_lock_irq(&phba->hbalock);
6946 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6947 				spin_unlock_irq(&phba->hbalock);
6948 				/*
6949 				 * Last resort will be re-try on the
6950 				 * the current registered FCF entry.
6951 				 */
6952 				lpfc_retry_pport_discovery(phba);
6953 			} else
6954 				/*
6955 				 * Reset FCF roundrobin bmask for new
6956 				 * discovery.
6957 				 */
6958 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6959 		}
6960 		break;
6961 	default:
6962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6963 				"0288 Unknown FCoE event type 0x%x event tag "
6964 				"0x%x\n", event_type, acqe_fip->event_tag);
6965 		break;
6966 	}
6967 }
6968 
6969 /**
6970  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6971  * @phba: pointer to lpfc hba data structure.
6972  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6973  *
6974  * This routine is to handle the SLI4 asynchronous dcbx event.
6975  **/
6976 static void
6977 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6978 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6979 {
6980 	phba->fc_eventTag = acqe_dcbx->event_tag;
6981 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6982 			"0290 The SLI4 DCBX asynchronous event is not "
6983 			"handled yet\n");
6984 }
6985 
6986 /**
6987  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6988  * @phba: pointer to lpfc hba data structure.
6989  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6990  *
6991  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6992  * is an asynchronous notified of a logical link speed change.  The Port
6993  * reports the logical link speed in units of 10Mbps.
6994  **/
6995 static void
6996 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6997 			 struct lpfc_acqe_grp5 *acqe_grp5)
6998 {
6999 	uint16_t prev_ll_spd;
7000 
7001 	phba->fc_eventTag = acqe_grp5->event_tag;
7002 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7003 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7004 	phba->sli4_hba.link_state.logical_speed =
7005 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7006 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7007 			"2789 GRP5 Async Event: Updating logical link speed "
7008 			"from %dMbps to %dMbps\n", prev_ll_spd,
7009 			phba->sli4_hba.link_state.logical_speed);
7010 }
7011 
7012 /**
7013  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7014  * @phba: pointer to lpfc hba data structure.
7015  *
7016  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7017  * is an asynchronous notification of a request to reset CM stats.
7018  **/
7019 static void
7020 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7021 {
7022 	if (!phba->cgn_i)
7023 		return;
7024 	lpfc_init_congestion_stat(phba);
7025 }
7026 
7027 /**
7028  * lpfc_cgn_params_val - Validate FW congestion parameters.
7029  * @phba: pointer to lpfc hba data structure.
7030  * @p_cfg_param: pointer to FW provided congestion parameters.
7031  *
7032  * This routine validates the congestion parameters passed
7033  * by the FW to the driver via an ACQE event.
7034  **/
7035 static void
7036 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7037 {
7038 	spin_lock_irq(&phba->hbalock);
7039 
7040 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7041 			     LPFC_CFG_MONITOR)) {
7042 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7043 				"6225 CMF mode param out of range: %d\n",
7044 				 p_cfg_param->cgn_param_mode);
7045 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7046 	}
7047 
7048 	spin_unlock_irq(&phba->hbalock);
7049 }
7050 
7051 static const char * const lpfc_cmf_mode_to_str[] = {
7052 	"OFF",
7053 	"MANAGED",
7054 	"MONITOR",
7055 };
7056 
7057 /**
7058  * lpfc_cgn_params_parse - Process a FW cong parm change event
7059  * @phba: pointer to lpfc hba data structure.
7060  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7061  * @len: the size of pdata in bytes.
7062  *
7063  * This routine validates the congestion management buffer signature
7064  * from the FW, validates the contents and makes corrections for
7065  * valid, in-range values.  If the signature magic is correct and
7066  * after parameter validation, the contents are copied to the driver's
7067  * @phba structure. If the magic is incorrect, an error message is
7068  * logged.
7069  **/
7070 static void
7071 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7072 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7073 {
7074 	struct lpfc_cgn_info *cp;
7075 	uint32_t crc, oldmode;
7076 	char acr_string[4] = {0};
7077 
7078 	/* Make sure the FW has encoded the correct magic number to
7079 	 * validate the congestion parameter in FW memory.
7080 	 */
7081 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7082 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7083 				"4668 FW cgn parm buffer data: "
7084 				"magic 0x%x version %d mode %d "
7085 				"level0 %d level1 %d "
7086 				"level2 %d byte13 %d "
7087 				"byte14 %d byte15 %d "
7088 				"byte11 %d byte12 %d activeMode %d\n",
7089 				p_cgn_param->cgn_param_magic,
7090 				p_cgn_param->cgn_param_version,
7091 				p_cgn_param->cgn_param_mode,
7092 				p_cgn_param->cgn_param_level0,
7093 				p_cgn_param->cgn_param_level1,
7094 				p_cgn_param->cgn_param_level2,
7095 				p_cgn_param->byte13,
7096 				p_cgn_param->byte14,
7097 				p_cgn_param->byte15,
7098 				p_cgn_param->byte11,
7099 				p_cgn_param->byte12,
7100 				phba->cmf_active_mode);
7101 
7102 		oldmode = phba->cmf_active_mode;
7103 
7104 		/* Any parameters out of range are corrected to defaults
7105 		 * by this routine.  No need to fail.
7106 		 */
7107 		lpfc_cgn_params_val(phba, p_cgn_param);
7108 
7109 		/* Parameters are verified, move them into driver storage */
7110 		spin_lock_irq(&phba->hbalock);
7111 		memcpy(&phba->cgn_p, p_cgn_param,
7112 		       sizeof(struct lpfc_cgn_param));
7113 
7114 		/* Update parameters in congestion info buffer now */
7115 		if (phba->cgn_i) {
7116 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7117 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7118 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7119 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7120 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7121 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7122 						  LPFC_CGN_CRC32_SEED);
7123 			cp->cgn_info_crc = cpu_to_le32(crc);
7124 		}
7125 		spin_unlock_irq(&phba->hbalock);
7126 
7127 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7128 
7129 		switch (oldmode) {
7130 		case LPFC_CFG_OFF:
7131 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7132 				/* Turning CMF on */
7133 				lpfc_cmf_start(phba);
7134 
7135 				if (phba->link_state >= LPFC_LINK_UP) {
7136 					phba->cgn_reg_fpin =
7137 						phba->cgn_init_reg_fpin;
7138 					phba->cgn_reg_signal =
7139 						phba->cgn_init_reg_signal;
7140 					lpfc_issue_els_edc(phba->pport, 0);
7141 				}
7142 			}
7143 			break;
7144 		case LPFC_CFG_MANAGED:
7145 			switch (phba->cgn_p.cgn_param_mode) {
7146 			case LPFC_CFG_OFF:
7147 				/* Turning CMF off */
7148 				lpfc_cmf_stop(phba);
7149 				if (phba->link_state >= LPFC_LINK_UP)
7150 					lpfc_issue_els_edc(phba->pport, 0);
7151 				break;
7152 			case LPFC_CFG_MONITOR:
7153 				phba->cmf_max_bytes_per_interval =
7154 					phba->cmf_link_byte_count;
7155 
7156 				/* Resume blocked IO - unblock on workqueue */
7157 				queue_work(phba->wq,
7158 					   &phba->unblock_request_work);
7159 				break;
7160 			}
7161 			break;
7162 		case LPFC_CFG_MONITOR:
7163 			switch (phba->cgn_p.cgn_param_mode) {
7164 			case LPFC_CFG_OFF:
7165 				/* Turning CMF off */
7166 				lpfc_cmf_stop(phba);
7167 				if (phba->link_state >= LPFC_LINK_UP)
7168 					lpfc_issue_els_edc(phba->pport, 0);
7169 				break;
7170 			case LPFC_CFG_MANAGED:
7171 				lpfc_cmf_signal_init(phba);
7172 				break;
7173 			}
7174 			break;
7175 		}
7176 		if (oldmode != LPFC_CFG_OFF ||
7177 		    oldmode != phba->cgn_p.cgn_param_mode) {
7178 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7179 				scnprintf(acr_string, sizeof(acr_string), "%u",
7180 					  phba->cgn_p.cgn_param_level0);
7181 			else
7182 				scnprintf(acr_string, sizeof(acr_string), "NA");
7183 
7184 			dev_info(&phba->pcidev->dev, "%d: "
7185 				 "4663 CMF: Mode %s acr %s\n",
7186 				 phba->brd_no,
7187 				 lpfc_cmf_mode_to_str
7188 				 [phba->cgn_p.cgn_param_mode],
7189 				 acr_string);
7190 		}
7191 	} else {
7192 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7193 				"4669 FW cgn parm buf wrong magic 0x%x "
7194 				"version %d\n", p_cgn_param->cgn_param_magic,
7195 				p_cgn_param->cgn_param_version);
7196 	}
7197 }
7198 
7199 /**
7200  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7201  * @phba: pointer to lpfc hba data structure.
7202  *
7203  * This routine issues a read_object mailbox command to
7204  * get the congestion management parameters from the FW
7205  * parses it and updates the driver maintained values.
7206  *
7207  * Returns
7208  *  0     if the object was empty
7209  *  -Eval if an error was encountered
7210  *  Count if bytes were read from object
7211  **/
7212 int
7213 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7214 {
7215 	int ret = 0;
7216 	struct lpfc_cgn_param *p_cgn_param = NULL;
7217 	u32 *pdata = NULL;
7218 	u32 len = 0;
7219 
7220 	/* Find out if the FW has a new set of congestion parameters. */
7221 	len = sizeof(struct lpfc_cgn_param);
7222 	pdata = kzalloc(len, GFP_KERNEL);
7223 	if (!pdata)
7224 		return -ENOMEM;
7225 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7226 			       pdata, len);
7227 
7228 	/* 0 means no data.  A negative means error.  A positive means
7229 	 * bytes were copied.
7230 	 */
7231 	if (!ret) {
7232 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7233 				"4670 CGN RD OBJ returns no data\n");
7234 		goto rd_obj_err;
7235 	} else if (ret < 0) {
7236 		/* Some error.  Just exit and return it to the caller.*/
7237 		goto rd_obj_err;
7238 	}
7239 
7240 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7241 			"6234 READ CGN PARAMS Successful %d\n", len);
7242 
7243 	/* Parse data pointer over len and update the phba congestion
7244 	 * parameters with values passed back.  The receive rate values
7245 	 * may have been altered in FW, but take no action here.
7246 	 */
7247 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7248 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7249 
7250  rd_obj_err:
7251 	kfree(pdata);
7252 	return ret;
7253 }
7254 
7255 /**
7256  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7257  * @phba: pointer to lpfc hba data structure.
7258  *
7259  * The FW generated Async ACQE SLI event calls this routine when
7260  * the event type is an SLI Internal Port Event and the Event Code
7261  * indicates a change to the FW maintained congestion parameters.
7262  *
7263  * This routine executes a Read_Object mailbox call to obtain the
7264  * current congestion parameters maintained in FW and corrects
7265  * the driver's active congestion parameters.
7266  *
7267  * The acqe event is not passed because there is no further data
7268  * required.
7269  *
7270  * Returns nonzero error if event processing encountered an error.
7271  * Zero otherwise for success.
7272  **/
7273 static int
7274 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7275 {
7276 	int ret = 0;
7277 
7278 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7279 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7280 				"4664 Cgn Evt when E2E off. Drop event\n");
7281 		return -EACCES;
7282 	}
7283 
7284 	/* If the event is claiming an empty object, it's ok.  A write
7285 	 * could have cleared it.  Only error is a negative return
7286 	 * status.
7287 	 */
7288 	ret = lpfc_sli4_cgn_params_read(phba);
7289 	if (ret < 0) {
7290 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7291 				"4667 Error reading Cgn Params (%d)\n",
7292 				ret);
7293 	} else if (!ret) {
7294 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7295 				"4673 CGN Event empty object.\n");
7296 	}
7297 	return ret;
7298 }
7299 
7300 /**
7301  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7302  * @phba: pointer to lpfc hba data structure.
7303  *
7304  * This routine is invoked by the worker thread to process all the pending
7305  * SLI4 asynchronous events.
7306  **/
7307 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7308 {
7309 	struct lpfc_cq_event *cq_event;
7310 	unsigned long iflags;
7311 
7312 	/* First, declare the async event has been handled */
7313 	clear_bit(ASYNC_EVENT, &phba->hba_flag);
7314 
7315 	/* Now, handle all the async events */
7316 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7317 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7318 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7319 				 cq_event, struct lpfc_cq_event, list);
7320 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7321 				       iflags);
7322 
7323 		/* Process the asynchronous event */
7324 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7325 		case LPFC_TRAILER_CODE_LINK:
7326 			lpfc_sli4_async_link_evt(phba,
7327 						 &cq_event->cqe.acqe_link);
7328 			break;
7329 		case LPFC_TRAILER_CODE_FCOE:
7330 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7331 			break;
7332 		case LPFC_TRAILER_CODE_DCBX:
7333 			lpfc_sli4_async_dcbx_evt(phba,
7334 						 &cq_event->cqe.acqe_dcbx);
7335 			break;
7336 		case LPFC_TRAILER_CODE_GRP5:
7337 			lpfc_sli4_async_grp5_evt(phba,
7338 						 &cq_event->cqe.acqe_grp5);
7339 			break;
7340 		case LPFC_TRAILER_CODE_FC:
7341 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7342 			break;
7343 		case LPFC_TRAILER_CODE_SLI:
7344 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7345 			break;
7346 		default:
7347 			lpfc_printf_log(phba, KERN_ERR,
7348 					LOG_TRACE_EVENT,
7349 					"1804 Invalid asynchronous event code: "
7350 					"x%x\n", bf_get(lpfc_trailer_code,
7351 					&cq_event->cqe.mcqe_cmpl));
7352 			break;
7353 		}
7354 
7355 		/* Free the completion event processed to the free pool */
7356 		lpfc_sli4_cq_event_release(phba, cq_event);
7357 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7358 	}
7359 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7360 }
7361 
7362 /**
7363  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7364  * @phba: pointer to lpfc hba data structure.
7365  *
7366  * This routine is invoked by the worker thread to process FCF table
7367  * rediscovery pending completion event.
7368  **/
7369 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7370 {
7371 	int rc;
7372 
7373 	spin_lock_irq(&phba->hbalock);
7374 	/* Clear FCF rediscovery timeout event */
7375 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7376 	/* Clear driver fast failover FCF record flag */
7377 	phba->fcf.failover_rec.flag = 0;
7378 	/* Set state for FCF fast failover */
7379 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7380 	spin_unlock_irq(&phba->hbalock);
7381 
7382 	/* Scan FCF table from the first entry to re-discover SAN */
7383 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7384 			"2777 Start post-quiescent FCF table scan\n");
7385 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7386 	if (rc)
7387 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7388 				"2747 Issue FCF scan read FCF mailbox "
7389 				"command failed 0x%x\n", rc);
7390 }
7391 
7392 /**
7393  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7394  * @phba: pointer to lpfc hba data structure.
7395  * @dev_grp: The HBA PCI-Device group number.
7396  *
7397  * This routine is invoked to set up the per HBA PCI-Device group function
7398  * API jump table entries.
7399  *
7400  * Return: 0 if success, otherwise -ENODEV
7401  **/
7402 int
7403 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7404 {
7405 	int rc;
7406 
7407 	/* Set up lpfc PCI-device group */
7408 	phba->pci_dev_grp = dev_grp;
7409 
7410 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7411 	if (dev_grp == LPFC_PCI_DEV_OC)
7412 		phba->sli_rev = LPFC_SLI_REV4;
7413 
7414 	/* Set up device INIT API function jump table */
7415 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7416 	if (rc)
7417 		return -ENODEV;
7418 	/* Set up SCSI API function jump table */
7419 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7420 	if (rc)
7421 		return -ENODEV;
7422 	/* Set up SLI API function jump table */
7423 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7424 	if (rc)
7425 		return -ENODEV;
7426 	/* Set up MBOX API function jump table */
7427 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7428 	if (rc)
7429 		return -ENODEV;
7430 
7431 	return 0;
7432 }
7433 
7434 /**
7435  * lpfc_log_intr_mode - Log the active interrupt mode
7436  * @phba: pointer to lpfc hba data structure.
7437  * @intr_mode: active interrupt mode adopted.
7438  *
7439  * This routine it invoked to log the currently used active interrupt mode
7440  * to the device.
7441  **/
7442 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7443 {
7444 	switch (intr_mode) {
7445 	case 0:
7446 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7447 				"0470 Enable INTx interrupt mode.\n");
7448 		break;
7449 	case 1:
7450 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7451 				"0481 Enabled MSI interrupt mode.\n");
7452 		break;
7453 	case 2:
7454 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7455 				"0480 Enabled MSI-X interrupt mode.\n");
7456 		break;
7457 	default:
7458 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7459 				"0482 Illegal interrupt mode.\n");
7460 		break;
7461 	}
7462 	return;
7463 }
7464 
7465 /**
7466  * lpfc_enable_pci_dev - Enable a generic PCI device.
7467  * @phba: pointer to lpfc hba data structure.
7468  *
7469  * This routine is invoked to enable the PCI device that is common to all
7470  * PCI devices.
7471  *
7472  * Return codes
7473  * 	0 - successful
7474  * 	other values - error
7475  **/
7476 static int
7477 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7478 {
7479 	struct pci_dev *pdev;
7480 
7481 	/* Obtain PCI device reference */
7482 	if (!phba->pcidev)
7483 		goto out_error;
7484 	else
7485 		pdev = phba->pcidev;
7486 	/* Enable PCI device */
7487 	if (pci_enable_device_mem(pdev))
7488 		goto out_error;
7489 	/* Request PCI resource for the device */
7490 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7491 		goto out_disable_device;
7492 	/* Set up device as PCI master and save state for EEH */
7493 	pci_set_master(pdev);
7494 	pci_try_set_mwi(pdev);
7495 	pci_save_state(pdev);
7496 
7497 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7498 	if (pci_is_pcie(pdev))
7499 		pdev->needs_freset = 1;
7500 
7501 	return 0;
7502 
7503 out_disable_device:
7504 	pci_disable_device(pdev);
7505 out_error:
7506 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7507 			"1401 Failed to enable pci device\n");
7508 	return -ENODEV;
7509 }
7510 
7511 /**
7512  * lpfc_disable_pci_dev - Disable a generic PCI device.
7513  * @phba: pointer to lpfc hba data structure.
7514  *
7515  * This routine is invoked to disable the PCI device that is common to all
7516  * PCI devices.
7517  **/
7518 static void
7519 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7520 {
7521 	struct pci_dev *pdev;
7522 
7523 	/* Obtain PCI device reference */
7524 	if (!phba->pcidev)
7525 		return;
7526 	else
7527 		pdev = phba->pcidev;
7528 	/* Release PCI resource and disable PCI device */
7529 	pci_release_mem_regions(pdev);
7530 	pci_disable_device(pdev);
7531 
7532 	return;
7533 }
7534 
7535 /**
7536  * lpfc_reset_hba - Reset a hba
7537  * @phba: pointer to lpfc hba data structure.
7538  *
7539  * This routine is invoked to reset a hba device. It brings the HBA
7540  * offline, performs a board restart, and then brings the board back
7541  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7542  * on outstanding mailbox commands.
7543  **/
7544 void
7545 lpfc_reset_hba(struct lpfc_hba *phba)
7546 {
7547 	int rc = 0;
7548 
7549 	/* If resets are disabled then set error state and return. */
7550 	if (!phba->cfg_enable_hba_reset) {
7551 		phba->link_state = LPFC_HBA_ERROR;
7552 		return;
7553 	}
7554 
7555 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7556 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7557 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7558 	} else {
7559 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7560 			/* Perform a PCI function reset to start from clean */
7561 			rc = lpfc_pci_function_reset(phba);
7562 			lpfc_els_flush_all_cmd(phba);
7563 		}
7564 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7565 		lpfc_sli_flush_io_rings(phba);
7566 	}
7567 	lpfc_offline(phba);
7568 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7569 	if (unlikely(rc)) {
7570 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7571 				"8888 PCI function reset failed rc %x\n",
7572 				rc);
7573 	} else {
7574 		lpfc_sli_brdrestart(phba);
7575 		lpfc_online(phba);
7576 		lpfc_unblock_mgmt_io(phba);
7577 	}
7578 }
7579 
7580 /**
7581  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7582  * @phba: pointer to lpfc hba data structure.
7583  *
7584  * This function enables the PCI SR-IOV virtual functions to a physical
7585  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7586  * enable the number of virtual functions to the physical function. As
7587  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7588  * API call does not considered as an error condition for most of the device.
7589  **/
7590 uint16_t
7591 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7592 {
7593 	struct pci_dev *pdev = phba->pcidev;
7594 	uint16_t nr_virtfn;
7595 	int pos;
7596 
7597 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7598 	if (pos == 0)
7599 		return 0;
7600 
7601 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7602 	return nr_virtfn;
7603 }
7604 
7605 /**
7606  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7607  * @phba: pointer to lpfc hba data structure.
7608  * @nr_vfn: number of virtual functions to be enabled.
7609  *
7610  * This function enables the PCI SR-IOV virtual functions to a physical
7611  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7612  * enable the number of virtual functions to the physical function. As
7613  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7614  * API call does not considered as an error condition for most of the device.
7615  **/
7616 int
7617 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7618 {
7619 	struct pci_dev *pdev = phba->pcidev;
7620 	uint16_t max_nr_vfn;
7621 	int rc;
7622 
7623 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7624 	if (nr_vfn > max_nr_vfn) {
7625 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7626 				"3057 Requested vfs (%d) greater than "
7627 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7628 		return -EINVAL;
7629 	}
7630 
7631 	rc = pci_enable_sriov(pdev, nr_vfn);
7632 	if (rc) {
7633 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7634 				"2806 Failed to enable sriov on this device "
7635 				"with vfn number nr_vf:%d, rc:%d\n",
7636 				nr_vfn, rc);
7637 	} else
7638 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7639 				"2807 Successful enable sriov on this device "
7640 				"with vfn number nr_vf:%d\n", nr_vfn);
7641 	return rc;
7642 }
7643 
7644 static void
7645 lpfc_unblock_requests_work(struct work_struct *work)
7646 {
7647 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7648 					     unblock_request_work);
7649 
7650 	lpfc_unblock_requests(phba);
7651 }
7652 
7653 /**
7654  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7655  * @phba: pointer to lpfc hba data structure.
7656  *
7657  * This routine is invoked to set up the driver internal resources before the
7658  * device specific resource setup to support the HBA device it attached to.
7659  *
7660  * Return codes
7661  *	0 - successful
7662  *	other values - error
7663  **/
7664 static int
7665 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7666 {
7667 	struct lpfc_sli *psli = &phba->sli;
7668 
7669 	/*
7670 	 * Driver resources common to all SLI revisions
7671 	 */
7672 	atomic_set(&phba->fast_event_count, 0);
7673 	atomic_set(&phba->dbg_log_idx, 0);
7674 	atomic_set(&phba->dbg_log_cnt, 0);
7675 	atomic_set(&phba->dbg_log_dmping, 0);
7676 	spin_lock_init(&phba->hbalock);
7677 
7678 	/* Initialize port_list spinlock */
7679 	spin_lock_init(&phba->port_list_lock);
7680 	INIT_LIST_HEAD(&phba->port_list);
7681 
7682 	INIT_LIST_HEAD(&phba->work_list);
7683 
7684 	/* Initialize the wait queue head for the kernel thread */
7685 	init_waitqueue_head(&phba->work_waitq);
7686 
7687 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7688 			"1403 Protocols supported %s %s %s\n",
7689 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7690 				"SCSI" : " "),
7691 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7692 				"NVME" : " "),
7693 			(phba->nvmet_support ? "NVMET" : " "));
7694 
7695 	/* ras_fwlog state */
7696 	spin_lock_init(&phba->ras_fwlog_lock);
7697 
7698 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7699 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7700 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7701 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7702 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7703 
7704 	/* Initialize the fabric iocb list */
7705 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7706 
7707 	/* Initialize list to save ELS buffers */
7708 	INIT_LIST_HEAD(&phba->elsbuf);
7709 
7710 	/* Initialize FCF connection rec list */
7711 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7712 
7713 	/* Initialize OAS configuration list */
7714 	spin_lock_init(&phba->devicelock);
7715 	INIT_LIST_HEAD(&phba->luns);
7716 
7717 	/* MBOX heartbeat timer */
7718 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7719 	/* Fabric block timer */
7720 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7721 	/* EA polling mode timer */
7722 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7723 	/* Heartbeat timer */
7724 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7725 
7726 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7727 
7728 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7729 			  lpfc_idle_stat_delay_work);
7730 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7731 	return 0;
7732 }
7733 
7734 /**
7735  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7736  * @phba: pointer to lpfc hba data structure.
7737  *
7738  * This routine is invoked to set up the driver internal resources specific to
7739  * support the SLI-3 HBA device it attached to.
7740  *
7741  * Return codes
7742  * 0 - successful
7743  * other values - error
7744  **/
7745 static int
7746 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7747 {
7748 	int rc, entry_sz;
7749 
7750 	/*
7751 	 * Initialize timers used by driver
7752 	 */
7753 
7754 	/* FCP polling mode timer */
7755 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7756 
7757 	/* Host attention work mask setup */
7758 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7759 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7760 
7761 	/* Get all the module params for configuring this host */
7762 	lpfc_get_cfgparam(phba);
7763 	/* Set up phase-1 common device driver resources */
7764 
7765 	rc = lpfc_setup_driver_resource_phase1(phba);
7766 	if (rc)
7767 		return -ENODEV;
7768 
7769 	if (!phba->sli.sli3_ring)
7770 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7771 					      sizeof(struct lpfc_sli_ring),
7772 					      GFP_KERNEL);
7773 	if (!phba->sli.sli3_ring)
7774 		return -ENOMEM;
7775 
7776 	/*
7777 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7778 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7779 	 */
7780 
7781 	if (phba->sli_rev == LPFC_SLI_REV4)
7782 		entry_sz = sizeof(struct sli4_sge);
7783 	else
7784 		entry_sz = sizeof(struct ulp_bde64);
7785 
7786 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7787 	if (phba->cfg_enable_bg) {
7788 		/*
7789 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7790 		 * the FCP rsp, and a BDE for each. Sice we have no control
7791 		 * over how many protection data segments the SCSI Layer
7792 		 * will hand us (ie: there could be one for every block
7793 		 * in the IO), we just allocate enough BDEs to accomidate
7794 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7795 		 * minimize the risk of running out.
7796 		 */
7797 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7798 			sizeof(struct fcp_rsp) +
7799 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7800 
7801 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7802 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7803 
7804 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7805 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7806 	} else {
7807 		/*
7808 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7809 		 * the FCP rsp, a BDE for each, and a BDE for up to
7810 		 * cfg_sg_seg_cnt data segments.
7811 		 */
7812 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7813 			sizeof(struct fcp_rsp) +
7814 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7815 
7816 		/* Total BDEs in BPL for scsi_sg_list */
7817 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7818 	}
7819 
7820 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7821 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7822 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7823 			phba->cfg_total_seg_cnt);
7824 
7825 	phba->max_vpi = LPFC_MAX_VPI;
7826 	/* This will be set to correct value after config_port mbox */
7827 	phba->max_vports = 0;
7828 
7829 	/*
7830 	 * Initialize the SLI Layer to run with lpfc HBAs.
7831 	 */
7832 	lpfc_sli_setup(phba);
7833 	lpfc_sli_queue_init(phba);
7834 
7835 	/* Allocate device driver memory */
7836 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7837 		return -ENOMEM;
7838 
7839 	phba->lpfc_sg_dma_buf_pool =
7840 		dma_pool_create("lpfc_sg_dma_buf_pool",
7841 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7842 				BPL_ALIGN_SZ, 0);
7843 
7844 	if (!phba->lpfc_sg_dma_buf_pool)
7845 		goto fail_free_mem;
7846 
7847 	phba->lpfc_cmd_rsp_buf_pool =
7848 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7849 					&phba->pcidev->dev,
7850 					sizeof(struct fcp_cmnd) +
7851 					sizeof(struct fcp_rsp),
7852 					BPL_ALIGN_SZ, 0);
7853 
7854 	if (!phba->lpfc_cmd_rsp_buf_pool)
7855 		goto fail_free_dma_buf_pool;
7856 
7857 	/*
7858 	 * Enable sr-iov virtual functions if supported and configured
7859 	 * through the module parameter.
7860 	 */
7861 	if (phba->cfg_sriov_nr_virtfn > 0) {
7862 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7863 						 phba->cfg_sriov_nr_virtfn);
7864 		if (rc) {
7865 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7866 					"2808 Requested number of SR-IOV "
7867 					"virtual functions (%d) is not "
7868 					"supported\n",
7869 					phba->cfg_sriov_nr_virtfn);
7870 			phba->cfg_sriov_nr_virtfn = 0;
7871 		}
7872 	}
7873 
7874 	return 0;
7875 
7876 fail_free_dma_buf_pool:
7877 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7878 	phba->lpfc_sg_dma_buf_pool = NULL;
7879 fail_free_mem:
7880 	lpfc_mem_free(phba);
7881 	return -ENOMEM;
7882 }
7883 
7884 /**
7885  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7886  * @phba: pointer to lpfc hba data structure.
7887  *
7888  * This routine is invoked to unset the driver internal resources set up
7889  * specific for supporting the SLI-3 HBA device it attached to.
7890  **/
7891 static void
7892 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7893 {
7894 	/* Free device driver memory allocated */
7895 	lpfc_mem_free_all(phba);
7896 
7897 	return;
7898 }
7899 
7900 /**
7901  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7902  * @phba: pointer to lpfc hba data structure.
7903  *
7904  * This routine is invoked to set up the driver internal resources specific to
7905  * support the SLI-4 HBA device it attached to.
7906  *
7907  * Return codes
7908  * 	0 - successful
7909  * 	other values - error
7910  **/
7911 static int
7912 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7913 {
7914 	LPFC_MBOXQ_t *mboxq;
7915 	MAILBOX_t *mb;
7916 	int rc, i, max_buf_size;
7917 	int longs;
7918 	int extra;
7919 	uint64_t wwn;
7920 	u32 if_type;
7921 	u32 if_fam;
7922 
7923 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7924 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7925 	phba->sli4_hba.curr_disp_cpu = 0;
7926 
7927 	/* Get all the module params for configuring this host */
7928 	lpfc_get_cfgparam(phba);
7929 
7930 	/* Set up phase-1 common device driver resources */
7931 	rc = lpfc_setup_driver_resource_phase1(phba);
7932 	if (rc)
7933 		return -ENODEV;
7934 
7935 	/* Before proceed, wait for POST done and device ready */
7936 	rc = lpfc_sli4_post_status_check(phba);
7937 	if (rc)
7938 		return -ENODEV;
7939 
7940 	/* Allocate all driver workqueues here */
7941 
7942 	/* The lpfc_wq workqueue for deferred irq use */
7943 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7944 	if (!phba->wq)
7945 		return -ENOMEM;
7946 
7947 	/*
7948 	 * Initialize timers used by driver
7949 	 */
7950 
7951 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7952 
7953 	/* FCF rediscover timer */
7954 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7955 
7956 	/* CMF congestion timer */
7957 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7958 	phba->cmf_timer.function = lpfc_cmf_timer;
7959 	/* CMF 1 minute stats collection timer */
7960 	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7961 	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7962 
7963 	/*
7964 	 * Control structure for handling external multi-buffer mailbox
7965 	 * command pass-through.
7966 	 */
7967 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7968 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7969 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7970 
7971 	phba->max_vpi = LPFC_MAX_VPI;
7972 
7973 	/* This will be set to correct value after the read_config mbox */
7974 	phba->max_vports = 0;
7975 
7976 	/* Program the default value of vlan_id and fc_map */
7977 	phba->valid_vlan = 0;
7978 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7979 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7980 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7981 
7982 	/*
7983 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7984 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7985 	 * The WQ create will allocate the ring.
7986 	 */
7987 
7988 	/* Initialize buffer queue management fields */
7989 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7990 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7991 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7992 
7993 	/* for VMID idle timeout if VMID is enabled */
7994 	if (lpfc_is_vmid_enabled(phba))
7995 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7996 
7997 	/*
7998 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7999 	 */
8000 	/* Initialize the Abort buffer list used by driver */
8001 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8002 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8003 
8004 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8005 		/* Initialize the Abort nvme buffer list used by driver */
8006 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8007 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8008 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8009 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8010 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8011 	}
8012 
8013 	/* This abort list used by worker thread */
8014 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8015 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8016 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8017 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8018 
8019 	/*
8020 	 * Initialize driver internal slow-path work queues
8021 	 */
8022 
8023 	/* Driver internel slow-path CQ Event pool */
8024 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8025 	/* Response IOCB work queue list */
8026 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8027 	/* Asynchronous event CQ Event work queue list */
8028 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8029 	/* Slow-path XRI aborted CQ Event work queue list */
8030 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8031 	/* Receive queue CQ Event work queue list */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8033 
8034 	/* Initialize extent block lists. */
8035 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8036 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8037 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8038 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8039 
8040 	/* Initialize mboxq lists. If the early init routines fail
8041 	 * these lists need to be correctly initialized.
8042 	 */
8043 	INIT_LIST_HEAD(&phba->sli.mboxq);
8044 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8045 
8046 	/* initialize optic_state to 0xFF */
8047 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8048 
8049 	/* Allocate device driver memory */
8050 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8051 	if (rc)
8052 		goto out_destroy_workqueue;
8053 
8054 	/* IF Type 2 ports get initialized now. */
8055 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8056 	    LPFC_SLI_INTF_IF_TYPE_2) {
8057 		rc = lpfc_pci_function_reset(phba);
8058 		if (unlikely(rc)) {
8059 			rc = -ENODEV;
8060 			goto out_free_mem;
8061 		}
8062 		phba->temp_sensor_support = 1;
8063 	}
8064 
8065 	/* Create the bootstrap mailbox command */
8066 	rc = lpfc_create_bootstrap_mbox(phba);
8067 	if (unlikely(rc))
8068 		goto out_free_mem;
8069 
8070 	/* Set up the host's endian order with the device. */
8071 	rc = lpfc_setup_endian_order(phba);
8072 	if (unlikely(rc))
8073 		goto out_free_bsmbx;
8074 
8075 	/* Set up the hba's configuration parameters. */
8076 	rc = lpfc_sli4_read_config(phba);
8077 	if (unlikely(rc))
8078 		goto out_free_bsmbx;
8079 
8080 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8081 		/* Right now the link is down, if FA-PWWN is configured the
8082 		 * firmware will try FLOGI before the driver gets a link up.
8083 		 * If it fails, the driver should get a MISCONFIGURED async
8084 		 * event which will clear this flag. The only notification
8085 		 * the driver gets is if it fails, if it succeeds there is no
8086 		 * notification given. Assume success.
8087 		 */
8088 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8089 	}
8090 
8091 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8092 	if (unlikely(rc))
8093 		goto out_free_bsmbx;
8094 
8095 	/* IF Type 0 ports get initialized now. */
8096 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8097 	    LPFC_SLI_INTF_IF_TYPE_0) {
8098 		rc = lpfc_pci_function_reset(phba);
8099 		if (unlikely(rc))
8100 			goto out_free_bsmbx;
8101 	}
8102 
8103 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8104 						       GFP_KERNEL);
8105 	if (!mboxq) {
8106 		rc = -ENOMEM;
8107 		goto out_free_bsmbx;
8108 	}
8109 
8110 	/* Check for NVMET being configured */
8111 	phba->nvmet_support = 0;
8112 	if (lpfc_enable_nvmet_cnt) {
8113 
8114 		/* First get WWN of HBA instance */
8115 		lpfc_read_nv(phba, mboxq);
8116 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8117 		if (rc != MBX_SUCCESS) {
8118 			lpfc_printf_log(phba, KERN_ERR,
8119 					LOG_TRACE_EVENT,
8120 					"6016 Mailbox failed , mbxCmd x%x "
8121 					"READ_NV, mbxStatus x%x\n",
8122 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8123 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8124 			mempool_free(mboxq, phba->mbox_mem_pool);
8125 			rc = -EIO;
8126 			goto out_free_bsmbx;
8127 		}
8128 		mb = &mboxq->u.mb;
8129 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8130 		       sizeof(uint64_t));
8131 		wwn = cpu_to_be64(wwn);
8132 		phba->sli4_hba.wwnn.u.name = wwn;
8133 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8134 		       sizeof(uint64_t));
8135 		/* wwn is WWPN of HBA instance */
8136 		wwn = cpu_to_be64(wwn);
8137 		phba->sli4_hba.wwpn.u.name = wwn;
8138 
8139 		/* Check to see if it matches any module parameter */
8140 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8141 			if (wwn == lpfc_enable_nvmet[i]) {
8142 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8143 				if (lpfc_nvmet_mem_alloc(phba))
8144 					break;
8145 
8146 				phba->nvmet_support = 1; /* a match */
8147 
8148 				lpfc_printf_log(phba, KERN_ERR,
8149 						LOG_TRACE_EVENT,
8150 						"6017 NVME Target %016llx\n",
8151 						wwn);
8152 #else
8153 				lpfc_printf_log(phba, KERN_ERR,
8154 						LOG_TRACE_EVENT,
8155 						"6021 Can't enable NVME Target."
8156 						" NVME_TARGET_FC infrastructure"
8157 						" is not in kernel\n");
8158 #endif
8159 				/* Not supported for NVMET */
8160 				phba->cfg_xri_rebalancing = 0;
8161 				if (phba->irq_chann_mode == NHT_MODE) {
8162 					phba->cfg_irq_chann =
8163 						phba->sli4_hba.num_present_cpu;
8164 					phba->cfg_hdw_queue =
8165 						phba->sli4_hba.num_present_cpu;
8166 					phba->irq_chann_mode = NORMAL_MODE;
8167 				}
8168 				break;
8169 			}
8170 		}
8171 	}
8172 
8173 	lpfc_nvme_mod_param_dep(phba);
8174 
8175 	/*
8176 	 * Get sli4 parameters that override parameters from Port capabilities.
8177 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8178 	 * back in conflict.
8179 	 */
8180 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8181 	if (rc) {
8182 		if_type = bf_get(lpfc_sli_intf_if_type,
8183 				 &phba->sli4_hba.sli_intf);
8184 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8185 				&phba->sli4_hba.sli_intf);
8186 		if (phba->sli4_hba.extents_in_use &&
8187 		    phba->sli4_hba.rpi_hdrs_in_use) {
8188 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8189 					"2999 Unsupported SLI4 Parameters "
8190 					"Extents and RPI headers enabled.\n");
8191 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8192 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8193 				mempool_free(mboxq, phba->mbox_mem_pool);
8194 				rc = -EIO;
8195 				goto out_free_bsmbx;
8196 			}
8197 		}
8198 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8199 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8200 			mempool_free(mboxq, phba->mbox_mem_pool);
8201 			rc = -EIO;
8202 			goto out_free_bsmbx;
8203 		}
8204 	}
8205 
8206 	/*
8207 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8208 	 * for boundary conditions in its max_sgl_segment template.
8209 	 */
8210 	extra = 2;
8211 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8212 		extra++;
8213 
8214 	/*
8215 	 * It doesn't matter what family our adapter is in, we are
8216 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8217 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8218 	 */
8219 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8220 
8221 	/*
8222 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8223 	 * used to create the sg_dma_buf_pool must be calculated.
8224 	 */
8225 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8226 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8227 
8228 		/*
8229 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8230 		 * the FCP rsp, and a SGE. Sice we have no control
8231 		 * over how many protection segments the SCSI Layer
8232 		 * will hand us (ie: there could be one for every block
8233 		 * in the IO), just allocate enough SGEs to accomidate
8234 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8235 		 * to minimize the risk of running out.
8236 		 */
8237 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8238 				sizeof(struct fcp_rsp) + max_buf_size;
8239 
8240 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8241 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8242 
8243 		/*
8244 		 * If supporting DIF, reduce the seg count for scsi to
8245 		 * allow room for the DIF sges.
8246 		 */
8247 		if (phba->cfg_enable_bg &&
8248 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8249 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8250 		else
8251 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8252 
8253 	} else {
8254 		/*
8255 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8256 		 * the FCP rsp, a SGE for each, and a SGE for up to
8257 		 * cfg_sg_seg_cnt data segments.
8258 		 */
8259 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8260 				sizeof(struct fcp_rsp) +
8261 				((phba->cfg_sg_seg_cnt + extra) *
8262 				sizeof(struct sli4_sge));
8263 
8264 		/* Total SGEs for scsi_sg_list */
8265 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8266 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8267 
8268 		/*
8269 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8270 		 * need to post 1 page for the SGL.
8271 		 */
8272 	}
8273 
8274 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8275 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8276 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8277 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8278 	else
8279 		phba->cfg_sg_dma_buf_size =
8280 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8281 
8282 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8283 			       sizeof(struct sli4_sge);
8284 
8285 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8286 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8287 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8288 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8289 					"6300 Reducing NVME sg segment "
8290 					"cnt to %d\n",
8291 					LPFC_MAX_NVME_SEG_CNT);
8292 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8293 		} else
8294 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8295 	}
8296 
8297 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8298 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8299 			"total:%d scsi:%d nvme:%d\n",
8300 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8301 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8302 			phba->cfg_nvme_seg_cnt);
8303 
8304 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8305 		i = phba->cfg_sg_dma_buf_size;
8306 	else
8307 		i = SLI4_PAGE_SIZE;
8308 
8309 	phba->lpfc_sg_dma_buf_pool =
8310 			dma_pool_create("lpfc_sg_dma_buf_pool",
8311 					&phba->pcidev->dev,
8312 					phba->cfg_sg_dma_buf_size,
8313 					i, 0);
8314 	if (!phba->lpfc_sg_dma_buf_pool) {
8315 		rc = -ENOMEM;
8316 		goto out_free_bsmbx;
8317 	}
8318 
8319 	phba->lpfc_cmd_rsp_buf_pool =
8320 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8321 					&phba->pcidev->dev,
8322 					sizeof(struct fcp_cmnd32) +
8323 					sizeof(struct fcp_rsp),
8324 					i, 0);
8325 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8326 		rc = -ENOMEM;
8327 		goto out_free_sg_dma_buf;
8328 	}
8329 
8330 	mempool_free(mboxq, phba->mbox_mem_pool);
8331 
8332 	/* Verify OAS is supported */
8333 	lpfc_sli4_oas_verify(phba);
8334 
8335 	/* Verify RAS support on adapter */
8336 	lpfc_sli4_ras_init(phba);
8337 
8338 	/* Verify all the SLI4 queues */
8339 	rc = lpfc_sli4_queue_verify(phba);
8340 	if (rc)
8341 		goto out_free_cmd_rsp_buf;
8342 
8343 	/* Create driver internal CQE event pool */
8344 	rc = lpfc_sli4_cq_event_pool_create(phba);
8345 	if (rc)
8346 		goto out_free_cmd_rsp_buf;
8347 
8348 	/* Initialize sgl lists per host */
8349 	lpfc_init_sgl_list(phba);
8350 
8351 	/* Allocate and initialize active sgl array */
8352 	rc = lpfc_init_active_sgl_array(phba);
8353 	if (rc) {
8354 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8355 				"1430 Failed to initialize sgl list.\n");
8356 		goto out_destroy_cq_event_pool;
8357 	}
8358 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8359 	if (rc) {
8360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8361 				"1432 Failed to initialize rpi headers.\n");
8362 		goto out_free_active_sgl;
8363 	}
8364 
8365 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8366 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8367 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8368 					 GFP_KERNEL);
8369 	if (!phba->fcf.fcf_rr_bmask) {
8370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8371 				"2759 Failed allocate memory for FCF round "
8372 				"robin failover bmask\n");
8373 		rc = -ENOMEM;
8374 		goto out_remove_rpi_hdrs;
8375 	}
8376 
8377 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8378 					    sizeof(struct lpfc_hba_eq_hdl),
8379 					    GFP_KERNEL);
8380 	if (!phba->sli4_hba.hba_eq_hdl) {
8381 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8382 				"2572 Failed allocate memory for "
8383 				"fast-path per-EQ handle array\n");
8384 		rc = -ENOMEM;
8385 		goto out_free_fcf_rr_bmask;
8386 	}
8387 
8388 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8389 					sizeof(struct lpfc_vector_map_info),
8390 					GFP_KERNEL);
8391 	if (!phba->sli4_hba.cpu_map) {
8392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8393 				"3327 Failed allocate memory for msi-x "
8394 				"interrupt vector mapping\n");
8395 		rc = -ENOMEM;
8396 		goto out_free_hba_eq_hdl;
8397 	}
8398 
8399 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8400 	if (!phba->sli4_hba.eq_info) {
8401 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8402 				"3321 Failed allocation for per_cpu stats\n");
8403 		rc = -ENOMEM;
8404 		goto out_free_hba_cpu_map;
8405 	}
8406 
8407 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8408 					   sizeof(*phba->sli4_hba.idle_stat),
8409 					   GFP_KERNEL);
8410 	if (!phba->sli4_hba.idle_stat) {
8411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8412 				"3390 Failed allocation for idle_stat\n");
8413 		rc = -ENOMEM;
8414 		goto out_free_hba_eq_info;
8415 	}
8416 
8417 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8418 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8419 	if (!phba->sli4_hba.c_stat) {
8420 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8421 				"3332 Failed allocating per cpu hdwq stats\n");
8422 		rc = -ENOMEM;
8423 		goto out_free_hba_idle_stat;
8424 	}
8425 #endif
8426 
8427 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8428 	if (!phba->cmf_stat) {
8429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8430 				"3331 Failed allocating per cpu cgn stats\n");
8431 		rc = -ENOMEM;
8432 		goto out_free_hba_hdwq_info;
8433 	}
8434 
8435 	/*
8436 	 * Enable sr-iov virtual functions if supported and configured
8437 	 * through the module parameter.
8438 	 */
8439 	if (phba->cfg_sriov_nr_virtfn > 0) {
8440 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8441 						 phba->cfg_sriov_nr_virtfn);
8442 		if (rc) {
8443 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8444 					"3020 Requested number of SR-IOV "
8445 					"virtual functions (%d) is not "
8446 					"supported\n",
8447 					phba->cfg_sriov_nr_virtfn);
8448 			phba->cfg_sriov_nr_virtfn = 0;
8449 		}
8450 	}
8451 
8452 	return 0;
8453 
8454 out_free_hba_hdwq_info:
8455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8456 	free_percpu(phba->sli4_hba.c_stat);
8457 out_free_hba_idle_stat:
8458 #endif
8459 	kfree(phba->sli4_hba.idle_stat);
8460 out_free_hba_eq_info:
8461 	free_percpu(phba->sli4_hba.eq_info);
8462 out_free_hba_cpu_map:
8463 	kfree(phba->sli4_hba.cpu_map);
8464 out_free_hba_eq_hdl:
8465 	kfree(phba->sli4_hba.hba_eq_hdl);
8466 out_free_fcf_rr_bmask:
8467 	kfree(phba->fcf.fcf_rr_bmask);
8468 out_remove_rpi_hdrs:
8469 	lpfc_sli4_remove_rpi_hdrs(phba);
8470 out_free_active_sgl:
8471 	lpfc_free_active_sgl(phba);
8472 out_destroy_cq_event_pool:
8473 	lpfc_sli4_cq_event_pool_destroy(phba);
8474 out_free_cmd_rsp_buf:
8475 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8476 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8477 out_free_sg_dma_buf:
8478 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8479 	phba->lpfc_sg_dma_buf_pool = NULL;
8480 out_free_bsmbx:
8481 	lpfc_destroy_bootstrap_mbox(phba);
8482 out_free_mem:
8483 	lpfc_mem_free(phba);
8484 out_destroy_workqueue:
8485 	destroy_workqueue(phba->wq);
8486 	phba->wq = NULL;
8487 	return rc;
8488 }
8489 
8490 /**
8491  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8492  * @phba: pointer to lpfc hba data structure.
8493  *
8494  * This routine is invoked to unset the driver internal resources set up
8495  * specific for supporting the SLI-4 HBA device it attached to.
8496  **/
8497 static void
8498 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8499 {
8500 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8501 
8502 	free_percpu(phba->sli4_hba.eq_info);
8503 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8504 	free_percpu(phba->sli4_hba.c_stat);
8505 #endif
8506 	free_percpu(phba->cmf_stat);
8507 	kfree(phba->sli4_hba.idle_stat);
8508 
8509 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8510 	kfree(phba->sli4_hba.cpu_map);
8511 	phba->sli4_hba.num_possible_cpu = 0;
8512 	phba->sli4_hba.num_present_cpu = 0;
8513 	phba->sli4_hba.curr_disp_cpu = 0;
8514 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8515 
8516 	/* Free memory allocated for fast-path work queue handles */
8517 	kfree(phba->sli4_hba.hba_eq_hdl);
8518 
8519 	/* Free the allocated rpi headers. */
8520 	lpfc_sli4_remove_rpi_hdrs(phba);
8521 	lpfc_sli4_remove_rpis(phba);
8522 
8523 	/* Free eligible FCF index bmask */
8524 	kfree(phba->fcf.fcf_rr_bmask);
8525 
8526 	/* Free the ELS sgl list */
8527 	lpfc_free_active_sgl(phba);
8528 	lpfc_free_els_sgl_list(phba);
8529 	lpfc_free_nvmet_sgl_list(phba);
8530 
8531 	/* Free the completion queue EQ event pool */
8532 	lpfc_sli4_cq_event_release_all(phba);
8533 	lpfc_sli4_cq_event_pool_destroy(phba);
8534 
8535 	/* Release resource identifiers. */
8536 	lpfc_sli4_dealloc_resource_identifiers(phba);
8537 
8538 	/* Free the bsmbx region. */
8539 	lpfc_destroy_bootstrap_mbox(phba);
8540 
8541 	/* Free the SLI Layer memory with SLI4 HBAs */
8542 	lpfc_mem_free_all(phba);
8543 
8544 	/* Free the current connect table */
8545 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8546 		&phba->fcf_conn_rec_list, list) {
8547 		list_del_init(&conn_entry->list);
8548 		kfree(conn_entry);
8549 	}
8550 
8551 	return;
8552 }
8553 
8554 /**
8555  * lpfc_init_api_table_setup - Set up init api function jump table
8556  * @phba: The hba struct for which this call is being executed.
8557  * @dev_grp: The HBA PCI-Device group number.
8558  *
8559  * This routine sets up the device INIT interface API function jump table
8560  * in @phba struct.
8561  *
8562  * Returns: 0 - success, -ENODEV - failure.
8563  **/
8564 int
8565 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8566 {
8567 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8568 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8569 	phba->lpfc_selective_reset = lpfc_selective_reset;
8570 	switch (dev_grp) {
8571 	case LPFC_PCI_DEV_LP:
8572 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8573 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8574 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8575 		break;
8576 	case LPFC_PCI_DEV_OC:
8577 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8578 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8579 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8580 		break;
8581 	default:
8582 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8583 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8584 				dev_grp);
8585 		return -ENODEV;
8586 	}
8587 	return 0;
8588 }
8589 
8590 /**
8591  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8592  * @phba: pointer to lpfc hba data structure.
8593  *
8594  * This routine is invoked to set up the driver internal resources after the
8595  * device specific resource setup to support the HBA device it attached to.
8596  *
8597  * Return codes
8598  * 	0 - successful
8599  * 	other values - error
8600  **/
8601 static int
8602 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8603 {
8604 	int error;
8605 
8606 	/* Startup the kernel thread for this host adapter. */
8607 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8608 					  "lpfc_worker_%d", phba->brd_no);
8609 	if (IS_ERR(phba->worker_thread)) {
8610 		error = PTR_ERR(phba->worker_thread);
8611 		return error;
8612 	}
8613 
8614 	return 0;
8615 }
8616 
8617 /**
8618  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8619  * @phba: pointer to lpfc hba data structure.
8620  *
8621  * This routine is invoked to unset the driver internal resources set up after
8622  * the device specific resource setup for supporting the HBA device it
8623  * attached to.
8624  **/
8625 static void
8626 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8627 {
8628 	if (phba->wq) {
8629 		destroy_workqueue(phba->wq);
8630 		phba->wq = NULL;
8631 	}
8632 
8633 	/* Stop kernel worker thread */
8634 	if (phba->worker_thread)
8635 		kthread_stop(phba->worker_thread);
8636 }
8637 
8638 /**
8639  * lpfc_free_iocb_list - Free iocb list.
8640  * @phba: pointer to lpfc hba data structure.
8641  *
8642  * This routine is invoked to free the driver's IOCB list and memory.
8643  **/
8644 void
8645 lpfc_free_iocb_list(struct lpfc_hba *phba)
8646 {
8647 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8648 
8649 	spin_lock_irq(&phba->hbalock);
8650 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8651 				 &phba->lpfc_iocb_list, list) {
8652 		list_del(&iocbq_entry->list);
8653 		kfree(iocbq_entry);
8654 		phba->total_iocbq_bufs--;
8655 	}
8656 	spin_unlock_irq(&phba->hbalock);
8657 
8658 	return;
8659 }
8660 
8661 /**
8662  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8663  * @phba: pointer to lpfc hba data structure.
8664  * @iocb_count: number of requested iocbs
8665  *
8666  * This routine is invoked to allocate and initizlize the driver's IOCB
8667  * list and set up the IOCB tag array accordingly.
8668  *
8669  * Return codes
8670  *	0 - successful
8671  *	other values - error
8672  **/
8673 int
8674 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8675 {
8676 	struct lpfc_iocbq *iocbq_entry = NULL;
8677 	uint16_t iotag;
8678 	int i;
8679 
8680 	/* Initialize and populate the iocb list per host.  */
8681 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8682 	for (i = 0; i < iocb_count; i++) {
8683 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8684 		if (iocbq_entry == NULL) {
8685 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8686 				"expected %d count. Unloading driver.\n",
8687 				__func__, i, iocb_count);
8688 			goto out_free_iocbq;
8689 		}
8690 
8691 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8692 		if (iotag == 0) {
8693 			kfree(iocbq_entry);
8694 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8695 				"Unloading driver.\n", __func__);
8696 			goto out_free_iocbq;
8697 		}
8698 		iocbq_entry->sli4_lxritag = NO_XRI;
8699 		iocbq_entry->sli4_xritag = NO_XRI;
8700 
8701 		spin_lock_irq(&phba->hbalock);
8702 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8703 		phba->total_iocbq_bufs++;
8704 		spin_unlock_irq(&phba->hbalock);
8705 	}
8706 
8707 	return 0;
8708 
8709 out_free_iocbq:
8710 	lpfc_free_iocb_list(phba);
8711 
8712 	return -ENOMEM;
8713 }
8714 
8715 /**
8716  * lpfc_free_sgl_list - Free a given sgl list.
8717  * @phba: pointer to lpfc hba data structure.
8718  * @sglq_list: pointer to the head of sgl list.
8719  *
8720  * This routine is invoked to free a give sgl list and memory.
8721  **/
8722 void
8723 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8724 {
8725 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8726 
8727 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8728 		list_del(&sglq_entry->list);
8729 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8730 		kfree(sglq_entry);
8731 	}
8732 }
8733 
8734 /**
8735  * lpfc_free_els_sgl_list - Free els sgl list.
8736  * @phba: pointer to lpfc hba data structure.
8737  *
8738  * This routine is invoked to free the driver's els sgl list and memory.
8739  **/
8740 static void
8741 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8742 {
8743 	LIST_HEAD(sglq_list);
8744 
8745 	/* Retrieve all els sgls from driver list */
8746 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8747 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8748 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8749 
8750 	/* Now free the sgl list */
8751 	lpfc_free_sgl_list(phba, &sglq_list);
8752 }
8753 
8754 /**
8755  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8756  * @phba: pointer to lpfc hba data structure.
8757  *
8758  * This routine is invoked to free the driver's nvmet sgl list and memory.
8759  **/
8760 static void
8761 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8762 {
8763 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8764 	LIST_HEAD(sglq_list);
8765 
8766 	/* Retrieve all nvmet sgls from driver list */
8767 	spin_lock_irq(&phba->hbalock);
8768 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8769 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8770 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8771 	spin_unlock_irq(&phba->hbalock);
8772 
8773 	/* Now free the sgl list */
8774 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8775 		list_del(&sglq_entry->list);
8776 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8777 		kfree(sglq_entry);
8778 	}
8779 
8780 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8781 	 * The next initialization cycle sets the count and allocates
8782 	 * the sgls over again.
8783 	 */
8784 	phba->sli4_hba.nvmet_xri_cnt = 0;
8785 }
8786 
8787 /**
8788  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8789  * @phba: pointer to lpfc hba data structure.
8790  *
8791  * This routine is invoked to allocate the driver's active sgl memory.
8792  * This array will hold the sglq_entry's for active IOs.
8793  **/
8794 static int
8795 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8796 {
8797 	int size;
8798 	size = sizeof(struct lpfc_sglq *);
8799 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8800 
8801 	phba->sli4_hba.lpfc_sglq_active_list =
8802 		kzalloc(size, GFP_KERNEL);
8803 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8804 		return -ENOMEM;
8805 	return 0;
8806 }
8807 
8808 /**
8809  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8810  * @phba: pointer to lpfc hba data structure.
8811  *
8812  * This routine is invoked to walk through the array of active sglq entries
8813  * and free all of the resources.
8814  * This is just a place holder for now.
8815  **/
8816 static void
8817 lpfc_free_active_sgl(struct lpfc_hba *phba)
8818 {
8819 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8820 }
8821 
8822 /**
8823  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8824  * @phba: pointer to lpfc hba data structure.
8825  *
8826  * This routine is invoked to allocate and initizlize the driver's sgl
8827  * list and set up the sgl xritag tag array accordingly.
8828  *
8829  **/
8830 static void
8831 lpfc_init_sgl_list(struct lpfc_hba *phba)
8832 {
8833 	/* Initialize and populate the sglq list per host/VF. */
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8835 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8836 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8837 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8838 
8839 	/* els xri-sgl book keeping */
8840 	phba->sli4_hba.els_xri_cnt = 0;
8841 
8842 	/* nvme xri-buffer book keeping */
8843 	phba->sli4_hba.io_xri_cnt = 0;
8844 }
8845 
8846 /**
8847  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8848  * @phba: pointer to lpfc hba data structure.
8849  *
8850  * This routine is invoked to post rpi header templates to the
8851  * port for those SLI4 ports that do not support extents.  This routine
8852  * posts a PAGE_SIZE memory region to the port to hold up to
8853  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8854  * and should be called only when interrupts are disabled.
8855  *
8856  * Return codes
8857  * 	0 - successful
8858  *	-ERROR - otherwise.
8859  **/
8860 int
8861 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8862 {
8863 	int rc = 0;
8864 	struct lpfc_rpi_hdr *rpi_hdr;
8865 
8866 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8867 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8868 		return rc;
8869 	if (phba->sli4_hba.extents_in_use)
8870 		return -EIO;
8871 
8872 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8873 	if (!rpi_hdr) {
8874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8875 				"0391 Error during rpi post operation\n");
8876 		lpfc_sli4_remove_rpis(phba);
8877 		rc = -ENODEV;
8878 	}
8879 
8880 	return rc;
8881 }
8882 
8883 /**
8884  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8885  * @phba: pointer to lpfc hba data structure.
8886  *
8887  * This routine is invoked to allocate a single 4KB memory region to
8888  * support rpis and stores them in the phba.  This single region
8889  * provides support for up to 64 rpis.  The region is used globally
8890  * by the device.
8891  *
8892  * Returns:
8893  *   A valid rpi hdr on success.
8894  *   A NULL pointer on any failure.
8895  **/
8896 struct lpfc_rpi_hdr *
8897 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8898 {
8899 	uint16_t rpi_limit, curr_rpi_range;
8900 	struct lpfc_dmabuf *dmabuf;
8901 	struct lpfc_rpi_hdr *rpi_hdr;
8902 
8903 	/*
8904 	 * If the SLI4 port supports extents, posting the rpi header isn't
8905 	 * required.  Set the expected maximum count and let the actual value
8906 	 * get set when extents are fully allocated.
8907 	 */
8908 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8909 		return NULL;
8910 	if (phba->sli4_hba.extents_in_use)
8911 		return NULL;
8912 
8913 	/* The limit on the logical index is just the max_rpi count. */
8914 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8915 
8916 	spin_lock_irq(&phba->hbalock);
8917 	/*
8918 	 * Establish the starting RPI in this header block.  The starting
8919 	 * rpi is normalized to a zero base because the physical rpi is
8920 	 * port based.
8921 	 */
8922 	curr_rpi_range = phba->sli4_hba.next_rpi;
8923 	spin_unlock_irq(&phba->hbalock);
8924 
8925 	/* Reached full RPI range */
8926 	if (curr_rpi_range == rpi_limit)
8927 		return NULL;
8928 
8929 	/*
8930 	 * First allocate the protocol header region for the port.  The
8931 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8932 	 */
8933 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8934 	if (!dmabuf)
8935 		return NULL;
8936 
8937 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8938 					  LPFC_HDR_TEMPLATE_SIZE,
8939 					  &dmabuf->phys, GFP_KERNEL);
8940 	if (!dmabuf->virt) {
8941 		rpi_hdr = NULL;
8942 		goto err_free_dmabuf;
8943 	}
8944 
8945 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8946 		rpi_hdr = NULL;
8947 		goto err_free_coherent;
8948 	}
8949 
8950 	/* Save the rpi header data for cleanup later. */
8951 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8952 	if (!rpi_hdr)
8953 		goto err_free_coherent;
8954 
8955 	rpi_hdr->dmabuf = dmabuf;
8956 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8957 	rpi_hdr->page_count = 1;
8958 	spin_lock_irq(&phba->hbalock);
8959 
8960 	/* The rpi_hdr stores the logical index only. */
8961 	rpi_hdr->start_rpi = curr_rpi_range;
8962 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8963 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8964 
8965 	spin_unlock_irq(&phba->hbalock);
8966 	return rpi_hdr;
8967 
8968  err_free_coherent:
8969 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8970 			  dmabuf->virt, dmabuf->phys);
8971  err_free_dmabuf:
8972 	kfree(dmabuf);
8973 	return NULL;
8974 }
8975 
8976 /**
8977  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8978  * @phba: pointer to lpfc hba data structure.
8979  *
8980  * This routine is invoked to remove all memory resources allocated
8981  * to support rpis for SLI4 ports not supporting extents. This routine
8982  * presumes the caller has released all rpis consumed by fabric or port
8983  * logins and is prepared to have the header pages removed.
8984  **/
8985 void
8986 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8987 {
8988 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8989 
8990 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8991 		goto exit;
8992 
8993 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8994 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8995 		list_del(&rpi_hdr->list);
8996 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8997 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8998 		kfree(rpi_hdr->dmabuf);
8999 		kfree(rpi_hdr);
9000 	}
9001  exit:
9002 	/* There are no rpis available to the port now. */
9003 	phba->sli4_hba.next_rpi = 0;
9004 }
9005 
9006 /**
9007  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9008  * @pdev: pointer to pci device data structure.
9009  *
9010  * This routine is invoked to allocate the driver hba data structure for an
9011  * HBA device. If the allocation is successful, the phba reference to the
9012  * PCI device data structure is set.
9013  *
9014  * Return codes
9015  *      pointer to @phba - successful
9016  *      NULL - error
9017  **/
9018 static struct lpfc_hba *
9019 lpfc_hba_alloc(struct pci_dev *pdev)
9020 {
9021 	struct lpfc_hba *phba;
9022 
9023 	/* Allocate memory for HBA structure */
9024 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9025 	if (!phba) {
9026 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9027 		return NULL;
9028 	}
9029 
9030 	/* Set reference to PCI device in HBA structure */
9031 	phba->pcidev = pdev;
9032 
9033 	/* Assign an unused board number */
9034 	phba->brd_no = lpfc_get_instance();
9035 	if (phba->brd_no < 0) {
9036 		kfree(phba);
9037 		return NULL;
9038 	}
9039 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9040 
9041 	spin_lock_init(&phba->ct_ev_lock);
9042 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9043 
9044 	return phba;
9045 }
9046 
9047 /**
9048  * lpfc_hba_free - Free driver hba data structure with a device.
9049  * @phba: pointer to lpfc hba data structure.
9050  *
9051  * This routine is invoked to free the driver hba data structure with an
9052  * HBA device.
9053  **/
9054 static void
9055 lpfc_hba_free(struct lpfc_hba *phba)
9056 {
9057 	if (phba->sli_rev == LPFC_SLI_REV4)
9058 		kfree(phba->sli4_hba.hdwq);
9059 
9060 	/* Release the driver assigned board number */
9061 	idr_remove(&lpfc_hba_index, phba->brd_no);
9062 
9063 	/* Free memory allocated with sli3 rings */
9064 	kfree(phba->sli.sli3_ring);
9065 	phba->sli.sli3_ring = NULL;
9066 
9067 	kfree(phba);
9068 	return;
9069 }
9070 
9071 /**
9072  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9073  * @vport: pointer to lpfc vport data structure.
9074  *
9075  * This routine is will setup initial FDMI attribute masks for
9076  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9077  * to get these attributes first before falling back, the attribute
9078  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9079  **/
9080 void
9081 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9082 {
9083 	struct lpfc_hba *phba = vport->phba;
9084 
9085 	set_bit(FC_ALLOW_FDMI, &vport->load_flag);
9086 	if (phba->cfg_enable_SmartSAN ||
9087 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9088 		/* Setup appropriate attribute masks */
9089 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9090 		if (phba->cfg_enable_SmartSAN)
9091 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9092 		else
9093 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9094 	}
9095 
9096 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9097 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9098 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9099 }
9100 
9101 /**
9102  * lpfc_create_shost - Create hba physical port with associated scsi host.
9103  * @phba: pointer to lpfc hba data structure.
9104  *
9105  * This routine is invoked to create HBA physical port and associate a SCSI
9106  * host with it.
9107  *
9108  * Return codes
9109  *      0 - successful
9110  *      other values - error
9111  **/
9112 static int
9113 lpfc_create_shost(struct lpfc_hba *phba)
9114 {
9115 	struct lpfc_vport *vport;
9116 	struct Scsi_Host  *shost;
9117 
9118 	/* Initialize HBA FC structure */
9119 	phba->fc_edtov = FF_DEF_EDTOV;
9120 	phba->fc_ratov = FF_DEF_RATOV;
9121 	phba->fc_altov = FF_DEF_ALTOV;
9122 	phba->fc_arbtov = FF_DEF_ARBTOV;
9123 
9124 	atomic_set(&phba->sdev_cnt, 0);
9125 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9126 	if (!vport)
9127 		return -ENODEV;
9128 
9129 	shost = lpfc_shost_from_vport(vport);
9130 	phba->pport = vport;
9131 
9132 	if (phba->nvmet_support) {
9133 		/* Only 1 vport (pport) will support NVME target */
9134 		phba->targetport = NULL;
9135 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9136 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9137 				"6076 NVME Target Found\n");
9138 	}
9139 
9140 	lpfc_debugfs_initialize(vport);
9141 	/* Put reference to SCSI host to driver's device private data */
9142 	pci_set_drvdata(phba->pcidev, shost);
9143 
9144 	lpfc_setup_fdmi_mask(vport);
9145 
9146 	/*
9147 	 * At this point we are fully registered with PSA. In addition,
9148 	 * any initial discovery should be completed.
9149 	 */
9150 	return 0;
9151 }
9152 
9153 /**
9154  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9155  * @phba: pointer to lpfc hba data structure.
9156  *
9157  * This routine is invoked to destroy HBA physical port and the associated
9158  * SCSI host.
9159  **/
9160 static void
9161 lpfc_destroy_shost(struct lpfc_hba *phba)
9162 {
9163 	struct lpfc_vport *vport = phba->pport;
9164 
9165 	/* Destroy physical port that associated with the SCSI host */
9166 	destroy_port(vport);
9167 
9168 	return;
9169 }
9170 
9171 /**
9172  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9173  * @phba: pointer to lpfc hba data structure.
9174  * @shost: the shost to be used to detect Block guard settings.
9175  *
9176  * This routine sets up the local Block guard protocol settings for @shost.
9177  * This routine also allocates memory for debugging bg buffers.
9178  **/
9179 static void
9180 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9181 {
9182 	uint32_t old_mask;
9183 	uint32_t old_guard;
9184 
9185 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9186 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9187 				"1478 Registering BlockGuard with the "
9188 				"SCSI layer\n");
9189 
9190 		old_mask = phba->cfg_prot_mask;
9191 		old_guard = phba->cfg_prot_guard;
9192 
9193 		/* Only allow supported values */
9194 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9195 			SHOST_DIX_TYPE0_PROTECTION |
9196 			SHOST_DIX_TYPE1_PROTECTION);
9197 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9198 					 SHOST_DIX_GUARD_CRC);
9199 
9200 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9201 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9202 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9203 
9204 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9205 			if ((old_mask != phba->cfg_prot_mask) ||
9206 				(old_guard != phba->cfg_prot_guard))
9207 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9208 					"1475 Registering BlockGuard with the "
9209 					"SCSI layer: mask %d  guard %d\n",
9210 					phba->cfg_prot_mask,
9211 					phba->cfg_prot_guard);
9212 
9213 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9214 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9215 		} else
9216 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9217 				"1479 Not Registering BlockGuard with the SCSI "
9218 				"layer, Bad protection parameters: %d %d\n",
9219 				old_mask, old_guard);
9220 	}
9221 }
9222 
9223 /**
9224  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9225  * @phba: pointer to lpfc hba data structure.
9226  *
9227  * This routine is invoked to perform all the necessary post initialization
9228  * setup for the device.
9229  **/
9230 static void
9231 lpfc_post_init_setup(struct lpfc_hba *phba)
9232 {
9233 	struct Scsi_Host  *shost;
9234 	struct lpfc_adapter_event_header adapter_event;
9235 
9236 	/* Get the default values for Model Name and Description */
9237 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9238 
9239 	/*
9240 	 * hba setup may have changed the hba_queue_depth so we need to
9241 	 * adjust the value of can_queue.
9242 	 */
9243 	shost = pci_get_drvdata(phba->pcidev);
9244 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9245 
9246 	lpfc_host_attrib_init(shost);
9247 
9248 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9249 		spin_lock_irq(shost->host_lock);
9250 		lpfc_poll_start_timer(phba);
9251 		spin_unlock_irq(shost->host_lock);
9252 	}
9253 
9254 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9255 			"0428 Perform SCSI scan\n");
9256 	/* Send board arrival event to upper layer */
9257 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9258 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9259 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9260 				  sizeof(adapter_event),
9261 				  (char *) &adapter_event,
9262 				  LPFC_NL_VENDOR_ID);
9263 	return;
9264 }
9265 
9266 /**
9267  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9268  * @phba: pointer to lpfc hba data structure.
9269  *
9270  * This routine is invoked to set up the PCI device memory space for device
9271  * with SLI-3 interface spec.
9272  *
9273  * Return codes
9274  * 	0 - successful
9275  * 	other values - error
9276  **/
9277 static int
9278 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9279 {
9280 	struct pci_dev *pdev = phba->pcidev;
9281 	unsigned long bar0map_len, bar2map_len;
9282 	int i, hbq_count;
9283 	void *ptr;
9284 	int error;
9285 
9286 	if (!pdev)
9287 		return -ENODEV;
9288 
9289 	/* Set the device DMA mask size */
9290 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9291 	if (error)
9292 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9293 	if (error)
9294 		return error;
9295 	error = -ENODEV;
9296 
9297 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9298 	 * required by each mapping.
9299 	 */
9300 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9301 	bar0map_len = pci_resource_len(pdev, 0);
9302 
9303 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9304 	bar2map_len = pci_resource_len(pdev, 2);
9305 
9306 	/* Map HBA SLIM to a kernel virtual address. */
9307 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9308 	if (!phba->slim_memmap_p) {
9309 		dev_printk(KERN_ERR, &pdev->dev,
9310 			   "ioremap failed for SLIM memory.\n");
9311 		goto out;
9312 	}
9313 
9314 	/* Map HBA Control Registers to a kernel virtual address. */
9315 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9316 	if (!phba->ctrl_regs_memmap_p) {
9317 		dev_printk(KERN_ERR, &pdev->dev,
9318 			   "ioremap failed for HBA control registers.\n");
9319 		goto out_iounmap_slim;
9320 	}
9321 
9322 	/* Allocate memory for SLI-2 structures */
9323 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9324 					       &phba->slim2p.phys, GFP_KERNEL);
9325 	if (!phba->slim2p.virt)
9326 		goto out_iounmap;
9327 
9328 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9329 	phba->mbox_ext = (phba->slim2p.virt +
9330 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9331 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9332 	phba->IOCBs = (phba->slim2p.virt +
9333 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9334 
9335 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9336 						 lpfc_sli_hbq_size(),
9337 						 &phba->hbqslimp.phys,
9338 						 GFP_KERNEL);
9339 	if (!phba->hbqslimp.virt)
9340 		goto out_free_slim;
9341 
9342 	hbq_count = lpfc_sli_hbq_count();
9343 	ptr = phba->hbqslimp.virt;
9344 	for (i = 0; i < hbq_count; ++i) {
9345 		phba->hbqs[i].hbq_virt = ptr;
9346 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9347 		ptr += (lpfc_hbq_defs[i]->entry_count *
9348 			sizeof(struct lpfc_hbq_entry));
9349 	}
9350 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9351 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9352 
9353 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9354 
9355 	phba->MBslimaddr = phba->slim_memmap_p;
9356 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9357 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9358 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9359 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9360 
9361 	return 0;
9362 
9363 out_free_slim:
9364 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9365 			  phba->slim2p.virt, phba->slim2p.phys);
9366 out_iounmap:
9367 	iounmap(phba->ctrl_regs_memmap_p);
9368 out_iounmap_slim:
9369 	iounmap(phba->slim_memmap_p);
9370 out:
9371 	return error;
9372 }
9373 
9374 /**
9375  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9376  * @phba: pointer to lpfc hba data structure.
9377  *
9378  * This routine is invoked to unset the PCI device memory space for device
9379  * with SLI-3 interface spec.
9380  **/
9381 static void
9382 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9383 {
9384 	struct pci_dev *pdev;
9385 
9386 	/* Obtain PCI device reference */
9387 	if (!phba->pcidev)
9388 		return;
9389 	else
9390 		pdev = phba->pcidev;
9391 
9392 	/* Free coherent DMA memory allocated */
9393 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9394 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9395 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9396 			  phba->slim2p.virt, phba->slim2p.phys);
9397 
9398 	/* I/O memory unmap */
9399 	iounmap(phba->ctrl_regs_memmap_p);
9400 	iounmap(phba->slim_memmap_p);
9401 
9402 	return;
9403 }
9404 
9405 /**
9406  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9407  * @phba: pointer to lpfc hba data structure.
9408  *
9409  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9410  * done and check status.
9411  *
9412  * Return 0 if successful, otherwise -ENODEV.
9413  **/
9414 int
9415 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9416 {
9417 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9418 	struct lpfc_register reg_data;
9419 	int i, port_error = 0;
9420 	uint32_t if_type;
9421 
9422 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9423 	memset(&reg_data, 0, sizeof(reg_data));
9424 	if (!phba->sli4_hba.PSMPHRregaddr)
9425 		return -ENODEV;
9426 
9427 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9428 	for (i = 0; i < 3000; i++) {
9429 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9430 			&portsmphr_reg.word0) ||
9431 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9432 			/* Port has a fatal POST error, break out */
9433 			port_error = -ENODEV;
9434 			break;
9435 		}
9436 		if (LPFC_POST_STAGE_PORT_READY ==
9437 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9438 			break;
9439 		msleep(10);
9440 	}
9441 
9442 	/*
9443 	 * If there was a port error during POST, then don't proceed with
9444 	 * other register reads as the data may not be valid.  Just exit.
9445 	 */
9446 	if (port_error) {
9447 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9448 			"1408 Port Failed POST - portsmphr=0x%x, "
9449 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9450 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9451 			portsmphr_reg.word0,
9452 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9457 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9458 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9459 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9460 	} else {
9461 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9462 				"2534 Device Info: SLIFamily=0x%x, "
9463 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9464 				"SLIHint_2=0x%x, FT=0x%x\n",
9465 				bf_get(lpfc_sli_intf_sli_family,
9466 				       &phba->sli4_hba.sli_intf),
9467 				bf_get(lpfc_sli_intf_slirev,
9468 				       &phba->sli4_hba.sli_intf),
9469 				bf_get(lpfc_sli_intf_if_type,
9470 				       &phba->sli4_hba.sli_intf),
9471 				bf_get(lpfc_sli_intf_sli_hint1,
9472 				       &phba->sli4_hba.sli_intf),
9473 				bf_get(lpfc_sli_intf_sli_hint2,
9474 				       &phba->sli4_hba.sli_intf),
9475 				bf_get(lpfc_sli_intf_func_type,
9476 				       &phba->sli4_hba.sli_intf));
9477 		/*
9478 		 * Check for other Port errors during the initialization
9479 		 * process.  Fail the load if the port did not come up
9480 		 * correctly.
9481 		 */
9482 		if_type = bf_get(lpfc_sli_intf_if_type,
9483 				 &phba->sli4_hba.sli_intf);
9484 		switch (if_type) {
9485 		case LPFC_SLI_INTF_IF_TYPE_0:
9486 			phba->sli4_hba.ue_mask_lo =
9487 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9488 			phba->sli4_hba.ue_mask_hi =
9489 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9490 			uerrlo_reg.word0 =
9491 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9492 			uerrhi_reg.word0 =
9493 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9494 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9495 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9496 				lpfc_printf_log(phba, KERN_ERR,
9497 						LOG_TRACE_EVENT,
9498 						"1422 Unrecoverable Error "
9499 						"Detected during POST "
9500 						"uerr_lo_reg=0x%x, "
9501 						"uerr_hi_reg=0x%x, "
9502 						"ue_mask_lo_reg=0x%x, "
9503 						"ue_mask_hi_reg=0x%x\n",
9504 						uerrlo_reg.word0,
9505 						uerrhi_reg.word0,
9506 						phba->sli4_hba.ue_mask_lo,
9507 						phba->sli4_hba.ue_mask_hi);
9508 				port_error = -ENODEV;
9509 			}
9510 			break;
9511 		case LPFC_SLI_INTF_IF_TYPE_2:
9512 		case LPFC_SLI_INTF_IF_TYPE_6:
9513 			/* Final checks.  The port status should be clean. */
9514 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9515 				&reg_data.word0) ||
9516 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9517 				phba->work_status[0] =
9518 					readl(phba->sli4_hba.u.if_type2.
9519 					      ERR1regaddr);
9520 				phba->work_status[1] =
9521 					readl(phba->sli4_hba.u.if_type2.
9522 					      ERR2regaddr);
9523 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9524 					"2888 Unrecoverable port error "
9525 					"following POST: port status reg "
9526 					"0x%x, port_smphr reg 0x%x, "
9527 					"error 1=0x%x, error 2=0x%x\n",
9528 					reg_data.word0,
9529 					portsmphr_reg.word0,
9530 					phba->work_status[0],
9531 					phba->work_status[1]);
9532 				port_error = -ENODEV;
9533 				break;
9534 			}
9535 
9536 			if (lpfc_pldv_detect &&
9537 			    bf_get(lpfc_sli_intf_sli_family,
9538 				   &phba->sli4_hba.sli_intf) ==
9539 					LPFC_SLI_INTF_FAMILY_G6)
9540 				pci_write_config_byte(phba->pcidev,
9541 						      LPFC_SLI_INTF, CFG_PLD);
9542 			break;
9543 		case LPFC_SLI_INTF_IF_TYPE_1:
9544 		default:
9545 			break;
9546 		}
9547 	}
9548 	return port_error;
9549 }
9550 
9551 /**
9552  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9553  * @phba: pointer to lpfc hba data structure.
9554  * @if_type:  The SLI4 interface type getting configured.
9555  *
9556  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9557  * memory map.
9558  **/
9559 static void
9560 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9561 {
9562 	switch (if_type) {
9563 	case LPFC_SLI_INTF_IF_TYPE_0:
9564 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9565 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9566 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9567 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9568 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9569 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9570 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9572 		phba->sli4_hba.SLIINTFregaddr =
9573 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9574 		break;
9575 	case LPFC_SLI_INTF_IF_TYPE_2:
9576 		phba->sli4_hba.u.if_type2.EQDregaddr =
9577 			phba->sli4_hba.conf_regs_memmap_p +
9578 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9579 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9580 			phba->sli4_hba.conf_regs_memmap_p +
9581 						LPFC_CTL_PORT_ER1_OFFSET;
9582 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9583 			phba->sli4_hba.conf_regs_memmap_p +
9584 						LPFC_CTL_PORT_ER2_OFFSET;
9585 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9586 			phba->sli4_hba.conf_regs_memmap_p +
9587 						LPFC_CTL_PORT_CTL_OFFSET;
9588 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9589 			phba->sli4_hba.conf_regs_memmap_p +
9590 						LPFC_CTL_PORT_STA_OFFSET;
9591 		phba->sli4_hba.SLIINTFregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9593 		phba->sli4_hba.PSMPHRregaddr =
9594 			phba->sli4_hba.conf_regs_memmap_p +
9595 						LPFC_CTL_PORT_SEM_OFFSET;
9596 		phba->sli4_hba.RQDBregaddr =
9597 			phba->sli4_hba.conf_regs_memmap_p +
9598 						LPFC_ULP0_RQ_DOORBELL;
9599 		phba->sli4_hba.WQDBregaddr =
9600 			phba->sli4_hba.conf_regs_memmap_p +
9601 						LPFC_ULP0_WQ_DOORBELL;
9602 		phba->sli4_hba.CQDBregaddr =
9603 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9604 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9605 		phba->sli4_hba.MQDBregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9607 		phba->sli4_hba.BMBXregaddr =
9608 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9609 		break;
9610 	case LPFC_SLI_INTF_IF_TYPE_6:
9611 		phba->sli4_hba.u.if_type2.EQDregaddr =
9612 			phba->sli4_hba.conf_regs_memmap_p +
9613 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9614 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9615 			phba->sli4_hba.conf_regs_memmap_p +
9616 						LPFC_CTL_PORT_ER1_OFFSET;
9617 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p +
9619 						LPFC_CTL_PORT_ER2_OFFSET;
9620 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9621 			phba->sli4_hba.conf_regs_memmap_p +
9622 						LPFC_CTL_PORT_CTL_OFFSET;
9623 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p +
9625 						LPFC_CTL_PORT_STA_OFFSET;
9626 		phba->sli4_hba.PSMPHRregaddr =
9627 			phba->sli4_hba.conf_regs_memmap_p +
9628 						LPFC_CTL_PORT_SEM_OFFSET;
9629 		phba->sli4_hba.BMBXregaddr =
9630 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9631 		break;
9632 	case LPFC_SLI_INTF_IF_TYPE_1:
9633 	default:
9634 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9635 			   "FATAL - unsupported SLI4 interface type - %d\n",
9636 			   if_type);
9637 		break;
9638 	}
9639 }
9640 
9641 /**
9642  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9643  * @phba: pointer to lpfc hba data structure.
9644  * @if_type: sli if type to operate on.
9645  *
9646  * This routine is invoked to set up SLI4 BAR1 register memory map.
9647  **/
9648 static void
9649 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9650 {
9651 	switch (if_type) {
9652 	case LPFC_SLI_INTF_IF_TYPE_0:
9653 		phba->sli4_hba.PSMPHRregaddr =
9654 			phba->sli4_hba.ctrl_regs_memmap_p +
9655 			LPFC_SLIPORT_IF0_SMPHR;
9656 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9657 			LPFC_HST_ISR0;
9658 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9659 			LPFC_HST_IMR0;
9660 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9661 			LPFC_HST_ISCR0;
9662 		break;
9663 	case LPFC_SLI_INTF_IF_TYPE_6:
9664 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9665 			LPFC_IF6_RQ_DOORBELL;
9666 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9667 			LPFC_IF6_WQ_DOORBELL;
9668 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9669 			LPFC_IF6_CQ_DOORBELL;
9670 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_EQ_DOORBELL;
9672 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9673 			LPFC_IF6_MQ_DOORBELL;
9674 		break;
9675 	case LPFC_SLI_INTF_IF_TYPE_2:
9676 	case LPFC_SLI_INTF_IF_TYPE_1:
9677 	default:
9678 		dev_err(&phba->pcidev->dev,
9679 			   "FATAL - unsupported SLI4 interface type - %d\n",
9680 			   if_type);
9681 		break;
9682 	}
9683 }
9684 
9685 /**
9686  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9687  * @phba: pointer to lpfc hba data structure.
9688  * @vf: virtual function number
9689  *
9690  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9691  * based on the given viftual function number, @vf.
9692  *
9693  * Return 0 if successful, otherwise -ENODEV.
9694  **/
9695 static int
9696 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9697 {
9698 	if (vf > LPFC_VIR_FUNC_MAX)
9699 		return -ENODEV;
9700 
9701 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9702 				vf * LPFC_VFR_PAGE_SIZE +
9703 					LPFC_ULP0_RQ_DOORBELL);
9704 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9705 				vf * LPFC_VFR_PAGE_SIZE +
9706 					LPFC_ULP0_WQ_DOORBELL);
9707 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9708 				vf * LPFC_VFR_PAGE_SIZE +
9709 					LPFC_EQCQ_DOORBELL);
9710 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9711 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9713 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9714 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9715 	return 0;
9716 }
9717 
9718 /**
9719  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9720  * @phba: pointer to lpfc hba data structure.
9721  *
9722  * This routine is invoked to create the bootstrap mailbox
9723  * region consistent with the SLI-4 interface spec.  This
9724  * routine allocates all memory necessary to communicate
9725  * mailbox commands to the port and sets up all alignment
9726  * needs.  No locks are expected to be held when calling
9727  * this routine.
9728  *
9729  * Return codes
9730  * 	0 - successful
9731  * 	-ENOMEM - could not allocated memory.
9732  **/
9733 static int
9734 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9735 {
9736 	uint32_t bmbx_size;
9737 	struct lpfc_dmabuf *dmabuf;
9738 	struct dma_address *dma_address;
9739 	uint32_t pa_addr;
9740 	uint64_t phys_addr;
9741 
9742 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9743 	if (!dmabuf)
9744 		return -ENOMEM;
9745 
9746 	/*
9747 	 * The bootstrap mailbox region is comprised of 2 parts
9748 	 * plus an alignment restriction of 16 bytes.
9749 	 */
9750 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9751 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9752 					  &dmabuf->phys, GFP_KERNEL);
9753 	if (!dmabuf->virt) {
9754 		kfree(dmabuf);
9755 		return -ENOMEM;
9756 	}
9757 
9758 	/*
9759 	 * Initialize the bootstrap mailbox pointers now so that the register
9760 	 * operations are simple later.  The mailbox dma address is required
9761 	 * to be 16-byte aligned.  Also align the virtual memory as each
9762 	 * maibox is copied into the bmbx mailbox region before issuing the
9763 	 * command to the port.
9764 	 */
9765 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9766 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9767 
9768 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9769 					      LPFC_ALIGN_16_BYTE);
9770 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9771 					      LPFC_ALIGN_16_BYTE);
9772 
9773 	/*
9774 	 * Set the high and low physical addresses now.  The SLI4 alignment
9775 	 * requirement is 16 bytes and the mailbox is posted to the port
9776 	 * as two 30-bit addresses.  The other data is a bit marking whether
9777 	 * the 30-bit address is the high or low address.
9778 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9779 	 * clean on 32 bit machines.
9780 	 */
9781 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9782 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9783 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9784 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9785 					   LPFC_BMBX_BIT1_ADDR_HI);
9786 
9787 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9788 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9789 					   LPFC_BMBX_BIT1_ADDR_LO);
9790 	return 0;
9791 }
9792 
9793 /**
9794  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9795  * @phba: pointer to lpfc hba data structure.
9796  *
9797  * This routine is invoked to teardown the bootstrap mailbox
9798  * region and release all host resources. This routine requires
9799  * the caller to ensure all mailbox commands recovered, no
9800  * additional mailbox comands are sent, and interrupts are disabled
9801  * before calling this routine.
9802  *
9803  **/
9804 static void
9805 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9806 {
9807 	dma_free_coherent(&phba->pcidev->dev,
9808 			  phba->sli4_hba.bmbx.bmbx_size,
9809 			  phba->sli4_hba.bmbx.dmabuf->virt,
9810 			  phba->sli4_hba.bmbx.dmabuf->phys);
9811 
9812 	kfree(phba->sli4_hba.bmbx.dmabuf);
9813 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9814 }
9815 
9816 static const char * const lpfc_topo_to_str[] = {
9817 	"Loop then P2P",
9818 	"Loopback",
9819 	"P2P Only",
9820 	"Unsupported",
9821 	"Loop Only",
9822 	"Unsupported",
9823 	"P2P then Loop",
9824 };
9825 
9826 #define	LINK_FLAGS_DEF	0x0
9827 #define	LINK_FLAGS_P2P	0x1
9828 #define	LINK_FLAGS_LOOP	0x2
9829 /**
9830  * lpfc_map_topology - Map the topology read from READ_CONFIG
9831  * @phba: pointer to lpfc hba data structure.
9832  * @rd_config: pointer to read config data
9833  *
9834  * This routine is invoked to map the topology values as read
9835  * from the read config mailbox command. If the persistent
9836  * topology feature is supported, the firmware will provide the
9837  * saved topology information to be used in INIT_LINK
9838  **/
9839 static void
9840 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9841 {
9842 	u8 ptv, tf, pt;
9843 
9844 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9845 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9846 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9847 
9848 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9849 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9850 			 ptv, tf, pt);
9851 	if (!ptv) {
9852 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9853 				"2019 FW does not support persistent topology "
9854 				"Using driver parameter defined value [%s]",
9855 				lpfc_topo_to_str[phba->cfg_topology]);
9856 		return;
9857 	}
9858 	/* FW supports persistent topology - override module parameter value */
9859 	set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9860 
9861 	/* if ASIC_GEN_NUM >= 0xC) */
9862 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9863 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9864 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9865 		    LPFC_SLI_INTF_FAMILY_G6)) {
9866 		if (!tf)
9867 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9868 					? FLAGS_TOPOLOGY_MODE_LOOP
9869 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9870 		else
9871 			clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9872 	} else { /* G5 */
9873 		if (tf)
9874 			/* If topology failover set - pt is '0' or '1' */
9875 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9876 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9877 		else
9878 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9879 					? FLAGS_TOPOLOGY_MODE_PT_PT
9880 					: FLAGS_TOPOLOGY_MODE_LOOP);
9881 	}
9882 	if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag))
9883 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9884 				"2020 Using persistent topology value [%s]",
9885 				lpfc_topo_to_str[phba->cfg_topology]);
9886 	else
9887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9888 				"2021 Invalid topology values from FW "
9889 				"Using driver parameter defined value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 }
9892 
9893 /**
9894  * lpfc_sli4_read_config - Get the config parameters.
9895  * @phba: pointer to lpfc hba data structure.
9896  *
9897  * This routine is invoked to read the configuration parameters from the HBA.
9898  * The configuration parameters are used to set the base and maximum values
9899  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9900  * allocation for the port.
9901  *
9902  * Return codes
9903  * 	0 - successful
9904  * 	-ENOMEM - No available memory
9905  *      -EIO - The mailbox failed to complete successfully.
9906  **/
9907 int
9908 lpfc_sli4_read_config(struct lpfc_hba *phba)
9909 {
9910 	LPFC_MBOXQ_t *pmb;
9911 	struct lpfc_mbx_read_config *rd_config;
9912 	union  lpfc_sli4_cfg_shdr *shdr;
9913 	uint32_t shdr_status, shdr_add_status;
9914 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9915 	struct lpfc_rsrc_desc_fcfcoe *desc;
9916 	char *pdesc_0;
9917 	uint16_t forced_link_speed;
9918 	uint32_t if_type, qmin, fawwpn;
9919 	int length, i, rc = 0, rc2;
9920 
9921 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9922 	if (!pmb) {
9923 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9924 				"2011 Unable to allocate memory for issuing "
9925 				"SLI_CONFIG_SPECIAL mailbox command\n");
9926 		return -ENOMEM;
9927 	}
9928 
9929 	lpfc_read_config(phba, pmb);
9930 
9931 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9932 	if (rc != MBX_SUCCESS) {
9933 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9934 				"2012 Mailbox failed , mbxCmd x%x "
9935 				"READ_CONFIG, mbxStatus x%x\n",
9936 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9937 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9938 		rc = -EIO;
9939 	} else {
9940 		rd_config = &pmb->u.mqe.un.rd_config;
9941 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9942 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9943 			phba->sli4_hba.lnk_info.lnk_tp =
9944 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9945 			phba->sli4_hba.lnk_info.lnk_no =
9946 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9947 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9948 					"3081 lnk_type:%d, lnk_numb:%d\n",
9949 					phba->sli4_hba.lnk_info.lnk_tp,
9950 					phba->sli4_hba.lnk_info.lnk_no);
9951 		} else
9952 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9953 					"3082 Mailbox (x%x) returned ldv:x0\n",
9954 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9955 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9956 			phba->bbcredit_support = 1;
9957 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9958 		}
9959 
9960 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9961 
9962 		if (fawwpn) {
9963 			lpfc_printf_log(phba, KERN_INFO,
9964 					LOG_INIT | LOG_DISCOVERY,
9965 					"2702 READ_CONFIG: FA-PWWN is "
9966 					"configured on\n");
9967 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9968 		} else {
9969 			/* Clear FW configured flag, preserve driver flag */
9970 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9971 		}
9972 
9973 		phba->sli4_hba.conf_trunk =
9974 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9975 		phba->sli4_hba.extents_in_use =
9976 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9977 
9978 		phba->sli4_hba.max_cfg_param.max_xri =
9979 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9980 		/* Reduce resource usage in kdump environment */
9981 		if (is_kdump_kernel() &&
9982 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9983 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9984 		phba->sli4_hba.max_cfg_param.xri_base =
9985 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9986 		phba->sli4_hba.max_cfg_param.max_vpi =
9987 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9988 		/* Limit the max we support */
9989 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9990 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9991 		phba->sli4_hba.max_cfg_param.vpi_base =
9992 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9993 		phba->sli4_hba.max_cfg_param.max_rpi =
9994 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9995 		phba->sli4_hba.max_cfg_param.rpi_base =
9996 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9997 		phba->sli4_hba.max_cfg_param.max_vfi =
9998 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9999 		phba->sli4_hba.max_cfg_param.vfi_base =
10000 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10001 		phba->sli4_hba.max_cfg_param.max_fcfi =
10002 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10003 		phba->sli4_hba.max_cfg_param.max_eq =
10004 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10005 		phba->sli4_hba.max_cfg_param.max_rq =
10006 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10007 		phba->sli4_hba.max_cfg_param.max_wq =
10008 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10009 		phba->sli4_hba.max_cfg_param.max_cq =
10010 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10011 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10012 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10013 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10014 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10015 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10016 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10017 		phba->max_vports = phba->max_vpi;
10018 
10019 		/* Next decide on FPIN or Signal E2E CGN support
10020 		 * For congestion alarms and warnings valid combination are:
10021 		 * 1. FPIN alarms / FPIN warnings
10022 		 * 2. Signal alarms / Signal warnings
10023 		 * 3. FPIN alarms / Signal warnings
10024 		 * 4. Signal alarms / FPIN warnings
10025 		 *
10026 		 * Initialize the adapter frequency to 100 mSecs
10027 		 */
10028 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10029 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10030 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10031 
10032 		if (lpfc_use_cgn_signal) {
10033 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10034 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10035 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10036 			}
10037 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10038 				/* MUST support both alarm and warning
10039 				 * because EDC does not support alarm alone.
10040 				 */
10041 				if (phba->cgn_reg_signal !=
10042 				    EDC_CG_SIG_WARN_ONLY) {
10043 					/* Must support both or none */
10044 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10045 					phba->cgn_reg_signal =
10046 						EDC_CG_SIG_NOTSUPPORTED;
10047 				} else {
10048 					phba->cgn_reg_signal =
10049 						EDC_CG_SIG_WARN_ALARM;
10050 					phba->cgn_reg_fpin =
10051 						LPFC_CGN_FPIN_NONE;
10052 				}
10053 			}
10054 		}
10055 
10056 		/* Set the congestion initial signal and fpin values. */
10057 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10058 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10059 
10060 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10061 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10062 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10063 
10064 		lpfc_map_topology(phba, rd_config);
10065 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10066 				"2003 cfg params Extents? %d "
10067 				"XRI(B:%d M:%d), "
10068 				"VPI(B:%d M:%d) "
10069 				"VFI(B:%d M:%d) "
10070 				"RPI(B:%d M:%d) "
10071 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10072 				phba->sli4_hba.extents_in_use,
10073 				phba->sli4_hba.max_cfg_param.xri_base,
10074 				phba->sli4_hba.max_cfg_param.max_xri,
10075 				phba->sli4_hba.max_cfg_param.vpi_base,
10076 				phba->sli4_hba.max_cfg_param.max_vpi,
10077 				phba->sli4_hba.max_cfg_param.vfi_base,
10078 				phba->sli4_hba.max_cfg_param.max_vfi,
10079 				phba->sli4_hba.max_cfg_param.rpi_base,
10080 				phba->sli4_hba.max_cfg_param.max_rpi,
10081 				phba->sli4_hba.max_cfg_param.max_fcfi,
10082 				phba->sli4_hba.max_cfg_param.max_eq,
10083 				phba->sli4_hba.max_cfg_param.max_cq,
10084 				phba->sli4_hba.max_cfg_param.max_wq,
10085 				phba->sli4_hba.max_cfg_param.max_rq,
10086 				phba->lmt);
10087 
10088 		/*
10089 		 * Calculate queue resources based on how
10090 		 * many WQ/CQ/EQs are available.
10091 		 */
10092 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10093 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10094 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10095 		/*
10096 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10097 		 * the remainder can be used for NVME / FCP.
10098 		 */
10099 		qmin -= 4;
10100 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10101 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10102 
10103 		/* Check to see if there is enough for default cfg */
10104 		if ((phba->cfg_irq_chann > qmin) ||
10105 		    (phba->cfg_hdw_queue > qmin)) {
10106 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10107 					"2005 Reducing Queues - "
10108 					"FW resource limitation: "
10109 					"WQ %d CQ %d EQ %d: min %d: "
10110 					"IRQ %d HDWQ %d\n",
10111 					phba->sli4_hba.max_cfg_param.max_wq,
10112 					phba->sli4_hba.max_cfg_param.max_cq,
10113 					phba->sli4_hba.max_cfg_param.max_eq,
10114 					qmin, phba->cfg_irq_chann,
10115 					phba->cfg_hdw_queue);
10116 
10117 			if (phba->cfg_irq_chann > qmin)
10118 				phba->cfg_irq_chann = qmin;
10119 			if (phba->cfg_hdw_queue > qmin)
10120 				phba->cfg_hdw_queue = qmin;
10121 		}
10122 	}
10123 
10124 	if (rc)
10125 		goto read_cfg_out;
10126 
10127 	/* Update link speed if forced link speed is supported */
10128 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10129 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10130 		forced_link_speed =
10131 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10132 		if (forced_link_speed) {
10133 			set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag);
10134 
10135 			switch (forced_link_speed) {
10136 			case LINK_SPEED_1G:
10137 				phba->cfg_link_speed =
10138 					LPFC_USER_LINK_SPEED_1G;
10139 				break;
10140 			case LINK_SPEED_2G:
10141 				phba->cfg_link_speed =
10142 					LPFC_USER_LINK_SPEED_2G;
10143 				break;
10144 			case LINK_SPEED_4G:
10145 				phba->cfg_link_speed =
10146 					LPFC_USER_LINK_SPEED_4G;
10147 				break;
10148 			case LINK_SPEED_8G:
10149 				phba->cfg_link_speed =
10150 					LPFC_USER_LINK_SPEED_8G;
10151 				break;
10152 			case LINK_SPEED_10G:
10153 				phba->cfg_link_speed =
10154 					LPFC_USER_LINK_SPEED_10G;
10155 				break;
10156 			case LINK_SPEED_16G:
10157 				phba->cfg_link_speed =
10158 					LPFC_USER_LINK_SPEED_16G;
10159 				break;
10160 			case LINK_SPEED_32G:
10161 				phba->cfg_link_speed =
10162 					LPFC_USER_LINK_SPEED_32G;
10163 				break;
10164 			case LINK_SPEED_64G:
10165 				phba->cfg_link_speed =
10166 					LPFC_USER_LINK_SPEED_64G;
10167 				break;
10168 			case 0xffff:
10169 				phba->cfg_link_speed =
10170 					LPFC_USER_LINK_SPEED_AUTO;
10171 				break;
10172 			default:
10173 				lpfc_printf_log(phba, KERN_ERR,
10174 						LOG_TRACE_EVENT,
10175 						"0047 Unrecognized link "
10176 						"speed : %d\n",
10177 						forced_link_speed);
10178 				phba->cfg_link_speed =
10179 					LPFC_USER_LINK_SPEED_AUTO;
10180 			}
10181 		}
10182 	}
10183 
10184 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10185 	length = phba->sli4_hba.max_cfg_param.max_xri -
10186 			lpfc_sli4_get_els_iocb_cnt(phba);
10187 	if (phba->cfg_hba_queue_depth > length) {
10188 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10189 				"3361 HBA queue depth changed from %d to %d\n",
10190 				phba->cfg_hba_queue_depth, length);
10191 		phba->cfg_hba_queue_depth = length;
10192 	}
10193 
10194 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10195 	    LPFC_SLI_INTF_IF_TYPE_2)
10196 		goto read_cfg_out;
10197 
10198 	/* get the pf# and vf# for SLI4 if_type 2 port */
10199 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10200 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10201 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10202 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10203 			 length, LPFC_SLI4_MBX_EMBED);
10204 
10205 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10206 	shdr = (union lpfc_sli4_cfg_shdr *)
10207 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10208 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10209 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10210 	if (rc2 || shdr_status || shdr_add_status) {
10211 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10212 				"3026 Mailbox failed , mbxCmd x%x "
10213 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10214 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10215 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10216 		goto read_cfg_out;
10217 	}
10218 
10219 	/* search for fc_fcoe resrouce descriptor */
10220 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10221 
10222 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10223 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10224 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10225 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10226 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10227 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10228 		goto read_cfg_out;
10229 
10230 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10231 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10232 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10233 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10234 			phba->sli4_hba.iov.pf_number =
10235 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10236 			phba->sli4_hba.iov.vf_number =
10237 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10238 			break;
10239 		}
10240 	}
10241 
10242 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10243 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10244 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10245 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10246 				phba->sli4_hba.iov.vf_number);
10247 	else
10248 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10249 				"3028 GET_FUNCTION_CONFIG: failed to find "
10250 				"Resource Descriptor:x%x\n",
10251 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10252 
10253 read_cfg_out:
10254 	mempool_free(pmb, phba->mbox_mem_pool);
10255 	return rc;
10256 }
10257 
10258 /**
10259  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10260  * @phba: pointer to lpfc hba data structure.
10261  *
10262  * This routine is invoked to setup the port-side endian order when
10263  * the port if_type is 0.  This routine has no function for other
10264  * if_types.
10265  *
10266  * Return codes
10267  * 	0 - successful
10268  * 	-ENOMEM - No available memory
10269  *      -EIO - The mailbox failed to complete successfully.
10270  **/
10271 static int
10272 lpfc_setup_endian_order(struct lpfc_hba *phba)
10273 {
10274 	LPFC_MBOXQ_t *mboxq;
10275 	uint32_t if_type, rc = 0;
10276 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10277 				      HOST_ENDIAN_HIGH_WORD1};
10278 
10279 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10280 	switch (if_type) {
10281 	case LPFC_SLI_INTF_IF_TYPE_0:
10282 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10283 						       GFP_KERNEL);
10284 		if (!mboxq) {
10285 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10286 					"0492 Unable to allocate memory for "
10287 					"issuing SLI_CONFIG_SPECIAL mailbox "
10288 					"command\n");
10289 			return -ENOMEM;
10290 		}
10291 
10292 		/*
10293 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10294 		 * two words to contain special data values and no other data.
10295 		 */
10296 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10297 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10298 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10299 		if (rc != MBX_SUCCESS) {
10300 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10301 					"0493 SLI_CONFIG_SPECIAL mailbox "
10302 					"failed with status x%x\n",
10303 					rc);
10304 			rc = -EIO;
10305 		}
10306 		mempool_free(mboxq, phba->mbox_mem_pool);
10307 		break;
10308 	case LPFC_SLI_INTF_IF_TYPE_6:
10309 	case LPFC_SLI_INTF_IF_TYPE_2:
10310 	case LPFC_SLI_INTF_IF_TYPE_1:
10311 	default:
10312 		break;
10313 	}
10314 	return rc;
10315 }
10316 
10317 /**
10318  * lpfc_sli4_queue_verify - Verify and update EQ counts
10319  * @phba: pointer to lpfc hba data structure.
10320  *
10321  * This routine is invoked to check the user settable queue counts for EQs.
10322  * After this routine is called the counts will be set to valid values that
10323  * adhere to the constraints of the system's interrupt vectors and the port's
10324  * queue resources.
10325  *
10326  * Return codes
10327  *      0 - successful
10328  *      -ENOMEM - No available memory
10329  **/
10330 static int
10331 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10332 {
10333 	/*
10334 	 * Sanity check for configured queue parameters against the run-time
10335 	 * device parameters
10336 	 */
10337 
10338 	if (phba->nvmet_support) {
10339 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10340 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10341 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10342 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10343 	}
10344 
10345 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10346 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10347 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10348 			phba->cfg_nvmet_mrq);
10349 
10350 	/* Get EQ depth from module parameter, fake the default for now */
10351 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10352 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10353 
10354 	/* Get CQ depth from module parameter, fake the default for now */
10355 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10356 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10357 	return 0;
10358 }
10359 
10360 static int
10361 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10362 {
10363 	struct lpfc_queue *qdesc;
10364 	u32 wqesize;
10365 	int cpu;
10366 
10367 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10368 	/* Create Fast Path IO CQs */
10369 	if (phba->enab_exp_wqcq_pages)
10370 		/* Increase the CQ size when WQEs contain an embedded cdb */
10371 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10372 					      phba->sli4_hba.cq_esize,
10373 					      LPFC_CQE_EXP_COUNT, cpu);
10374 
10375 	else
10376 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10377 					      phba->sli4_hba.cq_esize,
10378 					      phba->sli4_hba.cq_ecount, cpu);
10379 	if (!qdesc) {
10380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10381 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10382 				idx);
10383 		return 1;
10384 	}
10385 	qdesc->qe_valid = 1;
10386 	qdesc->hdwq = idx;
10387 	qdesc->chann = cpu;
10388 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10389 
10390 	/* Create Fast Path IO WQs */
10391 	if (phba->enab_exp_wqcq_pages) {
10392 		/* Increase the WQ size when WQEs contain an embedded cdb */
10393 		wqesize = (phba->fcp_embed_io) ?
10394 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10395 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10396 					      wqesize,
10397 					      LPFC_WQE_EXP_COUNT, cpu);
10398 	} else
10399 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10400 					      phba->sli4_hba.wq_esize,
10401 					      phba->sli4_hba.wq_ecount, cpu);
10402 
10403 	if (!qdesc) {
10404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10405 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10406 				idx);
10407 		return 1;
10408 	}
10409 	qdesc->hdwq = idx;
10410 	qdesc->chann = cpu;
10411 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10412 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10413 	return 0;
10414 }
10415 
10416 /**
10417  * lpfc_sli4_queue_create - Create all the SLI4 queues
10418  * @phba: pointer to lpfc hba data structure.
10419  *
10420  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10421  * operation. For each SLI4 queue type, the parameters such as queue entry
10422  * count (queue depth) shall be taken from the module parameter. For now,
10423  * we just use some constant number as place holder.
10424  *
10425  * Return codes
10426  *      0 - successful
10427  *      -ENOMEM - No availble memory
10428  *      -EIO - The mailbox failed to complete successfully.
10429  **/
10430 int
10431 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10432 {
10433 	struct lpfc_queue *qdesc;
10434 	int idx, cpu, eqcpu;
10435 	struct lpfc_sli4_hdw_queue *qp;
10436 	struct lpfc_vector_map_info *cpup;
10437 	struct lpfc_vector_map_info *eqcpup;
10438 	struct lpfc_eq_intr_info *eqi;
10439 
10440 	/*
10441 	 * Create HBA Record arrays.
10442 	 * Both NVME and FCP will share that same vectors / EQs
10443 	 */
10444 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10445 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10446 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10447 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10448 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10449 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10450 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10451 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10452 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10453 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10454 
10455 	if (!phba->sli4_hba.hdwq) {
10456 		phba->sli4_hba.hdwq = kcalloc(
10457 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10458 			GFP_KERNEL);
10459 		if (!phba->sli4_hba.hdwq) {
10460 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10461 					"6427 Failed allocate memory for "
10462 					"fast-path Hardware Queue array\n");
10463 			goto out_error;
10464 		}
10465 		/* Prepare hardware queues to take IO buffers */
10466 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10467 			qp = &phba->sli4_hba.hdwq[idx];
10468 			spin_lock_init(&qp->io_buf_list_get_lock);
10469 			spin_lock_init(&qp->io_buf_list_put_lock);
10470 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10471 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10472 			qp->get_io_bufs = 0;
10473 			qp->put_io_bufs = 0;
10474 			qp->total_io_bufs = 0;
10475 			spin_lock_init(&qp->abts_io_buf_list_lock);
10476 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10477 			qp->abts_scsi_io_bufs = 0;
10478 			qp->abts_nvme_io_bufs = 0;
10479 			INIT_LIST_HEAD(&qp->sgl_list);
10480 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10481 			spin_lock_init(&qp->hdwq_lock);
10482 		}
10483 	}
10484 
10485 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10486 		if (phba->nvmet_support) {
10487 			phba->sli4_hba.nvmet_cqset = kcalloc(
10488 					phba->cfg_nvmet_mrq,
10489 					sizeof(struct lpfc_queue *),
10490 					GFP_KERNEL);
10491 			if (!phba->sli4_hba.nvmet_cqset) {
10492 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10493 					"3121 Fail allocate memory for "
10494 					"fast-path CQ set array\n");
10495 				goto out_error;
10496 			}
10497 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10498 					phba->cfg_nvmet_mrq,
10499 					sizeof(struct lpfc_queue *),
10500 					GFP_KERNEL);
10501 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10502 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10503 					"3122 Fail allocate memory for "
10504 					"fast-path RQ set hdr array\n");
10505 				goto out_error;
10506 			}
10507 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10508 					phba->cfg_nvmet_mrq,
10509 					sizeof(struct lpfc_queue *),
10510 					GFP_KERNEL);
10511 			if (!phba->sli4_hba.nvmet_mrq_data) {
10512 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10513 					"3124 Fail allocate memory for "
10514 					"fast-path RQ set data array\n");
10515 				goto out_error;
10516 			}
10517 		}
10518 	}
10519 
10520 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10521 
10522 	/* Create HBA Event Queues (EQs) */
10523 	for_each_present_cpu(cpu) {
10524 		/* We only want to create 1 EQ per vector, even though
10525 		 * multiple CPUs might be using that vector. so only
10526 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10527 		 */
10528 		cpup = &phba->sli4_hba.cpu_map[cpu];
10529 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10530 			continue;
10531 
10532 		/* Get a ptr to the Hardware Queue associated with this CPU */
10533 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10534 
10535 		/* Allocate an EQ */
10536 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10537 					      phba->sli4_hba.eq_esize,
10538 					      phba->sli4_hba.eq_ecount, cpu);
10539 		if (!qdesc) {
10540 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10541 					"0497 Failed allocate EQ (%d)\n",
10542 					cpup->hdwq);
10543 			goto out_error;
10544 		}
10545 		qdesc->qe_valid = 1;
10546 		qdesc->hdwq = cpup->hdwq;
10547 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10548 		qdesc->last_cpu = qdesc->chann;
10549 
10550 		/* Save the allocated EQ in the Hardware Queue */
10551 		qp->hba_eq = qdesc;
10552 
10553 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10554 		list_add(&qdesc->cpu_list, &eqi->list);
10555 	}
10556 
10557 	/* Now we need to populate the other Hardware Queues, that share
10558 	 * an IRQ vector, with the associated EQ ptr.
10559 	 */
10560 	for_each_present_cpu(cpu) {
10561 		cpup = &phba->sli4_hba.cpu_map[cpu];
10562 
10563 		/* Check for EQ already allocated in previous loop */
10564 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10565 			continue;
10566 
10567 		/* Check for multiple CPUs per hdwq */
10568 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10569 		if (qp->hba_eq)
10570 			continue;
10571 
10572 		/* We need to share an EQ for this hdwq */
10573 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10574 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10575 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10576 	}
10577 
10578 	/* Allocate IO Path SLI4 CQ/WQs */
10579 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10580 		if (lpfc_alloc_io_wq_cq(phba, idx))
10581 			goto out_error;
10582 	}
10583 
10584 	if (phba->nvmet_support) {
10585 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10586 			cpu = lpfc_find_cpu_handle(phba, idx,
10587 						   LPFC_FIND_BY_HDWQ);
10588 			qdesc = lpfc_sli4_queue_alloc(phba,
10589 						      LPFC_DEFAULT_PAGE_SIZE,
10590 						      phba->sli4_hba.cq_esize,
10591 						      phba->sli4_hba.cq_ecount,
10592 						      cpu);
10593 			if (!qdesc) {
10594 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10595 						"3142 Failed allocate NVME "
10596 						"CQ Set (%d)\n", idx);
10597 				goto out_error;
10598 			}
10599 			qdesc->qe_valid = 1;
10600 			qdesc->hdwq = idx;
10601 			qdesc->chann = cpu;
10602 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10603 		}
10604 	}
10605 
10606 	/*
10607 	 * Create Slow Path Completion Queues (CQs)
10608 	 */
10609 
10610 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10611 	/* Create slow-path Mailbox Command Complete Queue */
10612 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10613 				      phba->sli4_hba.cq_esize,
10614 				      phba->sli4_hba.cq_ecount, cpu);
10615 	if (!qdesc) {
10616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10617 				"0500 Failed allocate slow-path mailbox CQ\n");
10618 		goto out_error;
10619 	}
10620 	qdesc->qe_valid = 1;
10621 	phba->sli4_hba.mbx_cq = qdesc;
10622 
10623 	/* Create slow-path ELS Complete Queue */
10624 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10625 				      phba->sli4_hba.cq_esize,
10626 				      phba->sli4_hba.cq_ecount, cpu);
10627 	if (!qdesc) {
10628 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10629 				"0501 Failed allocate slow-path ELS CQ\n");
10630 		goto out_error;
10631 	}
10632 	qdesc->qe_valid = 1;
10633 	qdesc->chann = cpu;
10634 	phba->sli4_hba.els_cq = qdesc;
10635 
10636 
10637 	/*
10638 	 * Create Slow Path Work Queues (WQs)
10639 	 */
10640 
10641 	/* Create Mailbox Command Queue */
10642 
10643 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10644 				      phba->sli4_hba.mq_esize,
10645 				      phba->sli4_hba.mq_ecount, cpu);
10646 	if (!qdesc) {
10647 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10648 				"0505 Failed allocate slow-path MQ\n");
10649 		goto out_error;
10650 	}
10651 	qdesc->chann = cpu;
10652 	phba->sli4_hba.mbx_wq = qdesc;
10653 
10654 	/*
10655 	 * Create ELS Work Queues
10656 	 */
10657 
10658 	/* Create slow-path ELS Work Queue */
10659 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10660 				      phba->sli4_hba.wq_esize,
10661 				      phba->sli4_hba.wq_ecount, cpu);
10662 	if (!qdesc) {
10663 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10664 				"0504 Failed allocate slow-path ELS WQ\n");
10665 		goto out_error;
10666 	}
10667 	qdesc->chann = cpu;
10668 	phba->sli4_hba.els_wq = qdesc;
10669 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10670 
10671 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10672 		/* Create NVME LS Complete Queue */
10673 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10674 					      phba->sli4_hba.cq_esize,
10675 					      phba->sli4_hba.cq_ecount, cpu);
10676 		if (!qdesc) {
10677 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10678 					"6079 Failed allocate NVME LS CQ\n");
10679 			goto out_error;
10680 		}
10681 		qdesc->chann = cpu;
10682 		qdesc->qe_valid = 1;
10683 		phba->sli4_hba.nvmels_cq = qdesc;
10684 
10685 		/* Create NVME LS Work Queue */
10686 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10687 					      phba->sli4_hba.wq_esize,
10688 					      phba->sli4_hba.wq_ecount, cpu);
10689 		if (!qdesc) {
10690 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10691 					"6080 Failed allocate NVME LS WQ\n");
10692 			goto out_error;
10693 		}
10694 		qdesc->chann = cpu;
10695 		phba->sli4_hba.nvmels_wq = qdesc;
10696 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10697 	}
10698 
10699 	/*
10700 	 * Create Receive Queue (RQ)
10701 	 */
10702 
10703 	/* Create Receive Queue for header */
10704 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10705 				      phba->sli4_hba.rq_esize,
10706 				      phba->sli4_hba.rq_ecount, cpu);
10707 	if (!qdesc) {
10708 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10709 				"0506 Failed allocate receive HRQ\n");
10710 		goto out_error;
10711 	}
10712 	phba->sli4_hba.hdr_rq = qdesc;
10713 
10714 	/* Create Receive Queue for data */
10715 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10716 				      phba->sli4_hba.rq_esize,
10717 				      phba->sli4_hba.rq_ecount, cpu);
10718 	if (!qdesc) {
10719 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10720 				"0507 Failed allocate receive DRQ\n");
10721 		goto out_error;
10722 	}
10723 	phba->sli4_hba.dat_rq = qdesc;
10724 
10725 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10726 	    phba->nvmet_support) {
10727 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10728 			cpu = lpfc_find_cpu_handle(phba, idx,
10729 						   LPFC_FIND_BY_HDWQ);
10730 			/* Create NVMET Receive Queue for header */
10731 			qdesc = lpfc_sli4_queue_alloc(phba,
10732 						      LPFC_DEFAULT_PAGE_SIZE,
10733 						      phba->sli4_hba.rq_esize,
10734 						      LPFC_NVMET_RQE_DEF_COUNT,
10735 						      cpu);
10736 			if (!qdesc) {
10737 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10738 						"3146 Failed allocate "
10739 						"receive HRQ\n");
10740 				goto out_error;
10741 			}
10742 			qdesc->hdwq = idx;
10743 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10744 
10745 			/* Only needed for header of RQ pair */
10746 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10747 						   GFP_KERNEL,
10748 						   cpu_to_node(cpu));
10749 			if (qdesc->rqbp == NULL) {
10750 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10751 						"6131 Failed allocate "
10752 						"Header RQBP\n");
10753 				goto out_error;
10754 			}
10755 
10756 			/* Put list in known state in case driver load fails. */
10757 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10758 
10759 			/* Create NVMET Receive Queue for data */
10760 			qdesc = lpfc_sli4_queue_alloc(phba,
10761 						      LPFC_DEFAULT_PAGE_SIZE,
10762 						      phba->sli4_hba.rq_esize,
10763 						      LPFC_NVMET_RQE_DEF_COUNT,
10764 						      cpu);
10765 			if (!qdesc) {
10766 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10767 						"3156 Failed allocate "
10768 						"receive DRQ\n");
10769 				goto out_error;
10770 			}
10771 			qdesc->hdwq = idx;
10772 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10773 		}
10774 	}
10775 
10776 	/* Clear NVME stats */
10777 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10778 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10779 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10780 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10781 		}
10782 	}
10783 
10784 	/* Clear SCSI stats */
10785 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10786 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10787 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10788 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10789 		}
10790 	}
10791 
10792 	return 0;
10793 
10794 out_error:
10795 	lpfc_sli4_queue_destroy(phba);
10796 	return -ENOMEM;
10797 }
10798 
10799 static inline void
10800 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10801 {
10802 	if (*qp != NULL) {
10803 		lpfc_sli4_queue_free(*qp);
10804 		*qp = NULL;
10805 	}
10806 }
10807 
10808 static inline void
10809 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10810 {
10811 	int idx;
10812 
10813 	if (*qs == NULL)
10814 		return;
10815 
10816 	for (idx = 0; idx < max; idx++)
10817 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10818 
10819 	kfree(*qs);
10820 	*qs = NULL;
10821 }
10822 
10823 static inline void
10824 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10825 {
10826 	struct lpfc_sli4_hdw_queue *hdwq;
10827 	struct lpfc_queue *eq;
10828 	uint32_t idx;
10829 
10830 	hdwq = phba->sli4_hba.hdwq;
10831 
10832 	/* Loop thru all Hardware Queues */
10833 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10834 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10835 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10836 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10837 		hdwq[idx].hba_eq = NULL;
10838 		hdwq[idx].io_cq = NULL;
10839 		hdwq[idx].io_wq = NULL;
10840 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10841 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10842 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10843 	}
10844 	/* Loop thru all IRQ vectors */
10845 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10846 		/* Free the EQ corresponding to the IRQ vector */
10847 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10848 		lpfc_sli4_queue_free(eq);
10849 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10850 	}
10851 }
10852 
10853 /**
10854  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10855  * @phba: pointer to lpfc hba data structure.
10856  *
10857  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10858  * operation.
10859  *
10860  * Return codes
10861  *      0 - successful
10862  *      -ENOMEM - No available memory
10863  *      -EIO - The mailbox failed to complete successfully.
10864  **/
10865 void
10866 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10867 {
10868 	/*
10869 	 * Set FREE_INIT before beginning to free the queues.
10870 	 * Wait until the users of queues to acknowledge to
10871 	 * release queues by clearing FREE_WAIT.
10872 	 */
10873 	spin_lock_irq(&phba->hbalock);
10874 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10875 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10876 		spin_unlock_irq(&phba->hbalock);
10877 		msleep(20);
10878 		spin_lock_irq(&phba->hbalock);
10879 	}
10880 	spin_unlock_irq(&phba->hbalock);
10881 
10882 	lpfc_sli4_cleanup_poll_list(phba);
10883 
10884 	/* Release HBA eqs */
10885 	if (phba->sli4_hba.hdwq)
10886 		lpfc_sli4_release_hdwq(phba);
10887 
10888 	if (phba->nvmet_support) {
10889 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10890 					 phba->cfg_nvmet_mrq);
10891 
10892 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10893 					 phba->cfg_nvmet_mrq);
10894 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10895 					 phba->cfg_nvmet_mrq);
10896 	}
10897 
10898 	/* Release mailbox command work queue */
10899 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10900 
10901 	/* Release ELS work queue */
10902 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10903 
10904 	/* Release ELS work queue */
10905 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10906 
10907 	/* Release unsolicited receive queue */
10908 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10909 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10910 
10911 	/* Release ELS complete queue */
10912 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10913 
10914 	/* Release NVME LS complete queue */
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10916 
10917 	/* Release mailbox command complete queue */
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10919 
10920 	/* Everything on this list has been freed */
10921 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10922 
10923 	/* Done with freeing the queues */
10924 	spin_lock_irq(&phba->hbalock);
10925 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10926 	spin_unlock_irq(&phba->hbalock);
10927 }
10928 
10929 int
10930 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10931 {
10932 	struct lpfc_rqb *rqbp;
10933 	struct lpfc_dmabuf *h_buf;
10934 	struct rqb_dmabuf *rqb_buffer;
10935 
10936 	rqbp = rq->rqbp;
10937 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10938 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10939 				 struct lpfc_dmabuf, list);
10940 
10941 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10942 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10943 		rqbp->buffer_count--;
10944 	}
10945 	return 1;
10946 }
10947 
10948 static int
10949 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10950 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10951 	int qidx, uint32_t qtype)
10952 {
10953 	struct lpfc_sli_ring *pring;
10954 	int rc;
10955 
10956 	if (!eq || !cq || !wq) {
10957 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10958 			"6085 Fast-path %s (%d) not allocated\n",
10959 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10960 		return -ENOMEM;
10961 	}
10962 
10963 	/* create the Cq first */
10964 	rc = lpfc_cq_create(phba, cq, eq,
10965 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10966 	if (rc) {
10967 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10968 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10969 				qidx, (uint32_t)rc);
10970 		return rc;
10971 	}
10972 
10973 	if (qtype != LPFC_MBOX) {
10974 		/* Setup cq_map for fast lookup */
10975 		if (cq_map)
10976 			*cq_map = cq->queue_id;
10977 
10978 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10979 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10980 			qidx, cq->queue_id, qidx, eq->queue_id);
10981 
10982 		/* create the wq */
10983 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10984 		if (rc) {
10985 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10986 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10987 				qidx, (uint32_t)rc);
10988 			/* no need to tear down cq - caller will do so */
10989 			return rc;
10990 		}
10991 
10992 		/* Bind this CQ/WQ to the NVME ring */
10993 		pring = wq->pring;
10994 		pring->sli.sli4.wqp = (void *)wq;
10995 		cq->pring = pring;
10996 
10997 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10998 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10999 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11000 	} else {
11001 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11002 		if (rc) {
11003 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11004 					"0539 Failed setup of slow-path MQ: "
11005 					"rc = 0x%x\n", rc);
11006 			/* no need to tear down cq - caller will do so */
11007 			return rc;
11008 		}
11009 
11010 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11011 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11012 			phba->sli4_hba.mbx_wq->queue_id,
11013 			phba->sli4_hba.mbx_cq->queue_id);
11014 	}
11015 
11016 	return 0;
11017 }
11018 
11019 /**
11020  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11021  * @phba: pointer to lpfc hba data structure.
11022  *
11023  * This routine will populate the cq_lookup table by all
11024  * available CQ queue_id's.
11025  **/
11026 static void
11027 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11028 {
11029 	struct lpfc_queue *eq, *childq;
11030 	int qidx;
11031 
11032 	memset(phba->sli4_hba.cq_lookup, 0,
11033 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11034 	/* Loop thru all IRQ vectors */
11035 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11036 		/* Get the EQ corresponding to the IRQ vector */
11037 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11038 		if (!eq)
11039 			continue;
11040 		/* Loop through all CQs associated with that EQ */
11041 		list_for_each_entry(childq, &eq->child_list, list) {
11042 			if (childq->queue_id > phba->sli4_hba.cq_max)
11043 				continue;
11044 			if (childq->subtype == LPFC_IO)
11045 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11046 					childq;
11047 		}
11048 	}
11049 }
11050 
11051 /**
11052  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11053  * @phba: pointer to lpfc hba data structure.
11054  *
11055  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11056  * operation.
11057  *
11058  * Return codes
11059  *      0 - successful
11060  *      -ENOMEM - No available memory
11061  *      -EIO - The mailbox failed to complete successfully.
11062  **/
11063 int
11064 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11065 {
11066 	uint32_t shdr_status, shdr_add_status;
11067 	union lpfc_sli4_cfg_shdr *shdr;
11068 	struct lpfc_vector_map_info *cpup;
11069 	struct lpfc_sli4_hdw_queue *qp;
11070 	LPFC_MBOXQ_t *mboxq;
11071 	int qidx, cpu;
11072 	uint32_t length, usdelay;
11073 	int rc = -ENOMEM;
11074 
11075 	/* Check for dual-ULP support */
11076 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11077 	if (!mboxq) {
11078 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11079 				"3249 Unable to allocate memory for "
11080 				"QUERY_FW_CFG mailbox command\n");
11081 		return -ENOMEM;
11082 	}
11083 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11084 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11085 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11086 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11087 			 length, LPFC_SLI4_MBX_EMBED);
11088 
11089 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11090 
11091 	shdr = (union lpfc_sli4_cfg_shdr *)
11092 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11093 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11094 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11095 	if (shdr_status || shdr_add_status || rc) {
11096 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11097 				"3250 QUERY_FW_CFG mailbox failed with status "
11098 				"x%x add_status x%x, mbx status x%x\n",
11099 				shdr_status, shdr_add_status, rc);
11100 		mempool_free(mboxq, phba->mbox_mem_pool);
11101 		rc = -ENXIO;
11102 		goto out_error;
11103 	}
11104 
11105 	phba->sli4_hba.fw_func_mode =
11106 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11107 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11108 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11109 	phba->sli4_hba.physical_port =
11110 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11111 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11112 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11113 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11114 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11115 
11116 	mempool_free(mboxq, phba->mbox_mem_pool);
11117 
11118 	/*
11119 	 * Set up HBA Event Queues (EQs)
11120 	 */
11121 	qp = phba->sli4_hba.hdwq;
11122 
11123 	/* Set up HBA event queue */
11124 	if (!qp) {
11125 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11126 				"3147 Fast-path EQs not allocated\n");
11127 		rc = -ENOMEM;
11128 		goto out_error;
11129 	}
11130 
11131 	/* Loop thru all IRQ vectors */
11132 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11133 		/* Create HBA Event Queues (EQs) in order */
11134 		for_each_present_cpu(cpu) {
11135 			cpup = &phba->sli4_hba.cpu_map[cpu];
11136 
11137 			/* Look for the CPU thats using that vector with
11138 			 * LPFC_CPU_FIRST_IRQ set.
11139 			 */
11140 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11141 				continue;
11142 			if (qidx != cpup->eq)
11143 				continue;
11144 
11145 			/* Create an EQ for that vector */
11146 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11147 					    phba->cfg_fcp_imax);
11148 			if (rc) {
11149 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11150 						"0523 Failed setup of fast-path"
11151 						" EQ (%d), rc = 0x%x\n",
11152 						cpup->eq, (uint32_t)rc);
11153 				goto out_destroy;
11154 			}
11155 
11156 			/* Save the EQ for that vector in the hba_eq_hdl */
11157 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11158 				qp[cpup->hdwq].hba_eq;
11159 
11160 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11161 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11162 					cpup->eq,
11163 					qp[cpup->hdwq].hba_eq->queue_id);
11164 		}
11165 	}
11166 
11167 	/* Loop thru all Hardware Queues */
11168 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11169 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11170 		cpup = &phba->sli4_hba.cpu_map[cpu];
11171 
11172 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11173 		rc = lpfc_create_wq_cq(phba,
11174 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11175 				       qp[qidx].io_cq,
11176 				       qp[qidx].io_wq,
11177 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11178 				       qidx,
11179 				       LPFC_IO);
11180 		if (rc) {
11181 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11182 					"0535 Failed to setup fastpath "
11183 					"IO WQ/CQ (%d), rc = 0x%x\n",
11184 					qidx, (uint32_t)rc);
11185 			goto out_destroy;
11186 		}
11187 	}
11188 
11189 	/*
11190 	 * Set up Slow Path Complete Queues (CQs)
11191 	 */
11192 
11193 	/* Set up slow-path MBOX CQ/MQ */
11194 
11195 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11196 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11197 				"0528 %s not allocated\n",
11198 				phba->sli4_hba.mbx_cq ?
11199 				"Mailbox WQ" : "Mailbox CQ");
11200 		rc = -ENOMEM;
11201 		goto out_destroy;
11202 	}
11203 
11204 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11205 			       phba->sli4_hba.mbx_cq,
11206 			       phba->sli4_hba.mbx_wq,
11207 			       NULL, 0, LPFC_MBOX);
11208 	if (rc) {
11209 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11210 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11211 			(uint32_t)rc);
11212 		goto out_destroy;
11213 	}
11214 	if (phba->nvmet_support) {
11215 		if (!phba->sli4_hba.nvmet_cqset) {
11216 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11217 					"3165 Fast-path NVME CQ Set "
11218 					"array not allocated\n");
11219 			rc = -ENOMEM;
11220 			goto out_destroy;
11221 		}
11222 		if (phba->cfg_nvmet_mrq > 1) {
11223 			rc = lpfc_cq_create_set(phba,
11224 					phba->sli4_hba.nvmet_cqset,
11225 					qp,
11226 					LPFC_WCQ, LPFC_NVMET);
11227 			if (rc) {
11228 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11229 						"3164 Failed setup of NVME CQ "
11230 						"Set, rc = 0x%x\n",
11231 						(uint32_t)rc);
11232 				goto out_destroy;
11233 			}
11234 		} else {
11235 			/* Set up NVMET Receive Complete Queue */
11236 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11237 					    qp[0].hba_eq,
11238 					    LPFC_WCQ, LPFC_NVMET);
11239 			if (rc) {
11240 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11241 						"6089 Failed setup NVMET CQ: "
11242 						"rc = 0x%x\n", (uint32_t)rc);
11243 				goto out_destroy;
11244 			}
11245 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11246 
11247 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11248 					"6090 NVMET CQ setup: cq-id=%d, "
11249 					"parent eq-id=%d\n",
11250 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11251 					qp[0].hba_eq->queue_id);
11252 		}
11253 	}
11254 
11255 	/* Set up slow-path ELS WQ/CQ */
11256 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11257 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11258 				"0530 ELS %s not allocated\n",
11259 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11260 		rc = -ENOMEM;
11261 		goto out_destroy;
11262 	}
11263 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11264 			       phba->sli4_hba.els_cq,
11265 			       phba->sli4_hba.els_wq,
11266 			       NULL, 0, LPFC_ELS);
11267 	if (rc) {
11268 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11269 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11270 				(uint32_t)rc);
11271 		goto out_destroy;
11272 	}
11273 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11274 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11275 			phba->sli4_hba.els_wq->queue_id,
11276 			phba->sli4_hba.els_cq->queue_id);
11277 
11278 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11279 		/* Set up NVME LS Complete Queue */
11280 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11281 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11282 					"6091 LS %s not allocated\n",
11283 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11284 			rc = -ENOMEM;
11285 			goto out_destroy;
11286 		}
11287 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11288 				       phba->sli4_hba.nvmels_cq,
11289 				       phba->sli4_hba.nvmels_wq,
11290 				       NULL, 0, LPFC_NVME_LS);
11291 		if (rc) {
11292 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11293 					"0526 Failed setup of NVVME LS WQ/CQ: "
11294 					"rc = 0x%x\n", (uint32_t)rc);
11295 			goto out_destroy;
11296 		}
11297 
11298 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11299 				"6096 ELS WQ setup: wq-id=%d, "
11300 				"parent cq-id=%d\n",
11301 				phba->sli4_hba.nvmels_wq->queue_id,
11302 				phba->sli4_hba.nvmels_cq->queue_id);
11303 	}
11304 
11305 	/*
11306 	 * Create NVMET Receive Queue (RQ)
11307 	 */
11308 	if (phba->nvmet_support) {
11309 		if ((!phba->sli4_hba.nvmet_cqset) ||
11310 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11311 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11312 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11313 					"6130 MRQ CQ Queues not "
11314 					"allocated\n");
11315 			rc = -ENOMEM;
11316 			goto out_destroy;
11317 		}
11318 		if (phba->cfg_nvmet_mrq > 1) {
11319 			rc = lpfc_mrq_create(phba,
11320 					     phba->sli4_hba.nvmet_mrq_hdr,
11321 					     phba->sli4_hba.nvmet_mrq_data,
11322 					     phba->sli4_hba.nvmet_cqset,
11323 					     LPFC_NVMET);
11324 			if (rc) {
11325 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11326 						"6098 Failed setup of NVMET "
11327 						"MRQ: rc = 0x%x\n",
11328 						(uint32_t)rc);
11329 				goto out_destroy;
11330 			}
11331 
11332 		} else {
11333 			rc = lpfc_rq_create(phba,
11334 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11335 					    phba->sli4_hba.nvmet_mrq_data[0],
11336 					    phba->sli4_hba.nvmet_cqset[0],
11337 					    LPFC_NVMET);
11338 			if (rc) {
11339 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11340 						"6057 Failed setup of NVMET "
11341 						"Receive Queue: rc = 0x%x\n",
11342 						(uint32_t)rc);
11343 				goto out_destroy;
11344 			}
11345 
11346 			lpfc_printf_log(
11347 				phba, KERN_INFO, LOG_INIT,
11348 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11349 				"dat-rq-id=%d parent cq-id=%d\n",
11350 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11351 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11352 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11353 
11354 		}
11355 	}
11356 
11357 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11358 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11359 				"0540 Receive Queue not allocated\n");
11360 		rc = -ENOMEM;
11361 		goto out_destroy;
11362 	}
11363 
11364 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11365 			    phba->sli4_hba.els_cq, LPFC_USOL);
11366 	if (rc) {
11367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11368 				"0541 Failed setup of Receive Queue: "
11369 				"rc = 0x%x\n", (uint32_t)rc);
11370 		goto out_destroy;
11371 	}
11372 
11373 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11374 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11375 			"parent cq-id=%d\n",
11376 			phba->sli4_hba.hdr_rq->queue_id,
11377 			phba->sli4_hba.dat_rq->queue_id,
11378 			phba->sli4_hba.els_cq->queue_id);
11379 
11380 	if (phba->cfg_fcp_imax)
11381 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11382 	else
11383 		usdelay = 0;
11384 
11385 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11386 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11387 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11388 					 usdelay);
11389 
11390 	if (phba->sli4_hba.cq_max) {
11391 		kfree(phba->sli4_hba.cq_lookup);
11392 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11393 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11394 		if (!phba->sli4_hba.cq_lookup) {
11395 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11396 					"0549 Failed setup of CQ Lookup table: "
11397 					"size 0x%x\n", phba->sli4_hba.cq_max);
11398 			rc = -ENOMEM;
11399 			goto out_destroy;
11400 		}
11401 		lpfc_setup_cq_lookup(phba);
11402 	}
11403 	return 0;
11404 
11405 out_destroy:
11406 	lpfc_sli4_queue_unset(phba);
11407 out_error:
11408 	return rc;
11409 }
11410 
11411 /**
11412  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11413  * @phba: pointer to lpfc hba data structure.
11414  *
11415  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11416  * operation.
11417  *
11418  * Return codes
11419  *      0 - successful
11420  *      -ENOMEM - No available memory
11421  *      -EIO - The mailbox failed to complete successfully.
11422  **/
11423 void
11424 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11425 {
11426 	struct lpfc_sli4_hdw_queue *qp;
11427 	struct lpfc_queue *eq;
11428 	int qidx;
11429 
11430 	/* Unset mailbox command work queue */
11431 	if (phba->sli4_hba.mbx_wq)
11432 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11433 
11434 	/* Unset NVME LS work queue */
11435 	if (phba->sli4_hba.nvmels_wq)
11436 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11437 
11438 	/* Unset ELS work queue */
11439 	if (phba->sli4_hba.els_wq)
11440 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11441 
11442 	/* Unset unsolicited receive queue */
11443 	if (phba->sli4_hba.hdr_rq)
11444 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11445 				phba->sli4_hba.dat_rq);
11446 
11447 	/* Unset mailbox command complete queue */
11448 	if (phba->sli4_hba.mbx_cq)
11449 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11450 
11451 	/* Unset ELS complete queue */
11452 	if (phba->sli4_hba.els_cq)
11453 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11454 
11455 	/* Unset NVME LS complete queue */
11456 	if (phba->sli4_hba.nvmels_cq)
11457 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11458 
11459 	if (phba->nvmet_support) {
11460 		/* Unset NVMET MRQ queue */
11461 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11462 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11463 				lpfc_rq_destroy(
11464 					phba,
11465 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11466 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11467 		}
11468 
11469 		/* Unset NVMET CQ Set complete queue */
11470 		if (phba->sli4_hba.nvmet_cqset) {
11471 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11472 				lpfc_cq_destroy(
11473 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11474 		}
11475 	}
11476 
11477 	/* Unset fast-path SLI4 queues */
11478 	if (phba->sli4_hba.hdwq) {
11479 		/* Loop thru all Hardware Queues */
11480 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11481 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11482 			qp = &phba->sli4_hba.hdwq[qidx];
11483 			lpfc_wq_destroy(phba, qp->io_wq);
11484 			lpfc_cq_destroy(phba, qp->io_cq);
11485 		}
11486 		/* Loop thru all IRQ vectors */
11487 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11488 			/* Destroy the EQ corresponding to the IRQ vector */
11489 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11490 			lpfc_eq_destroy(phba, eq);
11491 		}
11492 	}
11493 
11494 	kfree(phba->sli4_hba.cq_lookup);
11495 	phba->sli4_hba.cq_lookup = NULL;
11496 	phba->sli4_hba.cq_max = 0;
11497 }
11498 
11499 /**
11500  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11501  * @phba: pointer to lpfc hba data structure.
11502  *
11503  * This routine is invoked to allocate and set up a pool of completion queue
11504  * events. The body of the completion queue event is a completion queue entry
11505  * CQE. For now, this pool is used for the interrupt service routine to queue
11506  * the following HBA completion queue events for the worker thread to process:
11507  *   - Mailbox asynchronous events
11508  *   - Receive queue completion unsolicited events
11509  * Later, this can be used for all the slow-path events.
11510  *
11511  * Return codes
11512  *      0 - successful
11513  *      -ENOMEM - No available memory
11514  **/
11515 static int
11516 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11517 {
11518 	struct lpfc_cq_event *cq_event;
11519 	int i;
11520 
11521 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11522 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11523 		if (!cq_event)
11524 			goto out_pool_create_fail;
11525 		list_add_tail(&cq_event->list,
11526 			      &phba->sli4_hba.sp_cqe_event_pool);
11527 	}
11528 	return 0;
11529 
11530 out_pool_create_fail:
11531 	lpfc_sli4_cq_event_pool_destroy(phba);
11532 	return -ENOMEM;
11533 }
11534 
11535 /**
11536  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11537  * @phba: pointer to lpfc hba data structure.
11538  *
11539  * This routine is invoked to free the pool of completion queue events at
11540  * driver unload time. Note that, it is the responsibility of the driver
11541  * cleanup routine to free all the outstanding completion-queue events
11542  * allocated from this pool back into the pool before invoking this routine
11543  * to destroy the pool.
11544  **/
11545 static void
11546 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11547 {
11548 	struct lpfc_cq_event *cq_event, *next_cq_event;
11549 
11550 	list_for_each_entry_safe(cq_event, next_cq_event,
11551 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11552 		list_del(&cq_event->list);
11553 		kfree(cq_event);
11554 	}
11555 }
11556 
11557 /**
11558  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11559  * @phba: pointer to lpfc hba data structure.
11560  *
11561  * This routine is the lock free version of the API invoked to allocate a
11562  * completion-queue event from the free pool.
11563  *
11564  * Return: Pointer to the newly allocated completion-queue event if successful
11565  *         NULL otherwise.
11566  **/
11567 struct lpfc_cq_event *
11568 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11569 {
11570 	struct lpfc_cq_event *cq_event = NULL;
11571 
11572 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11573 			 struct lpfc_cq_event, list);
11574 	return cq_event;
11575 }
11576 
11577 /**
11578  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11579  * @phba: pointer to lpfc hba data structure.
11580  *
11581  * This routine is the lock version of the API invoked to allocate a
11582  * completion-queue event from the free pool.
11583  *
11584  * Return: Pointer to the newly allocated completion-queue event if successful
11585  *         NULL otherwise.
11586  **/
11587 struct lpfc_cq_event *
11588 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11589 {
11590 	struct lpfc_cq_event *cq_event;
11591 	unsigned long iflags;
11592 
11593 	spin_lock_irqsave(&phba->hbalock, iflags);
11594 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11595 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11596 	return cq_event;
11597 }
11598 
11599 /**
11600  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11601  * @phba: pointer to lpfc hba data structure.
11602  * @cq_event: pointer to the completion queue event to be freed.
11603  *
11604  * This routine is the lock free version of the API invoked to release a
11605  * completion-queue event back into the free pool.
11606  **/
11607 void
11608 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11609 			     struct lpfc_cq_event *cq_event)
11610 {
11611 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11612 }
11613 
11614 /**
11615  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11616  * @phba: pointer to lpfc hba data structure.
11617  * @cq_event: pointer to the completion queue event to be freed.
11618  *
11619  * This routine is the lock version of the API invoked to release a
11620  * completion-queue event back into the free pool.
11621  **/
11622 void
11623 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11624 			   struct lpfc_cq_event *cq_event)
11625 {
11626 	unsigned long iflags;
11627 	spin_lock_irqsave(&phba->hbalock, iflags);
11628 	__lpfc_sli4_cq_event_release(phba, cq_event);
11629 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11630 }
11631 
11632 /**
11633  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11634  * @phba: pointer to lpfc hba data structure.
11635  *
11636  * This routine is to free all the pending completion-queue events to the
11637  * back into the free pool for device reset.
11638  **/
11639 static void
11640 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11641 {
11642 	LIST_HEAD(cq_event_list);
11643 	struct lpfc_cq_event *cq_event;
11644 	unsigned long iflags;
11645 
11646 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11647 
11648 	/* Pending ELS XRI abort events */
11649 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11650 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11651 			 &cq_event_list);
11652 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11653 
11654 	/* Pending asynnc events */
11655 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11656 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11657 			 &cq_event_list);
11658 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11659 
11660 	while (!list_empty(&cq_event_list)) {
11661 		list_remove_head(&cq_event_list, cq_event,
11662 				 struct lpfc_cq_event, list);
11663 		lpfc_sli4_cq_event_release(phba, cq_event);
11664 	}
11665 }
11666 
11667 /**
11668  * lpfc_pci_function_reset - Reset pci function.
11669  * @phba: pointer to lpfc hba data structure.
11670  *
11671  * This routine is invoked to request a PCI function reset. It will destroys
11672  * all resources assigned to the PCI function which originates this request.
11673  *
11674  * Return codes
11675  *      0 - successful
11676  *      -ENOMEM - No available memory
11677  *      -EIO - The mailbox failed to complete successfully.
11678  **/
11679 int
11680 lpfc_pci_function_reset(struct lpfc_hba *phba)
11681 {
11682 	LPFC_MBOXQ_t *mboxq;
11683 	uint32_t rc = 0, if_type;
11684 	uint32_t shdr_status, shdr_add_status;
11685 	uint32_t rdy_chk;
11686 	uint32_t port_reset = 0;
11687 	union lpfc_sli4_cfg_shdr *shdr;
11688 	struct lpfc_register reg_data;
11689 	uint16_t devid;
11690 
11691 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11692 	switch (if_type) {
11693 	case LPFC_SLI_INTF_IF_TYPE_0:
11694 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11695 						       GFP_KERNEL);
11696 		if (!mboxq) {
11697 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11698 					"0494 Unable to allocate memory for "
11699 					"issuing SLI_FUNCTION_RESET mailbox "
11700 					"command\n");
11701 			return -ENOMEM;
11702 		}
11703 
11704 		/* Setup PCI function reset mailbox-ioctl command */
11705 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11706 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11707 				 LPFC_SLI4_MBX_EMBED);
11708 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11709 		shdr = (union lpfc_sli4_cfg_shdr *)
11710 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11711 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11712 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11713 					 &shdr->response);
11714 		mempool_free(mboxq, phba->mbox_mem_pool);
11715 		if (shdr_status || shdr_add_status || rc) {
11716 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11717 					"0495 SLI_FUNCTION_RESET mailbox "
11718 					"failed with status x%x add_status x%x,"
11719 					" mbx status x%x\n",
11720 					shdr_status, shdr_add_status, rc);
11721 			rc = -ENXIO;
11722 		}
11723 		break;
11724 	case LPFC_SLI_INTF_IF_TYPE_2:
11725 	case LPFC_SLI_INTF_IF_TYPE_6:
11726 wait:
11727 		/*
11728 		 * Poll the Port Status Register and wait for RDY for
11729 		 * up to 30 seconds. If the port doesn't respond, treat
11730 		 * it as an error.
11731 		 */
11732 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11733 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11734 				STATUSregaddr, &reg_data.word0)) {
11735 				rc = -ENODEV;
11736 				goto out;
11737 			}
11738 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11739 				break;
11740 			msleep(20);
11741 		}
11742 
11743 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11744 			phba->work_status[0] = readl(
11745 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11746 			phba->work_status[1] = readl(
11747 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11748 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11749 					"2890 Port not ready, port status reg "
11750 					"0x%x error 1=0x%x, error 2=0x%x\n",
11751 					reg_data.word0,
11752 					phba->work_status[0],
11753 					phba->work_status[1]);
11754 			rc = -ENODEV;
11755 			goto out;
11756 		}
11757 
11758 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11759 			lpfc_pldv_detect = true;
11760 
11761 		if (!port_reset) {
11762 			/*
11763 			 * Reset the port now
11764 			 */
11765 			reg_data.word0 = 0;
11766 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11767 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11768 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11769 			       LPFC_SLIPORT_INIT_PORT);
11770 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11771 			       CTRLregaddr);
11772 			/* flush */
11773 			pci_read_config_word(phba->pcidev,
11774 					     PCI_DEVICE_ID, &devid);
11775 
11776 			port_reset = 1;
11777 			msleep(20);
11778 			goto wait;
11779 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11780 			rc = -ENODEV;
11781 			goto out;
11782 		}
11783 		break;
11784 
11785 	case LPFC_SLI_INTF_IF_TYPE_1:
11786 	default:
11787 		break;
11788 	}
11789 
11790 out:
11791 	/* Catch the not-ready port failure after a port reset. */
11792 	if (rc) {
11793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11794 				"3317 HBA not functional: IP Reset Failed "
11795 				"try: echo fw_reset > board_mode\n");
11796 		rc = -ENODEV;
11797 	}
11798 
11799 	return rc;
11800 }
11801 
11802 /**
11803  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11804  * @phba: pointer to lpfc hba data structure.
11805  *
11806  * This routine is invoked to set up the PCI device memory space for device
11807  * with SLI-4 interface spec.
11808  *
11809  * Return codes
11810  * 	0 - successful
11811  * 	other values - error
11812  **/
11813 static int
11814 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11815 {
11816 	struct pci_dev *pdev = phba->pcidev;
11817 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11818 	int error;
11819 	uint32_t if_type;
11820 
11821 	if (!pdev)
11822 		return -ENODEV;
11823 
11824 	/* Set the device DMA mask size */
11825 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11826 	if (error)
11827 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11828 	if (error)
11829 		return error;
11830 
11831 	/*
11832 	 * The BARs and register set definitions and offset locations are
11833 	 * dependent on the if_type.
11834 	 */
11835 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11836 				  &phba->sli4_hba.sli_intf.word0)) {
11837 		return -ENODEV;
11838 	}
11839 
11840 	/* There is no SLI3 failback for SLI4 devices. */
11841 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11842 	    LPFC_SLI_INTF_VALID) {
11843 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11844 				"2894 SLI_INTF reg contents invalid "
11845 				"sli_intf reg 0x%x\n",
11846 				phba->sli4_hba.sli_intf.word0);
11847 		return -ENODEV;
11848 	}
11849 
11850 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11851 	/*
11852 	 * Get the bus address of SLI4 device Bar regions and the
11853 	 * number of bytes required by each mapping. The mapping of the
11854 	 * particular PCI BARs regions is dependent on the type of
11855 	 * SLI4 device.
11856 	 */
11857 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11858 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11859 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11860 
11861 		/*
11862 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11863 		 * addr
11864 		 */
11865 		phba->sli4_hba.conf_regs_memmap_p =
11866 			ioremap(phba->pci_bar0_map, bar0map_len);
11867 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11868 			dev_printk(KERN_ERR, &pdev->dev,
11869 				   "ioremap failed for SLI4 PCI config "
11870 				   "registers.\n");
11871 			return -ENODEV;
11872 		}
11873 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11874 		/* Set up BAR0 PCI config space register memory map */
11875 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11876 	} else {
11877 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11878 		bar0map_len = pci_resource_len(pdev, 1);
11879 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11880 			dev_printk(KERN_ERR, &pdev->dev,
11881 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11882 			return -ENODEV;
11883 		}
11884 		phba->sli4_hba.conf_regs_memmap_p =
11885 				ioremap(phba->pci_bar0_map, bar0map_len);
11886 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11887 			dev_printk(KERN_ERR, &pdev->dev,
11888 				"ioremap failed for SLI4 PCI config "
11889 				"registers.\n");
11890 			return -ENODEV;
11891 		}
11892 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11893 	}
11894 
11895 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11896 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11897 			/*
11898 			 * Map SLI4 if type 0 HBA Control Register base to a
11899 			 * kernel virtual address and setup the registers.
11900 			 */
11901 			phba->pci_bar1_map = pci_resource_start(pdev,
11902 								PCI_64BIT_BAR2);
11903 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11904 			phba->sli4_hba.ctrl_regs_memmap_p =
11905 					ioremap(phba->pci_bar1_map,
11906 						bar1map_len);
11907 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11908 				dev_err(&pdev->dev,
11909 					   "ioremap failed for SLI4 HBA "
11910 					    "control registers.\n");
11911 				error = -ENOMEM;
11912 				goto out_iounmap_conf;
11913 			}
11914 			phba->pci_bar2_memmap_p =
11915 					 phba->sli4_hba.ctrl_regs_memmap_p;
11916 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11917 		} else {
11918 			error = -ENOMEM;
11919 			goto out_iounmap_conf;
11920 		}
11921 	}
11922 
11923 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11924 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11925 		/*
11926 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11927 		 * virtual address and setup the registers.
11928 		 */
11929 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11930 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11931 		phba->sli4_hba.drbl_regs_memmap_p =
11932 				ioremap(phba->pci_bar1_map, bar1map_len);
11933 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11934 			dev_err(&pdev->dev,
11935 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11936 			error = -ENOMEM;
11937 			goto out_iounmap_conf;
11938 		}
11939 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11940 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11941 	}
11942 
11943 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11944 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11945 			/*
11946 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11947 			 * a kernel virtual address and setup the registers.
11948 			 */
11949 			phba->pci_bar2_map = pci_resource_start(pdev,
11950 								PCI_64BIT_BAR4);
11951 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11952 			phba->sli4_hba.drbl_regs_memmap_p =
11953 					ioremap(phba->pci_bar2_map,
11954 						bar2map_len);
11955 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11956 				dev_err(&pdev->dev,
11957 					   "ioremap failed for SLI4 HBA"
11958 					   " doorbell registers.\n");
11959 				error = -ENOMEM;
11960 				goto out_iounmap_ctrl;
11961 			}
11962 			phba->pci_bar4_memmap_p =
11963 					phba->sli4_hba.drbl_regs_memmap_p;
11964 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11965 			if (error)
11966 				goto out_iounmap_all;
11967 		} else {
11968 			error = -ENOMEM;
11969 			goto out_iounmap_ctrl;
11970 		}
11971 	}
11972 
11973 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11974 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11975 		/*
11976 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11977 		 * virtual address and setup the registers.
11978 		 */
11979 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11980 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11981 		phba->sli4_hba.dpp_regs_memmap_p =
11982 				ioremap(phba->pci_bar2_map, bar2map_len);
11983 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11984 			dev_err(&pdev->dev,
11985 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11986 			error = -ENOMEM;
11987 			goto out_iounmap_all;
11988 		}
11989 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11990 	}
11991 
11992 	/* Set up the EQ/CQ register handeling functions now */
11993 	switch (if_type) {
11994 	case LPFC_SLI_INTF_IF_TYPE_0:
11995 	case LPFC_SLI_INTF_IF_TYPE_2:
11996 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11997 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11998 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11999 		break;
12000 	case LPFC_SLI_INTF_IF_TYPE_6:
12001 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12002 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12003 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12004 		break;
12005 	default:
12006 		break;
12007 	}
12008 
12009 	return 0;
12010 
12011 out_iounmap_all:
12012 	if (phba->sli4_hba.drbl_regs_memmap_p)
12013 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12014 out_iounmap_ctrl:
12015 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12016 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12017 out_iounmap_conf:
12018 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12019 
12020 	return error;
12021 }
12022 
12023 /**
12024  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12025  * @phba: pointer to lpfc hba data structure.
12026  *
12027  * This routine is invoked to unset the PCI device memory space for device
12028  * with SLI-4 interface spec.
12029  **/
12030 static void
12031 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12032 {
12033 	uint32_t if_type;
12034 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12035 
12036 	switch (if_type) {
12037 	case LPFC_SLI_INTF_IF_TYPE_0:
12038 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12039 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12040 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12041 		break;
12042 	case LPFC_SLI_INTF_IF_TYPE_2:
12043 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12044 		break;
12045 	case LPFC_SLI_INTF_IF_TYPE_6:
12046 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12047 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12048 		if (phba->sli4_hba.dpp_regs_memmap_p)
12049 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12050 		break;
12051 	case LPFC_SLI_INTF_IF_TYPE_1:
12052 		break;
12053 	default:
12054 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12055 			   "FATAL - unsupported SLI4 interface type - %d\n",
12056 			   if_type);
12057 		break;
12058 	}
12059 }
12060 
12061 /**
12062  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12063  * @phba: pointer to lpfc hba data structure.
12064  *
12065  * This routine is invoked to enable the MSI-X interrupt vectors to device
12066  * with SLI-3 interface specs.
12067  *
12068  * Return codes
12069  *   0 - successful
12070  *   other values - error
12071  **/
12072 static int
12073 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12074 {
12075 	int rc;
12076 	LPFC_MBOXQ_t *pmb;
12077 
12078 	/* Set up MSI-X multi-message vectors */
12079 	rc = pci_alloc_irq_vectors(phba->pcidev,
12080 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12081 	if (rc < 0) {
12082 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12083 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12084 		goto vec_fail_out;
12085 	}
12086 
12087 	/*
12088 	 * Assign MSI-X vectors to interrupt handlers
12089 	 */
12090 
12091 	/* vector-0 is associated to slow-path handler */
12092 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12093 			 &lpfc_sli_sp_intr_handler, 0,
12094 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12095 	if (rc) {
12096 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12097 				"0421 MSI-X slow-path request_irq failed "
12098 				"(%d)\n", rc);
12099 		goto msi_fail_out;
12100 	}
12101 
12102 	/* vector-1 is associated to fast-path handler */
12103 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12104 			 &lpfc_sli_fp_intr_handler, 0,
12105 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12106 
12107 	if (rc) {
12108 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12109 				"0429 MSI-X fast-path request_irq failed "
12110 				"(%d)\n", rc);
12111 		goto irq_fail_out;
12112 	}
12113 
12114 	/*
12115 	 * Configure HBA MSI-X attention conditions to messages
12116 	 */
12117 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12118 
12119 	if (!pmb) {
12120 		rc = -ENOMEM;
12121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12122 				"0474 Unable to allocate memory for issuing "
12123 				"MBOX_CONFIG_MSI command\n");
12124 		goto mem_fail_out;
12125 	}
12126 	rc = lpfc_config_msi(phba, pmb);
12127 	if (rc)
12128 		goto mbx_fail_out;
12129 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12130 	if (rc != MBX_SUCCESS) {
12131 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12132 				"0351 Config MSI mailbox command failed, "
12133 				"mbxCmd x%x, mbxStatus x%x\n",
12134 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12135 		goto mbx_fail_out;
12136 	}
12137 
12138 	/* Free memory allocated for mailbox command */
12139 	mempool_free(pmb, phba->mbox_mem_pool);
12140 	return rc;
12141 
12142 mbx_fail_out:
12143 	/* Free memory allocated for mailbox command */
12144 	mempool_free(pmb, phba->mbox_mem_pool);
12145 
12146 mem_fail_out:
12147 	/* free the irq already requested */
12148 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12149 
12150 irq_fail_out:
12151 	/* free the irq already requested */
12152 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12153 
12154 msi_fail_out:
12155 	/* Unconfigure MSI-X capability structure */
12156 	pci_free_irq_vectors(phba->pcidev);
12157 
12158 vec_fail_out:
12159 	return rc;
12160 }
12161 
12162 /**
12163  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12164  * @phba: pointer to lpfc hba data structure.
12165  *
12166  * This routine is invoked to enable the MSI interrupt mode to device with
12167  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12168  * enable the MSI vector. The device driver is responsible for calling the
12169  * request_irq() to register MSI vector with a interrupt the handler, which
12170  * is done in this function.
12171  *
12172  * Return codes
12173  * 	0 - successful
12174  * 	other values - error
12175  */
12176 static int
12177 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12178 {
12179 	int rc;
12180 
12181 	rc = pci_enable_msi(phba->pcidev);
12182 	if (!rc)
12183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12184 				"0012 PCI enable MSI mode success.\n");
12185 	else {
12186 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12187 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12188 		return rc;
12189 	}
12190 
12191 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12192 			 0, LPFC_DRIVER_NAME, phba);
12193 	if (rc) {
12194 		pci_disable_msi(phba->pcidev);
12195 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12196 				"0478 MSI request_irq failed (%d)\n", rc);
12197 	}
12198 	return rc;
12199 }
12200 
12201 /**
12202  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12203  * @phba: pointer to lpfc hba data structure.
12204  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12205  *
12206  * This routine is invoked to enable device interrupt and associate driver's
12207  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12208  * spec. Depends on the interrupt mode configured to the driver, the driver
12209  * will try to fallback from the configured interrupt mode to an interrupt
12210  * mode which is supported by the platform, kernel, and device in the order
12211  * of:
12212  * MSI-X -> MSI -> IRQ.
12213  *
12214  * Return codes
12215  *   0 - successful
12216  *   other values - error
12217  **/
12218 static uint32_t
12219 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12220 {
12221 	uint32_t intr_mode = LPFC_INTR_ERROR;
12222 	int retval;
12223 
12224 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12225 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12226 	if (retval)
12227 		return intr_mode;
12228 	clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
12229 
12230 	if (cfg_mode == 2) {
12231 		/* Now, try to enable MSI-X interrupt mode */
12232 		retval = lpfc_sli_enable_msix(phba);
12233 		if (!retval) {
12234 			/* Indicate initialization to MSI-X mode */
12235 			phba->intr_type = MSIX;
12236 			intr_mode = 2;
12237 		}
12238 	}
12239 
12240 	/* Fallback to MSI if MSI-X initialization failed */
12241 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12242 		retval = lpfc_sli_enable_msi(phba);
12243 		if (!retval) {
12244 			/* Indicate initialization to MSI mode */
12245 			phba->intr_type = MSI;
12246 			intr_mode = 1;
12247 		}
12248 	}
12249 
12250 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12251 	if (phba->intr_type == NONE) {
12252 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12253 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12254 		if (!retval) {
12255 			/* Indicate initialization to INTx mode */
12256 			phba->intr_type = INTx;
12257 			intr_mode = 0;
12258 		}
12259 	}
12260 	return intr_mode;
12261 }
12262 
12263 /**
12264  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12265  * @phba: pointer to lpfc hba data structure.
12266  *
12267  * This routine is invoked to disable device interrupt and disassociate the
12268  * driver's interrupt handler(s) from interrupt vector(s) to device with
12269  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12270  * release the interrupt vector(s) for the message signaled interrupt.
12271  **/
12272 static void
12273 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12274 {
12275 	int nr_irqs, i;
12276 
12277 	if (phba->intr_type == MSIX)
12278 		nr_irqs = LPFC_MSIX_VECTORS;
12279 	else
12280 		nr_irqs = 1;
12281 
12282 	for (i = 0; i < nr_irqs; i++)
12283 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12284 	pci_free_irq_vectors(phba->pcidev);
12285 
12286 	/* Reset interrupt management states */
12287 	phba->intr_type = NONE;
12288 	phba->sli.slistat.sli_intr = 0;
12289 }
12290 
12291 /**
12292  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12293  * @phba: pointer to lpfc hba data structure.
12294  * @id: EQ vector index or Hardware Queue index
12295  * @match: LPFC_FIND_BY_EQ = match by EQ
12296  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12297  * Return the CPU that matches the selection criteria
12298  */
12299 static uint16_t
12300 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12301 {
12302 	struct lpfc_vector_map_info *cpup;
12303 	int cpu;
12304 
12305 	/* Loop through all CPUs */
12306 	for_each_present_cpu(cpu) {
12307 		cpup = &phba->sli4_hba.cpu_map[cpu];
12308 
12309 		/* If we are matching by EQ, there may be multiple CPUs using
12310 		 * using the same vector, so select the one with
12311 		 * LPFC_CPU_FIRST_IRQ set.
12312 		 */
12313 		if ((match == LPFC_FIND_BY_EQ) &&
12314 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12315 		    (cpup->eq == id))
12316 			return cpu;
12317 
12318 		/* If matching by HDWQ, select the first CPU that matches */
12319 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12320 			return cpu;
12321 	}
12322 	return 0;
12323 }
12324 
12325 #ifdef CONFIG_X86
12326 /**
12327  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12328  * @phba: pointer to lpfc hba data structure.
12329  * @cpu: CPU map index
12330  * @phys_id: CPU package physical id
12331  * @core_id: CPU core id
12332  */
12333 static int
12334 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12335 		uint16_t phys_id, uint16_t core_id)
12336 {
12337 	struct lpfc_vector_map_info *cpup;
12338 	int idx;
12339 
12340 	for_each_present_cpu(idx) {
12341 		cpup = &phba->sli4_hba.cpu_map[idx];
12342 		/* Does the cpup match the one we are looking for */
12343 		if ((cpup->phys_id == phys_id) &&
12344 		    (cpup->core_id == core_id) &&
12345 		    (cpu != idx))
12346 			return 1;
12347 	}
12348 	return 0;
12349 }
12350 #endif
12351 
12352 /*
12353  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12354  * @phba: pointer to lpfc hba data structure.
12355  * @eqidx: index for eq and irq vector
12356  * @flag: flags to set for vector_map structure
12357  * @cpu: cpu used to index vector_map structure
12358  *
12359  * The routine assigns eq info into vector_map structure
12360  */
12361 static inline void
12362 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12363 			unsigned int cpu)
12364 {
12365 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12366 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12367 
12368 	cpup->eq = eqidx;
12369 	cpup->flag |= flag;
12370 
12371 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12372 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12373 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12374 }
12375 
12376 /**
12377  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12378  * @phba: pointer to lpfc hba data structure.
12379  *
12380  * The routine initializes the cpu_map array structure
12381  */
12382 static void
12383 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12384 {
12385 	struct lpfc_vector_map_info *cpup;
12386 	struct lpfc_eq_intr_info *eqi;
12387 	int cpu;
12388 
12389 	for_each_possible_cpu(cpu) {
12390 		cpup = &phba->sli4_hba.cpu_map[cpu];
12391 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12392 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12393 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12394 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12395 		cpup->flag = 0;
12396 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12397 		INIT_LIST_HEAD(&eqi->list);
12398 		eqi->icnt = 0;
12399 	}
12400 }
12401 
12402 /**
12403  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12404  * @phba: pointer to lpfc hba data structure.
12405  *
12406  * The routine initializes the hba_eq_hdl array structure
12407  */
12408 static void
12409 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12410 {
12411 	struct lpfc_hba_eq_hdl *eqhdl;
12412 	int i;
12413 
12414 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12415 		eqhdl = lpfc_get_eq_hdl(i);
12416 		eqhdl->irq = LPFC_IRQ_EMPTY;
12417 		eqhdl->phba = phba;
12418 	}
12419 }
12420 
12421 /**
12422  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12423  * @phba: pointer to lpfc hba data structure.
12424  * @vectors: number of msix vectors allocated.
12425  *
12426  * The routine will figure out the CPU affinity assignment for every
12427  * MSI-X vector allocated for the HBA.
12428  * In addition, the CPU to IO channel mapping will be calculated
12429  * and the phba->sli4_hba.cpu_map array will reflect this.
12430  */
12431 static void
12432 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12433 {
12434 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12435 	int max_phys_id, min_phys_id;
12436 	int max_core_id, min_core_id;
12437 	struct lpfc_vector_map_info *cpup;
12438 	struct lpfc_vector_map_info *new_cpup;
12439 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12440 	struct lpfc_hdwq_stat *c_stat;
12441 #endif
12442 
12443 	max_phys_id = 0;
12444 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12445 	max_core_id = 0;
12446 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12447 
12448 	/* Update CPU map with physical id and core id of each CPU */
12449 	for_each_present_cpu(cpu) {
12450 		cpup = &phba->sli4_hba.cpu_map[cpu];
12451 #ifdef CONFIG_X86
12452 		cpup->phys_id = topology_physical_package_id(cpu);
12453 		cpup->core_id = topology_core_id(cpu);
12454 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12455 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12456 #else
12457 		/* No distinction between CPUs for other platforms */
12458 		cpup->phys_id = 0;
12459 		cpup->core_id = cpu;
12460 #endif
12461 
12462 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12463 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12464 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12465 
12466 		if (cpup->phys_id > max_phys_id)
12467 			max_phys_id = cpup->phys_id;
12468 		if (cpup->phys_id < min_phys_id)
12469 			min_phys_id = cpup->phys_id;
12470 
12471 		if (cpup->core_id > max_core_id)
12472 			max_core_id = cpup->core_id;
12473 		if (cpup->core_id < min_core_id)
12474 			min_core_id = cpup->core_id;
12475 	}
12476 
12477 	/* After looking at each irq vector assigned to this pcidev, its
12478 	 * possible to see that not ALL CPUs have been accounted for.
12479 	 * Next we will set any unassigned (unaffinitized) cpu map
12480 	 * entries to a IRQ on the same phys_id.
12481 	 */
12482 	first_cpu = cpumask_first(cpu_present_mask);
12483 	start_cpu = first_cpu;
12484 
12485 	for_each_present_cpu(cpu) {
12486 		cpup = &phba->sli4_hba.cpu_map[cpu];
12487 
12488 		/* Is this CPU entry unassigned */
12489 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12490 			/* Mark CPU as IRQ not assigned by the kernel */
12491 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12492 
12493 			/* If so, find a new_cpup that is on the SAME
12494 			 * phys_id as cpup. start_cpu will start where we
12495 			 * left off so all unassigned entries don't get assgined
12496 			 * the IRQ of the first entry.
12497 			 */
12498 			new_cpu = start_cpu;
12499 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12500 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12501 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12502 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12503 				    (new_cpup->phys_id == cpup->phys_id))
12504 					goto found_same;
12505 				new_cpu = lpfc_next_present_cpu(new_cpu);
12506 			}
12507 			/* At this point, we leave the CPU as unassigned */
12508 			continue;
12509 found_same:
12510 			/* We found a matching phys_id, so copy the IRQ info */
12511 			cpup->eq = new_cpup->eq;
12512 
12513 			/* Bump start_cpu to the next slot to minmize the
12514 			 * chance of having multiple unassigned CPU entries
12515 			 * selecting the same IRQ.
12516 			 */
12517 			start_cpu = lpfc_next_present_cpu(new_cpu);
12518 
12519 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12520 					"3337 Set Affinity: CPU %d "
12521 					"eq %d from peer cpu %d same "
12522 					"phys_id (%d)\n",
12523 					cpu, cpup->eq, new_cpu,
12524 					cpup->phys_id);
12525 		}
12526 	}
12527 
12528 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12529 	start_cpu = first_cpu;
12530 
12531 	for_each_present_cpu(cpu) {
12532 		cpup = &phba->sli4_hba.cpu_map[cpu];
12533 
12534 		/* Is this entry unassigned */
12535 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12536 			/* Mark it as IRQ not assigned by the kernel */
12537 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12538 
12539 			/* If so, find a new_cpup thats on ANY phys_id
12540 			 * as the cpup. start_cpu will start where we
12541 			 * left off so all unassigned entries don't get
12542 			 * assigned the IRQ of the first entry.
12543 			 */
12544 			new_cpu = start_cpu;
12545 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12546 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12547 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12548 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12549 					goto found_any;
12550 				new_cpu = lpfc_next_present_cpu(new_cpu);
12551 			}
12552 			/* We should never leave an entry unassigned */
12553 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12554 					"3339 Set Affinity: CPU %d "
12555 					"eq %d UNASSIGNED\n",
12556 					cpup->hdwq, cpup->eq);
12557 			continue;
12558 found_any:
12559 			/* We found an available entry, copy the IRQ info */
12560 			cpup->eq = new_cpup->eq;
12561 
12562 			/* Bump start_cpu to the next slot to minmize the
12563 			 * chance of having multiple unassigned CPU entries
12564 			 * selecting the same IRQ.
12565 			 */
12566 			start_cpu = lpfc_next_present_cpu(new_cpu);
12567 
12568 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12569 					"3338 Set Affinity: CPU %d "
12570 					"eq %d from peer cpu %d (%d/%d)\n",
12571 					cpu, cpup->eq, new_cpu,
12572 					new_cpup->phys_id, new_cpup->core_id);
12573 		}
12574 	}
12575 
12576 	/* Assign hdwq indices that are unique across all cpus in the map
12577 	 * that are also FIRST_CPUs.
12578 	 */
12579 	idx = 0;
12580 	for_each_present_cpu(cpu) {
12581 		cpup = &phba->sli4_hba.cpu_map[cpu];
12582 
12583 		/* Only FIRST IRQs get a hdwq index assignment. */
12584 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12585 			continue;
12586 
12587 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12588 		cpup->hdwq = idx;
12589 		idx++;
12590 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12591 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12592 				"hdwq %d eq %d flg x%x\n",
12593 				cpu, cpup->phys_id, cpup->core_id,
12594 				cpup->hdwq, cpup->eq, cpup->flag);
12595 	}
12596 	/* Associate a hdwq with each cpu_map entry
12597 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12598 	 * hardware queues then CPUs. For that case we will just round-robin
12599 	 * the available hardware queues as they get assigned to CPUs.
12600 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12601 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12602 	 * and needs to start at 0.
12603 	 */
12604 	next_idx = idx;
12605 	start_cpu = 0;
12606 	idx = 0;
12607 	for_each_present_cpu(cpu) {
12608 		cpup = &phba->sli4_hba.cpu_map[cpu];
12609 
12610 		/* FIRST cpus are already mapped. */
12611 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12612 			continue;
12613 
12614 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12615 		 * of the unassigned cpus to the next idx so that all
12616 		 * hdw queues are fully utilized.
12617 		 */
12618 		if (next_idx < phba->cfg_hdw_queue) {
12619 			cpup->hdwq = next_idx;
12620 			next_idx++;
12621 			continue;
12622 		}
12623 
12624 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12625 		 * Hardware Queue for another CPU, so be smart about it
12626 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12627 		 * (CPU package) and core_id.
12628 		 */
12629 		new_cpu = start_cpu;
12630 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12631 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12632 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12633 			    new_cpup->phys_id == cpup->phys_id &&
12634 			    new_cpup->core_id == cpup->core_id) {
12635 				goto found_hdwq;
12636 			}
12637 			new_cpu = lpfc_next_present_cpu(new_cpu);
12638 		}
12639 
12640 		/* If we can't match both phys_id and core_id,
12641 		 * settle for just a phys_id match.
12642 		 */
12643 		new_cpu = start_cpu;
12644 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12645 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12646 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12647 			    new_cpup->phys_id == cpup->phys_id)
12648 				goto found_hdwq;
12649 			new_cpu = lpfc_next_present_cpu(new_cpu);
12650 		}
12651 
12652 		/* Otherwise just round robin on cfg_hdw_queue */
12653 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12654 		idx++;
12655 		goto logit;
12656  found_hdwq:
12657 		/* We found an available entry, copy the IRQ info */
12658 		start_cpu = lpfc_next_present_cpu(new_cpu);
12659 		cpup->hdwq = new_cpup->hdwq;
12660  logit:
12661 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12662 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12663 				"hdwq %d eq %d flg x%x\n",
12664 				cpu, cpup->phys_id, cpup->core_id,
12665 				cpup->hdwq, cpup->eq, cpup->flag);
12666 	}
12667 
12668 	/*
12669 	 * Initialize the cpu_map slots for not-present cpus in case
12670 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12671 	 */
12672 	idx = 0;
12673 	for_each_possible_cpu(cpu) {
12674 		cpup = &phba->sli4_hba.cpu_map[cpu];
12675 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12676 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12677 		c_stat->hdwq_no = cpup->hdwq;
12678 #endif
12679 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12680 			continue;
12681 
12682 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12683 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12684 		c_stat->hdwq_no = cpup->hdwq;
12685 #endif
12686 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12687 				"3340 Set Affinity: not present "
12688 				"CPU %d hdwq %d\n",
12689 				cpu, cpup->hdwq);
12690 	}
12691 
12692 	/* The cpu_map array will be used later during initialization
12693 	 * when EQ / CQ / WQs are allocated and configured.
12694 	 */
12695 	return;
12696 }
12697 
12698 /**
12699  * lpfc_cpuhp_get_eq
12700  *
12701  * @phba:   pointer to lpfc hba data structure.
12702  * @cpu:    cpu going offline
12703  * @eqlist: eq list to append to
12704  */
12705 static int
12706 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12707 		  struct list_head *eqlist)
12708 {
12709 	const struct cpumask *maskp;
12710 	struct lpfc_queue *eq;
12711 	struct cpumask *tmp;
12712 	u16 idx;
12713 
12714 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12715 	if (!tmp)
12716 		return -ENOMEM;
12717 
12718 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12719 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12720 		if (!maskp)
12721 			continue;
12722 		/*
12723 		 * if irq is not affinitized to the cpu going
12724 		 * then we don't need to poll the eq attached
12725 		 * to it.
12726 		 */
12727 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12728 			continue;
12729 		/* get the cpus that are online and are affini-
12730 		 * tized to this irq vector.  If the count is
12731 		 * more than 1 then cpuhp is not going to shut-
12732 		 * down this vector.  Since this cpu has not
12733 		 * gone offline yet, we need >1.
12734 		 */
12735 		cpumask_and(tmp, maskp, cpu_online_mask);
12736 		if (cpumask_weight(tmp) > 1)
12737 			continue;
12738 
12739 		/* Now that we have an irq to shutdown, get the eq
12740 		 * mapped to this irq.  Note: multiple hdwq's in
12741 		 * the software can share an eq, but eventually
12742 		 * only eq will be mapped to this vector
12743 		 */
12744 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12745 		list_add(&eq->_poll_list, eqlist);
12746 	}
12747 	kfree(tmp);
12748 	return 0;
12749 }
12750 
12751 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12752 {
12753 	if (phba->sli_rev != LPFC_SLI_REV4)
12754 		return;
12755 
12756 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12757 					    &phba->cpuhp);
12758 	/*
12759 	 * unregistering the instance doesn't stop the polling
12760 	 * timer. Wait for the poll timer to retire.
12761 	 */
12762 	synchronize_rcu();
12763 	del_timer_sync(&phba->cpuhp_poll_timer);
12764 }
12765 
12766 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12767 {
12768 	if (phba->pport &&
12769 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
12770 		return;
12771 
12772 	__lpfc_cpuhp_remove(phba);
12773 }
12774 
12775 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12776 {
12777 	if (phba->sli_rev != LPFC_SLI_REV4)
12778 		return;
12779 
12780 	rcu_read_lock();
12781 
12782 	if (!list_empty(&phba->poll_list))
12783 		mod_timer(&phba->cpuhp_poll_timer,
12784 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12785 
12786 	rcu_read_unlock();
12787 
12788 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12789 					 &phba->cpuhp);
12790 }
12791 
12792 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12793 {
12794 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
12795 		*retval = -EAGAIN;
12796 		return true;
12797 	}
12798 
12799 	if (phba->sli_rev != LPFC_SLI_REV4) {
12800 		*retval = 0;
12801 		return true;
12802 	}
12803 
12804 	/* proceed with the hotplug */
12805 	return false;
12806 }
12807 
12808 /**
12809  * lpfc_irq_set_aff - set IRQ affinity
12810  * @eqhdl: EQ handle
12811  * @cpu: cpu to set affinity
12812  *
12813  **/
12814 static inline void
12815 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12816 {
12817 	cpumask_clear(&eqhdl->aff_mask);
12818 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12819 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12820 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12821 }
12822 
12823 /**
12824  * lpfc_irq_clear_aff - clear IRQ affinity
12825  * @eqhdl: EQ handle
12826  *
12827  **/
12828 static inline void
12829 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12830 {
12831 	cpumask_clear(&eqhdl->aff_mask);
12832 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12833 }
12834 
12835 /**
12836  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12837  * @phba: pointer to HBA context object.
12838  * @cpu: cpu going offline/online
12839  * @offline: true, cpu is going offline. false, cpu is coming online.
12840  *
12841  * If cpu is going offline, we'll try our best effort to find the next
12842  * online cpu on the phba's original_mask and migrate all offlining IRQ
12843  * affinities.
12844  *
12845  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12846  *
12847  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12848  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12849  *
12850  **/
12851 static void
12852 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12853 {
12854 	struct lpfc_vector_map_info *cpup;
12855 	struct cpumask *aff_mask;
12856 	unsigned int cpu_select, cpu_next, idx;
12857 	const struct cpumask *orig_mask;
12858 
12859 	if (phba->irq_chann_mode == NORMAL_MODE)
12860 		return;
12861 
12862 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12863 
12864 	if (!cpumask_test_cpu(cpu, orig_mask))
12865 		return;
12866 
12867 	cpup = &phba->sli4_hba.cpu_map[cpu];
12868 
12869 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12870 		return;
12871 
12872 	if (offline) {
12873 		/* Find next online CPU on original mask */
12874 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12875 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12876 
12877 		/* Found a valid CPU */
12878 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12879 			/* Go through each eqhdl and ensure offlining
12880 			 * cpu aff_mask is migrated
12881 			 */
12882 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12883 				aff_mask = lpfc_get_aff_mask(idx);
12884 
12885 				/* Migrate affinity */
12886 				if (cpumask_test_cpu(cpu, aff_mask))
12887 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12888 							 cpu_select);
12889 			}
12890 		} else {
12891 			/* Rely on irqbalance if no online CPUs left on NUMA */
12892 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12893 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12894 		}
12895 	} else {
12896 		/* Migrate affinity back to this CPU */
12897 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12898 	}
12899 }
12900 
12901 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12902 {
12903 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12904 	struct lpfc_queue *eq, *next;
12905 	LIST_HEAD(eqlist);
12906 	int retval;
12907 
12908 	if (!phba) {
12909 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12910 		return 0;
12911 	}
12912 
12913 	if (__lpfc_cpuhp_checks(phba, &retval))
12914 		return retval;
12915 
12916 	lpfc_irq_rebalance(phba, cpu, true);
12917 
12918 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12919 	if (retval)
12920 		return retval;
12921 
12922 	/* start polling on these eq's */
12923 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12924 		list_del_init(&eq->_poll_list);
12925 		lpfc_sli4_start_polling(eq);
12926 	}
12927 
12928 	return 0;
12929 }
12930 
12931 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12932 {
12933 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12934 	struct lpfc_queue *eq, *next;
12935 	unsigned int n;
12936 	int retval;
12937 
12938 	if (!phba) {
12939 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12940 		return 0;
12941 	}
12942 
12943 	if (__lpfc_cpuhp_checks(phba, &retval))
12944 		return retval;
12945 
12946 	lpfc_irq_rebalance(phba, cpu, false);
12947 
12948 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12949 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12950 		if (n == cpu)
12951 			lpfc_sli4_stop_polling(eq);
12952 	}
12953 
12954 	return 0;
12955 }
12956 
12957 /**
12958  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12959  * @phba: pointer to lpfc hba data structure.
12960  *
12961  * This routine is invoked to enable the MSI-X interrupt vectors to device
12962  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12963  * to cpus on the system.
12964  *
12965  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12966  * the number of cpus on the same numa node as this adapter.  The vectors are
12967  * allocated without requesting OS affinity mapping.  A vector will be
12968  * allocated and assigned to each online and offline cpu.  If the cpu is
12969  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12970  * affinity will be set to the nearest peer cpu within the numa node that is
12971  * online.  If there are no online cpus within the numa node, affinity is not
12972  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12973  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12974  * configured.
12975  *
12976  * If numa mode is not enabled and there is more than 1 vector allocated, then
12977  * the driver relies on the managed irq interface where the OS assigns vector to
12978  * cpu affinity.  The driver will then use that affinity mapping to setup its
12979  * cpu mapping table.
12980  *
12981  * Return codes
12982  * 0 - successful
12983  * other values - error
12984  **/
12985 static int
12986 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12987 {
12988 	int vectors, rc, index;
12989 	char *name;
12990 	const struct cpumask *aff_mask = NULL;
12991 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12992 	struct lpfc_vector_map_info *cpup;
12993 	struct lpfc_hba_eq_hdl *eqhdl;
12994 	const struct cpumask *maskp;
12995 	unsigned int flags = PCI_IRQ_MSIX;
12996 
12997 	/* Set up MSI-X multi-message vectors */
12998 	vectors = phba->cfg_irq_chann;
12999 
13000 	if (phba->irq_chann_mode != NORMAL_MODE)
13001 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13002 
13003 	if (aff_mask) {
13004 		cpu_cnt = cpumask_weight(aff_mask);
13005 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13006 
13007 		/* cpu: iterates over aff_mask including offline or online
13008 		 * cpu_select: iterates over online aff_mask to set affinity
13009 		 */
13010 		cpu = cpumask_first(aff_mask);
13011 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13012 	} else {
13013 		flags |= PCI_IRQ_AFFINITY;
13014 	}
13015 
13016 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13017 	if (rc < 0) {
13018 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13019 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13020 		goto vec_fail_out;
13021 	}
13022 	vectors = rc;
13023 
13024 	/* Assign MSI-X vectors to interrupt handlers */
13025 	for (index = 0; index < vectors; index++) {
13026 		eqhdl = lpfc_get_eq_hdl(index);
13027 		name = eqhdl->handler_name;
13028 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13029 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13030 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13031 
13032 		eqhdl->idx = index;
13033 		rc = pci_irq_vector(phba->pcidev, index);
13034 		if (rc < 0) {
13035 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13036 					"0489 MSI-X fast-path (%d) "
13037 					"pci_irq_vec failed (%d)\n", index, rc);
13038 			goto cfg_fail_out;
13039 		}
13040 		eqhdl->irq = rc;
13041 
13042 		rc = request_threaded_irq(eqhdl->irq,
13043 					  &lpfc_sli4_hba_intr_handler,
13044 					  &lpfc_sli4_hba_intr_handler_th,
13045 					  0, name, eqhdl);
13046 		if (rc) {
13047 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13048 					"0486 MSI-X fast-path (%d) "
13049 					"request_irq failed (%d)\n", index, rc);
13050 			goto cfg_fail_out;
13051 		}
13052 
13053 		if (aff_mask) {
13054 			/* If found a neighboring online cpu, set affinity */
13055 			if (cpu_select < nr_cpu_ids)
13056 				lpfc_irq_set_aff(eqhdl, cpu_select);
13057 
13058 			/* Assign EQ to cpu_map */
13059 			lpfc_assign_eq_map_info(phba, index,
13060 						LPFC_CPU_FIRST_IRQ,
13061 						cpu);
13062 
13063 			/* Iterate to next offline or online cpu in aff_mask */
13064 			cpu = cpumask_next(cpu, aff_mask);
13065 
13066 			/* Find next online cpu in aff_mask to set affinity */
13067 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13068 		} else if (vectors == 1) {
13069 			cpu = cpumask_first(cpu_present_mask);
13070 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13071 						cpu);
13072 		} else {
13073 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13074 
13075 			/* Loop through all CPUs associated with vector index */
13076 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13077 				cpup = &phba->sli4_hba.cpu_map[cpu];
13078 
13079 				/* If this is the first CPU thats assigned to
13080 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13081 				 *
13082 				 * With certain platforms its possible that irq
13083 				 * vectors are affinitized to all the cpu's.
13084 				 * This can result in each cpu_map.eq to be set
13085 				 * to the last vector, resulting in overwrite
13086 				 * of all the previous cpu_map.eq.  Ensure that
13087 				 * each vector receives a place in cpu_map.
13088 				 * Later call to lpfc_cpu_affinity_check will
13089 				 * ensure we are nicely balanced out.
13090 				 */
13091 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13092 					continue;
13093 				lpfc_assign_eq_map_info(phba, index,
13094 							LPFC_CPU_FIRST_IRQ,
13095 							cpu);
13096 				break;
13097 			}
13098 		}
13099 	}
13100 
13101 	if (vectors != phba->cfg_irq_chann) {
13102 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13103 				"3238 Reducing IO channels to match number of "
13104 				"MSI-X vectors, requested %d got %d\n",
13105 				phba->cfg_irq_chann, vectors);
13106 		if (phba->cfg_irq_chann > vectors)
13107 			phba->cfg_irq_chann = vectors;
13108 	}
13109 
13110 	return rc;
13111 
13112 cfg_fail_out:
13113 	/* free the irq already requested */
13114 	for (--index; index >= 0; index--) {
13115 		eqhdl = lpfc_get_eq_hdl(index);
13116 		lpfc_irq_clear_aff(eqhdl);
13117 		free_irq(eqhdl->irq, eqhdl);
13118 	}
13119 
13120 	/* Unconfigure MSI-X capability structure */
13121 	pci_free_irq_vectors(phba->pcidev);
13122 
13123 vec_fail_out:
13124 	return rc;
13125 }
13126 
13127 /**
13128  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13129  * @phba: pointer to lpfc hba data structure.
13130  *
13131  * This routine is invoked to enable the MSI interrupt mode to device with
13132  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13133  * called to enable the MSI vector. The device driver is responsible for
13134  * calling the request_irq() to register MSI vector with a interrupt the
13135  * handler, which is done in this function.
13136  *
13137  * Return codes
13138  * 	0 - successful
13139  * 	other values - error
13140  **/
13141 static int
13142 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13143 {
13144 	int rc, index;
13145 	unsigned int cpu;
13146 	struct lpfc_hba_eq_hdl *eqhdl;
13147 
13148 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13149 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13150 	if (rc > 0)
13151 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13152 				"0487 PCI enable MSI mode success.\n");
13153 	else {
13154 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13155 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13156 		return rc ? rc : -1;
13157 	}
13158 
13159 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13160 			 0, LPFC_DRIVER_NAME, phba);
13161 	if (rc) {
13162 		pci_free_irq_vectors(phba->pcidev);
13163 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13164 				"0490 MSI request_irq failed (%d)\n", rc);
13165 		return rc;
13166 	}
13167 
13168 	eqhdl = lpfc_get_eq_hdl(0);
13169 	rc = pci_irq_vector(phba->pcidev, 0);
13170 	if (rc < 0) {
13171 		pci_free_irq_vectors(phba->pcidev);
13172 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13173 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13174 		return rc;
13175 	}
13176 	eqhdl->irq = rc;
13177 
13178 	cpu = cpumask_first(cpu_present_mask);
13179 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13180 
13181 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13182 		eqhdl = lpfc_get_eq_hdl(index);
13183 		eqhdl->idx = index;
13184 	}
13185 
13186 	return 0;
13187 }
13188 
13189 /**
13190  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13191  * @phba: pointer to lpfc hba data structure.
13192  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13193  *
13194  * This routine is invoked to enable device interrupt and associate driver's
13195  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13196  * interface spec. Depends on the interrupt mode configured to the driver,
13197  * the driver will try to fallback from the configured interrupt mode to an
13198  * interrupt mode which is supported by the platform, kernel, and device in
13199  * the order of:
13200  * MSI-X -> MSI -> IRQ.
13201  *
13202  * Return codes
13203  *	Interrupt mode (2, 1, 0) - successful
13204  *	LPFC_INTR_ERROR - error
13205  **/
13206 static uint32_t
13207 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13208 {
13209 	uint32_t intr_mode = LPFC_INTR_ERROR;
13210 	int retval, idx;
13211 
13212 	if (cfg_mode == 2) {
13213 		/* Preparation before conf_msi mbox cmd */
13214 		retval = 0;
13215 		if (!retval) {
13216 			/* Now, try to enable MSI-X interrupt mode */
13217 			retval = lpfc_sli4_enable_msix(phba);
13218 			if (!retval) {
13219 				/* Indicate initialization to MSI-X mode */
13220 				phba->intr_type = MSIX;
13221 				intr_mode = 2;
13222 			}
13223 		}
13224 	}
13225 
13226 	/* Fallback to MSI if MSI-X initialization failed */
13227 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13228 		retval = lpfc_sli4_enable_msi(phba);
13229 		if (!retval) {
13230 			/* Indicate initialization to MSI mode */
13231 			phba->intr_type = MSI;
13232 			intr_mode = 1;
13233 		}
13234 	}
13235 
13236 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13237 	if (phba->intr_type == NONE) {
13238 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13239 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13240 		if (!retval) {
13241 			struct lpfc_hba_eq_hdl *eqhdl;
13242 			unsigned int cpu;
13243 
13244 			/* Indicate initialization to INTx mode */
13245 			phba->intr_type = INTx;
13246 			intr_mode = 0;
13247 
13248 			eqhdl = lpfc_get_eq_hdl(0);
13249 			retval = pci_irq_vector(phba->pcidev, 0);
13250 			if (retval < 0) {
13251 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13252 					"0502 INTR pci_irq_vec failed (%d)\n",
13253 					 retval);
13254 				return LPFC_INTR_ERROR;
13255 			}
13256 			eqhdl->irq = retval;
13257 
13258 			cpu = cpumask_first(cpu_present_mask);
13259 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13260 						cpu);
13261 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13262 				eqhdl = lpfc_get_eq_hdl(idx);
13263 				eqhdl->idx = idx;
13264 			}
13265 		}
13266 	}
13267 	return intr_mode;
13268 }
13269 
13270 /**
13271  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13272  * @phba: pointer to lpfc hba data structure.
13273  *
13274  * This routine is invoked to disable device interrupt and disassociate
13275  * the driver's interrupt handler(s) from interrupt vector(s) to device
13276  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13277  * will release the interrupt vector(s) for the message signaled interrupt.
13278  **/
13279 static void
13280 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13281 {
13282 	/* Disable the currently initialized interrupt mode */
13283 	if (phba->intr_type == MSIX) {
13284 		int index;
13285 		struct lpfc_hba_eq_hdl *eqhdl;
13286 
13287 		/* Free up MSI-X multi-message vectors */
13288 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13289 			eqhdl = lpfc_get_eq_hdl(index);
13290 			lpfc_irq_clear_aff(eqhdl);
13291 			free_irq(eqhdl->irq, eqhdl);
13292 		}
13293 	} else {
13294 		free_irq(phba->pcidev->irq, phba);
13295 	}
13296 
13297 	pci_free_irq_vectors(phba->pcidev);
13298 
13299 	/* Reset interrupt management states */
13300 	phba->intr_type = NONE;
13301 	phba->sli.slistat.sli_intr = 0;
13302 }
13303 
13304 /**
13305  * lpfc_unset_hba - Unset SLI3 hba device initialization
13306  * @phba: pointer to lpfc hba data structure.
13307  *
13308  * This routine is invoked to unset the HBA device initialization steps to
13309  * a device with SLI-3 interface spec.
13310  **/
13311 static void
13312 lpfc_unset_hba(struct lpfc_hba *phba)
13313 {
13314 	set_bit(FC_UNLOADING, &phba->pport->load_flag);
13315 
13316 	kfree(phba->vpi_bmask);
13317 	kfree(phba->vpi_ids);
13318 
13319 	lpfc_stop_hba_timers(phba);
13320 
13321 	phba->pport->work_port_events = 0;
13322 
13323 	lpfc_sli_hba_down(phba);
13324 
13325 	lpfc_sli_brdrestart(phba);
13326 
13327 	lpfc_sli_disable_intr(phba);
13328 
13329 	return;
13330 }
13331 
13332 /**
13333  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13334  * @phba: Pointer to HBA context object.
13335  *
13336  * This function is called in the SLI4 code path to wait for completion
13337  * of device's XRIs exchange busy. It will check the XRI exchange busy
13338  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13339  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13340  * I/Os every 30 seconds, log error message, and wait forever. Only when
13341  * all XRI exchange busy complete, the driver unload shall proceed with
13342  * invoking the function reset ioctl mailbox command to the CNA and the
13343  * the rest of the driver unload resource release.
13344  **/
13345 static void
13346 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13347 {
13348 	struct lpfc_sli4_hdw_queue *qp;
13349 	int idx, ccnt;
13350 	int wait_time = 0;
13351 	int io_xri_cmpl = 1;
13352 	int nvmet_xri_cmpl = 1;
13353 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13354 
13355 	/* Driver just aborted IOs during the hba_unset process.  Pause
13356 	 * here to give the HBA time to complete the IO and get entries
13357 	 * into the abts lists.
13358 	 */
13359 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13360 
13361 	/* Wait for NVME pending IO to flush back to transport. */
13362 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13363 		lpfc_nvme_wait_for_io_drain(phba);
13364 
13365 	ccnt = 0;
13366 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13367 		qp = &phba->sli4_hba.hdwq[idx];
13368 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13369 		if (!io_xri_cmpl) /* if list is NOT empty */
13370 			ccnt++;
13371 	}
13372 	if (ccnt)
13373 		io_xri_cmpl = 0;
13374 
13375 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13376 		nvmet_xri_cmpl =
13377 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13378 	}
13379 
13380 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13381 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13382 			if (!nvmet_xri_cmpl)
13383 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13384 						"6424 NVMET XRI exchange busy "
13385 						"wait time: %d seconds.\n",
13386 						wait_time/1000);
13387 			if (!io_xri_cmpl)
13388 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13389 						"6100 IO XRI exchange busy "
13390 						"wait time: %d seconds.\n",
13391 						wait_time/1000);
13392 			if (!els_xri_cmpl)
13393 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13394 						"2878 ELS XRI exchange busy "
13395 						"wait time: %d seconds.\n",
13396 						wait_time/1000);
13397 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13398 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13399 		} else {
13400 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13401 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13402 		}
13403 
13404 		ccnt = 0;
13405 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13406 			qp = &phba->sli4_hba.hdwq[idx];
13407 			io_xri_cmpl = list_empty(
13408 			    &qp->lpfc_abts_io_buf_list);
13409 			if (!io_xri_cmpl) /* if list is NOT empty */
13410 				ccnt++;
13411 		}
13412 		if (ccnt)
13413 			io_xri_cmpl = 0;
13414 
13415 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13416 			nvmet_xri_cmpl = list_empty(
13417 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13418 		}
13419 		els_xri_cmpl =
13420 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13421 
13422 	}
13423 }
13424 
13425 /**
13426  * lpfc_sli4_hba_unset - Unset the fcoe hba
13427  * @phba: Pointer to HBA context object.
13428  *
13429  * This function is called in the SLI4 code path to reset the HBA's FCoE
13430  * function. The caller is not required to hold any lock. This routine
13431  * issues PCI function reset mailbox command to reset the FCoE function.
13432  * At the end of the function, it calls lpfc_hba_down_post function to
13433  * free any pending commands.
13434  **/
13435 static void
13436 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13437 {
13438 	int wait_cnt = 0;
13439 	LPFC_MBOXQ_t *mboxq;
13440 	struct pci_dev *pdev = phba->pcidev;
13441 
13442 	lpfc_stop_hba_timers(phba);
13443 	hrtimer_cancel(&phba->cmf_stats_timer);
13444 	hrtimer_cancel(&phba->cmf_timer);
13445 
13446 	if (phba->pport)
13447 		phba->sli4_hba.intr_enable = 0;
13448 
13449 	/*
13450 	 * Gracefully wait out the potential current outstanding asynchronous
13451 	 * mailbox command.
13452 	 */
13453 
13454 	/* First, block any pending async mailbox command from posted */
13455 	spin_lock_irq(&phba->hbalock);
13456 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13457 	spin_unlock_irq(&phba->hbalock);
13458 	/* Now, trying to wait it out if we can */
13459 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13460 		msleep(10);
13461 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13462 			break;
13463 	}
13464 	/* Forcefully release the outstanding mailbox command if timed out */
13465 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13466 		spin_lock_irq(&phba->hbalock);
13467 		mboxq = phba->sli.mbox_active;
13468 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13469 		__lpfc_mbox_cmpl_put(phba, mboxq);
13470 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13471 		phba->sli.mbox_active = NULL;
13472 		spin_unlock_irq(&phba->hbalock);
13473 	}
13474 
13475 	/* Abort all iocbs associated with the hba */
13476 	lpfc_sli_hba_iocb_abort(phba);
13477 
13478 	if (!pci_channel_offline(phba->pcidev))
13479 		/* Wait for completion of device XRI exchange busy */
13480 		lpfc_sli4_xri_exchange_busy_wait(phba);
13481 
13482 	/* per-phba callback de-registration for hotplug event */
13483 	if (phba->pport)
13484 		lpfc_cpuhp_remove(phba);
13485 
13486 	/* Disable PCI subsystem interrupt */
13487 	lpfc_sli4_disable_intr(phba);
13488 
13489 	/* Disable SR-IOV if enabled */
13490 	if (phba->cfg_sriov_nr_virtfn)
13491 		pci_disable_sriov(pdev);
13492 
13493 	/* Stop kthread signal shall trigger work_done one more time */
13494 	kthread_stop(phba->worker_thread);
13495 
13496 	/* Disable FW logging to host memory */
13497 	lpfc_ras_stop_fwlog(phba);
13498 
13499 	/* Reset SLI4 HBA FCoE function */
13500 	lpfc_pci_function_reset(phba);
13501 
13502 	/* release all queue allocated resources. */
13503 	lpfc_sli4_queue_destroy(phba);
13504 
13505 	/* Free RAS DMA memory */
13506 	if (phba->ras_fwlog.ras_enabled)
13507 		lpfc_sli4_ras_dma_free(phba);
13508 
13509 	/* Stop the SLI4 device port */
13510 	if (phba->pport)
13511 		phba->pport->work_port_events = 0;
13512 }
13513 
13514 static uint32_t
13515 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13516 {
13517 	uint32_t msb = 0;
13518 	uint32_t bit;
13519 
13520 	for (bit = 0; bit < 8; bit++) {
13521 		msb = (crc >> 31) & 1;
13522 		crc <<= 1;
13523 
13524 		if (msb ^ (byte & 1)) {
13525 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13526 			crc |= 1;
13527 		}
13528 		byte >>= 1;
13529 	}
13530 	return crc;
13531 }
13532 
13533 static uint32_t
13534 lpfc_cgn_reverse_bits(uint32_t wd)
13535 {
13536 	uint32_t result = 0;
13537 	uint32_t i;
13538 
13539 	for (i = 0; i < 32; i++) {
13540 		result <<= 1;
13541 		result |= (1 & (wd >> i));
13542 	}
13543 	return result;
13544 }
13545 
13546 /*
13547  * The routine corresponds with the algorithm the HBA firmware
13548  * uses to validate the data integrity.
13549  */
13550 uint32_t
13551 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13552 {
13553 	uint32_t  i;
13554 	uint32_t result;
13555 	uint8_t  *data = (uint8_t *)ptr;
13556 
13557 	for (i = 0; i < byteLen; ++i)
13558 		crc = lpfc_cgn_crc32(crc, data[i]);
13559 
13560 	result = ~lpfc_cgn_reverse_bits(crc);
13561 	return result;
13562 }
13563 
13564 void
13565 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13566 {
13567 	struct lpfc_cgn_info *cp;
13568 	uint16_t size;
13569 	uint32_t crc;
13570 
13571 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13572 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13573 
13574 	if (!phba->cgn_i)
13575 		return;
13576 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13577 
13578 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13579 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13580 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13581 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13582 
13583 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13584 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13585 	atomic64_set(&phba->cgn_latency_evt, 0);
13586 	phba->cgn_evt_minute = 0;
13587 
13588 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13589 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13590 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13591 
13592 	/* cgn parameters */
13593 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13594 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13595 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13596 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13597 
13598 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13599 
13600 	/* Fill in default LUN qdepth */
13601 	if (phba->pport) {
13602 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13603 		cp->cgn_lunq = cpu_to_le16(size);
13604 	}
13605 
13606 	/* last used Index initialized to 0xff already */
13607 
13608 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13609 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13610 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13611 	cp->cgn_info_crc = cpu_to_le32(crc);
13612 
13613 	phba->cgn_evt_timestamp = jiffies +
13614 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13615 }
13616 
13617 void
13618 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13619 {
13620 	struct lpfc_cgn_info *cp;
13621 	uint32_t crc;
13622 
13623 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13624 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13625 
13626 	if (!phba->cgn_i)
13627 		return;
13628 
13629 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13630 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13631 
13632 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13633 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13634 	cp->cgn_info_crc = cpu_to_le32(crc);
13635 }
13636 
13637 /**
13638  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13639  * @phba: Pointer to hba context object.
13640  * @reg: flag to determine register or unregister.
13641  */
13642 static int
13643 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13644 {
13645 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13646 	union  lpfc_sli4_cfg_shdr *shdr;
13647 	uint32_t shdr_status, shdr_add_status;
13648 	LPFC_MBOXQ_t *mboxq;
13649 	int length, rc;
13650 
13651 	if (!phba->cgn_i)
13652 		return -ENXIO;
13653 
13654 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13655 	if (!mboxq) {
13656 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13657 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13658 				"HBA state x%x reg %d\n",
13659 				phba->pport->port_state, reg);
13660 		return -ENOMEM;
13661 	}
13662 
13663 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13664 		sizeof(struct lpfc_sli4_cfg_mhdr));
13665 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13666 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13667 			 LPFC_SLI4_MBX_EMBED);
13668 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13669 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13670 	if (reg > 0)
13671 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13672 	else
13673 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13674 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13675 	reg_congestion_buf->addr_lo =
13676 		putPaddrLow(phba->cgn_i->phys);
13677 	reg_congestion_buf->addr_hi =
13678 		putPaddrHigh(phba->cgn_i->phys);
13679 
13680 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13681 	shdr = (union lpfc_sli4_cfg_shdr *)
13682 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13683 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13684 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13685 				 &shdr->response);
13686 	mempool_free(mboxq, phba->mbox_mem_pool);
13687 	if (shdr_status || shdr_add_status || rc) {
13688 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13689 				"2642 REG_CONGESTION_BUF mailbox "
13690 				"failed with status x%x add_status x%x,"
13691 				" mbx status x%x reg %d\n",
13692 				shdr_status, shdr_add_status, rc, reg);
13693 		return -ENXIO;
13694 	}
13695 	return 0;
13696 }
13697 
13698 int
13699 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13700 {
13701 	lpfc_cmf_stop(phba);
13702 	return __lpfc_reg_congestion_buf(phba, 0);
13703 }
13704 
13705 int
13706 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13707 {
13708 	return __lpfc_reg_congestion_buf(phba, 1);
13709 }
13710 
13711 /**
13712  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13713  * @phba: Pointer to HBA context object.
13714  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13715  *
13716  * This function is called in the SLI4 code path to read the port's
13717  * sli4 capabilities.
13718  *
13719  * This function may be be called from any context that can block-wait
13720  * for the completion.  The expectation is that this routine is called
13721  * typically from probe_one or from the online routine.
13722  **/
13723 int
13724 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13725 {
13726 	int rc;
13727 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13728 	struct lpfc_pc_sli4_params *sli4_params;
13729 	uint32_t mbox_tmo;
13730 	int length;
13731 	bool exp_wqcq_pages = true;
13732 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13733 
13734 	/*
13735 	 * By default, the driver assumes the SLI4 port requires RPI
13736 	 * header postings.  The SLI4_PARAM response will correct this
13737 	 * assumption.
13738 	 */
13739 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13740 
13741 	/* Read the port's SLI4 Config Parameters */
13742 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13743 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13744 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13745 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13746 			 length, LPFC_SLI4_MBX_EMBED);
13747 	if (!phba->sli4_hba.intr_enable)
13748 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13749 	else {
13750 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13751 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13752 	}
13753 	if (unlikely(rc))
13754 		return rc;
13755 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13756 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13757 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13758 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13759 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13760 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13761 					     mbx_sli4_parameters);
13762 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13763 					     mbx_sli4_parameters);
13764 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13765 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13766 	else
13767 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13768 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13769 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13770 					   mbx_sli4_parameters);
13771 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13772 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13773 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13774 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13775 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13776 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13777 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13778 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13779 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13780 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13781 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13782 					    mbx_sli4_parameters);
13783 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13784 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13785 					   mbx_sli4_parameters);
13786 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13787 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13788 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13789 
13790 	/* Check for Extended Pre-Registered SGL support */
13791 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13792 
13793 	/* Check for firmware nvme support */
13794 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13795 		     bf_get(cfg_xib, mbx_sli4_parameters));
13796 
13797 	if (rc) {
13798 		/* Save this to indicate the Firmware supports NVME */
13799 		sli4_params->nvme = 1;
13800 
13801 		/* Firmware NVME support, check driver FC4 NVME support */
13802 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13803 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13804 					"6133 Disabling NVME support: "
13805 					"FC4 type not supported: x%x\n",
13806 					phba->cfg_enable_fc4_type);
13807 			goto fcponly;
13808 		}
13809 	} else {
13810 		/* No firmware NVME support, check driver FC4 NVME support */
13811 		sli4_params->nvme = 0;
13812 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13813 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13814 					"6101 Disabling NVME support: Not "
13815 					"supported by firmware (%d %d) x%x\n",
13816 					bf_get(cfg_nvme, mbx_sli4_parameters),
13817 					bf_get(cfg_xib, mbx_sli4_parameters),
13818 					phba->cfg_enable_fc4_type);
13819 fcponly:
13820 			phba->nvmet_support = 0;
13821 			phba->cfg_nvmet_mrq = 0;
13822 			phba->cfg_nvme_seg_cnt = 0;
13823 
13824 			/* If no FC4 type support, move to just SCSI support */
13825 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13826 				return -ENODEV;
13827 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13828 		}
13829 	}
13830 
13831 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13832 	 * accommodate 512K and 1M IOs in a single nvme buf.
13833 	 */
13834 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13835 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13836 
13837 	/* Enable embedded Payload BDE if support is indicated */
13838 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13839 		phba->cfg_enable_pbde = 1;
13840 	else
13841 		phba->cfg_enable_pbde = 0;
13842 
13843 	/*
13844 	 * To support Suppress Response feature we must satisfy 3 conditions.
13845 	 * lpfc_suppress_rsp module parameter must be set (default).
13846 	 * In SLI4-Parameters Descriptor:
13847 	 * Extended Inline Buffers (XIB) must be supported.
13848 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13849 	 * (double negative).
13850 	 */
13851 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13852 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13853 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13854 	else
13855 		phba->cfg_suppress_rsp = 0;
13856 
13857 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13858 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13859 
13860 	/* Make sure that sge_supp_len can be handled by the driver */
13861 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13862 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13863 
13864 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13865 	if (unlikely(rc)) {
13866 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13867 				"6400 Can't set dma maximum segment size\n");
13868 		return rc;
13869 	}
13870 
13871 	/*
13872 	 * Check whether the adapter supports an embedded copy of the
13873 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13874 	 * to use this option, 128-byte WQEs must be used.
13875 	 */
13876 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13877 		phba->fcp_embed_io = 1;
13878 	else
13879 		phba->fcp_embed_io = 0;
13880 
13881 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13882 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13883 			bf_get(cfg_xib, mbx_sli4_parameters),
13884 			phba->cfg_enable_pbde,
13885 			phba->fcp_embed_io, sli4_params->nvme,
13886 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13887 
13888 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13889 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13890 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13891 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13892 		exp_wqcq_pages = false;
13893 
13894 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13895 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13896 	    exp_wqcq_pages &&
13897 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13898 		phba->enab_exp_wqcq_pages = 1;
13899 	else
13900 		phba->enab_exp_wqcq_pages = 0;
13901 	/*
13902 	 * Check if the SLI port supports MDS Diagnostics
13903 	 */
13904 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13905 		phba->mds_diags_support = 1;
13906 	else
13907 		phba->mds_diags_support = 0;
13908 
13909 	/*
13910 	 * Check if the SLI port supports NSLER
13911 	 */
13912 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13913 		phba->nsler = 1;
13914 	else
13915 		phba->nsler = 0;
13916 
13917 	return 0;
13918 }
13919 
13920 /**
13921  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13922  * @pdev: pointer to PCI device
13923  * @pid: pointer to PCI device identifier
13924  *
13925  * This routine is to be called to attach a device with SLI-3 interface spec
13926  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13927  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13928  * information of the device and driver to see if the driver state that it can
13929  * support this kind of device. If the match is successful, the driver core
13930  * invokes this routine. If this routine determines it can claim the HBA, it
13931  * does all the initialization that it needs to do to handle the HBA properly.
13932  *
13933  * Return code
13934  * 	0 - driver can claim the device
13935  * 	negative value - driver can not claim the device
13936  **/
13937 static int
13938 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13939 {
13940 	struct lpfc_hba   *phba;
13941 	struct lpfc_vport *vport = NULL;
13942 	struct Scsi_Host  *shost = NULL;
13943 	int error;
13944 	uint32_t cfg_mode, intr_mode;
13945 
13946 	/* Allocate memory for HBA structure */
13947 	phba = lpfc_hba_alloc(pdev);
13948 	if (!phba)
13949 		return -ENOMEM;
13950 
13951 	/* Perform generic PCI device enabling operation */
13952 	error = lpfc_enable_pci_dev(phba);
13953 	if (error)
13954 		goto out_free_phba;
13955 
13956 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13957 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13958 	if (error)
13959 		goto out_disable_pci_dev;
13960 
13961 	/* Set up SLI-3 specific device PCI memory space */
13962 	error = lpfc_sli_pci_mem_setup(phba);
13963 	if (error) {
13964 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13965 				"1402 Failed to set up pci memory space.\n");
13966 		goto out_disable_pci_dev;
13967 	}
13968 
13969 	/* Set up SLI-3 specific device driver resources */
13970 	error = lpfc_sli_driver_resource_setup(phba);
13971 	if (error) {
13972 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13973 				"1404 Failed to set up driver resource.\n");
13974 		goto out_unset_pci_mem_s3;
13975 	}
13976 
13977 	/* Initialize and populate the iocb list per host */
13978 
13979 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13980 	if (error) {
13981 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13982 				"1405 Failed to initialize iocb list.\n");
13983 		goto out_unset_driver_resource_s3;
13984 	}
13985 
13986 	/* Set up common device driver resources */
13987 	error = lpfc_setup_driver_resource_phase2(phba);
13988 	if (error) {
13989 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13990 				"1406 Failed to set up driver resource.\n");
13991 		goto out_free_iocb_list;
13992 	}
13993 
13994 	/* Get the default values for Model Name and Description */
13995 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13996 
13997 	/* Create SCSI host to the physical port */
13998 	error = lpfc_create_shost(phba);
13999 	if (error) {
14000 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14001 				"1407 Failed to create scsi host.\n");
14002 		goto out_unset_driver_resource;
14003 	}
14004 
14005 	/* Configure sysfs attributes */
14006 	vport = phba->pport;
14007 	error = lpfc_alloc_sysfs_attr(vport);
14008 	if (error) {
14009 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14010 				"1476 Failed to allocate sysfs attr\n");
14011 		goto out_destroy_shost;
14012 	}
14013 
14014 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14015 	/* Now, trying to enable interrupt and bring up the device */
14016 	cfg_mode = phba->cfg_use_msi;
14017 	while (true) {
14018 		/* Put device to a known state before enabling interrupt */
14019 		lpfc_stop_port(phba);
14020 		/* Configure and enable interrupt */
14021 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14022 		if (intr_mode == LPFC_INTR_ERROR) {
14023 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14024 					"0431 Failed to enable interrupt.\n");
14025 			error = -ENODEV;
14026 			goto out_free_sysfs_attr;
14027 		}
14028 		/* SLI-3 HBA setup */
14029 		if (lpfc_sli_hba_setup(phba)) {
14030 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14031 					"1477 Failed to set up hba\n");
14032 			error = -ENODEV;
14033 			goto out_remove_device;
14034 		}
14035 
14036 		/* Wait 50ms for the interrupts of previous mailbox commands */
14037 		msleep(50);
14038 		/* Check active interrupts on message signaled interrupts */
14039 		if (intr_mode == 0 ||
14040 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14041 			/* Log the current active interrupt mode */
14042 			phba->intr_mode = intr_mode;
14043 			lpfc_log_intr_mode(phba, intr_mode);
14044 			break;
14045 		} else {
14046 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14047 					"0447 Configure interrupt mode (%d) "
14048 					"failed active interrupt test.\n",
14049 					intr_mode);
14050 			/* Disable the current interrupt mode */
14051 			lpfc_sli_disable_intr(phba);
14052 			/* Try next level of interrupt mode */
14053 			cfg_mode = --intr_mode;
14054 		}
14055 	}
14056 
14057 	/* Perform post initialization setup */
14058 	lpfc_post_init_setup(phba);
14059 
14060 	/* Check if there are static vports to be created. */
14061 	lpfc_create_static_vport(phba);
14062 
14063 	return 0;
14064 
14065 out_remove_device:
14066 	lpfc_unset_hba(phba);
14067 out_free_sysfs_attr:
14068 	lpfc_free_sysfs_attr(vport);
14069 out_destroy_shost:
14070 	lpfc_destroy_shost(phba);
14071 out_unset_driver_resource:
14072 	lpfc_unset_driver_resource_phase2(phba);
14073 out_free_iocb_list:
14074 	lpfc_free_iocb_list(phba);
14075 out_unset_driver_resource_s3:
14076 	lpfc_sli_driver_resource_unset(phba);
14077 out_unset_pci_mem_s3:
14078 	lpfc_sli_pci_mem_unset(phba);
14079 out_disable_pci_dev:
14080 	lpfc_disable_pci_dev(phba);
14081 	if (shost)
14082 		scsi_host_put(shost);
14083 out_free_phba:
14084 	lpfc_hba_free(phba);
14085 	return error;
14086 }
14087 
14088 /**
14089  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14090  * @pdev: pointer to PCI device
14091  *
14092  * This routine is to be called to disattach a device with SLI-3 interface
14093  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14094  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14095  * device to be removed from the PCI subsystem properly.
14096  **/
14097 static void
14098 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14099 {
14100 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14101 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14102 	struct lpfc_vport **vports;
14103 	struct lpfc_hba   *phba = vport->phba;
14104 	int i;
14105 
14106 	set_bit(FC_UNLOADING, &vport->load_flag);
14107 
14108 	lpfc_free_sysfs_attr(vport);
14109 
14110 	/* Release all the vports against this physical port */
14111 	vports = lpfc_create_vport_work_array(phba);
14112 	if (vports != NULL)
14113 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14114 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14115 				continue;
14116 			fc_vport_terminate(vports[i]->fc_vport);
14117 		}
14118 	lpfc_destroy_vport_work_array(phba, vports);
14119 
14120 	/* Remove FC host with the physical port */
14121 	fc_remove_host(shost);
14122 	scsi_remove_host(shost);
14123 
14124 	/* Clean up all nodes, mailboxes and IOs. */
14125 	lpfc_cleanup(vport);
14126 
14127 	/*
14128 	 * Bring down the SLI Layer. This step disable all interrupts,
14129 	 * clears the rings, discards all mailbox commands, and resets
14130 	 * the HBA.
14131 	 */
14132 
14133 	/* HBA interrupt will be disabled after this call */
14134 	lpfc_sli_hba_down(phba);
14135 	/* Stop kthread signal shall trigger work_done one more time */
14136 	kthread_stop(phba->worker_thread);
14137 	/* Final cleanup of txcmplq and reset the HBA */
14138 	lpfc_sli_brdrestart(phba);
14139 
14140 	kfree(phba->vpi_bmask);
14141 	kfree(phba->vpi_ids);
14142 
14143 	lpfc_stop_hba_timers(phba);
14144 	spin_lock_irq(&phba->port_list_lock);
14145 	list_del_init(&vport->listentry);
14146 	spin_unlock_irq(&phba->port_list_lock);
14147 
14148 	lpfc_debugfs_terminate(vport);
14149 
14150 	/* Disable SR-IOV if enabled */
14151 	if (phba->cfg_sriov_nr_virtfn)
14152 		pci_disable_sriov(pdev);
14153 
14154 	/* Disable interrupt */
14155 	lpfc_sli_disable_intr(phba);
14156 
14157 	scsi_host_put(shost);
14158 
14159 	/*
14160 	 * Call scsi_free before mem_free since scsi bufs are released to their
14161 	 * corresponding pools here.
14162 	 */
14163 	lpfc_scsi_free(phba);
14164 	lpfc_free_iocb_list(phba);
14165 
14166 	lpfc_mem_free_all(phba);
14167 
14168 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14169 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14170 
14171 	/* Free resources associated with SLI2 interface */
14172 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14173 			  phba->slim2p.virt, phba->slim2p.phys);
14174 
14175 	/* unmap adapter SLIM and Control Registers */
14176 	iounmap(phba->ctrl_regs_memmap_p);
14177 	iounmap(phba->slim_memmap_p);
14178 
14179 	lpfc_hba_free(phba);
14180 
14181 	pci_release_mem_regions(pdev);
14182 	pci_disable_device(pdev);
14183 }
14184 
14185 /**
14186  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14187  * @dev_d: pointer to device
14188  *
14189  * This routine is to be called from the kernel's PCI subsystem to support
14190  * system Power Management (PM) to device with SLI-3 interface spec. When
14191  * PM invokes this method, it quiesces the device by stopping the driver's
14192  * worker thread for the device, turning off device's interrupt and DMA,
14193  * and bring the device offline. Note that as the driver implements the
14194  * minimum PM requirements to a power-aware driver's PM support for the
14195  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14196  * to the suspend() method call will be treated as SUSPEND and the driver will
14197  * fully reinitialize its device during resume() method call, the driver will
14198  * set device to PCI_D3hot state in PCI config space instead of setting it
14199  * according to the @msg provided by the PM.
14200  *
14201  * Return code
14202  * 	0 - driver suspended the device
14203  * 	Error otherwise
14204  **/
14205 static int __maybe_unused
14206 lpfc_pci_suspend_one_s3(struct device *dev_d)
14207 {
14208 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14209 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14210 
14211 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14212 			"0473 PCI device Power Management suspend.\n");
14213 
14214 	/* Bring down the device */
14215 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14216 	lpfc_offline(phba);
14217 	kthread_stop(phba->worker_thread);
14218 
14219 	/* Disable interrupt from device */
14220 	lpfc_sli_disable_intr(phba);
14221 
14222 	return 0;
14223 }
14224 
14225 /**
14226  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14227  * @dev_d: pointer to device
14228  *
14229  * This routine is to be called from the kernel's PCI subsystem to support
14230  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14231  * invokes this method, it restores the device's PCI config space state and
14232  * fully reinitializes the device and brings it online. Note that as the
14233  * driver implements the minimum PM requirements to a power-aware driver's
14234  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14235  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14236  * driver will fully reinitialize its device during resume() method call,
14237  * the device will be set to PCI_D0 directly in PCI config space before
14238  * restoring the state.
14239  *
14240  * Return code
14241  * 	0 - driver suspended the device
14242  * 	Error otherwise
14243  **/
14244 static int __maybe_unused
14245 lpfc_pci_resume_one_s3(struct device *dev_d)
14246 {
14247 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14248 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14249 	uint32_t intr_mode;
14250 	int error;
14251 
14252 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14253 			"0452 PCI device Power Management resume.\n");
14254 
14255 	/* Startup the kernel thread for this host adapter. */
14256 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14257 					"lpfc_worker_%d", phba->brd_no);
14258 	if (IS_ERR(phba->worker_thread)) {
14259 		error = PTR_ERR(phba->worker_thread);
14260 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14261 				"0434 PM resume failed to start worker "
14262 				"thread: error=x%x.\n", error);
14263 		return error;
14264 	}
14265 
14266 	/* Init cpu_map array */
14267 	lpfc_cpu_map_array_init(phba);
14268 	/* Init hba_eq_hdl array */
14269 	lpfc_hba_eq_hdl_array_init(phba);
14270 	/* Configure and enable interrupt */
14271 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14272 	if (intr_mode == LPFC_INTR_ERROR) {
14273 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14274 				"0430 PM resume Failed to enable interrupt\n");
14275 		return -EIO;
14276 	} else
14277 		phba->intr_mode = intr_mode;
14278 
14279 	/* Restart HBA and bring it online */
14280 	lpfc_sli_brdrestart(phba);
14281 	lpfc_online(phba);
14282 
14283 	/* Log the current active interrupt mode */
14284 	lpfc_log_intr_mode(phba, phba->intr_mode);
14285 
14286 	return 0;
14287 }
14288 
14289 /**
14290  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14291  * @phba: pointer to lpfc hba data structure.
14292  *
14293  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14294  * aborts all the outstanding SCSI I/Os to the pci device.
14295  **/
14296 static void
14297 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14298 {
14299 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14300 			"2723 PCI channel I/O abort preparing for recovery\n");
14301 
14302 	/*
14303 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14304 	 * and let the SCSI mid-layer to retry them to recover.
14305 	 */
14306 	lpfc_sli_abort_fcp_rings(phba);
14307 }
14308 
14309 /**
14310  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14311  * @phba: pointer to lpfc hba data structure.
14312  *
14313  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14314  * disables the device interrupt and pci device, and aborts the internal FCP
14315  * pending I/Os.
14316  **/
14317 static void
14318 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14319 {
14320 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14321 			"2710 PCI channel disable preparing for reset\n");
14322 
14323 	/* Block any management I/Os to the device */
14324 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14325 
14326 	/* Block all SCSI devices' I/Os on the host */
14327 	lpfc_scsi_dev_block(phba);
14328 
14329 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14330 	lpfc_sli_flush_io_rings(phba);
14331 
14332 	/* stop all timers */
14333 	lpfc_stop_hba_timers(phba);
14334 
14335 	/* Disable interrupt and pci device */
14336 	lpfc_sli_disable_intr(phba);
14337 	pci_disable_device(phba->pcidev);
14338 }
14339 
14340 /**
14341  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14342  * @phba: pointer to lpfc hba data structure.
14343  *
14344  * This routine is called to prepare the SLI3 device for PCI slot permanently
14345  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14346  * pending I/Os.
14347  **/
14348 static void
14349 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14350 {
14351 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14352 			"2711 PCI channel permanent disable for failure\n");
14353 	/* Block all SCSI devices' I/Os on the host */
14354 	lpfc_scsi_dev_block(phba);
14355 	lpfc_sli4_prep_dev_for_reset(phba);
14356 
14357 	/* stop all timers */
14358 	lpfc_stop_hba_timers(phba);
14359 
14360 	/* Clean up all driver's outstanding SCSI I/Os */
14361 	lpfc_sli_flush_io_rings(phba);
14362 }
14363 
14364 /**
14365  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14366  * @pdev: pointer to PCI device.
14367  * @state: the current PCI connection state.
14368  *
14369  * This routine is called from the PCI subsystem for I/O error handling to
14370  * device with SLI-3 interface spec. This function is called by the PCI
14371  * subsystem after a PCI bus error affecting this device has been detected.
14372  * When this function is invoked, it will need to stop all the I/Os and
14373  * interrupt(s) to the device. Once that is done, it will return
14374  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14375  * as desired.
14376  *
14377  * Return codes
14378  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14379  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14380  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14381  **/
14382 static pci_ers_result_t
14383 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14384 {
14385 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14386 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14387 
14388 	switch (state) {
14389 	case pci_channel_io_normal:
14390 		/* Non-fatal error, prepare for recovery */
14391 		lpfc_sli_prep_dev_for_recover(phba);
14392 		return PCI_ERS_RESULT_CAN_RECOVER;
14393 	case pci_channel_io_frozen:
14394 		/* Fatal error, prepare for slot reset */
14395 		lpfc_sli_prep_dev_for_reset(phba);
14396 		return PCI_ERS_RESULT_NEED_RESET;
14397 	case pci_channel_io_perm_failure:
14398 		/* Permanent failure, prepare for device down */
14399 		lpfc_sli_prep_dev_for_perm_failure(phba);
14400 		return PCI_ERS_RESULT_DISCONNECT;
14401 	default:
14402 		/* Unknown state, prepare and request slot reset */
14403 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14404 				"0472 Unknown PCI error state: x%x\n", state);
14405 		lpfc_sli_prep_dev_for_reset(phba);
14406 		return PCI_ERS_RESULT_NEED_RESET;
14407 	}
14408 }
14409 
14410 /**
14411  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14412  * @pdev: pointer to PCI device.
14413  *
14414  * This routine is called from the PCI subsystem for error handling to
14415  * device with SLI-3 interface spec. This is called after PCI bus has been
14416  * reset to restart the PCI card from scratch, as if from a cold-boot.
14417  * During the PCI subsystem error recovery, after driver returns
14418  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14419  * recovery and then call this routine before calling the .resume method
14420  * to recover the device. This function will initialize the HBA device,
14421  * enable the interrupt, but it will just put the HBA to offline state
14422  * without passing any I/O traffic.
14423  *
14424  * Return codes
14425  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14426  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14427  */
14428 static pci_ers_result_t
14429 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14430 {
14431 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14432 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14433 	struct lpfc_sli *psli = &phba->sli;
14434 	uint32_t intr_mode;
14435 
14436 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14437 	if (pci_enable_device_mem(pdev)) {
14438 		printk(KERN_ERR "lpfc: Cannot re-enable "
14439 			"PCI device after reset.\n");
14440 		return PCI_ERS_RESULT_DISCONNECT;
14441 	}
14442 
14443 	pci_restore_state(pdev);
14444 
14445 	/*
14446 	 * As the new kernel behavior of pci_restore_state() API call clears
14447 	 * device saved_state flag, need to save the restored state again.
14448 	 */
14449 	pci_save_state(pdev);
14450 
14451 	if (pdev->is_busmaster)
14452 		pci_set_master(pdev);
14453 
14454 	spin_lock_irq(&phba->hbalock);
14455 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14456 	spin_unlock_irq(&phba->hbalock);
14457 
14458 	/* Configure and enable interrupt */
14459 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14460 	if (intr_mode == LPFC_INTR_ERROR) {
14461 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14462 				"0427 Cannot re-enable interrupt after "
14463 				"slot reset.\n");
14464 		return PCI_ERS_RESULT_DISCONNECT;
14465 	} else
14466 		phba->intr_mode = intr_mode;
14467 
14468 	/* Take device offline, it will perform cleanup */
14469 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14470 	lpfc_offline(phba);
14471 	lpfc_sli_brdrestart(phba);
14472 
14473 	/* Log the current active interrupt mode */
14474 	lpfc_log_intr_mode(phba, phba->intr_mode);
14475 
14476 	return PCI_ERS_RESULT_RECOVERED;
14477 }
14478 
14479 /**
14480  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14481  * @pdev: pointer to PCI device
14482  *
14483  * This routine is called from the PCI subsystem for error handling to device
14484  * with SLI-3 interface spec. It is called when kernel error recovery tells
14485  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14486  * error recovery. After this call, traffic can start to flow from this device
14487  * again.
14488  */
14489 static void
14490 lpfc_io_resume_s3(struct pci_dev *pdev)
14491 {
14492 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14493 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14494 
14495 	/* Bring device online, it will be no-op for non-fatal error resume */
14496 	lpfc_online(phba);
14497 }
14498 
14499 /**
14500  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14501  * @phba: pointer to lpfc hba data structure.
14502  *
14503  * returns the number of ELS/CT IOCBs to reserve
14504  **/
14505 int
14506 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14507 {
14508 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14509 
14510 	if (phba->sli_rev == LPFC_SLI_REV4) {
14511 		if (max_xri <= 100)
14512 			return 10;
14513 		else if (max_xri <= 256)
14514 			return 25;
14515 		else if (max_xri <= 512)
14516 			return 50;
14517 		else if (max_xri <= 1024)
14518 			return 100;
14519 		else if (max_xri <= 1536)
14520 			return 150;
14521 		else if (max_xri <= 2048)
14522 			return 200;
14523 		else
14524 			return 250;
14525 	} else
14526 		return 0;
14527 }
14528 
14529 /**
14530  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14531  * @phba: pointer to lpfc hba data structure.
14532  *
14533  * returns the number of ELS/CT + NVMET IOCBs to reserve
14534  **/
14535 int
14536 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14537 {
14538 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14539 
14540 	if (phba->nvmet_support)
14541 		max_xri += LPFC_NVMET_BUF_POST;
14542 	return max_xri;
14543 }
14544 
14545 
14546 static int
14547 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14548 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14549 	const struct firmware *fw)
14550 {
14551 	int rc;
14552 	u8 sli_family;
14553 
14554 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14555 	/* Three cases:  (1) FW was not supported on the detected adapter.
14556 	 * (2) FW update has been locked out administratively.
14557 	 * (3) Some other error during FW update.
14558 	 * In each case, an unmaskable message is written to the console
14559 	 * for admin diagnosis.
14560 	 */
14561 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14562 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14563 	     magic_number != MAGIC_NUMBER_G6) ||
14564 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14565 	     magic_number != MAGIC_NUMBER_G7) ||
14566 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14567 	     magic_number != MAGIC_NUMBER_G7P)) {
14568 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14569 				"3030 This firmware version is not supported on"
14570 				" this HBA model. Device:%x Magic:%x Type:%x "
14571 				"ID:%x Size %d %zd\n",
14572 				phba->pcidev->device, magic_number, ftype, fid,
14573 				fsize, fw->size);
14574 		rc = -EINVAL;
14575 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14576 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14577 				"3021 Firmware downloads have been prohibited "
14578 				"by a system configuration setting on "
14579 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14580 				"%zd\n",
14581 				phba->pcidev->device, magic_number, ftype, fid,
14582 				fsize, fw->size);
14583 		rc = -EACCES;
14584 	} else {
14585 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14586 				"3022 FW Download failed. Add Status x%x "
14587 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14588 				"%zd\n",
14589 				offset, phba->pcidev->device, magic_number,
14590 				ftype, fid, fsize, fw->size);
14591 		rc = -EIO;
14592 	}
14593 	return rc;
14594 }
14595 
14596 /**
14597  * lpfc_write_firmware - attempt to write a firmware image to the port
14598  * @fw: pointer to firmware image returned from request_firmware.
14599  * @context: pointer to firmware image returned from request_firmware.
14600  *
14601  **/
14602 static void
14603 lpfc_write_firmware(const struct firmware *fw, void *context)
14604 {
14605 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14606 	char fwrev[FW_REV_STR_SIZE];
14607 	struct lpfc_grp_hdr *image;
14608 	struct list_head dma_buffer_list;
14609 	int i, rc = 0;
14610 	struct lpfc_dmabuf *dmabuf, *next;
14611 	uint32_t offset = 0, temp_offset = 0;
14612 	uint32_t magic_number, ftype, fid, fsize;
14613 
14614 	/* It can be null in no-wait mode, sanity check */
14615 	if (!fw) {
14616 		rc = -ENXIO;
14617 		goto out;
14618 	}
14619 	image = (struct lpfc_grp_hdr *)fw->data;
14620 
14621 	magic_number = be32_to_cpu(image->magic_number);
14622 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14623 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14624 	fsize = be32_to_cpu(image->size);
14625 
14626 	INIT_LIST_HEAD(&dma_buffer_list);
14627 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14628 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14629 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14630 			     "3023 Updating Firmware, Current Version:%s "
14631 			     "New Version:%s\n",
14632 			     fwrev, image->revision);
14633 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14634 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14635 					 GFP_KERNEL);
14636 			if (!dmabuf) {
14637 				rc = -ENOMEM;
14638 				goto release_out;
14639 			}
14640 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14641 							  SLI4_PAGE_SIZE,
14642 							  &dmabuf->phys,
14643 							  GFP_KERNEL);
14644 			if (!dmabuf->virt) {
14645 				kfree(dmabuf);
14646 				rc = -ENOMEM;
14647 				goto release_out;
14648 			}
14649 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14650 		}
14651 		while (offset < fw->size) {
14652 			temp_offset = offset;
14653 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14654 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14655 					memcpy(dmabuf->virt,
14656 					       fw->data + temp_offset,
14657 					       fw->size - temp_offset);
14658 					temp_offset = fw->size;
14659 					break;
14660 				}
14661 				memcpy(dmabuf->virt, fw->data + temp_offset,
14662 				       SLI4_PAGE_SIZE);
14663 				temp_offset += SLI4_PAGE_SIZE;
14664 			}
14665 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14666 				    (fw->size - offset), &offset);
14667 			if (rc) {
14668 				rc = lpfc_log_write_firmware_error(phba, offset,
14669 								   magic_number,
14670 								   ftype,
14671 								   fid,
14672 								   fsize,
14673 								   fw);
14674 				goto release_out;
14675 			}
14676 		}
14677 		rc = offset;
14678 	} else
14679 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14680 			     "3029 Skipped Firmware update, Current "
14681 			     "Version:%s New Version:%s\n",
14682 			     fwrev, image->revision);
14683 
14684 release_out:
14685 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14686 		list_del(&dmabuf->list);
14687 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14688 				  dmabuf->virt, dmabuf->phys);
14689 		kfree(dmabuf);
14690 	}
14691 	release_firmware(fw);
14692 out:
14693 	if (rc < 0)
14694 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14695 			     "3062 Firmware update error, status %d.\n", rc);
14696 	else
14697 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14698 			     "3024 Firmware update success: size %d.\n", rc);
14699 }
14700 
14701 /**
14702  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14703  * @phba: pointer to lpfc hba data structure.
14704  * @fw_upgrade: which firmware to update.
14705  *
14706  * This routine is called to perform Linux generic firmware upgrade on device
14707  * that supports such feature.
14708  **/
14709 int
14710 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14711 {
14712 	char file_name[ELX_FW_NAME_SIZE] = {0};
14713 	int ret;
14714 	const struct firmware *fw;
14715 
14716 	/* Only supported on SLI4 interface type 2 for now */
14717 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14718 	    LPFC_SLI_INTF_IF_TYPE_2)
14719 		return -EPERM;
14720 
14721 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14722 
14723 	if (fw_upgrade == INT_FW_UPGRADE) {
14724 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14725 					file_name, &phba->pcidev->dev,
14726 					GFP_KERNEL, (void *)phba,
14727 					lpfc_write_firmware);
14728 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14729 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14730 		if (!ret)
14731 			lpfc_write_firmware(fw, (void *)phba);
14732 	} else {
14733 		ret = -EINVAL;
14734 	}
14735 
14736 	return ret;
14737 }
14738 
14739 /**
14740  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14741  * @pdev: pointer to PCI device
14742  * @pid: pointer to PCI device identifier
14743  *
14744  * This routine is called from the kernel's PCI subsystem to device with
14745  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14746  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14747  * information of the device and driver to see if the driver state that it
14748  * can support this kind of device. If the match is successful, the driver
14749  * core invokes this routine. If this routine determines it can claim the HBA,
14750  * it does all the initialization that it needs to do to handle the HBA
14751  * properly.
14752  *
14753  * Return code
14754  * 	0 - driver can claim the device
14755  * 	negative value - driver can not claim the device
14756  **/
14757 static int
14758 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14759 {
14760 	struct lpfc_hba   *phba;
14761 	struct lpfc_vport *vport = NULL;
14762 	struct Scsi_Host  *shost = NULL;
14763 	int error;
14764 	uint32_t cfg_mode, intr_mode;
14765 
14766 	/* Allocate memory for HBA structure */
14767 	phba = lpfc_hba_alloc(pdev);
14768 	if (!phba)
14769 		return -ENOMEM;
14770 
14771 	INIT_LIST_HEAD(&phba->poll_list);
14772 
14773 	/* Perform generic PCI device enabling operation */
14774 	error = lpfc_enable_pci_dev(phba);
14775 	if (error)
14776 		goto out_free_phba;
14777 
14778 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14779 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14780 	if (error)
14781 		goto out_disable_pci_dev;
14782 
14783 	/* Set up SLI-4 specific device PCI memory space */
14784 	error = lpfc_sli4_pci_mem_setup(phba);
14785 	if (error) {
14786 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14787 				"1410 Failed to set up pci memory space.\n");
14788 		goto out_disable_pci_dev;
14789 	}
14790 
14791 	/* Set up SLI-4 Specific device driver resources */
14792 	error = lpfc_sli4_driver_resource_setup(phba);
14793 	if (error) {
14794 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14795 				"1412 Failed to set up driver resource.\n");
14796 		goto out_unset_pci_mem_s4;
14797 	}
14798 
14799 	spin_lock_init(&phba->rrq_list_lock);
14800 	INIT_LIST_HEAD(&phba->active_rrq_list);
14801 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14802 
14803 	/* Set up common device driver resources */
14804 	error = lpfc_setup_driver_resource_phase2(phba);
14805 	if (error) {
14806 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14807 				"1414 Failed to set up driver resource.\n");
14808 		goto out_unset_driver_resource_s4;
14809 	}
14810 
14811 	/* Get the default values for Model Name and Description */
14812 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14813 
14814 	/* Now, trying to enable interrupt and bring up the device */
14815 	cfg_mode = phba->cfg_use_msi;
14816 
14817 	/* Put device to a known state before enabling interrupt */
14818 	phba->pport = NULL;
14819 	lpfc_stop_port(phba);
14820 
14821 	/* Init cpu_map array */
14822 	lpfc_cpu_map_array_init(phba);
14823 
14824 	/* Init hba_eq_hdl array */
14825 	lpfc_hba_eq_hdl_array_init(phba);
14826 
14827 	/* Configure and enable interrupt */
14828 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14829 	if (intr_mode == LPFC_INTR_ERROR) {
14830 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14831 				"0426 Failed to enable interrupt.\n");
14832 		error = -ENODEV;
14833 		goto out_unset_driver_resource;
14834 	}
14835 	/* Default to single EQ for non-MSI-X */
14836 	if (phba->intr_type != MSIX) {
14837 		phba->cfg_irq_chann = 1;
14838 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14839 			if (phba->nvmet_support)
14840 				phba->cfg_nvmet_mrq = 1;
14841 		}
14842 	}
14843 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14844 
14845 	/* Create SCSI host to the physical port */
14846 	error = lpfc_create_shost(phba);
14847 	if (error) {
14848 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14849 				"1415 Failed to create scsi host.\n");
14850 		goto out_disable_intr;
14851 	}
14852 	vport = phba->pport;
14853 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14854 
14855 	/* Configure sysfs attributes */
14856 	error = lpfc_alloc_sysfs_attr(vport);
14857 	if (error) {
14858 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14859 				"1416 Failed to allocate sysfs attr\n");
14860 		goto out_destroy_shost;
14861 	}
14862 
14863 	/* Set up SLI-4 HBA */
14864 	if (lpfc_sli4_hba_setup(phba)) {
14865 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14866 				"1421 Failed to set up hba\n");
14867 		error = -ENODEV;
14868 		goto out_free_sysfs_attr;
14869 	}
14870 
14871 	/* Log the current active interrupt mode */
14872 	phba->intr_mode = intr_mode;
14873 	lpfc_log_intr_mode(phba, intr_mode);
14874 
14875 	/* Perform post initialization setup */
14876 	lpfc_post_init_setup(phba);
14877 
14878 	/* NVME support in FW earlier in the driver load corrects the
14879 	 * FC4 type making a check for nvme_support unnecessary.
14880 	 */
14881 	if (phba->nvmet_support == 0) {
14882 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14883 			/* Create NVME binding with nvme_fc_transport. This
14884 			 * ensures the vport is initialized.  If the localport
14885 			 * create fails, it should not unload the driver to
14886 			 * support field issues.
14887 			 */
14888 			error = lpfc_nvme_create_localport(vport);
14889 			if (error) {
14890 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14891 						"6004 NVME registration "
14892 						"failed, error x%x\n",
14893 						error);
14894 			}
14895 		}
14896 	}
14897 
14898 	/* check for firmware upgrade or downgrade */
14899 	if (phba->cfg_request_firmware_upgrade)
14900 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14901 
14902 	/* Check if there are static vports to be created. */
14903 	lpfc_create_static_vport(phba);
14904 
14905 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14906 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14907 
14908 	return 0;
14909 
14910 out_free_sysfs_attr:
14911 	lpfc_free_sysfs_attr(vport);
14912 out_destroy_shost:
14913 	lpfc_destroy_shost(phba);
14914 out_disable_intr:
14915 	lpfc_sli4_disable_intr(phba);
14916 out_unset_driver_resource:
14917 	lpfc_unset_driver_resource_phase2(phba);
14918 out_unset_driver_resource_s4:
14919 	lpfc_sli4_driver_resource_unset(phba);
14920 out_unset_pci_mem_s4:
14921 	lpfc_sli4_pci_mem_unset(phba);
14922 out_disable_pci_dev:
14923 	lpfc_disable_pci_dev(phba);
14924 	if (shost)
14925 		scsi_host_put(shost);
14926 out_free_phba:
14927 	lpfc_hba_free(phba);
14928 	return error;
14929 }
14930 
14931 /**
14932  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14933  * @pdev: pointer to PCI device
14934  *
14935  * This routine is called from the kernel's PCI subsystem to device with
14936  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14937  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14938  * device to be removed from the PCI subsystem properly.
14939  **/
14940 static void
14941 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14942 {
14943 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14944 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14945 	struct lpfc_vport **vports;
14946 	struct lpfc_hba *phba = vport->phba;
14947 	int i;
14948 
14949 	/* Mark the device unloading flag */
14950 	set_bit(FC_UNLOADING, &vport->load_flag);
14951 	if (phba->cgn_i)
14952 		lpfc_unreg_congestion_buf(phba);
14953 
14954 	lpfc_free_sysfs_attr(vport);
14955 
14956 	/* Release all the vports against this physical port */
14957 	vports = lpfc_create_vport_work_array(phba);
14958 	if (vports != NULL)
14959 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14960 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14961 				continue;
14962 			fc_vport_terminate(vports[i]->fc_vport);
14963 		}
14964 	lpfc_destroy_vport_work_array(phba, vports);
14965 
14966 	/* Remove FC host with the physical port */
14967 	fc_remove_host(shost);
14968 	scsi_remove_host(shost);
14969 
14970 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14971 	 * localports are destroyed after to cleanup all transport memory.
14972 	 */
14973 	lpfc_cleanup(vport);
14974 	lpfc_nvmet_destroy_targetport(phba);
14975 	lpfc_nvme_destroy_localport(vport);
14976 
14977 	/* De-allocate multi-XRI pools */
14978 	if (phba->cfg_xri_rebalancing)
14979 		lpfc_destroy_multixri_pools(phba);
14980 
14981 	/*
14982 	 * Bring down the SLI Layer. This step disables all interrupts,
14983 	 * clears the rings, discards all mailbox commands, and resets
14984 	 * the HBA FCoE function.
14985 	 */
14986 	lpfc_debugfs_terminate(vport);
14987 
14988 	lpfc_stop_hba_timers(phba);
14989 	spin_lock_irq(&phba->port_list_lock);
14990 	list_del_init(&vport->listentry);
14991 	spin_unlock_irq(&phba->port_list_lock);
14992 
14993 	/* Perform scsi free before driver resource_unset since scsi
14994 	 * buffers are released to their corresponding pools here.
14995 	 */
14996 	lpfc_io_free(phba);
14997 	lpfc_free_iocb_list(phba);
14998 	lpfc_sli4_hba_unset(phba);
14999 
15000 	lpfc_unset_driver_resource_phase2(phba);
15001 	lpfc_sli4_driver_resource_unset(phba);
15002 
15003 	/* Unmap adapter Control and Doorbell registers */
15004 	lpfc_sli4_pci_mem_unset(phba);
15005 
15006 	/* Release PCI resources and disable device's PCI function */
15007 	scsi_host_put(shost);
15008 	lpfc_disable_pci_dev(phba);
15009 
15010 	/* Finally, free the driver's device data structure */
15011 	lpfc_hba_free(phba);
15012 
15013 	return;
15014 }
15015 
15016 /**
15017  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15018  * @dev_d: pointer to device
15019  *
15020  * This routine is called from the kernel's PCI subsystem to support system
15021  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15022  * this method, it quiesces the device by stopping the driver's worker
15023  * thread for the device, turning off device's interrupt and DMA, and bring
15024  * the device offline. Note that as the driver implements the minimum PM
15025  * requirements to a power-aware driver's PM support for suspend/resume -- all
15026  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15027  * method call will be treated as SUSPEND and the driver will fully
15028  * reinitialize its device during resume() method call, the driver will set
15029  * device to PCI_D3hot state in PCI config space instead of setting it
15030  * according to the @msg provided by the PM.
15031  *
15032  * Return code
15033  * 	0 - driver suspended the device
15034  * 	Error otherwise
15035  **/
15036 static int __maybe_unused
15037 lpfc_pci_suspend_one_s4(struct device *dev_d)
15038 {
15039 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15040 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15041 
15042 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15043 			"2843 PCI device Power Management suspend.\n");
15044 
15045 	/* Bring down the device */
15046 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15047 	lpfc_offline(phba);
15048 	kthread_stop(phba->worker_thread);
15049 
15050 	/* Disable interrupt from device */
15051 	lpfc_sli4_disable_intr(phba);
15052 	lpfc_sli4_queue_destroy(phba);
15053 
15054 	return 0;
15055 }
15056 
15057 /**
15058  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15059  * @dev_d: pointer to device
15060  *
15061  * This routine is called from the kernel's PCI subsystem to support system
15062  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15063  * this method, it restores the device's PCI config space state and fully
15064  * reinitializes the device and brings it online. Note that as the driver
15065  * implements the minimum PM requirements to a power-aware driver's PM for
15066  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15067  * to the suspend() method call will be treated as SUSPEND and the driver
15068  * will fully reinitialize its device during resume() method call, the device
15069  * will be set to PCI_D0 directly in PCI config space before restoring the
15070  * state.
15071  *
15072  * Return code
15073  * 	0 - driver suspended the device
15074  * 	Error otherwise
15075  **/
15076 static int __maybe_unused
15077 lpfc_pci_resume_one_s4(struct device *dev_d)
15078 {
15079 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15080 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15081 	uint32_t intr_mode;
15082 	int error;
15083 
15084 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15085 			"0292 PCI device Power Management resume.\n");
15086 
15087 	 /* Startup the kernel thread for this host adapter. */
15088 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15089 					"lpfc_worker_%d", phba->brd_no);
15090 	if (IS_ERR(phba->worker_thread)) {
15091 		error = PTR_ERR(phba->worker_thread);
15092 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15093 				"0293 PM resume failed to start worker "
15094 				"thread: error=x%x.\n", error);
15095 		return error;
15096 	}
15097 
15098 	/* Configure and enable interrupt */
15099 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15100 	if (intr_mode == LPFC_INTR_ERROR) {
15101 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15102 				"0294 PM resume Failed to enable interrupt\n");
15103 		return -EIO;
15104 	} else
15105 		phba->intr_mode = intr_mode;
15106 
15107 	/* Restart HBA and bring it online */
15108 	lpfc_sli_brdrestart(phba);
15109 	lpfc_online(phba);
15110 
15111 	/* Log the current active interrupt mode */
15112 	lpfc_log_intr_mode(phba, phba->intr_mode);
15113 
15114 	return 0;
15115 }
15116 
15117 /**
15118  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15119  * @phba: pointer to lpfc hba data structure.
15120  *
15121  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15122  * aborts all the outstanding SCSI I/Os to the pci device.
15123  **/
15124 static void
15125 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15126 {
15127 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15128 			"2828 PCI channel I/O abort preparing for recovery\n");
15129 	/*
15130 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15131 	 * and let the SCSI mid-layer to retry them to recover.
15132 	 */
15133 	lpfc_sli_abort_fcp_rings(phba);
15134 }
15135 
15136 /**
15137  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15138  * @phba: pointer to lpfc hba data structure.
15139  *
15140  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15141  * disables the device interrupt and pci device, and aborts the internal FCP
15142  * pending I/Os.
15143  **/
15144 static void
15145 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15146 {
15147 	int offline =  pci_channel_offline(phba->pcidev);
15148 
15149 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15150 			"2826 PCI channel disable preparing for reset offline"
15151 			" %d\n", offline);
15152 
15153 	/* Block any management I/Os to the device */
15154 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15155 
15156 
15157 	/* HBA_PCI_ERR was set in io_error_detect */
15158 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15159 	/* Flush all driver's outstanding I/Os as we are to reset */
15160 	lpfc_sli_flush_io_rings(phba);
15161 	lpfc_offline(phba);
15162 
15163 	/* stop all timers */
15164 	lpfc_stop_hba_timers(phba);
15165 
15166 	lpfc_sli4_queue_destroy(phba);
15167 	/* Disable interrupt and pci device */
15168 	lpfc_sli4_disable_intr(phba);
15169 	pci_disable_device(phba->pcidev);
15170 }
15171 
15172 /**
15173  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15174  * @phba: pointer to lpfc hba data structure.
15175  *
15176  * This routine is called to prepare the SLI4 device for PCI slot permanently
15177  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15178  * pending I/Os.
15179  **/
15180 static void
15181 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15182 {
15183 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15184 			"2827 PCI channel permanent disable for failure\n");
15185 
15186 	/* Block all SCSI devices' I/Os on the host */
15187 	lpfc_scsi_dev_block(phba);
15188 
15189 	/* stop all timers */
15190 	lpfc_stop_hba_timers(phba);
15191 
15192 	/* Clean up all driver's outstanding I/Os */
15193 	lpfc_sli_flush_io_rings(phba);
15194 }
15195 
15196 /**
15197  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15198  * @pdev: pointer to PCI device.
15199  * @state: the current PCI connection state.
15200  *
15201  * This routine is called from the PCI subsystem for error handling to device
15202  * with SLI-4 interface spec. This function is called by the PCI subsystem
15203  * after a PCI bus error affecting this device has been detected. When this
15204  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15205  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15206  * for the PCI subsystem to perform proper recovery as desired.
15207  *
15208  * Return codes
15209  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15210  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15211  **/
15212 static pci_ers_result_t
15213 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15214 {
15215 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15216 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15217 	bool hba_pci_err;
15218 
15219 	switch (state) {
15220 	case pci_channel_io_normal:
15221 		/* Non-fatal error, prepare for recovery */
15222 		lpfc_sli4_prep_dev_for_recover(phba);
15223 		return PCI_ERS_RESULT_CAN_RECOVER;
15224 	case pci_channel_io_frozen:
15225 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15226 		/* Fatal error, prepare for slot reset */
15227 		if (!hba_pci_err)
15228 			lpfc_sli4_prep_dev_for_reset(phba);
15229 		else
15230 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15231 					"2832  Already handling PCI error "
15232 					"state: x%x\n", state);
15233 		return PCI_ERS_RESULT_NEED_RESET;
15234 	case pci_channel_io_perm_failure:
15235 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15236 		/* Permanent failure, prepare for device down */
15237 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15238 		return PCI_ERS_RESULT_DISCONNECT;
15239 	default:
15240 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15241 		if (!hba_pci_err)
15242 			lpfc_sli4_prep_dev_for_reset(phba);
15243 		/* Unknown state, prepare and request slot reset */
15244 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15245 				"2825 Unknown PCI error state: x%x\n", state);
15246 		lpfc_sli4_prep_dev_for_reset(phba);
15247 		return PCI_ERS_RESULT_NEED_RESET;
15248 	}
15249 }
15250 
15251 /**
15252  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15253  * @pdev: pointer to PCI device.
15254  *
15255  * This routine is called from the PCI subsystem for error handling to device
15256  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15257  * restart the PCI card from scratch, as if from a cold-boot. During the
15258  * PCI subsystem error recovery, after the driver returns
15259  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15260  * recovery and then call this routine before calling the .resume method to
15261  * recover the device. This function will initialize the HBA device, enable
15262  * the interrupt, but it will just put the HBA to offline state without
15263  * passing any I/O traffic.
15264  *
15265  * Return codes
15266  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15267  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15268  */
15269 static pci_ers_result_t
15270 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15271 {
15272 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15273 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15274 	struct lpfc_sli *psli = &phba->sli;
15275 	uint32_t intr_mode;
15276 	bool hba_pci_err;
15277 
15278 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15279 	if (pci_enable_device_mem(pdev)) {
15280 		printk(KERN_ERR "lpfc: Cannot re-enable "
15281 		       "PCI device after reset.\n");
15282 		return PCI_ERS_RESULT_DISCONNECT;
15283 	}
15284 
15285 	pci_restore_state(pdev);
15286 
15287 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15288 	if (!hba_pci_err)
15289 		dev_info(&pdev->dev,
15290 			 "hba_pci_err was not set, recovering slot reset.\n");
15291 	/*
15292 	 * As the new kernel behavior of pci_restore_state() API call clears
15293 	 * device saved_state flag, need to save the restored state again.
15294 	 */
15295 	pci_save_state(pdev);
15296 
15297 	if (pdev->is_busmaster)
15298 		pci_set_master(pdev);
15299 
15300 	spin_lock_irq(&phba->hbalock);
15301 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15302 	spin_unlock_irq(&phba->hbalock);
15303 
15304 	/* Init cpu_map array */
15305 	lpfc_cpu_map_array_init(phba);
15306 	/* Configure and enable interrupt */
15307 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15308 	if (intr_mode == LPFC_INTR_ERROR) {
15309 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15310 				"2824 Cannot re-enable interrupt after "
15311 				"slot reset.\n");
15312 		return PCI_ERS_RESULT_DISCONNECT;
15313 	} else
15314 		phba->intr_mode = intr_mode;
15315 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15316 
15317 	/* Log the current active interrupt mode */
15318 	lpfc_log_intr_mode(phba, phba->intr_mode);
15319 
15320 	return PCI_ERS_RESULT_RECOVERED;
15321 }
15322 
15323 /**
15324  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15325  * @pdev: pointer to PCI device
15326  *
15327  * This routine is called from the PCI subsystem for error handling to device
15328  * with SLI-4 interface spec. It is called when kernel error recovery tells
15329  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15330  * error recovery. After this call, traffic can start to flow from this device
15331  * again.
15332  **/
15333 static void
15334 lpfc_io_resume_s4(struct pci_dev *pdev)
15335 {
15336 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15337 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15338 
15339 	/*
15340 	 * In case of slot reset, as function reset is performed through
15341 	 * mailbox command which needs DMA to be enabled, this operation
15342 	 * has to be moved to the io resume phase. Taking device offline
15343 	 * will perform the necessary cleanup.
15344 	 */
15345 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15346 		/* Perform device reset */
15347 		lpfc_sli_brdrestart(phba);
15348 		/* Bring the device back online */
15349 		lpfc_online(phba);
15350 	}
15351 }
15352 
15353 /**
15354  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15355  * @pdev: pointer to PCI device
15356  * @pid: pointer to PCI device identifier
15357  *
15358  * This routine is to be registered to the kernel's PCI subsystem. When an
15359  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15360  * at PCI device-specific information of the device and driver to see if the
15361  * driver state that it can support this kind of device. If the match is
15362  * successful, the driver core invokes this routine. This routine dispatches
15363  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15364  * do all the initialization that it needs to do to handle the HBA device
15365  * properly.
15366  *
15367  * Return code
15368  * 	0 - driver can claim the device
15369  * 	negative value - driver can not claim the device
15370  **/
15371 static int
15372 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15373 {
15374 	int rc;
15375 	struct lpfc_sli_intf intf;
15376 
15377 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15378 		return -ENODEV;
15379 
15380 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15381 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15382 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15383 	else
15384 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15385 
15386 	return rc;
15387 }
15388 
15389 /**
15390  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15391  * @pdev: pointer to PCI device
15392  *
15393  * This routine is to be registered to the kernel's PCI subsystem. When an
15394  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15395  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15396  * remove routine, which will perform all the necessary cleanup for the
15397  * device to be removed from the PCI subsystem properly.
15398  **/
15399 static void
15400 lpfc_pci_remove_one(struct pci_dev *pdev)
15401 {
15402 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15403 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15404 
15405 	switch (phba->pci_dev_grp) {
15406 	case LPFC_PCI_DEV_LP:
15407 		lpfc_pci_remove_one_s3(pdev);
15408 		break;
15409 	case LPFC_PCI_DEV_OC:
15410 		lpfc_pci_remove_one_s4(pdev);
15411 		break;
15412 	default:
15413 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15414 				"1424 Invalid PCI device group: 0x%x\n",
15415 				phba->pci_dev_grp);
15416 		break;
15417 	}
15418 	return;
15419 }
15420 
15421 /**
15422  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15423  * @dev: pointer to device
15424  *
15425  * This routine is to be registered to the kernel's PCI subsystem to support
15426  * system Power Management (PM). When PM invokes this method, it dispatches
15427  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15428  * suspend the device.
15429  *
15430  * Return code
15431  * 	0 - driver suspended the device
15432  * 	Error otherwise
15433  **/
15434 static int __maybe_unused
15435 lpfc_pci_suspend_one(struct device *dev)
15436 {
15437 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15438 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15439 	int rc = -ENODEV;
15440 
15441 	switch (phba->pci_dev_grp) {
15442 	case LPFC_PCI_DEV_LP:
15443 		rc = lpfc_pci_suspend_one_s3(dev);
15444 		break;
15445 	case LPFC_PCI_DEV_OC:
15446 		rc = lpfc_pci_suspend_one_s4(dev);
15447 		break;
15448 	default:
15449 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15450 				"1425 Invalid PCI device group: 0x%x\n",
15451 				phba->pci_dev_grp);
15452 		break;
15453 	}
15454 	return rc;
15455 }
15456 
15457 /**
15458  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15459  * @dev: pointer to device
15460  *
15461  * This routine is to be registered to the kernel's PCI subsystem to support
15462  * system Power Management (PM). When PM invokes this method, it dispatches
15463  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15464  * resume the device.
15465  *
15466  * Return code
15467  * 	0 - driver suspended the device
15468  * 	Error otherwise
15469  **/
15470 static int __maybe_unused
15471 lpfc_pci_resume_one(struct device *dev)
15472 {
15473 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15474 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15475 	int rc = -ENODEV;
15476 
15477 	switch (phba->pci_dev_grp) {
15478 	case LPFC_PCI_DEV_LP:
15479 		rc = lpfc_pci_resume_one_s3(dev);
15480 		break;
15481 	case LPFC_PCI_DEV_OC:
15482 		rc = lpfc_pci_resume_one_s4(dev);
15483 		break;
15484 	default:
15485 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15486 				"1426 Invalid PCI device group: 0x%x\n",
15487 				phba->pci_dev_grp);
15488 		break;
15489 	}
15490 	return rc;
15491 }
15492 
15493 /**
15494  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15495  * @pdev: pointer to PCI device.
15496  * @state: the current PCI connection state.
15497  *
15498  * This routine is registered to the PCI subsystem for error handling. This
15499  * function is called by the PCI subsystem after a PCI bus error affecting
15500  * this device has been detected. When this routine is invoked, it dispatches
15501  * the action to the proper SLI-3 or SLI-4 device error detected handling
15502  * routine, which will perform the proper error detected operation.
15503  *
15504  * Return codes
15505  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15506  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15507  **/
15508 static pci_ers_result_t
15509 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15510 {
15511 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15512 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15513 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15514 
15515 	if (phba->link_state == LPFC_HBA_ERROR &&
15516 	    test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
15517 		return PCI_ERS_RESULT_NEED_RESET;
15518 
15519 	switch (phba->pci_dev_grp) {
15520 	case LPFC_PCI_DEV_LP:
15521 		rc = lpfc_io_error_detected_s3(pdev, state);
15522 		break;
15523 	case LPFC_PCI_DEV_OC:
15524 		rc = lpfc_io_error_detected_s4(pdev, state);
15525 		break;
15526 	default:
15527 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15528 				"1427 Invalid PCI device group: 0x%x\n",
15529 				phba->pci_dev_grp);
15530 		break;
15531 	}
15532 	return rc;
15533 }
15534 
15535 /**
15536  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15537  * @pdev: pointer to PCI device.
15538  *
15539  * This routine is registered to the PCI subsystem for error handling. This
15540  * function is called after PCI bus has been reset to restart the PCI card
15541  * from scratch, as if from a cold-boot. When this routine is invoked, it
15542  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15543  * routine, which will perform the proper device reset.
15544  *
15545  * Return codes
15546  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15547  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15548  **/
15549 static pci_ers_result_t
15550 lpfc_io_slot_reset(struct pci_dev *pdev)
15551 {
15552 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15553 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15554 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15555 
15556 	switch (phba->pci_dev_grp) {
15557 	case LPFC_PCI_DEV_LP:
15558 		rc = lpfc_io_slot_reset_s3(pdev);
15559 		break;
15560 	case LPFC_PCI_DEV_OC:
15561 		rc = lpfc_io_slot_reset_s4(pdev);
15562 		break;
15563 	default:
15564 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15565 				"1428 Invalid PCI device group: 0x%x\n",
15566 				phba->pci_dev_grp);
15567 		break;
15568 	}
15569 	return rc;
15570 }
15571 
15572 /**
15573  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15574  * @pdev: pointer to PCI device
15575  *
15576  * This routine is registered to the PCI subsystem for error handling. It
15577  * is called when kernel error recovery tells the lpfc driver that it is
15578  * OK to resume normal PCI operation after PCI bus error recovery. When
15579  * this routine is invoked, it dispatches the action to the proper SLI-3
15580  * or SLI-4 device io_resume routine, which will resume the device operation.
15581  **/
15582 static void
15583 lpfc_io_resume(struct pci_dev *pdev)
15584 {
15585 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15586 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15587 
15588 	switch (phba->pci_dev_grp) {
15589 	case LPFC_PCI_DEV_LP:
15590 		lpfc_io_resume_s3(pdev);
15591 		break;
15592 	case LPFC_PCI_DEV_OC:
15593 		lpfc_io_resume_s4(pdev);
15594 		break;
15595 	default:
15596 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15597 				"1429 Invalid PCI device group: 0x%x\n",
15598 				phba->pci_dev_grp);
15599 		break;
15600 	}
15601 	return;
15602 }
15603 
15604 /**
15605  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15606  * @phba: pointer to lpfc hba data structure.
15607  *
15608  * This routine checks to see if OAS is supported for this adapter. If
15609  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15610  * the enable oas flag is cleared and the pool created for OAS device data
15611  * is destroyed.
15612  *
15613  **/
15614 static void
15615 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15616 {
15617 
15618 	if (!phba->cfg_EnableXLane)
15619 		return;
15620 
15621 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15622 		phba->cfg_fof = 1;
15623 	} else {
15624 		phba->cfg_fof = 0;
15625 		mempool_destroy(phba->device_data_mem_pool);
15626 		phba->device_data_mem_pool = NULL;
15627 	}
15628 
15629 	return;
15630 }
15631 
15632 /**
15633  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15634  * @phba: pointer to lpfc hba data structure.
15635  *
15636  * This routine checks to see if RAS is supported by the adapter. Check the
15637  * function through which RAS support enablement is to be done.
15638  **/
15639 void
15640 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15641 {
15642 	/* if ASIC_GEN_NUM >= 0xC) */
15643 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15644 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15645 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15646 		    LPFC_SLI_INTF_FAMILY_G6)) {
15647 		phba->ras_fwlog.ras_hwsupport = true;
15648 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15649 		    phba->cfg_ras_fwlog_buffsize)
15650 			phba->ras_fwlog.ras_enabled = true;
15651 		else
15652 			phba->ras_fwlog.ras_enabled = false;
15653 	} else {
15654 		phba->ras_fwlog.ras_hwsupport = false;
15655 	}
15656 }
15657 
15658 
15659 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15660 
15661 static const struct pci_error_handlers lpfc_err_handler = {
15662 	.error_detected = lpfc_io_error_detected,
15663 	.slot_reset = lpfc_io_slot_reset,
15664 	.resume = lpfc_io_resume,
15665 };
15666 
15667 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15668 			 lpfc_pci_suspend_one,
15669 			 lpfc_pci_resume_one);
15670 
15671 static struct pci_driver lpfc_driver = {
15672 	.name		= LPFC_DRIVER_NAME,
15673 	.id_table	= lpfc_id_table,
15674 	.probe		= lpfc_pci_probe_one,
15675 	.remove		= lpfc_pci_remove_one,
15676 	.shutdown	= lpfc_pci_remove_one,
15677 	.driver.pm	= &lpfc_pci_pm_ops_one,
15678 	.err_handler    = &lpfc_err_handler,
15679 };
15680 
15681 static const struct file_operations lpfc_mgmt_fop = {
15682 	.owner = THIS_MODULE,
15683 };
15684 
15685 static struct miscdevice lpfc_mgmt_dev = {
15686 	.minor = MISC_DYNAMIC_MINOR,
15687 	.name = "lpfcmgmt",
15688 	.fops = &lpfc_mgmt_fop,
15689 };
15690 
15691 /**
15692  * lpfc_init - lpfc module initialization routine
15693  *
15694  * This routine is to be invoked when the lpfc module is loaded into the
15695  * kernel. The special kernel macro module_init() is used to indicate the
15696  * role of this routine to the kernel as lpfc module entry point.
15697  *
15698  * Return codes
15699  *   0 - successful
15700  *   -ENOMEM - FC attach transport failed
15701  *   all others - failed
15702  */
15703 static int __init
15704 lpfc_init(void)
15705 {
15706 	int error = 0;
15707 
15708 	pr_info(LPFC_MODULE_DESC "\n");
15709 	pr_info(LPFC_COPYRIGHT "\n");
15710 
15711 	error = misc_register(&lpfc_mgmt_dev);
15712 	if (error)
15713 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15714 			"misc_register returned with status %d", error);
15715 
15716 	error = -ENOMEM;
15717 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15718 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15719 	lpfc_transport_template =
15720 				fc_attach_transport(&lpfc_transport_functions);
15721 	if (lpfc_transport_template == NULL)
15722 		goto unregister;
15723 	lpfc_vport_transport_template =
15724 		fc_attach_transport(&lpfc_vport_transport_functions);
15725 	if (lpfc_vport_transport_template == NULL) {
15726 		fc_release_transport(lpfc_transport_template);
15727 		goto unregister;
15728 	}
15729 	lpfc_wqe_cmd_template();
15730 	lpfc_nvmet_cmd_template();
15731 
15732 	/* Initialize in case vector mapping is needed */
15733 	lpfc_present_cpu = num_present_cpus();
15734 
15735 	lpfc_pldv_detect = false;
15736 
15737 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15738 					"lpfc/sli4:online",
15739 					lpfc_cpu_online, lpfc_cpu_offline);
15740 	if (error < 0)
15741 		goto cpuhp_failure;
15742 	lpfc_cpuhp_state = error;
15743 
15744 	error = pci_register_driver(&lpfc_driver);
15745 	if (error)
15746 		goto unwind;
15747 
15748 	return error;
15749 
15750 unwind:
15751 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15752 cpuhp_failure:
15753 	fc_release_transport(lpfc_transport_template);
15754 	fc_release_transport(lpfc_vport_transport_template);
15755 unregister:
15756 	misc_deregister(&lpfc_mgmt_dev);
15757 
15758 	return error;
15759 }
15760 
15761 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15762 {
15763 	unsigned int start_idx;
15764 	unsigned int dbg_cnt;
15765 	unsigned int temp_idx;
15766 	int i;
15767 	int j = 0;
15768 	unsigned long rem_nsec;
15769 
15770 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15771 		return;
15772 
15773 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15774 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15775 	if (!dbg_cnt)
15776 		goto out;
15777 	temp_idx = start_idx;
15778 	if (dbg_cnt >= DBG_LOG_SZ) {
15779 		dbg_cnt = DBG_LOG_SZ;
15780 		temp_idx -= 1;
15781 	} else {
15782 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15783 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15784 		} else {
15785 			if (start_idx < dbg_cnt)
15786 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15787 			else
15788 				start_idx -= dbg_cnt;
15789 		}
15790 	}
15791 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15792 		 start_idx, temp_idx, dbg_cnt);
15793 
15794 	for (i = 0; i < dbg_cnt; i++) {
15795 		if ((start_idx + i) < DBG_LOG_SZ)
15796 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15797 		else
15798 			temp_idx = j++;
15799 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15800 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15801 			 temp_idx,
15802 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15803 			 rem_nsec / 1000,
15804 			 phba->dbg_log[temp_idx].log);
15805 	}
15806 out:
15807 	atomic_set(&phba->dbg_log_cnt, 0);
15808 	atomic_set(&phba->dbg_log_dmping, 0);
15809 }
15810 
15811 __printf(2, 3)
15812 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15813 {
15814 	unsigned int idx;
15815 	va_list args;
15816 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15817 	struct va_format vaf;
15818 
15819 
15820 	va_start(args, fmt);
15821 	if (unlikely(dbg_dmping)) {
15822 		vaf.fmt = fmt;
15823 		vaf.va = &args;
15824 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15825 		va_end(args);
15826 		return;
15827 	}
15828 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15829 		DBG_LOG_SZ;
15830 
15831 	atomic_inc(&phba->dbg_log_cnt);
15832 
15833 	vscnprintf(phba->dbg_log[idx].log,
15834 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15835 	va_end(args);
15836 
15837 	phba->dbg_log[idx].t_ns = local_clock();
15838 }
15839 
15840 /**
15841  * lpfc_exit - lpfc module removal routine
15842  *
15843  * This routine is invoked when the lpfc module is removed from the kernel.
15844  * The special kernel macro module_exit() is used to indicate the role of
15845  * this routine to the kernel as lpfc module exit point.
15846  */
15847 static void __exit
15848 lpfc_exit(void)
15849 {
15850 	misc_deregister(&lpfc_mgmt_dev);
15851 	pci_unregister_driver(&lpfc_driver);
15852 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15853 	fc_release_transport(lpfc_transport_template);
15854 	fc_release_transport(lpfc_vport_transport_template);
15855 	idr_destroy(&lpfc_hba_index);
15856 }
15857 
15858 module_init(lpfc_init);
15859 module_exit(lpfc_exit);
15860 MODULE_LICENSE("GPL");
15861 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15862 MODULE_AUTHOR("Broadcom");
15863 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15864