xref: /linux/drivers/scsi/lpfc/lpfc_init.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
106 
107 /**
108  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
109  * @phba: pointer to lpfc hba data structure.
110  *
111  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
112  * mailbox command. It retrieves the revision information from the HBA and
113  * collects the Vital Product Data (VPD) about the HBA for preparing the
114  * configuration of the HBA.
115  *
116  * Return codes:
117  *   0 - success.
118  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
119  *   Any other value - indicates an error.
120  **/
121 int
122 lpfc_config_port_prep(struct lpfc_hba *phba)
123 {
124 	lpfc_vpd_t *vp = &phba->vpd;
125 	int i = 0, rc;
126 	LPFC_MBOXQ_t *pmb;
127 	MAILBOX_t *mb;
128 	char *lpfc_vpd_data = NULL;
129 	uint16_t offset = 0;
130 	static char licensed[56] =
131 		    "key unlock for use with gnu public licensed code only\0";
132 	static int init_key = 1;
133 
134 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
135 	if (!pmb) {
136 		phba->link_state = LPFC_HBA_ERROR;
137 		return -ENOMEM;
138 	}
139 
140 	mb = &pmb->u.mb;
141 	phba->link_state = LPFC_INIT_MBX_CMDS;
142 
143 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
144 		if (init_key) {
145 			uint32_t *ptext = (uint32_t *) licensed;
146 
147 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
148 				*ptext = cpu_to_be32(*ptext);
149 			init_key = 0;
150 		}
151 
152 		lpfc_read_nv(phba, pmb);
153 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
154 			sizeof (mb->un.varRDnvp.rsvd3));
155 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
156 			 sizeof (licensed));
157 
158 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
159 
160 		if (rc != MBX_SUCCESS) {
161 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
162 					"0324 Config Port initialization "
163 					"error, mbxCmd x%x READ_NVPARM, "
164 					"mbxStatus x%x\n",
165 					mb->mbxCommand, mb->mbxStatus);
166 			mempool_free(pmb, phba->mbox_mem_pool);
167 			return -ERESTART;
168 		}
169 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
170 		       sizeof(phba->wwnn));
171 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
172 		       sizeof(phba->wwpn));
173 	}
174 
175 	/*
176 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
177 	 * which was already set in lpfc_get_cfgparam()
178 	 */
179 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
180 
181 	/* Setup and issue mailbox READ REV command */
182 	lpfc_read_rev(phba, pmb);
183 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
184 	if (rc != MBX_SUCCESS) {
185 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
186 				"0439 Adapter failed to init, mbxCmd x%x "
187 				"READ_REV, mbxStatus x%x\n",
188 				mb->mbxCommand, mb->mbxStatus);
189 		mempool_free( pmb, phba->mbox_mem_pool);
190 		return -ERESTART;
191 	}
192 
193 
194 	/*
195 	 * The value of rr must be 1 since the driver set the cv field to 1.
196 	 * This setting requires the FW to set all revision fields.
197 	 */
198 	if (mb->un.varRdRev.rr == 0) {
199 		vp->rev.rBit = 0;
200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
201 				"0440 Adapter failed to init, READ_REV has "
202 				"missing revision information.\n");
203 		mempool_free(pmb, phba->mbox_mem_pool);
204 		return -ERESTART;
205 	}
206 
207 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
208 		mempool_free(pmb, phba->mbox_mem_pool);
209 		return -EINVAL;
210 	}
211 
212 	/* Save information as VPD data */
213 	vp->rev.rBit = 1;
214 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
215 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
216 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
217 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
218 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
219 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
220 	vp->rev.smRev = mb->un.varRdRev.smRev;
221 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
222 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
223 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
224 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
225 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
226 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
227 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
228 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
229 
230 	/* If the sli feature level is less then 9, we must
231 	 * tear down all RPIs and VPIs on link down if NPIV
232 	 * is enabled.
233 	 */
234 	if (vp->rev.feaLevelHigh < 9)
235 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
236 
237 	if (lpfc_is_LC_HBA(phba->pcidev->device))
238 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
239 						sizeof (phba->RandomData));
240 
241 	/* Get adapter VPD information */
242 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
243 	if (!lpfc_vpd_data)
244 		goto out_free_mbox;
245 	do {
246 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
247 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
248 
249 		if (rc != MBX_SUCCESS) {
250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
251 					"0441 VPD not present on adapter, "
252 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
253 					mb->mbxCommand, mb->mbxStatus);
254 			mb->un.varDmp.word_cnt = 0;
255 		}
256 		/* dump mem may return a zero when finished or we got a
257 		 * mailbox error, either way we are done.
258 		 */
259 		if (mb->un.varDmp.word_cnt == 0)
260 			break;
261 
262 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
263 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
264 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
265 				      lpfc_vpd_data + offset,
266 				      mb->un.varDmp.word_cnt);
267 		offset += mb->un.varDmp.word_cnt;
268 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
269 
270 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
271 
272 	kfree(lpfc_vpd_data);
273 out_free_mbox:
274 	mempool_free(pmb, phba->mbox_mem_pool);
275 	return 0;
276 }
277 
278 /**
279  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
280  * @phba: pointer to lpfc hba data structure.
281  * @pmboxq: pointer to the driver internal queue element for mailbox command.
282  *
283  * This is the completion handler for driver's configuring asynchronous event
284  * mailbox command to the device. If the mailbox command returns successfully,
285  * it will set internal async event support flag to 1; otherwise, it will
286  * set internal async event support flag to 0.
287  **/
288 static void
289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
290 {
291 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
292 		phba->temp_sensor_support = 1;
293 	else
294 		phba->temp_sensor_support = 0;
295 	mempool_free(pmboxq, phba->mbox_mem_pool);
296 	return;
297 }
298 
299 /**
300  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
301  * @phba: pointer to lpfc hba data structure.
302  * @pmboxq: pointer to the driver internal queue element for mailbox command.
303  *
304  * This is the completion handler for dump mailbox command for getting
305  * wake up parameters. When this command complete, the response contain
306  * Option rom version of the HBA. This function translate the version number
307  * into a human readable string and store it in OptionROMVersion.
308  **/
309 static void
310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
311 {
312 	struct prog_id *prg;
313 	uint32_t prog_id_word;
314 	char dist = ' ';
315 	/* character array used for decoding dist type. */
316 	char dist_char[] = "nabx";
317 
318 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
319 		mempool_free(pmboxq, phba->mbox_mem_pool);
320 		return;
321 	}
322 
323 	prg = (struct prog_id *) &prog_id_word;
324 
325 	/* word 7 contain option rom version */
326 	prog_id_word = pmboxq->u.mb.un.varWords[7];
327 
328 	/* Decode the Option rom version word to a readable string */
329 	dist = dist_char[prg->dist];
330 
331 	if ((prg->dist == 3) && (prg->num == 0))
332 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333 			prg->ver, prg->rev, prg->lev);
334 	else
335 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336 			prg->ver, prg->rev, prg->lev,
337 			dist, prg->num);
338 	mempool_free(pmboxq, phba->mbox_mem_pool);
339 	return;
340 }
341 
342 /**
343  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	struct lpfc_hba *phba = vport->phba;
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 		       sizeof(struct lpfc_name))) {
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 		if (phba->sli_rev == LPFC_SLI_REV4 &&
376 		    vport->port_type == LPFC_PHYSICAL_PORT &&
377 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379 				phba->sli4_hba.fawwpn_flag &=
380 						~LPFC_FAWWPN_FABRIC;
381 			lpfc_printf_log(phba, KERN_INFO,
382 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383 					"2701 FA-PWWN change WWPN from %llx to "
384 					"%llx: vflag x%x fawwpn_flag x%x\n",
385 					wwn_to_u64(vport->fc_portname.u.wwn),
386 					wwn_to_u64
387 					   (vport->fc_sparam.portName.u.wwn),
388 					vport->vport_flag,
389 					phba->sli4_hba.fawwpn_flag);
390 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391 			       sizeof(struct lpfc_name));
392 		}
393 	}
394 
395 	if (vport->fc_portname.u.wwn[0] == 0)
396 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397 		       sizeof(struct lpfc_name));
398 	else
399 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400 		       sizeof(struct lpfc_name));
401 }
402 
403 /**
404  * lpfc_config_port_post - Perform lpfc initialization after config port
405  * @phba: pointer to lpfc hba data structure.
406  *
407  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408  * command call. It performs all internal resource and state setups on the
409  * port: post IOCB buffers, enable appropriate host interrupt attentions,
410  * ELS ring timers, etc.
411  *
412  * Return codes
413  *   0 - success.
414  *   Any other value - error.
415  **/
416 int
417 lpfc_config_port_post(struct lpfc_hba *phba)
418 {
419 	struct lpfc_vport *vport = phba->pport;
420 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421 	LPFC_MBOXQ_t *pmb;
422 	MAILBOX_t *mb;
423 	struct lpfc_dmabuf *mp;
424 	struct lpfc_sli *psli = &phba->sli;
425 	uint32_t status, timeout;
426 	int i, j;
427 	int rc;
428 
429 	spin_lock_irq(&phba->hbalock);
430 	/*
431 	 * If the Config port completed correctly the HBA is not
432 	 * over heated any more.
433 	 */
434 	if (phba->over_temp_state == HBA_OVER_TEMP)
435 		phba->over_temp_state = HBA_NORMAL_TEMP;
436 	spin_unlock_irq(&phba->hbalock);
437 
438 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439 	if (!pmb) {
440 		phba->link_state = LPFC_HBA_ERROR;
441 		return -ENOMEM;
442 	}
443 	mb = &pmb->u.mb;
444 
445 	/* Get login parameters for NID.  */
446 	rc = lpfc_read_sparam(phba, pmb, 0);
447 	if (rc) {
448 		mempool_free(pmb, phba->mbox_mem_pool);
449 		return -ENOMEM;
450 	}
451 
452 	pmb->vport = vport;
453 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455 				"0448 Adapter failed init, mbxCmd x%x "
456 				"READ_SPARM mbxStatus x%x\n",
457 				mb->mbxCommand, mb->mbxStatus);
458 		phba->link_state = LPFC_HBA_ERROR;
459 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460 		return -EIO;
461 	}
462 
463 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
464 
465 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467 	 * reused.
468 	 */
469 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471 	kfree(mp);
472 	pmb->ctx_buf = NULL;
473 	lpfc_update_vport_wwn(vport);
474 
475 	/* Update the fc_host data structures with new wwn. */
476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479 
480 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481 	/* This should be consolidated into parse_vpd ? - mr */
482 	if (phba->SerialNumber[0] == 0) {
483 		uint8_t *outptr;
484 
485 		outptr = &vport->fc_nodename.u.s.IEEE[0];
486 		for (i = 0; i < 12; i++) {
487 			status = *outptr++;
488 			j = ((status & 0xf0) >> 4);
489 			if (j <= 9)
490 				phba->SerialNumber[i] =
491 				    (char)((uint8_t) 0x30 + (uint8_t) j);
492 			else
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495 			i++;
496 			j = (status & 0xf);
497 			if (j <= 9)
498 				phba->SerialNumber[i] =
499 				    (char)((uint8_t) 0x30 + (uint8_t) j);
500 			else
501 				phba->SerialNumber[i] =
502 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503 		}
504 	}
505 
506 	lpfc_read_config(phba, pmb);
507 	pmb->vport = vport;
508 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510 				"0453 Adapter failed to init, mbxCmd x%x "
511 				"READ_CONFIG, mbxStatus x%x\n",
512 				mb->mbxCommand, mb->mbxStatus);
513 		phba->link_state = LPFC_HBA_ERROR;
514 		mempool_free( pmb, phba->mbox_mem_pool);
515 		return -EIO;
516 	}
517 
518 	/* Check if the port is disabled */
519 	lpfc_sli_read_link_ste(phba);
520 
521 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524 				"3359 HBA queue depth changed from %d to %d\n",
525 				phba->cfg_hba_queue_depth,
526 				mb->un.varRdConfig.max_xri);
527 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528 	}
529 
530 	phba->lmt = mb->un.varRdConfig.lmt;
531 
532 	/* Get the default values for Model Name and Description */
533 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534 
535 	phba->link_state = LPFC_LINK_DOWN;
536 
537 	/* Only process IOCBs on ELS ring till hba_state is READY */
538 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542 
543 	/* Post receive buffers for desired rings */
544 	if (phba->sli_rev != 3)
545 		lpfc_post_rcv_buf(phba);
546 
547 	/*
548 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549 	 */
550 	if (phba->intr_type == MSIX) {
551 		rc = lpfc_config_msi(phba, pmb);
552 		if (rc) {
553 			mempool_free(pmb, phba->mbox_mem_pool);
554 			return -EIO;
555 		}
556 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557 		if (rc != MBX_SUCCESS) {
558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559 					"0352 Config MSI mailbox command "
560 					"failed, mbxCmd x%x, mbxStatus x%x\n",
561 					pmb->u.mb.mbxCommand,
562 					pmb->u.mb.mbxStatus);
563 			mempool_free(pmb, phba->mbox_mem_pool);
564 			return -EIO;
565 		}
566 	}
567 
568 	spin_lock_irq(&phba->hbalock);
569 	/* Initialize ERATT handling flag */
570 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
571 
572 	/* Enable appropriate host interrupts */
573 	if (lpfc_readl(phba->HCregaddr, &status)) {
574 		spin_unlock_irq(&phba->hbalock);
575 		return -EIO;
576 	}
577 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578 	if (psli->num_rings > 0)
579 		status |= HC_R0INT_ENA;
580 	if (psli->num_rings > 1)
581 		status |= HC_R1INT_ENA;
582 	if (psli->num_rings > 2)
583 		status |= HC_R2INT_ENA;
584 	if (psli->num_rings > 3)
585 		status |= HC_R3INT_ENA;
586 
587 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589 		status &= ~(HC_R0INT_ENA);
590 
591 	writel(status, phba->HCregaddr);
592 	readl(phba->HCregaddr); /* flush */
593 	spin_unlock_irq(&phba->hbalock);
594 
595 	/* Set up ring-0 (ELS) timer */
596 	timeout = phba->fc_ratov * 2;
597 	mod_timer(&vport->els_tmofunc,
598 		  jiffies + msecs_to_jiffies(1000 * timeout));
599 	/* Set up heart beat (HB) timer */
600 	mod_timer(&phba->hb_tmofunc,
601 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
602 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
603 	phba->last_completion_time = jiffies;
604 	/* Set up error attention (ERATT) polling timer */
605 	mod_timer(&phba->eratt_poll,
606 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
607 
608 	if (phba->hba_flag & LINK_DISABLED) {
609 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
610 				"2598 Adapter Link is disabled.\n");
611 		lpfc_down_link(phba, pmb);
612 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
613 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
614 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
615 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
616 					"2599 Adapter failed to issue DOWN_LINK"
617 					" mbox command rc 0x%x\n", rc);
618 
619 			mempool_free(pmb, phba->mbox_mem_pool);
620 			return -EIO;
621 		}
622 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
623 		mempool_free(pmb, phba->mbox_mem_pool);
624 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
625 		if (rc)
626 			return rc;
627 	}
628 	/* MBOX buffer will be freed in mbox compl */
629 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
630 	if (!pmb) {
631 		phba->link_state = LPFC_HBA_ERROR;
632 		return -ENOMEM;
633 	}
634 
635 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
636 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
637 	pmb->vport = phba->pport;
638 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
639 
640 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
641 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
642 				"0456 Adapter failed to issue "
643 				"ASYNCEVT_ENABLE mbox status x%x\n",
644 				rc);
645 		mempool_free(pmb, phba->mbox_mem_pool);
646 	}
647 
648 	/* Get Option rom version */
649 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
650 	if (!pmb) {
651 		phba->link_state = LPFC_HBA_ERROR;
652 		return -ENOMEM;
653 	}
654 
655 	lpfc_dump_wakeup_param(phba, pmb);
656 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
657 	pmb->vport = phba->pport;
658 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
659 
660 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
661 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
662 				"0435 Adapter failed "
663 				"to get Option ROM version status x%x\n", rc);
664 		mempool_free(pmb, phba->mbox_mem_pool);
665 	}
666 
667 	return 0;
668 }
669 
670 /**
671  * lpfc_sli4_refresh_params - update driver copy of params.
672  * @phba: Pointer to HBA context object.
673  *
674  * This is called to refresh driver copy of dynamic fields from the
675  * common_get_sli4_parameters descriptor.
676  **/
677 int
678 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
679 {
680 	LPFC_MBOXQ_t *mboxq;
681 	struct lpfc_mqe *mqe;
682 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
683 	int length, rc;
684 
685 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
686 	if (!mboxq)
687 		return -ENOMEM;
688 
689 	mqe = &mboxq->u.mqe;
690 	/* Read the port's SLI4 Config Parameters */
691 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
692 		  sizeof(struct lpfc_sli4_cfg_mhdr));
693 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
694 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
695 			 length, LPFC_SLI4_MBX_EMBED);
696 
697 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
698 	if (unlikely(rc)) {
699 		mempool_free(mboxq, phba->mbox_mem_pool);
700 		return rc;
701 	}
702 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
703 	phba->sli4_hba.pc_sli4_params.mi_cap =
704 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
705 
706 	/* Are we forcing MI off via module parameter? */
707 	if (phba->cfg_enable_mi)
708 		phba->sli4_hba.pc_sli4_params.mi_ver =
709 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
710 	else
711 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
712 
713 	phba->sli4_hba.pc_sli4_params.cmf =
714 			bf_get(cfg_cmf, mbx_sli4_parameters);
715 	phba->sli4_hba.pc_sli4_params.pls =
716 			bf_get(cfg_pvl, mbx_sli4_parameters);
717 
718 	mempool_free(mboxq, phba->mbox_mem_pool);
719 	return rc;
720 }
721 
722 /**
723  * lpfc_hba_init_link - Initialize the FC link
724  * @phba: pointer to lpfc hba data structure.
725  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
726  *
727  * This routine will issue the INIT_LINK mailbox command call.
728  * It is available to other drivers through the lpfc_hba data
729  * structure for use as a delayed link up mechanism with the
730  * module parameter lpfc_suppress_link_up.
731  *
732  * Return code
733  *		0 - success
734  *		Any other value - error
735  **/
736 static int
737 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
738 {
739 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
740 }
741 
742 /**
743  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
744  * @phba: pointer to lpfc hba data structure.
745  * @fc_topology: desired fc topology.
746  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
747  *
748  * This routine will issue the INIT_LINK mailbox command call.
749  * It is available to other drivers through the lpfc_hba data
750  * structure for use as a delayed link up mechanism with the
751  * module parameter lpfc_suppress_link_up.
752  *
753  * Return code
754  *              0 - success
755  *              Any other value - error
756  **/
757 int
758 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
759 			       uint32_t flag)
760 {
761 	struct lpfc_vport *vport = phba->pport;
762 	LPFC_MBOXQ_t *pmb;
763 	MAILBOX_t *mb;
764 	int rc;
765 
766 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
767 	if (!pmb) {
768 		phba->link_state = LPFC_HBA_ERROR;
769 		return -ENOMEM;
770 	}
771 	mb = &pmb->u.mb;
772 	pmb->vport = vport;
773 
774 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
775 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
776 	     !(phba->lmt & LMT_1Gb)) ||
777 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
778 	     !(phba->lmt & LMT_2Gb)) ||
779 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
780 	     !(phba->lmt & LMT_4Gb)) ||
781 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
782 	     !(phba->lmt & LMT_8Gb)) ||
783 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
784 	     !(phba->lmt & LMT_10Gb)) ||
785 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
786 	     !(phba->lmt & LMT_16Gb)) ||
787 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
788 	     !(phba->lmt & LMT_32Gb)) ||
789 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
790 	     !(phba->lmt & LMT_64Gb))) {
791 		/* Reset link speed to auto */
792 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
793 				"1302 Invalid speed for this board:%d "
794 				"Reset link speed to auto.\n",
795 				phba->cfg_link_speed);
796 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
797 	}
798 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
799 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
800 	if (phba->sli_rev < LPFC_SLI_REV4)
801 		lpfc_set_loopback_flag(phba);
802 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
803 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
804 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
805 				"0498 Adapter failed to init, mbxCmd x%x "
806 				"INIT_LINK, mbxStatus x%x\n",
807 				mb->mbxCommand, mb->mbxStatus);
808 		if (phba->sli_rev <= LPFC_SLI_REV3) {
809 			/* Clear all interrupt enable conditions */
810 			writel(0, phba->HCregaddr);
811 			readl(phba->HCregaddr); /* flush */
812 			/* Clear all pending interrupts */
813 			writel(0xffffffff, phba->HAregaddr);
814 			readl(phba->HAregaddr); /* flush */
815 		}
816 		phba->link_state = LPFC_HBA_ERROR;
817 		if (rc != MBX_BUSY || flag == MBX_POLL)
818 			mempool_free(pmb, phba->mbox_mem_pool);
819 		return -EIO;
820 	}
821 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
822 	if (flag == MBX_POLL)
823 		mempool_free(pmb, phba->mbox_mem_pool);
824 
825 	return 0;
826 }
827 
828 /**
829  * lpfc_hba_down_link - this routine downs the FC link
830  * @phba: pointer to lpfc hba data structure.
831  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
832  *
833  * This routine will issue the DOWN_LINK mailbox command call.
834  * It is available to other drivers through the lpfc_hba data
835  * structure for use to stop the link.
836  *
837  * Return code
838  *		0 - success
839  *		Any other value - error
840  **/
841 static int
842 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
843 {
844 	LPFC_MBOXQ_t *pmb;
845 	int rc;
846 
847 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
848 	if (!pmb) {
849 		phba->link_state = LPFC_HBA_ERROR;
850 		return -ENOMEM;
851 	}
852 
853 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
854 			"0491 Adapter Link is disabled.\n");
855 	lpfc_down_link(phba, pmb);
856 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
857 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
858 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
859 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
860 				"2522 Adapter failed to issue DOWN_LINK"
861 				" mbox command rc 0x%x\n", rc);
862 
863 		mempool_free(pmb, phba->mbox_mem_pool);
864 		return -EIO;
865 	}
866 	if (flag == MBX_POLL)
867 		mempool_free(pmb, phba->mbox_mem_pool);
868 
869 	return 0;
870 }
871 
872 /**
873  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
874  * @phba: pointer to lpfc HBA data structure.
875  *
876  * This routine will do LPFC uninitialization before the HBA is reset when
877  * bringing down the SLI Layer.
878  *
879  * Return codes
880  *   0 - success.
881  *   Any other value - error.
882  **/
883 int
884 lpfc_hba_down_prep(struct lpfc_hba *phba)
885 {
886 	struct lpfc_vport **vports;
887 	int i;
888 
889 	if (phba->sli_rev <= LPFC_SLI_REV3) {
890 		/* Disable interrupts */
891 		writel(0, phba->HCregaddr);
892 		readl(phba->HCregaddr); /* flush */
893 	}
894 
895 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
896 		lpfc_cleanup_discovery_resources(phba->pport);
897 	else {
898 		vports = lpfc_create_vport_work_array(phba);
899 		if (vports != NULL)
900 			for (i = 0; i <= phba->max_vports &&
901 				vports[i] != NULL; i++)
902 				lpfc_cleanup_discovery_resources(vports[i]);
903 		lpfc_destroy_vport_work_array(phba, vports);
904 	}
905 	return 0;
906 }
907 
908 /**
909  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
910  * rspiocb which got deferred
911  *
912  * @phba: pointer to lpfc HBA data structure.
913  *
914  * This routine will cleanup completed slow path events after HBA is reset
915  * when bringing down the SLI Layer.
916  *
917  *
918  * Return codes
919  *   void.
920  **/
921 static void
922 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
923 {
924 	struct lpfc_iocbq *rspiocbq;
925 	struct hbq_dmabuf *dmabuf;
926 	struct lpfc_cq_event *cq_event;
927 
928 	spin_lock_irq(&phba->hbalock);
929 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
930 	spin_unlock_irq(&phba->hbalock);
931 
932 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
933 		/* Get the response iocb from the head of work queue */
934 		spin_lock_irq(&phba->hbalock);
935 		list_remove_head(&phba->sli4_hba.sp_queue_event,
936 				 cq_event, struct lpfc_cq_event, list);
937 		spin_unlock_irq(&phba->hbalock);
938 
939 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
940 		case CQE_CODE_COMPL_WQE:
941 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
942 						 cq_event);
943 			lpfc_sli_release_iocbq(phba, rspiocbq);
944 			break;
945 		case CQE_CODE_RECEIVE:
946 		case CQE_CODE_RECEIVE_V1:
947 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
948 					      cq_event);
949 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
950 		}
951 	}
952 }
953 
954 /**
955  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
956  * @phba: pointer to lpfc HBA data structure.
957  *
958  * This routine will cleanup posted ELS buffers after the HBA is reset
959  * when bringing down the SLI Layer.
960  *
961  *
962  * Return codes
963  *   void.
964  **/
965 static void
966 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
967 {
968 	struct lpfc_sli *psli = &phba->sli;
969 	struct lpfc_sli_ring *pring;
970 	struct lpfc_dmabuf *mp, *next_mp;
971 	LIST_HEAD(buflist);
972 	int count;
973 
974 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
975 		lpfc_sli_hbqbuf_free_all(phba);
976 	else {
977 		/* Cleanup preposted buffers on the ELS ring */
978 		pring = &psli->sli3_ring[LPFC_ELS_RING];
979 		spin_lock_irq(&phba->hbalock);
980 		list_splice_init(&pring->postbufq, &buflist);
981 		spin_unlock_irq(&phba->hbalock);
982 
983 		count = 0;
984 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
985 			list_del(&mp->list);
986 			count++;
987 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
988 			kfree(mp);
989 		}
990 
991 		spin_lock_irq(&phba->hbalock);
992 		pring->postbufq_cnt -= count;
993 		spin_unlock_irq(&phba->hbalock);
994 	}
995 }
996 
997 /**
998  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
999  * @phba: pointer to lpfc HBA data structure.
1000  *
1001  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1002  * down the SLI Layer.
1003  *
1004  * Return codes
1005  *   void
1006  **/
1007 static void
1008 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1009 {
1010 	struct lpfc_sli *psli = &phba->sli;
1011 	struct lpfc_queue *qp = NULL;
1012 	struct lpfc_sli_ring *pring;
1013 	LIST_HEAD(completions);
1014 	int i;
1015 	struct lpfc_iocbq *piocb, *next_iocb;
1016 
1017 	if (phba->sli_rev != LPFC_SLI_REV4) {
1018 		for (i = 0; i < psli->num_rings; i++) {
1019 			pring = &psli->sli3_ring[i];
1020 			spin_lock_irq(&phba->hbalock);
1021 			/* At this point in time the HBA is either reset or DOA
1022 			 * Nothing should be on txcmplq as it will
1023 			 * NEVER complete.
1024 			 */
1025 			list_splice_init(&pring->txcmplq, &completions);
1026 			pring->txcmplq_cnt = 0;
1027 			spin_unlock_irq(&phba->hbalock);
1028 
1029 			lpfc_sli_abort_iocb_ring(phba, pring);
1030 		}
1031 		/* Cancel all the IOCBs from the completions list */
1032 		lpfc_sli_cancel_iocbs(phba, &completions,
1033 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1034 		return;
1035 	}
1036 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1037 		pring = qp->pring;
1038 		if (!pring)
1039 			continue;
1040 		spin_lock_irq(&pring->ring_lock);
1041 		list_for_each_entry_safe(piocb, next_iocb,
1042 					 &pring->txcmplq, list)
1043 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1044 		list_splice_init(&pring->txcmplq, &completions);
1045 		pring->txcmplq_cnt = 0;
1046 		spin_unlock_irq(&pring->ring_lock);
1047 		lpfc_sli_abort_iocb_ring(phba, pring);
1048 	}
1049 	/* Cancel all the IOCBs from the completions list */
1050 	lpfc_sli_cancel_iocbs(phba, &completions,
1051 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1052 }
1053 
1054 /**
1055  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1056  * @phba: pointer to lpfc HBA data structure.
1057  *
1058  * This routine will do uninitialization after the HBA is reset when bring
1059  * down the SLI Layer.
1060  *
1061  * Return codes
1062  *   0 - success.
1063  *   Any other value - error.
1064  **/
1065 static int
1066 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1067 {
1068 	lpfc_hba_free_post_buf(phba);
1069 	lpfc_hba_clean_txcmplq(phba);
1070 	return 0;
1071 }
1072 
1073 /**
1074  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1075  * @phba: pointer to lpfc HBA data structure.
1076  *
1077  * This routine will do uninitialization after the HBA is reset when bring
1078  * down the SLI Layer.
1079  *
1080  * Return codes
1081  *   0 - success.
1082  *   Any other value - error.
1083  **/
1084 static int
1085 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1086 {
1087 	struct lpfc_io_buf *psb, *psb_next;
1088 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1089 	struct lpfc_sli4_hdw_queue *qp;
1090 	LIST_HEAD(aborts);
1091 	LIST_HEAD(nvme_aborts);
1092 	LIST_HEAD(nvmet_aborts);
1093 	struct lpfc_sglq *sglq_entry = NULL;
1094 	int cnt, idx;
1095 
1096 
1097 	lpfc_sli_hbqbuf_free_all(phba);
1098 	lpfc_hba_clean_txcmplq(phba);
1099 
1100 	/* At this point in time the HBA is either reset or DOA. Either
1101 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1102 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1103 	 * driver is unloading or reposted if the driver is restarting
1104 	 * the port.
1105 	 */
1106 
1107 	/* sgl_list_lock required because worker thread uses this
1108 	 * list.
1109 	 */
1110 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1111 	list_for_each_entry(sglq_entry,
1112 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1113 		sglq_entry->state = SGL_FREED;
1114 
1115 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1116 			&phba->sli4_hba.lpfc_els_sgl_list);
1117 
1118 
1119 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1120 
1121 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1122 	 * list.
1123 	 */
1124 	spin_lock_irq(&phba->hbalock);
1125 	cnt = 0;
1126 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1127 		qp = &phba->sli4_hba.hdwq[idx];
1128 
1129 		spin_lock(&qp->abts_io_buf_list_lock);
1130 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1131 				 &aborts);
1132 
1133 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1134 			psb->pCmd = NULL;
1135 			psb->status = IOSTAT_SUCCESS;
1136 			cnt++;
1137 		}
1138 		spin_lock(&qp->io_buf_list_put_lock);
1139 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1140 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1141 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1142 		qp->abts_scsi_io_bufs = 0;
1143 		qp->abts_nvme_io_bufs = 0;
1144 		spin_unlock(&qp->io_buf_list_put_lock);
1145 		spin_unlock(&qp->abts_io_buf_list_lock);
1146 	}
1147 	spin_unlock_irq(&phba->hbalock);
1148 
1149 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1150 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1151 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1152 				 &nvmet_aborts);
1153 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1154 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1155 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1156 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1157 		}
1158 	}
1159 
1160 	lpfc_sli4_free_sp_events(phba);
1161 	return cnt;
1162 }
1163 
1164 /**
1165  * lpfc_hba_down_post - Wrapper func for hba down post routine
1166  * @phba: pointer to lpfc HBA data structure.
1167  *
1168  * This routine wraps the actual SLI3 or SLI4 routine for performing
1169  * uninitialization after the HBA is reset when bring down the SLI Layer.
1170  *
1171  * Return codes
1172  *   0 - success.
1173  *   Any other value - error.
1174  **/
1175 int
1176 lpfc_hba_down_post(struct lpfc_hba *phba)
1177 {
1178 	return (*phba->lpfc_hba_down_post)(phba);
1179 }
1180 
1181 /**
1182  * lpfc_hb_timeout - The HBA-timer timeout handler
1183  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1184  *
1185  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1186  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1187  * work-port-events bitmap and the worker thread is notified. This timeout
1188  * event will be used by the worker thread to invoke the actual timeout
1189  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1190  * be performed in the timeout handler and the HBA timeout event bit shall
1191  * be cleared by the worker thread after it has taken the event bitmap out.
1192  **/
1193 static void
1194 lpfc_hb_timeout(struct timer_list *t)
1195 {
1196 	struct lpfc_hba *phba;
1197 	uint32_t tmo_posted;
1198 	unsigned long iflag;
1199 
1200 	phba = from_timer(phba, t, hb_tmofunc);
1201 
1202 	/* Check for heart beat timeout conditions */
1203 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1204 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1205 	if (!tmo_posted)
1206 		phba->pport->work_port_events |= WORKER_HB_TMO;
1207 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1208 
1209 	/* Tell the worker thread there is work to do */
1210 	if (!tmo_posted)
1211 		lpfc_worker_wake_up(phba);
1212 	return;
1213 }
1214 
1215 /**
1216  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1217  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1218  *
1219  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1220  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1221  * work-port-events bitmap and the worker thread is notified. This timeout
1222  * event will be used by the worker thread to invoke the actual timeout
1223  * handler routine, lpfc_rrq_handler. Any periodical operations will
1224  * be performed in the timeout handler and the RRQ timeout event bit shall
1225  * be cleared by the worker thread after it has taken the event bitmap out.
1226  **/
1227 static void
1228 lpfc_rrq_timeout(struct timer_list *t)
1229 {
1230 	struct lpfc_hba *phba;
1231 	unsigned long iflag;
1232 
1233 	phba = from_timer(phba, t, rrq_tmr);
1234 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1235 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
1236 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1237 	else
1238 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1239 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1240 
1241 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
1242 		lpfc_worker_wake_up(phba);
1243 }
1244 
1245 /**
1246  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1247  * @phba: pointer to lpfc hba data structure.
1248  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1249  *
1250  * This is the callback function to the lpfc heart-beat mailbox command.
1251  * If configured, the lpfc driver issues the heart-beat mailbox command to
1252  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1253  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1254  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1255  * heart-beat outstanding state. Once the mailbox command comes back and
1256  * no error conditions detected, the heart-beat mailbox command timer is
1257  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1258  * state is cleared for the next heart-beat. If the timer expired with the
1259  * heart-beat outstanding state set, the driver will put the HBA offline.
1260  **/
1261 static void
1262 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1263 {
1264 	unsigned long drvr_flag;
1265 
1266 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1267 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1268 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1269 
1270 	/* Check and reset heart-beat timer if necessary */
1271 	mempool_free(pmboxq, phba->mbox_mem_pool);
1272 	if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) &&
1273 	    !(phba->link_state == LPFC_HBA_ERROR) &&
1274 	    !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1275 		mod_timer(&phba->hb_tmofunc,
1276 			  jiffies +
1277 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1278 	return;
1279 }
1280 
1281 /*
1282  * lpfc_idle_stat_delay_work - idle_stat tracking
1283  *
1284  * This routine tracks per-eq idle_stat and determines polling decisions.
1285  *
1286  * Return codes:
1287  *   None
1288  **/
1289 static void
1290 lpfc_idle_stat_delay_work(struct work_struct *work)
1291 {
1292 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1293 					     struct lpfc_hba,
1294 					     idle_stat_delay_work);
1295 	struct lpfc_queue *eq;
1296 	struct lpfc_sli4_hdw_queue *hdwq;
1297 	struct lpfc_idle_stat *idle_stat;
1298 	u32 i, idle_percent;
1299 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1300 
1301 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1302 		return;
1303 
1304 	if (phba->link_state == LPFC_HBA_ERROR ||
1305 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) ||
1306 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1307 		goto requeue;
1308 
1309 	for_each_present_cpu(i) {
1310 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1311 		eq = hdwq->hba_eq;
1312 
1313 		/* Skip if we've already handled this eq's primary CPU */
1314 		if (eq->chann != i)
1315 			continue;
1316 
1317 		idle_stat = &phba->sli4_hba.idle_stat[i];
1318 
1319 		/* get_cpu_idle_time returns values as running counters. Thus,
1320 		 * to know the amount for this period, the prior counter values
1321 		 * need to be subtracted from the current counter values.
1322 		 * From there, the idle time stat can be calculated as a
1323 		 * percentage of 100 - the sum of the other consumption times.
1324 		 */
1325 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1326 		diff_idle = wall_idle - idle_stat->prev_idle;
1327 		diff_wall = wall - idle_stat->prev_wall;
1328 
1329 		if (diff_wall <= diff_idle)
1330 			busy_time = 0;
1331 		else
1332 			busy_time = diff_wall - diff_idle;
1333 
1334 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1335 		idle_percent = 100 - idle_percent;
1336 
1337 		if (idle_percent < 15)
1338 			eq->poll_mode = LPFC_QUEUE_WORK;
1339 		else
1340 			eq->poll_mode = LPFC_THREADED_IRQ;
1341 
1342 		idle_stat->prev_idle = wall_idle;
1343 		idle_stat->prev_wall = wall;
1344 	}
1345 
1346 requeue:
1347 	schedule_delayed_work(&phba->idle_stat_delay_work,
1348 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1349 }
1350 
1351 static void
1352 lpfc_hb_eq_delay_work(struct work_struct *work)
1353 {
1354 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1355 					     struct lpfc_hba, eq_delay_work);
1356 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1357 	struct lpfc_queue *eq, *eq_next;
1358 	unsigned char *ena_delay = NULL;
1359 	uint32_t usdelay;
1360 	int i;
1361 
1362 	if (!phba->cfg_auto_imax ||
1363 	    test_bit(FC_UNLOADING, &phba->pport->load_flag))
1364 		return;
1365 
1366 	if (phba->link_state == LPFC_HBA_ERROR ||
1367 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1368 		goto requeue;
1369 
1370 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1371 			    GFP_KERNEL);
1372 	if (!ena_delay)
1373 		goto requeue;
1374 
1375 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1376 		/* Get the EQ corresponding to the IRQ vector */
1377 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1378 		if (!eq)
1379 			continue;
1380 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1381 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1382 			ena_delay[eq->last_cpu] = 1;
1383 		}
1384 	}
1385 
1386 	for_each_present_cpu(i) {
1387 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1388 		if (ena_delay[i]) {
1389 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1390 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1391 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1392 		} else {
1393 			usdelay = 0;
1394 		}
1395 
1396 		eqi->icnt = 0;
1397 
1398 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1399 			if (unlikely(eq->last_cpu != i)) {
1400 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1401 						      eq->last_cpu);
1402 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1403 				continue;
1404 			}
1405 			if (usdelay != eq->q_mode)
1406 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1407 							 usdelay);
1408 		}
1409 	}
1410 
1411 	kfree(ena_delay);
1412 
1413 requeue:
1414 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1415 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1416 }
1417 
1418 /**
1419  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1420  * @phba: pointer to lpfc hba data structure.
1421  *
1422  * For each heartbeat, this routine does some heuristic methods to adjust
1423  * XRI distribution. The goal is to fully utilize free XRIs.
1424  **/
1425 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1426 {
1427 	u32 i;
1428 	u32 hwq_count;
1429 
1430 	hwq_count = phba->cfg_hdw_queue;
1431 	for (i = 0; i < hwq_count; i++) {
1432 		/* Adjust XRIs in private pool */
1433 		lpfc_adjust_pvt_pool_count(phba, i);
1434 
1435 		/* Adjust high watermark */
1436 		lpfc_adjust_high_watermark(phba, i);
1437 
1438 #ifdef LPFC_MXP_STAT
1439 		/* Snapshot pbl, pvt and busy count */
1440 		lpfc_snapshot_mxp(phba, i);
1441 #endif
1442 	}
1443 }
1444 
1445 /**
1446  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1447  * @phba: pointer to lpfc hba data structure.
1448  *
1449  * If a HB mbox is not already in progrees, this routine will allocate
1450  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1451  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1452  **/
1453 int
1454 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1455 {
1456 	LPFC_MBOXQ_t *pmboxq;
1457 	int retval;
1458 
1459 	/* Is a Heartbeat mbox already in progress */
1460 	if (phba->hba_flag & HBA_HBEAT_INP)
1461 		return 0;
1462 
1463 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1464 	if (!pmboxq)
1465 		return -ENOMEM;
1466 
1467 	lpfc_heart_beat(phba, pmboxq);
1468 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1469 	pmboxq->vport = phba->pport;
1470 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1471 
1472 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1473 		mempool_free(pmboxq, phba->mbox_mem_pool);
1474 		return -ENXIO;
1475 	}
1476 	phba->hba_flag |= HBA_HBEAT_INP;
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1483  * @phba: pointer to lpfc hba data structure.
1484  *
1485  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1486  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1487  * of the value of lpfc_enable_hba_heartbeat.
1488  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1489  * try to issue a MBX_HEARTBEAT mbox command.
1490  **/
1491 void
1492 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1493 {
1494 	if (phba->cfg_enable_hba_heartbeat)
1495 		return;
1496 	phba->hba_flag |= HBA_HBEAT_TMO;
1497 }
1498 
1499 /**
1500  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1501  * @phba: pointer to lpfc hba data structure.
1502  *
1503  * This is the actual HBA-timer timeout handler to be invoked by the worker
1504  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1505  * handler performs any periodic operations needed for the device. If such
1506  * periodic event has already been attended to either in the interrupt handler
1507  * or by processing slow-ring or fast-ring events within the HBA-timer
1508  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1509  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1510  * is configured and there is no heart-beat mailbox command outstanding, a
1511  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1512  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1513  * to offline.
1514  **/
1515 void
1516 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1517 {
1518 	struct lpfc_vport **vports;
1519 	struct lpfc_dmabuf *buf_ptr;
1520 	int retval = 0;
1521 	int i, tmo;
1522 	struct lpfc_sli *psli = &phba->sli;
1523 	LIST_HEAD(completions);
1524 
1525 	if (phba->cfg_xri_rebalancing) {
1526 		/* Multi-XRI pools handler */
1527 		lpfc_hb_mxp_handler(phba);
1528 	}
1529 
1530 	vports = lpfc_create_vport_work_array(phba);
1531 	if (vports != NULL)
1532 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1533 			lpfc_rcv_seq_check_edtov(vports[i]);
1534 			lpfc_fdmi_change_check(vports[i]);
1535 		}
1536 	lpfc_destroy_vport_work_array(phba, vports);
1537 
1538 	if (phba->link_state == LPFC_HBA_ERROR ||
1539 	    test_bit(FC_UNLOADING, &phba->pport->load_flag) ||
1540 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1541 		return;
1542 
1543 	if (phba->elsbuf_cnt &&
1544 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1545 		spin_lock_irq(&phba->hbalock);
1546 		list_splice_init(&phba->elsbuf, &completions);
1547 		phba->elsbuf_cnt = 0;
1548 		phba->elsbuf_prev_cnt = 0;
1549 		spin_unlock_irq(&phba->hbalock);
1550 
1551 		while (!list_empty(&completions)) {
1552 			list_remove_head(&completions, buf_ptr,
1553 				struct lpfc_dmabuf, list);
1554 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1555 			kfree(buf_ptr);
1556 		}
1557 	}
1558 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1559 
1560 	/* If there is no heart beat outstanding, issue a heartbeat command */
1561 	if (phba->cfg_enable_hba_heartbeat) {
1562 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1563 		spin_lock_irq(&phba->pport->work_port_lock);
1564 		if (time_after(phba->last_completion_time +
1565 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1566 				jiffies)) {
1567 			spin_unlock_irq(&phba->pport->work_port_lock);
1568 			if (phba->hba_flag & HBA_HBEAT_INP)
1569 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1570 			else
1571 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1572 			goto out;
1573 		}
1574 		spin_unlock_irq(&phba->pport->work_port_lock);
1575 
1576 		/* Check if a MBX_HEARTBEAT is already in progress */
1577 		if (phba->hba_flag & HBA_HBEAT_INP) {
1578 			/*
1579 			 * If heart beat timeout called with HBA_HBEAT_INP set
1580 			 * we need to give the hb mailbox cmd a chance to
1581 			 * complete or TMO.
1582 			 */
1583 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1584 				"0459 Adapter heartbeat still outstanding: "
1585 				"last compl time was %d ms.\n",
1586 				jiffies_to_msecs(jiffies
1587 					 - phba->last_completion_time));
1588 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1589 		} else {
1590 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1591 				(list_empty(&psli->mboxq))) {
1592 
1593 				retval = lpfc_issue_hb_mbox(phba);
1594 				if (retval) {
1595 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1596 					goto out;
1597 				}
1598 				phba->skipped_hb = 0;
1599 			} else if (time_before_eq(phba->last_completion_time,
1600 					phba->skipped_hb)) {
1601 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1602 					"2857 Last completion time not "
1603 					" updated in %d ms\n",
1604 					jiffies_to_msecs(jiffies
1605 						 - phba->last_completion_time));
1606 			} else
1607 				phba->skipped_hb = jiffies;
1608 
1609 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1610 			goto out;
1611 		}
1612 	} else {
1613 		/* Check to see if we want to force a MBX_HEARTBEAT */
1614 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1615 			retval = lpfc_issue_hb_mbox(phba);
1616 			if (retval)
1617 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1618 			else
1619 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1620 			goto out;
1621 		}
1622 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1623 	}
1624 out:
1625 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1626 }
1627 
1628 /**
1629  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1630  * @phba: pointer to lpfc hba data structure.
1631  *
1632  * This routine is called to bring the HBA offline when HBA hardware error
1633  * other than Port Error 6 has been detected.
1634  **/
1635 static void
1636 lpfc_offline_eratt(struct lpfc_hba *phba)
1637 {
1638 	struct lpfc_sli   *psli = &phba->sli;
1639 
1640 	spin_lock_irq(&phba->hbalock);
1641 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1642 	spin_unlock_irq(&phba->hbalock);
1643 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1644 
1645 	lpfc_offline(phba);
1646 	lpfc_reset_barrier(phba);
1647 	spin_lock_irq(&phba->hbalock);
1648 	lpfc_sli_brdreset(phba);
1649 	spin_unlock_irq(&phba->hbalock);
1650 	lpfc_hba_down_post(phba);
1651 	lpfc_sli_brdready(phba, HS_MBRDY);
1652 	lpfc_unblock_mgmt_io(phba);
1653 	phba->link_state = LPFC_HBA_ERROR;
1654 	return;
1655 }
1656 
1657 /**
1658  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1659  * @phba: pointer to lpfc hba data structure.
1660  *
1661  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1662  * other than Port Error 6 has been detected.
1663  **/
1664 void
1665 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1666 {
1667 	spin_lock_irq(&phba->hbalock);
1668 	if (phba->link_state == LPFC_HBA_ERROR &&
1669 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1670 		spin_unlock_irq(&phba->hbalock);
1671 		return;
1672 	}
1673 	phba->link_state = LPFC_HBA_ERROR;
1674 	spin_unlock_irq(&phba->hbalock);
1675 
1676 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1677 	lpfc_sli_flush_io_rings(phba);
1678 	lpfc_offline(phba);
1679 	lpfc_hba_down_post(phba);
1680 	lpfc_unblock_mgmt_io(phba);
1681 }
1682 
1683 /**
1684  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1685  * @phba: pointer to lpfc hba data structure.
1686  *
1687  * This routine is invoked to handle the deferred HBA hardware error
1688  * conditions. This type of error is indicated by HBA by setting ER1
1689  * and another ER bit in the host status register. The driver will
1690  * wait until the ER1 bit clears before handling the error condition.
1691  **/
1692 static void
1693 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1694 {
1695 	uint32_t old_host_status = phba->work_hs;
1696 	struct lpfc_sli *psli = &phba->sli;
1697 
1698 	/* If the pci channel is offline, ignore possible errors,
1699 	 * since we cannot communicate with the pci card anyway.
1700 	 */
1701 	if (pci_channel_offline(phba->pcidev)) {
1702 		spin_lock_irq(&phba->hbalock);
1703 		phba->hba_flag &= ~DEFER_ERATT;
1704 		spin_unlock_irq(&phba->hbalock);
1705 		return;
1706 	}
1707 
1708 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1709 			"0479 Deferred Adapter Hardware Error "
1710 			"Data: x%x x%x x%x\n",
1711 			phba->work_hs, phba->work_status[0],
1712 			phba->work_status[1]);
1713 
1714 	spin_lock_irq(&phba->hbalock);
1715 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1716 	spin_unlock_irq(&phba->hbalock);
1717 
1718 
1719 	/*
1720 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1721 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1722 	 * SCSI layer retry it after re-establishing link.
1723 	 */
1724 	lpfc_sli_abort_fcp_rings(phba);
1725 
1726 	/*
1727 	 * There was a firmware error. Take the hba offline and then
1728 	 * attempt to restart it.
1729 	 */
1730 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1731 	lpfc_offline(phba);
1732 
1733 	/* Wait for the ER1 bit to clear.*/
1734 	while (phba->work_hs & HS_FFER1) {
1735 		msleep(100);
1736 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1737 			phba->work_hs = UNPLUG_ERR ;
1738 			break;
1739 		}
1740 		/* If driver is unloading let the worker thread continue */
1741 		if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1742 			phba->work_hs = 0;
1743 			break;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * This is to ptrotect against a race condition in which
1749 	 * first write to the host attention register clear the
1750 	 * host status register.
1751 	 */
1752 	if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1753 		phba->work_hs = old_host_status & ~HS_FFER1;
1754 
1755 	spin_lock_irq(&phba->hbalock);
1756 	phba->hba_flag &= ~DEFER_ERATT;
1757 	spin_unlock_irq(&phba->hbalock);
1758 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1759 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1760 }
1761 
1762 static void
1763 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1764 {
1765 	struct lpfc_board_event_header board_event;
1766 	struct Scsi_Host *shost;
1767 
1768 	board_event.event_type = FC_REG_BOARD_EVENT;
1769 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1770 	shost = lpfc_shost_from_vport(phba->pport);
1771 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1772 				  sizeof(board_event),
1773 				  (char *) &board_event,
1774 				  LPFC_NL_VENDOR_ID);
1775 }
1776 
1777 /**
1778  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1779  * @phba: pointer to lpfc hba data structure.
1780  *
1781  * This routine is invoked to handle the following HBA hardware error
1782  * conditions:
1783  * 1 - HBA error attention interrupt
1784  * 2 - DMA ring index out of range
1785  * 3 - Mailbox command came back as unknown
1786  **/
1787 static void
1788 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1789 {
1790 	struct lpfc_vport *vport = phba->pport;
1791 	struct lpfc_sli   *psli = &phba->sli;
1792 	uint32_t event_data;
1793 	unsigned long temperature;
1794 	struct temp_event temp_event_data;
1795 	struct Scsi_Host  *shost;
1796 
1797 	/* If the pci channel is offline, ignore possible errors,
1798 	 * since we cannot communicate with the pci card anyway.
1799 	 */
1800 	if (pci_channel_offline(phba->pcidev)) {
1801 		spin_lock_irq(&phba->hbalock);
1802 		phba->hba_flag &= ~DEFER_ERATT;
1803 		spin_unlock_irq(&phba->hbalock);
1804 		return;
1805 	}
1806 
1807 	/* If resets are disabled then leave the HBA alone and return */
1808 	if (!phba->cfg_enable_hba_reset)
1809 		return;
1810 
1811 	/* Send an internal error event to mgmt application */
1812 	lpfc_board_errevt_to_mgmt(phba);
1813 
1814 	if (phba->hba_flag & DEFER_ERATT)
1815 		lpfc_handle_deferred_eratt(phba);
1816 
1817 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1818 		if (phba->work_hs & HS_FFER6)
1819 			/* Re-establishing Link */
1820 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1821 					"1301 Re-establishing Link "
1822 					"Data: x%x x%x x%x\n",
1823 					phba->work_hs, phba->work_status[0],
1824 					phba->work_status[1]);
1825 		if (phba->work_hs & HS_FFER8)
1826 			/* Device Zeroization */
1827 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1828 					"2861 Host Authentication device "
1829 					"zeroization Data:x%x x%x x%x\n",
1830 					phba->work_hs, phba->work_status[0],
1831 					phba->work_status[1]);
1832 
1833 		spin_lock_irq(&phba->hbalock);
1834 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1835 		spin_unlock_irq(&phba->hbalock);
1836 
1837 		/*
1838 		* Firmware stops when it triggled erratt with HS_FFER6.
1839 		* That could cause the I/Os dropped by the firmware.
1840 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1841 		* retry it after re-establishing link.
1842 		*/
1843 		lpfc_sli_abort_fcp_rings(phba);
1844 
1845 		/*
1846 		 * There was a firmware error.  Take the hba offline and then
1847 		 * attempt to restart it.
1848 		 */
1849 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1850 		lpfc_offline(phba);
1851 		lpfc_sli_brdrestart(phba);
1852 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1853 			lpfc_unblock_mgmt_io(phba);
1854 			return;
1855 		}
1856 		lpfc_unblock_mgmt_io(phba);
1857 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1858 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1859 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1860 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1861 		temp_event_data.data = (uint32_t)temperature;
1862 
1863 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1864 				"0406 Adapter maximum temperature exceeded "
1865 				"(%ld), taking this port offline "
1866 				"Data: x%x x%x x%x\n",
1867 				temperature, phba->work_hs,
1868 				phba->work_status[0], phba->work_status[1]);
1869 
1870 		shost = lpfc_shost_from_vport(phba->pport);
1871 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1872 					  sizeof(temp_event_data),
1873 					  (char *) &temp_event_data,
1874 					  SCSI_NL_VID_TYPE_PCI
1875 					  | PCI_VENDOR_ID_EMULEX);
1876 
1877 		spin_lock_irq(&phba->hbalock);
1878 		phba->over_temp_state = HBA_OVER_TEMP;
1879 		spin_unlock_irq(&phba->hbalock);
1880 		lpfc_offline_eratt(phba);
1881 
1882 	} else {
1883 		/* The if clause above forces this code path when the status
1884 		 * failure is a value other than FFER6. Do not call the offline
1885 		 * twice. This is the adapter hardware error path.
1886 		 */
1887 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1888 				"0457 Adapter Hardware Error "
1889 				"Data: x%x x%x x%x\n",
1890 				phba->work_hs,
1891 				phba->work_status[0], phba->work_status[1]);
1892 
1893 		event_data = FC_REG_DUMP_EVENT;
1894 		shost = lpfc_shost_from_vport(vport);
1895 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1896 				sizeof(event_data), (char *) &event_data,
1897 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1898 
1899 		lpfc_offline_eratt(phba);
1900 	}
1901 	return;
1902 }
1903 
1904 /**
1905  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1906  * @phba: pointer to lpfc hba data structure.
1907  * @mbx_action: flag for mailbox shutdown action.
1908  * @en_rn_msg: send reset/port recovery message.
1909  * This routine is invoked to perform an SLI4 port PCI function reset in
1910  * response to port status register polling attention. It waits for port
1911  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1912  * During this process, interrupt vectors are freed and later requested
1913  * for handling possible port resource change.
1914  **/
1915 static int
1916 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1917 			    bool en_rn_msg)
1918 {
1919 	int rc;
1920 	uint32_t intr_mode;
1921 	LPFC_MBOXQ_t *mboxq;
1922 
1923 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1924 	    LPFC_SLI_INTF_IF_TYPE_2) {
1925 		/*
1926 		 * On error status condition, driver need to wait for port
1927 		 * ready before performing reset.
1928 		 */
1929 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1930 		if (rc)
1931 			return rc;
1932 	}
1933 
1934 	/* need reset: attempt for port recovery */
1935 	if (en_rn_msg)
1936 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1937 				"2887 Reset Needed: Attempting Port "
1938 				"Recovery...\n");
1939 
1940 	/* If we are no wait, the HBA has been reset and is not
1941 	 * functional, thus we should clear
1942 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1943 	 */
1944 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1945 		spin_lock_irq(&phba->hbalock);
1946 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1947 		if (phba->sli.mbox_active) {
1948 			mboxq = phba->sli.mbox_active;
1949 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1950 			__lpfc_mbox_cmpl_put(phba, mboxq);
1951 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1952 			phba->sli.mbox_active = NULL;
1953 		}
1954 		spin_unlock_irq(&phba->hbalock);
1955 	}
1956 
1957 	lpfc_offline_prep(phba, mbx_action);
1958 	lpfc_sli_flush_io_rings(phba);
1959 	lpfc_offline(phba);
1960 	/* release interrupt for possible resource change */
1961 	lpfc_sli4_disable_intr(phba);
1962 	rc = lpfc_sli_brdrestart(phba);
1963 	if (rc) {
1964 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1965 				"6309 Failed to restart board\n");
1966 		return rc;
1967 	}
1968 	/* request and enable interrupt */
1969 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1970 	if (intr_mode == LPFC_INTR_ERROR) {
1971 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1972 				"3175 Failed to enable interrupt\n");
1973 		return -EIO;
1974 	}
1975 	phba->intr_mode = intr_mode;
1976 	rc = lpfc_online(phba);
1977 	if (rc == 0)
1978 		lpfc_unblock_mgmt_io(phba);
1979 
1980 	return rc;
1981 }
1982 
1983 /**
1984  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1985  * @phba: pointer to lpfc hba data structure.
1986  *
1987  * This routine is invoked to handle the SLI4 HBA hardware error attention
1988  * conditions.
1989  **/
1990 static void
1991 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1992 {
1993 	struct lpfc_vport *vport = phba->pport;
1994 	uint32_t event_data;
1995 	struct Scsi_Host *shost;
1996 	uint32_t if_type;
1997 	struct lpfc_register portstat_reg = {0};
1998 	uint32_t reg_err1, reg_err2;
1999 	uint32_t uerrlo_reg, uemasklo_reg;
2000 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
2001 	bool en_rn_msg = true;
2002 	struct temp_event temp_event_data;
2003 	struct lpfc_register portsmphr_reg;
2004 	int rc, i;
2005 
2006 	/* If the pci channel is offline, ignore possible errors, since
2007 	 * we cannot communicate with the pci card anyway.
2008 	 */
2009 	if (pci_channel_offline(phba->pcidev)) {
2010 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2011 				"3166 pci channel is offline\n");
2012 		lpfc_sli_flush_io_rings(phba);
2013 		return;
2014 	}
2015 
2016 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2017 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2018 	switch (if_type) {
2019 	case LPFC_SLI_INTF_IF_TYPE_0:
2020 		pci_rd_rc1 = lpfc_readl(
2021 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2022 				&uerrlo_reg);
2023 		pci_rd_rc2 = lpfc_readl(
2024 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2025 				&uemasklo_reg);
2026 		/* consider PCI bus read error as pci_channel_offline */
2027 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2028 			return;
2029 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2030 			lpfc_sli4_offline_eratt(phba);
2031 			return;
2032 		}
2033 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2034 				"7623 Checking UE recoverable");
2035 
2036 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2037 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2038 				       &portsmphr_reg.word0))
2039 				continue;
2040 
2041 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2042 						   &portsmphr_reg);
2043 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2044 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2045 				break;
2046 			/*Sleep for 1Sec, before checking SEMAPHORE */
2047 			msleep(1000);
2048 		}
2049 
2050 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2051 				"4827 smphr_port_status x%x : Waited %dSec",
2052 				smphr_port_status, i);
2053 
2054 		/* Recoverable UE, reset the HBA device */
2055 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2056 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2057 			for (i = 0; i < 20; i++) {
2058 				msleep(1000);
2059 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2060 				    &portsmphr_reg.word0) &&
2061 				    (LPFC_POST_STAGE_PORT_READY ==
2062 				     bf_get(lpfc_port_smphr_port_status,
2063 				     &portsmphr_reg))) {
2064 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2065 						LPFC_MBX_NO_WAIT, en_rn_msg);
2066 					if (rc == 0)
2067 						return;
2068 					lpfc_printf_log(phba, KERN_ERR,
2069 						LOG_TRACE_EVENT,
2070 						"4215 Failed to recover UE");
2071 					break;
2072 				}
2073 			}
2074 		}
2075 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2076 				"7624 Firmware not ready: Failing UE recovery,"
2077 				" waited %dSec", i);
2078 		phba->link_state = LPFC_HBA_ERROR;
2079 		break;
2080 
2081 	case LPFC_SLI_INTF_IF_TYPE_2:
2082 	case LPFC_SLI_INTF_IF_TYPE_6:
2083 		pci_rd_rc1 = lpfc_readl(
2084 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2085 				&portstat_reg.word0);
2086 		/* consider PCI bus read error as pci_channel_offline */
2087 		if (pci_rd_rc1 == -EIO) {
2088 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2089 				"3151 PCI bus read access failure: x%x\n",
2090 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2091 			lpfc_sli4_offline_eratt(phba);
2092 			return;
2093 		}
2094 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2095 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2096 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2097 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2098 					"2889 Port Overtemperature event, "
2099 					"taking port offline Data: x%x x%x\n",
2100 					reg_err1, reg_err2);
2101 
2102 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2103 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2104 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2105 			temp_event_data.data = 0xFFFFFFFF;
2106 
2107 			shost = lpfc_shost_from_vport(phba->pport);
2108 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2109 						  sizeof(temp_event_data),
2110 						  (char *)&temp_event_data,
2111 						  SCSI_NL_VID_TYPE_PCI
2112 						  | PCI_VENDOR_ID_EMULEX);
2113 
2114 			spin_lock_irq(&phba->hbalock);
2115 			phba->over_temp_state = HBA_OVER_TEMP;
2116 			spin_unlock_irq(&phba->hbalock);
2117 			lpfc_sli4_offline_eratt(phba);
2118 			return;
2119 		}
2120 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2121 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2122 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2123 					"3143 Port Down: Firmware Update "
2124 					"Detected\n");
2125 			en_rn_msg = false;
2126 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2127 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2128 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2129 					"3144 Port Down: Debug Dump\n");
2130 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2131 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2132 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2133 					"3145 Port Down: Provisioning\n");
2134 
2135 		/* If resets are disabled then leave the HBA alone and return */
2136 		if (!phba->cfg_enable_hba_reset)
2137 			return;
2138 
2139 		/* Check port status register for function reset */
2140 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2141 				en_rn_msg);
2142 		if (rc == 0) {
2143 			/* don't report event on forced debug dump */
2144 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2145 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2146 				return;
2147 			else
2148 				break;
2149 		}
2150 		/* fall through for not able to recover */
2151 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2152 				"3152 Unrecoverable error\n");
2153 		lpfc_sli4_offline_eratt(phba);
2154 		break;
2155 	case LPFC_SLI_INTF_IF_TYPE_1:
2156 	default:
2157 		break;
2158 	}
2159 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2160 			"3123 Report dump event to upper layer\n");
2161 	/* Send an internal error event to mgmt application */
2162 	lpfc_board_errevt_to_mgmt(phba);
2163 
2164 	event_data = FC_REG_DUMP_EVENT;
2165 	shost = lpfc_shost_from_vport(vport);
2166 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2167 				  sizeof(event_data), (char *) &event_data,
2168 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2169 }
2170 
2171 /**
2172  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2173  * @phba: pointer to lpfc HBA data structure.
2174  *
2175  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2176  * routine from the API jump table function pointer from the lpfc_hba struct.
2177  *
2178  * Return codes
2179  *   0 - success.
2180  *   Any other value - error.
2181  **/
2182 void
2183 lpfc_handle_eratt(struct lpfc_hba *phba)
2184 {
2185 	(*phba->lpfc_handle_eratt)(phba);
2186 }
2187 
2188 /**
2189  * lpfc_handle_latt - The HBA link event handler
2190  * @phba: pointer to lpfc hba data structure.
2191  *
2192  * This routine is invoked from the worker thread to handle a HBA host
2193  * attention link event. SLI3 only.
2194  **/
2195 void
2196 lpfc_handle_latt(struct lpfc_hba *phba)
2197 {
2198 	struct lpfc_vport *vport = phba->pport;
2199 	struct lpfc_sli   *psli = &phba->sli;
2200 	LPFC_MBOXQ_t *pmb;
2201 	volatile uint32_t control;
2202 	int rc = 0;
2203 
2204 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2205 	if (!pmb) {
2206 		rc = 1;
2207 		goto lpfc_handle_latt_err_exit;
2208 	}
2209 
2210 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2211 	if (rc) {
2212 		rc = 2;
2213 		mempool_free(pmb, phba->mbox_mem_pool);
2214 		goto lpfc_handle_latt_err_exit;
2215 	}
2216 
2217 	/* Cleanup any outstanding ELS commands */
2218 	lpfc_els_flush_all_cmd(phba);
2219 	psli->slistat.link_event++;
2220 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2221 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2222 	pmb->vport = vport;
2223 	/* Block ELS IOCBs until we have processed this mbox command */
2224 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2225 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2226 	if (rc == MBX_NOT_FINISHED) {
2227 		rc = 4;
2228 		goto lpfc_handle_latt_free_mbuf;
2229 	}
2230 
2231 	/* Clear Link Attention in HA REG */
2232 	spin_lock_irq(&phba->hbalock);
2233 	writel(HA_LATT, phba->HAregaddr);
2234 	readl(phba->HAregaddr); /* flush */
2235 	spin_unlock_irq(&phba->hbalock);
2236 
2237 	return;
2238 
2239 lpfc_handle_latt_free_mbuf:
2240 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2241 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2242 lpfc_handle_latt_err_exit:
2243 	/* Enable Link attention interrupts */
2244 	spin_lock_irq(&phba->hbalock);
2245 	psli->sli_flag |= LPFC_PROCESS_LA;
2246 	control = readl(phba->HCregaddr);
2247 	control |= HC_LAINT_ENA;
2248 	writel(control, phba->HCregaddr);
2249 	readl(phba->HCregaddr); /* flush */
2250 
2251 	/* Clear Link Attention in HA REG */
2252 	writel(HA_LATT, phba->HAregaddr);
2253 	readl(phba->HAregaddr); /* flush */
2254 	spin_unlock_irq(&phba->hbalock);
2255 	lpfc_linkdown(phba);
2256 	phba->link_state = LPFC_HBA_ERROR;
2257 
2258 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2259 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2260 
2261 	return;
2262 }
2263 
2264 static void
2265 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2266 {
2267 	int i, j;
2268 
2269 	while (length > 0) {
2270 		/* Look for Serial Number */
2271 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2272 			*pindex += 2;
2273 			i = vpd[*pindex];
2274 			*pindex += 1;
2275 			j = 0;
2276 			length -= (3+i);
2277 			while (i--) {
2278 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2279 				if (j == 31)
2280 					break;
2281 			}
2282 			phba->SerialNumber[j] = 0;
2283 			continue;
2284 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2285 			phba->vpd_flag |= VPD_MODEL_DESC;
2286 			*pindex += 2;
2287 			i = vpd[*pindex];
2288 			*pindex += 1;
2289 			j = 0;
2290 			length -= (3+i);
2291 			while (i--) {
2292 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2293 				if (j == 255)
2294 					break;
2295 			}
2296 			phba->ModelDesc[j] = 0;
2297 			continue;
2298 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2299 			phba->vpd_flag |= VPD_MODEL_NAME;
2300 			*pindex += 2;
2301 			i = vpd[*pindex];
2302 			*pindex += 1;
2303 			j = 0;
2304 			length -= (3+i);
2305 			while (i--) {
2306 				phba->ModelName[j++] = vpd[(*pindex)++];
2307 				if (j == 79)
2308 					break;
2309 			}
2310 			phba->ModelName[j] = 0;
2311 			continue;
2312 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2313 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2314 			*pindex += 2;
2315 			i = vpd[*pindex];
2316 			*pindex += 1;
2317 			j = 0;
2318 			length -= (3+i);
2319 			while (i--) {
2320 				phba->ProgramType[j++] = vpd[(*pindex)++];
2321 				if (j == 255)
2322 					break;
2323 			}
2324 			phba->ProgramType[j] = 0;
2325 			continue;
2326 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2327 			phba->vpd_flag |= VPD_PORT;
2328 			*pindex += 2;
2329 			i = vpd[*pindex];
2330 			*pindex += 1;
2331 			j = 0;
2332 			length -= (3 + i);
2333 			while (i--) {
2334 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2335 				    (phba->sli4_hba.pport_name_sta ==
2336 				     LPFC_SLI4_PPNAME_GET)) {
2337 					j++;
2338 					(*pindex)++;
2339 				} else
2340 					phba->Port[j++] = vpd[(*pindex)++];
2341 				if (j == 19)
2342 					break;
2343 			}
2344 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2345 			    (phba->sli4_hba.pport_name_sta ==
2346 			     LPFC_SLI4_PPNAME_NON))
2347 				phba->Port[j] = 0;
2348 			continue;
2349 		} else {
2350 			*pindex += 2;
2351 			i = vpd[*pindex];
2352 			*pindex += 1;
2353 			*pindex += i;
2354 			length -= (3 + i);
2355 		}
2356 	}
2357 }
2358 
2359 /**
2360  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2361  * @phba: pointer to lpfc hba data structure.
2362  * @vpd: pointer to the vital product data.
2363  * @len: length of the vital product data in bytes.
2364  *
2365  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2366  * an array of characters. In this routine, the ModelName, ProgramType, and
2367  * ModelDesc, etc. fields of the phba data structure will be populated.
2368  *
2369  * Return codes
2370  *   0 - pointer to the VPD passed in is NULL
2371  *   1 - success
2372  **/
2373 int
2374 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2375 {
2376 	uint8_t lenlo, lenhi;
2377 	int Length;
2378 	int i;
2379 	int finished = 0;
2380 	int index = 0;
2381 
2382 	if (!vpd)
2383 		return 0;
2384 
2385 	/* Vital Product */
2386 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2387 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2388 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2389 			(uint32_t) vpd[3]);
2390 	while (!finished && (index < (len - 4))) {
2391 		switch (vpd[index]) {
2392 		case 0x82:
2393 		case 0x91:
2394 			index += 1;
2395 			lenlo = vpd[index];
2396 			index += 1;
2397 			lenhi = vpd[index];
2398 			index += 1;
2399 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2400 			index += i;
2401 			break;
2402 		case 0x90:
2403 			index += 1;
2404 			lenlo = vpd[index];
2405 			index += 1;
2406 			lenhi = vpd[index];
2407 			index += 1;
2408 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2409 			if (Length > len - index)
2410 				Length = len - index;
2411 
2412 			lpfc_fill_vpd(phba, vpd, Length, &index);
2413 			finished = 0;
2414 			break;
2415 		case 0x78:
2416 			finished = 1;
2417 			break;
2418 		default:
2419 			index ++;
2420 			break;
2421 		}
2422 	}
2423 
2424 	return(1);
2425 }
2426 
2427 /**
2428  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2429  * @phba: pointer to lpfc hba data structure.
2430  * @mdp: pointer to the data structure to hold the derived model name.
2431  * @descp: pointer to the data structure to hold the derived description.
2432  *
2433  * This routine retrieves HBA's description based on its registered PCI device
2434  * ID. The @descp passed into this function points to an array of 256 chars. It
2435  * shall be returned with the model name, maximum speed, and the host bus type.
2436  * The @mdp passed into this function points to an array of 80 chars. When the
2437  * function returns, the @mdp will be filled with the model name.
2438  **/
2439 static void
2440 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2441 {
2442 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2443 	char *model = "<Unknown>";
2444 	int tbolt = 0;
2445 
2446 	switch (sub_dev_id) {
2447 	case PCI_DEVICE_ID_CLRY_161E:
2448 		model = "161E";
2449 		break;
2450 	case PCI_DEVICE_ID_CLRY_162E:
2451 		model = "162E";
2452 		break;
2453 	case PCI_DEVICE_ID_CLRY_164E:
2454 		model = "164E";
2455 		break;
2456 	case PCI_DEVICE_ID_CLRY_161P:
2457 		model = "161P";
2458 		break;
2459 	case PCI_DEVICE_ID_CLRY_162P:
2460 		model = "162P";
2461 		break;
2462 	case PCI_DEVICE_ID_CLRY_164P:
2463 		model = "164P";
2464 		break;
2465 	case PCI_DEVICE_ID_CLRY_321E:
2466 		model = "321E";
2467 		break;
2468 	case PCI_DEVICE_ID_CLRY_322E:
2469 		model = "322E";
2470 		break;
2471 	case PCI_DEVICE_ID_CLRY_324E:
2472 		model = "324E";
2473 		break;
2474 	case PCI_DEVICE_ID_CLRY_321P:
2475 		model = "321P";
2476 		break;
2477 	case PCI_DEVICE_ID_CLRY_322P:
2478 		model = "322P";
2479 		break;
2480 	case PCI_DEVICE_ID_CLRY_324P:
2481 		model = "324P";
2482 		break;
2483 	case PCI_DEVICE_ID_TLFC_2XX2:
2484 		model = "2XX2";
2485 		tbolt = 1;
2486 		break;
2487 	case PCI_DEVICE_ID_TLFC_3162:
2488 		model = "3162";
2489 		tbolt = 1;
2490 		break;
2491 	case PCI_DEVICE_ID_TLFC_3322:
2492 		model = "3322";
2493 		tbolt = 1;
2494 		break;
2495 	default:
2496 		model = "Unknown";
2497 		break;
2498 	}
2499 
2500 	if (mdp && mdp[0] == '\0')
2501 		snprintf(mdp, 79, "%s", model);
2502 
2503 	if (descp && descp[0] == '\0')
2504 		snprintf(descp, 255,
2505 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2506 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2507 			 model,
2508 			 phba->Port);
2509 }
2510 
2511 /**
2512  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2513  * @phba: pointer to lpfc hba data structure.
2514  * @mdp: pointer to the data structure to hold the derived model name.
2515  * @descp: pointer to the data structure to hold the derived description.
2516  *
2517  * This routine retrieves HBA's description based on its registered PCI device
2518  * ID. The @descp passed into this function points to an array of 256 chars. It
2519  * shall be returned with the model name, maximum speed, and the host bus type.
2520  * The @mdp passed into this function points to an array of 80 chars. When the
2521  * function returns, the @mdp will be filled with the model name.
2522  **/
2523 static void
2524 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2525 {
2526 	lpfc_vpd_t *vp;
2527 	uint16_t dev_id = phba->pcidev->device;
2528 	int max_speed;
2529 	int GE = 0;
2530 	int oneConnect = 0; /* default is not a oneConnect */
2531 	struct {
2532 		char *name;
2533 		char *bus;
2534 		char *function;
2535 	} m = {"<Unknown>", "", ""};
2536 
2537 	if (mdp && mdp[0] != '\0'
2538 		&& descp && descp[0] != '\0')
2539 		return;
2540 
2541 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2542 		lpfc_get_atto_model_desc(phba, mdp, descp);
2543 		return;
2544 	}
2545 
2546 	if (phba->lmt & LMT_64Gb)
2547 		max_speed = 64;
2548 	else if (phba->lmt & LMT_32Gb)
2549 		max_speed = 32;
2550 	else if (phba->lmt & LMT_16Gb)
2551 		max_speed = 16;
2552 	else if (phba->lmt & LMT_10Gb)
2553 		max_speed = 10;
2554 	else if (phba->lmt & LMT_8Gb)
2555 		max_speed = 8;
2556 	else if (phba->lmt & LMT_4Gb)
2557 		max_speed = 4;
2558 	else if (phba->lmt & LMT_2Gb)
2559 		max_speed = 2;
2560 	else if (phba->lmt & LMT_1Gb)
2561 		max_speed = 1;
2562 	else
2563 		max_speed = 0;
2564 
2565 	vp = &phba->vpd;
2566 
2567 	switch (dev_id) {
2568 	case PCI_DEVICE_ID_FIREFLY:
2569 		m = (typeof(m)){"LP6000", "PCI",
2570 				"Obsolete, Unsupported Fibre Channel Adapter"};
2571 		break;
2572 	case PCI_DEVICE_ID_SUPERFLY:
2573 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2574 			m = (typeof(m)){"LP7000", "PCI", ""};
2575 		else
2576 			m = (typeof(m)){"LP7000E", "PCI", ""};
2577 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2578 		break;
2579 	case PCI_DEVICE_ID_DRAGONFLY:
2580 		m = (typeof(m)){"LP8000", "PCI",
2581 				"Obsolete, Unsupported Fibre Channel Adapter"};
2582 		break;
2583 	case PCI_DEVICE_ID_CENTAUR:
2584 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2585 			m = (typeof(m)){"LP9002", "PCI", ""};
2586 		else
2587 			m = (typeof(m)){"LP9000", "PCI", ""};
2588 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2589 		break;
2590 	case PCI_DEVICE_ID_RFLY:
2591 		m = (typeof(m)){"LP952", "PCI",
2592 				"Obsolete, Unsupported Fibre Channel Adapter"};
2593 		break;
2594 	case PCI_DEVICE_ID_PEGASUS:
2595 		m = (typeof(m)){"LP9802", "PCI-X",
2596 				"Obsolete, Unsupported Fibre Channel Adapter"};
2597 		break;
2598 	case PCI_DEVICE_ID_THOR:
2599 		m = (typeof(m)){"LP10000", "PCI-X",
2600 				"Obsolete, Unsupported Fibre Channel Adapter"};
2601 		break;
2602 	case PCI_DEVICE_ID_VIPER:
2603 		m = (typeof(m)){"LPX1000",  "PCI-X",
2604 				"Obsolete, Unsupported Fibre Channel Adapter"};
2605 		break;
2606 	case PCI_DEVICE_ID_PFLY:
2607 		m = (typeof(m)){"LP982", "PCI-X",
2608 				"Obsolete, Unsupported Fibre Channel Adapter"};
2609 		break;
2610 	case PCI_DEVICE_ID_TFLY:
2611 		m = (typeof(m)){"LP1050", "PCI-X",
2612 				"Obsolete, Unsupported Fibre Channel Adapter"};
2613 		break;
2614 	case PCI_DEVICE_ID_HELIOS:
2615 		m = (typeof(m)){"LP11000", "PCI-X2",
2616 				"Obsolete, Unsupported Fibre Channel Adapter"};
2617 		break;
2618 	case PCI_DEVICE_ID_HELIOS_SCSP:
2619 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2620 				"Obsolete, Unsupported Fibre Channel Adapter"};
2621 		break;
2622 	case PCI_DEVICE_ID_HELIOS_DCSP:
2623 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2624 				"Obsolete, Unsupported Fibre Channel Adapter"};
2625 		break;
2626 	case PCI_DEVICE_ID_NEPTUNE:
2627 		m = (typeof(m)){"LPe1000", "PCIe",
2628 				"Obsolete, Unsupported Fibre Channel Adapter"};
2629 		break;
2630 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2631 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2632 				"Obsolete, Unsupported Fibre Channel Adapter"};
2633 		break;
2634 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2635 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2636 				"Obsolete, Unsupported Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_BMID:
2639 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2640 		break;
2641 	case PCI_DEVICE_ID_BSMB:
2642 		m = (typeof(m)){"LP111", "PCI-X2",
2643 				"Obsolete, Unsupported Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZEPHYR:
2646 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2649 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2650 		break;
2651 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2652 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2653 		GE = 1;
2654 		break;
2655 	case PCI_DEVICE_ID_ZMID:
2656 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2657 		break;
2658 	case PCI_DEVICE_ID_ZSMB:
2659 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2660 		break;
2661 	case PCI_DEVICE_ID_LP101:
2662 		m = (typeof(m)){"LP101", "PCI-X",
2663 				"Obsolete, Unsupported Fibre Channel Adapter"};
2664 		break;
2665 	case PCI_DEVICE_ID_LP10000S:
2666 		m = (typeof(m)){"LP10000-S", "PCI",
2667 				"Obsolete, Unsupported Fibre Channel Adapter"};
2668 		break;
2669 	case PCI_DEVICE_ID_LP11000S:
2670 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2671 				"Obsolete, Unsupported Fibre Channel Adapter"};
2672 		break;
2673 	case PCI_DEVICE_ID_LPE11000S:
2674 		m = (typeof(m)){"LPe11000-S", "PCIe",
2675 				"Obsolete, Unsupported Fibre Channel Adapter"};
2676 		break;
2677 	case PCI_DEVICE_ID_SAT:
2678 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2679 		break;
2680 	case PCI_DEVICE_ID_SAT_MID:
2681 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2682 		break;
2683 	case PCI_DEVICE_ID_SAT_SMB:
2684 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_SAT_DCSP:
2687 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2688 		break;
2689 	case PCI_DEVICE_ID_SAT_SCSP:
2690 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2691 		break;
2692 	case PCI_DEVICE_ID_SAT_S:
2693 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2694 		break;
2695 	case PCI_DEVICE_ID_PROTEUS_VF:
2696 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2697 				"Obsolete, Unsupported Fibre Channel Adapter"};
2698 		break;
2699 	case PCI_DEVICE_ID_PROTEUS_PF:
2700 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2701 				"Obsolete, Unsupported Fibre Channel Adapter"};
2702 		break;
2703 	case PCI_DEVICE_ID_PROTEUS_S:
2704 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2705 				"Obsolete, Unsupported Fibre Channel Adapter"};
2706 		break;
2707 	case PCI_DEVICE_ID_TIGERSHARK:
2708 		oneConnect = 1;
2709 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2710 		break;
2711 	case PCI_DEVICE_ID_TOMCAT:
2712 		oneConnect = 1;
2713 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2714 		break;
2715 	case PCI_DEVICE_ID_FALCON:
2716 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2717 				"EmulexSecure Fibre"};
2718 		break;
2719 	case PCI_DEVICE_ID_BALIUS:
2720 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2721 				"Obsolete, Unsupported Fibre Channel Adapter"};
2722 		break;
2723 	case PCI_DEVICE_ID_LANCER_FC:
2724 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2725 		break;
2726 	case PCI_DEVICE_ID_LANCER_FC_VF:
2727 		m = (typeof(m)){"LPe16000", "PCIe",
2728 				"Obsolete, Unsupported Fibre Channel Adapter"};
2729 		break;
2730 	case PCI_DEVICE_ID_LANCER_FCOE:
2731 		oneConnect = 1;
2732 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2733 		break;
2734 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2735 		oneConnect = 1;
2736 		m = (typeof(m)){"OCe15100", "PCIe",
2737 				"Obsolete, Unsupported FCoE"};
2738 		break;
2739 	case PCI_DEVICE_ID_LANCER_G6_FC:
2740 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2741 		break;
2742 	case PCI_DEVICE_ID_LANCER_G7_FC:
2743 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2744 		break;
2745 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2746 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2747 		break;
2748 	case PCI_DEVICE_ID_SKYHAWK:
2749 	case PCI_DEVICE_ID_SKYHAWK_VF:
2750 		oneConnect = 1;
2751 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2752 		break;
2753 	default:
2754 		m = (typeof(m)){"Unknown", "", ""};
2755 		break;
2756 	}
2757 
2758 	if (mdp && mdp[0] == '\0')
2759 		snprintf(mdp, 79,"%s", m.name);
2760 	/*
2761 	 * oneConnect hba requires special processing, they are all initiators
2762 	 * and we put the port number on the end
2763 	 */
2764 	if (descp && descp[0] == '\0') {
2765 		if (oneConnect)
2766 			snprintf(descp, 255,
2767 				"Emulex OneConnect %s, %s Initiator %s",
2768 				m.name, m.function,
2769 				phba->Port);
2770 		else if (max_speed == 0)
2771 			snprintf(descp, 255,
2772 				"Emulex %s %s %s",
2773 				m.name, m.bus, m.function);
2774 		else
2775 			snprintf(descp, 255,
2776 				"Emulex %s %d%s %s %s",
2777 				m.name, max_speed, (GE) ? "GE" : "Gb",
2778 				m.bus, m.function);
2779 	}
2780 }
2781 
2782 /**
2783  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2784  * @phba: pointer to lpfc hba data structure.
2785  * @pring: pointer to a IOCB ring.
2786  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2787  *
2788  * This routine posts a given number of IOCBs with the associated DMA buffer
2789  * descriptors specified by the cnt argument to the given IOCB ring.
2790  *
2791  * Return codes
2792  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2793  **/
2794 int
2795 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2796 {
2797 	IOCB_t *icmd;
2798 	struct lpfc_iocbq *iocb;
2799 	struct lpfc_dmabuf *mp1, *mp2;
2800 
2801 	cnt += pring->missbufcnt;
2802 
2803 	/* While there are buffers to post */
2804 	while (cnt > 0) {
2805 		/* Allocate buffer for  command iocb */
2806 		iocb = lpfc_sli_get_iocbq(phba);
2807 		if (iocb == NULL) {
2808 			pring->missbufcnt = cnt;
2809 			return cnt;
2810 		}
2811 		icmd = &iocb->iocb;
2812 
2813 		/* 2 buffers can be posted per command */
2814 		/* Allocate buffer to post */
2815 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2816 		if (mp1)
2817 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2818 		if (!mp1 || !mp1->virt) {
2819 			kfree(mp1);
2820 			lpfc_sli_release_iocbq(phba, iocb);
2821 			pring->missbufcnt = cnt;
2822 			return cnt;
2823 		}
2824 
2825 		INIT_LIST_HEAD(&mp1->list);
2826 		/* Allocate buffer to post */
2827 		if (cnt > 1) {
2828 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2829 			if (mp2)
2830 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2831 							    &mp2->phys);
2832 			if (!mp2 || !mp2->virt) {
2833 				kfree(mp2);
2834 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2835 				kfree(mp1);
2836 				lpfc_sli_release_iocbq(phba, iocb);
2837 				pring->missbufcnt = cnt;
2838 				return cnt;
2839 			}
2840 
2841 			INIT_LIST_HEAD(&mp2->list);
2842 		} else {
2843 			mp2 = NULL;
2844 		}
2845 
2846 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2847 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2848 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2849 		icmd->ulpBdeCount = 1;
2850 		cnt--;
2851 		if (mp2) {
2852 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2853 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2854 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2855 			cnt--;
2856 			icmd->ulpBdeCount = 2;
2857 		}
2858 
2859 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2860 		icmd->ulpLe = 1;
2861 
2862 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2863 		    IOCB_ERROR) {
2864 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2865 			kfree(mp1);
2866 			cnt++;
2867 			if (mp2) {
2868 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2869 				kfree(mp2);
2870 				cnt++;
2871 			}
2872 			lpfc_sli_release_iocbq(phba, iocb);
2873 			pring->missbufcnt = cnt;
2874 			return cnt;
2875 		}
2876 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2877 		if (mp2)
2878 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2879 	}
2880 	pring->missbufcnt = 0;
2881 	return 0;
2882 }
2883 
2884 /**
2885  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2886  * @phba: pointer to lpfc hba data structure.
2887  *
2888  * This routine posts initial receive IOCB buffers to the ELS ring. The
2889  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2890  * set to 64 IOCBs. SLI3 only.
2891  *
2892  * Return codes
2893  *   0 - success (currently always success)
2894  **/
2895 static int
2896 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2897 {
2898 	struct lpfc_sli *psli = &phba->sli;
2899 
2900 	/* Ring 0, ELS / CT buffers */
2901 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2902 	/* Ring 2 - FCP no buffers needed */
2903 
2904 	return 0;
2905 }
2906 
2907 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2908 
2909 /**
2910  * lpfc_sha_init - Set up initial array of hash table entries
2911  * @HashResultPointer: pointer to an array as hash table.
2912  *
2913  * This routine sets up the initial values to the array of hash table entries
2914  * for the LC HBAs.
2915  **/
2916 static void
2917 lpfc_sha_init(uint32_t * HashResultPointer)
2918 {
2919 	HashResultPointer[0] = 0x67452301;
2920 	HashResultPointer[1] = 0xEFCDAB89;
2921 	HashResultPointer[2] = 0x98BADCFE;
2922 	HashResultPointer[3] = 0x10325476;
2923 	HashResultPointer[4] = 0xC3D2E1F0;
2924 }
2925 
2926 /**
2927  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2928  * @HashResultPointer: pointer to an initial/result hash table.
2929  * @HashWorkingPointer: pointer to an working hash table.
2930  *
2931  * This routine iterates an initial hash table pointed by @HashResultPointer
2932  * with the values from the working hash table pointeed by @HashWorkingPointer.
2933  * The results are putting back to the initial hash table, returned through
2934  * the @HashResultPointer as the result hash table.
2935  **/
2936 static void
2937 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2938 {
2939 	int t;
2940 	uint32_t TEMP;
2941 	uint32_t A, B, C, D, E;
2942 	t = 16;
2943 	do {
2944 		HashWorkingPointer[t] =
2945 		    S(1,
2946 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2947 								     8] ^
2948 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2949 	} while (++t <= 79);
2950 	t = 0;
2951 	A = HashResultPointer[0];
2952 	B = HashResultPointer[1];
2953 	C = HashResultPointer[2];
2954 	D = HashResultPointer[3];
2955 	E = HashResultPointer[4];
2956 
2957 	do {
2958 		if (t < 20) {
2959 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2960 		} else if (t < 40) {
2961 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2962 		} else if (t < 60) {
2963 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2964 		} else {
2965 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2966 		}
2967 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2968 		E = D;
2969 		D = C;
2970 		C = S(30, B);
2971 		B = A;
2972 		A = TEMP;
2973 	} while (++t <= 79);
2974 
2975 	HashResultPointer[0] += A;
2976 	HashResultPointer[1] += B;
2977 	HashResultPointer[2] += C;
2978 	HashResultPointer[3] += D;
2979 	HashResultPointer[4] += E;
2980 
2981 }
2982 
2983 /**
2984  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2985  * @RandomChallenge: pointer to the entry of host challenge random number array.
2986  * @HashWorking: pointer to the entry of the working hash array.
2987  *
2988  * This routine calculates the working hash array referred by @HashWorking
2989  * from the challenge random numbers associated with the host, referred by
2990  * @RandomChallenge. The result is put into the entry of the working hash
2991  * array and returned by reference through @HashWorking.
2992  **/
2993 static void
2994 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2995 {
2996 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2997 }
2998 
2999 /**
3000  * lpfc_hba_init - Perform special handling for LC HBA initialization
3001  * @phba: pointer to lpfc hba data structure.
3002  * @hbainit: pointer to an array of unsigned 32-bit integers.
3003  *
3004  * This routine performs the special handling for LC HBA initialization.
3005  **/
3006 void
3007 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3008 {
3009 	int t;
3010 	uint32_t *HashWorking;
3011 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3012 
3013 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3014 	if (!HashWorking)
3015 		return;
3016 
3017 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3018 	HashWorking[1] = HashWorking[79] = *pwwnn;
3019 
3020 	for (t = 0; t < 7; t++)
3021 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3022 
3023 	lpfc_sha_init(hbainit);
3024 	lpfc_sha_iterate(hbainit, HashWorking);
3025 	kfree(HashWorking);
3026 }
3027 
3028 /**
3029  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3030  * @vport: pointer to a virtual N_Port data structure.
3031  *
3032  * This routine performs the necessary cleanups before deleting the @vport.
3033  * It invokes the discovery state machine to perform necessary state
3034  * transitions and to release the ndlps associated with the @vport. Note,
3035  * the physical port is treated as @vport 0.
3036  **/
3037 void
3038 lpfc_cleanup(struct lpfc_vport *vport)
3039 {
3040 	struct lpfc_hba   *phba = vport->phba;
3041 	struct lpfc_nodelist *ndlp, *next_ndlp;
3042 	int i = 0;
3043 
3044 	if (phba->link_state > LPFC_LINK_DOWN)
3045 		lpfc_port_link_failure(vport);
3046 
3047 	/* Clean up VMID resources */
3048 	if (lpfc_is_vmid_enabled(phba))
3049 		lpfc_vmid_vport_cleanup(vport);
3050 
3051 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3052 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3053 		    ndlp->nlp_DID == Fabric_DID) {
3054 			/* Just free up ndlp with Fabric_DID for vports */
3055 			lpfc_nlp_put(ndlp);
3056 			continue;
3057 		}
3058 
3059 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3060 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3061 			lpfc_nlp_put(ndlp);
3062 			continue;
3063 		}
3064 
3065 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3066 		 * DEVICE_RM event.
3067 		 */
3068 		if (ndlp->nlp_type & NLP_FABRIC &&
3069 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3070 			lpfc_disc_state_machine(vport, ndlp, NULL,
3071 					NLP_EVT_DEVICE_RECOVERY);
3072 
3073 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3074 			lpfc_disc_state_machine(vport, ndlp, NULL,
3075 					NLP_EVT_DEVICE_RM);
3076 	}
3077 
3078 	/* This is a special case flush to return all
3079 	 * IOs before entering this loop. There are
3080 	 * two points in the code where a flush is
3081 	 * avoided if the FC_UNLOADING flag is set.
3082 	 * one is in the multipool destroy,
3083 	 * (this prevents a crash) and the other is
3084 	 * in the nvme abort handler, ( also prevents
3085 	 * a crash). Both of these exceptions are
3086 	 * cases where the slot is still accessible.
3087 	 * The flush here is only when the pci slot
3088 	 * is offline.
3089 	 */
3090 	if (test_bit(FC_UNLOADING, &vport->load_flag) &&
3091 	    pci_channel_offline(phba->pcidev))
3092 		lpfc_sli_flush_io_rings(vport->phba);
3093 
3094 	/* At this point, ALL ndlp's should be gone
3095 	 * because of the previous NLP_EVT_DEVICE_RM.
3096 	 * Lets wait for this to happen, if needed.
3097 	 */
3098 	while (!list_empty(&vport->fc_nodes)) {
3099 		if (i++ > 3000) {
3100 			lpfc_printf_vlog(vport, KERN_ERR,
3101 					 LOG_TRACE_EVENT,
3102 				"0233 Nodelist not empty\n");
3103 			list_for_each_entry_safe(ndlp, next_ndlp,
3104 						&vport->fc_nodes, nlp_listp) {
3105 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3106 						 LOG_DISCOVERY,
3107 						 "0282 did:x%x ndlp:x%px "
3108 						 "refcnt:%d xflags x%x nflag x%x\n",
3109 						 ndlp->nlp_DID, (void *)ndlp,
3110 						 kref_read(&ndlp->kref),
3111 						 ndlp->fc4_xpt_flags,
3112 						 ndlp->nlp_flag);
3113 			}
3114 			break;
3115 		}
3116 
3117 		/* Wait for any activity on ndlps to settle */
3118 		msleep(10);
3119 	}
3120 	lpfc_cleanup_vports_rrqs(vport, NULL);
3121 }
3122 
3123 /**
3124  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3125  * @vport: pointer to a virtual N_Port data structure.
3126  *
3127  * This routine stops all the timers associated with a @vport. This function
3128  * is invoked before disabling or deleting a @vport. Note that the physical
3129  * port is treated as @vport 0.
3130  **/
3131 void
3132 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3133 {
3134 	del_timer_sync(&vport->els_tmofunc);
3135 	del_timer_sync(&vport->delayed_disc_tmo);
3136 	lpfc_can_disctmo(vport);
3137 	return;
3138 }
3139 
3140 /**
3141  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3142  * @phba: pointer to lpfc hba data structure.
3143  *
3144  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3145  * caller of this routine should already hold the host lock.
3146  **/
3147 void
3148 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3149 {
3150 	/* Clear pending FCF rediscovery wait flag */
3151 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3152 
3153 	/* Now, try to stop the timer */
3154 	del_timer(&phba->fcf.redisc_wait);
3155 }
3156 
3157 /**
3158  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3159  * @phba: pointer to lpfc hba data structure.
3160  *
3161  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3162  * checks whether the FCF rediscovery wait timer is pending with the host
3163  * lock held before proceeding with disabling the timer and clearing the
3164  * wait timer pendig flag.
3165  **/
3166 void
3167 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3168 {
3169 	spin_lock_irq(&phba->hbalock);
3170 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3171 		/* FCF rediscovery timer already fired or stopped */
3172 		spin_unlock_irq(&phba->hbalock);
3173 		return;
3174 	}
3175 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3176 	/* Clear failover in progress flags */
3177 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3178 	spin_unlock_irq(&phba->hbalock);
3179 }
3180 
3181 /**
3182  * lpfc_cmf_stop - Stop CMF processing
3183  * @phba: pointer to lpfc hba data structure.
3184  *
3185  * This is called when the link goes down or if CMF mode is turned OFF.
3186  * It is also called when going offline or unloaded just before the
3187  * congestion info buffer is unregistered.
3188  **/
3189 void
3190 lpfc_cmf_stop(struct lpfc_hba *phba)
3191 {
3192 	int cpu;
3193 	struct lpfc_cgn_stat *cgs;
3194 
3195 	/* We only do something if CMF is enabled */
3196 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3197 		return;
3198 
3199 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3200 			"6221 Stop CMF / Cancel Timer\n");
3201 
3202 	/* Cancel the CMF timer */
3203 	hrtimer_cancel(&phba->cmf_stats_timer);
3204 	hrtimer_cancel(&phba->cmf_timer);
3205 
3206 	/* Zero CMF counters */
3207 	atomic_set(&phba->cmf_busy, 0);
3208 	for_each_present_cpu(cpu) {
3209 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3210 		atomic64_set(&cgs->total_bytes, 0);
3211 		atomic64_set(&cgs->rcv_bytes, 0);
3212 		atomic_set(&cgs->rx_io_cnt, 0);
3213 		atomic64_set(&cgs->rx_latency, 0);
3214 	}
3215 	atomic_set(&phba->cmf_bw_wait, 0);
3216 
3217 	/* Resume any blocked IO - Queue unblock on workqueue */
3218 	queue_work(phba->wq, &phba->unblock_request_work);
3219 }
3220 
3221 static inline uint64_t
3222 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3223 {
3224 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3225 
3226 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3227 }
3228 
3229 void
3230 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3231 {
3232 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3233 			"6223 Signal CMF init\n");
3234 
3235 	/* Use the new fc_linkspeed to recalculate */
3236 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3237 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3238 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3239 					    phba->cmf_interval_rate, 1000);
3240 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3241 
3242 	/* This is a signal to firmware to sync up CMF BW with link speed */
3243 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3244 }
3245 
3246 /**
3247  * lpfc_cmf_start - Start CMF processing
3248  * @phba: pointer to lpfc hba data structure.
3249  *
3250  * This is called when the link comes up or if CMF mode is turned OFF
3251  * to Monitor or Managed.
3252  **/
3253 void
3254 lpfc_cmf_start(struct lpfc_hba *phba)
3255 {
3256 	struct lpfc_cgn_stat *cgs;
3257 	int cpu;
3258 
3259 	/* We only do something if CMF is enabled */
3260 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3261 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3262 		return;
3263 
3264 	/* Reinitialize congestion buffer info */
3265 	lpfc_init_congestion_buf(phba);
3266 
3267 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3268 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3269 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3270 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3271 
3272 	atomic_set(&phba->cmf_busy, 0);
3273 	for_each_present_cpu(cpu) {
3274 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3275 		atomic64_set(&cgs->total_bytes, 0);
3276 		atomic64_set(&cgs->rcv_bytes, 0);
3277 		atomic_set(&cgs->rx_io_cnt, 0);
3278 		atomic64_set(&cgs->rx_latency, 0);
3279 	}
3280 	phba->cmf_latency.tv_sec = 0;
3281 	phba->cmf_latency.tv_nsec = 0;
3282 
3283 	lpfc_cmf_signal_init(phba);
3284 
3285 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3286 			"6222 Start CMF / Timer\n");
3287 
3288 	phba->cmf_timer_cnt = 0;
3289 	hrtimer_start(&phba->cmf_timer,
3290 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3291 		      HRTIMER_MODE_REL);
3292 	hrtimer_start(&phba->cmf_stats_timer,
3293 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3294 		      HRTIMER_MODE_REL);
3295 	/* Setup for latency check in IO cmpl routines */
3296 	ktime_get_real_ts64(&phba->cmf_latency);
3297 
3298 	atomic_set(&phba->cmf_bw_wait, 0);
3299 	atomic_set(&phba->cmf_stop_io, 0);
3300 }
3301 
3302 /**
3303  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3304  * @phba: pointer to lpfc hba data structure.
3305  *
3306  * This routine stops all the timers associated with a HBA. This function is
3307  * invoked before either putting a HBA offline or unloading the driver.
3308  **/
3309 void
3310 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3311 {
3312 	if (phba->pport)
3313 		lpfc_stop_vport_timers(phba->pport);
3314 	cancel_delayed_work_sync(&phba->eq_delay_work);
3315 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3316 	del_timer_sync(&phba->sli.mbox_tmo);
3317 	del_timer_sync(&phba->fabric_block_timer);
3318 	del_timer_sync(&phba->eratt_poll);
3319 	del_timer_sync(&phba->hb_tmofunc);
3320 	if (phba->sli_rev == LPFC_SLI_REV4) {
3321 		del_timer_sync(&phba->rrq_tmr);
3322 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3323 	}
3324 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3325 
3326 	switch (phba->pci_dev_grp) {
3327 	case LPFC_PCI_DEV_LP:
3328 		/* Stop any LightPulse device specific driver timers */
3329 		del_timer_sync(&phba->fcp_poll_timer);
3330 		break;
3331 	case LPFC_PCI_DEV_OC:
3332 		/* Stop any OneConnect device specific driver timers */
3333 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3334 		break;
3335 	default:
3336 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3337 				"0297 Invalid device group (x%x)\n",
3338 				phba->pci_dev_grp);
3339 		break;
3340 	}
3341 	return;
3342 }
3343 
3344 /**
3345  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3346  * @phba: pointer to lpfc hba data structure.
3347  * @mbx_action: flag for mailbox no wait action.
3348  *
3349  * This routine marks a HBA's management interface as blocked. Once the HBA's
3350  * management interface is marked as blocked, all the user space access to
3351  * the HBA, whether they are from sysfs interface or libdfc interface will
3352  * all be blocked. The HBA is set to block the management interface when the
3353  * driver prepares the HBA interface for online or offline.
3354  **/
3355 static void
3356 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3357 {
3358 	unsigned long iflag;
3359 	uint8_t actcmd = MBX_HEARTBEAT;
3360 	unsigned long timeout;
3361 
3362 	spin_lock_irqsave(&phba->hbalock, iflag);
3363 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3364 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3365 	if (mbx_action == LPFC_MBX_NO_WAIT)
3366 		return;
3367 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3368 	spin_lock_irqsave(&phba->hbalock, iflag);
3369 	if (phba->sli.mbox_active) {
3370 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3371 		/* Determine how long we might wait for the active mailbox
3372 		 * command to be gracefully completed by firmware.
3373 		 */
3374 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3375 				phba->sli.mbox_active) * 1000) + jiffies;
3376 	}
3377 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3378 
3379 	/* Wait for the outstnading mailbox command to complete */
3380 	while (phba->sli.mbox_active) {
3381 		/* Check active mailbox complete status every 2ms */
3382 		msleep(2);
3383 		if (time_after(jiffies, timeout)) {
3384 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3385 					"2813 Mgmt IO is Blocked %x "
3386 					"- mbox cmd %x still active\n",
3387 					phba->sli.sli_flag, actcmd);
3388 			break;
3389 		}
3390 	}
3391 }
3392 
3393 /**
3394  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3395  * @phba: pointer to lpfc hba data structure.
3396  *
3397  * Allocate RPIs for all active remote nodes. This is needed whenever
3398  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3399  * is to fixup the temporary rpi assignments.
3400  **/
3401 void
3402 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3403 {
3404 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3405 	struct lpfc_vport **vports;
3406 	int i, rpi;
3407 
3408 	if (phba->sli_rev != LPFC_SLI_REV4)
3409 		return;
3410 
3411 	vports = lpfc_create_vport_work_array(phba);
3412 	if (vports == NULL)
3413 		return;
3414 
3415 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3416 		if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3417 			continue;
3418 
3419 		list_for_each_entry_safe(ndlp, next_ndlp,
3420 					 &vports[i]->fc_nodes,
3421 					 nlp_listp) {
3422 			rpi = lpfc_sli4_alloc_rpi(phba);
3423 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3424 				/* TODO print log? */
3425 				continue;
3426 			}
3427 			ndlp->nlp_rpi = rpi;
3428 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3429 					 LOG_NODE | LOG_DISCOVERY,
3430 					 "0009 Assign RPI x%x to ndlp x%px "
3431 					 "DID:x%06x flg:x%x\n",
3432 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3433 					 ndlp->nlp_flag);
3434 		}
3435 	}
3436 	lpfc_destroy_vport_work_array(phba, vports);
3437 }
3438 
3439 /**
3440  * lpfc_create_expedite_pool - create expedite pool
3441  * @phba: pointer to lpfc hba data structure.
3442  *
3443  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3444  * to expedite pool. Mark them as expedite.
3445  **/
3446 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3447 {
3448 	struct lpfc_sli4_hdw_queue *qp;
3449 	struct lpfc_io_buf *lpfc_ncmd;
3450 	struct lpfc_io_buf *lpfc_ncmd_next;
3451 	struct lpfc_epd_pool *epd_pool;
3452 	unsigned long iflag;
3453 
3454 	epd_pool = &phba->epd_pool;
3455 	qp = &phba->sli4_hba.hdwq[0];
3456 
3457 	spin_lock_init(&epd_pool->lock);
3458 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3459 	spin_lock(&epd_pool->lock);
3460 	INIT_LIST_HEAD(&epd_pool->list);
3461 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3462 				 &qp->lpfc_io_buf_list_put, list) {
3463 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3464 		lpfc_ncmd->expedite = true;
3465 		qp->put_io_bufs--;
3466 		epd_pool->count++;
3467 		if (epd_pool->count >= XRI_BATCH)
3468 			break;
3469 	}
3470 	spin_unlock(&epd_pool->lock);
3471 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3472 }
3473 
3474 /**
3475  * lpfc_destroy_expedite_pool - destroy expedite pool
3476  * @phba: pointer to lpfc hba data structure.
3477  *
3478  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3479  * of HWQ 0. Clear the mark.
3480  **/
3481 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3482 {
3483 	struct lpfc_sli4_hdw_queue *qp;
3484 	struct lpfc_io_buf *lpfc_ncmd;
3485 	struct lpfc_io_buf *lpfc_ncmd_next;
3486 	struct lpfc_epd_pool *epd_pool;
3487 	unsigned long iflag;
3488 
3489 	epd_pool = &phba->epd_pool;
3490 	qp = &phba->sli4_hba.hdwq[0];
3491 
3492 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3493 	spin_lock(&epd_pool->lock);
3494 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3495 				 &epd_pool->list, list) {
3496 		list_move_tail(&lpfc_ncmd->list,
3497 			       &qp->lpfc_io_buf_list_put);
3498 		lpfc_ncmd->flags = false;
3499 		qp->put_io_bufs++;
3500 		epd_pool->count--;
3501 	}
3502 	spin_unlock(&epd_pool->lock);
3503 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3504 }
3505 
3506 /**
3507  * lpfc_create_multixri_pools - create multi-XRI pools
3508  * @phba: pointer to lpfc hba data structure.
3509  *
3510  * This routine initialize public, private per HWQ. Then, move XRIs from
3511  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3512  * Initialized.
3513  **/
3514 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3515 {
3516 	u32 i, j;
3517 	u32 hwq_count;
3518 	u32 count_per_hwq;
3519 	struct lpfc_io_buf *lpfc_ncmd;
3520 	struct lpfc_io_buf *lpfc_ncmd_next;
3521 	unsigned long iflag;
3522 	struct lpfc_sli4_hdw_queue *qp;
3523 	struct lpfc_multixri_pool *multixri_pool;
3524 	struct lpfc_pbl_pool *pbl_pool;
3525 	struct lpfc_pvt_pool *pvt_pool;
3526 
3527 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3528 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3529 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3530 			phba->sli4_hba.io_xri_cnt);
3531 
3532 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3533 		lpfc_create_expedite_pool(phba);
3534 
3535 	hwq_count = phba->cfg_hdw_queue;
3536 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3537 
3538 	for (i = 0; i < hwq_count; i++) {
3539 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3540 
3541 		if (!multixri_pool) {
3542 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3543 					"1238 Failed to allocate memory for "
3544 					"multixri_pool\n");
3545 
3546 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3547 				lpfc_destroy_expedite_pool(phba);
3548 
3549 			j = 0;
3550 			while (j < i) {
3551 				qp = &phba->sli4_hba.hdwq[j];
3552 				kfree(qp->p_multixri_pool);
3553 				j++;
3554 			}
3555 			phba->cfg_xri_rebalancing = 0;
3556 			return;
3557 		}
3558 
3559 		qp = &phba->sli4_hba.hdwq[i];
3560 		qp->p_multixri_pool = multixri_pool;
3561 
3562 		multixri_pool->xri_limit = count_per_hwq;
3563 		multixri_pool->rrb_next_hwqid = i;
3564 
3565 		/* Deal with public free xri pool */
3566 		pbl_pool = &multixri_pool->pbl_pool;
3567 		spin_lock_init(&pbl_pool->lock);
3568 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3569 		spin_lock(&pbl_pool->lock);
3570 		INIT_LIST_HEAD(&pbl_pool->list);
3571 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3572 					 &qp->lpfc_io_buf_list_put, list) {
3573 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3574 			qp->put_io_bufs--;
3575 			pbl_pool->count++;
3576 		}
3577 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3578 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3579 				pbl_pool->count, i);
3580 		spin_unlock(&pbl_pool->lock);
3581 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3582 
3583 		/* Deal with private free xri pool */
3584 		pvt_pool = &multixri_pool->pvt_pool;
3585 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3586 		pvt_pool->low_watermark = XRI_BATCH;
3587 		spin_lock_init(&pvt_pool->lock);
3588 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3589 		INIT_LIST_HEAD(&pvt_pool->list);
3590 		pvt_pool->count = 0;
3591 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3592 	}
3593 }
3594 
3595 /**
3596  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3597  * @phba: pointer to lpfc hba data structure.
3598  *
3599  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3600  **/
3601 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3602 {
3603 	u32 i;
3604 	u32 hwq_count;
3605 	struct lpfc_io_buf *lpfc_ncmd;
3606 	struct lpfc_io_buf *lpfc_ncmd_next;
3607 	unsigned long iflag;
3608 	struct lpfc_sli4_hdw_queue *qp;
3609 	struct lpfc_multixri_pool *multixri_pool;
3610 	struct lpfc_pbl_pool *pbl_pool;
3611 	struct lpfc_pvt_pool *pvt_pool;
3612 
3613 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3614 		lpfc_destroy_expedite_pool(phba);
3615 
3616 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
3617 		lpfc_sli_flush_io_rings(phba);
3618 
3619 	hwq_count = phba->cfg_hdw_queue;
3620 
3621 	for (i = 0; i < hwq_count; i++) {
3622 		qp = &phba->sli4_hba.hdwq[i];
3623 		multixri_pool = qp->p_multixri_pool;
3624 		if (!multixri_pool)
3625 			continue;
3626 
3627 		qp->p_multixri_pool = NULL;
3628 
3629 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3630 
3631 		/* Deal with public free xri pool */
3632 		pbl_pool = &multixri_pool->pbl_pool;
3633 		spin_lock(&pbl_pool->lock);
3634 
3635 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3636 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3637 				pbl_pool->count, i);
3638 
3639 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3640 					 &pbl_pool->list, list) {
3641 			list_move_tail(&lpfc_ncmd->list,
3642 				       &qp->lpfc_io_buf_list_put);
3643 			qp->put_io_bufs++;
3644 			pbl_pool->count--;
3645 		}
3646 
3647 		INIT_LIST_HEAD(&pbl_pool->list);
3648 		pbl_pool->count = 0;
3649 
3650 		spin_unlock(&pbl_pool->lock);
3651 
3652 		/* Deal with private free xri pool */
3653 		pvt_pool = &multixri_pool->pvt_pool;
3654 		spin_lock(&pvt_pool->lock);
3655 
3656 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3657 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3658 				pvt_pool->count, i);
3659 
3660 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3661 					 &pvt_pool->list, list) {
3662 			list_move_tail(&lpfc_ncmd->list,
3663 				       &qp->lpfc_io_buf_list_put);
3664 			qp->put_io_bufs++;
3665 			pvt_pool->count--;
3666 		}
3667 
3668 		INIT_LIST_HEAD(&pvt_pool->list);
3669 		pvt_pool->count = 0;
3670 
3671 		spin_unlock(&pvt_pool->lock);
3672 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3673 
3674 		kfree(multixri_pool);
3675 	}
3676 }
3677 
3678 /**
3679  * lpfc_online - Initialize and bring a HBA online
3680  * @phba: pointer to lpfc hba data structure.
3681  *
3682  * This routine initializes the HBA and brings a HBA online. During this
3683  * process, the management interface is blocked to prevent user space access
3684  * to the HBA interfering with the driver initialization.
3685  *
3686  * Return codes
3687  *   0 - successful
3688  *   1 - failed
3689  **/
3690 int
3691 lpfc_online(struct lpfc_hba *phba)
3692 {
3693 	struct lpfc_vport *vport;
3694 	struct lpfc_vport **vports;
3695 	int i, error = 0;
3696 	bool vpis_cleared = false;
3697 
3698 	if (!phba)
3699 		return 0;
3700 	vport = phba->pport;
3701 
3702 	if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3703 		return 0;
3704 
3705 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3706 			"0458 Bring Adapter online\n");
3707 
3708 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3709 
3710 	if (phba->sli_rev == LPFC_SLI_REV4) {
3711 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3712 			lpfc_unblock_mgmt_io(phba);
3713 			return 1;
3714 		}
3715 		spin_lock_irq(&phba->hbalock);
3716 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3717 			vpis_cleared = true;
3718 		spin_unlock_irq(&phba->hbalock);
3719 
3720 		/* Reestablish the local initiator port.
3721 		 * The offline process destroyed the previous lport.
3722 		 */
3723 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3724 				!phba->nvmet_support) {
3725 			error = lpfc_nvme_create_localport(phba->pport);
3726 			if (error)
3727 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3728 					"6132 NVME restore reg failed "
3729 					"on nvmei error x%x\n", error);
3730 		}
3731 	} else {
3732 		lpfc_sli_queue_init(phba);
3733 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3734 			lpfc_unblock_mgmt_io(phba);
3735 			return 1;
3736 		}
3737 	}
3738 
3739 	vports = lpfc_create_vport_work_array(phba);
3740 	if (vports != NULL) {
3741 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3742 			clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3743 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3744 				set_bit(FC_VPORT_NEEDS_REG_VPI,
3745 					&vports[i]->fc_flag);
3746 			if (phba->sli_rev == LPFC_SLI_REV4) {
3747 				set_bit(FC_VPORT_NEEDS_INIT_VPI,
3748 					&vports[i]->fc_flag);
3749 				if ((vpis_cleared) &&
3750 				    (vports[i]->port_type !=
3751 					LPFC_PHYSICAL_PORT))
3752 					vports[i]->vpi = 0;
3753 			}
3754 		}
3755 	}
3756 	lpfc_destroy_vport_work_array(phba, vports);
3757 
3758 	if (phba->cfg_xri_rebalancing)
3759 		lpfc_create_multixri_pools(phba);
3760 
3761 	lpfc_cpuhp_add(phba);
3762 
3763 	lpfc_unblock_mgmt_io(phba);
3764 	return 0;
3765 }
3766 
3767 /**
3768  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3769  * @phba: pointer to lpfc hba data structure.
3770  *
3771  * This routine marks a HBA's management interface as not blocked. Once the
3772  * HBA's management interface is marked as not blocked, all the user space
3773  * access to the HBA, whether they are from sysfs interface or libdfc
3774  * interface will be allowed. The HBA is set to block the management interface
3775  * when the driver prepares the HBA interface for online or offline and then
3776  * set to unblock the management interface afterwards.
3777  **/
3778 void
3779 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3780 {
3781 	unsigned long iflag;
3782 
3783 	spin_lock_irqsave(&phba->hbalock, iflag);
3784 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3785 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3786 }
3787 
3788 /**
3789  * lpfc_offline_prep - Prepare a HBA to be brought offline
3790  * @phba: pointer to lpfc hba data structure.
3791  * @mbx_action: flag for mailbox shutdown action.
3792  *
3793  * This routine is invoked to prepare a HBA to be brought offline. It performs
3794  * unregistration login to all the nodes on all vports and flushes the mailbox
3795  * queue to make it ready to be brought offline.
3796  **/
3797 void
3798 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3799 {
3800 	struct lpfc_vport *vport = phba->pport;
3801 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3802 	struct lpfc_vport **vports;
3803 	struct Scsi_Host *shost;
3804 	int i;
3805 	int offline;
3806 	bool hba_pci_err;
3807 
3808 	if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3809 		return;
3810 
3811 	lpfc_block_mgmt_io(phba, mbx_action);
3812 
3813 	lpfc_linkdown(phba);
3814 
3815 	offline =  pci_channel_offline(phba->pcidev);
3816 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3817 
3818 	/* Issue an unreg_login to all nodes on all vports */
3819 	vports = lpfc_create_vport_work_array(phba);
3820 	if (vports != NULL) {
3821 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3822 			if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3823 				continue;
3824 			shost = lpfc_shost_from_vport(vports[i]);
3825 			spin_lock_irq(shost->host_lock);
3826 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3827 			spin_unlock_irq(shost->host_lock);
3828 			set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag);
3829 			clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag);
3830 
3831 			list_for_each_entry_safe(ndlp, next_ndlp,
3832 						 &vports[i]->fc_nodes,
3833 						 nlp_listp) {
3834 
3835 				spin_lock_irq(&ndlp->lock);
3836 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3837 				spin_unlock_irq(&ndlp->lock);
3838 
3839 				if (offline || hba_pci_err) {
3840 					spin_lock_irq(&ndlp->lock);
3841 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3842 							    NLP_RPI_REGISTERED);
3843 					spin_unlock_irq(&ndlp->lock);
3844 					if (phba->sli_rev == LPFC_SLI_REV4)
3845 						lpfc_sli_rpi_release(vports[i],
3846 								     ndlp);
3847 				} else {
3848 					lpfc_unreg_rpi(vports[i], ndlp);
3849 				}
3850 				/*
3851 				 * Whenever an SLI4 port goes offline, free the
3852 				 * RPI. Get a new RPI when the adapter port
3853 				 * comes back online.
3854 				 */
3855 				if (phba->sli_rev == LPFC_SLI_REV4) {
3856 					lpfc_printf_vlog(vports[i], KERN_INFO,
3857 						 LOG_NODE | LOG_DISCOVERY,
3858 						 "0011 Free RPI x%x on "
3859 						 "ndlp: x%px did x%x\n",
3860 						 ndlp->nlp_rpi, ndlp,
3861 						 ndlp->nlp_DID);
3862 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3863 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3864 				}
3865 
3866 				if (ndlp->nlp_type & NLP_FABRIC) {
3867 					lpfc_disc_state_machine(vports[i], ndlp,
3868 						NULL, NLP_EVT_DEVICE_RECOVERY);
3869 
3870 					/* Don't remove the node unless the node
3871 					 * has been unregistered with the
3872 					 * transport, and we're not in recovery
3873 					 * before dev_loss_tmo triggered.
3874 					 * Otherwise, let dev_loss take care of
3875 					 * the node.
3876 					 */
3877 					if (!(ndlp->save_flags &
3878 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3879 					    !(ndlp->fc4_xpt_flags &
3880 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3881 						lpfc_disc_state_machine
3882 							(vports[i], ndlp,
3883 							 NULL,
3884 							 NLP_EVT_DEVICE_RM);
3885 				}
3886 			}
3887 		}
3888 	}
3889 	lpfc_destroy_vport_work_array(phba, vports);
3890 
3891 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3892 
3893 	if (phba->wq)
3894 		flush_workqueue(phba->wq);
3895 }
3896 
3897 /**
3898  * lpfc_offline - Bring a HBA offline
3899  * @phba: pointer to lpfc hba data structure.
3900  *
3901  * This routine actually brings a HBA offline. It stops all the timers
3902  * associated with the HBA, brings down the SLI layer, and eventually
3903  * marks the HBA as in offline state for the upper layer protocol.
3904  **/
3905 void
3906 lpfc_offline(struct lpfc_hba *phba)
3907 {
3908 	struct Scsi_Host  *shost;
3909 	struct lpfc_vport **vports;
3910 	int i;
3911 
3912 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3913 		return;
3914 
3915 	/* stop port and all timers associated with this hba */
3916 	lpfc_stop_port(phba);
3917 
3918 	/* Tear down the local and target port registrations.  The
3919 	 * nvme transports need to cleanup.
3920 	 */
3921 	lpfc_nvmet_destroy_targetport(phba);
3922 	lpfc_nvme_destroy_localport(phba->pport);
3923 
3924 	vports = lpfc_create_vport_work_array(phba);
3925 	if (vports != NULL)
3926 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3927 			lpfc_stop_vport_timers(vports[i]);
3928 	lpfc_destroy_vport_work_array(phba, vports);
3929 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3930 			"0460 Bring Adapter offline\n");
3931 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3932 	   now.  */
3933 	lpfc_sli_hba_down(phba);
3934 	spin_lock_irq(&phba->hbalock);
3935 	phba->work_ha = 0;
3936 	spin_unlock_irq(&phba->hbalock);
3937 	vports = lpfc_create_vport_work_array(phba);
3938 	if (vports != NULL)
3939 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3940 			shost = lpfc_shost_from_vport(vports[i]);
3941 			spin_lock_irq(shost->host_lock);
3942 			vports[i]->work_port_events = 0;
3943 			spin_unlock_irq(shost->host_lock);
3944 			set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3945 		}
3946 	lpfc_destroy_vport_work_array(phba, vports);
3947 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3948 	 * in hba_unset
3949 	 */
3950 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3951 		__lpfc_cpuhp_remove(phba);
3952 
3953 	if (phba->cfg_xri_rebalancing)
3954 		lpfc_destroy_multixri_pools(phba);
3955 }
3956 
3957 /**
3958  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3959  * @phba: pointer to lpfc hba data structure.
3960  *
3961  * This routine is to free all the SCSI buffers and IOCBs from the driver
3962  * list back to kernel. It is called from lpfc_pci_remove_one to free
3963  * the internal resources before the device is removed from the system.
3964  **/
3965 static void
3966 lpfc_scsi_free(struct lpfc_hba *phba)
3967 {
3968 	struct lpfc_io_buf *sb, *sb_next;
3969 
3970 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3971 		return;
3972 
3973 	spin_lock_irq(&phba->hbalock);
3974 
3975 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3976 
3977 	spin_lock(&phba->scsi_buf_list_put_lock);
3978 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3979 				 list) {
3980 		list_del(&sb->list);
3981 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3982 			      sb->dma_handle);
3983 		kfree(sb);
3984 		phba->total_scsi_bufs--;
3985 	}
3986 	spin_unlock(&phba->scsi_buf_list_put_lock);
3987 
3988 	spin_lock(&phba->scsi_buf_list_get_lock);
3989 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3990 				 list) {
3991 		list_del(&sb->list);
3992 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3993 			      sb->dma_handle);
3994 		kfree(sb);
3995 		phba->total_scsi_bufs--;
3996 	}
3997 	spin_unlock(&phba->scsi_buf_list_get_lock);
3998 	spin_unlock_irq(&phba->hbalock);
3999 }
4000 
4001 /**
4002  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
4003  * @phba: pointer to lpfc hba data structure.
4004  *
4005  * This routine is to free all the IO buffers and IOCBs from the driver
4006  * list back to kernel. It is called from lpfc_pci_remove_one to free
4007  * the internal resources before the device is removed from the system.
4008  **/
4009 void
4010 lpfc_io_free(struct lpfc_hba *phba)
4011 {
4012 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4013 	struct lpfc_sli4_hdw_queue *qp;
4014 	int idx;
4015 
4016 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4017 		qp = &phba->sli4_hba.hdwq[idx];
4018 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4019 		spin_lock(&qp->io_buf_list_put_lock);
4020 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4021 					 &qp->lpfc_io_buf_list_put,
4022 					 list) {
4023 			list_del(&lpfc_ncmd->list);
4024 			qp->put_io_bufs--;
4025 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4026 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4027 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4028 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4029 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4030 			kfree(lpfc_ncmd);
4031 			qp->total_io_bufs--;
4032 		}
4033 		spin_unlock(&qp->io_buf_list_put_lock);
4034 
4035 		spin_lock(&qp->io_buf_list_get_lock);
4036 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4037 					 &qp->lpfc_io_buf_list_get,
4038 					 list) {
4039 			list_del(&lpfc_ncmd->list);
4040 			qp->get_io_bufs--;
4041 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4042 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4043 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4044 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4045 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4046 			kfree(lpfc_ncmd);
4047 			qp->total_io_bufs--;
4048 		}
4049 		spin_unlock(&qp->io_buf_list_get_lock);
4050 	}
4051 }
4052 
4053 /**
4054  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4055  * @phba: pointer to lpfc hba data structure.
4056  *
4057  * This routine first calculates the sizes of the current els and allocated
4058  * scsi sgl lists, and then goes through all sgls to updates the physical
4059  * XRIs assigned due to port function reset. During port initialization, the
4060  * current els and allocated scsi sgl lists are 0s.
4061  *
4062  * Return codes
4063  *   0 - successful (for now, it always returns 0)
4064  **/
4065 int
4066 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4067 {
4068 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4069 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4070 	LIST_HEAD(els_sgl_list);
4071 	int rc;
4072 
4073 	/*
4074 	 * update on pci function's els xri-sgl list
4075 	 */
4076 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4077 
4078 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4079 		/* els xri-sgl expanded */
4080 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4081 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4082 				"3157 ELS xri-sgl count increased from "
4083 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4084 				els_xri_cnt);
4085 		/* allocate the additional els sgls */
4086 		for (i = 0; i < xri_cnt; i++) {
4087 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4088 					     GFP_KERNEL);
4089 			if (sglq_entry == NULL) {
4090 				lpfc_printf_log(phba, KERN_ERR,
4091 						LOG_TRACE_EVENT,
4092 						"2562 Failure to allocate an "
4093 						"ELS sgl entry:%d\n", i);
4094 				rc = -ENOMEM;
4095 				goto out_free_mem;
4096 			}
4097 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4098 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4099 							   &sglq_entry->phys);
4100 			if (sglq_entry->virt == NULL) {
4101 				kfree(sglq_entry);
4102 				lpfc_printf_log(phba, KERN_ERR,
4103 						LOG_TRACE_EVENT,
4104 						"2563 Failure to allocate an "
4105 						"ELS mbuf:%d\n", i);
4106 				rc = -ENOMEM;
4107 				goto out_free_mem;
4108 			}
4109 			sglq_entry->sgl = sglq_entry->virt;
4110 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4111 			sglq_entry->state = SGL_FREED;
4112 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4113 		}
4114 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4115 		list_splice_init(&els_sgl_list,
4116 				 &phba->sli4_hba.lpfc_els_sgl_list);
4117 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4118 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4119 		/* els xri-sgl shrinked */
4120 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4121 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4122 				"3158 ELS xri-sgl count decreased from "
4123 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4124 				els_xri_cnt);
4125 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4126 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4127 				 &els_sgl_list);
4128 		/* release extra els sgls from list */
4129 		for (i = 0; i < xri_cnt; i++) {
4130 			list_remove_head(&els_sgl_list,
4131 					 sglq_entry, struct lpfc_sglq, list);
4132 			if (sglq_entry) {
4133 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4134 						 sglq_entry->phys);
4135 				kfree(sglq_entry);
4136 			}
4137 		}
4138 		list_splice_init(&els_sgl_list,
4139 				 &phba->sli4_hba.lpfc_els_sgl_list);
4140 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4141 	} else
4142 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4143 				"3163 ELS xri-sgl count unchanged: %d\n",
4144 				els_xri_cnt);
4145 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4146 
4147 	/* update xris to els sgls on the list */
4148 	sglq_entry = NULL;
4149 	sglq_entry_next = NULL;
4150 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4151 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4152 		lxri = lpfc_sli4_next_xritag(phba);
4153 		if (lxri == NO_XRI) {
4154 			lpfc_printf_log(phba, KERN_ERR,
4155 					LOG_TRACE_EVENT,
4156 					"2400 Failed to allocate xri for "
4157 					"ELS sgl\n");
4158 			rc = -ENOMEM;
4159 			goto out_free_mem;
4160 		}
4161 		sglq_entry->sli4_lxritag = lxri;
4162 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4163 	}
4164 	return 0;
4165 
4166 out_free_mem:
4167 	lpfc_free_els_sgl_list(phba);
4168 	return rc;
4169 }
4170 
4171 /**
4172  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4173  * @phba: pointer to lpfc hba data structure.
4174  *
4175  * This routine first calculates the sizes of the current els and allocated
4176  * scsi sgl lists, and then goes through all sgls to updates the physical
4177  * XRIs assigned due to port function reset. During port initialization, the
4178  * current els and allocated scsi sgl lists are 0s.
4179  *
4180  * Return codes
4181  *   0 - successful (for now, it always returns 0)
4182  **/
4183 int
4184 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4185 {
4186 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4187 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4188 	uint16_t nvmet_xri_cnt;
4189 	LIST_HEAD(nvmet_sgl_list);
4190 	int rc;
4191 
4192 	/*
4193 	 * update on pci function's nvmet xri-sgl list
4194 	 */
4195 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4196 
4197 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4198 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4199 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4200 		/* els xri-sgl expanded */
4201 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4202 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4203 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4204 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4205 		/* allocate the additional nvmet sgls */
4206 		for (i = 0; i < xri_cnt; i++) {
4207 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4208 					     GFP_KERNEL);
4209 			if (sglq_entry == NULL) {
4210 				lpfc_printf_log(phba, KERN_ERR,
4211 						LOG_TRACE_EVENT,
4212 						"6303 Failure to allocate an "
4213 						"NVMET sgl entry:%d\n", i);
4214 				rc = -ENOMEM;
4215 				goto out_free_mem;
4216 			}
4217 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4218 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4219 							   &sglq_entry->phys);
4220 			if (sglq_entry->virt == NULL) {
4221 				kfree(sglq_entry);
4222 				lpfc_printf_log(phba, KERN_ERR,
4223 						LOG_TRACE_EVENT,
4224 						"6304 Failure to allocate an "
4225 						"NVMET buf:%d\n", i);
4226 				rc = -ENOMEM;
4227 				goto out_free_mem;
4228 			}
4229 			sglq_entry->sgl = sglq_entry->virt;
4230 			memset(sglq_entry->sgl, 0,
4231 			       phba->cfg_sg_dma_buf_size);
4232 			sglq_entry->state = SGL_FREED;
4233 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4234 		}
4235 		spin_lock_irq(&phba->hbalock);
4236 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4237 		list_splice_init(&nvmet_sgl_list,
4238 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4239 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4240 		spin_unlock_irq(&phba->hbalock);
4241 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4242 		/* nvmet xri-sgl shrunk */
4243 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4244 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4245 				"6305 NVMET xri-sgl count decreased from "
4246 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4247 				nvmet_xri_cnt);
4248 		spin_lock_irq(&phba->hbalock);
4249 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4250 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4251 				 &nvmet_sgl_list);
4252 		/* release extra nvmet sgls from list */
4253 		for (i = 0; i < xri_cnt; i++) {
4254 			list_remove_head(&nvmet_sgl_list,
4255 					 sglq_entry, struct lpfc_sglq, list);
4256 			if (sglq_entry) {
4257 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4258 						    sglq_entry->phys);
4259 				kfree(sglq_entry);
4260 			}
4261 		}
4262 		list_splice_init(&nvmet_sgl_list,
4263 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4264 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4265 		spin_unlock_irq(&phba->hbalock);
4266 	} else
4267 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4268 				"6306 NVMET xri-sgl count unchanged: %d\n",
4269 				nvmet_xri_cnt);
4270 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4271 
4272 	/* update xris to nvmet sgls on the list */
4273 	sglq_entry = NULL;
4274 	sglq_entry_next = NULL;
4275 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4276 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4277 		lxri = lpfc_sli4_next_xritag(phba);
4278 		if (lxri == NO_XRI) {
4279 			lpfc_printf_log(phba, KERN_ERR,
4280 					LOG_TRACE_EVENT,
4281 					"6307 Failed to allocate xri for "
4282 					"NVMET sgl\n");
4283 			rc = -ENOMEM;
4284 			goto out_free_mem;
4285 		}
4286 		sglq_entry->sli4_lxritag = lxri;
4287 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4288 	}
4289 	return 0;
4290 
4291 out_free_mem:
4292 	lpfc_free_nvmet_sgl_list(phba);
4293 	return rc;
4294 }
4295 
4296 int
4297 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4298 {
4299 	LIST_HEAD(blist);
4300 	struct lpfc_sli4_hdw_queue *qp;
4301 	struct lpfc_io_buf *lpfc_cmd;
4302 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4303 	int idx, cnt, xri, inserted;
4304 
4305 	cnt = 0;
4306 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4307 		qp = &phba->sli4_hba.hdwq[idx];
4308 		spin_lock_irq(&qp->io_buf_list_get_lock);
4309 		spin_lock(&qp->io_buf_list_put_lock);
4310 
4311 		/* Take everything off the get and put lists */
4312 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4313 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4314 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4315 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4316 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4317 		qp->get_io_bufs = 0;
4318 		qp->put_io_bufs = 0;
4319 		qp->total_io_bufs = 0;
4320 		spin_unlock(&qp->io_buf_list_put_lock);
4321 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4322 	}
4323 
4324 	/*
4325 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4326 	 * This is because POST_SGL takes a sequential range of XRIs
4327 	 * to post to the firmware.
4328 	 */
4329 	for (idx = 0; idx < cnt; idx++) {
4330 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4331 		if (!lpfc_cmd)
4332 			return cnt;
4333 		if (idx == 0) {
4334 			list_add_tail(&lpfc_cmd->list, cbuf);
4335 			continue;
4336 		}
4337 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4338 		inserted = 0;
4339 		prev_iobufp = NULL;
4340 		list_for_each_entry(iobufp, cbuf, list) {
4341 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4342 				if (prev_iobufp)
4343 					list_add(&lpfc_cmd->list,
4344 						 &prev_iobufp->list);
4345 				else
4346 					list_add(&lpfc_cmd->list, cbuf);
4347 				inserted = 1;
4348 				break;
4349 			}
4350 			prev_iobufp = iobufp;
4351 		}
4352 		if (!inserted)
4353 			list_add_tail(&lpfc_cmd->list, cbuf);
4354 	}
4355 	return cnt;
4356 }
4357 
4358 int
4359 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4360 {
4361 	struct lpfc_sli4_hdw_queue *qp;
4362 	struct lpfc_io_buf *lpfc_cmd;
4363 	int idx, cnt;
4364 	unsigned long iflags;
4365 
4366 	qp = phba->sli4_hba.hdwq;
4367 	cnt = 0;
4368 	while (!list_empty(cbuf)) {
4369 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4370 			list_remove_head(cbuf, lpfc_cmd,
4371 					 struct lpfc_io_buf, list);
4372 			if (!lpfc_cmd)
4373 				return cnt;
4374 			cnt++;
4375 			qp = &phba->sli4_hba.hdwq[idx];
4376 			lpfc_cmd->hdwq_no = idx;
4377 			lpfc_cmd->hdwq = qp;
4378 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4379 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4380 			list_add_tail(&lpfc_cmd->list,
4381 				      &qp->lpfc_io_buf_list_put);
4382 			qp->put_io_bufs++;
4383 			qp->total_io_bufs++;
4384 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4385 					       iflags);
4386 		}
4387 	}
4388 	return cnt;
4389 }
4390 
4391 /**
4392  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4393  * @phba: pointer to lpfc hba data structure.
4394  *
4395  * This routine first calculates the sizes of the current els and allocated
4396  * scsi sgl lists, and then goes through all sgls to updates the physical
4397  * XRIs assigned due to port function reset. During port initialization, the
4398  * current els and allocated scsi sgl lists are 0s.
4399  *
4400  * Return codes
4401  *   0 - successful (for now, it always returns 0)
4402  **/
4403 int
4404 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4405 {
4406 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4407 	uint16_t i, lxri, els_xri_cnt;
4408 	uint16_t io_xri_cnt, io_xri_max;
4409 	LIST_HEAD(io_sgl_list);
4410 	int rc, cnt;
4411 
4412 	/*
4413 	 * update on pci function's allocated nvme xri-sgl list
4414 	 */
4415 
4416 	/* maximum number of xris available for nvme buffers */
4417 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4418 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4419 	phba->sli4_hba.io_xri_max = io_xri_max;
4420 
4421 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4422 			"6074 Current allocated XRI sgl count:%d, "
4423 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4424 			phba->sli4_hba.io_xri_cnt,
4425 			phba->sli4_hba.io_xri_max,
4426 			els_xri_cnt);
4427 
4428 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4429 
4430 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4431 		/* max nvme xri shrunk below the allocated nvme buffers */
4432 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4433 					phba->sli4_hba.io_xri_max;
4434 		/* release the extra allocated nvme buffers */
4435 		for (i = 0; i < io_xri_cnt; i++) {
4436 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4437 					 struct lpfc_io_buf, list);
4438 			if (lpfc_ncmd) {
4439 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4440 					      lpfc_ncmd->data,
4441 					      lpfc_ncmd->dma_handle);
4442 				kfree(lpfc_ncmd);
4443 			}
4444 		}
4445 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4446 	}
4447 
4448 	/* update xris associated to remaining allocated nvme buffers */
4449 	lpfc_ncmd = NULL;
4450 	lpfc_ncmd_next = NULL;
4451 	phba->sli4_hba.io_xri_cnt = cnt;
4452 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4453 				 &io_sgl_list, list) {
4454 		lxri = lpfc_sli4_next_xritag(phba);
4455 		if (lxri == NO_XRI) {
4456 			lpfc_printf_log(phba, KERN_ERR,
4457 					LOG_TRACE_EVENT,
4458 					"6075 Failed to allocate xri for "
4459 					"nvme buffer\n");
4460 			rc = -ENOMEM;
4461 			goto out_free_mem;
4462 		}
4463 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4464 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4465 	}
4466 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4467 	return 0;
4468 
4469 out_free_mem:
4470 	lpfc_io_free(phba);
4471 	return rc;
4472 }
4473 
4474 /**
4475  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4476  * @phba: Pointer to lpfc hba data structure.
4477  * @num_to_alloc: The requested number of buffers to allocate.
4478  *
4479  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4480  * the nvme buffer contains all the necessary information needed to initiate
4481  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4482  * them on a list, it post them to the port by using SGL block post.
4483  *
4484  * Return codes:
4485  *   int - number of IO buffers that were allocated and posted.
4486  *   0 = failure, less than num_to_alloc is a partial failure.
4487  **/
4488 int
4489 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4490 {
4491 	struct lpfc_io_buf *lpfc_ncmd;
4492 	struct lpfc_iocbq *pwqeq;
4493 	uint16_t iotag, lxri = 0;
4494 	int bcnt, num_posted;
4495 	LIST_HEAD(prep_nblist);
4496 	LIST_HEAD(post_nblist);
4497 	LIST_HEAD(nvme_nblist);
4498 
4499 	phba->sli4_hba.io_xri_cnt = 0;
4500 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4501 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4502 		if (!lpfc_ncmd)
4503 			break;
4504 		/*
4505 		 * Get memory from the pci pool to map the virt space to
4506 		 * pci bus space for an I/O. The DMA buffer includes the
4507 		 * number of SGE's necessary to support the sg_tablesize.
4508 		 */
4509 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4510 						  GFP_KERNEL,
4511 						  &lpfc_ncmd->dma_handle);
4512 		if (!lpfc_ncmd->data) {
4513 			kfree(lpfc_ncmd);
4514 			break;
4515 		}
4516 
4517 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4518 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4519 		} else {
4520 			/*
4521 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4522 			 * check to be sure.
4523 			 */
4524 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4525 			    (((unsigned long)(lpfc_ncmd->data) &
4526 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4527 				lpfc_printf_log(phba, KERN_ERR,
4528 						LOG_TRACE_EVENT,
4529 						"3369 Memory alignment err: "
4530 						"addr=%lx\n",
4531 						(unsigned long)lpfc_ncmd->data);
4532 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4533 					      lpfc_ncmd->data,
4534 					      lpfc_ncmd->dma_handle);
4535 				kfree(lpfc_ncmd);
4536 				break;
4537 			}
4538 		}
4539 
4540 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4541 
4542 		lxri = lpfc_sli4_next_xritag(phba);
4543 		if (lxri == NO_XRI) {
4544 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4545 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4546 			kfree(lpfc_ncmd);
4547 			break;
4548 		}
4549 		pwqeq = &lpfc_ncmd->cur_iocbq;
4550 
4551 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4552 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4553 		if (iotag == 0) {
4554 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4555 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4556 			kfree(lpfc_ncmd);
4557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4558 					"6121 Failed to allocate IOTAG for"
4559 					" XRI:0x%x\n", lxri);
4560 			lpfc_sli4_free_xri(phba, lxri);
4561 			break;
4562 		}
4563 		pwqeq->sli4_lxritag = lxri;
4564 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4565 
4566 		/* Initialize local short-hand pointers. */
4567 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4568 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4569 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4570 		spin_lock_init(&lpfc_ncmd->buf_lock);
4571 
4572 		/* add the nvme buffer to a post list */
4573 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4574 		phba->sli4_hba.io_xri_cnt++;
4575 	}
4576 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4577 			"6114 Allocate %d out of %d requested new NVME "
4578 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4579 			sizeof(*lpfc_ncmd));
4580 
4581 
4582 	/* post the list of nvme buffer sgls to port if available */
4583 	if (!list_empty(&post_nblist))
4584 		num_posted = lpfc_sli4_post_io_sgl_list(
4585 				phba, &post_nblist, bcnt);
4586 	else
4587 		num_posted = 0;
4588 
4589 	return num_posted;
4590 }
4591 
4592 static uint64_t
4593 lpfc_get_wwpn(struct lpfc_hba *phba)
4594 {
4595 	uint64_t wwn;
4596 	int rc;
4597 	LPFC_MBOXQ_t *mboxq;
4598 	MAILBOX_t *mb;
4599 
4600 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4601 						GFP_KERNEL);
4602 	if (!mboxq)
4603 		return (uint64_t)-1;
4604 
4605 	/* First get WWN of HBA instance */
4606 	lpfc_read_nv(phba, mboxq);
4607 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4608 	if (rc != MBX_SUCCESS) {
4609 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4610 				"6019 Mailbox failed , mbxCmd x%x "
4611 				"READ_NV, mbxStatus x%x\n",
4612 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4613 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4614 		mempool_free(mboxq, phba->mbox_mem_pool);
4615 		return (uint64_t) -1;
4616 	}
4617 	mb = &mboxq->u.mb;
4618 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4619 	/* wwn is WWPN of HBA instance */
4620 	mempool_free(mboxq, phba->mbox_mem_pool);
4621 	if (phba->sli_rev == LPFC_SLI_REV4)
4622 		return be64_to_cpu(wwn);
4623 	else
4624 		return rol64(wwn, 32);
4625 }
4626 
4627 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4628 {
4629 	if (phba->sli_rev == LPFC_SLI_REV4)
4630 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4631 			return LPFC_MAX_SG_TABLESIZE;
4632 		else
4633 			return phba->cfg_scsi_seg_cnt;
4634 	else
4635 		return phba->cfg_sg_seg_cnt;
4636 }
4637 
4638 /**
4639  * lpfc_vmid_res_alloc - Allocates resources for VMID
4640  * @phba: pointer to lpfc hba data structure.
4641  * @vport: pointer to vport data structure
4642  *
4643  * This routine allocated the resources needed for the VMID.
4644  *
4645  * Return codes
4646  *	0 on Success
4647  *	Non-0 on Failure
4648  */
4649 static int
4650 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4651 {
4652 	/* VMID feature is supported only on SLI4 */
4653 	if (phba->sli_rev == LPFC_SLI_REV3) {
4654 		phba->cfg_vmid_app_header = 0;
4655 		phba->cfg_vmid_priority_tagging = 0;
4656 	}
4657 
4658 	if (lpfc_is_vmid_enabled(phba)) {
4659 		vport->vmid =
4660 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4661 			    GFP_KERNEL);
4662 		if (!vport->vmid)
4663 			return -ENOMEM;
4664 
4665 		rwlock_init(&vport->vmid_lock);
4666 
4667 		/* Set the VMID parameters for the vport */
4668 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4669 		vport->vmid_inactivity_timeout =
4670 		    phba->cfg_vmid_inactivity_timeout;
4671 		vport->max_vmid = phba->cfg_max_vmid;
4672 		vport->cur_vmid_cnt = 0;
4673 
4674 		vport->vmid_priority_range = bitmap_zalloc
4675 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4676 
4677 		if (!vport->vmid_priority_range) {
4678 			kfree(vport->vmid);
4679 			return -ENOMEM;
4680 		}
4681 
4682 		hash_init(vport->hash_table);
4683 	}
4684 	return 0;
4685 }
4686 
4687 /**
4688  * lpfc_create_port - Create an FC port
4689  * @phba: pointer to lpfc hba data structure.
4690  * @instance: a unique integer ID to this FC port.
4691  * @dev: pointer to the device data structure.
4692  *
4693  * This routine creates a FC port for the upper layer protocol. The FC port
4694  * can be created on top of either a physical port or a virtual port provided
4695  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4696  * and associates the FC port created before adding the shost into the SCSI
4697  * layer.
4698  *
4699  * Return codes
4700  *   @vport - pointer to the virtual N_Port data structure.
4701  *   NULL - port create failed.
4702  **/
4703 struct lpfc_vport *
4704 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4705 {
4706 	struct lpfc_vport *vport;
4707 	struct Scsi_Host  *shost = NULL;
4708 	struct scsi_host_template *template;
4709 	int error = 0;
4710 	int i;
4711 	uint64_t wwn;
4712 	bool use_no_reset_hba = false;
4713 	int rc;
4714 
4715 	if (lpfc_no_hba_reset_cnt) {
4716 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4717 		    dev == &phba->pcidev->dev) {
4718 			/* Reset the port first */
4719 			lpfc_sli_brdrestart(phba);
4720 			rc = lpfc_sli_chipset_init(phba);
4721 			if (rc)
4722 				return NULL;
4723 		}
4724 		wwn = lpfc_get_wwpn(phba);
4725 	}
4726 
4727 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4728 		if (wwn == lpfc_no_hba_reset[i]) {
4729 			lpfc_printf_log(phba, KERN_ERR,
4730 					LOG_TRACE_EVENT,
4731 					"6020 Setting use_no_reset port=%llx\n",
4732 					wwn);
4733 			use_no_reset_hba = true;
4734 			break;
4735 		}
4736 	}
4737 
4738 	/* Seed template for SCSI host registration */
4739 	if (dev == &phba->pcidev->dev) {
4740 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4741 			/* Seed physical port template */
4742 			template = &lpfc_template;
4743 
4744 			if (use_no_reset_hba)
4745 				/* template is for a no reset SCSI Host */
4746 				template->eh_host_reset_handler = NULL;
4747 
4748 			/* Seed updated value of sg_tablesize */
4749 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4750 		} else {
4751 			/* NVMET is for physical port only */
4752 			template = &lpfc_template_nvme;
4753 		}
4754 	} else {
4755 		/* Seed vport template */
4756 		template = &lpfc_vport_template;
4757 
4758 		/* Seed updated value of sg_tablesize */
4759 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4760 	}
4761 
4762 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4763 	if (!shost)
4764 		goto out;
4765 
4766 	vport = (struct lpfc_vport *) shost->hostdata;
4767 	vport->phba = phba;
4768 	set_bit(FC_LOADING, &vport->load_flag);
4769 	set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
4770 	vport->fc_rscn_flush = 0;
4771 	atomic_set(&vport->fc_plogi_cnt, 0);
4772 	atomic_set(&vport->fc_adisc_cnt, 0);
4773 	atomic_set(&vport->fc_reglogin_cnt, 0);
4774 	atomic_set(&vport->fc_prli_cnt, 0);
4775 	atomic_set(&vport->fc_unmap_cnt, 0);
4776 	atomic_set(&vport->fc_map_cnt, 0);
4777 	atomic_set(&vport->fc_npr_cnt, 0);
4778 	atomic_set(&vport->fc_unused_cnt, 0);
4779 	lpfc_get_vport_cfgparam(vport);
4780 
4781 	/* Adjust value in vport */
4782 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4783 
4784 	shost->unique_id = instance;
4785 	shost->max_id = LPFC_MAX_TARGET;
4786 	shost->max_lun = vport->cfg_max_luns;
4787 	shost->this_id = -1;
4788 	shost->max_cmd_len = 16;
4789 
4790 	if (phba->sli_rev == LPFC_SLI_REV4) {
4791 		if (!phba->cfg_fcp_mq_threshold ||
4792 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4793 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4794 
4795 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4796 					    phba->cfg_fcp_mq_threshold);
4797 
4798 		shost->dma_boundary =
4799 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4800 	} else
4801 		/* SLI-3 has a limited number of hardware queues (3),
4802 		 * thus there is only one for FCP processing.
4803 		 */
4804 		shost->nr_hw_queues = 1;
4805 
4806 	/*
4807 	 * Set initial can_queue value since 0 is no longer supported and
4808 	 * scsi_add_host will fail. This will be adjusted later based on the
4809 	 * max xri value determined in hba setup.
4810 	 */
4811 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4812 	if (dev != &phba->pcidev->dev) {
4813 		shost->transportt = lpfc_vport_transport_template;
4814 		vport->port_type = LPFC_NPIV_PORT;
4815 	} else {
4816 		shost->transportt = lpfc_transport_template;
4817 		vport->port_type = LPFC_PHYSICAL_PORT;
4818 	}
4819 
4820 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4821 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4822 			"SEGcnt %d/%d\n",
4823 			vport->port_type, shost->sg_tablesize,
4824 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4825 
4826 	/* Allocate the resources for VMID */
4827 	rc = lpfc_vmid_res_alloc(phba, vport);
4828 
4829 	if (rc)
4830 		goto out_put_shost;
4831 
4832 	/* Initialize all internally managed lists. */
4833 	INIT_LIST_HEAD(&vport->fc_nodes);
4834 	spin_lock_init(&vport->fc_nodes_list_lock);
4835 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4836 	spin_lock_init(&vport->work_port_lock);
4837 
4838 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4839 
4840 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4841 
4842 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4843 
4844 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4845 		lpfc_setup_bg(phba, shost);
4846 
4847 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4848 	if (error)
4849 		goto out_free_vmid;
4850 
4851 	spin_lock_irq(&phba->port_list_lock);
4852 	list_add_tail(&vport->listentry, &phba->port_list);
4853 	spin_unlock_irq(&phba->port_list_lock);
4854 	return vport;
4855 
4856 out_free_vmid:
4857 	kfree(vport->vmid);
4858 	bitmap_free(vport->vmid_priority_range);
4859 out_put_shost:
4860 	scsi_host_put(shost);
4861 out:
4862 	return NULL;
4863 }
4864 
4865 /**
4866  * destroy_port -  destroy an FC port
4867  * @vport: pointer to an lpfc virtual N_Port data structure.
4868  *
4869  * This routine destroys a FC port from the upper layer protocol. All the
4870  * resources associated with the port are released.
4871  **/
4872 void
4873 destroy_port(struct lpfc_vport *vport)
4874 {
4875 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4876 	struct lpfc_hba  *phba = vport->phba;
4877 
4878 	lpfc_debugfs_terminate(vport);
4879 	fc_remove_host(shost);
4880 	scsi_remove_host(shost);
4881 
4882 	spin_lock_irq(&phba->port_list_lock);
4883 	list_del_init(&vport->listentry);
4884 	spin_unlock_irq(&phba->port_list_lock);
4885 
4886 	lpfc_cleanup(vport);
4887 	return;
4888 }
4889 
4890 /**
4891  * lpfc_get_instance - Get a unique integer ID
4892  *
4893  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4894  * uses the kernel idr facility to perform the task.
4895  *
4896  * Return codes:
4897  *   instance - a unique integer ID allocated as the new instance.
4898  *   -1 - lpfc get instance failed.
4899  **/
4900 int
4901 lpfc_get_instance(void)
4902 {
4903 	int ret;
4904 
4905 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4906 	return ret < 0 ? -1 : ret;
4907 }
4908 
4909 /**
4910  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4911  * @shost: pointer to SCSI host data structure.
4912  * @time: elapsed time of the scan in jiffies.
4913  *
4914  * This routine is called by the SCSI layer with a SCSI host to determine
4915  * whether the scan host is finished.
4916  *
4917  * Note: there is no scan_start function as adapter initialization will have
4918  * asynchronously kicked off the link initialization.
4919  *
4920  * Return codes
4921  *   0 - SCSI host scan is not over yet.
4922  *   1 - SCSI host scan is over.
4923  **/
4924 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4925 {
4926 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4927 	struct lpfc_hba   *phba = vport->phba;
4928 	int stat = 0;
4929 
4930 	spin_lock_irq(shost->host_lock);
4931 
4932 	if (test_bit(FC_UNLOADING, &vport->load_flag)) {
4933 		stat = 1;
4934 		goto finished;
4935 	}
4936 	if (time >= msecs_to_jiffies(30 * 1000)) {
4937 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4938 				"0461 Scanning longer than 30 "
4939 				"seconds.  Continuing initialization\n");
4940 		stat = 1;
4941 		goto finished;
4942 	}
4943 	if (time >= msecs_to_jiffies(15 * 1000) &&
4944 	    phba->link_state <= LPFC_LINK_DOWN) {
4945 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4946 				"0465 Link down longer than 15 "
4947 				"seconds.  Continuing initialization\n");
4948 		stat = 1;
4949 		goto finished;
4950 	}
4951 
4952 	if (vport->port_state != LPFC_VPORT_READY)
4953 		goto finished;
4954 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4955 		goto finished;
4956 	if (!atomic_read(&vport->fc_map_cnt) &&
4957 	    time < msecs_to_jiffies(2 * 1000))
4958 		goto finished;
4959 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4960 		goto finished;
4961 
4962 	stat = 1;
4963 
4964 finished:
4965 	spin_unlock_irq(shost->host_lock);
4966 	return stat;
4967 }
4968 
4969 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4970 {
4971 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4972 	struct lpfc_hba   *phba = vport->phba;
4973 
4974 	fc_host_supported_speeds(shost) = 0;
4975 	/*
4976 	 * Avoid reporting supported link speed for FCoE as it can't be
4977 	 * controlled via FCoE.
4978 	 */
4979 	if (phba->hba_flag & HBA_FCOE_MODE)
4980 		return;
4981 
4982 	if (phba->lmt & LMT_256Gb)
4983 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4984 	if (phba->lmt & LMT_128Gb)
4985 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4986 	if (phba->lmt & LMT_64Gb)
4987 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4988 	if (phba->lmt & LMT_32Gb)
4989 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4990 	if (phba->lmt & LMT_16Gb)
4991 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4992 	if (phba->lmt & LMT_10Gb)
4993 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4994 	if (phba->lmt & LMT_8Gb)
4995 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4996 	if (phba->lmt & LMT_4Gb)
4997 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4998 	if (phba->lmt & LMT_2Gb)
4999 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
5000 	if (phba->lmt & LMT_1Gb)
5001 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
5002 }
5003 
5004 /**
5005  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
5006  * @shost: pointer to SCSI host data structure.
5007  *
5008  * This routine initializes a given SCSI host attributes on a FC port. The
5009  * SCSI host can be either on top of a physical port or a virtual port.
5010  **/
5011 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5012 {
5013 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5014 	struct lpfc_hba   *phba = vport->phba;
5015 	/*
5016 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5017 	 */
5018 
5019 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5020 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5021 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5022 
5023 	memset(fc_host_supported_fc4s(shost), 0,
5024 	       sizeof(fc_host_supported_fc4s(shost)));
5025 	fc_host_supported_fc4s(shost)[2] = 1;
5026 	fc_host_supported_fc4s(shost)[7] = 1;
5027 
5028 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5029 				 sizeof fc_host_symbolic_name(shost));
5030 
5031 	lpfc_host_supported_speeds_set(shost);
5032 
5033 	fc_host_maxframe_size(shost) =
5034 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5035 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5036 
5037 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5038 
5039 	/* This value is also unchanging */
5040 	memset(fc_host_active_fc4s(shost), 0,
5041 	       sizeof(fc_host_active_fc4s(shost)));
5042 	fc_host_active_fc4s(shost)[2] = 1;
5043 	fc_host_active_fc4s(shost)[7] = 1;
5044 
5045 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5046 	clear_bit(FC_LOADING, &vport->load_flag);
5047 }
5048 
5049 /**
5050  * lpfc_stop_port_s3 - Stop SLI3 device port
5051  * @phba: pointer to lpfc hba data structure.
5052  *
5053  * This routine is invoked to stop an SLI3 device port, it stops the device
5054  * from generating interrupts and stops the device driver's timers for the
5055  * device.
5056  **/
5057 static void
5058 lpfc_stop_port_s3(struct lpfc_hba *phba)
5059 {
5060 	/* Clear all interrupt enable conditions */
5061 	writel(0, phba->HCregaddr);
5062 	readl(phba->HCregaddr); /* flush */
5063 	/* Clear all pending interrupts */
5064 	writel(0xffffffff, phba->HAregaddr);
5065 	readl(phba->HAregaddr); /* flush */
5066 
5067 	/* Reset some HBA SLI setup states */
5068 	lpfc_stop_hba_timers(phba);
5069 	phba->pport->work_port_events = 0;
5070 }
5071 
5072 /**
5073  * lpfc_stop_port_s4 - Stop SLI4 device port
5074  * @phba: pointer to lpfc hba data structure.
5075  *
5076  * This routine is invoked to stop an SLI4 device port, it stops the device
5077  * from generating interrupts and stops the device driver's timers for the
5078  * device.
5079  **/
5080 static void
5081 lpfc_stop_port_s4(struct lpfc_hba *phba)
5082 {
5083 	/* Reset some HBA SLI4 setup states */
5084 	lpfc_stop_hba_timers(phba);
5085 	if (phba->pport)
5086 		phba->pport->work_port_events = 0;
5087 	phba->sli4_hba.intr_enable = 0;
5088 }
5089 
5090 /**
5091  * lpfc_stop_port - Wrapper function for stopping hba port
5092  * @phba: Pointer to HBA context object.
5093  *
5094  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5095  * the API jump table function pointer from the lpfc_hba struct.
5096  **/
5097 void
5098 lpfc_stop_port(struct lpfc_hba *phba)
5099 {
5100 	phba->lpfc_stop_port(phba);
5101 
5102 	if (phba->wq)
5103 		flush_workqueue(phba->wq);
5104 }
5105 
5106 /**
5107  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5108  * @phba: Pointer to hba for which this call is being executed.
5109  *
5110  * This routine starts the timer waiting for the FCF rediscovery to complete.
5111  **/
5112 void
5113 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5114 {
5115 	unsigned long fcf_redisc_wait_tmo =
5116 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5117 	/* Start fcf rediscovery wait period timer */
5118 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5119 	spin_lock_irq(&phba->hbalock);
5120 	/* Allow action to new fcf asynchronous event */
5121 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5122 	/* Mark the FCF rediscovery pending state */
5123 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5124 	spin_unlock_irq(&phba->hbalock);
5125 }
5126 
5127 /**
5128  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5129  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5130  *
5131  * This routine is invoked when waiting for FCF table rediscover has been
5132  * timed out. If new FCF record(s) has (have) been discovered during the
5133  * wait period, a new FCF event shall be added to the FCOE async event
5134  * list, and then worker thread shall be waked up for processing from the
5135  * worker thread context.
5136  **/
5137 static void
5138 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5139 {
5140 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5141 
5142 	/* Don't send FCF rediscovery event if timer cancelled */
5143 	spin_lock_irq(&phba->hbalock);
5144 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5145 		spin_unlock_irq(&phba->hbalock);
5146 		return;
5147 	}
5148 	/* Clear FCF rediscovery timer pending flag */
5149 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5150 	/* FCF rediscovery event to worker thread */
5151 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5152 	spin_unlock_irq(&phba->hbalock);
5153 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5154 			"2776 FCF rediscover quiescent timer expired\n");
5155 	/* wake up worker thread */
5156 	lpfc_worker_wake_up(phba);
5157 }
5158 
5159 /**
5160  * lpfc_vmid_poll - VMID timeout detection
5161  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5162  *
5163  * This routine is invoked when there is no I/O on by a VM for the specified
5164  * amount of time. When this situation is detected, the VMID has to be
5165  * deregistered from the switch and all the local resources freed. The VMID
5166  * will be reassigned to the VM once the I/O begins.
5167  **/
5168 static void
5169 lpfc_vmid_poll(struct timer_list *t)
5170 {
5171 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5172 	u32 wake_up = 0;
5173 
5174 	/* check if there is a need to issue QFPA */
5175 	if (phba->pport->vmid_priority_tagging) {
5176 		wake_up = 1;
5177 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5178 	}
5179 
5180 	/* Is the vmid inactivity timer enabled */
5181 	if (phba->pport->vmid_inactivity_timeout ||
5182 	    test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) {
5183 		wake_up = 1;
5184 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5185 	}
5186 
5187 	if (wake_up)
5188 		lpfc_worker_wake_up(phba);
5189 
5190 	/* restart the timer for the next iteration */
5191 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5192 							LPFC_VMID_TIMER));
5193 }
5194 
5195 /**
5196  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5197  * @phba: pointer to lpfc hba data structure.
5198  * @acqe_link: pointer to the async link completion queue entry.
5199  *
5200  * This routine is to parse the SLI4 link-attention link fault code.
5201  **/
5202 static void
5203 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5204 			   struct lpfc_acqe_link *acqe_link)
5205 {
5206 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5207 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5208 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5209 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5210 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5211 		break;
5212 	default:
5213 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5214 		case LPFC_ASYNC_LINK_FAULT_NONE:
5215 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5216 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5217 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5218 			break;
5219 		default:
5220 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5221 					"0398 Unknown link fault code: x%x\n",
5222 					bf_get(lpfc_acqe_link_fault, acqe_link));
5223 			break;
5224 		}
5225 		break;
5226 	}
5227 }
5228 
5229 /**
5230  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5231  * @phba: pointer to lpfc hba data structure.
5232  * @acqe_link: pointer to the async link completion queue entry.
5233  *
5234  * This routine is to parse the SLI4 link attention type and translate it
5235  * into the base driver's link attention type coding.
5236  *
5237  * Return: Link attention type in terms of base driver's coding.
5238  **/
5239 static uint8_t
5240 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5241 			  struct lpfc_acqe_link *acqe_link)
5242 {
5243 	uint8_t att_type;
5244 
5245 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5246 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5247 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5248 		att_type = LPFC_ATT_LINK_DOWN;
5249 		break;
5250 	case LPFC_ASYNC_LINK_STATUS_UP:
5251 		/* Ignore physical link up events - wait for logical link up */
5252 		att_type = LPFC_ATT_RESERVED;
5253 		break;
5254 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5255 		att_type = LPFC_ATT_LINK_UP;
5256 		break;
5257 	default:
5258 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5259 				"0399 Invalid link attention type: x%x\n",
5260 				bf_get(lpfc_acqe_link_status, acqe_link));
5261 		att_type = LPFC_ATT_RESERVED;
5262 		break;
5263 	}
5264 	return att_type;
5265 }
5266 
5267 /**
5268  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5269  * @phba: pointer to lpfc hba data structure.
5270  *
5271  * This routine is to get an SLI3 FC port's link speed in Mbps.
5272  *
5273  * Return: link speed in terms of Mbps.
5274  **/
5275 uint32_t
5276 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5277 {
5278 	uint32_t link_speed;
5279 
5280 	if (!lpfc_is_link_up(phba))
5281 		return 0;
5282 
5283 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5284 		switch (phba->fc_linkspeed) {
5285 		case LPFC_LINK_SPEED_1GHZ:
5286 			link_speed = 1000;
5287 			break;
5288 		case LPFC_LINK_SPEED_2GHZ:
5289 			link_speed = 2000;
5290 			break;
5291 		case LPFC_LINK_SPEED_4GHZ:
5292 			link_speed = 4000;
5293 			break;
5294 		case LPFC_LINK_SPEED_8GHZ:
5295 			link_speed = 8000;
5296 			break;
5297 		case LPFC_LINK_SPEED_10GHZ:
5298 			link_speed = 10000;
5299 			break;
5300 		case LPFC_LINK_SPEED_16GHZ:
5301 			link_speed = 16000;
5302 			break;
5303 		default:
5304 			link_speed = 0;
5305 		}
5306 	} else {
5307 		if (phba->sli4_hba.link_state.logical_speed)
5308 			link_speed =
5309 			      phba->sli4_hba.link_state.logical_speed;
5310 		else
5311 			link_speed = phba->sli4_hba.link_state.speed;
5312 	}
5313 	return link_speed;
5314 }
5315 
5316 /**
5317  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5318  * @phba: pointer to lpfc hba data structure.
5319  * @evt_code: asynchronous event code.
5320  * @speed_code: asynchronous event link speed code.
5321  *
5322  * This routine is to parse the giving SLI4 async event link speed code into
5323  * value of Mbps for the link speed.
5324  *
5325  * Return: link speed in terms of Mbps.
5326  **/
5327 static uint32_t
5328 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5329 			   uint8_t speed_code)
5330 {
5331 	uint32_t port_speed;
5332 
5333 	switch (evt_code) {
5334 	case LPFC_TRAILER_CODE_LINK:
5335 		switch (speed_code) {
5336 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5337 			port_speed = 0;
5338 			break;
5339 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5340 			port_speed = 10;
5341 			break;
5342 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5343 			port_speed = 100;
5344 			break;
5345 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5346 			port_speed = 1000;
5347 			break;
5348 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5349 			port_speed = 10000;
5350 			break;
5351 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5352 			port_speed = 20000;
5353 			break;
5354 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5355 			port_speed = 25000;
5356 			break;
5357 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5358 			port_speed = 40000;
5359 			break;
5360 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5361 			port_speed = 100000;
5362 			break;
5363 		default:
5364 			port_speed = 0;
5365 		}
5366 		break;
5367 	case LPFC_TRAILER_CODE_FC:
5368 		switch (speed_code) {
5369 		case LPFC_FC_LA_SPEED_UNKNOWN:
5370 			port_speed = 0;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_1G:
5373 			port_speed = 1000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_2G:
5376 			port_speed = 2000;
5377 			break;
5378 		case LPFC_FC_LA_SPEED_4G:
5379 			port_speed = 4000;
5380 			break;
5381 		case LPFC_FC_LA_SPEED_8G:
5382 			port_speed = 8000;
5383 			break;
5384 		case LPFC_FC_LA_SPEED_10G:
5385 			port_speed = 10000;
5386 			break;
5387 		case LPFC_FC_LA_SPEED_16G:
5388 			port_speed = 16000;
5389 			break;
5390 		case LPFC_FC_LA_SPEED_32G:
5391 			port_speed = 32000;
5392 			break;
5393 		case LPFC_FC_LA_SPEED_64G:
5394 			port_speed = 64000;
5395 			break;
5396 		case LPFC_FC_LA_SPEED_128G:
5397 			port_speed = 128000;
5398 			break;
5399 		case LPFC_FC_LA_SPEED_256G:
5400 			port_speed = 256000;
5401 			break;
5402 		default:
5403 			port_speed = 0;
5404 		}
5405 		break;
5406 	default:
5407 		port_speed = 0;
5408 	}
5409 	return port_speed;
5410 }
5411 
5412 /**
5413  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5414  * @phba: pointer to lpfc hba data structure.
5415  * @acqe_link: pointer to the async link completion queue entry.
5416  *
5417  * This routine is to handle the SLI4 asynchronous FCoE link event.
5418  **/
5419 static void
5420 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5421 			 struct lpfc_acqe_link *acqe_link)
5422 {
5423 	LPFC_MBOXQ_t *pmb;
5424 	MAILBOX_t *mb;
5425 	struct lpfc_mbx_read_top *la;
5426 	uint8_t att_type;
5427 	int rc;
5428 
5429 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5430 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5431 		return;
5432 	phba->fcoe_eventtag = acqe_link->event_tag;
5433 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5434 	if (!pmb) {
5435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5436 				"0395 The mboxq allocation failed\n");
5437 		return;
5438 	}
5439 
5440 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5441 	if (rc) {
5442 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5443 				"0396 mailbox allocation failed\n");
5444 		goto out_free_pmb;
5445 	}
5446 
5447 	/* Cleanup any outstanding ELS commands */
5448 	lpfc_els_flush_all_cmd(phba);
5449 
5450 	/* Block ELS IOCBs until we have done process link event */
5451 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5452 
5453 	/* Update link event statistics */
5454 	phba->sli.slistat.link_event++;
5455 
5456 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5457 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5458 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5459 	pmb->vport = phba->pport;
5460 
5461 	/* Keep the link status for extra SLI4 state machine reference */
5462 	phba->sli4_hba.link_state.speed =
5463 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5464 				bf_get(lpfc_acqe_link_speed, acqe_link));
5465 	phba->sli4_hba.link_state.duplex =
5466 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5467 	phba->sli4_hba.link_state.status =
5468 				bf_get(lpfc_acqe_link_status, acqe_link);
5469 	phba->sli4_hba.link_state.type =
5470 				bf_get(lpfc_acqe_link_type, acqe_link);
5471 	phba->sli4_hba.link_state.number =
5472 				bf_get(lpfc_acqe_link_number, acqe_link);
5473 	phba->sli4_hba.link_state.fault =
5474 				bf_get(lpfc_acqe_link_fault, acqe_link);
5475 	phba->sli4_hba.link_state.logical_speed =
5476 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5477 
5478 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5479 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5480 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5481 			"Logical speed:%dMbps Fault:%d\n",
5482 			phba->sli4_hba.link_state.speed,
5483 			phba->sli4_hba.link_state.topology,
5484 			phba->sli4_hba.link_state.status,
5485 			phba->sli4_hba.link_state.type,
5486 			phba->sli4_hba.link_state.number,
5487 			phba->sli4_hba.link_state.logical_speed,
5488 			phba->sli4_hba.link_state.fault);
5489 	/*
5490 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5491 	 * topology info. Note: Optional for non FC-AL ports.
5492 	 */
5493 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5494 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5495 		if (rc == MBX_NOT_FINISHED)
5496 			goto out_free_pmb;
5497 		return;
5498 	}
5499 	/*
5500 	 * For FCoE Mode: fill in all the topology information we need and call
5501 	 * the READ_TOPOLOGY completion routine to continue without actually
5502 	 * sending the READ_TOPOLOGY mailbox command to the port.
5503 	 */
5504 	/* Initialize completion status */
5505 	mb = &pmb->u.mb;
5506 	mb->mbxStatus = MBX_SUCCESS;
5507 
5508 	/* Parse port fault information field */
5509 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5510 
5511 	/* Parse and translate link attention fields */
5512 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5513 	la->eventTag = acqe_link->event_tag;
5514 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5515 	bf_set(lpfc_mbx_read_top_link_spd, la,
5516 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5517 
5518 	/* Fake the following irrelevant fields */
5519 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5520 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5521 	bf_set(lpfc_mbx_read_top_il, la, 0);
5522 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5523 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5524 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5525 
5526 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5527 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5528 
5529 	return;
5530 
5531 out_free_pmb:
5532 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5533 }
5534 
5535 /**
5536  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5537  * topology.
5538  * @phba: pointer to lpfc hba data structure.
5539  * @speed_code: asynchronous event link speed code.
5540  *
5541  * This routine is to parse the giving SLI4 async event link speed code into
5542  * value of Read topology link speed.
5543  *
5544  * Return: link speed in terms of Read topology.
5545  **/
5546 static uint8_t
5547 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5548 {
5549 	uint8_t port_speed;
5550 
5551 	switch (speed_code) {
5552 	case LPFC_FC_LA_SPEED_1G:
5553 		port_speed = LPFC_LINK_SPEED_1GHZ;
5554 		break;
5555 	case LPFC_FC_LA_SPEED_2G:
5556 		port_speed = LPFC_LINK_SPEED_2GHZ;
5557 		break;
5558 	case LPFC_FC_LA_SPEED_4G:
5559 		port_speed = LPFC_LINK_SPEED_4GHZ;
5560 		break;
5561 	case LPFC_FC_LA_SPEED_8G:
5562 		port_speed = LPFC_LINK_SPEED_8GHZ;
5563 		break;
5564 	case LPFC_FC_LA_SPEED_16G:
5565 		port_speed = LPFC_LINK_SPEED_16GHZ;
5566 		break;
5567 	case LPFC_FC_LA_SPEED_32G:
5568 		port_speed = LPFC_LINK_SPEED_32GHZ;
5569 		break;
5570 	case LPFC_FC_LA_SPEED_64G:
5571 		port_speed = LPFC_LINK_SPEED_64GHZ;
5572 		break;
5573 	case LPFC_FC_LA_SPEED_128G:
5574 		port_speed = LPFC_LINK_SPEED_128GHZ;
5575 		break;
5576 	case LPFC_FC_LA_SPEED_256G:
5577 		port_speed = LPFC_LINK_SPEED_256GHZ;
5578 		break;
5579 	default:
5580 		port_speed = 0;
5581 		break;
5582 	}
5583 
5584 	return port_speed;
5585 }
5586 
5587 void
5588 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5589 {
5590 	if (!phba->rx_monitor) {
5591 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5592 				"4411 Rx Monitor Info is empty.\n");
5593 	} else {
5594 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5595 				       LPFC_MAX_RXMONITOR_DUMP);
5596 	}
5597 }
5598 
5599 /**
5600  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5601  * @phba: pointer to lpfc hba data structure.
5602  * @dtag: FPIN descriptor received
5603  *
5604  * Increment the FPIN received counter/time when it happens.
5605  */
5606 void
5607 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5608 {
5609 	struct lpfc_cgn_info *cp;
5610 	u32 value;
5611 
5612 	/* Make sure we have a congestion info buffer */
5613 	if (!phba->cgn_i)
5614 		return;
5615 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5616 
5617 	/* Update congestion statistics */
5618 	switch (dtag) {
5619 	case ELS_DTAG_LNK_INTEGRITY:
5620 		le32_add_cpu(&cp->link_integ_notification, 1);
5621 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5622 		break;
5623 	case ELS_DTAG_DELIVERY:
5624 		le32_add_cpu(&cp->delivery_notification, 1);
5625 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5626 		break;
5627 	case ELS_DTAG_PEER_CONGEST:
5628 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5629 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5630 		break;
5631 	case ELS_DTAG_CONGESTION:
5632 		le32_add_cpu(&cp->cgn_notification, 1);
5633 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5634 	}
5635 	if (phba->cgn_fpin_frequency &&
5636 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5637 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5638 		cp->cgn_stat_npm = value;
5639 	}
5640 
5641 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5642 				    LPFC_CGN_CRC32_SEED);
5643 	cp->cgn_info_crc = cpu_to_le32(value);
5644 }
5645 
5646 /**
5647  * lpfc_cgn_update_tstamp - Update cmf timestamp
5648  * @phba: pointer to lpfc hba data structure.
5649  * @ts: structure to write the timestamp to.
5650  */
5651 void
5652 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5653 {
5654 	struct timespec64 cur_time;
5655 	struct tm tm_val;
5656 
5657 	ktime_get_real_ts64(&cur_time);
5658 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5659 
5660 	ts->month = tm_val.tm_mon + 1;
5661 	ts->day	= tm_val.tm_mday;
5662 	ts->year = tm_val.tm_year - 100;
5663 	ts->hour = tm_val.tm_hour;
5664 	ts->minute = tm_val.tm_min;
5665 	ts->second = tm_val.tm_sec;
5666 
5667 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5668 			"2646 Updated CMF timestamp : "
5669 			"%u/%u/%u %u:%u:%u\n",
5670 			ts->day, ts->month,
5671 			ts->year, ts->hour,
5672 			ts->minute, ts->second);
5673 }
5674 
5675 /**
5676  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5677  * @timer: Timer cookie to access lpfc private data
5678  *
5679  * Save the congestion event data every minute.
5680  * On the hour collapse all the minute data into hour data. Every day
5681  * collapse all the hour data into daily data. Separate driver
5682  * and fabrc congestion event counters that will be saved out
5683  * to the registered congestion buffer every minute.
5684  */
5685 static enum hrtimer_restart
5686 lpfc_cmf_stats_timer(struct hrtimer *timer)
5687 {
5688 	struct lpfc_hba *phba;
5689 	struct lpfc_cgn_info *cp;
5690 	uint32_t i, index;
5691 	uint16_t value, mvalue;
5692 	uint64_t bps;
5693 	uint32_t mbps;
5694 	uint32_t dvalue, wvalue, lvalue, avalue;
5695 	uint64_t latsum;
5696 	__le16 *ptr;
5697 	__le32 *lptr;
5698 	__le16 *mptr;
5699 
5700 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5701 	/* Make sure we have a congestion info buffer */
5702 	if (!phba->cgn_i)
5703 		return HRTIMER_NORESTART;
5704 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5705 
5706 	phba->cgn_evt_timestamp = jiffies +
5707 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5708 	phba->cgn_evt_minute++;
5709 
5710 	/* We should get to this point in the routine on 1 minute intervals */
5711 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5712 
5713 	if (phba->cgn_fpin_frequency &&
5714 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5715 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5716 		cp->cgn_stat_npm = value;
5717 	}
5718 
5719 	/* Read and clear the latency counters for this minute */
5720 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5721 	latsum = atomic64_read(&phba->cgn_latency_evt);
5722 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5723 	atomic64_set(&phba->cgn_latency_evt, 0);
5724 
5725 	/* We need to store MB/sec bandwidth in the congestion information.
5726 	 * block_cnt is count of 512 byte blocks for the entire minute,
5727 	 * bps will get bytes per sec before finally converting to MB/sec.
5728 	 */
5729 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5730 	phba->rx_block_cnt = 0;
5731 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5732 
5733 	/* Every minute */
5734 	/* cgn parameters */
5735 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5736 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5737 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5738 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5739 
5740 	/* Fill in default LUN qdepth */
5741 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5742 	cp->cgn_lunq = cpu_to_le16(value);
5743 
5744 	/* Record congestion buffer info - every minute
5745 	 * cgn_driver_evt_cnt (Driver events)
5746 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5747 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5748 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5749 	 */
5750 	index = ++cp->cgn_index_minute;
5751 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5752 		cp->cgn_index_minute = 0;
5753 		index = 0;
5754 	}
5755 
5756 	/* Get the number of driver events in this sample and reset counter */
5757 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5758 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5759 
5760 	/* Get the number of warning events - FPIN and Signal for this minute */
5761 	wvalue = 0;
5762 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5763 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5764 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5765 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5766 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5767 
5768 	/* Get the number of alarm events - FPIN and Signal for this minute */
5769 	avalue = 0;
5770 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5771 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5772 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5773 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5774 
5775 	/* Collect the driver, warning, alarm and latency counts for this
5776 	 * minute into the driver congestion buffer.
5777 	 */
5778 	ptr = &cp->cgn_drvr_min[index];
5779 	value = (uint16_t)dvalue;
5780 	*ptr = cpu_to_le16(value);
5781 
5782 	ptr = &cp->cgn_warn_min[index];
5783 	value = (uint16_t)wvalue;
5784 	*ptr = cpu_to_le16(value);
5785 
5786 	ptr = &cp->cgn_alarm_min[index];
5787 	value = (uint16_t)avalue;
5788 	*ptr = cpu_to_le16(value);
5789 
5790 	lptr = &cp->cgn_latency_min[index];
5791 	if (lvalue) {
5792 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5793 		*lptr = cpu_to_le32(lvalue);
5794 	} else {
5795 		*lptr = 0;
5796 	}
5797 
5798 	/* Collect the bandwidth value into the driver's congesion buffer. */
5799 	mptr = &cp->cgn_bw_min[index];
5800 	*mptr = cpu_to_le16(mvalue);
5801 
5802 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5803 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5804 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5805 
5806 	/* Every hour */
5807 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5808 		/* Record congestion buffer info - every hour
5809 		 * Collapse all minutes into an hour
5810 		 */
5811 		index = ++cp->cgn_index_hour;
5812 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5813 			cp->cgn_index_hour = 0;
5814 			index = 0;
5815 		}
5816 
5817 		dvalue = 0;
5818 		wvalue = 0;
5819 		lvalue = 0;
5820 		avalue = 0;
5821 		mvalue = 0;
5822 		mbps = 0;
5823 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5824 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5825 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5826 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5827 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5828 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5829 		}
5830 		if (lvalue)		/* Avg of latency averages */
5831 			lvalue /= LPFC_MIN_HOUR;
5832 		if (mbps)		/* Avg of Bandwidth averages */
5833 			mvalue = mbps / LPFC_MIN_HOUR;
5834 
5835 		lptr = &cp->cgn_drvr_hr[index];
5836 		*lptr = cpu_to_le32(dvalue);
5837 		lptr = &cp->cgn_warn_hr[index];
5838 		*lptr = cpu_to_le32(wvalue);
5839 		lptr = &cp->cgn_latency_hr[index];
5840 		*lptr = cpu_to_le32(lvalue);
5841 		mptr = &cp->cgn_bw_hr[index];
5842 		*mptr = cpu_to_le16(mvalue);
5843 		lptr = &cp->cgn_alarm_hr[index];
5844 		*lptr = cpu_to_le32(avalue);
5845 
5846 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5847 				"2419 Congestion Info - hour "
5848 				"(%d): %d %d %d %d %d\n",
5849 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5850 	}
5851 
5852 	/* Every day */
5853 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5854 		/* Record congestion buffer info - every hour
5855 		 * Collapse all hours into a day. Rotate days
5856 		 * after LPFC_MAX_CGN_DAYS.
5857 		 */
5858 		index = ++cp->cgn_index_day;
5859 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5860 			cp->cgn_index_day = 0;
5861 			index = 0;
5862 		}
5863 
5864 		dvalue = 0;
5865 		wvalue = 0;
5866 		lvalue = 0;
5867 		mvalue = 0;
5868 		mbps = 0;
5869 		avalue = 0;
5870 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5871 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5872 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5873 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5874 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5875 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5876 		}
5877 		if (lvalue)		/* Avg of latency averages */
5878 			lvalue /= LPFC_HOUR_DAY;
5879 		if (mbps)		/* Avg of Bandwidth averages */
5880 			mvalue = mbps / LPFC_HOUR_DAY;
5881 
5882 		lptr = &cp->cgn_drvr_day[index];
5883 		*lptr = cpu_to_le32(dvalue);
5884 		lptr = &cp->cgn_warn_day[index];
5885 		*lptr = cpu_to_le32(wvalue);
5886 		lptr = &cp->cgn_latency_day[index];
5887 		*lptr = cpu_to_le32(lvalue);
5888 		mptr = &cp->cgn_bw_day[index];
5889 		*mptr = cpu_to_le16(mvalue);
5890 		lptr = &cp->cgn_alarm_day[index];
5891 		*lptr = cpu_to_le32(avalue);
5892 
5893 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5894 				"2420 Congestion Info - daily (%d): "
5895 				"%d %d %d %d %d\n",
5896 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5897 	}
5898 
5899 	/* Use the frequency found in the last rcv'ed FPIN */
5900 	value = phba->cgn_fpin_frequency;
5901 	cp->cgn_warn_freq = cpu_to_le16(value);
5902 	cp->cgn_alarm_freq = cpu_to_le16(value);
5903 
5904 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5905 				     LPFC_CGN_CRC32_SEED);
5906 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5907 
5908 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5909 
5910 	return HRTIMER_RESTART;
5911 }
5912 
5913 /**
5914  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5915  * @phba: The Hba for which this call is being executed.
5916  *
5917  * The routine calculates the latency from the beginning of the CMF timer
5918  * interval to the current point in time. It is called from IO completion
5919  * when we exceed our Bandwidth limitation for the time interval.
5920  */
5921 uint32_t
5922 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5923 {
5924 	struct timespec64 cmpl_time;
5925 	uint32_t msec = 0;
5926 
5927 	ktime_get_real_ts64(&cmpl_time);
5928 
5929 	/* This routine works on a ms granularity so sec and usec are
5930 	 * converted accordingly.
5931 	 */
5932 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5933 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5934 			NSEC_PER_MSEC;
5935 	} else {
5936 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5937 			msec = (cmpl_time.tv_sec -
5938 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5939 			msec += ((cmpl_time.tv_nsec -
5940 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5941 		} else {
5942 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5943 				1) * MSEC_PER_SEC;
5944 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5945 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5946 		}
5947 	}
5948 	return msec;
5949 }
5950 
5951 /**
5952  * lpfc_cmf_timer -  This is the timer function for one congestion
5953  * rate interval.
5954  * @timer: Pointer to the high resolution timer that expired
5955  */
5956 static enum hrtimer_restart
5957 lpfc_cmf_timer(struct hrtimer *timer)
5958 {
5959 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5960 					     cmf_timer);
5961 	struct rx_info_entry entry;
5962 	uint32_t io_cnt;
5963 	uint32_t busy, max_read;
5964 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5965 	int timer_interval = LPFC_CMF_INTERVAL;
5966 	uint32_t ms;
5967 	struct lpfc_cgn_stat *cgs;
5968 	int cpu;
5969 
5970 	/* Only restart the timer if congestion mgmt is on */
5971 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5972 	    !phba->cmf_latency.tv_sec) {
5973 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5974 				"6224 CMF timer exit: %d %lld\n",
5975 				phba->cmf_active_mode,
5976 				(uint64_t)phba->cmf_latency.tv_sec);
5977 		return HRTIMER_NORESTART;
5978 	}
5979 
5980 	/* If pport is not ready yet, just exit and wait for
5981 	 * the next timer cycle to hit.
5982 	 */
5983 	if (!phba->pport)
5984 		goto skip;
5985 
5986 	/* Do not block SCSI IO while in the timer routine since
5987 	 * total_bytes will be cleared
5988 	 */
5989 	atomic_set(&phba->cmf_stop_io, 1);
5990 
5991 	/* First we need to calculate the actual ms between
5992 	 * the last timer interrupt and this one. We ask for
5993 	 * LPFC_CMF_INTERVAL, however the actual time may
5994 	 * vary depending on system overhead.
5995 	 */
5996 	ms = lpfc_calc_cmf_latency(phba);
5997 
5998 
5999 	/* Immediately after we calculate the time since the last
6000 	 * timer interrupt, set the start time for the next
6001 	 * interrupt
6002 	 */
6003 	ktime_get_real_ts64(&phba->cmf_latency);
6004 
6005 	phba->cmf_link_byte_count =
6006 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6007 
6008 	/* Collect all the stats from the prior timer interval */
6009 	total = 0;
6010 	io_cnt = 0;
6011 	lat = 0;
6012 	rcv = 0;
6013 	for_each_present_cpu(cpu) {
6014 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6015 		total += atomic64_xchg(&cgs->total_bytes, 0);
6016 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6017 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6018 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6019 	}
6020 
6021 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6022 	 * returned from the last CMF_SYNC_WQE issued, from
6023 	 * cmf_last_sync_bw. This will be the target BW for
6024 	 * this next timer interval.
6025 	 */
6026 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6027 	    phba->link_state != LPFC_LINK_DOWN &&
6028 	    phba->hba_flag & HBA_SETUP) {
6029 		mbpi = phba->cmf_last_sync_bw;
6030 		phba->cmf_last_sync_bw = 0;
6031 		extra = 0;
6032 
6033 		/* Calculate any extra bytes needed to account for the
6034 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6035 		 * calculate the adjustment needed for total to reflect
6036 		 * a full LPFC_CMF_INTERVAL.
6037 		 */
6038 		if (ms && ms < LPFC_CMF_INTERVAL) {
6039 			cnt = div_u64(total, ms); /* bytes per ms */
6040 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6041 			extra = cnt - total;
6042 		}
6043 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6044 	} else {
6045 		/* For Monitor mode or link down we want mbpi
6046 		 * to be the full link speed
6047 		 */
6048 		mbpi = phba->cmf_link_byte_count;
6049 		extra = 0;
6050 	}
6051 	phba->cmf_timer_cnt++;
6052 
6053 	if (io_cnt) {
6054 		/* Update congestion info buffer latency in us */
6055 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6056 		atomic64_add(lat, &phba->cgn_latency_evt);
6057 	}
6058 	busy = atomic_xchg(&phba->cmf_busy, 0);
6059 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6060 
6061 	/* Calculate MBPI for the next timer interval */
6062 	if (mbpi) {
6063 		if (mbpi > phba->cmf_link_byte_count ||
6064 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6065 			mbpi = phba->cmf_link_byte_count;
6066 
6067 		/* Change max_bytes_per_interval to what the prior
6068 		 * CMF_SYNC_WQE cmpl indicated.
6069 		 */
6070 		if (mbpi != phba->cmf_max_bytes_per_interval)
6071 			phba->cmf_max_bytes_per_interval = mbpi;
6072 	}
6073 
6074 	/* Save rxmonitor information for debug */
6075 	if (phba->rx_monitor) {
6076 		entry.total_bytes = total;
6077 		entry.cmf_bytes = total + extra;
6078 		entry.rcv_bytes = rcv;
6079 		entry.cmf_busy = busy;
6080 		entry.cmf_info = phba->cmf_active_info;
6081 		if (io_cnt) {
6082 			entry.avg_io_latency = div_u64(lat, io_cnt);
6083 			entry.avg_io_size = div_u64(rcv, io_cnt);
6084 		} else {
6085 			entry.avg_io_latency = 0;
6086 			entry.avg_io_size = 0;
6087 		}
6088 		entry.max_read_cnt = max_read;
6089 		entry.io_cnt = io_cnt;
6090 		entry.max_bytes_per_interval = mbpi;
6091 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6092 			entry.timer_utilization = phba->cmf_last_ts;
6093 		else
6094 			entry.timer_utilization = ms;
6095 		entry.timer_interval = ms;
6096 		phba->cmf_last_ts = 0;
6097 
6098 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6099 	}
6100 
6101 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6102 		/* If Monitor mode, check if we are oversubscribed
6103 		 * against the full line rate.
6104 		 */
6105 		if (mbpi && total > mbpi)
6106 			atomic_inc(&phba->cgn_driver_evt_cnt);
6107 	}
6108 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6109 
6110 	/* Since total_bytes has already been zero'ed, its okay to unblock
6111 	 * after max_bytes_per_interval is setup.
6112 	 */
6113 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6114 		queue_work(phba->wq, &phba->unblock_request_work);
6115 
6116 	/* SCSI IO is now unblocked */
6117 	atomic_set(&phba->cmf_stop_io, 0);
6118 
6119 skip:
6120 	hrtimer_forward_now(timer,
6121 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6122 	return HRTIMER_RESTART;
6123 }
6124 
6125 #define trunk_link_status(__idx)\
6126 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6127 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6128 		"Link up" : "Link down") : "NA"
6129 /* Did port __idx reported an error */
6130 #define trunk_port_fault(__idx)\
6131 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6132 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6133 
6134 static void
6135 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6136 			      struct lpfc_acqe_fc_la *acqe_fc)
6137 {
6138 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6139 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6140 	u8 cnt = 0;
6141 
6142 	phba->sli4_hba.link_state.speed =
6143 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6144 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6145 
6146 	phba->sli4_hba.link_state.logical_speed =
6147 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6148 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6149 	phba->fc_linkspeed =
6150 		 lpfc_async_link_speed_to_read_top(
6151 				phba,
6152 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6153 
6154 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6155 		phba->trunk_link.link0.state =
6156 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6157 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6158 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6159 		cnt++;
6160 	}
6161 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6162 		phba->trunk_link.link1.state =
6163 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6164 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6165 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6166 		cnt++;
6167 	}
6168 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6169 		phba->trunk_link.link2.state =
6170 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6171 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6172 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6173 		cnt++;
6174 	}
6175 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6176 		phba->trunk_link.link3.state =
6177 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6178 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6179 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6180 		cnt++;
6181 	}
6182 
6183 	if (cnt)
6184 		phba->trunk_link.phy_lnk_speed =
6185 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6186 	else
6187 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6188 
6189 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6190 			"2910 Async FC Trunking Event - Speed:%d\n"
6191 			"\tLogical speed:%d "
6192 			"port0: %s port1: %s port2: %s port3: %s\n",
6193 			phba->sli4_hba.link_state.speed,
6194 			phba->sli4_hba.link_state.logical_speed,
6195 			trunk_link_status(0), trunk_link_status(1),
6196 			trunk_link_status(2), trunk_link_status(3));
6197 
6198 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6199 		lpfc_cmf_signal_init(phba);
6200 
6201 	if (port_fault)
6202 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6203 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6204 				/*
6205 				 * SLI-4: We have only 0xA error codes
6206 				 * defined as of now. print an appropriate
6207 				 * message in case driver needs to be updated.
6208 				 */
6209 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6210 				"UNDEFINED. update driver." : trunk_errmsg[err],
6211 				trunk_port_fault(0), trunk_port_fault(1),
6212 				trunk_port_fault(2), trunk_port_fault(3));
6213 }
6214 
6215 
6216 /**
6217  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6218  * @phba: pointer to lpfc hba data structure.
6219  * @acqe_fc: pointer to the async fc completion queue entry.
6220  *
6221  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6222  * that the event was received and then issue a read_topology mailbox command so
6223  * that the rest of the driver will treat it the same as SLI3.
6224  **/
6225 static void
6226 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6227 {
6228 	LPFC_MBOXQ_t *pmb;
6229 	MAILBOX_t *mb;
6230 	struct lpfc_mbx_read_top *la;
6231 	char *log_level;
6232 	int rc;
6233 
6234 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6235 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6236 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6237 				"2895 Non FC link Event detected.(%d)\n",
6238 				bf_get(lpfc_trailer_type, acqe_fc));
6239 		return;
6240 	}
6241 
6242 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6243 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6244 		lpfc_update_trunk_link_status(phba, acqe_fc);
6245 		return;
6246 	}
6247 
6248 	/* Keep the link status for extra SLI4 state machine reference */
6249 	phba->sli4_hba.link_state.speed =
6250 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6251 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6252 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6253 	phba->sli4_hba.link_state.topology =
6254 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6255 	phba->sli4_hba.link_state.status =
6256 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6257 	phba->sli4_hba.link_state.type =
6258 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6259 	phba->sli4_hba.link_state.number =
6260 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6261 	phba->sli4_hba.link_state.fault =
6262 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6263 	phba->sli4_hba.link_state.link_status =
6264 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6265 
6266 	/*
6267 	 * Only select attention types need logical speed modification to what
6268 	 * was previously set.
6269 	 */
6270 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6271 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6272 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6273 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6274 			phba->sli4_hba.link_state.logical_speed = 0;
6275 		else if (!phba->sli4_hba.conf_trunk)
6276 			phba->sli4_hba.link_state.logical_speed =
6277 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6278 	}
6279 
6280 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6281 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6282 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6283 			"%dMbps Fault:x%x Link Status:x%x\n",
6284 			phba->sli4_hba.link_state.speed,
6285 			phba->sli4_hba.link_state.topology,
6286 			phba->sli4_hba.link_state.status,
6287 			phba->sli4_hba.link_state.type,
6288 			phba->sli4_hba.link_state.number,
6289 			phba->sli4_hba.link_state.logical_speed,
6290 			phba->sli4_hba.link_state.fault,
6291 			phba->sli4_hba.link_state.link_status);
6292 
6293 	/*
6294 	 * The following attention types are informational only, providing
6295 	 * further details about link status.  Overwrite the value of
6296 	 * link_state.status appropriately.  No further action is required.
6297 	 */
6298 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6299 		switch (phba->sli4_hba.link_state.status) {
6300 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6301 			log_level = KERN_WARNING;
6302 			phba->sli4_hba.link_state.status =
6303 					LPFC_FC_LA_TYPE_LINK_DOWN;
6304 			break;
6305 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6306 			/*
6307 			 * During bb credit recovery establishment, receiving
6308 			 * this attention type is normal.  Link Up attention
6309 			 * type is expected to occur before this informational
6310 			 * attention type so keep the Link Up status.
6311 			 */
6312 			log_level = KERN_INFO;
6313 			phba->sli4_hba.link_state.status =
6314 					LPFC_FC_LA_TYPE_LINK_UP;
6315 			break;
6316 		default:
6317 			log_level = KERN_INFO;
6318 			break;
6319 		}
6320 		lpfc_log_msg(phba, log_level, LOG_SLI,
6321 			     "2992 Async FC event - Informational Link "
6322 			     "Attention Type x%x\n",
6323 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6324 		return;
6325 	}
6326 
6327 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6328 	if (!pmb) {
6329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6330 				"2897 The mboxq allocation failed\n");
6331 		return;
6332 	}
6333 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6334 	if (rc) {
6335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6336 				"2898 The mboxq prep failed\n");
6337 		goto out_free_pmb;
6338 	}
6339 
6340 	/* Cleanup any outstanding ELS commands */
6341 	lpfc_els_flush_all_cmd(phba);
6342 
6343 	/* Block ELS IOCBs until we have done process link event */
6344 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6345 
6346 	/* Update link event statistics */
6347 	phba->sli.slistat.link_event++;
6348 
6349 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6350 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6351 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6352 	pmb->vport = phba->pport;
6353 
6354 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6355 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6356 
6357 		switch (phba->sli4_hba.link_state.status) {
6358 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6359 			phba->link_flag |= LS_MDS_LINK_DOWN;
6360 			break;
6361 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6362 			phba->link_flag |= LS_MDS_LOOPBACK;
6363 			break;
6364 		default:
6365 			break;
6366 		}
6367 
6368 		/* Initialize completion status */
6369 		mb = &pmb->u.mb;
6370 		mb->mbxStatus = MBX_SUCCESS;
6371 
6372 		/* Parse port fault information field */
6373 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6374 
6375 		/* Parse and translate link attention fields */
6376 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6377 		la->eventTag = acqe_fc->event_tag;
6378 
6379 		if (phba->sli4_hba.link_state.status ==
6380 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6381 			bf_set(lpfc_mbx_read_top_att_type, la,
6382 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6383 		} else {
6384 			bf_set(lpfc_mbx_read_top_att_type, la,
6385 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6386 		}
6387 		/* Invoke the mailbox command callback function */
6388 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6389 
6390 		return;
6391 	}
6392 
6393 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6394 	if (rc == MBX_NOT_FINISHED)
6395 		goto out_free_pmb;
6396 	return;
6397 
6398 out_free_pmb:
6399 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6400 }
6401 
6402 /**
6403  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6404  * @phba: pointer to lpfc hba data structure.
6405  * @acqe_sli: pointer to the async SLI completion queue entry.
6406  *
6407  * This routine is to handle the SLI4 asynchronous SLI events.
6408  **/
6409 static void
6410 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6411 {
6412 	char port_name;
6413 	char message[128];
6414 	uint8_t status;
6415 	uint8_t evt_type;
6416 	uint8_t operational = 0;
6417 	struct temp_event temp_event_data;
6418 	struct lpfc_acqe_misconfigured_event *misconfigured;
6419 	struct lpfc_acqe_cgn_signal *cgn_signal;
6420 	struct Scsi_Host  *shost;
6421 	struct lpfc_vport **vports;
6422 	int rc, i, cnt;
6423 
6424 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6425 
6426 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6427 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6428 			"x%08x x%08x x%08x\n", evt_type,
6429 			acqe_sli->event_data1, acqe_sli->event_data2,
6430 			acqe_sli->event_data3, acqe_sli->trailer);
6431 
6432 	port_name = phba->Port[0];
6433 	if (port_name == 0x00)
6434 		port_name = '?'; /* get port name is empty */
6435 
6436 	switch (evt_type) {
6437 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6438 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6439 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6440 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6441 
6442 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6443 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6444 				acqe_sli->event_data1, port_name);
6445 
6446 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6447 		shost = lpfc_shost_from_vport(phba->pport);
6448 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6449 					  sizeof(temp_event_data),
6450 					  (char *)&temp_event_data,
6451 					  SCSI_NL_VID_TYPE_PCI
6452 					  | PCI_VENDOR_ID_EMULEX);
6453 		break;
6454 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6455 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6456 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6457 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6458 
6459 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6460 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6461 				acqe_sli->event_data1, port_name);
6462 
6463 		shost = lpfc_shost_from_vport(phba->pport);
6464 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6465 					  sizeof(temp_event_data),
6466 					  (char *)&temp_event_data,
6467 					  SCSI_NL_VID_TYPE_PCI
6468 					  | PCI_VENDOR_ID_EMULEX);
6469 		break;
6470 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6471 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6472 					&acqe_sli->event_data1;
6473 
6474 		/* fetch the status for this port */
6475 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6476 		case LPFC_LINK_NUMBER_0:
6477 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6478 					&misconfigured->theEvent);
6479 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6480 					&misconfigured->theEvent);
6481 			break;
6482 		case LPFC_LINK_NUMBER_1:
6483 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6484 					&misconfigured->theEvent);
6485 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6486 					&misconfigured->theEvent);
6487 			break;
6488 		case LPFC_LINK_NUMBER_2:
6489 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6490 					&misconfigured->theEvent);
6491 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6492 					&misconfigured->theEvent);
6493 			break;
6494 		case LPFC_LINK_NUMBER_3:
6495 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6496 					&misconfigured->theEvent);
6497 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6498 					&misconfigured->theEvent);
6499 			break;
6500 		default:
6501 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6502 					"3296 "
6503 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6504 					"event: Invalid link %d",
6505 					phba->sli4_hba.lnk_info.lnk_no);
6506 			return;
6507 		}
6508 
6509 		/* Skip if optic state unchanged */
6510 		if (phba->sli4_hba.lnk_info.optic_state == status)
6511 			return;
6512 
6513 		switch (status) {
6514 		case LPFC_SLI_EVENT_STATUS_VALID:
6515 			sprintf(message, "Physical Link is functional");
6516 			break;
6517 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6518 			sprintf(message, "Optics faulted/incorrectly "
6519 				"installed/not installed - Reseat optics, "
6520 				"if issue not resolved, replace.");
6521 			break;
6522 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6523 			sprintf(message,
6524 				"Optics of two types installed - Remove one "
6525 				"optic or install matching pair of optics.");
6526 			break;
6527 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6528 			sprintf(message, "Incompatible optics - Replace with "
6529 				"compatible optics for card to function.");
6530 			break;
6531 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6532 			sprintf(message, "Unqualified optics - Replace with "
6533 				"Avago optics for Warranty and Technical "
6534 				"Support - Link is%s operational",
6535 				(operational) ? " not" : "");
6536 			break;
6537 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6538 			sprintf(message, "Uncertified optics - Replace with "
6539 				"Avago-certified optics to enable link "
6540 				"operation - Link is%s operational",
6541 				(operational) ? " not" : "");
6542 			break;
6543 		default:
6544 			/* firmware is reporting a status we don't know about */
6545 			sprintf(message, "Unknown event status x%02x", status);
6546 			break;
6547 		}
6548 
6549 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6550 		rc = lpfc_sli4_read_config(phba);
6551 		if (rc) {
6552 			phba->lmt = 0;
6553 			lpfc_printf_log(phba, KERN_ERR,
6554 					LOG_TRACE_EVENT,
6555 					"3194 Unable to retrieve supported "
6556 					"speeds, rc = 0x%x\n", rc);
6557 		}
6558 		rc = lpfc_sli4_refresh_params(phba);
6559 		if (rc) {
6560 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6561 					"3174 Unable to update pls support, "
6562 					"rc x%x\n", rc);
6563 		}
6564 		vports = lpfc_create_vport_work_array(phba);
6565 		if (vports != NULL) {
6566 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6567 					i++) {
6568 				shost = lpfc_shost_from_vport(vports[i]);
6569 				lpfc_host_supported_speeds_set(shost);
6570 			}
6571 		}
6572 		lpfc_destroy_vport_work_array(phba, vports);
6573 
6574 		phba->sli4_hba.lnk_info.optic_state = status;
6575 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6576 				"3176 Port Name %c %s\n", port_name, message);
6577 		break;
6578 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6579 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6580 				"3192 Remote DPort Test Initiated - "
6581 				"Event Data1:x%08x Event Data2: x%08x\n",
6582 				acqe_sli->event_data1, acqe_sli->event_data2);
6583 		break;
6584 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6585 		/* Call FW to obtain active parms */
6586 		lpfc_sli4_cgn_parm_chg_evt(phba);
6587 		break;
6588 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6589 		/* Misconfigured WWN. Reports that the SLI Port is configured
6590 		 * to use FA-WWN, but the attached device doesn’t support it.
6591 		 * Event Data1 - N.A, Event Data2 - N.A
6592 		 * This event only happens on the physical port.
6593 		 */
6594 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6595 			     "2699 Misconfigured FA-PWWN - Attached device "
6596 			     "does not support FA-PWWN\n");
6597 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6598 		memset(phba->pport->fc_portname.u.wwn, 0,
6599 		       sizeof(struct lpfc_name));
6600 		break;
6601 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6602 		/* EEPROM failure. No driver action is required */
6603 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6604 			     "2518 EEPROM failure - "
6605 			     "Event Data1: x%08x Event Data2: x%08x\n",
6606 			     acqe_sli->event_data1, acqe_sli->event_data2);
6607 		break;
6608 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6609 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6610 			break;
6611 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6612 					&acqe_sli->event_data1;
6613 		phba->cgn_acqe_cnt++;
6614 
6615 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6616 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6617 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6618 
6619 		/* no threshold for CMF, even 1 signal will trigger an event */
6620 
6621 		/* Alarm overrides warning, so check that first */
6622 		if (cgn_signal->alarm_cnt) {
6623 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6624 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6625 				atomic_add(cgn_signal->alarm_cnt,
6626 					   &phba->cgn_sync_alarm_cnt);
6627 			}
6628 		} else if (cnt) {
6629 			/* signal action needs to be taken */
6630 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6631 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6632 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6633 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6634 			}
6635 		}
6636 		break;
6637 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6638 		/* May be accompanied by a temperature event */
6639 		lpfc_printf_log(phba, KERN_INFO,
6640 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6641 				"2902 Remote Degrade Signaling: x%08x x%08x "
6642 				"x%08x\n",
6643 				acqe_sli->event_data1, acqe_sli->event_data2,
6644 				acqe_sli->event_data3);
6645 		break;
6646 	case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS:
6647 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6648 				"2905 Reset CM statistics\n");
6649 		lpfc_sli4_async_cmstat_evt(phba);
6650 		break;
6651 	default:
6652 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6653 				"3193 Unrecognized SLI event, type: 0x%x",
6654 				evt_type);
6655 		break;
6656 	}
6657 }
6658 
6659 /**
6660  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6661  * @vport: pointer to vport data structure.
6662  *
6663  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6664  * response to a CVL event.
6665  *
6666  * Return the pointer to the ndlp with the vport if successful, otherwise
6667  * return NULL.
6668  **/
6669 static struct lpfc_nodelist *
6670 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6671 {
6672 	struct lpfc_nodelist *ndlp;
6673 	struct Scsi_Host *shost;
6674 	struct lpfc_hba *phba;
6675 
6676 	if (!vport)
6677 		return NULL;
6678 	phba = vport->phba;
6679 	if (!phba)
6680 		return NULL;
6681 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6682 	if (!ndlp) {
6683 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6684 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6685 		if (!ndlp)
6686 			return NULL;
6687 		/* Set the node type */
6688 		ndlp->nlp_type |= NLP_FABRIC;
6689 		/* Put ndlp onto node list */
6690 		lpfc_enqueue_node(vport, ndlp);
6691 	}
6692 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6693 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6694 		return NULL;
6695 	/* If virtual link is not yet instantiated ignore CVL */
6696 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6697 		&& (vport->port_state != LPFC_VPORT_FAILED))
6698 		return NULL;
6699 	shost = lpfc_shost_from_vport(vport);
6700 	if (!shost)
6701 		return NULL;
6702 	lpfc_linkdown_port(vport);
6703 	lpfc_cleanup_pending_mbox(vport);
6704 	set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag);
6705 
6706 	return ndlp;
6707 }
6708 
6709 /**
6710  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6711  * @phba: pointer to lpfc hba data structure.
6712  *
6713  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6714  * response to a FCF dead event.
6715  **/
6716 static void
6717 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6718 {
6719 	struct lpfc_vport **vports;
6720 	int i;
6721 
6722 	vports = lpfc_create_vport_work_array(phba);
6723 	if (vports)
6724 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6725 			lpfc_sli4_perform_vport_cvl(vports[i]);
6726 	lpfc_destroy_vport_work_array(phba, vports);
6727 }
6728 
6729 /**
6730  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6731  * @phba: pointer to lpfc hba data structure.
6732  * @acqe_fip: pointer to the async fcoe completion queue entry.
6733  *
6734  * This routine is to handle the SLI4 asynchronous fcoe event.
6735  **/
6736 static void
6737 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6738 			struct lpfc_acqe_fip *acqe_fip)
6739 {
6740 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6741 	int rc;
6742 	struct lpfc_vport *vport;
6743 	struct lpfc_nodelist *ndlp;
6744 	int active_vlink_present;
6745 	struct lpfc_vport **vports;
6746 	int i;
6747 
6748 	phba->fc_eventTag = acqe_fip->event_tag;
6749 	phba->fcoe_eventtag = acqe_fip->event_tag;
6750 	switch (event_type) {
6751 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6752 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6753 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6754 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6755 					"2546 New FCF event, evt_tag:x%x, "
6756 					"index:x%x\n",
6757 					acqe_fip->event_tag,
6758 					acqe_fip->index);
6759 		else
6760 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6761 					LOG_DISCOVERY,
6762 					"2788 FCF param modified event, "
6763 					"evt_tag:x%x, index:x%x\n",
6764 					acqe_fip->event_tag,
6765 					acqe_fip->index);
6766 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6767 			/*
6768 			 * During period of FCF discovery, read the FCF
6769 			 * table record indexed by the event to update
6770 			 * FCF roundrobin failover eligible FCF bmask.
6771 			 */
6772 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6773 					LOG_DISCOVERY,
6774 					"2779 Read FCF (x%x) for updating "
6775 					"roundrobin FCF failover bmask\n",
6776 					acqe_fip->index);
6777 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6778 		}
6779 
6780 		/* If the FCF discovery is in progress, do nothing. */
6781 		spin_lock_irq(&phba->hbalock);
6782 		if (phba->hba_flag & FCF_TS_INPROG) {
6783 			spin_unlock_irq(&phba->hbalock);
6784 			break;
6785 		}
6786 		/* If fast FCF failover rescan event is pending, do nothing */
6787 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6788 			spin_unlock_irq(&phba->hbalock);
6789 			break;
6790 		}
6791 
6792 		/* If the FCF has been in discovered state, do nothing. */
6793 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6794 			spin_unlock_irq(&phba->hbalock);
6795 			break;
6796 		}
6797 		spin_unlock_irq(&phba->hbalock);
6798 
6799 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6800 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6801 				"2770 Start FCF table scan per async FCF "
6802 				"event, evt_tag:x%x, index:x%x\n",
6803 				acqe_fip->event_tag, acqe_fip->index);
6804 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6805 						     LPFC_FCOE_FCF_GET_FIRST);
6806 		if (rc)
6807 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6808 					"2547 Issue FCF scan read FCF mailbox "
6809 					"command failed (x%x)\n", rc);
6810 		break;
6811 
6812 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6813 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6814 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6815 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6816 				acqe_fip->event_tag);
6817 		break;
6818 
6819 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6820 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6821 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6822 				"2549 FCF (x%x) disconnected from network, "
6823 				 "tag:x%x\n", acqe_fip->index,
6824 				 acqe_fip->event_tag);
6825 		/*
6826 		 * If we are in the middle of FCF failover process, clear
6827 		 * the corresponding FCF bit in the roundrobin bitmap.
6828 		 */
6829 		spin_lock_irq(&phba->hbalock);
6830 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6831 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6832 			spin_unlock_irq(&phba->hbalock);
6833 			/* Update FLOGI FCF failover eligible FCF bmask */
6834 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6835 			break;
6836 		}
6837 		spin_unlock_irq(&phba->hbalock);
6838 
6839 		/* If the event is not for currently used fcf do nothing */
6840 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6841 			break;
6842 
6843 		/*
6844 		 * Otherwise, request the port to rediscover the entire FCF
6845 		 * table for a fast recovery from case that the current FCF
6846 		 * is no longer valid as we are not in the middle of FCF
6847 		 * failover process already.
6848 		 */
6849 		spin_lock_irq(&phba->hbalock);
6850 		/* Mark the fast failover process in progress */
6851 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6852 		spin_unlock_irq(&phba->hbalock);
6853 
6854 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6855 				"2771 Start FCF fast failover process due to "
6856 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6857 				"\n", acqe_fip->event_tag, acqe_fip->index);
6858 		rc = lpfc_sli4_redisc_fcf_table(phba);
6859 		if (rc) {
6860 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6861 					LOG_TRACE_EVENT,
6862 					"2772 Issue FCF rediscover mailbox "
6863 					"command failed, fail through to FCF "
6864 					"dead event\n");
6865 			spin_lock_irq(&phba->hbalock);
6866 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6867 			spin_unlock_irq(&phba->hbalock);
6868 			/*
6869 			 * Last resort will fail over by treating this
6870 			 * as a link down to FCF registration.
6871 			 */
6872 			lpfc_sli4_fcf_dead_failthrough(phba);
6873 		} else {
6874 			/* Reset FCF roundrobin bmask for new discovery */
6875 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6876 			/*
6877 			 * Handling fast FCF failover to a DEAD FCF event is
6878 			 * considered equalivant to receiving CVL to all vports.
6879 			 */
6880 			lpfc_sli4_perform_all_vport_cvl(phba);
6881 		}
6882 		break;
6883 	case LPFC_FIP_EVENT_TYPE_CVL:
6884 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6885 		lpfc_printf_log(phba, KERN_ERR,
6886 				LOG_TRACE_EVENT,
6887 			"2718 Clear Virtual Link Received for VPI 0x%x"
6888 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6889 
6890 		vport = lpfc_find_vport_by_vpid(phba,
6891 						acqe_fip->index);
6892 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6893 		if (!ndlp)
6894 			break;
6895 		active_vlink_present = 0;
6896 
6897 		vports = lpfc_create_vport_work_array(phba);
6898 		if (vports) {
6899 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6900 					i++) {
6901 				if (!test_bit(FC_VPORT_CVL_RCVD,
6902 					      &vports[i]->fc_flag) &&
6903 				    vports[i]->port_state > LPFC_FDISC) {
6904 					active_vlink_present = 1;
6905 					break;
6906 				}
6907 			}
6908 			lpfc_destroy_vport_work_array(phba, vports);
6909 		}
6910 
6911 		/*
6912 		 * Don't re-instantiate if vport is marked for deletion.
6913 		 * If we are here first then vport_delete is going to wait
6914 		 * for discovery to complete.
6915 		 */
6916 		if (!test_bit(FC_UNLOADING, &vport->load_flag) &&
6917 		    active_vlink_present) {
6918 			/*
6919 			 * If there are other active VLinks present,
6920 			 * re-instantiate the Vlink using FDISC.
6921 			 */
6922 			mod_timer(&ndlp->nlp_delayfunc,
6923 				  jiffies + msecs_to_jiffies(1000));
6924 			spin_lock_irq(&ndlp->lock);
6925 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6926 			spin_unlock_irq(&ndlp->lock);
6927 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6928 			vport->port_state = LPFC_FDISC;
6929 		} else {
6930 			/*
6931 			 * Otherwise, we request port to rediscover
6932 			 * the entire FCF table for a fast recovery
6933 			 * from possible case that the current FCF
6934 			 * is no longer valid if we are not already
6935 			 * in the FCF failover process.
6936 			 */
6937 			spin_lock_irq(&phba->hbalock);
6938 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6939 				spin_unlock_irq(&phba->hbalock);
6940 				break;
6941 			}
6942 			/* Mark the fast failover process in progress */
6943 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6944 			spin_unlock_irq(&phba->hbalock);
6945 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6946 					LOG_DISCOVERY,
6947 					"2773 Start FCF failover per CVL, "
6948 					"evt_tag:x%x\n", acqe_fip->event_tag);
6949 			rc = lpfc_sli4_redisc_fcf_table(phba);
6950 			if (rc) {
6951 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6952 						LOG_TRACE_EVENT,
6953 						"2774 Issue FCF rediscover "
6954 						"mailbox command failed, "
6955 						"through to CVL event\n");
6956 				spin_lock_irq(&phba->hbalock);
6957 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6958 				spin_unlock_irq(&phba->hbalock);
6959 				/*
6960 				 * Last resort will be re-try on the
6961 				 * the current registered FCF entry.
6962 				 */
6963 				lpfc_retry_pport_discovery(phba);
6964 			} else
6965 				/*
6966 				 * Reset FCF roundrobin bmask for new
6967 				 * discovery.
6968 				 */
6969 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6970 		}
6971 		break;
6972 	default:
6973 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6974 				"0288 Unknown FCoE event type 0x%x event tag "
6975 				"0x%x\n", event_type, acqe_fip->event_tag);
6976 		break;
6977 	}
6978 }
6979 
6980 /**
6981  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6982  * @phba: pointer to lpfc hba data structure.
6983  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6984  *
6985  * This routine is to handle the SLI4 asynchronous dcbx event.
6986  **/
6987 static void
6988 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6989 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6990 {
6991 	phba->fc_eventTag = acqe_dcbx->event_tag;
6992 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6993 			"0290 The SLI4 DCBX asynchronous event is not "
6994 			"handled yet\n");
6995 }
6996 
6997 /**
6998  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6999  * @phba: pointer to lpfc hba data structure.
7000  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7001  *
7002  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7003  * is an asynchronous notified of a logical link speed change.  The Port
7004  * reports the logical link speed in units of 10Mbps.
7005  **/
7006 static void
7007 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7008 			 struct lpfc_acqe_grp5 *acqe_grp5)
7009 {
7010 	uint16_t prev_ll_spd;
7011 
7012 	phba->fc_eventTag = acqe_grp5->event_tag;
7013 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7014 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7015 	phba->sli4_hba.link_state.logical_speed =
7016 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7017 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7018 			"2789 GRP5 Async Event: Updating logical link speed "
7019 			"from %dMbps to %dMbps\n", prev_ll_spd,
7020 			phba->sli4_hba.link_state.logical_speed);
7021 }
7022 
7023 /**
7024  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7025  * @phba: pointer to lpfc hba data structure.
7026  *
7027  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7028  * is an asynchronous notification of a request to reset CM stats.
7029  **/
7030 static void
7031 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7032 {
7033 	if (!phba->cgn_i)
7034 		return;
7035 	lpfc_init_congestion_stat(phba);
7036 }
7037 
7038 /**
7039  * lpfc_cgn_params_val - Validate FW congestion parameters.
7040  * @phba: pointer to lpfc hba data structure.
7041  * @p_cfg_param: pointer to FW provided congestion parameters.
7042  *
7043  * This routine validates the congestion parameters passed
7044  * by the FW to the driver via an ACQE event.
7045  **/
7046 static void
7047 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7048 {
7049 	spin_lock_irq(&phba->hbalock);
7050 
7051 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7052 			     LPFC_CFG_MONITOR)) {
7053 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7054 				"6225 CMF mode param out of range: %d\n",
7055 				 p_cfg_param->cgn_param_mode);
7056 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7057 	}
7058 
7059 	spin_unlock_irq(&phba->hbalock);
7060 }
7061 
7062 static const char * const lpfc_cmf_mode_to_str[] = {
7063 	"OFF",
7064 	"MANAGED",
7065 	"MONITOR",
7066 };
7067 
7068 /**
7069  * lpfc_cgn_params_parse - Process a FW cong parm change event
7070  * @phba: pointer to lpfc hba data structure.
7071  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7072  * @len: the size of pdata in bytes.
7073  *
7074  * This routine validates the congestion management buffer signature
7075  * from the FW, validates the contents and makes corrections for
7076  * valid, in-range values.  If the signature magic is correct and
7077  * after parameter validation, the contents are copied to the driver's
7078  * @phba structure. If the magic is incorrect, an error message is
7079  * logged.
7080  **/
7081 static void
7082 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7083 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7084 {
7085 	struct lpfc_cgn_info *cp;
7086 	uint32_t crc, oldmode;
7087 	char acr_string[4] = {0};
7088 
7089 	/* Make sure the FW has encoded the correct magic number to
7090 	 * validate the congestion parameter in FW memory.
7091 	 */
7092 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7093 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7094 				"4668 FW cgn parm buffer data: "
7095 				"magic 0x%x version %d mode %d "
7096 				"level0 %d level1 %d "
7097 				"level2 %d byte13 %d "
7098 				"byte14 %d byte15 %d "
7099 				"byte11 %d byte12 %d activeMode %d\n",
7100 				p_cgn_param->cgn_param_magic,
7101 				p_cgn_param->cgn_param_version,
7102 				p_cgn_param->cgn_param_mode,
7103 				p_cgn_param->cgn_param_level0,
7104 				p_cgn_param->cgn_param_level1,
7105 				p_cgn_param->cgn_param_level2,
7106 				p_cgn_param->byte13,
7107 				p_cgn_param->byte14,
7108 				p_cgn_param->byte15,
7109 				p_cgn_param->byte11,
7110 				p_cgn_param->byte12,
7111 				phba->cmf_active_mode);
7112 
7113 		oldmode = phba->cmf_active_mode;
7114 
7115 		/* Any parameters out of range are corrected to defaults
7116 		 * by this routine.  No need to fail.
7117 		 */
7118 		lpfc_cgn_params_val(phba, p_cgn_param);
7119 
7120 		/* Parameters are verified, move them into driver storage */
7121 		spin_lock_irq(&phba->hbalock);
7122 		memcpy(&phba->cgn_p, p_cgn_param,
7123 		       sizeof(struct lpfc_cgn_param));
7124 
7125 		/* Update parameters in congestion info buffer now */
7126 		if (phba->cgn_i) {
7127 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7128 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7129 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7130 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7131 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7132 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7133 						  LPFC_CGN_CRC32_SEED);
7134 			cp->cgn_info_crc = cpu_to_le32(crc);
7135 		}
7136 		spin_unlock_irq(&phba->hbalock);
7137 
7138 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7139 
7140 		switch (oldmode) {
7141 		case LPFC_CFG_OFF:
7142 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7143 				/* Turning CMF on */
7144 				lpfc_cmf_start(phba);
7145 
7146 				if (phba->link_state >= LPFC_LINK_UP) {
7147 					phba->cgn_reg_fpin =
7148 						phba->cgn_init_reg_fpin;
7149 					phba->cgn_reg_signal =
7150 						phba->cgn_init_reg_signal;
7151 					lpfc_issue_els_edc(phba->pport, 0);
7152 				}
7153 			}
7154 			break;
7155 		case LPFC_CFG_MANAGED:
7156 			switch (phba->cgn_p.cgn_param_mode) {
7157 			case LPFC_CFG_OFF:
7158 				/* Turning CMF off */
7159 				lpfc_cmf_stop(phba);
7160 				if (phba->link_state >= LPFC_LINK_UP)
7161 					lpfc_issue_els_edc(phba->pport, 0);
7162 				break;
7163 			case LPFC_CFG_MONITOR:
7164 				phba->cmf_max_bytes_per_interval =
7165 					phba->cmf_link_byte_count;
7166 
7167 				/* Resume blocked IO - unblock on workqueue */
7168 				queue_work(phba->wq,
7169 					   &phba->unblock_request_work);
7170 				break;
7171 			}
7172 			break;
7173 		case LPFC_CFG_MONITOR:
7174 			switch (phba->cgn_p.cgn_param_mode) {
7175 			case LPFC_CFG_OFF:
7176 				/* Turning CMF off */
7177 				lpfc_cmf_stop(phba);
7178 				if (phba->link_state >= LPFC_LINK_UP)
7179 					lpfc_issue_els_edc(phba->pport, 0);
7180 				break;
7181 			case LPFC_CFG_MANAGED:
7182 				lpfc_cmf_signal_init(phba);
7183 				break;
7184 			}
7185 			break;
7186 		}
7187 		if (oldmode != LPFC_CFG_OFF ||
7188 		    oldmode != phba->cgn_p.cgn_param_mode) {
7189 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7190 				scnprintf(acr_string, sizeof(acr_string), "%u",
7191 					  phba->cgn_p.cgn_param_level0);
7192 			else
7193 				scnprintf(acr_string, sizeof(acr_string), "NA");
7194 
7195 			dev_info(&phba->pcidev->dev, "%d: "
7196 				 "4663 CMF: Mode %s acr %s\n",
7197 				 phba->brd_no,
7198 				 lpfc_cmf_mode_to_str
7199 				 [phba->cgn_p.cgn_param_mode],
7200 				 acr_string);
7201 		}
7202 	} else {
7203 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7204 				"4669 FW cgn parm buf wrong magic 0x%x "
7205 				"version %d\n", p_cgn_param->cgn_param_magic,
7206 				p_cgn_param->cgn_param_version);
7207 	}
7208 }
7209 
7210 /**
7211  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7212  * @phba: pointer to lpfc hba data structure.
7213  *
7214  * This routine issues a read_object mailbox command to
7215  * get the congestion management parameters from the FW
7216  * parses it and updates the driver maintained values.
7217  *
7218  * Returns
7219  *  0     if the object was empty
7220  *  -Eval if an error was encountered
7221  *  Count if bytes were read from object
7222  **/
7223 int
7224 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7225 {
7226 	int ret = 0;
7227 	struct lpfc_cgn_param *p_cgn_param = NULL;
7228 	u32 *pdata = NULL;
7229 	u32 len = 0;
7230 
7231 	/* Find out if the FW has a new set of congestion parameters. */
7232 	len = sizeof(struct lpfc_cgn_param);
7233 	pdata = kzalloc(len, GFP_KERNEL);
7234 	if (!pdata)
7235 		return -ENOMEM;
7236 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7237 			       pdata, len);
7238 
7239 	/* 0 means no data.  A negative means error.  A positive means
7240 	 * bytes were copied.
7241 	 */
7242 	if (!ret) {
7243 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7244 				"4670 CGN RD OBJ returns no data\n");
7245 		goto rd_obj_err;
7246 	} else if (ret < 0) {
7247 		/* Some error.  Just exit and return it to the caller.*/
7248 		goto rd_obj_err;
7249 	}
7250 
7251 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7252 			"6234 READ CGN PARAMS Successful %d\n", len);
7253 
7254 	/* Parse data pointer over len and update the phba congestion
7255 	 * parameters with values passed back.  The receive rate values
7256 	 * may have been altered in FW, but take no action here.
7257 	 */
7258 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7259 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7260 
7261  rd_obj_err:
7262 	kfree(pdata);
7263 	return ret;
7264 }
7265 
7266 /**
7267  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7268  * @phba: pointer to lpfc hba data structure.
7269  *
7270  * The FW generated Async ACQE SLI event calls this routine when
7271  * the event type is an SLI Internal Port Event and the Event Code
7272  * indicates a change to the FW maintained congestion parameters.
7273  *
7274  * This routine executes a Read_Object mailbox call to obtain the
7275  * current congestion parameters maintained in FW and corrects
7276  * the driver's active congestion parameters.
7277  *
7278  * The acqe event is not passed because there is no further data
7279  * required.
7280  *
7281  * Returns nonzero error if event processing encountered an error.
7282  * Zero otherwise for success.
7283  **/
7284 static int
7285 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7286 {
7287 	int ret = 0;
7288 
7289 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7290 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7291 				"4664 Cgn Evt when E2E off. Drop event\n");
7292 		return -EACCES;
7293 	}
7294 
7295 	/* If the event is claiming an empty object, it's ok.  A write
7296 	 * could have cleared it.  Only error is a negative return
7297 	 * status.
7298 	 */
7299 	ret = lpfc_sli4_cgn_params_read(phba);
7300 	if (ret < 0) {
7301 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7302 				"4667 Error reading Cgn Params (%d)\n",
7303 				ret);
7304 	} else if (!ret) {
7305 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7306 				"4673 CGN Event empty object.\n");
7307 	}
7308 	return ret;
7309 }
7310 
7311 /**
7312  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7313  * @phba: pointer to lpfc hba data structure.
7314  *
7315  * This routine is invoked by the worker thread to process all the pending
7316  * SLI4 asynchronous events.
7317  **/
7318 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7319 {
7320 	struct lpfc_cq_event *cq_event;
7321 	unsigned long iflags;
7322 
7323 	/* First, declare the async event has been handled */
7324 	spin_lock_irqsave(&phba->hbalock, iflags);
7325 	phba->hba_flag &= ~ASYNC_EVENT;
7326 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7327 
7328 	/* Now, handle all the async events */
7329 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7330 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7331 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7332 				 cq_event, struct lpfc_cq_event, list);
7333 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7334 				       iflags);
7335 
7336 		/* Process the asynchronous event */
7337 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7338 		case LPFC_TRAILER_CODE_LINK:
7339 			lpfc_sli4_async_link_evt(phba,
7340 						 &cq_event->cqe.acqe_link);
7341 			break;
7342 		case LPFC_TRAILER_CODE_FCOE:
7343 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7344 			break;
7345 		case LPFC_TRAILER_CODE_DCBX:
7346 			lpfc_sli4_async_dcbx_evt(phba,
7347 						 &cq_event->cqe.acqe_dcbx);
7348 			break;
7349 		case LPFC_TRAILER_CODE_GRP5:
7350 			lpfc_sli4_async_grp5_evt(phba,
7351 						 &cq_event->cqe.acqe_grp5);
7352 			break;
7353 		case LPFC_TRAILER_CODE_FC:
7354 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7355 			break;
7356 		case LPFC_TRAILER_CODE_SLI:
7357 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7358 			break;
7359 		default:
7360 			lpfc_printf_log(phba, KERN_ERR,
7361 					LOG_TRACE_EVENT,
7362 					"1804 Invalid asynchronous event code: "
7363 					"x%x\n", bf_get(lpfc_trailer_code,
7364 					&cq_event->cqe.mcqe_cmpl));
7365 			break;
7366 		}
7367 
7368 		/* Free the completion event processed to the free pool */
7369 		lpfc_sli4_cq_event_release(phba, cq_event);
7370 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7371 	}
7372 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7373 }
7374 
7375 /**
7376  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7377  * @phba: pointer to lpfc hba data structure.
7378  *
7379  * This routine is invoked by the worker thread to process FCF table
7380  * rediscovery pending completion event.
7381  **/
7382 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7383 {
7384 	int rc;
7385 
7386 	spin_lock_irq(&phba->hbalock);
7387 	/* Clear FCF rediscovery timeout event */
7388 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7389 	/* Clear driver fast failover FCF record flag */
7390 	phba->fcf.failover_rec.flag = 0;
7391 	/* Set state for FCF fast failover */
7392 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7393 	spin_unlock_irq(&phba->hbalock);
7394 
7395 	/* Scan FCF table from the first entry to re-discover SAN */
7396 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7397 			"2777 Start post-quiescent FCF table scan\n");
7398 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7399 	if (rc)
7400 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7401 				"2747 Issue FCF scan read FCF mailbox "
7402 				"command failed 0x%x\n", rc);
7403 }
7404 
7405 /**
7406  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7407  * @phba: pointer to lpfc hba data structure.
7408  * @dev_grp: The HBA PCI-Device group number.
7409  *
7410  * This routine is invoked to set up the per HBA PCI-Device group function
7411  * API jump table entries.
7412  *
7413  * Return: 0 if success, otherwise -ENODEV
7414  **/
7415 int
7416 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7417 {
7418 	int rc;
7419 
7420 	/* Set up lpfc PCI-device group */
7421 	phba->pci_dev_grp = dev_grp;
7422 
7423 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7424 	if (dev_grp == LPFC_PCI_DEV_OC)
7425 		phba->sli_rev = LPFC_SLI_REV4;
7426 
7427 	/* Set up device INIT API function jump table */
7428 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7429 	if (rc)
7430 		return -ENODEV;
7431 	/* Set up SCSI API function jump table */
7432 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7433 	if (rc)
7434 		return -ENODEV;
7435 	/* Set up SLI API function jump table */
7436 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7437 	if (rc)
7438 		return -ENODEV;
7439 	/* Set up MBOX API function jump table */
7440 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7441 	if (rc)
7442 		return -ENODEV;
7443 
7444 	return 0;
7445 }
7446 
7447 /**
7448  * lpfc_log_intr_mode - Log the active interrupt mode
7449  * @phba: pointer to lpfc hba data structure.
7450  * @intr_mode: active interrupt mode adopted.
7451  *
7452  * This routine it invoked to log the currently used active interrupt mode
7453  * to the device.
7454  **/
7455 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7456 {
7457 	switch (intr_mode) {
7458 	case 0:
7459 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7460 				"0470 Enable INTx interrupt mode.\n");
7461 		break;
7462 	case 1:
7463 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7464 				"0481 Enabled MSI interrupt mode.\n");
7465 		break;
7466 	case 2:
7467 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7468 				"0480 Enabled MSI-X interrupt mode.\n");
7469 		break;
7470 	default:
7471 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7472 				"0482 Illegal interrupt mode.\n");
7473 		break;
7474 	}
7475 	return;
7476 }
7477 
7478 /**
7479  * lpfc_enable_pci_dev - Enable a generic PCI device.
7480  * @phba: pointer to lpfc hba data structure.
7481  *
7482  * This routine is invoked to enable the PCI device that is common to all
7483  * PCI devices.
7484  *
7485  * Return codes
7486  * 	0 - successful
7487  * 	other values - error
7488  **/
7489 static int
7490 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7491 {
7492 	struct pci_dev *pdev;
7493 
7494 	/* Obtain PCI device reference */
7495 	if (!phba->pcidev)
7496 		goto out_error;
7497 	else
7498 		pdev = phba->pcidev;
7499 	/* Enable PCI device */
7500 	if (pci_enable_device_mem(pdev))
7501 		goto out_error;
7502 	/* Request PCI resource for the device */
7503 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7504 		goto out_disable_device;
7505 	/* Set up device as PCI master and save state for EEH */
7506 	pci_set_master(pdev);
7507 	pci_try_set_mwi(pdev);
7508 	pci_save_state(pdev);
7509 
7510 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7511 	if (pci_is_pcie(pdev))
7512 		pdev->needs_freset = 1;
7513 
7514 	return 0;
7515 
7516 out_disable_device:
7517 	pci_disable_device(pdev);
7518 out_error:
7519 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7520 			"1401 Failed to enable pci device\n");
7521 	return -ENODEV;
7522 }
7523 
7524 /**
7525  * lpfc_disable_pci_dev - Disable a generic PCI device.
7526  * @phba: pointer to lpfc hba data structure.
7527  *
7528  * This routine is invoked to disable the PCI device that is common to all
7529  * PCI devices.
7530  **/
7531 static void
7532 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7533 {
7534 	struct pci_dev *pdev;
7535 
7536 	/* Obtain PCI device reference */
7537 	if (!phba->pcidev)
7538 		return;
7539 	else
7540 		pdev = phba->pcidev;
7541 	/* Release PCI resource and disable PCI device */
7542 	pci_release_mem_regions(pdev);
7543 	pci_disable_device(pdev);
7544 
7545 	return;
7546 }
7547 
7548 /**
7549  * lpfc_reset_hba - Reset a hba
7550  * @phba: pointer to lpfc hba data structure.
7551  *
7552  * This routine is invoked to reset a hba device. It brings the HBA
7553  * offline, performs a board restart, and then brings the board back
7554  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7555  * on outstanding mailbox commands.
7556  **/
7557 void
7558 lpfc_reset_hba(struct lpfc_hba *phba)
7559 {
7560 	int rc = 0;
7561 
7562 	/* If resets are disabled then set error state and return. */
7563 	if (!phba->cfg_enable_hba_reset) {
7564 		phba->link_state = LPFC_HBA_ERROR;
7565 		return;
7566 	}
7567 
7568 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7569 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7570 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7571 	} else {
7572 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7573 			/* Perform a PCI function reset to start from clean */
7574 			rc = lpfc_pci_function_reset(phba);
7575 			lpfc_els_flush_all_cmd(phba);
7576 		}
7577 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7578 		lpfc_sli_flush_io_rings(phba);
7579 	}
7580 	lpfc_offline(phba);
7581 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7582 	if (unlikely(rc)) {
7583 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7584 				"8888 PCI function reset failed rc %x\n",
7585 				rc);
7586 	} else {
7587 		lpfc_sli_brdrestart(phba);
7588 		lpfc_online(phba);
7589 		lpfc_unblock_mgmt_io(phba);
7590 	}
7591 }
7592 
7593 /**
7594  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7595  * @phba: pointer to lpfc hba data structure.
7596  *
7597  * This function enables the PCI SR-IOV virtual functions to a physical
7598  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7599  * enable the number of virtual functions to the physical function. As
7600  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7601  * API call does not considered as an error condition for most of the device.
7602  **/
7603 uint16_t
7604 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7605 {
7606 	struct pci_dev *pdev = phba->pcidev;
7607 	uint16_t nr_virtfn;
7608 	int pos;
7609 
7610 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7611 	if (pos == 0)
7612 		return 0;
7613 
7614 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7615 	return nr_virtfn;
7616 }
7617 
7618 /**
7619  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7620  * @phba: pointer to lpfc hba data structure.
7621  * @nr_vfn: number of virtual functions to be enabled.
7622  *
7623  * This function enables the PCI SR-IOV virtual functions to a physical
7624  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7625  * enable the number of virtual functions to the physical function. As
7626  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7627  * API call does not considered as an error condition for most of the device.
7628  **/
7629 int
7630 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7631 {
7632 	struct pci_dev *pdev = phba->pcidev;
7633 	uint16_t max_nr_vfn;
7634 	int rc;
7635 
7636 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7637 	if (nr_vfn > max_nr_vfn) {
7638 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7639 				"3057 Requested vfs (%d) greater than "
7640 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7641 		return -EINVAL;
7642 	}
7643 
7644 	rc = pci_enable_sriov(pdev, nr_vfn);
7645 	if (rc) {
7646 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7647 				"2806 Failed to enable sriov on this device "
7648 				"with vfn number nr_vf:%d, rc:%d\n",
7649 				nr_vfn, rc);
7650 	} else
7651 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7652 				"2807 Successful enable sriov on this device "
7653 				"with vfn number nr_vf:%d\n", nr_vfn);
7654 	return rc;
7655 }
7656 
7657 static void
7658 lpfc_unblock_requests_work(struct work_struct *work)
7659 {
7660 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7661 					     unblock_request_work);
7662 
7663 	lpfc_unblock_requests(phba);
7664 }
7665 
7666 /**
7667  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7668  * @phba: pointer to lpfc hba data structure.
7669  *
7670  * This routine is invoked to set up the driver internal resources before the
7671  * device specific resource setup to support the HBA device it attached to.
7672  *
7673  * Return codes
7674  *	0 - successful
7675  *	other values - error
7676  **/
7677 static int
7678 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7679 {
7680 	struct lpfc_sli *psli = &phba->sli;
7681 
7682 	/*
7683 	 * Driver resources common to all SLI revisions
7684 	 */
7685 	atomic_set(&phba->fast_event_count, 0);
7686 	atomic_set(&phba->dbg_log_idx, 0);
7687 	atomic_set(&phba->dbg_log_cnt, 0);
7688 	atomic_set(&phba->dbg_log_dmping, 0);
7689 	spin_lock_init(&phba->hbalock);
7690 
7691 	/* Initialize port_list spinlock */
7692 	spin_lock_init(&phba->port_list_lock);
7693 	INIT_LIST_HEAD(&phba->port_list);
7694 
7695 	INIT_LIST_HEAD(&phba->work_list);
7696 
7697 	/* Initialize the wait queue head for the kernel thread */
7698 	init_waitqueue_head(&phba->work_waitq);
7699 
7700 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7701 			"1403 Protocols supported %s %s %s\n",
7702 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7703 				"SCSI" : " "),
7704 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7705 				"NVME" : " "),
7706 			(phba->nvmet_support ? "NVMET" : " "));
7707 
7708 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7709 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7710 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7711 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7712 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7713 
7714 	/* Initialize the fabric iocb list */
7715 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7716 
7717 	/* Initialize list to save ELS buffers */
7718 	INIT_LIST_HEAD(&phba->elsbuf);
7719 
7720 	/* Initialize FCF connection rec list */
7721 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7722 
7723 	/* Initialize OAS configuration list */
7724 	spin_lock_init(&phba->devicelock);
7725 	INIT_LIST_HEAD(&phba->luns);
7726 
7727 	/* MBOX heartbeat timer */
7728 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7729 	/* Fabric block timer */
7730 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7731 	/* EA polling mode timer */
7732 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7733 	/* Heartbeat timer */
7734 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7735 
7736 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7737 
7738 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7739 			  lpfc_idle_stat_delay_work);
7740 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7741 	return 0;
7742 }
7743 
7744 /**
7745  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7746  * @phba: pointer to lpfc hba data structure.
7747  *
7748  * This routine is invoked to set up the driver internal resources specific to
7749  * support the SLI-3 HBA device it attached to.
7750  *
7751  * Return codes
7752  * 0 - successful
7753  * other values - error
7754  **/
7755 static int
7756 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7757 {
7758 	int rc, entry_sz;
7759 
7760 	/*
7761 	 * Initialize timers used by driver
7762 	 */
7763 
7764 	/* FCP polling mode timer */
7765 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7766 
7767 	/* Host attention work mask setup */
7768 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7769 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7770 
7771 	/* Get all the module params for configuring this host */
7772 	lpfc_get_cfgparam(phba);
7773 	/* Set up phase-1 common device driver resources */
7774 
7775 	rc = lpfc_setup_driver_resource_phase1(phba);
7776 	if (rc)
7777 		return -ENODEV;
7778 
7779 	if (!phba->sli.sli3_ring)
7780 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7781 					      sizeof(struct lpfc_sli_ring),
7782 					      GFP_KERNEL);
7783 	if (!phba->sli.sli3_ring)
7784 		return -ENOMEM;
7785 
7786 	/*
7787 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7788 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7789 	 */
7790 
7791 	if (phba->sli_rev == LPFC_SLI_REV4)
7792 		entry_sz = sizeof(struct sli4_sge);
7793 	else
7794 		entry_sz = sizeof(struct ulp_bde64);
7795 
7796 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7797 	if (phba->cfg_enable_bg) {
7798 		/*
7799 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7800 		 * the FCP rsp, and a BDE for each. Sice we have no control
7801 		 * over how many protection data segments the SCSI Layer
7802 		 * will hand us (ie: there could be one for every block
7803 		 * in the IO), we just allocate enough BDEs to accomidate
7804 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7805 		 * minimize the risk of running out.
7806 		 */
7807 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7808 			sizeof(struct fcp_rsp) +
7809 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7810 
7811 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7812 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7813 
7814 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7815 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7816 	} else {
7817 		/*
7818 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7819 		 * the FCP rsp, a BDE for each, and a BDE for up to
7820 		 * cfg_sg_seg_cnt data segments.
7821 		 */
7822 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7823 			sizeof(struct fcp_rsp) +
7824 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7825 
7826 		/* Total BDEs in BPL for scsi_sg_list */
7827 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7828 	}
7829 
7830 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7831 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7832 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7833 			phba->cfg_total_seg_cnt);
7834 
7835 	phba->max_vpi = LPFC_MAX_VPI;
7836 	/* This will be set to correct value after config_port mbox */
7837 	phba->max_vports = 0;
7838 
7839 	/*
7840 	 * Initialize the SLI Layer to run with lpfc HBAs.
7841 	 */
7842 	lpfc_sli_setup(phba);
7843 	lpfc_sli_queue_init(phba);
7844 
7845 	/* Allocate device driver memory */
7846 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7847 		return -ENOMEM;
7848 
7849 	phba->lpfc_sg_dma_buf_pool =
7850 		dma_pool_create("lpfc_sg_dma_buf_pool",
7851 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7852 				BPL_ALIGN_SZ, 0);
7853 
7854 	if (!phba->lpfc_sg_dma_buf_pool)
7855 		goto fail_free_mem;
7856 
7857 	phba->lpfc_cmd_rsp_buf_pool =
7858 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7859 					&phba->pcidev->dev,
7860 					sizeof(struct fcp_cmnd) +
7861 					sizeof(struct fcp_rsp),
7862 					BPL_ALIGN_SZ, 0);
7863 
7864 	if (!phba->lpfc_cmd_rsp_buf_pool)
7865 		goto fail_free_dma_buf_pool;
7866 
7867 	/*
7868 	 * Enable sr-iov virtual functions if supported and configured
7869 	 * through the module parameter.
7870 	 */
7871 	if (phba->cfg_sriov_nr_virtfn > 0) {
7872 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7873 						 phba->cfg_sriov_nr_virtfn);
7874 		if (rc) {
7875 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7876 					"2808 Requested number of SR-IOV "
7877 					"virtual functions (%d) is not "
7878 					"supported\n",
7879 					phba->cfg_sriov_nr_virtfn);
7880 			phba->cfg_sriov_nr_virtfn = 0;
7881 		}
7882 	}
7883 
7884 	return 0;
7885 
7886 fail_free_dma_buf_pool:
7887 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7888 	phba->lpfc_sg_dma_buf_pool = NULL;
7889 fail_free_mem:
7890 	lpfc_mem_free(phba);
7891 	return -ENOMEM;
7892 }
7893 
7894 /**
7895  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7896  * @phba: pointer to lpfc hba data structure.
7897  *
7898  * This routine is invoked to unset the driver internal resources set up
7899  * specific for supporting the SLI-3 HBA device it attached to.
7900  **/
7901 static void
7902 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7903 {
7904 	/* Free device driver memory allocated */
7905 	lpfc_mem_free_all(phba);
7906 
7907 	return;
7908 }
7909 
7910 /**
7911  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7912  * @phba: pointer to lpfc hba data structure.
7913  *
7914  * This routine is invoked to set up the driver internal resources specific to
7915  * support the SLI-4 HBA device it attached to.
7916  *
7917  * Return codes
7918  * 	0 - successful
7919  * 	other values - error
7920  **/
7921 static int
7922 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7923 {
7924 	LPFC_MBOXQ_t *mboxq;
7925 	MAILBOX_t *mb;
7926 	int rc, i, max_buf_size;
7927 	int longs;
7928 	int extra;
7929 	uint64_t wwn;
7930 	u32 if_type;
7931 	u32 if_fam;
7932 
7933 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7934 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7935 	phba->sli4_hba.curr_disp_cpu = 0;
7936 
7937 	/* Get all the module params for configuring this host */
7938 	lpfc_get_cfgparam(phba);
7939 
7940 	/* Set up phase-1 common device driver resources */
7941 	rc = lpfc_setup_driver_resource_phase1(phba);
7942 	if (rc)
7943 		return -ENODEV;
7944 
7945 	/* Before proceed, wait for POST done and device ready */
7946 	rc = lpfc_sli4_post_status_check(phba);
7947 	if (rc)
7948 		return -ENODEV;
7949 
7950 	/* Allocate all driver workqueues here */
7951 
7952 	/* The lpfc_wq workqueue for deferred irq use */
7953 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7954 	if (!phba->wq)
7955 		return -ENOMEM;
7956 
7957 	/*
7958 	 * Initialize timers used by driver
7959 	 */
7960 
7961 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7962 
7963 	/* FCF rediscover timer */
7964 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7965 
7966 	/* CMF congestion timer */
7967 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7968 	phba->cmf_timer.function = lpfc_cmf_timer;
7969 	/* CMF 1 minute stats collection timer */
7970 	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7971 	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7972 
7973 	/*
7974 	 * Control structure for handling external multi-buffer mailbox
7975 	 * command pass-through.
7976 	 */
7977 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7978 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7979 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7980 
7981 	phba->max_vpi = LPFC_MAX_VPI;
7982 
7983 	/* This will be set to correct value after the read_config mbox */
7984 	phba->max_vports = 0;
7985 
7986 	/* Program the default value of vlan_id and fc_map */
7987 	phba->valid_vlan = 0;
7988 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7989 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7990 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7991 
7992 	/*
7993 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7994 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7995 	 * The WQ create will allocate the ring.
7996 	 */
7997 
7998 	/* Initialize buffer queue management fields */
7999 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
8000 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
8001 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
8002 
8003 	/* for VMID idle timeout if VMID is enabled */
8004 	if (lpfc_is_vmid_enabled(phba))
8005 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8006 
8007 	/*
8008 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8009 	 */
8010 	/* Initialize the Abort buffer list used by driver */
8011 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8012 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8013 
8014 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8015 		/* Initialize the Abort nvme buffer list used by driver */
8016 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8017 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8018 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8019 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8020 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8021 	}
8022 
8023 	/* This abort list used by worker thread */
8024 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8025 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8026 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8027 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8028 
8029 	/*
8030 	 * Initialize driver internal slow-path work queues
8031 	 */
8032 
8033 	/* Driver internel slow-path CQ Event pool */
8034 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8035 	/* Response IOCB work queue list */
8036 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8037 	/* Asynchronous event CQ Event work queue list */
8038 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8039 	/* Slow-path XRI aborted CQ Event work queue list */
8040 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8041 	/* Receive queue CQ Event work queue list */
8042 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8043 
8044 	/* Initialize extent block lists. */
8045 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8046 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8047 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8048 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8049 
8050 	/* Initialize mboxq lists. If the early init routines fail
8051 	 * these lists need to be correctly initialized.
8052 	 */
8053 	INIT_LIST_HEAD(&phba->sli.mboxq);
8054 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8055 
8056 	/* initialize optic_state to 0xFF */
8057 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8058 
8059 	/* Allocate device driver memory */
8060 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8061 	if (rc)
8062 		goto out_destroy_workqueue;
8063 
8064 	/* IF Type 2 ports get initialized now. */
8065 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8066 	    LPFC_SLI_INTF_IF_TYPE_2) {
8067 		rc = lpfc_pci_function_reset(phba);
8068 		if (unlikely(rc)) {
8069 			rc = -ENODEV;
8070 			goto out_free_mem;
8071 		}
8072 		phba->temp_sensor_support = 1;
8073 	}
8074 
8075 	/* Create the bootstrap mailbox command */
8076 	rc = lpfc_create_bootstrap_mbox(phba);
8077 	if (unlikely(rc))
8078 		goto out_free_mem;
8079 
8080 	/* Set up the host's endian order with the device. */
8081 	rc = lpfc_setup_endian_order(phba);
8082 	if (unlikely(rc))
8083 		goto out_free_bsmbx;
8084 
8085 	/* Set up the hba's configuration parameters. */
8086 	rc = lpfc_sli4_read_config(phba);
8087 	if (unlikely(rc))
8088 		goto out_free_bsmbx;
8089 
8090 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8091 		/* Right now the link is down, if FA-PWWN is configured the
8092 		 * firmware will try FLOGI before the driver gets a link up.
8093 		 * If it fails, the driver should get a MISCONFIGURED async
8094 		 * event which will clear this flag. The only notification
8095 		 * the driver gets is if it fails, if it succeeds there is no
8096 		 * notification given. Assume success.
8097 		 */
8098 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8099 	}
8100 
8101 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8102 	if (unlikely(rc))
8103 		goto out_free_bsmbx;
8104 
8105 	/* IF Type 0 ports get initialized now. */
8106 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8107 	    LPFC_SLI_INTF_IF_TYPE_0) {
8108 		rc = lpfc_pci_function_reset(phba);
8109 		if (unlikely(rc))
8110 			goto out_free_bsmbx;
8111 	}
8112 
8113 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8114 						       GFP_KERNEL);
8115 	if (!mboxq) {
8116 		rc = -ENOMEM;
8117 		goto out_free_bsmbx;
8118 	}
8119 
8120 	/* Check for NVMET being configured */
8121 	phba->nvmet_support = 0;
8122 	if (lpfc_enable_nvmet_cnt) {
8123 
8124 		/* First get WWN of HBA instance */
8125 		lpfc_read_nv(phba, mboxq);
8126 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8127 		if (rc != MBX_SUCCESS) {
8128 			lpfc_printf_log(phba, KERN_ERR,
8129 					LOG_TRACE_EVENT,
8130 					"6016 Mailbox failed , mbxCmd x%x "
8131 					"READ_NV, mbxStatus x%x\n",
8132 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8133 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8134 			mempool_free(mboxq, phba->mbox_mem_pool);
8135 			rc = -EIO;
8136 			goto out_free_bsmbx;
8137 		}
8138 		mb = &mboxq->u.mb;
8139 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8140 		       sizeof(uint64_t));
8141 		wwn = cpu_to_be64(wwn);
8142 		phba->sli4_hba.wwnn.u.name = wwn;
8143 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8144 		       sizeof(uint64_t));
8145 		/* wwn is WWPN of HBA instance */
8146 		wwn = cpu_to_be64(wwn);
8147 		phba->sli4_hba.wwpn.u.name = wwn;
8148 
8149 		/* Check to see if it matches any module parameter */
8150 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8151 			if (wwn == lpfc_enable_nvmet[i]) {
8152 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8153 				if (lpfc_nvmet_mem_alloc(phba))
8154 					break;
8155 
8156 				phba->nvmet_support = 1; /* a match */
8157 
8158 				lpfc_printf_log(phba, KERN_ERR,
8159 						LOG_TRACE_EVENT,
8160 						"6017 NVME Target %016llx\n",
8161 						wwn);
8162 #else
8163 				lpfc_printf_log(phba, KERN_ERR,
8164 						LOG_TRACE_EVENT,
8165 						"6021 Can't enable NVME Target."
8166 						" NVME_TARGET_FC infrastructure"
8167 						" is not in kernel\n");
8168 #endif
8169 				/* Not supported for NVMET */
8170 				phba->cfg_xri_rebalancing = 0;
8171 				if (phba->irq_chann_mode == NHT_MODE) {
8172 					phba->cfg_irq_chann =
8173 						phba->sli4_hba.num_present_cpu;
8174 					phba->cfg_hdw_queue =
8175 						phba->sli4_hba.num_present_cpu;
8176 					phba->irq_chann_mode = NORMAL_MODE;
8177 				}
8178 				break;
8179 			}
8180 		}
8181 	}
8182 
8183 	lpfc_nvme_mod_param_dep(phba);
8184 
8185 	/*
8186 	 * Get sli4 parameters that override parameters from Port capabilities.
8187 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8188 	 * back in conflict.
8189 	 */
8190 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8191 	if (rc) {
8192 		if_type = bf_get(lpfc_sli_intf_if_type,
8193 				 &phba->sli4_hba.sli_intf);
8194 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8195 				&phba->sli4_hba.sli_intf);
8196 		if (phba->sli4_hba.extents_in_use &&
8197 		    phba->sli4_hba.rpi_hdrs_in_use) {
8198 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8199 					"2999 Unsupported SLI4 Parameters "
8200 					"Extents and RPI headers enabled.\n");
8201 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8202 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8203 				mempool_free(mboxq, phba->mbox_mem_pool);
8204 				rc = -EIO;
8205 				goto out_free_bsmbx;
8206 			}
8207 		}
8208 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8209 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8210 			mempool_free(mboxq, phba->mbox_mem_pool);
8211 			rc = -EIO;
8212 			goto out_free_bsmbx;
8213 		}
8214 	}
8215 
8216 	/*
8217 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8218 	 * for boundary conditions in its max_sgl_segment template.
8219 	 */
8220 	extra = 2;
8221 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8222 		extra++;
8223 
8224 	/*
8225 	 * It doesn't matter what family our adapter is in, we are
8226 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8227 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8228 	 */
8229 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8230 
8231 	/*
8232 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8233 	 * used to create the sg_dma_buf_pool must be calculated.
8234 	 */
8235 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8236 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8237 
8238 		/*
8239 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8240 		 * the FCP rsp, and a SGE. Sice we have no control
8241 		 * over how many protection segments the SCSI Layer
8242 		 * will hand us (ie: there could be one for every block
8243 		 * in the IO), just allocate enough SGEs to accomidate
8244 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8245 		 * to minimize the risk of running out.
8246 		 */
8247 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8248 				sizeof(struct fcp_rsp) + max_buf_size;
8249 
8250 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8251 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8252 
8253 		/*
8254 		 * If supporting DIF, reduce the seg count for scsi to
8255 		 * allow room for the DIF sges.
8256 		 */
8257 		if (phba->cfg_enable_bg &&
8258 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8259 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8260 		else
8261 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8262 
8263 	} else {
8264 		/*
8265 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8266 		 * the FCP rsp, a SGE for each, and a SGE for up to
8267 		 * cfg_sg_seg_cnt data segments.
8268 		 */
8269 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8270 				sizeof(struct fcp_rsp) +
8271 				((phba->cfg_sg_seg_cnt + extra) *
8272 				sizeof(struct sli4_sge));
8273 
8274 		/* Total SGEs for scsi_sg_list */
8275 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8276 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8277 
8278 		/*
8279 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8280 		 * need to post 1 page for the SGL.
8281 		 */
8282 	}
8283 
8284 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8285 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8286 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8287 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8288 	else
8289 		phba->cfg_sg_dma_buf_size =
8290 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8291 
8292 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8293 			       sizeof(struct sli4_sge);
8294 
8295 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8296 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8297 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8298 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8299 					"6300 Reducing NVME sg segment "
8300 					"cnt to %d\n",
8301 					LPFC_MAX_NVME_SEG_CNT);
8302 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8303 		} else
8304 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8305 	}
8306 
8307 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8308 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8309 			"total:%d scsi:%d nvme:%d\n",
8310 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8311 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8312 			phba->cfg_nvme_seg_cnt);
8313 
8314 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8315 		i = phba->cfg_sg_dma_buf_size;
8316 	else
8317 		i = SLI4_PAGE_SIZE;
8318 
8319 	phba->lpfc_sg_dma_buf_pool =
8320 			dma_pool_create("lpfc_sg_dma_buf_pool",
8321 					&phba->pcidev->dev,
8322 					phba->cfg_sg_dma_buf_size,
8323 					i, 0);
8324 	if (!phba->lpfc_sg_dma_buf_pool) {
8325 		rc = -ENOMEM;
8326 		goto out_free_bsmbx;
8327 	}
8328 
8329 	phba->lpfc_cmd_rsp_buf_pool =
8330 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8331 					&phba->pcidev->dev,
8332 					sizeof(struct fcp_cmnd) +
8333 					sizeof(struct fcp_rsp),
8334 					i, 0);
8335 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8336 		rc = -ENOMEM;
8337 		goto out_free_sg_dma_buf;
8338 	}
8339 
8340 	mempool_free(mboxq, phba->mbox_mem_pool);
8341 
8342 	/* Verify OAS is supported */
8343 	lpfc_sli4_oas_verify(phba);
8344 
8345 	/* Verify RAS support on adapter */
8346 	lpfc_sli4_ras_init(phba);
8347 
8348 	/* Verify all the SLI4 queues */
8349 	rc = lpfc_sli4_queue_verify(phba);
8350 	if (rc)
8351 		goto out_free_cmd_rsp_buf;
8352 
8353 	/* Create driver internal CQE event pool */
8354 	rc = lpfc_sli4_cq_event_pool_create(phba);
8355 	if (rc)
8356 		goto out_free_cmd_rsp_buf;
8357 
8358 	/* Initialize sgl lists per host */
8359 	lpfc_init_sgl_list(phba);
8360 
8361 	/* Allocate and initialize active sgl array */
8362 	rc = lpfc_init_active_sgl_array(phba);
8363 	if (rc) {
8364 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8365 				"1430 Failed to initialize sgl list.\n");
8366 		goto out_destroy_cq_event_pool;
8367 	}
8368 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8369 	if (rc) {
8370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8371 				"1432 Failed to initialize rpi headers.\n");
8372 		goto out_free_active_sgl;
8373 	}
8374 
8375 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8376 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8377 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8378 					 GFP_KERNEL);
8379 	if (!phba->fcf.fcf_rr_bmask) {
8380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8381 				"2759 Failed allocate memory for FCF round "
8382 				"robin failover bmask\n");
8383 		rc = -ENOMEM;
8384 		goto out_remove_rpi_hdrs;
8385 	}
8386 
8387 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8388 					    sizeof(struct lpfc_hba_eq_hdl),
8389 					    GFP_KERNEL);
8390 	if (!phba->sli4_hba.hba_eq_hdl) {
8391 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8392 				"2572 Failed allocate memory for "
8393 				"fast-path per-EQ handle array\n");
8394 		rc = -ENOMEM;
8395 		goto out_free_fcf_rr_bmask;
8396 	}
8397 
8398 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8399 					sizeof(struct lpfc_vector_map_info),
8400 					GFP_KERNEL);
8401 	if (!phba->sli4_hba.cpu_map) {
8402 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8403 				"3327 Failed allocate memory for msi-x "
8404 				"interrupt vector mapping\n");
8405 		rc = -ENOMEM;
8406 		goto out_free_hba_eq_hdl;
8407 	}
8408 
8409 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8410 	if (!phba->sli4_hba.eq_info) {
8411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8412 				"3321 Failed allocation for per_cpu stats\n");
8413 		rc = -ENOMEM;
8414 		goto out_free_hba_cpu_map;
8415 	}
8416 
8417 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8418 					   sizeof(*phba->sli4_hba.idle_stat),
8419 					   GFP_KERNEL);
8420 	if (!phba->sli4_hba.idle_stat) {
8421 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8422 				"3390 Failed allocation for idle_stat\n");
8423 		rc = -ENOMEM;
8424 		goto out_free_hba_eq_info;
8425 	}
8426 
8427 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8428 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8429 	if (!phba->sli4_hba.c_stat) {
8430 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8431 				"3332 Failed allocating per cpu hdwq stats\n");
8432 		rc = -ENOMEM;
8433 		goto out_free_hba_idle_stat;
8434 	}
8435 #endif
8436 
8437 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8438 	if (!phba->cmf_stat) {
8439 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8440 				"3331 Failed allocating per cpu cgn stats\n");
8441 		rc = -ENOMEM;
8442 		goto out_free_hba_hdwq_info;
8443 	}
8444 
8445 	/*
8446 	 * Enable sr-iov virtual functions if supported and configured
8447 	 * through the module parameter.
8448 	 */
8449 	if (phba->cfg_sriov_nr_virtfn > 0) {
8450 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8451 						 phba->cfg_sriov_nr_virtfn);
8452 		if (rc) {
8453 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8454 					"3020 Requested number of SR-IOV "
8455 					"virtual functions (%d) is not "
8456 					"supported\n",
8457 					phba->cfg_sriov_nr_virtfn);
8458 			phba->cfg_sriov_nr_virtfn = 0;
8459 		}
8460 	}
8461 
8462 	return 0;
8463 
8464 out_free_hba_hdwq_info:
8465 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8466 	free_percpu(phba->sli4_hba.c_stat);
8467 out_free_hba_idle_stat:
8468 #endif
8469 	kfree(phba->sli4_hba.idle_stat);
8470 out_free_hba_eq_info:
8471 	free_percpu(phba->sli4_hba.eq_info);
8472 out_free_hba_cpu_map:
8473 	kfree(phba->sli4_hba.cpu_map);
8474 out_free_hba_eq_hdl:
8475 	kfree(phba->sli4_hba.hba_eq_hdl);
8476 out_free_fcf_rr_bmask:
8477 	kfree(phba->fcf.fcf_rr_bmask);
8478 out_remove_rpi_hdrs:
8479 	lpfc_sli4_remove_rpi_hdrs(phba);
8480 out_free_active_sgl:
8481 	lpfc_free_active_sgl(phba);
8482 out_destroy_cq_event_pool:
8483 	lpfc_sli4_cq_event_pool_destroy(phba);
8484 out_free_cmd_rsp_buf:
8485 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8486 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8487 out_free_sg_dma_buf:
8488 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8489 	phba->lpfc_sg_dma_buf_pool = NULL;
8490 out_free_bsmbx:
8491 	lpfc_destroy_bootstrap_mbox(phba);
8492 out_free_mem:
8493 	lpfc_mem_free(phba);
8494 out_destroy_workqueue:
8495 	destroy_workqueue(phba->wq);
8496 	phba->wq = NULL;
8497 	return rc;
8498 }
8499 
8500 /**
8501  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8502  * @phba: pointer to lpfc hba data structure.
8503  *
8504  * This routine is invoked to unset the driver internal resources set up
8505  * specific for supporting the SLI-4 HBA device it attached to.
8506  **/
8507 static void
8508 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8509 {
8510 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8511 
8512 	free_percpu(phba->sli4_hba.eq_info);
8513 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8514 	free_percpu(phba->sli4_hba.c_stat);
8515 #endif
8516 	free_percpu(phba->cmf_stat);
8517 	kfree(phba->sli4_hba.idle_stat);
8518 
8519 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8520 	kfree(phba->sli4_hba.cpu_map);
8521 	phba->sli4_hba.num_possible_cpu = 0;
8522 	phba->sli4_hba.num_present_cpu = 0;
8523 	phba->sli4_hba.curr_disp_cpu = 0;
8524 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8525 
8526 	/* Free memory allocated for fast-path work queue handles */
8527 	kfree(phba->sli4_hba.hba_eq_hdl);
8528 
8529 	/* Free the allocated rpi headers. */
8530 	lpfc_sli4_remove_rpi_hdrs(phba);
8531 	lpfc_sli4_remove_rpis(phba);
8532 
8533 	/* Free eligible FCF index bmask */
8534 	kfree(phba->fcf.fcf_rr_bmask);
8535 
8536 	/* Free the ELS sgl list */
8537 	lpfc_free_active_sgl(phba);
8538 	lpfc_free_els_sgl_list(phba);
8539 	lpfc_free_nvmet_sgl_list(phba);
8540 
8541 	/* Free the completion queue EQ event pool */
8542 	lpfc_sli4_cq_event_release_all(phba);
8543 	lpfc_sli4_cq_event_pool_destroy(phba);
8544 
8545 	/* Release resource identifiers. */
8546 	lpfc_sli4_dealloc_resource_identifiers(phba);
8547 
8548 	/* Free the bsmbx region. */
8549 	lpfc_destroy_bootstrap_mbox(phba);
8550 
8551 	/* Free the SLI Layer memory with SLI4 HBAs */
8552 	lpfc_mem_free_all(phba);
8553 
8554 	/* Free the current connect table */
8555 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8556 		&phba->fcf_conn_rec_list, list) {
8557 		list_del_init(&conn_entry->list);
8558 		kfree(conn_entry);
8559 	}
8560 
8561 	return;
8562 }
8563 
8564 /**
8565  * lpfc_init_api_table_setup - Set up init api function jump table
8566  * @phba: The hba struct for which this call is being executed.
8567  * @dev_grp: The HBA PCI-Device group number.
8568  *
8569  * This routine sets up the device INIT interface API function jump table
8570  * in @phba struct.
8571  *
8572  * Returns: 0 - success, -ENODEV - failure.
8573  **/
8574 int
8575 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8576 {
8577 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8578 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8579 	phba->lpfc_selective_reset = lpfc_selective_reset;
8580 	switch (dev_grp) {
8581 	case LPFC_PCI_DEV_LP:
8582 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8583 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8584 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8585 		break;
8586 	case LPFC_PCI_DEV_OC:
8587 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8588 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8589 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8590 		break;
8591 	default:
8592 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8593 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8594 				dev_grp);
8595 		return -ENODEV;
8596 	}
8597 	return 0;
8598 }
8599 
8600 /**
8601  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8602  * @phba: pointer to lpfc hba data structure.
8603  *
8604  * This routine is invoked to set up the driver internal resources after the
8605  * device specific resource setup to support the HBA device it attached to.
8606  *
8607  * Return codes
8608  * 	0 - successful
8609  * 	other values - error
8610  **/
8611 static int
8612 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8613 {
8614 	int error;
8615 
8616 	/* Startup the kernel thread for this host adapter. */
8617 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8618 					  "lpfc_worker_%d", phba->brd_no);
8619 	if (IS_ERR(phba->worker_thread)) {
8620 		error = PTR_ERR(phba->worker_thread);
8621 		return error;
8622 	}
8623 
8624 	return 0;
8625 }
8626 
8627 /**
8628  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8629  * @phba: pointer to lpfc hba data structure.
8630  *
8631  * This routine is invoked to unset the driver internal resources set up after
8632  * the device specific resource setup for supporting the HBA device it
8633  * attached to.
8634  **/
8635 static void
8636 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8637 {
8638 	if (phba->wq) {
8639 		destroy_workqueue(phba->wq);
8640 		phba->wq = NULL;
8641 	}
8642 
8643 	/* Stop kernel worker thread */
8644 	if (phba->worker_thread)
8645 		kthread_stop(phba->worker_thread);
8646 }
8647 
8648 /**
8649  * lpfc_free_iocb_list - Free iocb list.
8650  * @phba: pointer to lpfc hba data structure.
8651  *
8652  * This routine is invoked to free the driver's IOCB list and memory.
8653  **/
8654 void
8655 lpfc_free_iocb_list(struct lpfc_hba *phba)
8656 {
8657 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8658 
8659 	spin_lock_irq(&phba->hbalock);
8660 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8661 				 &phba->lpfc_iocb_list, list) {
8662 		list_del(&iocbq_entry->list);
8663 		kfree(iocbq_entry);
8664 		phba->total_iocbq_bufs--;
8665 	}
8666 	spin_unlock_irq(&phba->hbalock);
8667 
8668 	return;
8669 }
8670 
8671 /**
8672  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8673  * @phba: pointer to lpfc hba data structure.
8674  * @iocb_count: number of requested iocbs
8675  *
8676  * This routine is invoked to allocate and initizlize the driver's IOCB
8677  * list and set up the IOCB tag array accordingly.
8678  *
8679  * Return codes
8680  *	0 - successful
8681  *	other values - error
8682  **/
8683 int
8684 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8685 {
8686 	struct lpfc_iocbq *iocbq_entry = NULL;
8687 	uint16_t iotag;
8688 	int i;
8689 
8690 	/* Initialize and populate the iocb list per host.  */
8691 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8692 	for (i = 0; i < iocb_count; i++) {
8693 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8694 		if (iocbq_entry == NULL) {
8695 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8696 				"expected %d count. Unloading driver.\n",
8697 				__func__, i, iocb_count);
8698 			goto out_free_iocbq;
8699 		}
8700 
8701 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8702 		if (iotag == 0) {
8703 			kfree(iocbq_entry);
8704 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8705 				"Unloading driver.\n", __func__);
8706 			goto out_free_iocbq;
8707 		}
8708 		iocbq_entry->sli4_lxritag = NO_XRI;
8709 		iocbq_entry->sli4_xritag = NO_XRI;
8710 
8711 		spin_lock_irq(&phba->hbalock);
8712 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8713 		phba->total_iocbq_bufs++;
8714 		spin_unlock_irq(&phba->hbalock);
8715 	}
8716 
8717 	return 0;
8718 
8719 out_free_iocbq:
8720 	lpfc_free_iocb_list(phba);
8721 
8722 	return -ENOMEM;
8723 }
8724 
8725 /**
8726  * lpfc_free_sgl_list - Free a given sgl list.
8727  * @phba: pointer to lpfc hba data structure.
8728  * @sglq_list: pointer to the head of sgl list.
8729  *
8730  * This routine is invoked to free a give sgl list and memory.
8731  **/
8732 void
8733 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8734 {
8735 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8736 
8737 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8738 		list_del(&sglq_entry->list);
8739 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8740 		kfree(sglq_entry);
8741 	}
8742 }
8743 
8744 /**
8745  * lpfc_free_els_sgl_list - Free els sgl list.
8746  * @phba: pointer to lpfc hba data structure.
8747  *
8748  * This routine is invoked to free the driver's els sgl list and memory.
8749  **/
8750 static void
8751 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8752 {
8753 	LIST_HEAD(sglq_list);
8754 
8755 	/* Retrieve all els sgls from driver list */
8756 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8757 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8758 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8759 
8760 	/* Now free the sgl list */
8761 	lpfc_free_sgl_list(phba, &sglq_list);
8762 }
8763 
8764 /**
8765  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8766  * @phba: pointer to lpfc hba data structure.
8767  *
8768  * This routine is invoked to free the driver's nvmet sgl list and memory.
8769  **/
8770 static void
8771 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8772 {
8773 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8774 	LIST_HEAD(sglq_list);
8775 
8776 	/* Retrieve all nvmet sgls from driver list */
8777 	spin_lock_irq(&phba->hbalock);
8778 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8779 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8780 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8781 	spin_unlock_irq(&phba->hbalock);
8782 
8783 	/* Now free the sgl list */
8784 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8785 		list_del(&sglq_entry->list);
8786 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8787 		kfree(sglq_entry);
8788 	}
8789 
8790 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8791 	 * The next initialization cycle sets the count and allocates
8792 	 * the sgls over again.
8793 	 */
8794 	phba->sli4_hba.nvmet_xri_cnt = 0;
8795 }
8796 
8797 /**
8798  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8799  * @phba: pointer to lpfc hba data structure.
8800  *
8801  * This routine is invoked to allocate the driver's active sgl memory.
8802  * This array will hold the sglq_entry's for active IOs.
8803  **/
8804 static int
8805 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8806 {
8807 	int size;
8808 	size = sizeof(struct lpfc_sglq *);
8809 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8810 
8811 	phba->sli4_hba.lpfc_sglq_active_list =
8812 		kzalloc(size, GFP_KERNEL);
8813 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8814 		return -ENOMEM;
8815 	return 0;
8816 }
8817 
8818 /**
8819  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8820  * @phba: pointer to lpfc hba data structure.
8821  *
8822  * This routine is invoked to walk through the array of active sglq entries
8823  * and free all of the resources.
8824  * This is just a place holder for now.
8825  **/
8826 static void
8827 lpfc_free_active_sgl(struct lpfc_hba *phba)
8828 {
8829 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8830 }
8831 
8832 /**
8833  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8834  * @phba: pointer to lpfc hba data structure.
8835  *
8836  * This routine is invoked to allocate and initizlize the driver's sgl
8837  * list and set up the sgl xritag tag array accordingly.
8838  *
8839  **/
8840 static void
8841 lpfc_init_sgl_list(struct lpfc_hba *phba)
8842 {
8843 	/* Initialize and populate the sglq list per host/VF. */
8844 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8845 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8846 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8847 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8848 
8849 	/* els xri-sgl book keeping */
8850 	phba->sli4_hba.els_xri_cnt = 0;
8851 
8852 	/* nvme xri-buffer book keeping */
8853 	phba->sli4_hba.io_xri_cnt = 0;
8854 }
8855 
8856 /**
8857  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8858  * @phba: pointer to lpfc hba data structure.
8859  *
8860  * This routine is invoked to post rpi header templates to the
8861  * port for those SLI4 ports that do not support extents.  This routine
8862  * posts a PAGE_SIZE memory region to the port to hold up to
8863  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8864  * and should be called only when interrupts are disabled.
8865  *
8866  * Return codes
8867  * 	0 - successful
8868  *	-ERROR - otherwise.
8869  **/
8870 int
8871 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8872 {
8873 	int rc = 0;
8874 	struct lpfc_rpi_hdr *rpi_hdr;
8875 
8876 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8877 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8878 		return rc;
8879 	if (phba->sli4_hba.extents_in_use)
8880 		return -EIO;
8881 
8882 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8883 	if (!rpi_hdr) {
8884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8885 				"0391 Error during rpi post operation\n");
8886 		lpfc_sli4_remove_rpis(phba);
8887 		rc = -ENODEV;
8888 	}
8889 
8890 	return rc;
8891 }
8892 
8893 /**
8894  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8895  * @phba: pointer to lpfc hba data structure.
8896  *
8897  * This routine is invoked to allocate a single 4KB memory region to
8898  * support rpis and stores them in the phba.  This single region
8899  * provides support for up to 64 rpis.  The region is used globally
8900  * by the device.
8901  *
8902  * Returns:
8903  *   A valid rpi hdr on success.
8904  *   A NULL pointer on any failure.
8905  **/
8906 struct lpfc_rpi_hdr *
8907 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8908 {
8909 	uint16_t rpi_limit, curr_rpi_range;
8910 	struct lpfc_dmabuf *dmabuf;
8911 	struct lpfc_rpi_hdr *rpi_hdr;
8912 
8913 	/*
8914 	 * If the SLI4 port supports extents, posting the rpi header isn't
8915 	 * required.  Set the expected maximum count and let the actual value
8916 	 * get set when extents are fully allocated.
8917 	 */
8918 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8919 		return NULL;
8920 	if (phba->sli4_hba.extents_in_use)
8921 		return NULL;
8922 
8923 	/* The limit on the logical index is just the max_rpi count. */
8924 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8925 
8926 	spin_lock_irq(&phba->hbalock);
8927 	/*
8928 	 * Establish the starting RPI in this header block.  The starting
8929 	 * rpi is normalized to a zero base because the physical rpi is
8930 	 * port based.
8931 	 */
8932 	curr_rpi_range = phba->sli4_hba.next_rpi;
8933 	spin_unlock_irq(&phba->hbalock);
8934 
8935 	/* Reached full RPI range */
8936 	if (curr_rpi_range == rpi_limit)
8937 		return NULL;
8938 
8939 	/*
8940 	 * First allocate the protocol header region for the port.  The
8941 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8942 	 */
8943 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8944 	if (!dmabuf)
8945 		return NULL;
8946 
8947 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8948 					  LPFC_HDR_TEMPLATE_SIZE,
8949 					  &dmabuf->phys, GFP_KERNEL);
8950 	if (!dmabuf->virt) {
8951 		rpi_hdr = NULL;
8952 		goto err_free_dmabuf;
8953 	}
8954 
8955 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8956 		rpi_hdr = NULL;
8957 		goto err_free_coherent;
8958 	}
8959 
8960 	/* Save the rpi header data for cleanup later. */
8961 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8962 	if (!rpi_hdr)
8963 		goto err_free_coherent;
8964 
8965 	rpi_hdr->dmabuf = dmabuf;
8966 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8967 	rpi_hdr->page_count = 1;
8968 	spin_lock_irq(&phba->hbalock);
8969 
8970 	/* The rpi_hdr stores the logical index only. */
8971 	rpi_hdr->start_rpi = curr_rpi_range;
8972 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8973 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8974 
8975 	spin_unlock_irq(&phba->hbalock);
8976 	return rpi_hdr;
8977 
8978  err_free_coherent:
8979 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8980 			  dmabuf->virt, dmabuf->phys);
8981  err_free_dmabuf:
8982 	kfree(dmabuf);
8983 	return NULL;
8984 }
8985 
8986 /**
8987  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8988  * @phba: pointer to lpfc hba data structure.
8989  *
8990  * This routine is invoked to remove all memory resources allocated
8991  * to support rpis for SLI4 ports not supporting extents. This routine
8992  * presumes the caller has released all rpis consumed by fabric or port
8993  * logins and is prepared to have the header pages removed.
8994  **/
8995 void
8996 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8997 {
8998 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8999 
9000 	if (!phba->sli4_hba.rpi_hdrs_in_use)
9001 		goto exit;
9002 
9003 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9004 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9005 		list_del(&rpi_hdr->list);
9006 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9007 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9008 		kfree(rpi_hdr->dmabuf);
9009 		kfree(rpi_hdr);
9010 	}
9011  exit:
9012 	/* There are no rpis available to the port now. */
9013 	phba->sli4_hba.next_rpi = 0;
9014 }
9015 
9016 /**
9017  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9018  * @pdev: pointer to pci device data structure.
9019  *
9020  * This routine is invoked to allocate the driver hba data structure for an
9021  * HBA device. If the allocation is successful, the phba reference to the
9022  * PCI device data structure is set.
9023  *
9024  * Return codes
9025  *      pointer to @phba - successful
9026  *      NULL - error
9027  **/
9028 static struct lpfc_hba *
9029 lpfc_hba_alloc(struct pci_dev *pdev)
9030 {
9031 	struct lpfc_hba *phba;
9032 
9033 	/* Allocate memory for HBA structure */
9034 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9035 	if (!phba) {
9036 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9037 		return NULL;
9038 	}
9039 
9040 	/* Set reference to PCI device in HBA structure */
9041 	phba->pcidev = pdev;
9042 
9043 	/* Assign an unused board number */
9044 	phba->brd_no = lpfc_get_instance();
9045 	if (phba->brd_no < 0) {
9046 		kfree(phba);
9047 		return NULL;
9048 	}
9049 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9050 
9051 	spin_lock_init(&phba->ct_ev_lock);
9052 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9053 
9054 	return phba;
9055 }
9056 
9057 /**
9058  * lpfc_hba_free - Free driver hba data structure with a device.
9059  * @phba: pointer to lpfc hba data structure.
9060  *
9061  * This routine is invoked to free the driver hba data structure with an
9062  * HBA device.
9063  **/
9064 static void
9065 lpfc_hba_free(struct lpfc_hba *phba)
9066 {
9067 	if (phba->sli_rev == LPFC_SLI_REV4)
9068 		kfree(phba->sli4_hba.hdwq);
9069 
9070 	/* Release the driver assigned board number */
9071 	idr_remove(&lpfc_hba_index, phba->brd_no);
9072 
9073 	/* Free memory allocated with sli3 rings */
9074 	kfree(phba->sli.sli3_ring);
9075 	phba->sli.sli3_ring = NULL;
9076 
9077 	kfree(phba);
9078 	return;
9079 }
9080 
9081 /**
9082  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9083  * @vport: pointer to lpfc vport data structure.
9084  *
9085  * This routine is will setup initial FDMI attribute masks for
9086  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9087  * to get these attributes first before falling back, the attribute
9088  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9089  **/
9090 void
9091 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9092 {
9093 	struct lpfc_hba *phba = vport->phba;
9094 
9095 	set_bit(FC_ALLOW_FDMI, &vport->load_flag);
9096 	if (phba->cfg_enable_SmartSAN ||
9097 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9098 		/* Setup appropriate attribute masks */
9099 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9100 		if (phba->cfg_enable_SmartSAN)
9101 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9102 		else
9103 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9104 	}
9105 
9106 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9107 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9108 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9109 }
9110 
9111 /**
9112  * lpfc_create_shost - Create hba physical port with associated scsi host.
9113  * @phba: pointer to lpfc hba data structure.
9114  *
9115  * This routine is invoked to create HBA physical port and associate a SCSI
9116  * host with it.
9117  *
9118  * Return codes
9119  *      0 - successful
9120  *      other values - error
9121  **/
9122 static int
9123 lpfc_create_shost(struct lpfc_hba *phba)
9124 {
9125 	struct lpfc_vport *vport;
9126 	struct Scsi_Host  *shost;
9127 
9128 	/* Initialize HBA FC structure */
9129 	phba->fc_edtov = FF_DEF_EDTOV;
9130 	phba->fc_ratov = FF_DEF_RATOV;
9131 	phba->fc_altov = FF_DEF_ALTOV;
9132 	phba->fc_arbtov = FF_DEF_ARBTOV;
9133 
9134 	atomic_set(&phba->sdev_cnt, 0);
9135 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9136 	if (!vport)
9137 		return -ENODEV;
9138 
9139 	shost = lpfc_shost_from_vport(vport);
9140 	phba->pport = vport;
9141 
9142 	if (phba->nvmet_support) {
9143 		/* Only 1 vport (pport) will support NVME target */
9144 		phba->targetport = NULL;
9145 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9146 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9147 				"6076 NVME Target Found\n");
9148 	}
9149 
9150 	lpfc_debugfs_initialize(vport);
9151 	/* Put reference to SCSI host to driver's device private data */
9152 	pci_set_drvdata(phba->pcidev, shost);
9153 
9154 	lpfc_setup_fdmi_mask(vport);
9155 
9156 	/*
9157 	 * At this point we are fully registered with PSA. In addition,
9158 	 * any initial discovery should be completed.
9159 	 */
9160 	return 0;
9161 }
9162 
9163 /**
9164  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9165  * @phba: pointer to lpfc hba data structure.
9166  *
9167  * This routine is invoked to destroy HBA physical port and the associated
9168  * SCSI host.
9169  **/
9170 static void
9171 lpfc_destroy_shost(struct lpfc_hba *phba)
9172 {
9173 	struct lpfc_vport *vport = phba->pport;
9174 
9175 	/* Destroy physical port that associated with the SCSI host */
9176 	destroy_port(vport);
9177 
9178 	return;
9179 }
9180 
9181 /**
9182  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9183  * @phba: pointer to lpfc hba data structure.
9184  * @shost: the shost to be used to detect Block guard settings.
9185  *
9186  * This routine sets up the local Block guard protocol settings for @shost.
9187  * This routine also allocates memory for debugging bg buffers.
9188  **/
9189 static void
9190 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9191 {
9192 	uint32_t old_mask;
9193 	uint32_t old_guard;
9194 
9195 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9196 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9197 				"1478 Registering BlockGuard with the "
9198 				"SCSI layer\n");
9199 
9200 		old_mask = phba->cfg_prot_mask;
9201 		old_guard = phba->cfg_prot_guard;
9202 
9203 		/* Only allow supported values */
9204 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9205 			SHOST_DIX_TYPE0_PROTECTION |
9206 			SHOST_DIX_TYPE1_PROTECTION);
9207 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9208 					 SHOST_DIX_GUARD_CRC);
9209 
9210 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9211 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9212 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9213 
9214 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9215 			if ((old_mask != phba->cfg_prot_mask) ||
9216 				(old_guard != phba->cfg_prot_guard))
9217 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9218 					"1475 Registering BlockGuard with the "
9219 					"SCSI layer: mask %d  guard %d\n",
9220 					phba->cfg_prot_mask,
9221 					phba->cfg_prot_guard);
9222 
9223 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9224 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9225 		} else
9226 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9227 				"1479 Not Registering BlockGuard with the SCSI "
9228 				"layer, Bad protection parameters: %d %d\n",
9229 				old_mask, old_guard);
9230 	}
9231 }
9232 
9233 /**
9234  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9235  * @phba: pointer to lpfc hba data structure.
9236  *
9237  * This routine is invoked to perform all the necessary post initialization
9238  * setup for the device.
9239  **/
9240 static void
9241 lpfc_post_init_setup(struct lpfc_hba *phba)
9242 {
9243 	struct Scsi_Host  *shost;
9244 	struct lpfc_adapter_event_header adapter_event;
9245 
9246 	/* Get the default values for Model Name and Description */
9247 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9248 
9249 	/*
9250 	 * hba setup may have changed the hba_queue_depth so we need to
9251 	 * adjust the value of can_queue.
9252 	 */
9253 	shost = pci_get_drvdata(phba->pcidev);
9254 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9255 
9256 	lpfc_host_attrib_init(shost);
9257 
9258 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9259 		spin_lock_irq(shost->host_lock);
9260 		lpfc_poll_start_timer(phba);
9261 		spin_unlock_irq(shost->host_lock);
9262 	}
9263 
9264 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9265 			"0428 Perform SCSI scan\n");
9266 	/* Send board arrival event to upper layer */
9267 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9268 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9269 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9270 				  sizeof(adapter_event),
9271 				  (char *) &adapter_event,
9272 				  LPFC_NL_VENDOR_ID);
9273 	return;
9274 }
9275 
9276 /**
9277  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9278  * @phba: pointer to lpfc hba data structure.
9279  *
9280  * This routine is invoked to set up the PCI device memory space for device
9281  * with SLI-3 interface spec.
9282  *
9283  * Return codes
9284  * 	0 - successful
9285  * 	other values - error
9286  **/
9287 static int
9288 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9289 {
9290 	struct pci_dev *pdev = phba->pcidev;
9291 	unsigned long bar0map_len, bar2map_len;
9292 	int i, hbq_count;
9293 	void *ptr;
9294 	int error;
9295 
9296 	if (!pdev)
9297 		return -ENODEV;
9298 
9299 	/* Set the device DMA mask size */
9300 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9301 	if (error)
9302 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9303 	if (error)
9304 		return error;
9305 	error = -ENODEV;
9306 
9307 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9308 	 * required by each mapping.
9309 	 */
9310 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9311 	bar0map_len = pci_resource_len(pdev, 0);
9312 
9313 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9314 	bar2map_len = pci_resource_len(pdev, 2);
9315 
9316 	/* Map HBA SLIM to a kernel virtual address. */
9317 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9318 	if (!phba->slim_memmap_p) {
9319 		dev_printk(KERN_ERR, &pdev->dev,
9320 			   "ioremap failed for SLIM memory.\n");
9321 		goto out;
9322 	}
9323 
9324 	/* Map HBA Control Registers to a kernel virtual address. */
9325 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9326 	if (!phba->ctrl_regs_memmap_p) {
9327 		dev_printk(KERN_ERR, &pdev->dev,
9328 			   "ioremap failed for HBA control registers.\n");
9329 		goto out_iounmap_slim;
9330 	}
9331 
9332 	/* Allocate memory for SLI-2 structures */
9333 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9334 					       &phba->slim2p.phys, GFP_KERNEL);
9335 	if (!phba->slim2p.virt)
9336 		goto out_iounmap;
9337 
9338 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9339 	phba->mbox_ext = (phba->slim2p.virt +
9340 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9341 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9342 	phba->IOCBs = (phba->slim2p.virt +
9343 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9344 
9345 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9346 						 lpfc_sli_hbq_size(),
9347 						 &phba->hbqslimp.phys,
9348 						 GFP_KERNEL);
9349 	if (!phba->hbqslimp.virt)
9350 		goto out_free_slim;
9351 
9352 	hbq_count = lpfc_sli_hbq_count();
9353 	ptr = phba->hbqslimp.virt;
9354 	for (i = 0; i < hbq_count; ++i) {
9355 		phba->hbqs[i].hbq_virt = ptr;
9356 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9357 		ptr += (lpfc_hbq_defs[i]->entry_count *
9358 			sizeof(struct lpfc_hbq_entry));
9359 	}
9360 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9361 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9362 
9363 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9364 
9365 	phba->MBslimaddr = phba->slim_memmap_p;
9366 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9367 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9368 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9369 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9370 
9371 	return 0;
9372 
9373 out_free_slim:
9374 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9375 			  phba->slim2p.virt, phba->slim2p.phys);
9376 out_iounmap:
9377 	iounmap(phba->ctrl_regs_memmap_p);
9378 out_iounmap_slim:
9379 	iounmap(phba->slim_memmap_p);
9380 out:
9381 	return error;
9382 }
9383 
9384 /**
9385  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9386  * @phba: pointer to lpfc hba data structure.
9387  *
9388  * This routine is invoked to unset the PCI device memory space for device
9389  * with SLI-3 interface spec.
9390  **/
9391 static void
9392 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9393 {
9394 	struct pci_dev *pdev;
9395 
9396 	/* Obtain PCI device reference */
9397 	if (!phba->pcidev)
9398 		return;
9399 	else
9400 		pdev = phba->pcidev;
9401 
9402 	/* Free coherent DMA memory allocated */
9403 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9404 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9405 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9406 			  phba->slim2p.virt, phba->slim2p.phys);
9407 
9408 	/* I/O memory unmap */
9409 	iounmap(phba->ctrl_regs_memmap_p);
9410 	iounmap(phba->slim_memmap_p);
9411 
9412 	return;
9413 }
9414 
9415 /**
9416  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9417  * @phba: pointer to lpfc hba data structure.
9418  *
9419  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9420  * done and check status.
9421  *
9422  * Return 0 if successful, otherwise -ENODEV.
9423  **/
9424 int
9425 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9426 {
9427 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9428 	struct lpfc_register reg_data;
9429 	int i, port_error = 0;
9430 	uint32_t if_type;
9431 
9432 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9433 	memset(&reg_data, 0, sizeof(reg_data));
9434 	if (!phba->sli4_hba.PSMPHRregaddr)
9435 		return -ENODEV;
9436 
9437 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9438 	for (i = 0; i < 3000; i++) {
9439 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9440 			&portsmphr_reg.word0) ||
9441 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9442 			/* Port has a fatal POST error, break out */
9443 			port_error = -ENODEV;
9444 			break;
9445 		}
9446 		if (LPFC_POST_STAGE_PORT_READY ==
9447 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9448 			break;
9449 		msleep(10);
9450 	}
9451 
9452 	/*
9453 	 * If there was a port error during POST, then don't proceed with
9454 	 * other register reads as the data may not be valid.  Just exit.
9455 	 */
9456 	if (port_error) {
9457 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9458 			"1408 Port Failed POST - portsmphr=0x%x, "
9459 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9460 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9461 			portsmphr_reg.word0,
9462 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9463 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9464 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9465 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9466 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9467 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9468 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9469 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9470 	} else {
9471 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9472 				"2534 Device Info: SLIFamily=0x%x, "
9473 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9474 				"SLIHint_2=0x%x, FT=0x%x\n",
9475 				bf_get(lpfc_sli_intf_sli_family,
9476 				       &phba->sli4_hba.sli_intf),
9477 				bf_get(lpfc_sli_intf_slirev,
9478 				       &phba->sli4_hba.sli_intf),
9479 				bf_get(lpfc_sli_intf_if_type,
9480 				       &phba->sli4_hba.sli_intf),
9481 				bf_get(lpfc_sli_intf_sli_hint1,
9482 				       &phba->sli4_hba.sli_intf),
9483 				bf_get(lpfc_sli_intf_sli_hint2,
9484 				       &phba->sli4_hba.sli_intf),
9485 				bf_get(lpfc_sli_intf_func_type,
9486 				       &phba->sli4_hba.sli_intf));
9487 		/*
9488 		 * Check for other Port errors during the initialization
9489 		 * process.  Fail the load if the port did not come up
9490 		 * correctly.
9491 		 */
9492 		if_type = bf_get(lpfc_sli_intf_if_type,
9493 				 &phba->sli4_hba.sli_intf);
9494 		switch (if_type) {
9495 		case LPFC_SLI_INTF_IF_TYPE_0:
9496 			phba->sli4_hba.ue_mask_lo =
9497 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9498 			phba->sli4_hba.ue_mask_hi =
9499 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9500 			uerrlo_reg.word0 =
9501 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9502 			uerrhi_reg.word0 =
9503 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9504 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9505 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9506 				lpfc_printf_log(phba, KERN_ERR,
9507 						LOG_TRACE_EVENT,
9508 						"1422 Unrecoverable Error "
9509 						"Detected during POST "
9510 						"uerr_lo_reg=0x%x, "
9511 						"uerr_hi_reg=0x%x, "
9512 						"ue_mask_lo_reg=0x%x, "
9513 						"ue_mask_hi_reg=0x%x\n",
9514 						uerrlo_reg.word0,
9515 						uerrhi_reg.word0,
9516 						phba->sli4_hba.ue_mask_lo,
9517 						phba->sli4_hba.ue_mask_hi);
9518 				port_error = -ENODEV;
9519 			}
9520 			break;
9521 		case LPFC_SLI_INTF_IF_TYPE_2:
9522 		case LPFC_SLI_INTF_IF_TYPE_6:
9523 			/* Final checks.  The port status should be clean. */
9524 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9525 				&reg_data.word0) ||
9526 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9527 				phba->work_status[0] =
9528 					readl(phba->sli4_hba.u.if_type2.
9529 					      ERR1regaddr);
9530 				phba->work_status[1] =
9531 					readl(phba->sli4_hba.u.if_type2.
9532 					      ERR2regaddr);
9533 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9534 					"2888 Unrecoverable port error "
9535 					"following POST: port status reg "
9536 					"0x%x, port_smphr reg 0x%x, "
9537 					"error 1=0x%x, error 2=0x%x\n",
9538 					reg_data.word0,
9539 					portsmphr_reg.word0,
9540 					phba->work_status[0],
9541 					phba->work_status[1]);
9542 				port_error = -ENODEV;
9543 				break;
9544 			}
9545 
9546 			if (lpfc_pldv_detect &&
9547 			    bf_get(lpfc_sli_intf_sli_family,
9548 				   &phba->sli4_hba.sli_intf) ==
9549 					LPFC_SLI_INTF_FAMILY_G6)
9550 				pci_write_config_byte(phba->pcidev,
9551 						      LPFC_SLI_INTF, CFG_PLD);
9552 			break;
9553 		case LPFC_SLI_INTF_IF_TYPE_1:
9554 		default:
9555 			break;
9556 		}
9557 	}
9558 	return port_error;
9559 }
9560 
9561 /**
9562  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9563  * @phba: pointer to lpfc hba data structure.
9564  * @if_type:  The SLI4 interface type getting configured.
9565  *
9566  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9567  * memory map.
9568  **/
9569 static void
9570 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9571 {
9572 	switch (if_type) {
9573 	case LPFC_SLI_INTF_IF_TYPE_0:
9574 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9575 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9576 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9577 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9578 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9579 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9580 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9581 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9582 		phba->sli4_hba.SLIINTFregaddr =
9583 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9584 		break;
9585 	case LPFC_SLI_INTF_IF_TYPE_2:
9586 		phba->sli4_hba.u.if_type2.EQDregaddr =
9587 			phba->sli4_hba.conf_regs_memmap_p +
9588 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9589 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9590 			phba->sli4_hba.conf_regs_memmap_p +
9591 						LPFC_CTL_PORT_ER1_OFFSET;
9592 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9593 			phba->sli4_hba.conf_regs_memmap_p +
9594 						LPFC_CTL_PORT_ER2_OFFSET;
9595 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9596 			phba->sli4_hba.conf_regs_memmap_p +
9597 						LPFC_CTL_PORT_CTL_OFFSET;
9598 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9599 			phba->sli4_hba.conf_regs_memmap_p +
9600 						LPFC_CTL_PORT_STA_OFFSET;
9601 		phba->sli4_hba.SLIINTFregaddr =
9602 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9603 		phba->sli4_hba.PSMPHRregaddr =
9604 			phba->sli4_hba.conf_regs_memmap_p +
9605 						LPFC_CTL_PORT_SEM_OFFSET;
9606 		phba->sli4_hba.RQDBregaddr =
9607 			phba->sli4_hba.conf_regs_memmap_p +
9608 						LPFC_ULP0_RQ_DOORBELL;
9609 		phba->sli4_hba.WQDBregaddr =
9610 			phba->sli4_hba.conf_regs_memmap_p +
9611 						LPFC_ULP0_WQ_DOORBELL;
9612 		phba->sli4_hba.CQDBregaddr =
9613 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9614 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9615 		phba->sli4_hba.MQDBregaddr =
9616 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9617 		phba->sli4_hba.BMBXregaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9619 		break;
9620 	case LPFC_SLI_INTF_IF_TYPE_6:
9621 		phba->sli4_hba.u.if_type2.EQDregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p +
9623 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9624 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9625 			phba->sli4_hba.conf_regs_memmap_p +
9626 						LPFC_CTL_PORT_ER1_OFFSET;
9627 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p +
9629 						LPFC_CTL_PORT_ER2_OFFSET;
9630 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9631 			phba->sli4_hba.conf_regs_memmap_p +
9632 						LPFC_CTL_PORT_CTL_OFFSET;
9633 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9634 			phba->sli4_hba.conf_regs_memmap_p +
9635 						LPFC_CTL_PORT_STA_OFFSET;
9636 		phba->sli4_hba.PSMPHRregaddr =
9637 			phba->sli4_hba.conf_regs_memmap_p +
9638 						LPFC_CTL_PORT_SEM_OFFSET;
9639 		phba->sli4_hba.BMBXregaddr =
9640 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9641 		break;
9642 	case LPFC_SLI_INTF_IF_TYPE_1:
9643 	default:
9644 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9645 			   "FATAL - unsupported SLI4 interface type - %d\n",
9646 			   if_type);
9647 		break;
9648 	}
9649 }
9650 
9651 /**
9652  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9653  * @phba: pointer to lpfc hba data structure.
9654  * @if_type: sli if type to operate on.
9655  *
9656  * This routine is invoked to set up SLI4 BAR1 register memory map.
9657  **/
9658 static void
9659 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9660 {
9661 	switch (if_type) {
9662 	case LPFC_SLI_INTF_IF_TYPE_0:
9663 		phba->sli4_hba.PSMPHRregaddr =
9664 			phba->sli4_hba.ctrl_regs_memmap_p +
9665 			LPFC_SLIPORT_IF0_SMPHR;
9666 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9667 			LPFC_HST_ISR0;
9668 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9669 			LPFC_HST_IMR0;
9670 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9671 			LPFC_HST_ISCR0;
9672 		break;
9673 	case LPFC_SLI_INTF_IF_TYPE_6:
9674 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9675 			LPFC_IF6_RQ_DOORBELL;
9676 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9677 			LPFC_IF6_WQ_DOORBELL;
9678 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9679 			LPFC_IF6_CQ_DOORBELL;
9680 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9681 			LPFC_IF6_EQ_DOORBELL;
9682 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9683 			LPFC_IF6_MQ_DOORBELL;
9684 		break;
9685 	case LPFC_SLI_INTF_IF_TYPE_2:
9686 	case LPFC_SLI_INTF_IF_TYPE_1:
9687 	default:
9688 		dev_err(&phba->pcidev->dev,
9689 			   "FATAL - unsupported SLI4 interface type - %d\n",
9690 			   if_type);
9691 		break;
9692 	}
9693 }
9694 
9695 /**
9696  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9697  * @phba: pointer to lpfc hba data structure.
9698  * @vf: virtual function number
9699  *
9700  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9701  * based on the given viftual function number, @vf.
9702  *
9703  * Return 0 if successful, otherwise -ENODEV.
9704  **/
9705 static int
9706 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9707 {
9708 	if (vf > LPFC_VIR_FUNC_MAX)
9709 		return -ENODEV;
9710 
9711 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE +
9713 					LPFC_ULP0_RQ_DOORBELL);
9714 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9715 				vf * LPFC_VFR_PAGE_SIZE +
9716 					LPFC_ULP0_WQ_DOORBELL);
9717 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9718 				vf * LPFC_VFR_PAGE_SIZE +
9719 					LPFC_EQCQ_DOORBELL);
9720 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9721 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9722 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9723 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9724 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9725 	return 0;
9726 }
9727 
9728 /**
9729  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9730  * @phba: pointer to lpfc hba data structure.
9731  *
9732  * This routine is invoked to create the bootstrap mailbox
9733  * region consistent with the SLI-4 interface spec.  This
9734  * routine allocates all memory necessary to communicate
9735  * mailbox commands to the port and sets up all alignment
9736  * needs.  No locks are expected to be held when calling
9737  * this routine.
9738  *
9739  * Return codes
9740  * 	0 - successful
9741  * 	-ENOMEM - could not allocated memory.
9742  **/
9743 static int
9744 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9745 {
9746 	uint32_t bmbx_size;
9747 	struct lpfc_dmabuf *dmabuf;
9748 	struct dma_address *dma_address;
9749 	uint32_t pa_addr;
9750 	uint64_t phys_addr;
9751 
9752 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9753 	if (!dmabuf)
9754 		return -ENOMEM;
9755 
9756 	/*
9757 	 * The bootstrap mailbox region is comprised of 2 parts
9758 	 * plus an alignment restriction of 16 bytes.
9759 	 */
9760 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9761 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9762 					  &dmabuf->phys, GFP_KERNEL);
9763 	if (!dmabuf->virt) {
9764 		kfree(dmabuf);
9765 		return -ENOMEM;
9766 	}
9767 
9768 	/*
9769 	 * Initialize the bootstrap mailbox pointers now so that the register
9770 	 * operations are simple later.  The mailbox dma address is required
9771 	 * to be 16-byte aligned.  Also align the virtual memory as each
9772 	 * maibox is copied into the bmbx mailbox region before issuing the
9773 	 * command to the port.
9774 	 */
9775 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9776 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9777 
9778 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9779 					      LPFC_ALIGN_16_BYTE);
9780 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9781 					      LPFC_ALIGN_16_BYTE);
9782 
9783 	/*
9784 	 * Set the high and low physical addresses now.  The SLI4 alignment
9785 	 * requirement is 16 bytes and the mailbox is posted to the port
9786 	 * as two 30-bit addresses.  The other data is a bit marking whether
9787 	 * the 30-bit address is the high or low address.
9788 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9789 	 * clean on 32 bit machines.
9790 	 */
9791 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9792 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9793 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9794 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9795 					   LPFC_BMBX_BIT1_ADDR_HI);
9796 
9797 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9798 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9799 					   LPFC_BMBX_BIT1_ADDR_LO);
9800 	return 0;
9801 }
9802 
9803 /**
9804  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9805  * @phba: pointer to lpfc hba data structure.
9806  *
9807  * This routine is invoked to teardown the bootstrap mailbox
9808  * region and release all host resources. This routine requires
9809  * the caller to ensure all mailbox commands recovered, no
9810  * additional mailbox comands are sent, and interrupts are disabled
9811  * before calling this routine.
9812  *
9813  **/
9814 static void
9815 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9816 {
9817 	dma_free_coherent(&phba->pcidev->dev,
9818 			  phba->sli4_hba.bmbx.bmbx_size,
9819 			  phba->sli4_hba.bmbx.dmabuf->virt,
9820 			  phba->sli4_hba.bmbx.dmabuf->phys);
9821 
9822 	kfree(phba->sli4_hba.bmbx.dmabuf);
9823 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9824 }
9825 
9826 static const char * const lpfc_topo_to_str[] = {
9827 	"Loop then P2P",
9828 	"Loopback",
9829 	"P2P Only",
9830 	"Unsupported",
9831 	"Loop Only",
9832 	"Unsupported",
9833 	"P2P then Loop",
9834 };
9835 
9836 #define	LINK_FLAGS_DEF	0x0
9837 #define	LINK_FLAGS_P2P	0x1
9838 #define	LINK_FLAGS_LOOP	0x2
9839 /**
9840  * lpfc_map_topology - Map the topology read from READ_CONFIG
9841  * @phba: pointer to lpfc hba data structure.
9842  * @rd_config: pointer to read config data
9843  *
9844  * This routine is invoked to map the topology values as read
9845  * from the read config mailbox command. If the persistent
9846  * topology feature is supported, the firmware will provide the
9847  * saved topology information to be used in INIT_LINK
9848  **/
9849 static void
9850 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9851 {
9852 	u8 ptv, tf, pt;
9853 
9854 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9855 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9856 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9857 
9858 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9859 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9860 			 ptv, tf, pt);
9861 	if (!ptv) {
9862 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9863 				"2019 FW does not support persistent topology "
9864 				"Using driver parameter defined value [%s]",
9865 				lpfc_topo_to_str[phba->cfg_topology]);
9866 		return;
9867 	}
9868 	/* FW supports persistent topology - override module parameter value */
9869 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9870 
9871 	/* if ASIC_GEN_NUM >= 0xC) */
9872 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9873 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9874 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9875 		    LPFC_SLI_INTF_FAMILY_G6)) {
9876 		if (!tf) {
9877 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9878 					? FLAGS_TOPOLOGY_MODE_LOOP
9879 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9880 		} else {
9881 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9882 		}
9883 	} else { /* G5 */
9884 		if (tf) {
9885 			/* If topology failover set - pt is '0' or '1' */
9886 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9887 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9888 		} else {
9889 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9890 					? FLAGS_TOPOLOGY_MODE_PT_PT
9891 					: FLAGS_TOPOLOGY_MODE_LOOP);
9892 		}
9893 	}
9894 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9895 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9896 				"2020 Using persistent topology value [%s]",
9897 				lpfc_topo_to_str[phba->cfg_topology]);
9898 	} else {
9899 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9900 				"2021 Invalid topology values from FW "
9901 				"Using driver parameter defined value [%s]",
9902 				lpfc_topo_to_str[phba->cfg_topology]);
9903 	}
9904 }
9905 
9906 /**
9907  * lpfc_sli4_read_config - Get the config parameters.
9908  * @phba: pointer to lpfc hba data structure.
9909  *
9910  * This routine is invoked to read the configuration parameters from the HBA.
9911  * The configuration parameters are used to set the base and maximum values
9912  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9913  * allocation for the port.
9914  *
9915  * Return codes
9916  * 	0 - successful
9917  * 	-ENOMEM - No available memory
9918  *      -EIO - The mailbox failed to complete successfully.
9919  **/
9920 int
9921 lpfc_sli4_read_config(struct lpfc_hba *phba)
9922 {
9923 	LPFC_MBOXQ_t *pmb;
9924 	struct lpfc_mbx_read_config *rd_config;
9925 	union  lpfc_sli4_cfg_shdr *shdr;
9926 	uint32_t shdr_status, shdr_add_status;
9927 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9928 	struct lpfc_rsrc_desc_fcfcoe *desc;
9929 	char *pdesc_0;
9930 	uint16_t forced_link_speed;
9931 	uint32_t if_type, qmin, fawwpn;
9932 	int length, i, rc = 0, rc2;
9933 
9934 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9935 	if (!pmb) {
9936 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9937 				"2011 Unable to allocate memory for issuing "
9938 				"SLI_CONFIG_SPECIAL mailbox command\n");
9939 		return -ENOMEM;
9940 	}
9941 
9942 	lpfc_read_config(phba, pmb);
9943 
9944 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9945 	if (rc != MBX_SUCCESS) {
9946 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9947 				"2012 Mailbox failed , mbxCmd x%x "
9948 				"READ_CONFIG, mbxStatus x%x\n",
9949 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9950 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9951 		rc = -EIO;
9952 	} else {
9953 		rd_config = &pmb->u.mqe.un.rd_config;
9954 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9955 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9956 			phba->sli4_hba.lnk_info.lnk_tp =
9957 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9958 			phba->sli4_hba.lnk_info.lnk_no =
9959 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9960 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9961 					"3081 lnk_type:%d, lnk_numb:%d\n",
9962 					phba->sli4_hba.lnk_info.lnk_tp,
9963 					phba->sli4_hba.lnk_info.lnk_no);
9964 		} else
9965 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9966 					"3082 Mailbox (x%x) returned ldv:x0\n",
9967 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9968 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9969 			phba->bbcredit_support = 1;
9970 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9971 		}
9972 
9973 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9974 
9975 		if (fawwpn) {
9976 			lpfc_printf_log(phba, KERN_INFO,
9977 					LOG_INIT | LOG_DISCOVERY,
9978 					"2702 READ_CONFIG: FA-PWWN is "
9979 					"configured on\n");
9980 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9981 		} else {
9982 			/* Clear FW configured flag, preserve driver flag */
9983 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9984 		}
9985 
9986 		phba->sli4_hba.conf_trunk =
9987 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9988 		phba->sli4_hba.extents_in_use =
9989 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9990 
9991 		phba->sli4_hba.max_cfg_param.max_xri =
9992 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9993 		/* Reduce resource usage in kdump environment */
9994 		if (is_kdump_kernel() &&
9995 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9996 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9997 		phba->sli4_hba.max_cfg_param.xri_base =
9998 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9999 		phba->sli4_hba.max_cfg_param.max_vpi =
10000 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
10001 		/* Limit the max we support */
10002 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
10003 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10004 		phba->sli4_hba.max_cfg_param.vpi_base =
10005 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10006 		phba->sli4_hba.max_cfg_param.max_rpi =
10007 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10008 		phba->sli4_hba.max_cfg_param.rpi_base =
10009 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10010 		phba->sli4_hba.max_cfg_param.max_vfi =
10011 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10012 		phba->sli4_hba.max_cfg_param.vfi_base =
10013 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10014 		phba->sli4_hba.max_cfg_param.max_fcfi =
10015 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10016 		phba->sli4_hba.max_cfg_param.max_eq =
10017 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10018 		phba->sli4_hba.max_cfg_param.max_rq =
10019 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10020 		phba->sli4_hba.max_cfg_param.max_wq =
10021 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10022 		phba->sli4_hba.max_cfg_param.max_cq =
10023 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10024 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10025 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10026 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10027 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10028 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10029 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10030 		phba->max_vports = phba->max_vpi;
10031 
10032 		/* Next decide on FPIN or Signal E2E CGN support
10033 		 * For congestion alarms and warnings valid combination are:
10034 		 * 1. FPIN alarms / FPIN warnings
10035 		 * 2. Signal alarms / Signal warnings
10036 		 * 3. FPIN alarms / Signal warnings
10037 		 * 4. Signal alarms / FPIN warnings
10038 		 *
10039 		 * Initialize the adapter frequency to 100 mSecs
10040 		 */
10041 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10042 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10043 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10044 
10045 		if (lpfc_use_cgn_signal) {
10046 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10047 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10048 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10049 			}
10050 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10051 				/* MUST support both alarm and warning
10052 				 * because EDC does not support alarm alone.
10053 				 */
10054 				if (phba->cgn_reg_signal !=
10055 				    EDC_CG_SIG_WARN_ONLY) {
10056 					/* Must support both or none */
10057 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10058 					phba->cgn_reg_signal =
10059 						EDC_CG_SIG_NOTSUPPORTED;
10060 				} else {
10061 					phba->cgn_reg_signal =
10062 						EDC_CG_SIG_WARN_ALARM;
10063 					phba->cgn_reg_fpin =
10064 						LPFC_CGN_FPIN_NONE;
10065 				}
10066 			}
10067 		}
10068 
10069 		/* Set the congestion initial signal and fpin values. */
10070 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10071 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10072 
10073 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10074 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10075 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10076 
10077 		lpfc_map_topology(phba, rd_config);
10078 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10079 				"2003 cfg params Extents? %d "
10080 				"XRI(B:%d M:%d), "
10081 				"VPI(B:%d M:%d) "
10082 				"VFI(B:%d M:%d) "
10083 				"RPI(B:%d M:%d) "
10084 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10085 				phba->sli4_hba.extents_in_use,
10086 				phba->sli4_hba.max_cfg_param.xri_base,
10087 				phba->sli4_hba.max_cfg_param.max_xri,
10088 				phba->sli4_hba.max_cfg_param.vpi_base,
10089 				phba->sli4_hba.max_cfg_param.max_vpi,
10090 				phba->sli4_hba.max_cfg_param.vfi_base,
10091 				phba->sli4_hba.max_cfg_param.max_vfi,
10092 				phba->sli4_hba.max_cfg_param.rpi_base,
10093 				phba->sli4_hba.max_cfg_param.max_rpi,
10094 				phba->sli4_hba.max_cfg_param.max_fcfi,
10095 				phba->sli4_hba.max_cfg_param.max_eq,
10096 				phba->sli4_hba.max_cfg_param.max_cq,
10097 				phba->sli4_hba.max_cfg_param.max_wq,
10098 				phba->sli4_hba.max_cfg_param.max_rq,
10099 				phba->lmt);
10100 
10101 		/*
10102 		 * Calculate queue resources based on how
10103 		 * many WQ/CQ/EQs are available.
10104 		 */
10105 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10106 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10107 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10108 		/*
10109 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10110 		 * the remainder can be used for NVME / FCP.
10111 		 */
10112 		qmin -= 4;
10113 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10114 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10115 
10116 		/* Check to see if there is enough for default cfg */
10117 		if ((phba->cfg_irq_chann > qmin) ||
10118 		    (phba->cfg_hdw_queue > qmin)) {
10119 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10120 					"2005 Reducing Queues - "
10121 					"FW resource limitation: "
10122 					"WQ %d CQ %d EQ %d: min %d: "
10123 					"IRQ %d HDWQ %d\n",
10124 					phba->sli4_hba.max_cfg_param.max_wq,
10125 					phba->sli4_hba.max_cfg_param.max_cq,
10126 					phba->sli4_hba.max_cfg_param.max_eq,
10127 					qmin, phba->cfg_irq_chann,
10128 					phba->cfg_hdw_queue);
10129 
10130 			if (phba->cfg_irq_chann > qmin)
10131 				phba->cfg_irq_chann = qmin;
10132 			if (phba->cfg_hdw_queue > qmin)
10133 				phba->cfg_hdw_queue = qmin;
10134 		}
10135 	}
10136 
10137 	if (rc)
10138 		goto read_cfg_out;
10139 
10140 	/* Update link speed if forced link speed is supported */
10141 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10142 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10143 		forced_link_speed =
10144 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10145 		if (forced_link_speed) {
10146 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10147 
10148 			switch (forced_link_speed) {
10149 			case LINK_SPEED_1G:
10150 				phba->cfg_link_speed =
10151 					LPFC_USER_LINK_SPEED_1G;
10152 				break;
10153 			case LINK_SPEED_2G:
10154 				phba->cfg_link_speed =
10155 					LPFC_USER_LINK_SPEED_2G;
10156 				break;
10157 			case LINK_SPEED_4G:
10158 				phba->cfg_link_speed =
10159 					LPFC_USER_LINK_SPEED_4G;
10160 				break;
10161 			case LINK_SPEED_8G:
10162 				phba->cfg_link_speed =
10163 					LPFC_USER_LINK_SPEED_8G;
10164 				break;
10165 			case LINK_SPEED_10G:
10166 				phba->cfg_link_speed =
10167 					LPFC_USER_LINK_SPEED_10G;
10168 				break;
10169 			case LINK_SPEED_16G:
10170 				phba->cfg_link_speed =
10171 					LPFC_USER_LINK_SPEED_16G;
10172 				break;
10173 			case LINK_SPEED_32G:
10174 				phba->cfg_link_speed =
10175 					LPFC_USER_LINK_SPEED_32G;
10176 				break;
10177 			case LINK_SPEED_64G:
10178 				phba->cfg_link_speed =
10179 					LPFC_USER_LINK_SPEED_64G;
10180 				break;
10181 			case 0xffff:
10182 				phba->cfg_link_speed =
10183 					LPFC_USER_LINK_SPEED_AUTO;
10184 				break;
10185 			default:
10186 				lpfc_printf_log(phba, KERN_ERR,
10187 						LOG_TRACE_EVENT,
10188 						"0047 Unrecognized link "
10189 						"speed : %d\n",
10190 						forced_link_speed);
10191 				phba->cfg_link_speed =
10192 					LPFC_USER_LINK_SPEED_AUTO;
10193 			}
10194 		}
10195 	}
10196 
10197 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10198 	length = phba->sli4_hba.max_cfg_param.max_xri -
10199 			lpfc_sli4_get_els_iocb_cnt(phba);
10200 	if (phba->cfg_hba_queue_depth > length) {
10201 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10202 				"3361 HBA queue depth changed from %d to %d\n",
10203 				phba->cfg_hba_queue_depth, length);
10204 		phba->cfg_hba_queue_depth = length;
10205 	}
10206 
10207 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10208 	    LPFC_SLI_INTF_IF_TYPE_2)
10209 		goto read_cfg_out;
10210 
10211 	/* get the pf# and vf# for SLI4 if_type 2 port */
10212 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10213 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10214 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10215 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10216 			 length, LPFC_SLI4_MBX_EMBED);
10217 
10218 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10219 	shdr = (union lpfc_sli4_cfg_shdr *)
10220 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10221 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10222 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10223 	if (rc2 || shdr_status || shdr_add_status) {
10224 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10225 				"3026 Mailbox failed , mbxCmd x%x "
10226 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10227 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10228 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10229 		goto read_cfg_out;
10230 	}
10231 
10232 	/* search for fc_fcoe resrouce descriptor */
10233 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10234 
10235 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10236 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10237 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10238 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10239 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10240 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10241 		goto read_cfg_out;
10242 
10243 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10244 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10245 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10246 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10247 			phba->sli4_hba.iov.pf_number =
10248 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10249 			phba->sli4_hba.iov.vf_number =
10250 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10251 			break;
10252 		}
10253 	}
10254 
10255 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10256 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10257 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10258 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10259 				phba->sli4_hba.iov.vf_number);
10260 	else
10261 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10262 				"3028 GET_FUNCTION_CONFIG: failed to find "
10263 				"Resource Descriptor:x%x\n",
10264 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10265 
10266 read_cfg_out:
10267 	mempool_free(pmb, phba->mbox_mem_pool);
10268 	return rc;
10269 }
10270 
10271 /**
10272  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10273  * @phba: pointer to lpfc hba data structure.
10274  *
10275  * This routine is invoked to setup the port-side endian order when
10276  * the port if_type is 0.  This routine has no function for other
10277  * if_types.
10278  *
10279  * Return codes
10280  * 	0 - successful
10281  * 	-ENOMEM - No available memory
10282  *      -EIO - The mailbox failed to complete successfully.
10283  **/
10284 static int
10285 lpfc_setup_endian_order(struct lpfc_hba *phba)
10286 {
10287 	LPFC_MBOXQ_t *mboxq;
10288 	uint32_t if_type, rc = 0;
10289 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10290 				      HOST_ENDIAN_HIGH_WORD1};
10291 
10292 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10293 	switch (if_type) {
10294 	case LPFC_SLI_INTF_IF_TYPE_0:
10295 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10296 						       GFP_KERNEL);
10297 		if (!mboxq) {
10298 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10299 					"0492 Unable to allocate memory for "
10300 					"issuing SLI_CONFIG_SPECIAL mailbox "
10301 					"command\n");
10302 			return -ENOMEM;
10303 		}
10304 
10305 		/*
10306 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10307 		 * two words to contain special data values and no other data.
10308 		 */
10309 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10310 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10311 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10312 		if (rc != MBX_SUCCESS) {
10313 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10314 					"0493 SLI_CONFIG_SPECIAL mailbox "
10315 					"failed with status x%x\n",
10316 					rc);
10317 			rc = -EIO;
10318 		}
10319 		mempool_free(mboxq, phba->mbox_mem_pool);
10320 		break;
10321 	case LPFC_SLI_INTF_IF_TYPE_6:
10322 	case LPFC_SLI_INTF_IF_TYPE_2:
10323 	case LPFC_SLI_INTF_IF_TYPE_1:
10324 	default:
10325 		break;
10326 	}
10327 	return rc;
10328 }
10329 
10330 /**
10331  * lpfc_sli4_queue_verify - Verify and update EQ counts
10332  * @phba: pointer to lpfc hba data structure.
10333  *
10334  * This routine is invoked to check the user settable queue counts for EQs.
10335  * After this routine is called the counts will be set to valid values that
10336  * adhere to the constraints of the system's interrupt vectors and the port's
10337  * queue resources.
10338  *
10339  * Return codes
10340  *      0 - successful
10341  *      -ENOMEM - No available memory
10342  **/
10343 static int
10344 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10345 {
10346 	/*
10347 	 * Sanity check for configured queue parameters against the run-time
10348 	 * device parameters
10349 	 */
10350 
10351 	if (phba->nvmet_support) {
10352 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10353 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10354 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10355 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10356 	}
10357 
10358 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10359 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10360 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10361 			phba->cfg_nvmet_mrq);
10362 
10363 	/* Get EQ depth from module parameter, fake the default for now */
10364 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10365 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10366 
10367 	/* Get CQ depth from module parameter, fake the default for now */
10368 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10369 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10370 	return 0;
10371 }
10372 
10373 static int
10374 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10375 {
10376 	struct lpfc_queue *qdesc;
10377 	u32 wqesize;
10378 	int cpu;
10379 
10380 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10381 	/* Create Fast Path IO CQs */
10382 	if (phba->enab_exp_wqcq_pages)
10383 		/* Increase the CQ size when WQEs contain an embedded cdb */
10384 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10385 					      phba->sli4_hba.cq_esize,
10386 					      LPFC_CQE_EXP_COUNT, cpu);
10387 
10388 	else
10389 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10390 					      phba->sli4_hba.cq_esize,
10391 					      phba->sli4_hba.cq_ecount, cpu);
10392 	if (!qdesc) {
10393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10394 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10395 				idx);
10396 		return 1;
10397 	}
10398 	qdesc->qe_valid = 1;
10399 	qdesc->hdwq = idx;
10400 	qdesc->chann = cpu;
10401 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10402 
10403 	/* Create Fast Path IO WQs */
10404 	if (phba->enab_exp_wqcq_pages) {
10405 		/* Increase the WQ size when WQEs contain an embedded cdb */
10406 		wqesize = (phba->fcp_embed_io) ?
10407 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10408 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10409 					      wqesize,
10410 					      LPFC_WQE_EXP_COUNT, cpu);
10411 	} else
10412 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10413 					      phba->sli4_hba.wq_esize,
10414 					      phba->sli4_hba.wq_ecount, cpu);
10415 
10416 	if (!qdesc) {
10417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10418 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10419 				idx);
10420 		return 1;
10421 	}
10422 	qdesc->hdwq = idx;
10423 	qdesc->chann = cpu;
10424 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10425 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10426 	return 0;
10427 }
10428 
10429 /**
10430  * lpfc_sli4_queue_create - Create all the SLI4 queues
10431  * @phba: pointer to lpfc hba data structure.
10432  *
10433  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10434  * operation. For each SLI4 queue type, the parameters such as queue entry
10435  * count (queue depth) shall be taken from the module parameter. For now,
10436  * we just use some constant number as place holder.
10437  *
10438  * Return codes
10439  *      0 - successful
10440  *      -ENOMEM - No availble memory
10441  *      -EIO - The mailbox failed to complete successfully.
10442  **/
10443 int
10444 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10445 {
10446 	struct lpfc_queue *qdesc;
10447 	int idx, cpu, eqcpu;
10448 	struct lpfc_sli4_hdw_queue *qp;
10449 	struct lpfc_vector_map_info *cpup;
10450 	struct lpfc_vector_map_info *eqcpup;
10451 	struct lpfc_eq_intr_info *eqi;
10452 
10453 	/*
10454 	 * Create HBA Record arrays.
10455 	 * Both NVME and FCP will share that same vectors / EQs
10456 	 */
10457 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10458 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10459 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10460 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10461 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10462 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10463 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10464 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10465 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10466 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10467 
10468 	if (!phba->sli4_hba.hdwq) {
10469 		phba->sli4_hba.hdwq = kcalloc(
10470 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10471 			GFP_KERNEL);
10472 		if (!phba->sli4_hba.hdwq) {
10473 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10474 					"6427 Failed allocate memory for "
10475 					"fast-path Hardware Queue array\n");
10476 			goto out_error;
10477 		}
10478 		/* Prepare hardware queues to take IO buffers */
10479 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10480 			qp = &phba->sli4_hba.hdwq[idx];
10481 			spin_lock_init(&qp->io_buf_list_get_lock);
10482 			spin_lock_init(&qp->io_buf_list_put_lock);
10483 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10484 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10485 			qp->get_io_bufs = 0;
10486 			qp->put_io_bufs = 0;
10487 			qp->total_io_bufs = 0;
10488 			spin_lock_init(&qp->abts_io_buf_list_lock);
10489 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10490 			qp->abts_scsi_io_bufs = 0;
10491 			qp->abts_nvme_io_bufs = 0;
10492 			INIT_LIST_HEAD(&qp->sgl_list);
10493 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10494 			spin_lock_init(&qp->hdwq_lock);
10495 		}
10496 	}
10497 
10498 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10499 		if (phba->nvmet_support) {
10500 			phba->sli4_hba.nvmet_cqset = kcalloc(
10501 					phba->cfg_nvmet_mrq,
10502 					sizeof(struct lpfc_queue *),
10503 					GFP_KERNEL);
10504 			if (!phba->sli4_hba.nvmet_cqset) {
10505 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10506 					"3121 Fail allocate memory for "
10507 					"fast-path CQ set array\n");
10508 				goto out_error;
10509 			}
10510 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10511 					phba->cfg_nvmet_mrq,
10512 					sizeof(struct lpfc_queue *),
10513 					GFP_KERNEL);
10514 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10515 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10516 					"3122 Fail allocate memory for "
10517 					"fast-path RQ set hdr array\n");
10518 				goto out_error;
10519 			}
10520 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10521 					phba->cfg_nvmet_mrq,
10522 					sizeof(struct lpfc_queue *),
10523 					GFP_KERNEL);
10524 			if (!phba->sli4_hba.nvmet_mrq_data) {
10525 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10526 					"3124 Fail allocate memory for "
10527 					"fast-path RQ set data array\n");
10528 				goto out_error;
10529 			}
10530 		}
10531 	}
10532 
10533 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10534 
10535 	/* Create HBA Event Queues (EQs) */
10536 	for_each_present_cpu(cpu) {
10537 		/* We only want to create 1 EQ per vector, even though
10538 		 * multiple CPUs might be using that vector. so only
10539 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10540 		 */
10541 		cpup = &phba->sli4_hba.cpu_map[cpu];
10542 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10543 			continue;
10544 
10545 		/* Get a ptr to the Hardware Queue associated with this CPU */
10546 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10547 
10548 		/* Allocate an EQ */
10549 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10550 					      phba->sli4_hba.eq_esize,
10551 					      phba->sli4_hba.eq_ecount, cpu);
10552 		if (!qdesc) {
10553 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10554 					"0497 Failed allocate EQ (%d)\n",
10555 					cpup->hdwq);
10556 			goto out_error;
10557 		}
10558 		qdesc->qe_valid = 1;
10559 		qdesc->hdwq = cpup->hdwq;
10560 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10561 		qdesc->last_cpu = qdesc->chann;
10562 
10563 		/* Save the allocated EQ in the Hardware Queue */
10564 		qp->hba_eq = qdesc;
10565 
10566 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10567 		list_add(&qdesc->cpu_list, &eqi->list);
10568 	}
10569 
10570 	/* Now we need to populate the other Hardware Queues, that share
10571 	 * an IRQ vector, with the associated EQ ptr.
10572 	 */
10573 	for_each_present_cpu(cpu) {
10574 		cpup = &phba->sli4_hba.cpu_map[cpu];
10575 
10576 		/* Check for EQ already allocated in previous loop */
10577 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10578 			continue;
10579 
10580 		/* Check for multiple CPUs per hdwq */
10581 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10582 		if (qp->hba_eq)
10583 			continue;
10584 
10585 		/* We need to share an EQ for this hdwq */
10586 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10587 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10588 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10589 	}
10590 
10591 	/* Allocate IO Path SLI4 CQ/WQs */
10592 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10593 		if (lpfc_alloc_io_wq_cq(phba, idx))
10594 			goto out_error;
10595 	}
10596 
10597 	if (phba->nvmet_support) {
10598 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10599 			cpu = lpfc_find_cpu_handle(phba, idx,
10600 						   LPFC_FIND_BY_HDWQ);
10601 			qdesc = lpfc_sli4_queue_alloc(phba,
10602 						      LPFC_DEFAULT_PAGE_SIZE,
10603 						      phba->sli4_hba.cq_esize,
10604 						      phba->sli4_hba.cq_ecount,
10605 						      cpu);
10606 			if (!qdesc) {
10607 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10608 						"3142 Failed allocate NVME "
10609 						"CQ Set (%d)\n", idx);
10610 				goto out_error;
10611 			}
10612 			qdesc->qe_valid = 1;
10613 			qdesc->hdwq = idx;
10614 			qdesc->chann = cpu;
10615 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10616 		}
10617 	}
10618 
10619 	/*
10620 	 * Create Slow Path Completion Queues (CQs)
10621 	 */
10622 
10623 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10624 	/* Create slow-path Mailbox Command Complete Queue */
10625 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10626 				      phba->sli4_hba.cq_esize,
10627 				      phba->sli4_hba.cq_ecount, cpu);
10628 	if (!qdesc) {
10629 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10630 				"0500 Failed allocate slow-path mailbox CQ\n");
10631 		goto out_error;
10632 	}
10633 	qdesc->qe_valid = 1;
10634 	phba->sli4_hba.mbx_cq = qdesc;
10635 
10636 	/* Create slow-path ELS Complete Queue */
10637 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10638 				      phba->sli4_hba.cq_esize,
10639 				      phba->sli4_hba.cq_ecount, cpu);
10640 	if (!qdesc) {
10641 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10642 				"0501 Failed allocate slow-path ELS CQ\n");
10643 		goto out_error;
10644 	}
10645 	qdesc->qe_valid = 1;
10646 	qdesc->chann = cpu;
10647 	phba->sli4_hba.els_cq = qdesc;
10648 
10649 
10650 	/*
10651 	 * Create Slow Path Work Queues (WQs)
10652 	 */
10653 
10654 	/* Create Mailbox Command Queue */
10655 
10656 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10657 				      phba->sli4_hba.mq_esize,
10658 				      phba->sli4_hba.mq_ecount, cpu);
10659 	if (!qdesc) {
10660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10661 				"0505 Failed allocate slow-path MQ\n");
10662 		goto out_error;
10663 	}
10664 	qdesc->chann = cpu;
10665 	phba->sli4_hba.mbx_wq = qdesc;
10666 
10667 	/*
10668 	 * Create ELS Work Queues
10669 	 */
10670 
10671 	/* Create slow-path ELS Work Queue */
10672 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10673 				      phba->sli4_hba.wq_esize,
10674 				      phba->sli4_hba.wq_ecount, cpu);
10675 	if (!qdesc) {
10676 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10677 				"0504 Failed allocate slow-path ELS WQ\n");
10678 		goto out_error;
10679 	}
10680 	qdesc->chann = cpu;
10681 	phba->sli4_hba.els_wq = qdesc;
10682 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10683 
10684 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10685 		/* Create NVME LS Complete Queue */
10686 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10687 					      phba->sli4_hba.cq_esize,
10688 					      phba->sli4_hba.cq_ecount, cpu);
10689 		if (!qdesc) {
10690 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10691 					"6079 Failed allocate NVME LS CQ\n");
10692 			goto out_error;
10693 		}
10694 		qdesc->chann = cpu;
10695 		qdesc->qe_valid = 1;
10696 		phba->sli4_hba.nvmels_cq = qdesc;
10697 
10698 		/* Create NVME LS Work Queue */
10699 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10700 					      phba->sli4_hba.wq_esize,
10701 					      phba->sli4_hba.wq_ecount, cpu);
10702 		if (!qdesc) {
10703 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10704 					"6080 Failed allocate NVME LS WQ\n");
10705 			goto out_error;
10706 		}
10707 		qdesc->chann = cpu;
10708 		phba->sli4_hba.nvmels_wq = qdesc;
10709 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10710 	}
10711 
10712 	/*
10713 	 * Create Receive Queue (RQ)
10714 	 */
10715 
10716 	/* Create Receive Queue for header */
10717 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10718 				      phba->sli4_hba.rq_esize,
10719 				      phba->sli4_hba.rq_ecount, cpu);
10720 	if (!qdesc) {
10721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10722 				"0506 Failed allocate receive HRQ\n");
10723 		goto out_error;
10724 	}
10725 	phba->sli4_hba.hdr_rq = qdesc;
10726 
10727 	/* Create Receive Queue for data */
10728 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10729 				      phba->sli4_hba.rq_esize,
10730 				      phba->sli4_hba.rq_ecount, cpu);
10731 	if (!qdesc) {
10732 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10733 				"0507 Failed allocate receive DRQ\n");
10734 		goto out_error;
10735 	}
10736 	phba->sli4_hba.dat_rq = qdesc;
10737 
10738 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10739 	    phba->nvmet_support) {
10740 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10741 			cpu = lpfc_find_cpu_handle(phba, idx,
10742 						   LPFC_FIND_BY_HDWQ);
10743 			/* Create NVMET Receive Queue for header */
10744 			qdesc = lpfc_sli4_queue_alloc(phba,
10745 						      LPFC_DEFAULT_PAGE_SIZE,
10746 						      phba->sli4_hba.rq_esize,
10747 						      LPFC_NVMET_RQE_DEF_COUNT,
10748 						      cpu);
10749 			if (!qdesc) {
10750 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10751 						"3146 Failed allocate "
10752 						"receive HRQ\n");
10753 				goto out_error;
10754 			}
10755 			qdesc->hdwq = idx;
10756 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10757 
10758 			/* Only needed for header of RQ pair */
10759 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10760 						   GFP_KERNEL,
10761 						   cpu_to_node(cpu));
10762 			if (qdesc->rqbp == NULL) {
10763 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10764 						"6131 Failed allocate "
10765 						"Header RQBP\n");
10766 				goto out_error;
10767 			}
10768 
10769 			/* Put list in known state in case driver load fails. */
10770 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10771 
10772 			/* Create NVMET Receive Queue for data */
10773 			qdesc = lpfc_sli4_queue_alloc(phba,
10774 						      LPFC_DEFAULT_PAGE_SIZE,
10775 						      phba->sli4_hba.rq_esize,
10776 						      LPFC_NVMET_RQE_DEF_COUNT,
10777 						      cpu);
10778 			if (!qdesc) {
10779 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10780 						"3156 Failed allocate "
10781 						"receive DRQ\n");
10782 				goto out_error;
10783 			}
10784 			qdesc->hdwq = idx;
10785 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10786 		}
10787 	}
10788 
10789 	/* Clear NVME stats */
10790 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10791 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10792 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10793 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10794 		}
10795 	}
10796 
10797 	/* Clear SCSI stats */
10798 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10799 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10800 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10801 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10802 		}
10803 	}
10804 
10805 	return 0;
10806 
10807 out_error:
10808 	lpfc_sli4_queue_destroy(phba);
10809 	return -ENOMEM;
10810 }
10811 
10812 static inline void
10813 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10814 {
10815 	if (*qp != NULL) {
10816 		lpfc_sli4_queue_free(*qp);
10817 		*qp = NULL;
10818 	}
10819 }
10820 
10821 static inline void
10822 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10823 {
10824 	int idx;
10825 
10826 	if (*qs == NULL)
10827 		return;
10828 
10829 	for (idx = 0; idx < max; idx++)
10830 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10831 
10832 	kfree(*qs);
10833 	*qs = NULL;
10834 }
10835 
10836 static inline void
10837 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10838 {
10839 	struct lpfc_sli4_hdw_queue *hdwq;
10840 	struct lpfc_queue *eq;
10841 	uint32_t idx;
10842 
10843 	hdwq = phba->sli4_hba.hdwq;
10844 
10845 	/* Loop thru all Hardware Queues */
10846 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10847 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10848 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10849 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10850 		hdwq[idx].hba_eq = NULL;
10851 		hdwq[idx].io_cq = NULL;
10852 		hdwq[idx].io_wq = NULL;
10853 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10854 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10855 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10856 	}
10857 	/* Loop thru all IRQ vectors */
10858 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10859 		/* Free the EQ corresponding to the IRQ vector */
10860 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10861 		lpfc_sli4_queue_free(eq);
10862 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10863 	}
10864 }
10865 
10866 /**
10867  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10868  * @phba: pointer to lpfc hba data structure.
10869  *
10870  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10871  * operation.
10872  *
10873  * Return codes
10874  *      0 - successful
10875  *      -ENOMEM - No available memory
10876  *      -EIO - The mailbox failed to complete successfully.
10877  **/
10878 void
10879 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10880 {
10881 	/*
10882 	 * Set FREE_INIT before beginning to free the queues.
10883 	 * Wait until the users of queues to acknowledge to
10884 	 * release queues by clearing FREE_WAIT.
10885 	 */
10886 	spin_lock_irq(&phba->hbalock);
10887 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10888 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10889 		spin_unlock_irq(&phba->hbalock);
10890 		msleep(20);
10891 		spin_lock_irq(&phba->hbalock);
10892 	}
10893 	spin_unlock_irq(&phba->hbalock);
10894 
10895 	lpfc_sli4_cleanup_poll_list(phba);
10896 
10897 	/* Release HBA eqs */
10898 	if (phba->sli4_hba.hdwq)
10899 		lpfc_sli4_release_hdwq(phba);
10900 
10901 	if (phba->nvmet_support) {
10902 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10903 					 phba->cfg_nvmet_mrq);
10904 
10905 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10906 					 phba->cfg_nvmet_mrq);
10907 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10908 					 phba->cfg_nvmet_mrq);
10909 	}
10910 
10911 	/* Release mailbox command work queue */
10912 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10913 
10914 	/* Release ELS work queue */
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10916 
10917 	/* Release ELS work queue */
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10919 
10920 	/* Release unsolicited receive queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10922 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10923 
10924 	/* Release ELS complete queue */
10925 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10926 
10927 	/* Release NVME LS complete queue */
10928 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10929 
10930 	/* Release mailbox command complete queue */
10931 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10932 
10933 	/* Everything on this list has been freed */
10934 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10935 
10936 	/* Done with freeing the queues */
10937 	spin_lock_irq(&phba->hbalock);
10938 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10939 	spin_unlock_irq(&phba->hbalock);
10940 }
10941 
10942 int
10943 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10944 {
10945 	struct lpfc_rqb *rqbp;
10946 	struct lpfc_dmabuf *h_buf;
10947 	struct rqb_dmabuf *rqb_buffer;
10948 
10949 	rqbp = rq->rqbp;
10950 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10951 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10952 				 struct lpfc_dmabuf, list);
10953 
10954 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10955 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10956 		rqbp->buffer_count--;
10957 	}
10958 	return 1;
10959 }
10960 
10961 static int
10962 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10963 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10964 	int qidx, uint32_t qtype)
10965 {
10966 	struct lpfc_sli_ring *pring;
10967 	int rc;
10968 
10969 	if (!eq || !cq || !wq) {
10970 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10971 			"6085 Fast-path %s (%d) not allocated\n",
10972 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10973 		return -ENOMEM;
10974 	}
10975 
10976 	/* create the Cq first */
10977 	rc = lpfc_cq_create(phba, cq, eq,
10978 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10979 	if (rc) {
10980 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10981 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10982 				qidx, (uint32_t)rc);
10983 		return rc;
10984 	}
10985 
10986 	if (qtype != LPFC_MBOX) {
10987 		/* Setup cq_map for fast lookup */
10988 		if (cq_map)
10989 			*cq_map = cq->queue_id;
10990 
10991 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10992 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10993 			qidx, cq->queue_id, qidx, eq->queue_id);
10994 
10995 		/* create the wq */
10996 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10997 		if (rc) {
10998 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10999 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
11000 				qidx, (uint32_t)rc);
11001 			/* no need to tear down cq - caller will do so */
11002 			return rc;
11003 		}
11004 
11005 		/* Bind this CQ/WQ to the NVME ring */
11006 		pring = wq->pring;
11007 		pring->sli.sli4.wqp = (void *)wq;
11008 		cq->pring = pring;
11009 
11010 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11011 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11012 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11013 	} else {
11014 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11015 		if (rc) {
11016 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11017 					"0539 Failed setup of slow-path MQ: "
11018 					"rc = 0x%x\n", rc);
11019 			/* no need to tear down cq - caller will do so */
11020 			return rc;
11021 		}
11022 
11023 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11024 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11025 			phba->sli4_hba.mbx_wq->queue_id,
11026 			phba->sli4_hba.mbx_cq->queue_id);
11027 	}
11028 
11029 	return 0;
11030 }
11031 
11032 /**
11033  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11034  * @phba: pointer to lpfc hba data structure.
11035  *
11036  * This routine will populate the cq_lookup table by all
11037  * available CQ queue_id's.
11038  **/
11039 static void
11040 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11041 {
11042 	struct lpfc_queue *eq, *childq;
11043 	int qidx;
11044 
11045 	memset(phba->sli4_hba.cq_lookup, 0,
11046 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11047 	/* Loop thru all IRQ vectors */
11048 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11049 		/* Get the EQ corresponding to the IRQ vector */
11050 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11051 		if (!eq)
11052 			continue;
11053 		/* Loop through all CQs associated with that EQ */
11054 		list_for_each_entry(childq, &eq->child_list, list) {
11055 			if (childq->queue_id > phba->sli4_hba.cq_max)
11056 				continue;
11057 			if (childq->subtype == LPFC_IO)
11058 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11059 					childq;
11060 		}
11061 	}
11062 }
11063 
11064 /**
11065  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11066  * @phba: pointer to lpfc hba data structure.
11067  *
11068  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11069  * operation.
11070  *
11071  * Return codes
11072  *      0 - successful
11073  *      -ENOMEM - No available memory
11074  *      -EIO - The mailbox failed to complete successfully.
11075  **/
11076 int
11077 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11078 {
11079 	uint32_t shdr_status, shdr_add_status;
11080 	union lpfc_sli4_cfg_shdr *shdr;
11081 	struct lpfc_vector_map_info *cpup;
11082 	struct lpfc_sli4_hdw_queue *qp;
11083 	LPFC_MBOXQ_t *mboxq;
11084 	int qidx, cpu;
11085 	uint32_t length, usdelay;
11086 	int rc = -ENOMEM;
11087 
11088 	/* Check for dual-ULP support */
11089 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11090 	if (!mboxq) {
11091 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11092 				"3249 Unable to allocate memory for "
11093 				"QUERY_FW_CFG mailbox command\n");
11094 		return -ENOMEM;
11095 	}
11096 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11097 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11098 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11099 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11100 			 length, LPFC_SLI4_MBX_EMBED);
11101 
11102 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11103 
11104 	shdr = (union lpfc_sli4_cfg_shdr *)
11105 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11106 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11107 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11108 	if (shdr_status || shdr_add_status || rc) {
11109 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11110 				"3250 QUERY_FW_CFG mailbox failed with status "
11111 				"x%x add_status x%x, mbx status x%x\n",
11112 				shdr_status, shdr_add_status, rc);
11113 		mempool_free(mboxq, phba->mbox_mem_pool);
11114 		rc = -ENXIO;
11115 		goto out_error;
11116 	}
11117 
11118 	phba->sli4_hba.fw_func_mode =
11119 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11120 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11121 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11122 	phba->sli4_hba.physical_port =
11123 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11124 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11125 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11126 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11127 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11128 
11129 	mempool_free(mboxq, phba->mbox_mem_pool);
11130 
11131 	/*
11132 	 * Set up HBA Event Queues (EQs)
11133 	 */
11134 	qp = phba->sli4_hba.hdwq;
11135 
11136 	/* Set up HBA event queue */
11137 	if (!qp) {
11138 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11139 				"3147 Fast-path EQs not allocated\n");
11140 		rc = -ENOMEM;
11141 		goto out_error;
11142 	}
11143 
11144 	/* Loop thru all IRQ vectors */
11145 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11146 		/* Create HBA Event Queues (EQs) in order */
11147 		for_each_present_cpu(cpu) {
11148 			cpup = &phba->sli4_hba.cpu_map[cpu];
11149 
11150 			/* Look for the CPU thats using that vector with
11151 			 * LPFC_CPU_FIRST_IRQ set.
11152 			 */
11153 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11154 				continue;
11155 			if (qidx != cpup->eq)
11156 				continue;
11157 
11158 			/* Create an EQ for that vector */
11159 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11160 					    phba->cfg_fcp_imax);
11161 			if (rc) {
11162 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11163 						"0523 Failed setup of fast-path"
11164 						" EQ (%d), rc = 0x%x\n",
11165 						cpup->eq, (uint32_t)rc);
11166 				goto out_destroy;
11167 			}
11168 
11169 			/* Save the EQ for that vector in the hba_eq_hdl */
11170 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11171 				qp[cpup->hdwq].hba_eq;
11172 
11173 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11174 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11175 					cpup->eq,
11176 					qp[cpup->hdwq].hba_eq->queue_id);
11177 		}
11178 	}
11179 
11180 	/* Loop thru all Hardware Queues */
11181 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11182 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11183 		cpup = &phba->sli4_hba.cpu_map[cpu];
11184 
11185 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11186 		rc = lpfc_create_wq_cq(phba,
11187 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11188 				       qp[qidx].io_cq,
11189 				       qp[qidx].io_wq,
11190 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11191 				       qidx,
11192 				       LPFC_IO);
11193 		if (rc) {
11194 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11195 					"0535 Failed to setup fastpath "
11196 					"IO WQ/CQ (%d), rc = 0x%x\n",
11197 					qidx, (uint32_t)rc);
11198 			goto out_destroy;
11199 		}
11200 	}
11201 
11202 	/*
11203 	 * Set up Slow Path Complete Queues (CQs)
11204 	 */
11205 
11206 	/* Set up slow-path MBOX CQ/MQ */
11207 
11208 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11209 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11210 				"0528 %s not allocated\n",
11211 				phba->sli4_hba.mbx_cq ?
11212 				"Mailbox WQ" : "Mailbox CQ");
11213 		rc = -ENOMEM;
11214 		goto out_destroy;
11215 	}
11216 
11217 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11218 			       phba->sli4_hba.mbx_cq,
11219 			       phba->sli4_hba.mbx_wq,
11220 			       NULL, 0, LPFC_MBOX);
11221 	if (rc) {
11222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11223 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11224 			(uint32_t)rc);
11225 		goto out_destroy;
11226 	}
11227 	if (phba->nvmet_support) {
11228 		if (!phba->sli4_hba.nvmet_cqset) {
11229 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11230 					"3165 Fast-path NVME CQ Set "
11231 					"array not allocated\n");
11232 			rc = -ENOMEM;
11233 			goto out_destroy;
11234 		}
11235 		if (phba->cfg_nvmet_mrq > 1) {
11236 			rc = lpfc_cq_create_set(phba,
11237 					phba->sli4_hba.nvmet_cqset,
11238 					qp,
11239 					LPFC_WCQ, LPFC_NVMET);
11240 			if (rc) {
11241 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11242 						"3164 Failed setup of NVME CQ "
11243 						"Set, rc = 0x%x\n",
11244 						(uint32_t)rc);
11245 				goto out_destroy;
11246 			}
11247 		} else {
11248 			/* Set up NVMET Receive Complete Queue */
11249 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11250 					    qp[0].hba_eq,
11251 					    LPFC_WCQ, LPFC_NVMET);
11252 			if (rc) {
11253 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11254 						"6089 Failed setup NVMET CQ: "
11255 						"rc = 0x%x\n", (uint32_t)rc);
11256 				goto out_destroy;
11257 			}
11258 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11259 
11260 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11261 					"6090 NVMET CQ setup: cq-id=%d, "
11262 					"parent eq-id=%d\n",
11263 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11264 					qp[0].hba_eq->queue_id);
11265 		}
11266 	}
11267 
11268 	/* Set up slow-path ELS WQ/CQ */
11269 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11270 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11271 				"0530 ELS %s not allocated\n",
11272 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11273 		rc = -ENOMEM;
11274 		goto out_destroy;
11275 	}
11276 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11277 			       phba->sli4_hba.els_cq,
11278 			       phba->sli4_hba.els_wq,
11279 			       NULL, 0, LPFC_ELS);
11280 	if (rc) {
11281 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11282 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11283 				(uint32_t)rc);
11284 		goto out_destroy;
11285 	}
11286 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11287 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11288 			phba->sli4_hba.els_wq->queue_id,
11289 			phba->sli4_hba.els_cq->queue_id);
11290 
11291 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11292 		/* Set up NVME LS Complete Queue */
11293 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11294 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11295 					"6091 LS %s not allocated\n",
11296 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11297 			rc = -ENOMEM;
11298 			goto out_destroy;
11299 		}
11300 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11301 				       phba->sli4_hba.nvmels_cq,
11302 				       phba->sli4_hba.nvmels_wq,
11303 				       NULL, 0, LPFC_NVME_LS);
11304 		if (rc) {
11305 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11306 					"0526 Failed setup of NVVME LS WQ/CQ: "
11307 					"rc = 0x%x\n", (uint32_t)rc);
11308 			goto out_destroy;
11309 		}
11310 
11311 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11312 				"6096 ELS WQ setup: wq-id=%d, "
11313 				"parent cq-id=%d\n",
11314 				phba->sli4_hba.nvmels_wq->queue_id,
11315 				phba->sli4_hba.nvmels_cq->queue_id);
11316 	}
11317 
11318 	/*
11319 	 * Create NVMET Receive Queue (RQ)
11320 	 */
11321 	if (phba->nvmet_support) {
11322 		if ((!phba->sli4_hba.nvmet_cqset) ||
11323 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11324 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11325 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11326 					"6130 MRQ CQ Queues not "
11327 					"allocated\n");
11328 			rc = -ENOMEM;
11329 			goto out_destroy;
11330 		}
11331 		if (phba->cfg_nvmet_mrq > 1) {
11332 			rc = lpfc_mrq_create(phba,
11333 					     phba->sli4_hba.nvmet_mrq_hdr,
11334 					     phba->sli4_hba.nvmet_mrq_data,
11335 					     phba->sli4_hba.nvmet_cqset,
11336 					     LPFC_NVMET);
11337 			if (rc) {
11338 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11339 						"6098 Failed setup of NVMET "
11340 						"MRQ: rc = 0x%x\n",
11341 						(uint32_t)rc);
11342 				goto out_destroy;
11343 			}
11344 
11345 		} else {
11346 			rc = lpfc_rq_create(phba,
11347 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11348 					    phba->sli4_hba.nvmet_mrq_data[0],
11349 					    phba->sli4_hba.nvmet_cqset[0],
11350 					    LPFC_NVMET);
11351 			if (rc) {
11352 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11353 						"6057 Failed setup of NVMET "
11354 						"Receive Queue: rc = 0x%x\n",
11355 						(uint32_t)rc);
11356 				goto out_destroy;
11357 			}
11358 
11359 			lpfc_printf_log(
11360 				phba, KERN_INFO, LOG_INIT,
11361 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11362 				"dat-rq-id=%d parent cq-id=%d\n",
11363 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11364 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11365 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11366 
11367 		}
11368 	}
11369 
11370 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11371 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11372 				"0540 Receive Queue not allocated\n");
11373 		rc = -ENOMEM;
11374 		goto out_destroy;
11375 	}
11376 
11377 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11378 			    phba->sli4_hba.els_cq, LPFC_USOL);
11379 	if (rc) {
11380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11381 				"0541 Failed setup of Receive Queue: "
11382 				"rc = 0x%x\n", (uint32_t)rc);
11383 		goto out_destroy;
11384 	}
11385 
11386 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11387 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11388 			"parent cq-id=%d\n",
11389 			phba->sli4_hba.hdr_rq->queue_id,
11390 			phba->sli4_hba.dat_rq->queue_id,
11391 			phba->sli4_hba.els_cq->queue_id);
11392 
11393 	if (phba->cfg_fcp_imax)
11394 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11395 	else
11396 		usdelay = 0;
11397 
11398 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11399 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11400 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11401 					 usdelay);
11402 
11403 	if (phba->sli4_hba.cq_max) {
11404 		kfree(phba->sli4_hba.cq_lookup);
11405 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11406 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11407 		if (!phba->sli4_hba.cq_lookup) {
11408 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11409 					"0549 Failed setup of CQ Lookup table: "
11410 					"size 0x%x\n", phba->sli4_hba.cq_max);
11411 			rc = -ENOMEM;
11412 			goto out_destroy;
11413 		}
11414 		lpfc_setup_cq_lookup(phba);
11415 	}
11416 	return 0;
11417 
11418 out_destroy:
11419 	lpfc_sli4_queue_unset(phba);
11420 out_error:
11421 	return rc;
11422 }
11423 
11424 /**
11425  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11426  * @phba: pointer to lpfc hba data structure.
11427  *
11428  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11429  * operation.
11430  *
11431  * Return codes
11432  *      0 - successful
11433  *      -ENOMEM - No available memory
11434  *      -EIO - The mailbox failed to complete successfully.
11435  **/
11436 void
11437 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11438 {
11439 	struct lpfc_sli4_hdw_queue *qp;
11440 	struct lpfc_queue *eq;
11441 	int qidx;
11442 
11443 	/* Unset mailbox command work queue */
11444 	if (phba->sli4_hba.mbx_wq)
11445 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11446 
11447 	/* Unset NVME LS work queue */
11448 	if (phba->sli4_hba.nvmels_wq)
11449 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11450 
11451 	/* Unset ELS work queue */
11452 	if (phba->sli4_hba.els_wq)
11453 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11454 
11455 	/* Unset unsolicited receive queue */
11456 	if (phba->sli4_hba.hdr_rq)
11457 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11458 				phba->sli4_hba.dat_rq);
11459 
11460 	/* Unset mailbox command complete queue */
11461 	if (phba->sli4_hba.mbx_cq)
11462 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11463 
11464 	/* Unset ELS complete queue */
11465 	if (phba->sli4_hba.els_cq)
11466 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11467 
11468 	/* Unset NVME LS complete queue */
11469 	if (phba->sli4_hba.nvmels_cq)
11470 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11471 
11472 	if (phba->nvmet_support) {
11473 		/* Unset NVMET MRQ queue */
11474 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11475 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11476 				lpfc_rq_destroy(
11477 					phba,
11478 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11479 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11480 		}
11481 
11482 		/* Unset NVMET CQ Set complete queue */
11483 		if (phba->sli4_hba.nvmet_cqset) {
11484 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11485 				lpfc_cq_destroy(
11486 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11487 		}
11488 	}
11489 
11490 	/* Unset fast-path SLI4 queues */
11491 	if (phba->sli4_hba.hdwq) {
11492 		/* Loop thru all Hardware Queues */
11493 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11494 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11495 			qp = &phba->sli4_hba.hdwq[qidx];
11496 			lpfc_wq_destroy(phba, qp->io_wq);
11497 			lpfc_cq_destroy(phba, qp->io_cq);
11498 		}
11499 		/* Loop thru all IRQ vectors */
11500 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11501 			/* Destroy the EQ corresponding to the IRQ vector */
11502 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11503 			lpfc_eq_destroy(phba, eq);
11504 		}
11505 	}
11506 
11507 	kfree(phba->sli4_hba.cq_lookup);
11508 	phba->sli4_hba.cq_lookup = NULL;
11509 	phba->sli4_hba.cq_max = 0;
11510 }
11511 
11512 /**
11513  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11514  * @phba: pointer to lpfc hba data structure.
11515  *
11516  * This routine is invoked to allocate and set up a pool of completion queue
11517  * events. The body of the completion queue event is a completion queue entry
11518  * CQE. For now, this pool is used for the interrupt service routine to queue
11519  * the following HBA completion queue events for the worker thread to process:
11520  *   - Mailbox asynchronous events
11521  *   - Receive queue completion unsolicited events
11522  * Later, this can be used for all the slow-path events.
11523  *
11524  * Return codes
11525  *      0 - successful
11526  *      -ENOMEM - No available memory
11527  **/
11528 static int
11529 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11530 {
11531 	struct lpfc_cq_event *cq_event;
11532 	int i;
11533 
11534 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11535 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11536 		if (!cq_event)
11537 			goto out_pool_create_fail;
11538 		list_add_tail(&cq_event->list,
11539 			      &phba->sli4_hba.sp_cqe_event_pool);
11540 	}
11541 	return 0;
11542 
11543 out_pool_create_fail:
11544 	lpfc_sli4_cq_event_pool_destroy(phba);
11545 	return -ENOMEM;
11546 }
11547 
11548 /**
11549  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11550  * @phba: pointer to lpfc hba data structure.
11551  *
11552  * This routine is invoked to free the pool of completion queue events at
11553  * driver unload time. Note that, it is the responsibility of the driver
11554  * cleanup routine to free all the outstanding completion-queue events
11555  * allocated from this pool back into the pool before invoking this routine
11556  * to destroy the pool.
11557  **/
11558 static void
11559 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11560 {
11561 	struct lpfc_cq_event *cq_event, *next_cq_event;
11562 
11563 	list_for_each_entry_safe(cq_event, next_cq_event,
11564 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11565 		list_del(&cq_event->list);
11566 		kfree(cq_event);
11567 	}
11568 }
11569 
11570 /**
11571  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11572  * @phba: pointer to lpfc hba data structure.
11573  *
11574  * This routine is the lock free version of the API invoked to allocate a
11575  * completion-queue event from the free pool.
11576  *
11577  * Return: Pointer to the newly allocated completion-queue event if successful
11578  *         NULL otherwise.
11579  **/
11580 struct lpfc_cq_event *
11581 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11582 {
11583 	struct lpfc_cq_event *cq_event = NULL;
11584 
11585 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11586 			 struct lpfc_cq_event, list);
11587 	return cq_event;
11588 }
11589 
11590 /**
11591  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11592  * @phba: pointer to lpfc hba data structure.
11593  *
11594  * This routine is the lock version of the API invoked to allocate a
11595  * completion-queue event from the free pool.
11596  *
11597  * Return: Pointer to the newly allocated completion-queue event if successful
11598  *         NULL otherwise.
11599  **/
11600 struct lpfc_cq_event *
11601 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11602 {
11603 	struct lpfc_cq_event *cq_event;
11604 	unsigned long iflags;
11605 
11606 	spin_lock_irqsave(&phba->hbalock, iflags);
11607 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11608 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11609 	return cq_event;
11610 }
11611 
11612 /**
11613  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11614  * @phba: pointer to lpfc hba data structure.
11615  * @cq_event: pointer to the completion queue event to be freed.
11616  *
11617  * This routine is the lock free version of the API invoked to release a
11618  * completion-queue event back into the free pool.
11619  **/
11620 void
11621 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11622 			     struct lpfc_cq_event *cq_event)
11623 {
11624 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11625 }
11626 
11627 /**
11628  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11629  * @phba: pointer to lpfc hba data structure.
11630  * @cq_event: pointer to the completion queue event to be freed.
11631  *
11632  * This routine is the lock version of the API invoked to release a
11633  * completion-queue event back into the free pool.
11634  **/
11635 void
11636 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11637 			   struct lpfc_cq_event *cq_event)
11638 {
11639 	unsigned long iflags;
11640 	spin_lock_irqsave(&phba->hbalock, iflags);
11641 	__lpfc_sli4_cq_event_release(phba, cq_event);
11642 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11643 }
11644 
11645 /**
11646  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11647  * @phba: pointer to lpfc hba data structure.
11648  *
11649  * This routine is to free all the pending completion-queue events to the
11650  * back into the free pool for device reset.
11651  **/
11652 static void
11653 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11654 {
11655 	LIST_HEAD(cq_event_list);
11656 	struct lpfc_cq_event *cq_event;
11657 	unsigned long iflags;
11658 
11659 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11660 
11661 	/* Pending ELS XRI abort events */
11662 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11663 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11664 			 &cq_event_list);
11665 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11666 
11667 	/* Pending asynnc events */
11668 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11669 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11670 			 &cq_event_list);
11671 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11672 
11673 	while (!list_empty(&cq_event_list)) {
11674 		list_remove_head(&cq_event_list, cq_event,
11675 				 struct lpfc_cq_event, list);
11676 		lpfc_sli4_cq_event_release(phba, cq_event);
11677 	}
11678 }
11679 
11680 /**
11681  * lpfc_pci_function_reset - Reset pci function.
11682  * @phba: pointer to lpfc hba data structure.
11683  *
11684  * This routine is invoked to request a PCI function reset. It will destroys
11685  * all resources assigned to the PCI function which originates this request.
11686  *
11687  * Return codes
11688  *      0 - successful
11689  *      -ENOMEM - No available memory
11690  *      -EIO - The mailbox failed to complete successfully.
11691  **/
11692 int
11693 lpfc_pci_function_reset(struct lpfc_hba *phba)
11694 {
11695 	LPFC_MBOXQ_t *mboxq;
11696 	uint32_t rc = 0, if_type;
11697 	uint32_t shdr_status, shdr_add_status;
11698 	uint32_t rdy_chk;
11699 	uint32_t port_reset = 0;
11700 	union lpfc_sli4_cfg_shdr *shdr;
11701 	struct lpfc_register reg_data;
11702 	uint16_t devid;
11703 
11704 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11705 	switch (if_type) {
11706 	case LPFC_SLI_INTF_IF_TYPE_0:
11707 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11708 						       GFP_KERNEL);
11709 		if (!mboxq) {
11710 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11711 					"0494 Unable to allocate memory for "
11712 					"issuing SLI_FUNCTION_RESET mailbox "
11713 					"command\n");
11714 			return -ENOMEM;
11715 		}
11716 
11717 		/* Setup PCI function reset mailbox-ioctl command */
11718 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11719 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11720 				 LPFC_SLI4_MBX_EMBED);
11721 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11722 		shdr = (union lpfc_sli4_cfg_shdr *)
11723 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11724 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11725 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11726 					 &shdr->response);
11727 		mempool_free(mboxq, phba->mbox_mem_pool);
11728 		if (shdr_status || shdr_add_status || rc) {
11729 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11730 					"0495 SLI_FUNCTION_RESET mailbox "
11731 					"failed with status x%x add_status x%x,"
11732 					" mbx status x%x\n",
11733 					shdr_status, shdr_add_status, rc);
11734 			rc = -ENXIO;
11735 		}
11736 		break;
11737 	case LPFC_SLI_INTF_IF_TYPE_2:
11738 	case LPFC_SLI_INTF_IF_TYPE_6:
11739 wait:
11740 		/*
11741 		 * Poll the Port Status Register and wait for RDY for
11742 		 * up to 30 seconds. If the port doesn't respond, treat
11743 		 * it as an error.
11744 		 */
11745 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11746 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11747 				STATUSregaddr, &reg_data.word0)) {
11748 				rc = -ENODEV;
11749 				goto out;
11750 			}
11751 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11752 				break;
11753 			msleep(20);
11754 		}
11755 
11756 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11757 			phba->work_status[0] = readl(
11758 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11759 			phba->work_status[1] = readl(
11760 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11761 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11762 					"2890 Port not ready, port status reg "
11763 					"0x%x error 1=0x%x, error 2=0x%x\n",
11764 					reg_data.word0,
11765 					phba->work_status[0],
11766 					phba->work_status[1]);
11767 			rc = -ENODEV;
11768 			goto out;
11769 		}
11770 
11771 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11772 			lpfc_pldv_detect = true;
11773 
11774 		if (!port_reset) {
11775 			/*
11776 			 * Reset the port now
11777 			 */
11778 			reg_data.word0 = 0;
11779 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11780 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11781 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11782 			       LPFC_SLIPORT_INIT_PORT);
11783 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11784 			       CTRLregaddr);
11785 			/* flush */
11786 			pci_read_config_word(phba->pcidev,
11787 					     PCI_DEVICE_ID, &devid);
11788 
11789 			port_reset = 1;
11790 			msleep(20);
11791 			goto wait;
11792 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11793 			rc = -ENODEV;
11794 			goto out;
11795 		}
11796 		break;
11797 
11798 	case LPFC_SLI_INTF_IF_TYPE_1:
11799 	default:
11800 		break;
11801 	}
11802 
11803 out:
11804 	/* Catch the not-ready port failure after a port reset. */
11805 	if (rc) {
11806 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11807 				"3317 HBA not functional: IP Reset Failed "
11808 				"try: echo fw_reset > board_mode\n");
11809 		rc = -ENODEV;
11810 	}
11811 
11812 	return rc;
11813 }
11814 
11815 /**
11816  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11817  * @phba: pointer to lpfc hba data structure.
11818  *
11819  * This routine is invoked to set up the PCI device memory space for device
11820  * with SLI-4 interface spec.
11821  *
11822  * Return codes
11823  * 	0 - successful
11824  * 	other values - error
11825  **/
11826 static int
11827 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11828 {
11829 	struct pci_dev *pdev = phba->pcidev;
11830 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11831 	int error;
11832 	uint32_t if_type;
11833 
11834 	if (!pdev)
11835 		return -ENODEV;
11836 
11837 	/* Set the device DMA mask size */
11838 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11839 	if (error)
11840 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11841 	if (error)
11842 		return error;
11843 
11844 	/*
11845 	 * The BARs and register set definitions and offset locations are
11846 	 * dependent on the if_type.
11847 	 */
11848 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11849 				  &phba->sli4_hba.sli_intf.word0)) {
11850 		return -ENODEV;
11851 	}
11852 
11853 	/* There is no SLI3 failback for SLI4 devices. */
11854 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11855 	    LPFC_SLI_INTF_VALID) {
11856 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11857 				"2894 SLI_INTF reg contents invalid "
11858 				"sli_intf reg 0x%x\n",
11859 				phba->sli4_hba.sli_intf.word0);
11860 		return -ENODEV;
11861 	}
11862 
11863 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11864 	/*
11865 	 * Get the bus address of SLI4 device Bar regions and the
11866 	 * number of bytes required by each mapping. The mapping of the
11867 	 * particular PCI BARs regions is dependent on the type of
11868 	 * SLI4 device.
11869 	 */
11870 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11871 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11872 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11873 
11874 		/*
11875 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11876 		 * addr
11877 		 */
11878 		phba->sli4_hba.conf_regs_memmap_p =
11879 			ioremap(phba->pci_bar0_map, bar0map_len);
11880 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11881 			dev_printk(KERN_ERR, &pdev->dev,
11882 				   "ioremap failed for SLI4 PCI config "
11883 				   "registers.\n");
11884 			return -ENODEV;
11885 		}
11886 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11887 		/* Set up BAR0 PCI config space register memory map */
11888 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11889 	} else {
11890 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11891 		bar0map_len = pci_resource_len(pdev, 1);
11892 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11893 			dev_printk(KERN_ERR, &pdev->dev,
11894 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11895 			return -ENODEV;
11896 		}
11897 		phba->sli4_hba.conf_regs_memmap_p =
11898 				ioremap(phba->pci_bar0_map, bar0map_len);
11899 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11900 			dev_printk(KERN_ERR, &pdev->dev,
11901 				"ioremap failed for SLI4 PCI config "
11902 				"registers.\n");
11903 			return -ENODEV;
11904 		}
11905 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11906 	}
11907 
11908 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11909 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11910 			/*
11911 			 * Map SLI4 if type 0 HBA Control Register base to a
11912 			 * kernel virtual address and setup the registers.
11913 			 */
11914 			phba->pci_bar1_map = pci_resource_start(pdev,
11915 								PCI_64BIT_BAR2);
11916 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11917 			phba->sli4_hba.ctrl_regs_memmap_p =
11918 					ioremap(phba->pci_bar1_map,
11919 						bar1map_len);
11920 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11921 				dev_err(&pdev->dev,
11922 					   "ioremap failed for SLI4 HBA "
11923 					    "control registers.\n");
11924 				error = -ENOMEM;
11925 				goto out_iounmap_conf;
11926 			}
11927 			phba->pci_bar2_memmap_p =
11928 					 phba->sli4_hba.ctrl_regs_memmap_p;
11929 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11930 		} else {
11931 			error = -ENOMEM;
11932 			goto out_iounmap_conf;
11933 		}
11934 	}
11935 
11936 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11937 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11938 		/*
11939 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11940 		 * virtual address and setup the registers.
11941 		 */
11942 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11943 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11944 		phba->sli4_hba.drbl_regs_memmap_p =
11945 				ioremap(phba->pci_bar1_map, bar1map_len);
11946 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11947 			dev_err(&pdev->dev,
11948 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11949 			error = -ENOMEM;
11950 			goto out_iounmap_conf;
11951 		}
11952 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11953 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11954 	}
11955 
11956 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11957 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11958 			/*
11959 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11960 			 * a kernel virtual address and setup the registers.
11961 			 */
11962 			phba->pci_bar2_map = pci_resource_start(pdev,
11963 								PCI_64BIT_BAR4);
11964 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11965 			phba->sli4_hba.drbl_regs_memmap_p =
11966 					ioremap(phba->pci_bar2_map,
11967 						bar2map_len);
11968 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11969 				dev_err(&pdev->dev,
11970 					   "ioremap failed for SLI4 HBA"
11971 					   " doorbell registers.\n");
11972 				error = -ENOMEM;
11973 				goto out_iounmap_ctrl;
11974 			}
11975 			phba->pci_bar4_memmap_p =
11976 					phba->sli4_hba.drbl_regs_memmap_p;
11977 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11978 			if (error)
11979 				goto out_iounmap_all;
11980 		} else {
11981 			error = -ENOMEM;
11982 			goto out_iounmap_ctrl;
11983 		}
11984 	}
11985 
11986 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11987 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11988 		/*
11989 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11990 		 * virtual address and setup the registers.
11991 		 */
11992 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11993 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11994 		phba->sli4_hba.dpp_regs_memmap_p =
11995 				ioremap(phba->pci_bar2_map, bar2map_len);
11996 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11997 			dev_err(&pdev->dev,
11998 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11999 			error = -ENOMEM;
12000 			goto out_iounmap_all;
12001 		}
12002 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
12003 	}
12004 
12005 	/* Set up the EQ/CQ register handeling functions now */
12006 	switch (if_type) {
12007 	case LPFC_SLI_INTF_IF_TYPE_0:
12008 	case LPFC_SLI_INTF_IF_TYPE_2:
12009 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12010 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12011 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12012 		break;
12013 	case LPFC_SLI_INTF_IF_TYPE_6:
12014 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12015 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12016 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12017 		break;
12018 	default:
12019 		break;
12020 	}
12021 
12022 	return 0;
12023 
12024 out_iounmap_all:
12025 	if (phba->sli4_hba.drbl_regs_memmap_p)
12026 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12027 out_iounmap_ctrl:
12028 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12029 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12030 out_iounmap_conf:
12031 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12032 
12033 	return error;
12034 }
12035 
12036 /**
12037  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12038  * @phba: pointer to lpfc hba data structure.
12039  *
12040  * This routine is invoked to unset the PCI device memory space for device
12041  * with SLI-4 interface spec.
12042  **/
12043 static void
12044 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12045 {
12046 	uint32_t if_type;
12047 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12048 
12049 	switch (if_type) {
12050 	case LPFC_SLI_INTF_IF_TYPE_0:
12051 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12052 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12053 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12054 		break;
12055 	case LPFC_SLI_INTF_IF_TYPE_2:
12056 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12057 		break;
12058 	case LPFC_SLI_INTF_IF_TYPE_6:
12059 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12060 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12061 		if (phba->sli4_hba.dpp_regs_memmap_p)
12062 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12063 		break;
12064 	case LPFC_SLI_INTF_IF_TYPE_1:
12065 		break;
12066 	default:
12067 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12068 			   "FATAL - unsupported SLI4 interface type - %d\n",
12069 			   if_type);
12070 		break;
12071 	}
12072 }
12073 
12074 /**
12075  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12076  * @phba: pointer to lpfc hba data structure.
12077  *
12078  * This routine is invoked to enable the MSI-X interrupt vectors to device
12079  * with SLI-3 interface specs.
12080  *
12081  * Return codes
12082  *   0 - successful
12083  *   other values - error
12084  **/
12085 static int
12086 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12087 {
12088 	int rc;
12089 	LPFC_MBOXQ_t *pmb;
12090 
12091 	/* Set up MSI-X multi-message vectors */
12092 	rc = pci_alloc_irq_vectors(phba->pcidev,
12093 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12094 	if (rc < 0) {
12095 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12096 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12097 		goto vec_fail_out;
12098 	}
12099 
12100 	/*
12101 	 * Assign MSI-X vectors to interrupt handlers
12102 	 */
12103 
12104 	/* vector-0 is associated to slow-path handler */
12105 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12106 			 &lpfc_sli_sp_intr_handler, 0,
12107 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12108 	if (rc) {
12109 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12110 				"0421 MSI-X slow-path request_irq failed "
12111 				"(%d)\n", rc);
12112 		goto msi_fail_out;
12113 	}
12114 
12115 	/* vector-1 is associated to fast-path handler */
12116 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12117 			 &lpfc_sli_fp_intr_handler, 0,
12118 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12119 
12120 	if (rc) {
12121 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12122 				"0429 MSI-X fast-path request_irq failed "
12123 				"(%d)\n", rc);
12124 		goto irq_fail_out;
12125 	}
12126 
12127 	/*
12128 	 * Configure HBA MSI-X attention conditions to messages
12129 	 */
12130 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12131 
12132 	if (!pmb) {
12133 		rc = -ENOMEM;
12134 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12135 				"0474 Unable to allocate memory for issuing "
12136 				"MBOX_CONFIG_MSI command\n");
12137 		goto mem_fail_out;
12138 	}
12139 	rc = lpfc_config_msi(phba, pmb);
12140 	if (rc)
12141 		goto mbx_fail_out;
12142 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12143 	if (rc != MBX_SUCCESS) {
12144 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12145 				"0351 Config MSI mailbox command failed, "
12146 				"mbxCmd x%x, mbxStatus x%x\n",
12147 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12148 		goto mbx_fail_out;
12149 	}
12150 
12151 	/* Free memory allocated for mailbox command */
12152 	mempool_free(pmb, phba->mbox_mem_pool);
12153 	return rc;
12154 
12155 mbx_fail_out:
12156 	/* Free memory allocated for mailbox command */
12157 	mempool_free(pmb, phba->mbox_mem_pool);
12158 
12159 mem_fail_out:
12160 	/* free the irq already requested */
12161 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12162 
12163 irq_fail_out:
12164 	/* free the irq already requested */
12165 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12166 
12167 msi_fail_out:
12168 	/* Unconfigure MSI-X capability structure */
12169 	pci_free_irq_vectors(phba->pcidev);
12170 
12171 vec_fail_out:
12172 	return rc;
12173 }
12174 
12175 /**
12176  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12177  * @phba: pointer to lpfc hba data structure.
12178  *
12179  * This routine is invoked to enable the MSI interrupt mode to device with
12180  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12181  * enable the MSI vector. The device driver is responsible for calling the
12182  * request_irq() to register MSI vector with a interrupt the handler, which
12183  * is done in this function.
12184  *
12185  * Return codes
12186  * 	0 - successful
12187  * 	other values - error
12188  */
12189 static int
12190 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12191 {
12192 	int rc;
12193 
12194 	rc = pci_enable_msi(phba->pcidev);
12195 	if (!rc)
12196 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12197 				"0012 PCI enable MSI mode success.\n");
12198 	else {
12199 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12200 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12201 		return rc;
12202 	}
12203 
12204 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12205 			 0, LPFC_DRIVER_NAME, phba);
12206 	if (rc) {
12207 		pci_disable_msi(phba->pcidev);
12208 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12209 				"0478 MSI request_irq failed (%d)\n", rc);
12210 	}
12211 	return rc;
12212 }
12213 
12214 /**
12215  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12216  * @phba: pointer to lpfc hba data structure.
12217  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12218  *
12219  * This routine is invoked to enable device interrupt and associate driver's
12220  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12221  * spec. Depends on the interrupt mode configured to the driver, the driver
12222  * will try to fallback from the configured interrupt mode to an interrupt
12223  * mode which is supported by the platform, kernel, and device in the order
12224  * of:
12225  * MSI-X -> MSI -> IRQ.
12226  *
12227  * Return codes
12228  *   0 - successful
12229  *   other values - error
12230  **/
12231 static uint32_t
12232 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12233 {
12234 	uint32_t intr_mode = LPFC_INTR_ERROR;
12235 	int retval;
12236 
12237 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12238 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12239 	if (retval)
12240 		return intr_mode;
12241 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12242 
12243 	if (cfg_mode == 2) {
12244 		/* Now, try to enable MSI-X interrupt mode */
12245 		retval = lpfc_sli_enable_msix(phba);
12246 		if (!retval) {
12247 			/* Indicate initialization to MSI-X mode */
12248 			phba->intr_type = MSIX;
12249 			intr_mode = 2;
12250 		}
12251 	}
12252 
12253 	/* Fallback to MSI if MSI-X initialization failed */
12254 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12255 		retval = lpfc_sli_enable_msi(phba);
12256 		if (!retval) {
12257 			/* Indicate initialization to MSI mode */
12258 			phba->intr_type = MSI;
12259 			intr_mode = 1;
12260 		}
12261 	}
12262 
12263 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12264 	if (phba->intr_type == NONE) {
12265 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12266 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12267 		if (!retval) {
12268 			/* Indicate initialization to INTx mode */
12269 			phba->intr_type = INTx;
12270 			intr_mode = 0;
12271 		}
12272 	}
12273 	return intr_mode;
12274 }
12275 
12276 /**
12277  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12278  * @phba: pointer to lpfc hba data structure.
12279  *
12280  * This routine is invoked to disable device interrupt and disassociate the
12281  * driver's interrupt handler(s) from interrupt vector(s) to device with
12282  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12283  * release the interrupt vector(s) for the message signaled interrupt.
12284  **/
12285 static void
12286 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12287 {
12288 	int nr_irqs, i;
12289 
12290 	if (phba->intr_type == MSIX)
12291 		nr_irqs = LPFC_MSIX_VECTORS;
12292 	else
12293 		nr_irqs = 1;
12294 
12295 	for (i = 0; i < nr_irqs; i++)
12296 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12297 	pci_free_irq_vectors(phba->pcidev);
12298 
12299 	/* Reset interrupt management states */
12300 	phba->intr_type = NONE;
12301 	phba->sli.slistat.sli_intr = 0;
12302 }
12303 
12304 /**
12305  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12306  * @phba: pointer to lpfc hba data structure.
12307  * @id: EQ vector index or Hardware Queue index
12308  * @match: LPFC_FIND_BY_EQ = match by EQ
12309  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12310  * Return the CPU that matches the selection criteria
12311  */
12312 static uint16_t
12313 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12314 {
12315 	struct lpfc_vector_map_info *cpup;
12316 	int cpu;
12317 
12318 	/* Loop through all CPUs */
12319 	for_each_present_cpu(cpu) {
12320 		cpup = &phba->sli4_hba.cpu_map[cpu];
12321 
12322 		/* If we are matching by EQ, there may be multiple CPUs using
12323 		 * using the same vector, so select the one with
12324 		 * LPFC_CPU_FIRST_IRQ set.
12325 		 */
12326 		if ((match == LPFC_FIND_BY_EQ) &&
12327 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12328 		    (cpup->eq == id))
12329 			return cpu;
12330 
12331 		/* If matching by HDWQ, select the first CPU that matches */
12332 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12333 			return cpu;
12334 	}
12335 	return 0;
12336 }
12337 
12338 #ifdef CONFIG_X86
12339 /**
12340  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12341  * @phba: pointer to lpfc hba data structure.
12342  * @cpu: CPU map index
12343  * @phys_id: CPU package physical id
12344  * @core_id: CPU core id
12345  */
12346 static int
12347 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12348 		uint16_t phys_id, uint16_t core_id)
12349 {
12350 	struct lpfc_vector_map_info *cpup;
12351 	int idx;
12352 
12353 	for_each_present_cpu(idx) {
12354 		cpup = &phba->sli4_hba.cpu_map[idx];
12355 		/* Does the cpup match the one we are looking for */
12356 		if ((cpup->phys_id == phys_id) &&
12357 		    (cpup->core_id == core_id) &&
12358 		    (cpu != idx))
12359 			return 1;
12360 	}
12361 	return 0;
12362 }
12363 #endif
12364 
12365 /*
12366  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12367  * @phba: pointer to lpfc hba data structure.
12368  * @eqidx: index for eq and irq vector
12369  * @flag: flags to set for vector_map structure
12370  * @cpu: cpu used to index vector_map structure
12371  *
12372  * The routine assigns eq info into vector_map structure
12373  */
12374 static inline void
12375 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12376 			unsigned int cpu)
12377 {
12378 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12379 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12380 
12381 	cpup->eq = eqidx;
12382 	cpup->flag |= flag;
12383 
12384 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12385 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12386 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12387 }
12388 
12389 /**
12390  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12391  * @phba: pointer to lpfc hba data structure.
12392  *
12393  * The routine initializes the cpu_map array structure
12394  */
12395 static void
12396 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12397 {
12398 	struct lpfc_vector_map_info *cpup;
12399 	struct lpfc_eq_intr_info *eqi;
12400 	int cpu;
12401 
12402 	for_each_possible_cpu(cpu) {
12403 		cpup = &phba->sli4_hba.cpu_map[cpu];
12404 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12405 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12406 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12407 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12408 		cpup->flag = 0;
12409 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12410 		INIT_LIST_HEAD(&eqi->list);
12411 		eqi->icnt = 0;
12412 	}
12413 }
12414 
12415 /**
12416  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12417  * @phba: pointer to lpfc hba data structure.
12418  *
12419  * The routine initializes the hba_eq_hdl array structure
12420  */
12421 static void
12422 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12423 {
12424 	struct lpfc_hba_eq_hdl *eqhdl;
12425 	int i;
12426 
12427 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12428 		eqhdl = lpfc_get_eq_hdl(i);
12429 		eqhdl->irq = LPFC_IRQ_EMPTY;
12430 		eqhdl->phba = phba;
12431 	}
12432 }
12433 
12434 /**
12435  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12436  * @phba: pointer to lpfc hba data structure.
12437  * @vectors: number of msix vectors allocated.
12438  *
12439  * The routine will figure out the CPU affinity assignment for every
12440  * MSI-X vector allocated for the HBA.
12441  * In addition, the CPU to IO channel mapping will be calculated
12442  * and the phba->sli4_hba.cpu_map array will reflect this.
12443  */
12444 static void
12445 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12446 {
12447 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12448 	int max_phys_id, min_phys_id;
12449 	int max_core_id, min_core_id;
12450 	struct lpfc_vector_map_info *cpup;
12451 	struct lpfc_vector_map_info *new_cpup;
12452 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12453 	struct lpfc_hdwq_stat *c_stat;
12454 #endif
12455 
12456 	max_phys_id = 0;
12457 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12458 	max_core_id = 0;
12459 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12460 
12461 	/* Update CPU map with physical id and core id of each CPU */
12462 	for_each_present_cpu(cpu) {
12463 		cpup = &phba->sli4_hba.cpu_map[cpu];
12464 #ifdef CONFIG_X86
12465 		cpup->phys_id = topology_physical_package_id(cpu);
12466 		cpup->core_id = topology_core_id(cpu);
12467 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12468 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12469 #else
12470 		/* No distinction between CPUs for other platforms */
12471 		cpup->phys_id = 0;
12472 		cpup->core_id = cpu;
12473 #endif
12474 
12475 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12476 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12477 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12478 
12479 		if (cpup->phys_id > max_phys_id)
12480 			max_phys_id = cpup->phys_id;
12481 		if (cpup->phys_id < min_phys_id)
12482 			min_phys_id = cpup->phys_id;
12483 
12484 		if (cpup->core_id > max_core_id)
12485 			max_core_id = cpup->core_id;
12486 		if (cpup->core_id < min_core_id)
12487 			min_core_id = cpup->core_id;
12488 	}
12489 
12490 	/* After looking at each irq vector assigned to this pcidev, its
12491 	 * possible to see that not ALL CPUs have been accounted for.
12492 	 * Next we will set any unassigned (unaffinitized) cpu map
12493 	 * entries to a IRQ on the same phys_id.
12494 	 */
12495 	first_cpu = cpumask_first(cpu_present_mask);
12496 	start_cpu = first_cpu;
12497 
12498 	for_each_present_cpu(cpu) {
12499 		cpup = &phba->sli4_hba.cpu_map[cpu];
12500 
12501 		/* Is this CPU entry unassigned */
12502 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12503 			/* Mark CPU as IRQ not assigned by the kernel */
12504 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12505 
12506 			/* If so, find a new_cpup that is on the SAME
12507 			 * phys_id as cpup. start_cpu will start where we
12508 			 * left off so all unassigned entries don't get assgined
12509 			 * the IRQ of the first entry.
12510 			 */
12511 			new_cpu = start_cpu;
12512 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12513 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12514 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12515 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12516 				    (new_cpup->phys_id == cpup->phys_id))
12517 					goto found_same;
12518 				new_cpu = lpfc_next_present_cpu(new_cpu);
12519 			}
12520 			/* At this point, we leave the CPU as unassigned */
12521 			continue;
12522 found_same:
12523 			/* We found a matching phys_id, so copy the IRQ info */
12524 			cpup->eq = new_cpup->eq;
12525 
12526 			/* Bump start_cpu to the next slot to minmize the
12527 			 * chance of having multiple unassigned CPU entries
12528 			 * selecting the same IRQ.
12529 			 */
12530 			start_cpu = lpfc_next_present_cpu(new_cpu);
12531 
12532 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12533 					"3337 Set Affinity: CPU %d "
12534 					"eq %d from peer cpu %d same "
12535 					"phys_id (%d)\n",
12536 					cpu, cpup->eq, new_cpu,
12537 					cpup->phys_id);
12538 		}
12539 	}
12540 
12541 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12542 	start_cpu = first_cpu;
12543 
12544 	for_each_present_cpu(cpu) {
12545 		cpup = &phba->sli4_hba.cpu_map[cpu];
12546 
12547 		/* Is this entry unassigned */
12548 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12549 			/* Mark it as IRQ not assigned by the kernel */
12550 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12551 
12552 			/* If so, find a new_cpup thats on ANY phys_id
12553 			 * as the cpup. start_cpu will start where we
12554 			 * left off so all unassigned entries don't get
12555 			 * assigned the IRQ of the first entry.
12556 			 */
12557 			new_cpu = start_cpu;
12558 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12559 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12560 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12561 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12562 					goto found_any;
12563 				new_cpu = lpfc_next_present_cpu(new_cpu);
12564 			}
12565 			/* We should never leave an entry unassigned */
12566 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12567 					"3339 Set Affinity: CPU %d "
12568 					"eq %d UNASSIGNED\n",
12569 					cpup->hdwq, cpup->eq);
12570 			continue;
12571 found_any:
12572 			/* We found an available entry, copy the IRQ info */
12573 			cpup->eq = new_cpup->eq;
12574 
12575 			/* Bump start_cpu to the next slot to minmize the
12576 			 * chance of having multiple unassigned CPU entries
12577 			 * selecting the same IRQ.
12578 			 */
12579 			start_cpu = lpfc_next_present_cpu(new_cpu);
12580 
12581 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12582 					"3338 Set Affinity: CPU %d "
12583 					"eq %d from peer cpu %d (%d/%d)\n",
12584 					cpu, cpup->eq, new_cpu,
12585 					new_cpup->phys_id, new_cpup->core_id);
12586 		}
12587 	}
12588 
12589 	/* Assign hdwq indices that are unique across all cpus in the map
12590 	 * that are also FIRST_CPUs.
12591 	 */
12592 	idx = 0;
12593 	for_each_present_cpu(cpu) {
12594 		cpup = &phba->sli4_hba.cpu_map[cpu];
12595 
12596 		/* Only FIRST IRQs get a hdwq index assignment. */
12597 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12598 			continue;
12599 
12600 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12601 		cpup->hdwq = idx;
12602 		idx++;
12603 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12604 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12605 				"hdwq %d eq %d flg x%x\n",
12606 				cpu, cpup->phys_id, cpup->core_id,
12607 				cpup->hdwq, cpup->eq, cpup->flag);
12608 	}
12609 	/* Associate a hdwq with each cpu_map entry
12610 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12611 	 * hardware queues then CPUs. For that case we will just round-robin
12612 	 * the available hardware queues as they get assigned to CPUs.
12613 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12614 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12615 	 * and needs to start at 0.
12616 	 */
12617 	next_idx = idx;
12618 	start_cpu = 0;
12619 	idx = 0;
12620 	for_each_present_cpu(cpu) {
12621 		cpup = &phba->sli4_hba.cpu_map[cpu];
12622 
12623 		/* FIRST cpus are already mapped. */
12624 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12625 			continue;
12626 
12627 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12628 		 * of the unassigned cpus to the next idx so that all
12629 		 * hdw queues are fully utilized.
12630 		 */
12631 		if (next_idx < phba->cfg_hdw_queue) {
12632 			cpup->hdwq = next_idx;
12633 			next_idx++;
12634 			continue;
12635 		}
12636 
12637 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12638 		 * Hardware Queue for another CPU, so be smart about it
12639 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12640 		 * (CPU package) and core_id.
12641 		 */
12642 		new_cpu = start_cpu;
12643 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12644 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12645 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12646 			    new_cpup->phys_id == cpup->phys_id &&
12647 			    new_cpup->core_id == cpup->core_id) {
12648 				goto found_hdwq;
12649 			}
12650 			new_cpu = lpfc_next_present_cpu(new_cpu);
12651 		}
12652 
12653 		/* If we can't match both phys_id and core_id,
12654 		 * settle for just a phys_id match.
12655 		 */
12656 		new_cpu = start_cpu;
12657 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12658 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12659 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12660 			    new_cpup->phys_id == cpup->phys_id)
12661 				goto found_hdwq;
12662 			new_cpu = lpfc_next_present_cpu(new_cpu);
12663 		}
12664 
12665 		/* Otherwise just round robin on cfg_hdw_queue */
12666 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12667 		idx++;
12668 		goto logit;
12669  found_hdwq:
12670 		/* We found an available entry, copy the IRQ info */
12671 		start_cpu = lpfc_next_present_cpu(new_cpu);
12672 		cpup->hdwq = new_cpup->hdwq;
12673  logit:
12674 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12675 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12676 				"hdwq %d eq %d flg x%x\n",
12677 				cpu, cpup->phys_id, cpup->core_id,
12678 				cpup->hdwq, cpup->eq, cpup->flag);
12679 	}
12680 
12681 	/*
12682 	 * Initialize the cpu_map slots for not-present cpus in case
12683 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12684 	 */
12685 	idx = 0;
12686 	for_each_possible_cpu(cpu) {
12687 		cpup = &phba->sli4_hba.cpu_map[cpu];
12688 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12689 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12690 		c_stat->hdwq_no = cpup->hdwq;
12691 #endif
12692 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12693 			continue;
12694 
12695 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12696 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12697 		c_stat->hdwq_no = cpup->hdwq;
12698 #endif
12699 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12700 				"3340 Set Affinity: not present "
12701 				"CPU %d hdwq %d\n",
12702 				cpu, cpup->hdwq);
12703 	}
12704 
12705 	/* The cpu_map array will be used later during initialization
12706 	 * when EQ / CQ / WQs are allocated and configured.
12707 	 */
12708 	return;
12709 }
12710 
12711 /**
12712  * lpfc_cpuhp_get_eq
12713  *
12714  * @phba:   pointer to lpfc hba data structure.
12715  * @cpu:    cpu going offline
12716  * @eqlist: eq list to append to
12717  */
12718 static int
12719 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12720 		  struct list_head *eqlist)
12721 {
12722 	const struct cpumask *maskp;
12723 	struct lpfc_queue *eq;
12724 	struct cpumask *tmp;
12725 	u16 idx;
12726 
12727 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12728 	if (!tmp)
12729 		return -ENOMEM;
12730 
12731 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12732 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12733 		if (!maskp)
12734 			continue;
12735 		/*
12736 		 * if irq is not affinitized to the cpu going
12737 		 * then we don't need to poll the eq attached
12738 		 * to it.
12739 		 */
12740 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12741 			continue;
12742 		/* get the cpus that are online and are affini-
12743 		 * tized to this irq vector.  If the count is
12744 		 * more than 1 then cpuhp is not going to shut-
12745 		 * down this vector.  Since this cpu has not
12746 		 * gone offline yet, we need >1.
12747 		 */
12748 		cpumask_and(tmp, maskp, cpu_online_mask);
12749 		if (cpumask_weight(tmp) > 1)
12750 			continue;
12751 
12752 		/* Now that we have an irq to shutdown, get the eq
12753 		 * mapped to this irq.  Note: multiple hdwq's in
12754 		 * the software can share an eq, but eventually
12755 		 * only eq will be mapped to this vector
12756 		 */
12757 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12758 		list_add(&eq->_poll_list, eqlist);
12759 	}
12760 	kfree(tmp);
12761 	return 0;
12762 }
12763 
12764 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12765 {
12766 	if (phba->sli_rev != LPFC_SLI_REV4)
12767 		return;
12768 
12769 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12770 					    &phba->cpuhp);
12771 	/*
12772 	 * unregistering the instance doesn't stop the polling
12773 	 * timer. Wait for the poll timer to retire.
12774 	 */
12775 	synchronize_rcu();
12776 	del_timer_sync(&phba->cpuhp_poll_timer);
12777 }
12778 
12779 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12780 {
12781 	if (phba->pport &&
12782 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
12783 		return;
12784 
12785 	__lpfc_cpuhp_remove(phba);
12786 }
12787 
12788 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12789 {
12790 	if (phba->sli_rev != LPFC_SLI_REV4)
12791 		return;
12792 
12793 	rcu_read_lock();
12794 
12795 	if (!list_empty(&phba->poll_list))
12796 		mod_timer(&phba->cpuhp_poll_timer,
12797 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12798 
12799 	rcu_read_unlock();
12800 
12801 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12802 					 &phba->cpuhp);
12803 }
12804 
12805 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12806 {
12807 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
12808 		*retval = -EAGAIN;
12809 		return true;
12810 	}
12811 
12812 	if (phba->sli_rev != LPFC_SLI_REV4) {
12813 		*retval = 0;
12814 		return true;
12815 	}
12816 
12817 	/* proceed with the hotplug */
12818 	return false;
12819 }
12820 
12821 /**
12822  * lpfc_irq_set_aff - set IRQ affinity
12823  * @eqhdl: EQ handle
12824  * @cpu: cpu to set affinity
12825  *
12826  **/
12827 static inline void
12828 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12829 {
12830 	cpumask_clear(&eqhdl->aff_mask);
12831 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12832 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12833 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12834 }
12835 
12836 /**
12837  * lpfc_irq_clear_aff - clear IRQ affinity
12838  * @eqhdl: EQ handle
12839  *
12840  **/
12841 static inline void
12842 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12843 {
12844 	cpumask_clear(&eqhdl->aff_mask);
12845 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12846 }
12847 
12848 /**
12849  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12850  * @phba: pointer to HBA context object.
12851  * @cpu: cpu going offline/online
12852  * @offline: true, cpu is going offline. false, cpu is coming online.
12853  *
12854  * If cpu is going offline, we'll try our best effort to find the next
12855  * online cpu on the phba's original_mask and migrate all offlining IRQ
12856  * affinities.
12857  *
12858  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12859  *
12860  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12861  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12862  *
12863  **/
12864 static void
12865 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12866 {
12867 	struct lpfc_vector_map_info *cpup;
12868 	struct cpumask *aff_mask;
12869 	unsigned int cpu_select, cpu_next, idx;
12870 	const struct cpumask *orig_mask;
12871 
12872 	if (phba->irq_chann_mode == NORMAL_MODE)
12873 		return;
12874 
12875 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12876 
12877 	if (!cpumask_test_cpu(cpu, orig_mask))
12878 		return;
12879 
12880 	cpup = &phba->sli4_hba.cpu_map[cpu];
12881 
12882 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12883 		return;
12884 
12885 	if (offline) {
12886 		/* Find next online CPU on original mask */
12887 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12888 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12889 
12890 		/* Found a valid CPU */
12891 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12892 			/* Go through each eqhdl and ensure offlining
12893 			 * cpu aff_mask is migrated
12894 			 */
12895 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12896 				aff_mask = lpfc_get_aff_mask(idx);
12897 
12898 				/* Migrate affinity */
12899 				if (cpumask_test_cpu(cpu, aff_mask))
12900 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12901 							 cpu_select);
12902 			}
12903 		} else {
12904 			/* Rely on irqbalance if no online CPUs left on NUMA */
12905 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12906 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12907 		}
12908 	} else {
12909 		/* Migrate affinity back to this CPU */
12910 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12911 	}
12912 }
12913 
12914 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12915 {
12916 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12917 	struct lpfc_queue *eq, *next;
12918 	LIST_HEAD(eqlist);
12919 	int retval;
12920 
12921 	if (!phba) {
12922 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12923 		return 0;
12924 	}
12925 
12926 	if (__lpfc_cpuhp_checks(phba, &retval))
12927 		return retval;
12928 
12929 	lpfc_irq_rebalance(phba, cpu, true);
12930 
12931 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12932 	if (retval)
12933 		return retval;
12934 
12935 	/* start polling on these eq's */
12936 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12937 		list_del_init(&eq->_poll_list);
12938 		lpfc_sli4_start_polling(eq);
12939 	}
12940 
12941 	return 0;
12942 }
12943 
12944 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12945 {
12946 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12947 	struct lpfc_queue *eq, *next;
12948 	unsigned int n;
12949 	int retval;
12950 
12951 	if (!phba) {
12952 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12953 		return 0;
12954 	}
12955 
12956 	if (__lpfc_cpuhp_checks(phba, &retval))
12957 		return retval;
12958 
12959 	lpfc_irq_rebalance(phba, cpu, false);
12960 
12961 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12962 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12963 		if (n == cpu)
12964 			lpfc_sli4_stop_polling(eq);
12965 	}
12966 
12967 	return 0;
12968 }
12969 
12970 /**
12971  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12972  * @phba: pointer to lpfc hba data structure.
12973  *
12974  * This routine is invoked to enable the MSI-X interrupt vectors to device
12975  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12976  * to cpus on the system.
12977  *
12978  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12979  * the number of cpus on the same numa node as this adapter.  The vectors are
12980  * allocated without requesting OS affinity mapping.  A vector will be
12981  * allocated and assigned to each online and offline cpu.  If the cpu is
12982  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12983  * affinity will be set to the nearest peer cpu within the numa node that is
12984  * online.  If there are no online cpus within the numa node, affinity is not
12985  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12986  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12987  * configured.
12988  *
12989  * If numa mode is not enabled and there is more than 1 vector allocated, then
12990  * the driver relies on the managed irq interface where the OS assigns vector to
12991  * cpu affinity.  The driver will then use that affinity mapping to setup its
12992  * cpu mapping table.
12993  *
12994  * Return codes
12995  * 0 - successful
12996  * other values - error
12997  **/
12998 static int
12999 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13000 {
13001 	int vectors, rc, index;
13002 	char *name;
13003 	const struct cpumask *aff_mask = NULL;
13004 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13005 	struct lpfc_vector_map_info *cpup;
13006 	struct lpfc_hba_eq_hdl *eqhdl;
13007 	const struct cpumask *maskp;
13008 	unsigned int flags = PCI_IRQ_MSIX;
13009 
13010 	/* Set up MSI-X multi-message vectors */
13011 	vectors = phba->cfg_irq_chann;
13012 
13013 	if (phba->irq_chann_mode != NORMAL_MODE)
13014 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13015 
13016 	if (aff_mask) {
13017 		cpu_cnt = cpumask_weight(aff_mask);
13018 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13019 
13020 		/* cpu: iterates over aff_mask including offline or online
13021 		 * cpu_select: iterates over online aff_mask to set affinity
13022 		 */
13023 		cpu = cpumask_first(aff_mask);
13024 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13025 	} else {
13026 		flags |= PCI_IRQ_AFFINITY;
13027 	}
13028 
13029 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13030 	if (rc < 0) {
13031 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13032 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13033 		goto vec_fail_out;
13034 	}
13035 	vectors = rc;
13036 
13037 	/* Assign MSI-X vectors to interrupt handlers */
13038 	for (index = 0; index < vectors; index++) {
13039 		eqhdl = lpfc_get_eq_hdl(index);
13040 		name = eqhdl->handler_name;
13041 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13042 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13043 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13044 
13045 		eqhdl->idx = index;
13046 		rc = pci_irq_vector(phba->pcidev, index);
13047 		if (rc < 0) {
13048 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13049 					"0489 MSI-X fast-path (%d) "
13050 					"pci_irq_vec failed (%d)\n", index, rc);
13051 			goto cfg_fail_out;
13052 		}
13053 		eqhdl->irq = rc;
13054 
13055 		rc = request_threaded_irq(eqhdl->irq,
13056 					  &lpfc_sli4_hba_intr_handler,
13057 					  &lpfc_sli4_hba_intr_handler_th,
13058 					  IRQF_ONESHOT, name, eqhdl);
13059 		if (rc) {
13060 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13061 					"0486 MSI-X fast-path (%d) "
13062 					"request_irq failed (%d)\n", index, rc);
13063 			goto cfg_fail_out;
13064 		}
13065 
13066 		if (aff_mask) {
13067 			/* If found a neighboring online cpu, set affinity */
13068 			if (cpu_select < nr_cpu_ids)
13069 				lpfc_irq_set_aff(eqhdl, cpu_select);
13070 
13071 			/* Assign EQ to cpu_map */
13072 			lpfc_assign_eq_map_info(phba, index,
13073 						LPFC_CPU_FIRST_IRQ,
13074 						cpu);
13075 
13076 			/* Iterate to next offline or online cpu in aff_mask */
13077 			cpu = cpumask_next(cpu, aff_mask);
13078 
13079 			/* Find next online cpu in aff_mask to set affinity */
13080 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13081 		} else if (vectors == 1) {
13082 			cpu = cpumask_first(cpu_present_mask);
13083 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13084 						cpu);
13085 		} else {
13086 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13087 
13088 			/* Loop through all CPUs associated with vector index */
13089 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13090 				cpup = &phba->sli4_hba.cpu_map[cpu];
13091 
13092 				/* If this is the first CPU thats assigned to
13093 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13094 				 *
13095 				 * With certain platforms its possible that irq
13096 				 * vectors are affinitized to all the cpu's.
13097 				 * This can result in each cpu_map.eq to be set
13098 				 * to the last vector, resulting in overwrite
13099 				 * of all the previous cpu_map.eq.  Ensure that
13100 				 * each vector receives a place in cpu_map.
13101 				 * Later call to lpfc_cpu_affinity_check will
13102 				 * ensure we are nicely balanced out.
13103 				 */
13104 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13105 					continue;
13106 				lpfc_assign_eq_map_info(phba, index,
13107 							LPFC_CPU_FIRST_IRQ,
13108 							cpu);
13109 				break;
13110 			}
13111 		}
13112 	}
13113 
13114 	if (vectors != phba->cfg_irq_chann) {
13115 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13116 				"3238 Reducing IO channels to match number of "
13117 				"MSI-X vectors, requested %d got %d\n",
13118 				phba->cfg_irq_chann, vectors);
13119 		if (phba->cfg_irq_chann > vectors)
13120 			phba->cfg_irq_chann = vectors;
13121 	}
13122 
13123 	return rc;
13124 
13125 cfg_fail_out:
13126 	/* free the irq already requested */
13127 	for (--index; index >= 0; index--) {
13128 		eqhdl = lpfc_get_eq_hdl(index);
13129 		lpfc_irq_clear_aff(eqhdl);
13130 		free_irq(eqhdl->irq, eqhdl);
13131 	}
13132 
13133 	/* Unconfigure MSI-X capability structure */
13134 	pci_free_irq_vectors(phba->pcidev);
13135 
13136 vec_fail_out:
13137 	return rc;
13138 }
13139 
13140 /**
13141  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13142  * @phba: pointer to lpfc hba data structure.
13143  *
13144  * This routine is invoked to enable the MSI interrupt mode to device with
13145  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13146  * called to enable the MSI vector. The device driver is responsible for
13147  * calling the request_irq() to register MSI vector with a interrupt the
13148  * handler, which is done in this function.
13149  *
13150  * Return codes
13151  * 	0 - successful
13152  * 	other values - error
13153  **/
13154 static int
13155 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13156 {
13157 	int rc, index;
13158 	unsigned int cpu;
13159 	struct lpfc_hba_eq_hdl *eqhdl;
13160 
13161 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13162 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13163 	if (rc > 0)
13164 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13165 				"0487 PCI enable MSI mode success.\n");
13166 	else {
13167 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13168 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13169 		return rc ? rc : -1;
13170 	}
13171 
13172 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13173 			 0, LPFC_DRIVER_NAME, phba);
13174 	if (rc) {
13175 		pci_free_irq_vectors(phba->pcidev);
13176 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13177 				"0490 MSI request_irq failed (%d)\n", rc);
13178 		return rc;
13179 	}
13180 
13181 	eqhdl = lpfc_get_eq_hdl(0);
13182 	rc = pci_irq_vector(phba->pcidev, 0);
13183 	if (rc < 0) {
13184 		pci_free_irq_vectors(phba->pcidev);
13185 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13186 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13187 		return rc;
13188 	}
13189 	eqhdl->irq = rc;
13190 
13191 	cpu = cpumask_first(cpu_present_mask);
13192 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13193 
13194 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13195 		eqhdl = lpfc_get_eq_hdl(index);
13196 		eqhdl->idx = index;
13197 	}
13198 
13199 	return 0;
13200 }
13201 
13202 /**
13203  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13204  * @phba: pointer to lpfc hba data structure.
13205  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13206  *
13207  * This routine is invoked to enable device interrupt and associate driver's
13208  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13209  * interface spec. Depends on the interrupt mode configured to the driver,
13210  * the driver will try to fallback from the configured interrupt mode to an
13211  * interrupt mode which is supported by the platform, kernel, and device in
13212  * the order of:
13213  * MSI-X -> MSI -> IRQ.
13214  *
13215  * Return codes
13216  *	Interrupt mode (2, 1, 0) - successful
13217  *	LPFC_INTR_ERROR - error
13218  **/
13219 static uint32_t
13220 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13221 {
13222 	uint32_t intr_mode = LPFC_INTR_ERROR;
13223 	int retval, idx;
13224 
13225 	if (cfg_mode == 2) {
13226 		/* Preparation before conf_msi mbox cmd */
13227 		retval = 0;
13228 		if (!retval) {
13229 			/* Now, try to enable MSI-X interrupt mode */
13230 			retval = lpfc_sli4_enable_msix(phba);
13231 			if (!retval) {
13232 				/* Indicate initialization to MSI-X mode */
13233 				phba->intr_type = MSIX;
13234 				intr_mode = 2;
13235 			}
13236 		}
13237 	}
13238 
13239 	/* Fallback to MSI if MSI-X initialization failed */
13240 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13241 		retval = lpfc_sli4_enable_msi(phba);
13242 		if (!retval) {
13243 			/* Indicate initialization to MSI mode */
13244 			phba->intr_type = MSI;
13245 			intr_mode = 1;
13246 		}
13247 	}
13248 
13249 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13250 	if (phba->intr_type == NONE) {
13251 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13252 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13253 		if (!retval) {
13254 			struct lpfc_hba_eq_hdl *eqhdl;
13255 			unsigned int cpu;
13256 
13257 			/* Indicate initialization to INTx mode */
13258 			phba->intr_type = INTx;
13259 			intr_mode = 0;
13260 
13261 			eqhdl = lpfc_get_eq_hdl(0);
13262 			retval = pci_irq_vector(phba->pcidev, 0);
13263 			if (retval < 0) {
13264 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13265 					"0502 INTR pci_irq_vec failed (%d)\n",
13266 					 retval);
13267 				return LPFC_INTR_ERROR;
13268 			}
13269 			eqhdl->irq = retval;
13270 
13271 			cpu = cpumask_first(cpu_present_mask);
13272 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13273 						cpu);
13274 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13275 				eqhdl = lpfc_get_eq_hdl(idx);
13276 				eqhdl->idx = idx;
13277 			}
13278 		}
13279 	}
13280 	return intr_mode;
13281 }
13282 
13283 /**
13284  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13285  * @phba: pointer to lpfc hba data structure.
13286  *
13287  * This routine is invoked to disable device interrupt and disassociate
13288  * the driver's interrupt handler(s) from interrupt vector(s) to device
13289  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13290  * will release the interrupt vector(s) for the message signaled interrupt.
13291  **/
13292 static void
13293 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13294 {
13295 	/* Disable the currently initialized interrupt mode */
13296 	if (phba->intr_type == MSIX) {
13297 		int index;
13298 		struct lpfc_hba_eq_hdl *eqhdl;
13299 
13300 		/* Free up MSI-X multi-message vectors */
13301 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13302 			eqhdl = lpfc_get_eq_hdl(index);
13303 			lpfc_irq_clear_aff(eqhdl);
13304 			free_irq(eqhdl->irq, eqhdl);
13305 		}
13306 	} else {
13307 		free_irq(phba->pcidev->irq, phba);
13308 	}
13309 
13310 	pci_free_irq_vectors(phba->pcidev);
13311 
13312 	/* Reset interrupt management states */
13313 	phba->intr_type = NONE;
13314 	phba->sli.slistat.sli_intr = 0;
13315 }
13316 
13317 /**
13318  * lpfc_unset_hba - Unset SLI3 hba device initialization
13319  * @phba: pointer to lpfc hba data structure.
13320  *
13321  * This routine is invoked to unset the HBA device initialization steps to
13322  * a device with SLI-3 interface spec.
13323  **/
13324 static void
13325 lpfc_unset_hba(struct lpfc_hba *phba)
13326 {
13327 	set_bit(FC_UNLOADING, &phba->pport->load_flag);
13328 
13329 	kfree(phba->vpi_bmask);
13330 	kfree(phba->vpi_ids);
13331 
13332 	lpfc_stop_hba_timers(phba);
13333 
13334 	phba->pport->work_port_events = 0;
13335 
13336 	lpfc_sli_hba_down(phba);
13337 
13338 	lpfc_sli_brdrestart(phba);
13339 
13340 	lpfc_sli_disable_intr(phba);
13341 
13342 	return;
13343 }
13344 
13345 /**
13346  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13347  * @phba: Pointer to HBA context object.
13348  *
13349  * This function is called in the SLI4 code path to wait for completion
13350  * of device's XRIs exchange busy. It will check the XRI exchange busy
13351  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13352  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13353  * I/Os every 30 seconds, log error message, and wait forever. Only when
13354  * all XRI exchange busy complete, the driver unload shall proceed with
13355  * invoking the function reset ioctl mailbox command to the CNA and the
13356  * the rest of the driver unload resource release.
13357  **/
13358 static void
13359 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13360 {
13361 	struct lpfc_sli4_hdw_queue *qp;
13362 	int idx, ccnt;
13363 	int wait_time = 0;
13364 	int io_xri_cmpl = 1;
13365 	int nvmet_xri_cmpl = 1;
13366 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13367 
13368 	/* Driver just aborted IOs during the hba_unset process.  Pause
13369 	 * here to give the HBA time to complete the IO and get entries
13370 	 * into the abts lists.
13371 	 */
13372 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13373 
13374 	/* Wait for NVME pending IO to flush back to transport. */
13375 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13376 		lpfc_nvme_wait_for_io_drain(phba);
13377 
13378 	ccnt = 0;
13379 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13380 		qp = &phba->sli4_hba.hdwq[idx];
13381 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13382 		if (!io_xri_cmpl) /* if list is NOT empty */
13383 			ccnt++;
13384 	}
13385 	if (ccnt)
13386 		io_xri_cmpl = 0;
13387 
13388 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13389 		nvmet_xri_cmpl =
13390 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13391 	}
13392 
13393 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13394 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13395 			if (!nvmet_xri_cmpl)
13396 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13397 						"6424 NVMET XRI exchange busy "
13398 						"wait time: %d seconds.\n",
13399 						wait_time/1000);
13400 			if (!io_xri_cmpl)
13401 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13402 						"6100 IO XRI exchange busy "
13403 						"wait time: %d seconds.\n",
13404 						wait_time/1000);
13405 			if (!els_xri_cmpl)
13406 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13407 						"2878 ELS XRI exchange busy "
13408 						"wait time: %d seconds.\n",
13409 						wait_time/1000);
13410 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13411 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13412 		} else {
13413 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13414 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13415 		}
13416 
13417 		ccnt = 0;
13418 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13419 			qp = &phba->sli4_hba.hdwq[idx];
13420 			io_xri_cmpl = list_empty(
13421 			    &qp->lpfc_abts_io_buf_list);
13422 			if (!io_xri_cmpl) /* if list is NOT empty */
13423 				ccnt++;
13424 		}
13425 		if (ccnt)
13426 			io_xri_cmpl = 0;
13427 
13428 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13429 			nvmet_xri_cmpl = list_empty(
13430 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13431 		}
13432 		els_xri_cmpl =
13433 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13434 
13435 	}
13436 }
13437 
13438 /**
13439  * lpfc_sli4_hba_unset - Unset the fcoe hba
13440  * @phba: Pointer to HBA context object.
13441  *
13442  * This function is called in the SLI4 code path to reset the HBA's FCoE
13443  * function. The caller is not required to hold any lock. This routine
13444  * issues PCI function reset mailbox command to reset the FCoE function.
13445  * At the end of the function, it calls lpfc_hba_down_post function to
13446  * free any pending commands.
13447  **/
13448 static void
13449 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13450 {
13451 	int wait_cnt = 0;
13452 	LPFC_MBOXQ_t *mboxq;
13453 	struct pci_dev *pdev = phba->pcidev;
13454 
13455 	lpfc_stop_hba_timers(phba);
13456 	hrtimer_cancel(&phba->cmf_stats_timer);
13457 	hrtimer_cancel(&phba->cmf_timer);
13458 
13459 	if (phba->pport)
13460 		phba->sli4_hba.intr_enable = 0;
13461 
13462 	/*
13463 	 * Gracefully wait out the potential current outstanding asynchronous
13464 	 * mailbox command.
13465 	 */
13466 
13467 	/* First, block any pending async mailbox command from posted */
13468 	spin_lock_irq(&phba->hbalock);
13469 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13470 	spin_unlock_irq(&phba->hbalock);
13471 	/* Now, trying to wait it out if we can */
13472 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13473 		msleep(10);
13474 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13475 			break;
13476 	}
13477 	/* Forcefully release the outstanding mailbox command if timed out */
13478 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13479 		spin_lock_irq(&phba->hbalock);
13480 		mboxq = phba->sli.mbox_active;
13481 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13482 		__lpfc_mbox_cmpl_put(phba, mboxq);
13483 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13484 		phba->sli.mbox_active = NULL;
13485 		spin_unlock_irq(&phba->hbalock);
13486 	}
13487 
13488 	/* Abort all iocbs associated with the hba */
13489 	lpfc_sli_hba_iocb_abort(phba);
13490 
13491 	if (!pci_channel_offline(phba->pcidev))
13492 		/* Wait for completion of device XRI exchange busy */
13493 		lpfc_sli4_xri_exchange_busy_wait(phba);
13494 
13495 	/* per-phba callback de-registration for hotplug event */
13496 	if (phba->pport)
13497 		lpfc_cpuhp_remove(phba);
13498 
13499 	/* Disable PCI subsystem interrupt */
13500 	lpfc_sli4_disable_intr(phba);
13501 
13502 	/* Disable SR-IOV if enabled */
13503 	if (phba->cfg_sriov_nr_virtfn)
13504 		pci_disable_sriov(pdev);
13505 
13506 	/* Stop kthread signal shall trigger work_done one more time */
13507 	kthread_stop(phba->worker_thread);
13508 
13509 	/* Disable FW logging to host memory */
13510 	lpfc_ras_stop_fwlog(phba);
13511 
13512 	/* Reset SLI4 HBA FCoE function */
13513 	lpfc_pci_function_reset(phba);
13514 
13515 	/* release all queue allocated resources. */
13516 	lpfc_sli4_queue_destroy(phba);
13517 
13518 	/* Free RAS DMA memory */
13519 	if (phba->ras_fwlog.ras_enabled)
13520 		lpfc_sli4_ras_dma_free(phba);
13521 
13522 	/* Stop the SLI4 device port */
13523 	if (phba->pport)
13524 		phba->pport->work_port_events = 0;
13525 }
13526 
13527 static uint32_t
13528 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13529 {
13530 	uint32_t msb = 0;
13531 	uint32_t bit;
13532 
13533 	for (bit = 0; bit < 8; bit++) {
13534 		msb = (crc >> 31) & 1;
13535 		crc <<= 1;
13536 
13537 		if (msb ^ (byte & 1)) {
13538 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13539 			crc |= 1;
13540 		}
13541 		byte >>= 1;
13542 	}
13543 	return crc;
13544 }
13545 
13546 static uint32_t
13547 lpfc_cgn_reverse_bits(uint32_t wd)
13548 {
13549 	uint32_t result = 0;
13550 	uint32_t i;
13551 
13552 	for (i = 0; i < 32; i++) {
13553 		result <<= 1;
13554 		result |= (1 & (wd >> i));
13555 	}
13556 	return result;
13557 }
13558 
13559 /*
13560  * The routine corresponds with the algorithm the HBA firmware
13561  * uses to validate the data integrity.
13562  */
13563 uint32_t
13564 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13565 {
13566 	uint32_t  i;
13567 	uint32_t result;
13568 	uint8_t  *data = (uint8_t *)ptr;
13569 
13570 	for (i = 0; i < byteLen; ++i)
13571 		crc = lpfc_cgn_crc32(crc, data[i]);
13572 
13573 	result = ~lpfc_cgn_reverse_bits(crc);
13574 	return result;
13575 }
13576 
13577 void
13578 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13579 {
13580 	struct lpfc_cgn_info *cp;
13581 	uint16_t size;
13582 	uint32_t crc;
13583 
13584 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13585 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13586 
13587 	if (!phba->cgn_i)
13588 		return;
13589 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13590 
13591 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13592 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13593 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13594 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13595 
13596 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13597 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13598 	atomic64_set(&phba->cgn_latency_evt, 0);
13599 	phba->cgn_evt_minute = 0;
13600 
13601 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13602 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13603 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13604 
13605 	/* cgn parameters */
13606 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13607 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13608 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13609 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13610 
13611 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13612 
13613 	/* Fill in default LUN qdepth */
13614 	if (phba->pport) {
13615 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13616 		cp->cgn_lunq = cpu_to_le16(size);
13617 	}
13618 
13619 	/* last used Index initialized to 0xff already */
13620 
13621 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13622 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13623 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13624 	cp->cgn_info_crc = cpu_to_le32(crc);
13625 
13626 	phba->cgn_evt_timestamp = jiffies +
13627 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13628 }
13629 
13630 void
13631 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13632 {
13633 	struct lpfc_cgn_info *cp;
13634 	uint32_t crc;
13635 
13636 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13637 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13638 
13639 	if (!phba->cgn_i)
13640 		return;
13641 
13642 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13643 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13644 
13645 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13646 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13647 	cp->cgn_info_crc = cpu_to_le32(crc);
13648 }
13649 
13650 /**
13651  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13652  * @phba: Pointer to hba context object.
13653  * @reg: flag to determine register or unregister.
13654  */
13655 static int
13656 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13657 {
13658 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13659 	union  lpfc_sli4_cfg_shdr *shdr;
13660 	uint32_t shdr_status, shdr_add_status;
13661 	LPFC_MBOXQ_t *mboxq;
13662 	int length, rc;
13663 
13664 	if (!phba->cgn_i)
13665 		return -ENXIO;
13666 
13667 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13668 	if (!mboxq) {
13669 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13670 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13671 				"HBA state x%x reg %d\n",
13672 				phba->pport->port_state, reg);
13673 		return -ENOMEM;
13674 	}
13675 
13676 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13677 		sizeof(struct lpfc_sli4_cfg_mhdr));
13678 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13679 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13680 			 LPFC_SLI4_MBX_EMBED);
13681 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13682 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13683 	if (reg > 0)
13684 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13685 	else
13686 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13687 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13688 	reg_congestion_buf->addr_lo =
13689 		putPaddrLow(phba->cgn_i->phys);
13690 	reg_congestion_buf->addr_hi =
13691 		putPaddrHigh(phba->cgn_i->phys);
13692 
13693 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13694 	shdr = (union lpfc_sli4_cfg_shdr *)
13695 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13696 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13697 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13698 				 &shdr->response);
13699 	mempool_free(mboxq, phba->mbox_mem_pool);
13700 	if (shdr_status || shdr_add_status || rc) {
13701 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13702 				"2642 REG_CONGESTION_BUF mailbox "
13703 				"failed with status x%x add_status x%x,"
13704 				" mbx status x%x reg %d\n",
13705 				shdr_status, shdr_add_status, rc, reg);
13706 		return -ENXIO;
13707 	}
13708 	return 0;
13709 }
13710 
13711 int
13712 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13713 {
13714 	lpfc_cmf_stop(phba);
13715 	return __lpfc_reg_congestion_buf(phba, 0);
13716 }
13717 
13718 int
13719 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13720 {
13721 	return __lpfc_reg_congestion_buf(phba, 1);
13722 }
13723 
13724 /**
13725  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13726  * @phba: Pointer to HBA context object.
13727  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13728  *
13729  * This function is called in the SLI4 code path to read the port's
13730  * sli4 capabilities.
13731  *
13732  * This function may be be called from any context that can block-wait
13733  * for the completion.  The expectation is that this routine is called
13734  * typically from probe_one or from the online routine.
13735  **/
13736 int
13737 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13738 {
13739 	int rc;
13740 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13741 	struct lpfc_pc_sli4_params *sli4_params;
13742 	uint32_t mbox_tmo;
13743 	int length;
13744 	bool exp_wqcq_pages = true;
13745 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13746 
13747 	/*
13748 	 * By default, the driver assumes the SLI4 port requires RPI
13749 	 * header postings.  The SLI4_PARAM response will correct this
13750 	 * assumption.
13751 	 */
13752 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13753 
13754 	/* Read the port's SLI4 Config Parameters */
13755 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13756 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13757 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13758 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13759 			 length, LPFC_SLI4_MBX_EMBED);
13760 	if (!phba->sli4_hba.intr_enable)
13761 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13762 	else {
13763 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13764 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13765 	}
13766 	if (unlikely(rc))
13767 		return rc;
13768 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13769 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13770 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13771 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13772 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13773 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13774 					     mbx_sli4_parameters);
13775 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13776 					     mbx_sli4_parameters);
13777 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13778 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13779 	else
13780 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13781 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13782 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13783 					   mbx_sli4_parameters);
13784 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13785 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13786 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13787 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13788 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13789 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13790 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13791 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13792 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13793 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13794 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13795 					    mbx_sli4_parameters);
13796 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13797 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13798 					   mbx_sli4_parameters);
13799 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13800 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13801 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13802 
13803 	/* Check for Extended Pre-Registered SGL support */
13804 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13805 
13806 	/* Check for firmware nvme support */
13807 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13808 		     bf_get(cfg_xib, mbx_sli4_parameters));
13809 
13810 	if (rc) {
13811 		/* Save this to indicate the Firmware supports NVME */
13812 		sli4_params->nvme = 1;
13813 
13814 		/* Firmware NVME support, check driver FC4 NVME support */
13815 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13816 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13817 					"6133 Disabling NVME support: "
13818 					"FC4 type not supported: x%x\n",
13819 					phba->cfg_enable_fc4_type);
13820 			goto fcponly;
13821 		}
13822 	} else {
13823 		/* No firmware NVME support, check driver FC4 NVME support */
13824 		sli4_params->nvme = 0;
13825 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13826 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13827 					"6101 Disabling NVME support: Not "
13828 					"supported by firmware (%d %d) x%x\n",
13829 					bf_get(cfg_nvme, mbx_sli4_parameters),
13830 					bf_get(cfg_xib, mbx_sli4_parameters),
13831 					phba->cfg_enable_fc4_type);
13832 fcponly:
13833 			phba->nvmet_support = 0;
13834 			phba->cfg_nvmet_mrq = 0;
13835 			phba->cfg_nvme_seg_cnt = 0;
13836 
13837 			/* If no FC4 type support, move to just SCSI support */
13838 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13839 				return -ENODEV;
13840 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13841 		}
13842 	}
13843 
13844 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13845 	 * accommodate 512K and 1M IOs in a single nvme buf.
13846 	 */
13847 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13848 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13849 
13850 	/* Enable embedded Payload BDE if support is indicated */
13851 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13852 		phba->cfg_enable_pbde = 1;
13853 	else
13854 		phba->cfg_enable_pbde = 0;
13855 
13856 	/*
13857 	 * To support Suppress Response feature we must satisfy 3 conditions.
13858 	 * lpfc_suppress_rsp module parameter must be set (default).
13859 	 * In SLI4-Parameters Descriptor:
13860 	 * Extended Inline Buffers (XIB) must be supported.
13861 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13862 	 * (double negative).
13863 	 */
13864 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13865 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13866 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13867 	else
13868 		phba->cfg_suppress_rsp = 0;
13869 
13870 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13871 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13872 
13873 	/* Make sure that sge_supp_len can be handled by the driver */
13874 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13875 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13876 
13877 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13878 	if (unlikely(rc)) {
13879 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13880 				"6400 Can't set dma maximum segment size\n");
13881 		return rc;
13882 	}
13883 
13884 	/*
13885 	 * Check whether the adapter supports an embedded copy of the
13886 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13887 	 * to use this option, 128-byte WQEs must be used.
13888 	 */
13889 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13890 		phba->fcp_embed_io = 1;
13891 	else
13892 		phba->fcp_embed_io = 0;
13893 
13894 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13895 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13896 			bf_get(cfg_xib, mbx_sli4_parameters),
13897 			phba->cfg_enable_pbde,
13898 			phba->fcp_embed_io, sli4_params->nvme,
13899 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13900 
13901 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13902 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13903 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13904 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13905 		exp_wqcq_pages = false;
13906 
13907 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13908 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13909 	    exp_wqcq_pages &&
13910 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13911 		phba->enab_exp_wqcq_pages = 1;
13912 	else
13913 		phba->enab_exp_wqcq_pages = 0;
13914 	/*
13915 	 * Check if the SLI port supports MDS Diagnostics
13916 	 */
13917 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13918 		phba->mds_diags_support = 1;
13919 	else
13920 		phba->mds_diags_support = 0;
13921 
13922 	/*
13923 	 * Check if the SLI port supports NSLER
13924 	 */
13925 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13926 		phba->nsler = 1;
13927 	else
13928 		phba->nsler = 0;
13929 
13930 	return 0;
13931 }
13932 
13933 /**
13934  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13935  * @pdev: pointer to PCI device
13936  * @pid: pointer to PCI device identifier
13937  *
13938  * This routine is to be called to attach a device with SLI-3 interface spec
13939  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13940  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13941  * information of the device and driver to see if the driver state that it can
13942  * support this kind of device. If the match is successful, the driver core
13943  * invokes this routine. If this routine determines it can claim the HBA, it
13944  * does all the initialization that it needs to do to handle the HBA properly.
13945  *
13946  * Return code
13947  * 	0 - driver can claim the device
13948  * 	negative value - driver can not claim the device
13949  **/
13950 static int
13951 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13952 {
13953 	struct lpfc_hba   *phba;
13954 	struct lpfc_vport *vport = NULL;
13955 	struct Scsi_Host  *shost = NULL;
13956 	int error;
13957 	uint32_t cfg_mode, intr_mode;
13958 
13959 	/* Allocate memory for HBA structure */
13960 	phba = lpfc_hba_alloc(pdev);
13961 	if (!phba)
13962 		return -ENOMEM;
13963 
13964 	/* Perform generic PCI device enabling operation */
13965 	error = lpfc_enable_pci_dev(phba);
13966 	if (error)
13967 		goto out_free_phba;
13968 
13969 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13970 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13971 	if (error)
13972 		goto out_disable_pci_dev;
13973 
13974 	/* Set up SLI-3 specific device PCI memory space */
13975 	error = lpfc_sli_pci_mem_setup(phba);
13976 	if (error) {
13977 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13978 				"1402 Failed to set up pci memory space.\n");
13979 		goto out_disable_pci_dev;
13980 	}
13981 
13982 	/* Set up SLI-3 specific device driver resources */
13983 	error = lpfc_sli_driver_resource_setup(phba);
13984 	if (error) {
13985 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13986 				"1404 Failed to set up driver resource.\n");
13987 		goto out_unset_pci_mem_s3;
13988 	}
13989 
13990 	/* Initialize and populate the iocb list per host */
13991 
13992 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13993 	if (error) {
13994 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13995 				"1405 Failed to initialize iocb list.\n");
13996 		goto out_unset_driver_resource_s3;
13997 	}
13998 
13999 	/* Set up common device driver resources */
14000 	error = lpfc_setup_driver_resource_phase2(phba);
14001 	if (error) {
14002 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14003 				"1406 Failed to set up driver resource.\n");
14004 		goto out_free_iocb_list;
14005 	}
14006 
14007 	/* Get the default values for Model Name and Description */
14008 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14009 
14010 	/* Create SCSI host to the physical port */
14011 	error = lpfc_create_shost(phba);
14012 	if (error) {
14013 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14014 				"1407 Failed to create scsi host.\n");
14015 		goto out_unset_driver_resource;
14016 	}
14017 
14018 	/* Configure sysfs attributes */
14019 	vport = phba->pport;
14020 	error = lpfc_alloc_sysfs_attr(vport);
14021 	if (error) {
14022 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14023 				"1476 Failed to allocate sysfs attr\n");
14024 		goto out_destroy_shost;
14025 	}
14026 
14027 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14028 	/* Now, trying to enable interrupt and bring up the device */
14029 	cfg_mode = phba->cfg_use_msi;
14030 	while (true) {
14031 		/* Put device to a known state before enabling interrupt */
14032 		lpfc_stop_port(phba);
14033 		/* Configure and enable interrupt */
14034 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14035 		if (intr_mode == LPFC_INTR_ERROR) {
14036 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14037 					"0431 Failed to enable interrupt.\n");
14038 			error = -ENODEV;
14039 			goto out_free_sysfs_attr;
14040 		}
14041 		/* SLI-3 HBA setup */
14042 		if (lpfc_sli_hba_setup(phba)) {
14043 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14044 					"1477 Failed to set up hba\n");
14045 			error = -ENODEV;
14046 			goto out_remove_device;
14047 		}
14048 
14049 		/* Wait 50ms for the interrupts of previous mailbox commands */
14050 		msleep(50);
14051 		/* Check active interrupts on message signaled interrupts */
14052 		if (intr_mode == 0 ||
14053 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14054 			/* Log the current active interrupt mode */
14055 			phba->intr_mode = intr_mode;
14056 			lpfc_log_intr_mode(phba, intr_mode);
14057 			break;
14058 		} else {
14059 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14060 					"0447 Configure interrupt mode (%d) "
14061 					"failed active interrupt test.\n",
14062 					intr_mode);
14063 			/* Disable the current interrupt mode */
14064 			lpfc_sli_disable_intr(phba);
14065 			/* Try next level of interrupt mode */
14066 			cfg_mode = --intr_mode;
14067 		}
14068 	}
14069 
14070 	/* Perform post initialization setup */
14071 	lpfc_post_init_setup(phba);
14072 
14073 	/* Check if there are static vports to be created. */
14074 	lpfc_create_static_vport(phba);
14075 
14076 	return 0;
14077 
14078 out_remove_device:
14079 	lpfc_unset_hba(phba);
14080 out_free_sysfs_attr:
14081 	lpfc_free_sysfs_attr(vport);
14082 out_destroy_shost:
14083 	lpfc_destroy_shost(phba);
14084 out_unset_driver_resource:
14085 	lpfc_unset_driver_resource_phase2(phba);
14086 out_free_iocb_list:
14087 	lpfc_free_iocb_list(phba);
14088 out_unset_driver_resource_s3:
14089 	lpfc_sli_driver_resource_unset(phba);
14090 out_unset_pci_mem_s3:
14091 	lpfc_sli_pci_mem_unset(phba);
14092 out_disable_pci_dev:
14093 	lpfc_disable_pci_dev(phba);
14094 	if (shost)
14095 		scsi_host_put(shost);
14096 out_free_phba:
14097 	lpfc_hba_free(phba);
14098 	return error;
14099 }
14100 
14101 /**
14102  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14103  * @pdev: pointer to PCI device
14104  *
14105  * This routine is to be called to disattach a device with SLI-3 interface
14106  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14107  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14108  * device to be removed from the PCI subsystem properly.
14109  **/
14110 static void
14111 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14112 {
14113 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14114 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14115 	struct lpfc_vport **vports;
14116 	struct lpfc_hba   *phba = vport->phba;
14117 	int i;
14118 
14119 	set_bit(FC_UNLOADING, &vport->load_flag);
14120 
14121 	lpfc_free_sysfs_attr(vport);
14122 
14123 	/* Release all the vports against this physical port */
14124 	vports = lpfc_create_vport_work_array(phba);
14125 	if (vports != NULL)
14126 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14127 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14128 				continue;
14129 			fc_vport_terminate(vports[i]->fc_vport);
14130 		}
14131 	lpfc_destroy_vport_work_array(phba, vports);
14132 
14133 	/* Remove FC host with the physical port */
14134 	fc_remove_host(shost);
14135 	scsi_remove_host(shost);
14136 
14137 	/* Clean up all nodes, mailboxes and IOs. */
14138 	lpfc_cleanup(vport);
14139 
14140 	/*
14141 	 * Bring down the SLI Layer. This step disable all interrupts,
14142 	 * clears the rings, discards all mailbox commands, and resets
14143 	 * the HBA.
14144 	 */
14145 
14146 	/* HBA interrupt will be disabled after this call */
14147 	lpfc_sli_hba_down(phba);
14148 	/* Stop kthread signal shall trigger work_done one more time */
14149 	kthread_stop(phba->worker_thread);
14150 	/* Final cleanup of txcmplq and reset the HBA */
14151 	lpfc_sli_brdrestart(phba);
14152 
14153 	kfree(phba->vpi_bmask);
14154 	kfree(phba->vpi_ids);
14155 
14156 	lpfc_stop_hba_timers(phba);
14157 	spin_lock_irq(&phba->port_list_lock);
14158 	list_del_init(&vport->listentry);
14159 	spin_unlock_irq(&phba->port_list_lock);
14160 
14161 	lpfc_debugfs_terminate(vport);
14162 
14163 	/* Disable SR-IOV if enabled */
14164 	if (phba->cfg_sriov_nr_virtfn)
14165 		pci_disable_sriov(pdev);
14166 
14167 	/* Disable interrupt */
14168 	lpfc_sli_disable_intr(phba);
14169 
14170 	scsi_host_put(shost);
14171 
14172 	/*
14173 	 * Call scsi_free before mem_free since scsi bufs are released to their
14174 	 * corresponding pools here.
14175 	 */
14176 	lpfc_scsi_free(phba);
14177 	lpfc_free_iocb_list(phba);
14178 
14179 	lpfc_mem_free_all(phba);
14180 
14181 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14182 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14183 
14184 	/* Free resources associated with SLI2 interface */
14185 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14186 			  phba->slim2p.virt, phba->slim2p.phys);
14187 
14188 	/* unmap adapter SLIM and Control Registers */
14189 	iounmap(phba->ctrl_regs_memmap_p);
14190 	iounmap(phba->slim_memmap_p);
14191 
14192 	lpfc_hba_free(phba);
14193 
14194 	pci_release_mem_regions(pdev);
14195 	pci_disable_device(pdev);
14196 }
14197 
14198 /**
14199  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14200  * @dev_d: pointer to device
14201  *
14202  * This routine is to be called from the kernel's PCI subsystem to support
14203  * system Power Management (PM) to device with SLI-3 interface spec. When
14204  * PM invokes this method, it quiesces the device by stopping the driver's
14205  * worker thread for the device, turning off device's interrupt and DMA,
14206  * and bring the device offline. Note that as the driver implements the
14207  * minimum PM requirements to a power-aware driver's PM support for the
14208  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14209  * to the suspend() method call will be treated as SUSPEND and the driver will
14210  * fully reinitialize its device during resume() method call, the driver will
14211  * set device to PCI_D3hot state in PCI config space instead of setting it
14212  * according to the @msg provided by the PM.
14213  *
14214  * Return code
14215  * 	0 - driver suspended the device
14216  * 	Error otherwise
14217  **/
14218 static int __maybe_unused
14219 lpfc_pci_suspend_one_s3(struct device *dev_d)
14220 {
14221 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14222 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14223 
14224 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14225 			"0473 PCI device Power Management suspend.\n");
14226 
14227 	/* Bring down the device */
14228 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14229 	lpfc_offline(phba);
14230 	kthread_stop(phba->worker_thread);
14231 
14232 	/* Disable interrupt from device */
14233 	lpfc_sli_disable_intr(phba);
14234 
14235 	return 0;
14236 }
14237 
14238 /**
14239  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14240  * @dev_d: pointer to device
14241  *
14242  * This routine is to be called from the kernel's PCI subsystem to support
14243  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14244  * invokes this method, it restores the device's PCI config space state and
14245  * fully reinitializes the device and brings it online. Note that as the
14246  * driver implements the minimum PM requirements to a power-aware driver's
14247  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14248  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14249  * driver will fully reinitialize its device during resume() method call,
14250  * the device will be set to PCI_D0 directly in PCI config space before
14251  * restoring the state.
14252  *
14253  * Return code
14254  * 	0 - driver suspended the device
14255  * 	Error otherwise
14256  **/
14257 static int __maybe_unused
14258 lpfc_pci_resume_one_s3(struct device *dev_d)
14259 {
14260 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14261 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14262 	uint32_t intr_mode;
14263 	int error;
14264 
14265 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14266 			"0452 PCI device Power Management resume.\n");
14267 
14268 	/* Startup the kernel thread for this host adapter. */
14269 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14270 					"lpfc_worker_%d", phba->brd_no);
14271 	if (IS_ERR(phba->worker_thread)) {
14272 		error = PTR_ERR(phba->worker_thread);
14273 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14274 				"0434 PM resume failed to start worker "
14275 				"thread: error=x%x.\n", error);
14276 		return error;
14277 	}
14278 
14279 	/* Init cpu_map array */
14280 	lpfc_cpu_map_array_init(phba);
14281 	/* Init hba_eq_hdl array */
14282 	lpfc_hba_eq_hdl_array_init(phba);
14283 	/* Configure and enable interrupt */
14284 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14285 	if (intr_mode == LPFC_INTR_ERROR) {
14286 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14287 				"0430 PM resume Failed to enable interrupt\n");
14288 		return -EIO;
14289 	} else
14290 		phba->intr_mode = intr_mode;
14291 
14292 	/* Restart HBA and bring it online */
14293 	lpfc_sli_brdrestart(phba);
14294 	lpfc_online(phba);
14295 
14296 	/* Log the current active interrupt mode */
14297 	lpfc_log_intr_mode(phba, phba->intr_mode);
14298 
14299 	return 0;
14300 }
14301 
14302 /**
14303  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14304  * @phba: pointer to lpfc hba data structure.
14305  *
14306  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14307  * aborts all the outstanding SCSI I/Os to the pci device.
14308  **/
14309 static void
14310 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14311 {
14312 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14313 			"2723 PCI channel I/O abort preparing for recovery\n");
14314 
14315 	/*
14316 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14317 	 * and let the SCSI mid-layer to retry them to recover.
14318 	 */
14319 	lpfc_sli_abort_fcp_rings(phba);
14320 }
14321 
14322 /**
14323  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14324  * @phba: pointer to lpfc hba data structure.
14325  *
14326  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14327  * disables the device interrupt and pci device, and aborts the internal FCP
14328  * pending I/Os.
14329  **/
14330 static void
14331 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14332 {
14333 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14334 			"2710 PCI channel disable preparing for reset\n");
14335 
14336 	/* Block any management I/Os to the device */
14337 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14338 
14339 	/* Block all SCSI devices' I/Os on the host */
14340 	lpfc_scsi_dev_block(phba);
14341 
14342 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14343 	lpfc_sli_flush_io_rings(phba);
14344 
14345 	/* stop all timers */
14346 	lpfc_stop_hba_timers(phba);
14347 
14348 	/* Disable interrupt and pci device */
14349 	lpfc_sli_disable_intr(phba);
14350 	pci_disable_device(phba->pcidev);
14351 }
14352 
14353 /**
14354  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14355  * @phba: pointer to lpfc hba data structure.
14356  *
14357  * This routine is called to prepare the SLI3 device for PCI slot permanently
14358  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14359  * pending I/Os.
14360  **/
14361 static void
14362 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14363 {
14364 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14365 			"2711 PCI channel permanent disable for failure\n");
14366 	/* Block all SCSI devices' I/Os on the host */
14367 	lpfc_scsi_dev_block(phba);
14368 	lpfc_sli4_prep_dev_for_reset(phba);
14369 
14370 	/* stop all timers */
14371 	lpfc_stop_hba_timers(phba);
14372 
14373 	/* Clean up all driver's outstanding SCSI I/Os */
14374 	lpfc_sli_flush_io_rings(phba);
14375 }
14376 
14377 /**
14378  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14379  * @pdev: pointer to PCI device.
14380  * @state: the current PCI connection state.
14381  *
14382  * This routine is called from the PCI subsystem for I/O error handling to
14383  * device with SLI-3 interface spec. This function is called by the PCI
14384  * subsystem after a PCI bus error affecting this device has been detected.
14385  * When this function is invoked, it will need to stop all the I/Os and
14386  * interrupt(s) to the device. Once that is done, it will return
14387  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14388  * as desired.
14389  *
14390  * Return codes
14391  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14392  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14393  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14394  **/
14395 static pci_ers_result_t
14396 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14397 {
14398 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14399 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14400 
14401 	switch (state) {
14402 	case pci_channel_io_normal:
14403 		/* Non-fatal error, prepare for recovery */
14404 		lpfc_sli_prep_dev_for_recover(phba);
14405 		return PCI_ERS_RESULT_CAN_RECOVER;
14406 	case pci_channel_io_frozen:
14407 		/* Fatal error, prepare for slot reset */
14408 		lpfc_sli_prep_dev_for_reset(phba);
14409 		return PCI_ERS_RESULT_NEED_RESET;
14410 	case pci_channel_io_perm_failure:
14411 		/* Permanent failure, prepare for device down */
14412 		lpfc_sli_prep_dev_for_perm_failure(phba);
14413 		return PCI_ERS_RESULT_DISCONNECT;
14414 	default:
14415 		/* Unknown state, prepare and request slot reset */
14416 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14417 				"0472 Unknown PCI error state: x%x\n", state);
14418 		lpfc_sli_prep_dev_for_reset(phba);
14419 		return PCI_ERS_RESULT_NEED_RESET;
14420 	}
14421 }
14422 
14423 /**
14424  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14425  * @pdev: pointer to PCI device.
14426  *
14427  * This routine is called from the PCI subsystem for error handling to
14428  * device with SLI-3 interface spec. This is called after PCI bus has been
14429  * reset to restart the PCI card from scratch, as if from a cold-boot.
14430  * During the PCI subsystem error recovery, after driver returns
14431  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14432  * recovery and then call this routine before calling the .resume method
14433  * to recover the device. This function will initialize the HBA device,
14434  * enable the interrupt, but it will just put the HBA to offline state
14435  * without passing any I/O traffic.
14436  *
14437  * Return codes
14438  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14439  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14440  */
14441 static pci_ers_result_t
14442 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14443 {
14444 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14445 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14446 	struct lpfc_sli *psli = &phba->sli;
14447 	uint32_t intr_mode;
14448 
14449 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14450 	if (pci_enable_device_mem(pdev)) {
14451 		printk(KERN_ERR "lpfc: Cannot re-enable "
14452 			"PCI device after reset.\n");
14453 		return PCI_ERS_RESULT_DISCONNECT;
14454 	}
14455 
14456 	pci_restore_state(pdev);
14457 
14458 	/*
14459 	 * As the new kernel behavior of pci_restore_state() API call clears
14460 	 * device saved_state flag, need to save the restored state again.
14461 	 */
14462 	pci_save_state(pdev);
14463 
14464 	if (pdev->is_busmaster)
14465 		pci_set_master(pdev);
14466 
14467 	spin_lock_irq(&phba->hbalock);
14468 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14469 	spin_unlock_irq(&phba->hbalock);
14470 
14471 	/* Configure and enable interrupt */
14472 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14473 	if (intr_mode == LPFC_INTR_ERROR) {
14474 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14475 				"0427 Cannot re-enable interrupt after "
14476 				"slot reset.\n");
14477 		return PCI_ERS_RESULT_DISCONNECT;
14478 	} else
14479 		phba->intr_mode = intr_mode;
14480 
14481 	/* Take device offline, it will perform cleanup */
14482 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14483 	lpfc_offline(phba);
14484 	lpfc_sli_brdrestart(phba);
14485 
14486 	/* Log the current active interrupt mode */
14487 	lpfc_log_intr_mode(phba, phba->intr_mode);
14488 
14489 	return PCI_ERS_RESULT_RECOVERED;
14490 }
14491 
14492 /**
14493  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14494  * @pdev: pointer to PCI device
14495  *
14496  * This routine is called from the PCI subsystem for error handling to device
14497  * with SLI-3 interface spec. It is called when kernel error recovery tells
14498  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14499  * error recovery. After this call, traffic can start to flow from this device
14500  * again.
14501  */
14502 static void
14503 lpfc_io_resume_s3(struct pci_dev *pdev)
14504 {
14505 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14506 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14507 
14508 	/* Bring device online, it will be no-op for non-fatal error resume */
14509 	lpfc_online(phba);
14510 }
14511 
14512 /**
14513  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14514  * @phba: pointer to lpfc hba data structure.
14515  *
14516  * returns the number of ELS/CT IOCBs to reserve
14517  **/
14518 int
14519 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14520 {
14521 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14522 
14523 	if (phba->sli_rev == LPFC_SLI_REV4) {
14524 		if (max_xri <= 100)
14525 			return 10;
14526 		else if (max_xri <= 256)
14527 			return 25;
14528 		else if (max_xri <= 512)
14529 			return 50;
14530 		else if (max_xri <= 1024)
14531 			return 100;
14532 		else if (max_xri <= 1536)
14533 			return 150;
14534 		else if (max_xri <= 2048)
14535 			return 200;
14536 		else
14537 			return 250;
14538 	} else
14539 		return 0;
14540 }
14541 
14542 /**
14543  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14544  * @phba: pointer to lpfc hba data structure.
14545  *
14546  * returns the number of ELS/CT + NVMET IOCBs to reserve
14547  **/
14548 int
14549 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14550 {
14551 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14552 
14553 	if (phba->nvmet_support)
14554 		max_xri += LPFC_NVMET_BUF_POST;
14555 	return max_xri;
14556 }
14557 
14558 
14559 static int
14560 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14561 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14562 	const struct firmware *fw)
14563 {
14564 	int rc;
14565 	u8 sli_family;
14566 
14567 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14568 	/* Three cases:  (1) FW was not supported on the detected adapter.
14569 	 * (2) FW update has been locked out administratively.
14570 	 * (3) Some other error during FW update.
14571 	 * In each case, an unmaskable message is written to the console
14572 	 * for admin diagnosis.
14573 	 */
14574 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14575 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14576 	     magic_number != MAGIC_NUMBER_G6) ||
14577 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14578 	     magic_number != MAGIC_NUMBER_G7) ||
14579 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14580 	     magic_number != MAGIC_NUMBER_G7P)) {
14581 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14582 				"3030 This firmware version is not supported on"
14583 				" this HBA model. Device:%x Magic:%x Type:%x "
14584 				"ID:%x Size %d %zd\n",
14585 				phba->pcidev->device, magic_number, ftype, fid,
14586 				fsize, fw->size);
14587 		rc = -EINVAL;
14588 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14589 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14590 				"3021 Firmware downloads have been prohibited "
14591 				"by a system configuration setting on "
14592 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14593 				"%zd\n",
14594 				phba->pcidev->device, magic_number, ftype, fid,
14595 				fsize, fw->size);
14596 		rc = -EACCES;
14597 	} else {
14598 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14599 				"3022 FW Download failed. Add Status x%x "
14600 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14601 				"%zd\n",
14602 				offset, phba->pcidev->device, magic_number,
14603 				ftype, fid, fsize, fw->size);
14604 		rc = -EIO;
14605 	}
14606 	return rc;
14607 }
14608 
14609 /**
14610  * lpfc_write_firmware - attempt to write a firmware image to the port
14611  * @fw: pointer to firmware image returned from request_firmware.
14612  * @context: pointer to firmware image returned from request_firmware.
14613  *
14614  **/
14615 static void
14616 lpfc_write_firmware(const struct firmware *fw, void *context)
14617 {
14618 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14619 	char fwrev[FW_REV_STR_SIZE];
14620 	struct lpfc_grp_hdr *image;
14621 	struct list_head dma_buffer_list;
14622 	int i, rc = 0;
14623 	struct lpfc_dmabuf *dmabuf, *next;
14624 	uint32_t offset = 0, temp_offset = 0;
14625 	uint32_t magic_number, ftype, fid, fsize;
14626 
14627 	/* It can be null in no-wait mode, sanity check */
14628 	if (!fw) {
14629 		rc = -ENXIO;
14630 		goto out;
14631 	}
14632 	image = (struct lpfc_grp_hdr *)fw->data;
14633 
14634 	magic_number = be32_to_cpu(image->magic_number);
14635 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14636 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14637 	fsize = be32_to_cpu(image->size);
14638 
14639 	INIT_LIST_HEAD(&dma_buffer_list);
14640 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14641 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14642 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14643 			     "3023 Updating Firmware, Current Version:%s "
14644 			     "New Version:%s\n",
14645 			     fwrev, image->revision);
14646 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14647 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14648 					 GFP_KERNEL);
14649 			if (!dmabuf) {
14650 				rc = -ENOMEM;
14651 				goto release_out;
14652 			}
14653 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14654 							  SLI4_PAGE_SIZE,
14655 							  &dmabuf->phys,
14656 							  GFP_KERNEL);
14657 			if (!dmabuf->virt) {
14658 				kfree(dmabuf);
14659 				rc = -ENOMEM;
14660 				goto release_out;
14661 			}
14662 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14663 		}
14664 		while (offset < fw->size) {
14665 			temp_offset = offset;
14666 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14667 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14668 					memcpy(dmabuf->virt,
14669 					       fw->data + temp_offset,
14670 					       fw->size - temp_offset);
14671 					temp_offset = fw->size;
14672 					break;
14673 				}
14674 				memcpy(dmabuf->virt, fw->data + temp_offset,
14675 				       SLI4_PAGE_SIZE);
14676 				temp_offset += SLI4_PAGE_SIZE;
14677 			}
14678 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14679 				    (fw->size - offset), &offset);
14680 			if (rc) {
14681 				rc = lpfc_log_write_firmware_error(phba, offset,
14682 								   magic_number,
14683 								   ftype,
14684 								   fid,
14685 								   fsize,
14686 								   fw);
14687 				goto release_out;
14688 			}
14689 		}
14690 		rc = offset;
14691 	} else
14692 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14693 			     "3029 Skipped Firmware update, Current "
14694 			     "Version:%s New Version:%s\n",
14695 			     fwrev, image->revision);
14696 
14697 release_out:
14698 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14699 		list_del(&dmabuf->list);
14700 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14701 				  dmabuf->virt, dmabuf->phys);
14702 		kfree(dmabuf);
14703 	}
14704 	release_firmware(fw);
14705 out:
14706 	if (rc < 0)
14707 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14708 			     "3062 Firmware update error, status %d.\n", rc);
14709 	else
14710 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14711 			     "3024 Firmware update success: size %d.\n", rc);
14712 }
14713 
14714 /**
14715  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14716  * @phba: pointer to lpfc hba data structure.
14717  * @fw_upgrade: which firmware to update.
14718  *
14719  * This routine is called to perform Linux generic firmware upgrade on device
14720  * that supports such feature.
14721  **/
14722 int
14723 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14724 {
14725 	char file_name[ELX_FW_NAME_SIZE] = {0};
14726 	int ret;
14727 	const struct firmware *fw;
14728 
14729 	/* Only supported on SLI4 interface type 2 for now */
14730 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14731 	    LPFC_SLI_INTF_IF_TYPE_2)
14732 		return -EPERM;
14733 
14734 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14735 
14736 	if (fw_upgrade == INT_FW_UPGRADE) {
14737 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14738 					file_name, &phba->pcidev->dev,
14739 					GFP_KERNEL, (void *)phba,
14740 					lpfc_write_firmware);
14741 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14742 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14743 		if (!ret)
14744 			lpfc_write_firmware(fw, (void *)phba);
14745 	} else {
14746 		ret = -EINVAL;
14747 	}
14748 
14749 	return ret;
14750 }
14751 
14752 /**
14753  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14754  * @pdev: pointer to PCI device
14755  * @pid: pointer to PCI device identifier
14756  *
14757  * This routine is called from the kernel's PCI subsystem to device with
14758  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14759  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14760  * information of the device and driver to see if the driver state that it
14761  * can support this kind of device. If the match is successful, the driver
14762  * core invokes this routine. If this routine determines it can claim the HBA,
14763  * it does all the initialization that it needs to do to handle the HBA
14764  * properly.
14765  *
14766  * Return code
14767  * 	0 - driver can claim the device
14768  * 	negative value - driver can not claim the device
14769  **/
14770 static int
14771 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14772 {
14773 	struct lpfc_hba   *phba;
14774 	struct lpfc_vport *vport = NULL;
14775 	struct Scsi_Host  *shost = NULL;
14776 	int error;
14777 	uint32_t cfg_mode, intr_mode;
14778 
14779 	/* Allocate memory for HBA structure */
14780 	phba = lpfc_hba_alloc(pdev);
14781 	if (!phba)
14782 		return -ENOMEM;
14783 
14784 	INIT_LIST_HEAD(&phba->poll_list);
14785 
14786 	/* Perform generic PCI device enabling operation */
14787 	error = lpfc_enable_pci_dev(phba);
14788 	if (error)
14789 		goto out_free_phba;
14790 
14791 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14792 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14793 	if (error)
14794 		goto out_disable_pci_dev;
14795 
14796 	/* Set up SLI-4 specific device PCI memory space */
14797 	error = lpfc_sli4_pci_mem_setup(phba);
14798 	if (error) {
14799 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14800 				"1410 Failed to set up pci memory space.\n");
14801 		goto out_disable_pci_dev;
14802 	}
14803 
14804 	/* Set up SLI-4 Specific device driver resources */
14805 	error = lpfc_sli4_driver_resource_setup(phba);
14806 	if (error) {
14807 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14808 				"1412 Failed to set up driver resource.\n");
14809 		goto out_unset_pci_mem_s4;
14810 	}
14811 
14812 	INIT_LIST_HEAD(&phba->active_rrq_list);
14813 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14814 
14815 	/* Set up common device driver resources */
14816 	error = lpfc_setup_driver_resource_phase2(phba);
14817 	if (error) {
14818 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14819 				"1414 Failed to set up driver resource.\n");
14820 		goto out_unset_driver_resource_s4;
14821 	}
14822 
14823 	/* Get the default values for Model Name and Description */
14824 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14825 
14826 	/* Now, trying to enable interrupt and bring up the device */
14827 	cfg_mode = phba->cfg_use_msi;
14828 
14829 	/* Put device to a known state before enabling interrupt */
14830 	phba->pport = NULL;
14831 	lpfc_stop_port(phba);
14832 
14833 	/* Init cpu_map array */
14834 	lpfc_cpu_map_array_init(phba);
14835 
14836 	/* Init hba_eq_hdl array */
14837 	lpfc_hba_eq_hdl_array_init(phba);
14838 
14839 	/* Configure and enable interrupt */
14840 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14841 	if (intr_mode == LPFC_INTR_ERROR) {
14842 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14843 				"0426 Failed to enable interrupt.\n");
14844 		error = -ENODEV;
14845 		goto out_unset_driver_resource;
14846 	}
14847 	/* Default to single EQ for non-MSI-X */
14848 	if (phba->intr_type != MSIX) {
14849 		phba->cfg_irq_chann = 1;
14850 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14851 			if (phba->nvmet_support)
14852 				phba->cfg_nvmet_mrq = 1;
14853 		}
14854 	}
14855 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14856 
14857 	/* Create SCSI host to the physical port */
14858 	error = lpfc_create_shost(phba);
14859 	if (error) {
14860 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14861 				"1415 Failed to create scsi host.\n");
14862 		goto out_disable_intr;
14863 	}
14864 	vport = phba->pport;
14865 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14866 
14867 	/* Configure sysfs attributes */
14868 	error = lpfc_alloc_sysfs_attr(vport);
14869 	if (error) {
14870 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14871 				"1416 Failed to allocate sysfs attr\n");
14872 		goto out_destroy_shost;
14873 	}
14874 
14875 	/* Set up SLI-4 HBA */
14876 	if (lpfc_sli4_hba_setup(phba)) {
14877 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14878 				"1421 Failed to set up hba\n");
14879 		error = -ENODEV;
14880 		goto out_free_sysfs_attr;
14881 	}
14882 
14883 	/* Log the current active interrupt mode */
14884 	phba->intr_mode = intr_mode;
14885 	lpfc_log_intr_mode(phba, intr_mode);
14886 
14887 	/* Perform post initialization setup */
14888 	lpfc_post_init_setup(phba);
14889 
14890 	/* NVME support in FW earlier in the driver load corrects the
14891 	 * FC4 type making a check for nvme_support unnecessary.
14892 	 */
14893 	if (phba->nvmet_support == 0) {
14894 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14895 			/* Create NVME binding with nvme_fc_transport. This
14896 			 * ensures the vport is initialized.  If the localport
14897 			 * create fails, it should not unload the driver to
14898 			 * support field issues.
14899 			 */
14900 			error = lpfc_nvme_create_localport(vport);
14901 			if (error) {
14902 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14903 						"6004 NVME registration "
14904 						"failed, error x%x\n",
14905 						error);
14906 			}
14907 		}
14908 	}
14909 
14910 	/* check for firmware upgrade or downgrade */
14911 	if (phba->cfg_request_firmware_upgrade)
14912 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14913 
14914 	/* Check if there are static vports to be created. */
14915 	lpfc_create_static_vport(phba);
14916 
14917 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14918 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14919 
14920 	return 0;
14921 
14922 out_free_sysfs_attr:
14923 	lpfc_free_sysfs_attr(vport);
14924 out_destroy_shost:
14925 	lpfc_destroy_shost(phba);
14926 out_disable_intr:
14927 	lpfc_sli4_disable_intr(phba);
14928 out_unset_driver_resource:
14929 	lpfc_unset_driver_resource_phase2(phba);
14930 out_unset_driver_resource_s4:
14931 	lpfc_sli4_driver_resource_unset(phba);
14932 out_unset_pci_mem_s4:
14933 	lpfc_sli4_pci_mem_unset(phba);
14934 out_disable_pci_dev:
14935 	lpfc_disable_pci_dev(phba);
14936 	if (shost)
14937 		scsi_host_put(shost);
14938 out_free_phba:
14939 	lpfc_hba_free(phba);
14940 	return error;
14941 }
14942 
14943 /**
14944  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14945  * @pdev: pointer to PCI device
14946  *
14947  * This routine is called from the kernel's PCI subsystem to device with
14948  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14949  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14950  * device to be removed from the PCI subsystem properly.
14951  **/
14952 static void
14953 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14954 {
14955 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14956 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14957 	struct lpfc_vport **vports;
14958 	struct lpfc_hba *phba = vport->phba;
14959 	int i;
14960 
14961 	/* Mark the device unloading flag */
14962 	set_bit(FC_UNLOADING, &vport->load_flag);
14963 	if (phba->cgn_i)
14964 		lpfc_unreg_congestion_buf(phba);
14965 
14966 	lpfc_free_sysfs_attr(vport);
14967 
14968 	/* Release all the vports against this physical port */
14969 	vports = lpfc_create_vport_work_array(phba);
14970 	if (vports != NULL)
14971 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14972 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14973 				continue;
14974 			fc_vport_terminate(vports[i]->fc_vport);
14975 		}
14976 	lpfc_destroy_vport_work_array(phba, vports);
14977 
14978 	/* Remove FC host with the physical port */
14979 	fc_remove_host(shost);
14980 	scsi_remove_host(shost);
14981 
14982 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14983 	 * localports are destroyed after to cleanup all transport memory.
14984 	 */
14985 	lpfc_cleanup(vport);
14986 	lpfc_nvmet_destroy_targetport(phba);
14987 	lpfc_nvme_destroy_localport(vport);
14988 
14989 	/* De-allocate multi-XRI pools */
14990 	if (phba->cfg_xri_rebalancing)
14991 		lpfc_destroy_multixri_pools(phba);
14992 
14993 	/*
14994 	 * Bring down the SLI Layer. This step disables all interrupts,
14995 	 * clears the rings, discards all mailbox commands, and resets
14996 	 * the HBA FCoE function.
14997 	 */
14998 	lpfc_debugfs_terminate(vport);
14999 
15000 	lpfc_stop_hba_timers(phba);
15001 	spin_lock_irq(&phba->port_list_lock);
15002 	list_del_init(&vport->listentry);
15003 	spin_unlock_irq(&phba->port_list_lock);
15004 
15005 	/* Perform scsi free before driver resource_unset since scsi
15006 	 * buffers are released to their corresponding pools here.
15007 	 */
15008 	lpfc_io_free(phba);
15009 	lpfc_free_iocb_list(phba);
15010 	lpfc_sli4_hba_unset(phba);
15011 
15012 	lpfc_unset_driver_resource_phase2(phba);
15013 	lpfc_sli4_driver_resource_unset(phba);
15014 
15015 	/* Unmap adapter Control and Doorbell registers */
15016 	lpfc_sli4_pci_mem_unset(phba);
15017 
15018 	/* Release PCI resources and disable device's PCI function */
15019 	scsi_host_put(shost);
15020 	lpfc_disable_pci_dev(phba);
15021 
15022 	/* Finally, free the driver's device data structure */
15023 	lpfc_hba_free(phba);
15024 
15025 	return;
15026 }
15027 
15028 /**
15029  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15030  * @dev_d: pointer to device
15031  *
15032  * This routine is called from the kernel's PCI subsystem to support system
15033  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15034  * this method, it quiesces the device by stopping the driver's worker
15035  * thread for the device, turning off device's interrupt and DMA, and bring
15036  * the device offline. Note that as the driver implements the minimum PM
15037  * requirements to a power-aware driver's PM support for suspend/resume -- all
15038  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15039  * method call will be treated as SUSPEND and the driver will fully
15040  * reinitialize its device during resume() method call, the driver will set
15041  * device to PCI_D3hot state in PCI config space instead of setting it
15042  * according to the @msg provided by the PM.
15043  *
15044  * Return code
15045  * 	0 - driver suspended the device
15046  * 	Error otherwise
15047  **/
15048 static int __maybe_unused
15049 lpfc_pci_suspend_one_s4(struct device *dev_d)
15050 {
15051 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15052 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15053 
15054 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15055 			"2843 PCI device Power Management suspend.\n");
15056 
15057 	/* Bring down the device */
15058 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15059 	lpfc_offline(phba);
15060 	kthread_stop(phba->worker_thread);
15061 
15062 	/* Disable interrupt from device */
15063 	lpfc_sli4_disable_intr(phba);
15064 	lpfc_sli4_queue_destroy(phba);
15065 
15066 	return 0;
15067 }
15068 
15069 /**
15070  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15071  * @dev_d: pointer to device
15072  *
15073  * This routine is called from the kernel's PCI subsystem to support system
15074  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15075  * this method, it restores the device's PCI config space state and fully
15076  * reinitializes the device and brings it online. Note that as the driver
15077  * implements the minimum PM requirements to a power-aware driver's PM for
15078  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15079  * to the suspend() method call will be treated as SUSPEND and the driver
15080  * will fully reinitialize its device during resume() method call, the device
15081  * will be set to PCI_D0 directly in PCI config space before restoring the
15082  * state.
15083  *
15084  * Return code
15085  * 	0 - driver suspended the device
15086  * 	Error otherwise
15087  **/
15088 static int __maybe_unused
15089 lpfc_pci_resume_one_s4(struct device *dev_d)
15090 {
15091 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15092 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15093 	uint32_t intr_mode;
15094 	int error;
15095 
15096 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15097 			"0292 PCI device Power Management resume.\n");
15098 
15099 	 /* Startup the kernel thread for this host adapter. */
15100 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15101 					"lpfc_worker_%d", phba->brd_no);
15102 	if (IS_ERR(phba->worker_thread)) {
15103 		error = PTR_ERR(phba->worker_thread);
15104 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15105 				"0293 PM resume failed to start worker "
15106 				"thread: error=x%x.\n", error);
15107 		return error;
15108 	}
15109 
15110 	/* Configure and enable interrupt */
15111 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15112 	if (intr_mode == LPFC_INTR_ERROR) {
15113 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15114 				"0294 PM resume Failed to enable interrupt\n");
15115 		return -EIO;
15116 	} else
15117 		phba->intr_mode = intr_mode;
15118 
15119 	/* Restart HBA and bring it online */
15120 	lpfc_sli_brdrestart(phba);
15121 	lpfc_online(phba);
15122 
15123 	/* Log the current active interrupt mode */
15124 	lpfc_log_intr_mode(phba, phba->intr_mode);
15125 
15126 	return 0;
15127 }
15128 
15129 /**
15130  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15131  * @phba: pointer to lpfc hba data structure.
15132  *
15133  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15134  * aborts all the outstanding SCSI I/Os to the pci device.
15135  **/
15136 static void
15137 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15138 {
15139 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15140 			"2828 PCI channel I/O abort preparing for recovery\n");
15141 	/*
15142 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15143 	 * and let the SCSI mid-layer to retry them to recover.
15144 	 */
15145 	lpfc_sli_abort_fcp_rings(phba);
15146 }
15147 
15148 /**
15149  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15150  * @phba: pointer to lpfc hba data structure.
15151  *
15152  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15153  * disables the device interrupt and pci device, and aborts the internal FCP
15154  * pending I/Os.
15155  **/
15156 static void
15157 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15158 {
15159 	int offline =  pci_channel_offline(phba->pcidev);
15160 
15161 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15162 			"2826 PCI channel disable preparing for reset offline"
15163 			" %d\n", offline);
15164 
15165 	/* Block any management I/Os to the device */
15166 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15167 
15168 
15169 	/* HBA_PCI_ERR was set in io_error_detect */
15170 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15171 	/* Flush all driver's outstanding I/Os as we are to reset */
15172 	lpfc_sli_flush_io_rings(phba);
15173 	lpfc_offline(phba);
15174 
15175 	/* stop all timers */
15176 	lpfc_stop_hba_timers(phba);
15177 
15178 	lpfc_sli4_queue_destroy(phba);
15179 	/* Disable interrupt and pci device */
15180 	lpfc_sli4_disable_intr(phba);
15181 	pci_disable_device(phba->pcidev);
15182 }
15183 
15184 /**
15185  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15186  * @phba: pointer to lpfc hba data structure.
15187  *
15188  * This routine is called to prepare the SLI4 device for PCI slot permanently
15189  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15190  * pending I/Os.
15191  **/
15192 static void
15193 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15194 {
15195 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15196 			"2827 PCI channel permanent disable for failure\n");
15197 
15198 	/* Block all SCSI devices' I/Os on the host */
15199 	lpfc_scsi_dev_block(phba);
15200 
15201 	/* stop all timers */
15202 	lpfc_stop_hba_timers(phba);
15203 
15204 	/* Clean up all driver's outstanding I/Os */
15205 	lpfc_sli_flush_io_rings(phba);
15206 }
15207 
15208 /**
15209  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15210  * @pdev: pointer to PCI device.
15211  * @state: the current PCI connection state.
15212  *
15213  * This routine is called from the PCI subsystem for error handling to device
15214  * with SLI-4 interface spec. This function is called by the PCI subsystem
15215  * after a PCI bus error affecting this device has been detected. When this
15216  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15217  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15218  * for the PCI subsystem to perform proper recovery as desired.
15219  *
15220  * Return codes
15221  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15222  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15223  **/
15224 static pci_ers_result_t
15225 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15226 {
15227 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15228 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15229 	bool hba_pci_err;
15230 
15231 	switch (state) {
15232 	case pci_channel_io_normal:
15233 		/* Non-fatal error, prepare for recovery */
15234 		lpfc_sli4_prep_dev_for_recover(phba);
15235 		return PCI_ERS_RESULT_CAN_RECOVER;
15236 	case pci_channel_io_frozen:
15237 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15238 		/* Fatal error, prepare for slot reset */
15239 		if (!hba_pci_err)
15240 			lpfc_sli4_prep_dev_for_reset(phba);
15241 		else
15242 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15243 					"2832  Already handling PCI error "
15244 					"state: x%x\n", state);
15245 		return PCI_ERS_RESULT_NEED_RESET;
15246 	case pci_channel_io_perm_failure:
15247 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15248 		/* Permanent failure, prepare for device down */
15249 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15250 		return PCI_ERS_RESULT_DISCONNECT;
15251 	default:
15252 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15253 		if (!hba_pci_err)
15254 			lpfc_sli4_prep_dev_for_reset(phba);
15255 		/* Unknown state, prepare and request slot reset */
15256 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15257 				"2825 Unknown PCI error state: x%x\n", state);
15258 		lpfc_sli4_prep_dev_for_reset(phba);
15259 		return PCI_ERS_RESULT_NEED_RESET;
15260 	}
15261 }
15262 
15263 /**
15264  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15265  * @pdev: pointer to PCI device.
15266  *
15267  * This routine is called from the PCI subsystem for error handling to device
15268  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15269  * restart the PCI card from scratch, as if from a cold-boot. During the
15270  * PCI subsystem error recovery, after the driver returns
15271  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15272  * recovery and then call this routine before calling the .resume method to
15273  * recover the device. This function will initialize the HBA device, enable
15274  * the interrupt, but it will just put the HBA to offline state without
15275  * passing any I/O traffic.
15276  *
15277  * Return codes
15278  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15279  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15280  */
15281 static pci_ers_result_t
15282 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15283 {
15284 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15285 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15286 	struct lpfc_sli *psli = &phba->sli;
15287 	uint32_t intr_mode;
15288 	bool hba_pci_err;
15289 
15290 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15291 	if (pci_enable_device_mem(pdev)) {
15292 		printk(KERN_ERR "lpfc: Cannot re-enable "
15293 		       "PCI device after reset.\n");
15294 		return PCI_ERS_RESULT_DISCONNECT;
15295 	}
15296 
15297 	pci_restore_state(pdev);
15298 
15299 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15300 	if (!hba_pci_err)
15301 		dev_info(&pdev->dev,
15302 			 "hba_pci_err was not set, recovering slot reset.\n");
15303 	/*
15304 	 * As the new kernel behavior of pci_restore_state() API call clears
15305 	 * device saved_state flag, need to save the restored state again.
15306 	 */
15307 	pci_save_state(pdev);
15308 
15309 	if (pdev->is_busmaster)
15310 		pci_set_master(pdev);
15311 
15312 	spin_lock_irq(&phba->hbalock);
15313 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15314 	spin_unlock_irq(&phba->hbalock);
15315 
15316 	/* Init cpu_map array */
15317 	lpfc_cpu_map_array_init(phba);
15318 	/* Configure and enable interrupt */
15319 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15320 	if (intr_mode == LPFC_INTR_ERROR) {
15321 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15322 				"2824 Cannot re-enable interrupt after "
15323 				"slot reset.\n");
15324 		return PCI_ERS_RESULT_DISCONNECT;
15325 	} else
15326 		phba->intr_mode = intr_mode;
15327 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15328 
15329 	/* Log the current active interrupt mode */
15330 	lpfc_log_intr_mode(phba, phba->intr_mode);
15331 
15332 	return PCI_ERS_RESULT_RECOVERED;
15333 }
15334 
15335 /**
15336  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15337  * @pdev: pointer to PCI device
15338  *
15339  * This routine is called from the PCI subsystem for error handling to device
15340  * with SLI-4 interface spec. It is called when kernel error recovery tells
15341  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15342  * error recovery. After this call, traffic can start to flow from this device
15343  * again.
15344  **/
15345 static void
15346 lpfc_io_resume_s4(struct pci_dev *pdev)
15347 {
15348 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15349 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15350 
15351 	/*
15352 	 * In case of slot reset, as function reset is performed through
15353 	 * mailbox command which needs DMA to be enabled, this operation
15354 	 * has to be moved to the io resume phase. Taking device offline
15355 	 * will perform the necessary cleanup.
15356 	 */
15357 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15358 		/* Perform device reset */
15359 		lpfc_sli_brdrestart(phba);
15360 		/* Bring the device back online */
15361 		lpfc_online(phba);
15362 	}
15363 }
15364 
15365 /**
15366  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15367  * @pdev: pointer to PCI device
15368  * @pid: pointer to PCI device identifier
15369  *
15370  * This routine is to be registered to the kernel's PCI subsystem. When an
15371  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15372  * at PCI device-specific information of the device and driver to see if the
15373  * driver state that it can support this kind of device. If the match is
15374  * successful, the driver core invokes this routine. This routine dispatches
15375  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15376  * do all the initialization that it needs to do to handle the HBA device
15377  * properly.
15378  *
15379  * Return code
15380  * 	0 - driver can claim the device
15381  * 	negative value - driver can not claim the device
15382  **/
15383 static int
15384 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15385 {
15386 	int rc;
15387 	struct lpfc_sli_intf intf;
15388 
15389 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15390 		return -ENODEV;
15391 
15392 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15393 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15394 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15395 	else
15396 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15397 
15398 	return rc;
15399 }
15400 
15401 /**
15402  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15403  * @pdev: pointer to PCI device
15404  *
15405  * This routine is to be registered to the kernel's PCI subsystem. When an
15406  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15407  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15408  * remove routine, which will perform all the necessary cleanup for the
15409  * device to be removed from the PCI subsystem properly.
15410  **/
15411 static void
15412 lpfc_pci_remove_one(struct pci_dev *pdev)
15413 {
15414 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15415 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15416 
15417 	switch (phba->pci_dev_grp) {
15418 	case LPFC_PCI_DEV_LP:
15419 		lpfc_pci_remove_one_s3(pdev);
15420 		break;
15421 	case LPFC_PCI_DEV_OC:
15422 		lpfc_pci_remove_one_s4(pdev);
15423 		break;
15424 	default:
15425 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15426 				"1424 Invalid PCI device group: 0x%x\n",
15427 				phba->pci_dev_grp);
15428 		break;
15429 	}
15430 	return;
15431 }
15432 
15433 /**
15434  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15435  * @dev: pointer to device
15436  *
15437  * This routine is to be registered to the kernel's PCI subsystem to support
15438  * system Power Management (PM). When PM invokes this method, it dispatches
15439  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15440  * suspend the device.
15441  *
15442  * Return code
15443  * 	0 - driver suspended the device
15444  * 	Error otherwise
15445  **/
15446 static int __maybe_unused
15447 lpfc_pci_suspend_one(struct device *dev)
15448 {
15449 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15450 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15451 	int rc = -ENODEV;
15452 
15453 	switch (phba->pci_dev_grp) {
15454 	case LPFC_PCI_DEV_LP:
15455 		rc = lpfc_pci_suspend_one_s3(dev);
15456 		break;
15457 	case LPFC_PCI_DEV_OC:
15458 		rc = lpfc_pci_suspend_one_s4(dev);
15459 		break;
15460 	default:
15461 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15462 				"1425 Invalid PCI device group: 0x%x\n",
15463 				phba->pci_dev_grp);
15464 		break;
15465 	}
15466 	return rc;
15467 }
15468 
15469 /**
15470  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15471  * @dev: pointer to device
15472  *
15473  * This routine is to be registered to the kernel's PCI subsystem to support
15474  * system Power Management (PM). When PM invokes this method, it dispatches
15475  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15476  * resume the device.
15477  *
15478  * Return code
15479  * 	0 - driver suspended the device
15480  * 	Error otherwise
15481  **/
15482 static int __maybe_unused
15483 lpfc_pci_resume_one(struct device *dev)
15484 {
15485 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15486 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15487 	int rc = -ENODEV;
15488 
15489 	switch (phba->pci_dev_grp) {
15490 	case LPFC_PCI_DEV_LP:
15491 		rc = lpfc_pci_resume_one_s3(dev);
15492 		break;
15493 	case LPFC_PCI_DEV_OC:
15494 		rc = lpfc_pci_resume_one_s4(dev);
15495 		break;
15496 	default:
15497 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15498 				"1426 Invalid PCI device group: 0x%x\n",
15499 				phba->pci_dev_grp);
15500 		break;
15501 	}
15502 	return rc;
15503 }
15504 
15505 /**
15506  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15507  * @pdev: pointer to PCI device.
15508  * @state: the current PCI connection state.
15509  *
15510  * This routine is registered to the PCI subsystem for error handling. This
15511  * function is called by the PCI subsystem after a PCI bus error affecting
15512  * this device has been detected. When this routine is invoked, it dispatches
15513  * the action to the proper SLI-3 or SLI-4 device error detected handling
15514  * routine, which will perform the proper error detected operation.
15515  *
15516  * Return codes
15517  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15518  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15519  **/
15520 static pci_ers_result_t
15521 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15522 {
15523 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15524 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15525 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15526 
15527 	if (phba->link_state == LPFC_HBA_ERROR &&
15528 	    phba->hba_flag & HBA_IOQ_FLUSH)
15529 		return PCI_ERS_RESULT_NEED_RESET;
15530 
15531 	switch (phba->pci_dev_grp) {
15532 	case LPFC_PCI_DEV_LP:
15533 		rc = lpfc_io_error_detected_s3(pdev, state);
15534 		break;
15535 	case LPFC_PCI_DEV_OC:
15536 		rc = lpfc_io_error_detected_s4(pdev, state);
15537 		break;
15538 	default:
15539 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15540 				"1427 Invalid PCI device group: 0x%x\n",
15541 				phba->pci_dev_grp);
15542 		break;
15543 	}
15544 	return rc;
15545 }
15546 
15547 /**
15548  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15549  * @pdev: pointer to PCI device.
15550  *
15551  * This routine is registered to the PCI subsystem for error handling. This
15552  * function is called after PCI bus has been reset to restart the PCI card
15553  * from scratch, as if from a cold-boot. When this routine is invoked, it
15554  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15555  * routine, which will perform the proper device reset.
15556  *
15557  * Return codes
15558  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15559  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15560  **/
15561 static pci_ers_result_t
15562 lpfc_io_slot_reset(struct pci_dev *pdev)
15563 {
15564 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15565 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15566 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15567 
15568 	switch (phba->pci_dev_grp) {
15569 	case LPFC_PCI_DEV_LP:
15570 		rc = lpfc_io_slot_reset_s3(pdev);
15571 		break;
15572 	case LPFC_PCI_DEV_OC:
15573 		rc = lpfc_io_slot_reset_s4(pdev);
15574 		break;
15575 	default:
15576 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15577 				"1428 Invalid PCI device group: 0x%x\n",
15578 				phba->pci_dev_grp);
15579 		break;
15580 	}
15581 	return rc;
15582 }
15583 
15584 /**
15585  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15586  * @pdev: pointer to PCI device
15587  *
15588  * This routine is registered to the PCI subsystem for error handling. It
15589  * is called when kernel error recovery tells the lpfc driver that it is
15590  * OK to resume normal PCI operation after PCI bus error recovery. When
15591  * this routine is invoked, it dispatches the action to the proper SLI-3
15592  * or SLI-4 device io_resume routine, which will resume the device operation.
15593  **/
15594 static void
15595 lpfc_io_resume(struct pci_dev *pdev)
15596 {
15597 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15598 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15599 
15600 	switch (phba->pci_dev_grp) {
15601 	case LPFC_PCI_DEV_LP:
15602 		lpfc_io_resume_s3(pdev);
15603 		break;
15604 	case LPFC_PCI_DEV_OC:
15605 		lpfc_io_resume_s4(pdev);
15606 		break;
15607 	default:
15608 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15609 				"1429 Invalid PCI device group: 0x%x\n",
15610 				phba->pci_dev_grp);
15611 		break;
15612 	}
15613 	return;
15614 }
15615 
15616 /**
15617  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15618  * @phba: pointer to lpfc hba data structure.
15619  *
15620  * This routine checks to see if OAS is supported for this adapter. If
15621  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15622  * the enable oas flag is cleared and the pool created for OAS device data
15623  * is destroyed.
15624  *
15625  **/
15626 static void
15627 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15628 {
15629 
15630 	if (!phba->cfg_EnableXLane)
15631 		return;
15632 
15633 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15634 		phba->cfg_fof = 1;
15635 	} else {
15636 		phba->cfg_fof = 0;
15637 		mempool_destroy(phba->device_data_mem_pool);
15638 		phba->device_data_mem_pool = NULL;
15639 	}
15640 
15641 	return;
15642 }
15643 
15644 /**
15645  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15646  * @phba: pointer to lpfc hba data structure.
15647  *
15648  * This routine checks to see if RAS is supported by the adapter. Check the
15649  * function through which RAS support enablement is to be done.
15650  **/
15651 void
15652 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15653 {
15654 	/* if ASIC_GEN_NUM >= 0xC) */
15655 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15656 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15657 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15658 		    LPFC_SLI_INTF_FAMILY_G6)) {
15659 		phba->ras_fwlog.ras_hwsupport = true;
15660 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15661 		    phba->cfg_ras_fwlog_buffsize)
15662 			phba->ras_fwlog.ras_enabled = true;
15663 		else
15664 			phba->ras_fwlog.ras_enabled = false;
15665 	} else {
15666 		phba->ras_fwlog.ras_hwsupport = false;
15667 	}
15668 }
15669 
15670 
15671 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15672 
15673 static const struct pci_error_handlers lpfc_err_handler = {
15674 	.error_detected = lpfc_io_error_detected,
15675 	.slot_reset = lpfc_io_slot_reset,
15676 	.resume = lpfc_io_resume,
15677 };
15678 
15679 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15680 			 lpfc_pci_suspend_one,
15681 			 lpfc_pci_resume_one);
15682 
15683 static struct pci_driver lpfc_driver = {
15684 	.name		= LPFC_DRIVER_NAME,
15685 	.id_table	= lpfc_id_table,
15686 	.probe		= lpfc_pci_probe_one,
15687 	.remove		= lpfc_pci_remove_one,
15688 	.shutdown	= lpfc_pci_remove_one,
15689 	.driver.pm	= &lpfc_pci_pm_ops_one,
15690 	.err_handler    = &lpfc_err_handler,
15691 };
15692 
15693 static const struct file_operations lpfc_mgmt_fop = {
15694 	.owner = THIS_MODULE,
15695 };
15696 
15697 static struct miscdevice lpfc_mgmt_dev = {
15698 	.minor = MISC_DYNAMIC_MINOR,
15699 	.name = "lpfcmgmt",
15700 	.fops = &lpfc_mgmt_fop,
15701 };
15702 
15703 /**
15704  * lpfc_init - lpfc module initialization routine
15705  *
15706  * This routine is to be invoked when the lpfc module is loaded into the
15707  * kernel. The special kernel macro module_init() is used to indicate the
15708  * role of this routine to the kernel as lpfc module entry point.
15709  *
15710  * Return codes
15711  *   0 - successful
15712  *   -ENOMEM - FC attach transport failed
15713  *   all others - failed
15714  */
15715 static int __init
15716 lpfc_init(void)
15717 {
15718 	int error = 0;
15719 
15720 	pr_info(LPFC_MODULE_DESC "\n");
15721 	pr_info(LPFC_COPYRIGHT "\n");
15722 
15723 	error = misc_register(&lpfc_mgmt_dev);
15724 	if (error)
15725 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15726 			"misc_register returned with status %d", error);
15727 
15728 	error = -ENOMEM;
15729 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15730 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15731 	lpfc_transport_template =
15732 				fc_attach_transport(&lpfc_transport_functions);
15733 	if (lpfc_transport_template == NULL)
15734 		goto unregister;
15735 	lpfc_vport_transport_template =
15736 		fc_attach_transport(&lpfc_vport_transport_functions);
15737 	if (lpfc_vport_transport_template == NULL) {
15738 		fc_release_transport(lpfc_transport_template);
15739 		goto unregister;
15740 	}
15741 	lpfc_wqe_cmd_template();
15742 	lpfc_nvmet_cmd_template();
15743 
15744 	/* Initialize in case vector mapping is needed */
15745 	lpfc_present_cpu = num_present_cpus();
15746 
15747 	lpfc_pldv_detect = false;
15748 
15749 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15750 					"lpfc/sli4:online",
15751 					lpfc_cpu_online, lpfc_cpu_offline);
15752 	if (error < 0)
15753 		goto cpuhp_failure;
15754 	lpfc_cpuhp_state = error;
15755 
15756 	error = pci_register_driver(&lpfc_driver);
15757 	if (error)
15758 		goto unwind;
15759 
15760 	return error;
15761 
15762 unwind:
15763 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15764 cpuhp_failure:
15765 	fc_release_transport(lpfc_transport_template);
15766 	fc_release_transport(lpfc_vport_transport_template);
15767 unregister:
15768 	misc_deregister(&lpfc_mgmt_dev);
15769 
15770 	return error;
15771 }
15772 
15773 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15774 {
15775 	unsigned int start_idx;
15776 	unsigned int dbg_cnt;
15777 	unsigned int temp_idx;
15778 	int i;
15779 	int j = 0;
15780 	unsigned long rem_nsec;
15781 
15782 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15783 		return;
15784 
15785 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15786 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15787 	if (!dbg_cnt)
15788 		goto out;
15789 	temp_idx = start_idx;
15790 	if (dbg_cnt >= DBG_LOG_SZ) {
15791 		dbg_cnt = DBG_LOG_SZ;
15792 		temp_idx -= 1;
15793 	} else {
15794 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15795 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15796 		} else {
15797 			if (start_idx < dbg_cnt)
15798 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15799 			else
15800 				start_idx -= dbg_cnt;
15801 		}
15802 	}
15803 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15804 		 start_idx, temp_idx, dbg_cnt);
15805 
15806 	for (i = 0; i < dbg_cnt; i++) {
15807 		if ((start_idx + i) < DBG_LOG_SZ)
15808 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15809 		else
15810 			temp_idx = j++;
15811 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15812 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15813 			 temp_idx,
15814 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15815 			 rem_nsec / 1000,
15816 			 phba->dbg_log[temp_idx].log);
15817 	}
15818 out:
15819 	atomic_set(&phba->dbg_log_cnt, 0);
15820 	atomic_set(&phba->dbg_log_dmping, 0);
15821 }
15822 
15823 __printf(2, 3)
15824 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15825 {
15826 	unsigned int idx;
15827 	va_list args;
15828 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15829 	struct va_format vaf;
15830 
15831 
15832 	va_start(args, fmt);
15833 	if (unlikely(dbg_dmping)) {
15834 		vaf.fmt = fmt;
15835 		vaf.va = &args;
15836 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15837 		va_end(args);
15838 		return;
15839 	}
15840 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15841 		DBG_LOG_SZ;
15842 
15843 	atomic_inc(&phba->dbg_log_cnt);
15844 
15845 	vscnprintf(phba->dbg_log[idx].log,
15846 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15847 	va_end(args);
15848 
15849 	phba->dbg_log[idx].t_ns = local_clock();
15850 }
15851 
15852 /**
15853  * lpfc_exit - lpfc module removal routine
15854  *
15855  * This routine is invoked when the lpfc module is removed from the kernel.
15856  * The special kernel macro module_exit() is used to indicate the role of
15857  * this routine to the kernel as lpfc module exit point.
15858  */
15859 static void __exit
15860 lpfc_exit(void)
15861 {
15862 	misc_deregister(&lpfc_mgmt_dev);
15863 	pci_unregister_driver(&lpfc_driver);
15864 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15865 	fc_release_transport(lpfc_transport_template);
15866 	fc_release_transport(lpfc_vport_transport_template);
15867 	idr_destroy(&lpfc_hba_index);
15868 }
15869 
15870 module_init(lpfc_init);
15871 module_exit(lpfc_exit);
15872 MODULE_LICENSE("GPL");
15873 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15874 MODULE_AUTHOR("Broadcom");
15875 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15876