xref: /linux/drivers/scsi/lpfc/lpfc_init.c (revision 3f5145a6152388ca612461ca96db4f995fa816d2)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	dist = dist_char[prg->dist];
328 
329 	if ((prg->dist == 3) && (prg->num == 0))
330 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 			prg->ver, prg->rev, prg->lev);
332 	else
333 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 			prg->ver, prg->rev, prg->lev,
335 			dist, prg->num);
336 	mempool_free(pmboxq, phba->mbox_mem_pool);
337 	return;
338 }
339 
340 /**
341  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342  * @vport: pointer to lpfc vport data structure.
343  *
344  *
345  * Return codes
346  *   None.
347  **/
348 void
349 lpfc_update_vport_wwn(struct lpfc_vport *vport)
350 {
351 	struct lpfc_hba *phba = vport->phba;
352 
353 	/*
354 	 * If the name is empty or there exists a soft name
355 	 * then copy the service params name, otherwise use the fc name
356 	 */
357 	if (vport->fc_nodename.u.wwn[0] == 0)
358 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
359 			sizeof(struct lpfc_name));
360 	else
361 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
362 			sizeof(struct lpfc_name));
363 
364 	/*
365 	 * If the port name has changed, then set the Param changes flag
366 	 * to unreg the login
367 	 */
368 	if (vport->fc_portname.u.wwn[0] != 0 &&
369 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
370 		       sizeof(struct lpfc_name))) {
371 		vport->vport_flag |= FAWWPN_PARAM_CHG;
372 
373 		if (phba->sli_rev == LPFC_SLI_REV4 &&
374 		    vport->port_type == LPFC_PHYSICAL_PORT &&
375 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
376 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
377 				phba->sli4_hba.fawwpn_flag &=
378 						~LPFC_FAWWPN_FABRIC;
379 			lpfc_printf_log(phba, KERN_INFO,
380 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
381 					"2701 FA-PWWN change WWPN from %llx to "
382 					"%llx: vflag x%x fawwpn_flag x%x\n",
383 					wwn_to_u64(vport->fc_portname.u.wwn),
384 					wwn_to_u64
385 					   (vport->fc_sparam.portName.u.wwn),
386 					vport->vport_flag,
387 					phba->sli4_hba.fawwpn_flag);
388 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
389 			       sizeof(struct lpfc_name));
390 		}
391 	}
392 
393 	if (vport->fc_portname.u.wwn[0] == 0)
394 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
395 		       sizeof(struct lpfc_name));
396 	else
397 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
398 		       sizeof(struct lpfc_name));
399 }
400 
401 /**
402  * lpfc_config_port_post - Perform lpfc initialization after config port
403  * @phba: pointer to lpfc hba data structure.
404  *
405  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
406  * command call. It performs all internal resource and state setups on the
407  * port: post IOCB buffers, enable appropriate host interrupt attentions,
408  * ELS ring timers, etc.
409  *
410  * Return codes
411  *   0 - success.
412  *   Any other value - error.
413  **/
414 int
415 lpfc_config_port_post(struct lpfc_hba *phba)
416 {
417 	struct lpfc_vport *vport = phba->pport;
418 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
419 	LPFC_MBOXQ_t *pmb;
420 	MAILBOX_t *mb;
421 	struct lpfc_dmabuf *mp;
422 	struct lpfc_sli *psli = &phba->sli;
423 	uint32_t status, timeout;
424 	int i, j;
425 	int rc;
426 
427 	spin_lock_irq(&phba->hbalock);
428 	/*
429 	 * If the Config port completed correctly the HBA is not
430 	 * over heated any more.
431 	 */
432 	if (phba->over_temp_state == HBA_OVER_TEMP)
433 		phba->over_temp_state = HBA_NORMAL_TEMP;
434 	spin_unlock_irq(&phba->hbalock);
435 
436 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
437 	if (!pmb) {
438 		phba->link_state = LPFC_HBA_ERROR;
439 		return -ENOMEM;
440 	}
441 	mb = &pmb->u.mb;
442 
443 	/* Get login parameters for NID.  */
444 	rc = lpfc_read_sparam(phba, pmb, 0);
445 	if (rc) {
446 		mempool_free(pmb, phba->mbox_mem_pool);
447 		return -ENOMEM;
448 	}
449 
450 	pmb->vport = vport;
451 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
452 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
453 				"0448 Adapter failed init, mbxCmd x%x "
454 				"READ_SPARM mbxStatus x%x\n",
455 				mb->mbxCommand, mb->mbxStatus);
456 		phba->link_state = LPFC_HBA_ERROR;
457 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
458 		return -EIO;
459 	}
460 
461 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462 
463 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
464 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
465 	 * reused.
466 	 */
467 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
468 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
469 	kfree(mp);
470 	pmb->ctx_buf = NULL;
471 	lpfc_update_vport_wwn(vport);
472 
473 	/* Update the fc_host data structures with new wwn. */
474 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
475 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
476 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
477 
478 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
479 	/* This should be consolidated into parse_vpd ? - mr */
480 	if (phba->SerialNumber[0] == 0) {
481 		uint8_t *outptr;
482 
483 		outptr = &vport->fc_nodename.u.s.IEEE[0];
484 		for (i = 0; i < 12; i++) {
485 			status = *outptr++;
486 			j = ((status & 0xf0) >> 4);
487 			if (j <= 9)
488 				phba->SerialNumber[i] =
489 				    (char)((uint8_t) 0x30 + (uint8_t) j);
490 			else
491 				phba->SerialNumber[i] =
492 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
493 			i++;
494 			j = (status & 0xf);
495 			if (j <= 9)
496 				phba->SerialNumber[i] =
497 				    (char)((uint8_t) 0x30 + (uint8_t) j);
498 			else
499 				phba->SerialNumber[i] =
500 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
501 		}
502 	}
503 
504 	lpfc_read_config(phba, pmb);
505 	pmb->vport = vport;
506 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
507 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
508 				"0453 Adapter failed to init, mbxCmd x%x "
509 				"READ_CONFIG, mbxStatus x%x\n",
510 				mb->mbxCommand, mb->mbxStatus);
511 		phba->link_state = LPFC_HBA_ERROR;
512 		mempool_free( pmb, phba->mbox_mem_pool);
513 		return -EIO;
514 	}
515 
516 	/* Check if the port is disabled */
517 	lpfc_sli_read_link_ste(phba);
518 
519 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
520 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
521 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
522 				"3359 HBA queue depth changed from %d to %d\n",
523 				phba->cfg_hba_queue_depth,
524 				mb->un.varRdConfig.max_xri);
525 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
526 	}
527 
528 	phba->lmt = mb->un.varRdConfig.lmt;
529 
530 	/* Get the default values for Model Name and Description */
531 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
532 
533 	phba->link_state = LPFC_LINK_DOWN;
534 
535 	/* Only process IOCBs on ELS ring till hba_state is READY */
536 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
537 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
538 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 
541 	/* Post receive buffers for desired rings */
542 	if (phba->sli_rev != 3)
543 		lpfc_post_rcv_buf(phba);
544 
545 	/*
546 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
547 	 */
548 	if (phba->intr_type == MSIX) {
549 		rc = lpfc_config_msi(phba, pmb);
550 		if (rc) {
551 			mempool_free(pmb, phba->mbox_mem_pool);
552 			return -EIO;
553 		}
554 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
555 		if (rc != MBX_SUCCESS) {
556 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
557 					"0352 Config MSI mailbox command "
558 					"failed, mbxCmd x%x, mbxStatus x%x\n",
559 					pmb->u.mb.mbxCommand,
560 					pmb->u.mb.mbxStatus);
561 			mempool_free(pmb, phba->mbox_mem_pool);
562 			return -EIO;
563 		}
564 	}
565 
566 	spin_lock_irq(&phba->hbalock);
567 	/* Initialize ERATT handling flag */
568 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
569 
570 	/* Enable appropriate host interrupts */
571 	if (lpfc_readl(phba->HCregaddr, &status)) {
572 		spin_unlock_irq(&phba->hbalock);
573 		return -EIO;
574 	}
575 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
576 	if (psli->num_rings > 0)
577 		status |= HC_R0INT_ENA;
578 	if (psli->num_rings > 1)
579 		status |= HC_R1INT_ENA;
580 	if (psli->num_rings > 2)
581 		status |= HC_R2INT_ENA;
582 	if (psli->num_rings > 3)
583 		status |= HC_R3INT_ENA;
584 
585 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
586 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
587 		status &= ~(HC_R0INT_ENA);
588 
589 	writel(status, phba->HCregaddr);
590 	readl(phba->HCregaddr); /* flush */
591 	spin_unlock_irq(&phba->hbalock);
592 
593 	/* Set up ring-0 (ELS) timer */
594 	timeout = phba->fc_ratov * 2;
595 	mod_timer(&vport->els_tmofunc,
596 		  jiffies + msecs_to_jiffies(1000 * timeout));
597 	/* Set up heart beat (HB) timer */
598 	mod_timer(&phba->hb_tmofunc,
599 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
600 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
601 	phba->last_completion_time = jiffies;
602 	/* Set up error attention (ERATT) polling timer */
603 	mod_timer(&phba->eratt_poll,
604 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
605 
606 	if (phba->hba_flag & LINK_DISABLED) {
607 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
608 				"2598 Adapter Link is disabled.\n");
609 		lpfc_down_link(phba, pmb);
610 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
611 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
612 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
613 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
614 					"2599 Adapter failed to issue DOWN_LINK"
615 					" mbox command rc 0x%x\n", rc);
616 
617 			mempool_free(pmb, phba->mbox_mem_pool);
618 			return -EIO;
619 		}
620 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
621 		mempool_free(pmb, phba->mbox_mem_pool);
622 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
623 		if (rc)
624 			return rc;
625 	}
626 	/* MBOX buffer will be freed in mbox compl */
627 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
628 	if (!pmb) {
629 		phba->link_state = LPFC_HBA_ERROR;
630 		return -ENOMEM;
631 	}
632 
633 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
634 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
635 	pmb->vport = phba->pport;
636 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
637 
638 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
640 				"0456 Adapter failed to issue "
641 				"ASYNCEVT_ENABLE mbox status x%x\n",
642 				rc);
643 		mempool_free(pmb, phba->mbox_mem_pool);
644 	}
645 
646 	/* Get Option rom version */
647 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
648 	if (!pmb) {
649 		phba->link_state = LPFC_HBA_ERROR;
650 		return -ENOMEM;
651 	}
652 
653 	lpfc_dump_wakeup_param(phba, pmb);
654 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
655 	pmb->vport = phba->pport;
656 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
657 
658 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
659 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
660 				"0435 Adapter failed "
661 				"to get Option ROM version status x%x\n", rc);
662 		mempool_free(pmb, phba->mbox_mem_pool);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * lpfc_sli4_refresh_params - update driver copy of params.
670  * @phba: Pointer to HBA context object.
671  *
672  * This is called to refresh driver copy of dynamic fields from the
673  * common_get_sli4_parameters descriptor.
674  **/
675 int
676 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
677 {
678 	LPFC_MBOXQ_t *mboxq;
679 	struct lpfc_mqe *mqe;
680 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
681 	int length, rc;
682 
683 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
684 	if (!mboxq)
685 		return -ENOMEM;
686 
687 	mqe = &mboxq->u.mqe;
688 	/* Read the port's SLI4 Config Parameters */
689 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
690 		  sizeof(struct lpfc_sli4_cfg_mhdr));
691 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
692 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
693 			 length, LPFC_SLI4_MBX_EMBED);
694 
695 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
696 	if (unlikely(rc)) {
697 		mempool_free(mboxq, phba->mbox_mem_pool);
698 		return rc;
699 	}
700 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
701 	phba->sli4_hba.pc_sli4_params.mi_cap =
702 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
703 
704 	/* Are we forcing MI off via module parameter? */
705 	if (phba->cfg_enable_mi)
706 		phba->sli4_hba.pc_sli4_params.mi_ver =
707 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
708 	else
709 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
710 
711 	phba->sli4_hba.pc_sli4_params.cmf =
712 			bf_get(cfg_cmf, mbx_sli4_parameters);
713 	phba->sli4_hba.pc_sli4_params.pls =
714 			bf_get(cfg_pvl, mbx_sli4_parameters);
715 
716 	mempool_free(mboxq, phba->mbox_mem_pool);
717 	return rc;
718 }
719 
720 /**
721  * lpfc_hba_init_link - Initialize the FC link
722  * @phba: pointer to lpfc hba data structure.
723  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
724  *
725  * This routine will issue the INIT_LINK mailbox command call.
726  * It is available to other drivers through the lpfc_hba data
727  * structure for use as a delayed link up mechanism with the
728  * module parameter lpfc_suppress_link_up.
729  *
730  * Return code
731  *		0 - success
732  *		Any other value - error
733  **/
734 static int
735 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
736 {
737 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
738 }
739 
740 /**
741  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
742  * @phba: pointer to lpfc hba data structure.
743  * @fc_topology: desired fc topology.
744  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
745  *
746  * This routine will issue the INIT_LINK mailbox command call.
747  * It is available to other drivers through the lpfc_hba data
748  * structure for use as a delayed link up mechanism with the
749  * module parameter lpfc_suppress_link_up.
750  *
751  * Return code
752  *              0 - success
753  *              Any other value - error
754  **/
755 int
756 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
757 			       uint32_t flag)
758 {
759 	struct lpfc_vport *vport = phba->pport;
760 	LPFC_MBOXQ_t *pmb;
761 	MAILBOX_t *mb;
762 	int rc;
763 
764 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
765 	if (!pmb) {
766 		phba->link_state = LPFC_HBA_ERROR;
767 		return -ENOMEM;
768 	}
769 	mb = &pmb->u.mb;
770 	pmb->vport = vport;
771 
772 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
773 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
774 	     !(phba->lmt & LMT_1Gb)) ||
775 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
776 	     !(phba->lmt & LMT_2Gb)) ||
777 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
778 	     !(phba->lmt & LMT_4Gb)) ||
779 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
780 	     !(phba->lmt & LMT_8Gb)) ||
781 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
782 	     !(phba->lmt & LMT_10Gb)) ||
783 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
784 	     !(phba->lmt & LMT_16Gb)) ||
785 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
786 	     !(phba->lmt & LMT_32Gb)) ||
787 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
788 	     !(phba->lmt & LMT_64Gb))) {
789 		/* Reset link speed to auto */
790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
791 				"1302 Invalid speed for this board:%d "
792 				"Reset link speed to auto.\n",
793 				phba->cfg_link_speed);
794 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
795 	}
796 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
797 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
798 	if (phba->sli_rev < LPFC_SLI_REV4)
799 		lpfc_set_loopback_flag(phba);
800 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
801 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
803 				"0498 Adapter failed to init, mbxCmd x%x "
804 				"INIT_LINK, mbxStatus x%x\n",
805 				mb->mbxCommand, mb->mbxStatus);
806 		if (phba->sli_rev <= LPFC_SLI_REV3) {
807 			/* Clear all interrupt enable conditions */
808 			writel(0, phba->HCregaddr);
809 			readl(phba->HCregaddr); /* flush */
810 			/* Clear all pending interrupts */
811 			writel(0xffffffff, phba->HAregaddr);
812 			readl(phba->HAregaddr); /* flush */
813 		}
814 		phba->link_state = LPFC_HBA_ERROR;
815 		if (rc != MBX_BUSY || flag == MBX_POLL)
816 			mempool_free(pmb, phba->mbox_mem_pool);
817 		return -EIO;
818 	}
819 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
820 	if (flag == MBX_POLL)
821 		mempool_free(pmb, phba->mbox_mem_pool);
822 
823 	return 0;
824 }
825 
826 /**
827  * lpfc_hba_down_link - this routine downs the FC link
828  * @phba: pointer to lpfc hba data structure.
829  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
830  *
831  * This routine will issue the DOWN_LINK mailbox command call.
832  * It is available to other drivers through the lpfc_hba data
833  * structure for use to stop the link.
834  *
835  * Return code
836  *		0 - success
837  *		Any other value - error
838  **/
839 static int
840 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
841 {
842 	LPFC_MBOXQ_t *pmb;
843 	int rc;
844 
845 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
846 	if (!pmb) {
847 		phba->link_state = LPFC_HBA_ERROR;
848 		return -ENOMEM;
849 	}
850 
851 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
852 			"0491 Adapter Link is disabled.\n");
853 	lpfc_down_link(phba, pmb);
854 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
855 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
856 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
857 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
858 				"2522 Adapter failed to issue DOWN_LINK"
859 				" mbox command rc 0x%x\n", rc);
860 
861 		mempool_free(pmb, phba->mbox_mem_pool);
862 		return -EIO;
863 	}
864 	if (flag == MBX_POLL)
865 		mempool_free(pmb, phba->mbox_mem_pool);
866 
867 	return 0;
868 }
869 
870 /**
871  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
872  * @phba: pointer to lpfc HBA data structure.
873  *
874  * This routine will do LPFC uninitialization before the HBA is reset when
875  * bringing down the SLI Layer.
876  *
877  * Return codes
878  *   0 - success.
879  *   Any other value - error.
880  **/
881 int
882 lpfc_hba_down_prep(struct lpfc_hba *phba)
883 {
884 	struct lpfc_vport **vports;
885 	int i;
886 
887 	if (phba->sli_rev <= LPFC_SLI_REV3) {
888 		/* Disable interrupts */
889 		writel(0, phba->HCregaddr);
890 		readl(phba->HCregaddr); /* flush */
891 	}
892 
893 	if (phba->pport->load_flag & FC_UNLOADING)
894 		lpfc_cleanup_discovery_resources(phba->pport);
895 	else {
896 		vports = lpfc_create_vport_work_array(phba);
897 		if (vports != NULL)
898 			for (i = 0; i <= phba->max_vports &&
899 				vports[i] != NULL; i++)
900 				lpfc_cleanup_discovery_resources(vports[i]);
901 		lpfc_destroy_vport_work_array(phba, vports);
902 	}
903 	return 0;
904 }
905 
906 /**
907  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
908  * rspiocb which got deferred
909  *
910  * @phba: pointer to lpfc HBA data structure.
911  *
912  * This routine will cleanup completed slow path events after HBA is reset
913  * when bringing down the SLI Layer.
914  *
915  *
916  * Return codes
917  *   void.
918  **/
919 static void
920 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
921 {
922 	struct lpfc_iocbq *rspiocbq;
923 	struct hbq_dmabuf *dmabuf;
924 	struct lpfc_cq_event *cq_event;
925 
926 	spin_lock_irq(&phba->hbalock);
927 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
928 	spin_unlock_irq(&phba->hbalock);
929 
930 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
931 		/* Get the response iocb from the head of work queue */
932 		spin_lock_irq(&phba->hbalock);
933 		list_remove_head(&phba->sli4_hba.sp_queue_event,
934 				 cq_event, struct lpfc_cq_event, list);
935 		spin_unlock_irq(&phba->hbalock);
936 
937 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
938 		case CQE_CODE_COMPL_WQE:
939 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
940 						 cq_event);
941 			lpfc_sli_release_iocbq(phba, rspiocbq);
942 			break;
943 		case CQE_CODE_RECEIVE:
944 		case CQE_CODE_RECEIVE_V1:
945 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
946 					      cq_event);
947 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
948 		}
949 	}
950 }
951 
952 /**
953  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
954  * @phba: pointer to lpfc HBA data structure.
955  *
956  * This routine will cleanup posted ELS buffers after the HBA is reset
957  * when bringing down the SLI Layer.
958  *
959  *
960  * Return codes
961  *   void.
962  **/
963 static void
964 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
965 {
966 	struct lpfc_sli *psli = &phba->sli;
967 	struct lpfc_sli_ring *pring;
968 	struct lpfc_dmabuf *mp, *next_mp;
969 	LIST_HEAD(buflist);
970 	int count;
971 
972 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
973 		lpfc_sli_hbqbuf_free_all(phba);
974 	else {
975 		/* Cleanup preposted buffers on the ELS ring */
976 		pring = &psli->sli3_ring[LPFC_ELS_RING];
977 		spin_lock_irq(&phba->hbalock);
978 		list_splice_init(&pring->postbufq, &buflist);
979 		spin_unlock_irq(&phba->hbalock);
980 
981 		count = 0;
982 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
983 			list_del(&mp->list);
984 			count++;
985 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
986 			kfree(mp);
987 		}
988 
989 		spin_lock_irq(&phba->hbalock);
990 		pring->postbufq_cnt -= count;
991 		spin_unlock_irq(&phba->hbalock);
992 	}
993 }
994 
995 /**
996  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
997  * @phba: pointer to lpfc HBA data structure.
998  *
999  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1000  * down the SLI Layer.
1001  *
1002  * Return codes
1003  *   void
1004  **/
1005 static void
1006 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1007 {
1008 	struct lpfc_sli *psli = &phba->sli;
1009 	struct lpfc_queue *qp = NULL;
1010 	struct lpfc_sli_ring *pring;
1011 	LIST_HEAD(completions);
1012 	int i;
1013 	struct lpfc_iocbq *piocb, *next_iocb;
1014 
1015 	if (phba->sli_rev != LPFC_SLI_REV4) {
1016 		for (i = 0; i < psli->num_rings; i++) {
1017 			pring = &psli->sli3_ring[i];
1018 			spin_lock_irq(&phba->hbalock);
1019 			/* At this point in time the HBA is either reset or DOA
1020 			 * Nothing should be on txcmplq as it will
1021 			 * NEVER complete.
1022 			 */
1023 			list_splice_init(&pring->txcmplq, &completions);
1024 			pring->txcmplq_cnt = 0;
1025 			spin_unlock_irq(&phba->hbalock);
1026 
1027 			lpfc_sli_abort_iocb_ring(phba, pring);
1028 		}
1029 		/* Cancel all the IOCBs from the completions list */
1030 		lpfc_sli_cancel_iocbs(phba, &completions,
1031 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1032 		return;
1033 	}
1034 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1035 		pring = qp->pring;
1036 		if (!pring)
1037 			continue;
1038 		spin_lock_irq(&pring->ring_lock);
1039 		list_for_each_entry_safe(piocb, next_iocb,
1040 					 &pring->txcmplq, list)
1041 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1042 		list_splice_init(&pring->txcmplq, &completions);
1043 		pring->txcmplq_cnt = 0;
1044 		spin_unlock_irq(&pring->ring_lock);
1045 		lpfc_sli_abort_iocb_ring(phba, pring);
1046 	}
1047 	/* Cancel all the IOCBs from the completions list */
1048 	lpfc_sli_cancel_iocbs(phba, &completions,
1049 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1050 }
1051 
1052 /**
1053  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1054  * @phba: pointer to lpfc HBA data structure.
1055  *
1056  * This routine will do uninitialization after the HBA is reset when bring
1057  * down the SLI Layer.
1058  *
1059  * Return codes
1060  *   0 - success.
1061  *   Any other value - error.
1062  **/
1063 static int
1064 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1065 {
1066 	lpfc_hba_free_post_buf(phba);
1067 	lpfc_hba_clean_txcmplq(phba);
1068 	return 0;
1069 }
1070 
1071 /**
1072  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1073  * @phba: pointer to lpfc HBA data structure.
1074  *
1075  * This routine will do uninitialization after the HBA is reset when bring
1076  * down the SLI Layer.
1077  *
1078  * Return codes
1079  *   0 - success.
1080  *   Any other value - error.
1081  **/
1082 static int
1083 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1084 {
1085 	struct lpfc_io_buf *psb, *psb_next;
1086 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1087 	struct lpfc_sli4_hdw_queue *qp;
1088 	LIST_HEAD(aborts);
1089 	LIST_HEAD(nvme_aborts);
1090 	LIST_HEAD(nvmet_aborts);
1091 	struct lpfc_sglq *sglq_entry = NULL;
1092 	int cnt, idx;
1093 
1094 
1095 	lpfc_sli_hbqbuf_free_all(phba);
1096 	lpfc_hba_clean_txcmplq(phba);
1097 
1098 	/* At this point in time the HBA is either reset or DOA. Either
1099 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1100 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1101 	 * driver is unloading or reposted if the driver is restarting
1102 	 * the port.
1103 	 */
1104 
1105 	/* sgl_list_lock required because worker thread uses this
1106 	 * list.
1107 	 */
1108 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1109 	list_for_each_entry(sglq_entry,
1110 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1111 		sglq_entry->state = SGL_FREED;
1112 
1113 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1114 			&phba->sli4_hba.lpfc_els_sgl_list);
1115 
1116 
1117 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1118 
1119 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1120 	 * list.
1121 	 */
1122 	spin_lock_irq(&phba->hbalock);
1123 	cnt = 0;
1124 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1125 		qp = &phba->sli4_hba.hdwq[idx];
1126 
1127 		spin_lock(&qp->abts_io_buf_list_lock);
1128 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1129 				 &aborts);
1130 
1131 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1132 			psb->pCmd = NULL;
1133 			psb->status = IOSTAT_SUCCESS;
1134 			cnt++;
1135 		}
1136 		spin_lock(&qp->io_buf_list_put_lock);
1137 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1138 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1139 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1140 		qp->abts_scsi_io_bufs = 0;
1141 		qp->abts_nvme_io_bufs = 0;
1142 		spin_unlock(&qp->io_buf_list_put_lock);
1143 		spin_unlock(&qp->abts_io_buf_list_lock);
1144 	}
1145 	spin_unlock_irq(&phba->hbalock);
1146 
1147 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1148 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1149 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1150 				 &nvmet_aborts);
1151 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1152 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1153 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1154 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1155 		}
1156 	}
1157 
1158 	lpfc_sli4_free_sp_events(phba);
1159 	return cnt;
1160 }
1161 
1162 /**
1163  * lpfc_hba_down_post - Wrapper func for hba down post routine
1164  * @phba: pointer to lpfc HBA data structure.
1165  *
1166  * This routine wraps the actual SLI3 or SLI4 routine for performing
1167  * uninitialization after the HBA is reset when bring down the SLI Layer.
1168  *
1169  * Return codes
1170  *   0 - success.
1171  *   Any other value - error.
1172  **/
1173 int
1174 lpfc_hba_down_post(struct lpfc_hba *phba)
1175 {
1176 	return (*phba->lpfc_hba_down_post)(phba);
1177 }
1178 
1179 /**
1180  * lpfc_hb_timeout - The HBA-timer timeout handler
1181  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1182  *
1183  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1184  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1185  * work-port-events bitmap and the worker thread is notified. This timeout
1186  * event will be used by the worker thread to invoke the actual timeout
1187  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1188  * be performed in the timeout handler and the HBA timeout event bit shall
1189  * be cleared by the worker thread after it has taken the event bitmap out.
1190  **/
1191 static void
1192 lpfc_hb_timeout(struct timer_list *t)
1193 {
1194 	struct lpfc_hba *phba;
1195 	uint32_t tmo_posted;
1196 	unsigned long iflag;
1197 
1198 	phba = from_timer(phba, t, hb_tmofunc);
1199 
1200 	/* Check for heart beat timeout conditions */
1201 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1202 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1203 	if (!tmo_posted)
1204 		phba->pport->work_port_events |= WORKER_HB_TMO;
1205 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1206 
1207 	/* Tell the worker thread there is work to do */
1208 	if (!tmo_posted)
1209 		lpfc_worker_wake_up(phba);
1210 	return;
1211 }
1212 
1213 /**
1214  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1215  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1216  *
1217  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1218  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1219  * work-port-events bitmap and the worker thread is notified. This timeout
1220  * event will be used by the worker thread to invoke the actual timeout
1221  * handler routine, lpfc_rrq_handler. Any periodical operations will
1222  * be performed in the timeout handler and the RRQ timeout event bit shall
1223  * be cleared by the worker thread after it has taken the event bitmap out.
1224  **/
1225 static void
1226 lpfc_rrq_timeout(struct timer_list *t)
1227 {
1228 	struct lpfc_hba *phba;
1229 	unsigned long iflag;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1233 	if (!(phba->pport->load_flag & FC_UNLOADING))
1234 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1235 	else
1236 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1237 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1238 
1239 	if (!(phba->pport->load_flag & FC_UNLOADING))
1240 		lpfc_worker_wake_up(phba);
1241 }
1242 
1243 /**
1244  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1245  * @phba: pointer to lpfc hba data structure.
1246  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1247  *
1248  * This is the callback function to the lpfc heart-beat mailbox command.
1249  * If configured, the lpfc driver issues the heart-beat mailbox command to
1250  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1251  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1252  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1253  * heart-beat outstanding state. Once the mailbox command comes back and
1254  * no error conditions detected, the heart-beat mailbox command timer is
1255  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1256  * state is cleared for the next heart-beat. If the timer expired with the
1257  * heart-beat outstanding state set, the driver will put the HBA offline.
1258  **/
1259 static void
1260 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1261 {
1262 	unsigned long drvr_flag;
1263 
1264 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1265 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1266 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1267 
1268 	/* Check and reset heart-beat timer if necessary */
1269 	mempool_free(pmboxq, phba->mbox_mem_pool);
1270 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1271 		!(phba->link_state == LPFC_HBA_ERROR) &&
1272 		!(phba->pport->load_flag & FC_UNLOADING))
1273 		mod_timer(&phba->hb_tmofunc,
1274 			  jiffies +
1275 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1276 	return;
1277 }
1278 
1279 /*
1280  * lpfc_idle_stat_delay_work - idle_stat tracking
1281  *
1282  * This routine tracks per-cq idle_stat and determines polling decisions.
1283  *
1284  * Return codes:
1285  *   None
1286  **/
1287 static void
1288 lpfc_idle_stat_delay_work(struct work_struct *work)
1289 {
1290 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1291 					     struct lpfc_hba,
1292 					     idle_stat_delay_work);
1293 	struct lpfc_queue *cq;
1294 	struct lpfc_sli4_hdw_queue *hdwq;
1295 	struct lpfc_idle_stat *idle_stat;
1296 	u32 i, idle_percent;
1297 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1298 
1299 	if (phba->pport->load_flag & FC_UNLOADING)
1300 		return;
1301 
1302 	if (phba->link_state == LPFC_HBA_ERROR ||
1303 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1304 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1305 		goto requeue;
1306 
1307 	for_each_present_cpu(i) {
1308 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1309 		cq = hdwq->io_cq;
1310 
1311 		/* Skip if we've already handled this cq's primary CPU */
1312 		if (cq->chann != i)
1313 			continue;
1314 
1315 		idle_stat = &phba->sli4_hba.idle_stat[i];
1316 
1317 		/* get_cpu_idle_time returns values as running counters. Thus,
1318 		 * to know the amount for this period, the prior counter values
1319 		 * need to be subtracted from the current counter values.
1320 		 * From there, the idle time stat can be calculated as a
1321 		 * percentage of 100 - the sum of the other consumption times.
1322 		 */
1323 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1324 		diff_idle = wall_idle - idle_stat->prev_idle;
1325 		diff_wall = wall - idle_stat->prev_wall;
1326 
1327 		if (diff_wall <= diff_idle)
1328 			busy_time = 0;
1329 		else
1330 			busy_time = diff_wall - diff_idle;
1331 
1332 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1333 		idle_percent = 100 - idle_percent;
1334 
1335 		if (idle_percent < 15)
1336 			cq->poll_mode = LPFC_QUEUE_WORK;
1337 		else
1338 			cq->poll_mode = LPFC_IRQ_POLL;
1339 
1340 		idle_stat->prev_idle = wall_idle;
1341 		idle_stat->prev_wall = wall;
1342 	}
1343 
1344 requeue:
1345 	schedule_delayed_work(&phba->idle_stat_delay_work,
1346 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1347 }
1348 
1349 static void
1350 lpfc_hb_eq_delay_work(struct work_struct *work)
1351 {
1352 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1353 					     struct lpfc_hba, eq_delay_work);
1354 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1355 	struct lpfc_queue *eq, *eq_next;
1356 	unsigned char *ena_delay = NULL;
1357 	uint32_t usdelay;
1358 	int i;
1359 
1360 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1361 		return;
1362 
1363 	if (phba->link_state == LPFC_HBA_ERROR ||
1364 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1365 		goto requeue;
1366 
1367 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1368 			    GFP_KERNEL);
1369 	if (!ena_delay)
1370 		goto requeue;
1371 
1372 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1373 		/* Get the EQ corresponding to the IRQ vector */
1374 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1375 		if (!eq)
1376 			continue;
1377 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1378 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1379 			ena_delay[eq->last_cpu] = 1;
1380 		}
1381 	}
1382 
1383 	for_each_present_cpu(i) {
1384 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1385 		if (ena_delay[i]) {
1386 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1387 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1388 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1389 		} else {
1390 			usdelay = 0;
1391 		}
1392 
1393 		eqi->icnt = 0;
1394 
1395 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1396 			if (unlikely(eq->last_cpu != i)) {
1397 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1398 						      eq->last_cpu);
1399 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1400 				continue;
1401 			}
1402 			if (usdelay != eq->q_mode)
1403 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1404 							 usdelay);
1405 		}
1406 	}
1407 
1408 	kfree(ena_delay);
1409 
1410 requeue:
1411 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1412 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1413 }
1414 
1415 /**
1416  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1417  * @phba: pointer to lpfc hba data structure.
1418  *
1419  * For each heartbeat, this routine does some heuristic methods to adjust
1420  * XRI distribution. The goal is to fully utilize free XRIs.
1421  **/
1422 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1423 {
1424 	u32 i;
1425 	u32 hwq_count;
1426 
1427 	hwq_count = phba->cfg_hdw_queue;
1428 	for (i = 0; i < hwq_count; i++) {
1429 		/* Adjust XRIs in private pool */
1430 		lpfc_adjust_pvt_pool_count(phba, i);
1431 
1432 		/* Adjust high watermark */
1433 		lpfc_adjust_high_watermark(phba, i);
1434 
1435 #ifdef LPFC_MXP_STAT
1436 		/* Snapshot pbl, pvt and busy count */
1437 		lpfc_snapshot_mxp(phba, i);
1438 #endif
1439 	}
1440 }
1441 
1442 /**
1443  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1444  * @phba: pointer to lpfc hba data structure.
1445  *
1446  * If a HB mbox is not already in progrees, this routine will allocate
1447  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1448  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1449  **/
1450 int
1451 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1452 {
1453 	LPFC_MBOXQ_t *pmboxq;
1454 	int retval;
1455 
1456 	/* Is a Heartbeat mbox already in progress */
1457 	if (phba->hba_flag & HBA_HBEAT_INP)
1458 		return 0;
1459 
1460 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1461 	if (!pmboxq)
1462 		return -ENOMEM;
1463 
1464 	lpfc_heart_beat(phba, pmboxq);
1465 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1466 	pmboxq->vport = phba->pport;
1467 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1468 
1469 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1470 		mempool_free(pmboxq, phba->mbox_mem_pool);
1471 		return -ENXIO;
1472 	}
1473 	phba->hba_flag |= HBA_HBEAT_INP;
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1480  * @phba: pointer to lpfc hba data structure.
1481  *
1482  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1483  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1484  * of the value of lpfc_enable_hba_heartbeat.
1485  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1486  * try to issue a MBX_HEARTBEAT mbox command.
1487  **/
1488 void
1489 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1490 {
1491 	if (phba->cfg_enable_hba_heartbeat)
1492 		return;
1493 	phba->hba_flag |= HBA_HBEAT_TMO;
1494 }
1495 
1496 /**
1497  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1498  * @phba: pointer to lpfc hba data structure.
1499  *
1500  * This is the actual HBA-timer timeout handler to be invoked by the worker
1501  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1502  * handler performs any periodic operations needed for the device. If such
1503  * periodic event has already been attended to either in the interrupt handler
1504  * or by processing slow-ring or fast-ring events within the HBA-timer
1505  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1506  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1507  * is configured and there is no heart-beat mailbox command outstanding, a
1508  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1509  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1510  * to offline.
1511  **/
1512 void
1513 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1514 {
1515 	struct lpfc_vport **vports;
1516 	struct lpfc_dmabuf *buf_ptr;
1517 	int retval = 0;
1518 	int i, tmo;
1519 	struct lpfc_sli *psli = &phba->sli;
1520 	LIST_HEAD(completions);
1521 
1522 	if (phba->cfg_xri_rebalancing) {
1523 		/* Multi-XRI pools handler */
1524 		lpfc_hb_mxp_handler(phba);
1525 	}
1526 
1527 	vports = lpfc_create_vport_work_array(phba);
1528 	if (vports != NULL)
1529 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1530 			lpfc_rcv_seq_check_edtov(vports[i]);
1531 			lpfc_fdmi_change_check(vports[i]);
1532 		}
1533 	lpfc_destroy_vport_work_array(phba, vports);
1534 
1535 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1536 		(phba->pport->load_flag & FC_UNLOADING) ||
1537 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1538 		return;
1539 
1540 	if (phba->elsbuf_cnt &&
1541 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1542 		spin_lock_irq(&phba->hbalock);
1543 		list_splice_init(&phba->elsbuf, &completions);
1544 		phba->elsbuf_cnt = 0;
1545 		phba->elsbuf_prev_cnt = 0;
1546 		spin_unlock_irq(&phba->hbalock);
1547 
1548 		while (!list_empty(&completions)) {
1549 			list_remove_head(&completions, buf_ptr,
1550 				struct lpfc_dmabuf, list);
1551 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1552 			kfree(buf_ptr);
1553 		}
1554 	}
1555 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1556 
1557 	/* If there is no heart beat outstanding, issue a heartbeat command */
1558 	if (phba->cfg_enable_hba_heartbeat) {
1559 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1560 		spin_lock_irq(&phba->pport->work_port_lock);
1561 		if (time_after(phba->last_completion_time +
1562 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1563 				jiffies)) {
1564 			spin_unlock_irq(&phba->pport->work_port_lock);
1565 			if (phba->hba_flag & HBA_HBEAT_INP)
1566 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1567 			else
1568 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1569 			goto out;
1570 		}
1571 		spin_unlock_irq(&phba->pport->work_port_lock);
1572 
1573 		/* Check if a MBX_HEARTBEAT is already in progress */
1574 		if (phba->hba_flag & HBA_HBEAT_INP) {
1575 			/*
1576 			 * If heart beat timeout called with HBA_HBEAT_INP set
1577 			 * we need to give the hb mailbox cmd a chance to
1578 			 * complete or TMO.
1579 			 */
1580 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1581 				"0459 Adapter heartbeat still outstanding: "
1582 				"last compl time was %d ms.\n",
1583 				jiffies_to_msecs(jiffies
1584 					 - phba->last_completion_time));
1585 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1586 		} else {
1587 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1588 				(list_empty(&psli->mboxq))) {
1589 
1590 				retval = lpfc_issue_hb_mbox(phba);
1591 				if (retval) {
1592 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1593 					goto out;
1594 				}
1595 				phba->skipped_hb = 0;
1596 			} else if (time_before_eq(phba->last_completion_time,
1597 					phba->skipped_hb)) {
1598 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1599 					"2857 Last completion time not "
1600 					" updated in %d ms\n",
1601 					jiffies_to_msecs(jiffies
1602 						 - phba->last_completion_time));
1603 			} else
1604 				phba->skipped_hb = jiffies;
1605 
1606 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1607 			goto out;
1608 		}
1609 	} else {
1610 		/* Check to see if we want to force a MBX_HEARTBEAT */
1611 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1612 			retval = lpfc_issue_hb_mbox(phba);
1613 			if (retval)
1614 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1615 			else
1616 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1617 			goto out;
1618 		}
1619 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1620 	}
1621 out:
1622 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1623 }
1624 
1625 /**
1626  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1627  * @phba: pointer to lpfc hba data structure.
1628  *
1629  * This routine is called to bring the HBA offline when HBA hardware error
1630  * other than Port Error 6 has been detected.
1631  **/
1632 static void
1633 lpfc_offline_eratt(struct lpfc_hba *phba)
1634 {
1635 	struct lpfc_sli   *psli = &phba->sli;
1636 
1637 	spin_lock_irq(&phba->hbalock);
1638 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1639 	spin_unlock_irq(&phba->hbalock);
1640 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1641 
1642 	lpfc_offline(phba);
1643 	lpfc_reset_barrier(phba);
1644 	spin_lock_irq(&phba->hbalock);
1645 	lpfc_sli_brdreset(phba);
1646 	spin_unlock_irq(&phba->hbalock);
1647 	lpfc_hba_down_post(phba);
1648 	lpfc_sli_brdready(phba, HS_MBRDY);
1649 	lpfc_unblock_mgmt_io(phba);
1650 	phba->link_state = LPFC_HBA_ERROR;
1651 	return;
1652 }
1653 
1654 /**
1655  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1656  * @phba: pointer to lpfc hba data structure.
1657  *
1658  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1659  * other than Port Error 6 has been detected.
1660  **/
1661 void
1662 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1663 {
1664 	spin_lock_irq(&phba->hbalock);
1665 	if (phba->link_state == LPFC_HBA_ERROR &&
1666 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1667 		spin_unlock_irq(&phba->hbalock);
1668 		return;
1669 	}
1670 	phba->link_state = LPFC_HBA_ERROR;
1671 	spin_unlock_irq(&phba->hbalock);
1672 
1673 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1674 	lpfc_sli_flush_io_rings(phba);
1675 	lpfc_offline(phba);
1676 	lpfc_hba_down_post(phba);
1677 	lpfc_unblock_mgmt_io(phba);
1678 }
1679 
1680 /**
1681  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1682  * @phba: pointer to lpfc hba data structure.
1683  *
1684  * This routine is invoked to handle the deferred HBA hardware error
1685  * conditions. This type of error is indicated by HBA by setting ER1
1686  * and another ER bit in the host status register. The driver will
1687  * wait until the ER1 bit clears before handling the error condition.
1688  **/
1689 static void
1690 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1691 {
1692 	uint32_t old_host_status = phba->work_hs;
1693 	struct lpfc_sli *psli = &phba->sli;
1694 
1695 	/* If the pci channel is offline, ignore possible errors,
1696 	 * since we cannot communicate with the pci card anyway.
1697 	 */
1698 	if (pci_channel_offline(phba->pcidev)) {
1699 		spin_lock_irq(&phba->hbalock);
1700 		phba->hba_flag &= ~DEFER_ERATT;
1701 		spin_unlock_irq(&phba->hbalock);
1702 		return;
1703 	}
1704 
1705 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1706 			"0479 Deferred Adapter Hardware Error "
1707 			"Data: x%x x%x x%x\n",
1708 			phba->work_hs, phba->work_status[0],
1709 			phba->work_status[1]);
1710 
1711 	spin_lock_irq(&phba->hbalock);
1712 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1713 	spin_unlock_irq(&phba->hbalock);
1714 
1715 
1716 	/*
1717 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1718 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1719 	 * SCSI layer retry it after re-establishing link.
1720 	 */
1721 	lpfc_sli_abort_fcp_rings(phba);
1722 
1723 	/*
1724 	 * There was a firmware error. Take the hba offline and then
1725 	 * attempt to restart it.
1726 	 */
1727 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1728 	lpfc_offline(phba);
1729 
1730 	/* Wait for the ER1 bit to clear.*/
1731 	while (phba->work_hs & HS_FFER1) {
1732 		msleep(100);
1733 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1734 			phba->work_hs = UNPLUG_ERR ;
1735 			break;
1736 		}
1737 		/* If driver is unloading let the worker thread continue */
1738 		if (phba->pport->load_flag & FC_UNLOADING) {
1739 			phba->work_hs = 0;
1740 			break;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * This is to ptrotect against a race condition in which
1746 	 * first write to the host attention register clear the
1747 	 * host status register.
1748 	 */
1749 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1750 		phba->work_hs = old_host_status & ~HS_FFER1;
1751 
1752 	spin_lock_irq(&phba->hbalock);
1753 	phba->hba_flag &= ~DEFER_ERATT;
1754 	spin_unlock_irq(&phba->hbalock);
1755 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1756 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1757 }
1758 
1759 static void
1760 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1761 {
1762 	struct lpfc_board_event_header board_event;
1763 	struct Scsi_Host *shost;
1764 
1765 	board_event.event_type = FC_REG_BOARD_EVENT;
1766 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1767 	shost = lpfc_shost_from_vport(phba->pport);
1768 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1769 				  sizeof(board_event),
1770 				  (char *) &board_event,
1771 				  LPFC_NL_VENDOR_ID);
1772 }
1773 
1774 /**
1775  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1776  * @phba: pointer to lpfc hba data structure.
1777  *
1778  * This routine is invoked to handle the following HBA hardware error
1779  * conditions:
1780  * 1 - HBA error attention interrupt
1781  * 2 - DMA ring index out of range
1782  * 3 - Mailbox command came back as unknown
1783  **/
1784 static void
1785 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1786 {
1787 	struct lpfc_vport *vport = phba->pport;
1788 	struct lpfc_sli   *psli = &phba->sli;
1789 	uint32_t event_data;
1790 	unsigned long temperature;
1791 	struct temp_event temp_event_data;
1792 	struct Scsi_Host  *shost;
1793 
1794 	/* If the pci channel is offline, ignore possible errors,
1795 	 * since we cannot communicate with the pci card anyway.
1796 	 */
1797 	if (pci_channel_offline(phba->pcidev)) {
1798 		spin_lock_irq(&phba->hbalock);
1799 		phba->hba_flag &= ~DEFER_ERATT;
1800 		spin_unlock_irq(&phba->hbalock);
1801 		return;
1802 	}
1803 
1804 	/* If resets are disabled then leave the HBA alone and return */
1805 	if (!phba->cfg_enable_hba_reset)
1806 		return;
1807 
1808 	/* Send an internal error event to mgmt application */
1809 	lpfc_board_errevt_to_mgmt(phba);
1810 
1811 	if (phba->hba_flag & DEFER_ERATT)
1812 		lpfc_handle_deferred_eratt(phba);
1813 
1814 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1815 		if (phba->work_hs & HS_FFER6)
1816 			/* Re-establishing Link */
1817 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1818 					"1301 Re-establishing Link "
1819 					"Data: x%x x%x x%x\n",
1820 					phba->work_hs, phba->work_status[0],
1821 					phba->work_status[1]);
1822 		if (phba->work_hs & HS_FFER8)
1823 			/* Device Zeroization */
1824 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1825 					"2861 Host Authentication device "
1826 					"zeroization Data:x%x x%x x%x\n",
1827 					phba->work_hs, phba->work_status[0],
1828 					phba->work_status[1]);
1829 
1830 		spin_lock_irq(&phba->hbalock);
1831 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1832 		spin_unlock_irq(&phba->hbalock);
1833 
1834 		/*
1835 		* Firmware stops when it triggled erratt with HS_FFER6.
1836 		* That could cause the I/Os dropped by the firmware.
1837 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1838 		* retry it after re-establishing link.
1839 		*/
1840 		lpfc_sli_abort_fcp_rings(phba);
1841 
1842 		/*
1843 		 * There was a firmware error.  Take the hba offline and then
1844 		 * attempt to restart it.
1845 		 */
1846 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1847 		lpfc_offline(phba);
1848 		lpfc_sli_brdrestart(phba);
1849 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1850 			lpfc_unblock_mgmt_io(phba);
1851 			return;
1852 		}
1853 		lpfc_unblock_mgmt_io(phba);
1854 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1855 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1856 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1857 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1858 		temp_event_data.data = (uint32_t)temperature;
1859 
1860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1861 				"0406 Adapter maximum temperature exceeded "
1862 				"(%ld), taking this port offline "
1863 				"Data: x%x x%x x%x\n",
1864 				temperature, phba->work_hs,
1865 				phba->work_status[0], phba->work_status[1]);
1866 
1867 		shost = lpfc_shost_from_vport(phba->pport);
1868 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1869 					  sizeof(temp_event_data),
1870 					  (char *) &temp_event_data,
1871 					  SCSI_NL_VID_TYPE_PCI
1872 					  | PCI_VENDOR_ID_EMULEX);
1873 
1874 		spin_lock_irq(&phba->hbalock);
1875 		phba->over_temp_state = HBA_OVER_TEMP;
1876 		spin_unlock_irq(&phba->hbalock);
1877 		lpfc_offline_eratt(phba);
1878 
1879 	} else {
1880 		/* The if clause above forces this code path when the status
1881 		 * failure is a value other than FFER6. Do not call the offline
1882 		 * twice. This is the adapter hardware error path.
1883 		 */
1884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1885 				"0457 Adapter Hardware Error "
1886 				"Data: x%x x%x x%x\n",
1887 				phba->work_hs,
1888 				phba->work_status[0], phba->work_status[1]);
1889 
1890 		event_data = FC_REG_DUMP_EVENT;
1891 		shost = lpfc_shost_from_vport(vport);
1892 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1893 				sizeof(event_data), (char *) &event_data,
1894 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1895 
1896 		lpfc_offline_eratt(phba);
1897 	}
1898 	return;
1899 }
1900 
1901 /**
1902  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1903  * @phba: pointer to lpfc hba data structure.
1904  * @mbx_action: flag for mailbox shutdown action.
1905  * @en_rn_msg: send reset/port recovery message.
1906  * This routine is invoked to perform an SLI4 port PCI function reset in
1907  * response to port status register polling attention. It waits for port
1908  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1909  * During this process, interrupt vectors are freed and later requested
1910  * for handling possible port resource change.
1911  **/
1912 static int
1913 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1914 			    bool en_rn_msg)
1915 {
1916 	int rc;
1917 	uint32_t intr_mode;
1918 	LPFC_MBOXQ_t *mboxq;
1919 
1920 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1921 	    LPFC_SLI_INTF_IF_TYPE_2) {
1922 		/*
1923 		 * On error status condition, driver need to wait for port
1924 		 * ready before performing reset.
1925 		 */
1926 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1927 		if (rc)
1928 			return rc;
1929 	}
1930 
1931 	/* need reset: attempt for port recovery */
1932 	if (en_rn_msg)
1933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1934 				"2887 Reset Needed: Attempting Port "
1935 				"Recovery...\n");
1936 
1937 	/* If we are no wait, the HBA has been reset and is not
1938 	 * functional, thus we should clear
1939 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1940 	 */
1941 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1942 		spin_lock_irq(&phba->hbalock);
1943 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1944 		if (phba->sli.mbox_active) {
1945 			mboxq = phba->sli.mbox_active;
1946 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1947 			__lpfc_mbox_cmpl_put(phba, mboxq);
1948 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1949 			phba->sli.mbox_active = NULL;
1950 		}
1951 		spin_unlock_irq(&phba->hbalock);
1952 	}
1953 
1954 	lpfc_offline_prep(phba, mbx_action);
1955 	lpfc_sli_flush_io_rings(phba);
1956 	lpfc_offline(phba);
1957 	/* release interrupt for possible resource change */
1958 	lpfc_sli4_disable_intr(phba);
1959 	rc = lpfc_sli_brdrestart(phba);
1960 	if (rc) {
1961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1962 				"6309 Failed to restart board\n");
1963 		return rc;
1964 	}
1965 	/* request and enable interrupt */
1966 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1967 	if (intr_mode == LPFC_INTR_ERROR) {
1968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1969 				"3175 Failed to enable interrupt\n");
1970 		return -EIO;
1971 	}
1972 	phba->intr_mode = intr_mode;
1973 	rc = lpfc_online(phba);
1974 	if (rc == 0)
1975 		lpfc_unblock_mgmt_io(phba);
1976 
1977 	return rc;
1978 }
1979 
1980 /**
1981  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1982  * @phba: pointer to lpfc hba data structure.
1983  *
1984  * This routine is invoked to handle the SLI4 HBA hardware error attention
1985  * conditions.
1986  **/
1987 static void
1988 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1989 {
1990 	struct lpfc_vport *vport = phba->pport;
1991 	uint32_t event_data;
1992 	struct Scsi_Host *shost;
1993 	uint32_t if_type;
1994 	struct lpfc_register portstat_reg = {0};
1995 	uint32_t reg_err1, reg_err2;
1996 	uint32_t uerrlo_reg, uemasklo_reg;
1997 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1998 	bool en_rn_msg = true;
1999 	struct temp_event temp_event_data;
2000 	struct lpfc_register portsmphr_reg;
2001 	int rc, i;
2002 
2003 	/* If the pci channel is offline, ignore possible errors, since
2004 	 * we cannot communicate with the pci card anyway.
2005 	 */
2006 	if (pci_channel_offline(phba->pcidev)) {
2007 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2008 				"3166 pci channel is offline\n");
2009 		lpfc_sli_flush_io_rings(phba);
2010 		return;
2011 	}
2012 
2013 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2014 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2015 	switch (if_type) {
2016 	case LPFC_SLI_INTF_IF_TYPE_0:
2017 		pci_rd_rc1 = lpfc_readl(
2018 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2019 				&uerrlo_reg);
2020 		pci_rd_rc2 = lpfc_readl(
2021 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2022 				&uemasklo_reg);
2023 		/* consider PCI bus read error as pci_channel_offline */
2024 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2025 			return;
2026 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2027 			lpfc_sli4_offline_eratt(phba);
2028 			return;
2029 		}
2030 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2031 				"7623 Checking UE recoverable");
2032 
2033 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2034 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2035 				       &portsmphr_reg.word0))
2036 				continue;
2037 
2038 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2039 						   &portsmphr_reg);
2040 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2042 				break;
2043 			/*Sleep for 1Sec, before checking SEMAPHORE */
2044 			msleep(1000);
2045 		}
2046 
2047 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2048 				"4827 smphr_port_status x%x : Waited %dSec",
2049 				smphr_port_status, i);
2050 
2051 		/* Recoverable UE, reset the HBA device */
2052 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2053 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2054 			for (i = 0; i < 20; i++) {
2055 				msleep(1000);
2056 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2057 				    &portsmphr_reg.word0) &&
2058 				    (LPFC_POST_STAGE_PORT_READY ==
2059 				     bf_get(lpfc_port_smphr_port_status,
2060 				     &portsmphr_reg))) {
2061 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2062 						LPFC_MBX_NO_WAIT, en_rn_msg);
2063 					if (rc == 0)
2064 						return;
2065 					lpfc_printf_log(phba, KERN_ERR,
2066 						LOG_TRACE_EVENT,
2067 						"4215 Failed to recover UE");
2068 					break;
2069 				}
2070 			}
2071 		}
2072 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 				"7624 Firmware not ready: Failing UE recovery,"
2074 				" waited %dSec", i);
2075 		phba->link_state = LPFC_HBA_ERROR;
2076 		break;
2077 
2078 	case LPFC_SLI_INTF_IF_TYPE_2:
2079 	case LPFC_SLI_INTF_IF_TYPE_6:
2080 		pci_rd_rc1 = lpfc_readl(
2081 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2082 				&portstat_reg.word0);
2083 		/* consider PCI bus read error as pci_channel_offline */
2084 		if (pci_rd_rc1 == -EIO) {
2085 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2086 				"3151 PCI bus read access failure: x%x\n",
2087 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2088 			lpfc_sli4_offline_eratt(phba);
2089 			return;
2090 		}
2091 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2092 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2093 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2094 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2095 					"2889 Port Overtemperature event, "
2096 					"taking port offline Data: x%x x%x\n",
2097 					reg_err1, reg_err2);
2098 
2099 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2100 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2101 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2102 			temp_event_data.data = 0xFFFFFFFF;
2103 
2104 			shost = lpfc_shost_from_vport(phba->pport);
2105 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2106 						  sizeof(temp_event_data),
2107 						  (char *)&temp_event_data,
2108 						  SCSI_NL_VID_TYPE_PCI
2109 						  | PCI_VENDOR_ID_EMULEX);
2110 
2111 			spin_lock_irq(&phba->hbalock);
2112 			phba->over_temp_state = HBA_OVER_TEMP;
2113 			spin_unlock_irq(&phba->hbalock);
2114 			lpfc_sli4_offline_eratt(phba);
2115 			return;
2116 		}
2117 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2120 					"3143 Port Down: Firmware Update "
2121 					"Detected\n");
2122 			en_rn_msg = false;
2123 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2124 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2126 					"3144 Port Down: Debug Dump\n");
2127 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2128 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2129 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2130 					"3145 Port Down: Provisioning\n");
2131 
2132 		/* If resets are disabled then leave the HBA alone and return */
2133 		if (!phba->cfg_enable_hba_reset)
2134 			return;
2135 
2136 		/* Check port status register for function reset */
2137 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2138 				en_rn_msg);
2139 		if (rc == 0) {
2140 			/* don't report event on forced debug dump */
2141 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2142 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2143 				return;
2144 			else
2145 				break;
2146 		}
2147 		/* fall through for not able to recover */
2148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2149 				"3152 Unrecoverable error\n");
2150 		phba->link_state = LPFC_HBA_ERROR;
2151 		break;
2152 	case LPFC_SLI_INTF_IF_TYPE_1:
2153 	default:
2154 		break;
2155 	}
2156 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2157 			"3123 Report dump event to upper layer\n");
2158 	/* Send an internal error event to mgmt application */
2159 	lpfc_board_errevt_to_mgmt(phba);
2160 
2161 	event_data = FC_REG_DUMP_EVENT;
2162 	shost = lpfc_shost_from_vport(vport);
2163 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2164 				  sizeof(event_data), (char *) &event_data,
2165 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2166 }
2167 
2168 /**
2169  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2170  * @phba: pointer to lpfc HBA data structure.
2171  *
2172  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2173  * routine from the API jump table function pointer from the lpfc_hba struct.
2174  *
2175  * Return codes
2176  *   0 - success.
2177  *   Any other value - error.
2178  **/
2179 void
2180 lpfc_handle_eratt(struct lpfc_hba *phba)
2181 {
2182 	(*phba->lpfc_handle_eratt)(phba);
2183 }
2184 
2185 /**
2186  * lpfc_handle_latt - The HBA link event handler
2187  * @phba: pointer to lpfc hba data structure.
2188  *
2189  * This routine is invoked from the worker thread to handle a HBA host
2190  * attention link event. SLI3 only.
2191  **/
2192 void
2193 lpfc_handle_latt(struct lpfc_hba *phba)
2194 {
2195 	struct lpfc_vport *vport = phba->pport;
2196 	struct lpfc_sli   *psli = &phba->sli;
2197 	LPFC_MBOXQ_t *pmb;
2198 	volatile uint32_t control;
2199 	int rc = 0;
2200 
2201 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2202 	if (!pmb) {
2203 		rc = 1;
2204 		goto lpfc_handle_latt_err_exit;
2205 	}
2206 
2207 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2208 	if (rc) {
2209 		rc = 2;
2210 		mempool_free(pmb, phba->mbox_mem_pool);
2211 		goto lpfc_handle_latt_err_exit;
2212 	}
2213 
2214 	/* Cleanup any outstanding ELS commands */
2215 	lpfc_els_flush_all_cmd(phba);
2216 	psli->slistat.link_event++;
2217 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2218 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2219 	pmb->vport = vport;
2220 	/* Block ELS IOCBs until we have processed this mbox command */
2221 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2222 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2223 	if (rc == MBX_NOT_FINISHED) {
2224 		rc = 4;
2225 		goto lpfc_handle_latt_free_mbuf;
2226 	}
2227 
2228 	/* Clear Link Attention in HA REG */
2229 	spin_lock_irq(&phba->hbalock);
2230 	writel(HA_LATT, phba->HAregaddr);
2231 	readl(phba->HAregaddr); /* flush */
2232 	spin_unlock_irq(&phba->hbalock);
2233 
2234 	return;
2235 
2236 lpfc_handle_latt_free_mbuf:
2237 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2238 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2239 lpfc_handle_latt_err_exit:
2240 	/* Enable Link attention interrupts */
2241 	spin_lock_irq(&phba->hbalock);
2242 	psli->sli_flag |= LPFC_PROCESS_LA;
2243 	control = readl(phba->HCregaddr);
2244 	control |= HC_LAINT_ENA;
2245 	writel(control, phba->HCregaddr);
2246 	readl(phba->HCregaddr); /* flush */
2247 
2248 	/* Clear Link Attention in HA REG */
2249 	writel(HA_LATT, phba->HAregaddr);
2250 	readl(phba->HAregaddr); /* flush */
2251 	spin_unlock_irq(&phba->hbalock);
2252 	lpfc_linkdown(phba);
2253 	phba->link_state = LPFC_HBA_ERROR;
2254 
2255 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2256 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2257 
2258 	return;
2259 }
2260 
2261 static void
2262 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2263 {
2264 	int i, j;
2265 
2266 	while (length > 0) {
2267 		/* Look for Serial Number */
2268 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2269 			*pindex += 2;
2270 			i = vpd[*pindex];
2271 			*pindex += 1;
2272 			j = 0;
2273 			length -= (3+i);
2274 			while (i--) {
2275 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2276 				if (j == 31)
2277 					break;
2278 			}
2279 			phba->SerialNumber[j] = 0;
2280 			continue;
2281 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2282 			phba->vpd_flag |= VPD_MODEL_DESC;
2283 			*pindex += 2;
2284 			i = vpd[*pindex];
2285 			*pindex += 1;
2286 			j = 0;
2287 			length -= (3+i);
2288 			while (i--) {
2289 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2290 				if (j == 255)
2291 					break;
2292 			}
2293 			phba->ModelDesc[j] = 0;
2294 			continue;
2295 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2296 			phba->vpd_flag |= VPD_MODEL_NAME;
2297 			*pindex += 2;
2298 			i = vpd[*pindex];
2299 			*pindex += 1;
2300 			j = 0;
2301 			length -= (3+i);
2302 			while (i--) {
2303 				phba->ModelName[j++] = vpd[(*pindex)++];
2304 				if (j == 79)
2305 					break;
2306 			}
2307 			phba->ModelName[j] = 0;
2308 			continue;
2309 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2310 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2311 			*pindex += 2;
2312 			i = vpd[*pindex];
2313 			*pindex += 1;
2314 			j = 0;
2315 			length -= (3+i);
2316 			while (i--) {
2317 				phba->ProgramType[j++] = vpd[(*pindex)++];
2318 				if (j == 255)
2319 					break;
2320 			}
2321 			phba->ProgramType[j] = 0;
2322 			continue;
2323 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2324 			phba->vpd_flag |= VPD_PORT;
2325 			*pindex += 2;
2326 			i = vpd[*pindex];
2327 			*pindex += 1;
2328 			j = 0;
2329 			length -= (3 + i);
2330 			while (i--) {
2331 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2332 				    (phba->sli4_hba.pport_name_sta ==
2333 				     LPFC_SLI4_PPNAME_GET)) {
2334 					j++;
2335 					(*pindex)++;
2336 				} else
2337 					phba->Port[j++] = vpd[(*pindex)++];
2338 				if (j == 19)
2339 					break;
2340 			}
2341 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2342 			    (phba->sli4_hba.pport_name_sta ==
2343 			     LPFC_SLI4_PPNAME_NON))
2344 				phba->Port[j] = 0;
2345 			continue;
2346 		} else {
2347 			*pindex += 2;
2348 			i = vpd[*pindex];
2349 			*pindex += 1;
2350 			*pindex += i;
2351 			length -= (3 + i);
2352 		}
2353 	}
2354 }
2355 
2356 /**
2357  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2358  * @phba: pointer to lpfc hba data structure.
2359  * @vpd: pointer to the vital product data.
2360  * @len: length of the vital product data in bytes.
2361  *
2362  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2363  * an array of characters. In this routine, the ModelName, ProgramType, and
2364  * ModelDesc, etc. fields of the phba data structure will be populated.
2365  *
2366  * Return codes
2367  *   0 - pointer to the VPD passed in is NULL
2368  *   1 - success
2369  **/
2370 int
2371 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2372 {
2373 	uint8_t lenlo, lenhi;
2374 	int Length;
2375 	int i;
2376 	int finished = 0;
2377 	int index = 0;
2378 
2379 	if (!vpd)
2380 		return 0;
2381 
2382 	/* Vital Product */
2383 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2384 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2385 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2386 			(uint32_t) vpd[3]);
2387 	while (!finished && (index < (len - 4))) {
2388 		switch (vpd[index]) {
2389 		case 0x82:
2390 		case 0x91:
2391 			index += 1;
2392 			lenlo = vpd[index];
2393 			index += 1;
2394 			lenhi = vpd[index];
2395 			index += 1;
2396 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2397 			index += i;
2398 			break;
2399 		case 0x90:
2400 			index += 1;
2401 			lenlo = vpd[index];
2402 			index += 1;
2403 			lenhi = vpd[index];
2404 			index += 1;
2405 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2406 			if (Length > len - index)
2407 				Length = len - index;
2408 
2409 			lpfc_fill_vpd(phba, vpd, Length, &index);
2410 			finished = 0;
2411 			break;
2412 		case 0x78:
2413 			finished = 1;
2414 			break;
2415 		default:
2416 			index ++;
2417 			break;
2418 		}
2419 	}
2420 
2421 	return(1);
2422 }
2423 
2424 /**
2425  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2426  * @phba: pointer to lpfc hba data structure.
2427  * @mdp: pointer to the data structure to hold the derived model name.
2428  * @descp: pointer to the data structure to hold the derived description.
2429  *
2430  * This routine retrieves HBA's description based on its registered PCI device
2431  * ID. The @descp passed into this function points to an array of 256 chars. It
2432  * shall be returned with the model name, maximum speed, and the host bus type.
2433  * The @mdp passed into this function points to an array of 80 chars. When the
2434  * function returns, the @mdp will be filled with the model name.
2435  **/
2436 static void
2437 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2438 {
2439 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2440 	char *model = "<Unknown>";
2441 	int tbolt = 0;
2442 
2443 	switch (sub_dev_id) {
2444 	case PCI_DEVICE_ID_CLRY_161E:
2445 		model = "161E";
2446 		break;
2447 	case PCI_DEVICE_ID_CLRY_162E:
2448 		model = "162E";
2449 		break;
2450 	case PCI_DEVICE_ID_CLRY_164E:
2451 		model = "164E";
2452 		break;
2453 	case PCI_DEVICE_ID_CLRY_161P:
2454 		model = "161P";
2455 		break;
2456 	case PCI_DEVICE_ID_CLRY_162P:
2457 		model = "162P";
2458 		break;
2459 	case PCI_DEVICE_ID_CLRY_164P:
2460 		model = "164P";
2461 		break;
2462 	case PCI_DEVICE_ID_CLRY_321E:
2463 		model = "321E";
2464 		break;
2465 	case PCI_DEVICE_ID_CLRY_322E:
2466 		model = "322E";
2467 		break;
2468 	case PCI_DEVICE_ID_CLRY_324E:
2469 		model = "324E";
2470 		break;
2471 	case PCI_DEVICE_ID_CLRY_321P:
2472 		model = "321P";
2473 		break;
2474 	case PCI_DEVICE_ID_CLRY_322P:
2475 		model = "322P";
2476 		break;
2477 	case PCI_DEVICE_ID_CLRY_324P:
2478 		model = "324P";
2479 		break;
2480 	case PCI_DEVICE_ID_TLFC_2XX2:
2481 		model = "2XX2";
2482 		tbolt = 1;
2483 		break;
2484 	case PCI_DEVICE_ID_TLFC_3162:
2485 		model = "3162";
2486 		tbolt = 1;
2487 		break;
2488 	case PCI_DEVICE_ID_TLFC_3322:
2489 		model = "3322";
2490 		tbolt = 1;
2491 		break;
2492 	default:
2493 		model = "Unknown";
2494 		break;
2495 	}
2496 
2497 	if (mdp && mdp[0] == '\0')
2498 		snprintf(mdp, 79, "%s", model);
2499 
2500 	if (descp && descp[0] == '\0')
2501 		snprintf(descp, 255,
2502 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2503 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2504 			 model,
2505 			 phba->Port);
2506 }
2507 
2508 /**
2509  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2510  * @phba: pointer to lpfc hba data structure.
2511  * @mdp: pointer to the data structure to hold the derived model name.
2512  * @descp: pointer to the data structure to hold the derived description.
2513  *
2514  * This routine retrieves HBA's description based on its registered PCI device
2515  * ID. The @descp passed into this function points to an array of 256 chars. It
2516  * shall be returned with the model name, maximum speed, and the host bus type.
2517  * The @mdp passed into this function points to an array of 80 chars. When the
2518  * function returns, the @mdp will be filled with the model name.
2519  **/
2520 static void
2521 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2522 {
2523 	lpfc_vpd_t *vp;
2524 	uint16_t dev_id = phba->pcidev->device;
2525 	int max_speed;
2526 	int GE = 0;
2527 	int oneConnect = 0; /* default is not a oneConnect */
2528 	struct {
2529 		char *name;
2530 		char *bus;
2531 		char *function;
2532 	} m = {"<Unknown>", "", ""};
2533 
2534 	if (mdp && mdp[0] != '\0'
2535 		&& descp && descp[0] != '\0')
2536 		return;
2537 
2538 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2539 		lpfc_get_atto_model_desc(phba, mdp, descp);
2540 		return;
2541 	}
2542 
2543 	if (phba->lmt & LMT_64Gb)
2544 		max_speed = 64;
2545 	else if (phba->lmt & LMT_32Gb)
2546 		max_speed = 32;
2547 	else if (phba->lmt & LMT_16Gb)
2548 		max_speed = 16;
2549 	else if (phba->lmt & LMT_10Gb)
2550 		max_speed = 10;
2551 	else if (phba->lmt & LMT_8Gb)
2552 		max_speed = 8;
2553 	else if (phba->lmt & LMT_4Gb)
2554 		max_speed = 4;
2555 	else if (phba->lmt & LMT_2Gb)
2556 		max_speed = 2;
2557 	else if (phba->lmt & LMT_1Gb)
2558 		max_speed = 1;
2559 	else
2560 		max_speed = 0;
2561 
2562 	vp = &phba->vpd;
2563 
2564 	switch (dev_id) {
2565 	case PCI_DEVICE_ID_FIREFLY:
2566 		m = (typeof(m)){"LP6000", "PCI",
2567 				"Obsolete, Unsupported Fibre Channel Adapter"};
2568 		break;
2569 	case PCI_DEVICE_ID_SUPERFLY:
2570 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2571 			m = (typeof(m)){"LP7000", "PCI", ""};
2572 		else
2573 			m = (typeof(m)){"LP7000E", "PCI", ""};
2574 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2575 		break;
2576 	case PCI_DEVICE_ID_DRAGONFLY:
2577 		m = (typeof(m)){"LP8000", "PCI",
2578 				"Obsolete, Unsupported Fibre Channel Adapter"};
2579 		break;
2580 	case PCI_DEVICE_ID_CENTAUR:
2581 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2582 			m = (typeof(m)){"LP9002", "PCI", ""};
2583 		else
2584 			m = (typeof(m)){"LP9000", "PCI", ""};
2585 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2586 		break;
2587 	case PCI_DEVICE_ID_RFLY:
2588 		m = (typeof(m)){"LP952", "PCI",
2589 				"Obsolete, Unsupported Fibre Channel Adapter"};
2590 		break;
2591 	case PCI_DEVICE_ID_PEGASUS:
2592 		m = (typeof(m)){"LP9802", "PCI-X",
2593 				"Obsolete, Unsupported Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_THOR:
2596 		m = (typeof(m)){"LP10000", "PCI-X",
2597 				"Obsolete, Unsupported Fibre Channel Adapter"};
2598 		break;
2599 	case PCI_DEVICE_ID_VIPER:
2600 		m = (typeof(m)){"LPX1000",  "PCI-X",
2601 				"Obsolete, Unsupported Fibre Channel Adapter"};
2602 		break;
2603 	case PCI_DEVICE_ID_PFLY:
2604 		m = (typeof(m)){"LP982", "PCI-X",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_TFLY:
2608 		m = (typeof(m)){"LP1050", "PCI-X",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_HELIOS:
2612 		m = (typeof(m)){"LP11000", "PCI-X2",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_HELIOS_SCSP:
2616 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2617 				"Obsolete, Unsupported Fibre Channel Adapter"};
2618 		break;
2619 	case PCI_DEVICE_ID_HELIOS_DCSP:
2620 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2621 				"Obsolete, Unsupported Fibre Channel Adapter"};
2622 		break;
2623 	case PCI_DEVICE_ID_NEPTUNE:
2624 		m = (typeof(m)){"LPe1000", "PCIe",
2625 				"Obsolete, Unsupported Fibre Channel Adapter"};
2626 		break;
2627 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2628 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2632 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2633 				"Obsolete, Unsupported Fibre Channel Adapter"};
2634 		break;
2635 	case PCI_DEVICE_ID_BMID:
2636 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_BSMB:
2639 		m = (typeof(m)){"LP111", "PCI-X2",
2640 				"Obsolete, Unsupported Fibre Channel Adapter"};
2641 		break;
2642 	case PCI_DEVICE_ID_ZEPHYR:
2643 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2646 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2649 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2650 		GE = 1;
2651 		break;
2652 	case PCI_DEVICE_ID_ZMID:
2653 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2654 		break;
2655 	case PCI_DEVICE_ID_ZSMB:
2656 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2657 		break;
2658 	case PCI_DEVICE_ID_LP101:
2659 		m = (typeof(m)){"LP101", "PCI-X",
2660 				"Obsolete, Unsupported Fibre Channel Adapter"};
2661 		break;
2662 	case PCI_DEVICE_ID_LP10000S:
2663 		m = (typeof(m)){"LP10000-S", "PCI",
2664 				"Obsolete, Unsupported Fibre Channel Adapter"};
2665 		break;
2666 	case PCI_DEVICE_ID_LP11000S:
2667 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2668 				"Obsolete, Unsupported Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_LPE11000S:
2671 		m = (typeof(m)){"LPe11000-S", "PCIe",
2672 				"Obsolete, Unsupported Fibre Channel Adapter"};
2673 		break;
2674 	case PCI_DEVICE_ID_SAT:
2675 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2676 		break;
2677 	case PCI_DEVICE_ID_SAT_MID:
2678 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2679 		break;
2680 	case PCI_DEVICE_ID_SAT_SMB:
2681 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2682 		break;
2683 	case PCI_DEVICE_ID_SAT_DCSP:
2684 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_SAT_SCSP:
2687 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2688 		break;
2689 	case PCI_DEVICE_ID_SAT_S:
2690 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2691 		break;
2692 	case PCI_DEVICE_ID_PROTEUS_VF:
2693 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2694 				"Obsolete, Unsupported Fibre Channel Adapter"};
2695 		break;
2696 	case PCI_DEVICE_ID_PROTEUS_PF:
2697 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2698 				"Obsolete, Unsupported Fibre Channel Adapter"};
2699 		break;
2700 	case PCI_DEVICE_ID_PROTEUS_S:
2701 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2702 				"Obsolete, Unsupported Fibre Channel Adapter"};
2703 		break;
2704 	case PCI_DEVICE_ID_TIGERSHARK:
2705 		oneConnect = 1;
2706 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2707 		break;
2708 	case PCI_DEVICE_ID_TOMCAT:
2709 		oneConnect = 1;
2710 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2711 		break;
2712 	case PCI_DEVICE_ID_FALCON:
2713 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2714 				"EmulexSecure Fibre"};
2715 		break;
2716 	case PCI_DEVICE_ID_BALIUS:
2717 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2718 				"Obsolete, Unsupported Fibre Channel Adapter"};
2719 		break;
2720 	case PCI_DEVICE_ID_LANCER_FC:
2721 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2722 		break;
2723 	case PCI_DEVICE_ID_LANCER_FC_VF:
2724 		m = (typeof(m)){"LPe16000", "PCIe",
2725 				"Obsolete, Unsupported Fibre Channel Adapter"};
2726 		break;
2727 	case PCI_DEVICE_ID_LANCER_FCOE:
2728 		oneConnect = 1;
2729 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2730 		break;
2731 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2732 		oneConnect = 1;
2733 		m = (typeof(m)){"OCe15100", "PCIe",
2734 				"Obsolete, Unsupported FCoE"};
2735 		break;
2736 	case PCI_DEVICE_ID_LANCER_G6_FC:
2737 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2738 		break;
2739 	case PCI_DEVICE_ID_LANCER_G7_FC:
2740 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2741 		break;
2742 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2743 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2744 		break;
2745 	case PCI_DEVICE_ID_SKYHAWK:
2746 	case PCI_DEVICE_ID_SKYHAWK_VF:
2747 		oneConnect = 1;
2748 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2749 		break;
2750 	default:
2751 		m = (typeof(m)){"Unknown", "", ""};
2752 		break;
2753 	}
2754 
2755 	if (mdp && mdp[0] == '\0')
2756 		snprintf(mdp, 79,"%s", m.name);
2757 	/*
2758 	 * oneConnect hba requires special processing, they are all initiators
2759 	 * and we put the port number on the end
2760 	 */
2761 	if (descp && descp[0] == '\0') {
2762 		if (oneConnect)
2763 			snprintf(descp, 255,
2764 				"Emulex OneConnect %s, %s Initiator %s",
2765 				m.name, m.function,
2766 				phba->Port);
2767 		else if (max_speed == 0)
2768 			snprintf(descp, 255,
2769 				"Emulex %s %s %s",
2770 				m.name, m.bus, m.function);
2771 		else
2772 			snprintf(descp, 255,
2773 				"Emulex %s %d%s %s %s",
2774 				m.name, max_speed, (GE) ? "GE" : "Gb",
2775 				m.bus, m.function);
2776 	}
2777 }
2778 
2779 /**
2780  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2781  * @phba: pointer to lpfc hba data structure.
2782  * @pring: pointer to a IOCB ring.
2783  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2784  *
2785  * This routine posts a given number of IOCBs with the associated DMA buffer
2786  * descriptors specified by the cnt argument to the given IOCB ring.
2787  *
2788  * Return codes
2789  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2790  **/
2791 int
2792 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2793 {
2794 	IOCB_t *icmd;
2795 	struct lpfc_iocbq *iocb;
2796 	struct lpfc_dmabuf *mp1, *mp2;
2797 
2798 	cnt += pring->missbufcnt;
2799 
2800 	/* While there are buffers to post */
2801 	while (cnt > 0) {
2802 		/* Allocate buffer for  command iocb */
2803 		iocb = lpfc_sli_get_iocbq(phba);
2804 		if (iocb == NULL) {
2805 			pring->missbufcnt = cnt;
2806 			return cnt;
2807 		}
2808 		icmd = &iocb->iocb;
2809 
2810 		/* 2 buffers can be posted per command */
2811 		/* Allocate buffer to post */
2812 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2813 		if (mp1)
2814 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2815 		if (!mp1 || !mp1->virt) {
2816 			kfree(mp1);
2817 			lpfc_sli_release_iocbq(phba, iocb);
2818 			pring->missbufcnt = cnt;
2819 			return cnt;
2820 		}
2821 
2822 		INIT_LIST_HEAD(&mp1->list);
2823 		/* Allocate buffer to post */
2824 		if (cnt > 1) {
2825 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2826 			if (mp2)
2827 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2828 							    &mp2->phys);
2829 			if (!mp2 || !mp2->virt) {
2830 				kfree(mp2);
2831 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2832 				kfree(mp1);
2833 				lpfc_sli_release_iocbq(phba, iocb);
2834 				pring->missbufcnt = cnt;
2835 				return cnt;
2836 			}
2837 
2838 			INIT_LIST_HEAD(&mp2->list);
2839 		} else {
2840 			mp2 = NULL;
2841 		}
2842 
2843 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2844 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2845 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2846 		icmd->ulpBdeCount = 1;
2847 		cnt--;
2848 		if (mp2) {
2849 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2850 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2851 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2852 			cnt--;
2853 			icmd->ulpBdeCount = 2;
2854 		}
2855 
2856 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2857 		icmd->ulpLe = 1;
2858 
2859 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2860 		    IOCB_ERROR) {
2861 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2862 			kfree(mp1);
2863 			cnt++;
2864 			if (mp2) {
2865 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2866 				kfree(mp2);
2867 				cnt++;
2868 			}
2869 			lpfc_sli_release_iocbq(phba, iocb);
2870 			pring->missbufcnt = cnt;
2871 			return cnt;
2872 		}
2873 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2874 		if (mp2)
2875 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2876 	}
2877 	pring->missbufcnt = 0;
2878 	return 0;
2879 }
2880 
2881 /**
2882  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2883  * @phba: pointer to lpfc hba data structure.
2884  *
2885  * This routine posts initial receive IOCB buffers to the ELS ring. The
2886  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2887  * set to 64 IOCBs. SLI3 only.
2888  *
2889  * Return codes
2890  *   0 - success (currently always success)
2891  **/
2892 static int
2893 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2894 {
2895 	struct lpfc_sli *psli = &phba->sli;
2896 
2897 	/* Ring 0, ELS / CT buffers */
2898 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2899 	/* Ring 2 - FCP no buffers needed */
2900 
2901 	return 0;
2902 }
2903 
2904 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2905 
2906 /**
2907  * lpfc_sha_init - Set up initial array of hash table entries
2908  * @HashResultPointer: pointer to an array as hash table.
2909  *
2910  * This routine sets up the initial values to the array of hash table entries
2911  * for the LC HBAs.
2912  **/
2913 static void
2914 lpfc_sha_init(uint32_t * HashResultPointer)
2915 {
2916 	HashResultPointer[0] = 0x67452301;
2917 	HashResultPointer[1] = 0xEFCDAB89;
2918 	HashResultPointer[2] = 0x98BADCFE;
2919 	HashResultPointer[3] = 0x10325476;
2920 	HashResultPointer[4] = 0xC3D2E1F0;
2921 }
2922 
2923 /**
2924  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2925  * @HashResultPointer: pointer to an initial/result hash table.
2926  * @HashWorkingPointer: pointer to an working hash table.
2927  *
2928  * This routine iterates an initial hash table pointed by @HashResultPointer
2929  * with the values from the working hash table pointeed by @HashWorkingPointer.
2930  * The results are putting back to the initial hash table, returned through
2931  * the @HashResultPointer as the result hash table.
2932  **/
2933 static void
2934 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2935 {
2936 	int t;
2937 	uint32_t TEMP;
2938 	uint32_t A, B, C, D, E;
2939 	t = 16;
2940 	do {
2941 		HashWorkingPointer[t] =
2942 		    S(1,
2943 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2944 								     8] ^
2945 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2946 	} while (++t <= 79);
2947 	t = 0;
2948 	A = HashResultPointer[0];
2949 	B = HashResultPointer[1];
2950 	C = HashResultPointer[2];
2951 	D = HashResultPointer[3];
2952 	E = HashResultPointer[4];
2953 
2954 	do {
2955 		if (t < 20) {
2956 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2957 		} else if (t < 40) {
2958 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2959 		} else if (t < 60) {
2960 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2961 		} else {
2962 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2963 		}
2964 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2965 		E = D;
2966 		D = C;
2967 		C = S(30, B);
2968 		B = A;
2969 		A = TEMP;
2970 	} while (++t <= 79);
2971 
2972 	HashResultPointer[0] += A;
2973 	HashResultPointer[1] += B;
2974 	HashResultPointer[2] += C;
2975 	HashResultPointer[3] += D;
2976 	HashResultPointer[4] += E;
2977 
2978 }
2979 
2980 /**
2981  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2982  * @RandomChallenge: pointer to the entry of host challenge random number array.
2983  * @HashWorking: pointer to the entry of the working hash array.
2984  *
2985  * This routine calculates the working hash array referred by @HashWorking
2986  * from the challenge random numbers associated with the host, referred by
2987  * @RandomChallenge. The result is put into the entry of the working hash
2988  * array and returned by reference through @HashWorking.
2989  **/
2990 static void
2991 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2992 {
2993 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2994 }
2995 
2996 /**
2997  * lpfc_hba_init - Perform special handling for LC HBA initialization
2998  * @phba: pointer to lpfc hba data structure.
2999  * @hbainit: pointer to an array of unsigned 32-bit integers.
3000  *
3001  * This routine performs the special handling for LC HBA initialization.
3002  **/
3003 void
3004 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3005 {
3006 	int t;
3007 	uint32_t *HashWorking;
3008 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3009 
3010 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3011 	if (!HashWorking)
3012 		return;
3013 
3014 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3015 	HashWorking[1] = HashWorking[79] = *pwwnn;
3016 
3017 	for (t = 0; t < 7; t++)
3018 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3019 
3020 	lpfc_sha_init(hbainit);
3021 	lpfc_sha_iterate(hbainit, HashWorking);
3022 	kfree(HashWorking);
3023 }
3024 
3025 /**
3026  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3027  * @vport: pointer to a virtual N_Port data structure.
3028  *
3029  * This routine performs the necessary cleanups before deleting the @vport.
3030  * It invokes the discovery state machine to perform necessary state
3031  * transitions and to release the ndlps associated with the @vport. Note,
3032  * the physical port is treated as @vport 0.
3033  **/
3034 void
3035 lpfc_cleanup(struct lpfc_vport *vport)
3036 {
3037 	struct lpfc_hba   *phba = vport->phba;
3038 	struct lpfc_nodelist *ndlp, *next_ndlp;
3039 	int i = 0;
3040 
3041 	if (phba->link_state > LPFC_LINK_DOWN)
3042 		lpfc_port_link_failure(vport);
3043 
3044 	/* Clean up VMID resources */
3045 	if (lpfc_is_vmid_enabled(phba))
3046 		lpfc_vmid_vport_cleanup(vport);
3047 
3048 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3049 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3050 		    ndlp->nlp_DID == Fabric_DID) {
3051 			/* Just free up ndlp with Fabric_DID for vports */
3052 			lpfc_nlp_put(ndlp);
3053 			continue;
3054 		}
3055 
3056 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3057 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3058 			lpfc_nlp_put(ndlp);
3059 			continue;
3060 		}
3061 
3062 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3063 		 * DEVICE_RM event.
3064 		 */
3065 		if (ndlp->nlp_type & NLP_FABRIC &&
3066 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3067 			lpfc_disc_state_machine(vport, ndlp, NULL,
3068 					NLP_EVT_DEVICE_RECOVERY);
3069 
3070 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3071 			lpfc_disc_state_machine(vport, ndlp, NULL,
3072 					NLP_EVT_DEVICE_RM);
3073 	}
3074 
3075 	/* This is a special case flush to return all
3076 	 * IOs before entering this loop. There are
3077 	 * two points in the code where a flush is
3078 	 * avoided if the FC_UNLOADING flag is set.
3079 	 * one is in the multipool destroy,
3080 	 * (this prevents a crash) and the other is
3081 	 * in the nvme abort handler, ( also prevents
3082 	 * a crash). Both of these exceptions are
3083 	 * cases where the slot is still accessible.
3084 	 * The flush here is only when the pci slot
3085 	 * is offline.
3086 	 */
3087 	if (vport->load_flag & FC_UNLOADING &&
3088 	    pci_channel_offline(phba->pcidev))
3089 		lpfc_sli_flush_io_rings(vport->phba);
3090 
3091 	/* At this point, ALL ndlp's should be gone
3092 	 * because of the previous NLP_EVT_DEVICE_RM.
3093 	 * Lets wait for this to happen, if needed.
3094 	 */
3095 	while (!list_empty(&vport->fc_nodes)) {
3096 		if (i++ > 3000) {
3097 			lpfc_printf_vlog(vport, KERN_ERR,
3098 					 LOG_TRACE_EVENT,
3099 				"0233 Nodelist not empty\n");
3100 			list_for_each_entry_safe(ndlp, next_ndlp,
3101 						&vport->fc_nodes, nlp_listp) {
3102 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3103 						 LOG_DISCOVERY,
3104 						 "0282 did:x%x ndlp:x%px "
3105 						 "refcnt:%d xflags x%x nflag x%x\n",
3106 						 ndlp->nlp_DID, (void *)ndlp,
3107 						 kref_read(&ndlp->kref),
3108 						 ndlp->fc4_xpt_flags,
3109 						 ndlp->nlp_flag);
3110 			}
3111 			break;
3112 		}
3113 
3114 		/* Wait for any activity on ndlps to settle */
3115 		msleep(10);
3116 	}
3117 	lpfc_cleanup_vports_rrqs(vport, NULL);
3118 }
3119 
3120 /**
3121  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3122  * @vport: pointer to a virtual N_Port data structure.
3123  *
3124  * This routine stops all the timers associated with a @vport. This function
3125  * is invoked before disabling or deleting a @vport. Note that the physical
3126  * port is treated as @vport 0.
3127  **/
3128 void
3129 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3130 {
3131 	del_timer_sync(&vport->els_tmofunc);
3132 	del_timer_sync(&vport->delayed_disc_tmo);
3133 	lpfc_can_disctmo(vport);
3134 	return;
3135 }
3136 
3137 /**
3138  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3139  * @phba: pointer to lpfc hba data structure.
3140  *
3141  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3142  * caller of this routine should already hold the host lock.
3143  **/
3144 void
3145 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3146 {
3147 	/* Clear pending FCF rediscovery wait flag */
3148 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3149 
3150 	/* Now, try to stop the timer */
3151 	del_timer(&phba->fcf.redisc_wait);
3152 }
3153 
3154 /**
3155  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3156  * @phba: pointer to lpfc hba data structure.
3157  *
3158  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3159  * checks whether the FCF rediscovery wait timer is pending with the host
3160  * lock held before proceeding with disabling the timer and clearing the
3161  * wait timer pendig flag.
3162  **/
3163 void
3164 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3165 {
3166 	spin_lock_irq(&phba->hbalock);
3167 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3168 		/* FCF rediscovery timer already fired or stopped */
3169 		spin_unlock_irq(&phba->hbalock);
3170 		return;
3171 	}
3172 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3173 	/* Clear failover in progress flags */
3174 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3175 	spin_unlock_irq(&phba->hbalock);
3176 }
3177 
3178 /**
3179  * lpfc_cmf_stop - Stop CMF processing
3180  * @phba: pointer to lpfc hba data structure.
3181  *
3182  * This is called when the link goes down or if CMF mode is turned OFF.
3183  * It is also called when going offline or unloaded just before the
3184  * congestion info buffer is unregistered.
3185  **/
3186 void
3187 lpfc_cmf_stop(struct lpfc_hba *phba)
3188 {
3189 	int cpu;
3190 	struct lpfc_cgn_stat *cgs;
3191 
3192 	/* We only do something if CMF is enabled */
3193 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3194 		return;
3195 
3196 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3197 			"6221 Stop CMF / Cancel Timer\n");
3198 
3199 	/* Cancel the CMF timer */
3200 	hrtimer_cancel(&phba->cmf_timer);
3201 
3202 	/* Zero CMF counters */
3203 	atomic_set(&phba->cmf_busy, 0);
3204 	for_each_present_cpu(cpu) {
3205 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3206 		atomic64_set(&cgs->total_bytes, 0);
3207 		atomic64_set(&cgs->rcv_bytes, 0);
3208 		atomic_set(&cgs->rx_io_cnt, 0);
3209 		atomic64_set(&cgs->rx_latency, 0);
3210 	}
3211 	atomic_set(&phba->cmf_bw_wait, 0);
3212 
3213 	/* Resume any blocked IO - Queue unblock on workqueue */
3214 	queue_work(phba->wq, &phba->unblock_request_work);
3215 }
3216 
3217 static inline uint64_t
3218 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3219 {
3220 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3221 
3222 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3223 }
3224 
3225 void
3226 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3227 {
3228 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3229 			"6223 Signal CMF init\n");
3230 
3231 	/* Use the new fc_linkspeed to recalculate */
3232 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3233 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3234 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3235 					    phba->cmf_interval_rate, 1000);
3236 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3237 
3238 	/* This is a signal to firmware to sync up CMF BW with link speed */
3239 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3240 }
3241 
3242 /**
3243  * lpfc_cmf_start - Start CMF processing
3244  * @phba: pointer to lpfc hba data structure.
3245  *
3246  * This is called when the link comes up or if CMF mode is turned OFF
3247  * to Monitor or Managed.
3248  **/
3249 void
3250 lpfc_cmf_start(struct lpfc_hba *phba)
3251 {
3252 	struct lpfc_cgn_stat *cgs;
3253 	int cpu;
3254 
3255 	/* We only do something if CMF is enabled */
3256 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3257 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3258 		return;
3259 
3260 	/* Reinitialize congestion buffer info */
3261 	lpfc_init_congestion_buf(phba);
3262 
3263 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3264 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3265 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3266 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3267 
3268 	atomic_set(&phba->cmf_busy, 0);
3269 	for_each_present_cpu(cpu) {
3270 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3271 		atomic64_set(&cgs->total_bytes, 0);
3272 		atomic64_set(&cgs->rcv_bytes, 0);
3273 		atomic_set(&cgs->rx_io_cnt, 0);
3274 		atomic64_set(&cgs->rx_latency, 0);
3275 	}
3276 	phba->cmf_latency.tv_sec = 0;
3277 	phba->cmf_latency.tv_nsec = 0;
3278 
3279 	lpfc_cmf_signal_init(phba);
3280 
3281 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3282 			"6222 Start CMF / Timer\n");
3283 
3284 	phba->cmf_timer_cnt = 0;
3285 	hrtimer_start(&phba->cmf_timer,
3286 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3287 		      HRTIMER_MODE_REL);
3288 	/* Setup for latency check in IO cmpl routines */
3289 	ktime_get_real_ts64(&phba->cmf_latency);
3290 
3291 	atomic_set(&phba->cmf_bw_wait, 0);
3292 	atomic_set(&phba->cmf_stop_io, 0);
3293 }
3294 
3295 /**
3296  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3297  * @phba: pointer to lpfc hba data structure.
3298  *
3299  * This routine stops all the timers associated with a HBA. This function is
3300  * invoked before either putting a HBA offline or unloading the driver.
3301  **/
3302 void
3303 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3304 {
3305 	if (phba->pport)
3306 		lpfc_stop_vport_timers(phba->pport);
3307 	cancel_delayed_work_sync(&phba->eq_delay_work);
3308 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3309 	del_timer_sync(&phba->sli.mbox_tmo);
3310 	del_timer_sync(&phba->fabric_block_timer);
3311 	del_timer_sync(&phba->eratt_poll);
3312 	del_timer_sync(&phba->hb_tmofunc);
3313 	if (phba->sli_rev == LPFC_SLI_REV4) {
3314 		del_timer_sync(&phba->rrq_tmr);
3315 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3316 	}
3317 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3318 
3319 	switch (phba->pci_dev_grp) {
3320 	case LPFC_PCI_DEV_LP:
3321 		/* Stop any LightPulse device specific driver timers */
3322 		del_timer_sync(&phba->fcp_poll_timer);
3323 		break;
3324 	case LPFC_PCI_DEV_OC:
3325 		/* Stop any OneConnect device specific driver timers */
3326 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3327 		break;
3328 	default:
3329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3330 				"0297 Invalid device group (x%x)\n",
3331 				phba->pci_dev_grp);
3332 		break;
3333 	}
3334 	return;
3335 }
3336 
3337 /**
3338  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3339  * @phba: pointer to lpfc hba data structure.
3340  * @mbx_action: flag for mailbox no wait action.
3341  *
3342  * This routine marks a HBA's management interface as blocked. Once the HBA's
3343  * management interface is marked as blocked, all the user space access to
3344  * the HBA, whether they are from sysfs interface or libdfc interface will
3345  * all be blocked. The HBA is set to block the management interface when the
3346  * driver prepares the HBA interface for online or offline.
3347  **/
3348 static void
3349 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3350 {
3351 	unsigned long iflag;
3352 	uint8_t actcmd = MBX_HEARTBEAT;
3353 	unsigned long timeout;
3354 
3355 	spin_lock_irqsave(&phba->hbalock, iflag);
3356 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3357 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3358 	if (mbx_action == LPFC_MBX_NO_WAIT)
3359 		return;
3360 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3361 	spin_lock_irqsave(&phba->hbalock, iflag);
3362 	if (phba->sli.mbox_active) {
3363 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3364 		/* Determine how long we might wait for the active mailbox
3365 		 * command to be gracefully completed by firmware.
3366 		 */
3367 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3368 				phba->sli.mbox_active) * 1000) + jiffies;
3369 	}
3370 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3371 
3372 	/* Wait for the outstnading mailbox command to complete */
3373 	while (phba->sli.mbox_active) {
3374 		/* Check active mailbox complete status every 2ms */
3375 		msleep(2);
3376 		if (time_after(jiffies, timeout)) {
3377 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3378 					"2813 Mgmt IO is Blocked %x "
3379 					"- mbox cmd %x still active\n",
3380 					phba->sli.sli_flag, actcmd);
3381 			break;
3382 		}
3383 	}
3384 }
3385 
3386 /**
3387  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3388  * @phba: pointer to lpfc hba data structure.
3389  *
3390  * Allocate RPIs for all active remote nodes. This is needed whenever
3391  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3392  * is to fixup the temporary rpi assignments.
3393  **/
3394 void
3395 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3396 {
3397 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3398 	struct lpfc_vport **vports;
3399 	int i, rpi;
3400 
3401 	if (phba->sli_rev != LPFC_SLI_REV4)
3402 		return;
3403 
3404 	vports = lpfc_create_vport_work_array(phba);
3405 	if (vports == NULL)
3406 		return;
3407 
3408 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3409 		if (vports[i]->load_flag & FC_UNLOADING)
3410 			continue;
3411 
3412 		list_for_each_entry_safe(ndlp, next_ndlp,
3413 					 &vports[i]->fc_nodes,
3414 					 nlp_listp) {
3415 			rpi = lpfc_sli4_alloc_rpi(phba);
3416 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3417 				/* TODO print log? */
3418 				continue;
3419 			}
3420 			ndlp->nlp_rpi = rpi;
3421 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3422 					 LOG_NODE | LOG_DISCOVERY,
3423 					 "0009 Assign RPI x%x to ndlp x%px "
3424 					 "DID:x%06x flg:x%x\n",
3425 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3426 					 ndlp->nlp_flag);
3427 		}
3428 	}
3429 	lpfc_destroy_vport_work_array(phba, vports);
3430 }
3431 
3432 /**
3433  * lpfc_create_expedite_pool - create expedite pool
3434  * @phba: pointer to lpfc hba data structure.
3435  *
3436  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3437  * to expedite pool. Mark them as expedite.
3438  **/
3439 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3440 {
3441 	struct lpfc_sli4_hdw_queue *qp;
3442 	struct lpfc_io_buf *lpfc_ncmd;
3443 	struct lpfc_io_buf *lpfc_ncmd_next;
3444 	struct lpfc_epd_pool *epd_pool;
3445 	unsigned long iflag;
3446 
3447 	epd_pool = &phba->epd_pool;
3448 	qp = &phba->sli4_hba.hdwq[0];
3449 
3450 	spin_lock_init(&epd_pool->lock);
3451 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3452 	spin_lock(&epd_pool->lock);
3453 	INIT_LIST_HEAD(&epd_pool->list);
3454 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3455 				 &qp->lpfc_io_buf_list_put, list) {
3456 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3457 		lpfc_ncmd->expedite = true;
3458 		qp->put_io_bufs--;
3459 		epd_pool->count++;
3460 		if (epd_pool->count >= XRI_BATCH)
3461 			break;
3462 	}
3463 	spin_unlock(&epd_pool->lock);
3464 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3465 }
3466 
3467 /**
3468  * lpfc_destroy_expedite_pool - destroy expedite pool
3469  * @phba: pointer to lpfc hba data structure.
3470  *
3471  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3472  * of HWQ 0. Clear the mark.
3473  **/
3474 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3475 {
3476 	struct lpfc_sli4_hdw_queue *qp;
3477 	struct lpfc_io_buf *lpfc_ncmd;
3478 	struct lpfc_io_buf *lpfc_ncmd_next;
3479 	struct lpfc_epd_pool *epd_pool;
3480 	unsigned long iflag;
3481 
3482 	epd_pool = &phba->epd_pool;
3483 	qp = &phba->sli4_hba.hdwq[0];
3484 
3485 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3486 	spin_lock(&epd_pool->lock);
3487 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3488 				 &epd_pool->list, list) {
3489 		list_move_tail(&lpfc_ncmd->list,
3490 			       &qp->lpfc_io_buf_list_put);
3491 		lpfc_ncmd->flags = false;
3492 		qp->put_io_bufs++;
3493 		epd_pool->count--;
3494 	}
3495 	spin_unlock(&epd_pool->lock);
3496 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3497 }
3498 
3499 /**
3500  * lpfc_create_multixri_pools - create multi-XRI pools
3501  * @phba: pointer to lpfc hba data structure.
3502  *
3503  * This routine initialize public, private per HWQ. Then, move XRIs from
3504  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3505  * Initialized.
3506  **/
3507 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3508 {
3509 	u32 i, j;
3510 	u32 hwq_count;
3511 	u32 count_per_hwq;
3512 	struct lpfc_io_buf *lpfc_ncmd;
3513 	struct lpfc_io_buf *lpfc_ncmd_next;
3514 	unsigned long iflag;
3515 	struct lpfc_sli4_hdw_queue *qp;
3516 	struct lpfc_multixri_pool *multixri_pool;
3517 	struct lpfc_pbl_pool *pbl_pool;
3518 	struct lpfc_pvt_pool *pvt_pool;
3519 
3520 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3521 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3522 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3523 			phba->sli4_hba.io_xri_cnt);
3524 
3525 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3526 		lpfc_create_expedite_pool(phba);
3527 
3528 	hwq_count = phba->cfg_hdw_queue;
3529 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3530 
3531 	for (i = 0; i < hwq_count; i++) {
3532 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3533 
3534 		if (!multixri_pool) {
3535 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3536 					"1238 Failed to allocate memory for "
3537 					"multixri_pool\n");
3538 
3539 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3540 				lpfc_destroy_expedite_pool(phba);
3541 
3542 			j = 0;
3543 			while (j < i) {
3544 				qp = &phba->sli4_hba.hdwq[j];
3545 				kfree(qp->p_multixri_pool);
3546 				j++;
3547 			}
3548 			phba->cfg_xri_rebalancing = 0;
3549 			return;
3550 		}
3551 
3552 		qp = &phba->sli4_hba.hdwq[i];
3553 		qp->p_multixri_pool = multixri_pool;
3554 
3555 		multixri_pool->xri_limit = count_per_hwq;
3556 		multixri_pool->rrb_next_hwqid = i;
3557 
3558 		/* Deal with public free xri pool */
3559 		pbl_pool = &multixri_pool->pbl_pool;
3560 		spin_lock_init(&pbl_pool->lock);
3561 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3562 		spin_lock(&pbl_pool->lock);
3563 		INIT_LIST_HEAD(&pbl_pool->list);
3564 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3565 					 &qp->lpfc_io_buf_list_put, list) {
3566 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3567 			qp->put_io_bufs--;
3568 			pbl_pool->count++;
3569 		}
3570 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3571 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3572 				pbl_pool->count, i);
3573 		spin_unlock(&pbl_pool->lock);
3574 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3575 
3576 		/* Deal with private free xri pool */
3577 		pvt_pool = &multixri_pool->pvt_pool;
3578 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3579 		pvt_pool->low_watermark = XRI_BATCH;
3580 		spin_lock_init(&pvt_pool->lock);
3581 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3582 		INIT_LIST_HEAD(&pvt_pool->list);
3583 		pvt_pool->count = 0;
3584 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3585 	}
3586 }
3587 
3588 /**
3589  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3590  * @phba: pointer to lpfc hba data structure.
3591  *
3592  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3593  **/
3594 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3595 {
3596 	u32 i;
3597 	u32 hwq_count;
3598 	struct lpfc_io_buf *lpfc_ncmd;
3599 	struct lpfc_io_buf *lpfc_ncmd_next;
3600 	unsigned long iflag;
3601 	struct lpfc_sli4_hdw_queue *qp;
3602 	struct lpfc_multixri_pool *multixri_pool;
3603 	struct lpfc_pbl_pool *pbl_pool;
3604 	struct lpfc_pvt_pool *pvt_pool;
3605 
3606 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3607 		lpfc_destroy_expedite_pool(phba);
3608 
3609 	if (!(phba->pport->load_flag & FC_UNLOADING))
3610 		lpfc_sli_flush_io_rings(phba);
3611 
3612 	hwq_count = phba->cfg_hdw_queue;
3613 
3614 	for (i = 0; i < hwq_count; i++) {
3615 		qp = &phba->sli4_hba.hdwq[i];
3616 		multixri_pool = qp->p_multixri_pool;
3617 		if (!multixri_pool)
3618 			continue;
3619 
3620 		qp->p_multixri_pool = NULL;
3621 
3622 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3623 
3624 		/* Deal with public free xri pool */
3625 		pbl_pool = &multixri_pool->pbl_pool;
3626 		spin_lock(&pbl_pool->lock);
3627 
3628 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3629 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3630 				pbl_pool->count, i);
3631 
3632 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3633 					 &pbl_pool->list, list) {
3634 			list_move_tail(&lpfc_ncmd->list,
3635 				       &qp->lpfc_io_buf_list_put);
3636 			qp->put_io_bufs++;
3637 			pbl_pool->count--;
3638 		}
3639 
3640 		INIT_LIST_HEAD(&pbl_pool->list);
3641 		pbl_pool->count = 0;
3642 
3643 		spin_unlock(&pbl_pool->lock);
3644 
3645 		/* Deal with private free xri pool */
3646 		pvt_pool = &multixri_pool->pvt_pool;
3647 		spin_lock(&pvt_pool->lock);
3648 
3649 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3650 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3651 				pvt_pool->count, i);
3652 
3653 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3654 					 &pvt_pool->list, list) {
3655 			list_move_tail(&lpfc_ncmd->list,
3656 				       &qp->lpfc_io_buf_list_put);
3657 			qp->put_io_bufs++;
3658 			pvt_pool->count--;
3659 		}
3660 
3661 		INIT_LIST_HEAD(&pvt_pool->list);
3662 		pvt_pool->count = 0;
3663 
3664 		spin_unlock(&pvt_pool->lock);
3665 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3666 
3667 		kfree(multixri_pool);
3668 	}
3669 }
3670 
3671 /**
3672  * lpfc_online - Initialize and bring a HBA online
3673  * @phba: pointer to lpfc hba data structure.
3674  *
3675  * This routine initializes the HBA and brings a HBA online. During this
3676  * process, the management interface is blocked to prevent user space access
3677  * to the HBA interfering with the driver initialization.
3678  *
3679  * Return codes
3680  *   0 - successful
3681  *   1 - failed
3682  **/
3683 int
3684 lpfc_online(struct lpfc_hba *phba)
3685 {
3686 	struct lpfc_vport *vport;
3687 	struct lpfc_vport **vports;
3688 	int i, error = 0;
3689 	bool vpis_cleared = false;
3690 
3691 	if (!phba)
3692 		return 0;
3693 	vport = phba->pport;
3694 
3695 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3696 		return 0;
3697 
3698 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3699 			"0458 Bring Adapter online\n");
3700 
3701 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3702 
3703 	if (phba->sli_rev == LPFC_SLI_REV4) {
3704 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3705 			lpfc_unblock_mgmt_io(phba);
3706 			return 1;
3707 		}
3708 		spin_lock_irq(&phba->hbalock);
3709 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3710 			vpis_cleared = true;
3711 		spin_unlock_irq(&phba->hbalock);
3712 
3713 		/* Reestablish the local initiator port.
3714 		 * The offline process destroyed the previous lport.
3715 		 */
3716 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3717 				!phba->nvmet_support) {
3718 			error = lpfc_nvme_create_localport(phba->pport);
3719 			if (error)
3720 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3721 					"6132 NVME restore reg failed "
3722 					"on nvmei error x%x\n", error);
3723 		}
3724 	} else {
3725 		lpfc_sli_queue_init(phba);
3726 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3727 			lpfc_unblock_mgmt_io(phba);
3728 			return 1;
3729 		}
3730 	}
3731 
3732 	vports = lpfc_create_vport_work_array(phba);
3733 	if (vports != NULL) {
3734 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3735 			struct Scsi_Host *shost;
3736 			shost = lpfc_shost_from_vport(vports[i]);
3737 			spin_lock_irq(shost->host_lock);
3738 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3739 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3740 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3741 			if (phba->sli_rev == LPFC_SLI_REV4) {
3742 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3743 				if ((vpis_cleared) &&
3744 				    (vports[i]->port_type !=
3745 					LPFC_PHYSICAL_PORT))
3746 					vports[i]->vpi = 0;
3747 			}
3748 			spin_unlock_irq(shost->host_lock);
3749 		}
3750 	}
3751 	lpfc_destroy_vport_work_array(phba, vports);
3752 
3753 	if (phba->cfg_xri_rebalancing)
3754 		lpfc_create_multixri_pools(phba);
3755 
3756 	lpfc_cpuhp_add(phba);
3757 
3758 	lpfc_unblock_mgmt_io(phba);
3759 	return 0;
3760 }
3761 
3762 /**
3763  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3764  * @phba: pointer to lpfc hba data structure.
3765  *
3766  * This routine marks a HBA's management interface as not blocked. Once the
3767  * HBA's management interface is marked as not blocked, all the user space
3768  * access to the HBA, whether they are from sysfs interface or libdfc
3769  * interface will be allowed. The HBA is set to block the management interface
3770  * when the driver prepares the HBA interface for online or offline and then
3771  * set to unblock the management interface afterwards.
3772  **/
3773 void
3774 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3775 {
3776 	unsigned long iflag;
3777 
3778 	spin_lock_irqsave(&phba->hbalock, iflag);
3779 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3780 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3781 }
3782 
3783 /**
3784  * lpfc_offline_prep - Prepare a HBA to be brought offline
3785  * @phba: pointer to lpfc hba data structure.
3786  * @mbx_action: flag for mailbox shutdown action.
3787  *
3788  * This routine is invoked to prepare a HBA to be brought offline. It performs
3789  * unregistration login to all the nodes on all vports and flushes the mailbox
3790  * queue to make it ready to be brought offline.
3791  **/
3792 void
3793 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3794 {
3795 	struct lpfc_vport *vport = phba->pport;
3796 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3797 	struct lpfc_vport **vports;
3798 	struct Scsi_Host *shost;
3799 	int i;
3800 	int offline;
3801 	bool hba_pci_err;
3802 
3803 	if (vport->fc_flag & FC_OFFLINE_MODE)
3804 		return;
3805 
3806 	lpfc_block_mgmt_io(phba, mbx_action);
3807 
3808 	lpfc_linkdown(phba);
3809 
3810 	offline =  pci_channel_offline(phba->pcidev);
3811 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3812 
3813 	/* Issue an unreg_login to all nodes on all vports */
3814 	vports = lpfc_create_vport_work_array(phba);
3815 	if (vports != NULL) {
3816 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3817 			if (vports[i]->load_flag & FC_UNLOADING)
3818 				continue;
3819 			shost = lpfc_shost_from_vport(vports[i]);
3820 			spin_lock_irq(shost->host_lock);
3821 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3822 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3823 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3824 			spin_unlock_irq(shost->host_lock);
3825 
3826 			shost =	lpfc_shost_from_vport(vports[i]);
3827 			list_for_each_entry_safe(ndlp, next_ndlp,
3828 						 &vports[i]->fc_nodes,
3829 						 nlp_listp) {
3830 
3831 				spin_lock_irq(&ndlp->lock);
3832 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3833 				spin_unlock_irq(&ndlp->lock);
3834 
3835 				if (offline || hba_pci_err) {
3836 					spin_lock_irq(&ndlp->lock);
3837 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3838 							    NLP_RPI_REGISTERED);
3839 					spin_unlock_irq(&ndlp->lock);
3840 					if (phba->sli_rev == LPFC_SLI_REV4)
3841 						lpfc_sli_rpi_release(vports[i],
3842 								     ndlp);
3843 				} else {
3844 					lpfc_unreg_rpi(vports[i], ndlp);
3845 				}
3846 				/*
3847 				 * Whenever an SLI4 port goes offline, free the
3848 				 * RPI. Get a new RPI when the adapter port
3849 				 * comes back online.
3850 				 */
3851 				if (phba->sli_rev == LPFC_SLI_REV4) {
3852 					lpfc_printf_vlog(vports[i], KERN_INFO,
3853 						 LOG_NODE | LOG_DISCOVERY,
3854 						 "0011 Free RPI x%x on "
3855 						 "ndlp: x%px did x%x\n",
3856 						 ndlp->nlp_rpi, ndlp,
3857 						 ndlp->nlp_DID);
3858 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3859 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3860 				}
3861 
3862 				if (ndlp->nlp_type & NLP_FABRIC) {
3863 					lpfc_disc_state_machine(vports[i], ndlp,
3864 						NULL, NLP_EVT_DEVICE_RECOVERY);
3865 
3866 					/* Don't remove the node unless the node
3867 					 * has been unregistered with the
3868 					 * transport, and we're not in recovery
3869 					 * before dev_loss_tmo triggered.
3870 					 * Otherwise, let dev_loss take care of
3871 					 * the node.
3872 					 */
3873 					if (!(ndlp->save_flags &
3874 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3875 					    !(ndlp->fc4_xpt_flags &
3876 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3877 						lpfc_disc_state_machine
3878 							(vports[i], ndlp,
3879 							 NULL,
3880 							 NLP_EVT_DEVICE_RM);
3881 				}
3882 			}
3883 		}
3884 	}
3885 	lpfc_destroy_vport_work_array(phba, vports);
3886 
3887 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3888 
3889 	if (phba->wq)
3890 		flush_workqueue(phba->wq);
3891 }
3892 
3893 /**
3894  * lpfc_offline - Bring a HBA offline
3895  * @phba: pointer to lpfc hba data structure.
3896  *
3897  * This routine actually brings a HBA offline. It stops all the timers
3898  * associated with the HBA, brings down the SLI layer, and eventually
3899  * marks the HBA as in offline state for the upper layer protocol.
3900  **/
3901 void
3902 lpfc_offline(struct lpfc_hba *phba)
3903 {
3904 	struct Scsi_Host  *shost;
3905 	struct lpfc_vport **vports;
3906 	int i;
3907 
3908 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3909 		return;
3910 
3911 	/* stop port and all timers associated with this hba */
3912 	lpfc_stop_port(phba);
3913 
3914 	/* Tear down the local and target port registrations.  The
3915 	 * nvme transports need to cleanup.
3916 	 */
3917 	lpfc_nvmet_destroy_targetport(phba);
3918 	lpfc_nvme_destroy_localport(phba->pport);
3919 
3920 	vports = lpfc_create_vport_work_array(phba);
3921 	if (vports != NULL)
3922 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3923 			lpfc_stop_vport_timers(vports[i]);
3924 	lpfc_destroy_vport_work_array(phba, vports);
3925 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3926 			"0460 Bring Adapter offline\n");
3927 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3928 	   now.  */
3929 	lpfc_sli_hba_down(phba);
3930 	spin_lock_irq(&phba->hbalock);
3931 	phba->work_ha = 0;
3932 	spin_unlock_irq(&phba->hbalock);
3933 	vports = lpfc_create_vport_work_array(phba);
3934 	if (vports != NULL)
3935 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3936 			shost = lpfc_shost_from_vport(vports[i]);
3937 			spin_lock_irq(shost->host_lock);
3938 			vports[i]->work_port_events = 0;
3939 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3940 			spin_unlock_irq(shost->host_lock);
3941 		}
3942 	lpfc_destroy_vport_work_array(phba, vports);
3943 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3944 	 * in hba_unset
3945 	 */
3946 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3947 		__lpfc_cpuhp_remove(phba);
3948 
3949 	if (phba->cfg_xri_rebalancing)
3950 		lpfc_destroy_multixri_pools(phba);
3951 }
3952 
3953 /**
3954  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3955  * @phba: pointer to lpfc hba data structure.
3956  *
3957  * This routine is to free all the SCSI buffers and IOCBs from the driver
3958  * list back to kernel. It is called from lpfc_pci_remove_one to free
3959  * the internal resources before the device is removed from the system.
3960  **/
3961 static void
3962 lpfc_scsi_free(struct lpfc_hba *phba)
3963 {
3964 	struct lpfc_io_buf *sb, *sb_next;
3965 
3966 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3967 		return;
3968 
3969 	spin_lock_irq(&phba->hbalock);
3970 
3971 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3972 
3973 	spin_lock(&phba->scsi_buf_list_put_lock);
3974 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3975 				 list) {
3976 		list_del(&sb->list);
3977 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3978 			      sb->dma_handle);
3979 		kfree(sb);
3980 		phba->total_scsi_bufs--;
3981 	}
3982 	spin_unlock(&phba->scsi_buf_list_put_lock);
3983 
3984 	spin_lock(&phba->scsi_buf_list_get_lock);
3985 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3986 				 list) {
3987 		list_del(&sb->list);
3988 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3989 			      sb->dma_handle);
3990 		kfree(sb);
3991 		phba->total_scsi_bufs--;
3992 	}
3993 	spin_unlock(&phba->scsi_buf_list_get_lock);
3994 	spin_unlock_irq(&phba->hbalock);
3995 }
3996 
3997 /**
3998  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3999  * @phba: pointer to lpfc hba data structure.
4000  *
4001  * This routine is to free all the IO buffers and IOCBs from the driver
4002  * list back to kernel. It is called from lpfc_pci_remove_one to free
4003  * the internal resources before the device is removed from the system.
4004  **/
4005 void
4006 lpfc_io_free(struct lpfc_hba *phba)
4007 {
4008 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4009 	struct lpfc_sli4_hdw_queue *qp;
4010 	int idx;
4011 
4012 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4013 		qp = &phba->sli4_hba.hdwq[idx];
4014 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4015 		spin_lock(&qp->io_buf_list_put_lock);
4016 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4017 					 &qp->lpfc_io_buf_list_put,
4018 					 list) {
4019 			list_del(&lpfc_ncmd->list);
4020 			qp->put_io_bufs--;
4021 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4022 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4023 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4024 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4025 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4026 			kfree(lpfc_ncmd);
4027 			qp->total_io_bufs--;
4028 		}
4029 		spin_unlock(&qp->io_buf_list_put_lock);
4030 
4031 		spin_lock(&qp->io_buf_list_get_lock);
4032 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4033 					 &qp->lpfc_io_buf_list_get,
4034 					 list) {
4035 			list_del(&lpfc_ncmd->list);
4036 			qp->get_io_bufs--;
4037 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4038 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4039 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4040 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4041 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4042 			kfree(lpfc_ncmd);
4043 			qp->total_io_bufs--;
4044 		}
4045 		spin_unlock(&qp->io_buf_list_get_lock);
4046 	}
4047 }
4048 
4049 /**
4050  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4051  * @phba: pointer to lpfc hba data structure.
4052  *
4053  * This routine first calculates the sizes of the current els and allocated
4054  * scsi sgl lists, and then goes through all sgls to updates the physical
4055  * XRIs assigned due to port function reset. During port initialization, the
4056  * current els and allocated scsi sgl lists are 0s.
4057  *
4058  * Return codes
4059  *   0 - successful (for now, it always returns 0)
4060  **/
4061 int
4062 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4063 {
4064 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4065 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4066 	LIST_HEAD(els_sgl_list);
4067 	int rc;
4068 
4069 	/*
4070 	 * update on pci function's els xri-sgl list
4071 	 */
4072 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4073 
4074 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4075 		/* els xri-sgl expanded */
4076 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4077 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4078 				"3157 ELS xri-sgl count increased from "
4079 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4080 				els_xri_cnt);
4081 		/* allocate the additional els sgls */
4082 		for (i = 0; i < xri_cnt; i++) {
4083 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4084 					     GFP_KERNEL);
4085 			if (sglq_entry == NULL) {
4086 				lpfc_printf_log(phba, KERN_ERR,
4087 						LOG_TRACE_EVENT,
4088 						"2562 Failure to allocate an "
4089 						"ELS sgl entry:%d\n", i);
4090 				rc = -ENOMEM;
4091 				goto out_free_mem;
4092 			}
4093 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4094 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4095 							   &sglq_entry->phys);
4096 			if (sglq_entry->virt == NULL) {
4097 				kfree(sglq_entry);
4098 				lpfc_printf_log(phba, KERN_ERR,
4099 						LOG_TRACE_EVENT,
4100 						"2563 Failure to allocate an "
4101 						"ELS mbuf:%d\n", i);
4102 				rc = -ENOMEM;
4103 				goto out_free_mem;
4104 			}
4105 			sglq_entry->sgl = sglq_entry->virt;
4106 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4107 			sglq_entry->state = SGL_FREED;
4108 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4109 		}
4110 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4111 		list_splice_init(&els_sgl_list,
4112 				 &phba->sli4_hba.lpfc_els_sgl_list);
4113 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4114 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4115 		/* els xri-sgl shrinked */
4116 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4117 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4118 				"3158 ELS xri-sgl count decreased from "
4119 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4120 				els_xri_cnt);
4121 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4122 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4123 				 &els_sgl_list);
4124 		/* release extra els sgls from list */
4125 		for (i = 0; i < xri_cnt; i++) {
4126 			list_remove_head(&els_sgl_list,
4127 					 sglq_entry, struct lpfc_sglq, list);
4128 			if (sglq_entry) {
4129 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4130 						 sglq_entry->phys);
4131 				kfree(sglq_entry);
4132 			}
4133 		}
4134 		list_splice_init(&els_sgl_list,
4135 				 &phba->sli4_hba.lpfc_els_sgl_list);
4136 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4137 	} else
4138 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4139 				"3163 ELS xri-sgl count unchanged: %d\n",
4140 				els_xri_cnt);
4141 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4142 
4143 	/* update xris to els sgls on the list */
4144 	sglq_entry = NULL;
4145 	sglq_entry_next = NULL;
4146 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4147 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4148 		lxri = lpfc_sli4_next_xritag(phba);
4149 		if (lxri == NO_XRI) {
4150 			lpfc_printf_log(phba, KERN_ERR,
4151 					LOG_TRACE_EVENT,
4152 					"2400 Failed to allocate xri for "
4153 					"ELS sgl\n");
4154 			rc = -ENOMEM;
4155 			goto out_free_mem;
4156 		}
4157 		sglq_entry->sli4_lxritag = lxri;
4158 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4159 	}
4160 	return 0;
4161 
4162 out_free_mem:
4163 	lpfc_free_els_sgl_list(phba);
4164 	return rc;
4165 }
4166 
4167 /**
4168  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4169  * @phba: pointer to lpfc hba data structure.
4170  *
4171  * This routine first calculates the sizes of the current els and allocated
4172  * scsi sgl lists, and then goes through all sgls to updates the physical
4173  * XRIs assigned due to port function reset. During port initialization, the
4174  * current els and allocated scsi sgl lists are 0s.
4175  *
4176  * Return codes
4177  *   0 - successful (for now, it always returns 0)
4178  **/
4179 int
4180 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4181 {
4182 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4183 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4184 	uint16_t nvmet_xri_cnt;
4185 	LIST_HEAD(nvmet_sgl_list);
4186 	int rc;
4187 
4188 	/*
4189 	 * update on pci function's nvmet xri-sgl list
4190 	 */
4191 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4192 
4193 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4194 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4195 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4196 		/* els xri-sgl expanded */
4197 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4198 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4199 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4200 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4201 		/* allocate the additional nvmet sgls */
4202 		for (i = 0; i < xri_cnt; i++) {
4203 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4204 					     GFP_KERNEL);
4205 			if (sglq_entry == NULL) {
4206 				lpfc_printf_log(phba, KERN_ERR,
4207 						LOG_TRACE_EVENT,
4208 						"6303 Failure to allocate an "
4209 						"NVMET sgl entry:%d\n", i);
4210 				rc = -ENOMEM;
4211 				goto out_free_mem;
4212 			}
4213 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4214 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4215 							   &sglq_entry->phys);
4216 			if (sglq_entry->virt == NULL) {
4217 				kfree(sglq_entry);
4218 				lpfc_printf_log(phba, KERN_ERR,
4219 						LOG_TRACE_EVENT,
4220 						"6304 Failure to allocate an "
4221 						"NVMET buf:%d\n", i);
4222 				rc = -ENOMEM;
4223 				goto out_free_mem;
4224 			}
4225 			sglq_entry->sgl = sglq_entry->virt;
4226 			memset(sglq_entry->sgl, 0,
4227 			       phba->cfg_sg_dma_buf_size);
4228 			sglq_entry->state = SGL_FREED;
4229 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4230 		}
4231 		spin_lock_irq(&phba->hbalock);
4232 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4233 		list_splice_init(&nvmet_sgl_list,
4234 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4235 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4236 		spin_unlock_irq(&phba->hbalock);
4237 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4238 		/* nvmet xri-sgl shrunk */
4239 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4240 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4241 				"6305 NVMET xri-sgl count decreased from "
4242 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4243 				nvmet_xri_cnt);
4244 		spin_lock_irq(&phba->hbalock);
4245 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4246 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4247 				 &nvmet_sgl_list);
4248 		/* release extra nvmet sgls from list */
4249 		for (i = 0; i < xri_cnt; i++) {
4250 			list_remove_head(&nvmet_sgl_list,
4251 					 sglq_entry, struct lpfc_sglq, list);
4252 			if (sglq_entry) {
4253 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4254 						    sglq_entry->phys);
4255 				kfree(sglq_entry);
4256 			}
4257 		}
4258 		list_splice_init(&nvmet_sgl_list,
4259 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4260 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4261 		spin_unlock_irq(&phba->hbalock);
4262 	} else
4263 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4264 				"6306 NVMET xri-sgl count unchanged: %d\n",
4265 				nvmet_xri_cnt);
4266 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4267 
4268 	/* update xris to nvmet sgls on the list */
4269 	sglq_entry = NULL;
4270 	sglq_entry_next = NULL;
4271 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4272 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4273 		lxri = lpfc_sli4_next_xritag(phba);
4274 		if (lxri == NO_XRI) {
4275 			lpfc_printf_log(phba, KERN_ERR,
4276 					LOG_TRACE_EVENT,
4277 					"6307 Failed to allocate xri for "
4278 					"NVMET sgl\n");
4279 			rc = -ENOMEM;
4280 			goto out_free_mem;
4281 		}
4282 		sglq_entry->sli4_lxritag = lxri;
4283 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4284 	}
4285 	return 0;
4286 
4287 out_free_mem:
4288 	lpfc_free_nvmet_sgl_list(phba);
4289 	return rc;
4290 }
4291 
4292 int
4293 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4294 {
4295 	LIST_HEAD(blist);
4296 	struct lpfc_sli4_hdw_queue *qp;
4297 	struct lpfc_io_buf *lpfc_cmd;
4298 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4299 	int idx, cnt, xri, inserted;
4300 
4301 	cnt = 0;
4302 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4303 		qp = &phba->sli4_hba.hdwq[idx];
4304 		spin_lock_irq(&qp->io_buf_list_get_lock);
4305 		spin_lock(&qp->io_buf_list_put_lock);
4306 
4307 		/* Take everything off the get and put lists */
4308 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4309 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4310 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4311 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4312 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4313 		qp->get_io_bufs = 0;
4314 		qp->put_io_bufs = 0;
4315 		qp->total_io_bufs = 0;
4316 		spin_unlock(&qp->io_buf_list_put_lock);
4317 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4318 	}
4319 
4320 	/*
4321 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4322 	 * This is because POST_SGL takes a sequential range of XRIs
4323 	 * to post to the firmware.
4324 	 */
4325 	for (idx = 0; idx < cnt; idx++) {
4326 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4327 		if (!lpfc_cmd)
4328 			return cnt;
4329 		if (idx == 0) {
4330 			list_add_tail(&lpfc_cmd->list, cbuf);
4331 			continue;
4332 		}
4333 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4334 		inserted = 0;
4335 		prev_iobufp = NULL;
4336 		list_for_each_entry(iobufp, cbuf, list) {
4337 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4338 				if (prev_iobufp)
4339 					list_add(&lpfc_cmd->list,
4340 						 &prev_iobufp->list);
4341 				else
4342 					list_add(&lpfc_cmd->list, cbuf);
4343 				inserted = 1;
4344 				break;
4345 			}
4346 			prev_iobufp = iobufp;
4347 		}
4348 		if (!inserted)
4349 			list_add_tail(&lpfc_cmd->list, cbuf);
4350 	}
4351 	return cnt;
4352 }
4353 
4354 int
4355 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4356 {
4357 	struct lpfc_sli4_hdw_queue *qp;
4358 	struct lpfc_io_buf *lpfc_cmd;
4359 	int idx, cnt;
4360 
4361 	qp = phba->sli4_hba.hdwq;
4362 	cnt = 0;
4363 	while (!list_empty(cbuf)) {
4364 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4365 			list_remove_head(cbuf, lpfc_cmd,
4366 					 struct lpfc_io_buf, list);
4367 			if (!lpfc_cmd)
4368 				return cnt;
4369 			cnt++;
4370 			qp = &phba->sli4_hba.hdwq[idx];
4371 			lpfc_cmd->hdwq_no = idx;
4372 			lpfc_cmd->hdwq = qp;
4373 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4374 			spin_lock(&qp->io_buf_list_put_lock);
4375 			list_add_tail(&lpfc_cmd->list,
4376 				      &qp->lpfc_io_buf_list_put);
4377 			qp->put_io_bufs++;
4378 			qp->total_io_bufs++;
4379 			spin_unlock(&qp->io_buf_list_put_lock);
4380 		}
4381 	}
4382 	return cnt;
4383 }
4384 
4385 /**
4386  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4387  * @phba: pointer to lpfc hba data structure.
4388  *
4389  * This routine first calculates the sizes of the current els and allocated
4390  * scsi sgl lists, and then goes through all sgls to updates the physical
4391  * XRIs assigned due to port function reset. During port initialization, the
4392  * current els and allocated scsi sgl lists are 0s.
4393  *
4394  * Return codes
4395  *   0 - successful (for now, it always returns 0)
4396  **/
4397 int
4398 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4399 {
4400 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4401 	uint16_t i, lxri, els_xri_cnt;
4402 	uint16_t io_xri_cnt, io_xri_max;
4403 	LIST_HEAD(io_sgl_list);
4404 	int rc, cnt;
4405 
4406 	/*
4407 	 * update on pci function's allocated nvme xri-sgl list
4408 	 */
4409 
4410 	/* maximum number of xris available for nvme buffers */
4411 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4412 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4413 	phba->sli4_hba.io_xri_max = io_xri_max;
4414 
4415 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4416 			"6074 Current allocated XRI sgl count:%d, "
4417 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4418 			phba->sli4_hba.io_xri_cnt,
4419 			phba->sli4_hba.io_xri_max,
4420 			els_xri_cnt);
4421 
4422 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4423 
4424 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4425 		/* max nvme xri shrunk below the allocated nvme buffers */
4426 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4427 					phba->sli4_hba.io_xri_max;
4428 		/* release the extra allocated nvme buffers */
4429 		for (i = 0; i < io_xri_cnt; i++) {
4430 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4431 					 struct lpfc_io_buf, list);
4432 			if (lpfc_ncmd) {
4433 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4434 					      lpfc_ncmd->data,
4435 					      lpfc_ncmd->dma_handle);
4436 				kfree(lpfc_ncmd);
4437 			}
4438 		}
4439 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4440 	}
4441 
4442 	/* update xris associated to remaining allocated nvme buffers */
4443 	lpfc_ncmd = NULL;
4444 	lpfc_ncmd_next = NULL;
4445 	phba->sli4_hba.io_xri_cnt = cnt;
4446 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4447 				 &io_sgl_list, list) {
4448 		lxri = lpfc_sli4_next_xritag(phba);
4449 		if (lxri == NO_XRI) {
4450 			lpfc_printf_log(phba, KERN_ERR,
4451 					LOG_TRACE_EVENT,
4452 					"6075 Failed to allocate xri for "
4453 					"nvme buffer\n");
4454 			rc = -ENOMEM;
4455 			goto out_free_mem;
4456 		}
4457 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4458 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4459 	}
4460 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4461 	return 0;
4462 
4463 out_free_mem:
4464 	lpfc_io_free(phba);
4465 	return rc;
4466 }
4467 
4468 /**
4469  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4470  * @phba: Pointer to lpfc hba data structure.
4471  * @num_to_alloc: The requested number of buffers to allocate.
4472  *
4473  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4474  * the nvme buffer contains all the necessary information needed to initiate
4475  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4476  * them on a list, it post them to the port by using SGL block post.
4477  *
4478  * Return codes:
4479  *   int - number of IO buffers that were allocated and posted.
4480  *   0 = failure, less than num_to_alloc is a partial failure.
4481  **/
4482 int
4483 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4484 {
4485 	struct lpfc_io_buf *lpfc_ncmd;
4486 	struct lpfc_iocbq *pwqeq;
4487 	uint16_t iotag, lxri = 0;
4488 	int bcnt, num_posted;
4489 	LIST_HEAD(prep_nblist);
4490 	LIST_HEAD(post_nblist);
4491 	LIST_HEAD(nvme_nblist);
4492 
4493 	phba->sli4_hba.io_xri_cnt = 0;
4494 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4495 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4496 		if (!lpfc_ncmd)
4497 			break;
4498 		/*
4499 		 * Get memory from the pci pool to map the virt space to
4500 		 * pci bus space for an I/O. The DMA buffer includes the
4501 		 * number of SGE's necessary to support the sg_tablesize.
4502 		 */
4503 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4504 						  GFP_KERNEL,
4505 						  &lpfc_ncmd->dma_handle);
4506 		if (!lpfc_ncmd->data) {
4507 			kfree(lpfc_ncmd);
4508 			break;
4509 		}
4510 
4511 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4512 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4513 		} else {
4514 			/*
4515 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4516 			 * check to be sure.
4517 			 */
4518 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4519 			    (((unsigned long)(lpfc_ncmd->data) &
4520 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4521 				lpfc_printf_log(phba, KERN_ERR,
4522 						LOG_TRACE_EVENT,
4523 						"3369 Memory alignment err: "
4524 						"addr=%lx\n",
4525 						(unsigned long)lpfc_ncmd->data);
4526 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4527 					      lpfc_ncmd->data,
4528 					      lpfc_ncmd->dma_handle);
4529 				kfree(lpfc_ncmd);
4530 				break;
4531 			}
4532 		}
4533 
4534 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4535 
4536 		lxri = lpfc_sli4_next_xritag(phba);
4537 		if (lxri == NO_XRI) {
4538 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4539 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4540 			kfree(lpfc_ncmd);
4541 			break;
4542 		}
4543 		pwqeq = &lpfc_ncmd->cur_iocbq;
4544 
4545 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4546 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4547 		if (iotag == 0) {
4548 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4549 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4550 			kfree(lpfc_ncmd);
4551 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4552 					"6121 Failed to allocate IOTAG for"
4553 					" XRI:0x%x\n", lxri);
4554 			lpfc_sli4_free_xri(phba, lxri);
4555 			break;
4556 		}
4557 		pwqeq->sli4_lxritag = lxri;
4558 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4559 
4560 		/* Initialize local short-hand pointers. */
4561 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4562 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4563 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4564 		spin_lock_init(&lpfc_ncmd->buf_lock);
4565 
4566 		/* add the nvme buffer to a post list */
4567 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4568 		phba->sli4_hba.io_xri_cnt++;
4569 	}
4570 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4571 			"6114 Allocate %d out of %d requested new NVME "
4572 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4573 			sizeof(*lpfc_ncmd));
4574 
4575 
4576 	/* post the list of nvme buffer sgls to port if available */
4577 	if (!list_empty(&post_nblist))
4578 		num_posted = lpfc_sli4_post_io_sgl_list(
4579 				phba, &post_nblist, bcnt);
4580 	else
4581 		num_posted = 0;
4582 
4583 	return num_posted;
4584 }
4585 
4586 static uint64_t
4587 lpfc_get_wwpn(struct lpfc_hba *phba)
4588 {
4589 	uint64_t wwn;
4590 	int rc;
4591 	LPFC_MBOXQ_t *mboxq;
4592 	MAILBOX_t *mb;
4593 
4594 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4595 						GFP_KERNEL);
4596 	if (!mboxq)
4597 		return (uint64_t)-1;
4598 
4599 	/* First get WWN of HBA instance */
4600 	lpfc_read_nv(phba, mboxq);
4601 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4602 	if (rc != MBX_SUCCESS) {
4603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4604 				"6019 Mailbox failed , mbxCmd x%x "
4605 				"READ_NV, mbxStatus x%x\n",
4606 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4607 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4608 		mempool_free(mboxq, phba->mbox_mem_pool);
4609 		return (uint64_t) -1;
4610 	}
4611 	mb = &mboxq->u.mb;
4612 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4613 	/* wwn is WWPN of HBA instance */
4614 	mempool_free(mboxq, phba->mbox_mem_pool);
4615 	if (phba->sli_rev == LPFC_SLI_REV4)
4616 		return be64_to_cpu(wwn);
4617 	else
4618 		return rol64(wwn, 32);
4619 }
4620 
4621 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4622 {
4623 	if (phba->sli_rev == LPFC_SLI_REV4)
4624 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4625 			return LPFC_MAX_SG_TABLESIZE;
4626 		else
4627 			return phba->cfg_scsi_seg_cnt;
4628 	else
4629 		return phba->cfg_sg_seg_cnt;
4630 }
4631 
4632 /**
4633  * lpfc_vmid_res_alloc - Allocates resources for VMID
4634  * @phba: pointer to lpfc hba data structure.
4635  * @vport: pointer to vport data structure
4636  *
4637  * This routine allocated the resources needed for the VMID.
4638  *
4639  * Return codes
4640  *	0 on Success
4641  *	Non-0 on Failure
4642  */
4643 static int
4644 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4645 {
4646 	/* VMID feature is supported only on SLI4 */
4647 	if (phba->sli_rev == LPFC_SLI_REV3) {
4648 		phba->cfg_vmid_app_header = 0;
4649 		phba->cfg_vmid_priority_tagging = 0;
4650 	}
4651 
4652 	if (lpfc_is_vmid_enabled(phba)) {
4653 		vport->vmid =
4654 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4655 			    GFP_KERNEL);
4656 		if (!vport->vmid)
4657 			return -ENOMEM;
4658 
4659 		rwlock_init(&vport->vmid_lock);
4660 
4661 		/* Set the VMID parameters for the vport */
4662 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4663 		vport->vmid_inactivity_timeout =
4664 		    phba->cfg_vmid_inactivity_timeout;
4665 		vport->max_vmid = phba->cfg_max_vmid;
4666 		vport->cur_vmid_cnt = 0;
4667 
4668 		vport->vmid_priority_range = bitmap_zalloc
4669 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4670 
4671 		if (!vport->vmid_priority_range) {
4672 			kfree(vport->vmid);
4673 			return -ENOMEM;
4674 		}
4675 
4676 		hash_init(vport->hash_table);
4677 	}
4678 	return 0;
4679 }
4680 
4681 /**
4682  * lpfc_create_port - Create an FC port
4683  * @phba: pointer to lpfc hba data structure.
4684  * @instance: a unique integer ID to this FC port.
4685  * @dev: pointer to the device data structure.
4686  *
4687  * This routine creates a FC port for the upper layer protocol. The FC port
4688  * can be created on top of either a physical port or a virtual port provided
4689  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4690  * and associates the FC port created before adding the shost into the SCSI
4691  * layer.
4692  *
4693  * Return codes
4694  *   @vport - pointer to the virtual N_Port data structure.
4695  *   NULL - port create failed.
4696  **/
4697 struct lpfc_vport *
4698 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4699 {
4700 	struct lpfc_vport *vport;
4701 	struct Scsi_Host  *shost = NULL;
4702 	struct scsi_host_template *template;
4703 	int error = 0;
4704 	int i;
4705 	uint64_t wwn;
4706 	bool use_no_reset_hba = false;
4707 	int rc;
4708 
4709 	if (lpfc_no_hba_reset_cnt) {
4710 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4711 		    dev == &phba->pcidev->dev) {
4712 			/* Reset the port first */
4713 			lpfc_sli_brdrestart(phba);
4714 			rc = lpfc_sli_chipset_init(phba);
4715 			if (rc)
4716 				return NULL;
4717 		}
4718 		wwn = lpfc_get_wwpn(phba);
4719 	}
4720 
4721 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4722 		if (wwn == lpfc_no_hba_reset[i]) {
4723 			lpfc_printf_log(phba, KERN_ERR,
4724 					LOG_TRACE_EVENT,
4725 					"6020 Setting use_no_reset port=%llx\n",
4726 					wwn);
4727 			use_no_reset_hba = true;
4728 			break;
4729 		}
4730 	}
4731 
4732 	/* Seed template for SCSI host registration */
4733 	if (dev == &phba->pcidev->dev) {
4734 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4735 			/* Seed physical port template */
4736 			template = &lpfc_template;
4737 
4738 			if (use_no_reset_hba)
4739 				/* template is for a no reset SCSI Host */
4740 				template->eh_host_reset_handler = NULL;
4741 
4742 			/* Seed updated value of sg_tablesize */
4743 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4744 		} else {
4745 			/* NVMET is for physical port only */
4746 			template = &lpfc_template_nvme;
4747 		}
4748 	} else {
4749 		/* Seed vport template */
4750 		template = &lpfc_vport_template;
4751 
4752 		/* Seed updated value of sg_tablesize */
4753 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4754 	}
4755 
4756 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4757 	if (!shost)
4758 		goto out;
4759 
4760 	vport = (struct lpfc_vport *) shost->hostdata;
4761 	vport->phba = phba;
4762 	vport->load_flag |= FC_LOADING;
4763 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4764 	vport->fc_rscn_flush = 0;
4765 	lpfc_get_vport_cfgparam(vport);
4766 
4767 	/* Adjust value in vport */
4768 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4769 
4770 	shost->unique_id = instance;
4771 	shost->max_id = LPFC_MAX_TARGET;
4772 	shost->max_lun = vport->cfg_max_luns;
4773 	shost->this_id = -1;
4774 	shost->max_cmd_len = 16;
4775 
4776 	if (phba->sli_rev == LPFC_SLI_REV4) {
4777 		if (!phba->cfg_fcp_mq_threshold ||
4778 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4779 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4780 
4781 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4782 					    phba->cfg_fcp_mq_threshold);
4783 
4784 		shost->dma_boundary =
4785 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4786 	} else
4787 		/* SLI-3 has a limited number of hardware queues (3),
4788 		 * thus there is only one for FCP processing.
4789 		 */
4790 		shost->nr_hw_queues = 1;
4791 
4792 	/*
4793 	 * Set initial can_queue value since 0 is no longer supported and
4794 	 * scsi_add_host will fail. This will be adjusted later based on the
4795 	 * max xri value determined in hba setup.
4796 	 */
4797 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4798 	if (dev != &phba->pcidev->dev) {
4799 		shost->transportt = lpfc_vport_transport_template;
4800 		vport->port_type = LPFC_NPIV_PORT;
4801 	} else {
4802 		shost->transportt = lpfc_transport_template;
4803 		vport->port_type = LPFC_PHYSICAL_PORT;
4804 	}
4805 
4806 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4807 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4808 			"SEGcnt %d/%d\n",
4809 			vport->port_type, shost->sg_tablesize,
4810 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4811 
4812 	/* Allocate the resources for VMID */
4813 	rc = lpfc_vmid_res_alloc(phba, vport);
4814 
4815 	if (rc)
4816 		goto out;
4817 
4818 	/* Initialize all internally managed lists. */
4819 	INIT_LIST_HEAD(&vport->fc_nodes);
4820 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4821 	spin_lock_init(&vport->work_port_lock);
4822 
4823 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4824 
4825 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4826 
4827 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4828 
4829 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4830 		lpfc_setup_bg(phba, shost);
4831 
4832 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4833 	if (error)
4834 		goto out_put_shost;
4835 
4836 	spin_lock_irq(&phba->port_list_lock);
4837 	list_add_tail(&vport->listentry, &phba->port_list);
4838 	spin_unlock_irq(&phba->port_list_lock);
4839 	return vport;
4840 
4841 out_put_shost:
4842 	kfree(vport->vmid);
4843 	bitmap_free(vport->vmid_priority_range);
4844 	scsi_host_put(shost);
4845 out:
4846 	return NULL;
4847 }
4848 
4849 /**
4850  * destroy_port -  destroy an FC port
4851  * @vport: pointer to an lpfc virtual N_Port data structure.
4852  *
4853  * This routine destroys a FC port from the upper layer protocol. All the
4854  * resources associated with the port are released.
4855  **/
4856 void
4857 destroy_port(struct lpfc_vport *vport)
4858 {
4859 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4860 	struct lpfc_hba  *phba = vport->phba;
4861 
4862 	lpfc_debugfs_terminate(vport);
4863 	fc_remove_host(shost);
4864 	scsi_remove_host(shost);
4865 
4866 	spin_lock_irq(&phba->port_list_lock);
4867 	list_del_init(&vport->listentry);
4868 	spin_unlock_irq(&phba->port_list_lock);
4869 
4870 	lpfc_cleanup(vport);
4871 	return;
4872 }
4873 
4874 /**
4875  * lpfc_get_instance - Get a unique integer ID
4876  *
4877  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4878  * uses the kernel idr facility to perform the task.
4879  *
4880  * Return codes:
4881  *   instance - a unique integer ID allocated as the new instance.
4882  *   -1 - lpfc get instance failed.
4883  **/
4884 int
4885 lpfc_get_instance(void)
4886 {
4887 	int ret;
4888 
4889 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4890 	return ret < 0 ? -1 : ret;
4891 }
4892 
4893 /**
4894  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4895  * @shost: pointer to SCSI host data structure.
4896  * @time: elapsed time of the scan in jiffies.
4897  *
4898  * This routine is called by the SCSI layer with a SCSI host to determine
4899  * whether the scan host is finished.
4900  *
4901  * Note: there is no scan_start function as adapter initialization will have
4902  * asynchronously kicked off the link initialization.
4903  *
4904  * Return codes
4905  *   0 - SCSI host scan is not over yet.
4906  *   1 - SCSI host scan is over.
4907  **/
4908 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4909 {
4910 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4911 	struct lpfc_hba   *phba = vport->phba;
4912 	int stat = 0;
4913 
4914 	spin_lock_irq(shost->host_lock);
4915 
4916 	if (vport->load_flag & FC_UNLOADING) {
4917 		stat = 1;
4918 		goto finished;
4919 	}
4920 	if (time >= msecs_to_jiffies(30 * 1000)) {
4921 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4922 				"0461 Scanning longer than 30 "
4923 				"seconds.  Continuing initialization\n");
4924 		stat = 1;
4925 		goto finished;
4926 	}
4927 	if (time >= msecs_to_jiffies(15 * 1000) &&
4928 	    phba->link_state <= LPFC_LINK_DOWN) {
4929 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4930 				"0465 Link down longer than 15 "
4931 				"seconds.  Continuing initialization\n");
4932 		stat = 1;
4933 		goto finished;
4934 	}
4935 
4936 	if (vport->port_state != LPFC_VPORT_READY)
4937 		goto finished;
4938 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4939 		goto finished;
4940 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4941 		goto finished;
4942 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4943 		goto finished;
4944 
4945 	stat = 1;
4946 
4947 finished:
4948 	spin_unlock_irq(shost->host_lock);
4949 	return stat;
4950 }
4951 
4952 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4953 {
4954 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4955 	struct lpfc_hba   *phba = vport->phba;
4956 
4957 	fc_host_supported_speeds(shost) = 0;
4958 	/*
4959 	 * Avoid reporting supported link speed for FCoE as it can't be
4960 	 * controlled via FCoE.
4961 	 */
4962 	if (phba->hba_flag & HBA_FCOE_MODE)
4963 		return;
4964 
4965 	if (phba->lmt & LMT_256Gb)
4966 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4967 	if (phba->lmt & LMT_128Gb)
4968 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4969 	if (phba->lmt & LMT_64Gb)
4970 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4971 	if (phba->lmt & LMT_32Gb)
4972 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4973 	if (phba->lmt & LMT_16Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4975 	if (phba->lmt & LMT_10Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4977 	if (phba->lmt & LMT_8Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4979 	if (phba->lmt & LMT_4Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4981 	if (phba->lmt & LMT_2Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4983 	if (phba->lmt & LMT_1Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4985 }
4986 
4987 /**
4988  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4989  * @shost: pointer to SCSI host data structure.
4990  *
4991  * This routine initializes a given SCSI host attributes on a FC port. The
4992  * SCSI host can be either on top of a physical port or a virtual port.
4993  **/
4994 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4995 {
4996 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4997 	struct lpfc_hba   *phba = vport->phba;
4998 	/*
4999 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5000 	 */
5001 
5002 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5003 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5004 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5005 
5006 	memset(fc_host_supported_fc4s(shost), 0,
5007 	       sizeof(fc_host_supported_fc4s(shost)));
5008 	fc_host_supported_fc4s(shost)[2] = 1;
5009 	fc_host_supported_fc4s(shost)[7] = 1;
5010 
5011 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5012 				 sizeof fc_host_symbolic_name(shost));
5013 
5014 	lpfc_host_supported_speeds_set(shost);
5015 
5016 	fc_host_maxframe_size(shost) =
5017 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5018 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5019 
5020 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5021 
5022 	/* This value is also unchanging */
5023 	memset(fc_host_active_fc4s(shost), 0,
5024 	       sizeof(fc_host_active_fc4s(shost)));
5025 	fc_host_active_fc4s(shost)[2] = 1;
5026 	fc_host_active_fc4s(shost)[7] = 1;
5027 
5028 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5029 	spin_lock_irq(shost->host_lock);
5030 	vport->load_flag &= ~FC_LOADING;
5031 	spin_unlock_irq(shost->host_lock);
5032 }
5033 
5034 /**
5035  * lpfc_stop_port_s3 - Stop SLI3 device port
5036  * @phba: pointer to lpfc hba data structure.
5037  *
5038  * This routine is invoked to stop an SLI3 device port, it stops the device
5039  * from generating interrupts and stops the device driver's timers for the
5040  * device.
5041  **/
5042 static void
5043 lpfc_stop_port_s3(struct lpfc_hba *phba)
5044 {
5045 	/* Clear all interrupt enable conditions */
5046 	writel(0, phba->HCregaddr);
5047 	readl(phba->HCregaddr); /* flush */
5048 	/* Clear all pending interrupts */
5049 	writel(0xffffffff, phba->HAregaddr);
5050 	readl(phba->HAregaddr); /* flush */
5051 
5052 	/* Reset some HBA SLI setup states */
5053 	lpfc_stop_hba_timers(phba);
5054 	phba->pport->work_port_events = 0;
5055 }
5056 
5057 /**
5058  * lpfc_stop_port_s4 - Stop SLI4 device port
5059  * @phba: pointer to lpfc hba data structure.
5060  *
5061  * This routine is invoked to stop an SLI4 device port, it stops the device
5062  * from generating interrupts and stops the device driver's timers for the
5063  * device.
5064  **/
5065 static void
5066 lpfc_stop_port_s4(struct lpfc_hba *phba)
5067 {
5068 	/* Reset some HBA SLI4 setup states */
5069 	lpfc_stop_hba_timers(phba);
5070 	if (phba->pport)
5071 		phba->pport->work_port_events = 0;
5072 	phba->sli4_hba.intr_enable = 0;
5073 }
5074 
5075 /**
5076  * lpfc_stop_port - Wrapper function for stopping hba port
5077  * @phba: Pointer to HBA context object.
5078  *
5079  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5080  * the API jump table function pointer from the lpfc_hba struct.
5081  **/
5082 void
5083 lpfc_stop_port(struct lpfc_hba *phba)
5084 {
5085 	phba->lpfc_stop_port(phba);
5086 
5087 	if (phba->wq)
5088 		flush_workqueue(phba->wq);
5089 }
5090 
5091 /**
5092  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5093  * @phba: Pointer to hba for which this call is being executed.
5094  *
5095  * This routine starts the timer waiting for the FCF rediscovery to complete.
5096  **/
5097 void
5098 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5099 {
5100 	unsigned long fcf_redisc_wait_tmo =
5101 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5102 	/* Start fcf rediscovery wait period timer */
5103 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5104 	spin_lock_irq(&phba->hbalock);
5105 	/* Allow action to new fcf asynchronous event */
5106 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5107 	/* Mark the FCF rediscovery pending state */
5108 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5109 	spin_unlock_irq(&phba->hbalock);
5110 }
5111 
5112 /**
5113  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5114  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5115  *
5116  * This routine is invoked when waiting for FCF table rediscover has been
5117  * timed out. If new FCF record(s) has (have) been discovered during the
5118  * wait period, a new FCF event shall be added to the FCOE async event
5119  * list, and then worker thread shall be waked up for processing from the
5120  * worker thread context.
5121  **/
5122 static void
5123 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5124 {
5125 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5126 
5127 	/* Don't send FCF rediscovery event if timer cancelled */
5128 	spin_lock_irq(&phba->hbalock);
5129 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5130 		spin_unlock_irq(&phba->hbalock);
5131 		return;
5132 	}
5133 	/* Clear FCF rediscovery timer pending flag */
5134 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5135 	/* FCF rediscovery event to worker thread */
5136 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5137 	spin_unlock_irq(&phba->hbalock);
5138 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5139 			"2776 FCF rediscover quiescent timer expired\n");
5140 	/* wake up worker thread */
5141 	lpfc_worker_wake_up(phba);
5142 }
5143 
5144 /**
5145  * lpfc_vmid_poll - VMID timeout detection
5146  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5147  *
5148  * This routine is invoked when there is no I/O on by a VM for the specified
5149  * amount of time. When this situation is detected, the VMID has to be
5150  * deregistered from the switch and all the local resources freed. The VMID
5151  * will be reassigned to the VM once the I/O begins.
5152  **/
5153 static void
5154 lpfc_vmid_poll(struct timer_list *t)
5155 {
5156 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5157 	u32 wake_up = 0;
5158 
5159 	/* check if there is a need to issue QFPA */
5160 	if (phba->pport->vmid_priority_tagging) {
5161 		wake_up = 1;
5162 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5163 	}
5164 
5165 	/* Is the vmid inactivity timer enabled */
5166 	if (phba->pport->vmid_inactivity_timeout ||
5167 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5168 		wake_up = 1;
5169 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5170 	}
5171 
5172 	if (wake_up)
5173 		lpfc_worker_wake_up(phba);
5174 
5175 	/* restart the timer for the next iteration */
5176 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5177 							LPFC_VMID_TIMER));
5178 }
5179 
5180 /**
5181  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5182  * @phba: pointer to lpfc hba data structure.
5183  * @acqe_link: pointer to the async link completion queue entry.
5184  *
5185  * This routine is to parse the SLI4 link-attention link fault code.
5186  **/
5187 static void
5188 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5189 			   struct lpfc_acqe_link *acqe_link)
5190 {
5191 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5192 	case LPFC_ASYNC_LINK_FAULT_NONE:
5193 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5194 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5195 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5196 		break;
5197 	default:
5198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5199 				"0398 Unknown link fault code: x%x\n",
5200 				bf_get(lpfc_acqe_link_fault, acqe_link));
5201 		break;
5202 	}
5203 }
5204 
5205 /**
5206  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5207  * @phba: pointer to lpfc hba data structure.
5208  * @acqe_link: pointer to the async link completion queue entry.
5209  *
5210  * This routine is to parse the SLI4 link attention type and translate it
5211  * into the base driver's link attention type coding.
5212  *
5213  * Return: Link attention type in terms of base driver's coding.
5214  **/
5215 static uint8_t
5216 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5217 			  struct lpfc_acqe_link *acqe_link)
5218 {
5219 	uint8_t att_type;
5220 
5221 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5222 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5223 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5224 		att_type = LPFC_ATT_LINK_DOWN;
5225 		break;
5226 	case LPFC_ASYNC_LINK_STATUS_UP:
5227 		/* Ignore physical link up events - wait for logical link up */
5228 		att_type = LPFC_ATT_RESERVED;
5229 		break;
5230 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5231 		att_type = LPFC_ATT_LINK_UP;
5232 		break;
5233 	default:
5234 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5235 				"0399 Invalid link attention type: x%x\n",
5236 				bf_get(lpfc_acqe_link_status, acqe_link));
5237 		att_type = LPFC_ATT_RESERVED;
5238 		break;
5239 	}
5240 	return att_type;
5241 }
5242 
5243 /**
5244  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5245  * @phba: pointer to lpfc hba data structure.
5246  *
5247  * This routine is to get an SLI3 FC port's link speed in Mbps.
5248  *
5249  * Return: link speed in terms of Mbps.
5250  **/
5251 uint32_t
5252 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5253 {
5254 	uint32_t link_speed;
5255 
5256 	if (!lpfc_is_link_up(phba))
5257 		return 0;
5258 
5259 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5260 		switch (phba->fc_linkspeed) {
5261 		case LPFC_LINK_SPEED_1GHZ:
5262 			link_speed = 1000;
5263 			break;
5264 		case LPFC_LINK_SPEED_2GHZ:
5265 			link_speed = 2000;
5266 			break;
5267 		case LPFC_LINK_SPEED_4GHZ:
5268 			link_speed = 4000;
5269 			break;
5270 		case LPFC_LINK_SPEED_8GHZ:
5271 			link_speed = 8000;
5272 			break;
5273 		case LPFC_LINK_SPEED_10GHZ:
5274 			link_speed = 10000;
5275 			break;
5276 		case LPFC_LINK_SPEED_16GHZ:
5277 			link_speed = 16000;
5278 			break;
5279 		default:
5280 			link_speed = 0;
5281 		}
5282 	} else {
5283 		if (phba->sli4_hba.link_state.logical_speed)
5284 			link_speed =
5285 			      phba->sli4_hba.link_state.logical_speed;
5286 		else
5287 			link_speed = phba->sli4_hba.link_state.speed;
5288 	}
5289 	return link_speed;
5290 }
5291 
5292 /**
5293  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5294  * @phba: pointer to lpfc hba data structure.
5295  * @evt_code: asynchronous event code.
5296  * @speed_code: asynchronous event link speed code.
5297  *
5298  * This routine is to parse the giving SLI4 async event link speed code into
5299  * value of Mbps for the link speed.
5300  *
5301  * Return: link speed in terms of Mbps.
5302  **/
5303 static uint32_t
5304 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5305 			   uint8_t speed_code)
5306 {
5307 	uint32_t port_speed;
5308 
5309 	switch (evt_code) {
5310 	case LPFC_TRAILER_CODE_LINK:
5311 		switch (speed_code) {
5312 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5313 			port_speed = 0;
5314 			break;
5315 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5316 			port_speed = 10;
5317 			break;
5318 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5319 			port_speed = 100;
5320 			break;
5321 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5322 			port_speed = 1000;
5323 			break;
5324 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5325 			port_speed = 10000;
5326 			break;
5327 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5328 			port_speed = 20000;
5329 			break;
5330 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5331 			port_speed = 25000;
5332 			break;
5333 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5334 			port_speed = 40000;
5335 			break;
5336 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5337 			port_speed = 100000;
5338 			break;
5339 		default:
5340 			port_speed = 0;
5341 		}
5342 		break;
5343 	case LPFC_TRAILER_CODE_FC:
5344 		switch (speed_code) {
5345 		case LPFC_FC_LA_SPEED_UNKNOWN:
5346 			port_speed = 0;
5347 			break;
5348 		case LPFC_FC_LA_SPEED_1G:
5349 			port_speed = 1000;
5350 			break;
5351 		case LPFC_FC_LA_SPEED_2G:
5352 			port_speed = 2000;
5353 			break;
5354 		case LPFC_FC_LA_SPEED_4G:
5355 			port_speed = 4000;
5356 			break;
5357 		case LPFC_FC_LA_SPEED_8G:
5358 			port_speed = 8000;
5359 			break;
5360 		case LPFC_FC_LA_SPEED_10G:
5361 			port_speed = 10000;
5362 			break;
5363 		case LPFC_FC_LA_SPEED_16G:
5364 			port_speed = 16000;
5365 			break;
5366 		case LPFC_FC_LA_SPEED_32G:
5367 			port_speed = 32000;
5368 			break;
5369 		case LPFC_FC_LA_SPEED_64G:
5370 			port_speed = 64000;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_128G:
5373 			port_speed = 128000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_256G:
5376 			port_speed = 256000;
5377 			break;
5378 		default:
5379 			port_speed = 0;
5380 		}
5381 		break;
5382 	default:
5383 		port_speed = 0;
5384 	}
5385 	return port_speed;
5386 }
5387 
5388 /**
5389  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5390  * @phba: pointer to lpfc hba data structure.
5391  * @acqe_link: pointer to the async link completion queue entry.
5392  *
5393  * This routine is to handle the SLI4 asynchronous FCoE link event.
5394  **/
5395 static void
5396 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5397 			 struct lpfc_acqe_link *acqe_link)
5398 {
5399 	LPFC_MBOXQ_t *pmb;
5400 	MAILBOX_t *mb;
5401 	struct lpfc_mbx_read_top *la;
5402 	uint8_t att_type;
5403 	int rc;
5404 
5405 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5406 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5407 		return;
5408 	phba->fcoe_eventtag = acqe_link->event_tag;
5409 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5410 	if (!pmb) {
5411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5412 				"0395 The mboxq allocation failed\n");
5413 		return;
5414 	}
5415 
5416 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5417 	if (rc) {
5418 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5419 				"0396 mailbox allocation failed\n");
5420 		goto out_free_pmb;
5421 	}
5422 
5423 	/* Cleanup any outstanding ELS commands */
5424 	lpfc_els_flush_all_cmd(phba);
5425 
5426 	/* Block ELS IOCBs until we have done process link event */
5427 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5428 
5429 	/* Update link event statistics */
5430 	phba->sli.slistat.link_event++;
5431 
5432 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5433 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5434 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5435 	pmb->vport = phba->pport;
5436 
5437 	/* Keep the link status for extra SLI4 state machine reference */
5438 	phba->sli4_hba.link_state.speed =
5439 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5440 				bf_get(lpfc_acqe_link_speed, acqe_link));
5441 	phba->sli4_hba.link_state.duplex =
5442 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5443 	phba->sli4_hba.link_state.status =
5444 				bf_get(lpfc_acqe_link_status, acqe_link);
5445 	phba->sli4_hba.link_state.type =
5446 				bf_get(lpfc_acqe_link_type, acqe_link);
5447 	phba->sli4_hba.link_state.number =
5448 				bf_get(lpfc_acqe_link_number, acqe_link);
5449 	phba->sli4_hba.link_state.fault =
5450 				bf_get(lpfc_acqe_link_fault, acqe_link);
5451 	phba->sli4_hba.link_state.logical_speed =
5452 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5453 
5454 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5455 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5456 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5457 			"Logical speed:%dMbps Fault:%d\n",
5458 			phba->sli4_hba.link_state.speed,
5459 			phba->sli4_hba.link_state.topology,
5460 			phba->sli4_hba.link_state.status,
5461 			phba->sli4_hba.link_state.type,
5462 			phba->sli4_hba.link_state.number,
5463 			phba->sli4_hba.link_state.logical_speed,
5464 			phba->sli4_hba.link_state.fault);
5465 	/*
5466 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5467 	 * topology info. Note: Optional for non FC-AL ports.
5468 	 */
5469 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5470 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5471 		if (rc == MBX_NOT_FINISHED)
5472 			goto out_free_pmb;
5473 		return;
5474 	}
5475 	/*
5476 	 * For FCoE Mode: fill in all the topology information we need and call
5477 	 * the READ_TOPOLOGY completion routine to continue without actually
5478 	 * sending the READ_TOPOLOGY mailbox command to the port.
5479 	 */
5480 	/* Initialize completion status */
5481 	mb = &pmb->u.mb;
5482 	mb->mbxStatus = MBX_SUCCESS;
5483 
5484 	/* Parse port fault information field */
5485 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5486 
5487 	/* Parse and translate link attention fields */
5488 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5489 	la->eventTag = acqe_link->event_tag;
5490 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5491 	bf_set(lpfc_mbx_read_top_link_spd, la,
5492 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5493 
5494 	/* Fake the the following irrelvant fields */
5495 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5496 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5497 	bf_set(lpfc_mbx_read_top_il, la, 0);
5498 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5499 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5500 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5501 
5502 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5503 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5504 
5505 	return;
5506 
5507 out_free_pmb:
5508 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5509 }
5510 
5511 /**
5512  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5513  * topology.
5514  * @phba: pointer to lpfc hba data structure.
5515  * @speed_code: asynchronous event link speed code.
5516  *
5517  * This routine is to parse the giving SLI4 async event link speed code into
5518  * value of Read topology link speed.
5519  *
5520  * Return: link speed in terms of Read topology.
5521  **/
5522 static uint8_t
5523 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5524 {
5525 	uint8_t port_speed;
5526 
5527 	switch (speed_code) {
5528 	case LPFC_FC_LA_SPEED_1G:
5529 		port_speed = LPFC_LINK_SPEED_1GHZ;
5530 		break;
5531 	case LPFC_FC_LA_SPEED_2G:
5532 		port_speed = LPFC_LINK_SPEED_2GHZ;
5533 		break;
5534 	case LPFC_FC_LA_SPEED_4G:
5535 		port_speed = LPFC_LINK_SPEED_4GHZ;
5536 		break;
5537 	case LPFC_FC_LA_SPEED_8G:
5538 		port_speed = LPFC_LINK_SPEED_8GHZ;
5539 		break;
5540 	case LPFC_FC_LA_SPEED_16G:
5541 		port_speed = LPFC_LINK_SPEED_16GHZ;
5542 		break;
5543 	case LPFC_FC_LA_SPEED_32G:
5544 		port_speed = LPFC_LINK_SPEED_32GHZ;
5545 		break;
5546 	case LPFC_FC_LA_SPEED_64G:
5547 		port_speed = LPFC_LINK_SPEED_64GHZ;
5548 		break;
5549 	case LPFC_FC_LA_SPEED_128G:
5550 		port_speed = LPFC_LINK_SPEED_128GHZ;
5551 		break;
5552 	case LPFC_FC_LA_SPEED_256G:
5553 		port_speed = LPFC_LINK_SPEED_256GHZ;
5554 		break;
5555 	default:
5556 		port_speed = 0;
5557 		break;
5558 	}
5559 
5560 	return port_speed;
5561 }
5562 
5563 void
5564 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5565 {
5566 	if (!phba->rx_monitor) {
5567 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5568 				"4411 Rx Monitor Info is empty.\n");
5569 	} else {
5570 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5571 				       LPFC_MAX_RXMONITOR_DUMP);
5572 	}
5573 }
5574 
5575 /**
5576  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5577  * @phba: pointer to lpfc hba data structure.
5578  * @dtag: FPIN descriptor received
5579  *
5580  * Increment the FPIN received counter/time when it happens.
5581  */
5582 void
5583 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5584 {
5585 	struct lpfc_cgn_info *cp;
5586 	struct tm broken;
5587 	struct timespec64 cur_time;
5588 	u32 cnt;
5589 	u32 value;
5590 
5591 	/* Make sure we have a congestion info buffer */
5592 	if (!phba->cgn_i)
5593 		return;
5594 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5595 	ktime_get_real_ts64(&cur_time);
5596 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5597 
5598 	/* Update congestion statistics */
5599 	switch (dtag) {
5600 	case ELS_DTAG_LNK_INTEGRITY:
5601 		cnt = le32_to_cpu(cp->link_integ_notification);
5602 		cnt++;
5603 		cp->link_integ_notification = cpu_to_le32(cnt);
5604 
5605 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5606 		cp->cgn_stat_lnk_day = broken.tm_mday;
5607 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5608 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5609 		cp->cgn_stat_lnk_min = broken.tm_min;
5610 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5611 		break;
5612 	case ELS_DTAG_DELIVERY:
5613 		cnt = le32_to_cpu(cp->delivery_notification);
5614 		cnt++;
5615 		cp->delivery_notification = cpu_to_le32(cnt);
5616 
5617 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5618 		cp->cgn_stat_del_day = broken.tm_mday;
5619 		cp->cgn_stat_del_year = broken.tm_year - 100;
5620 		cp->cgn_stat_del_hour = broken.tm_hour;
5621 		cp->cgn_stat_del_min = broken.tm_min;
5622 		cp->cgn_stat_del_sec = broken.tm_sec;
5623 		break;
5624 	case ELS_DTAG_PEER_CONGEST:
5625 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5626 		cnt++;
5627 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5628 
5629 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5630 		cp->cgn_stat_peer_day = broken.tm_mday;
5631 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5632 		cp->cgn_stat_peer_hour = broken.tm_hour;
5633 		cp->cgn_stat_peer_min = broken.tm_min;
5634 		cp->cgn_stat_peer_sec = broken.tm_sec;
5635 		break;
5636 	case ELS_DTAG_CONGESTION:
5637 		cnt = le32_to_cpu(cp->cgn_notification);
5638 		cnt++;
5639 		cp->cgn_notification = cpu_to_le32(cnt);
5640 
5641 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5642 		cp->cgn_stat_cgn_day = broken.tm_mday;
5643 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5644 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5645 		cp->cgn_stat_cgn_min = broken.tm_min;
5646 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5647 	}
5648 	if (phba->cgn_fpin_frequency &&
5649 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5650 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5651 		cp->cgn_stat_npm = value;
5652 	}
5653 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5654 				    LPFC_CGN_CRC32_SEED);
5655 	cp->cgn_info_crc = cpu_to_le32(value);
5656 }
5657 
5658 /**
5659  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5660  * @phba: pointer to lpfc hba data structure.
5661  *
5662  * Save the congestion event data every minute.
5663  * On the hour collapse all the minute data into hour data. Every day
5664  * collapse all the hour data into daily data. Separate driver
5665  * and fabrc congestion event counters that will be saved out
5666  * to the registered congestion buffer every minute.
5667  */
5668 static void
5669 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5670 {
5671 	struct lpfc_cgn_info *cp;
5672 	struct tm broken;
5673 	struct timespec64 cur_time;
5674 	uint32_t i, index;
5675 	uint16_t value, mvalue;
5676 	uint64_t bps;
5677 	uint32_t mbps;
5678 	uint32_t dvalue, wvalue, lvalue, avalue;
5679 	uint64_t latsum;
5680 	__le16 *ptr;
5681 	__le32 *lptr;
5682 	__le16 *mptr;
5683 
5684 	/* Make sure we have a congestion info buffer */
5685 	if (!phba->cgn_i)
5686 		return;
5687 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5688 
5689 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5690 		return;
5691 	phba->cgn_evt_timestamp = jiffies +
5692 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5693 	phba->cgn_evt_minute++;
5694 
5695 	/* We should get to this point in the routine on 1 minute intervals */
5696 
5697 	ktime_get_real_ts64(&cur_time);
5698 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5699 
5700 	if (phba->cgn_fpin_frequency &&
5701 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5702 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5703 		cp->cgn_stat_npm = value;
5704 	}
5705 
5706 	/* Read and clear the latency counters for this minute */
5707 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5708 	latsum = atomic64_read(&phba->cgn_latency_evt);
5709 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5710 	atomic64_set(&phba->cgn_latency_evt, 0);
5711 
5712 	/* We need to store MB/sec bandwidth in the congestion information.
5713 	 * block_cnt is count of 512 byte blocks for the entire minute,
5714 	 * bps will get bytes per sec before finally converting to MB/sec.
5715 	 */
5716 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5717 	phba->rx_block_cnt = 0;
5718 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5719 
5720 	/* Every minute */
5721 	/* cgn parameters */
5722 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5723 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5724 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5725 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5726 
5727 	/* Fill in default LUN qdepth */
5728 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5729 	cp->cgn_lunq = cpu_to_le16(value);
5730 
5731 	/* Record congestion buffer info - every minute
5732 	 * cgn_driver_evt_cnt (Driver events)
5733 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5734 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5735 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5736 	 */
5737 	index = ++cp->cgn_index_minute;
5738 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5739 		cp->cgn_index_minute = 0;
5740 		index = 0;
5741 	}
5742 
5743 	/* Get the number of driver events in this sample and reset counter */
5744 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5745 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5746 
5747 	/* Get the number of warning events - FPIN and Signal for this minute */
5748 	wvalue = 0;
5749 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5750 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5751 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5752 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5753 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5754 
5755 	/* Get the number of alarm events - FPIN and Signal for this minute */
5756 	avalue = 0;
5757 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5758 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5759 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5760 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5761 
5762 	/* Collect the driver, warning, alarm and latency counts for this
5763 	 * minute into the driver congestion buffer.
5764 	 */
5765 	ptr = &cp->cgn_drvr_min[index];
5766 	value = (uint16_t)dvalue;
5767 	*ptr = cpu_to_le16(value);
5768 
5769 	ptr = &cp->cgn_warn_min[index];
5770 	value = (uint16_t)wvalue;
5771 	*ptr = cpu_to_le16(value);
5772 
5773 	ptr = &cp->cgn_alarm_min[index];
5774 	value = (uint16_t)avalue;
5775 	*ptr = cpu_to_le16(value);
5776 
5777 	lptr = &cp->cgn_latency_min[index];
5778 	if (lvalue) {
5779 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5780 		*lptr = cpu_to_le32(lvalue);
5781 	} else {
5782 		*lptr = 0;
5783 	}
5784 
5785 	/* Collect the bandwidth value into the driver's congesion buffer. */
5786 	mptr = &cp->cgn_bw_min[index];
5787 	*mptr = cpu_to_le16(mvalue);
5788 
5789 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5790 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5791 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5792 
5793 	/* Every hour */
5794 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5795 		/* Record congestion buffer info - every hour
5796 		 * Collapse all minutes into an hour
5797 		 */
5798 		index = ++cp->cgn_index_hour;
5799 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5800 			cp->cgn_index_hour = 0;
5801 			index = 0;
5802 		}
5803 
5804 		dvalue = 0;
5805 		wvalue = 0;
5806 		lvalue = 0;
5807 		avalue = 0;
5808 		mvalue = 0;
5809 		mbps = 0;
5810 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5811 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5812 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5813 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5814 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5815 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5816 		}
5817 		if (lvalue)		/* Avg of latency averages */
5818 			lvalue /= LPFC_MIN_HOUR;
5819 		if (mbps)		/* Avg of Bandwidth averages */
5820 			mvalue = mbps / LPFC_MIN_HOUR;
5821 
5822 		lptr = &cp->cgn_drvr_hr[index];
5823 		*lptr = cpu_to_le32(dvalue);
5824 		lptr = &cp->cgn_warn_hr[index];
5825 		*lptr = cpu_to_le32(wvalue);
5826 		lptr = &cp->cgn_latency_hr[index];
5827 		*lptr = cpu_to_le32(lvalue);
5828 		mptr = &cp->cgn_bw_hr[index];
5829 		*mptr = cpu_to_le16(mvalue);
5830 		lptr = &cp->cgn_alarm_hr[index];
5831 		*lptr = cpu_to_le32(avalue);
5832 
5833 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5834 				"2419 Congestion Info - hour "
5835 				"(%d): %d %d %d %d %d\n",
5836 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5837 	}
5838 
5839 	/* Every day */
5840 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5841 		/* Record congestion buffer info - every hour
5842 		 * Collapse all hours into a day. Rotate days
5843 		 * after LPFC_MAX_CGN_DAYS.
5844 		 */
5845 		index = ++cp->cgn_index_day;
5846 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5847 			cp->cgn_index_day = 0;
5848 			index = 0;
5849 		}
5850 
5851 		/* Anytime we overwrite daily index 0, after we wrap,
5852 		 * we will be overwriting the oldest day, so we must
5853 		 * update the congestion data start time for that day.
5854 		 * That start time should have previously been saved after
5855 		 * we wrote the last days worth of data.
5856 		 */
5857 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5858 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5859 
5860 			cp->cgn_info_month = broken.tm_mon + 1;
5861 			cp->cgn_info_day = broken.tm_mday;
5862 			cp->cgn_info_year = broken.tm_year - 100;
5863 			cp->cgn_info_hour = broken.tm_hour;
5864 			cp->cgn_info_minute = broken.tm_min;
5865 			cp->cgn_info_second = broken.tm_sec;
5866 
5867 			lpfc_printf_log
5868 				(phba, KERN_INFO, LOG_CGN_MGMT,
5869 				"2646 CGNInfo idx0 Start Time: "
5870 				"%d/%d/%d %d:%d:%d\n",
5871 				cp->cgn_info_day, cp->cgn_info_month,
5872 				cp->cgn_info_year, cp->cgn_info_hour,
5873 				cp->cgn_info_minute, cp->cgn_info_second);
5874 		}
5875 
5876 		dvalue = 0;
5877 		wvalue = 0;
5878 		lvalue = 0;
5879 		mvalue = 0;
5880 		mbps = 0;
5881 		avalue = 0;
5882 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5883 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5884 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5885 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5886 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5887 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5888 		}
5889 		if (lvalue)		/* Avg of latency averages */
5890 			lvalue /= LPFC_HOUR_DAY;
5891 		if (mbps)		/* Avg of Bandwidth averages */
5892 			mvalue = mbps / LPFC_HOUR_DAY;
5893 
5894 		lptr = &cp->cgn_drvr_day[index];
5895 		*lptr = cpu_to_le32(dvalue);
5896 		lptr = &cp->cgn_warn_day[index];
5897 		*lptr = cpu_to_le32(wvalue);
5898 		lptr = &cp->cgn_latency_day[index];
5899 		*lptr = cpu_to_le32(lvalue);
5900 		mptr = &cp->cgn_bw_day[index];
5901 		*mptr = cpu_to_le16(mvalue);
5902 		lptr = &cp->cgn_alarm_day[index];
5903 		*lptr = cpu_to_le32(avalue);
5904 
5905 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5906 				"2420 Congestion Info - daily (%d): "
5907 				"%d %d %d %d %d\n",
5908 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5909 
5910 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5911 		 * so we are wrapped on any data after this.
5912 		 * Save this as the start time for the next day.
5913 		 */
5914 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5915 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5916 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5917 		}
5918 	}
5919 
5920 	/* Use the frequency found in the last rcv'ed FPIN */
5921 	value = phba->cgn_fpin_frequency;
5922 	cp->cgn_warn_freq = cpu_to_le16(value);
5923 	cp->cgn_alarm_freq = cpu_to_le16(value);
5924 
5925 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5926 				     LPFC_CGN_CRC32_SEED);
5927 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5928 }
5929 
5930 /**
5931  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5932  * @phba: The Hba for which this call is being executed.
5933  *
5934  * The routine calculates the latency from the beginning of the CMF timer
5935  * interval to the current point in time. It is called from IO completion
5936  * when we exceed our Bandwidth limitation for the time interval.
5937  */
5938 uint32_t
5939 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5940 {
5941 	struct timespec64 cmpl_time;
5942 	uint32_t msec = 0;
5943 
5944 	ktime_get_real_ts64(&cmpl_time);
5945 
5946 	/* This routine works on a ms granularity so sec and usec are
5947 	 * converted accordingly.
5948 	 */
5949 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5950 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5951 			NSEC_PER_MSEC;
5952 	} else {
5953 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5954 			msec = (cmpl_time.tv_sec -
5955 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5956 			msec += ((cmpl_time.tv_nsec -
5957 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5958 		} else {
5959 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5960 				1) * MSEC_PER_SEC;
5961 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5962 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5963 		}
5964 	}
5965 	return msec;
5966 }
5967 
5968 /**
5969  * lpfc_cmf_timer -  This is the timer function for one congestion
5970  * rate interval.
5971  * @timer: Pointer to the high resolution timer that expired
5972  */
5973 static enum hrtimer_restart
5974 lpfc_cmf_timer(struct hrtimer *timer)
5975 {
5976 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5977 					     cmf_timer);
5978 	struct rx_info_entry entry;
5979 	uint32_t io_cnt;
5980 	uint32_t busy, max_read;
5981 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5982 	int timer_interval = LPFC_CMF_INTERVAL;
5983 	uint32_t ms;
5984 	struct lpfc_cgn_stat *cgs;
5985 	int cpu;
5986 
5987 	/* Only restart the timer if congestion mgmt is on */
5988 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5989 	    !phba->cmf_latency.tv_sec) {
5990 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5991 				"6224 CMF timer exit: %d %lld\n",
5992 				phba->cmf_active_mode,
5993 				(uint64_t)phba->cmf_latency.tv_sec);
5994 		return HRTIMER_NORESTART;
5995 	}
5996 
5997 	/* If pport is not ready yet, just exit and wait for
5998 	 * the next timer cycle to hit.
5999 	 */
6000 	if (!phba->pport)
6001 		goto skip;
6002 
6003 	/* Do not block SCSI IO while in the timer routine since
6004 	 * total_bytes will be cleared
6005 	 */
6006 	atomic_set(&phba->cmf_stop_io, 1);
6007 
6008 	/* First we need to calculate the actual ms between
6009 	 * the last timer interrupt and this one. We ask for
6010 	 * LPFC_CMF_INTERVAL, however the actual time may
6011 	 * vary depending on system overhead.
6012 	 */
6013 	ms = lpfc_calc_cmf_latency(phba);
6014 
6015 
6016 	/* Immediately after we calculate the time since the last
6017 	 * timer interrupt, set the start time for the next
6018 	 * interrupt
6019 	 */
6020 	ktime_get_real_ts64(&phba->cmf_latency);
6021 
6022 	phba->cmf_link_byte_count =
6023 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6024 
6025 	/* Collect all the stats from the prior timer interval */
6026 	total = 0;
6027 	io_cnt = 0;
6028 	lat = 0;
6029 	rcv = 0;
6030 	for_each_present_cpu(cpu) {
6031 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6032 		total += atomic64_xchg(&cgs->total_bytes, 0);
6033 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6034 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6035 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6036 	}
6037 
6038 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6039 	 * returned from the last CMF_SYNC_WQE issued, from
6040 	 * cmf_last_sync_bw. This will be the target BW for
6041 	 * this next timer interval.
6042 	 */
6043 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6044 	    phba->link_state != LPFC_LINK_DOWN &&
6045 	    phba->hba_flag & HBA_SETUP) {
6046 		mbpi = phba->cmf_last_sync_bw;
6047 		phba->cmf_last_sync_bw = 0;
6048 		extra = 0;
6049 
6050 		/* Calculate any extra bytes needed to account for the
6051 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6052 		 * calculate the adjustment needed for total to reflect
6053 		 * a full LPFC_CMF_INTERVAL.
6054 		 */
6055 		if (ms && ms < LPFC_CMF_INTERVAL) {
6056 			cnt = div_u64(total, ms); /* bytes per ms */
6057 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6058 
6059 			/* If the timeout is scheduled to be shorter,
6060 			 * this value may skew the data, so cap it at mbpi.
6061 			 */
6062 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6063 				cnt = mbpi;
6064 
6065 			extra = cnt - total;
6066 		}
6067 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6068 	} else {
6069 		/* For Monitor mode or link down we want mbpi
6070 		 * to be the full link speed
6071 		 */
6072 		mbpi = phba->cmf_link_byte_count;
6073 		extra = 0;
6074 	}
6075 	phba->cmf_timer_cnt++;
6076 
6077 	if (io_cnt) {
6078 		/* Update congestion info buffer latency in us */
6079 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6080 		atomic64_add(lat, &phba->cgn_latency_evt);
6081 	}
6082 	busy = atomic_xchg(&phba->cmf_busy, 0);
6083 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6084 
6085 	/* Calculate MBPI for the next timer interval */
6086 	if (mbpi) {
6087 		if (mbpi > phba->cmf_link_byte_count ||
6088 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6089 			mbpi = phba->cmf_link_byte_count;
6090 
6091 		/* Change max_bytes_per_interval to what the prior
6092 		 * CMF_SYNC_WQE cmpl indicated.
6093 		 */
6094 		if (mbpi != phba->cmf_max_bytes_per_interval)
6095 			phba->cmf_max_bytes_per_interval = mbpi;
6096 	}
6097 
6098 	/* Save rxmonitor information for debug */
6099 	if (phba->rx_monitor) {
6100 		entry.total_bytes = total;
6101 		entry.cmf_bytes = total + extra;
6102 		entry.rcv_bytes = rcv;
6103 		entry.cmf_busy = busy;
6104 		entry.cmf_info = phba->cmf_active_info;
6105 		if (io_cnt) {
6106 			entry.avg_io_latency = div_u64(lat, io_cnt);
6107 			entry.avg_io_size = div_u64(rcv, io_cnt);
6108 		} else {
6109 			entry.avg_io_latency = 0;
6110 			entry.avg_io_size = 0;
6111 		}
6112 		entry.max_read_cnt = max_read;
6113 		entry.io_cnt = io_cnt;
6114 		entry.max_bytes_per_interval = mbpi;
6115 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6116 			entry.timer_utilization = phba->cmf_last_ts;
6117 		else
6118 			entry.timer_utilization = ms;
6119 		entry.timer_interval = ms;
6120 		phba->cmf_last_ts = 0;
6121 
6122 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6123 	}
6124 
6125 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6126 		/* If Monitor mode, check if we are oversubscribed
6127 		 * against the full line rate.
6128 		 */
6129 		if (mbpi && total > mbpi)
6130 			atomic_inc(&phba->cgn_driver_evt_cnt);
6131 	}
6132 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6133 
6134 	/* Each minute save Fabric and Driver congestion information */
6135 	lpfc_cgn_save_evt_cnt(phba);
6136 
6137 	phba->hba_flag &= ~HBA_SHORT_CMF;
6138 
6139 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6140 	 * minute, adjust our next timer interval, if needed, to ensure a
6141 	 * 1 minute granularity when we get the next timer interrupt.
6142 	 */
6143 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6144 		       phba->cgn_evt_timestamp)) {
6145 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6146 						  jiffies);
6147 		if (timer_interval <= 0)
6148 			timer_interval = LPFC_CMF_INTERVAL;
6149 		else
6150 			phba->hba_flag |= HBA_SHORT_CMF;
6151 
6152 		/* If we adjust timer_interval, max_bytes_per_interval
6153 		 * needs to be adjusted as well.
6154 		 */
6155 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6156 						    timer_interval, 1000);
6157 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6158 			phba->cmf_max_bytes_per_interval =
6159 				phba->cmf_link_byte_count;
6160 	}
6161 
6162 	/* Since total_bytes has already been zero'ed, its okay to unblock
6163 	 * after max_bytes_per_interval is setup.
6164 	 */
6165 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6166 		queue_work(phba->wq, &phba->unblock_request_work);
6167 
6168 	/* SCSI IO is now unblocked */
6169 	atomic_set(&phba->cmf_stop_io, 0);
6170 
6171 skip:
6172 	hrtimer_forward_now(timer,
6173 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6174 	return HRTIMER_RESTART;
6175 }
6176 
6177 #define trunk_link_status(__idx)\
6178 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6179 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6180 		"Link up" : "Link down") : "NA"
6181 /* Did port __idx reported an error */
6182 #define trunk_port_fault(__idx)\
6183 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6184 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6185 
6186 static void
6187 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6188 			      struct lpfc_acqe_fc_la *acqe_fc)
6189 {
6190 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6191 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6192 	u8 cnt = 0;
6193 
6194 	phba->sli4_hba.link_state.speed =
6195 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6196 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6197 
6198 	phba->sli4_hba.link_state.logical_speed =
6199 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6200 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6201 	phba->fc_linkspeed =
6202 		 lpfc_async_link_speed_to_read_top(
6203 				phba,
6204 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6205 
6206 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6207 		phba->trunk_link.link0.state =
6208 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6209 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6210 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6211 		cnt++;
6212 	}
6213 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6214 		phba->trunk_link.link1.state =
6215 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6216 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6217 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6218 		cnt++;
6219 	}
6220 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6221 		phba->trunk_link.link2.state =
6222 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6223 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6224 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6225 		cnt++;
6226 	}
6227 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6228 		phba->trunk_link.link3.state =
6229 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6230 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6231 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6232 		cnt++;
6233 	}
6234 
6235 	if (cnt)
6236 		phba->trunk_link.phy_lnk_speed =
6237 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6238 	else
6239 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6240 
6241 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6242 			"2910 Async FC Trunking Event - Speed:%d\n"
6243 			"\tLogical speed:%d "
6244 			"port0: %s port1: %s port2: %s port3: %s\n",
6245 			phba->sli4_hba.link_state.speed,
6246 			phba->sli4_hba.link_state.logical_speed,
6247 			trunk_link_status(0), trunk_link_status(1),
6248 			trunk_link_status(2), trunk_link_status(3));
6249 
6250 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6251 		lpfc_cmf_signal_init(phba);
6252 
6253 	if (port_fault)
6254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6255 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6256 				/*
6257 				 * SLI-4: We have only 0xA error codes
6258 				 * defined as of now. print an appropriate
6259 				 * message in case driver needs to be updated.
6260 				 */
6261 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6262 				"UNDEFINED. update driver." : trunk_errmsg[err],
6263 				trunk_port_fault(0), trunk_port_fault(1),
6264 				trunk_port_fault(2), trunk_port_fault(3));
6265 }
6266 
6267 
6268 /**
6269  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6270  * @phba: pointer to lpfc hba data structure.
6271  * @acqe_fc: pointer to the async fc completion queue entry.
6272  *
6273  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6274  * that the event was received and then issue a read_topology mailbox command so
6275  * that the rest of the driver will treat it the same as SLI3.
6276  **/
6277 static void
6278 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6279 {
6280 	LPFC_MBOXQ_t *pmb;
6281 	MAILBOX_t *mb;
6282 	struct lpfc_mbx_read_top *la;
6283 	int rc;
6284 
6285 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6286 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6287 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6288 				"2895 Non FC link Event detected.(%d)\n",
6289 				bf_get(lpfc_trailer_type, acqe_fc));
6290 		return;
6291 	}
6292 
6293 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6294 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6295 		lpfc_update_trunk_link_status(phba, acqe_fc);
6296 		return;
6297 	}
6298 
6299 	/* Keep the link status for extra SLI4 state machine reference */
6300 	phba->sli4_hba.link_state.speed =
6301 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6302 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6303 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6304 	phba->sli4_hba.link_state.topology =
6305 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6306 	phba->sli4_hba.link_state.status =
6307 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6308 	phba->sli4_hba.link_state.type =
6309 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6310 	phba->sli4_hba.link_state.number =
6311 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6312 	phba->sli4_hba.link_state.fault =
6313 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6314 
6315 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6316 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6317 		phba->sli4_hba.link_state.logical_speed = 0;
6318 	else if (!phba->sli4_hba.conf_trunk)
6319 		phba->sli4_hba.link_state.logical_speed =
6320 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6321 
6322 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6323 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6324 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6325 			"%dMbps Fault:%d\n",
6326 			phba->sli4_hba.link_state.speed,
6327 			phba->sli4_hba.link_state.topology,
6328 			phba->sli4_hba.link_state.status,
6329 			phba->sli4_hba.link_state.type,
6330 			phba->sli4_hba.link_state.number,
6331 			phba->sli4_hba.link_state.logical_speed,
6332 			phba->sli4_hba.link_state.fault);
6333 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6334 	if (!pmb) {
6335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6336 				"2897 The mboxq allocation failed\n");
6337 		return;
6338 	}
6339 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6340 	if (rc) {
6341 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6342 				"2898 The mboxq prep failed\n");
6343 		goto out_free_pmb;
6344 	}
6345 
6346 	/* Cleanup any outstanding ELS commands */
6347 	lpfc_els_flush_all_cmd(phba);
6348 
6349 	/* Block ELS IOCBs until we have done process link event */
6350 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6351 
6352 	/* Update link event statistics */
6353 	phba->sli.slistat.link_event++;
6354 
6355 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6356 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6357 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6358 	pmb->vport = phba->pport;
6359 
6360 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6361 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6362 
6363 		switch (phba->sli4_hba.link_state.status) {
6364 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6365 			phba->link_flag |= LS_MDS_LINK_DOWN;
6366 			break;
6367 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6368 			phba->link_flag |= LS_MDS_LOOPBACK;
6369 			break;
6370 		default:
6371 			break;
6372 		}
6373 
6374 		/* Initialize completion status */
6375 		mb = &pmb->u.mb;
6376 		mb->mbxStatus = MBX_SUCCESS;
6377 
6378 		/* Parse port fault information field */
6379 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6380 
6381 		/* Parse and translate link attention fields */
6382 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6383 		la->eventTag = acqe_fc->event_tag;
6384 
6385 		if (phba->sli4_hba.link_state.status ==
6386 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6387 			bf_set(lpfc_mbx_read_top_att_type, la,
6388 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6389 		} else {
6390 			bf_set(lpfc_mbx_read_top_att_type, la,
6391 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6392 		}
6393 		/* Invoke the mailbox command callback function */
6394 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6395 
6396 		return;
6397 	}
6398 
6399 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6400 	if (rc == MBX_NOT_FINISHED)
6401 		goto out_free_pmb;
6402 	return;
6403 
6404 out_free_pmb:
6405 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6406 }
6407 
6408 /**
6409  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6410  * @phba: pointer to lpfc hba data structure.
6411  * @acqe_sli: pointer to the async SLI completion queue entry.
6412  *
6413  * This routine is to handle the SLI4 asynchronous SLI events.
6414  **/
6415 static void
6416 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6417 {
6418 	char port_name;
6419 	char message[128];
6420 	uint8_t status;
6421 	uint8_t evt_type;
6422 	uint8_t operational = 0;
6423 	struct temp_event temp_event_data;
6424 	struct lpfc_acqe_misconfigured_event *misconfigured;
6425 	struct lpfc_acqe_cgn_signal *cgn_signal;
6426 	struct Scsi_Host  *shost;
6427 	struct lpfc_vport **vports;
6428 	int rc, i, cnt;
6429 
6430 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6431 
6432 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6433 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6434 			"x%08x x%08x x%08x\n", evt_type,
6435 			acqe_sli->event_data1, acqe_sli->event_data2,
6436 			acqe_sli->event_data3, acqe_sli->trailer);
6437 
6438 	port_name = phba->Port[0];
6439 	if (port_name == 0x00)
6440 		port_name = '?'; /* get port name is empty */
6441 
6442 	switch (evt_type) {
6443 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6444 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6445 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6446 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6447 
6448 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6449 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6450 				acqe_sli->event_data1, port_name);
6451 
6452 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6453 		shost = lpfc_shost_from_vport(phba->pport);
6454 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6455 					  sizeof(temp_event_data),
6456 					  (char *)&temp_event_data,
6457 					  SCSI_NL_VID_TYPE_PCI
6458 					  | PCI_VENDOR_ID_EMULEX);
6459 		break;
6460 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6461 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6462 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6463 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6464 
6465 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6466 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6467 				acqe_sli->event_data1, port_name);
6468 
6469 		shost = lpfc_shost_from_vport(phba->pport);
6470 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6471 					  sizeof(temp_event_data),
6472 					  (char *)&temp_event_data,
6473 					  SCSI_NL_VID_TYPE_PCI
6474 					  | PCI_VENDOR_ID_EMULEX);
6475 		break;
6476 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6477 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6478 					&acqe_sli->event_data1;
6479 
6480 		/* fetch the status for this port */
6481 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6482 		case LPFC_LINK_NUMBER_0:
6483 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6484 					&misconfigured->theEvent);
6485 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6486 					&misconfigured->theEvent);
6487 			break;
6488 		case LPFC_LINK_NUMBER_1:
6489 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6490 					&misconfigured->theEvent);
6491 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6492 					&misconfigured->theEvent);
6493 			break;
6494 		case LPFC_LINK_NUMBER_2:
6495 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6496 					&misconfigured->theEvent);
6497 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6498 					&misconfigured->theEvent);
6499 			break;
6500 		case LPFC_LINK_NUMBER_3:
6501 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6502 					&misconfigured->theEvent);
6503 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6504 					&misconfigured->theEvent);
6505 			break;
6506 		default:
6507 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6508 					"3296 "
6509 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6510 					"event: Invalid link %d",
6511 					phba->sli4_hba.lnk_info.lnk_no);
6512 			return;
6513 		}
6514 
6515 		/* Skip if optic state unchanged */
6516 		if (phba->sli4_hba.lnk_info.optic_state == status)
6517 			return;
6518 
6519 		switch (status) {
6520 		case LPFC_SLI_EVENT_STATUS_VALID:
6521 			sprintf(message, "Physical Link is functional");
6522 			break;
6523 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6524 			sprintf(message, "Optics faulted/incorrectly "
6525 				"installed/not installed - Reseat optics, "
6526 				"if issue not resolved, replace.");
6527 			break;
6528 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6529 			sprintf(message,
6530 				"Optics of two types installed - Remove one "
6531 				"optic or install matching pair of optics.");
6532 			break;
6533 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6534 			sprintf(message, "Incompatible optics - Replace with "
6535 				"compatible optics for card to function.");
6536 			break;
6537 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6538 			sprintf(message, "Unqualified optics - Replace with "
6539 				"Avago optics for Warranty and Technical "
6540 				"Support - Link is%s operational",
6541 				(operational) ? " not" : "");
6542 			break;
6543 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6544 			sprintf(message, "Uncertified optics - Replace with "
6545 				"Avago-certified optics to enable link "
6546 				"operation - Link is%s operational",
6547 				(operational) ? " not" : "");
6548 			break;
6549 		default:
6550 			/* firmware is reporting a status we don't know about */
6551 			sprintf(message, "Unknown event status x%02x", status);
6552 			break;
6553 		}
6554 
6555 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6556 		rc = lpfc_sli4_read_config(phba);
6557 		if (rc) {
6558 			phba->lmt = 0;
6559 			lpfc_printf_log(phba, KERN_ERR,
6560 					LOG_TRACE_EVENT,
6561 					"3194 Unable to retrieve supported "
6562 					"speeds, rc = 0x%x\n", rc);
6563 		}
6564 		rc = lpfc_sli4_refresh_params(phba);
6565 		if (rc) {
6566 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6567 					"3174 Unable to update pls support, "
6568 					"rc x%x\n", rc);
6569 		}
6570 		vports = lpfc_create_vport_work_array(phba);
6571 		if (vports != NULL) {
6572 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6573 					i++) {
6574 				shost = lpfc_shost_from_vport(vports[i]);
6575 				lpfc_host_supported_speeds_set(shost);
6576 			}
6577 		}
6578 		lpfc_destroy_vport_work_array(phba, vports);
6579 
6580 		phba->sli4_hba.lnk_info.optic_state = status;
6581 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6582 				"3176 Port Name %c %s\n", port_name, message);
6583 		break;
6584 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6585 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6586 				"3192 Remote DPort Test Initiated - "
6587 				"Event Data1:x%08x Event Data2: x%08x\n",
6588 				acqe_sli->event_data1, acqe_sli->event_data2);
6589 		break;
6590 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6591 		/* Call FW to obtain active parms */
6592 		lpfc_sli4_cgn_parm_chg_evt(phba);
6593 		break;
6594 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6595 		/* Misconfigured WWN. Reports that the SLI Port is configured
6596 		 * to use FA-WWN, but the attached device doesn’t support it.
6597 		 * Event Data1 - N.A, Event Data2 - N.A
6598 		 * This event only happens on the physical port.
6599 		 */
6600 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6601 			     "2699 Misconfigured FA-PWWN - Attached device "
6602 			     "does not support FA-PWWN\n");
6603 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6604 		memset(phba->pport->fc_portname.u.wwn, 0,
6605 		       sizeof(struct lpfc_name));
6606 		break;
6607 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6608 		/* EEPROM failure. No driver action is required */
6609 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6610 			     "2518 EEPROM failure - "
6611 			     "Event Data1: x%08x Event Data2: x%08x\n",
6612 			     acqe_sli->event_data1, acqe_sli->event_data2);
6613 		break;
6614 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6615 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6616 			break;
6617 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6618 					&acqe_sli->event_data1;
6619 		phba->cgn_acqe_cnt++;
6620 
6621 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6622 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6623 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6624 
6625 		/* no threshold for CMF, even 1 signal will trigger an event */
6626 
6627 		/* Alarm overrides warning, so check that first */
6628 		if (cgn_signal->alarm_cnt) {
6629 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6630 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6631 				atomic_add(cgn_signal->alarm_cnt,
6632 					   &phba->cgn_sync_alarm_cnt);
6633 			}
6634 		} else if (cnt) {
6635 			/* signal action needs to be taken */
6636 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6637 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6638 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6639 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6640 			}
6641 		}
6642 		break;
6643 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6644 		/* May be accompanied by a temperature event */
6645 		lpfc_printf_log(phba, KERN_INFO,
6646 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6647 				"2902 Remote Degrade Signaling: x%08x x%08x "
6648 				"x%08x\n",
6649 				acqe_sli->event_data1, acqe_sli->event_data2,
6650 				acqe_sli->event_data3);
6651 		break;
6652 	default:
6653 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6654 				"3193 Unrecognized SLI event, type: 0x%x",
6655 				evt_type);
6656 		break;
6657 	}
6658 }
6659 
6660 /**
6661  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6662  * @vport: pointer to vport data structure.
6663  *
6664  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6665  * response to a CVL event.
6666  *
6667  * Return the pointer to the ndlp with the vport if successful, otherwise
6668  * return NULL.
6669  **/
6670 static struct lpfc_nodelist *
6671 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6672 {
6673 	struct lpfc_nodelist *ndlp;
6674 	struct Scsi_Host *shost;
6675 	struct lpfc_hba *phba;
6676 
6677 	if (!vport)
6678 		return NULL;
6679 	phba = vport->phba;
6680 	if (!phba)
6681 		return NULL;
6682 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6683 	if (!ndlp) {
6684 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6685 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6686 		if (!ndlp)
6687 			return NULL;
6688 		/* Set the node type */
6689 		ndlp->nlp_type |= NLP_FABRIC;
6690 		/* Put ndlp onto node list */
6691 		lpfc_enqueue_node(vport, ndlp);
6692 	}
6693 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6694 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6695 		return NULL;
6696 	/* If virtual link is not yet instantiated ignore CVL */
6697 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6698 		&& (vport->port_state != LPFC_VPORT_FAILED))
6699 		return NULL;
6700 	shost = lpfc_shost_from_vport(vport);
6701 	if (!shost)
6702 		return NULL;
6703 	lpfc_linkdown_port(vport);
6704 	lpfc_cleanup_pending_mbox(vport);
6705 	spin_lock_irq(shost->host_lock);
6706 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6707 	spin_unlock_irq(shost->host_lock);
6708 
6709 	return ndlp;
6710 }
6711 
6712 /**
6713  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6714  * @phba: pointer to lpfc hba data structure.
6715  *
6716  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6717  * response to a FCF dead event.
6718  **/
6719 static void
6720 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6721 {
6722 	struct lpfc_vport **vports;
6723 	int i;
6724 
6725 	vports = lpfc_create_vport_work_array(phba);
6726 	if (vports)
6727 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6728 			lpfc_sli4_perform_vport_cvl(vports[i]);
6729 	lpfc_destroy_vport_work_array(phba, vports);
6730 }
6731 
6732 /**
6733  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6734  * @phba: pointer to lpfc hba data structure.
6735  * @acqe_fip: pointer to the async fcoe completion queue entry.
6736  *
6737  * This routine is to handle the SLI4 asynchronous fcoe event.
6738  **/
6739 static void
6740 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6741 			struct lpfc_acqe_fip *acqe_fip)
6742 {
6743 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6744 	int rc;
6745 	struct lpfc_vport *vport;
6746 	struct lpfc_nodelist *ndlp;
6747 	int active_vlink_present;
6748 	struct lpfc_vport **vports;
6749 	int i;
6750 
6751 	phba->fc_eventTag = acqe_fip->event_tag;
6752 	phba->fcoe_eventtag = acqe_fip->event_tag;
6753 	switch (event_type) {
6754 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6755 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6756 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6757 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6758 					"2546 New FCF event, evt_tag:x%x, "
6759 					"index:x%x\n",
6760 					acqe_fip->event_tag,
6761 					acqe_fip->index);
6762 		else
6763 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6764 					LOG_DISCOVERY,
6765 					"2788 FCF param modified event, "
6766 					"evt_tag:x%x, index:x%x\n",
6767 					acqe_fip->event_tag,
6768 					acqe_fip->index);
6769 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6770 			/*
6771 			 * During period of FCF discovery, read the FCF
6772 			 * table record indexed by the event to update
6773 			 * FCF roundrobin failover eligible FCF bmask.
6774 			 */
6775 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6776 					LOG_DISCOVERY,
6777 					"2779 Read FCF (x%x) for updating "
6778 					"roundrobin FCF failover bmask\n",
6779 					acqe_fip->index);
6780 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6781 		}
6782 
6783 		/* If the FCF discovery is in progress, do nothing. */
6784 		spin_lock_irq(&phba->hbalock);
6785 		if (phba->hba_flag & FCF_TS_INPROG) {
6786 			spin_unlock_irq(&phba->hbalock);
6787 			break;
6788 		}
6789 		/* If fast FCF failover rescan event is pending, do nothing */
6790 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6791 			spin_unlock_irq(&phba->hbalock);
6792 			break;
6793 		}
6794 
6795 		/* If the FCF has been in discovered state, do nothing. */
6796 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6797 			spin_unlock_irq(&phba->hbalock);
6798 			break;
6799 		}
6800 		spin_unlock_irq(&phba->hbalock);
6801 
6802 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6803 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6804 				"2770 Start FCF table scan per async FCF "
6805 				"event, evt_tag:x%x, index:x%x\n",
6806 				acqe_fip->event_tag, acqe_fip->index);
6807 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6808 						     LPFC_FCOE_FCF_GET_FIRST);
6809 		if (rc)
6810 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6811 					"2547 Issue FCF scan read FCF mailbox "
6812 					"command failed (x%x)\n", rc);
6813 		break;
6814 
6815 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6816 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6817 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6818 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6819 				acqe_fip->event_tag);
6820 		break;
6821 
6822 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6823 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6824 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6825 				"2549 FCF (x%x) disconnected from network, "
6826 				 "tag:x%x\n", acqe_fip->index,
6827 				 acqe_fip->event_tag);
6828 		/*
6829 		 * If we are in the middle of FCF failover process, clear
6830 		 * the corresponding FCF bit in the roundrobin bitmap.
6831 		 */
6832 		spin_lock_irq(&phba->hbalock);
6833 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6834 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6835 			spin_unlock_irq(&phba->hbalock);
6836 			/* Update FLOGI FCF failover eligible FCF bmask */
6837 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6838 			break;
6839 		}
6840 		spin_unlock_irq(&phba->hbalock);
6841 
6842 		/* If the event is not for currently used fcf do nothing */
6843 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6844 			break;
6845 
6846 		/*
6847 		 * Otherwise, request the port to rediscover the entire FCF
6848 		 * table for a fast recovery from case that the current FCF
6849 		 * is no longer valid as we are not in the middle of FCF
6850 		 * failover process already.
6851 		 */
6852 		spin_lock_irq(&phba->hbalock);
6853 		/* Mark the fast failover process in progress */
6854 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6855 		spin_unlock_irq(&phba->hbalock);
6856 
6857 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6858 				"2771 Start FCF fast failover process due to "
6859 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6860 				"\n", acqe_fip->event_tag, acqe_fip->index);
6861 		rc = lpfc_sli4_redisc_fcf_table(phba);
6862 		if (rc) {
6863 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6864 					LOG_TRACE_EVENT,
6865 					"2772 Issue FCF rediscover mailbox "
6866 					"command failed, fail through to FCF "
6867 					"dead event\n");
6868 			spin_lock_irq(&phba->hbalock);
6869 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6870 			spin_unlock_irq(&phba->hbalock);
6871 			/*
6872 			 * Last resort will fail over by treating this
6873 			 * as a link down to FCF registration.
6874 			 */
6875 			lpfc_sli4_fcf_dead_failthrough(phba);
6876 		} else {
6877 			/* Reset FCF roundrobin bmask for new discovery */
6878 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6879 			/*
6880 			 * Handling fast FCF failover to a DEAD FCF event is
6881 			 * considered equalivant to receiving CVL to all vports.
6882 			 */
6883 			lpfc_sli4_perform_all_vport_cvl(phba);
6884 		}
6885 		break;
6886 	case LPFC_FIP_EVENT_TYPE_CVL:
6887 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6888 		lpfc_printf_log(phba, KERN_ERR,
6889 				LOG_TRACE_EVENT,
6890 			"2718 Clear Virtual Link Received for VPI 0x%x"
6891 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6892 
6893 		vport = lpfc_find_vport_by_vpid(phba,
6894 						acqe_fip->index);
6895 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6896 		if (!ndlp)
6897 			break;
6898 		active_vlink_present = 0;
6899 
6900 		vports = lpfc_create_vport_work_array(phba);
6901 		if (vports) {
6902 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6903 					i++) {
6904 				if ((!(vports[i]->fc_flag &
6905 					FC_VPORT_CVL_RCVD)) &&
6906 					(vports[i]->port_state > LPFC_FDISC)) {
6907 					active_vlink_present = 1;
6908 					break;
6909 				}
6910 			}
6911 			lpfc_destroy_vport_work_array(phba, vports);
6912 		}
6913 
6914 		/*
6915 		 * Don't re-instantiate if vport is marked for deletion.
6916 		 * If we are here first then vport_delete is going to wait
6917 		 * for discovery to complete.
6918 		 */
6919 		if (!(vport->load_flag & FC_UNLOADING) &&
6920 					active_vlink_present) {
6921 			/*
6922 			 * If there are other active VLinks present,
6923 			 * re-instantiate the Vlink using FDISC.
6924 			 */
6925 			mod_timer(&ndlp->nlp_delayfunc,
6926 				  jiffies + msecs_to_jiffies(1000));
6927 			spin_lock_irq(&ndlp->lock);
6928 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6929 			spin_unlock_irq(&ndlp->lock);
6930 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6931 			vport->port_state = LPFC_FDISC;
6932 		} else {
6933 			/*
6934 			 * Otherwise, we request port to rediscover
6935 			 * the entire FCF table for a fast recovery
6936 			 * from possible case that the current FCF
6937 			 * is no longer valid if we are not already
6938 			 * in the FCF failover process.
6939 			 */
6940 			spin_lock_irq(&phba->hbalock);
6941 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6942 				spin_unlock_irq(&phba->hbalock);
6943 				break;
6944 			}
6945 			/* Mark the fast failover process in progress */
6946 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6947 			spin_unlock_irq(&phba->hbalock);
6948 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6949 					LOG_DISCOVERY,
6950 					"2773 Start FCF failover per CVL, "
6951 					"evt_tag:x%x\n", acqe_fip->event_tag);
6952 			rc = lpfc_sli4_redisc_fcf_table(phba);
6953 			if (rc) {
6954 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6955 						LOG_TRACE_EVENT,
6956 						"2774 Issue FCF rediscover "
6957 						"mailbox command failed, "
6958 						"through to CVL event\n");
6959 				spin_lock_irq(&phba->hbalock);
6960 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6961 				spin_unlock_irq(&phba->hbalock);
6962 				/*
6963 				 * Last resort will be re-try on the
6964 				 * the current registered FCF entry.
6965 				 */
6966 				lpfc_retry_pport_discovery(phba);
6967 			} else
6968 				/*
6969 				 * Reset FCF roundrobin bmask for new
6970 				 * discovery.
6971 				 */
6972 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6973 		}
6974 		break;
6975 	default:
6976 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6977 				"0288 Unknown FCoE event type 0x%x event tag "
6978 				"0x%x\n", event_type, acqe_fip->event_tag);
6979 		break;
6980 	}
6981 }
6982 
6983 /**
6984  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6985  * @phba: pointer to lpfc hba data structure.
6986  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6987  *
6988  * This routine is to handle the SLI4 asynchronous dcbx event.
6989  **/
6990 static void
6991 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6992 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6993 {
6994 	phba->fc_eventTag = acqe_dcbx->event_tag;
6995 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6996 			"0290 The SLI4 DCBX asynchronous event is not "
6997 			"handled yet\n");
6998 }
6999 
7000 /**
7001  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7002  * @phba: pointer to lpfc hba data structure.
7003  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7004  *
7005  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7006  * is an asynchronous notified of a logical link speed change.  The Port
7007  * reports the logical link speed in units of 10Mbps.
7008  **/
7009 static void
7010 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7011 			 struct lpfc_acqe_grp5 *acqe_grp5)
7012 {
7013 	uint16_t prev_ll_spd;
7014 
7015 	phba->fc_eventTag = acqe_grp5->event_tag;
7016 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7017 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7018 	phba->sli4_hba.link_state.logical_speed =
7019 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7020 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7021 			"2789 GRP5 Async Event: Updating logical link speed "
7022 			"from %dMbps to %dMbps\n", prev_ll_spd,
7023 			phba->sli4_hba.link_state.logical_speed);
7024 }
7025 
7026 /**
7027  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7028  * @phba: pointer to lpfc hba data structure.
7029  *
7030  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7031  * is an asynchronous notification of a request to reset CM stats.
7032  **/
7033 static void
7034 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7035 {
7036 	if (!phba->cgn_i)
7037 		return;
7038 	lpfc_init_congestion_stat(phba);
7039 }
7040 
7041 /**
7042  * lpfc_cgn_params_val - Validate FW congestion parameters.
7043  * @phba: pointer to lpfc hba data structure.
7044  * @p_cfg_param: pointer to FW provided congestion parameters.
7045  *
7046  * This routine validates the congestion parameters passed
7047  * by the FW to the driver via an ACQE event.
7048  **/
7049 static void
7050 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7051 {
7052 	spin_lock_irq(&phba->hbalock);
7053 
7054 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7055 			     LPFC_CFG_MONITOR)) {
7056 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7057 				"6225 CMF mode param out of range: %d\n",
7058 				 p_cfg_param->cgn_param_mode);
7059 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7060 	}
7061 
7062 	spin_unlock_irq(&phba->hbalock);
7063 }
7064 
7065 static const char * const lpfc_cmf_mode_to_str[] = {
7066 	"OFF",
7067 	"MANAGED",
7068 	"MONITOR",
7069 };
7070 
7071 /**
7072  * lpfc_cgn_params_parse - Process a FW cong parm change event
7073  * @phba: pointer to lpfc hba data structure.
7074  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7075  * @len: the size of pdata in bytes.
7076  *
7077  * This routine validates the congestion management buffer signature
7078  * from the FW, validates the contents and makes corrections for
7079  * valid, in-range values.  If the signature magic is correct and
7080  * after parameter validation, the contents are copied to the driver's
7081  * @phba structure. If the magic is incorrect, an error message is
7082  * logged.
7083  **/
7084 static void
7085 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7086 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7087 {
7088 	struct lpfc_cgn_info *cp;
7089 	uint32_t crc, oldmode;
7090 	char acr_string[4] = {0};
7091 
7092 	/* Make sure the FW has encoded the correct magic number to
7093 	 * validate the congestion parameter in FW memory.
7094 	 */
7095 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7096 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7097 				"4668 FW cgn parm buffer data: "
7098 				"magic 0x%x version %d mode %d "
7099 				"level0 %d level1 %d "
7100 				"level2 %d byte13 %d "
7101 				"byte14 %d byte15 %d "
7102 				"byte11 %d byte12 %d activeMode %d\n",
7103 				p_cgn_param->cgn_param_magic,
7104 				p_cgn_param->cgn_param_version,
7105 				p_cgn_param->cgn_param_mode,
7106 				p_cgn_param->cgn_param_level0,
7107 				p_cgn_param->cgn_param_level1,
7108 				p_cgn_param->cgn_param_level2,
7109 				p_cgn_param->byte13,
7110 				p_cgn_param->byte14,
7111 				p_cgn_param->byte15,
7112 				p_cgn_param->byte11,
7113 				p_cgn_param->byte12,
7114 				phba->cmf_active_mode);
7115 
7116 		oldmode = phba->cmf_active_mode;
7117 
7118 		/* Any parameters out of range are corrected to defaults
7119 		 * by this routine.  No need to fail.
7120 		 */
7121 		lpfc_cgn_params_val(phba, p_cgn_param);
7122 
7123 		/* Parameters are verified, move them into driver storage */
7124 		spin_lock_irq(&phba->hbalock);
7125 		memcpy(&phba->cgn_p, p_cgn_param,
7126 		       sizeof(struct lpfc_cgn_param));
7127 
7128 		/* Update parameters in congestion info buffer now */
7129 		if (phba->cgn_i) {
7130 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7131 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7132 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7133 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7134 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7135 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7136 						  LPFC_CGN_CRC32_SEED);
7137 			cp->cgn_info_crc = cpu_to_le32(crc);
7138 		}
7139 		spin_unlock_irq(&phba->hbalock);
7140 
7141 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7142 
7143 		switch (oldmode) {
7144 		case LPFC_CFG_OFF:
7145 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7146 				/* Turning CMF on */
7147 				lpfc_cmf_start(phba);
7148 
7149 				if (phba->link_state >= LPFC_LINK_UP) {
7150 					phba->cgn_reg_fpin =
7151 						phba->cgn_init_reg_fpin;
7152 					phba->cgn_reg_signal =
7153 						phba->cgn_init_reg_signal;
7154 					lpfc_issue_els_edc(phba->pport, 0);
7155 				}
7156 			}
7157 			break;
7158 		case LPFC_CFG_MANAGED:
7159 			switch (phba->cgn_p.cgn_param_mode) {
7160 			case LPFC_CFG_OFF:
7161 				/* Turning CMF off */
7162 				lpfc_cmf_stop(phba);
7163 				if (phba->link_state >= LPFC_LINK_UP)
7164 					lpfc_issue_els_edc(phba->pport, 0);
7165 				break;
7166 			case LPFC_CFG_MONITOR:
7167 				phba->cmf_max_bytes_per_interval =
7168 					phba->cmf_link_byte_count;
7169 
7170 				/* Resume blocked IO - unblock on workqueue */
7171 				queue_work(phba->wq,
7172 					   &phba->unblock_request_work);
7173 				break;
7174 			}
7175 			break;
7176 		case LPFC_CFG_MONITOR:
7177 			switch (phba->cgn_p.cgn_param_mode) {
7178 			case LPFC_CFG_OFF:
7179 				/* Turning CMF off */
7180 				lpfc_cmf_stop(phba);
7181 				if (phba->link_state >= LPFC_LINK_UP)
7182 					lpfc_issue_els_edc(phba->pport, 0);
7183 				break;
7184 			case LPFC_CFG_MANAGED:
7185 				lpfc_cmf_signal_init(phba);
7186 				break;
7187 			}
7188 			break;
7189 		}
7190 		if (oldmode != LPFC_CFG_OFF ||
7191 		    oldmode != phba->cgn_p.cgn_param_mode) {
7192 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7193 				scnprintf(acr_string, sizeof(acr_string), "%u",
7194 					  phba->cgn_p.cgn_param_level0);
7195 			else
7196 				scnprintf(acr_string, sizeof(acr_string), "NA");
7197 
7198 			dev_info(&phba->pcidev->dev, "%d: "
7199 				 "4663 CMF: Mode %s acr %s\n",
7200 				 phba->brd_no,
7201 				 lpfc_cmf_mode_to_str
7202 				 [phba->cgn_p.cgn_param_mode],
7203 				 acr_string);
7204 		}
7205 	} else {
7206 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7207 				"4669 FW cgn parm buf wrong magic 0x%x "
7208 				"version %d\n", p_cgn_param->cgn_param_magic,
7209 				p_cgn_param->cgn_param_version);
7210 	}
7211 }
7212 
7213 /**
7214  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7215  * @phba: pointer to lpfc hba data structure.
7216  *
7217  * This routine issues a read_object mailbox command to
7218  * get the congestion management parameters from the FW
7219  * parses it and updates the driver maintained values.
7220  *
7221  * Returns
7222  *  0     if the object was empty
7223  *  -Eval if an error was encountered
7224  *  Count if bytes were read from object
7225  **/
7226 int
7227 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7228 {
7229 	int ret = 0;
7230 	struct lpfc_cgn_param *p_cgn_param = NULL;
7231 	u32 *pdata = NULL;
7232 	u32 len = 0;
7233 
7234 	/* Find out if the FW has a new set of congestion parameters. */
7235 	len = sizeof(struct lpfc_cgn_param);
7236 	pdata = kzalloc(len, GFP_KERNEL);
7237 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7238 			       pdata, len);
7239 
7240 	/* 0 means no data.  A negative means error.  A positive means
7241 	 * bytes were copied.
7242 	 */
7243 	if (!ret) {
7244 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7245 				"4670 CGN RD OBJ returns no data\n");
7246 		goto rd_obj_err;
7247 	} else if (ret < 0) {
7248 		/* Some error.  Just exit and return it to the caller.*/
7249 		goto rd_obj_err;
7250 	}
7251 
7252 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7253 			"6234 READ CGN PARAMS Successful %d\n", len);
7254 
7255 	/* Parse data pointer over len and update the phba congestion
7256 	 * parameters with values passed back.  The receive rate values
7257 	 * may have been altered in FW, but take no action here.
7258 	 */
7259 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7260 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7261 
7262  rd_obj_err:
7263 	kfree(pdata);
7264 	return ret;
7265 }
7266 
7267 /**
7268  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7269  * @phba: pointer to lpfc hba data structure.
7270  *
7271  * The FW generated Async ACQE SLI event calls this routine when
7272  * the event type is an SLI Internal Port Event and the Event Code
7273  * indicates a change to the FW maintained congestion parameters.
7274  *
7275  * This routine executes a Read_Object mailbox call to obtain the
7276  * current congestion parameters maintained in FW and corrects
7277  * the driver's active congestion parameters.
7278  *
7279  * The acqe event is not passed because there is no further data
7280  * required.
7281  *
7282  * Returns nonzero error if event processing encountered an error.
7283  * Zero otherwise for success.
7284  **/
7285 static int
7286 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7287 {
7288 	int ret = 0;
7289 
7290 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7292 				"4664 Cgn Evt when E2E off. Drop event\n");
7293 		return -EACCES;
7294 	}
7295 
7296 	/* If the event is claiming an empty object, it's ok.  A write
7297 	 * could have cleared it.  Only error is a negative return
7298 	 * status.
7299 	 */
7300 	ret = lpfc_sli4_cgn_params_read(phba);
7301 	if (ret < 0) {
7302 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7303 				"4667 Error reading Cgn Params (%d)\n",
7304 				ret);
7305 	} else if (!ret) {
7306 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7307 				"4673 CGN Event empty object.\n");
7308 	}
7309 	return ret;
7310 }
7311 
7312 /**
7313  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7314  * @phba: pointer to lpfc hba data structure.
7315  *
7316  * This routine is invoked by the worker thread to process all the pending
7317  * SLI4 asynchronous events.
7318  **/
7319 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7320 {
7321 	struct lpfc_cq_event *cq_event;
7322 	unsigned long iflags;
7323 
7324 	/* First, declare the async event has been handled */
7325 	spin_lock_irqsave(&phba->hbalock, iflags);
7326 	phba->hba_flag &= ~ASYNC_EVENT;
7327 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7328 
7329 	/* Now, handle all the async events */
7330 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7331 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7332 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7333 				 cq_event, struct lpfc_cq_event, list);
7334 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7335 				       iflags);
7336 
7337 		/* Process the asynchronous event */
7338 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7339 		case LPFC_TRAILER_CODE_LINK:
7340 			lpfc_sli4_async_link_evt(phba,
7341 						 &cq_event->cqe.acqe_link);
7342 			break;
7343 		case LPFC_TRAILER_CODE_FCOE:
7344 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7345 			break;
7346 		case LPFC_TRAILER_CODE_DCBX:
7347 			lpfc_sli4_async_dcbx_evt(phba,
7348 						 &cq_event->cqe.acqe_dcbx);
7349 			break;
7350 		case LPFC_TRAILER_CODE_GRP5:
7351 			lpfc_sli4_async_grp5_evt(phba,
7352 						 &cq_event->cqe.acqe_grp5);
7353 			break;
7354 		case LPFC_TRAILER_CODE_FC:
7355 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7356 			break;
7357 		case LPFC_TRAILER_CODE_SLI:
7358 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7359 			break;
7360 		case LPFC_TRAILER_CODE_CMSTAT:
7361 			lpfc_sli4_async_cmstat_evt(phba);
7362 			break;
7363 		default:
7364 			lpfc_printf_log(phba, KERN_ERR,
7365 					LOG_TRACE_EVENT,
7366 					"1804 Invalid asynchronous event code: "
7367 					"x%x\n", bf_get(lpfc_trailer_code,
7368 					&cq_event->cqe.mcqe_cmpl));
7369 			break;
7370 		}
7371 
7372 		/* Free the completion event processed to the free pool */
7373 		lpfc_sli4_cq_event_release(phba, cq_event);
7374 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7375 	}
7376 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7377 }
7378 
7379 /**
7380  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7381  * @phba: pointer to lpfc hba data structure.
7382  *
7383  * This routine is invoked by the worker thread to process FCF table
7384  * rediscovery pending completion event.
7385  **/
7386 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7387 {
7388 	int rc;
7389 
7390 	spin_lock_irq(&phba->hbalock);
7391 	/* Clear FCF rediscovery timeout event */
7392 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7393 	/* Clear driver fast failover FCF record flag */
7394 	phba->fcf.failover_rec.flag = 0;
7395 	/* Set state for FCF fast failover */
7396 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7397 	spin_unlock_irq(&phba->hbalock);
7398 
7399 	/* Scan FCF table from the first entry to re-discover SAN */
7400 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7401 			"2777 Start post-quiescent FCF table scan\n");
7402 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7403 	if (rc)
7404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7405 				"2747 Issue FCF scan read FCF mailbox "
7406 				"command failed 0x%x\n", rc);
7407 }
7408 
7409 /**
7410  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7411  * @phba: pointer to lpfc hba data structure.
7412  * @dev_grp: The HBA PCI-Device group number.
7413  *
7414  * This routine is invoked to set up the per HBA PCI-Device group function
7415  * API jump table entries.
7416  *
7417  * Return: 0 if success, otherwise -ENODEV
7418  **/
7419 int
7420 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7421 {
7422 	int rc;
7423 
7424 	/* Set up lpfc PCI-device group */
7425 	phba->pci_dev_grp = dev_grp;
7426 
7427 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7428 	if (dev_grp == LPFC_PCI_DEV_OC)
7429 		phba->sli_rev = LPFC_SLI_REV4;
7430 
7431 	/* Set up device INIT API function jump table */
7432 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7433 	if (rc)
7434 		return -ENODEV;
7435 	/* Set up SCSI API function jump table */
7436 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7437 	if (rc)
7438 		return -ENODEV;
7439 	/* Set up SLI API function jump table */
7440 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7441 	if (rc)
7442 		return -ENODEV;
7443 	/* Set up MBOX API function jump table */
7444 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7445 	if (rc)
7446 		return -ENODEV;
7447 
7448 	return 0;
7449 }
7450 
7451 /**
7452  * lpfc_log_intr_mode - Log the active interrupt mode
7453  * @phba: pointer to lpfc hba data structure.
7454  * @intr_mode: active interrupt mode adopted.
7455  *
7456  * This routine it invoked to log the currently used active interrupt mode
7457  * to the device.
7458  **/
7459 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7460 {
7461 	switch (intr_mode) {
7462 	case 0:
7463 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7464 				"0470 Enable INTx interrupt mode.\n");
7465 		break;
7466 	case 1:
7467 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7468 				"0481 Enabled MSI interrupt mode.\n");
7469 		break;
7470 	case 2:
7471 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7472 				"0480 Enabled MSI-X interrupt mode.\n");
7473 		break;
7474 	default:
7475 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7476 				"0482 Illegal interrupt mode.\n");
7477 		break;
7478 	}
7479 	return;
7480 }
7481 
7482 /**
7483  * lpfc_enable_pci_dev - Enable a generic PCI device.
7484  * @phba: pointer to lpfc hba data structure.
7485  *
7486  * This routine is invoked to enable the PCI device that is common to all
7487  * PCI devices.
7488  *
7489  * Return codes
7490  * 	0 - successful
7491  * 	other values - error
7492  **/
7493 static int
7494 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7495 {
7496 	struct pci_dev *pdev;
7497 
7498 	/* Obtain PCI device reference */
7499 	if (!phba->pcidev)
7500 		goto out_error;
7501 	else
7502 		pdev = phba->pcidev;
7503 	/* Enable PCI device */
7504 	if (pci_enable_device_mem(pdev))
7505 		goto out_error;
7506 	/* Request PCI resource for the device */
7507 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7508 		goto out_disable_device;
7509 	/* Set up device as PCI master and save state for EEH */
7510 	pci_set_master(pdev);
7511 	pci_try_set_mwi(pdev);
7512 	pci_save_state(pdev);
7513 
7514 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7515 	if (pci_is_pcie(pdev))
7516 		pdev->needs_freset = 1;
7517 
7518 	return 0;
7519 
7520 out_disable_device:
7521 	pci_disable_device(pdev);
7522 out_error:
7523 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7524 			"1401 Failed to enable pci device\n");
7525 	return -ENODEV;
7526 }
7527 
7528 /**
7529  * lpfc_disable_pci_dev - Disable a generic PCI device.
7530  * @phba: pointer to lpfc hba data structure.
7531  *
7532  * This routine is invoked to disable the PCI device that is common to all
7533  * PCI devices.
7534  **/
7535 static void
7536 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7537 {
7538 	struct pci_dev *pdev;
7539 
7540 	/* Obtain PCI device reference */
7541 	if (!phba->pcidev)
7542 		return;
7543 	else
7544 		pdev = phba->pcidev;
7545 	/* Release PCI resource and disable PCI device */
7546 	pci_release_mem_regions(pdev);
7547 	pci_disable_device(pdev);
7548 
7549 	return;
7550 }
7551 
7552 /**
7553  * lpfc_reset_hba - Reset a hba
7554  * @phba: pointer to lpfc hba data structure.
7555  *
7556  * This routine is invoked to reset a hba device. It brings the HBA
7557  * offline, performs a board restart, and then brings the board back
7558  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7559  * on outstanding mailbox commands.
7560  **/
7561 void
7562 lpfc_reset_hba(struct lpfc_hba *phba)
7563 {
7564 	/* If resets are disabled then set error state and return. */
7565 	if (!phba->cfg_enable_hba_reset) {
7566 		phba->link_state = LPFC_HBA_ERROR;
7567 		return;
7568 	}
7569 
7570 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7571 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7572 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7573 	} else {
7574 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7575 		lpfc_sli_flush_io_rings(phba);
7576 	}
7577 	lpfc_offline(phba);
7578 	lpfc_sli_brdrestart(phba);
7579 	lpfc_online(phba);
7580 	lpfc_unblock_mgmt_io(phba);
7581 }
7582 
7583 /**
7584  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7585  * @phba: pointer to lpfc hba data structure.
7586  *
7587  * This function enables the PCI SR-IOV virtual functions to a physical
7588  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7589  * enable the number of virtual functions to the physical function. As
7590  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7591  * API call does not considered as an error condition for most of the device.
7592  **/
7593 uint16_t
7594 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7595 {
7596 	struct pci_dev *pdev = phba->pcidev;
7597 	uint16_t nr_virtfn;
7598 	int pos;
7599 
7600 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7601 	if (pos == 0)
7602 		return 0;
7603 
7604 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7605 	return nr_virtfn;
7606 }
7607 
7608 /**
7609  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7610  * @phba: pointer to lpfc hba data structure.
7611  * @nr_vfn: number of virtual functions to be enabled.
7612  *
7613  * This function enables the PCI SR-IOV virtual functions to a physical
7614  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7615  * enable the number of virtual functions to the physical function. As
7616  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7617  * API call does not considered as an error condition for most of the device.
7618  **/
7619 int
7620 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7621 {
7622 	struct pci_dev *pdev = phba->pcidev;
7623 	uint16_t max_nr_vfn;
7624 	int rc;
7625 
7626 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7627 	if (nr_vfn > max_nr_vfn) {
7628 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7629 				"3057 Requested vfs (%d) greater than "
7630 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7631 		return -EINVAL;
7632 	}
7633 
7634 	rc = pci_enable_sriov(pdev, nr_vfn);
7635 	if (rc) {
7636 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7637 				"2806 Failed to enable sriov on this device "
7638 				"with vfn number nr_vf:%d, rc:%d\n",
7639 				nr_vfn, rc);
7640 	} else
7641 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7642 				"2807 Successful enable sriov on this device "
7643 				"with vfn number nr_vf:%d\n", nr_vfn);
7644 	return rc;
7645 }
7646 
7647 static void
7648 lpfc_unblock_requests_work(struct work_struct *work)
7649 {
7650 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7651 					     unblock_request_work);
7652 
7653 	lpfc_unblock_requests(phba);
7654 }
7655 
7656 /**
7657  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7658  * @phba: pointer to lpfc hba data structure.
7659  *
7660  * This routine is invoked to set up the driver internal resources before the
7661  * device specific resource setup to support the HBA device it attached to.
7662  *
7663  * Return codes
7664  *	0 - successful
7665  *	other values - error
7666  **/
7667 static int
7668 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7669 {
7670 	struct lpfc_sli *psli = &phba->sli;
7671 
7672 	/*
7673 	 * Driver resources common to all SLI revisions
7674 	 */
7675 	atomic_set(&phba->fast_event_count, 0);
7676 	atomic_set(&phba->dbg_log_idx, 0);
7677 	atomic_set(&phba->dbg_log_cnt, 0);
7678 	atomic_set(&phba->dbg_log_dmping, 0);
7679 	spin_lock_init(&phba->hbalock);
7680 
7681 	/* Initialize port_list spinlock */
7682 	spin_lock_init(&phba->port_list_lock);
7683 	INIT_LIST_HEAD(&phba->port_list);
7684 
7685 	INIT_LIST_HEAD(&phba->work_list);
7686 
7687 	/* Initialize the wait queue head for the kernel thread */
7688 	init_waitqueue_head(&phba->work_waitq);
7689 
7690 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7691 			"1403 Protocols supported %s %s %s\n",
7692 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7693 				"SCSI" : " "),
7694 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7695 				"NVME" : " "),
7696 			(phba->nvmet_support ? "NVMET" : " "));
7697 
7698 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7699 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7700 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7701 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7702 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7703 
7704 	/* Initialize the fabric iocb list */
7705 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7706 
7707 	/* Initialize list to save ELS buffers */
7708 	INIT_LIST_HEAD(&phba->elsbuf);
7709 
7710 	/* Initialize FCF connection rec list */
7711 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7712 
7713 	/* Initialize OAS configuration list */
7714 	spin_lock_init(&phba->devicelock);
7715 	INIT_LIST_HEAD(&phba->luns);
7716 
7717 	/* MBOX heartbeat timer */
7718 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7719 	/* Fabric block timer */
7720 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7721 	/* EA polling mode timer */
7722 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7723 	/* Heartbeat timer */
7724 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7725 
7726 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7727 
7728 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7729 			  lpfc_idle_stat_delay_work);
7730 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7731 	return 0;
7732 }
7733 
7734 /**
7735  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7736  * @phba: pointer to lpfc hba data structure.
7737  *
7738  * This routine is invoked to set up the driver internal resources specific to
7739  * support the SLI-3 HBA device it attached to.
7740  *
7741  * Return codes
7742  * 0 - successful
7743  * other values - error
7744  **/
7745 static int
7746 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7747 {
7748 	int rc, entry_sz;
7749 
7750 	/*
7751 	 * Initialize timers used by driver
7752 	 */
7753 
7754 	/* FCP polling mode timer */
7755 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7756 
7757 	/* Host attention work mask setup */
7758 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7759 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7760 
7761 	/* Get all the module params for configuring this host */
7762 	lpfc_get_cfgparam(phba);
7763 	/* Set up phase-1 common device driver resources */
7764 
7765 	rc = lpfc_setup_driver_resource_phase1(phba);
7766 	if (rc)
7767 		return -ENODEV;
7768 
7769 	if (!phba->sli.sli3_ring)
7770 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7771 					      sizeof(struct lpfc_sli_ring),
7772 					      GFP_KERNEL);
7773 	if (!phba->sli.sli3_ring)
7774 		return -ENOMEM;
7775 
7776 	/*
7777 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7778 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7779 	 */
7780 
7781 	if (phba->sli_rev == LPFC_SLI_REV4)
7782 		entry_sz = sizeof(struct sli4_sge);
7783 	else
7784 		entry_sz = sizeof(struct ulp_bde64);
7785 
7786 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7787 	if (phba->cfg_enable_bg) {
7788 		/*
7789 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7790 		 * the FCP rsp, and a BDE for each. Sice we have no control
7791 		 * over how many protection data segments the SCSI Layer
7792 		 * will hand us (ie: there could be one for every block
7793 		 * in the IO), we just allocate enough BDEs to accomidate
7794 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7795 		 * minimize the risk of running out.
7796 		 */
7797 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7798 			sizeof(struct fcp_rsp) +
7799 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7800 
7801 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7802 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7803 
7804 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7805 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7806 	} else {
7807 		/*
7808 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7809 		 * the FCP rsp, a BDE for each, and a BDE for up to
7810 		 * cfg_sg_seg_cnt data segments.
7811 		 */
7812 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7813 			sizeof(struct fcp_rsp) +
7814 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7815 
7816 		/* Total BDEs in BPL for scsi_sg_list */
7817 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7818 	}
7819 
7820 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7821 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7822 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7823 			phba->cfg_total_seg_cnt);
7824 
7825 	phba->max_vpi = LPFC_MAX_VPI;
7826 	/* This will be set to correct value after config_port mbox */
7827 	phba->max_vports = 0;
7828 
7829 	/*
7830 	 * Initialize the SLI Layer to run with lpfc HBAs.
7831 	 */
7832 	lpfc_sli_setup(phba);
7833 	lpfc_sli_queue_init(phba);
7834 
7835 	/* Allocate device driver memory */
7836 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7837 		return -ENOMEM;
7838 
7839 	phba->lpfc_sg_dma_buf_pool =
7840 		dma_pool_create("lpfc_sg_dma_buf_pool",
7841 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7842 				BPL_ALIGN_SZ, 0);
7843 
7844 	if (!phba->lpfc_sg_dma_buf_pool)
7845 		goto fail_free_mem;
7846 
7847 	phba->lpfc_cmd_rsp_buf_pool =
7848 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7849 					&phba->pcidev->dev,
7850 					sizeof(struct fcp_cmnd) +
7851 					sizeof(struct fcp_rsp),
7852 					BPL_ALIGN_SZ, 0);
7853 
7854 	if (!phba->lpfc_cmd_rsp_buf_pool)
7855 		goto fail_free_dma_buf_pool;
7856 
7857 	/*
7858 	 * Enable sr-iov virtual functions if supported and configured
7859 	 * through the module parameter.
7860 	 */
7861 	if (phba->cfg_sriov_nr_virtfn > 0) {
7862 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7863 						 phba->cfg_sriov_nr_virtfn);
7864 		if (rc) {
7865 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7866 					"2808 Requested number of SR-IOV "
7867 					"virtual functions (%d) is not "
7868 					"supported\n",
7869 					phba->cfg_sriov_nr_virtfn);
7870 			phba->cfg_sriov_nr_virtfn = 0;
7871 		}
7872 	}
7873 
7874 	return 0;
7875 
7876 fail_free_dma_buf_pool:
7877 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7878 	phba->lpfc_sg_dma_buf_pool = NULL;
7879 fail_free_mem:
7880 	lpfc_mem_free(phba);
7881 	return -ENOMEM;
7882 }
7883 
7884 /**
7885  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7886  * @phba: pointer to lpfc hba data structure.
7887  *
7888  * This routine is invoked to unset the driver internal resources set up
7889  * specific for supporting the SLI-3 HBA device it attached to.
7890  **/
7891 static void
7892 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7893 {
7894 	/* Free device driver memory allocated */
7895 	lpfc_mem_free_all(phba);
7896 
7897 	return;
7898 }
7899 
7900 /**
7901  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7902  * @phba: pointer to lpfc hba data structure.
7903  *
7904  * This routine is invoked to set up the driver internal resources specific to
7905  * support the SLI-4 HBA device it attached to.
7906  *
7907  * Return codes
7908  * 	0 - successful
7909  * 	other values - error
7910  **/
7911 static int
7912 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7913 {
7914 	LPFC_MBOXQ_t *mboxq;
7915 	MAILBOX_t *mb;
7916 	int rc, i, max_buf_size;
7917 	int longs;
7918 	int extra;
7919 	uint64_t wwn;
7920 	u32 if_type;
7921 	u32 if_fam;
7922 
7923 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7924 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7925 	phba->sli4_hba.curr_disp_cpu = 0;
7926 
7927 	/* Get all the module params for configuring this host */
7928 	lpfc_get_cfgparam(phba);
7929 
7930 	/* Set up phase-1 common device driver resources */
7931 	rc = lpfc_setup_driver_resource_phase1(phba);
7932 	if (rc)
7933 		return -ENODEV;
7934 
7935 	/* Before proceed, wait for POST done and device ready */
7936 	rc = lpfc_sli4_post_status_check(phba);
7937 	if (rc)
7938 		return -ENODEV;
7939 
7940 	/* Allocate all driver workqueues here */
7941 
7942 	/* The lpfc_wq workqueue for deferred irq use */
7943 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7944 	if (!phba->wq)
7945 		return -ENOMEM;
7946 
7947 	/*
7948 	 * Initialize timers used by driver
7949 	 */
7950 
7951 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7952 
7953 	/* FCF rediscover timer */
7954 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7955 
7956 	/* CMF congestion timer */
7957 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7958 	phba->cmf_timer.function = lpfc_cmf_timer;
7959 
7960 	/*
7961 	 * Control structure for handling external multi-buffer mailbox
7962 	 * command pass-through.
7963 	 */
7964 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7965 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7966 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7967 
7968 	phba->max_vpi = LPFC_MAX_VPI;
7969 
7970 	/* This will be set to correct value after the read_config mbox */
7971 	phba->max_vports = 0;
7972 
7973 	/* Program the default value of vlan_id and fc_map */
7974 	phba->valid_vlan = 0;
7975 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7976 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7977 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7978 
7979 	/*
7980 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7981 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7982 	 * The WQ create will allocate the ring.
7983 	 */
7984 
7985 	/* Initialize buffer queue management fields */
7986 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7987 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7988 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7989 
7990 	/* for VMID idle timeout if VMID is enabled */
7991 	if (lpfc_is_vmid_enabled(phba))
7992 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7993 
7994 	/*
7995 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7996 	 */
7997 	/* Initialize the Abort buffer list used by driver */
7998 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7999 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8000 
8001 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8002 		/* Initialize the Abort nvme buffer list used by driver */
8003 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8004 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8005 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8006 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8007 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8008 	}
8009 
8010 	/* This abort list used by worker thread */
8011 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8012 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8013 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8014 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8015 
8016 	/*
8017 	 * Initialize driver internal slow-path work queues
8018 	 */
8019 
8020 	/* Driver internel slow-path CQ Event pool */
8021 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8022 	/* Response IOCB work queue list */
8023 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8024 	/* Asynchronous event CQ Event work queue list */
8025 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8026 	/* Slow-path XRI aborted CQ Event work queue list */
8027 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8028 	/* Receive queue CQ Event work queue list */
8029 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8030 
8031 	/* Initialize extent block lists. */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8033 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8034 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8035 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8036 
8037 	/* Initialize mboxq lists. If the early init routines fail
8038 	 * these lists need to be correctly initialized.
8039 	 */
8040 	INIT_LIST_HEAD(&phba->sli.mboxq);
8041 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8042 
8043 	/* initialize optic_state to 0xFF */
8044 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8045 
8046 	/* Allocate device driver memory */
8047 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8048 	if (rc)
8049 		goto out_destroy_workqueue;
8050 
8051 	/* IF Type 2 ports get initialized now. */
8052 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8053 	    LPFC_SLI_INTF_IF_TYPE_2) {
8054 		rc = lpfc_pci_function_reset(phba);
8055 		if (unlikely(rc)) {
8056 			rc = -ENODEV;
8057 			goto out_free_mem;
8058 		}
8059 		phba->temp_sensor_support = 1;
8060 	}
8061 
8062 	/* Create the bootstrap mailbox command */
8063 	rc = lpfc_create_bootstrap_mbox(phba);
8064 	if (unlikely(rc))
8065 		goto out_free_mem;
8066 
8067 	/* Set up the host's endian order with the device. */
8068 	rc = lpfc_setup_endian_order(phba);
8069 	if (unlikely(rc))
8070 		goto out_free_bsmbx;
8071 
8072 	/* Set up the hba's configuration parameters. */
8073 	rc = lpfc_sli4_read_config(phba);
8074 	if (unlikely(rc))
8075 		goto out_free_bsmbx;
8076 
8077 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8078 		/* Right now the link is down, if FA-PWWN is configured the
8079 		 * firmware will try FLOGI before the driver gets a link up.
8080 		 * If it fails, the driver should get a MISCONFIGURED async
8081 		 * event which will clear this flag. The only notification
8082 		 * the driver gets is if it fails, if it succeeds there is no
8083 		 * notification given. Assume success.
8084 		 */
8085 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8086 	}
8087 
8088 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8089 	if (unlikely(rc))
8090 		goto out_free_bsmbx;
8091 
8092 	/* IF Type 0 ports get initialized now. */
8093 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8094 	    LPFC_SLI_INTF_IF_TYPE_0) {
8095 		rc = lpfc_pci_function_reset(phba);
8096 		if (unlikely(rc))
8097 			goto out_free_bsmbx;
8098 	}
8099 
8100 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8101 						       GFP_KERNEL);
8102 	if (!mboxq) {
8103 		rc = -ENOMEM;
8104 		goto out_free_bsmbx;
8105 	}
8106 
8107 	/* Check for NVMET being configured */
8108 	phba->nvmet_support = 0;
8109 	if (lpfc_enable_nvmet_cnt) {
8110 
8111 		/* First get WWN of HBA instance */
8112 		lpfc_read_nv(phba, mboxq);
8113 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8114 		if (rc != MBX_SUCCESS) {
8115 			lpfc_printf_log(phba, KERN_ERR,
8116 					LOG_TRACE_EVENT,
8117 					"6016 Mailbox failed , mbxCmd x%x "
8118 					"READ_NV, mbxStatus x%x\n",
8119 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8120 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8121 			mempool_free(mboxq, phba->mbox_mem_pool);
8122 			rc = -EIO;
8123 			goto out_free_bsmbx;
8124 		}
8125 		mb = &mboxq->u.mb;
8126 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8127 		       sizeof(uint64_t));
8128 		wwn = cpu_to_be64(wwn);
8129 		phba->sli4_hba.wwnn.u.name = wwn;
8130 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8131 		       sizeof(uint64_t));
8132 		/* wwn is WWPN of HBA instance */
8133 		wwn = cpu_to_be64(wwn);
8134 		phba->sli4_hba.wwpn.u.name = wwn;
8135 
8136 		/* Check to see if it matches any module parameter */
8137 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8138 			if (wwn == lpfc_enable_nvmet[i]) {
8139 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8140 				if (lpfc_nvmet_mem_alloc(phba))
8141 					break;
8142 
8143 				phba->nvmet_support = 1; /* a match */
8144 
8145 				lpfc_printf_log(phba, KERN_ERR,
8146 						LOG_TRACE_EVENT,
8147 						"6017 NVME Target %016llx\n",
8148 						wwn);
8149 #else
8150 				lpfc_printf_log(phba, KERN_ERR,
8151 						LOG_TRACE_EVENT,
8152 						"6021 Can't enable NVME Target."
8153 						" NVME_TARGET_FC infrastructure"
8154 						" is not in kernel\n");
8155 #endif
8156 				/* Not supported for NVMET */
8157 				phba->cfg_xri_rebalancing = 0;
8158 				if (phba->irq_chann_mode == NHT_MODE) {
8159 					phba->cfg_irq_chann =
8160 						phba->sli4_hba.num_present_cpu;
8161 					phba->cfg_hdw_queue =
8162 						phba->sli4_hba.num_present_cpu;
8163 					phba->irq_chann_mode = NORMAL_MODE;
8164 				}
8165 				break;
8166 			}
8167 		}
8168 	}
8169 
8170 	lpfc_nvme_mod_param_dep(phba);
8171 
8172 	/*
8173 	 * Get sli4 parameters that override parameters from Port capabilities.
8174 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8175 	 * back in conflict.
8176 	 */
8177 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8178 	if (rc) {
8179 		if_type = bf_get(lpfc_sli_intf_if_type,
8180 				 &phba->sli4_hba.sli_intf);
8181 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8182 				&phba->sli4_hba.sli_intf);
8183 		if (phba->sli4_hba.extents_in_use &&
8184 		    phba->sli4_hba.rpi_hdrs_in_use) {
8185 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8186 					"2999 Unsupported SLI4 Parameters "
8187 					"Extents and RPI headers enabled.\n");
8188 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8189 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8190 				mempool_free(mboxq, phba->mbox_mem_pool);
8191 				rc = -EIO;
8192 				goto out_free_bsmbx;
8193 			}
8194 		}
8195 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8196 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8197 			mempool_free(mboxq, phba->mbox_mem_pool);
8198 			rc = -EIO;
8199 			goto out_free_bsmbx;
8200 		}
8201 	}
8202 
8203 	/*
8204 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8205 	 * for boundary conditions in its max_sgl_segment template.
8206 	 */
8207 	extra = 2;
8208 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8209 		extra++;
8210 
8211 	/*
8212 	 * It doesn't matter what family our adapter is in, we are
8213 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8214 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8215 	 */
8216 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8217 
8218 	/*
8219 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8220 	 * used to create the sg_dma_buf_pool must be calculated.
8221 	 */
8222 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8223 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8224 
8225 		/*
8226 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8227 		 * the FCP rsp, and a SGE. Sice we have no control
8228 		 * over how many protection segments the SCSI Layer
8229 		 * will hand us (ie: there could be one for every block
8230 		 * in the IO), just allocate enough SGEs to accomidate
8231 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8232 		 * to minimize the risk of running out.
8233 		 */
8234 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8235 				sizeof(struct fcp_rsp) + max_buf_size;
8236 
8237 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8238 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8239 
8240 		/*
8241 		 * If supporting DIF, reduce the seg count for scsi to
8242 		 * allow room for the DIF sges.
8243 		 */
8244 		if (phba->cfg_enable_bg &&
8245 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8246 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8247 		else
8248 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8249 
8250 	} else {
8251 		/*
8252 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8253 		 * the FCP rsp, a SGE for each, and a SGE for up to
8254 		 * cfg_sg_seg_cnt data segments.
8255 		 */
8256 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8257 				sizeof(struct fcp_rsp) +
8258 				((phba->cfg_sg_seg_cnt + extra) *
8259 				sizeof(struct sli4_sge));
8260 
8261 		/* Total SGEs for scsi_sg_list */
8262 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8263 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8264 
8265 		/*
8266 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8267 		 * need to post 1 page for the SGL.
8268 		 */
8269 	}
8270 
8271 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8272 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8273 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8274 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8275 	else
8276 		phba->cfg_sg_dma_buf_size =
8277 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8278 
8279 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8280 			       sizeof(struct sli4_sge);
8281 
8282 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8283 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8284 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8285 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8286 					"6300 Reducing NVME sg segment "
8287 					"cnt to %d\n",
8288 					LPFC_MAX_NVME_SEG_CNT);
8289 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8290 		} else
8291 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8292 	}
8293 
8294 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8295 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8296 			"total:%d scsi:%d nvme:%d\n",
8297 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8298 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8299 			phba->cfg_nvme_seg_cnt);
8300 
8301 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8302 		i = phba->cfg_sg_dma_buf_size;
8303 	else
8304 		i = SLI4_PAGE_SIZE;
8305 
8306 	phba->lpfc_sg_dma_buf_pool =
8307 			dma_pool_create("lpfc_sg_dma_buf_pool",
8308 					&phba->pcidev->dev,
8309 					phba->cfg_sg_dma_buf_size,
8310 					i, 0);
8311 	if (!phba->lpfc_sg_dma_buf_pool) {
8312 		rc = -ENOMEM;
8313 		goto out_free_bsmbx;
8314 	}
8315 
8316 	phba->lpfc_cmd_rsp_buf_pool =
8317 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8318 					&phba->pcidev->dev,
8319 					sizeof(struct fcp_cmnd) +
8320 					sizeof(struct fcp_rsp),
8321 					i, 0);
8322 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8323 		rc = -ENOMEM;
8324 		goto out_free_sg_dma_buf;
8325 	}
8326 
8327 	mempool_free(mboxq, phba->mbox_mem_pool);
8328 
8329 	/* Verify OAS is supported */
8330 	lpfc_sli4_oas_verify(phba);
8331 
8332 	/* Verify RAS support on adapter */
8333 	lpfc_sli4_ras_init(phba);
8334 
8335 	/* Verify all the SLI4 queues */
8336 	rc = lpfc_sli4_queue_verify(phba);
8337 	if (rc)
8338 		goto out_free_cmd_rsp_buf;
8339 
8340 	/* Create driver internal CQE event pool */
8341 	rc = lpfc_sli4_cq_event_pool_create(phba);
8342 	if (rc)
8343 		goto out_free_cmd_rsp_buf;
8344 
8345 	/* Initialize sgl lists per host */
8346 	lpfc_init_sgl_list(phba);
8347 
8348 	/* Allocate and initialize active sgl array */
8349 	rc = lpfc_init_active_sgl_array(phba);
8350 	if (rc) {
8351 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8352 				"1430 Failed to initialize sgl list.\n");
8353 		goto out_destroy_cq_event_pool;
8354 	}
8355 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8356 	if (rc) {
8357 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8358 				"1432 Failed to initialize rpi headers.\n");
8359 		goto out_free_active_sgl;
8360 	}
8361 
8362 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8363 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8364 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8365 					 GFP_KERNEL);
8366 	if (!phba->fcf.fcf_rr_bmask) {
8367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8368 				"2759 Failed allocate memory for FCF round "
8369 				"robin failover bmask\n");
8370 		rc = -ENOMEM;
8371 		goto out_remove_rpi_hdrs;
8372 	}
8373 
8374 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8375 					    sizeof(struct lpfc_hba_eq_hdl),
8376 					    GFP_KERNEL);
8377 	if (!phba->sli4_hba.hba_eq_hdl) {
8378 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8379 				"2572 Failed allocate memory for "
8380 				"fast-path per-EQ handle array\n");
8381 		rc = -ENOMEM;
8382 		goto out_free_fcf_rr_bmask;
8383 	}
8384 
8385 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8386 					sizeof(struct lpfc_vector_map_info),
8387 					GFP_KERNEL);
8388 	if (!phba->sli4_hba.cpu_map) {
8389 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8390 				"3327 Failed allocate memory for msi-x "
8391 				"interrupt vector mapping\n");
8392 		rc = -ENOMEM;
8393 		goto out_free_hba_eq_hdl;
8394 	}
8395 
8396 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8397 	if (!phba->sli4_hba.eq_info) {
8398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8399 				"3321 Failed allocation for per_cpu stats\n");
8400 		rc = -ENOMEM;
8401 		goto out_free_hba_cpu_map;
8402 	}
8403 
8404 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8405 					   sizeof(*phba->sli4_hba.idle_stat),
8406 					   GFP_KERNEL);
8407 	if (!phba->sli4_hba.idle_stat) {
8408 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8409 				"3390 Failed allocation for idle_stat\n");
8410 		rc = -ENOMEM;
8411 		goto out_free_hba_eq_info;
8412 	}
8413 
8414 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8415 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8416 	if (!phba->sli4_hba.c_stat) {
8417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8418 				"3332 Failed allocating per cpu hdwq stats\n");
8419 		rc = -ENOMEM;
8420 		goto out_free_hba_idle_stat;
8421 	}
8422 #endif
8423 
8424 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8425 	if (!phba->cmf_stat) {
8426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8427 				"3331 Failed allocating per cpu cgn stats\n");
8428 		rc = -ENOMEM;
8429 		goto out_free_hba_hdwq_info;
8430 	}
8431 
8432 	/*
8433 	 * Enable sr-iov virtual functions if supported and configured
8434 	 * through the module parameter.
8435 	 */
8436 	if (phba->cfg_sriov_nr_virtfn > 0) {
8437 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8438 						 phba->cfg_sriov_nr_virtfn);
8439 		if (rc) {
8440 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8441 					"3020 Requested number of SR-IOV "
8442 					"virtual functions (%d) is not "
8443 					"supported\n",
8444 					phba->cfg_sriov_nr_virtfn);
8445 			phba->cfg_sriov_nr_virtfn = 0;
8446 		}
8447 	}
8448 
8449 	return 0;
8450 
8451 out_free_hba_hdwq_info:
8452 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8453 	free_percpu(phba->sli4_hba.c_stat);
8454 out_free_hba_idle_stat:
8455 #endif
8456 	kfree(phba->sli4_hba.idle_stat);
8457 out_free_hba_eq_info:
8458 	free_percpu(phba->sli4_hba.eq_info);
8459 out_free_hba_cpu_map:
8460 	kfree(phba->sli4_hba.cpu_map);
8461 out_free_hba_eq_hdl:
8462 	kfree(phba->sli4_hba.hba_eq_hdl);
8463 out_free_fcf_rr_bmask:
8464 	kfree(phba->fcf.fcf_rr_bmask);
8465 out_remove_rpi_hdrs:
8466 	lpfc_sli4_remove_rpi_hdrs(phba);
8467 out_free_active_sgl:
8468 	lpfc_free_active_sgl(phba);
8469 out_destroy_cq_event_pool:
8470 	lpfc_sli4_cq_event_pool_destroy(phba);
8471 out_free_cmd_rsp_buf:
8472 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8473 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8474 out_free_sg_dma_buf:
8475 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8476 	phba->lpfc_sg_dma_buf_pool = NULL;
8477 out_free_bsmbx:
8478 	lpfc_destroy_bootstrap_mbox(phba);
8479 out_free_mem:
8480 	lpfc_mem_free(phba);
8481 out_destroy_workqueue:
8482 	destroy_workqueue(phba->wq);
8483 	phba->wq = NULL;
8484 	return rc;
8485 }
8486 
8487 /**
8488  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8489  * @phba: pointer to lpfc hba data structure.
8490  *
8491  * This routine is invoked to unset the driver internal resources set up
8492  * specific for supporting the SLI-4 HBA device it attached to.
8493  **/
8494 static void
8495 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8496 {
8497 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8498 
8499 	free_percpu(phba->sli4_hba.eq_info);
8500 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8501 	free_percpu(phba->sli4_hba.c_stat);
8502 #endif
8503 	free_percpu(phba->cmf_stat);
8504 	kfree(phba->sli4_hba.idle_stat);
8505 
8506 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8507 	kfree(phba->sli4_hba.cpu_map);
8508 	phba->sli4_hba.num_possible_cpu = 0;
8509 	phba->sli4_hba.num_present_cpu = 0;
8510 	phba->sli4_hba.curr_disp_cpu = 0;
8511 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8512 
8513 	/* Free memory allocated for fast-path work queue handles */
8514 	kfree(phba->sli4_hba.hba_eq_hdl);
8515 
8516 	/* Free the allocated rpi headers. */
8517 	lpfc_sli4_remove_rpi_hdrs(phba);
8518 	lpfc_sli4_remove_rpis(phba);
8519 
8520 	/* Free eligible FCF index bmask */
8521 	kfree(phba->fcf.fcf_rr_bmask);
8522 
8523 	/* Free the ELS sgl list */
8524 	lpfc_free_active_sgl(phba);
8525 	lpfc_free_els_sgl_list(phba);
8526 	lpfc_free_nvmet_sgl_list(phba);
8527 
8528 	/* Free the completion queue EQ event pool */
8529 	lpfc_sli4_cq_event_release_all(phba);
8530 	lpfc_sli4_cq_event_pool_destroy(phba);
8531 
8532 	/* Release resource identifiers. */
8533 	lpfc_sli4_dealloc_resource_identifiers(phba);
8534 
8535 	/* Free the bsmbx region. */
8536 	lpfc_destroy_bootstrap_mbox(phba);
8537 
8538 	/* Free the SLI Layer memory with SLI4 HBAs */
8539 	lpfc_mem_free_all(phba);
8540 
8541 	/* Free the current connect table */
8542 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8543 		&phba->fcf_conn_rec_list, list) {
8544 		list_del_init(&conn_entry->list);
8545 		kfree(conn_entry);
8546 	}
8547 
8548 	return;
8549 }
8550 
8551 /**
8552  * lpfc_init_api_table_setup - Set up init api function jump table
8553  * @phba: The hba struct for which this call is being executed.
8554  * @dev_grp: The HBA PCI-Device group number.
8555  *
8556  * This routine sets up the device INIT interface API function jump table
8557  * in @phba struct.
8558  *
8559  * Returns: 0 - success, -ENODEV - failure.
8560  **/
8561 int
8562 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8563 {
8564 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8565 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8566 	phba->lpfc_selective_reset = lpfc_selective_reset;
8567 	switch (dev_grp) {
8568 	case LPFC_PCI_DEV_LP:
8569 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8570 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8571 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8572 		break;
8573 	case LPFC_PCI_DEV_OC:
8574 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8575 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8576 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8577 		break;
8578 	default:
8579 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8580 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8581 				dev_grp);
8582 		return -ENODEV;
8583 	}
8584 	return 0;
8585 }
8586 
8587 /**
8588  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8589  * @phba: pointer to lpfc hba data structure.
8590  *
8591  * This routine is invoked to set up the driver internal resources after the
8592  * device specific resource setup to support the HBA device it attached to.
8593  *
8594  * Return codes
8595  * 	0 - successful
8596  * 	other values - error
8597  **/
8598 static int
8599 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8600 {
8601 	int error;
8602 
8603 	/* Startup the kernel thread for this host adapter. */
8604 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8605 					  "lpfc_worker_%d", phba->brd_no);
8606 	if (IS_ERR(phba->worker_thread)) {
8607 		error = PTR_ERR(phba->worker_thread);
8608 		return error;
8609 	}
8610 
8611 	return 0;
8612 }
8613 
8614 /**
8615  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8616  * @phba: pointer to lpfc hba data structure.
8617  *
8618  * This routine is invoked to unset the driver internal resources set up after
8619  * the device specific resource setup for supporting the HBA device it
8620  * attached to.
8621  **/
8622 static void
8623 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8624 {
8625 	if (phba->wq) {
8626 		destroy_workqueue(phba->wq);
8627 		phba->wq = NULL;
8628 	}
8629 
8630 	/* Stop kernel worker thread */
8631 	if (phba->worker_thread)
8632 		kthread_stop(phba->worker_thread);
8633 }
8634 
8635 /**
8636  * lpfc_free_iocb_list - Free iocb list.
8637  * @phba: pointer to lpfc hba data structure.
8638  *
8639  * This routine is invoked to free the driver's IOCB list and memory.
8640  **/
8641 void
8642 lpfc_free_iocb_list(struct lpfc_hba *phba)
8643 {
8644 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8645 
8646 	spin_lock_irq(&phba->hbalock);
8647 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8648 				 &phba->lpfc_iocb_list, list) {
8649 		list_del(&iocbq_entry->list);
8650 		kfree(iocbq_entry);
8651 		phba->total_iocbq_bufs--;
8652 	}
8653 	spin_unlock_irq(&phba->hbalock);
8654 
8655 	return;
8656 }
8657 
8658 /**
8659  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8660  * @phba: pointer to lpfc hba data structure.
8661  * @iocb_count: number of requested iocbs
8662  *
8663  * This routine is invoked to allocate and initizlize the driver's IOCB
8664  * list and set up the IOCB tag array accordingly.
8665  *
8666  * Return codes
8667  *	0 - successful
8668  *	other values - error
8669  **/
8670 int
8671 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8672 {
8673 	struct lpfc_iocbq *iocbq_entry = NULL;
8674 	uint16_t iotag;
8675 	int i;
8676 
8677 	/* Initialize and populate the iocb list per host.  */
8678 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8679 	for (i = 0; i < iocb_count; i++) {
8680 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8681 		if (iocbq_entry == NULL) {
8682 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8683 				"expected %d count. Unloading driver.\n",
8684 				__func__, i, iocb_count);
8685 			goto out_free_iocbq;
8686 		}
8687 
8688 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8689 		if (iotag == 0) {
8690 			kfree(iocbq_entry);
8691 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8692 				"Unloading driver.\n", __func__);
8693 			goto out_free_iocbq;
8694 		}
8695 		iocbq_entry->sli4_lxritag = NO_XRI;
8696 		iocbq_entry->sli4_xritag = NO_XRI;
8697 
8698 		spin_lock_irq(&phba->hbalock);
8699 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8700 		phba->total_iocbq_bufs++;
8701 		spin_unlock_irq(&phba->hbalock);
8702 	}
8703 
8704 	return 0;
8705 
8706 out_free_iocbq:
8707 	lpfc_free_iocb_list(phba);
8708 
8709 	return -ENOMEM;
8710 }
8711 
8712 /**
8713  * lpfc_free_sgl_list - Free a given sgl list.
8714  * @phba: pointer to lpfc hba data structure.
8715  * @sglq_list: pointer to the head of sgl list.
8716  *
8717  * This routine is invoked to free a give sgl list and memory.
8718  **/
8719 void
8720 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8721 {
8722 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8723 
8724 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8725 		list_del(&sglq_entry->list);
8726 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8727 		kfree(sglq_entry);
8728 	}
8729 }
8730 
8731 /**
8732  * lpfc_free_els_sgl_list - Free els sgl list.
8733  * @phba: pointer to lpfc hba data structure.
8734  *
8735  * This routine is invoked to free the driver's els sgl list and memory.
8736  **/
8737 static void
8738 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8739 {
8740 	LIST_HEAD(sglq_list);
8741 
8742 	/* Retrieve all els sgls from driver list */
8743 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8744 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8745 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8746 
8747 	/* Now free the sgl list */
8748 	lpfc_free_sgl_list(phba, &sglq_list);
8749 }
8750 
8751 /**
8752  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8753  * @phba: pointer to lpfc hba data structure.
8754  *
8755  * This routine is invoked to free the driver's nvmet sgl list and memory.
8756  **/
8757 static void
8758 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8759 {
8760 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8761 	LIST_HEAD(sglq_list);
8762 
8763 	/* Retrieve all nvmet sgls from driver list */
8764 	spin_lock_irq(&phba->hbalock);
8765 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8766 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8767 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8768 	spin_unlock_irq(&phba->hbalock);
8769 
8770 	/* Now free the sgl list */
8771 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8772 		list_del(&sglq_entry->list);
8773 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8774 		kfree(sglq_entry);
8775 	}
8776 
8777 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8778 	 * The next initialization cycle sets the count and allocates
8779 	 * the sgls over again.
8780 	 */
8781 	phba->sli4_hba.nvmet_xri_cnt = 0;
8782 }
8783 
8784 /**
8785  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8786  * @phba: pointer to lpfc hba data structure.
8787  *
8788  * This routine is invoked to allocate the driver's active sgl memory.
8789  * This array will hold the sglq_entry's for active IOs.
8790  **/
8791 static int
8792 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8793 {
8794 	int size;
8795 	size = sizeof(struct lpfc_sglq *);
8796 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8797 
8798 	phba->sli4_hba.lpfc_sglq_active_list =
8799 		kzalloc(size, GFP_KERNEL);
8800 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8801 		return -ENOMEM;
8802 	return 0;
8803 }
8804 
8805 /**
8806  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8807  * @phba: pointer to lpfc hba data structure.
8808  *
8809  * This routine is invoked to walk through the array of active sglq entries
8810  * and free all of the resources.
8811  * This is just a place holder for now.
8812  **/
8813 static void
8814 lpfc_free_active_sgl(struct lpfc_hba *phba)
8815 {
8816 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8817 }
8818 
8819 /**
8820  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8821  * @phba: pointer to lpfc hba data structure.
8822  *
8823  * This routine is invoked to allocate and initizlize the driver's sgl
8824  * list and set up the sgl xritag tag array accordingly.
8825  *
8826  **/
8827 static void
8828 lpfc_init_sgl_list(struct lpfc_hba *phba)
8829 {
8830 	/* Initialize and populate the sglq list per host/VF. */
8831 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8832 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8833 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8835 
8836 	/* els xri-sgl book keeping */
8837 	phba->sli4_hba.els_xri_cnt = 0;
8838 
8839 	/* nvme xri-buffer book keeping */
8840 	phba->sli4_hba.io_xri_cnt = 0;
8841 }
8842 
8843 /**
8844  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8845  * @phba: pointer to lpfc hba data structure.
8846  *
8847  * This routine is invoked to post rpi header templates to the
8848  * port for those SLI4 ports that do not support extents.  This routine
8849  * posts a PAGE_SIZE memory region to the port to hold up to
8850  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8851  * and should be called only when interrupts are disabled.
8852  *
8853  * Return codes
8854  * 	0 - successful
8855  *	-ERROR - otherwise.
8856  **/
8857 int
8858 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8859 {
8860 	int rc = 0;
8861 	struct lpfc_rpi_hdr *rpi_hdr;
8862 
8863 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8864 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8865 		return rc;
8866 	if (phba->sli4_hba.extents_in_use)
8867 		return -EIO;
8868 
8869 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8870 	if (!rpi_hdr) {
8871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8872 				"0391 Error during rpi post operation\n");
8873 		lpfc_sli4_remove_rpis(phba);
8874 		rc = -ENODEV;
8875 	}
8876 
8877 	return rc;
8878 }
8879 
8880 /**
8881  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8882  * @phba: pointer to lpfc hba data structure.
8883  *
8884  * This routine is invoked to allocate a single 4KB memory region to
8885  * support rpis and stores them in the phba.  This single region
8886  * provides support for up to 64 rpis.  The region is used globally
8887  * by the device.
8888  *
8889  * Returns:
8890  *   A valid rpi hdr on success.
8891  *   A NULL pointer on any failure.
8892  **/
8893 struct lpfc_rpi_hdr *
8894 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8895 {
8896 	uint16_t rpi_limit, curr_rpi_range;
8897 	struct lpfc_dmabuf *dmabuf;
8898 	struct lpfc_rpi_hdr *rpi_hdr;
8899 
8900 	/*
8901 	 * If the SLI4 port supports extents, posting the rpi header isn't
8902 	 * required.  Set the expected maximum count and let the actual value
8903 	 * get set when extents are fully allocated.
8904 	 */
8905 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8906 		return NULL;
8907 	if (phba->sli4_hba.extents_in_use)
8908 		return NULL;
8909 
8910 	/* The limit on the logical index is just the max_rpi count. */
8911 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8912 
8913 	spin_lock_irq(&phba->hbalock);
8914 	/*
8915 	 * Establish the starting RPI in this header block.  The starting
8916 	 * rpi is normalized to a zero base because the physical rpi is
8917 	 * port based.
8918 	 */
8919 	curr_rpi_range = phba->sli4_hba.next_rpi;
8920 	spin_unlock_irq(&phba->hbalock);
8921 
8922 	/* Reached full RPI range */
8923 	if (curr_rpi_range == rpi_limit)
8924 		return NULL;
8925 
8926 	/*
8927 	 * First allocate the protocol header region for the port.  The
8928 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8929 	 */
8930 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8931 	if (!dmabuf)
8932 		return NULL;
8933 
8934 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8935 					  LPFC_HDR_TEMPLATE_SIZE,
8936 					  &dmabuf->phys, GFP_KERNEL);
8937 	if (!dmabuf->virt) {
8938 		rpi_hdr = NULL;
8939 		goto err_free_dmabuf;
8940 	}
8941 
8942 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8943 		rpi_hdr = NULL;
8944 		goto err_free_coherent;
8945 	}
8946 
8947 	/* Save the rpi header data for cleanup later. */
8948 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8949 	if (!rpi_hdr)
8950 		goto err_free_coherent;
8951 
8952 	rpi_hdr->dmabuf = dmabuf;
8953 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8954 	rpi_hdr->page_count = 1;
8955 	spin_lock_irq(&phba->hbalock);
8956 
8957 	/* The rpi_hdr stores the logical index only. */
8958 	rpi_hdr->start_rpi = curr_rpi_range;
8959 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8960 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8961 
8962 	spin_unlock_irq(&phba->hbalock);
8963 	return rpi_hdr;
8964 
8965  err_free_coherent:
8966 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8967 			  dmabuf->virt, dmabuf->phys);
8968  err_free_dmabuf:
8969 	kfree(dmabuf);
8970 	return NULL;
8971 }
8972 
8973 /**
8974  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8975  * @phba: pointer to lpfc hba data structure.
8976  *
8977  * This routine is invoked to remove all memory resources allocated
8978  * to support rpis for SLI4 ports not supporting extents. This routine
8979  * presumes the caller has released all rpis consumed by fabric or port
8980  * logins and is prepared to have the header pages removed.
8981  **/
8982 void
8983 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8984 {
8985 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8986 
8987 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8988 		goto exit;
8989 
8990 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8991 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8992 		list_del(&rpi_hdr->list);
8993 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8994 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8995 		kfree(rpi_hdr->dmabuf);
8996 		kfree(rpi_hdr);
8997 	}
8998  exit:
8999 	/* There are no rpis available to the port now. */
9000 	phba->sli4_hba.next_rpi = 0;
9001 }
9002 
9003 /**
9004  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9005  * @pdev: pointer to pci device data structure.
9006  *
9007  * This routine is invoked to allocate the driver hba data structure for an
9008  * HBA device. If the allocation is successful, the phba reference to the
9009  * PCI device data structure is set.
9010  *
9011  * Return codes
9012  *      pointer to @phba - successful
9013  *      NULL - error
9014  **/
9015 static struct lpfc_hba *
9016 lpfc_hba_alloc(struct pci_dev *pdev)
9017 {
9018 	struct lpfc_hba *phba;
9019 
9020 	/* Allocate memory for HBA structure */
9021 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9022 	if (!phba) {
9023 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9024 		return NULL;
9025 	}
9026 
9027 	/* Set reference to PCI device in HBA structure */
9028 	phba->pcidev = pdev;
9029 
9030 	/* Assign an unused board number */
9031 	phba->brd_no = lpfc_get_instance();
9032 	if (phba->brd_no < 0) {
9033 		kfree(phba);
9034 		return NULL;
9035 	}
9036 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9037 
9038 	spin_lock_init(&phba->ct_ev_lock);
9039 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9040 
9041 	return phba;
9042 }
9043 
9044 /**
9045  * lpfc_hba_free - Free driver hba data structure with a device.
9046  * @phba: pointer to lpfc hba data structure.
9047  *
9048  * This routine is invoked to free the driver hba data structure with an
9049  * HBA device.
9050  **/
9051 static void
9052 lpfc_hba_free(struct lpfc_hba *phba)
9053 {
9054 	if (phba->sli_rev == LPFC_SLI_REV4)
9055 		kfree(phba->sli4_hba.hdwq);
9056 
9057 	/* Release the driver assigned board number */
9058 	idr_remove(&lpfc_hba_index, phba->brd_no);
9059 
9060 	/* Free memory allocated with sli3 rings */
9061 	kfree(phba->sli.sli3_ring);
9062 	phba->sli.sli3_ring = NULL;
9063 
9064 	kfree(phba);
9065 	return;
9066 }
9067 
9068 /**
9069  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9070  * @vport: pointer to lpfc vport data structure.
9071  *
9072  * This routine is will setup initial FDMI attribute masks for
9073  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9074  * to get these attributes first before falling back, the attribute
9075  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9076  **/
9077 void
9078 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9079 {
9080 	struct lpfc_hba *phba = vport->phba;
9081 
9082 	vport->load_flag |= FC_ALLOW_FDMI;
9083 	if (phba->cfg_enable_SmartSAN ||
9084 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9085 		/* Setup appropriate attribute masks */
9086 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9087 		if (phba->cfg_enable_SmartSAN)
9088 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9089 		else
9090 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9091 	}
9092 
9093 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9094 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9095 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9096 }
9097 
9098 /**
9099  * lpfc_create_shost - Create hba physical port with associated scsi host.
9100  * @phba: pointer to lpfc hba data structure.
9101  *
9102  * This routine is invoked to create HBA physical port and associate a SCSI
9103  * host with it.
9104  *
9105  * Return codes
9106  *      0 - successful
9107  *      other values - error
9108  **/
9109 static int
9110 lpfc_create_shost(struct lpfc_hba *phba)
9111 {
9112 	struct lpfc_vport *vport;
9113 	struct Scsi_Host  *shost;
9114 
9115 	/* Initialize HBA FC structure */
9116 	phba->fc_edtov = FF_DEF_EDTOV;
9117 	phba->fc_ratov = FF_DEF_RATOV;
9118 	phba->fc_altov = FF_DEF_ALTOV;
9119 	phba->fc_arbtov = FF_DEF_ARBTOV;
9120 
9121 	atomic_set(&phba->sdev_cnt, 0);
9122 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9123 	if (!vport)
9124 		return -ENODEV;
9125 
9126 	shost = lpfc_shost_from_vport(vport);
9127 	phba->pport = vport;
9128 
9129 	if (phba->nvmet_support) {
9130 		/* Only 1 vport (pport) will support NVME target */
9131 		phba->targetport = NULL;
9132 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9133 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9134 				"6076 NVME Target Found\n");
9135 	}
9136 
9137 	lpfc_debugfs_initialize(vport);
9138 	/* Put reference to SCSI host to driver's device private data */
9139 	pci_set_drvdata(phba->pcidev, shost);
9140 
9141 	lpfc_setup_fdmi_mask(vport);
9142 
9143 	/*
9144 	 * At this point we are fully registered with PSA. In addition,
9145 	 * any initial discovery should be completed.
9146 	 */
9147 	return 0;
9148 }
9149 
9150 /**
9151  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9152  * @phba: pointer to lpfc hba data structure.
9153  *
9154  * This routine is invoked to destroy HBA physical port and the associated
9155  * SCSI host.
9156  **/
9157 static void
9158 lpfc_destroy_shost(struct lpfc_hba *phba)
9159 {
9160 	struct lpfc_vport *vport = phba->pport;
9161 
9162 	/* Destroy physical port that associated with the SCSI host */
9163 	destroy_port(vport);
9164 
9165 	return;
9166 }
9167 
9168 /**
9169  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9170  * @phba: pointer to lpfc hba data structure.
9171  * @shost: the shost to be used to detect Block guard settings.
9172  *
9173  * This routine sets up the local Block guard protocol settings for @shost.
9174  * This routine also allocates memory for debugging bg buffers.
9175  **/
9176 static void
9177 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9178 {
9179 	uint32_t old_mask;
9180 	uint32_t old_guard;
9181 
9182 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9184 				"1478 Registering BlockGuard with the "
9185 				"SCSI layer\n");
9186 
9187 		old_mask = phba->cfg_prot_mask;
9188 		old_guard = phba->cfg_prot_guard;
9189 
9190 		/* Only allow supported values */
9191 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9192 			SHOST_DIX_TYPE0_PROTECTION |
9193 			SHOST_DIX_TYPE1_PROTECTION);
9194 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9195 					 SHOST_DIX_GUARD_CRC);
9196 
9197 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9198 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9199 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9200 
9201 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9202 			if ((old_mask != phba->cfg_prot_mask) ||
9203 				(old_guard != phba->cfg_prot_guard))
9204 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9205 					"1475 Registering BlockGuard with the "
9206 					"SCSI layer: mask %d  guard %d\n",
9207 					phba->cfg_prot_mask,
9208 					phba->cfg_prot_guard);
9209 
9210 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9211 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9212 		} else
9213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9214 				"1479 Not Registering BlockGuard with the SCSI "
9215 				"layer, Bad protection parameters: %d %d\n",
9216 				old_mask, old_guard);
9217 	}
9218 }
9219 
9220 /**
9221  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9222  * @phba: pointer to lpfc hba data structure.
9223  *
9224  * This routine is invoked to perform all the necessary post initialization
9225  * setup for the device.
9226  **/
9227 static void
9228 lpfc_post_init_setup(struct lpfc_hba *phba)
9229 {
9230 	struct Scsi_Host  *shost;
9231 	struct lpfc_adapter_event_header adapter_event;
9232 
9233 	/* Get the default values for Model Name and Description */
9234 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9235 
9236 	/*
9237 	 * hba setup may have changed the hba_queue_depth so we need to
9238 	 * adjust the value of can_queue.
9239 	 */
9240 	shost = pci_get_drvdata(phba->pcidev);
9241 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9242 
9243 	lpfc_host_attrib_init(shost);
9244 
9245 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9246 		spin_lock_irq(shost->host_lock);
9247 		lpfc_poll_start_timer(phba);
9248 		spin_unlock_irq(shost->host_lock);
9249 	}
9250 
9251 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9252 			"0428 Perform SCSI scan\n");
9253 	/* Send board arrival event to upper layer */
9254 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9255 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9256 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9257 				  sizeof(adapter_event),
9258 				  (char *) &adapter_event,
9259 				  LPFC_NL_VENDOR_ID);
9260 	return;
9261 }
9262 
9263 /**
9264  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9265  * @phba: pointer to lpfc hba data structure.
9266  *
9267  * This routine is invoked to set up the PCI device memory space for device
9268  * with SLI-3 interface spec.
9269  *
9270  * Return codes
9271  * 	0 - successful
9272  * 	other values - error
9273  **/
9274 static int
9275 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9276 {
9277 	struct pci_dev *pdev = phba->pcidev;
9278 	unsigned long bar0map_len, bar2map_len;
9279 	int i, hbq_count;
9280 	void *ptr;
9281 	int error;
9282 
9283 	if (!pdev)
9284 		return -ENODEV;
9285 
9286 	/* Set the device DMA mask size */
9287 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9288 	if (error)
9289 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9290 	if (error)
9291 		return error;
9292 	error = -ENODEV;
9293 
9294 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9295 	 * required by each mapping.
9296 	 */
9297 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9298 	bar0map_len = pci_resource_len(pdev, 0);
9299 
9300 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9301 	bar2map_len = pci_resource_len(pdev, 2);
9302 
9303 	/* Map HBA SLIM to a kernel virtual address. */
9304 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9305 	if (!phba->slim_memmap_p) {
9306 		dev_printk(KERN_ERR, &pdev->dev,
9307 			   "ioremap failed for SLIM memory.\n");
9308 		goto out;
9309 	}
9310 
9311 	/* Map HBA Control Registers to a kernel virtual address. */
9312 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9313 	if (!phba->ctrl_regs_memmap_p) {
9314 		dev_printk(KERN_ERR, &pdev->dev,
9315 			   "ioremap failed for HBA control registers.\n");
9316 		goto out_iounmap_slim;
9317 	}
9318 
9319 	/* Allocate memory for SLI-2 structures */
9320 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9321 					       &phba->slim2p.phys, GFP_KERNEL);
9322 	if (!phba->slim2p.virt)
9323 		goto out_iounmap;
9324 
9325 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9326 	phba->mbox_ext = (phba->slim2p.virt +
9327 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9328 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9329 	phba->IOCBs = (phba->slim2p.virt +
9330 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9331 
9332 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9333 						 lpfc_sli_hbq_size(),
9334 						 &phba->hbqslimp.phys,
9335 						 GFP_KERNEL);
9336 	if (!phba->hbqslimp.virt)
9337 		goto out_free_slim;
9338 
9339 	hbq_count = lpfc_sli_hbq_count();
9340 	ptr = phba->hbqslimp.virt;
9341 	for (i = 0; i < hbq_count; ++i) {
9342 		phba->hbqs[i].hbq_virt = ptr;
9343 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9344 		ptr += (lpfc_hbq_defs[i]->entry_count *
9345 			sizeof(struct lpfc_hbq_entry));
9346 	}
9347 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9348 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9349 
9350 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9351 
9352 	phba->MBslimaddr = phba->slim_memmap_p;
9353 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9354 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9355 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9356 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9357 
9358 	return 0;
9359 
9360 out_free_slim:
9361 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9362 			  phba->slim2p.virt, phba->slim2p.phys);
9363 out_iounmap:
9364 	iounmap(phba->ctrl_regs_memmap_p);
9365 out_iounmap_slim:
9366 	iounmap(phba->slim_memmap_p);
9367 out:
9368 	return error;
9369 }
9370 
9371 /**
9372  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9373  * @phba: pointer to lpfc hba data structure.
9374  *
9375  * This routine is invoked to unset the PCI device memory space for device
9376  * with SLI-3 interface spec.
9377  **/
9378 static void
9379 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9380 {
9381 	struct pci_dev *pdev;
9382 
9383 	/* Obtain PCI device reference */
9384 	if (!phba->pcidev)
9385 		return;
9386 	else
9387 		pdev = phba->pcidev;
9388 
9389 	/* Free coherent DMA memory allocated */
9390 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9391 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9392 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9393 			  phba->slim2p.virt, phba->slim2p.phys);
9394 
9395 	/* I/O memory unmap */
9396 	iounmap(phba->ctrl_regs_memmap_p);
9397 	iounmap(phba->slim_memmap_p);
9398 
9399 	return;
9400 }
9401 
9402 /**
9403  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9404  * @phba: pointer to lpfc hba data structure.
9405  *
9406  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9407  * done and check status.
9408  *
9409  * Return 0 if successful, otherwise -ENODEV.
9410  **/
9411 int
9412 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9413 {
9414 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9415 	struct lpfc_register reg_data;
9416 	int i, port_error = 0;
9417 	uint32_t if_type;
9418 
9419 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9420 	memset(&reg_data, 0, sizeof(reg_data));
9421 	if (!phba->sli4_hba.PSMPHRregaddr)
9422 		return -ENODEV;
9423 
9424 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9425 	for (i = 0; i < 3000; i++) {
9426 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9427 			&portsmphr_reg.word0) ||
9428 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9429 			/* Port has a fatal POST error, break out */
9430 			port_error = -ENODEV;
9431 			break;
9432 		}
9433 		if (LPFC_POST_STAGE_PORT_READY ==
9434 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9435 			break;
9436 		msleep(10);
9437 	}
9438 
9439 	/*
9440 	 * If there was a port error during POST, then don't proceed with
9441 	 * other register reads as the data may not be valid.  Just exit.
9442 	 */
9443 	if (port_error) {
9444 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9445 			"1408 Port Failed POST - portsmphr=0x%x, "
9446 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9447 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9448 			portsmphr_reg.word0,
9449 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9450 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9451 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9452 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9457 	} else {
9458 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9459 				"2534 Device Info: SLIFamily=0x%x, "
9460 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9461 				"SLIHint_2=0x%x, FT=0x%x\n",
9462 				bf_get(lpfc_sli_intf_sli_family,
9463 				       &phba->sli4_hba.sli_intf),
9464 				bf_get(lpfc_sli_intf_slirev,
9465 				       &phba->sli4_hba.sli_intf),
9466 				bf_get(lpfc_sli_intf_if_type,
9467 				       &phba->sli4_hba.sli_intf),
9468 				bf_get(lpfc_sli_intf_sli_hint1,
9469 				       &phba->sli4_hba.sli_intf),
9470 				bf_get(lpfc_sli_intf_sli_hint2,
9471 				       &phba->sli4_hba.sli_intf),
9472 				bf_get(lpfc_sli_intf_func_type,
9473 				       &phba->sli4_hba.sli_intf));
9474 		/*
9475 		 * Check for other Port errors during the initialization
9476 		 * process.  Fail the load if the port did not come up
9477 		 * correctly.
9478 		 */
9479 		if_type = bf_get(lpfc_sli_intf_if_type,
9480 				 &phba->sli4_hba.sli_intf);
9481 		switch (if_type) {
9482 		case LPFC_SLI_INTF_IF_TYPE_0:
9483 			phba->sli4_hba.ue_mask_lo =
9484 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9485 			phba->sli4_hba.ue_mask_hi =
9486 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9487 			uerrlo_reg.word0 =
9488 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9489 			uerrhi_reg.word0 =
9490 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9491 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9492 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9493 				lpfc_printf_log(phba, KERN_ERR,
9494 						LOG_TRACE_EVENT,
9495 						"1422 Unrecoverable Error "
9496 						"Detected during POST "
9497 						"uerr_lo_reg=0x%x, "
9498 						"uerr_hi_reg=0x%x, "
9499 						"ue_mask_lo_reg=0x%x, "
9500 						"ue_mask_hi_reg=0x%x\n",
9501 						uerrlo_reg.word0,
9502 						uerrhi_reg.word0,
9503 						phba->sli4_hba.ue_mask_lo,
9504 						phba->sli4_hba.ue_mask_hi);
9505 				port_error = -ENODEV;
9506 			}
9507 			break;
9508 		case LPFC_SLI_INTF_IF_TYPE_2:
9509 		case LPFC_SLI_INTF_IF_TYPE_6:
9510 			/* Final checks.  The port status should be clean. */
9511 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9512 				&reg_data.word0) ||
9513 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9514 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9515 				phba->work_status[0] =
9516 					readl(phba->sli4_hba.u.if_type2.
9517 					      ERR1regaddr);
9518 				phba->work_status[1] =
9519 					readl(phba->sli4_hba.u.if_type2.
9520 					      ERR2regaddr);
9521 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9522 					"2888 Unrecoverable port error "
9523 					"following POST: port status reg "
9524 					"0x%x, port_smphr reg 0x%x, "
9525 					"error 1=0x%x, error 2=0x%x\n",
9526 					reg_data.word0,
9527 					portsmphr_reg.word0,
9528 					phba->work_status[0],
9529 					phba->work_status[1]);
9530 				port_error = -ENODEV;
9531 				break;
9532 			}
9533 
9534 			if (lpfc_pldv_detect &&
9535 			    bf_get(lpfc_sli_intf_sli_family,
9536 				   &phba->sli4_hba.sli_intf) ==
9537 					LPFC_SLI_INTF_FAMILY_G6)
9538 				pci_write_config_byte(phba->pcidev,
9539 						      LPFC_SLI_INTF, CFG_PLD);
9540 			break;
9541 		case LPFC_SLI_INTF_IF_TYPE_1:
9542 		default:
9543 			break;
9544 		}
9545 	}
9546 	return port_error;
9547 }
9548 
9549 /**
9550  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9551  * @phba: pointer to lpfc hba data structure.
9552  * @if_type:  The SLI4 interface type getting configured.
9553  *
9554  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9555  * memory map.
9556  **/
9557 static void
9558 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9559 {
9560 	switch (if_type) {
9561 	case LPFC_SLI_INTF_IF_TYPE_0:
9562 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9563 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9564 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9565 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9566 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9567 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9568 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9569 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9570 		phba->sli4_hba.SLIINTFregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9572 		break;
9573 	case LPFC_SLI_INTF_IF_TYPE_2:
9574 		phba->sli4_hba.u.if_type2.EQDregaddr =
9575 			phba->sli4_hba.conf_regs_memmap_p +
9576 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9577 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9578 			phba->sli4_hba.conf_regs_memmap_p +
9579 						LPFC_CTL_PORT_ER1_OFFSET;
9580 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9581 			phba->sli4_hba.conf_regs_memmap_p +
9582 						LPFC_CTL_PORT_ER2_OFFSET;
9583 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9584 			phba->sli4_hba.conf_regs_memmap_p +
9585 						LPFC_CTL_PORT_CTL_OFFSET;
9586 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9587 			phba->sli4_hba.conf_regs_memmap_p +
9588 						LPFC_CTL_PORT_STA_OFFSET;
9589 		phba->sli4_hba.SLIINTFregaddr =
9590 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9591 		phba->sli4_hba.PSMPHRregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_SEM_OFFSET;
9594 		phba->sli4_hba.RQDBregaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p +
9596 						LPFC_ULP0_RQ_DOORBELL;
9597 		phba->sli4_hba.WQDBregaddr =
9598 			phba->sli4_hba.conf_regs_memmap_p +
9599 						LPFC_ULP0_WQ_DOORBELL;
9600 		phba->sli4_hba.CQDBregaddr =
9601 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9602 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9603 		phba->sli4_hba.MQDBregaddr =
9604 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9605 		phba->sli4_hba.BMBXregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9607 		break;
9608 	case LPFC_SLI_INTF_IF_TYPE_6:
9609 		phba->sli4_hba.u.if_type2.EQDregaddr =
9610 			phba->sli4_hba.conf_regs_memmap_p +
9611 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9612 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9613 			phba->sli4_hba.conf_regs_memmap_p +
9614 						LPFC_CTL_PORT_ER1_OFFSET;
9615 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9616 			phba->sli4_hba.conf_regs_memmap_p +
9617 						LPFC_CTL_PORT_ER2_OFFSET;
9618 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9619 			phba->sli4_hba.conf_regs_memmap_p +
9620 						LPFC_CTL_PORT_CTL_OFFSET;
9621 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p +
9623 						LPFC_CTL_PORT_STA_OFFSET;
9624 		phba->sli4_hba.PSMPHRregaddr =
9625 			phba->sli4_hba.conf_regs_memmap_p +
9626 						LPFC_CTL_PORT_SEM_OFFSET;
9627 		phba->sli4_hba.BMBXregaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9629 		break;
9630 	case LPFC_SLI_INTF_IF_TYPE_1:
9631 	default:
9632 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9633 			   "FATAL - unsupported SLI4 interface type - %d\n",
9634 			   if_type);
9635 		break;
9636 	}
9637 }
9638 
9639 /**
9640  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9641  * @phba: pointer to lpfc hba data structure.
9642  * @if_type: sli if type to operate on.
9643  *
9644  * This routine is invoked to set up SLI4 BAR1 register memory map.
9645  **/
9646 static void
9647 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9648 {
9649 	switch (if_type) {
9650 	case LPFC_SLI_INTF_IF_TYPE_0:
9651 		phba->sli4_hba.PSMPHRregaddr =
9652 			phba->sli4_hba.ctrl_regs_memmap_p +
9653 			LPFC_SLIPORT_IF0_SMPHR;
9654 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9655 			LPFC_HST_ISR0;
9656 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9657 			LPFC_HST_IMR0;
9658 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9659 			LPFC_HST_ISCR0;
9660 		break;
9661 	case LPFC_SLI_INTF_IF_TYPE_6:
9662 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9663 			LPFC_IF6_RQ_DOORBELL;
9664 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9665 			LPFC_IF6_WQ_DOORBELL;
9666 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9667 			LPFC_IF6_CQ_DOORBELL;
9668 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9669 			LPFC_IF6_EQ_DOORBELL;
9670 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_MQ_DOORBELL;
9672 		break;
9673 	case LPFC_SLI_INTF_IF_TYPE_2:
9674 	case LPFC_SLI_INTF_IF_TYPE_1:
9675 	default:
9676 		dev_err(&phba->pcidev->dev,
9677 			   "FATAL - unsupported SLI4 interface type - %d\n",
9678 			   if_type);
9679 		break;
9680 	}
9681 }
9682 
9683 /**
9684  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9685  * @phba: pointer to lpfc hba data structure.
9686  * @vf: virtual function number
9687  *
9688  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9689  * based on the given viftual function number, @vf.
9690  *
9691  * Return 0 if successful, otherwise -ENODEV.
9692  **/
9693 static int
9694 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9695 {
9696 	if (vf > LPFC_VIR_FUNC_MAX)
9697 		return -ENODEV;
9698 
9699 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9700 				vf * LPFC_VFR_PAGE_SIZE +
9701 					LPFC_ULP0_RQ_DOORBELL);
9702 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9703 				vf * LPFC_VFR_PAGE_SIZE +
9704 					LPFC_ULP0_WQ_DOORBELL);
9705 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9706 				vf * LPFC_VFR_PAGE_SIZE +
9707 					LPFC_EQCQ_DOORBELL);
9708 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9709 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9710 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9711 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9713 	return 0;
9714 }
9715 
9716 /**
9717  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9718  * @phba: pointer to lpfc hba data structure.
9719  *
9720  * This routine is invoked to create the bootstrap mailbox
9721  * region consistent with the SLI-4 interface spec.  This
9722  * routine allocates all memory necessary to communicate
9723  * mailbox commands to the port and sets up all alignment
9724  * needs.  No locks are expected to be held when calling
9725  * this routine.
9726  *
9727  * Return codes
9728  * 	0 - successful
9729  * 	-ENOMEM - could not allocated memory.
9730  **/
9731 static int
9732 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9733 {
9734 	uint32_t bmbx_size;
9735 	struct lpfc_dmabuf *dmabuf;
9736 	struct dma_address *dma_address;
9737 	uint32_t pa_addr;
9738 	uint64_t phys_addr;
9739 
9740 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9741 	if (!dmabuf)
9742 		return -ENOMEM;
9743 
9744 	/*
9745 	 * The bootstrap mailbox region is comprised of 2 parts
9746 	 * plus an alignment restriction of 16 bytes.
9747 	 */
9748 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9749 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9750 					  &dmabuf->phys, GFP_KERNEL);
9751 	if (!dmabuf->virt) {
9752 		kfree(dmabuf);
9753 		return -ENOMEM;
9754 	}
9755 
9756 	/*
9757 	 * Initialize the bootstrap mailbox pointers now so that the register
9758 	 * operations are simple later.  The mailbox dma address is required
9759 	 * to be 16-byte aligned.  Also align the virtual memory as each
9760 	 * maibox is copied into the bmbx mailbox region before issuing the
9761 	 * command to the port.
9762 	 */
9763 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9764 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9765 
9766 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9767 					      LPFC_ALIGN_16_BYTE);
9768 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9769 					      LPFC_ALIGN_16_BYTE);
9770 
9771 	/*
9772 	 * Set the high and low physical addresses now.  The SLI4 alignment
9773 	 * requirement is 16 bytes and the mailbox is posted to the port
9774 	 * as two 30-bit addresses.  The other data is a bit marking whether
9775 	 * the 30-bit address is the high or low address.
9776 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9777 	 * clean on 32 bit machines.
9778 	 */
9779 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9780 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9781 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9782 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9783 					   LPFC_BMBX_BIT1_ADDR_HI);
9784 
9785 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9786 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9787 					   LPFC_BMBX_BIT1_ADDR_LO);
9788 	return 0;
9789 }
9790 
9791 /**
9792  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9793  * @phba: pointer to lpfc hba data structure.
9794  *
9795  * This routine is invoked to teardown the bootstrap mailbox
9796  * region and release all host resources. This routine requires
9797  * the caller to ensure all mailbox commands recovered, no
9798  * additional mailbox comands are sent, and interrupts are disabled
9799  * before calling this routine.
9800  *
9801  **/
9802 static void
9803 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9804 {
9805 	dma_free_coherent(&phba->pcidev->dev,
9806 			  phba->sli4_hba.bmbx.bmbx_size,
9807 			  phba->sli4_hba.bmbx.dmabuf->virt,
9808 			  phba->sli4_hba.bmbx.dmabuf->phys);
9809 
9810 	kfree(phba->sli4_hba.bmbx.dmabuf);
9811 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9812 }
9813 
9814 static const char * const lpfc_topo_to_str[] = {
9815 	"Loop then P2P",
9816 	"Loopback",
9817 	"P2P Only",
9818 	"Unsupported",
9819 	"Loop Only",
9820 	"Unsupported",
9821 	"P2P then Loop",
9822 };
9823 
9824 #define	LINK_FLAGS_DEF	0x0
9825 #define	LINK_FLAGS_P2P	0x1
9826 #define	LINK_FLAGS_LOOP	0x2
9827 /**
9828  * lpfc_map_topology - Map the topology read from READ_CONFIG
9829  * @phba: pointer to lpfc hba data structure.
9830  * @rd_config: pointer to read config data
9831  *
9832  * This routine is invoked to map the topology values as read
9833  * from the read config mailbox command. If the persistent
9834  * topology feature is supported, the firmware will provide the
9835  * saved topology information to be used in INIT_LINK
9836  **/
9837 static void
9838 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9839 {
9840 	u8 ptv, tf, pt;
9841 
9842 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9843 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9844 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9845 
9846 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9847 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9848 			 ptv, tf, pt);
9849 	if (!ptv) {
9850 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9851 				"2019 FW does not support persistent topology "
9852 				"Using driver parameter defined value [%s]",
9853 				lpfc_topo_to_str[phba->cfg_topology]);
9854 		return;
9855 	}
9856 	/* FW supports persistent topology - override module parameter value */
9857 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9858 
9859 	/* if ASIC_GEN_NUM >= 0xC) */
9860 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9861 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9862 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9863 		    LPFC_SLI_INTF_FAMILY_G6)) {
9864 		if (!tf) {
9865 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9866 					? FLAGS_TOPOLOGY_MODE_LOOP
9867 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9868 		} else {
9869 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9870 		}
9871 	} else { /* G5 */
9872 		if (tf) {
9873 			/* If topology failover set - pt is '0' or '1' */
9874 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9875 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9876 		} else {
9877 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9878 					? FLAGS_TOPOLOGY_MODE_PT_PT
9879 					: FLAGS_TOPOLOGY_MODE_LOOP);
9880 		}
9881 	}
9882 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9883 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9884 				"2020 Using persistent topology value [%s]",
9885 				lpfc_topo_to_str[phba->cfg_topology]);
9886 	} else {
9887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9888 				"2021 Invalid topology values from FW "
9889 				"Using driver parameter defined value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 	}
9892 }
9893 
9894 /**
9895  * lpfc_sli4_read_config - Get the config parameters.
9896  * @phba: pointer to lpfc hba data structure.
9897  *
9898  * This routine is invoked to read the configuration parameters from the HBA.
9899  * The configuration parameters are used to set the base and maximum values
9900  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9901  * allocation for the port.
9902  *
9903  * Return codes
9904  * 	0 - successful
9905  * 	-ENOMEM - No available memory
9906  *      -EIO - The mailbox failed to complete successfully.
9907  **/
9908 int
9909 lpfc_sli4_read_config(struct lpfc_hba *phba)
9910 {
9911 	LPFC_MBOXQ_t *pmb;
9912 	struct lpfc_mbx_read_config *rd_config;
9913 	union  lpfc_sli4_cfg_shdr *shdr;
9914 	uint32_t shdr_status, shdr_add_status;
9915 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9916 	struct lpfc_rsrc_desc_fcfcoe *desc;
9917 	char *pdesc_0;
9918 	uint16_t forced_link_speed;
9919 	uint32_t if_type, qmin, fawwpn;
9920 	int length, i, rc = 0, rc2;
9921 
9922 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9923 	if (!pmb) {
9924 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9925 				"2011 Unable to allocate memory for issuing "
9926 				"SLI_CONFIG_SPECIAL mailbox command\n");
9927 		return -ENOMEM;
9928 	}
9929 
9930 	lpfc_read_config(phba, pmb);
9931 
9932 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9933 	if (rc != MBX_SUCCESS) {
9934 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9935 				"2012 Mailbox failed , mbxCmd x%x "
9936 				"READ_CONFIG, mbxStatus x%x\n",
9937 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9938 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9939 		rc = -EIO;
9940 	} else {
9941 		rd_config = &pmb->u.mqe.un.rd_config;
9942 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9943 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9944 			phba->sli4_hba.lnk_info.lnk_tp =
9945 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9946 			phba->sli4_hba.lnk_info.lnk_no =
9947 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9948 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9949 					"3081 lnk_type:%d, lnk_numb:%d\n",
9950 					phba->sli4_hba.lnk_info.lnk_tp,
9951 					phba->sli4_hba.lnk_info.lnk_no);
9952 		} else
9953 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9954 					"3082 Mailbox (x%x) returned ldv:x0\n",
9955 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9956 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9957 			phba->bbcredit_support = 1;
9958 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9959 		}
9960 
9961 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9962 
9963 		if (fawwpn) {
9964 			lpfc_printf_log(phba, KERN_INFO,
9965 					LOG_INIT | LOG_DISCOVERY,
9966 					"2702 READ_CONFIG: FA-PWWN is "
9967 					"configured on\n");
9968 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9969 		} else {
9970 			/* Clear FW configured flag, preserve driver flag */
9971 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9972 		}
9973 
9974 		phba->sli4_hba.conf_trunk =
9975 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9976 		phba->sli4_hba.extents_in_use =
9977 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9978 
9979 		phba->sli4_hba.max_cfg_param.max_xri =
9980 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9981 		/* Reduce resource usage in kdump environment */
9982 		if (is_kdump_kernel() &&
9983 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9984 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9985 		phba->sli4_hba.max_cfg_param.xri_base =
9986 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9987 		phba->sli4_hba.max_cfg_param.max_vpi =
9988 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9989 		/* Limit the max we support */
9990 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9991 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9992 		phba->sli4_hba.max_cfg_param.vpi_base =
9993 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9994 		phba->sli4_hba.max_cfg_param.max_rpi =
9995 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9996 		phba->sli4_hba.max_cfg_param.rpi_base =
9997 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9998 		phba->sli4_hba.max_cfg_param.max_vfi =
9999 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10000 		phba->sli4_hba.max_cfg_param.vfi_base =
10001 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10002 		phba->sli4_hba.max_cfg_param.max_fcfi =
10003 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10004 		phba->sli4_hba.max_cfg_param.max_eq =
10005 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10006 		phba->sli4_hba.max_cfg_param.max_rq =
10007 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10008 		phba->sli4_hba.max_cfg_param.max_wq =
10009 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10010 		phba->sli4_hba.max_cfg_param.max_cq =
10011 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10012 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10013 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10014 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10015 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10016 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10017 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10018 		phba->max_vports = phba->max_vpi;
10019 
10020 		/* Next decide on FPIN or Signal E2E CGN support
10021 		 * For congestion alarms and warnings valid combination are:
10022 		 * 1. FPIN alarms / FPIN warnings
10023 		 * 2. Signal alarms / Signal warnings
10024 		 * 3. FPIN alarms / Signal warnings
10025 		 * 4. Signal alarms / FPIN warnings
10026 		 *
10027 		 * Initialize the adapter frequency to 100 mSecs
10028 		 */
10029 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10030 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10031 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10032 
10033 		if (lpfc_use_cgn_signal) {
10034 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10035 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10036 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10037 			}
10038 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10039 				/* MUST support both alarm and warning
10040 				 * because EDC does not support alarm alone.
10041 				 */
10042 				if (phba->cgn_reg_signal !=
10043 				    EDC_CG_SIG_WARN_ONLY) {
10044 					/* Must support both or none */
10045 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10046 					phba->cgn_reg_signal =
10047 						EDC_CG_SIG_NOTSUPPORTED;
10048 				} else {
10049 					phba->cgn_reg_signal =
10050 						EDC_CG_SIG_WARN_ALARM;
10051 					phba->cgn_reg_fpin =
10052 						LPFC_CGN_FPIN_NONE;
10053 				}
10054 			}
10055 		}
10056 
10057 		/* Set the congestion initial signal and fpin values. */
10058 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10059 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10060 
10061 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10062 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10063 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10064 
10065 		lpfc_map_topology(phba, rd_config);
10066 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10067 				"2003 cfg params Extents? %d "
10068 				"XRI(B:%d M:%d), "
10069 				"VPI(B:%d M:%d) "
10070 				"VFI(B:%d M:%d) "
10071 				"RPI(B:%d M:%d) "
10072 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10073 				phba->sli4_hba.extents_in_use,
10074 				phba->sli4_hba.max_cfg_param.xri_base,
10075 				phba->sli4_hba.max_cfg_param.max_xri,
10076 				phba->sli4_hba.max_cfg_param.vpi_base,
10077 				phba->sli4_hba.max_cfg_param.max_vpi,
10078 				phba->sli4_hba.max_cfg_param.vfi_base,
10079 				phba->sli4_hba.max_cfg_param.max_vfi,
10080 				phba->sli4_hba.max_cfg_param.rpi_base,
10081 				phba->sli4_hba.max_cfg_param.max_rpi,
10082 				phba->sli4_hba.max_cfg_param.max_fcfi,
10083 				phba->sli4_hba.max_cfg_param.max_eq,
10084 				phba->sli4_hba.max_cfg_param.max_cq,
10085 				phba->sli4_hba.max_cfg_param.max_wq,
10086 				phba->sli4_hba.max_cfg_param.max_rq,
10087 				phba->lmt);
10088 
10089 		/*
10090 		 * Calculate queue resources based on how
10091 		 * many WQ/CQ/EQs are available.
10092 		 */
10093 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10094 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10095 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10096 		/*
10097 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10098 		 * the remainder can be used for NVME / FCP.
10099 		 */
10100 		qmin -= 4;
10101 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10102 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10103 
10104 		/* Check to see if there is enough for default cfg */
10105 		if ((phba->cfg_irq_chann > qmin) ||
10106 		    (phba->cfg_hdw_queue > qmin)) {
10107 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10108 					"2005 Reducing Queues - "
10109 					"FW resource limitation: "
10110 					"WQ %d CQ %d EQ %d: min %d: "
10111 					"IRQ %d HDWQ %d\n",
10112 					phba->sli4_hba.max_cfg_param.max_wq,
10113 					phba->sli4_hba.max_cfg_param.max_cq,
10114 					phba->sli4_hba.max_cfg_param.max_eq,
10115 					qmin, phba->cfg_irq_chann,
10116 					phba->cfg_hdw_queue);
10117 
10118 			if (phba->cfg_irq_chann > qmin)
10119 				phba->cfg_irq_chann = qmin;
10120 			if (phba->cfg_hdw_queue > qmin)
10121 				phba->cfg_hdw_queue = qmin;
10122 		}
10123 	}
10124 
10125 	if (rc)
10126 		goto read_cfg_out;
10127 
10128 	/* Update link speed if forced link speed is supported */
10129 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10130 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10131 		forced_link_speed =
10132 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10133 		if (forced_link_speed) {
10134 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10135 
10136 			switch (forced_link_speed) {
10137 			case LINK_SPEED_1G:
10138 				phba->cfg_link_speed =
10139 					LPFC_USER_LINK_SPEED_1G;
10140 				break;
10141 			case LINK_SPEED_2G:
10142 				phba->cfg_link_speed =
10143 					LPFC_USER_LINK_SPEED_2G;
10144 				break;
10145 			case LINK_SPEED_4G:
10146 				phba->cfg_link_speed =
10147 					LPFC_USER_LINK_SPEED_4G;
10148 				break;
10149 			case LINK_SPEED_8G:
10150 				phba->cfg_link_speed =
10151 					LPFC_USER_LINK_SPEED_8G;
10152 				break;
10153 			case LINK_SPEED_10G:
10154 				phba->cfg_link_speed =
10155 					LPFC_USER_LINK_SPEED_10G;
10156 				break;
10157 			case LINK_SPEED_16G:
10158 				phba->cfg_link_speed =
10159 					LPFC_USER_LINK_SPEED_16G;
10160 				break;
10161 			case LINK_SPEED_32G:
10162 				phba->cfg_link_speed =
10163 					LPFC_USER_LINK_SPEED_32G;
10164 				break;
10165 			case LINK_SPEED_64G:
10166 				phba->cfg_link_speed =
10167 					LPFC_USER_LINK_SPEED_64G;
10168 				break;
10169 			case 0xffff:
10170 				phba->cfg_link_speed =
10171 					LPFC_USER_LINK_SPEED_AUTO;
10172 				break;
10173 			default:
10174 				lpfc_printf_log(phba, KERN_ERR,
10175 						LOG_TRACE_EVENT,
10176 						"0047 Unrecognized link "
10177 						"speed : %d\n",
10178 						forced_link_speed);
10179 				phba->cfg_link_speed =
10180 					LPFC_USER_LINK_SPEED_AUTO;
10181 			}
10182 		}
10183 	}
10184 
10185 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10186 	length = phba->sli4_hba.max_cfg_param.max_xri -
10187 			lpfc_sli4_get_els_iocb_cnt(phba);
10188 	if (phba->cfg_hba_queue_depth > length) {
10189 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10190 				"3361 HBA queue depth changed from %d to %d\n",
10191 				phba->cfg_hba_queue_depth, length);
10192 		phba->cfg_hba_queue_depth = length;
10193 	}
10194 
10195 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10196 	    LPFC_SLI_INTF_IF_TYPE_2)
10197 		goto read_cfg_out;
10198 
10199 	/* get the pf# and vf# for SLI4 if_type 2 port */
10200 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10201 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10202 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10203 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10204 			 length, LPFC_SLI4_MBX_EMBED);
10205 
10206 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10207 	shdr = (union lpfc_sli4_cfg_shdr *)
10208 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10209 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10210 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10211 	if (rc2 || shdr_status || shdr_add_status) {
10212 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10213 				"3026 Mailbox failed , mbxCmd x%x "
10214 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10215 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10216 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10217 		goto read_cfg_out;
10218 	}
10219 
10220 	/* search for fc_fcoe resrouce descriptor */
10221 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10222 
10223 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10224 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10225 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10226 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10227 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10228 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10229 		goto read_cfg_out;
10230 
10231 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10232 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10233 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10234 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10235 			phba->sli4_hba.iov.pf_number =
10236 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10237 			phba->sli4_hba.iov.vf_number =
10238 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10239 			break;
10240 		}
10241 	}
10242 
10243 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10244 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10245 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10246 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10247 				phba->sli4_hba.iov.vf_number);
10248 	else
10249 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10250 				"3028 GET_FUNCTION_CONFIG: failed to find "
10251 				"Resource Descriptor:x%x\n",
10252 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10253 
10254 read_cfg_out:
10255 	mempool_free(pmb, phba->mbox_mem_pool);
10256 	return rc;
10257 }
10258 
10259 /**
10260  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10261  * @phba: pointer to lpfc hba data structure.
10262  *
10263  * This routine is invoked to setup the port-side endian order when
10264  * the port if_type is 0.  This routine has no function for other
10265  * if_types.
10266  *
10267  * Return codes
10268  * 	0 - successful
10269  * 	-ENOMEM - No available memory
10270  *      -EIO - The mailbox failed to complete successfully.
10271  **/
10272 static int
10273 lpfc_setup_endian_order(struct lpfc_hba *phba)
10274 {
10275 	LPFC_MBOXQ_t *mboxq;
10276 	uint32_t if_type, rc = 0;
10277 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10278 				      HOST_ENDIAN_HIGH_WORD1};
10279 
10280 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10281 	switch (if_type) {
10282 	case LPFC_SLI_INTF_IF_TYPE_0:
10283 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10284 						       GFP_KERNEL);
10285 		if (!mboxq) {
10286 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10287 					"0492 Unable to allocate memory for "
10288 					"issuing SLI_CONFIG_SPECIAL mailbox "
10289 					"command\n");
10290 			return -ENOMEM;
10291 		}
10292 
10293 		/*
10294 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10295 		 * two words to contain special data values and no other data.
10296 		 */
10297 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10298 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10299 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10300 		if (rc != MBX_SUCCESS) {
10301 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10302 					"0493 SLI_CONFIG_SPECIAL mailbox "
10303 					"failed with status x%x\n",
10304 					rc);
10305 			rc = -EIO;
10306 		}
10307 		mempool_free(mboxq, phba->mbox_mem_pool);
10308 		break;
10309 	case LPFC_SLI_INTF_IF_TYPE_6:
10310 	case LPFC_SLI_INTF_IF_TYPE_2:
10311 	case LPFC_SLI_INTF_IF_TYPE_1:
10312 	default:
10313 		break;
10314 	}
10315 	return rc;
10316 }
10317 
10318 /**
10319  * lpfc_sli4_queue_verify - Verify and update EQ counts
10320  * @phba: pointer to lpfc hba data structure.
10321  *
10322  * This routine is invoked to check the user settable queue counts for EQs.
10323  * After this routine is called the counts will be set to valid values that
10324  * adhere to the constraints of the system's interrupt vectors and the port's
10325  * queue resources.
10326  *
10327  * Return codes
10328  *      0 - successful
10329  *      -ENOMEM - No available memory
10330  **/
10331 static int
10332 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10333 {
10334 	/*
10335 	 * Sanity check for configured queue parameters against the run-time
10336 	 * device parameters
10337 	 */
10338 
10339 	if (phba->nvmet_support) {
10340 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10341 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10342 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10343 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10344 	}
10345 
10346 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10347 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10348 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10349 			phba->cfg_nvmet_mrq);
10350 
10351 	/* Get EQ depth from module parameter, fake the default for now */
10352 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10353 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10354 
10355 	/* Get CQ depth from module parameter, fake the default for now */
10356 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10357 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10358 	return 0;
10359 }
10360 
10361 static int
10362 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10363 {
10364 	struct lpfc_queue *qdesc;
10365 	u32 wqesize;
10366 	int cpu;
10367 
10368 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10369 	/* Create Fast Path IO CQs */
10370 	if (phba->enab_exp_wqcq_pages)
10371 		/* Increase the CQ size when WQEs contain an embedded cdb */
10372 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10373 					      phba->sli4_hba.cq_esize,
10374 					      LPFC_CQE_EXP_COUNT, cpu);
10375 
10376 	else
10377 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10378 					      phba->sli4_hba.cq_esize,
10379 					      phba->sli4_hba.cq_ecount, cpu);
10380 	if (!qdesc) {
10381 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10382 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10383 				idx);
10384 		return 1;
10385 	}
10386 	qdesc->qe_valid = 1;
10387 	qdesc->hdwq = idx;
10388 	qdesc->chann = cpu;
10389 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10390 
10391 	/* Create Fast Path IO WQs */
10392 	if (phba->enab_exp_wqcq_pages) {
10393 		/* Increase the WQ size when WQEs contain an embedded cdb */
10394 		wqesize = (phba->fcp_embed_io) ?
10395 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10396 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10397 					      wqesize,
10398 					      LPFC_WQE_EXP_COUNT, cpu);
10399 	} else
10400 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10401 					      phba->sli4_hba.wq_esize,
10402 					      phba->sli4_hba.wq_ecount, cpu);
10403 
10404 	if (!qdesc) {
10405 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10406 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10407 				idx);
10408 		return 1;
10409 	}
10410 	qdesc->hdwq = idx;
10411 	qdesc->chann = cpu;
10412 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10413 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10414 	return 0;
10415 }
10416 
10417 /**
10418  * lpfc_sli4_queue_create - Create all the SLI4 queues
10419  * @phba: pointer to lpfc hba data structure.
10420  *
10421  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10422  * operation. For each SLI4 queue type, the parameters such as queue entry
10423  * count (queue depth) shall be taken from the module parameter. For now,
10424  * we just use some constant number as place holder.
10425  *
10426  * Return codes
10427  *      0 - successful
10428  *      -ENOMEM - No availble memory
10429  *      -EIO - The mailbox failed to complete successfully.
10430  **/
10431 int
10432 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10433 {
10434 	struct lpfc_queue *qdesc;
10435 	int idx, cpu, eqcpu;
10436 	struct lpfc_sli4_hdw_queue *qp;
10437 	struct lpfc_vector_map_info *cpup;
10438 	struct lpfc_vector_map_info *eqcpup;
10439 	struct lpfc_eq_intr_info *eqi;
10440 
10441 	/*
10442 	 * Create HBA Record arrays.
10443 	 * Both NVME and FCP will share that same vectors / EQs
10444 	 */
10445 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10446 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10447 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10448 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10449 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10450 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10451 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10452 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10453 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10454 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10455 
10456 	if (!phba->sli4_hba.hdwq) {
10457 		phba->sli4_hba.hdwq = kcalloc(
10458 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10459 			GFP_KERNEL);
10460 		if (!phba->sli4_hba.hdwq) {
10461 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10462 					"6427 Failed allocate memory for "
10463 					"fast-path Hardware Queue array\n");
10464 			goto out_error;
10465 		}
10466 		/* Prepare hardware queues to take IO buffers */
10467 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10468 			qp = &phba->sli4_hba.hdwq[idx];
10469 			spin_lock_init(&qp->io_buf_list_get_lock);
10470 			spin_lock_init(&qp->io_buf_list_put_lock);
10471 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10472 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10473 			qp->get_io_bufs = 0;
10474 			qp->put_io_bufs = 0;
10475 			qp->total_io_bufs = 0;
10476 			spin_lock_init(&qp->abts_io_buf_list_lock);
10477 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10478 			qp->abts_scsi_io_bufs = 0;
10479 			qp->abts_nvme_io_bufs = 0;
10480 			INIT_LIST_HEAD(&qp->sgl_list);
10481 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10482 			spin_lock_init(&qp->hdwq_lock);
10483 		}
10484 	}
10485 
10486 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10487 		if (phba->nvmet_support) {
10488 			phba->sli4_hba.nvmet_cqset = kcalloc(
10489 					phba->cfg_nvmet_mrq,
10490 					sizeof(struct lpfc_queue *),
10491 					GFP_KERNEL);
10492 			if (!phba->sli4_hba.nvmet_cqset) {
10493 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10494 					"3121 Fail allocate memory for "
10495 					"fast-path CQ set array\n");
10496 				goto out_error;
10497 			}
10498 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10499 					phba->cfg_nvmet_mrq,
10500 					sizeof(struct lpfc_queue *),
10501 					GFP_KERNEL);
10502 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10503 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10504 					"3122 Fail allocate memory for "
10505 					"fast-path RQ set hdr array\n");
10506 				goto out_error;
10507 			}
10508 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10509 					phba->cfg_nvmet_mrq,
10510 					sizeof(struct lpfc_queue *),
10511 					GFP_KERNEL);
10512 			if (!phba->sli4_hba.nvmet_mrq_data) {
10513 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10514 					"3124 Fail allocate memory for "
10515 					"fast-path RQ set data array\n");
10516 				goto out_error;
10517 			}
10518 		}
10519 	}
10520 
10521 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10522 
10523 	/* Create HBA Event Queues (EQs) */
10524 	for_each_present_cpu(cpu) {
10525 		/* We only want to create 1 EQ per vector, even though
10526 		 * multiple CPUs might be using that vector. so only
10527 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10528 		 */
10529 		cpup = &phba->sli4_hba.cpu_map[cpu];
10530 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10531 			continue;
10532 
10533 		/* Get a ptr to the Hardware Queue associated with this CPU */
10534 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10535 
10536 		/* Allocate an EQ */
10537 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10538 					      phba->sli4_hba.eq_esize,
10539 					      phba->sli4_hba.eq_ecount, cpu);
10540 		if (!qdesc) {
10541 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10542 					"0497 Failed allocate EQ (%d)\n",
10543 					cpup->hdwq);
10544 			goto out_error;
10545 		}
10546 		qdesc->qe_valid = 1;
10547 		qdesc->hdwq = cpup->hdwq;
10548 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10549 		qdesc->last_cpu = qdesc->chann;
10550 
10551 		/* Save the allocated EQ in the Hardware Queue */
10552 		qp->hba_eq = qdesc;
10553 
10554 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10555 		list_add(&qdesc->cpu_list, &eqi->list);
10556 	}
10557 
10558 	/* Now we need to populate the other Hardware Queues, that share
10559 	 * an IRQ vector, with the associated EQ ptr.
10560 	 */
10561 	for_each_present_cpu(cpu) {
10562 		cpup = &phba->sli4_hba.cpu_map[cpu];
10563 
10564 		/* Check for EQ already allocated in previous loop */
10565 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10566 			continue;
10567 
10568 		/* Check for multiple CPUs per hdwq */
10569 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10570 		if (qp->hba_eq)
10571 			continue;
10572 
10573 		/* We need to share an EQ for this hdwq */
10574 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10575 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10576 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10577 	}
10578 
10579 	/* Allocate IO Path SLI4 CQ/WQs */
10580 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10581 		if (lpfc_alloc_io_wq_cq(phba, idx))
10582 			goto out_error;
10583 	}
10584 
10585 	if (phba->nvmet_support) {
10586 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10587 			cpu = lpfc_find_cpu_handle(phba, idx,
10588 						   LPFC_FIND_BY_HDWQ);
10589 			qdesc = lpfc_sli4_queue_alloc(phba,
10590 						      LPFC_DEFAULT_PAGE_SIZE,
10591 						      phba->sli4_hba.cq_esize,
10592 						      phba->sli4_hba.cq_ecount,
10593 						      cpu);
10594 			if (!qdesc) {
10595 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10596 						"3142 Failed allocate NVME "
10597 						"CQ Set (%d)\n", idx);
10598 				goto out_error;
10599 			}
10600 			qdesc->qe_valid = 1;
10601 			qdesc->hdwq = idx;
10602 			qdesc->chann = cpu;
10603 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10604 		}
10605 	}
10606 
10607 	/*
10608 	 * Create Slow Path Completion Queues (CQs)
10609 	 */
10610 
10611 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10612 	/* Create slow-path Mailbox Command Complete Queue */
10613 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10614 				      phba->sli4_hba.cq_esize,
10615 				      phba->sli4_hba.cq_ecount, cpu);
10616 	if (!qdesc) {
10617 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10618 				"0500 Failed allocate slow-path mailbox CQ\n");
10619 		goto out_error;
10620 	}
10621 	qdesc->qe_valid = 1;
10622 	phba->sli4_hba.mbx_cq = qdesc;
10623 
10624 	/* Create slow-path ELS Complete Queue */
10625 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10626 				      phba->sli4_hba.cq_esize,
10627 				      phba->sli4_hba.cq_ecount, cpu);
10628 	if (!qdesc) {
10629 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10630 				"0501 Failed allocate slow-path ELS CQ\n");
10631 		goto out_error;
10632 	}
10633 	qdesc->qe_valid = 1;
10634 	qdesc->chann = cpu;
10635 	phba->sli4_hba.els_cq = qdesc;
10636 
10637 
10638 	/*
10639 	 * Create Slow Path Work Queues (WQs)
10640 	 */
10641 
10642 	/* Create Mailbox Command Queue */
10643 
10644 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10645 				      phba->sli4_hba.mq_esize,
10646 				      phba->sli4_hba.mq_ecount, cpu);
10647 	if (!qdesc) {
10648 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10649 				"0505 Failed allocate slow-path MQ\n");
10650 		goto out_error;
10651 	}
10652 	qdesc->chann = cpu;
10653 	phba->sli4_hba.mbx_wq = qdesc;
10654 
10655 	/*
10656 	 * Create ELS Work Queues
10657 	 */
10658 
10659 	/* Create slow-path ELS Work Queue */
10660 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10661 				      phba->sli4_hba.wq_esize,
10662 				      phba->sli4_hba.wq_ecount, cpu);
10663 	if (!qdesc) {
10664 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10665 				"0504 Failed allocate slow-path ELS WQ\n");
10666 		goto out_error;
10667 	}
10668 	qdesc->chann = cpu;
10669 	phba->sli4_hba.els_wq = qdesc;
10670 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10671 
10672 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10673 		/* Create NVME LS Complete Queue */
10674 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10675 					      phba->sli4_hba.cq_esize,
10676 					      phba->sli4_hba.cq_ecount, cpu);
10677 		if (!qdesc) {
10678 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10679 					"6079 Failed allocate NVME LS CQ\n");
10680 			goto out_error;
10681 		}
10682 		qdesc->chann = cpu;
10683 		qdesc->qe_valid = 1;
10684 		phba->sli4_hba.nvmels_cq = qdesc;
10685 
10686 		/* Create NVME LS Work Queue */
10687 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10688 					      phba->sli4_hba.wq_esize,
10689 					      phba->sli4_hba.wq_ecount, cpu);
10690 		if (!qdesc) {
10691 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10692 					"6080 Failed allocate NVME LS WQ\n");
10693 			goto out_error;
10694 		}
10695 		qdesc->chann = cpu;
10696 		phba->sli4_hba.nvmels_wq = qdesc;
10697 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10698 	}
10699 
10700 	/*
10701 	 * Create Receive Queue (RQ)
10702 	 */
10703 
10704 	/* Create Receive Queue for header */
10705 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10706 				      phba->sli4_hba.rq_esize,
10707 				      phba->sli4_hba.rq_ecount, cpu);
10708 	if (!qdesc) {
10709 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10710 				"0506 Failed allocate receive HRQ\n");
10711 		goto out_error;
10712 	}
10713 	phba->sli4_hba.hdr_rq = qdesc;
10714 
10715 	/* Create Receive Queue for data */
10716 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10717 				      phba->sli4_hba.rq_esize,
10718 				      phba->sli4_hba.rq_ecount, cpu);
10719 	if (!qdesc) {
10720 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10721 				"0507 Failed allocate receive DRQ\n");
10722 		goto out_error;
10723 	}
10724 	phba->sli4_hba.dat_rq = qdesc;
10725 
10726 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10727 	    phba->nvmet_support) {
10728 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10729 			cpu = lpfc_find_cpu_handle(phba, idx,
10730 						   LPFC_FIND_BY_HDWQ);
10731 			/* Create NVMET Receive Queue for header */
10732 			qdesc = lpfc_sli4_queue_alloc(phba,
10733 						      LPFC_DEFAULT_PAGE_SIZE,
10734 						      phba->sli4_hba.rq_esize,
10735 						      LPFC_NVMET_RQE_DEF_COUNT,
10736 						      cpu);
10737 			if (!qdesc) {
10738 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10739 						"3146 Failed allocate "
10740 						"receive HRQ\n");
10741 				goto out_error;
10742 			}
10743 			qdesc->hdwq = idx;
10744 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10745 
10746 			/* Only needed for header of RQ pair */
10747 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10748 						   GFP_KERNEL,
10749 						   cpu_to_node(cpu));
10750 			if (qdesc->rqbp == NULL) {
10751 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10752 						"6131 Failed allocate "
10753 						"Header RQBP\n");
10754 				goto out_error;
10755 			}
10756 
10757 			/* Put list in known state in case driver load fails. */
10758 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10759 
10760 			/* Create NVMET Receive Queue for data */
10761 			qdesc = lpfc_sli4_queue_alloc(phba,
10762 						      LPFC_DEFAULT_PAGE_SIZE,
10763 						      phba->sli4_hba.rq_esize,
10764 						      LPFC_NVMET_RQE_DEF_COUNT,
10765 						      cpu);
10766 			if (!qdesc) {
10767 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10768 						"3156 Failed allocate "
10769 						"receive DRQ\n");
10770 				goto out_error;
10771 			}
10772 			qdesc->hdwq = idx;
10773 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10774 		}
10775 	}
10776 
10777 	/* Clear NVME stats */
10778 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10779 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10780 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10781 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10782 		}
10783 	}
10784 
10785 	/* Clear SCSI stats */
10786 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10787 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10788 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10789 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10790 		}
10791 	}
10792 
10793 	return 0;
10794 
10795 out_error:
10796 	lpfc_sli4_queue_destroy(phba);
10797 	return -ENOMEM;
10798 }
10799 
10800 static inline void
10801 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10802 {
10803 	if (*qp != NULL) {
10804 		lpfc_sli4_queue_free(*qp);
10805 		*qp = NULL;
10806 	}
10807 }
10808 
10809 static inline void
10810 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10811 {
10812 	int idx;
10813 
10814 	if (*qs == NULL)
10815 		return;
10816 
10817 	for (idx = 0; idx < max; idx++)
10818 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10819 
10820 	kfree(*qs);
10821 	*qs = NULL;
10822 }
10823 
10824 static inline void
10825 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10826 {
10827 	struct lpfc_sli4_hdw_queue *hdwq;
10828 	struct lpfc_queue *eq;
10829 	uint32_t idx;
10830 
10831 	hdwq = phba->sli4_hba.hdwq;
10832 
10833 	/* Loop thru all Hardware Queues */
10834 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10835 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10836 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10837 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10838 		hdwq[idx].hba_eq = NULL;
10839 		hdwq[idx].io_cq = NULL;
10840 		hdwq[idx].io_wq = NULL;
10841 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10842 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10843 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10844 	}
10845 	/* Loop thru all IRQ vectors */
10846 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10847 		/* Free the EQ corresponding to the IRQ vector */
10848 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10849 		lpfc_sli4_queue_free(eq);
10850 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10851 	}
10852 }
10853 
10854 /**
10855  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10856  * @phba: pointer to lpfc hba data structure.
10857  *
10858  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10859  * operation.
10860  *
10861  * Return codes
10862  *      0 - successful
10863  *      -ENOMEM - No available memory
10864  *      -EIO - The mailbox failed to complete successfully.
10865  **/
10866 void
10867 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10868 {
10869 	/*
10870 	 * Set FREE_INIT before beginning to free the queues.
10871 	 * Wait until the users of queues to acknowledge to
10872 	 * release queues by clearing FREE_WAIT.
10873 	 */
10874 	spin_lock_irq(&phba->hbalock);
10875 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10876 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10877 		spin_unlock_irq(&phba->hbalock);
10878 		msleep(20);
10879 		spin_lock_irq(&phba->hbalock);
10880 	}
10881 	spin_unlock_irq(&phba->hbalock);
10882 
10883 	lpfc_sli4_cleanup_poll_list(phba);
10884 
10885 	/* Release HBA eqs */
10886 	if (phba->sli4_hba.hdwq)
10887 		lpfc_sli4_release_hdwq(phba);
10888 
10889 	if (phba->nvmet_support) {
10890 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10891 					 phba->cfg_nvmet_mrq);
10892 
10893 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10894 					 phba->cfg_nvmet_mrq);
10895 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10896 					 phba->cfg_nvmet_mrq);
10897 	}
10898 
10899 	/* Release mailbox command work queue */
10900 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10901 
10902 	/* Release ELS work queue */
10903 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10904 
10905 	/* Release ELS work queue */
10906 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10907 
10908 	/* Release unsolicited receive queue */
10909 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10910 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10911 
10912 	/* Release ELS complete queue */
10913 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10914 
10915 	/* Release NVME LS complete queue */
10916 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10917 
10918 	/* Release mailbox command complete queue */
10919 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10920 
10921 	/* Everything on this list has been freed */
10922 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10923 
10924 	/* Done with freeing the queues */
10925 	spin_lock_irq(&phba->hbalock);
10926 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10927 	spin_unlock_irq(&phba->hbalock);
10928 }
10929 
10930 int
10931 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10932 {
10933 	struct lpfc_rqb *rqbp;
10934 	struct lpfc_dmabuf *h_buf;
10935 	struct rqb_dmabuf *rqb_buffer;
10936 
10937 	rqbp = rq->rqbp;
10938 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10939 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10940 				 struct lpfc_dmabuf, list);
10941 
10942 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10943 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10944 		rqbp->buffer_count--;
10945 	}
10946 	return 1;
10947 }
10948 
10949 static int
10950 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10951 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10952 	int qidx, uint32_t qtype)
10953 {
10954 	struct lpfc_sli_ring *pring;
10955 	int rc;
10956 
10957 	if (!eq || !cq || !wq) {
10958 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10959 			"6085 Fast-path %s (%d) not allocated\n",
10960 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10961 		return -ENOMEM;
10962 	}
10963 
10964 	/* create the Cq first */
10965 	rc = lpfc_cq_create(phba, cq, eq,
10966 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10967 	if (rc) {
10968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10969 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10970 				qidx, (uint32_t)rc);
10971 		return rc;
10972 	}
10973 
10974 	if (qtype != LPFC_MBOX) {
10975 		/* Setup cq_map for fast lookup */
10976 		if (cq_map)
10977 			*cq_map = cq->queue_id;
10978 
10979 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10980 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10981 			qidx, cq->queue_id, qidx, eq->queue_id);
10982 
10983 		/* create the wq */
10984 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10985 		if (rc) {
10986 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10987 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10988 				qidx, (uint32_t)rc);
10989 			/* no need to tear down cq - caller will do so */
10990 			return rc;
10991 		}
10992 
10993 		/* Bind this CQ/WQ to the NVME ring */
10994 		pring = wq->pring;
10995 		pring->sli.sli4.wqp = (void *)wq;
10996 		cq->pring = pring;
10997 
10998 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10999 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11000 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11001 	} else {
11002 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11003 		if (rc) {
11004 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11005 					"0539 Failed setup of slow-path MQ: "
11006 					"rc = 0x%x\n", rc);
11007 			/* no need to tear down cq - caller will do so */
11008 			return rc;
11009 		}
11010 
11011 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11012 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11013 			phba->sli4_hba.mbx_wq->queue_id,
11014 			phba->sli4_hba.mbx_cq->queue_id);
11015 	}
11016 
11017 	return 0;
11018 }
11019 
11020 /**
11021  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11022  * @phba: pointer to lpfc hba data structure.
11023  *
11024  * This routine will populate the cq_lookup table by all
11025  * available CQ queue_id's.
11026  **/
11027 static void
11028 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11029 {
11030 	struct lpfc_queue *eq, *childq;
11031 	int qidx;
11032 
11033 	memset(phba->sli4_hba.cq_lookup, 0,
11034 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11035 	/* Loop thru all IRQ vectors */
11036 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11037 		/* Get the EQ corresponding to the IRQ vector */
11038 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11039 		if (!eq)
11040 			continue;
11041 		/* Loop through all CQs associated with that EQ */
11042 		list_for_each_entry(childq, &eq->child_list, list) {
11043 			if (childq->queue_id > phba->sli4_hba.cq_max)
11044 				continue;
11045 			if (childq->subtype == LPFC_IO)
11046 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11047 					childq;
11048 		}
11049 	}
11050 }
11051 
11052 /**
11053  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11054  * @phba: pointer to lpfc hba data structure.
11055  *
11056  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11057  * operation.
11058  *
11059  * Return codes
11060  *      0 - successful
11061  *      -ENOMEM - No available memory
11062  *      -EIO - The mailbox failed to complete successfully.
11063  **/
11064 int
11065 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11066 {
11067 	uint32_t shdr_status, shdr_add_status;
11068 	union lpfc_sli4_cfg_shdr *shdr;
11069 	struct lpfc_vector_map_info *cpup;
11070 	struct lpfc_sli4_hdw_queue *qp;
11071 	LPFC_MBOXQ_t *mboxq;
11072 	int qidx, cpu;
11073 	uint32_t length, usdelay;
11074 	int rc = -ENOMEM;
11075 
11076 	/* Check for dual-ULP support */
11077 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11078 	if (!mboxq) {
11079 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11080 				"3249 Unable to allocate memory for "
11081 				"QUERY_FW_CFG mailbox command\n");
11082 		return -ENOMEM;
11083 	}
11084 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11085 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11086 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11087 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11088 			 length, LPFC_SLI4_MBX_EMBED);
11089 
11090 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11091 
11092 	shdr = (union lpfc_sli4_cfg_shdr *)
11093 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11094 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11095 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11096 	if (shdr_status || shdr_add_status || rc) {
11097 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11098 				"3250 QUERY_FW_CFG mailbox failed with status "
11099 				"x%x add_status x%x, mbx status x%x\n",
11100 				shdr_status, shdr_add_status, rc);
11101 		mempool_free(mboxq, phba->mbox_mem_pool);
11102 		rc = -ENXIO;
11103 		goto out_error;
11104 	}
11105 
11106 	phba->sli4_hba.fw_func_mode =
11107 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11108 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11109 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11110 	phba->sli4_hba.physical_port =
11111 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11112 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11113 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11114 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11115 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11116 
11117 	mempool_free(mboxq, phba->mbox_mem_pool);
11118 
11119 	/*
11120 	 * Set up HBA Event Queues (EQs)
11121 	 */
11122 	qp = phba->sli4_hba.hdwq;
11123 
11124 	/* Set up HBA event queue */
11125 	if (!qp) {
11126 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11127 				"3147 Fast-path EQs not allocated\n");
11128 		rc = -ENOMEM;
11129 		goto out_error;
11130 	}
11131 
11132 	/* Loop thru all IRQ vectors */
11133 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11134 		/* Create HBA Event Queues (EQs) in order */
11135 		for_each_present_cpu(cpu) {
11136 			cpup = &phba->sli4_hba.cpu_map[cpu];
11137 
11138 			/* Look for the CPU thats using that vector with
11139 			 * LPFC_CPU_FIRST_IRQ set.
11140 			 */
11141 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11142 				continue;
11143 			if (qidx != cpup->eq)
11144 				continue;
11145 
11146 			/* Create an EQ for that vector */
11147 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11148 					    phba->cfg_fcp_imax);
11149 			if (rc) {
11150 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11151 						"0523 Failed setup of fast-path"
11152 						" EQ (%d), rc = 0x%x\n",
11153 						cpup->eq, (uint32_t)rc);
11154 				goto out_destroy;
11155 			}
11156 
11157 			/* Save the EQ for that vector in the hba_eq_hdl */
11158 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11159 				qp[cpup->hdwq].hba_eq;
11160 
11161 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11162 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11163 					cpup->eq,
11164 					qp[cpup->hdwq].hba_eq->queue_id);
11165 		}
11166 	}
11167 
11168 	/* Loop thru all Hardware Queues */
11169 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11170 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11171 		cpup = &phba->sli4_hba.cpu_map[cpu];
11172 
11173 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11174 		rc = lpfc_create_wq_cq(phba,
11175 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11176 				       qp[qidx].io_cq,
11177 				       qp[qidx].io_wq,
11178 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11179 				       qidx,
11180 				       LPFC_IO);
11181 		if (rc) {
11182 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11183 					"0535 Failed to setup fastpath "
11184 					"IO WQ/CQ (%d), rc = 0x%x\n",
11185 					qidx, (uint32_t)rc);
11186 			goto out_destroy;
11187 		}
11188 	}
11189 
11190 	/*
11191 	 * Set up Slow Path Complete Queues (CQs)
11192 	 */
11193 
11194 	/* Set up slow-path MBOX CQ/MQ */
11195 
11196 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11197 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11198 				"0528 %s not allocated\n",
11199 				phba->sli4_hba.mbx_cq ?
11200 				"Mailbox WQ" : "Mailbox CQ");
11201 		rc = -ENOMEM;
11202 		goto out_destroy;
11203 	}
11204 
11205 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11206 			       phba->sli4_hba.mbx_cq,
11207 			       phba->sli4_hba.mbx_wq,
11208 			       NULL, 0, LPFC_MBOX);
11209 	if (rc) {
11210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11211 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11212 			(uint32_t)rc);
11213 		goto out_destroy;
11214 	}
11215 	if (phba->nvmet_support) {
11216 		if (!phba->sli4_hba.nvmet_cqset) {
11217 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11218 					"3165 Fast-path NVME CQ Set "
11219 					"array not allocated\n");
11220 			rc = -ENOMEM;
11221 			goto out_destroy;
11222 		}
11223 		if (phba->cfg_nvmet_mrq > 1) {
11224 			rc = lpfc_cq_create_set(phba,
11225 					phba->sli4_hba.nvmet_cqset,
11226 					qp,
11227 					LPFC_WCQ, LPFC_NVMET);
11228 			if (rc) {
11229 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11230 						"3164 Failed setup of NVME CQ "
11231 						"Set, rc = 0x%x\n",
11232 						(uint32_t)rc);
11233 				goto out_destroy;
11234 			}
11235 		} else {
11236 			/* Set up NVMET Receive Complete Queue */
11237 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11238 					    qp[0].hba_eq,
11239 					    LPFC_WCQ, LPFC_NVMET);
11240 			if (rc) {
11241 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11242 						"6089 Failed setup NVMET CQ: "
11243 						"rc = 0x%x\n", (uint32_t)rc);
11244 				goto out_destroy;
11245 			}
11246 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11247 
11248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11249 					"6090 NVMET CQ setup: cq-id=%d, "
11250 					"parent eq-id=%d\n",
11251 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11252 					qp[0].hba_eq->queue_id);
11253 		}
11254 	}
11255 
11256 	/* Set up slow-path ELS WQ/CQ */
11257 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11258 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11259 				"0530 ELS %s not allocated\n",
11260 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11261 		rc = -ENOMEM;
11262 		goto out_destroy;
11263 	}
11264 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11265 			       phba->sli4_hba.els_cq,
11266 			       phba->sli4_hba.els_wq,
11267 			       NULL, 0, LPFC_ELS);
11268 	if (rc) {
11269 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11270 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11271 				(uint32_t)rc);
11272 		goto out_destroy;
11273 	}
11274 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11275 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11276 			phba->sli4_hba.els_wq->queue_id,
11277 			phba->sli4_hba.els_cq->queue_id);
11278 
11279 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11280 		/* Set up NVME LS Complete Queue */
11281 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11282 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11283 					"6091 LS %s not allocated\n",
11284 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11285 			rc = -ENOMEM;
11286 			goto out_destroy;
11287 		}
11288 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11289 				       phba->sli4_hba.nvmels_cq,
11290 				       phba->sli4_hba.nvmels_wq,
11291 				       NULL, 0, LPFC_NVME_LS);
11292 		if (rc) {
11293 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11294 					"0526 Failed setup of NVVME LS WQ/CQ: "
11295 					"rc = 0x%x\n", (uint32_t)rc);
11296 			goto out_destroy;
11297 		}
11298 
11299 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11300 				"6096 ELS WQ setup: wq-id=%d, "
11301 				"parent cq-id=%d\n",
11302 				phba->sli4_hba.nvmels_wq->queue_id,
11303 				phba->sli4_hba.nvmels_cq->queue_id);
11304 	}
11305 
11306 	/*
11307 	 * Create NVMET Receive Queue (RQ)
11308 	 */
11309 	if (phba->nvmet_support) {
11310 		if ((!phba->sli4_hba.nvmet_cqset) ||
11311 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11312 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11313 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11314 					"6130 MRQ CQ Queues not "
11315 					"allocated\n");
11316 			rc = -ENOMEM;
11317 			goto out_destroy;
11318 		}
11319 		if (phba->cfg_nvmet_mrq > 1) {
11320 			rc = lpfc_mrq_create(phba,
11321 					     phba->sli4_hba.nvmet_mrq_hdr,
11322 					     phba->sli4_hba.nvmet_mrq_data,
11323 					     phba->sli4_hba.nvmet_cqset,
11324 					     LPFC_NVMET);
11325 			if (rc) {
11326 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11327 						"6098 Failed setup of NVMET "
11328 						"MRQ: rc = 0x%x\n",
11329 						(uint32_t)rc);
11330 				goto out_destroy;
11331 			}
11332 
11333 		} else {
11334 			rc = lpfc_rq_create(phba,
11335 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11336 					    phba->sli4_hba.nvmet_mrq_data[0],
11337 					    phba->sli4_hba.nvmet_cqset[0],
11338 					    LPFC_NVMET);
11339 			if (rc) {
11340 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11341 						"6057 Failed setup of NVMET "
11342 						"Receive Queue: rc = 0x%x\n",
11343 						(uint32_t)rc);
11344 				goto out_destroy;
11345 			}
11346 
11347 			lpfc_printf_log(
11348 				phba, KERN_INFO, LOG_INIT,
11349 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11350 				"dat-rq-id=%d parent cq-id=%d\n",
11351 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11352 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11353 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11354 
11355 		}
11356 	}
11357 
11358 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11359 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11360 				"0540 Receive Queue not allocated\n");
11361 		rc = -ENOMEM;
11362 		goto out_destroy;
11363 	}
11364 
11365 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11366 			    phba->sli4_hba.els_cq, LPFC_USOL);
11367 	if (rc) {
11368 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11369 				"0541 Failed setup of Receive Queue: "
11370 				"rc = 0x%x\n", (uint32_t)rc);
11371 		goto out_destroy;
11372 	}
11373 
11374 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11375 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11376 			"parent cq-id=%d\n",
11377 			phba->sli4_hba.hdr_rq->queue_id,
11378 			phba->sli4_hba.dat_rq->queue_id,
11379 			phba->sli4_hba.els_cq->queue_id);
11380 
11381 	if (phba->cfg_fcp_imax)
11382 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11383 	else
11384 		usdelay = 0;
11385 
11386 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11387 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11388 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11389 					 usdelay);
11390 
11391 	if (phba->sli4_hba.cq_max) {
11392 		kfree(phba->sli4_hba.cq_lookup);
11393 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11394 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11395 		if (!phba->sli4_hba.cq_lookup) {
11396 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11397 					"0549 Failed setup of CQ Lookup table: "
11398 					"size 0x%x\n", phba->sli4_hba.cq_max);
11399 			rc = -ENOMEM;
11400 			goto out_destroy;
11401 		}
11402 		lpfc_setup_cq_lookup(phba);
11403 	}
11404 	return 0;
11405 
11406 out_destroy:
11407 	lpfc_sli4_queue_unset(phba);
11408 out_error:
11409 	return rc;
11410 }
11411 
11412 /**
11413  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11414  * @phba: pointer to lpfc hba data structure.
11415  *
11416  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11417  * operation.
11418  *
11419  * Return codes
11420  *      0 - successful
11421  *      -ENOMEM - No available memory
11422  *      -EIO - The mailbox failed to complete successfully.
11423  **/
11424 void
11425 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11426 {
11427 	struct lpfc_sli4_hdw_queue *qp;
11428 	struct lpfc_queue *eq;
11429 	int qidx;
11430 
11431 	/* Unset mailbox command work queue */
11432 	if (phba->sli4_hba.mbx_wq)
11433 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11434 
11435 	/* Unset NVME LS work queue */
11436 	if (phba->sli4_hba.nvmels_wq)
11437 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11438 
11439 	/* Unset ELS work queue */
11440 	if (phba->sli4_hba.els_wq)
11441 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11442 
11443 	/* Unset unsolicited receive queue */
11444 	if (phba->sli4_hba.hdr_rq)
11445 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11446 				phba->sli4_hba.dat_rq);
11447 
11448 	/* Unset mailbox command complete queue */
11449 	if (phba->sli4_hba.mbx_cq)
11450 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11451 
11452 	/* Unset ELS complete queue */
11453 	if (phba->sli4_hba.els_cq)
11454 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11455 
11456 	/* Unset NVME LS complete queue */
11457 	if (phba->sli4_hba.nvmels_cq)
11458 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11459 
11460 	if (phba->nvmet_support) {
11461 		/* Unset NVMET MRQ queue */
11462 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11463 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11464 				lpfc_rq_destroy(
11465 					phba,
11466 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11467 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11468 		}
11469 
11470 		/* Unset NVMET CQ Set complete queue */
11471 		if (phba->sli4_hba.nvmet_cqset) {
11472 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11473 				lpfc_cq_destroy(
11474 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11475 		}
11476 	}
11477 
11478 	/* Unset fast-path SLI4 queues */
11479 	if (phba->sli4_hba.hdwq) {
11480 		/* Loop thru all Hardware Queues */
11481 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11482 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11483 			qp = &phba->sli4_hba.hdwq[qidx];
11484 			lpfc_wq_destroy(phba, qp->io_wq);
11485 			lpfc_cq_destroy(phba, qp->io_cq);
11486 		}
11487 		/* Loop thru all IRQ vectors */
11488 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11489 			/* Destroy the EQ corresponding to the IRQ vector */
11490 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11491 			lpfc_eq_destroy(phba, eq);
11492 		}
11493 	}
11494 
11495 	kfree(phba->sli4_hba.cq_lookup);
11496 	phba->sli4_hba.cq_lookup = NULL;
11497 	phba->sli4_hba.cq_max = 0;
11498 }
11499 
11500 /**
11501  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11502  * @phba: pointer to lpfc hba data structure.
11503  *
11504  * This routine is invoked to allocate and set up a pool of completion queue
11505  * events. The body of the completion queue event is a completion queue entry
11506  * CQE. For now, this pool is used for the interrupt service routine to queue
11507  * the following HBA completion queue events for the worker thread to process:
11508  *   - Mailbox asynchronous events
11509  *   - Receive queue completion unsolicited events
11510  * Later, this can be used for all the slow-path events.
11511  *
11512  * Return codes
11513  *      0 - successful
11514  *      -ENOMEM - No available memory
11515  **/
11516 static int
11517 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11518 {
11519 	struct lpfc_cq_event *cq_event;
11520 	int i;
11521 
11522 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11523 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11524 		if (!cq_event)
11525 			goto out_pool_create_fail;
11526 		list_add_tail(&cq_event->list,
11527 			      &phba->sli4_hba.sp_cqe_event_pool);
11528 	}
11529 	return 0;
11530 
11531 out_pool_create_fail:
11532 	lpfc_sli4_cq_event_pool_destroy(phba);
11533 	return -ENOMEM;
11534 }
11535 
11536 /**
11537  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11538  * @phba: pointer to lpfc hba data structure.
11539  *
11540  * This routine is invoked to free the pool of completion queue events at
11541  * driver unload time. Note that, it is the responsibility of the driver
11542  * cleanup routine to free all the outstanding completion-queue events
11543  * allocated from this pool back into the pool before invoking this routine
11544  * to destroy the pool.
11545  **/
11546 static void
11547 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11548 {
11549 	struct lpfc_cq_event *cq_event, *next_cq_event;
11550 
11551 	list_for_each_entry_safe(cq_event, next_cq_event,
11552 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11553 		list_del(&cq_event->list);
11554 		kfree(cq_event);
11555 	}
11556 }
11557 
11558 /**
11559  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11560  * @phba: pointer to lpfc hba data structure.
11561  *
11562  * This routine is the lock free version of the API invoked to allocate a
11563  * completion-queue event from the free pool.
11564  *
11565  * Return: Pointer to the newly allocated completion-queue event if successful
11566  *         NULL otherwise.
11567  **/
11568 struct lpfc_cq_event *
11569 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11570 {
11571 	struct lpfc_cq_event *cq_event = NULL;
11572 
11573 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11574 			 struct lpfc_cq_event, list);
11575 	return cq_event;
11576 }
11577 
11578 /**
11579  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11580  * @phba: pointer to lpfc hba data structure.
11581  *
11582  * This routine is the lock version of the API invoked to allocate a
11583  * completion-queue event from the free pool.
11584  *
11585  * Return: Pointer to the newly allocated completion-queue event if successful
11586  *         NULL otherwise.
11587  **/
11588 struct lpfc_cq_event *
11589 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11590 {
11591 	struct lpfc_cq_event *cq_event;
11592 	unsigned long iflags;
11593 
11594 	spin_lock_irqsave(&phba->hbalock, iflags);
11595 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11596 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11597 	return cq_event;
11598 }
11599 
11600 /**
11601  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11602  * @phba: pointer to lpfc hba data structure.
11603  * @cq_event: pointer to the completion queue event to be freed.
11604  *
11605  * This routine is the lock free version of the API invoked to release a
11606  * completion-queue event back into the free pool.
11607  **/
11608 void
11609 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11610 			     struct lpfc_cq_event *cq_event)
11611 {
11612 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11613 }
11614 
11615 /**
11616  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11617  * @phba: pointer to lpfc hba data structure.
11618  * @cq_event: pointer to the completion queue event to be freed.
11619  *
11620  * This routine is the lock version of the API invoked to release a
11621  * completion-queue event back into the free pool.
11622  **/
11623 void
11624 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11625 			   struct lpfc_cq_event *cq_event)
11626 {
11627 	unsigned long iflags;
11628 	spin_lock_irqsave(&phba->hbalock, iflags);
11629 	__lpfc_sli4_cq_event_release(phba, cq_event);
11630 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11631 }
11632 
11633 /**
11634  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11635  * @phba: pointer to lpfc hba data structure.
11636  *
11637  * This routine is to free all the pending completion-queue events to the
11638  * back into the free pool for device reset.
11639  **/
11640 static void
11641 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11642 {
11643 	LIST_HEAD(cq_event_list);
11644 	struct lpfc_cq_event *cq_event;
11645 	unsigned long iflags;
11646 
11647 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11648 
11649 	/* Pending ELS XRI abort events */
11650 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11651 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11652 			 &cq_event_list);
11653 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11654 
11655 	/* Pending asynnc events */
11656 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11657 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11658 			 &cq_event_list);
11659 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11660 
11661 	while (!list_empty(&cq_event_list)) {
11662 		list_remove_head(&cq_event_list, cq_event,
11663 				 struct lpfc_cq_event, list);
11664 		lpfc_sli4_cq_event_release(phba, cq_event);
11665 	}
11666 }
11667 
11668 /**
11669  * lpfc_pci_function_reset - Reset pci function.
11670  * @phba: pointer to lpfc hba data structure.
11671  *
11672  * This routine is invoked to request a PCI function reset. It will destroys
11673  * all resources assigned to the PCI function which originates this request.
11674  *
11675  * Return codes
11676  *      0 - successful
11677  *      -ENOMEM - No available memory
11678  *      -EIO - The mailbox failed to complete successfully.
11679  **/
11680 int
11681 lpfc_pci_function_reset(struct lpfc_hba *phba)
11682 {
11683 	LPFC_MBOXQ_t *mboxq;
11684 	uint32_t rc = 0, if_type;
11685 	uint32_t shdr_status, shdr_add_status;
11686 	uint32_t rdy_chk;
11687 	uint32_t port_reset = 0;
11688 	union lpfc_sli4_cfg_shdr *shdr;
11689 	struct lpfc_register reg_data;
11690 	uint16_t devid;
11691 
11692 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11693 	switch (if_type) {
11694 	case LPFC_SLI_INTF_IF_TYPE_0:
11695 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11696 						       GFP_KERNEL);
11697 		if (!mboxq) {
11698 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11699 					"0494 Unable to allocate memory for "
11700 					"issuing SLI_FUNCTION_RESET mailbox "
11701 					"command\n");
11702 			return -ENOMEM;
11703 		}
11704 
11705 		/* Setup PCI function reset mailbox-ioctl command */
11706 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11707 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11708 				 LPFC_SLI4_MBX_EMBED);
11709 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11710 		shdr = (union lpfc_sli4_cfg_shdr *)
11711 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11712 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11713 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11714 					 &shdr->response);
11715 		mempool_free(mboxq, phba->mbox_mem_pool);
11716 		if (shdr_status || shdr_add_status || rc) {
11717 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11718 					"0495 SLI_FUNCTION_RESET mailbox "
11719 					"failed with status x%x add_status x%x,"
11720 					" mbx status x%x\n",
11721 					shdr_status, shdr_add_status, rc);
11722 			rc = -ENXIO;
11723 		}
11724 		break;
11725 	case LPFC_SLI_INTF_IF_TYPE_2:
11726 	case LPFC_SLI_INTF_IF_TYPE_6:
11727 wait:
11728 		/*
11729 		 * Poll the Port Status Register and wait for RDY for
11730 		 * up to 30 seconds. If the port doesn't respond, treat
11731 		 * it as an error.
11732 		 */
11733 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11734 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11735 				STATUSregaddr, &reg_data.word0)) {
11736 				rc = -ENODEV;
11737 				goto out;
11738 			}
11739 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11740 				break;
11741 			msleep(20);
11742 		}
11743 
11744 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11745 			phba->work_status[0] = readl(
11746 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11747 			phba->work_status[1] = readl(
11748 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11749 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11750 					"2890 Port not ready, port status reg "
11751 					"0x%x error 1=0x%x, error 2=0x%x\n",
11752 					reg_data.word0,
11753 					phba->work_status[0],
11754 					phba->work_status[1]);
11755 			rc = -ENODEV;
11756 			goto out;
11757 		}
11758 
11759 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11760 			lpfc_pldv_detect = true;
11761 
11762 		if (!port_reset) {
11763 			/*
11764 			 * Reset the port now
11765 			 */
11766 			reg_data.word0 = 0;
11767 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11768 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11769 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11770 			       LPFC_SLIPORT_INIT_PORT);
11771 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11772 			       CTRLregaddr);
11773 			/* flush */
11774 			pci_read_config_word(phba->pcidev,
11775 					     PCI_DEVICE_ID, &devid);
11776 
11777 			port_reset = 1;
11778 			msleep(20);
11779 			goto wait;
11780 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11781 			rc = -ENODEV;
11782 			goto out;
11783 		}
11784 		break;
11785 
11786 	case LPFC_SLI_INTF_IF_TYPE_1:
11787 	default:
11788 		break;
11789 	}
11790 
11791 out:
11792 	/* Catch the not-ready port failure after a port reset. */
11793 	if (rc) {
11794 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11795 				"3317 HBA not functional: IP Reset Failed "
11796 				"try: echo fw_reset > board_mode\n");
11797 		rc = -ENODEV;
11798 	}
11799 
11800 	return rc;
11801 }
11802 
11803 /**
11804  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11805  * @phba: pointer to lpfc hba data structure.
11806  *
11807  * This routine is invoked to set up the PCI device memory space for device
11808  * with SLI-4 interface spec.
11809  *
11810  * Return codes
11811  * 	0 - successful
11812  * 	other values - error
11813  **/
11814 static int
11815 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11816 {
11817 	struct pci_dev *pdev = phba->pcidev;
11818 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11819 	int error;
11820 	uint32_t if_type;
11821 
11822 	if (!pdev)
11823 		return -ENODEV;
11824 
11825 	/* Set the device DMA mask size */
11826 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11827 	if (error)
11828 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11829 	if (error)
11830 		return error;
11831 
11832 	/*
11833 	 * The BARs and register set definitions and offset locations are
11834 	 * dependent on the if_type.
11835 	 */
11836 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11837 				  &phba->sli4_hba.sli_intf.word0)) {
11838 		return -ENODEV;
11839 	}
11840 
11841 	/* There is no SLI3 failback for SLI4 devices. */
11842 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11843 	    LPFC_SLI_INTF_VALID) {
11844 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11845 				"2894 SLI_INTF reg contents invalid "
11846 				"sli_intf reg 0x%x\n",
11847 				phba->sli4_hba.sli_intf.word0);
11848 		return -ENODEV;
11849 	}
11850 
11851 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11852 	/*
11853 	 * Get the bus address of SLI4 device Bar regions and the
11854 	 * number of bytes required by each mapping. The mapping of the
11855 	 * particular PCI BARs regions is dependent on the type of
11856 	 * SLI4 device.
11857 	 */
11858 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11859 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11860 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11861 
11862 		/*
11863 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11864 		 * addr
11865 		 */
11866 		phba->sli4_hba.conf_regs_memmap_p =
11867 			ioremap(phba->pci_bar0_map, bar0map_len);
11868 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11869 			dev_printk(KERN_ERR, &pdev->dev,
11870 				   "ioremap failed for SLI4 PCI config "
11871 				   "registers.\n");
11872 			return -ENODEV;
11873 		}
11874 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11875 		/* Set up BAR0 PCI config space register memory map */
11876 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11877 	} else {
11878 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11879 		bar0map_len = pci_resource_len(pdev, 1);
11880 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11881 			dev_printk(KERN_ERR, &pdev->dev,
11882 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11883 			return -ENODEV;
11884 		}
11885 		phba->sli4_hba.conf_regs_memmap_p =
11886 				ioremap(phba->pci_bar0_map, bar0map_len);
11887 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11888 			dev_printk(KERN_ERR, &pdev->dev,
11889 				"ioremap failed for SLI4 PCI config "
11890 				"registers.\n");
11891 			return -ENODEV;
11892 		}
11893 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11894 	}
11895 
11896 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11897 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11898 			/*
11899 			 * Map SLI4 if type 0 HBA Control Register base to a
11900 			 * kernel virtual address and setup the registers.
11901 			 */
11902 			phba->pci_bar1_map = pci_resource_start(pdev,
11903 								PCI_64BIT_BAR2);
11904 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11905 			phba->sli4_hba.ctrl_regs_memmap_p =
11906 					ioremap(phba->pci_bar1_map,
11907 						bar1map_len);
11908 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11909 				dev_err(&pdev->dev,
11910 					   "ioremap failed for SLI4 HBA "
11911 					    "control registers.\n");
11912 				error = -ENOMEM;
11913 				goto out_iounmap_conf;
11914 			}
11915 			phba->pci_bar2_memmap_p =
11916 					 phba->sli4_hba.ctrl_regs_memmap_p;
11917 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11918 		} else {
11919 			error = -ENOMEM;
11920 			goto out_iounmap_conf;
11921 		}
11922 	}
11923 
11924 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11925 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11926 		/*
11927 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11928 		 * virtual address and setup the registers.
11929 		 */
11930 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11931 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11932 		phba->sli4_hba.drbl_regs_memmap_p =
11933 				ioremap(phba->pci_bar1_map, bar1map_len);
11934 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11935 			dev_err(&pdev->dev,
11936 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11937 			error = -ENOMEM;
11938 			goto out_iounmap_conf;
11939 		}
11940 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11941 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11942 	}
11943 
11944 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11945 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11946 			/*
11947 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11948 			 * a kernel virtual address and setup the registers.
11949 			 */
11950 			phba->pci_bar2_map = pci_resource_start(pdev,
11951 								PCI_64BIT_BAR4);
11952 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11953 			phba->sli4_hba.drbl_regs_memmap_p =
11954 					ioremap(phba->pci_bar2_map,
11955 						bar2map_len);
11956 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11957 				dev_err(&pdev->dev,
11958 					   "ioremap failed for SLI4 HBA"
11959 					   " doorbell registers.\n");
11960 				error = -ENOMEM;
11961 				goto out_iounmap_ctrl;
11962 			}
11963 			phba->pci_bar4_memmap_p =
11964 					phba->sli4_hba.drbl_regs_memmap_p;
11965 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11966 			if (error)
11967 				goto out_iounmap_all;
11968 		} else {
11969 			error = -ENOMEM;
11970 			goto out_iounmap_all;
11971 		}
11972 	}
11973 
11974 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11975 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11976 		/*
11977 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11978 		 * virtual address and setup the registers.
11979 		 */
11980 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11981 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11982 		phba->sli4_hba.dpp_regs_memmap_p =
11983 				ioremap(phba->pci_bar2_map, bar2map_len);
11984 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11985 			dev_err(&pdev->dev,
11986 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11987 			error = -ENOMEM;
11988 			goto out_iounmap_ctrl;
11989 		}
11990 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11991 	}
11992 
11993 	/* Set up the EQ/CQ register handeling functions now */
11994 	switch (if_type) {
11995 	case LPFC_SLI_INTF_IF_TYPE_0:
11996 	case LPFC_SLI_INTF_IF_TYPE_2:
11997 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11998 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11999 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12000 		break;
12001 	case LPFC_SLI_INTF_IF_TYPE_6:
12002 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12003 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12004 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12005 		break;
12006 	default:
12007 		break;
12008 	}
12009 
12010 	return 0;
12011 
12012 out_iounmap_all:
12013 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12014 out_iounmap_ctrl:
12015 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12016 out_iounmap_conf:
12017 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12018 
12019 	return error;
12020 }
12021 
12022 /**
12023  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12024  * @phba: pointer to lpfc hba data structure.
12025  *
12026  * This routine is invoked to unset the PCI device memory space for device
12027  * with SLI-4 interface spec.
12028  **/
12029 static void
12030 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12031 {
12032 	uint32_t if_type;
12033 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12034 
12035 	switch (if_type) {
12036 	case LPFC_SLI_INTF_IF_TYPE_0:
12037 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12038 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12039 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12040 		break;
12041 	case LPFC_SLI_INTF_IF_TYPE_2:
12042 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12043 		break;
12044 	case LPFC_SLI_INTF_IF_TYPE_6:
12045 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12046 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12047 		if (phba->sli4_hba.dpp_regs_memmap_p)
12048 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12049 		break;
12050 	case LPFC_SLI_INTF_IF_TYPE_1:
12051 	default:
12052 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12053 			   "FATAL - unsupported SLI4 interface type - %d\n",
12054 			   if_type);
12055 		break;
12056 	}
12057 }
12058 
12059 /**
12060  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12061  * @phba: pointer to lpfc hba data structure.
12062  *
12063  * This routine is invoked to enable the MSI-X interrupt vectors to device
12064  * with SLI-3 interface specs.
12065  *
12066  * Return codes
12067  *   0 - successful
12068  *   other values - error
12069  **/
12070 static int
12071 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12072 {
12073 	int rc;
12074 	LPFC_MBOXQ_t *pmb;
12075 
12076 	/* Set up MSI-X multi-message vectors */
12077 	rc = pci_alloc_irq_vectors(phba->pcidev,
12078 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12079 	if (rc < 0) {
12080 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12081 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12082 		goto vec_fail_out;
12083 	}
12084 
12085 	/*
12086 	 * Assign MSI-X vectors to interrupt handlers
12087 	 */
12088 
12089 	/* vector-0 is associated to slow-path handler */
12090 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12091 			 &lpfc_sli_sp_intr_handler, 0,
12092 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12093 	if (rc) {
12094 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12095 				"0421 MSI-X slow-path request_irq failed "
12096 				"(%d)\n", rc);
12097 		goto msi_fail_out;
12098 	}
12099 
12100 	/* vector-1 is associated to fast-path handler */
12101 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12102 			 &lpfc_sli_fp_intr_handler, 0,
12103 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12104 
12105 	if (rc) {
12106 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12107 				"0429 MSI-X fast-path request_irq failed "
12108 				"(%d)\n", rc);
12109 		goto irq_fail_out;
12110 	}
12111 
12112 	/*
12113 	 * Configure HBA MSI-X attention conditions to messages
12114 	 */
12115 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12116 
12117 	if (!pmb) {
12118 		rc = -ENOMEM;
12119 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12120 				"0474 Unable to allocate memory for issuing "
12121 				"MBOX_CONFIG_MSI command\n");
12122 		goto mem_fail_out;
12123 	}
12124 	rc = lpfc_config_msi(phba, pmb);
12125 	if (rc)
12126 		goto mbx_fail_out;
12127 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12128 	if (rc != MBX_SUCCESS) {
12129 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12130 				"0351 Config MSI mailbox command failed, "
12131 				"mbxCmd x%x, mbxStatus x%x\n",
12132 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12133 		goto mbx_fail_out;
12134 	}
12135 
12136 	/* Free memory allocated for mailbox command */
12137 	mempool_free(pmb, phba->mbox_mem_pool);
12138 	return rc;
12139 
12140 mbx_fail_out:
12141 	/* Free memory allocated for mailbox command */
12142 	mempool_free(pmb, phba->mbox_mem_pool);
12143 
12144 mem_fail_out:
12145 	/* free the irq already requested */
12146 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12147 
12148 irq_fail_out:
12149 	/* free the irq already requested */
12150 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12151 
12152 msi_fail_out:
12153 	/* Unconfigure MSI-X capability structure */
12154 	pci_free_irq_vectors(phba->pcidev);
12155 
12156 vec_fail_out:
12157 	return rc;
12158 }
12159 
12160 /**
12161  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12162  * @phba: pointer to lpfc hba data structure.
12163  *
12164  * This routine is invoked to enable the MSI interrupt mode to device with
12165  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12166  * enable the MSI vector. The device driver is responsible for calling the
12167  * request_irq() to register MSI vector with a interrupt the handler, which
12168  * is done in this function.
12169  *
12170  * Return codes
12171  * 	0 - successful
12172  * 	other values - error
12173  */
12174 static int
12175 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12176 {
12177 	int rc;
12178 
12179 	rc = pci_enable_msi(phba->pcidev);
12180 	if (!rc)
12181 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12182 				"0012 PCI enable MSI mode success.\n");
12183 	else {
12184 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12185 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12186 		return rc;
12187 	}
12188 
12189 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12190 			 0, LPFC_DRIVER_NAME, phba);
12191 	if (rc) {
12192 		pci_disable_msi(phba->pcidev);
12193 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12194 				"0478 MSI request_irq failed (%d)\n", rc);
12195 	}
12196 	return rc;
12197 }
12198 
12199 /**
12200  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12201  * @phba: pointer to lpfc hba data structure.
12202  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12203  *
12204  * This routine is invoked to enable device interrupt and associate driver's
12205  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12206  * spec. Depends on the interrupt mode configured to the driver, the driver
12207  * will try to fallback from the configured interrupt mode to an interrupt
12208  * mode which is supported by the platform, kernel, and device in the order
12209  * of:
12210  * MSI-X -> MSI -> IRQ.
12211  *
12212  * Return codes
12213  *   0 - successful
12214  *   other values - error
12215  **/
12216 static uint32_t
12217 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12218 {
12219 	uint32_t intr_mode = LPFC_INTR_ERROR;
12220 	int retval;
12221 
12222 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12223 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12224 	if (retval)
12225 		return intr_mode;
12226 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12227 
12228 	if (cfg_mode == 2) {
12229 		/* Now, try to enable MSI-X interrupt mode */
12230 		retval = lpfc_sli_enable_msix(phba);
12231 		if (!retval) {
12232 			/* Indicate initialization to MSI-X mode */
12233 			phba->intr_type = MSIX;
12234 			intr_mode = 2;
12235 		}
12236 	}
12237 
12238 	/* Fallback to MSI if MSI-X initialization failed */
12239 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12240 		retval = lpfc_sli_enable_msi(phba);
12241 		if (!retval) {
12242 			/* Indicate initialization to MSI mode */
12243 			phba->intr_type = MSI;
12244 			intr_mode = 1;
12245 		}
12246 	}
12247 
12248 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12249 	if (phba->intr_type == NONE) {
12250 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12251 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12252 		if (!retval) {
12253 			/* Indicate initialization to INTx mode */
12254 			phba->intr_type = INTx;
12255 			intr_mode = 0;
12256 		}
12257 	}
12258 	return intr_mode;
12259 }
12260 
12261 /**
12262  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12263  * @phba: pointer to lpfc hba data structure.
12264  *
12265  * This routine is invoked to disable device interrupt and disassociate the
12266  * driver's interrupt handler(s) from interrupt vector(s) to device with
12267  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12268  * release the interrupt vector(s) for the message signaled interrupt.
12269  **/
12270 static void
12271 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12272 {
12273 	int nr_irqs, i;
12274 
12275 	if (phba->intr_type == MSIX)
12276 		nr_irqs = LPFC_MSIX_VECTORS;
12277 	else
12278 		nr_irqs = 1;
12279 
12280 	for (i = 0; i < nr_irqs; i++)
12281 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12282 	pci_free_irq_vectors(phba->pcidev);
12283 
12284 	/* Reset interrupt management states */
12285 	phba->intr_type = NONE;
12286 	phba->sli.slistat.sli_intr = 0;
12287 }
12288 
12289 /**
12290  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12291  * @phba: pointer to lpfc hba data structure.
12292  * @id: EQ vector index or Hardware Queue index
12293  * @match: LPFC_FIND_BY_EQ = match by EQ
12294  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12295  * Return the CPU that matches the selection criteria
12296  */
12297 static uint16_t
12298 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12299 {
12300 	struct lpfc_vector_map_info *cpup;
12301 	int cpu;
12302 
12303 	/* Loop through all CPUs */
12304 	for_each_present_cpu(cpu) {
12305 		cpup = &phba->sli4_hba.cpu_map[cpu];
12306 
12307 		/* If we are matching by EQ, there may be multiple CPUs using
12308 		 * using the same vector, so select the one with
12309 		 * LPFC_CPU_FIRST_IRQ set.
12310 		 */
12311 		if ((match == LPFC_FIND_BY_EQ) &&
12312 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12313 		    (cpup->eq == id))
12314 			return cpu;
12315 
12316 		/* If matching by HDWQ, select the first CPU that matches */
12317 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12318 			return cpu;
12319 	}
12320 	return 0;
12321 }
12322 
12323 #ifdef CONFIG_X86
12324 /**
12325  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12326  * @phba: pointer to lpfc hba data structure.
12327  * @cpu: CPU map index
12328  * @phys_id: CPU package physical id
12329  * @core_id: CPU core id
12330  */
12331 static int
12332 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12333 		uint16_t phys_id, uint16_t core_id)
12334 {
12335 	struct lpfc_vector_map_info *cpup;
12336 	int idx;
12337 
12338 	for_each_present_cpu(idx) {
12339 		cpup = &phba->sli4_hba.cpu_map[idx];
12340 		/* Does the cpup match the one we are looking for */
12341 		if ((cpup->phys_id == phys_id) &&
12342 		    (cpup->core_id == core_id) &&
12343 		    (cpu != idx))
12344 			return 1;
12345 	}
12346 	return 0;
12347 }
12348 #endif
12349 
12350 /*
12351  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12352  * @phba: pointer to lpfc hba data structure.
12353  * @eqidx: index for eq and irq vector
12354  * @flag: flags to set for vector_map structure
12355  * @cpu: cpu used to index vector_map structure
12356  *
12357  * The routine assigns eq info into vector_map structure
12358  */
12359 static inline void
12360 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12361 			unsigned int cpu)
12362 {
12363 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12364 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12365 
12366 	cpup->eq = eqidx;
12367 	cpup->flag |= flag;
12368 
12369 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12370 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12371 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12372 }
12373 
12374 /**
12375  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12376  * @phba: pointer to lpfc hba data structure.
12377  *
12378  * The routine initializes the cpu_map array structure
12379  */
12380 static void
12381 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12382 {
12383 	struct lpfc_vector_map_info *cpup;
12384 	struct lpfc_eq_intr_info *eqi;
12385 	int cpu;
12386 
12387 	for_each_possible_cpu(cpu) {
12388 		cpup = &phba->sli4_hba.cpu_map[cpu];
12389 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12390 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12391 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12392 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12393 		cpup->flag = 0;
12394 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12395 		INIT_LIST_HEAD(&eqi->list);
12396 		eqi->icnt = 0;
12397 	}
12398 }
12399 
12400 /**
12401  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12402  * @phba: pointer to lpfc hba data structure.
12403  *
12404  * The routine initializes the hba_eq_hdl array structure
12405  */
12406 static void
12407 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12408 {
12409 	struct lpfc_hba_eq_hdl *eqhdl;
12410 	int i;
12411 
12412 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12413 		eqhdl = lpfc_get_eq_hdl(i);
12414 		eqhdl->irq = LPFC_IRQ_EMPTY;
12415 		eqhdl->phba = phba;
12416 	}
12417 }
12418 
12419 /**
12420  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12421  * @phba: pointer to lpfc hba data structure.
12422  * @vectors: number of msix vectors allocated.
12423  *
12424  * The routine will figure out the CPU affinity assignment for every
12425  * MSI-X vector allocated for the HBA.
12426  * In addition, the CPU to IO channel mapping will be calculated
12427  * and the phba->sli4_hba.cpu_map array will reflect this.
12428  */
12429 static void
12430 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12431 {
12432 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12433 	int max_phys_id, min_phys_id;
12434 	int max_core_id, min_core_id;
12435 	struct lpfc_vector_map_info *cpup;
12436 	struct lpfc_vector_map_info *new_cpup;
12437 #ifdef CONFIG_X86
12438 	struct cpuinfo_x86 *cpuinfo;
12439 #endif
12440 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12441 	struct lpfc_hdwq_stat *c_stat;
12442 #endif
12443 
12444 	max_phys_id = 0;
12445 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12446 	max_core_id = 0;
12447 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12448 
12449 	/* Update CPU map with physical id and core id of each CPU */
12450 	for_each_present_cpu(cpu) {
12451 		cpup = &phba->sli4_hba.cpu_map[cpu];
12452 #ifdef CONFIG_X86
12453 		cpuinfo = &cpu_data(cpu);
12454 		cpup->phys_id = cpuinfo->phys_proc_id;
12455 		cpup->core_id = cpuinfo->cpu_core_id;
12456 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12457 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12458 #else
12459 		/* No distinction between CPUs for other platforms */
12460 		cpup->phys_id = 0;
12461 		cpup->core_id = cpu;
12462 #endif
12463 
12464 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12465 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12466 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12467 
12468 		if (cpup->phys_id > max_phys_id)
12469 			max_phys_id = cpup->phys_id;
12470 		if (cpup->phys_id < min_phys_id)
12471 			min_phys_id = cpup->phys_id;
12472 
12473 		if (cpup->core_id > max_core_id)
12474 			max_core_id = cpup->core_id;
12475 		if (cpup->core_id < min_core_id)
12476 			min_core_id = cpup->core_id;
12477 	}
12478 
12479 	/* After looking at each irq vector assigned to this pcidev, its
12480 	 * possible to see that not ALL CPUs have been accounted for.
12481 	 * Next we will set any unassigned (unaffinitized) cpu map
12482 	 * entries to a IRQ on the same phys_id.
12483 	 */
12484 	first_cpu = cpumask_first(cpu_present_mask);
12485 	start_cpu = first_cpu;
12486 
12487 	for_each_present_cpu(cpu) {
12488 		cpup = &phba->sli4_hba.cpu_map[cpu];
12489 
12490 		/* Is this CPU entry unassigned */
12491 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12492 			/* Mark CPU as IRQ not assigned by the kernel */
12493 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12494 
12495 			/* If so, find a new_cpup thats on the the SAME
12496 			 * phys_id as cpup. start_cpu will start where we
12497 			 * left off so all unassigned entries don't get assgined
12498 			 * the IRQ of the first entry.
12499 			 */
12500 			new_cpu = start_cpu;
12501 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12502 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12503 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12504 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12505 				    (new_cpup->phys_id == cpup->phys_id))
12506 					goto found_same;
12507 				new_cpu = cpumask_next(
12508 					new_cpu, cpu_present_mask);
12509 				if (new_cpu == nr_cpumask_bits)
12510 					new_cpu = first_cpu;
12511 			}
12512 			/* At this point, we leave the CPU as unassigned */
12513 			continue;
12514 found_same:
12515 			/* We found a matching phys_id, so copy the IRQ info */
12516 			cpup->eq = new_cpup->eq;
12517 
12518 			/* Bump start_cpu to the next slot to minmize the
12519 			 * chance of having multiple unassigned CPU entries
12520 			 * selecting the same IRQ.
12521 			 */
12522 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12523 			if (start_cpu == nr_cpumask_bits)
12524 				start_cpu = first_cpu;
12525 
12526 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12527 					"3337 Set Affinity: CPU %d "
12528 					"eq %d from peer cpu %d same "
12529 					"phys_id (%d)\n",
12530 					cpu, cpup->eq, new_cpu,
12531 					cpup->phys_id);
12532 		}
12533 	}
12534 
12535 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12536 	start_cpu = first_cpu;
12537 
12538 	for_each_present_cpu(cpu) {
12539 		cpup = &phba->sli4_hba.cpu_map[cpu];
12540 
12541 		/* Is this entry unassigned */
12542 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12543 			/* Mark it as IRQ not assigned by the kernel */
12544 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12545 
12546 			/* If so, find a new_cpup thats on ANY phys_id
12547 			 * as the cpup. start_cpu will start where we
12548 			 * left off so all unassigned entries don't get
12549 			 * assigned the IRQ of the first entry.
12550 			 */
12551 			new_cpu = start_cpu;
12552 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12553 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12554 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12555 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12556 					goto found_any;
12557 				new_cpu = cpumask_next(
12558 					new_cpu, cpu_present_mask);
12559 				if (new_cpu == nr_cpumask_bits)
12560 					new_cpu = first_cpu;
12561 			}
12562 			/* We should never leave an entry unassigned */
12563 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12564 					"3339 Set Affinity: CPU %d "
12565 					"eq %d UNASSIGNED\n",
12566 					cpup->hdwq, cpup->eq);
12567 			continue;
12568 found_any:
12569 			/* We found an available entry, copy the IRQ info */
12570 			cpup->eq = new_cpup->eq;
12571 
12572 			/* Bump start_cpu to the next slot to minmize the
12573 			 * chance of having multiple unassigned CPU entries
12574 			 * selecting the same IRQ.
12575 			 */
12576 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12577 			if (start_cpu == nr_cpumask_bits)
12578 				start_cpu = first_cpu;
12579 
12580 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12581 					"3338 Set Affinity: CPU %d "
12582 					"eq %d from peer cpu %d (%d/%d)\n",
12583 					cpu, cpup->eq, new_cpu,
12584 					new_cpup->phys_id, new_cpup->core_id);
12585 		}
12586 	}
12587 
12588 	/* Assign hdwq indices that are unique across all cpus in the map
12589 	 * that are also FIRST_CPUs.
12590 	 */
12591 	idx = 0;
12592 	for_each_present_cpu(cpu) {
12593 		cpup = &phba->sli4_hba.cpu_map[cpu];
12594 
12595 		/* Only FIRST IRQs get a hdwq index assignment. */
12596 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12597 			continue;
12598 
12599 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12600 		cpup->hdwq = idx;
12601 		idx++;
12602 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12603 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12604 				"hdwq %d eq %d flg x%x\n",
12605 				cpu, cpup->phys_id, cpup->core_id,
12606 				cpup->hdwq, cpup->eq, cpup->flag);
12607 	}
12608 	/* Associate a hdwq with each cpu_map entry
12609 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12610 	 * hardware queues then CPUs. For that case we will just round-robin
12611 	 * the available hardware queues as they get assigned to CPUs.
12612 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12613 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12614 	 * and needs to start at 0.
12615 	 */
12616 	next_idx = idx;
12617 	start_cpu = 0;
12618 	idx = 0;
12619 	for_each_present_cpu(cpu) {
12620 		cpup = &phba->sli4_hba.cpu_map[cpu];
12621 
12622 		/* FIRST cpus are already mapped. */
12623 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12624 			continue;
12625 
12626 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12627 		 * of the unassigned cpus to the next idx so that all
12628 		 * hdw queues are fully utilized.
12629 		 */
12630 		if (next_idx < phba->cfg_hdw_queue) {
12631 			cpup->hdwq = next_idx;
12632 			next_idx++;
12633 			continue;
12634 		}
12635 
12636 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12637 		 * Hardware Queue for another CPU, so be smart about it
12638 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12639 		 * (CPU package) and core_id.
12640 		 */
12641 		new_cpu = start_cpu;
12642 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12643 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12644 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12645 			    new_cpup->phys_id == cpup->phys_id &&
12646 			    new_cpup->core_id == cpup->core_id) {
12647 				goto found_hdwq;
12648 			}
12649 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12650 			if (new_cpu == nr_cpumask_bits)
12651 				new_cpu = first_cpu;
12652 		}
12653 
12654 		/* If we can't match both phys_id and core_id,
12655 		 * settle for just a phys_id match.
12656 		 */
12657 		new_cpu = start_cpu;
12658 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12659 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12660 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12661 			    new_cpup->phys_id == cpup->phys_id)
12662 				goto found_hdwq;
12663 
12664 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12665 			if (new_cpu == nr_cpumask_bits)
12666 				new_cpu = first_cpu;
12667 		}
12668 
12669 		/* Otherwise just round robin on cfg_hdw_queue */
12670 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12671 		idx++;
12672 		goto logit;
12673  found_hdwq:
12674 		/* We found an available entry, copy the IRQ info */
12675 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12676 		if (start_cpu == nr_cpumask_bits)
12677 			start_cpu = first_cpu;
12678 		cpup->hdwq = new_cpup->hdwq;
12679  logit:
12680 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12681 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12682 				"hdwq %d eq %d flg x%x\n",
12683 				cpu, cpup->phys_id, cpup->core_id,
12684 				cpup->hdwq, cpup->eq, cpup->flag);
12685 	}
12686 
12687 	/*
12688 	 * Initialize the cpu_map slots for not-present cpus in case
12689 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12690 	 */
12691 	idx = 0;
12692 	for_each_possible_cpu(cpu) {
12693 		cpup = &phba->sli4_hba.cpu_map[cpu];
12694 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12695 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12696 		c_stat->hdwq_no = cpup->hdwq;
12697 #endif
12698 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12699 			continue;
12700 
12701 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12702 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12703 		c_stat->hdwq_no = cpup->hdwq;
12704 #endif
12705 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12706 				"3340 Set Affinity: not present "
12707 				"CPU %d hdwq %d\n",
12708 				cpu, cpup->hdwq);
12709 	}
12710 
12711 	/* The cpu_map array will be used later during initialization
12712 	 * when EQ / CQ / WQs are allocated and configured.
12713 	 */
12714 	return;
12715 }
12716 
12717 /**
12718  * lpfc_cpuhp_get_eq
12719  *
12720  * @phba:   pointer to lpfc hba data structure.
12721  * @cpu:    cpu going offline
12722  * @eqlist: eq list to append to
12723  */
12724 static int
12725 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12726 		  struct list_head *eqlist)
12727 {
12728 	const struct cpumask *maskp;
12729 	struct lpfc_queue *eq;
12730 	struct cpumask *tmp;
12731 	u16 idx;
12732 
12733 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12734 	if (!tmp)
12735 		return -ENOMEM;
12736 
12737 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12738 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12739 		if (!maskp)
12740 			continue;
12741 		/*
12742 		 * if irq is not affinitized to the cpu going
12743 		 * then we don't need to poll the eq attached
12744 		 * to it.
12745 		 */
12746 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12747 			continue;
12748 		/* get the cpus that are online and are affini-
12749 		 * tized to this irq vector.  If the count is
12750 		 * more than 1 then cpuhp is not going to shut-
12751 		 * down this vector.  Since this cpu has not
12752 		 * gone offline yet, we need >1.
12753 		 */
12754 		cpumask_and(tmp, maskp, cpu_online_mask);
12755 		if (cpumask_weight(tmp) > 1)
12756 			continue;
12757 
12758 		/* Now that we have an irq to shutdown, get the eq
12759 		 * mapped to this irq.  Note: multiple hdwq's in
12760 		 * the software can share an eq, but eventually
12761 		 * only eq will be mapped to this vector
12762 		 */
12763 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12764 		list_add(&eq->_poll_list, eqlist);
12765 	}
12766 	kfree(tmp);
12767 	return 0;
12768 }
12769 
12770 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12771 {
12772 	if (phba->sli_rev != LPFC_SLI_REV4)
12773 		return;
12774 
12775 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12776 					    &phba->cpuhp);
12777 	/*
12778 	 * unregistering the instance doesn't stop the polling
12779 	 * timer. Wait for the poll timer to retire.
12780 	 */
12781 	synchronize_rcu();
12782 	del_timer_sync(&phba->cpuhp_poll_timer);
12783 }
12784 
12785 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12786 {
12787 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12788 		return;
12789 
12790 	__lpfc_cpuhp_remove(phba);
12791 }
12792 
12793 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12794 {
12795 	if (phba->sli_rev != LPFC_SLI_REV4)
12796 		return;
12797 
12798 	rcu_read_lock();
12799 
12800 	if (!list_empty(&phba->poll_list))
12801 		mod_timer(&phba->cpuhp_poll_timer,
12802 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12803 
12804 	rcu_read_unlock();
12805 
12806 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12807 					 &phba->cpuhp);
12808 }
12809 
12810 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12811 {
12812 	if (phba->pport->load_flag & FC_UNLOADING) {
12813 		*retval = -EAGAIN;
12814 		return true;
12815 	}
12816 
12817 	if (phba->sli_rev != LPFC_SLI_REV4) {
12818 		*retval = 0;
12819 		return true;
12820 	}
12821 
12822 	/* proceed with the hotplug */
12823 	return false;
12824 }
12825 
12826 /**
12827  * lpfc_irq_set_aff - set IRQ affinity
12828  * @eqhdl: EQ handle
12829  * @cpu: cpu to set affinity
12830  *
12831  **/
12832 static inline void
12833 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12834 {
12835 	cpumask_clear(&eqhdl->aff_mask);
12836 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12837 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12838 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12839 }
12840 
12841 /**
12842  * lpfc_irq_clear_aff - clear IRQ affinity
12843  * @eqhdl: EQ handle
12844  *
12845  **/
12846 static inline void
12847 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12848 {
12849 	cpumask_clear(&eqhdl->aff_mask);
12850 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12851 }
12852 
12853 /**
12854  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12855  * @phba: pointer to HBA context object.
12856  * @cpu: cpu going offline/online
12857  * @offline: true, cpu is going offline. false, cpu is coming online.
12858  *
12859  * If cpu is going offline, we'll try our best effort to find the next
12860  * online cpu on the phba's original_mask and migrate all offlining IRQ
12861  * affinities.
12862  *
12863  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12864  *
12865  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12866  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12867  *
12868  **/
12869 static void
12870 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12871 {
12872 	struct lpfc_vector_map_info *cpup;
12873 	struct cpumask *aff_mask;
12874 	unsigned int cpu_select, cpu_next, idx;
12875 	const struct cpumask *orig_mask;
12876 
12877 	if (phba->irq_chann_mode == NORMAL_MODE)
12878 		return;
12879 
12880 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12881 
12882 	if (!cpumask_test_cpu(cpu, orig_mask))
12883 		return;
12884 
12885 	cpup = &phba->sli4_hba.cpu_map[cpu];
12886 
12887 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12888 		return;
12889 
12890 	if (offline) {
12891 		/* Find next online CPU on original mask */
12892 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12893 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12894 
12895 		/* Found a valid CPU */
12896 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12897 			/* Go through each eqhdl and ensure offlining
12898 			 * cpu aff_mask is migrated
12899 			 */
12900 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12901 				aff_mask = lpfc_get_aff_mask(idx);
12902 
12903 				/* Migrate affinity */
12904 				if (cpumask_test_cpu(cpu, aff_mask))
12905 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12906 							 cpu_select);
12907 			}
12908 		} else {
12909 			/* Rely on irqbalance if no online CPUs left on NUMA */
12910 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12911 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12912 		}
12913 	} else {
12914 		/* Migrate affinity back to this CPU */
12915 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12916 	}
12917 }
12918 
12919 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12920 {
12921 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12922 	struct lpfc_queue *eq, *next;
12923 	LIST_HEAD(eqlist);
12924 	int retval;
12925 
12926 	if (!phba) {
12927 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12928 		return 0;
12929 	}
12930 
12931 	if (__lpfc_cpuhp_checks(phba, &retval))
12932 		return retval;
12933 
12934 	lpfc_irq_rebalance(phba, cpu, true);
12935 
12936 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12937 	if (retval)
12938 		return retval;
12939 
12940 	/* start polling on these eq's */
12941 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12942 		list_del_init(&eq->_poll_list);
12943 		lpfc_sli4_start_polling(eq);
12944 	}
12945 
12946 	return 0;
12947 }
12948 
12949 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12950 {
12951 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12952 	struct lpfc_queue *eq, *next;
12953 	unsigned int n;
12954 	int retval;
12955 
12956 	if (!phba) {
12957 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12958 		return 0;
12959 	}
12960 
12961 	if (__lpfc_cpuhp_checks(phba, &retval))
12962 		return retval;
12963 
12964 	lpfc_irq_rebalance(phba, cpu, false);
12965 
12966 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12967 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12968 		if (n == cpu)
12969 			lpfc_sli4_stop_polling(eq);
12970 	}
12971 
12972 	return 0;
12973 }
12974 
12975 /**
12976  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12977  * @phba: pointer to lpfc hba data structure.
12978  *
12979  * This routine is invoked to enable the MSI-X interrupt vectors to device
12980  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12981  * to cpus on the system.
12982  *
12983  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12984  * the number of cpus on the same numa node as this adapter.  The vectors are
12985  * allocated without requesting OS affinity mapping.  A vector will be
12986  * allocated and assigned to each online and offline cpu.  If the cpu is
12987  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12988  * affinity will be set to the nearest peer cpu within the numa node that is
12989  * online.  If there are no online cpus within the numa node, affinity is not
12990  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12991  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12992  * configured.
12993  *
12994  * If numa mode is not enabled and there is more than 1 vector allocated, then
12995  * the driver relies on the managed irq interface where the OS assigns vector to
12996  * cpu affinity.  The driver will then use that affinity mapping to setup its
12997  * cpu mapping table.
12998  *
12999  * Return codes
13000  * 0 - successful
13001  * other values - error
13002  **/
13003 static int
13004 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13005 {
13006 	int vectors, rc, index;
13007 	char *name;
13008 	const struct cpumask *aff_mask = NULL;
13009 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13010 	struct lpfc_vector_map_info *cpup;
13011 	struct lpfc_hba_eq_hdl *eqhdl;
13012 	const struct cpumask *maskp;
13013 	unsigned int flags = PCI_IRQ_MSIX;
13014 
13015 	/* Set up MSI-X multi-message vectors */
13016 	vectors = phba->cfg_irq_chann;
13017 
13018 	if (phba->irq_chann_mode != NORMAL_MODE)
13019 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13020 
13021 	if (aff_mask) {
13022 		cpu_cnt = cpumask_weight(aff_mask);
13023 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13024 
13025 		/* cpu: iterates over aff_mask including offline or online
13026 		 * cpu_select: iterates over online aff_mask to set affinity
13027 		 */
13028 		cpu = cpumask_first(aff_mask);
13029 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13030 	} else {
13031 		flags |= PCI_IRQ_AFFINITY;
13032 	}
13033 
13034 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13035 	if (rc < 0) {
13036 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13037 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13038 		goto vec_fail_out;
13039 	}
13040 	vectors = rc;
13041 
13042 	/* Assign MSI-X vectors to interrupt handlers */
13043 	for (index = 0; index < vectors; index++) {
13044 		eqhdl = lpfc_get_eq_hdl(index);
13045 		name = eqhdl->handler_name;
13046 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13047 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13048 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13049 
13050 		eqhdl->idx = index;
13051 		rc = pci_irq_vector(phba->pcidev, index);
13052 		if (rc < 0) {
13053 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13054 					"0489 MSI-X fast-path (%d) "
13055 					"pci_irq_vec failed (%d)\n", index, rc);
13056 			goto cfg_fail_out;
13057 		}
13058 		eqhdl->irq = rc;
13059 
13060 		rc = request_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, 0,
13061 				 name, eqhdl);
13062 		if (rc) {
13063 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13064 					"0486 MSI-X fast-path (%d) "
13065 					"request_irq failed (%d)\n", index, rc);
13066 			goto cfg_fail_out;
13067 		}
13068 
13069 		if (aff_mask) {
13070 			/* If found a neighboring online cpu, set affinity */
13071 			if (cpu_select < nr_cpu_ids)
13072 				lpfc_irq_set_aff(eqhdl, cpu_select);
13073 
13074 			/* Assign EQ to cpu_map */
13075 			lpfc_assign_eq_map_info(phba, index,
13076 						LPFC_CPU_FIRST_IRQ,
13077 						cpu);
13078 
13079 			/* Iterate to next offline or online cpu in aff_mask */
13080 			cpu = cpumask_next(cpu, aff_mask);
13081 
13082 			/* Find next online cpu in aff_mask to set affinity */
13083 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13084 		} else if (vectors == 1) {
13085 			cpu = cpumask_first(cpu_present_mask);
13086 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13087 						cpu);
13088 		} else {
13089 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13090 
13091 			/* Loop through all CPUs associated with vector index */
13092 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13093 				cpup = &phba->sli4_hba.cpu_map[cpu];
13094 
13095 				/* If this is the first CPU thats assigned to
13096 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13097 				 *
13098 				 * With certain platforms its possible that irq
13099 				 * vectors are affinitized to all the cpu's.
13100 				 * This can result in each cpu_map.eq to be set
13101 				 * to the last vector, resulting in overwrite
13102 				 * of all the previous cpu_map.eq.  Ensure that
13103 				 * each vector receives a place in cpu_map.
13104 				 * Later call to lpfc_cpu_affinity_check will
13105 				 * ensure we are nicely balanced out.
13106 				 */
13107 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13108 					continue;
13109 				lpfc_assign_eq_map_info(phba, index,
13110 							LPFC_CPU_FIRST_IRQ,
13111 							cpu);
13112 				break;
13113 			}
13114 		}
13115 	}
13116 
13117 	if (vectors != phba->cfg_irq_chann) {
13118 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13119 				"3238 Reducing IO channels to match number of "
13120 				"MSI-X vectors, requested %d got %d\n",
13121 				phba->cfg_irq_chann, vectors);
13122 		if (phba->cfg_irq_chann > vectors)
13123 			phba->cfg_irq_chann = vectors;
13124 	}
13125 
13126 	return rc;
13127 
13128 cfg_fail_out:
13129 	/* free the irq already requested */
13130 	for (--index; index >= 0; index--) {
13131 		eqhdl = lpfc_get_eq_hdl(index);
13132 		lpfc_irq_clear_aff(eqhdl);
13133 		free_irq(eqhdl->irq, eqhdl);
13134 	}
13135 
13136 	/* Unconfigure MSI-X capability structure */
13137 	pci_free_irq_vectors(phba->pcidev);
13138 
13139 vec_fail_out:
13140 	return rc;
13141 }
13142 
13143 /**
13144  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13145  * @phba: pointer to lpfc hba data structure.
13146  *
13147  * This routine is invoked to enable the MSI interrupt mode to device with
13148  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13149  * called to enable the MSI vector. The device driver is responsible for
13150  * calling the request_irq() to register MSI vector with a interrupt the
13151  * handler, which is done in this function.
13152  *
13153  * Return codes
13154  * 	0 - successful
13155  * 	other values - error
13156  **/
13157 static int
13158 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13159 {
13160 	int rc, index;
13161 	unsigned int cpu;
13162 	struct lpfc_hba_eq_hdl *eqhdl;
13163 
13164 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13165 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13166 	if (rc > 0)
13167 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13168 				"0487 PCI enable MSI mode success.\n");
13169 	else {
13170 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13171 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13172 		return rc ? rc : -1;
13173 	}
13174 
13175 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13176 			 0, LPFC_DRIVER_NAME, phba);
13177 	if (rc) {
13178 		pci_free_irq_vectors(phba->pcidev);
13179 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13180 				"0490 MSI request_irq failed (%d)\n", rc);
13181 		return rc;
13182 	}
13183 
13184 	eqhdl = lpfc_get_eq_hdl(0);
13185 	rc = pci_irq_vector(phba->pcidev, 0);
13186 	if (rc < 0) {
13187 		pci_free_irq_vectors(phba->pcidev);
13188 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13189 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13190 		return rc;
13191 	}
13192 	eqhdl->irq = rc;
13193 
13194 	cpu = cpumask_first(cpu_present_mask);
13195 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13196 
13197 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13198 		eqhdl = lpfc_get_eq_hdl(index);
13199 		eqhdl->idx = index;
13200 	}
13201 
13202 	return 0;
13203 }
13204 
13205 /**
13206  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13207  * @phba: pointer to lpfc hba data structure.
13208  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13209  *
13210  * This routine is invoked to enable device interrupt and associate driver's
13211  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13212  * interface spec. Depends on the interrupt mode configured to the driver,
13213  * the driver will try to fallback from the configured interrupt mode to an
13214  * interrupt mode which is supported by the platform, kernel, and device in
13215  * the order of:
13216  * MSI-X -> MSI -> IRQ.
13217  *
13218  * Return codes
13219  *	Interrupt mode (2, 1, 0) - successful
13220  *	LPFC_INTR_ERROR - error
13221  **/
13222 static uint32_t
13223 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13224 {
13225 	uint32_t intr_mode = LPFC_INTR_ERROR;
13226 	int retval, idx;
13227 
13228 	if (cfg_mode == 2) {
13229 		/* Preparation before conf_msi mbox cmd */
13230 		retval = 0;
13231 		if (!retval) {
13232 			/* Now, try to enable MSI-X interrupt mode */
13233 			retval = lpfc_sli4_enable_msix(phba);
13234 			if (!retval) {
13235 				/* Indicate initialization to MSI-X mode */
13236 				phba->intr_type = MSIX;
13237 				intr_mode = 2;
13238 			}
13239 		}
13240 	}
13241 
13242 	/* Fallback to MSI if MSI-X initialization failed */
13243 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13244 		retval = lpfc_sli4_enable_msi(phba);
13245 		if (!retval) {
13246 			/* Indicate initialization to MSI mode */
13247 			phba->intr_type = MSI;
13248 			intr_mode = 1;
13249 		}
13250 	}
13251 
13252 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13253 	if (phba->intr_type == NONE) {
13254 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13255 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13256 		if (!retval) {
13257 			struct lpfc_hba_eq_hdl *eqhdl;
13258 			unsigned int cpu;
13259 
13260 			/* Indicate initialization to INTx mode */
13261 			phba->intr_type = INTx;
13262 			intr_mode = 0;
13263 
13264 			eqhdl = lpfc_get_eq_hdl(0);
13265 			retval = pci_irq_vector(phba->pcidev, 0);
13266 			if (retval < 0) {
13267 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13268 					"0502 INTR pci_irq_vec failed (%d)\n",
13269 					 retval);
13270 				return LPFC_INTR_ERROR;
13271 			}
13272 			eqhdl->irq = retval;
13273 
13274 			cpu = cpumask_first(cpu_present_mask);
13275 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13276 						cpu);
13277 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13278 				eqhdl = lpfc_get_eq_hdl(idx);
13279 				eqhdl->idx = idx;
13280 			}
13281 		}
13282 	}
13283 	return intr_mode;
13284 }
13285 
13286 /**
13287  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13288  * @phba: pointer to lpfc hba data structure.
13289  *
13290  * This routine is invoked to disable device interrupt and disassociate
13291  * the driver's interrupt handler(s) from interrupt vector(s) to device
13292  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13293  * will release the interrupt vector(s) for the message signaled interrupt.
13294  **/
13295 static void
13296 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13297 {
13298 	/* Disable the currently initialized interrupt mode */
13299 	if (phba->intr_type == MSIX) {
13300 		int index;
13301 		struct lpfc_hba_eq_hdl *eqhdl;
13302 
13303 		/* Free up MSI-X multi-message vectors */
13304 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13305 			eqhdl = lpfc_get_eq_hdl(index);
13306 			lpfc_irq_clear_aff(eqhdl);
13307 			free_irq(eqhdl->irq, eqhdl);
13308 		}
13309 	} else {
13310 		free_irq(phba->pcidev->irq, phba);
13311 	}
13312 
13313 	pci_free_irq_vectors(phba->pcidev);
13314 
13315 	/* Reset interrupt management states */
13316 	phba->intr_type = NONE;
13317 	phba->sli.slistat.sli_intr = 0;
13318 }
13319 
13320 /**
13321  * lpfc_unset_hba - Unset SLI3 hba device initialization
13322  * @phba: pointer to lpfc hba data structure.
13323  *
13324  * This routine is invoked to unset the HBA device initialization steps to
13325  * a device with SLI-3 interface spec.
13326  **/
13327 static void
13328 lpfc_unset_hba(struct lpfc_hba *phba)
13329 {
13330 	struct lpfc_vport *vport = phba->pport;
13331 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13332 
13333 	spin_lock_irq(shost->host_lock);
13334 	vport->load_flag |= FC_UNLOADING;
13335 	spin_unlock_irq(shost->host_lock);
13336 
13337 	kfree(phba->vpi_bmask);
13338 	kfree(phba->vpi_ids);
13339 
13340 	lpfc_stop_hba_timers(phba);
13341 
13342 	phba->pport->work_port_events = 0;
13343 
13344 	lpfc_sli_hba_down(phba);
13345 
13346 	lpfc_sli_brdrestart(phba);
13347 
13348 	lpfc_sli_disable_intr(phba);
13349 
13350 	return;
13351 }
13352 
13353 /**
13354  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13355  * @phba: Pointer to HBA context object.
13356  *
13357  * This function is called in the SLI4 code path to wait for completion
13358  * of device's XRIs exchange busy. It will check the XRI exchange busy
13359  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13360  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13361  * I/Os every 30 seconds, log error message, and wait forever. Only when
13362  * all XRI exchange busy complete, the driver unload shall proceed with
13363  * invoking the function reset ioctl mailbox command to the CNA and the
13364  * the rest of the driver unload resource release.
13365  **/
13366 static void
13367 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13368 {
13369 	struct lpfc_sli4_hdw_queue *qp;
13370 	int idx, ccnt;
13371 	int wait_time = 0;
13372 	int io_xri_cmpl = 1;
13373 	int nvmet_xri_cmpl = 1;
13374 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13375 
13376 	/* Driver just aborted IOs during the hba_unset process.  Pause
13377 	 * here to give the HBA time to complete the IO and get entries
13378 	 * into the abts lists.
13379 	 */
13380 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13381 
13382 	/* Wait for NVME pending IO to flush back to transport. */
13383 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13384 		lpfc_nvme_wait_for_io_drain(phba);
13385 
13386 	ccnt = 0;
13387 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13388 		qp = &phba->sli4_hba.hdwq[idx];
13389 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13390 		if (!io_xri_cmpl) /* if list is NOT empty */
13391 			ccnt++;
13392 	}
13393 	if (ccnt)
13394 		io_xri_cmpl = 0;
13395 
13396 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13397 		nvmet_xri_cmpl =
13398 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13399 	}
13400 
13401 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13402 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13403 			if (!nvmet_xri_cmpl)
13404 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13405 						"6424 NVMET XRI exchange busy "
13406 						"wait time: %d seconds.\n",
13407 						wait_time/1000);
13408 			if (!io_xri_cmpl)
13409 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13410 						"6100 IO XRI exchange busy "
13411 						"wait time: %d seconds.\n",
13412 						wait_time/1000);
13413 			if (!els_xri_cmpl)
13414 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13415 						"2878 ELS XRI exchange busy "
13416 						"wait time: %d seconds.\n",
13417 						wait_time/1000);
13418 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13419 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13420 		} else {
13421 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13422 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13423 		}
13424 
13425 		ccnt = 0;
13426 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13427 			qp = &phba->sli4_hba.hdwq[idx];
13428 			io_xri_cmpl = list_empty(
13429 			    &qp->lpfc_abts_io_buf_list);
13430 			if (!io_xri_cmpl) /* if list is NOT empty */
13431 				ccnt++;
13432 		}
13433 		if (ccnt)
13434 			io_xri_cmpl = 0;
13435 
13436 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13437 			nvmet_xri_cmpl = list_empty(
13438 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13439 		}
13440 		els_xri_cmpl =
13441 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13442 
13443 	}
13444 }
13445 
13446 /**
13447  * lpfc_sli4_hba_unset - Unset the fcoe hba
13448  * @phba: Pointer to HBA context object.
13449  *
13450  * This function is called in the SLI4 code path to reset the HBA's FCoE
13451  * function. The caller is not required to hold any lock. This routine
13452  * issues PCI function reset mailbox command to reset the FCoE function.
13453  * At the end of the function, it calls lpfc_hba_down_post function to
13454  * free any pending commands.
13455  **/
13456 static void
13457 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13458 {
13459 	int wait_cnt = 0;
13460 	LPFC_MBOXQ_t *mboxq;
13461 	struct pci_dev *pdev = phba->pcidev;
13462 
13463 	lpfc_stop_hba_timers(phba);
13464 	hrtimer_cancel(&phba->cmf_timer);
13465 
13466 	if (phba->pport)
13467 		phba->sli4_hba.intr_enable = 0;
13468 
13469 	/*
13470 	 * Gracefully wait out the potential current outstanding asynchronous
13471 	 * mailbox command.
13472 	 */
13473 
13474 	/* First, block any pending async mailbox command from posted */
13475 	spin_lock_irq(&phba->hbalock);
13476 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13477 	spin_unlock_irq(&phba->hbalock);
13478 	/* Now, trying to wait it out if we can */
13479 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13480 		msleep(10);
13481 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13482 			break;
13483 	}
13484 	/* Forcefully release the outstanding mailbox command if timed out */
13485 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13486 		spin_lock_irq(&phba->hbalock);
13487 		mboxq = phba->sli.mbox_active;
13488 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13489 		__lpfc_mbox_cmpl_put(phba, mboxq);
13490 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13491 		phba->sli.mbox_active = NULL;
13492 		spin_unlock_irq(&phba->hbalock);
13493 	}
13494 
13495 	/* Abort all iocbs associated with the hba */
13496 	lpfc_sli_hba_iocb_abort(phba);
13497 
13498 	if (!pci_channel_offline(phba->pcidev))
13499 		/* Wait for completion of device XRI exchange busy */
13500 		lpfc_sli4_xri_exchange_busy_wait(phba);
13501 
13502 	/* per-phba callback de-registration for hotplug event */
13503 	if (phba->pport)
13504 		lpfc_cpuhp_remove(phba);
13505 
13506 	/* Disable PCI subsystem interrupt */
13507 	lpfc_sli4_disable_intr(phba);
13508 
13509 	/* Disable SR-IOV if enabled */
13510 	if (phba->cfg_sriov_nr_virtfn)
13511 		pci_disable_sriov(pdev);
13512 
13513 	/* Stop kthread signal shall trigger work_done one more time */
13514 	kthread_stop(phba->worker_thread);
13515 
13516 	/* Disable FW logging to host memory */
13517 	lpfc_ras_stop_fwlog(phba);
13518 
13519 	/* Reset SLI4 HBA FCoE function */
13520 	lpfc_pci_function_reset(phba);
13521 
13522 	/* release all queue allocated resources. */
13523 	lpfc_sli4_queue_destroy(phba);
13524 
13525 	/* Free RAS DMA memory */
13526 	if (phba->ras_fwlog.ras_enabled)
13527 		lpfc_sli4_ras_dma_free(phba);
13528 
13529 	/* Stop the SLI4 device port */
13530 	if (phba->pport)
13531 		phba->pport->work_port_events = 0;
13532 }
13533 
13534 static uint32_t
13535 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13536 {
13537 	uint32_t msb = 0;
13538 	uint32_t bit;
13539 
13540 	for (bit = 0; bit < 8; bit++) {
13541 		msb = (crc >> 31) & 1;
13542 		crc <<= 1;
13543 
13544 		if (msb ^ (byte & 1)) {
13545 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13546 			crc |= 1;
13547 		}
13548 		byte >>= 1;
13549 	}
13550 	return crc;
13551 }
13552 
13553 static uint32_t
13554 lpfc_cgn_reverse_bits(uint32_t wd)
13555 {
13556 	uint32_t result = 0;
13557 	uint32_t i;
13558 
13559 	for (i = 0; i < 32; i++) {
13560 		result <<= 1;
13561 		result |= (1 & (wd >> i));
13562 	}
13563 	return result;
13564 }
13565 
13566 /*
13567  * The routine corresponds with the algorithm the HBA firmware
13568  * uses to validate the data integrity.
13569  */
13570 uint32_t
13571 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13572 {
13573 	uint32_t  i;
13574 	uint32_t result;
13575 	uint8_t  *data = (uint8_t *)ptr;
13576 
13577 	for (i = 0; i < byteLen; ++i)
13578 		crc = lpfc_cgn_crc32(crc, data[i]);
13579 
13580 	result = ~lpfc_cgn_reverse_bits(crc);
13581 	return result;
13582 }
13583 
13584 void
13585 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13586 {
13587 	struct lpfc_cgn_info *cp;
13588 	struct timespec64 cmpl_time;
13589 	struct tm broken;
13590 	uint16_t size;
13591 	uint32_t crc;
13592 
13593 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13594 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13595 
13596 	if (!phba->cgn_i)
13597 		return;
13598 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13599 
13600 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13601 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13602 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13603 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13604 
13605 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13606 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13607 	atomic64_set(&phba->cgn_latency_evt, 0);
13608 	phba->cgn_evt_minute = 0;
13609 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13610 
13611 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13612 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13613 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13614 
13615 	/* cgn parameters */
13616 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13617 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13618 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13619 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13620 
13621 	ktime_get_real_ts64(&cmpl_time);
13622 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13623 
13624 	cp->cgn_info_month = broken.tm_mon + 1;
13625 	cp->cgn_info_day = broken.tm_mday;
13626 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13627 	cp->cgn_info_hour = broken.tm_hour;
13628 	cp->cgn_info_minute = broken.tm_min;
13629 	cp->cgn_info_second = broken.tm_sec;
13630 
13631 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13632 			"2643 CGNInfo Init: Start Time "
13633 			"%d/%d/%d %d:%d:%d\n",
13634 			cp->cgn_info_day, cp->cgn_info_month,
13635 			cp->cgn_info_year, cp->cgn_info_hour,
13636 			cp->cgn_info_minute, cp->cgn_info_second);
13637 
13638 	/* Fill in default LUN qdepth */
13639 	if (phba->pport) {
13640 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13641 		cp->cgn_lunq = cpu_to_le16(size);
13642 	}
13643 
13644 	/* last used Index initialized to 0xff already */
13645 
13646 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13647 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13648 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13649 	cp->cgn_info_crc = cpu_to_le32(crc);
13650 
13651 	phba->cgn_evt_timestamp = jiffies +
13652 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13653 }
13654 
13655 void
13656 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13657 {
13658 	struct lpfc_cgn_info *cp;
13659 	struct timespec64 cmpl_time;
13660 	struct tm broken;
13661 	uint32_t crc;
13662 
13663 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13664 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13665 
13666 	if (!phba->cgn_i)
13667 		return;
13668 
13669 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13670 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13671 
13672 	ktime_get_real_ts64(&cmpl_time);
13673 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13674 
13675 	cp->cgn_stat_month = broken.tm_mon + 1;
13676 	cp->cgn_stat_day = broken.tm_mday;
13677 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13678 	cp->cgn_stat_hour = broken.tm_hour;
13679 	cp->cgn_stat_minute = broken.tm_min;
13680 
13681 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13682 			"2647 CGNstat Init: Start Time "
13683 			"%d/%d/%d %d:%d\n",
13684 			cp->cgn_stat_day, cp->cgn_stat_month,
13685 			cp->cgn_stat_year, cp->cgn_stat_hour,
13686 			cp->cgn_stat_minute);
13687 
13688 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13689 	cp->cgn_info_crc = cpu_to_le32(crc);
13690 }
13691 
13692 /**
13693  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13694  * @phba: Pointer to hba context object.
13695  * @reg: flag to determine register or unregister.
13696  */
13697 static int
13698 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13699 {
13700 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13701 	union  lpfc_sli4_cfg_shdr *shdr;
13702 	uint32_t shdr_status, shdr_add_status;
13703 	LPFC_MBOXQ_t *mboxq;
13704 	int length, rc;
13705 
13706 	if (!phba->cgn_i)
13707 		return -ENXIO;
13708 
13709 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13710 	if (!mboxq) {
13711 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13712 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13713 				"HBA state x%x reg %d\n",
13714 				phba->pport->port_state, reg);
13715 		return -ENOMEM;
13716 	}
13717 
13718 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13719 		sizeof(struct lpfc_sli4_cfg_mhdr));
13720 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13721 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13722 			 LPFC_SLI4_MBX_EMBED);
13723 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13724 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13725 	if (reg > 0)
13726 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13727 	else
13728 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13729 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13730 	reg_congestion_buf->addr_lo =
13731 		putPaddrLow(phba->cgn_i->phys);
13732 	reg_congestion_buf->addr_hi =
13733 		putPaddrHigh(phba->cgn_i->phys);
13734 
13735 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13736 	shdr = (union lpfc_sli4_cfg_shdr *)
13737 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13738 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13739 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13740 				 &shdr->response);
13741 	mempool_free(mboxq, phba->mbox_mem_pool);
13742 	if (shdr_status || shdr_add_status || rc) {
13743 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13744 				"2642 REG_CONGESTION_BUF mailbox "
13745 				"failed with status x%x add_status x%x,"
13746 				" mbx status x%x reg %d\n",
13747 				shdr_status, shdr_add_status, rc, reg);
13748 		return -ENXIO;
13749 	}
13750 	return 0;
13751 }
13752 
13753 int
13754 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13755 {
13756 	lpfc_cmf_stop(phba);
13757 	return __lpfc_reg_congestion_buf(phba, 0);
13758 }
13759 
13760 int
13761 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13762 {
13763 	return __lpfc_reg_congestion_buf(phba, 1);
13764 }
13765 
13766 /**
13767  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13768  * @phba: Pointer to HBA context object.
13769  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13770  *
13771  * This function is called in the SLI4 code path to read the port's
13772  * sli4 capabilities.
13773  *
13774  * This function may be be called from any context that can block-wait
13775  * for the completion.  The expectation is that this routine is called
13776  * typically from probe_one or from the online routine.
13777  **/
13778 int
13779 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13780 {
13781 	int rc;
13782 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13783 	struct lpfc_pc_sli4_params *sli4_params;
13784 	uint32_t mbox_tmo;
13785 	int length;
13786 	bool exp_wqcq_pages = true;
13787 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13788 
13789 	/*
13790 	 * By default, the driver assumes the SLI4 port requires RPI
13791 	 * header postings.  The SLI4_PARAM response will correct this
13792 	 * assumption.
13793 	 */
13794 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13795 
13796 	/* Read the port's SLI4 Config Parameters */
13797 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13798 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13799 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13800 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13801 			 length, LPFC_SLI4_MBX_EMBED);
13802 	if (!phba->sli4_hba.intr_enable)
13803 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13804 	else {
13805 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13806 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13807 	}
13808 	if (unlikely(rc))
13809 		return rc;
13810 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13811 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13812 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13813 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13814 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13815 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13816 					     mbx_sli4_parameters);
13817 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13818 					     mbx_sli4_parameters);
13819 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13820 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13821 	else
13822 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13823 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13824 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13825 					   mbx_sli4_parameters);
13826 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13827 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13828 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13829 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13830 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13831 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13832 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13833 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13834 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13835 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13836 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13837 					    mbx_sli4_parameters);
13838 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13839 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13840 					   mbx_sli4_parameters);
13841 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13842 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13843 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13844 
13845 	/* Check for Extended Pre-Registered SGL support */
13846 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13847 
13848 	/* Check for firmware nvme support */
13849 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13850 		     bf_get(cfg_xib, mbx_sli4_parameters));
13851 
13852 	if (rc) {
13853 		/* Save this to indicate the Firmware supports NVME */
13854 		sli4_params->nvme = 1;
13855 
13856 		/* Firmware NVME support, check driver FC4 NVME support */
13857 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13858 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13859 					"6133 Disabling NVME support: "
13860 					"FC4 type not supported: x%x\n",
13861 					phba->cfg_enable_fc4_type);
13862 			goto fcponly;
13863 		}
13864 	} else {
13865 		/* No firmware NVME support, check driver FC4 NVME support */
13866 		sli4_params->nvme = 0;
13867 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13868 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13869 					"6101 Disabling NVME support: Not "
13870 					"supported by firmware (%d %d) x%x\n",
13871 					bf_get(cfg_nvme, mbx_sli4_parameters),
13872 					bf_get(cfg_xib, mbx_sli4_parameters),
13873 					phba->cfg_enable_fc4_type);
13874 fcponly:
13875 			phba->nvmet_support = 0;
13876 			phba->cfg_nvmet_mrq = 0;
13877 			phba->cfg_nvme_seg_cnt = 0;
13878 
13879 			/* If no FC4 type support, move to just SCSI support */
13880 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13881 				return -ENODEV;
13882 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13883 		}
13884 	}
13885 
13886 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13887 	 * accommodate 512K and 1M IOs in a single nvme buf.
13888 	 */
13889 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13890 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13891 
13892 	/* Enable embedded Payload BDE if support is indicated */
13893 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13894 		phba->cfg_enable_pbde = 1;
13895 	else
13896 		phba->cfg_enable_pbde = 0;
13897 
13898 	/*
13899 	 * To support Suppress Response feature we must satisfy 3 conditions.
13900 	 * lpfc_suppress_rsp module parameter must be set (default).
13901 	 * In SLI4-Parameters Descriptor:
13902 	 * Extended Inline Buffers (XIB) must be supported.
13903 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13904 	 * (double negative).
13905 	 */
13906 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13907 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13908 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13909 	else
13910 		phba->cfg_suppress_rsp = 0;
13911 
13912 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13913 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13914 
13915 	/* Make sure that sge_supp_len can be handled by the driver */
13916 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13917 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13918 
13919 	/*
13920 	 * Check whether the adapter supports an embedded copy of the
13921 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13922 	 * to use this option, 128-byte WQEs must be used.
13923 	 */
13924 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13925 		phba->fcp_embed_io = 1;
13926 	else
13927 		phba->fcp_embed_io = 0;
13928 
13929 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13930 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13931 			bf_get(cfg_xib, mbx_sli4_parameters),
13932 			phba->cfg_enable_pbde,
13933 			phba->fcp_embed_io, sli4_params->nvme,
13934 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13935 
13936 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13937 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13938 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13939 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13940 		exp_wqcq_pages = false;
13941 
13942 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13943 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13944 	    exp_wqcq_pages &&
13945 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13946 		phba->enab_exp_wqcq_pages = 1;
13947 	else
13948 		phba->enab_exp_wqcq_pages = 0;
13949 	/*
13950 	 * Check if the SLI port supports MDS Diagnostics
13951 	 */
13952 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13953 		phba->mds_diags_support = 1;
13954 	else
13955 		phba->mds_diags_support = 0;
13956 
13957 	/*
13958 	 * Check if the SLI port supports NSLER
13959 	 */
13960 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13961 		phba->nsler = 1;
13962 	else
13963 		phba->nsler = 0;
13964 
13965 	return 0;
13966 }
13967 
13968 /**
13969  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13970  * @pdev: pointer to PCI device
13971  * @pid: pointer to PCI device identifier
13972  *
13973  * This routine is to be called to attach a device with SLI-3 interface spec
13974  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13975  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13976  * information of the device and driver to see if the driver state that it can
13977  * support this kind of device. If the match is successful, the driver core
13978  * invokes this routine. If this routine determines it can claim the HBA, it
13979  * does all the initialization that it needs to do to handle the HBA properly.
13980  *
13981  * Return code
13982  * 	0 - driver can claim the device
13983  * 	negative value - driver can not claim the device
13984  **/
13985 static int
13986 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13987 {
13988 	struct lpfc_hba   *phba;
13989 	struct lpfc_vport *vport = NULL;
13990 	struct Scsi_Host  *shost = NULL;
13991 	int error;
13992 	uint32_t cfg_mode, intr_mode;
13993 
13994 	/* Allocate memory for HBA structure */
13995 	phba = lpfc_hba_alloc(pdev);
13996 	if (!phba)
13997 		return -ENOMEM;
13998 
13999 	/* Perform generic PCI device enabling operation */
14000 	error = lpfc_enable_pci_dev(phba);
14001 	if (error)
14002 		goto out_free_phba;
14003 
14004 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
14005 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
14006 	if (error)
14007 		goto out_disable_pci_dev;
14008 
14009 	/* Set up SLI-3 specific device PCI memory space */
14010 	error = lpfc_sli_pci_mem_setup(phba);
14011 	if (error) {
14012 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14013 				"1402 Failed to set up pci memory space.\n");
14014 		goto out_disable_pci_dev;
14015 	}
14016 
14017 	/* Set up SLI-3 specific device driver resources */
14018 	error = lpfc_sli_driver_resource_setup(phba);
14019 	if (error) {
14020 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14021 				"1404 Failed to set up driver resource.\n");
14022 		goto out_unset_pci_mem_s3;
14023 	}
14024 
14025 	/* Initialize and populate the iocb list per host */
14026 
14027 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14028 	if (error) {
14029 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14030 				"1405 Failed to initialize iocb list.\n");
14031 		goto out_unset_driver_resource_s3;
14032 	}
14033 
14034 	/* Set up common device driver resources */
14035 	error = lpfc_setup_driver_resource_phase2(phba);
14036 	if (error) {
14037 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14038 				"1406 Failed to set up driver resource.\n");
14039 		goto out_free_iocb_list;
14040 	}
14041 
14042 	/* Get the default values for Model Name and Description */
14043 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14044 
14045 	/* Create SCSI host to the physical port */
14046 	error = lpfc_create_shost(phba);
14047 	if (error) {
14048 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14049 				"1407 Failed to create scsi host.\n");
14050 		goto out_unset_driver_resource;
14051 	}
14052 
14053 	/* Configure sysfs attributes */
14054 	vport = phba->pport;
14055 	error = lpfc_alloc_sysfs_attr(vport);
14056 	if (error) {
14057 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14058 				"1476 Failed to allocate sysfs attr\n");
14059 		goto out_destroy_shost;
14060 	}
14061 
14062 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14063 	/* Now, trying to enable interrupt and bring up the device */
14064 	cfg_mode = phba->cfg_use_msi;
14065 	while (true) {
14066 		/* Put device to a known state before enabling interrupt */
14067 		lpfc_stop_port(phba);
14068 		/* Configure and enable interrupt */
14069 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14070 		if (intr_mode == LPFC_INTR_ERROR) {
14071 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14072 					"0431 Failed to enable interrupt.\n");
14073 			error = -ENODEV;
14074 			goto out_free_sysfs_attr;
14075 		}
14076 		/* SLI-3 HBA setup */
14077 		if (lpfc_sli_hba_setup(phba)) {
14078 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14079 					"1477 Failed to set up hba\n");
14080 			error = -ENODEV;
14081 			goto out_remove_device;
14082 		}
14083 
14084 		/* Wait 50ms for the interrupts of previous mailbox commands */
14085 		msleep(50);
14086 		/* Check active interrupts on message signaled interrupts */
14087 		if (intr_mode == 0 ||
14088 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14089 			/* Log the current active interrupt mode */
14090 			phba->intr_mode = intr_mode;
14091 			lpfc_log_intr_mode(phba, intr_mode);
14092 			break;
14093 		} else {
14094 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14095 					"0447 Configure interrupt mode (%d) "
14096 					"failed active interrupt test.\n",
14097 					intr_mode);
14098 			/* Disable the current interrupt mode */
14099 			lpfc_sli_disable_intr(phba);
14100 			/* Try next level of interrupt mode */
14101 			cfg_mode = --intr_mode;
14102 		}
14103 	}
14104 
14105 	/* Perform post initialization setup */
14106 	lpfc_post_init_setup(phba);
14107 
14108 	/* Check if there are static vports to be created. */
14109 	lpfc_create_static_vport(phba);
14110 
14111 	return 0;
14112 
14113 out_remove_device:
14114 	lpfc_unset_hba(phba);
14115 out_free_sysfs_attr:
14116 	lpfc_free_sysfs_attr(vport);
14117 out_destroy_shost:
14118 	lpfc_destroy_shost(phba);
14119 out_unset_driver_resource:
14120 	lpfc_unset_driver_resource_phase2(phba);
14121 out_free_iocb_list:
14122 	lpfc_free_iocb_list(phba);
14123 out_unset_driver_resource_s3:
14124 	lpfc_sli_driver_resource_unset(phba);
14125 out_unset_pci_mem_s3:
14126 	lpfc_sli_pci_mem_unset(phba);
14127 out_disable_pci_dev:
14128 	lpfc_disable_pci_dev(phba);
14129 	if (shost)
14130 		scsi_host_put(shost);
14131 out_free_phba:
14132 	lpfc_hba_free(phba);
14133 	return error;
14134 }
14135 
14136 /**
14137  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14138  * @pdev: pointer to PCI device
14139  *
14140  * This routine is to be called to disattach a device with SLI-3 interface
14141  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14142  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14143  * device to be removed from the PCI subsystem properly.
14144  **/
14145 static void
14146 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14147 {
14148 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14149 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14150 	struct lpfc_vport **vports;
14151 	struct lpfc_hba   *phba = vport->phba;
14152 	int i;
14153 
14154 	spin_lock_irq(&phba->hbalock);
14155 	vport->load_flag |= FC_UNLOADING;
14156 	spin_unlock_irq(&phba->hbalock);
14157 
14158 	lpfc_free_sysfs_attr(vport);
14159 
14160 	/* Release all the vports against this physical port */
14161 	vports = lpfc_create_vport_work_array(phba);
14162 	if (vports != NULL)
14163 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14164 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14165 				continue;
14166 			fc_vport_terminate(vports[i]->fc_vport);
14167 		}
14168 	lpfc_destroy_vport_work_array(phba, vports);
14169 
14170 	/* Remove FC host with the physical port */
14171 	fc_remove_host(shost);
14172 	scsi_remove_host(shost);
14173 
14174 	/* Clean up all nodes, mailboxes and IOs. */
14175 	lpfc_cleanup(vport);
14176 
14177 	/*
14178 	 * Bring down the SLI Layer. This step disable all interrupts,
14179 	 * clears the rings, discards all mailbox commands, and resets
14180 	 * the HBA.
14181 	 */
14182 
14183 	/* HBA interrupt will be disabled after this call */
14184 	lpfc_sli_hba_down(phba);
14185 	/* Stop kthread signal shall trigger work_done one more time */
14186 	kthread_stop(phba->worker_thread);
14187 	/* Final cleanup of txcmplq and reset the HBA */
14188 	lpfc_sli_brdrestart(phba);
14189 
14190 	kfree(phba->vpi_bmask);
14191 	kfree(phba->vpi_ids);
14192 
14193 	lpfc_stop_hba_timers(phba);
14194 	spin_lock_irq(&phba->port_list_lock);
14195 	list_del_init(&vport->listentry);
14196 	spin_unlock_irq(&phba->port_list_lock);
14197 
14198 	lpfc_debugfs_terminate(vport);
14199 
14200 	/* Disable SR-IOV if enabled */
14201 	if (phba->cfg_sriov_nr_virtfn)
14202 		pci_disable_sriov(pdev);
14203 
14204 	/* Disable interrupt */
14205 	lpfc_sli_disable_intr(phba);
14206 
14207 	scsi_host_put(shost);
14208 
14209 	/*
14210 	 * Call scsi_free before mem_free since scsi bufs are released to their
14211 	 * corresponding pools here.
14212 	 */
14213 	lpfc_scsi_free(phba);
14214 	lpfc_free_iocb_list(phba);
14215 
14216 	lpfc_mem_free_all(phba);
14217 
14218 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14219 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14220 
14221 	/* Free resources associated with SLI2 interface */
14222 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14223 			  phba->slim2p.virt, phba->slim2p.phys);
14224 
14225 	/* unmap adapter SLIM and Control Registers */
14226 	iounmap(phba->ctrl_regs_memmap_p);
14227 	iounmap(phba->slim_memmap_p);
14228 
14229 	lpfc_hba_free(phba);
14230 
14231 	pci_release_mem_regions(pdev);
14232 	pci_disable_device(pdev);
14233 }
14234 
14235 /**
14236  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14237  * @dev_d: pointer to device
14238  *
14239  * This routine is to be called from the kernel's PCI subsystem to support
14240  * system Power Management (PM) to device with SLI-3 interface spec. When
14241  * PM invokes this method, it quiesces the device by stopping the driver's
14242  * worker thread for the device, turning off device's interrupt and DMA,
14243  * and bring the device offline. Note that as the driver implements the
14244  * minimum PM requirements to a power-aware driver's PM support for the
14245  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14246  * to the suspend() method call will be treated as SUSPEND and the driver will
14247  * fully reinitialize its device during resume() method call, the driver will
14248  * set device to PCI_D3hot state in PCI config space instead of setting it
14249  * according to the @msg provided by the PM.
14250  *
14251  * Return code
14252  * 	0 - driver suspended the device
14253  * 	Error otherwise
14254  **/
14255 static int __maybe_unused
14256 lpfc_pci_suspend_one_s3(struct device *dev_d)
14257 {
14258 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14259 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14260 
14261 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14262 			"0473 PCI device Power Management suspend.\n");
14263 
14264 	/* Bring down the device */
14265 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14266 	lpfc_offline(phba);
14267 	kthread_stop(phba->worker_thread);
14268 
14269 	/* Disable interrupt from device */
14270 	lpfc_sli_disable_intr(phba);
14271 
14272 	return 0;
14273 }
14274 
14275 /**
14276  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14277  * @dev_d: pointer to device
14278  *
14279  * This routine is to be called from the kernel's PCI subsystem to support
14280  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14281  * invokes this method, it restores the device's PCI config space state and
14282  * fully reinitializes the device and brings it online. Note that as the
14283  * driver implements the minimum PM requirements to a power-aware driver's
14284  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14285  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14286  * driver will fully reinitialize its device during resume() method call,
14287  * the device will be set to PCI_D0 directly in PCI config space before
14288  * restoring the state.
14289  *
14290  * Return code
14291  * 	0 - driver suspended the device
14292  * 	Error otherwise
14293  **/
14294 static int __maybe_unused
14295 lpfc_pci_resume_one_s3(struct device *dev_d)
14296 {
14297 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14298 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14299 	uint32_t intr_mode;
14300 	int error;
14301 
14302 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14303 			"0452 PCI device Power Management resume.\n");
14304 
14305 	/* Startup the kernel thread for this host adapter. */
14306 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14307 					"lpfc_worker_%d", phba->brd_no);
14308 	if (IS_ERR(phba->worker_thread)) {
14309 		error = PTR_ERR(phba->worker_thread);
14310 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14311 				"0434 PM resume failed to start worker "
14312 				"thread: error=x%x.\n", error);
14313 		return error;
14314 	}
14315 
14316 	/* Init cpu_map array */
14317 	lpfc_cpu_map_array_init(phba);
14318 	/* Init hba_eq_hdl array */
14319 	lpfc_hba_eq_hdl_array_init(phba);
14320 	/* Configure and enable interrupt */
14321 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14322 	if (intr_mode == LPFC_INTR_ERROR) {
14323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14324 				"0430 PM resume Failed to enable interrupt\n");
14325 		return -EIO;
14326 	} else
14327 		phba->intr_mode = intr_mode;
14328 
14329 	/* Restart HBA and bring it online */
14330 	lpfc_sli_brdrestart(phba);
14331 	lpfc_online(phba);
14332 
14333 	/* Log the current active interrupt mode */
14334 	lpfc_log_intr_mode(phba, phba->intr_mode);
14335 
14336 	return 0;
14337 }
14338 
14339 /**
14340  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14341  * @phba: pointer to lpfc hba data structure.
14342  *
14343  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14344  * aborts all the outstanding SCSI I/Os to the pci device.
14345  **/
14346 static void
14347 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14348 {
14349 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14350 			"2723 PCI channel I/O abort preparing for recovery\n");
14351 
14352 	/*
14353 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14354 	 * and let the SCSI mid-layer to retry them to recover.
14355 	 */
14356 	lpfc_sli_abort_fcp_rings(phba);
14357 }
14358 
14359 /**
14360  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14361  * @phba: pointer to lpfc hba data structure.
14362  *
14363  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14364  * disables the device interrupt and pci device, and aborts the internal FCP
14365  * pending I/Os.
14366  **/
14367 static void
14368 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14369 {
14370 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14371 			"2710 PCI channel disable preparing for reset\n");
14372 
14373 	/* Block any management I/Os to the device */
14374 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14375 
14376 	/* Block all SCSI devices' I/Os on the host */
14377 	lpfc_scsi_dev_block(phba);
14378 
14379 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14380 	lpfc_sli_flush_io_rings(phba);
14381 
14382 	/* stop all timers */
14383 	lpfc_stop_hba_timers(phba);
14384 
14385 	/* Disable interrupt and pci device */
14386 	lpfc_sli_disable_intr(phba);
14387 	pci_disable_device(phba->pcidev);
14388 }
14389 
14390 /**
14391  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14392  * @phba: pointer to lpfc hba data structure.
14393  *
14394  * This routine is called to prepare the SLI3 device for PCI slot permanently
14395  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14396  * pending I/Os.
14397  **/
14398 static void
14399 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14400 {
14401 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14402 			"2711 PCI channel permanent disable for failure\n");
14403 	/* Block all SCSI devices' I/Os on the host */
14404 	lpfc_scsi_dev_block(phba);
14405 	lpfc_sli4_prep_dev_for_reset(phba);
14406 
14407 	/* stop all timers */
14408 	lpfc_stop_hba_timers(phba);
14409 
14410 	/* Clean up all driver's outstanding SCSI I/Os */
14411 	lpfc_sli_flush_io_rings(phba);
14412 }
14413 
14414 /**
14415  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14416  * @pdev: pointer to PCI device.
14417  * @state: the current PCI connection state.
14418  *
14419  * This routine is called from the PCI subsystem for I/O error handling to
14420  * device with SLI-3 interface spec. This function is called by the PCI
14421  * subsystem after a PCI bus error affecting this device has been detected.
14422  * When this function is invoked, it will need to stop all the I/Os and
14423  * interrupt(s) to the device. Once that is done, it will return
14424  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14425  * as desired.
14426  *
14427  * Return codes
14428  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14429  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14430  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14431  **/
14432 static pci_ers_result_t
14433 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14434 {
14435 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14436 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14437 
14438 	switch (state) {
14439 	case pci_channel_io_normal:
14440 		/* Non-fatal error, prepare for recovery */
14441 		lpfc_sli_prep_dev_for_recover(phba);
14442 		return PCI_ERS_RESULT_CAN_RECOVER;
14443 	case pci_channel_io_frozen:
14444 		/* Fatal error, prepare for slot reset */
14445 		lpfc_sli_prep_dev_for_reset(phba);
14446 		return PCI_ERS_RESULT_NEED_RESET;
14447 	case pci_channel_io_perm_failure:
14448 		/* Permanent failure, prepare for device down */
14449 		lpfc_sli_prep_dev_for_perm_failure(phba);
14450 		return PCI_ERS_RESULT_DISCONNECT;
14451 	default:
14452 		/* Unknown state, prepare and request slot reset */
14453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14454 				"0472 Unknown PCI error state: x%x\n", state);
14455 		lpfc_sli_prep_dev_for_reset(phba);
14456 		return PCI_ERS_RESULT_NEED_RESET;
14457 	}
14458 }
14459 
14460 /**
14461  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14462  * @pdev: pointer to PCI device.
14463  *
14464  * This routine is called from the PCI subsystem for error handling to
14465  * device with SLI-3 interface spec. This is called after PCI bus has been
14466  * reset to restart the PCI card from scratch, as if from a cold-boot.
14467  * During the PCI subsystem error recovery, after driver returns
14468  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14469  * recovery and then call this routine before calling the .resume method
14470  * to recover the device. This function will initialize the HBA device,
14471  * enable the interrupt, but it will just put the HBA to offline state
14472  * without passing any I/O traffic.
14473  *
14474  * Return codes
14475  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14476  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14477  */
14478 static pci_ers_result_t
14479 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14480 {
14481 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14482 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14483 	struct lpfc_sli *psli = &phba->sli;
14484 	uint32_t intr_mode;
14485 
14486 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14487 	if (pci_enable_device_mem(pdev)) {
14488 		printk(KERN_ERR "lpfc: Cannot re-enable "
14489 			"PCI device after reset.\n");
14490 		return PCI_ERS_RESULT_DISCONNECT;
14491 	}
14492 
14493 	pci_restore_state(pdev);
14494 
14495 	/*
14496 	 * As the new kernel behavior of pci_restore_state() API call clears
14497 	 * device saved_state flag, need to save the restored state again.
14498 	 */
14499 	pci_save_state(pdev);
14500 
14501 	if (pdev->is_busmaster)
14502 		pci_set_master(pdev);
14503 
14504 	spin_lock_irq(&phba->hbalock);
14505 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14506 	spin_unlock_irq(&phba->hbalock);
14507 
14508 	/* Configure and enable interrupt */
14509 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14510 	if (intr_mode == LPFC_INTR_ERROR) {
14511 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14512 				"0427 Cannot re-enable interrupt after "
14513 				"slot reset.\n");
14514 		return PCI_ERS_RESULT_DISCONNECT;
14515 	} else
14516 		phba->intr_mode = intr_mode;
14517 
14518 	/* Take device offline, it will perform cleanup */
14519 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14520 	lpfc_offline(phba);
14521 	lpfc_sli_brdrestart(phba);
14522 
14523 	/* Log the current active interrupt mode */
14524 	lpfc_log_intr_mode(phba, phba->intr_mode);
14525 
14526 	return PCI_ERS_RESULT_RECOVERED;
14527 }
14528 
14529 /**
14530  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14531  * @pdev: pointer to PCI device
14532  *
14533  * This routine is called from the PCI subsystem for error handling to device
14534  * with SLI-3 interface spec. It is called when kernel error recovery tells
14535  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14536  * error recovery. After this call, traffic can start to flow from this device
14537  * again.
14538  */
14539 static void
14540 lpfc_io_resume_s3(struct pci_dev *pdev)
14541 {
14542 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14543 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14544 
14545 	/* Bring device online, it will be no-op for non-fatal error resume */
14546 	lpfc_online(phba);
14547 }
14548 
14549 /**
14550  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14551  * @phba: pointer to lpfc hba data structure.
14552  *
14553  * returns the number of ELS/CT IOCBs to reserve
14554  **/
14555 int
14556 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14557 {
14558 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14559 
14560 	if (phba->sli_rev == LPFC_SLI_REV4) {
14561 		if (max_xri <= 100)
14562 			return 10;
14563 		else if (max_xri <= 256)
14564 			return 25;
14565 		else if (max_xri <= 512)
14566 			return 50;
14567 		else if (max_xri <= 1024)
14568 			return 100;
14569 		else if (max_xri <= 1536)
14570 			return 150;
14571 		else if (max_xri <= 2048)
14572 			return 200;
14573 		else
14574 			return 250;
14575 	} else
14576 		return 0;
14577 }
14578 
14579 /**
14580  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14581  * @phba: pointer to lpfc hba data structure.
14582  *
14583  * returns the number of ELS/CT + NVMET IOCBs to reserve
14584  **/
14585 int
14586 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14587 {
14588 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14589 
14590 	if (phba->nvmet_support)
14591 		max_xri += LPFC_NVMET_BUF_POST;
14592 	return max_xri;
14593 }
14594 
14595 
14596 static int
14597 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14598 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14599 	const struct firmware *fw)
14600 {
14601 	int rc;
14602 	u8 sli_family;
14603 
14604 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14605 	/* Three cases:  (1) FW was not supported on the detected adapter.
14606 	 * (2) FW update has been locked out administratively.
14607 	 * (3) Some other error during FW update.
14608 	 * In each case, an unmaskable message is written to the console
14609 	 * for admin diagnosis.
14610 	 */
14611 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14612 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14613 	     magic_number != MAGIC_NUMBER_G6) ||
14614 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14615 	     magic_number != MAGIC_NUMBER_G7) ||
14616 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14617 	     magic_number != MAGIC_NUMBER_G7P)) {
14618 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14619 				"3030 This firmware version is not supported on"
14620 				" this HBA model. Device:%x Magic:%x Type:%x "
14621 				"ID:%x Size %d %zd\n",
14622 				phba->pcidev->device, magic_number, ftype, fid,
14623 				fsize, fw->size);
14624 		rc = -EINVAL;
14625 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14626 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14627 				"3021 Firmware downloads have been prohibited "
14628 				"by a system configuration setting on "
14629 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14630 				"%zd\n",
14631 				phba->pcidev->device, magic_number, ftype, fid,
14632 				fsize, fw->size);
14633 		rc = -EACCES;
14634 	} else {
14635 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14636 				"3022 FW Download failed. Add Status x%x "
14637 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14638 				"%zd\n",
14639 				offset, phba->pcidev->device, magic_number,
14640 				ftype, fid, fsize, fw->size);
14641 		rc = -EIO;
14642 	}
14643 	return rc;
14644 }
14645 
14646 /**
14647  * lpfc_write_firmware - attempt to write a firmware image to the port
14648  * @fw: pointer to firmware image returned from request_firmware.
14649  * @context: pointer to firmware image returned from request_firmware.
14650  *
14651  **/
14652 static void
14653 lpfc_write_firmware(const struct firmware *fw, void *context)
14654 {
14655 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14656 	char fwrev[FW_REV_STR_SIZE];
14657 	struct lpfc_grp_hdr *image;
14658 	struct list_head dma_buffer_list;
14659 	int i, rc = 0;
14660 	struct lpfc_dmabuf *dmabuf, *next;
14661 	uint32_t offset = 0, temp_offset = 0;
14662 	uint32_t magic_number, ftype, fid, fsize;
14663 
14664 	/* It can be null in no-wait mode, sanity check */
14665 	if (!fw) {
14666 		rc = -ENXIO;
14667 		goto out;
14668 	}
14669 	image = (struct lpfc_grp_hdr *)fw->data;
14670 
14671 	magic_number = be32_to_cpu(image->magic_number);
14672 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14673 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14674 	fsize = be32_to_cpu(image->size);
14675 
14676 	INIT_LIST_HEAD(&dma_buffer_list);
14677 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14678 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14679 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14680 				"3023 Updating Firmware, Current Version:%s "
14681 				"New Version:%s\n",
14682 				fwrev, image->revision);
14683 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14684 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14685 					 GFP_KERNEL);
14686 			if (!dmabuf) {
14687 				rc = -ENOMEM;
14688 				goto release_out;
14689 			}
14690 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14691 							  SLI4_PAGE_SIZE,
14692 							  &dmabuf->phys,
14693 							  GFP_KERNEL);
14694 			if (!dmabuf->virt) {
14695 				kfree(dmabuf);
14696 				rc = -ENOMEM;
14697 				goto release_out;
14698 			}
14699 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14700 		}
14701 		while (offset < fw->size) {
14702 			temp_offset = offset;
14703 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14704 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14705 					memcpy(dmabuf->virt,
14706 					       fw->data + temp_offset,
14707 					       fw->size - temp_offset);
14708 					temp_offset = fw->size;
14709 					break;
14710 				}
14711 				memcpy(dmabuf->virt, fw->data + temp_offset,
14712 				       SLI4_PAGE_SIZE);
14713 				temp_offset += SLI4_PAGE_SIZE;
14714 			}
14715 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14716 				    (fw->size - offset), &offset);
14717 			if (rc) {
14718 				rc = lpfc_log_write_firmware_error(phba, offset,
14719 								   magic_number,
14720 								   ftype,
14721 								   fid,
14722 								   fsize,
14723 								   fw);
14724 				goto release_out;
14725 			}
14726 		}
14727 		rc = offset;
14728 	} else
14729 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14730 				"3029 Skipped Firmware update, Current "
14731 				"Version:%s New Version:%s\n",
14732 				fwrev, image->revision);
14733 
14734 release_out:
14735 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14736 		list_del(&dmabuf->list);
14737 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14738 				  dmabuf->virt, dmabuf->phys);
14739 		kfree(dmabuf);
14740 	}
14741 	release_firmware(fw);
14742 out:
14743 	if (rc < 0)
14744 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14745 				"3062 Firmware update error, status %d.\n", rc);
14746 	else
14747 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14748 				"3024 Firmware update success: size %d.\n", rc);
14749 }
14750 
14751 /**
14752  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14753  * @phba: pointer to lpfc hba data structure.
14754  * @fw_upgrade: which firmware to update.
14755  *
14756  * This routine is called to perform Linux generic firmware upgrade on device
14757  * that supports such feature.
14758  **/
14759 int
14760 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14761 {
14762 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14763 	int ret;
14764 	const struct firmware *fw;
14765 
14766 	/* Only supported on SLI4 interface type 2 for now */
14767 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14768 	    LPFC_SLI_INTF_IF_TYPE_2)
14769 		return -EPERM;
14770 
14771 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14772 
14773 	if (fw_upgrade == INT_FW_UPGRADE) {
14774 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14775 					file_name, &phba->pcidev->dev,
14776 					GFP_KERNEL, (void *)phba,
14777 					lpfc_write_firmware);
14778 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14779 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14780 		if (!ret)
14781 			lpfc_write_firmware(fw, (void *)phba);
14782 	} else {
14783 		ret = -EINVAL;
14784 	}
14785 
14786 	return ret;
14787 }
14788 
14789 /**
14790  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14791  * @pdev: pointer to PCI device
14792  * @pid: pointer to PCI device identifier
14793  *
14794  * This routine is called from the kernel's PCI subsystem to device with
14795  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14796  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14797  * information of the device and driver to see if the driver state that it
14798  * can support this kind of device. If the match is successful, the driver
14799  * core invokes this routine. If this routine determines it can claim the HBA,
14800  * it does all the initialization that it needs to do to handle the HBA
14801  * properly.
14802  *
14803  * Return code
14804  * 	0 - driver can claim the device
14805  * 	negative value - driver can not claim the device
14806  **/
14807 static int
14808 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14809 {
14810 	struct lpfc_hba   *phba;
14811 	struct lpfc_vport *vport = NULL;
14812 	struct Scsi_Host  *shost = NULL;
14813 	int error;
14814 	uint32_t cfg_mode, intr_mode;
14815 
14816 	/* Allocate memory for HBA structure */
14817 	phba = lpfc_hba_alloc(pdev);
14818 	if (!phba)
14819 		return -ENOMEM;
14820 
14821 	INIT_LIST_HEAD(&phba->poll_list);
14822 
14823 	/* Perform generic PCI device enabling operation */
14824 	error = lpfc_enable_pci_dev(phba);
14825 	if (error)
14826 		goto out_free_phba;
14827 
14828 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14829 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14830 	if (error)
14831 		goto out_disable_pci_dev;
14832 
14833 	/* Set up SLI-4 specific device PCI memory space */
14834 	error = lpfc_sli4_pci_mem_setup(phba);
14835 	if (error) {
14836 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14837 				"1410 Failed to set up pci memory space.\n");
14838 		goto out_disable_pci_dev;
14839 	}
14840 
14841 	/* Set up SLI-4 Specific device driver resources */
14842 	error = lpfc_sli4_driver_resource_setup(phba);
14843 	if (error) {
14844 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14845 				"1412 Failed to set up driver resource.\n");
14846 		goto out_unset_pci_mem_s4;
14847 	}
14848 
14849 	INIT_LIST_HEAD(&phba->active_rrq_list);
14850 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14851 
14852 	/* Set up common device driver resources */
14853 	error = lpfc_setup_driver_resource_phase2(phba);
14854 	if (error) {
14855 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14856 				"1414 Failed to set up driver resource.\n");
14857 		goto out_unset_driver_resource_s4;
14858 	}
14859 
14860 	/* Get the default values for Model Name and Description */
14861 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14862 
14863 	/* Now, trying to enable interrupt and bring up the device */
14864 	cfg_mode = phba->cfg_use_msi;
14865 
14866 	/* Put device to a known state before enabling interrupt */
14867 	phba->pport = NULL;
14868 	lpfc_stop_port(phba);
14869 
14870 	/* Init cpu_map array */
14871 	lpfc_cpu_map_array_init(phba);
14872 
14873 	/* Init hba_eq_hdl array */
14874 	lpfc_hba_eq_hdl_array_init(phba);
14875 
14876 	/* Configure and enable interrupt */
14877 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14878 	if (intr_mode == LPFC_INTR_ERROR) {
14879 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14880 				"0426 Failed to enable interrupt.\n");
14881 		error = -ENODEV;
14882 		goto out_unset_driver_resource;
14883 	}
14884 	/* Default to single EQ for non-MSI-X */
14885 	if (phba->intr_type != MSIX) {
14886 		phba->cfg_irq_chann = 1;
14887 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14888 			if (phba->nvmet_support)
14889 				phba->cfg_nvmet_mrq = 1;
14890 		}
14891 	}
14892 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14893 
14894 	/* Create SCSI host to the physical port */
14895 	error = lpfc_create_shost(phba);
14896 	if (error) {
14897 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14898 				"1415 Failed to create scsi host.\n");
14899 		goto out_disable_intr;
14900 	}
14901 	vport = phba->pport;
14902 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14903 
14904 	/* Configure sysfs attributes */
14905 	error = lpfc_alloc_sysfs_attr(vport);
14906 	if (error) {
14907 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14908 				"1416 Failed to allocate sysfs attr\n");
14909 		goto out_destroy_shost;
14910 	}
14911 
14912 	/* Set up SLI-4 HBA */
14913 	if (lpfc_sli4_hba_setup(phba)) {
14914 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14915 				"1421 Failed to set up hba\n");
14916 		error = -ENODEV;
14917 		goto out_free_sysfs_attr;
14918 	}
14919 
14920 	/* Log the current active interrupt mode */
14921 	phba->intr_mode = intr_mode;
14922 	lpfc_log_intr_mode(phba, intr_mode);
14923 
14924 	/* Perform post initialization setup */
14925 	lpfc_post_init_setup(phba);
14926 
14927 	/* NVME support in FW earlier in the driver load corrects the
14928 	 * FC4 type making a check for nvme_support unnecessary.
14929 	 */
14930 	if (phba->nvmet_support == 0) {
14931 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14932 			/* Create NVME binding with nvme_fc_transport. This
14933 			 * ensures the vport is initialized.  If the localport
14934 			 * create fails, it should not unload the driver to
14935 			 * support field issues.
14936 			 */
14937 			error = lpfc_nvme_create_localport(vport);
14938 			if (error) {
14939 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14940 						"6004 NVME registration "
14941 						"failed, error x%x\n",
14942 						error);
14943 			}
14944 		}
14945 	}
14946 
14947 	/* check for firmware upgrade or downgrade */
14948 	if (phba->cfg_request_firmware_upgrade)
14949 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14950 
14951 	/* Check if there are static vports to be created. */
14952 	lpfc_create_static_vport(phba);
14953 
14954 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14955 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14956 
14957 	return 0;
14958 
14959 out_free_sysfs_attr:
14960 	lpfc_free_sysfs_attr(vport);
14961 out_destroy_shost:
14962 	lpfc_destroy_shost(phba);
14963 out_disable_intr:
14964 	lpfc_sli4_disable_intr(phba);
14965 out_unset_driver_resource:
14966 	lpfc_unset_driver_resource_phase2(phba);
14967 out_unset_driver_resource_s4:
14968 	lpfc_sli4_driver_resource_unset(phba);
14969 out_unset_pci_mem_s4:
14970 	lpfc_sli4_pci_mem_unset(phba);
14971 out_disable_pci_dev:
14972 	lpfc_disable_pci_dev(phba);
14973 	if (shost)
14974 		scsi_host_put(shost);
14975 out_free_phba:
14976 	lpfc_hba_free(phba);
14977 	return error;
14978 }
14979 
14980 /**
14981  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14982  * @pdev: pointer to PCI device
14983  *
14984  * This routine is called from the kernel's PCI subsystem to device with
14985  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14986  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14987  * device to be removed from the PCI subsystem properly.
14988  **/
14989 static void
14990 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14991 {
14992 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14993 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14994 	struct lpfc_vport **vports;
14995 	struct lpfc_hba *phba = vport->phba;
14996 	int i;
14997 
14998 	/* Mark the device unloading flag */
14999 	spin_lock_irq(&phba->hbalock);
15000 	vport->load_flag |= FC_UNLOADING;
15001 	spin_unlock_irq(&phba->hbalock);
15002 	if (phba->cgn_i)
15003 		lpfc_unreg_congestion_buf(phba);
15004 
15005 	lpfc_free_sysfs_attr(vport);
15006 
15007 	/* Release all the vports against this physical port */
15008 	vports = lpfc_create_vport_work_array(phba);
15009 	if (vports != NULL)
15010 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
15011 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
15012 				continue;
15013 			fc_vport_terminate(vports[i]->fc_vport);
15014 		}
15015 	lpfc_destroy_vport_work_array(phba, vports);
15016 
15017 	/* Remove FC host with the physical port */
15018 	fc_remove_host(shost);
15019 	scsi_remove_host(shost);
15020 
15021 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15022 	 * localports are destroyed after to cleanup all transport memory.
15023 	 */
15024 	lpfc_cleanup(vport);
15025 	lpfc_nvmet_destroy_targetport(phba);
15026 	lpfc_nvme_destroy_localport(vport);
15027 
15028 	/* De-allocate multi-XRI pools */
15029 	if (phba->cfg_xri_rebalancing)
15030 		lpfc_destroy_multixri_pools(phba);
15031 
15032 	/*
15033 	 * Bring down the SLI Layer. This step disables all interrupts,
15034 	 * clears the rings, discards all mailbox commands, and resets
15035 	 * the HBA FCoE function.
15036 	 */
15037 	lpfc_debugfs_terminate(vport);
15038 
15039 	lpfc_stop_hba_timers(phba);
15040 	spin_lock_irq(&phba->port_list_lock);
15041 	list_del_init(&vport->listentry);
15042 	spin_unlock_irq(&phba->port_list_lock);
15043 
15044 	/* Perform scsi free before driver resource_unset since scsi
15045 	 * buffers are released to their corresponding pools here.
15046 	 */
15047 	lpfc_io_free(phba);
15048 	lpfc_free_iocb_list(phba);
15049 	lpfc_sli4_hba_unset(phba);
15050 
15051 	lpfc_unset_driver_resource_phase2(phba);
15052 	lpfc_sli4_driver_resource_unset(phba);
15053 
15054 	/* Unmap adapter Control and Doorbell registers */
15055 	lpfc_sli4_pci_mem_unset(phba);
15056 
15057 	/* Release PCI resources and disable device's PCI function */
15058 	scsi_host_put(shost);
15059 	lpfc_disable_pci_dev(phba);
15060 
15061 	/* Finally, free the driver's device data structure */
15062 	lpfc_hba_free(phba);
15063 
15064 	return;
15065 }
15066 
15067 /**
15068  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15069  * @dev_d: pointer to device
15070  *
15071  * This routine is called from the kernel's PCI subsystem to support system
15072  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15073  * this method, it quiesces the device by stopping the driver's worker
15074  * thread for the device, turning off device's interrupt and DMA, and bring
15075  * the device offline. Note that as the driver implements the minimum PM
15076  * requirements to a power-aware driver's PM support for suspend/resume -- all
15077  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15078  * method call will be treated as SUSPEND and the driver will fully
15079  * reinitialize its device during resume() method call, the driver will set
15080  * device to PCI_D3hot state in PCI config space instead of setting it
15081  * according to the @msg provided by the PM.
15082  *
15083  * Return code
15084  * 	0 - driver suspended the device
15085  * 	Error otherwise
15086  **/
15087 static int __maybe_unused
15088 lpfc_pci_suspend_one_s4(struct device *dev_d)
15089 {
15090 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15091 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15092 
15093 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15094 			"2843 PCI device Power Management suspend.\n");
15095 
15096 	/* Bring down the device */
15097 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15098 	lpfc_offline(phba);
15099 	kthread_stop(phba->worker_thread);
15100 
15101 	/* Disable interrupt from device */
15102 	lpfc_sli4_disable_intr(phba);
15103 	lpfc_sli4_queue_destroy(phba);
15104 
15105 	return 0;
15106 }
15107 
15108 /**
15109  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15110  * @dev_d: pointer to device
15111  *
15112  * This routine is called from the kernel's PCI subsystem to support system
15113  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15114  * this method, it restores the device's PCI config space state and fully
15115  * reinitializes the device and brings it online. Note that as the driver
15116  * implements the minimum PM requirements to a power-aware driver's PM for
15117  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15118  * to the suspend() method call will be treated as SUSPEND and the driver
15119  * will fully reinitialize its device during resume() method call, the device
15120  * will be set to PCI_D0 directly in PCI config space before restoring the
15121  * state.
15122  *
15123  * Return code
15124  * 	0 - driver suspended the device
15125  * 	Error otherwise
15126  **/
15127 static int __maybe_unused
15128 lpfc_pci_resume_one_s4(struct device *dev_d)
15129 {
15130 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15131 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15132 	uint32_t intr_mode;
15133 	int error;
15134 
15135 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15136 			"0292 PCI device Power Management resume.\n");
15137 
15138 	 /* Startup the kernel thread for this host adapter. */
15139 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15140 					"lpfc_worker_%d", phba->brd_no);
15141 	if (IS_ERR(phba->worker_thread)) {
15142 		error = PTR_ERR(phba->worker_thread);
15143 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15144 				"0293 PM resume failed to start worker "
15145 				"thread: error=x%x.\n", error);
15146 		return error;
15147 	}
15148 
15149 	/* Configure and enable interrupt */
15150 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15151 	if (intr_mode == LPFC_INTR_ERROR) {
15152 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15153 				"0294 PM resume Failed to enable interrupt\n");
15154 		return -EIO;
15155 	} else
15156 		phba->intr_mode = intr_mode;
15157 
15158 	/* Restart HBA and bring it online */
15159 	lpfc_sli_brdrestart(phba);
15160 	lpfc_online(phba);
15161 
15162 	/* Log the current active interrupt mode */
15163 	lpfc_log_intr_mode(phba, phba->intr_mode);
15164 
15165 	return 0;
15166 }
15167 
15168 /**
15169  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15170  * @phba: pointer to lpfc hba data structure.
15171  *
15172  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15173  * aborts all the outstanding SCSI I/Os to the pci device.
15174  **/
15175 static void
15176 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15177 {
15178 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15179 			"2828 PCI channel I/O abort preparing for recovery\n");
15180 	/*
15181 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15182 	 * and let the SCSI mid-layer to retry them to recover.
15183 	 */
15184 	lpfc_sli_abort_fcp_rings(phba);
15185 }
15186 
15187 /**
15188  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15189  * @phba: pointer to lpfc hba data structure.
15190  *
15191  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15192  * disables the device interrupt and pci device, and aborts the internal FCP
15193  * pending I/Os.
15194  **/
15195 static void
15196 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15197 {
15198 	int offline =  pci_channel_offline(phba->pcidev);
15199 
15200 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15201 			"2826 PCI channel disable preparing for reset offline"
15202 			" %d\n", offline);
15203 
15204 	/* Block any management I/Os to the device */
15205 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15206 
15207 
15208 	/* HBA_PCI_ERR was set in io_error_detect */
15209 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15210 	/* Flush all driver's outstanding I/Os as we are to reset */
15211 	lpfc_sli_flush_io_rings(phba);
15212 	lpfc_offline(phba);
15213 
15214 	/* stop all timers */
15215 	lpfc_stop_hba_timers(phba);
15216 
15217 	lpfc_sli4_queue_destroy(phba);
15218 	/* Disable interrupt and pci device */
15219 	lpfc_sli4_disable_intr(phba);
15220 	pci_disable_device(phba->pcidev);
15221 }
15222 
15223 /**
15224  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15225  * @phba: pointer to lpfc hba data structure.
15226  *
15227  * This routine is called to prepare the SLI4 device for PCI slot permanently
15228  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15229  * pending I/Os.
15230  **/
15231 static void
15232 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15233 {
15234 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15235 			"2827 PCI channel permanent disable for failure\n");
15236 
15237 	/* Block all SCSI devices' I/Os on the host */
15238 	lpfc_scsi_dev_block(phba);
15239 
15240 	/* stop all timers */
15241 	lpfc_stop_hba_timers(phba);
15242 
15243 	/* Clean up all driver's outstanding I/Os */
15244 	lpfc_sli_flush_io_rings(phba);
15245 }
15246 
15247 /**
15248  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15249  * @pdev: pointer to PCI device.
15250  * @state: the current PCI connection state.
15251  *
15252  * This routine is called from the PCI subsystem for error handling to device
15253  * with SLI-4 interface spec. This function is called by the PCI subsystem
15254  * after a PCI bus error affecting this device has been detected. When this
15255  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15256  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15257  * for the PCI subsystem to perform proper recovery as desired.
15258  *
15259  * Return codes
15260  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15261  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15262  **/
15263 static pci_ers_result_t
15264 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15265 {
15266 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15267 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15268 	bool hba_pci_err;
15269 
15270 	switch (state) {
15271 	case pci_channel_io_normal:
15272 		/* Non-fatal error, prepare for recovery */
15273 		lpfc_sli4_prep_dev_for_recover(phba);
15274 		return PCI_ERS_RESULT_CAN_RECOVER;
15275 	case pci_channel_io_frozen:
15276 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15277 		/* Fatal error, prepare for slot reset */
15278 		if (!hba_pci_err)
15279 			lpfc_sli4_prep_dev_for_reset(phba);
15280 		else
15281 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15282 					"2832  Already handling PCI error "
15283 					"state: x%x\n", state);
15284 		return PCI_ERS_RESULT_NEED_RESET;
15285 	case pci_channel_io_perm_failure:
15286 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15287 		/* Permanent failure, prepare for device down */
15288 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15289 		return PCI_ERS_RESULT_DISCONNECT;
15290 	default:
15291 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15292 		if (!hba_pci_err)
15293 			lpfc_sli4_prep_dev_for_reset(phba);
15294 		/* Unknown state, prepare and request slot reset */
15295 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15296 				"2825 Unknown PCI error state: x%x\n", state);
15297 		lpfc_sli4_prep_dev_for_reset(phba);
15298 		return PCI_ERS_RESULT_NEED_RESET;
15299 	}
15300 }
15301 
15302 /**
15303  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15304  * @pdev: pointer to PCI device.
15305  *
15306  * This routine is called from the PCI subsystem for error handling to device
15307  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15308  * restart the PCI card from scratch, as if from a cold-boot. During the
15309  * PCI subsystem error recovery, after the driver returns
15310  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15311  * recovery and then call this routine before calling the .resume method to
15312  * recover the device. This function will initialize the HBA device, enable
15313  * the interrupt, but it will just put the HBA to offline state without
15314  * passing any I/O traffic.
15315  *
15316  * Return codes
15317  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15318  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15319  */
15320 static pci_ers_result_t
15321 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15322 {
15323 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15324 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15325 	struct lpfc_sli *psli = &phba->sli;
15326 	uint32_t intr_mode;
15327 	bool hba_pci_err;
15328 
15329 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15330 	if (pci_enable_device_mem(pdev)) {
15331 		printk(KERN_ERR "lpfc: Cannot re-enable "
15332 		       "PCI device after reset.\n");
15333 		return PCI_ERS_RESULT_DISCONNECT;
15334 	}
15335 
15336 	pci_restore_state(pdev);
15337 
15338 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15339 	if (!hba_pci_err)
15340 		dev_info(&pdev->dev,
15341 			 "hba_pci_err was not set, recovering slot reset.\n");
15342 	/*
15343 	 * As the new kernel behavior of pci_restore_state() API call clears
15344 	 * device saved_state flag, need to save the restored state again.
15345 	 */
15346 	pci_save_state(pdev);
15347 
15348 	if (pdev->is_busmaster)
15349 		pci_set_master(pdev);
15350 
15351 	spin_lock_irq(&phba->hbalock);
15352 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15353 	spin_unlock_irq(&phba->hbalock);
15354 
15355 	/* Init cpu_map array */
15356 	lpfc_cpu_map_array_init(phba);
15357 	/* Configure and enable interrupt */
15358 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15359 	if (intr_mode == LPFC_INTR_ERROR) {
15360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15361 				"2824 Cannot re-enable interrupt after "
15362 				"slot reset.\n");
15363 		return PCI_ERS_RESULT_DISCONNECT;
15364 	} else
15365 		phba->intr_mode = intr_mode;
15366 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15367 
15368 	/* Log the current active interrupt mode */
15369 	lpfc_log_intr_mode(phba, phba->intr_mode);
15370 
15371 	return PCI_ERS_RESULT_RECOVERED;
15372 }
15373 
15374 /**
15375  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15376  * @pdev: pointer to PCI device
15377  *
15378  * This routine is called from the PCI subsystem for error handling to device
15379  * with SLI-4 interface spec. It is called when kernel error recovery tells
15380  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15381  * error recovery. After this call, traffic can start to flow from this device
15382  * again.
15383  **/
15384 static void
15385 lpfc_io_resume_s4(struct pci_dev *pdev)
15386 {
15387 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15388 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15389 
15390 	/*
15391 	 * In case of slot reset, as function reset is performed through
15392 	 * mailbox command which needs DMA to be enabled, this operation
15393 	 * has to be moved to the io resume phase. Taking device offline
15394 	 * will perform the necessary cleanup.
15395 	 */
15396 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15397 		/* Perform device reset */
15398 		lpfc_sli_brdrestart(phba);
15399 		/* Bring the device back online */
15400 		lpfc_online(phba);
15401 	}
15402 }
15403 
15404 /**
15405  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15406  * @pdev: pointer to PCI device
15407  * @pid: pointer to PCI device identifier
15408  *
15409  * This routine is to be registered to the kernel's PCI subsystem. When an
15410  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15411  * at PCI device-specific information of the device and driver to see if the
15412  * driver state that it can support this kind of device. If the match is
15413  * successful, the driver core invokes this routine. This routine dispatches
15414  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15415  * do all the initialization that it needs to do to handle the HBA device
15416  * properly.
15417  *
15418  * Return code
15419  * 	0 - driver can claim the device
15420  * 	negative value - driver can not claim the device
15421  **/
15422 static int
15423 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15424 {
15425 	int rc;
15426 	struct lpfc_sli_intf intf;
15427 
15428 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15429 		return -ENODEV;
15430 
15431 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15432 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15433 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15434 	else
15435 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15436 
15437 	return rc;
15438 }
15439 
15440 /**
15441  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15442  * @pdev: pointer to PCI device
15443  *
15444  * This routine is to be registered to the kernel's PCI subsystem. When an
15445  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15446  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15447  * remove routine, which will perform all the necessary cleanup for the
15448  * device to be removed from the PCI subsystem properly.
15449  **/
15450 static void
15451 lpfc_pci_remove_one(struct pci_dev *pdev)
15452 {
15453 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15454 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15455 
15456 	switch (phba->pci_dev_grp) {
15457 	case LPFC_PCI_DEV_LP:
15458 		lpfc_pci_remove_one_s3(pdev);
15459 		break;
15460 	case LPFC_PCI_DEV_OC:
15461 		lpfc_pci_remove_one_s4(pdev);
15462 		break;
15463 	default:
15464 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15465 				"1424 Invalid PCI device group: 0x%x\n",
15466 				phba->pci_dev_grp);
15467 		break;
15468 	}
15469 	return;
15470 }
15471 
15472 /**
15473  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15474  * @dev: pointer to device
15475  *
15476  * This routine is to be registered to the kernel's PCI subsystem to support
15477  * system Power Management (PM). When PM invokes this method, it dispatches
15478  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15479  * suspend the device.
15480  *
15481  * Return code
15482  * 	0 - driver suspended the device
15483  * 	Error otherwise
15484  **/
15485 static int __maybe_unused
15486 lpfc_pci_suspend_one(struct device *dev)
15487 {
15488 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15489 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15490 	int rc = -ENODEV;
15491 
15492 	switch (phba->pci_dev_grp) {
15493 	case LPFC_PCI_DEV_LP:
15494 		rc = lpfc_pci_suspend_one_s3(dev);
15495 		break;
15496 	case LPFC_PCI_DEV_OC:
15497 		rc = lpfc_pci_suspend_one_s4(dev);
15498 		break;
15499 	default:
15500 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15501 				"1425 Invalid PCI device group: 0x%x\n",
15502 				phba->pci_dev_grp);
15503 		break;
15504 	}
15505 	return rc;
15506 }
15507 
15508 /**
15509  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15510  * @dev: pointer to device
15511  *
15512  * This routine is to be registered to the kernel's PCI subsystem to support
15513  * system Power Management (PM). When PM invokes this method, it dispatches
15514  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15515  * resume the device.
15516  *
15517  * Return code
15518  * 	0 - driver suspended the device
15519  * 	Error otherwise
15520  **/
15521 static int __maybe_unused
15522 lpfc_pci_resume_one(struct device *dev)
15523 {
15524 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15525 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15526 	int rc = -ENODEV;
15527 
15528 	switch (phba->pci_dev_grp) {
15529 	case LPFC_PCI_DEV_LP:
15530 		rc = lpfc_pci_resume_one_s3(dev);
15531 		break;
15532 	case LPFC_PCI_DEV_OC:
15533 		rc = lpfc_pci_resume_one_s4(dev);
15534 		break;
15535 	default:
15536 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15537 				"1426 Invalid PCI device group: 0x%x\n",
15538 				phba->pci_dev_grp);
15539 		break;
15540 	}
15541 	return rc;
15542 }
15543 
15544 /**
15545  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15546  * @pdev: pointer to PCI device.
15547  * @state: the current PCI connection state.
15548  *
15549  * This routine is registered to the PCI subsystem for error handling. This
15550  * function is called by the PCI subsystem after a PCI bus error affecting
15551  * this device has been detected. When this routine is invoked, it dispatches
15552  * the action to the proper SLI-3 or SLI-4 device error detected handling
15553  * routine, which will perform the proper error detected operation.
15554  *
15555  * Return codes
15556  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15557  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15558  **/
15559 static pci_ers_result_t
15560 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15561 {
15562 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15563 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15564 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15565 
15566 	if (phba->link_state == LPFC_HBA_ERROR &&
15567 	    phba->hba_flag & HBA_IOQ_FLUSH)
15568 		return PCI_ERS_RESULT_NEED_RESET;
15569 
15570 	switch (phba->pci_dev_grp) {
15571 	case LPFC_PCI_DEV_LP:
15572 		rc = lpfc_io_error_detected_s3(pdev, state);
15573 		break;
15574 	case LPFC_PCI_DEV_OC:
15575 		rc = lpfc_io_error_detected_s4(pdev, state);
15576 		break;
15577 	default:
15578 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15579 				"1427 Invalid PCI device group: 0x%x\n",
15580 				phba->pci_dev_grp);
15581 		break;
15582 	}
15583 	return rc;
15584 }
15585 
15586 /**
15587  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15588  * @pdev: pointer to PCI device.
15589  *
15590  * This routine is registered to the PCI subsystem for error handling. This
15591  * function is called after PCI bus has been reset to restart the PCI card
15592  * from scratch, as if from a cold-boot. When this routine is invoked, it
15593  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15594  * routine, which will perform the proper device reset.
15595  *
15596  * Return codes
15597  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15598  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15599  **/
15600 static pci_ers_result_t
15601 lpfc_io_slot_reset(struct pci_dev *pdev)
15602 {
15603 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15604 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15605 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15606 
15607 	switch (phba->pci_dev_grp) {
15608 	case LPFC_PCI_DEV_LP:
15609 		rc = lpfc_io_slot_reset_s3(pdev);
15610 		break;
15611 	case LPFC_PCI_DEV_OC:
15612 		rc = lpfc_io_slot_reset_s4(pdev);
15613 		break;
15614 	default:
15615 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15616 				"1428 Invalid PCI device group: 0x%x\n",
15617 				phba->pci_dev_grp);
15618 		break;
15619 	}
15620 	return rc;
15621 }
15622 
15623 /**
15624  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15625  * @pdev: pointer to PCI device
15626  *
15627  * This routine is registered to the PCI subsystem for error handling. It
15628  * is called when kernel error recovery tells the lpfc driver that it is
15629  * OK to resume normal PCI operation after PCI bus error recovery. When
15630  * this routine is invoked, it dispatches the action to the proper SLI-3
15631  * or SLI-4 device io_resume routine, which will resume the device operation.
15632  **/
15633 static void
15634 lpfc_io_resume(struct pci_dev *pdev)
15635 {
15636 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15637 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15638 
15639 	switch (phba->pci_dev_grp) {
15640 	case LPFC_PCI_DEV_LP:
15641 		lpfc_io_resume_s3(pdev);
15642 		break;
15643 	case LPFC_PCI_DEV_OC:
15644 		lpfc_io_resume_s4(pdev);
15645 		break;
15646 	default:
15647 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15648 				"1429 Invalid PCI device group: 0x%x\n",
15649 				phba->pci_dev_grp);
15650 		break;
15651 	}
15652 	return;
15653 }
15654 
15655 /**
15656  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15657  * @phba: pointer to lpfc hba data structure.
15658  *
15659  * This routine checks to see if OAS is supported for this adapter. If
15660  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15661  * the enable oas flag is cleared and the pool created for OAS device data
15662  * is destroyed.
15663  *
15664  **/
15665 static void
15666 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15667 {
15668 
15669 	if (!phba->cfg_EnableXLane)
15670 		return;
15671 
15672 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15673 		phba->cfg_fof = 1;
15674 	} else {
15675 		phba->cfg_fof = 0;
15676 		mempool_destroy(phba->device_data_mem_pool);
15677 		phba->device_data_mem_pool = NULL;
15678 	}
15679 
15680 	return;
15681 }
15682 
15683 /**
15684  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15685  * @phba: pointer to lpfc hba data structure.
15686  *
15687  * This routine checks to see if RAS is supported by the adapter. Check the
15688  * function through which RAS support enablement is to be done.
15689  **/
15690 void
15691 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15692 {
15693 	/* if ASIC_GEN_NUM >= 0xC) */
15694 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15695 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15696 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15697 		    LPFC_SLI_INTF_FAMILY_G6)) {
15698 		phba->ras_fwlog.ras_hwsupport = true;
15699 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15700 		    phba->cfg_ras_fwlog_buffsize)
15701 			phba->ras_fwlog.ras_enabled = true;
15702 		else
15703 			phba->ras_fwlog.ras_enabled = false;
15704 	} else {
15705 		phba->ras_fwlog.ras_hwsupport = false;
15706 	}
15707 }
15708 
15709 
15710 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15711 
15712 static const struct pci_error_handlers lpfc_err_handler = {
15713 	.error_detected = lpfc_io_error_detected,
15714 	.slot_reset = lpfc_io_slot_reset,
15715 	.resume = lpfc_io_resume,
15716 };
15717 
15718 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15719 			 lpfc_pci_suspend_one,
15720 			 lpfc_pci_resume_one);
15721 
15722 static struct pci_driver lpfc_driver = {
15723 	.name		= LPFC_DRIVER_NAME,
15724 	.id_table	= lpfc_id_table,
15725 	.probe		= lpfc_pci_probe_one,
15726 	.remove		= lpfc_pci_remove_one,
15727 	.shutdown	= lpfc_pci_remove_one,
15728 	.driver.pm	= &lpfc_pci_pm_ops_one,
15729 	.err_handler    = &lpfc_err_handler,
15730 };
15731 
15732 static const struct file_operations lpfc_mgmt_fop = {
15733 	.owner = THIS_MODULE,
15734 };
15735 
15736 static struct miscdevice lpfc_mgmt_dev = {
15737 	.minor = MISC_DYNAMIC_MINOR,
15738 	.name = "lpfcmgmt",
15739 	.fops = &lpfc_mgmt_fop,
15740 };
15741 
15742 /**
15743  * lpfc_init - lpfc module initialization routine
15744  *
15745  * This routine is to be invoked when the lpfc module is loaded into the
15746  * kernel. The special kernel macro module_init() is used to indicate the
15747  * role of this routine to the kernel as lpfc module entry point.
15748  *
15749  * Return codes
15750  *   0 - successful
15751  *   -ENOMEM - FC attach transport failed
15752  *   all others - failed
15753  */
15754 static int __init
15755 lpfc_init(void)
15756 {
15757 	int error = 0;
15758 
15759 	pr_info(LPFC_MODULE_DESC "\n");
15760 	pr_info(LPFC_COPYRIGHT "\n");
15761 
15762 	error = misc_register(&lpfc_mgmt_dev);
15763 	if (error)
15764 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15765 			"misc_register returned with status %d", error);
15766 
15767 	error = -ENOMEM;
15768 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15769 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15770 	lpfc_transport_template =
15771 				fc_attach_transport(&lpfc_transport_functions);
15772 	if (lpfc_transport_template == NULL)
15773 		goto unregister;
15774 	lpfc_vport_transport_template =
15775 		fc_attach_transport(&lpfc_vport_transport_functions);
15776 	if (lpfc_vport_transport_template == NULL) {
15777 		fc_release_transport(lpfc_transport_template);
15778 		goto unregister;
15779 	}
15780 	lpfc_wqe_cmd_template();
15781 	lpfc_nvmet_cmd_template();
15782 
15783 	/* Initialize in case vector mapping is needed */
15784 	lpfc_present_cpu = num_present_cpus();
15785 
15786 	lpfc_pldv_detect = false;
15787 
15788 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15789 					"lpfc/sli4:online",
15790 					lpfc_cpu_online, lpfc_cpu_offline);
15791 	if (error < 0)
15792 		goto cpuhp_failure;
15793 	lpfc_cpuhp_state = error;
15794 
15795 	error = pci_register_driver(&lpfc_driver);
15796 	if (error)
15797 		goto unwind;
15798 
15799 	return error;
15800 
15801 unwind:
15802 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15803 cpuhp_failure:
15804 	fc_release_transport(lpfc_transport_template);
15805 	fc_release_transport(lpfc_vport_transport_template);
15806 unregister:
15807 	misc_deregister(&lpfc_mgmt_dev);
15808 
15809 	return error;
15810 }
15811 
15812 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15813 {
15814 	unsigned int start_idx;
15815 	unsigned int dbg_cnt;
15816 	unsigned int temp_idx;
15817 	int i;
15818 	int j = 0;
15819 	unsigned long rem_nsec;
15820 
15821 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15822 		return;
15823 
15824 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15825 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15826 	if (!dbg_cnt)
15827 		goto out;
15828 	temp_idx = start_idx;
15829 	if (dbg_cnt >= DBG_LOG_SZ) {
15830 		dbg_cnt = DBG_LOG_SZ;
15831 		temp_idx -= 1;
15832 	} else {
15833 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15834 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15835 		} else {
15836 			if (start_idx < dbg_cnt)
15837 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15838 			else
15839 				start_idx -= dbg_cnt;
15840 		}
15841 	}
15842 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15843 		 start_idx, temp_idx, dbg_cnt);
15844 
15845 	for (i = 0; i < dbg_cnt; i++) {
15846 		if ((start_idx + i) < DBG_LOG_SZ)
15847 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15848 		else
15849 			temp_idx = j++;
15850 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15851 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15852 			 temp_idx,
15853 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15854 			 rem_nsec / 1000,
15855 			 phba->dbg_log[temp_idx].log);
15856 	}
15857 out:
15858 	atomic_set(&phba->dbg_log_cnt, 0);
15859 	atomic_set(&phba->dbg_log_dmping, 0);
15860 }
15861 
15862 __printf(2, 3)
15863 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15864 {
15865 	unsigned int idx;
15866 	va_list args;
15867 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15868 	struct va_format vaf;
15869 
15870 
15871 	va_start(args, fmt);
15872 	if (unlikely(dbg_dmping)) {
15873 		vaf.fmt = fmt;
15874 		vaf.va = &args;
15875 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15876 		va_end(args);
15877 		return;
15878 	}
15879 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15880 		DBG_LOG_SZ;
15881 
15882 	atomic_inc(&phba->dbg_log_cnt);
15883 
15884 	vscnprintf(phba->dbg_log[idx].log,
15885 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15886 	va_end(args);
15887 
15888 	phba->dbg_log[idx].t_ns = local_clock();
15889 }
15890 
15891 /**
15892  * lpfc_exit - lpfc module removal routine
15893  *
15894  * This routine is invoked when the lpfc module is removed from the kernel.
15895  * The special kernel macro module_exit() is used to indicate the role of
15896  * this routine to the kernel as lpfc module exit point.
15897  */
15898 static void __exit
15899 lpfc_exit(void)
15900 {
15901 	misc_deregister(&lpfc_mgmt_dev);
15902 	pci_unregister_driver(&lpfc_driver);
15903 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15904 	fc_release_transport(lpfc_transport_template);
15905 	fc_release_transport(lpfc_vport_transport_template);
15906 	idr_destroy(&lpfc_hba_index);
15907 }
15908 
15909 module_init(lpfc_init);
15910 module_exit(lpfc_exit);
15911 MODULE_LICENSE("GPL");
15912 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15913 MODULE_AUTHOR("Broadcom");
15914 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15915