xref: /linux/drivers/scsi/lpfc/lpfc_debugfs.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2007-2011 Emulex.  All rights reserved.           *
5  * EMULEX and SLI are trademarks of Emulex.                        *
6  * www.emulex.com                                                  *
7  *                                                                 *
8  * This program is free software; you can redistribute it and/or   *
9  * modify it under the terms of version 2 of the GNU General       *
10  * Public License as published by the Free Software Foundation.    *
11  * This program is distributed in the hope that it will be useful. *
12  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
13  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
14  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
15  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
16  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
17  * more details, a copy of which can be found in the file COPYING  *
18  * included with this package.                                     *
19  *******************************************************************/
20 
21 #include <linux/blkdev.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/idr.h>
25 #include <linux/interrupt.h>
26 #include <linux/kthread.h>
27 #include <linux/slab.h>
28 #include <linux/pci.h>
29 #include <linux/spinlock.h>
30 #include <linux/ctype.h>
31 
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 
37 #include "lpfc_hw4.h"
38 #include "lpfc_hw.h"
39 #include "lpfc_sli.h"
40 #include "lpfc_sli4.h"
41 #include "lpfc_nl.h"
42 #include "lpfc_disc.h"
43 #include "lpfc_scsi.h"
44 #include "lpfc.h"
45 #include "lpfc_logmsg.h"
46 #include "lpfc_crtn.h"
47 #include "lpfc_vport.h"
48 #include "lpfc_version.h"
49 #include "lpfc_compat.h"
50 #include "lpfc_debugfs.h"
51 
52 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
53 /*
54  * debugfs interface
55  *
56  * To access this interface the user should:
57  * # mount -t debugfs none /sys/kernel/debug
58  *
59  * The lpfc debugfs directory hierarchy is:
60  * /sys/kernel/debug/lpfc/fnX/vportY
61  * where X is the lpfc hba function unique_id
62  * where Y is the vport VPI on that hba
63  *
64  * Debugging services available per vport:
65  * discovery_trace
66  * This is an ACSII readable file that contains a trace of the last
67  * lpfc_debugfs_max_disc_trc events that happened on a specific vport.
68  * See lpfc_debugfs.h for different categories of  discovery events.
69  * To enable the discovery trace, the following module parameters must be set:
70  * lpfc_debugfs_enable=1         Turns on lpfc debugfs filesystem support
71  * lpfc_debugfs_max_disc_trc=X   Where X is the event trace depth for
72  *                               EACH vport. X MUST also be a power of 2.
73  * lpfc_debugfs_mask_disc_trc=Y  Where Y is an event mask as defined in
74  *                               lpfc_debugfs.h .
75  *
76  * slow_ring_trace
77  * This is an ACSII readable file that contains a trace of the last
78  * lpfc_debugfs_max_slow_ring_trc events that happened on a specific HBA.
79  * To enable the slow ring trace, the following module parameters must be set:
80  * lpfc_debugfs_enable=1         Turns on lpfc debugfs filesystem support
81  * lpfc_debugfs_max_slow_ring_trc=X   Where X is the event trace depth for
82  *                               the HBA. X MUST also be a power of 2.
83  */
84 static int lpfc_debugfs_enable = 1;
85 module_param(lpfc_debugfs_enable, int, S_IRUGO);
86 MODULE_PARM_DESC(lpfc_debugfs_enable, "Enable debugfs services");
87 
88 /* This MUST be a power of 2 */
89 static int lpfc_debugfs_max_disc_trc;
90 module_param(lpfc_debugfs_max_disc_trc, int, S_IRUGO);
91 MODULE_PARM_DESC(lpfc_debugfs_max_disc_trc,
92 	"Set debugfs discovery trace depth");
93 
94 /* This MUST be a power of 2 */
95 static int lpfc_debugfs_max_slow_ring_trc;
96 module_param(lpfc_debugfs_max_slow_ring_trc, int, S_IRUGO);
97 MODULE_PARM_DESC(lpfc_debugfs_max_slow_ring_trc,
98 	"Set debugfs slow ring trace depth");
99 
100 static int lpfc_debugfs_mask_disc_trc;
101 module_param(lpfc_debugfs_mask_disc_trc, int, S_IRUGO);
102 MODULE_PARM_DESC(lpfc_debugfs_mask_disc_trc,
103 	"Set debugfs discovery trace mask");
104 
105 #include <linux/debugfs.h>
106 
107 static atomic_t lpfc_debugfs_seq_trc_cnt = ATOMIC_INIT(0);
108 static unsigned long lpfc_debugfs_start_time = 0L;
109 
110 /* iDiag */
111 static struct lpfc_idiag idiag;
112 
113 /**
114  * lpfc_debugfs_disc_trc_data - Dump discovery logging to a buffer
115  * @vport: The vport to gather the log info from.
116  * @buf: The buffer to dump log into.
117  * @size: The maximum amount of data to process.
118  *
119  * Description:
120  * This routine gathers the lpfc discovery debugfs data from the @vport and
121  * dumps it to @buf up to @size number of bytes. It will start at the next entry
122  * in the log and process the log until the end of the buffer. Then it will
123  * gather from the beginning of the log and process until the current entry.
124  *
125  * Notes:
126  * Discovery logging will be disabled while while this routine dumps the log.
127  *
128  * Return Value:
129  * This routine returns the amount of bytes that were dumped into @buf and will
130  * not exceed @size.
131  **/
132 static int
133 lpfc_debugfs_disc_trc_data(struct lpfc_vport *vport, char *buf, int size)
134 {
135 	int i, index, len, enable;
136 	uint32_t ms;
137 	struct lpfc_debugfs_trc *dtp;
138 	char buffer[LPFC_DEBUG_TRC_ENTRY_SIZE];
139 
140 	enable = lpfc_debugfs_enable;
141 	lpfc_debugfs_enable = 0;
142 
143 	len = 0;
144 	index = (atomic_read(&vport->disc_trc_cnt) + 1) &
145 		(lpfc_debugfs_max_disc_trc - 1);
146 	for (i = index; i < lpfc_debugfs_max_disc_trc; i++) {
147 		dtp = vport->disc_trc + i;
148 		if (!dtp->fmt)
149 			continue;
150 		ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
151 		snprintf(buffer,
152 			LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
153 			dtp->seq_cnt, ms, dtp->fmt);
154 		len +=  snprintf(buf+len, size-len, buffer,
155 			dtp->data1, dtp->data2, dtp->data3);
156 	}
157 	for (i = 0; i < index; i++) {
158 		dtp = vport->disc_trc + i;
159 		if (!dtp->fmt)
160 			continue;
161 		ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
162 		snprintf(buffer,
163 			LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
164 			dtp->seq_cnt, ms, dtp->fmt);
165 		len +=  snprintf(buf+len, size-len, buffer,
166 			dtp->data1, dtp->data2, dtp->data3);
167 	}
168 
169 	lpfc_debugfs_enable = enable;
170 	return len;
171 }
172 
173 /**
174  * lpfc_debugfs_slow_ring_trc_data - Dump slow ring logging to a buffer
175  * @phba: The HBA to gather the log info from.
176  * @buf: The buffer to dump log into.
177  * @size: The maximum amount of data to process.
178  *
179  * Description:
180  * This routine gathers the lpfc slow ring debugfs data from the @phba and
181  * dumps it to @buf up to @size number of bytes. It will start at the next entry
182  * in the log and process the log until the end of the buffer. Then it will
183  * gather from the beginning of the log and process until the current entry.
184  *
185  * Notes:
186  * Slow ring logging will be disabled while while this routine dumps the log.
187  *
188  * Return Value:
189  * This routine returns the amount of bytes that were dumped into @buf and will
190  * not exceed @size.
191  **/
192 static int
193 lpfc_debugfs_slow_ring_trc_data(struct lpfc_hba *phba, char *buf, int size)
194 {
195 	int i, index, len, enable;
196 	uint32_t ms;
197 	struct lpfc_debugfs_trc *dtp;
198 	char buffer[LPFC_DEBUG_TRC_ENTRY_SIZE];
199 
200 
201 	enable = lpfc_debugfs_enable;
202 	lpfc_debugfs_enable = 0;
203 
204 	len = 0;
205 	index = (atomic_read(&phba->slow_ring_trc_cnt) + 1) &
206 		(lpfc_debugfs_max_slow_ring_trc - 1);
207 	for (i = index; i < lpfc_debugfs_max_slow_ring_trc; i++) {
208 		dtp = phba->slow_ring_trc + i;
209 		if (!dtp->fmt)
210 			continue;
211 		ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
212 		snprintf(buffer,
213 			LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
214 			dtp->seq_cnt, ms, dtp->fmt);
215 		len +=  snprintf(buf+len, size-len, buffer,
216 			dtp->data1, dtp->data2, dtp->data3);
217 	}
218 	for (i = 0; i < index; i++) {
219 		dtp = phba->slow_ring_trc + i;
220 		if (!dtp->fmt)
221 			continue;
222 		ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
223 		snprintf(buffer,
224 			LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
225 			dtp->seq_cnt, ms, dtp->fmt);
226 		len +=  snprintf(buf+len, size-len, buffer,
227 			dtp->data1, dtp->data2, dtp->data3);
228 	}
229 
230 	lpfc_debugfs_enable = enable;
231 	return len;
232 }
233 
234 static int lpfc_debugfs_last_hbq = -1;
235 
236 /**
237  * lpfc_debugfs_hbqinfo_data - Dump host buffer queue info to a buffer
238  * @phba: The HBA to gather host buffer info from.
239  * @buf: The buffer to dump log into.
240  * @size: The maximum amount of data to process.
241  *
242  * Description:
243  * This routine dumps the host buffer queue info from the @phba to @buf up to
244  * @size number of bytes. A header that describes the current hbq state will be
245  * dumped to @buf first and then info on each hbq entry will be dumped to @buf
246  * until @size bytes have been dumped or all the hbq info has been dumped.
247  *
248  * Notes:
249  * This routine will rotate through each configured HBQ each time called.
250  *
251  * Return Value:
252  * This routine returns the amount of bytes that were dumped into @buf and will
253  * not exceed @size.
254  **/
255 static int
256 lpfc_debugfs_hbqinfo_data(struct lpfc_hba *phba, char *buf, int size)
257 {
258 	int len = 0;
259 	int cnt, i, j, found, posted, low;
260 	uint32_t phys, raw_index, getidx;
261 	struct lpfc_hbq_init *hip;
262 	struct hbq_s *hbqs;
263 	struct lpfc_hbq_entry *hbqe;
264 	struct lpfc_dmabuf *d_buf;
265 	struct hbq_dmabuf *hbq_buf;
266 
267 	if (phba->sli_rev != 3)
268 		return 0;
269 	cnt = LPFC_HBQINFO_SIZE;
270 	spin_lock_irq(&phba->hbalock);
271 
272 	/* toggle between multiple hbqs, if any */
273 	i = lpfc_sli_hbq_count();
274 	if (i > 1) {
275 		 lpfc_debugfs_last_hbq++;
276 		 if (lpfc_debugfs_last_hbq >= i)
277 			lpfc_debugfs_last_hbq = 0;
278 	}
279 	else
280 		lpfc_debugfs_last_hbq = 0;
281 
282 	i = lpfc_debugfs_last_hbq;
283 
284 	len +=  snprintf(buf+len, size-len, "HBQ %d Info\n", i);
285 
286 	hbqs =  &phba->hbqs[i];
287 	posted = 0;
288 	list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list)
289 		posted++;
290 
291 	hip =  lpfc_hbq_defs[i];
292 	len +=  snprintf(buf+len, size-len,
293 		"idx:%d prof:%d rn:%d bufcnt:%d icnt:%d acnt:%d posted %d\n",
294 		hip->hbq_index, hip->profile, hip->rn,
295 		hip->buffer_count, hip->init_count, hip->add_count, posted);
296 
297 	raw_index = phba->hbq_get[i];
298 	getidx = le32_to_cpu(raw_index);
299 	len +=  snprintf(buf+len, size-len,
300 		"entrys:%d bufcnt:%d Put:%d nPut:%d localGet:%d hbaGet:%d\n",
301 		hbqs->entry_count, hbqs->buffer_count, hbqs->hbqPutIdx,
302 		hbqs->next_hbqPutIdx, hbqs->local_hbqGetIdx, getidx);
303 
304 	hbqe = (struct lpfc_hbq_entry *) phba->hbqs[i].hbq_virt;
305 	for (j=0; j<hbqs->entry_count; j++) {
306 		len +=  snprintf(buf+len, size-len,
307 			"%03d: %08x %04x %05x ", j,
308 			le32_to_cpu(hbqe->bde.addrLow),
309 			le32_to_cpu(hbqe->bde.tus.w),
310 			le32_to_cpu(hbqe->buffer_tag));
311 		i = 0;
312 		found = 0;
313 
314 		/* First calculate if slot has an associated posted buffer */
315 		low = hbqs->hbqPutIdx - posted;
316 		if (low >= 0) {
317 			if ((j >= hbqs->hbqPutIdx) || (j < low)) {
318 				len +=  snprintf(buf+len, size-len, "Unused\n");
319 				goto skipit;
320 			}
321 		}
322 		else {
323 			if ((j >= hbqs->hbqPutIdx) &&
324 				(j < (hbqs->entry_count+low))) {
325 				len +=  snprintf(buf+len, size-len, "Unused\n");
326 				goto skipit;
327 			}
328 		}
329 
330 		/* Get the Buffer info for the posted buffer */
331 		list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list) {
332 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
333 			phys = ((uint64_t)hbq_buf->dbuf.phys & 0xffffffff);
334 			if (phys == le32_to_cpu(hbqe->bde.addrLow)) {
335 				len +=  snprintf(buf+len, size-len,
336 					"Buf%d: %p %06x\n", i,
337 					hbq_buf->dbuf.virt, hbq_buf->tag);
338 				found = 1;
339 				break;
340 			}
341 			i++;
342 		}
343 		if (!found) {
344 			len +=  snprintf(buf+len, size-len, "No DMAinfo?\n");
345 		}
346 skipit:
347 		hbqe++;
348 		if (len > LPFC_HBQINFO_SIZE - 54)
349 			break;
350 	}
351 	spin_unlock_irq(&phba->hbalock);
352 	return len;
353 }
354 
355 static int lpfc_debugfs_last_hba_slim_off;
356 
357 /**
358  * lpfc_debugfs_dumpHBASlim_data - Dump HBA SLIM info to a buffer
359  * @phba: The HBA to gather SLIM info from.
360  * @buf: The buffer to dump log into.
361  * @size: The maximum amount of data to process.
362  *
363  * Description:
364  * This routine dumps the current contents of HBA SLIM for the HBA associated
365  * with @phba to @buf up to @size bytes of data. This is the raw HBA SLIM data.
366  *
367  * Notes:
368  * This routine will only dump up to 1024 bytes of data each time called and
369  * should be called multiple times to dump the entire HBA SLIM.
370  *
371  * Return Value:
372  * This routine returns the amount of bytes that were dumped into @buf and will
373  * not exceed @size.
374  **/
375 static int
376 lpfc_debugfs_dumpHBASlim_data(struct lpfc_hba *phba, char *buf, int size)
377 {
378 	int len = 0;
379 	int i, off;
380 	uint32_t *ptr;
381 	char buffer[1024];
382 
383 	off = 0;
384 	spin_lock_irq(&phba->hbalock);
385 
386 	len +=  snprintf(buf+len, size-len, "HBA SLIM\n");
387 	lpfc_memcpy_from_slim(buffer,
388 		phba->MBslimaddr + lpfc_debugfs_last_hba_slim_off, 1024);
389 
390 	ptr = (uint32_t *)&buffer[0];
391 	off = lpfc_debugfs_last_hba_slim_off;
392 
393 	/* Set it up for the next time */
394 	lpfc_debugfs_last_hba_slim_off += 1024;
395 	if (lpfc_debugfs_last_hba_slim_off >= 4096)
396 		lpfc_debugfs_last_hba_slim_off = 0;
397 
398 	i = 1024;
399 	while (i > 0) {
400 		len +=  snprintf(buf+len, size-len,
401 		"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
402 		off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
403 		*(ptr+5), *(ptr+6), *(ptr+7));
404 		ptr += 8;
405 		i -= (8 * sizeof(uint32_t));
406 		off += (8 * sizeof(uint32_t));
407 	}
408 
409 	spin_unlock_irq(&phba->hbalock);
410 	return len;
411 }
412 
413 /**
414  * lpfc_debugfs_dumpHostSlim_data - Dump host SLIM info to a buffer
415  * @phba: The HBA to gather Host SLIM info from.
416  * @buf: The buffer to dump log into.
417  * @size: The maximum amount of data to process.
418  *
419  * Description:
420  * This routine dumps the current contents of host SLIM for the host associated
421  * with @phba to @buf up to @size bytes of data. The dump will contain the
422  * Mailbox, PCB, Rings, and Registers that are located in host memory.
423  *
424  * Return Value:
425  * This routine returns the amount of bytes that were dumped into @buf and will
426  * not exceed @size.
427  **/
428 static int
429 lpfc_debugfs_dumpHostSlim_data(struct lpfc_hba *phba, char *buf, int size)
430 {
431 	int len = 0;
432 	int i, off;
433 	uint32_t word0, word1, word2, word3;
434 	uint32_t *ptr;
435 	struct lpfc_pgp *pgpp;
436 	struct lpfc_sli *psli = &phba->sli;
437 	struct lpfc_sli_ring *pring;
438 
439 	off = 0;
440 	spin_lock_irq(&phba->hbalock);
441 
442 	len +=  snprintf(buf+len, size-len, "SLIM Mailbox\n");
443 	ptr = (uint32_t *)phba->slim2p.virt;
444 	i = sizeof(MAILBOX_t);
445 	while (i > 0) {
446 		len +=  snprintf(buf+len, size-len,
447 		"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
448 		off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
449 		*(ptr+5), *(ptr+6), *(ptr+7));
450 		ptr += 8;
451 		i -= (8 * sizeof(uint32_t));
452 		off += (8 * sizeof(uint32_t));
453 	}
454 
455 	len +=  snprintf(buf+len, size-len, "SLIM PCB\n");
456 	ptr = (uint32_t *)phba->pcb;
457 	i = sizeof(PCB_t);
458 	while (i > 0) {
459 		len +=  snprintf(buf+len, size-len,
460 		"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
461 		off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
462 		*(ptr+5), *(ptr+6), *(ptr+7));
463 		ptr += 8;
464 		i -= (8 * sizeof(uint32_t));
465 		off += (8 * sizeof(uint32_t));
466 	}
467 
468 	for (i = 0; i < 4; i++) {
469 		pgpp = &phba->port_gp[i];
470 		pring = &psli->ring[i];
471 		len +=  snprintf(buf+len, size-len,
472 				 "Ring %d: CMD GetInx:%d (Max:%d Next:%d "
473 				 "Local:%d flg:x%x)  RSP PutInx:%d Max:%d\n",
474 				 i, pgpp->cmdGetInx, pring->numCiocb,
475 				 pring->next_cmdidx, pring->local_getidx,
476 				 pring->flag, pgpp->rspPutInx, pring->numRiocb);
477 	}
478 
479 	if (phba->sli_rev <= LPFC_SLI_REV3) {
480 		word0 = readl(phba->HAregaddr);
481 		word1 = readl(phba->CAregaddr);
482 		word2 = readl(phba->HSregaddr);
483 		word3 = readl(phba->HCregaddr);
484 		len +=  snprintf(buf+len, size-len, "HA:%08x CA:%08x HS:%08x "
485 				 "HC:%08x\n", word0, word1, word2, word3);
486 	}
487 	spin_unlock_irq(&phba->hbalock);
488 	return len;
489 }
490 
491 /**
492  * lpfc_debugfs_nodelist_data - Dump target node list to a buffer
493  * @vport: The vport to gather target node info from.
494  * @buf: The buffer to dump log into.
495  * @size: The maximum amount of data to process.
496  *
497  * Description:
498  * This routine dumps the current target node list associated with @vport to
499  * @buf up to @size bytes of data. Each node entry in the dump will contain a
500  * node state, DID, WWPN, WWNN, RPI, flags, type, and other useful fields.
501  *
502  * Return Value:
503  * This routine returns the amount of bytes that were dumped into @buf and will
504  * not exceed @size.
505  **/
506 static int
507 lpfc_debugfs_nodelist_data(struct lpfc_vport *vport, char *buf, int size)
508 {
509 	int len = 0;
510 	int cnt;
511 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
512 	struct lpfc_nodelist *ndlp;
513 	unsigned char *statep, *name;
514 
515 	cnt = (LPFC_NODELIST_SIZE / LPFC_NODELIST_ENTRY_SIZE);
516 
517 	spin_lock_irq(shost->host_lock);
518 	list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
519 		if (!cnt) {
520 			len +=  snprintf(buf+len, size-len,
521 				"Missing Nodelist Entries\n");
522 			break;
523 		}
524 		cnt--;
525 		switch (ndlp->nlp_state) {
526 		case NLP_STE_UNUSED_NODE:
527 			statep = "UNUSED";
528 			break;
529 		case NLP_STE_PLOGI_ISSUE:
530 			statep = "PLOGI ";
531 			break;
532 		case NLP_STE_ADISC_ISSUE:
533 			statep = "ADISC ";
534 			break;
535 		case NLP_STE_REG_LOGIN_ISSUE:
536 			statep = "REGLOG";
537 			break;
538 		case NLP_STE_PRLI_ISSUE:
539 			statep = "PRLI  ";
540 			break;
541 		case NLP_STE_UNMAPPED_NODE:
542 			statep = "UNMAP ";
543 			break;
544 		case NLP_STE_MAPPED_NODE:
545 			statep = "MAPPED";
546 			break;
547 		case NLP_STE_NPR_NODE:
548 			statep = "NPR   ";
549 			break;
550 		default:
551 			statep = "UNKNOWN";
552 		}
553 		len +=  snprintf(buf+len, size-len, "%s DID:x%06x ",
554 			statep, ndlp->nlp_DID);
555 		name = (unsigned char *)&ndlp->nlp_portname;
556 		len +=  snprintf(buf+len, size-len,
557 			"WWPN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
558 			*name, *(name+1), *(name+2), *(name+3),
559 			*(name+4), *(name+5), *(name+6), *(name+7));
560 		name = (unsigned char *)&ndlp->nlp_nodename;
561 		len +=  snprintf(buf+len, size-len,
562 			"WWNN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
563 			*name, *(name+1), *(name+2), *(name+3),
564 			*(name+4), *(name+5), *(name+6), *(name+7));
565 		len +=  snprintf(buf+len, size-len, "RPI:%03d flag:x%08x ",
566 			ndlp->nlp_rpi, ndlp->nlp_flag);
567 		if (!ndlp->nlp_type)
568 			len +=  snprintf(buf+len, size-len, "UNKNOWN_TYPE ");
569 		if (ndlp->nlp_type & NLP_FC_NODE)
570 			len +=  snprintf(buf+len, size-len, "FC_NODE ");
571 		if (ndlp->nlp_type & NLP_FABRIC)
572 			len +=  snprintf(buf+len, size-len, "FABRIC ");
573 		if (ndlp->nlp_type & NLP_FCP_TARGET)
574 			len +=  snprintf(buf+len, size-len, "FCP_TGT sid:%d ",
575 				ndlp->nlp_sid);
576 		if (ndlp->nlp_type & NLP_FCP_INITIATOR)
577 			len +=  snprintf(buf+len, size-len, "FCP_INITIATOR ");
578 		len += snprintf(buf+len, size-len, "usgmap:%x ",
579 			ndlp->nlp_usg_map);
580 		len += snprintf(buf+len, size-len, "refcnt:%x",
581 			atomic_read(&ndlp->kref.refcount));
582 		len +=  snprintf(buf+len, size-len, "\n");
583 	}
584 	spin_unlock_irq(shost->host_lock);
585 	return len;
586 }
587 #endif
588 
589 /**
590  * lpfc_debugfs_disc_trc - Store discovery trace log
591  * @vport: The vport to associate this trace string with for retrieval.
592  * @mask: Log entry classification.
593  * @fmt: Format string to be displayed when dumping the log.
594  * @data1: 1st data parameter to be applied to @fmt.
595  * @data2: 2nd data parameter to be applied to @fmt.
596  * @data3: 3rd data parameter to be applied to @fmt.
597  *
598  * Description:
599  * This routine is used by the driver code to add a debugfs log entry to the
600  * discovery trace buffer associated with @vport. Only entries with a @mask that
601  * match the current debugfs discovery mask will be saved. Entries that do not
602  * match will be thrown away. @fmt, @data1, @data2, and @data3 are used like
603  * printf when displaying the log.
604  **/
605 inline void
606 lpfc_debugfs_disc_trc(struct lpfc_vport *vport, int mask, char *fmt,
607 	uint32_t data1, uint32_t data2, uint32_t data3)
608 {
609 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
610 	struct lpfc_debugfs_trc *dtp;
611 	int index;
612 
613 	if (!(lpfc_debugfs_mask_disc_trc & mask))
614 		return;
615 
616 	if (!lpfc_debugfs_enable || !lpfc_debugfs_max_disc_trc ||
617 		!vport || !vport->disc_trc)
618 		return;
619 
620 	index = atomic_inc_return(&vport->disc_trc_cnt) &
621 		(lpfc_debugfs_max_disc_trc - 1);
622 	dtp = vport->disc_trc + index;
623 	dtp->fmt = fmt;
624 	dtp->data1 = data1;
625 	dtp->data2 = data2;
626 	dtp->data3 = data3;
627 	dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
628 	dtp->jif = jiffies;
629 #endif
630 	return;
631 }
632 
633 /**
634  * lpfc_debugfs_slow_ring_trc - Store slow ring trace log
635  * @phba: The phba to associate this trace string with for retrieval.
636  * @fmt: Format string to be displayed when dumping the log.
637  * @data1: 1st data parameter to be applied to @fmt.
638  * @data2: 2nd data parameter to be applied to @fmt.
639  * @data3: 3rd data parameter to be applied to @fmt.
640  *
641  * Description:
642  * This routine is used by the driver code to add a debugfs log entry to the
643  * discovery trace buffer associated with @vport. @fmt, @data1, @data2, and
644  * @data3 are used like printf when displaying the log.
645  **/
646 inline void
647 lpfc_debugfs_slow_ring_trc(struct lpfc_hba *phba, char *fmt,
648 	uint32_t data1, uint32_t data2, uint32_t data3)
649 {
650 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
651 	struct lpfc_debugfs_trc *dtp;
652 	int index;
653 
654 	if (!lpfc_debugfs_enable || !lpfc_debugfs_max_slow_ring_trc ||
655 		!phba || !phba->slow_ring_trc)
656 		return;
657 
658 	index = atomic_inc_return(&phba->slow_ring_trc_cnt) &
659 		(lpfc_debugfs_max_slow_ring_trc - 1);
660 	dtp = phba->slow_ring_trc + index;
661 	dtp->fmt = fmt;
662 	dtp->data1 = data1;
663 	dtp->data2 = data2;
664 	dtp->data3 = data3;
665 	dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
666 	dtp->jif = jiffies;
667 #endif
668 	return;
669 }
670 
671 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
672 /**
673  * lpfc_debugfs_disc_trc_open - Open the discovery trace log
674  * @inode: The inode pointer that contains a vport pointer.
675  * @file: The file pointer to attach the log output.
676  *
677  * Description:
678  * This routine is the entry point for the debugfs open file operation. It gets
679  * the vport from the i_private field in @inode, allocates the necessary buffer
680  * for the log, fills the buffer from the in-memory log for this vport, and then
681  * returns a pointer to that log in the private_data field in @file.
682  *
683  * Returns:
684  * This function returns zero if successful. On error it will return an negative
685  * error value.
686  **/
687 static int
688 lpfc_debugfs_disc_trc_open(struct inode *inode, struct file *file)
689 {
690 	struct lpfc_vport *vport = inode->i_private;
691 	struct lpfc_debug *debug;
692 	int size;
693 	int rc = -ENOMEM;
694 
695 	if (!lpfc_debugfs_max_disc_trc) {
696 		 rc = -ENOSPC;
697 		goto out;
698 	}
699 
700 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
701 	if (!debug)
702 		goto out;
703 
704 	/* Round to page boundary */
705 	size =  (lpfc_debugfs_max_disc_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
706 	size = PAGE_ALIGN(size);
707 
708 	debug->buffer = kmalloc(size, GFP_KERNEL);
709 	if (!debug->buffer) {
710 		kfree(debug);
711 		goto out;
712 	}
713 
714 	debug->len = lpfc_debugfs_disc_trc_data(vport, debug->buffer, size);
715 	file->private_data = debug;
716 
717 	rc = 0;
718 out:
719 	return rc;
720 }
721 
722 /**
723  * lpfc_debugfs_slow_ring_trc_open - Open the Slow Ring trace log
724  * @inode: The inode pointer that contains a vport pointer.
725  * @file: The file pointer to attach the log output.
726  *
727  * Description:
728  * This routine is the entry point for the debugfs open file operation. It gets
729  * the vport from the i_private field in @inode, allocates the necessary buffer
730  * for the log, fills the buffer from the in-memory log for this vport, and then
731  * returns a pointer to that log in the private_data field in @file.
732  *
733  * Returns:
734  * This function returns zero if successful. On error it will return an negative
735  * error value.
736  **/
737 static int
738 lpfc_debugfs_slow_ring_trc_open(struct inode *inode, struct file *file)
739 {
740 	struct lpfc_hba *phba = inode->i_private;
741 	struct lpfc_debug *debug;
742 	int size;
743 	int rc = -ENOMEM;
744 
745 	if (!lpfc_debugfs_max_slow_ring_trc) {
746 		 rc = -ENOSPC;
747 		goto out;
748 	}
749 
750 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
751 	if (!debug)
752 		goto out;
753 
754 	/* Round to page boundary */
755 	size =  (lpfc_debugfs_max_slow_ring_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
756 	size = PAGE_ALIGN(size);
757 
758 	debug->buffer = kmalloc(size, GFP_KERNEL);
759 	if (!debug->buffer) {
760 		kfree(debug);
761 		goto out;
762 	}
763 
764 	debug->len = lpfc_debugfs_slow_ring_trc_data(phba, debug->buffer, size);
765 	file->private_data = debug;
766 
767 	rc = 0;
768 out:
769 	return rc;
770 }
771 
772 /**
773  * lpfc_debugfs_hbqinfo_open - Open the hbqinfo debugfs buffer
774  * @inode: The inode pointer that contains a vport pointer.
775  * @file: The file pointer to attach the log output.
776  *
777  * Description:
778  * This routine is the entry point for the debugfs open file operation. It gets
779  * the vport from the i_private field in @inode, allocates the necessary buffer
780  * for the log, fills the buffer from the in-memory log for this vport, and then
781  * returns a pointer to that log in the private_data field in @file.
782  *
783  * Returns:
784  * This function returns zero if successful. On error it will return an negative
785  * error value.
786  **/
787 static int
788 lpfc_debugfs_hbqinfo_open(struct inode *inode, struct file *file)
789 {
790 	struct lpfc_hba *phba = inode->i_private;
791 	struct lpfc_debug *debug;
792 	int rc = -ENOMEM;
793 
794 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
795 	if (!debug)
796 		goto out;
797 
798 	/* Round to page boundary */
799 	debug->buffer = kmalloc(LPFC_HBQINFO_SIZE, GFP_KERNEL);
800 	if (!debug->buffer) {
801 		kfree(debug);
802 		goto out;
803 	}
804 
805 	debug->len = lpfc_debugfs_hbqinfo_data(phba, debug->buffer,
806 		LPFC_HBQINFO_SIZE);
807 	file->private_data = debug;
808 
809 	rc = 0;
810 out:
811 	return rc;
812 }
813 
814 /**
815  * lpfc_debugfs_dumpHBASlim_open - Open the Dump HBA SLIM debugfs buffer
816  * @inode: The inode pointer that contains a vport pointer.
817  * @file: The file pointer to attach the log output.
818  *
819  * Description:
820  * This routine is the entry point for the debugfs open file operation. It gets
821  * the vport from the i_private field in @inode, allocates the necessary buffer
822  * for the log, fills the buffer from the in-memory log for this vport, and then
823  * returns a pointer to that log in the private_data field in @file.
824  *
825  * Returns:
826  * This function returns zero if successful. On error it will return an negative
827  * error value.
828  **/
829 static int
830 lpfc_debugfs_dumpHBASlim_open(struct inode *inode, struct file *file)
831 {
832 	struct lpfc_hba *phba = inode->i_private;
833 	struct lpfc_debug *debug;
834 	int rc = -ENOMEM;
835 
836 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
837 	if (!debug)
838 		goto out;
839 
840 	/* Round to page boundary */
841 	debug->buffer = kmalloc(LPFC_DUMPHBASLIM_SIZE, GFP_KERNEL);
842 	if (!debug->buffer) {
843 		kfree(debug);
844 		goto out;
845 	}
846 
847 	debug->len = lpfc_debugfs_dumpHBASlim_data(phba, debug->buffer,
848 		LPFC_DUMPHBASLIM_SIZE);
849 	file->private_data = debug;
850 
851 	rc = 0;
852 out:
853 	return rc;
854 }
855 
856 /**
857  * lpfc_debugfs_dumpHostSlim_open - Open the Dump Host SLIM debugfs buffer
858  * @inode: The inode pointer that contains a vport pointer.
859  * @file: The file pointer to attach the log output.
860  *
861  * Description:
862  * This routine is the entry point for the debugfs open file operation. It gets
863  * the vport from the i_private field in @inode, allocates the necessary buffer
864  * for the log, fills the buffer from the in-memory log for this vport, and then
865  * returns a pointer to that log in the private_data field in @file.
866  *
867  * Returns:
868  * This function returns zero if successful. On error it will return an negative
869  * error value.
870  **/
871 static int
872 lpfc_debugfs_dumpHostSlim_open(struct inode *inode, struct file *file)
873 {
874 	struct lpfc_hba *phba = inode->i_private;
875 	struct lpfc_debug *debug;
876 	int rc = -ENOMEM;
877 
878 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
879 	if (!debug)
880 		goto out;
881 
882 	/* Round to page boundary */
883 	debug->buffer = kmalloc(LPFC_DUMPHOSTSLIM_SIZE, GFP_KERNEL);
884 	if (!debug->buffer) {
885 		kfree(debug);
886 		goto out;
887 	}
888 
889 	debug->len = lpfc_debugfs_dumpHostSlim_data(phba, debug->buffer,
890 		LPFC_DUMPHOSTSLIM_SIZE);
891 	file->private_data = debug;
892 
893 	rc = 0;
894 out:
895 	return rc;
896 }
897 
898 static int
899 lpfc_debugfs_dumpData_open(struct inode *inode, struct file *file)
900 {
901 	struct lpfc_debug *debug;
902 	int rc = -ENOMEM;
903 
904 	if (!_dump_buf_data)
905 		return -EBUSY;
906 
907 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
908 	if (!debug)
909 		goto out;
910 
911 	/* Round to page boundry */
912 	printk(KERN_ERR "9059 BLKGRD:  %s: _dump_buf_data=0x%p\n",
913 			__func__, _dump_buf_data);
914 	debug->buffer = _dump_buf_data;
915 	if (!debug->buffer) {
916 		kfree(debug);
917 		goto out;
918 	}
919 
920 	debug->len = (1 << _dump_buf_data_order) << PAGE_SHIFT;
921 	file->private_data = debug;
922 
923 	rc = 0;
924 out:
925 	return rc;
926 }
927 
928 static int
929 lpfc_debugfs_dumpDif_open(struct inode *inode, struct file *file)
930 {
931 	struct lpfc_debug *debug;
932 	int rc = -ENOMEM;
933 
934 	if (!_dump_buf_dif)
935 		return -EBUSY;
936 
937 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
938 	if (!debug)
939 		goto out;
940 
941 	/* Round to page boundry */
942 	printk(KERN_ERR	"9060 BLKGRD: %s: _dump_buf_dif=0x%p file=%s\n",
943 		__func__, _dump_buf_dif, file->f_dentry->d_name.name);
944 	debug->buffer = _dump_buf_dif;
945 	if (!debug->buffer) {
946 		kfree(debug);
947 		goto out;
948 	}
949 
950 	debug->len = (1 << _dump_buf_dif_order) << PAGE_SHIFT;
951 	file->private_data = debug;
952 
953 	rc = 0;
954 out:
955 	return rc;
956 }
957 
958 static ssize_t
959 lpfc_debugfs_dumpDataDif_write(struct file *file, const char __user *buf,
960 		  size_t nbytes, loff_t *ppos)
961 {
962 	/*
963 	 * The Data/DIF buffers only save one failing IO
964 	 * The write op is used as a reset mechanism after an IO has
965 	 * already been saved to the next one can be saved
966 	 */
967 	spin_lock(&_dump_buf_lock);
968 
969 	memset((void *)_dump_buf_data, 0,
970 			((1 << PAGE_SHIFT) << _dump_buf_data_order));
971 	memset((void *)_dump_buf_dif, 0,
972 			((1 << PAGE_SHIFT) << _dump_buf_dif_order));
973 
974 	_dump_buf_done = 0;
975 
976 	spin_unlock(&_dump_buf_lock);
977 
978 	return nbytes;
979 }
980 
981 /**
982  * lpfc_debugfs_nodelist_open - Open the nodelist debugfs file
983  * @inode: The inode pointer that contains a vport pointer.
984  * @file: The file pointer to attach the log output.
985  *
986  * Description:
987  * This routine is the entry point for the debugfs open file operation. It gets
988  * the vport from the i_private field in @inode, allocates the necessary buffer
989  * for the log, fills the buffer from the in-memory log for this vport, and then
990  * returns a pointer to that log in the private_data field in @file.
991  *
992  * Returns:
993  * This function returns zero if successful. On error it will return an negative
994  * error value.
995  **/
996 static int
997 lpfc_debugfs_nodelist_open(struct inode *inode, struct file *file)
998 {
999 	struct lpfc_vport *vport = inode->i_private;
1000 	struct lpfc_debug *debug;
1001 	int rc = -ENOMEM;
1002 
1003 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
1004 	if (!debug)
1005 		goto out;
1006 
1007 	/* Round to page boundary */
1008 	debug->buffer = kmalloc(LPFC_NODELIST_SIZE, GFP_KERNEL);
1009 	if (!debug->buffer) {
1010 		kfree(debug);
1011 		goto out;
1012 	}
1013 
1014 	debug->len = lpfc_debugfs_nodelist_data(vport, debug->buffer,
1015 		LPFC_NODELIST_SIZE);
1016 	file->private_data = debug;
1017 
1018 	rc = 0;
1019 out:
1020 	return rc;
1021 }
1022 
1023 /**
1024  * lpfc_debugfs_lseek - Seek through a debugfs file
1025  * @file: The file pointer to seek through.
1026  * @off: The offset to seek to or the amount to seek by.
1027  * @whence: Indicates how to seek.
1028  *
1029  * Description:
1030  * This routine is the entry point for the debugfs lseek file operation. The
1031  * @whence parameter indicates whether @off is the offset to directly seek to,
1032  * or if it is a value to seek forward or reverse by. This function figures out
1033  * what the new offset of the debugfs file will be and assigns that value to the
1034  * f_pos field of @file.
1035  *
1036  * Returns:
1037  * This function returns the new offset if successful and returns a negative
1038  * error if unable to process the seek.
1039  **/
1040 static loff_t
1041 lpfc_debugfs_lseek(struct file *file, loff_t off, int whence)
1042 {
1043 	struct lpfc_debug *debug;
1044 	loff_t pos = -1;
1045 
1046 	debug = file->private_data;
1047 
1048 	switch (whence) {
1049 	case 0:
1050 		pos = off;
1051 		break;
1052 	case 1:
1053 		pos = file->f_pos + off;
1054 		break;
1055 	case 2:
1056 		pos = debug->len - off;
1057 	}
1058 	return (pos < 0 || pos > debug->len) ? -EINVAL : (file->f_pos = pos);
1059 }
1060 
1061 /**
1062  * lpfc_debugfs_read - Read a debugfs file
1063  * @file: The file pointer to read from.
1064  * @buf: The buffer to copy the data to.
1065  * @nbytes: The number of bytes to read.
1066  * @ppos: The position in the file to start reading from.
1067  *
1068  * Description:
1069  * This routine reads data from from the buffer indicated in the private_data
1070  * field of @file. It will start reading at @ppos and copy up to @nbytes of
1071  * data to @buf.
1072  *
1073  * Returns:
1074  * This function returns the amount of data that was read (this could be less
1075  * than @nbytes if the end of the file was reached) or a negative error value.
1076  **/
1077 static ssize_t
1078 lpfc_debugfs_read(struct file *file, char __user *buf,
1079 		  size_t nbytes, loff_t *ppos)
1080 {
1081 	struct lpfc_debug *debug = file->private_data;
1082 
1083 	return simple_read_from_buffer(buf, nbytes, ppos, debug->buffer,
1084 				       debug->len);
1085 }
1086 
1087 /**
1088  * lpfc_debugfs_release - Release the buffer used to store debugfs file data
1089  * @inode: The inode pointer that contains a vport pointer. (unused)
1090  * @file: The file pointer that contains the buffer to release.
1091  *
1092  * Description:
1093  * This routine frees the buffer that was allocated when the debugfs file was
1094  * opened.
1095  *
1096  * Returns:
1097  * This function returns zero.
1098  **/
1099 static int
1100 lpfc_debugfs_release(struct inode *inode, struct file *file)
1101 {
1102 	struct lpfc_debug *debug = file->private_data;
1103 
1104 	kfree(debug->buffer);
1105 	kfree(debug);
1106 
1107 	return 0;
1108 }
1109 
1110 static int
1111 lpfc_debugfs_dumpDataDif_release(struct inode *inode, struct file *file)
1112 {
1113 	struct lpfc_debug *debug = file->private_data;
1114 
1115 	debug->buffer = NULL;
1116 	kfree(debug);
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * iDiag debugfs file access methods
1123  */
1124 
1125 /*
1126  * iDiag PCI config space register access methods:
1127  *
1128  * The PCI config space register accessees of read, write, read-modify-write
1129  * for set bits, and read-modify-write for clear bits to SLI4 PCI functions
1130  * are provided. In the proper SLI4 PCI function's debugfs iDiag directory,
1131  *
1132  *      /sys/kernel/debug/lpfc/fn<#>/iDiag
1133  *
1134  * the access is through the debugfs entry pciCfg:
1135  *
1136  * 1. For PCI config space register read access, there are two read methods:
1137  *    A) read a single PCI config space register in the size of a byte
1138  *    (8 bits), a word (16 bits), or a dword (32 bits); or B) browse through
1139  *    the 4K extended PCI config space.
1140  *
1141  *    A) Read a single PCI config space register consists of two steps:
1142  *
1143  *    Step-1: Set up PCI config space register read command, the command
1144  *    syntax is,
1145  *
1146  *        echo 1 <where> <count> > pciCfg
1147  *
1148  *    where, 1 is the iDiag command for PCI config space read, <where> is the
1149  *    offset from the beginning of the device's PCI config space to read from,
1150  *    and <count> is the size of PCI config space register data to read back,
1151  *    it will be 1 for reading a byte (8 bits), 2 for reading a word (16 bits
1152  *    or 2 bytes), or 4 for reading a dword (32 bits or 4 bytes).
1153  *
1154  *    Setp-2: Perform the debugfs read operation to execute the idiag command
1155  *    set up in Step-1,
1156  *
1157  *        cat pciCfg
1158  *
1159  *    Examples:
1160  *    To read PCI device's vendor-id and device-id from PCI config space,
1161  *
1162  *        echo 1 0 4 > pciCfg
1163  *        cat pciCfg
1164  *
1165  *    To read PCI device's currnt command from config space,
1166  *
1167  *        echo 1 4 2 > pciCfg
1168  *        cat pciCfg
1169  *
1170  *    B) Browse through the entire 4K extended PCI config space also consists
1171  *    of two steps:
1172  *
1173  *    Step-1: Set up PCI config space register browsing command, the command
1174  *    syntax is,
1175  *
1176  *        echo 1 0 4096 > pciCfg
1177  *
1178  *    where, 1 is the iDiag command for PCI config space read, 0 must be used
1179  *    as the offset for PCI config space register browse, and 4096 must be
1180  *    used as the count for PCI config space register browse.
1181  *
1182  *    Step-2: Repeately issue the debugfs read operation to browse through
1183  *    the entire PCI config space registers:
1184  *
1185  *        cat pciCfg
1186  *        cat pciCfg
1187  *        cat pciCfg
1188  *        ...
1189  *
1190  *    When browsing to the end of the 4K PCI config space, the browse method
1191  *    shall wrap around to start reading from beginning again, and again...
1192  *
1193  * 2. For PCI config space register write access, it supports a single PCI
1194  *    config space register write in the size of a byte (8 bits), a word
1195  *    (16 bits), or a dword (32 bits). The command syntax is,
1196  *
1197  *        echo 2 <where> <count> <value> > pciCfg
1198  *
1199  *    where, 2 is the iDiag command for PCI config space write, <where> is
1200  *    the offset from the beginning of the device's PCI config space to write
1201  *    into, <count> is the size of data to write into the PCI config space,
1202  *    it will be 1 for writing a byte (8 bits), 2 for writing a word (16 bits
1203  *    or 2 bytes), or 4 for writing a dword (32 bits or 4 bytes), and <value>
1204  *    is the data to be written into the PCI config space register at the
1205  *    offset.
1206  *
1207  *    Examples:
1208  *    To disable PCI device's interrupt assertion,
1209  *
1210  *    1) Read in device's PCI config space register command field <cmd>:
1211  *
1212  *           echo 1 4 2 > pciCfg
1213  *           cat pciCfg
1214  *
1215  *    2) Set bit 10 (Interrupt Disable bit) in the <cmd>:
1216  *
1217  *           <cmd> = <cmd> | (1 < 10)
1218  *
1219  *    3) Write the modified command back:
1220  *
1221  *           echo 2 4 2 <cmd> > pciCfg
1222  *
1223  * 3. For PCI config space register set bits access, it supports a single PCI
1224  *    config space register set bits in the size of a byte (8 bits), a word
1225  *    (16 bits), or a dword (32 bits). The command syntax is,
1226  *
1227  *        echo 3 <where> <count> <bitmask> > pciCfg
1228  *
1229  *    where, 3 is the iDiag command for PCI config space set bits, <where> is
1230  *    the offset from the beginning of the device's PCI config space to set
1231  *    bits into, <count> is the size of the bitmask to set into the PCI config
1232  *    space, it will be 1 for setting a byte (8 bits), 2 for setting a word
1233  *    (16 bits or 2 bytes), or 4 for setting a dword (32 bits or 4 bytes), and
1234  *    <bitmask> is the bitmask, indicating the bits to be set into the PCI
1235  *    config space register at the offset. The logic performed to the content
1236  *    of the PCI config space register, regval, is,
1237  *
1238  *        regval |= <bitmask>
1239  *
1240  * 4. For PCI config space register clear bits access, it supports a single
1241  *    PCI config space register clear bits in the size of a byte (8 bits),
1242  *    a word (16 bits), or a dword (32 bits). The command syntax is,
1243  *
1244  *        echo 4 <where> <count> <bitmask> > pciCfg
1245  *
1246  *    where, 4 is the iDiag command for PCI config space clear bits, <where>
1247  *    is the offset from the beginning of the device's PCI config space to
1248  *    clear bits from, <count> is the size of the bitmask to set into the PCI
1249  *    config space, it will be 1 for setting a byte (8 bits), 2 for setting
1250  *    a word(16 bits or 2 bytes), or 4 for setting a dword (32 bits or 4
1251  *    bytes), and <bitmask> is the bitmask, indicating the bits to be cleared
1252  *    from the PCI config space register at the offset. the logic performed
1253  *    to the content of the PCI config space register, regval, is,
1254  *
1255  *        regval &= ~<bitmask>
1256  *
1257  * Note, for all single register read, write, set bits, or clear bits access,
1258  * the offset (<where>) must be aligned with the size of the data:
1259  *
1260  * For data size of byte (8 bits), the offset must be aligned to the byte
1261  * boundary; for data size of word (16 bits), the offset must be aligned
1262  * to the word boundary; while for data size of dword (32 bits), the offset
1263  * must be aligned to the dword boundary. Otherwise, the interface will
1264  * return the error:
1265  *
1266  *     "-bash: echo: write error: Invalid argument".
1267  *
1268  * For example:
1269  *
1270  *     echo 1 2 4 > pciCfg
1271  *     -bash: echo: write error: Invalid argument
1272  *
1273  * Note also, all of the numbers in the command fields for all read, write,
1274  * set bits, and clear bits PCI config space register command fields can be
1275  * either decimal or hex.
1276  *
1277  * For example,
1278  *     echo 1 0 4096 > pciCfg
1279  *
1280  * will be the same as
1281  *     echo 1 0 0x1000 > pciCfg
1282  *
1283  * And,
1284  *     echo 2 155 1 10 > pciCfg
1285  *
1286  * will be
1287  *     echo 2 0x9b 1 0xa > pciCfg
1288  */
1289 
1290 /**
1291  * lpfc_idiag_cmd_get - Get and parse idiag debugfs comands from user space
1292  * @buf: The pointer to the user space buffer.
1293  * @nbytes: The number of bytes in the user space buffer.
1294  * @idiag_cmd: pointer to the idiag command struct.
1295  *
1296  * This routine reads data from debugfs user space buffer and parses the
1297  * buffer for getting the idiag command and arguments. The while space in
1298  * between the set of data is used as the parsing separator.
1299  *
1300  * This routine returns 0 when successful, it returns proper error code
1301  * back to the user space in error conditions.
1302  */
1303 static int lpfc_idiag_cmd_get(const char __user *buf, size_t nbytes,
1304 			      struct lpfc_idiag_cmd *idiag_cmd)
1305 {
1306 	char mybuf[64];
1307 	char *pbuf, *step_str;
1308 	int bsize, i;
1309 
1310 	/* Protect copy from user */
1311 	if (!access_ok(VERIFY_READ, buf, nbytes))
1312 		return -EFAULT;
1313 
1314 	memset(mybuf, 0, sizeof(mybuf));
1315 	memset(idiag_cmd, 0, sizeof(*idiag_cmd));
1316 	bsize = min(nbytes, (sizeof(mybuf)-1));
1317 
1318 	if (copy_from_user(mybuf, buf, bsize))
1319 		return -EFAULT;
1320 	pbuf = &mybuf[0];
1321 	step_str = strsep(&pbuf, "\t ");
1322 
1323 	/* The opcode must present */
1324 	if (!step_str)
1325 		return -EINVAL;
1326 
1327 	idiag_cmd->opcode = simple_strtol(step_str, NULL, 0);
1328 	if (idiag_cmd->opcode == 0)
1329 		return -EINVAL;
1330 
1331 	for (i = 0; i < LPFC_IDIAG_CMD_DATA_SIZE; i++) {
1332 		step_str = strsep(&pbuf, "\t ");
1333 		if (!step_str)
1334 			return 0;
1335 		idiag_cmd->data[i] = simple_strtol(step_str, NULL, 0);
1336 	}
1337 	return 0;
1338 }
1339 
1340 /**
1341  * lpfc_idiag_open - idiag open debugfs
1342  * @inode: The inode pointer that contains a pointer to phba.
1343  * @file: The file pointer to attach the file operation.
1344  *
1345  * Description:
1346  * This routine is the entry point for the debugfs open file operation. It
1347  * gets the reference to phba from the i_private field in @inode, it then
1348  * allocates buffer for the file operation, performs the necessary PCI config
1349  * space read into the allocated buffer according to the idiag user command
1350  * setup, and then returns a pointer to buffer in the private_data field in
1351  * @file.
1352  *
1353  * Returns:
1354  * This function returns zero if successful. On error it will return an
1355  * negative error value.
1356  **/
1357 static int
1358 lpfc_idiag_open(struct inode *inode, struct file *file)
1359 {
1360 	struct lpfc_debug *debug;
1361 
1362 	debug = kmalloc(sizeof(*debug), GFP_KERNEL);
1363 	if (!debug)
1364 		return -ENOMEM;
1365 
1366 	debug->i_private = inode->i_private;
1367 	debug->buffer = NULL;
1368 	file->private_data = debug;
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  * lpfc_idiag_release - Release idiag access file operation
1375  * @inode: The inode pointer that contains a vport pointer. (unused)
1376  * @file: The file pointer that contains the buffer to release.
1377  *
1378  * Description:
1379  * This routine is the generic release routine for the idiag access file
1380  * operation, it frees the buffer that was allocated when the debugfs file
1381  * was opened.
1382  *
1383  * Returns:
1384  * This function returns zero.
1385  **/
1386 static int
1387 lpfc_idiag_release(struct inode *inode, struct file *file)
1388 {
1389 	struct lpfc_debug *debug = file->private_data;
1390 
1391 	/* Free the buffers to the file operation */
1392 	kfree(debug->buffer);
1393 	kfree(debug);
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * lpfc_idiag_cmd_release - Release idiag cmd access file operation
1400  * @inode: The inode pointer that contains a vport pointer. (unused)
1401  * @file: The file pointer that contains the buffer to release.
1402  *
1403  * Description:
1404  * This routine frees the buffer that was allocated when the debugfs file
1405  * was opened. It also reset the fields in the idiag command struct in the
1406  * case the command is not continuous browsing of the data structure.
1407  *
1408  * Returns:
1409  * This function returns zero.
1410  **/
1411 static int
1412 lpfc_idiag_cmd_release(struct inode *inode, struct file *file)
1413 {
1414 	struct lpfc_debug *debug = file->private_data;
1415 
1416 	/* Read PCI config register, if not read all, clear command fields */
1417 	if ((debug->op == LPFC_IDIAG_OP_RD) &&
1418 	    (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD))
1419 		if ((idiag.cmd.data[1] == sizeof(uint8_t)) ||
1420 		    (idiag.cmd.data[1] == sizeof(uint16_t)) ||
1421 		    (idiag.cmd.data[1] == sizeof(uint32_t)))
1422 			memset(&idiag, 0, sizeof(idiag));
1423 
1424 	/* Write PCI config register, clear command fields */
1425 	if ((debug->op == LPFC_IDIAG_OP_WR) &&
1426 	    (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR))
1427 		memset(&idiag, 0, sizeof(idiag));
1428 
1429 	/* Free the buffers to the file operation */
1430 	kfree(debug->buffer);
1431 	kfree(debug);
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * lpfc_idiag_pcicfg_read - idiag debugfs read pcicfg
1438  * @file: The file pointer to read from.
1439  * @buf: The buffer to copy the data to.
1440  * @nbytes: The number of bytes to read.
1441  * @ppos: The position in the file to start reading from.
1442  *
1443  * Description:
1444  * This routine reads data from the @phba pci config space according to the
1445  * idiag command, and copies to user @buf. Depending on the PCI config space
1446  * read command setup, it does either a single register read of a byte
1447  * (8 bits), a word (16 bits), or a dword (32 bits) or browsing through all
1448  * registers from the 4K extended PCI config space.
1449  *
1450  * Returns:
1451  * This function returns the amount of data that was read (this could be less
1452  * than @nbytes if the end of the file was reached) or a negative error value.
1453  **/
1454 static ssize_t
1455 lpfc_idiag_pcicfg_read(struct file *file, char __user *buf, size_t nbytes,
1456 		       loff_t *ppos)
1457 {
1458 	struct lpfc_debug *debug = file->private_data;
1459 	struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
1460 	int offset_label, offset, len = 0, index = LPFC_PCI_CFG_RD_SIZE;
1461 	int where, count;
1462 	char *pbuffer;
1463 	struct pci_dev *pdev;
1464 	uint32_t u32val;
1465 	uint16_t u16val;
1466 	uint8_t u8val;
1467 
1468 	pdev = phba->pcidev;
1469 	if (!pdev)
1470 		return 0;
1471 
1472 	/* This is a user read operation */
1473 	debug->op = LPFC_IDIAG_OP_RD;
1474 
1475 	if (!debug->buffer)
1476 		debug->buffer = kmalloc(LPFC_PCI_CFG_SIZE, GFP_KERNEL);
1477 	if (!debug->buffer)
1478 		return 0;
1479 	pbuffer = debug->buffer;
1480 
1481 	if (*ppos)
1482 		return 0;
1483 
1484 	if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
1485 		where = idiag.cmd.data[0];
1486 		count = idiag.cmd.data[1];
1487 	} else
1488 		return 0;
1489 
1490 	/* Read single PCI config space register */
1491 	switch (count) {
1492 	case SIZE_U8: /* byte (8 bits) */
1493 		pci_read_config_byte(pdev, where, &u8val);
1494 		len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1495 				"%03x: %02x\n", where, u8val);
1496 		break;
1497 	case SIZE_U16: /* word (16 bits) */
1498 		pci_read_config_word(pdev, where, &u16val);
1499 		len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1500 				"%03x: %04x\n", where, u16val);
1501 		break;
1502 	case SIZE_U32: /* double word (32 bits) */
1503 		pci_read_config_dword(pdev, where, &u32val);
1504 		len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1505 				"%03x: %08x\n", where, u32val);
1506 		break;
1507 	case LPFC_PCI_CFG_SIZE: /* browse all */
1508 		goto pcicfg_browse;
1509 		break;
1510 	default:
1511 		/* illegal count */
1512 		len = 0;
1513 		break;
1514 	}
1515 	return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
1516 
1517 pcicfg_browse:
1518 
1519 	/* Browse all PCI config space registers */
1520 	offset_label = idiag.offset.last_rd;
1521 	offset = offset_label;
1522 
1523 	/* Read PCI config space */
1524 	len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1525 			"%03x: ", offset_label);
1526 	while (index > 0) {
1527 		pci_read_config_dword(pdev, offset, &u32val);
1528 		len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1529 				"%08x ", u32val);
1530 		offset += sizeof(uint32_t);
1531 		index -= sizeof(uint32_t);
1532 		if (!index)
1533 			len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1534 					"\n");
1535 		else if (!(index % (8 * sizeof(uint32_t)))) {
1536 			offset_label += (8 * sizeof(uint32_t));
1537 			len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
1538 					"\n%03x: ", offset_label);
1539 		}
1540 	}
1541 
1542 	/* Set up the offset for next portion of pci cfg read */
1543 	idiag.offset.last_rd += LPFC_PCI_CFG_RD_SIZE;
1544 	if (idiag.offset.last_rd >= LPFC_PCI_CFG_SIZE)
1545 		idiag.offset.last_rd = 0;
1546 
1547 	return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
1548 }
1549 
1550 /**
1551  * lpfc_idiag_pcicfg_write - Syntax check and set up idiag pcicfg commands
1552  * @file: The file pointer to read from.
1553  * @buf: The buffer to copy the user data from.
1554  * @nbytes: The number of bytes to get.
1555  * @ppos: The position in the file to start reading from.
1556  *
1557  * This routine get the debugfs idiag command struct from user space and
1558  * then perform the syntax check for PCI config space read or write command
1559  * accordingly. In the case of PCI config space read command, it sets up
1560  * the command in the idiag command struct for the debugfs read operation.
1561  * In the case of PCI config space write operation, it executes the write
1562  * operation into the PCI config space accordingly.
1563  *
1564  * It returns the @nbytges passing in from debugfs user space when successful.
1565  * In case of error conditions, it returns proper error code back to the user
1566  * space.
1567  */
1568 static ssize_t
1569 lpfc_idiag_pcicfg_write(struct file *file, const char __user *buf,
1570 			size_t nbytes, loff_t *ppos)
1571 {
1572 	struct lpfc_debug *debug = file->private_data;
1573 	struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
1574 	uint32_t where, value, count;
1575 	uint32_t u32val;
1576 	uint16_t u16val;
1577 	uint8_t u8val;
1578 	struct pci_dev *pdev;
1579 	int rc;
1580 
1581 	pdev = phba->pcidev;
1582 	if (!pdev)
1583 		return -EFAULT;
1584 
1585 	/* This is a user write operation */
1586 	debug->op = LPFC_IDIAG_OP_WR;
1587 
1588 	rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
1589 	if (rc)
1590 		return rc;
1591 
1592 	if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
1593 		/* Read command from PCI config space, set up command fields */
1594 		where = idiag.cmd.data[0];
1595 		count = idiag.cmd.data[1];
1596 		if (count == LPFC_PCI_CFG_SIZE) {
1597 			if (where != 0)
1598 				goto error_out;
1599 		} else if ((count != sizeof(uint8_t)) &&
1600 			   (count != sizeof(uint16_t)) &&
1601 			   (count != sizeof(uint32_t)))
1602 			goto error_out;
1603 		if (count == sizeof(uint8_t)) {
1604 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
1605 				goto error_out;
1606 			if (where % sizeof(uint8_t))
1607 				goto error_out;
1608 		}
1609 		if (count == sizeof(uint16_t)) {
1610 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
1611 				goto error_out;
1612 			if (where % sizeof(uint16_t))
1613 				goto error_out;
1614 		}
1615 		if (count == sizeof(uint32_t)) {
1616 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
1617 				goto error_out;
1618 			if (where % sizeof(uint32_t))
1619 				goto error_out;
1620 		}
1621 	} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR ||
1622 		   idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST ||
1623 		   idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
1624 		/* Write command to PCI config space, read-modify-write */
1625 		where = idiag.cmd.data[0];
1626 		count = idiag.cmd.data[1];
1627 		value = idiag.cmd.data[2];
1628 		/* Sanity checks */
1629 		if ((count != sizeof(uint8_t)) &&
1630 		    (count != sizeof(uint16_t)) &&
1631 		    (count != sizeof(uint32_t)))
1632 			goto error_out;
1633 		if (count == sizeof(uint8_t)) {
1634 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
1635 				goto error_out;
1636 			if (where % sizeof(uint8_t))
1637 				goto error_out;
1638 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
1639 				pci_write_config_byte(pdev, where,
1640 						      (uint8_t)value);
1641 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
1642 				rc = pci_read_config_byte(pdev, where, &u8val);
1643 				if (!rc) {
1644 					u8val |= (uint8_t)value;
1645 					pci_write_config_byte(pdev, where,
1646 							      u8val);
1647 				}
1648 			}
1649 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
1650 				rc = pci_read_config_byte(pdev, where, &u8val);
1651 				if (!rc) {
1652 					u8val &= (uint8_t)(~value);
1653 					pci_write_config_byte(pdev, where,
1654 							      u8val);
1655 				}
1656 			}
1657 		}
1658 		if (count == sizeof(uint16_t)) {
1659 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
1660 				goto error_out;
1661 			if (where % sizeof(uint16_t))
1662 				goto error_out;
1663 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
1664 				pci_write_config_word(pdev, where,
1665 						      (uint16_t)value);
1666 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
1667 				rc = pci_read_config_word(pdev, where, &u16val);
1668 				if (!rc) {
1669 					u16val |= (uint16_t)value;
1670 					pci_write_config_word(pdev, where,
1671 							      u16val);
1672 				}
1673 			}
1674 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
1675 				rc = pci_read_config_word(pdev, where, &u16val);
1676 				if (!rc) {
1677 					u16val &= (uint16_t)(~value);
1678 					pci_write_config_word(pdev, where,
1679 							      u16val);
1680 				}
1681 			}
1682 		}
1683 		if (count == sizeof(uint32_t)) {
1684 			if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
1685 				goto error_out;
1686 			if (where % sizeof(uint32_t))
1687 				goto error_out;
1688 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
1689 				pci_write_config_dword(pdev, where, value);
1690 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
1691 				rc = pci_read_config_dword(pdev, where,
1692 							   &u32val);
1693 				if (!rc) {
1694 					u32val |= value;
1695 					pci_write_config_dword(pdev, where,
1696 							       u32val);
1697 				}
1698 			}
1699 			if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
1700 				rc = pci_read_config_dword(pdev, where,
1701 							   &u32val);
1702 				if (!rc) {
1703 					u32val &= ~value;
1704 					pci_write_config_dword(pdev, where,
1705 							       u32val);
1706 				}
1707 			}
1708 		}
1709 	} else
1710 		/* All other opecodes are illegal for now */
1711 		goto error_out;
1712 
1713 	return nbytes;
1714 error_out:
1715 	memset(&idiag, 0, sizeof(idiag));
1716 	return -EINVAL;
1717 }
1718 
1719 /**
1720  * lpfc_idiag_queinfo_read - idiag debugfs read queue information
1721  * @file: The file pointer to read from.
1722  * @buf: The buffer to copy the data to.
1723  * @nbytes: The number of bytes to read.
1724  * @ppos: The position in the file to start reading from.
1725  *
1726  * Description:
1727  * This routine reads data from the @phba SLI4 PCI function queue information,
1728  * and copies to user @buf.
1729  *
1730  * Returns:
1731  * This function returns the amount of data that was read (this could be less
1732  * than @nbytes if the end of the file was reached) or a negative error value.
1733  **/
1734 static ssize_t
1735 lpfc_idiag_queinfo_read(struct file *file, char __user *buf, size_t nbytes,
1736 			loff_t *ppos)
1737 {
1738 	struct lpfc_debug *debug = file->private_data;
1739 	struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
1740 	int len = 0, fcp_qidx;
1741 	char *pbuffer;
1742 
1743 	if (!debug->buffer)
1744 		debug->buffer = kmalloc(LPFC_QUE_INFO_GET_BUF_SIZE, GFP_KERNEL);
1745 	if (!debug->buffer)
1746 		return 0;
1747 	pbuffer = debug->buffer;
1748 
1749 	if (*ppos)
1750 		return 0;
1751 
1752 	/* Get slow-path event queue information */
1753 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1754 			"Slow-path EQ information:\n");
1755 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1756 			"\tID [%02d], EQE-COUNT [%04d], "
1757 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
1758 			phba->sli4_hba.sp_eq->queue_id,
1759 			phba->sli4_hba.sp_eq->entry_count,
1760 			phba->sli4_hba.sp_eq->host_index,
1761 			phba->sli4_hba.sp_eq->hba_index);
1762 
1763 	/* Get fast-path event queue information */
1764 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1765 			"Fast-path EQ information:\n");
1766 	for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_eq_count; fcp_qidx++) {
1767 		len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1768 				"\tID [%02d], EQE-COUNT [%04d], "
1769 				"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
1770 				phba->sli4_hba.fp_eq[fcp_qidx]->queue_id,
1771 				phba->sli4_hba.fp_eq[fcp_qidx]->entry_count,
1772 				phba->sli4_hba.fp_eq[fcp_qidx]->host_index,
1773 				phba->sli4_hba.fp_eq[fcp_qidx]->hba_index);
1774 	}
1775 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
1776 
1777 	/* Get mailbox complete queue information */
1778 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1779 			"Mailbox CQ information:\n");
1780 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1781 			"\t\tAssociated EQ-ID [%02d]:\n",
1782 			phba->sli4_hba.mbx_cq->assoc_qid);
1783 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1784 			"\tID [%02d], CQE-COUNT [%04d], "
1785 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
1786 			phba->sli4_hba.mbx_cq->queue_id,
1787 			phba->sli4_hba.mbx_cq->entry_count,
1788 			phba->sli4_hba.mbx_cq->host_index,
1789 			phba->sli4_hba.mbx_cq->hba_index);
1790 
1791 	/* Get slow-path complete queue information */
1792 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1793 			"Slow-path CQ information:\n");
1794 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1795 			"\t\tAssociated EQ-ID [%02d]:\n",
1796 			phba->sli4_hba.els_cq->assoc_qid);
1797 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1798 			"\tID [%02d], CQE-COUNT [%04d], "
1799 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
1800 			phba->sli4_hba.els_cq->queue_id,
1801 			phba->sli4_hba.els_cq->entry_count,
1802 			phba->sli4_hba.els_cq->host_index,
1803 			phba->sli4_hba.els_cq->hba_index);
1804 
1805 	/* Get fast-path complete queue information */
1806 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1807 			"Fast-path CQ information:\n");
1808 	for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_eq_count; fcp_qidx++) {
1809 		len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1810 				"\t\tAssociated EQ-ID [%02d]:\n",
1811 				phba->sli4_hba.fcp_cq[fcp_qidx]->assoc_qid);
1812 		len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1813 		"\tID [%02d], EQE-COUNT [%04d], "
1814 		"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
1815 		phba->sli4_hba.fcp_cq[fcp_qidx]->queue_id,
1816 		phba->sli4_hba.fcp_cq[fcp_qidx]->entry_count,
1817 		phba->sli4_hba.fcp_cq[fcp_qidx]->host_index,
1818 		phba->sli4_hba.fcp_cq[fcp_qidx]->hba_index);
1819 	}
1820 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
1821 
1822 	/* Get mailbox queue information */
1823 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1824 			"Mailbox MQ information:\n");
1825 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1826 			"\t\tAssociated CQ-ID [%02d]:\n",
1827 			phba->sli4_hba.mbx_wq->assoc_qid);
1828 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1829 			"\tID [%02d], MQE-COUNT [%04d], "
1830 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
1831 			phba->sli4_hba.mbx_wq->queue_id,
1832 			phba->sli4_hba.mbx_wq->entry_count,
1833 			phba->sli4_hba.mbx_wq->host_index,
1834 			phba->sli4_hba.mbx_wq->hba_index);
1835 
1836 	/* Get slow-path work queue information */
1837 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1838 			"Slow-path WQ information:\n");
1839 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1840 			"\t\tAssociated CQ-ID [%02d]:\n",
1841 			phba->sli4_hba.els_wq->assoc_qid);
1842 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1843 			"\tID [%02d], WQE-COUNT [%04d], "
1844 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
1845 			phba->sli4_hba.els_wq->queue_id,
1846 			phba->sli4_hba.els_wq->entry_count,
1847 			phba->sli4_hba.els_wq->host_index,
1848 			phba->sli4_hba.els_wq->hba_index);
1849 
1850 	/* Get fast-path work queue information */
1851 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1852 			"Fast-path WQ information:\n");
1853 	for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_wq_count; fcp_qidx++) {
1854 		len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1855 				"\t\tAssociated CQ-ID [%02d]:\n",
1856 				phba->sli4_hba.fcp_wq[fcp_qidx]->assoc_qid);
1857 		len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1858 				"\tID [%02d], WQE-COUNT [%04d], "
1859 				"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
1860 				phba->sli4_hba.fcp_wq[fcp_qidx]->queue_id,
1861 				phba->sli4_hba.fcp_wq[fcp_qidx]->entry_count,
1862 				phba->sli4_hba.fcp_wq[fcp_qidx]->host_index,
1863 				phba->sli4_hba.fcp_wq[fcp_qidx]->hba_index);
1864 	}
1865 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
1866 
1867 	/* Get receive queue information */
1868 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1869 			"Slow-path RQ information:\n");
1870 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1871 			"\t\tAssociated CQ-ID [%02d]:\n",
1872 			phba->sli4_hba.hdr_rq->assoc_qid);
1873 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1874 			"\tID [%02d], RHQE-COUNT [%04d], "
1875 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
1876 			phba->sli4_hba.hdr_rq->queue_id,
1877 			phba->sli4_hba.hdr_rq->entry_count,
1878 			phba->sli4_hba.hdr_rq->host_index,
1879 			phba->sli4_hba.hdr_rq->hba_index);
1880 	len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
1881 			"\tID [%02d], RDQE-COUNT [%04d], "
1882 			"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
1883 			phba->sli4_hba.dat_rq->queue_id,
1884 			phba->sli4_hba.dat_rq->entry_count,
1885 			phba->sli4_hba.dat_rq->host_index,
1886 			phba->sli4_hba.dat_rq->hba_index);
1887 
1888 	return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
1889 }
1890 
1891 #undef lpfc_debugfs_op_disc_trc
1892 static const struct file_operations lpfc_debugfs_op_disc_trc = {
1893 	.owner =        THIS_MODULE,
1894 	.open =         lpfc_debugfs_disc_trc_open,
1895 	.llseek =       lpfc_debugfs_lseek,
1896 	.read =         lpfc_debugfs_read,
1897 	.release =      lpfc_debugfs_release,
1898 };
1899 
1900 #undef lpfc_debugfs_op_nodelist
1901 static const struct file_operations lpfc_debugfs_op_nodelist = {
1902 	.owner =        THIS_MODULE,
1903 	.open =         lpfc_debugfs_nodelist_open,
1904 	.llseek =       lpfc_debugfs_lseek,
1905 	.read =         lpfc_debugfs_read,
1906 	.release =      lpfc_debugfs_release,
1907 };
1908 
1909 #undef lpfc_debugfs_op_hbqinfo
1910 static const struct file_operations lpfc_debugfs_op_hbqinfo = {
1911 	.owner =        THIS_MODULE,
1912 	.open =         lpfc_debugfs_hbqinfo_open,
1913 	.llseek =       lpfc_debugfs_lseek,
1914 	.read =         lpfc_debugfs_read,
1915 	.release =      lpfc_debugfs_release,
1916 };
1917 
1918 #undef lpfc_debugfs_op_dumpHBASlim
1919 static const struct file_operations lpfc_debugfs_op_dumpHBASlim = {
1920 	.owner =        THIS_MODULE,
1921 	.open =         lpfc_debugfs_dumpHBASlim_open,
1922 	.llseek =       lpfc_debugfs_lseek,
1923 	.read =         lpfc_debugfs_read,
1924 	.release =      lpfc_debugfs_release,
1925 };
1926 
1927 #undef lpfc_debugfs_op_dumpHostSlim
1928 static const struct file_operations lpfc_debugfs_op_dumpHostSlim = {
1929 	.owner =        THIS_MODULE,
1930 	.open =         lpfc_debugfs_dumpHostSlim_open,
1931 	.llseek =       lpfc_debugfs_lseek,
1932 	.read =         lpfc_debugfs_read,
1933 	.release =      lpfc_debugfs_release,
1934 };
1935 
1936 #undef lpfc_debugfs_op_dumpData
1937 static const struct file_operations lpfc_debugfs_op_dumpData = {
1938 	.owner =        THIS_MODULE,
1939 	.open =         lpfc_debugfs_dumpData_open,
1940 	.llseek =       lpfc_debugfs_lseek,
1941 	.read =         lpfc_debugfs_read,
1942 	.write =	lpfc_debugfs_dumpDataDif_write,
1943 	.release =      lpfc_debugfs_dumpDataDif_release,
1944 };
1945 
1946 #undef lpfc_debugfs_op_dumpDif
1947 static const struct file_operations lpfc_debugfs_op_dumpDif = {
1948 	.owner =        THIS_MODULE,
1949 	.open =         lpfc_debugfs_dumpDif_open,
1950 	.llseek =       lpfc_debugfs_lseek,
1951 	.read =         lpfc_debugfs_read,
1952 	.write =	lpfc_debugfs_dumpDataDif_write,
1953 	.release =      lpfc_debugfs_dumpDataDif_release,
1954 };
1955 
1956 #undef lpfc_debugfs_op_slow_ring_trc
1957 static const struct file_operations lpfc_debugfs_op_slow_ring_trc = {
1958 	.owner =        THIS_MODULE,
1959 	.open =         lpfc_debugfs_slow_ring_trc_open,
1960 	.llseek =       lpfc_debugfs_lseek,
1961 	.read =         lpfc_debugfs_read,
1962 	.release =      lpfc_debugfs_release,
1963 };
1964 
1965 static struct dentry *lpfc_debugfs_root = NULL;
1966 static atomic_t lpfc_debugfs_hba_count;
1967 
1968 /*
1969  * File operations for the iDiag debugfs
1970  */
1971 #undef lpfc_idiag_op_pciCfg
1972 static const struct file_operations lpfc_idiag_op_pciCfg = {
1973 	.owner =        THIS_MODULE,
1974 	.open =         lpfc_idiag_open,
1975 	.llseek =       lpfc_debugfs_lseek,
1976 	.read =         lpfc_idiag_pcicfg_read,
1977 	.write =        lpfc_idiag_pcicfg_write,
1978 	.release =      lpfc_idiag_cmd_release,
1979 };
1980 
1981 #undef lpfc_idiag_op_queInfo
1982 static const struct file_operations lpfc_idiag_op_queInfo = {
1983 	.owner =        THIS_MODULE,
1984 	.open =         lpfc_idiag_open,
1985 	.read =         lpfc_idiag_queinfo_read,
1986 	.release =      lpfc_idiag_release,
1987 };
1988 
1989 #endif
1990 
1991 /**
1992  * lpfc_debugfs_initialize - Initialize debugfs for a vport
1993  * @vport: The vport pointer to initialize.
1994  *
1995  * Description:
1996  * When Debugfs is configured this routine sets up the lpfc debugfs file system.
1997  * If not already created, this routine will create the lpfc directory, and
1998  * lpfcX directory (for this HBA), and vportX directory for this vport. It will
1999  * also create each file used to access lpfc specific debugfs information.
2000  **/
2001 inline void
2002 lpfc_debugfs_initialize(struct lpfc_vport *vport)
2003 {
2004 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2005 	struct lpfc_hba   *phba = vport->phba;
2006 	char name[64];
2007 	uint32_t num, i;
2008 
2009 	if (!lpfc_debugfs_enable)
2010 		return;
2011 
2012 	/* Setup lpfc root directory */
2013 	if (!lpfc_debugfs_root) {
2014 		lpfc_debugfs_root = debugfs_create_dir("lpfc", NULL);
2015 		atomic_set(&lpfc_debugfs_hba_count, 0);
2016 		if (!lpfc_debugfs_root) {
2017 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2018 					 "0408 Cannot create debugfs root\n");
2019 			goto debug_failed;
2020 		}
2021 	}
2022 	if (!lpfc_debugfs_start_time)
2023 		lpfc_debugfs_start_time = jiffies;
2024 
2025 	/* Setup funcX directory for specific HBA PCI function */
2026 	snprintf(name, sizeof(name), "fn%d", phba->brd_no);
2027 	if (!phba->hba_debugfs_root) {
2028 		phba->hba_debugfs_root =
2029 			debugfs_create_dir(name, lpfc_debugfs_root);
2030 		if (!phba->hba_debugfs_root) {
2031 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2032 					 "0412 Cannot create debugfs hba\n");
2033 			goto debug_failed;
2034 		}
2035 		atomic_inc(&lpfc_debugfs_hba_count);
2036 		atomic_set(&phba->debugfs_vport_count, 0);
2037 
2038 		/* Setup hbqinfo */
2039 		snprintf(name, sizeof(name), "hbqinfo");
2040 		phba->debug_hbqinfo =
2041 			debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2042 				 phba->hba_debugfs_root,
2043 				 phba, &lpfc_debugfs_op_hbqinfo);
2044 		if (!phba->debug_hbqinfo) {
2045 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2046 				"0411 Cannot create debugfs hbqinfo\n");
2047 			goto debug_failed;
2048 		}
2049 
2050 		/* Setup dumpHBASlim */
2051 		if (phba->sli_rev < LPFC_SLI_REV4) {
2052 			snprintf(name, sizeof(name), "dumpHBASlim");
2053 			phba->debug_dumpHBASlim =
2054 				debugfs_create_file(name,
2055 					S_IFREG|S_IRUGO|S_IWUSR,
2056 					phba->hba_debugfs_root,
2057 					phba, &lpfc_debugfs_op_dumpHBASlim);
2058 			if (!phba->debug_dumpHBASlim) {
2059 				lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2060 						 "0413 Cannot create debugfs "
2061 						"dumpHBASlim\n");
2062 				goto debug_failed;
2063 			}
2064 		} else
2065 			phba->debug_dumpHBASlim = NULL;
2066 
2067 		/* Setup dumpHostSlim */
2068 		if (phba->sli_rev < LPFC_SLI_REV4) {
2069 			snprintf(name, sizeof(name), "dumpHostSlim");
2070 			phba->debug_dumpHostSlim =
2071 				debugfs_create_file(name,
2072 					S_IFREG|S_IRUGO|S_IWUSR,
2073 					phba->hba_debugfs_root,
2074 					phba, &lpfc_debugfs_op_dumpHostSlim);
2075 			if (!phba->debug_dumpHostSlim) {
2076 				lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2077 						 "0414 Cannot create debugfs "
2078 						 "dumpHostSlim\n");
2079 				goto debug_failed;
2080 			}
2081 		} else
2082 			phba->debug_dumpHBASlim = NULL;
2083 
2084 		/* Setup dumpData */
2085 		snprintf(name, sizeof(name), "dumpData");
2086 		phba->debug_dumpData =
2087 			debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2088 				 phba->hba_debugfs_root,
2089 				 phba, &lpfc_debugfs_op_dumpData);
2090 		if (!phba->debug_dumpData) {
2091 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2092 				"0800 Cannot create debugfs dumpData\n");
2093 			goto debug_failed;
2094 		}
2095 
2096 		/* Setup dumpDif */
2097 		snprintf(name, sizeof(name), "dumpDif");
2098 		phba->debug_dumpDif =
2099 			debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2100 				 phba->hba_debugfs_root,
2101 				 phba, &lpfc_debugfs_op_dumpDif);
2102 		if (!phba->debug_dumpDif) {
2103 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2104 				"0801 Cannot create debugfs dumpDif\n");
2105 			goto debug_failed;
2106 		}
2107 
2108 		/* Setup slow ring trace */
2109 		if (lpfc_debugfs_max_slow_ring_trc) {
2110 			num = lpfc_debugfs_max_slow_ring_trc - 1;
2111 			if (num & lpfc_debugfs_max_slow_ring_trc) {
2112 				/* Change to be a power of 2 */
2113 				num = lpfc_debugfs_max_slow_ring_trc;
2114 				i = 0;
2115 				while (num > 1) {
2116 					num = num >> 1;
2117 					i++;
2118 				}
2119 				lpfc_debugfs_max_slow_ring_trc = (1 << i);
2120 				printk(KERN_ERR
2121 				       "lpfc_debugfs_max_disc_trc changed to "
2122 				       "%d\n", lpfc_debugfs_max_disc_trc);
2123 			}
2124 		}
2125 
2126 		snprintf(name, sizeof(name), "slow_ring_trace");
2127 		phba->debug_slow_ring_trc =
2128 			debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2129 				 phba->hba_debugfs_root,
2130 				 phba, &lpfc_debugfs_op_slow_ring_trc);
2131 		if (!phba->debug_slow_ring_trc) {
2132 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2133 					 "0415 Cannot create debugfs "
2134 					 "slow_ring_trace\n");
2135 			goto debug_failed;
2136 		}
2137 		if (!phba->slow_ring_trc) {
2138 			phba->slow_ring_trc = kmalloc(
2139 				(sizeof(struct lpfc_debugfs_trc) *
2140 				lpfc_debugfs_max_slow_ring_trc),
2141 				GFP_KERNEL);
2142 			if (!phba->slow_ring_trc) {
2143 				lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2144 						 "0416 Cannot create debugfs "
2145 						 "slow_ring buffer\n");
2146 				goto debug_failed;
2147 			}
2148 			atomic_set(&phba->slow_ring_trc_cnt, 0);
2149 			memset(phba->slow_ring_trc, 0,
2150 				(sizeof(struct lpfc_debugfs_trc) *
2151 				lpfc_debugfs_max_slow_ring_trc));
2152 		}
2153 	}
2154 
2155 	snprintf(name, sizeof(name), "vport%d", vport->vpi);
2156 	if (!vport->vport_debugfs_root) {
2157 		vport->vport_debugfs_root =
2158 			debugfs_create_dir(name, phba->hba_debugfs_root);
2159 		if (!vport->vport_debugfs_root) {
2160 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2161 					 "0417 Cant create debugfs\n");
2162 			goto debug_failed;
2163 		}
2164 		atomic_inc(&phba->debugfs_vport_count);
2165 	}
2166 
2167 	if (lpfc_debugfs_max_disc_trc) {
2168 		num = lpfc_debugfs_max_disc_trc - 1;
2169 		if (num & lpfc_debugfs_max_disc_trc) {
2170 			/* Change to be a power of 2 */
2171 			num = lpfc_debugfs_max_disc_trc;
2172 			i = 0;
2173 			while (num > 1) {
2174 				num = num >> 1;
2175 				i++;
2176 			}
2177 			lpfc_debugfs_max_disc_trc = (1 << i);
2178 			printk(KERN_ERR
2179 			       "lpfc_debugfs_max_disc_trc changed to %d\n",
2180 			       lpfc_debugfs_max_disc_trc);
2181 		}
2182 	}
2183 
2184 	vport->disc_trc = kzalloc(
2185 		(sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_disc_trc),
2186 		GFP_KERNEL);
2187 
2188 	if (!vport->disc_trc) {
2189 		lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2190 				 "0418 Cannot create debugfs disc trace "
2191 				 "buffer\n");
2192 		goto debug_failed;
2193 	}
2194 	atomic_set(&vport->disc_trc_cnt, 0);
2195 
2196 	snprintf(name, sizeof(name), "discovery_trace");
2197 	vport->debug_disc_trc =
2198 		debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2199 				 vport->vport_debugfs_root,
2200 				 vport, &lpfc_debugfs_op_disc_trc);
2201 	if (!vport->debug_disc_trc) {
2202 		lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2203 				 "0419 Cannot create debugfs "
2204 				 "discovery_trace\n");
2205 		goto debug_failed;
2206 	}
2207 	snprintf(name, sizeof(name), "nodelist");
2208 	vport->debug_nodelist =
2209 		debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2210 				 vport->vport_debugfs_root,
2211 				 vport, &lpfc_debugfs_op_nodelist);
2212 	if (!vport->debug_nodelist) {
2213 		lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2214 				 "0409 Cant create debugfs nodelist\n");
2215 		goto debug_failed;
2216 	}
2217 
2218 	/*
2219 	 * iDiag debugfs root entry points for SLI4 device only
2220 	 */
2221 	if (phba->sli_rev < LPFC_SLI_REV4)
2222 		goto debug_failed;
2223 
2224 	snprintf(name, sizeof(name), "iDiag");
2225 	if (!phba->idiag_root) {
2226 		phba->idiag_root =
2227 			debugfs_create_dir(name, phba->hba_debugfs_root);
2228 		if (!phba->idiag_root) {
2229 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2230 					 "2922 Can't create idiag debugfs\n");
2231 			goto debug_failed;
2232 		}
2233 		/* Initialize iDiag data structure */
2234 		memset(&idiag, 0, sizeof(idiag));
2235 	}
2236 
2237 	/* iDiag read PCI config space */
2238 	snprintf(name, sizeof(name), "pciCfg");
2239 	if (!phba->idiag_pci_cfg) {
2240 		phba->idiag_pci_cfg =
2241 			debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
2242 				phba->idiag_root, phba, &lpfc_idiag_op_pciCfg);
2243 		if (!phba->idiag_pci_cfg) {
2244 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2245 					 "2923 Can't create idiag debugfs\n");
2246 			goto debug_failed;
2247 		}
2248 		idiag.offset.last_rd = 0;
2249 	}
2250 
2251 	/* iDiag get PCI function queue information */
2252 	snprintf(name, sizeof(name), "queInfo");
2253 	if (!phba->idiag_que_info) {
2254 		phba->idiag_que_info =
2255 			debugfs_create_file(name, S_IFREG|S_IRUGO,
2256 			phba->idiag_root, phba, &lpfc_idiag_op_queInfo);
2257 		if (!phba->idiag_que_info) {
2258 			lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
2259 					 "2924 Can't create idiag debugfs\n");
2260 			goto debug_failed;
2261 		}
2262 	}
2263 
2264 debug_failed:
2265 	return;
2266 #endif
2267 }
2268 
2269 /**
2270  * lpfc_debugfs_terminate -  Tear down debugfs infrastructure for this vport
2271  * @vport: The vport pointer to remove from debugfs.
2272  *
2273  * Description:
2274  * When Debugfs is configured this routine removes debugfs file system elements
2275  * that are specific to this vport. It also checks to see if there are any
2276  * users left for the debugfs directories associated with the HBA and driver. If
2277  * this is the last user of the HBA directory or driver directory then it will
2278  * remove those from the debugfs infrastructure as well.
2279  **/
2280 inline void
2281 lpfc_debugfs_terminate(struct lpfc_vport *vport)
2282 {
2283 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2284 	struct lpfc_hba   *phba = vport->phba;
2285 
2286 	if (vport->disc_trc) {
2287 		kfree(vport->disc_trc);
2288 		vport->disc_trc = NULL;
2289 	}
2290 	if (vport->debug_disc_trc) {
2291 		debugfs_remove(vport->debug_disc_trc); /* discovery_trace */
2292 		vport->debug_disc_trc = NULL;
2293 	}
2294 	if (vport->debug_nodelist) {
2295 		debugfs_remove(vport->debug_nodelist); /* nodelist */
2296 		vport->debug_nodelist = NULL;
2297 	}
2298 
2299 	if (vport->vport_debugfs_root) {
2300 		debugfs_remove(vport->vport_debugfs_root); /* vportX */
2301 		vport->vport_debugfs_root = NULL;
2302 		atomic_dec(&phba->debugfs_vport_count);
2303 	}
2304 	if (atomic_read(&phba->debugfs_vport_count) == 0) {
2305 
2306 		if (phba->debug_hbqinfo) {
2307 			debugfs_remove(phba->debug_hbqinfo); /* hbqinfo */
2308 			phba->debug_hbqinfo = NULL;
2309 		}
2310 		if (phba->debug_dumpHBASlim) {
2311 			debugfs_remove(phba->debug_dumpHBASlim); /* HBASlim */
2312 			phba->debug_dumpHBASlim = NULL;
2313 		}
2314 		if (phba->debug_dumpHostSlim) {
2315 			debugfs_remove(phba->debug_dumpHostSlim); /* HostSlim */
2316 			phba->debug_dumpHostSlim = NULL;
2317 		}
2318 		if (phba->debug_dumpData) {
2319 			debugfs_remove(phba->debug_dumpData); /* dumpData */
2320 			phba->debug_dumpData = NULL;
2321 		}
2322 
2323 		if (phba->debug_dumpDif) {
2324 			debugfs_remove(phba->debug_dumpDif); /* dumpDif */
2325 			phba->debug_dumpDif = NULL;
2326 		}
2327 
2328 		if (phba->slow_ring_trc) {
2329 			kfree(phba->slow_ring_trc);
2330 			phba->slow_ring_trc = NULL;
2331 		}
2332 		if (phba->debug_slow_ring_trc) {
2333 			/* slow_ring_trace */
2334 			debugfs_remove(phba->debug_slow_ring_trc);
2335 			phba->debug_slow_ring_trc = NULL;
2336 		}
2337 
2338 		/*
2339 		 * iDiag release
2340 		 */
2341 		if (phba->sli_rev == LPFC_SLI_REV4) {
2342 			if (phba->idiag_que_info) {
2343 				/* iDiag queInfo */
2344 				debugfs_remove(phba->idiag_que_info);
2345 				phba->idiag_que_info = NULL;
2346 			}
2347 			if (phba->idiag_pci_cfg) {
2348 				/* iDiag pciCfg */
2349 				debugfs_remove(phba->idiag_pci_cfg);
2350 				phba->idiag_pci_cfg = NULL;
2351 			}
2352 
2353 			/* Finally remove the iDiag debugfs root */
2354 			if (phba->idiag_root) {
2355 				/* iDiag root */
2356 				debugfs_remove(phba->idiag_root);
2357 				phba->idiag_root = NULL;
2358 			}
2359 		}
2360 
2361 		if (phba->hba_debugfs_root) {
2362 			debugfs_remove(phba->hba_debugfs_root); /* fnX */
2363 			phba->hba_debugfs_root = NULL;
2364 			atomic_dec(&lpfc_debugfs_hba_count);
2365 		}
2366 
2367 		if (atomic_read(&lpfc_debugfs_hba_count) == 0) {
2368 			debugfs_remove(lpfc_debugfs_root); /* lpfc */
2369 			lpfc_debugfs_root = NULL;
2370 		}
2371 	}
2372 #endif
2373 	return;
2374 }
2375