xref: /linux/drivers/scsi/libsas/sas_init.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Serial Attached SCSI (SAS) Transport Layer initialization
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/device.h>
13 #include <linux/spinlock.h>
14 #include <scsi/sas_ata.h>
15 #include <scsi/scsi_host.h>
16 #include <scsi/scsi_device.h>
17 #include <scsi/scsi_transport.h>
18 #include <scsi/scsi_transport_sas.h>
19 
20 #include "sas_internal.h"
21 
22 #include "../scsi_sas_internal.h"
23 
24 static struct kmem_cache *sas_task_cache;
25 static struct kmem_cache *sas_event_cache;
26 
27 struct sas_task *sas_alloc_task(gfp_t flags)
28 {
29 	struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
30 
31 	if (task) {
32 		spin_lock_init(&task->task_state_lock);
33 		task->task_state_flags = SAS_TASK_STATE_PENDING;
34 	}
35 
36 	return task;
37 }
38 EXPORT_SYMBOL_GPL(sas_alloc_task);
39 
40 struct sas_task *sas_alloc_slow_task(gfp_t flags)
41 {
42 	struct sas_task *task = sas_alloc_task(flags);
43 	struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
44 
45 	if (!task || !slow) {
46 		if (task)
47 			kmem_cache_free(sas_task_cache, task);
48 		kfree(slow);
49 		return NULL;
50 	}
51 
52 	task->slow_task = slow;
53 	slow->task = task;
54 	timer_setup(&slow->timer, NULL, 0);
55 	init_completion(&slow->completion);
56 
57 	return task;
58 }
59 EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
60 
61 void sas_free_task(struct sas_task *task)
62 {
63 	if (task) {
64 		kfree(task->slow_task);
65 		kmem_cache_free(sas_task_cache, task);
66 	}
67 }
68 EXPORT_SYMBOL_GPL(sas_free_task);
69 
70 /*------------ SAS addr hash -----------*/
71 void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
72 {
73 	const u32 poly = 0x00DB2777;
74 	u32 r = 0;
75 	int i;
76 
77 	for (i = 0; i < SAS_ADDR_SIZE; i++) {
78 		int b;
79 
80 		for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
81 			r <<= 1;
82 			if ((1 << b) & sas_addr[i]) {
83 				if (!(r & 0x01000000))
84 					r ^= poly;
85 			} else if (r & 0x01000000) {
86 				r ^= poly;
87 			}
88 		}
89 	}
90 
91 	hashed[0] = (r >> 16) & 0xFF;
92 	hashed[1] = (r >> 8) & 0xFF;
93 	hashed[2] = r & 0xFF;
94 }
95 
96 int sas_register_ha(struct sas_ha_struct *sas_ha)
97 {
98 	char name[64];
99 	int error = 0;
100 
101 	mutex_init(&sas_ha->disco_mutex);
102 	spin_lock_init(&sas_ha->phy_port_lock);
103 	sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
104 
105 	set_bit(SAS_HA_REGISTERED, &sas_ha->state);
106 	spin_lock_init(&sas_ha->lock);
107 	mutex_init(&sas_ha->drain_mutex);
108 	init_waitqueue_head(&sas_ha->eh_wait_q);
109 	INIT_LIST_HEAD(&sas_ha->defer_q);
110 	INIT_LIST_HEAD(&sas_ha->eh_dev_q);
111 
112 	sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
113 
114 	error = sas_register_phys(sas_ha);
115 	if (error) {
116 		pr_notice("couldn't register sas phys:%d\n", error);
117 		return error;
118 	}
119 
120 	error = sas_register_ports(sas_ha);
121 	if (error) {
122 		pr_notice("couldn't register sas ports:%d\n", error);
123 		goto Undo_phys;
124 	}
125 
126 	error = -ENOMEM;
127 	snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
128 	sas_ha->event_q = create_singlethread_workqueue(name);
129 	if (!sas_ha->event_q)
130 		goto Undo_ports;
131 
132 	snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
133 	sas_ha->disco_q = create_singlethread_workqueue(name);
134 	if (!sas_ha->disco_q)
135 		goto Undo_event_q;
136 
137 	INIT_LIST_HEAD(&sas_ha->eh_done_q);
138 	INIT_LIST_HEAD(&sas_ha->eh_ata_q);
139 
140 	return 0;
141 
142 Undo_event_q:
143 	destroy_workqueue(sas_ha->event_q);
144 Undo_ports:
145 	sas_unregister_ports(sas_ha);
146 Undo_phys:
147 
148 	return error;
149 }
150 
151 static void sas_disable_events(struct sas_ha_struct *sas_ha)
152 {
153 	/* Set the state to unregistered to avoid further unchained
154 	 * events to be queued, and flush any in-progress drainers
155 	 */
156 	mutex_lock(&sas_ha->drain_mutex);
157 	spin_lock_irq(&sas_ha->lock);
158 	clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
159 	spin_unlock_irq(&sas_ha->lock);
160 	__sas_drain_work(sas_ha);
161 	mutex_unlock(&sas_ha->drain_mutex);
162 }
163 
164 int sas_unregister_ha(struct sas_ha_struct *sas_ha)
165 {
166 	sas_disable_events(sas_ha);
167 	sas_unregister_ports(sas_ha);
168 
169 	/* flush unregistration work */
170 	mutex_lock(&sas_ha->drain_mutex);
171 	__sas_drain_work(sas_ha);
172 	mutex_unlock(&sas_ha->drain_mutex);
173 
174 	destroy_workqueue(sas_ha->disco_q);
175 	destroy_workqueue(sas_ha->event_q);
176 
177 	return 0;
178 }
179 
180 static int sas_get_linkerrors(struct sas_phy *phy)
181 {
182 	if (scsi_is_sas_phy_local(phy)) {
183 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
184 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
185 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
186 		struct sas_internal *i =
187 			to_sas_internal(sas_ha->core.shost->transportt);
188 
189 		return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
190 	}
191 
192 	return sas_smp_get_phy_events(phy);
193 }
194 
195 int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
196 {
197 	struct domain_device *dev = NULL;
198 
199 	/* try to route user requested link resets through libata */
200 	if (asd_phy->port)
201 		dev = asd_phy->port->port_dev;
202 
203 	/* validate that dev has been probed */
204 	if (dev)
205 		dev = sas_find_dev_by_rphy(dev->rphy);
206 
207 	if (dev && dev_is_sata(dev)) {
208 		sas_ata_schedule_reset(dev);
209 		sas_ata_wait_eh(dev);
210 		return 0;
211 	}
212 
213 	return -ENODEV;
214 }
215 
216 /*
217  * transport_sas_phy_reset - reset a phy and permit libata to manage the link
218  *
219  * phy reset request via sysfs in host workqueue context so we know we
220  * can block on eh and safely traverse the domain_device topology
221  */
222 static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
223 {
224 	enum phy_func reset_type;
225 
226 	if (hard_reset)
227 		reset_type = PHY_FUNC_HARD_RESET;
228 	else
229 		reset_type = PHY_FUNC_LINK_RESET;
230 
231 	if (scsi_is_sas_phy_local(phy)) {
232 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
233 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
234 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
235 		struct sas_internal *i =
236 			to_sas_internal(sas_ha->core.shost->transportt);
237 
238 		if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
239 			return 0;
240 		return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
241 	} else {
242 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
243 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
244 		struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
245 
246 		if (ata_dev && !hard_reset) {
247 			sas_ata_schedule_reset(ata_dev);
248 			sas_ata_wait_eh(ata_dev);
249 			return 0;
250 		} else
251 			return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
252 	}
253 }
254 
255 static int sas_phy_enable(struct sas_phy *phy, int enable)
256 {
257 	int ret;
258 	enum phy_func cmd;
259 
260 	if (enable)
261 		cmd = PHY_FUNC_LINK_RESET;
262 	else
263 		cmd = PHY_FUNC_DISABLE;
264 
265 	if (scsi_is_sas_phy_local(phy)) {
266 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
267 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
268 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
269 		struct sas_internal *i =
270 			to_sas_internal(sas_ha->core.shost->transportt);
271 
272 		if (enable)
273 			ret = transport_sas_phy_reset(phy, 0);
274 		else
275 			ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
276 	} else {
277 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
278 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
279 
280 		if (enable)
281 			ret = transport_sas_phy_reset(phy, 0);
282 		else
283 			ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
284 	}
285 	return ret;
286 }
287 
288 int sas_phy_reset(struct sas_phy *phy, int hard_reset)
289 {
290 	int ret;
291 	enum phy_func reset_type;
292 
293 	if (!phy->enabled)
294 		return -ENODEV;
295 
296 	if (hard_reset)
297 		reset_type = PHY_FUNC_HARD_RESET;
298 	else
299 		reset_type = PHY_FUNC_LINK_RESET;
300 
301 	if (scsi_is_sas_phy_local(phy)) {
302 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
303 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
304 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
305 		struct sas_internal *i =
306 			to_sas_internal(sas_ha->core.shost->transportt);
307 
308 		ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
309 	} else {
310 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
311 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
312 		ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
313 	}
314 	return ret;
315 }
316 
317 int sas_set_phy_speed(struct sas_phy *phy,
318 		      struct sas_phy_linkrates *rates)
319 {
320 	int ret;
321 
322 	if ((rates->minimum_linkrate &&
323 	     rates->minimum_linkrate > phy->maximum_linkrate) ||
324 	    (rates->maximum_linkrate &&
325 	     rates->maximum_linkrate < phy->minimum_linkrate))
326 		return -EINVAL;
327 
328 	if (rates->minimum_linkrate &&
329 	    rates->minimum_linkrate < phy->minimum_linkrate_hw)
330 		rates->minimum_linkrate = phy->minimum_linkrate_hw;
331 
332 	if (rates->maximum_linkrate &&
333 	    rates->maximum_linkrate > phy->maximum_linkrate_hw)
334 		rates->maximum_linkrate = phy->maximum_linkrate_hw;
335 
336 	if (scsi_is_sas_phy_local(phy)) {
337 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
338 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
339 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
340 		struct sas_internal *i =
341 			to_sas_internal(sas_ha->core.shost->transportt);
342 
343 		ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
344 					       rates);
345 	} else {
346 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
347 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
348 		ret = sas_smp_phy_control(ddev, phy->number,
349 					  PHY_FUNC_LINK_RESET, rates);
350 
351 	}
352 
353 	return ret;
354 }
355 
356 void sas_prep_resume_ha(struct sas_ha_struct *ha)
357 {
358 	int i;
359 
360 	set_bit(SAS_HA_REGISTERED, &ha->state);
361 
362 	/* clear out any stale link events/data from the suspension path */
363 	for (i = 0; i < ha->num_phys; i++) {
364 		struct asd_sas_phy *phy = ha->sas_phy[i];
365 
366 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
367 		phy->frame_rcvd_size = 0;
368 	}
369 }
370 EXPORT_SYMBOL(sas_prep_resume_ha);
371 
372 static int phys_suspended(struct sas_ha_struct *ha)
373 {
374 	int i, rc = 0;
375 
376 	for (i = 0; i < ha->num_phys; i++) {
377 		struct asd_sas_phy *phy = ha->sas_phy[i];
378 
379 		if (phy->suspended)
380 			rc++;
381 	}
382 
383 	return rc;
384 }
385 
386 void sas_resume_ha(struct sas_ha_struct *ha)
387 {
388 	const unsigned long tmo = msecs_to_jiffies(25000);
389 	int i;
390 
391 	/* deform ports on phys that did not resume
392 	 * at this point we may be racing the phy coming back (as posted
393 	 * by the lldd).  So we post the event and once we are in the
394 	 * libsas context check that the phy remains suspended before
395 	 * tearing it down.
396 	 */
397 	i = phys_suspended(ha);
398 	if (i)
399 		dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
400 			 i, i > 1 ? "s" : "");
401 	wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
402 	for (i = 0; i < ha->num_phys; i++) {
403 		struct asd_sas_phy *phy = ha->sas_phy[i];
404 
405 		if (phy->suspended) {
406 			dev_warn(&phy->phy->dev, "resume timeout\n");
407 			sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT,
408 					     GFP_KERNEL);
409 		}
410 	}
411 
412 	/* all phys are back up or timed out, turn on i/o so we can
413 	 * flush out disks that did not return
414 	 */
415 	scsi_unblock_requests(ha->core.shost);
416 	sas_drain_work(ha);
417 }
418 EXPORT_SYMBOL(sas_resume_ha);
419 
420 void sas_suspend_ha(struct sas_ha_struct *ha)
421 {
422 	int i;
423 
424 	sas_disable_events(ha);
425 	scsi_block_requests(ha->core.shost);
426 	for (i = 0; i < ha->num_phys; i++) {
427 		struct asd_sas_port *port = ha->sas_port[i];
428 
429 		sas_discover_event(port, DISCE_SUSPEND);
430 	}
431 
432 	/* flush suspend events while unregistered */
433 	mutex_lock(&ha->drain_mutex);
434 	__sas_drain_work(ha);
435 	mutex_unlock(&ha->drain_mutex);
436 }
437 EXPORT_SYMBOL(sas_suspend_ha);
438 
439 static void sas_phy_release(struct sas_phy *phy)
440 {
441 	kfree(phy->hostdata);
442 	phy->hostdata = NULL;
443 }
444 
445 static void phy_reset_work(struct work_struct *work)
446 {
447 	struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
448 
449 	d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
450 }
451 
452 static void phy_enable_work(struct work_struct *work)
453 {
454 	struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
455 
456 	d->enable_result = sas_phy_enable(d->phy, d->enable);
457 }
458 
459 static int sas_phy_setup(struct sas_phy *phy)
460 {
461 	struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
462 
463 	if (!d)
464 		return -ENOMEM;
465 
466 	mutex_init(&d->event_lock);
467 	INIT_SAS_WORK(&d->reset_work, phy_reset_work);
468 	INIT_SAS_WORK(&d->enable_work, phy_enable_work);
469 	d->phy = phy;
470 	phy->hostdata = d;
471 
472 	return 0;
473 }
474 
475 static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
476 {
477 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
478 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
479 	struct sas_phy_data *d = phy->hostdata;
480 	int rc;
481 
482 	if (!d)
483 		return -ENOMEM;
484 
485 	/* libsas workqueue coordinates ata-eh reset with discovery */
486 	mutex_lock(&d->event_lock);
487 	d->reset_result = 0;
488 	d->hard_reset = hard_reset;
489 
490 	spin_lock_irq(&ha->lock);
491 	sas_queue_work(ha, &d->reset_work);
492 	spin_unlock_irq(&ha->lock);
493 
494 	rc = sas_drain_work(ha);
495 	if (rc == 0)
496 		rc = d->reset_result;
497 	mutex_unlock(&d->event_lock);
498 
499 	return rc;
500 }
501 
502 static int queue_phy_enable(struct sas_phy *phy, int enable)
503 {
504 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
505 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
506 	struct sas_phy_data *d = phy->hostdata;
507 	int rc;
508 
509 	if (!d)
510 		return -ENOMEM;
511 
512 	/* libsas workqueue coordinates ata-eh reset with discovery */
513 	mutex_lock(&d->event_lock);
514 	d->enable_result = 0;
515 	d->enable = enable;
516 
517 	spin_lock_irq(&ha->lock);
518 	sas_queue_work(ha, &d->enable_work);
519 	spin_unlock_irq(&ha->lock);
520 
521 	rc = sas_drain_work(ha);
522 	if (rc == 0)
523 		rc = d->enable_result;
524 	mutex_unlock(&d->event_lock);
525 
526 	return rc;
527 }
528 
529 static struct sas_function_template sft = {
530 	.phy_enable = queue_phy_enable,
531 	.phy_reset = queue_phy_reset,
532 	.phy_setup = sas_phy_setup,
533 	.phy_release = sas_phy_release,
534 	.set_phy_speed = sas_set_phy_speed,
535 	.get_linkerrors = sas_get_linkerrors,
536 	.smp_handler = sas_smp_handler,
537 };
538 
539 static inline ssize_t phy_event_threshold_show(struct device *dev,
540 			struct device_attribute *attr, char *buf)
541 {
542 	struct Scsi_Host *shost = class_to_shost(dev);
543 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
544 
545 	return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
546 }
547 
548 static inline ssize_t phy_event_threshold_store(struct device *dev,
549 			struct device_attribute *attr,
550 			const char *buf, size_t count)
551 {
552 	struct Scsi_Host *shost = class_to_shost(dev);
553 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
554 
555 	sha->event_thres = simple_strtol(buf, NULL, 10);
556 
557 	/* threshold cannot be set too small */
558 	if (sha->event_thres < 32)
559 		sha->event_thres = 32;
560 
561 	return count;
562 }
563 
564 DEVICE_ATTR(phy_event_threshold,
565 	S_IRUGO|S_IWUSR,
566 	phy_event_threshold_show,
567 	phy_event_threshold_store);
568 EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
569 
570 struct scsi_transport_template *
571 sas_domain_attach_transport(struct sas_domain_function_template *dft)
572 {
573 	struct scsi_transport_template *stt = sas_attach_transport(&sft);
574 	struct sas_internal *i;
575 
576 	if (!stt)
577 		return stt;
578 
579 	i = to_sas_internal(stt);
580 	i->dft = dft;
581 	stt->create_work_queue = 1;
582 	stt->eh_strategy_handler = sas_scsi_recover_host;
583 
584 	return stt;
585 }
586 EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
587 
588 struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy,
589 				      gfp_t gfp_flags)
590 {
591 	struct asd_sas_event *event;
592 	struct sas_ha_struct *sas_ha = phy->ha;
593 	struct sas_internal *i =
594 		to_sas_internal(sas_ha->core.shost->transportt);
595 
596 	event = kmem_cache_zalloc(sas_event_cache, gfp_flags);
597 	if (!event)
598 		return NULL;
599 
600 	atomic_inc(&phy->event_nr);
601 
602 	if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
603 		if (i->dft->lldd_control_phy) {
604 			if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
605 				pr_notice("The phy%d bursting events, shut it down.\n",
606 					  phy->id);
607 				sas_notify_phy_event(phy, PHYE_SHUTDOWN,
608 						     gfp_flags);
609 			}
610 		} else {
611 			/* Do not support PHY control, stop allocating events */
612 			WARN_ONCE(1, "PHY control not supported.\n");
613 			kmem_cache_free(sas_event_cache, event);
614 			atomic_dec(&phy->event_nr);
615 			event = NULL;
616 		}
617 	}
618 
619 	return event;
620 }
621 
622 void sas_free_event(struct asd_sas_event *event)
623 {
624 	struct asd_sas_phy *phy = event->phy;
625 
626 	kmem_cache_free(sas_event_cache, event);
627 	atomic_dec(&phy->event_nr);
628 }
629 
630 /* ---------- SAS Class register/unregister ---------- */
631 
632 static int __init sas_class_init(void)
633 {
634 	sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
635 	if (!sas_task_cache)
636 		goto out;
637 
638 	sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
639 	if (!sas_event_cache)
640 		goto free_task_kmem;
641 
642 	return 0;
643 free_task_kmem:
644 	kmem_cache_destroy(sas_task_cache);
645 out:
646 	return -ENOMEM;
647 }
648 
649 static void __exit sas_class_exit(void)
650 {
651 	kmem_cache_destroy(sas_task_cache);
652 	kmem_cache_destroy(sas_event_cache);
653 }
654 
655 MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
656 MODULE_DESCRIPTION("SAS Transport Layer");
657 MODULE_LICENSE("GPL v2");
658 
659 module_init(sas_class_init);
660 module_exit(sas_class_exit);
661 
662 EXPORT_SYMBOL_GPL(sas_register_ha);
663 EXPORT_SYMBOL_GPL(sas_unregister_ha);
664