1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/scsi_transport.h> 32 #include <scsi/scsi_transport_sas.h> 33 #include "../scsi_sas_internal.h" 34 35 static int sas_discover_expander(struct domain_device *dev); 36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 37 static int sas_configure_phy(struct domain_device *dev, int phy_id, 38 u8 *sas_addr, int include); 39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 40 41 /* ---------- SMP task management ---------- */ 42 43 static void smp_task_timedout(unsigned long _task) 44 { 45 struct sas_task *task = (void *) _task; 46 unsigned long flags; 47 48 spin_lock_irqsave(&task->task_state_lock, flags); 49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 50 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 51 spin_unlock_irqrestore(&task->task_state_lock, flags); 52 53 complete(&task->completion); 54 } 55 56 static void smp_task_done(struct sas_task *task) 57 { 58 if (!del_timer(&task->timer)) 59 return; 60 complete(&task->completion); 61 } 62 63 /* Give it some long enough timeout. In seconds. */ 64 #define SMP_TIMEOUT 10 65 66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 67 void *resp, int resp_size) 68 { 69 int res, retry; 70 struct sas_task *task = NULL; 71 struct sas_internal *i = 72 to_sas_internal(dev->port->ha->core.shost->transportt); 73 74 for (retry = 0; retry < 3; retry++) { 75 task = sas_alloc_task(GFP_KERNEL); 76 if (!task) 77 return -ENOMEM; 78 79 task->dev = dev; 80 task->task_proto = dev->tproto; 81 sg_init_one(&task->smp_task.smp_req, req, req_size); 82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 83 84 task->task_done = smp_task_done; 85 86 task->timer.data = (unsigned long) task; 87 task->timer.function = smp_task_timedout; 88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 89 add_timer(&task->timer); 90 91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 92 93 if (res) { 94 del_timer(&task->timer); 95 SAS_DPRINTK("executing SMP task failed:%d\n", res); 96 goto ex_err; 97 } 98 99 wait_for_completion(&task->completion); 100 res = -ECOMM; 101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 102 SAS_DPRINTK("smp task timed out or aborted\n"); 103 i->dft->lldd_abort_task(task); 104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 105 SAS_DPRINTK("SMP task aborted and not done\n"); 106 goto ex_err; 107 } 108 } 109 if (task->task_status.resp == SAS_TASK_COMPLETE && 110 task->task_status.stat == SAM_STAT_GOOD) { 111 res = 0; 112 break; 113 } if (task->task_status.resp == SAS_TASK_COMPLETE && 114 task->task_status.stat == SAS_DATA_UNDERRUN) { 115 /* no error, but return the number of bytes of 116 * underrun */ 117 res = task->task_status.residual; 118 break; 119 } if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } else { 124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 125 "status 0x%x\n", __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 ex_err: 134 BUG_ON(retry == 3 && task != NULL); 135 if (task != NULL) { 136 sas_free_task(task); 137 } 138 return res; 139 } 140 141 /* ---------- Allocations ---------- */ 142 143 static inline void *alloc_smp_req(int size) 144 { 145 u8 *p = kzalloc(size, GFP_KERNEL); 146 if (p) 147 p[0] = SMP_REQUEST; 148 return p; 149 } 150 151 static inline void *alloc_smp_resp(int size) 152 { 153 return kzalloc(size, GFP_KERNEL); 154 } 155 156 /* ---------- Expander configuration ---------- */ 157 158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 159 void *disc_resp) 160 { 161 struct expander_device *ex = &dev->ex_dev; 162 struct ex_phy *phy = &ex->ex_phy[phy_id]; 163 struct smp_resp *resp = disc_resp; 164 struct discover_resp *dr = &resp->disc; 165 struct sas_rphy *rphy = dev->rphy; 166 int rediscover = (phy->phy != NULL); 167 168 if (!rediscover) { 169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 170 171 /* FIXME: error_handling */ 172 BUG_ON(!phy->phy); 173 } 174 175 switch (resp->result) { 176 case SMP_RESP_PHY_VACANT: 177 phy->phy_state = PHY_VACANT; 178 break; 179 default: 180 phy->phy_state = PHY_NOT_PRESENT; 181 break; 182 case SMP_RESP_FUNC_ACC: 183 phy->phy_state = PHY_EMPTY; /* do not know yet */ 184 break; 185 } 186 187 phy->phy_id = phy_id; 188 phy->attached_dev_type = dr->attached_dev_type; 189 phy->linkrate = dr->linkrate; 190 phy->attached_sata_host = dr->attached_sata_host; 191 phy->attached_sata_dev = dr->attached_sata_dev; 192 phy->attached_sata_ps = dr->attached_sata_ps; 193 phy->attached_iproto = dr->iproto << 1; 194 phy->attached_tproto = dr->tproto << 1; 195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 196 phy->attached_phy_id = dr->attached_phy_id; 197 phy->phy_change_count = dr->change_count; 198 phy->routing_attr = dr->routing_attr; 199 phy->virtual = dr->virtual; 200 phy->last_da_index = -1; 201 202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 203 phy->phy->identify.target_port_protocols = phy->attached_tproto; 204 phy->phy->identify.phy_identifier = phy_id; 205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 207 phy->phy->minimum_linkrate = dr->pmin_linkrate; 208 phy->phy->maximum_linkrate = dr->pmax_linkrate; 209 phy->phy->negotiated_linkrate = phy->linkrate; 210 211 if (!rediscover) 212 if (sas_phy_add(phy->phy)) { 213 sas_phy_free(phy->phy); 214 return; 215 } 216 217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 218 SAS_ADDR(dev->sas_addr), phy->phy_id, 219 phy->routing_attr == TABLE_ROUTING ? 'T' : 220 phy->routing_attr == DIRECT_ROUTING ? 'D' : 221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 222 SAS_ADDR(phy->attached_sas_addr)); 223 224 return; 225 } 226 227 #define DISCOVER_REQ_SIZE 16 228 #define DISCOVER_RESP_SIZE 56 229 230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 231 u8 *disc_resp, int single) 232 { 233 int i, res; 234 235 disc_req[9] = single; 236 for (i = 1 ; i < 3; i++) { 237 struct discover_resp *dr; 238 239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 240 disc_resp, DISCOVER_RESP_SIZE); 241 if (res) 242 return res; 243 /* This is detecting a failure to transmit initial 244 * dev to host FIS as described in section G.5 of 245 * sas-2 r 04b */ 246 dr = &((struct smp_resp *)disc_resp)->disc; 247 if (memcmp(dev->sas_addr, dr->attached_sas_addr, 248 SAS_ADDR_SIZE) == 0) { 249 sas_printk("Found loopback topology, just ignore it!\n"); 250 return 0; 251 } 252 if (!(dr->attached_dev_type == 0 && 253 dr->attached_sata_dev)) 254 break; 255 /* In order to generate the dev to host FIS, we 256 * send a link reset to the expander port */ 257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 258 /* Wait for the reset to trigger the negotiation */ 259 msleep(500); 260 } 261 sas_set_ex_phy(dev, single, disc_resp); 262 return 0; 263 } 264 265 static int sas_ex_phy_discover(struct domain_device *dev, int single) 266 { 267 struct expander_device *ex = &dev->ex_dev; 268 int res = 0; 269 u8 *disc_req; 270 u8 *disc_resp; 271 272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 273 if (!disc_req) 274 return -ENOMEM; 275 276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 277 if (!disc_resp) { 278 kfree(disc_req); 279 return -ENOMEM; 280 } 281 282 disc_req[1] = SMP_DISCOVER; 283 284 if (0 <= single && single < ex->num_phys) { 285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 286 } else { 287 int i; 288 289 for (i = 0; i < ex->num_phys; i++) { 290 res = sas_ex_phy_discover_helper(dev, disc_req, 291 disc_resp, i); 292 if (res) 293 goto out_err; 294 } 295 } 296 out_err: 297 kfree(disc_resp); 298 kfree(disc_req); 299 return res; 300 } 301 302 static int sas_expander_discover(struct domain_device *dev) 303 { 304 struct expander_device *ex = &dev->ex_dev; 305 int res = -ENOMEM; 306 307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 308 if (!ex->ex_phy) 309 return -ENOMEM; 310 311 res = sas_ex_phy_discover(dev, -1); 312 if (res) 313 goto out_err; 314 315 return 0; 316 out_err: 317 kfree(ex->ex_phy); 318 ex->ex_phy = NULL; 319 return res; 320 } 321 322 #define MAX_EXPANDER_PHYS 128 323 324 static void ex_assign_report_general(struct domain_device *dev, 325 struct smp_resp *resp) 326 { 327 struct report_general_resp *rg = &resp->rg; 328 329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 332 dev->ex_dev.conf_route_table = rg->conf_route_table; 333 dev->ex_dev.configuring = rg->configuring; 334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 335 } 336 337 #define RG_REQ_SIZE 8 338 #define RG_RESP_SIZE 32 339 340 static int sas_ex_general(struct domain_device *dev) 341 { 342 u8 *rg_req; 343 struct smp_resp *rg_resp; 344 int res; 345 int i; 346 347 rg_req = alloc_smp_req(RG_REQ_SIZE); 348 if (!rg_req) 349 return -ENOMEM; 350 351 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 352 if (!rg_resp) { 353 kfree(rg_req); 354 return -ENOMEM; 355 } 356 357 rg_req[1] = SMP_REPORT_GENERAL; 358 359 for (i = 0; i < 5; i++) { 360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 361 RG_RESP_SIZE); 362 363 if (res) { 364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 365 SAS_ADDR(dev->sas_addr), res); 366 goto out; 367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 369 SAS_ADDR(dev->sas_addr), rg_resp->result); 370 res = rg_resp->result; 371 goto out; 372 } 373 374 ex_assign_report_general(dev, rg_resp); 375 376 if (dev->ex_dev.configuring) { 377 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 378 SAS_ADDR(dev->sas_addr)); 379 schedule_timeout_interruptible(5*HZ); 380 } else 381 break; 382 } 383 out: 384 kfree(rg_req); 385 kfree(rg_resp); 386 return res; 387 } 388 389 static void ex_assign_manuf_info(struct domain_device *dev, void 390 *_mi_resp) 391 { 392 u8 *mi_resp = _mi_resp; 393 struct sas_rphy *rphy = dev->rphy; 394 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 395 396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 398 memcpy(edev->product_rev, mi_resp + 36, 399 SAS_EXPANDER_PRODUCT_REV_LEN); 400 401 if (mi_resp[8] & 1) { 402 memcpy(edev->component_vendor_id, mi_resp + 40, 403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 404 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 405 edev->component_revision_id = mi_resp[50]; 406 } 407 } 408 409 #define MI_REQ_SIZE 8 410 #define MI_RESP_SIZE 64 411 412 static int sas_ex_manuf_info(struct domain_device *dev) 413 { 414 u8 *mi_req; 415 u8 *mi_resp; 416 int res; 417 418 mi_req = alloc_smp_req(MI_REQ_SIZE); 419 if (!mi_req) 420 return -ENOMEM; 421 422 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 423 if (!mi_resp) { 424 kfree(mi_req); 425 return -ENOMEM; 426 } 427 428 mi_req[1] = SMP_REPORT_MANUF_INFO; 429 430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 431 if (res) { 432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 433 SAS_ADDR(dev->sas_addr), res); 434 goto out; 435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 437 SAS_ADDR(dev->sas_addr), mi_resp[2]); 438 goto out; 439 } 440 441 ex_assign_manuf_info(dev, mi_resp); 442 out: 443 kfree(mi_req); 444 kfree(mi_resp); 445 return res; 446 } 447 448 #define PC_REQ_SIZE 44 449 #define PC_RESP_SIZE 8 450 451 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 452 enum phy_func phy_func, 453 struct sas_phy_linkrates *rates) 454 { 455 u8 *pc_req; 456 u8 *pc_resp; 457 int res; 458 459 pc_req = alloc_smp_req(PC_REQ_SIZE); 460 if (!pc_req) 461 return -ENOMEM; 462 463 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 464 if (!pc_resp) { 465 kfree(pc_req); 466 return -ENOMEM; 467 } 468 469 pc_req[1] = SMP_PHY_CONTROL; 470 pc_req[9] = phy_id; 471 pc_req[10]= phy_func; 472 if (rates) { 473 pc_req[32] = rates->minimum_linkrate << 4; 474 pc_req[33] = rates->maximum_linkrate << 4; 475 } 476 477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 478 479 kfree(pc_resp); 480 kfree(pc_req); 481 return res; 482 } 483 484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 485 { 486 struct expander_device *ex = &dev->ex_dev; 487 struct ex_phy *phy = &ex->ex_phy[phy_id]; 488 489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 490 phy->linkrate = SAS_PHY_DISABLED; 491 } 492 493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 494 { 495 struct expander_device *ex = &dev->ex_dev; 496 int i; 497 498 for (i = 0; i < ex->num_phys; i++) { 499 struct ex_phy *phy = &ex->ex_phy[i]; 500 501 if (phy->phy_state == PHY_VACANT || 502 phy->phy_state == PHY_NOT_PRESENT) 503 continue; 504 505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 506 sas_ex_disable_phy(dev, i); 507 } 508 } 509 510 static int sas_dev_present_in_domain(struct asd_sas_port *port, 511 u8 *sas_addr) 512 { 513 struct domain_device *dev; 514 515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 516 return 1; 517 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 519 return 1; 520 } 521 return 0; 522 } 523 524 #define RPEL_REQ_SIZE 16 525 #define RPEL_RESP_SIZE 32 526 int sas_smp_get_phy_events(struct sas_phy *phy) 527 { 528 int res; 529 u8 *req; 530 u8 *resp; 531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 532 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 533 534 req = alloc_smp_req(RPEL_REQ_SIZE); 535 if (!req) 536 return -ENOMEM; 537 538 resp = alloc_smp_resp(RPEL_RESP_SIZE); 539 if (!resp) { 540 kfree(req); 541 return -ENOMEM; 542 } 543 544 req[1] = SMP_REPORT_PHY_ERR_LOG; 545 req[9] = phy->number; 546 547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 548 resp, RPEL_RESP_SIZE); 549 550 if (!res) 551 goto out; 552 553 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 557 558 out: 559 kfree(resp); 560 return res; 561 562 } 563 564 #ifdef CONFIG_SCSI_SAS_ATA 565 566 #define RPS_REQ_SIZE 16 567 #define RPS_RESP_SIZE 60 568 569 static int sas_get_report_phy_sata(struct domain_device *dev, 570 int phy_id, 571 struct smp_resp *rps_resp) 572 { 573 int res; 574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 575 u8 *resp = (u8 *)rps_resp; 576 577 if (!rps_req) 578 return -ENOMEM; 579 580 rps_req[1] = SMP_REPORT_PHY_SATA; 581 rps_req[9] = phy_id; 582 583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 584 rps_resp, RPS_RESP_SIZE); 585 586 /* 0x34 is the FIS type for the D2H fis. There's a potential 587 * standards cockup here. sas-2 explicitly specifies the FIS 588 * should be encoded so that FIS type is in resp[24]. 589 * However, some expanders endian reverse this. Undo the 590 * reversal here */ 591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 592 int i; 593 594 for (i = 0; i < 5; i++) { 595 int j = 24 + (i*4); 596 u8 a, b; 597 a = resp[j + 0]; 598 b = resp[j + 1]; 599 resp[j + 0] = resp[j + 3]; 600 resp[j + 1] = resp[j + 2]; 601 resp[j + 2] = b; 602 resp[j + 3] = a; 603 } 604 } 605 606 kfree(rps_req); 607 return res; 608 } 609 #endif 610 611 static void sas_ex_get_linkrate(struct domain_device *parent, 612 struct domain_device *child, 613 struct ex_phy *parent_phy) 614 { 615 struct expander_device *parent_ex = &parent->ex_dev; 616 struct sas_port *port; 617 int i; 618 619 child->pathways = 0; 620 621 port = parent_phy->port; 622 623 for (i = 0; i < parent_ex->num_phys; i++) { 624 struct ex_phy *phy = &parent_ex->ex_phy[i]; 625 626 if (phy->phy_state == PHY_VACANT || 627 phy->phy_state == PHY_NOT_PRESENT) 628 continue; 629 630 if (SAS_ADDR(phy->attached_sas_addr) == 631 SAS_ADDR(child->sas_addr)) { 632 633 child->min_linkrate = min(parent->min_linkrate, 634 phy->linkrate); 635 child->max_linkrate = max(parent->max_linkrate, 636 phy->linkrate); 637 child->pathways++; 638 sas_port_add_phy(port, phy->phy); 639 } 640 } 641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 642 child->pathways = min(child->pathways, parent->pathways); 643 } 644 645 static struct domain_device *sas_ex_discover_end_dev( 646 struct domain_device *parent, int phy_id) 647 { 648 struct expander_device *parent_ex = &parent->ex_dev; 649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 650 struct domain_device *child = NULL; 651 struct sas_rphy *rphy; 652 int res; 653 654 if (phy->attached_sata_host || phy->attached_sata_ps) 655 return NULL; 656 657 child = kzalloc(sizeof(*child), GFP_KERNEL); 658 if (!child) 659 return NULL; 660 661 child->parent = parent; 662 child->port = parent->port; 663 child->iproto = phy->attached_iproto; 664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 666 if (!phy->port) { 667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 668 if (unlikely(!phy->port)) 669 goto out_err; 670 if (unlikely(sas_port_add(phy->port) != 0)) { 671 sas_port_free(phy->port); 672 goto out_err; 673 } 674 } 675 sas_ex_get_linkrate(parent, child, phy); 676 677 #ifdef CONFIG_SCSI_SAS_ATA 678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 679 child->dev_type = SATA_DEV; 680 if (phy->attached_tproto & SAS_PROTOCOL_STP) 681 child->tproto = phy->attached_tproto; 682 if (phy->attached_sata_dev) 683 child->tproto |= SATA_DEV; 684 res = sas_get_report_phy_sata(parent, phy_id, 685 &child->sata_dev.rps_resp); 686 if (res) { 687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 688 "0x%x\n", SAS_ADDR(parent->sas_addr), 689 phy_id, res); 690 goto out_free; 691 } 692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 693 sizeof(struct dev_to_host_fis)); 694 695 rphy = sas_end_device_alloc(phy->port); 696 if (unlikely(!rphy)) 697 goto out_free; 698 699 sas_init_dev(child); 700 701 child->rphy = rphy; 702 703 spin_lock_irq(&parent->port->dev_list_lock); 704 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 705 spin_unlock_irq(&parent->port->dev_list_lock); 706 707 res = sas_discover_sata(child); 708 if (res) { 709 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 710 "%016llx:0x%x returned 0x%x\n", 711 SAS_ADDR(child->sas_addr), 712 SAS_ADDR(parent->sas_addr), phy_id, res); 713 goto out_list_del; 714 } 715 } else 716 #endif 717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 718 child->dev_type = SAS_END_DEV; 719 rphy = sas_end_device_alloc(phy->port); 720 /* FIXME: error handling */ 721 if (unlikely(!rphy)) 722 goto out_free; 723 child->tproto = phy->attached_tproto; 724 sas_init_dev(child); 725 726 child->rphy = rphy; 727 sas_fill_in_rphy(child, rphy); 728 729 spin_lock_irq(&parent->port->dev_list_lock); 730 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 731 spin_unlock_irq(&parent->port->dev_list_lock); 732 733 res = sas_discover_end_dev(child); 734 if (res) { 735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 736 "at %016llx:0x%x returned 0x%x\n", 737 SAS_ADDR(child->sas_addr), 738 SAS_ADDR(parent->sas_addr), phy_id, res); 739 goto out_list_del; 740 } 741 } else { 742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 743 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 744 phy_id); 745 goto out_free; 746 } 747 748 list_add_tail(&child->siblings, &parent_ex->children); 749 return child; 750 751 out_list_del: 752 sas_rphy_free(child->rphy); 753 child->rphy = NULL; 754 list_del(&child->dev_list_node); 755 out_free: 756 sas_port_delete(phy->port); 757 out_err: 758 phy->port = NULL; 759 kfree(child); 760 return NULL; 761 } 762 763 /* See if this phy is part of a wide port */ 764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 765 { 766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 767 int i; 768 769 for (i = 0; i < parent->ex_dev.num_phys; i++) { 770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 771 772 if (ephy == phy) 773 continue; 774 775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 776 SAS_ADDR_SIZE) && ephy->port) { 777 sas_port_add_phy(ephy->port, phy->phy); 778 phy->port = ephy->port; 779 phy->phy_state = PHY_DEVICE_DISCOVERED; 780 return 0; 781 } 782 } 783 784 return -ENODEV; 785 } 786 787 static struct domain_device *sas_ex_discover_expander( 788 struct domain_device *parent, int phy_id) 789 { 790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 792 struct domain_device *child = NULL; 793 struct sas_rphy *rphy; 794 struct sas_expander_device *edev; 795 struct asd_sas_port *port; 796 int res; 797 798 if (phy->routing_attr == DIRECT_ROUTING) { 799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 800 "allowed\n", 801 SAS_ADDR(parent->sas_addr), phy_id, 802 SAS_ADDR(phy->attached_sas_addr), 803 phy->attached_phy_id); 804 return NULL; 805 } 806 child = kzalloc(sizeof(*child), GFP_KERNEL); 807 if (!child) 808 return NULL; 809 810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 811 /* FIXME: better error handling */ 812 BUG_ON(sas_port_add(phy->port) != 0); 813 814 815 switch (phy->attached_dev_type) { 816 case EDGE_DEV: 817 rphy = sas_expander_alloc(phy->port, 818 SAS_EDGE_EXPANDER_DEVICE); 819 break; 820 case FANOUT_DEV: 821 rphy = sas_expander_alloc(phy->port, 822 SAS_FANOUT_EXPANDER_DEVICE); 823 break; 824 default: 825 rphy = NULL; /* shut gcc up */ 826 BUG(); 827 } 828 port = parent->port; 829 child->rphy = rphy; 830 edev = rphy_to_expander_device(rphy); 831 child->dev_type = phy->attached_dev_type; 832 child->parent = parent; 833 child->port = port; 834 child->iproto = phy->attached_iproto; 835 child->tproto = phy->attached_tproto; 836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 838 sas_ex_get_linkrate(parent, child, phy); 839 edev->level = parent_ex->level + 1; 840 parent->port->disc.max_level = max(parent->port->disc.max_level, 841 edev->level); 842 sas_init_dev(child); 843 sas_fill_in_rphy(child, rphy); 844 sas_rphy_add(rphy); 845 846 spin_lock_irq(&parent->port->dev_list_lock); 847 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 848 spin_unlock_irq(&parent->port->dev_list_lock); 849 850 res = sas_discover_expander(child); 851 if (res) { 852 spin_lock_irq(&parent->port->dev_list_lock); 853 list_del(&child->dev_list_node); 854 spin_unlock_irq(&parent->port->dev_list_lock); 855 kfree(child); 856 return NULL; 857 } 858 list_add_tail(&child->siblings, &parent->ex_dev.children); 859 return child; 860 } 861 862 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 863 { 864 struct expander_device *ex = &dev->ex_dev; 865 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 866 struct domain_device *child = NULL; 867 int res = 0; 868 869 /* Phy state */ 870 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 871 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 872 res = sas_ex_phy_discover(dev, phy_id); 873 if (res) 874 return res; 875 } 876 877 /* Parent and domain coherency */ 878 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 879 SAS_ADDR(dev->port->sas_addr))) { 880 sas_add_parent_port(dev, phy_id); 881 return 0; 882 } 883 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 884 SAS_ADDR(dev->parent->sas_addr))) { 885 sas_add_parent_port(dev, phy_id); 886 if (ex_phy->routing_attr == TABLE_ROUTING) 887 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 888 return 0; 889 } 890 891 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 892 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 893 894 if (ex_phy->attached_dev_type == NO_DEVICE) { 895 if (ex_phy->routing_attr == DIRECT_ROUTING) { 896 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 897 sas_configure_routing(dev, ex_phy->attached_sas_addr); 898 } 899 return 0; 900 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 901 return 0; 902 903 if (ex_phy->attached_dev_type != SAS_END_DEV && 904 ex_phy->attached_dev_type != FANOUT_DEV && 905 ex_phy->attached_dev_type != EDGE_DEV) { 906 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 907 "phy 0x%x\n", ex_phy->attached_dev_type, 908 SAS_ADDR(dev->sas_addr), 909 phy_id); 910 return 0; 911 } 912 913 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 914 if (res) { 915 SAS_DPRINTK("configure routing for dev %016llx " 916 "reported 0x%x. Forgotten\n", 917 SAS_ADDR(ex_phy->attached_sas_addr), res); 918 sas_disable_routing(dev, ex_phy->attached_sas_addr); 919 return res; 920 } 921 922 res = sas_ex_join_wide_port(dev, phy_id); 923 if (!res) { 924 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 925 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 926 return res; 927 } 928 929 switch (ex_phy->attached_dev_type) { 930 case SAS_END_DEV: 931 child = sas_ex_discover_end_dev(dev, phy_id); 932 break; 933 case FANOUT_DEV: 934 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 935 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 936 "attached to ex %016llx phy 0x%x\n", 937 SAS_ADDR(ex_phy->attached_sas_addr), 938 ex_phy->attached_phy_id, 939 SAS_ADDR(dev->sas_addr), 940 phy_id); 941 sas_ex_disable_phy(dev, phy_id); 942 break; 943 } else 944 memcpy(dev->port->disc.fanout_sas_addr, 945 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 946 /* fallthrough */ 947 case EDGE_DEV: 948 child = sas_ex_discover_expander(dev, phy_id); 949 break; 950 default: 951 break; 952 } 953 954 if (child) { 955 int i; 956 957 for (i = 0; i < ex->num_phys; i++) { 958 if (ex->ex_phy[i].phy_state == PHY_VACANT || 959 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 960 continue; 961 /* 962 * Due to races, the phy might not get added to the 963 * wide port, so we add the phy to the wide port here. 964 */ 965 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 966 SAS_ADDR(child->sas_addr)) { 967 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 968 res = sas_ex_join_wide_port(dev, i); 969 if (!res) 970 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 971 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 972 973 } 974 } 975 } 976 977 return res; 978 } 979 980 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 981 { 982 struct expander_device *ex = &dev->ex_dev; 983 int i; 984 985 for (i = 0; i < ex->num_phys; i++) { 986 struct ex_phy *phy = &ex->ex_phy[i]; 987 988 if (phy->phy_state == PHY_VACANT || 989 phy->phy_state == PHY_NOT_PRESENT) 990 continue; 991 992 if ((phy->attached_dev_type == EDGE_DEV || 993 phy->attached_dev_type == FANOUT_DEV) && 994 phy->routing_attr == SUBTRACTIVE_ROUTING) { 995 996 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 997 998 return 1; 999 } 1000 } 1001 return 0; 1002 } 1003 1004 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1005 { 1006 struct expander_device *ex = &dev->ex_dev; 1007 struct domain_device *child; 1008 u8 sub_addr[8] = {0, }; 1009 1010 list_for_each_entry(child, &ex->children, siblings) { 1011 if (child->dev_type != EDGE_DEV && 1012 child->dev_type != FANOUT_DEV) 1013 continue; 1014 if (sub_addr[0] == 0) { 1015 sas_find_sub_addr(child, sub_addr); 1016 continue; 1017 } else { 1018 u8 s2[8]; 1019 1020 if (sas_find_sub_addr(child, s2) && 1021 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1022 1023 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1024 "diverges from subtractive " 1025 "boundary %016llx\n", 1026 SAS_ADDR(dev->sas_addr), 1027 SAS_ADDR(child->sas_addr), 1028 SAS_ADDR(s2), 1029 SAS_ADDR(sub_addr)); 1030 1031 sas_ex_disable_port(child, s2); 1032 } 1033 } 1034 } 1035 return 0; 1036 } 1037 /** 1038 * sas_ex_discover_devices -- discover devices attached to this expander 1039 * dev: pointer to the expander domain device 1040 * single: if you want to do a single phy, else set to -1; 1041 * 1042 * Configure this expander for use with its devices and register the 1043 * devices of this expander. 1044 */ 1045 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1046 { 1047 struct expander_device *ex = &dev->ex_dev; 1048 int i = 0, end = ex->num_phys; 1049 int res = 0; 1050 1051 if (0 <= single && single < end) { 1052 i = single; 1053 end = i+1; 1054 } 1055 1056 for ( ; i < end; i++) { 1057 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1058 1059 if (ex_phy->phy_state == PHY_VACANT || 1060 ex_phy->phy_state == PHY_NOT_PRESENT || 1061 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1062 continue; 1063 1064 switch (ex_phy->linkrate) { 1065 case SAS_PHY_DISABLED: 1066 case SAS_PHY_RESET_PROBLEM: 1067 case SAS_SATA_PORT_SELECTOR: 1068 continue; 1069 default: 1070 res = sas_ex_discover_dev(dev, i); 1071 if (res) 1072 break; 1073 continue; 1074 } 1075 } 1076 1077 if (!res) 1078 sas_check_level_subtractive_boundary(dev); 1079 1080 return res; 1081 } 1082 1083 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1084 { 1085 struct expander_device *ex = &dev->ex_dev; 1086 int i; 1087 u8 *sub_sas_addr = NULL; 1088 1089 if (dev->dev_type != EDGE_DEV) 1090 return 0; 1091 1092 for (i = 0; i < ex->num_phys; i++) { 1093 struct ex_phy *phy = &ex->ex_phy[i]; 1094 1095 if (phy->phy_state == PHY_VACANT || 1096 phy->phy_state == PHY_NOT_PRESENT) 1097 continue; 1098 1099 if ((phy->attached_dev_type == FANOUT_DEV || 1100 phy->attached_dev_type == EDGE_DEV) && 1101 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1102 1103 if (!sub_sas_addr) 1104 sub_sas_addr = &phy->attached_sas_addr[0]; 1105 else if (SAS_ADDR(sub_sas_addr) != 1106 SAS_ADDR(phy->attached_sas_addr)) { 1107 1108 SAS_DPRINTK("ex %016llx phy 0x%x " 1109 "diverges(%016llx) on subtractive " 1110 "boundary(%016llx). Disabled\n", 1111 SAS_ADDR(dev->sas_addr), i, 1112 SAS_ADDR(phy->attached_sas_addr), 1113 SAS_ADDR(sub_sas_addr)); 1114 sas_ex_disable_phy(dev, i); 1115 } 1116 } 1117 } 1118 return 0; 1119 } 1120 1121 static void sas_print_parent_topology_bug(struct domain_device *child, 1122 struct ex_phy *parent_phy, 1123 struct ex_phy *child_phy) 1124 { 1125 static const char ra_char[] = { 1126 [DIRECT_ROUTING] = 'D', 1127 [SUBTRACTIVE_ROUTING] = 'S', 1128 [TABLE_ROUTING] = 'T', 1129 }; 1130 static const char *ex_type[] = { 1131 [EDGE_DEV] = "edge", 1132 [FANOUT_DEV] = "fanout", 1133 }; 1134 struct domain_device *parent = child->parent; 1135 1136 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1137 "has %c:%c routing link!\n", 1138 1139 ex_type[parent->dev_type], 1140 SAS_ADDR(parent->sas_addr), 1141 parent_phy->phy_id, 1142 1143 ex_type[child->dev_type], 1144 SAS_ADDR(child->sas_addr), 1145 child_phy->phy_id, 1146 1147 ra_char[parent_phy->routing_attr], 1148 ra_char[child_phy->routing_attr]); 1149 } 1150 1151 static int sas_check_eeds(struct domain_device *child, 1152 struct ex_phy *parent_phy, 1153 struct ex_phy *child_phy) 1154 { 1155 int res = 0; 1156 struct domain_device *parent = child->parent; 1157 1158 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1159 res = -ENODEV; 1160 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1161 "phy S:0x%x, while there is a fanout ex %016llx\n", 1162 SAS_ADDR(parent->sas_addr), 1163 parent_phy->phy_id, 1164 SAS_ADDR(child->sas_addr), 1165 child_phy->phy_id, 1166 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1167 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1168 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1169 SAS_ADDR_SIZE); 1170 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1171 SAS_ADDR_SIZE); 1172 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1173 SAS_ADDR(parent->sas_addr)) || 1174 (SAS_ADDR(parent->port->disc.eeds_a) == 1175 SAS_ADDR(child->sas_addr))) 1176 && 1177 ((SAS_ADDR(parent->port->disc.eeds_b) == 1178 SAS_ADDR(parent->sas_addr)) || 1179 (SAS_ADDR(parent->port->disc.eeds_b) == 1180 SAS_ADDR(child->sas_addr)))) 1181 ; 1182 else { 1183 res = -ENODEV; 1184 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1185 "phy 0x%x link forms a third EEDS!\n", 1186 SAS_ADDR(parent->sas_addr), 1187 parent_phy->phy_id, 1188 SAS_ADDR(child->sas_addr), 1189 child_phy->phy_id); 1190 } 1191 1192 return res; 1193 } 1194 1195 /* Here we spill over 80 columns. It is intentional. 1196 */ 1197 static int sas_check_parent_topology(struct domain_device *child) 1198 { 1199 struct expander_device *child_ex = &child->ex_dev; 1200 struct expander_device *parent_ex; 1201 int i; 1202 int res = 0; 1203 1204 if (!child->parent) 1205 return 0; 1206 1207 if (child->parent->dev_type != EDGE_DEV && 1208 child->parent->dev_type != FANOUT_DEV) 1209 return 0; 1210 1211 parent_ex = &child->parent->ex_dev; 1212 1213 for (i = 0; i < parent_ex->num_phys; i++) { 1214 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1215 struct ex_phy *child_phy; 1216 1217 if (parent_phy->phy_state == PHY_VACANT || 1218 parent_phy->phy_state == PHY_NOT_PRESENT) 1219 continue; 1220 1221 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1222 continue; 1223 1224 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1225 1226 switch (child->parent->dev_type) { 1227 case EDGE_DEV: 1228 if (child->dev_type == FANOUT_DEV) { 1229 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1230 child_phy->routing_attr != TABLE_ROUTING) { 1231 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1232 res = -ENODEV; 1233 } 1234 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1235 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1236 res = sas_check_eeds(child, parent_phy, child_phy); 1237 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1238 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1239 res = -ENODEV; 1240 } 1241 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1242 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1243 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1244 res = -ENODEV; 1245 } 1246 break; 1247 case FANOUT_DEV: 1248 if (parent_phy->routing_attr != TABLE_ROUTING || 1249 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1250 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1251 res = -ENODEV; 1252 } 1253 break; 1254 default: 1255 break; 1256 } 1257 } 1258 1259 return res; 1260 } 1261 1262 #define RRI_REQ_SIZE 16 1263 #define RRI_RESP_SIZE 44 1264 1265 static int sas_configure_present(struct domain_device *dev, int phy_id, 1266 u8 *sas_addr, int *index, int *present) 1267 { 1268 int i, res = 0; 1269 struct expander_device *ex = &dev->ex_dev; 1270 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1271 u8 *rri_req; 1272 u8 *rri_resp; 1273 1274 *present = 0; 1275 *index = 0; 1276 1277 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1278 if (!rri_req) 1279 return -ENOMEM; 1280 1281 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1282 if (!rri_resp) { 1283 kfree(rri_req); 1284 return -ENOMEM; 1285 } 1286 1287 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1288 rri_req[9] = phy_id; 1289 1290 for (i = 0; i < ex->max_route_indexes ; i++) { 1291 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1292 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1293 RRI_RESP_SIZE); 1294 if (res) 1295 goto out; 1296 res = rri_resp[2]; 1297 if (res == SMP_RESP_NO_INDEX) { 1298 SAS_DPRINTK("overflow of indexes: dev %016llx " 1299 "phy 0x%x index 0x%x\n", 1300 SAS_ADDR(dev->sas_addr), phy_id, i); 1301 goto out; 1302 } else if (res != SMP_RESP_FUNC_ACC) { 1303 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1304 "result 0x%x\n", __func__, 1305 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1306 goto out; 1307 } 1308 if (SAS_ADDR(sas_addr) != 0) { 1309 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1310 *index = i; 1311 if ((rri_resp[12] & 0x80) == 0x80) 1312 *present = 0; 1313 else 1314 *present = 1; 1315 goto out; 1316 } else if (SAS_ADDR(rri_resp+16) == 0) { 1317 *index = i; 1318 *present = 0; 1319 goto out; 1320 } 1321 } else if (SAS_ADDR(rri_resp+16) == 0 && 1322 phy->last_da_index < i) { 1323 phy->last_da_index = i; 1324 *index = i; 1325 *present = 0; 1326 goto out; 1327 } 1328 } 1329 res = -1; 1330 out: 1331 kfree(rri_req); 1332 kfree(rri_resp); 1333 return res; 1334 } 1335 1336 #define CRI_REQ_SIZE 44 1337 #define CRI_RESP_SIZE 8 1338 1339 static int sas_configure_set(struct domain_device *dev, int phy_id, 1340 u8 *sas_addr, int index, int include) 1341 { 1342 int res; 1343 u8 *cri_req; 1344 u8 *cri_resp; 1345 1346 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1347 if (!cri_req) 1348 return -ENOMEM; 1349 1350 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1351 if (!cri_resp) { 1352 kfree(cri_req); 1353 return -ENOMEM; 1354 } 1355 1356 cri_req[1] = SMP_CONF_ROUTE_INFO; 1357 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1358 cri_req[9] = phy_id; 1359 if (SAS_ADDR(sas_addr) == 0 || !include) 1360 cri_req[12] |= 0x80; 1361 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1362 1363 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1364 CRI_RESP_SIZE); 1365 if (res) 1366 goto out; 1367 res = cri_resp[2]; 1368 if (res == SMP_RESP_NO_INDEX) { 1369 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1370 "index 0x%x\n", 1371 SAS_ADDR(dev->sas_addr), phy_id, index); 1372 } 1373 out: 1374 kfree(cri_req); 1375 kfree(cri_resp); 1376 return res; 1377 } 1378 1379 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1380 u8 *sas_addr, int include) 1381 { 1382 int index; 1383 int present; 1384 int res; 1385 1386 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1387 if (res) 1388 return res; 1389 if (include ^ present) 1390 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1391 1392 return res; 1393 } 1394 1395 /** 1396 * sas_configure_parent -- configure routing table of parent 1397 * parent: parent expander 1398 * child: child expander 1399 * sas_addr: SAS port identifier of device directly attached to child 1400 */ 1401 static int sas_configure_parent(struct domain_device *parent, 1402 struct domain_device *child, 1403 u8 *sas_addr, int include) 1404 { 1405 struct expander_device *ex_parent = &parent->ex_dev; 1406 int res = 0; 1407 int i; 1408 1409 if (parent->parent) { 1410 res = sas_configure_parent(parent->parent, parent, sas_addr, 1411 include); 1412 if (res) 1413 return res; 1414 } 1415 1416 if (ex_parent->conf_route_table == 0) { 1417 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1418 SAS_ADDR(parent->sas_addr)); 1419 return 0; 1420 } 1421 1422 for (i = 0; i < ex_parent->num_phys; i++) { 1423 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1424 1425 if ((phy->routing_attr == TABLE_ROUTING) && 1426 (SAS_ADDR(phy->attached_sas_addr) == 1427 SAS_ADDR(child->sas_addr))) { 1428 res = sas_configure_phy(parent, i, sas_addr, include); 1429 if (res) 1430 return res; 1431 } 1432 } 1433 1434 return res; 1435 } 1436 1437 /** 1438 * sas_configure_routing -- configure routing 1439 * dev: expander device 1440 * sas_addr: port identifier of device directly attached to the expander device 1441 */ 1442 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1443 { 1444 if (dev->parent) 1445 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1446 return 0; 1447 } 1448 1449 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1450 { 1451 if (dev->parent) 1452 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1453 return 0; 1454 } 1455 1456 /** 1457 * sas_discover_expander -- expander discovery 1458 * @ex: pointer to expander domain device 1459 * 1460 * See comment in sas_discover_sata(). 1461 */ 1462 static int sas_discover_expander(struct domain_device *dev) 1463 { 1464 int res; 1465 1466 res = sas_notify_lldd_dev_found(dev); 1467 if (res) 1468 return res; 1469 1470 res = sas_ex_general(dev); 1471 if (res) 1472 goto out_err; 1473 res = sas_ex_manuf_info(dev); 1474 if (res) 1475 goto out_err; 1476 1477 res = sas_expander_discover(dev); 1478 if (res) { 1479 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1480 SAS_ADDR(dev->sas_addr), res); 1481 goto out_err; 1482 } 1483 1484 sas_check_ex_subtractive_boundary(dev); 1485 res = sas_check_parent_topology(dev); 1486 if (res) 1487 goto out_err; 1488 return 0; 1489 out_err: 1490 sas_notify_lldd_dev_gone(dev); 1491 return res; 1492 } 1493 1494 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1495 { 1496 int res = 0; 1497 struct domain_device *dev; 1498 1499 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1500 if (dev->dev_type == EDGE_DEV || 1501 dev->dev_type == FANOUT_DEV) { 1502 struct sas_expander_device *ex = 1503 rphy_to_expander_device(dev->rphy); 1504 1505 if (level == ex->level) 1506 res = sas_ex_discover_devices(dev, -1); 1507 else if (level > 0) 1508 res = sas_ex_discover_devices(port->port_dev, -1); 1509 1510 } 1511 } 1512 1513 return res; 1514 } 1515 1516 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1517 { 1518 int res; 1519 int level; 1520 1521 do { 1522 level = port->disc.max_level; 1523 res = sas_ex_level_discovery(port, level); 1524 mb(); 1525 } while (level < port->disc.max_level); 1526 1527 return res; 1528 } 1529 1530 int sas_discover_root_expander(struct domain_device *dev) 1531 { 1532 int res; 1533 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1534 1535 res = sas_rphy_add(dev->rphy); 1536 if (res) 1537 goto out_err; 1538 1539 ex->level = dev->port->disc.max_level; /* 0 */ 1540 res = sas_discover_expander(dev); 1541 if (res) 1542 goto out_err2; 1543 1544 sas_ex_bfs_disc(dev->port); 1545 1546 return res; 1547 1548 out_err2: 1549 sas_rphy_remove(dev->rphy); 1550 out_err: 1551 return res; 1552 } 1553 1554 /* ---------- Domain revalidation ---------- */ 1555 1556 static int sas_get_phy_discover(struct domain_device *dev, 1557 int phy_id, struct smp_resp *disc_resp) 1558 { 1559 int res; 1560 u8 *disc_req; 1561 1562 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1563 if (!disc_req) 1564 return -ENOMEM; 1565 1566 disc_req[1] = SMP_DISCOVER; 1567 disc_req[9] = phy_id; 1568 1569 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1570 disc_resp, DISCOVER_RESP_SIZE); 1571 if (res) 1572 goto out; 1573 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1574 res = disc_resp->result; 1575 goto out; 1576 } 1577 out: 1578 kfree(disc_req); 1579 return res; 1580 } 1581 1582 static int sas_get_phy_change_count(struct domain_device *dev, 1583 int phy_id, int *pcc) 1584 { 1585 int res; 1586 struct smp_resp *disc_resp; 1587 1588 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1589 if (!disc_resp) 1590 return -ENOMEM; 1591 1592 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1593 if (!res) 1594 *pcc = disc_resp->disc.change_count; 1595 1596 kfree(disc_resp); 1597 return res; 1598 } 1599 1600 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1601 int phy_id, u8 *attached_sas_addr) 1602 { 1603 int res; 1604 struct smp_resp *disc_resp; 1605 struct discover_resp *dr; 1606 1607 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1608 if (!disc_resp) 1609 return -ENOMEM; 1610 dr = &disc_resp->disc; 1611 1612 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1613 if (!res) { 1614 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1615 if (dr->attached_dev_type == 0) 1616 memset(attached_sas_addr, 0, 8); 1617 } 1618 kfree(disc_resp); 1619 return res; 1620 } 1621 1622 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1623 int from_phy, bool update) 1624 { 1625 struct expander_device *ex = &dev->ex_dev; 1626 int res = 0; 1627 int i; 1628 1629 for (i = from_phy; i < ex->num_phys; i++) { 1630 int phy_change_count = 0; 1631 1632 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1633 if (res) 1634 goto out; 1635 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1636 if (update) 1637 ex->ex_phy[i].phy_change_count = 1638 phy_change_count; 1639 *phy_id = i; 1640 return 0; 1641 } 1642 } 1643 out: 1644 return res; 1645 } 1646 1647 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1648 { 1649 int res; 1650 u8 *rg_req; 1651 struct smp_resp *rg_resp; 1652 1653 rg_req = alloc_smp_req(RG_REQ_SIZE); 1654 if (!rg_req) 1655 return -ENOMEM; 1656 1657 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1658 if (!rg_resp) { 1659 kfree(rg_req); 1660 return -ENOMEM; 1661 } 1662 1663 rg_req[1] = SMP_REPORT_GENERAL; 1664 1665 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1666 RG_RESP_SIZE); 1667 if (res) 1668 goto out; 1669 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1670 res = rg_resp->result; 1671 goto out; 1672 } 1673 1674 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1675 out: 1676 kfree(rg_resp); 1677 kfree(rg_req); 1678 return res; 1679 } 1680 /** 1681 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1682 * @dev:domain device to be detect. 1683 * @src_dev: the device which originated BROADCAST(CHANGE). 1684 * 1685 * Add self-configuration expander suport. Suppose two expander cascading, 1686 * when the first level expander is self-configuring, hotplug the disks in 1687 * second level expander, BROADCAST(CHANGE) will not only be originated 1688 * in the second level expander, but also be originated in the first level 1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1690 * expander changed count in two level expanders will all increment at least 1691 * once, but the phy which chang count has changed is the source device which 1692 * we concerned. 1693 */ 1694 1695 static int sas_find_bcast_dev(struct domain_device *dev, 1696 struct domain_device **src_dev) 1697 { 1698 struct expander_device *ex = &dev->ex_dev; 1699 int ex_change_count = -1; 1700 int phy_id = -1; 1701 int res; 1702 struct domain_device *ch; 1703 1704 res = sas_get_ex_change_count(dev, &ex_change_count); 1705 if (res) 1706 goto out; 1707 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1708 /* Just detect if this expander phys phy change count changed, 1709 * in order to determine if this expander originate BROADCAST, 1710 * and do not update phy change count field in our structure. 1711 */ 1712 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1713 if (phy_id != -1) { 1714 *src_dev = dev; 1715 ex->ex_change_count = ex_change_count; 1716 SAS_DPRINTK("Expander phy change count has changed\n"); 1717 return res; 1718 } else 1719 SAS_DPRINTK("Expander phys DID NOT change\n"); 1720 } 1721 list_for_each_entry(ch, &ex->children, siblings) { 1722 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1723 res = sas_find_bcast_dev(ch, src_dev); 1724 if (*src_dev) 1725 return res; 1726 } 1727 } 1728 out: 1729 return res; 1730 } 1731 1732 static void sas_unregister_ex_tree(struct domain_device *dev) 1733 { 1734 struct expander_device *ex = &dev->ex_dev; 1735 struct domain_device *child, *n; 1736 1737 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1738 child->gone = 1; 1739 if (child->dev_type == EDGE_DEV || 1740 child->dev_type == FANOUT_DEV) 1741 sas_unregister_ex_tree(child); 1742 else 1743 sas_unregister_dev(child); 1744 } 1745 sas_unregister_dev(dev); 1746 } 1747 1748 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1749 int phy_id, bool last) 1750 { 1751 struct expander_device *ex_dev = &parent->ex_dev; 1752 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1753 struct domain_device *child, *n; 1754 if (last) { 1755 list_for_each_entry_safe(child, n, 1756 &ex_dev->children, siblings) { 1757 if (SAS_ADDR(child->sas_addr) == 1758 SAS_ADDR(phy->attached_sas_addr)) { 1759 child->gone = 1; 1760 if (child->dev_type == EDGE_DEV || 1761 child->dev_type == FANOUT_DEV) 1762 sas_unregister_ex_tree(child); 1763 else 1764 sas_unregister_dev(child); 1765 break; 1766 } 1767 } 1768 parent->gone = 1; 1769 sas_disable_routing(parent, phy->attached_sas_addr); 1770 } 1771 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1772 if (phy->port) { 1773 sas_port_delete_phy(phy->port, phy->phy); 1774 if (phy->port->num_phys == 0) 1775 sas_port_delete(phy->port); 1776 phy->port = NULL; 1777 } 1778 } 1779 1780 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1781 const int level) 1782 { 1783 struct expander_device *ex_root = &root->ex_dev; 1784 struct domain_device *child; 1785 int res = 0; 1786 1787 list_for_each_entry(child, &ex_root->children, siblings) { 1788 if (child->dev_type == EDGE_DEV || 1789 child->dev_type == FANOUT_DEV) { 1790 struct sas_expander_device *ex = 1791 rphy_to_expander_device(child->rphy); 1792 1793 if (level > ex->level) 1794 res = sas_discover_bfs_by_root_level(child, 1795 level); 1796 else if (level == ex->level) 1797 res = sas_ex_discover_devices(child, -1); 1798 } 1799 } 1800 return res; 1801 } 1802 1803 static int sas_discover_bfs_by_root(struct domain_device *dev) 1804 { 1805 int res; 1806 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1807 int level = ex->level+1; 1808 1809 res = sas_ex_discover_devices(dev, -1); 1810 if (res) 1811 goto out; 1812 do { 1813 res = sas_discover_bfs_by_root_level(dev, level); 1814 mb(); 1815 level += 1; 1816 } while (level <= dev->port->disc.max_level); 1817 out: 1818 return res; 1819 } 1820 1821 static int sas_discover_new(struct domain_device *dev, int phy_id) 1822 { 1823 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1824 struct domain_device *child; 1825 bool found = false; 1826 int res, i; 1827 1828 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1829 SAS_ADDR(dev->sas_addr), phy_id); 1830 res = sas_ex_phy_discover(dev, phy_id); 1831 if (res) 1832 goto out; 1833 /* to support the wide port inserted */ 1834 for (i = 0; i < dev->ex_dev.num_phys; i++) { 1835 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; 1836 if (i == phy_id) 1837 continue; 1838 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == 1839 SAS_ADDR(ex_phy->attached_sas_addr)) { 1840 found = true; 1841 break; 1842 } 1843 } 1844 if (found) { 1845 sas_ex_join_wide_port(dev, phy_id); 1846 return 0; 1847 } 1848 res = sas_ex_discover_devices(dev, phy_id); 1849 if (!res) 1850 goto out; 1851 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1852 if (SAS_ADDR(child->sas_addr) == 1853 SAS_ADDR(ex_phy->attached_sas_addr)) { 1854 if (child->dev_type == EDGE_DEV || 1855 child->dev_type == FANOUT_DEV) 1856 res = sas_discover_bfs_by_root(child); 1857 break; 1858 } 1859 } 1860 out: 1861 return res; 1862 } 1863 1864 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1865 { 1866 struct expander_device *ex = &dev->ex_dev; 1867 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1868 u8 attached_sas_addr[8]; 1869 int res; 1870 1871 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1872 switch (res) { 1873 case SMP_RESP_NO_PHY: 1874 phy->phy_state = PHY_NOT_PRESENT; 1875 sas_unregister_devs_sas_addr(dev, phy_id, last); 1876 goto out; break; 1877 case SMP_RESP_PHY_VACANT: 1878 phy->phy_state = PHY_VACANT; 1879 sas_unregister_devs_sas_addr(dev, phy_id, last); 1880 goto out; break; 1881 case SMP_RESP_FUNC_ACC: 1882 break; 1883 } 1884 1885 if (SAS_ADDR(attached_sas_addr) == 0) { 1886 phy->phy_state = PHY_EMPTY; 1887 sas_unregister_devs_sas_addr(dev, phy_id, last); 1888 } else if (SAS_ADDR(attached_sas_addr) == 1889 SAS_ADDR(phy->attached_sas_addr)) { 1890 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1891 SAS_ADDR(dev->sas_addr), phy_id); 1892 sas_ex_phy_discover(dev, phy_id); 1893 } else 1894 res = sas_discover_new(dev, phy_id); 1895 out: 1896 return res; 1897 } 1898 1899 /** 1900 * sas_rediscover - revalidate the domain. 1901 * @dev:domain device to be detect. 1902 * @phy_id: the phy id will be detected. 1903 * 1904 * NOTE: this process _must_ quit (return) as soon as any connection 1905 * errors are encountered. Connection recovery is done elsewhere. 1906 * Discover process only interrogates devices in order to discover the 1907 * domain.For plugging out, we un-register the device only when it is 1908 * the last phy in the port, for other phys in this port, we just delete it 1909 * from the port.For inserting, we do discovery when it is the 1910 * first phy,for other phys in this port, we add it to the port to 1911 * forming the wide-port. 1912 */ 1913 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1914 { 1915 struct expander_device *ex = &dev->ex_dev; 1916 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1917 int res = 0; 1918 int i; 1919 bool last = true; /* is this the last phy of the port */ 1920 1921 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1922 SAS_ADDR(dev->sas_addr), phy_id); 1923 1924 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1925 for (i = 0; i < ex->num_phys; i++) { 1926 struct ex_phy *phy = &ex->ex_phy[i]; 1927 1928 if (i == phy_id) 1929 continue; 1930 if (SAS_ADDR(phy->attached_sas_addr) == 1931 SAS_ADDR(changed_phy->attached_sas_addr)) { 1932 SAS_DPRINTK("phy%d part of wide port with " 1933 "phy%d\n", phy_id, i); 1934 last = false; 1935 break; 1936 } 1937 } 1938 res = sas_rediscover_dev(dev, phy_id, last); 1939 } else 1940 res = sas_discover_new(dev, phy_id); 1941 return res; 1942 } 1943 1944 /** 1945 * sas_revalidate_domain -- revalidate the domain 1946 * @port: port to the domain of interest 1947 * 1948 * NOTE: this process _must_ quit (return) as soon as any connection 1949 * errors are encountered. Connection recovery is done elsewhere. 1950 * Discover process only interrogates devices in order to discover the 1951 * domain. 1952 */ 1953 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1954 { 1955 int res; 1956 struct domain_device *dev = NULL; 1957 1958 res = sas_find_bcast_dev(port_dev, &dev); 1959 if (res) 1960 goto out; 1961 if (dev) { 1962 struct expander_device *ex = &dev->ex_dev; 1963 int i = 0, phy_id; 1964 1965 do { 1966 phy_id = -1; 1967 res = sas_find_bcast_phy(dev, &phy_id, i, true); 1968 if (phy_id == -1) 1969 break; 1970 res = sas_rediscover(dev, phy_id); 1971 i = phy_id + 1; 1972 } while (i < ex->num_phys); 1973 } 1974 out: 1975 return res; 1976 } 1977 1978 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1979 struct request *req) 1980 { 1981 struct domain_device *dev; 1982 int ret, type; 1983 struct request *rsp = req->next_rq; 1984 1985 if (!rsp) { 1986 printk("%s: space for a smp response is missing\n", 1987 __func__); 1988 return -EINVAL; 1989 } 1990 1991 /* no rphy means no smp target support (ie aic94xx host) */ 1992 if (!rphy) 1993 return sas_smp_host_handler(shost, req, rsp); 1994 1995 type = rphy->identify.device_type; 1996 1997 if (type != SAS_EDGE_EXPANDER_DEVICE && 1998 type != SAS_FANOUT_EXPANDER_DEVICE) { 1999 printk("%s: can we send a smp request to a device?\n", 2000 __func__); 2001 return -EINVAL; 2002 } 2003 2004 dev = sas_find_dev_by_rphy(rphy); 2005 if (!dev) { 2006 printk("%s: fail to find a domain_device?\n", __func__); 2007 return -EINVAL; 2008 } 2009 2010 /* do we need to support multiple segments? */ 2011 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 2012 printk("%s: multiple segments req %u %u, rsp %u %u\n", 2013 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 2014 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 2015 return -EINVAL; 2016 } 2017 2018 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2019 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2020 if (ret > 0) { 2021 /* positive number is the untransferred residual */ 2022 rsp->resid_len = ret; 2023 req->resid_len = 0; 2024 ret = 0; 2025 } else if (ret == 0) { 2026 rsp->resid_len = 0; 2027 req->resid_len = 0; 2028 } 2029 2030 return ret; 2031 } 2032