xref: /linux/drivers/scsi/libsas/sas_expander.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27 
28 #include "sas_internal.h"
29 
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33 
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 			     u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39 
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
45 
46 /* ---------- SMP task management ---------- */
47 
48 static void smp_task_timedout(unsigned long _task)
49 {
50 	struct sas_task *task = (void *) _task;
51 	unsigned long flags;
52 
53 	spin_lock_irqsave(&task->task_state_lock, flags);
54 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56 	spin_unlock_irqrestore(&task->task_state_lock, flags);
57 
58 	complete(&task->completion);
59 }
60 
61 static void smp_task_done(struct sas_task *task)
62 {
63 	if (!del_timer(&task->timer))
64 		return;
65 	complete(&task->completion);
66 }
67 
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
70 
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72 			    void *resp, int resp_size)
73 {
74 	int res, retry;
75 	struct sas_task *task = NULL;
76 	struct sas_internal *i =
77 		to_sas_internal(dev->port->ha->core.shost->transportt);
78 
79 	for (retry = 0; retry < 3; retry++) {
80 		task = sas_alloc_task(GFP_KERNEL);
81 		if (!task)
82 			return -ENOMEM;
83 
84 		task->dev = dev;
85 		task->task_proto = dev->tproto;
86 		sg_init_one(&task->smp_task.smp_req, req, req_size);
87 		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
88 
89 		task->task_done = smp_task_done;
90 
91 		task->timer.data = (unsigned long) task;
92 		task->timer.function = smp_task_timedout;
93 		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94 		add_timer(&task->timer);
95 
96 		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
97 
98 		if (res) {
99 			del_timer(&task->timer);
100 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
101 			goto ex_err;
102 		}
103 
104 		wait_for_completion(&task->completion);
105 		res = -ETASK;
106 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107 			SAS_DPRINTK("smp task timed out or aborted\n");
108 			i->dft->lldd_abort_task(task);
109 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110 				SAS_DPRINTK("SMP task aborted and not done\n");
111 				goto ex_err;
112 			}
113 		}
114 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
115 		    task->task_status.stat == SAM_GOOD) {
116 			res = 0;
117 			break;
118 		} else {
119 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120 				    "status 0x%x\n", __FUNCTION__,
121 				    SAS_ADDR(dev->sas_addr),
122 				    task->task_status.resp,
123 				    task->task_status.stat);
124 			sas_free_task(task);
125 			task = NULL;
126 		}
127 	}
128 ex_err:
129 	BUG_ON(retry == 3 && task != NULL);
130 	if (task != NULL) {
131 		sas_free_task(task);
132 	}
133 	return res;
134 }
135 
136 /* ---------- Allocations ---------- */
137 
138 static inline void *alloc_smp_req(int size)
139 {
140 	u8 *p = kzalloc(size, GFP_KERNEL);
141 	if (p)
142 		p[0] = SMP_REQUEST;
143 	return p;
144 }
145 
146 static inline void *alloc_smp_resp(int size)
147 {
148 	return kzalloc(size, GFP_KERNEL);
149 }
150 
151 /* ---------- Expander configuration ---------- */
152 
153 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154 			   void *disc_resp)
155 {
156 	struct expander_device *ex = &dev->ex_dev;
157 	struct ex_phy *phy = &ex->ex_phy[phy_id];
158 	struct smp_resp *resp = disc_resp;
159 	struct discover_resp *dr = &resp->disc;
160 	struct sas_rphy *rphy = dev->rphy;
161 	int rediscover = (phy->phy != NULL);
162 
163 	if (!rediscover) {
164 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
165 
166 		/* FIXME: error_handling */
167 		BUG_ON(!phy->phy);
168 	}
169 
170 	switch (resp->result) {
171 	case SMP_RESP_PHY_VACANT:
172 		phy->phy_state = PHY_VACANT;
173 		return;
174 	default:
175 		phy->phy_state = PHY_NOT_PRESENT;
176 		return;
177 	case SMP_RESP_FUNC_ACC:
178 		phy->phy_state = PHY_EMPTY; /* do not know yet */
179 		break;
180 	}
181 
182 	phy->phy_id = phy_id;
183 	phy->attached_dev_type = dr->attached_dev_type;
184 	phy->linkrate = dr->linkrate;
185 	phy->attached_sata_host = dr->attached_sata_host;
186 	phy->attached_sata_dev  = dr->attached_sata_dev;
187 	phy->attached_sata_ps   = dr->attached_sata_ps;
188 	phy->attached_iproto = dr->iproto << 1;
189 	phy->attached_tproto = dr->tproto << 1;
190 	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191 	phy->attached_phy_id = dr->attached_phy_id;
192 	phy->phy_change_count = dr->change_count;
193 	phy->routing_attr = dr->routing_attr;
194 	phy->virtual = dr->virtual;
195 	phy->last_da_index = -1;
196 
197 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
199 	phy->phy->identify.phy_identifier = phy_id;
200 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
203 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
204 	phy->phy->negotiated_linkrate = phy->linkrate;
205 
206 	if (!rediscover)
207 		sas_phy_add(phy->phy);
208 
209 	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
211 		    phy->routing_attr == TABLE_ROUTING ? 'T' :
212 		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
213 		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214 		    SAS_ADDR(phy->attached_sas_addr));
215 
216 	return;
217 }
218 
219 #define DISCOVER_REQ_SIZE  16
220 #define DISCOVER_RESP_SIZE 56
221 
222 static int sas_ex_phy_discover(struct domain_device *dev, int single)
223 {
224 	struct expander_device *ex = &dev->ex_dev;
225 	int  res = 0;
226 	u8   *disc_req;
227 	u8   *disc_resp;
228 
229 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230 	if (!disc_req)
231 		return -ENOMEM;
232 
233 	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234 	if (!disc_resp) {
235 		kfree(disc_req);
236 		return -ENOMEM;
237 	}
238 
239 	disc_req[1] = SMP_DISCOVER;
240 
241 	if (0 <= single && single < ex->num_phys) {
242 		disc_req[9] = single;
243 		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244 				       disc_resp, DISCOVER_RESP_SIZE);
245 		if (res)
246 			goto out_err;
247 		sas_set_ex_phy(dev, single, disc_resp);
248 	} else {
249 		int i;
250 
251 		for (i = 0; i < ex->num_phys; i++) {
252 			disc_req[9] = i;
253 			res = smp_execute_task(dev, disc_req,
254 					       DISCOVER_REQ_SIZE, disc_resp,
255 					       DISCOVER_RESP_SIZE);
256 			if (res)
257 				goto out_err;
258 			sas_set_ex_phy(dev, i, disc_resp);
259 		}
260 	}
261 out_err:
262 	kfree(disc_resp);
263 	kfree(disc_req);
264 	return res;
265 }
266 
267 static int sas_expander_discover(struct domain_device *dev)
268 {
269 	struct expander_device *ex = &dev->ex_dev;
270 	int res = -ENOMEM;
271 
272 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273 	if (!ex->ex_phy)
274 		return -ENOMEM;
275 
276 	res = sas_ex_phy_discover(dev, -1);
277 	if (res)
278 		goto out_err;
279 
280 	return 0;
281  out_err:
282 	kfree(ex->ex_phy);
283 	ex->ex_phy = NULL;
284 	return res;
285 }
286 
287 #define MAX_EXPANDER_PHYS 128
288 
289 static void ex_assign_report_general(struct domain_device *dev,
290 					    struct smp_resp *resp)
291 {
292 	struct report_general_resp *rg = &resp->rg;
293 
294 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297 	dev->ex_dev.conf_route_table = rg->conf_route_table;
298 	dev->ex_dev.configuring = rg->configuring;
299 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
300 }
301 
302 #define RG_REQ_SIZE   8
303 #define RG_RESP_SIZE 32
304 
305 static int sas_ex_general(struct domain_device *dev)
306 {
307 	u8 *rg_req;
308 	struct smp_resp *rg_resp;
309 	int res;
310 	int i;
311 
312 	rg_req = alloc_smp_req(RG_REQ_SIZE);
313 	if (!rg_req)
314 		return -ENOMEM;
315 
316 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317 	if (!rg_resp) {
318 		kfree(rg_req);
319 		return -ENOMEM;
320 	}
321 
322 	rg_req[1] = SMP_REPORT_GENERAL;
323 
324 	for (i = 0; i < 5; i++) {
325 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326 				       RG_RESP_SIZE);
327 
328 		if (res) {
329 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330 				    SAS_ADDR(dev->sas_addr), res);
331 			goto out;
332 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
335 			res = rg_resp->result;
336 			goto out;
337 		}
338 
339 		ex_assign_report_general(dev, rg_resp);
340 
341 		if (dev->ex_dev.configuring) {
342 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343 				    SAS_ADDR(dev->sas_addr));
344 			schedule_timeout_interruptible(5*HZ);
345 		} else
346 			break;
347 	}
348 out:
349 	kfree(rg_req);
350 	kfree(rg_resp);
351 	return res;
352 }
353 
354 static void ex_assign_manuf_info(struct domain_device *dev, void
355 					*_mi_resp)
356 {
357 	u8 *mi_resp = _mi_resp;
358 	struct sas_rphy *rphy = dev->rphy;
359 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
360 
361 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363 	memcpy(edev->product_rev, mi_resp + 36,
364 	       SAS_EXPANDER_PRODUCT_REV_LEN);
365 
366 	if (mi_resp[8] & 1) {
367 		memcpy(edev->component_vendor_id, mi_resp + 40,
368 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370 		edev->component_revision_id = mi_resp[50];
371 	}
372 }
373 
374 #define MI_REQ_SIZE   8
375 #define MI_RESP_SIZE 64
376 
377 static int sas_ex_manuf_info(struct domain_device *dev)
378 {
379 	u8 *mi_req;
380 	u8 *mi_resp;
381 	int res;
382 
383 	mi_req = alloc_smp_req(MI_REQ_SIZE);
384 	if (!mi_req)
385 		return -ENOMEM;
386 
387 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388 	if (!mi_resp) {
389 		kfree(mi_req);
390 		return -ENOMEM;
391 	}
392 
393 	mi_req[1] = SMP_REPORT_MANUF_INFO;
394 
395 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396 	if (res) {
397 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398 			    SAS_ADDR(dev->sas_addr), res);
399 		goto out;
400 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
403 		goto out;
404 	}
405 
406 	ex_assign_manuf_info(dev, mi_resp);
407 out:
408 	kfree(mi_req);
409 	kfree(mi_resp);
410 	return res;
411 }
412 
413 #define PC_REQ_SIZE  44
414 #define PC_RESP_SIZE 8
415 
416 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
417 			enum phy_func phy_func,
418 			struct sas_phy_linkrates *rates)
419 {
420 	u8 *pc_req;
421 	u8 *pc_resp;
422 	int res;
423 
424 	pc_req = alloc_smp_req(PC_REQ_SIZE);
425 	if (!pc_req)
426 		return -ENOMEM;
427 
428 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429 	if (!pc_resp) {
430 		kfree(pc_req);
431 		return -ENOMEM;
432 	}
433 
434 	pc_req[1] = SMP_PHY_CONTROL;
435 	pc_req[9] = phy_id;
436 	pc_req[10]= phy_func;
437 	if (rates) {
438 		pc_req[32] = rates->minimum_linkrate << 4;
439 		pc_req[33] = rates->maximum_linkrate << 4;
440 	}
441 
442 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
443 
444 	kfree(pc_resp);
445 	kfree(pc_req);
446 	return res;
447 }
448 
449 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
450 {
451 	struct expander_device *ex = &dev->ex_dev;
452 	struct ex_phy *phy = &ex->ex_phy[phy_id];
453 
454 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
455 	phy->linkrate = SAS_PHY_DISABLED;
456 }
457 
458 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
459 {
460 	struct expander_device *ex = &dev->ex_dev;
461 	int i;
462 
463 	for (i = 0; i < ex->num_phys; i++) {
464 		struct ex_phy *phy = &ex->ex_phy[i];
465 
466 		if (phy->phy_state == PHY_VACANT ||
467 		    phy->phy_state == PHY_NOT_PRESENT)
468 			continue;
469 
470 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471 			sas_ex_disable_phy(dev, i);
472 	}
473 }
474 
475 static int sas_dev_present_in_domain(struct asd_sas_port *port,
476 					    u8 *sas_addr)
477 {
478 	struct domain_device *dev;
479 
480 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481 		return 1;
482 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484 			return 1;
485 	}
486 	return 0;
487 }
488 
489 #define RPEL_REQ_SIZE	16
490 #define RPEL_RESP_SIZE	32
491 int sas_smp_get_phy_events(struct sas_phy *phy)
492 {
493 	int res;
494 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496 	u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497 	u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
498 
499 	if (!resp)
500 		return -ENOMEM;
501 
502 	req[1] = SMP_REPORT_PHY_ERR_LOG;
503 	req[9] = phy->number;
504 
505 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506 			            resp, RPEL_RESP_SIZE);
507 
508 	if (!res)
509 		goto out;
510 
511 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
515 
516  out:
517 	kfree(resp);
518 	return res;
519 
520 }
521 
522 #define RPS_REQ_SIZE  16
523 #define RPS_RESP_SIZE 60
524 
525 static int sas_get_report_phy_sata(struct domain_device *dev,
526 					  int phy_id,
527 					  struct smp_resp *rps_resp)
528 {
529 	int res;
530 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
531 
532 	if (!rps_req)
533 		return -ENOMEM;
534 
535 	rps_req[1] = SMP_REPORT_PHY_SATA;
536 	rps_req[9] = phy_id;
537 
538 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539 			            rps_resp, RPS_RESP_SIZE);
540 
541 	kfree(rps_req);
542 	return 0;
543 }
544 
545 static void sas_ex_get_linkrate(struct domain_device *parent,
546 				       struct domain_device *child,
547 				       struct ex_phy *parent_phy)
548 {
549 	struct expander_device *parent_ex = &parent->ex_dev;
550 	struct sas_port *port;
551 	int i;
552 
553 	child->pathways = 0;
554 
555 	port = parent_phy->port;
556 
557 	for (i = 0; i < parent_ex->num_phys; i++) {
558 		struct ex_phy *phy = &parent_ex->ex_phy[i];
559 
560 		if (phy->phy_state == PHY_VACANT ||
561 		    phy->phy_state == PHY_NOT_PRESENT)
562 			continue;
563 
564 		if (SAS_ADDR(phy->attached_sas_addr) ==
565 		    SAS_ADDR(child->sas_addr)) {
566 
567 			child->min_linkrate = min(parent->min_linkrate,
568 						  phy->linkrate);
569 			child->max_linkrate = max(parent->max_linkrate,
570 						  phy->linkrate);
571 			child->pathways++;
572 			sas_port_add_phy(port, phy->phy);
573 		}
574 	}
575 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576 	child->pathways = min(child->pathways, parent->pathways);
577 }
578 
579 static struct domain_device *sas_ex_discover_end_dev(
580 	struct domain_device *parent, int phy_id)
581 {
582 	struct expander_device *parent_ex = &parent->ex_dev;
583 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584 	struct domain_device *child = NULL;
585 	struct sas_rphy *rphy;
586 	int res;
587 
588 	if (phy->attached_sata_host || phy->attached_sata_ps)
589 		return NULL;
590 
591 	child = kzalloc(sizeof(*child), GFP_KERNEL);
592 	if (!child)
593 		return NULL;
594 
595 	child->parent = parent;
596 	child->port   = parent->port;
597 	child->iproto = phy->attached_iproto;
598 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600 	if (!phy->port) {
601 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
602 		if (unlikely(!phy->port))
603 			goto out_err;
604 		if (unlikely(sas_port_add(phy->port) != 0)) {
605 			sas_port_free(phy->port);
606 			goto out_err;
607 		}
608 	}
609 	sas_ex_get_linkrate(parent, child, phy);
610 
611 	if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
612 		child->dev_type = SATA_DEV;
613 		if (phy->attached_tproto & SAS_PROTO_STP)
614 			child->tproto = phy->attached_tproto;
615 		if (phy->attached_sata_dev)
616 			child->tproto |= SATA_DEV;
617 		res = sas_get_report_phy_sata(parent, phy_id,
618 					      &child->sata_dev.rps_resp);
619 		if (res) {
620 			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
621 				    "0x%x\n", SAS_ADDR(parent->sas_addr),
622 				    phy_id, res);
623 			goto out_free;
624 		}
625 		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
626 		       sizeof(struct dev_to_host_fis));
627 		sas_init_dev(child);
628 		res = sas_discover_sata(child);
629 		if (res) {
630 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
631 				    "%016llx:0x%x returned 0x%x\n",
632 				    SAS_ADDR(child->sas_addr),
633 				    SAS_ADDR(parent->sas_addr), phy_id, res);
634 			goto out_free;
635 		}
636 	} else if (phy->attached_tproto & SAS_PROTO_SSP) {
637 		child->dev_type = SAS_END_DEV;
638 		rphy = sas_end_device_alloc(phy->port);
639 		/* FIXME: error handling */
640 		if (unlikely(!rphy))
641 			goto out_free;
642 		child->tproto = phy->attached_tproto;
643 		sas_init_dev(child);
644 
645 		child->rphy = rphy;
646 		sas_fill_in_rphy(child, rphy);
647 
648 		spin_lock(&parent->port->dev_list_lock);
649 		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
650 		spin_unlock(&parent->port->dev_list_lock);
651 
652 		res = sas_discover_end_dev(child);
653 		if (res) {
654 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
655 				    "at %016llx:0x%x returned 0x%x\n",
656 				    SAS_ADDR(child->sas_addr),
657 				    SAS_ADDR(parent->sas_addr), phy_id, res);
658 			goto out_list_del;
659 		}
660 	} else {
661 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
662 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
663 			    phy_id);
664 	}
665 
666 	list_add_tail(&child->siblings, &parent_ex->children);
667 	return child;
668 
669  out_list_del:
670 	sas_rphy_free(child->rphy);
671 	child->rphy = NULL;
672 	list_del(&child->dev_list_node);
673  out_free:
674 	sas_port_delete(phy->port);
675  out_err:
676 	phy->port = NULL;
677 	kfree(child);
678 	return NULL;
679 }
680 
681 /* See if this phy is part of a wide port */
682 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
683 {
684 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
685 	int i;
686 
687 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
688 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
689 
690 		if (ephy == phy)
691 			continue;
692 
693 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
694 			    SAS_ADDR_SIZE) && ephy->port) {
695 			sas_port_add_phy(ephy->port, phy->phy);
696 			phy->phy_state = PHY_DEVICE_DISCOVERED;
697 			return 0;
698 		}
699 	}
700 
701 	return -ENODEV;
702 }
703 
704 static struct domain_device *sas_ex_discover_expander(
705 	struct domain_device *parent, int phy_id)
706 {
707 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
708 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
709 	struct domain_device *child = NULL;
710 	struct sas_rphy *rphy;
711 	struct sas_expander_device *edev;
712 	struct asd_sas_port *port;
713 	int res;
714 
715 	if (phy->routing_attr == DIRECT_ROUTING) {
716 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
717 			    "allowed\n",
718 			    SAS_ADDR(parent->sas_addr), phy_id,
719 			    SAS_ADDR(phy->attached_sas_addr),
720 			    phy->attached_phy_id);
721 		return NULL;
722 	}
723 	child = kzalloc(sizeof(*child), GFP_KERNEL);
724 	if (!child)
725 		return NULL;
726 
727 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
728 	/* FIXME: better error handling */
729 	BUG_ON(sas_port_add(phy->port) != 0);
730 
731 
732 	switch (phy->attached_dev_type) {
733 	case EDGE_DEV:
734 		rphy = sas_expander_alloc(phy->port,
735 					  SAS_EDGE_EXPANDER_DEVICE);
736 		break;
737 	case FANOUT_DEV:
738 		rphy = sas_expander_alloc(phy->port,
739 					  SAS_FANOUT_EXPANDER_DEVICE);
740 		break;
741 	default:
742 		rphy = NULL;	/* shut gcc up */
743 		BUG();
744 	}
745 	port = parent->port;
746 	child->rphy = rphy;
747 	edev = rphy_to_expander_device(rphy);
748 	child->dev_type = phy->attached_dev_type;
749 	child->parent = parent;
750 	child->port = port;
751 	child->iproto = phy->attached_iproto;
752 	child->tproto = phy->attached_tproto;
753 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
754 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
755 	sas_ex_get_linkrate(parent, child, phy);
756 	edev->level = parent_ex->level + 1;
757 	parent->port->disc.max_level = max(parent->port->disc.max_level,
758 					   edev->level);
759 	sas_init_dev(child);
760 	sas_fill_in_rphy(child, rphy);
761 	sas_rphy_add(rphy);
762 
763 	spin_lock(&parent->port->dev_list_lock);
764 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
765 	spin_unlock(&parent->port->dev_list_lock);
766 
767 	res = sas_discover_expander(child);
768 	if (res) {
769 		kfree(child);
770 		return NULL;
771 	}
772 	list_add_tail(&child->siblings, &parent->ex_dev.children);
773 	return child;
774 }
775 
776 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
777 {
778 	struct expander_device *ex = &dev->ex_dev;
779 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
780 	struct domain_device *child = NULL;
781 	int res = 0;
782 
783 	/* Phy state */
784 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
785 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
786 			res = sas_ex_phy_discover(dev, phy_id);
787 		if (res)
788 			return res;
789 	}
790 
791 	/* Parent and domain coherency */
792 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
793 			     SAS_ADDR(dev->port->sas_addr))) {
794 		sas_add_parent_port(dev, phy_id);
795 		return 0;
796 	}
797 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
798 			    SAS_ADDR(dev->parent->sas_addr))) {
799 		sas_add_parent_port(dev, phy_id);
800 		if (ex_phy->routing_attr == TABLE_ROUTING)
801 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
802 		return 0;
803 	}
804 
805 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
806 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
807 
808 	if (ex_phy->attached_dev_type == NO_DEVICE) {
809 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
810 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
811 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
812 		}
813 		return 0;
814 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
815 		return 0;
816 
817 	if (ex_phy->attached_dev_type != SAS_END_DEV &&
818 	    ex_phy->attached_dev_type != FANOUT_DEV &&
819 	    ex_phy->attached_dev_type != EDGE_DEV) {
820 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
821 			    "phy 0x%x\n", ex_phy->attached_dev_type,
822 			    SAS_ADDR(dev->sas_addr),
823 			    phy_id);
824 		return 0;
825 	}
826 
827 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
828 	if (res) {
829 		SAS_DPRINTK("configure routing for dev %016llx "
830 			    "reported 0x%x. Forgotten\n",
831 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
832 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
833 		return res;
834 	}
835 
836 	res = sas_ex_join_wide_port(dev, phy_id);
837 	if (!res) {
838 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
839 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
840 		return res;
841 	}
842 
843 	switch (ex_phy->attached_dev_type) {
844 	case SAS_END_DEV:
845 		child = sas_ex_discover_end_dev(dev, phy_id);
846 		break;
847 	case FANOUT_DEV:
848 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
849 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
850 				    "attached to ex %016llx phy 0x%x\n",
851 				    SAS_ADDR(ex_phy->attached_sas_addr),
852 				    ex_phy->attached_phy_id,
853 				    SAS_ADDR(dev->sas_addr),
854 				    phy_id);
855 			sas_ex_disable_phy(dev, phy_id);
856 			break;
857 		} else
858 			memcpy(dev->port->disc.fanout_sas_addr,
859 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
860 		/* fallthrough */
861 	case EDGE_DEV:
862 		child = sas_ex_discover_expander(dev, phy_id);
863 		break;
864 	default:
865 		break;
866 	}
867 
868 	if (child) {
869 		int i;
870 
871 		for (i = 0; i < ex->num_phys; i++) {
872 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
873 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
874 				continue;
875 
876 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
877 			    SAS_ADDR(child->sas_addr))
878 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
879 		}
880 	}
881 
882 	return res;
883 }
884 
885 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
886 {
887 	struct expander_device *ex = &dev->ex_dev;
888 	int i;
889 
890 	for (i = 0; i < ex->num_phys; i++) {
891 		struct ex_phy *phy = &ex->ex_phy[i];
892 
893 		if (phy->phy_state == PHY_VACANT ||
894 		    phy->phy_state == PHY_NOT_PRESENT)
895 			continue;
896 
897 		if ((phy->attached_dev_type == EDGE_DEV ||
898 		     phy->attached_dev_type == FANOUT_DEV) &&
899 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
900 
901 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
902 
903 			return 1;
904 		}
905 	}
906 	return 0;
907 }
908 
909 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
910 {
911 	struct expander_device *ex = &dev->ex_dev;
912 	struct domain_device *child;
913 	u8 sub_addr[8] = {0, };
914 
915 	list_for_each_entry(child, &ex->children, siblings) {
916 		if (child->dev_type != EDGE_DEV &&
917 		    child->dev_type != FANOUT_DEV)
918 			continue;
919 		if (sub_addr[0] == 0) {
920 			sas_find_sub_addr(child, sub_addr);
921 			continue;
922 		} else {
923 			u8 s2[8];
924 
925 			if (sas_find_sub_addr(child, s2) &&
926 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
927 
928 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
929 					    "diverges from subtractive "
930 					    "boundary %016llx\n",
931 					    SAS_ADDR(dev->sas_addr),
932 					    SAS_ADDR(child->sas_addr),
933 					    SAS_ADDR(s2),
934 					    SAS_ADDR(sub_addr));
935 
936 				sas_ex_disable_port(child, s2);
937 			}
938 		}
939 	}
940 	return 0;
941 }
942 /**
943  * sas_ex_discover_devices -- discover devices attached to this expander
944  * dev: pointer to the expander domain device
945  * single: if you want to do a single phy, else set to -1;
946  *
947  * Configure this expander for use with its devices and register the
948  * devices of this expander.
949  */
950 static int sas_ex_discover_devices(struct domain_device *dev, int single)
951 {
952 	struct expander_device *ex = &dev->ex_dev;
953 	int i = 0, end = ex->num_phys;
954 	int res = 0;
955 
956 	if (0 <= single && single < end) {
957 		i = single;
958 		end = i+1;
959 	}
960 
961 	for ( ; i < end; i++) {
962 		struct ex_phy *ex_phy = &ex->ex_phy[i];
963 
964 		if (ex_phy->phy_state == PHY_VACANT ||
965 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
966 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
967 			continue;
968 
969 		switch (ex_phy->linkrate) {
970 		case SAS_PHY_DISABLED:
971 		case SAS_PHY_RESET_PROBLEM:
972 		case SAS_SATA_PORT_SELECTOR:
973 			continue;
974 		default:
975 			res = sas_ex_discover_dev(dev, i);
976 			if (res)
977 				break;
978 			continue;
979 		}
980 	}
981 
982 	if (!res)
983 		sas_check_level_subtractive_boundary(dev);
984 
985 	return res;
986 }
987 
988 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
989 {
990 	struct expander_device *ex = &dev->ex_dev;
991 	int i;
992 	u8  *sub_sas_addr = NULL;
993 
994 	if (dev->dev_type != EDGE_DEV)
995 		return 0;
996 
997 	for (i = 0; i < ex->num_phys; i++) {
998 		struct ex_phy *phy = &ex->ex_phy[i];
999 
1000 		if (phy->phy_state == PHY_VACANT ||
1001 		    phy->phy_state == PHY_NOT_PRESENT)
1002 			continue;
1003 
1004 		if ((phy->attached_dev_type == FANOUT_DEV ||
1005 		     phy->attached_dev_type == EDGE_DEV) &&
1006 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1007 
1008 			if (!sub_sas_addr)
1009 				sub_sas_addr = &phy->attached_sas_addr[0];
1010 			else if (SAS_ADDR(sub_sas_addr) !=
1011 				 SAS_ADDR(phy->attached_sas_addr)) {
1012 
1013 				SAS_DPRINTK("ex %016llx phy 0x%x "
1014 					    "diverges(%016llx) on subtractive "
1015 					    "boundary(%016llx). Disabled\n",
1016 					    SAS_ADDR(dev->sas_addr), i,
1017 					    SAS_ADDR(phy->attached_sas_addr),
1018 					    SAS_ADDR(sub_sas_addr));
1019 				sas_ex_disable_phy(dev, i);
1020 			}
1021 		}
1022 	}
1023 	return 0;
1024 }
1025 
1026 static void sas_print_parent_topology_bug(struct domain_device *child,
1027 						 struct ex_phy *parent_phy,
1028 						 struct ex_phy *child_phy)
1029 {
1030 	static const char ra_char[] = {
1031 		[DIRECT_ROUTING] = 'D',
1032 		[SUBTRACTIVE_ROUTING] = 'S',
1033 		[TABLE_ROUTING] = 'T',
1034 	};
1035 	static const char *ex_type[] = {
1036 		[EDGE_DEV] = "edge",
1037 		[FANOUT_DEV] = "fanout",
1038 	};
1039 	struct domain_device *parent = child->parent;
1040 
1041 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1042 		   "has %c:%c routing link!\n",
1043 
1044 		   ex_type[parent->dev_type],
1045 		   SAS_ADDR(parent->sas_addr),
1046 		   parent_phy->phy_id,
1047 
1048 		   ex_type[child->dev_type],
1049 		   SAS_ADDR(child->sas_addr),
1050 		   child_phy->phy_id,
1051 
1052 		   ra_char[parent_phy->routing_attr],
1053 		   ra_char[child_phy->routing_attr]);
1054 }
1055 
1056 static int sas_check_eeds(struct domain_device *child,
1057 				 struct ex_phy *parent_phy,
1058 				 struct ex_phy *child_phy)
1059 {
1060 	int res = 0;
1061 	struct domain_device *parent = child->parent;
1062 
1063 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1064 		res = -ENODEV;
1065 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1066 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1067 			    SAS_ADDR(parent->sas_addr),
1068 			    parent_phy->phy_id,
1069 			    SAS_ADDR(child->sas_addr),
1070 			    child_phy->phy_id,
1071 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1072 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1073 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1074 		       SAS_ADDR_SIZE);
1075 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1076 		       SAS_ADDR_SIZE);
1077 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1078 		    SAS_ADDR(parent->sas_addr)) ||
1079 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1080 		    SAS_ADDR(child->sas_addr)))
1081 		   &&
1082 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1083 		     SAS_ADDR(parent->sas_addr)) ||
1084 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1085 		     SAS_ADDR(child->sas_addr))))
1086 		;
1087 	else {
1088 		res = -ENODEV;
1089 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1090 			    "phy 0x%x link forms a third EEDS!\n",
1091 			    SAS_ADDR(parent->sas_addr),
1092 			    parent_phy->phy_id,
1093 			    SAS_ADDR(child->sas_addr),
1094 			    child_phy->phy_id);
1095 	}
1096 
1097 	return res;
1098 }
1099 
1100 /* Here we spill over 80 columns.  It is intentional.
1101  */
1102 static int sas_check_parent_topology(struct domain_device *child)
1103 {
1104 	struct expander_device *child_ex = &child->ex_dev;
1105 	struct expander_device *parent_ex;
1106 	int i;
1107 	int res = 0;
1108 
1109 	if (!child->parent)
1110 		return 0;
1111 
1112 	if (child->parent->dev_type != EDGE_DEV &&
1113 	    child->parent->dev_type != FANOUT_DEV)
1114 		return 0;
1115 
1116 	parent_ex = &child->parent->ex_dev;
1117 
1118 	for (i = 0; i < parent_ex->num_phys; i++) {
1119 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1120 		struct ex_phy *child_phy;
1121 
1122 		if (parent_phy->phy_state == PHY_VACANT ||
1123 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1124 			continue;
1125 
1126 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1127 			continue;
1128 
1129 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1130 
1131 		switch (child->parent->dev_type) {
1132 		case EDGE_DEV:
1133 			if (child->dev_type == FANOUT_DEV) {
1134 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1135 				    child_phy->routing_attr != TABLE_ROUTING) {
1136 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1137 					res = -ENODEV;
1138 				}
1139 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1140 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1141 					res = sas_check_eeds(child, parent_phy, child_phy);
1142 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1143 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1144 					res = -ENODEV;
1145 				}
1146 			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1147 				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1148 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1149 				res = -ENODEV;
1150 			}
1151 			break;
1152 		case FANOUT_DEV:
1153 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1154 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1155 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1156 				res = -ENODEV;
1157 			}
1158 			break;
1159 		default:
1160 			break;
1161 		}
1162 	}
1163 
1164 	return res;
1165 }
1166 
1167 #define RRI_REQ_SIZE  16
1168 #define RRI_RESP_SIZE 44
1169 
1170 static int sas_configure_present(struct domain_device *dev, int phy_id,
1171 				 u8 *sas_addr, int *index, int *present)
1172 {
1173 	int i, res = 0;
1174 	struct expander_device *ex = &dev->ex_dev;
1175 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1176 	u8 *rri_req;
1177 	u8 *rri_resp;
1178 
1179 	*present = 0;
1180 	*index = 0;
1181 
1182 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1183 	if (!rri_req)
1184 		return -ENOMEM;
1185 
1186 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1187 	if (!rri_resp) {
1188 		kfree(rri_req);
1189 		return -ENOMEM;
1190 	}
1191 
1192 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1193 	rri_req[9] = phy_id;
1194 
1195 	for (i = 0; i < ex->max_route_indexes ; i++) {
1196 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1197 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1198 				       RRI_RESP_SIZE);
1199 		if (res)
1200 			goto out;
1201 		res = rri_resp[2];
1202 		if (res == SMP_RESP_NO_INDEX) {
1203 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1204 				    "phy 0x%x index 0x%x\n",
1205 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1206 			goto out;
1207 		} else if (res != SMP_RESP_FUNC_ACC) {
1208 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1209 				    "result 0x%x\n", __FUNCTION__,
1210 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1211 			goto out;
1212 		}
1213 		if (SAS_ADDR(sas_addr) != 0) {
1214 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1215 				*index = i;
1216 				if ((rri_resp[12] & 0x80) == 0x80)
1217 					*present = 0;
1218 				else
1219 					*present = 1;
1220 				goto out;
1221 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1222 				*index = i;
1223 				*present = 0;
1224 				goto out;
1225 			}
1226 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1227 			   phy->last_da_index < i) {
1228 			phy->last_da_index = i;
1229 			*index = i;
1230 			*present = 0;
1231 			goto out;
1232 		}
1233 	}
1234 	res = -1;
1235 out:
1236 	kfree(rri_req);
1237 	kfree(rri_resp);
1238 	return res;
1239 }
1240 
1241 #define CRI_REQ_SIZE  44
1242 #define CRI_RESP_SIZE  8
1243 
1244 static int sas_configure_set(struct domain_device *dev, int phy_id,
1245 			     u8 *sas_addr, int index, int include)
1246 {
1247 	int res;
1248 	u8 *cri_req;
1249 	u8 *cri_resp;
1250 
1251 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1252 	if (!cri_req)
1253 		return -ENOMEM;
1254 
1255 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1256 	if (!cri_resp) {
1257 		kfree(cri_req);
1258 		return -ENOMEM;
1259 	}
1260 
1261 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1262 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1263 	cri_req[9] = phy_id;
1264 	if (SAS_ADDR(sas_addr) == 0 || !include)
1265 		cri_req[12] |= 0x80;
1266 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1267 
1268 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1269 			       CRI_RESP_SIZE);
1270 	if (res)
1271 		goto out;
1272 	res = cri_resp[2];
1273 	if (res == SMP_RESP_NO_INDEX) {
1274 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1275 			    "index 0x%x\n",
1276 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1277 	}
1278 out:
1279 	kfree(cri_req);
1280 	kfree(cri_resp);
1281 	return res;
1282 }
1283 
1284 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1285 				    u8 *sas_addr, int include)
1286 {
1287 	int index;
1288 	int present;
1289 	int res;
1290 
1291 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1292 	if (res)
1293 		return res;
1294 	if (include ^ present)
1295 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1296 
1297 	return res;
1298 }
1299 
1300 /**
1301  * sas_configure_parent -- configure routing table of parent
1302  * parent: parent expander
1303  * child: child expander
1304  * sas_addr: SAS port identifier of device directly attached to child
1305  */
1306 static int sas_configure_parent(struct domain_device *parent,
1307 				struct domain_device *child,
1308 				u8 *sas_addr, int include)
1309 {
1310 	struct expander_device *ex_parent = &parent->ex_dev;
1311 	int res = 0;
1312 	int i;
1313 
1314 	if (parent->parent) {
1315 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1316 					   include);
1317 		if (res)
1318 			return res;
1319 	}
1320 
1321 	if (ex_parent->conf_route_table == 0) {
1322 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1323 			    SAS_ADDR(parent->sas_addr));
1324 		return 0;
1325 	}
1326 
1327 	for (i = 0; i < ex_parent->num_phys; i++) {
1328 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1329 
1330 		if ((phy->routing_attr == TABLE_ROUTING) &&
1331 		    (SAS_ADDR(phy->attached_sas_addr) ==
1332 		     SAS_ADDR(child->sas_addr))) {
1333 			res = sas_configure_phy(parent, i, sas_addr, include);
1334 			if (res)
1335 				return res;
1336 		}
1337 	}
1338 
1339 	return res;
1340 }
1341 
1342 /**
1343  * sas_configure_routing -- configure routing
1344  * dev: expander device
1345  * sas_addr: port identifier of device directly attached to the expander device
1346  */
1347 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1348 {
1349 	if (dev->parent)
1350 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1351 	return 0;
1352 }
1353 
1354 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1355 {
1356 	if (dev->parent)
1357 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1358 	return 0;
1359 }
1360 
1361 #if 0
1362 #define SMP_BIN_ATTR_NAME "smp_portal"
1363 
1364 static void sas_ex_smp_hook(struct domain_device *dev)
1365 {
1366 	struct expander_device *ex_dev = &dev->ex_dev;
1367 	struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1368 
1369 	memset(bin_attr, 0, sizeof(*bin_attr));
1370 
1371 	bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1372 	bin_attr->attr.owner = THIS_MODULE;
1373 	bin_attr->attr.mode = 0600;
1374 
1375 	bin_attr->size = 0;
1376 	bin_attr->private = NULL;
1377 	bin_attr->read = smp_portal_read;
1378 	bin_attr->write= smp_portal_write;
1379 	bin_attr->mmap = NULL;
1380 
1381 	ex_dev->smp_portal_pid = -1;
1382 	init_MUTEX(&ex_dev->smp_sema);
1383 }
1384 #endif
1385 
1386 /**
1387  * sas_discover_expander -- expander discovery
1388  * @ex: pointer to expander domain device
1389  *
1390  * See comment in sas_discover_sata().
1391  */
1392 static int sas_discover_expander(struct domain_device *dev)
1393 {
1394 	int res;
1395 
1396 	res = sas_notify_lldd_dev_found(dev);
1397 	if (res)
1398 		return res;
1399 
1400 	res = sas_ex_general(dev);
1401 	if (res)
1402 		goto out_err;
1403 	res = sas_ex_manuf_info(dev);
1404 	if (res)
1405 		goto out_err;
1406 
1407 	res = sas_expander_discover(dev);
1408 	if (res) {
1409 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1410 			    SAS_ADDR(dev->sas_addr), res);
1411 		goto out_err;
1412 	}
1413 
1414 	sas_check_ex_subtractive_boundary(dev);
1415 	res = sas_check_parent_topology(dev);
1416 	if (res)
1417 		goto out_err;
1418 	return 0;
1419 out_err:
1420 	sas_notify_lldd_dev_gone(dev);
1421 	return res;
1422 }
1423 
1424 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1425 {
1426 	int res = 0;
1427 	struct domain_device *dev;
1428 
1429 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1430 		if (dev->dev_type == EDGE_DEV ||
1431 		    dev->dev_type == FANOUT_DEV) {
1432 			struct sas_expander_device *ex =
1433 				rphy_to_expander_device(dev->rphy);
1434 
1435 			if (level == ex->level)
1436 				res = sas_ex_discover_devices(dev, -1);
1437 			else if (level > 0)
1438 				res = sas_ex_discover_devices(port->port_dev, -1);
1439 
1440 		}
1441 	}
1442 
1443 	return res;
1444 }
1445 
1446 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1447 {
1448 	int res;
1449 	int level;
1450 
1451 	do {
1452 		level = port->disc.max_level;
1453 		res = sas_ex_level_discovery(port, level);
1454 		mb();
1455 	} while (level < port->disc.max_level);
1456 
1457 	return res;
1458 }
1459 
1460 int sas_discover_root_expander(struct domain_device *dev)
1461 {
1462 	int res;
1463 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1464 
1465 	res = sas_rphy_add(dev->rphy);
1466 	if (res)
1467 		goto out_err;
1468 
1469 	ex->level = dev->port->disc.max_level; /* 0 */
1470 	res = sas_discover_expander(dev);
1471 	if (res)
1472 		goto out_err2;
1473 
1474 	sas_ex_bfs_disc(dev->port);
1475 
1476 	return res;
1477 
1478 out_err2:
1479 	sas_rphy_remove(dev->rphy);
1480 out_err:
1481 	return res;
1482 }
1483 
1484 /* ---------- Domain revalidation ---------- */
1485 
1486 static int sas_get_phy_discover(struct domain_device *dev,
1487 				int phy_id, struct smp_resp *disc_resp)
1488 {
1489 	int res;
1490 	u8 *disc_req;
1491 
1492 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1493 	if (!disc_req)
1494 		return -ENOMEM;
1495 
1496 	disc_req[1] = SMP_DISCOVER;
1497 	disc_req[9] = phy_id;
1498 
1499 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1500 			       disc_resp, DISCOVER_RESP_SIZE);
1501 	if (res)
1502 		goto out;
1503 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1504 		res = disc_resp->result;
1505 		goto out;
1506 	}
1507 out:
1508 	kfree(disc_req);
1509 	return res;
1510 }
1511 
1512 static int sas_get_phy_change_count(struct domain_device *dev,
1513 				    int phy_id, int *pcc)
1514 {
1515 	int res;
1516 	struct smp_resp *disc_resp;
1517 
1518 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1519 	if (!disc_resp)
1520 		return -ENOMEM;
1521 
1522 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1523 	if (!res)
1524 		*pcc = disc_resp->disc.change_count;
1525 
1526 	kfree(disc_resp);
1527 	return res;
1528 }
1529 
1530 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1531 					 int phy_id, u8 *attached_sas_addr)
1532 {
1533 	int res;
1534 	struct smp_resp *disc_resp;
1535 	struct discover_resp *dr;
1536 
1537 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1538 	if (!disc_resp)
1539 		return -ENOMEM;
1540 	dr = &disc_resp->disc;
1541 
1542 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1543 	if (!res) {
1544 		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1545 		if (dr->attached_dev_type == 0)
1546 			memset(attached_sas_addr, 0, 8);
1547 	}
1548 	kfree(disc_resp);
1549 	return res;
1550 }
1551 
1552 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1553 			      int from_phy)
1554 {
1555 	struct expander_device *ex = &dev->ex_dev;
1556 	int res = 0;
1557 	int i;
1558 
1559 	for (i = from_phy; i < ex->num_phys; i++) {
1560 		int phy_change_count = 0;
1561 
1562 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1563 		if (res)
1564 			goto out;
1565 		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1566 			ex->ex_phy[i].phy_change_count = phy_change_count;
1567 			*phy_id = i;
1568 			return 0;
1569 		}
1570 	}
1571 out:
1572 	return res;
1573 }
1574 
1575 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1576 {
1577 	int res;
1578 	u8  *rg_req;
1579 	struct smp_resp  *rg_resp;
1580 
1581 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1582 	if (!rg_req)
1583 		return -ENOMEM;
1584 
1585 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1586 	if (!rg_resp) {
1587 		kfree(rg_req);
1588 		return -ENOMEM;
1589 	}
1590 
1591 	rg_req[1] = SMP_REPORT_GENERAL;
1592 
1593 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1594 			       RG_RESP_SIZE);
1595 	if (res)
1596 		goto out;
1597 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1598 		res = rg_resp->result;
1599 		goto out;
1600 	}
1601 
1602 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1603 out:
1604 	kfree(rg_resp);
1605 	kfree(rg_req);
1606 	return res;
1607 }
1608 
1609 static int sas_find_bcast_dev(struct domain_device *dev,
1610 			      struct domain_device **src_dev)
1611 {
1612 	struct expander_device *ex = &dev->ex_dev;
1613 	int ex_change_count = -1;
1614 	int res;
1615 
1616 	res = sas_get_ex_change_count(dev, &ex_change_count);
1617 	if (res)
1618 		goto out;
1619 	if (ex_change_count != -1 &&
1620 	    ex_change_count != ex->ex_change_count) {
1621 		*src_dev = dev;
1622 		ex->ex_change_count = ex_change_count;
1623 	} else {
1624 		struct domain_device *ch;
1625 
1626 		list_for_each_entry(ch, &ex->children, siblings) {
1627 			if (ch->dev_type == EDGE_DEV ||
1628 			    ch->dev_type == FANOUT_DEV) {
1629 				res = sas_find_bcast_dev(ch, src_dev);
1630 				if (src_dev)
1631 					return res;
1632 			}
1633 		}
1634 	}
1635 out:
1636 	return res;
1637 }
1638 
1639 static void sas_unregister_ex_tree(struct domain_device *dev)
1640 {
1641 	struct expander_device *ex = &dev->ex_dev;
1642 	struct domain_device *child, *n;
1643 
1644 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1645 		if (child->dev_type == EDGE_DEV ||
1646 		    child->dev_type == FANOUT_DEV)
1647 			sas_unregister_ex_tree(child);
1648 		else
1649 			sas_unregister_dev(child);
1650 	}
1651 	sas_unregister_dev(dev);
1652 }
1653 
1654 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1655 					 int phy_id)
1656 {
1657 	struct expander_device *ex_dev = &parent->ex_dev;
1658 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1659 	struct domain_device *child, *n;
1660 
1661 	list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1662 		if (SAS_ADDR(child->sas_addr) ==
1663 		    SAS_ADDR(phy->attached_sas_addr)) {
1664 			if (child->dev_type == EDGE_DEV ||
1665 			    child->dev_type == FANOUT_DEV)
1666 				sas_unregister_ex_tree(child);
1667 			else
1668 				sas_unregister_dev(child);
1669 			break;
1670 		}
1671 	}
1672 	sas_disable_routing(parent, phy->attached_sas_addr);
1673 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1674 	sas_port_delete_phy(phy->port, phy->phy);
1675 	if (phy->port->num_phys == 0)
1676 		sas_port_delete(phy->port);
1677 	phy->port = NULL;
1678 }
1679 
1680 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1681 					  const int level)
1682 {
1683 	struct expander_device *ex_root = &root->ex_dev;
1684 	struct domain_device *child;
1685 	int res = 0;
1686 
1687 	list_for_each_entry(child, &ex_root->children, siblings) {
1688 		if (child->dev_type == EDGE_DEV ||
1689 		    child->dev_type == FANOUT_DEV) {
1690 			struct sas_expander_device *ex =
1691 				rphy_to_expander_device(child->rphy);
1692 
1693 			if (level > ex->level)
1694 				res = sas_discover_bfs_by_root_level(child,
1695 								     level);
1696 			else if (level == ex->level)
1697 				res = sas_ex_discover_devices(child, -1);
1698 		}
1699 	}
1700 	return res;
1701 }
1702 
1703 static int sas_discover_bfs_by_root(struct domain_device *dev)
1704 {
1705 	int res;
1706 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1707 	int level = ex->level+1;
1708 
1709 	res = sas_ex_discover_devices(dev, -1);
1710 	if (res)
1711 		goto out;
1712 	do {
1713 		res = sas_discover_bfs_by_root_level(dev, level);
1714 		mb();
1715 		level += 1;
1716 	} while (level <= dev->port->disc.max_level);
1717 out:
1718 	return res;
1719 }
1720 
1721 static int sas_discover_new(struct domain_device *dev, int phy_id)
1722 {
1723 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1724 	struct domain_device *child;
1725 	int res;
1726 
1727 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1728 		    SAS_ADDR(dev->sas_addr), phy_id);
1729 	res = sas_ex_phy_discover(dev, phy_id);
1730 	if (res)
1731 		goto out;
1732 	res = sas_ex_discover_devices(dev, phy_id);
1733 	if (res)
1734 		goto out;
1735 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1736 		if (SAS_ADDR(child->sas_addr) ==
1737 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1738 			if (child->dev_type == EDGE_DEV ||
1739 			    child->dev_type == FANOUT_DEV)
1740 				res = sas_discover_bfs_by_root(child);
1741 			break;
1742 		}
1743 	}
1744 out:
1745 	return res;
1746 }
1747 
1748 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1749 {
1750 	struct expander_device *ex = &dev->ex_dev;
1751 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1752 	u8 attached_sas_addr[8];
1753 	int res;
1754 
1755 	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1756 	switch (res) {
1757 	case SMP_RESP_NO_PHY:
1758 		phy->phy_state = PHY_NOT_PRESENT;
1759 		sas_unregister_devs_sas_addr(dev, phy_id);
1760 		goto out; break;
1761 	case SMP_RESP_PHY_VACANT:
1762 		phy->phy_state = PHY_VACANT;
1763 		sas_unregister_devs_sas_addr(dev, phy_id);
1764 		goto out; break;
1765 	case SMP_RESP_FUNC_ACC:
1766 		break;
1767 	}
1768 
1769 	if (SAS_ADDR(attached_sas_addr) == 0) {
1770 		phy->phy_state = PHY_EMPTY;
1771 		sas_unregister_devs_sas_addr(dev, phy_id);
1772 	} else if (SAS_ADDR(attached_sas_addr) ==
1773 		   SAS_ADDR(phy->attached_sas_addr)) {
1774 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1775 			    SAS_ADDR(dev->sas_addr), phy_id);
1776 		sas_ex_phy_discover(dev, phy_id);
1777 	} else
1778 		res = sas_discover_new(dev, phy_id);
1779 out:
1780 	return res;
1781 }
1782 
1783 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1784 {
1785 	struct expander_device *ex = &dev->ex_dev;
1786 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1787 	int res = 0;
1788 	int i;
1789 
1790 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1791 		    SAS_ADDR(dev->sas_addr), phy_id);
1792 
1793 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1794 		for (i = 0; i < ex->num_phys; i++) {
1795 			struct ex_phy *phy = &ex->ex_phy[i];
1796 
1797 			if (i == phy_id)
1798 				continue;
1799 			if (SAS_ADDR(phy->attached_sas_addr) ==
1800 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1801 				SAS_DPRINTK("phy%d part of wide port with "
1802 					    "phy%d\n", phy_id, i);
1803 				goto out;
1804 			}
1805 		}
1806 		res = sas_rediscover_dev(dev, phy_id);
1807 	} else
1808 		res = sas_discover_new(dev, phy_id);
1809 out:
1810 	return res;
1811 }
1812 
1813 /**
1814  * sas_revalidate_domain -- revalidate the domain
1815  * @port: port to the domain of interest
1816  *
1817  * NOTE: this process _must_ quit (return) as soon as any connection
1818  * errors are encountered.  Connection recovery is done elsewhere.
1819  * Discover process only interrogates devices in order to discover the
1820  * domain.
1821  */
1822 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1823 {
1824 	int res;
1825 	struct domain_device *dev = NULL;
1826 
1827 	res = sas_find_bcast_dev(port_dev, &dev);
1828 	if (res)
1829 		goto out;
1830 	if (dev) {
1831 		struct expander_device *ex = &dev->ex_dev;
1832 		int i = 0, phy_id;
1833 
1834 		do {
1835 			phy_id = -1;
1836 			res = sas_find_bcast_phy(dev, &phy_id, i);
1837 			if (phy_id == -1)
1838 				break;
1839 			res = sas_rediscover(dev, phy_id);
1840 			i = phy_id + 1;
1841 		} while (i < ex->num_phys);
1842 	}
1843 out:
1844 	return res;
1845 }
1846 
1847 #if 0
1848 /* ---------- SMP portal ---------- */
1849 
1850 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1851 				size_t size)
1852 {
1853 	struct domain_device *dev = to_dom_device(kobj);
1854 	struct expander_device *ex = &dev->ex_dev;
1855 
1856 	if (offs != 0)
1857 		return -EFBIG;
1858 	else if (size == 0)
1859 		return 0;
1860 
1861 	down_interruptible(&ex->smp_sema);
1862 	if (ex->smp_req)
1863 		kfree(ex->smp_req);
1864 	ex->smp_req = kzalloc(size, GFP_USER);
1865 	if (!ex->smp_req) {
1866 		up(&ex->smp_sema);
1867 		return -ENOMEM;
1868 	}
1869 	memcpy(ex->smp_req, buf, size);
1870 	ex->smp_req_size = size;
1871 	ex->smp_portal_pid = current->pid;
1872 	up(&ex->smp_sema);
1873 
1874 	return size;
1875 }
1876 
1877 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1878 			       size_t size)
1879 {
1880 	struct domain_device *dev = to_dom_device(kobj);
1881 	struct expander_device *ex = &dev->ex_dev;
1882 	u8 *smp_resp;
1883 	int res = -EINVAL;
1884 
1885 	/* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1886 	 *  it should be 0.
1887 	 */
1888 
1889 	down_interruptible(&ex->smp_sema);
1890 	if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1891 		goto out;
1892 
1893 	res = 0;
1894 	if (size == 0)
1895 		goto out;
1896 
1897 	res = -ENOMEM;
1898 	smp_resp = alloc_smp_resp(size);
1899 	if (!smp_resp)
1900 		goto out;
1901 	res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1902 			       smp_resp, size);
1903 	if (!res) {
1904 		memcpy(buf, smp_resp, size);
1905 		res = size;
1906 	}
1907 
1908 	kfree(smp_resp);
1909 out:
1910 	kfree(ex->smp_req);
1911 	ex->smp_req = NULL;
1912 	ex->smp_req_size = 0;
1913 	ex->smp_portal_pid = -1;
1914 	up(&ex->smp_sema);
1915 	return res;
1916 }
1917 #endif
1918