1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Serial Attached SCSI (SAS) Expander discovery and configuration 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 * 8 * This file is licensed under GPLv2. 9 */ 10 11 #include <linux/scatterlist.h> 12 #include <linux/blkdev.h> 13 #include <linux/slab.h> 14 #include <linux/unaligned.h> 15 16 #include "sas_internal.h" 17 18 #include <scsi/sas_ata.h> 19 #include <scsi/scsi_transport.h> 20 #include <scsi/scsi_transport_sas.h> 21 #include "scsi_sas_internal.h" 22 23 static int sas_discover_expander(struct domain_device *dev); 24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 25 static int sas_configure_phy(struct domain_device *dev, int phy_id, 26 u8 *sas_addr, int include); 27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 28 29 static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy) 30 { 31 sas_port_add_phy(port, ex_phy->phy); 32 ex_phy->port = port; 33 ex_phy->phy_state = PHY_DEVICE_DISCOVERED; 34 } 35 36 static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id) 37 { 38 struct expander_device *ex = &dev->ex_dev; 39 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 40 41 if (!ex->parent_port) { 42 ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id); 43 /* FIXME: error handling */ 44 BUG_ON(!ex->parent_port); 45 BUG_ON(sas_port_add(ex->parent_port)); 46 sas_port_mark_backlink(ex->parent_port); 47 } 48 sas_port_add_ex_phy(ex->parent_port, ex_phy); 49 } 50 51 /* ---------- SMP task management ---------- */ 52 53 /* Give it some long enough timeout. In seconds. */ 54 #define SMP_TIMEOUT 10 55 56 static int smp_execute_task_sg(struct domain_device *dev, 57 struct scatterlist *req, struct scatterlist *resp) 58 { 59 int res, retry; 60 struct sas_task *task = NULL; 61 struct sas_internal *i = 62 to_sas_internal(dev->port->ha->shost->transportt); 63 struct sas_ha_struct *ha = dev->port->ha; 64 65 pm_runtime_get_sync(ha->dev); 66 mutex_lock(&dev->ex_dev.cmd_mutex); 67 for (retry = 0; retry < 3; retry++) { 68 if (test_bit(SAS_DEV_GONE, &dev->state)) { 69 res = -ECOMM; 70 break; 71 } 72 73 task = sas_alloc_slow_task(GFP_KERNEL); 74 if (!task) { 75 res = -ENOMEM; 76 break; 77 } 78 task->dev = dev; 79 task->task_proto = dev->tproto; 80 task->smp_task.smp_req = *req; 81 task->smp_task.smp_resp = *resp; 82 83 task->task_done = sas_task_internal_done; 84 85 task->slow_task->timer.function = sas_task_internal_timedout; 86 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 87 add_timer(&task->slow_task->timer); 88 89 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 90 91 if (res) { 92 del_timer_sync(&task->slow_task->timer); 93 pr_notice("executing SMP task failed:%d\n", res); 94 break; 95 } 96 97 wait_for_completion(&task->slow_task->completion); 98 res = -ECOMM; 99 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 100 pr_notice("smp task timed out or aborted\n"); 101 i->dft->lldd_abort_task(task); 102 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 103 pr_notice("SMP task aborted and not done\n"); 104 break; 105 } 106 } 107 if (task->task_status.resp == SAS_TASK_COMPLETE && 108 task->task_status.stat == SAS_SAM_STAT_GOOD) { 109 res = 0; 110 break; 111 } 112 if (task->task_status.resp == SAS_TASK_COMPLETE && 113 task->task_status.stat == SAS_DATA_UNDERRUN) { 114 /* no error, but return the number of bytes of 115 * underrun */ 116 res = task->task_status.residual; 117 break; 118 } 119 if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } 124 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 125 task->task_status.stat == SAS_DEVICE_UNKNOWN) 126 break; 127 else { 128 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 129 __func__, 130 SAS_ADDR(dev->sas_addr), 131 task->task_status.resp, 132 task->task_status.stat); 133 sas_free_task(task); 134 task = NULL; 135 } 136 } 137 mutex_unlock(&dev->ex_dev.cmd_mutex); 138 pm_runtime_put_sync(ha->dev); 139 140 BUG_ON(retry == 3 && task != NULL); 141 sas_free_task(task); 142 return res; 143 } 144 145 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 146 void *resp, int resp_size) 147 { 148 struct scatterlist req_sg; 149 struct scatterlist resp_sg; 150 151 sg_init_one(&req_sg, req, req_size); 152 sg_init_one(&resp_sg, resp, resp_size); 153 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 154 } 155 156 /* ---------- Allocations ---------- */ 157 158 static inline void *alloc_smp_req(int size) 159 { 160 u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL); 161 if (p) 162 p[0] = SMP_REQUEST; 163 return p; 164 } 165 166 static inline void *alloc_smp_resp(int size) 167 { 168 return kzalloc(size, GFP_KERNEL); 169 } 170 171 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 172 { 173 switch (phy->routing_attr) { 174 case TABLE_ROUTING: 175 if (dev->ex_dev.t2t_supp) 176 return 'U'; 177 else 178 return 'T'; 179 case DIRECT_ROUTING: 180 return 'D'; 181 case SUBTRACTIVE_ROUTING: 182 return 'S'; 183 default: 184 return '?'; 185 } 186 } 187 188 static enum sas_device_type to_dev_type(struct discover_resp *dr) 189 { 190 /* This is detecting a failure to transmit initial dev to host 191 * FIS as described in section J.5 of sas-2 r16 192 */ 193 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 194 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 195 return SAS_SATA_PENDING; 196 else 197 return dr->attached_dev_type; 198 } 199 200 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 201 struct smp_disc_resp *disc_resp) 202 { 203 enum sas_device_type dev_type; 204 enum sas_linkrate linkrate; 205 u8 sas_addr[SAS_ADDR_SIZE]; 206 struct discover_resp *dr = &disc_resp->disc; 207 struct sas_ha_struct *ha = dev->port->ha; 208 struct expander_device *ex = &dev->ex_dev; 209 struct ex_phy *phy = &ex->ex_phy[phy_id]; 210 struct sas_rphy *rphy = dev->rphy; 211 bool new_phy = !phy->phy; 212 char *type; 213 214 if (new_phy) { 215 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 216 return; 217 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 218 219 /* FIXME: error_handling */ 220 BUG_ON(!phy->phy); 221 } 222 223 switch (disc_resp->result) { 224 case SMP_RESP_PHY_VACANT: 225 phy->phy_state = PHY_VACANT; 226 break; 227 default: 228 phy->phy_state = PHY_NOT_PRESENT; 229 break; 230 case SMP_RESP_FUNC_ACC: 231 phy->phy_state = PHY_EMPTY; /* do not know yet */ 232 break; 233 } 234 235 /* check if anything important changed to squelch debug */ 236 dev_type = phy->attached_dev_type; 237 linkrate = phy->linkrate; 238 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 239 240 /* Handle vacant phy - rest of dr data is not valid so skip it */ 241 if (phy->phy_state == PHY_VACANT) { 242 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 243 phy->attached_dev_type = SAS_PHY_UNUSED; 244 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 245 phy->phy_id = phy_id; 246 goto skip; 247 } else 248 goto out; 249 } 250 251 phy->attached_dev_type = to_dev_type(dr); 252 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 253 goto out; 254 phy->phy_id = phy_id; 255 phy->linkrate = dr->linkrate; 256 phy->attached_sata_host = dr->attached_sata_host; 257 phy->attached_sata_dev = dr->attached_sata_dev; 258 phy->attached_sata_ps = dr->attached_sata_ps; 259 phy->attached_iproto = dr->iproto << 1; 260 phy->attached_tproto = dr->tproto << 1; 261 /* help some expanders that fail to zero sas_address in the 'no 262 * device' case 263 */ 264 if (phy->attached_dev_type == SAS_PHY_UNUSED) 265 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 266 else 267 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 268 phy->attached_phy_id = dr->attached_phy_id; 269 phy->phy_change_count = dr->change_count; 270 phy->routing_attr = dr->routing_attr; 271 phy->virtual = dr->virtual; 272 phy->last_da_index = -1; 273 274 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 275 phy->phy->identify.device_type = dr->attached_dev_type; 276 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 277 phy->phy->identify.target_port_protocols = phy->attached_tproto; 278 if (!phy->attached_tproto && dr->attached_sata_dev) 279 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 280 phy->phy->identify.phy_identifier = phy_id; 281 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 282 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 283 phy->phy->minimum_linkrate = dr->pmin_linkrate; 284 phy->phy->maximum_linkrate = dr->pmax_linkrate; 285 phy->phy->negotiated_linkrate = phy->linkrate; 286 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 287 288 skip: 289 if (new_phy) 290 if (sas_phy_add(phy->phy)) { 291 sas_phy_free(phy->phy); 292 return; 293 } 294 295 out: 296 switch (phy->attached_dev_type) { 297 case SAS_SATA_PENDING: 298 type = "stp pending"; 299 break; 300 case SAS_PHY_UNUSED: 301 type = "no device"; 302 break; 303 case SAS_END_DEVICE: 304 if (phy->attached_iproto) { 305 if (phy->attached_tproto) 306 type = "host+target"; 307 else 308 type = "host"; 309 } else { 310 if (dr->attached_sata_dev) 311 type = "stp"; 312 else 313 type = "ssp"; 314 } 315 break; 316 case SAS_EDGE_EXPANDER_DEVICE: 317 case SAS_FANOUT_EXPANDER_DEVICE: 318 type = "smp"; 319 break; 320 default: 321 type = "unknown"; 322 } 323 324 /* this routine is polled by libata error recovery so filter 325 * unimportant messages 326 */ 327 if (new_phy || phy->attached_dev_type != dev_type || 328 phy->linkrate != linkrate || 329 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 330 /* pass */; 331 else 332 return; 333 334 /* if the attached device type changed and ata_eh is active, 335 * make sure we run revalidation when eh completes (see: 336 * sas_enable_revalidation) 337 */ 338 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 339 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 340 341 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 342 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 343 SAS_ADDR(dev->sas_addr), phy->phy_id, 344 sas_route_char(dev, phy), phy->linkrate, 345 SAS_ADDR(phy->attached_sas_addr), type); 346 } 347 348 /* check if we have an existing attached ata device on this expander phy */ 349 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 350 { 351 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 352 struct domain_device *dev; 353 struct sas_rphy *rphy; 354 355 if (!ex_phy->port) 356 return NULL; 357 358 rphy = ex_phy->port->rphy; 359 if (!rphy) 360 return NULL; 361 362 dev = sas_find_dev_by_rphy(rphy); 363 364 if (dev && dev_is_sata(dev)) 365 return dev; 366 367 return NULL; 368 } 369 370 #define DISCOVER_REQ_SIZE 16 371 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp) 372 373 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 374 struct smp_disc_resp *disc_resp, 375 int single) 376 { 377 struct discover_resp *dr = &disc_resp->disc; 378 int res; 379 380 disc_req[9] = single; 381 382 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 383 disc_resp, DISCOVER_RESP_SIZE); 384 if (res) 385 return res; 386 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 387 pr_notice("Found loopback topology, just ignore it!\n"); 388 return 0; 389 } 390 sas_set_ex_phy(dev, single, disc_resp); 391 return 0; 392 } 393 394 int sas_ex_phy_discover(struct domain_device *dev, int single) 395 { 396 struct expander_device *ex = &dev->ex_dev; 397 int res = 0; 398 u8 *disc_req; 399 struct smp_disc_resp *disc_resp; 400 401 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 402 if (!disc_req) 403 return -ENOMEM; 404 405 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 406 if (!disc_resp) { 407 kfree(disc_req); 408 return -ENOMEM; 409 } 410 411 disc_req[1] = SMP_DISCOVER; 412 413 if (0 <= single && single < ex->num_phys) { 414 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 415 } else { 416 int i; 417 418 for (i = 0; i < ex->num_phys; i++) { 419 res = sas_ex_phy_discover_helper(dev, disc_req, 420 disc_resp, i); 421 if (res) 422 goto out_err; 423 } 424 } 425 out_err: 426 kfree(disc_resp); 427 kfree(disc_req); 428 return res; 429 } 430 431 static int sas_expander_discover(struct domain_device *dev) 432 { 433 struct expander_device *ex = &dev->ex_dev; 434 int res; 435 436 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 437 if (!ex->ex_phy) 438 return -ENOMEM; 439 440 res = sas_ex_phy_discover(dev, -1); 441 if (res) 442 goto out_err; 443 444 return 0; 445 out_err: 446 kfree(ex->ex_phy); 447 ex->ex_phy = NULL; 448 return res; 449 } 450 451 #define MAX_EXPANDER_PHYS 128 452 453 #define RG_REQ_SIZE 8 454 #define RG_RESP_SIZE sizeof(struct smp_rg_resp) 455 456 static int sas_ex_general(struct domain_device *dev) 457 { 458 u8 *rg_req; 459 struct smp_rg_resp *rg_resp; 460 struct report_general_resp *rg; 461 int res; 462 int i; 463 464 rg_req = alloc_smp_req(RG_REQ_SIZE); 465 if (!rg_req) 466 return -ENOMEM; 467 468 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 469 if (!rg_resp) { 470 kfree(rg_req); 471 return -ENOMEM; 472 } 473 474 rg_req[1] = SMP_REPORT_GENERAL; 475 476 for (i = 0; i < 5; i++) { 477 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 478 RG_RESP_SIZE); 479 480 if (res) { 481 pr_notice("RG to ex %016llx failed:0x%x\n", 482 SAS_ADDR(dev->sas_addr), res); 483 goto out; 484 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 485 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 486 SAS_ADDR(dev->sas_addr), rg_resp->result); 487 res = rg_resp->result; 488 goto out; 489 } 490 491 rg = &rg_resp->rg; 492 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 493 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 494 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 495 dev->ex_dev.t2t_supp = rg->t2t_supp; 496 dev->ex_dev.conf_route_table = rg->conf_route_table; 497 dev->ex_dev.configuring = rg->configuring; 498 memcpy(dev->ex_dev.enclosure_logical_id, 499 rg->enclosure_logical_id, 8); 500 501 if (dev->ex_dev.configuring) { 502 pr_debug("RG: ex %016llx self-configuring...\n", 503 SAS_ADDR(dev->sas_addr)); 504 schedule_timeout_interruptible(5*HZ); 505 } else 506 break; 507 } 508 out: 509 kfree(rg_req); 510 kfree(rg_resp); 511 return res; 512 } 513 514 static void ex_assign_manuf_info(struct domain_device *dev, void 515 *_mi_resp) 516 { 517 u8 *mi_resp = _mi_resp; 518 struct sas_rphy *rphy = dev->rphy; 519 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 520 521 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 522 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 523 memcpy(edev->product_rev, mi_resp + 36, 524 SAS_EXPANDER_PRODUCT_REV_LEN); 525 526 if (mi_resp[8] & 1) { 527 memcpy(edev->component_vendor_id, mi_resp + 40, 528 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 529 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 530 edev->component_revision_id = mi_resp[50]; 531 } 532 } 533 534 #define MI_REQ_SIZE 8 535 #define MI_RESP_SIZE 64 536 537 static int sas_ex_manuf_info(struct domain_device *dev) 538 { 539 u8 *mi_req; 540 u8 *mi_resp; 541 int res; 542 543 mi_req = alloc_smp_req(MI_REQ_SIZE); 544 if (!mi_req) 545 return -ENOMEM; 546 547 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 548 if (!mi_resp) { 549 kfree(mi_req); 550 return -ENOMEM; 551 } 552 553 mi_req[1] = SMP_REPORT_MANUF_INFO; 554 555 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE); 556 if (res) { 557 pr_notice("MI: ex %016llx failed:0x%x\n", 558 SAS_ADDR(dev->sas_addr), res); 559 goto out; 560 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 561 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 562 SAS_ADDR(dev->sas_addr), mi_resp[2]); 563 goto out; 564 } 565 566 ex_assign_manuf_info(dev, mi_resp); 567 out: 568 kfree(mi_req); 569 kfree(mi_resp); 570 return res; 571 } 572 573 #define PC_REQ_SIZE 44 574 #define PC_RESP_SIZE 8 575 576 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 577 enum phy_func phy_func, 578 struct sas_phy_linkrates *rates) 579 { 580 u8 *pc_req; 581 u8 *pc_resp; 582 int res; 583 584 pc_req = alloc_smp_req(PC_REQ_SIZE); 585 if (!pc_req) 586 return -ENOMEM; 587 588 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 589 if (!pc_resp) { 590 kfree(pc_req); 591 return -ENOMEM; 592 } 593 594 pc_req[1] = SMP_PHY_CONTROL; 595 pc_req[9] = phy_id; 596 pc_req[10] = phy_func; 597 if (rates) { 598 pc_req[32] = rates->minimum_linkrate << 4; 599 pc_req[33] = rates->maximum_linkrate << 4; 600 } 601 602 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE); 603 if (res) { 604 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 605 SAS_ADDR(dev->sas_addr), phy_id, res); 606 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 607 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 608 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 609 res = pc_resp[2]; 610 } 611 kfree(pc_resp); 612 kfree(pc_req); 613 return res; 614 } 615 616 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 617 { 618 struct expander_device *ex = &dev->ex_dev; 619 struct ex_phy *phy = &ex->ex_phy[phy_id]; 620 621 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 622 phy->linkrate = SAS_PHY_DISABLED; 623 } 624 625 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 626 { 627 struct expander_device *ex = &dev->ex_dev; 628 int i; 629 630 for (i = 0; i < ex->num_phys; i++) { 631 struct ex_phy *phy = &ex->ex_phy[i]; 632 633 if (phy->phy_state == PHY_VACANT || 634 phy->phy_state == PHY_NOT_PRESENT) 635 continue; 636 637 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 638 sas_ex_disable_phy(dev, i); 639 } 640 } 641 642 static int sas_dev_present_in_domain(struct asd_sas_port *port, 643 u8 *sas_addr) 644 { 645 struct domain_device *dev; 646 647 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 648 return 1; 649 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 650 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 651 return 1; 652 } 653 return 0; 654 } 655 656 #define RPEL_REQ_SIZE 16 657 #define RPEL_RESP_SIZE 32 658 int sas_smp_get_phy_events(struct sas_phy *phy) 659 { 660 int res; 661 u8 *req; 662 u8 *resp; 663 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 664 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 665 666 req = alloc_smp_req(RPEL_REQ_SIZE); 667 if (!req) 668 return -ENOMEM; 669 670 resp = alloc_smp_resp(RPEL_RESP_SIZE); 671 if (!resp) { 672 kfree(req); 673 return -ENOMEM; 674 } 675 676 req[1] = SMP_REPORT_PHY_ERR_LOG; 677 req[9] = phy->number; 678 679 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 680 resp, RPEL_RESP_SIZE); 681 682 if (res) 683 goto out; 684 685 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 686 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 687 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 688 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 689 690 out: 691 kfree(req); 692 kfree(resp); 693 return res; 694 695 } 696 697 #ifdef CONFIG_SCSI_SAS_ATA 698 699 #define RPS_REQ_SIZE 16 700 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp) 701 702 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 703 struct smp_rps_resp *rps_resp) 704 { 705 int res; 706 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 707 u8 *resp = (u8 *)rps_resp; 708 709 if (!rps_req) 710 return -ENOMEM; 711 712 rps_req[1] = SMP_REPORT_PHY_SATA; 713 rps_req[9] = phy_id; 714 715 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 716 rps_resp, RPS_RESP_SIZE); 717 718 /* 0x34 is the FIS type for the D2H fis. There's a potential 719 * standards cockup here. sas-2 explicitly specifies the FIS 720 * should be encoded so that FIS type is in resp[24]. 721 * However, some expanders endian reverse this. Undo the 722 * reversal here */ 723 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 724 int i; 725 726 for (i = 0; i < 5; i++) { 727 int j = 24 + (i*4); 728 u8 a, b; 729 a = resp[j + 0]; 730 b = resp[j + 1]; 731 resp[j + 0] = resp[j + 3]; 732 resp[j + 1] = resp[j + 2]; 733 resp[j + 2] = b; 734 resp[j + 3] = a; 735 } 736 } 737 738 kfree(rps_req); 739 return res; 740 } 741 #endif 742 743 static void sas_ex_get_linkrate(struct domain_device *parent, 744 struct domain_device *child, 745 struct ex_phy *parent_phy) 746 { 747 struct expander_device *parent_ex = &parent->ex_dev; 748 struct sas_port *port; 749 int i; 750 751 child->pathways = 0; 752 753 port = parent_phy->port; 754 755 for (i = 0; i < parent_ex->num_phys; i++) { 756 struct ex_phy *phy = &parent_ex->ex_phy[i]; 757 758 if (phy->phy_state == PHY_VACANT || 759 phy->phy_state == PHY_NOT_PRESENT) 760 continue; 761 762 if (sas_phy_match_dev_addr(child, phy)) { 763 child->min_linkrate = min(parent->min_linkrate, 764 phy->linkrate); 765 child->max_linkrate = max(parent->max_linkrate, 766 phy->linkrate); 767 child->pathways++; 768 sas_port_add_phy(port, phy->phy); 769 } 770 } 771 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 772 child->pathways = min(child->pathways, parent->pathways); 773 } 774 775 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy, 776 struct domain_device *child, int phy_id) 777 { 778 struct sas_rphy *rphy; 779 int res; 780 781 child->dev_type = SAS_END_DEVICE; 782 rphy = sas_end_device_alloc(phy->port); 783 if (!rphy) 784 return -ENOMEM; 785 786 child->tproto = phy->attached_tproto; 787 sas_init_dev(child); 788 789 child->rphy = rphy; 790 get_device(&rphy->dev); 791 rphy->identify.phy_identifier = phy_id; 792 sas_fill_in_rphy(child, rphy); 793 794 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 795 796 res = sas_notify_lldd_dev_found(child); 797 if (res) { 798 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n", 799 SAS_ADDR(child->sas_addr), 800 SAS_ADDR(parent->sas_addr), phy_id, res); 801 sas_rphy_free(child->rphy); 802 list_del(&child->disco_list_node); 803 return res; 804 } 805 806 return 0; 807 } 808 809 static struct domain_device *sas_ex_discover_end_dev( 810 struct domain_device *parent, int phy_id) 811 { 812 struct expander_device *parent_ex = &parent->ex_dev; 813 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 814 struct domain_device *child = NULL; 815 int res; 816 817 if (phy->attached_sata_host || phy->attached_sata_ps) 818 return NULL; 819 820 child = sas_alloc_device(); 821 if (!child) 822 return NULL; 823 824 kref_get(&parent->kref); 825 child->parent = parent; 826 child->port = parent->port; 827 child->iproto = phy->attached_iproto; 828 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 829 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 830 if (!phy->port) { 831 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 832 if (unlikely(!phy->port)) 833 goto out_err; 834 if (unlikely(sas_port_add(phy->port) != 0)) { 835 sas_port_free(phy->port); 836 goto out_err; 837 } 838 } 839 sas_ex_get_linkrate(parent, child, phy); 840 sas_device_set_phy(child, phy->port); 841 842 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 843 res = sas_ata_add_dev(parent, phy, child, phy_id); 844 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 845 res = sas_ex_add_dev(parent, phy, child, phy_id); 846 } else { 847 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 848 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 849 phy_id); 850 res = -ENODEV; 851 } 852 853 if (res) 854 goto out_free; 855 856 list_add_tail(&child->siblings, &parent_ex->children); 857 return child; 858 859 out_free: 860 sas_port_delete(phy->port); 861 out_err: 862 phy->port = NULL; 863 sas_put_device(child); 864 return NULL; 865 } 866 867 /* See if this phy is part of a wide port */ 868 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 869 { 870 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 871 int i; 872 873 for (i = 0; i < parent->ex_dev.num_phys; i++) { 874 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 875 876 if (ephy == phy) 877 continue; 878 879 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 880 SAS_ADDR_SIZE) && ephy->port) { 881 sas_port_add_ex_phy(ephy->port, phy); 882 return true; 883 } 884 } 885 886 return false; 887 } 888 889 static struct domain_device *sas_ex_discover_expander( 890 struct domain_device *parent, int phy_id) 891 { 892 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 893 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 894 struct domain_device *child = NULL; 895 struct sas_rphy *rphy; 896 struct sas_expander_device *edev; 897 struct asd_sas_port *port; 898 int res; 899 900 if (phy->routing_attr == DIRECT_ROUTING) { 901 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 902 SAS_ADDR(parent->sas_addr), phy_id, 903 SAS_ADDR(phy->attached_sas_addr), 904 phy->attached_phy_id); 905 return NULL; 906 } 907 child = sas_alloc_device(); 908 if (!child) 909 return NULL; 910 911 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 912 /* FIXME: better error handling */ 913 BUG_ON(sas_port_add(phy->port) != 0); 914 915 916 switch (phy->attached_dev_type) { 917 case SAS_EDGE_EXPANDER_DEVICE: 918 rphy = sas_expander_alloc(phy->port, 919 SAS_EDGE_EXPANDER_DEVICE); 920 break; 921 case SAS_FANOUT_EXPANDER_DEVICE: 922 rphy = sas_expander_alloc(phy->port, 923 SAS_FANOUT_EXPANDER_DEVICE); 924 break; 925 default: 926 rphy = NULL; /* shut gcc up */ 927 BUG(); 928 } 929 port = parent->port; 930 child->rphy = rphy; 931 get_device(&rphy->dev); 932 edev = rphy_to_expander_device(rphy); 933 child->dev_type = phy->attached_dev_type; 934 kref_get(&parent->kref); 935 child->parent = parent; 936 child->port = port; 937 child->iproto = phy->attached_iproto; 938 child->tproto = phy->attached_tproto; 939 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 940 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 941 sas_ex_get_linkrate(parent, child, phy); 942 edev->level = parent_ex->level + 1; 943 parent->port->disc.max_level = max(parent->port->disc.max_level, 944 edev->level); 945 sas_init_dev(child); 946 sas_fill_in_rphy(child, rphy); 947 sas_rphy_add(rphy); 948 949 spin_lock_irq(&parent->port->dev_list_lock); 950 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 951 spin_unlock_irq(&parent->port->dev_list_lock); 952 953 res = sas_discover_expander(child); 954 if (res) { 955 sas_rphy_delete(rphy); 956 spin_lock_irq(&parent->port->dev_list_lock); 957 list_del(&child->dev_list_node); 958 spin_unlock_irq(&parent->port->dev_list_lock); 959 sas_put_device(child); 960 sas_port_delete(phy->port); 961 phy->port = NULL; 962 return NULL; 963 } 964 list_add_tail(&child->siblings, &parent->ex_dev.children); 965 return child; 966 } 967 968 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 969 { 970 struct expander_device *ex = &dev->ex_dev; 971 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 972 struct domain_device *child = NULL; 973 int res = 0; 974 975 /* Phy state */ 976 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 977 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 978 res = sas_ex_phy_discover(dev, phy_id); 979 if (res) 980 return res; 981 } 982 983 /* Parent and domain coherency */ 984 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) { 985 sas_ex_add_parent_port(dev, phy_id); 986 return 0; 987 } 988 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) { 989 sas_ex_add_parent_port(dev, phy_id); 990 if (ex_phy->routing_attr == TABLE_ROUTING) 991 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 992 return 0; 993 } 994 995 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 996 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 997 998 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 999 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1000 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1001 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1002 } 1003 return 0; 1004 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1005 return 0; 1006 1007 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1008 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1009 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1010 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1011 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 1012 ex_phy->attached_dev_type, 1013 SAS_ADDR(dev->sas_addr), 1014 phy_id); 1015 return 0; 1016 } 1017 1018 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1019 if (res) { 1020 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1021 SAS_ADDR(ex_phy->attached_sas_addr), res); 1022 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1023 return res; 1024 } 1025 1026 if (sas_ex_join_wide_port(dev, phy_id)) { 1027 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1028 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1029 return res; 1030 } 1031 1032 switch (ex_phy->attached_dev_type) { 1033 case SAS_END_DEVICE: 1034 case SAS_SATA_PENDING: 1035 child = sas_ex_discover_end_dev(dev, phy_id); 1036 break; 1037 case SAS_FANOUT_EXPANDER_DEVICE: 1038 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1039 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1040 SAS_ADDR(ex_phy->attached_sas_addr), 1041 ex_phy->attached_phy_id, 1042 SAS_ADDR(dev->sas_addr), 1043 phy_id); 1044 sas_ex_disable_phy(dev, phy_id); 1045 return res; 1046 } else 1047 memcpy(dev->port->disc.fanout_sas_addr, 1048 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1049 fallthrough; 1050 case SAS_EDGE_EXPANDER_DEVICE: 1051 child = sas_ex_discover_expander(dev, phy_id); 1052 break; 1053 default: 1054 break; 1055 } 1056 1057 if (!child) 1058 pr_notice("ex %016llx phy%02d failed to discover\n", 1059 SAS_ADDR(dev->sas_addr), phy_id); 1060 return res; 1061 } 1062 1063 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1064 { 1065 struct expander_device *ex = &dev->ex_dev; 1066 int i; 1067 1068 for (i = 0; i < ex->num_phys; i++) { 1069 struct ex_phy *phy = &ex->ex_phy[i]; 1070 1071 if (phy->phy_state == PHY_VACANT || 1072 phy->phy_state == PHY_NOT_PRESENT) 1073 continue; 1074 1075 if (dev_is_expander(phy->attached_dev_type) && 1076 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1077 1078 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1079 1080 return 1; 1081 } 1082 } 1083 return 0; 1084 } 1085 1086 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1087 { 1088 struct expander_device *ex = &dev->ex_dev; 1089 struct domain_device *child; 1090 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1091 1092 list_for_each_entry(child, &ex->children, siblings) { 1093 if (!dev_is_expander(child->dev_type)) 1094 continue; 1095 if (sub_addr[0] == 0) { 1096 sas_find_sub_addr(child, sub_addr); 1097 continue; 1098 } else { 1099 u8 s2[SAS_ADDR_SIZE]; 1100 1101 if (sas_find_sub_addr(child, s2) && 1102 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1103 1104 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1105 SAS_ADDR(dev->sas_addr), 1106 SAS_ADDR(child->sas_addr), 1107 SAS_ADDR(s2), 1108 SAS_ADDR(sub_addr)); 1109 1110 sas_ex_disable_port(child, s2); 1111 } 1112 } 1113 } 1114 return 0; 1115 } 1116 /** 1117 * sas_ex_discover_devices - discover devices attached to this expander 1118 * @dev: pointer to the expander domain device 1119 * @single: if you want to do a single phy, else set to -1; 1120 * 1121 * Configure this expander for use with its devices and register the 1122 * devices of this expander. 1123 */ 1124 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1125 { 1126 struct expander_device *ex = &dev->ex_dev; 1127 int i = 0, end = ex->num_phys; 1128 int res = 0; 1129 1130 if (0 <= single && single < end) { 1131 i = single; 1132 end = i+1; 1133 } 1134 1135 for ( ; i < end; i++) { 1136 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1137 1138 if (ex_phy->phy_state == PHY_VACANT || 1139 ex_phy->phy_state == PHY_NOT_PRESENT || 1140 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1141 continue; 1142 1143 switch (ex_phy->linkrate) { 1144 case SAS_PHY_DISABLED: 1145 case SAS_PHY_RESET_PROBLEM: 1146 case SAS_SATA_PORT_SELECTOR: 1147 continue; 1148 default: 1149 res = sas_ex_discover_dev(dev, i); 1150 if (res) 1151 break; 1152 continue; 1153 } 1154 } 1155 1156 if (!res) 1157 sas_check_level_subtractive_boundary(dev); 1158 1159 return res; 1160 } 1161 1162 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1163 { 1164 struct expander_device *ex = &dev->ex_dev; 1165 int i; 1166 u8 *sub_sas_addr = NULL; 1167 1168 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1169 return 0; 1170 1171 for (i = 0; i < ex->num_phys; i++) { 1172 struct ex_phy *phy = &ex->ex_phy[i]; 1173 1174 if (phy->phy_state == PHY_VACANT || 1175 phy->phy_state == PHY_NOT_PRESENT) 1176 continue; 1177 1178 if (dev_is_expander(phy->attached_dev_type) && 1179 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1180 1181 if (!sub_sas_addr) 1182 sub_sas_addr = &phy->attached_sas_addr[0]; 1183 else if (SAS_ADDR(sub_sas_addr) != 1184 SAS_ADDR(phy->attached_sas_addr)) { 1185 1186 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1187 SAS_ADDR(dev->sas_addr), i, 1188 SAS_ADDR(phy->attached_sas_addr), 1189 SAS_ADDR(sub_sas_addr)); 1190 sas_ex_disable_phy(dev, i); 1191 } 1192 } 1193 } 1194 return 0; 1195 } 1196 1197 static void sas_print_parent_topology_bug(struct domain_device *child, 1198 struct ex_phy *parent_phy, 1199 struct ex_phy *child_phy) 1200 { 1201 static const char *ex_type[] = { 1202 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1203 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1204 }; 1205 struct domain_device *parent = child->parent; 1206 1207 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1208 ex_type[parent->dev_type], 1209 SAS_ADDR(parent->sas_addr), 1210 parent_phy->phy_id, 1211 1212 ex_type[child->dev_type], 1213 SAS_ADDR(child->sas_addr), 1214 child_phy->phy_id, 1215 1216 sas_route_char(parent, parent_phy), 1217 sas_route_char(child, child_phy)); 1218 } 1219 1220 static bool sas_eeds_valid(struct domain_device *parent, 1221 struct domain_device *child) 1222 { 1223 struct sas_discovery *disc = &parent->port->disc; 1224 1225 return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) || 1226 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) && 1227 (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) || 1228 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr)); 1229 } 1230 1231 static int sas_check_eeds(struct domain_device *child, 1232 struct ex_phy *parent_phy, 1233 struct ex_phy *child_phy) 1234 { 1235 int res = 0; 1236 struct domain_device *parent = child->parent; 1237 struct sas_discovery *disc = &parent->port->disc; 1238 1239 if (SAS_ADDR(disc->fanout_sas_addr) != 0) { 1240 res = -ENODEV; 1241 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1242 SAS_ADDR(parent->sas_addr), 1243 parent_phy->phy_id, 1244 SAS_ADDR(child->sas_addr), 1245 child_phy->phy_id, 1246 SAS_ADDR(disc->fanout_sas_addr)); 1247 } else if (SAS_ADDR(disc->eeds_a) == 0) { 1248 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE); 1249 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE); 1250 } else if (!sas_eeds_valid(parent, child)) { 1251 res = -ENODEV; 1252 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1253 SAS_ADDR(parent->sas_addr), 1254 parent_phy->phy_id, 1255 SAS_ADDR(child->sas_addr), 1256 child_phy->phy_id); 1257 } 1258 1259 return res; 1260 } 1261 1262 static int sas_check_edge_expander_topo(struct domain_device *child, 1263 struct ex_phy *parent_phy) 1264 { 1265 struct expander_device *child_ex = &child->ex_dev; 1266 struct expander_device *parent_ex = &child->parent->ex_dev; 1267 struct ex_phy *child_phy; 1268 1269 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1270 1271 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1272 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1273 child_phy->routing_attr != TABLE_ROUTING) 1274 goto error; 1275 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1276 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) 1277 return sas_check_eeds(child, parent_phy, child_phy); 1278 else if (child_phy->routing_attr != TABLE_ROUTING) 1279 goto error; 1280 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1281 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING && 1282 (child_phy->routing_attr != TABLE_ROUTING || 1283 !child_ex->t2t_supp || !parent_ex->t2t_supp)) 1284 goto error; 1285 } 1286 1287 return 0; 1288 error: 1289 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1290 return -ENODEV; 1291 } 1292 1293 static int sas_check_fanout_expander_topo(struct domain_device *child, 1294 struct ex_phy *parent_phy) 1295 { 1296 struct expander_device *child_ex = &child->ex_dev; 1297 struct ex_phy *child_phy; 1298 1299 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1300 1301 if (parent_phy->routing_attr == TABLE_ROUTING && 1302 child_phy->routing_attr == SUBTRACTIVE_ROUTING) 1303 return 0; 1304 1305 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1306 1307 return -ENODEV; 1308 } 1309 1310 static int sas_check_parent_topology(struct domain_device *child) 1311 { 1312 struct expander_device *parent_ex; 1313 int i; 1314 int res = 0; 1315 1316 if (!child->parent) 1317 return 0; 1318 1319 if (!dev_is_expander(child->parent->dev_type)) 1320 return 0; 1321 1322 parent_ex = &child->parent->ex_dev; 1323 1324 for (i = 0; i < parent_ex->num_phys; i++) { 1325 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1326 1327 if (parent_phy->phy_state == PHY_VACANT || 1328 parent_phy->phy_state == PHY_NOT_PRESENT) 1329 continue; 1330 1331 if (!sas_phy_match_dev_addr(child, parent_phy)) 1332 continue; 1333 1334 switch (child->parent->dev_type) { 1335 case SAS_EDGE_EXPANDER_DEVICE: 1336 if (sas_check_edge_expander_topo(child, parent_phy)) 1337 res = -ENODEV; 1338 break; 1339 case SAS_FANOUT_EXPANDER_DEVICE: 1340 if (sas_check_fanout_expander_topo(child, parent_phy)) 1341 res = -ENODEV; 1342 break; 1343 default: 1344 break; 1345 } 1346 } 1347 1348 return res; 1349 } 1350 1351 #define RRI_REQ_SIZE 16 1352 #define RRI_RESP_SIZE 44 1353 1354 static int sas_configure_present(struct domain_device *dev, int phy_id, 1355 u8 *sas_addr, int *index, int *present) 1356 { 1357 int i, res = 0; 1358 struct expander_device *ex = &dev->ex_dev; 1359 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1360 u8 *rri_req; 1361 u8 *rri_resp; 1362 1363 *present = 0; 1364 *index = 0; 1365 1366 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1367 if (!rri_req) 1368 return -ENOMEM; 1369 1370 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1371 if (!rri_resp) { 1372 kfree(rri_req); 1373 return -ENOMEM; 1374 } 1375 1376 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1377 rri_req[9] = phy_id; 1378 1379 for (i = 0; i < ex->max_route_indexes ; i++) { 1380 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1381 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1382 RRI_RESP_SIZE); 1383 if (res) 1384 goto out; 1385 res = rri_resp[2]; 1386 if (res == SMP_RESP_NO_INDEX) { 1387 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1388 SAS_ADDR(dev->sas_addr), phy_id, i); 1389 goto out; 1390 } else if (res != SMP_RESP_FUNC_ACC) { 1391 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1392 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1393 i, res); 1394 goto out; 1395 } 1396 if (SAS_ADDR(sas_addr) != 0) { 1397 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1398 *index = i; 1399 if ((rri_resp[12] & 0x80) == 0x80) 1400 *present = 0; 1401 else 1402 *present = 1; 1403 goto out; 1404 } else if (SAS_ADDR(rri_resp+16) == 0) { 1405 *index = i; 1406 *present = 0; 1407 goto out; 1408 } 1409 } else if (SAS_ADDR(rri_resp+16) == 0 && 1410 phy->last_da_index < i) { 1411 phy->last_da_index = i; 1412 *index = i; 1413 *present = 0; 1414 goto out; 1415 } 1416 } 1417 res = -1; 1418 out: 1419 kfree(rri_req); 1420 kfree(rri_resp); 1421 return res; 1422 } 1423 1424 #define CRI_REQ_SIZE 44 1425 #define CRI_RESP_SIZE 8 1426 1427 static int sas_configure_set(struct domain_device *dev, int phy_id, 1428 u8 *sas_addr, int index, int include) 1429 { 1430 int res; 1431 u8 *cri_req; 1432 u8 *cri_resp; 1433 1434 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1435 if (!cri_req) 1436 return -ENOMEM; 1437 1438 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1439 if (!cri_resp) { 1440 kfree(cri_req); 1441 return -ENOMEM; 1442 } 1443 1444 cri_req[1] = SMP_CONF_ROUTE_INFO; 1445 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1446 cri_req[9] = phy_id; 1447 if (SAS_ADDR(sas_addr) == 0 || !include) 1448 cri_req[12] |= 0x80; 1449 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1450 1451 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1452 CRI_RESP_SIZE); 1453 if (res) 1454 goto out; 1455 res = cri_resp[2]; 1456 if (res == SMP_RESP_NO_INDEX) { 1457 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1458 SAS_ADDR(dev->sas_addr), phy_id, index); 1459 } 1460 out: 1461 kfree(cri_req); 1462 kfree(cri_resp); 1463 return res; 1464 } 1465 1466 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1467 u8 *sas_addr, int include) 1468 { 1469 int index; 1470 int present; 1471 int res; 1472 1473 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1474 if (res) 1475 return res; 1476 if (include ^ present) 1477 return sas_configure_set(dev, phy_id, sas_addr, index, 1478 include); 1479 1480 return res; 1481 } 1482 1483 /** 1484 * sas_configure_parent - configure routing table of parent 1485 * @parent: parent expander 1486 * @child: child expander 1487 * @sas_addr: SAS port identifier of device directly attached to child 1488 * @include: whether or not to include @child in the expander routing table 1489 */ 1490 static int sas_configure_parent(struct domain_device *parent, 1491 struct domain_device *child, 1492 u8 *sas_addr, int include) 1493 { 1494 struct expander_device *ex_parent = &parent->ex_dev; 1495 int res = 0; 1496 int i; 1497 1498 if (parent->parent) { 1499 res = sas_configure_parent(parent->parent, parent, sas_addr, 1500 include); 1501 if (res) 1502 return res; 1503 } 1504 1505 if (ex_parent->conf_route_table == 0) { 1506 pr_debug("ex %016llx has self-configuring routing table\n", 1507 SAS_ADDR(parent->sas_addr)); 1508 return 0; 1509 } 1510 1511 for (i = 0; i < ex_parent->num_phys; i++) { 1512 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1513 1514 if ((phy->routing_attr == TABLE_ROUTING) && 1515 sas_phy_match_dev_addr(child, phy)) { 1516 res = sas_configure_phy(parent, i, sas_addr, include); 1517 if (res) 1518 return res; 1519 } 1520 } 1521 1522 return res; 1523 } 1524 1525 /** 1526 * sas_configure_routing - configure routing 1527 * @dev: expander device 1528 * @sas_addr: port identifier of device directly attached to the expander device 1529 */ 1530 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1531 { 1532 if (dev->parent) 1533 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1534 return 0; 1535 } 1536 1537 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1538 { 1539 if (dev->parent) 1540 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1541 return 0; 1542 } 1543 1544 /** 1545 * sas_discover_expander - expander discovery 1546 * @dev: pointer to expander domain device 1547 * 1548 * See comment in sas_discover_sata(). 1549 */ 1550 static int sas_discover_expander(struct domain_device *dev) 1551 { 1552 int res; 1553 1554 res = sas_notify_lldd_dev_found(dev); 1555 if (res) 1556 return res; 1557 1558 res = sas_ex_general(dev); 1559 if (res) 1560 goto out_err; 1561 res = sas_ex_manuf_info(dev); 1562 if (res) 1563 goto out_err; 1564 1565 res = sas_expander_discover(dev); 1566 if (res) { 1567 pr_warn("expander %016llx discovery failed(0x%x)\n", 1568 SAS_ADDR(dev->sas_addr), res); 1569 goto out_err; 1570 } 1571 1572 sas_check_ex_subtractive_boundary(dev); 1573 res = sas_check_parent_topology(dev); 1574 if (res) 1575 goto out_err; 1576 return 0; 1577 out_err: 1578 sas_notify_lldd_dev_gone(dev); 1579 return res; 1580 } 1581 1582 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1583 { 1584 int res = 0; 1585 struct domain_device *dev; 1586 1587 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1588 if (dev_is_expander(dev->dev_type)) { 1589 struct sas_expander_device *ex = 1590 rphy_to_expander_device(dev->rphy); 1591 1592 if (level == ex->level) 1593 res = sas_ex_discover_devices(dev, -1); 1594 else if (level > 0) 1595 res = sas_ex_discover_devices(port->port_dev, -1); 1596 1597 } 1598 } 1599 1600 return res; 1601 } 1602 1603 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1604 { 1605 int res; 1606 int level; 1607 1608 do { 1609 level = port->disc.max_level; 1610 res = sas_ex_level_discovery(port, level); 1611 mb(); 1612 } while (level < port->disc.max_level); 1613 1614 return res; 1615 } 1616 1617 int sas_discover_root_expander(struct domain_device *dev) 1618 { 1619 int res; 1620 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1621 1622 res = sas_rphy_add(dev->rphy); 1623 if (res) 1624 goto out_err; 1625 1626 ex->level = dev->port->disc.max_level; /* 0 */ 1627 res = sas_discover_expander(dev); 1628 if (res) 1629 goto out_err2; 1630 1631 sas_ex_bfs_disc(dev->port); 1632 1633 return res; 1634 1635 out_err2: 1636 sas_rphy_remove(dev->rphy); 1637 out_err: 1638 return res; 1639 } 1640 1641 /* ---------- Domain revalidation ---------- */ 1642 1643 static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp, 1644 u8 *sas_addr, 1645 enum sas_device_type *type) 1646 { 1647 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE); 1648 *type = to_dev_type(&disc_resp->disc); 1649 if (*type == SAS_PHY_UNUSED) 1650 memset(sas_addr, 0, SAS_ADDR_SIZE); 1651 } 1652 1653 static int sas_get_phy_discover(struct domain_device *dev, 1654 int phy_id, struct smp_disc_resp *disc_resp) 1655 { 1656 int res; 1657 u8 *disc_req; 1658 1659 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1660 if (!disc_req) 1661 return -ENOMEM; 1662 1663 disc_req[1] = SMP_DISCOVER; 1664 disc_req[9] = phy_id; 1665 1666 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1667 disc_resp, DISCOVER_RESP_SIZE); 1668 if (res) 1669 goto out; 1670 if (disc_resp->result != SMP_RESP_FUNC_ACC) 1671 res = disc_resp->result; 1672 out: 1673 kfree(disc_req); 1674 return res; 1675 } 1676 1677 static int sas_get_phy_change_count(struct domain_device *dev, 1678 int phy_id, int *pcc) 1679 { 1680 int res; 1681 struct smp_disc_resp *disc_resp; 1682 1683 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1684 if (!disc_resp) 1685 return -ENOMEM; 1686 1687 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1688 if (!res) 1689 *pcc = disc_resp->disc.change_count; 1690 1691 kfree(disc_resp); 1692 return res; 1693 } 1694 1695 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1696 u8 *sas_addr, enum sas_device_type *type) 1697 { 1698 int res; 1699 struct smp_disc_resp *disc_resp; 1700 1701 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1702 if (!disc_resp) 1703 return -ENOMEM; 1704 1705 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1706 if (res == 0) 1707 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type); 1708 kfree(disc_resp); 1709 return res; 1710 } 1711 1712 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1713 int from_phy, bool update) 1714 { 1715 struct expander_device *ex = &dev->ex_dev; 1716 int res = 0; 1717 int i; 1718 1719 for (i = from_phy; i < ex->num_phys; i++) { 1720 int phy_change_count = 0; 1721 1722 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1723 switch (res) { 1724 case SMP_RESP_PHY_VACANT: 1725 case SMP_RESP_NO_PHY: 1726 continue; 1727 case SMP_RESP_FUNC_ACC: 1728 break; 1729 default: 1730 return res; 1731 } 1732 1733 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1734 if (update) 1735 ex->ex_phy[i].phy_change_count = 1736 phy_change_count; 1737 *phy_id = i; 1738 return 0; 1739 } 1740 } 1741 return 0; 1742 } 1743 1744 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1745 { 1746 int res; 1747 u8 *rg_req; 1748 struct smp_rg_resp *rg_resp; 1749 1750 rg_req = alloc_smp_req(RG_REQ_SIZE); 1751 if (!rg_req) 1752 return -ENOMEM; 1753 1754 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1755 if (!rg_resp) { 1756 kfree(rg_req); 1757 return -ENOMEM; 1758 } 1759 1760 rg_req[1] = SMP_REPORT_GENERAL; 1761 1762 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1763 RG_RESP_SIZE); 1764 if (res) 1765 goto out; 1766 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1767 res = rg_resp->result; 1768 goto out; 1769 } 1770 1771 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1772 out: 1773 kfree(rg_resp); 1774 kfree(rg_req); 1775 return res; 1776 } 1777 /** 1778 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1779 * @dev:domain device to be detect. 1780 * @src_dev: the device which originated BROADCAST(CHANGE). 1781 * 1782 * Add self-configuration expander support. Suppose two expander cascading, 1783 * when the first level expander is self-configuring, hotplug the disks in 1784 * second level expander, BROADCAST(CHANGE) will not only be originated 1785 * in the second level expander, but also be originated in the first level 1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1787 * expander changed count in two level expanders will all increment at least 1788 * once, but the phy which chang count has changed is the source device which 1789 * we concerned. 1790 */ 1791 1792 static int sas_find_bcast_dev(struct domain_device *dev, 1793 struct domain_device **src_dev) 1794 { 1795 struct expander_device *ex = &dev->ex_dev; 1796 int ex_change_count = -1; 1797 int phy_id = -1; 1798 int res; 1799 struct domain_device *ch; 1800 1801 res = sas_get_ex_change_count(dev, &ex_change_count); 1802 if (res) 1803 goto out; 1804 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1805 /* Just detect if this expander phys phy change count changed, 1806 * in order to determine if this expander originate BROADCAST, 1807 * and do not update phy change count field in our structure. 1808 */ 1809 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1810 if (phy_id != -1) { 1811 *src_dev = dev; 1812 ex->ex_change_count = ex_change_count; 1813 pr_info("ex %016llx phy%02d change count has changed\n", 1814 SAS_ADDR(dev->sas_addr), phy_id); 1815 return res; 1816 } else 1817 pr_info("ex %016llx phys DID NOT change\n", 1818 SAS_ADDR(dev->sas_addr)); 1819 } 1820 list_for_each_entry(ch, &ex->children, siblings) { 1821 if (dev_is_expander(ch->dev_type)) { 1822 res = sas_find_bcast_dev(ch, src_dev); 1823 if (*src_dev) 1824 return res; 1825 } 1826 } 1827 out: 1828 return res; 1829 } 1830 1831 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1832 { 1833 struct expander_device *ex = &dev->ex_dev; 1834 struct domain_device *child, *n; 1835 1836 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1837 set_bit(SAS_DEV_GONE, &child->state); 1838 if (dev_is_expander(child->dev_type)) 1839 sas_unregister_ex_tree(port, child); 1840 else 1841 sas_unregister_dev(port, child); 1842 } 1843 sas_unregister_dev(port, dev); 1844 } 1845 1846 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1847 int phy_id, bool last) 1848 { 1849 struct expander_device *ex_dev = &parent->ex_dev; 1850 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1851 struct domain_device *child, *n, *found = NULL; 1852 if (last) { 1853 list_for_each_entry_safe(child, n, 1854 &ex_dev->children, siblings) { 1855 if (sas_phy_match_dev_addr(child, phy)) { 1856 set_bit(SAS_DEV_GONE, &child->state); 1857 if (dev_is_expander(child->dev_type)) 1858 sas_unregister_ex_tree(parent->port, child); 1859 else 1860 sas_unregister_dev(parent->port, child); 1861 found = child; 1862 break; 1863 } 1864 } 1865 sas_disable_routing(parent, phy->attached_sas_addr); 1866 } 1867 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1868 if (phy->port) { 1869 sas_port_delete_phy(phy->port, phy->phy); 1870 sas_device_set_phy(found, phy->port); 1871 if (phy->port->num_phys == 0) { 1872 list_add_tail(&phy->port->del_list, 1873 &parent->port->sas_port_del_list); 1874 if (ex_dev->parent_port == phy->port) 1875 ex_dev->parent_port = NULL; 1876 } 1877 phy->port = NULL; 1878 } 1879 } 1880 1881 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1882 const int level) 1883 { 1884 struct expander_device *ex_root = &root->ex_dev; 1885 struct domain_device *child; 1886 int res = 0; 1887 1888 list_for_each_entry(child, &ex_root->children, siblings) { 1889 if (dev_is_expander(child->dev_type)) { 1890 struct sas_expander_device *ex = 1891 rphy_to_expander_device(child->rphy); 1892 1893 if (level > ex->level) 1894 res = sas_discover_bfs_by_root_level(child, 1895 level); 1896 else if (level == ex->level) 1897 res = sas_ex_discover_devices(child, -1); 1898 } 1899 } 1900 return res; 1901 } 1902 1903 static int sas_discover_bfs_by_root(struct domain_device *dev) 1904 { 1905 int res; 1906 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1907 int level = ex->level+1; 1908 1909 res = sas_ex_discover_devices(dev, -1); 1910 if (res) 1911 goto out; 1912 do { 1913 res = sas_discover_bfs_by_root_level(dev, level); 1914 mb(); 1915 level += 1; 1916 } while (level <= dev->port->disc.max_level); 1917 out: 1918 return res; 1919 } 1920 1921 static int sas_discover_new(struct domain_device *dev, int phy_id) 1922 { 1923 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1924 struct domain_device *child; 1925 int res; 1926 1927 pr_debug("ex %016llx phy%02d new device attached\n", 1928 SAS_ADDR(dev->sas_addr), phy_id); 1929 res = sas_ex_phy_discover(dev, phy_id); 1930 if (res) 1931 return res; 1932 1933 if (sas_ex_join_wide_port(dev, phy_id)) 1934 return 0; 1935 1936 res = sas_ex_discover_devices(dev, phy_id); 1937 if (res) 1938 return res; 1939 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1940 if (sas_phy_match_dev_addr(child, ex_phy)) { 1941 if (dev_is_expander(child->dev_type)) 1942 res = sas_discover_bfs_by_root(child); 1943 break; 1944 } 1945 } 1946 return res; 1947 } 1948 1949 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1950 { 1951 if (old == new) 1952 return true; 1953 1954 /* treat device directed resets as flutter, if we went 1955 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1956 */ 1957 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1958 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1959 return true; 1960 1961 return false; 1962 } 1963 1964 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 1965 bool last, int sibling) 1966 { 1967 struct expander_device *ex = &dev->ex_dev; 1968 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1969 enum sas_device_type type = SAS_PHY_UNUSED; 1970 struct smp_disc_resp *disc_resp; 1971 u8 sas_addr[SAS_ADDR_SIZE]; 1972 char msg[80] = ""; 1973 int res; 1974 1975 if (!last) 1976 sprintf(msg, ", part of a wide port with phy%02d", sibling); 1977 1978 pr_debug("ex %016llx rediscovering phy%02d%s\n", 1979 SAS_ADDR(dev->sas_addr), phy_id, msg); 1980 1981 memset(sas_addr, 0, SAS_ADDR_SIZE); 1982 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1983 if (!disc_resp) 1984 return -ENOMEM; 1985 1986 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1987 switch (res) { 1988 case SMP_RESP_NO_PHY: 1989 phy->phy_state = PHY_NOT_PRESENT; 1990 sas_unregister_devs_sas_addr(dev, phy_id, last); 1991 goto out_free_resp; 1992 case SMP_RESP_PHY_VACANT: 1993 phy->phy_state = PHY_VACANT; 1994 sas_unregister_devs_sas_addr(dev, phy_id, last); 1995 goto out_free_resp; 1996 case SMP_RESP_FUNC_ACC: 1997 break; 1998 case -ECOMM: 1999 break; 2000 default: 2001 goto out_free_resp; 2002 } 2003 2004 if (res == 0) 2005 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type); 2006 2007 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2008 phy->phy_state = PHY_EMPTY; 2009 sas_unregister_devs_sas_addr(dev, phy_id, last); 2010 /* 2011 * Even though the PHY is empty, for convenience we update 2012 * the PHY info, like negotiated linkrate. 2013 */ 2014 if (res == 0) 2015 sas_set_ex_phy(dev, phy_id, disc_resp); 2016 goto out_free_resp; 2017 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2018 dev_type_flutter(type, phy->attached_dev_type)) { 2019 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2020 char *action = ""; 2021 2022 sas_ex_phy_discover(dev, phy_id); 2023 2024 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2025 action = ", needs recovery"; 2026 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2027 SAS_ADDR(dev->sas_addr), phy_id, action); 2028 goto out_free_resp; 2029 } 2030 2031 /* we always have to delete the old device when we went here */ 2032 pr_info("ex %016llx phy%02d replace %016llx\n", 2033 SAS_ADDR(dev->sas_addr), phy_id, 2034 SAS_ADDR(phy->attached_sas_addr)); 2035 sas_unregister_devs_sas_addr(dev, phy_id, last); 2036 2037 res = sas_discover_new(dev, phy_id); 2038 out_free_resp: 2039 kfree(disc_resp); 2040 return res; 2041 } 2042 2043 /** 2044 * sas_rediscover - revalidate the domain. 2045 * @dev:domain device to be detect. 2046 * @phy_id: the phy id will be detected. 2047 * 2048 * NOTE: this process _must_ quit (return) as soon as any connection 2049 * errors are encountered. Connection recovery is done elsewhere. 2050 * Discover process only interrogates devices in order to discover the 2051 * domain.For plugging out, we un-register the device only when it is 2052 * the last phy in the port, for other phys in this port, we just delete it 2053 * from the port.For inserting, we do discovery when it is the 2054 * first phy,for other phys in this port, we add it to the port to 2055 * forming the wide-port. 2056 */ 2057 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2058 { 2059 struct expander_device *ex = &dev->ex_dev; 2060 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2061 int res = 0; 2062 int i; 2063 bool last = true; /* is this the last phy of the port */ 2064 2065 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2066 SAS_ADDR(dev->sas_addr), phy_id); 2067 2068 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2069 for (i = 0; i < ex->num_phys; i++) { 2070 struct ex_phy *phy = &ex->ex_phy[i]; 2071 2072 if (i == phy_id) 2073 continue; 2074 if (sas_phy_addr_match(phy, changed_phy)) { 2075 last = false; 2076 break; 2077 } 2078 } 2079 res = sas_rediscover_dev(dev, phy_id, last, i); 2080 } else 2081 res = sas_discover_new(dev, phy_id); 2082 return res; 2083 } 2084 2085 /** 2086 * sas_ex_revalidate_domain - revalidate the domain 2087 * @port_dev: port domain device. 2088 * 2089 * NOTE: this process _must_ quit (return) as soon as any connection 2090 * errors are encountered. Connection recovery is done elsewhere. 2091 * Discover process only interrogates devices in order to discover the 2092 * domain. 2093 */ 2094 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2095 { 2096 int res; 2097 struct domain_device *dev = NULL; 2098 2099 res = sas_find_bcast_dev(port_dev, &dev); 2100 if (res == 0 && dev) { 2101 struct expander_device *ex = &dev->ex_dev; 2102 int i = 0, phy_id; 2103 2104 do { 2105 phy_id = -1; 2106 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2107 if (phy_id == -1) 2108 break; 2109 res = sas_rediscover(dev, phy_id); 2110 i = phy_id + 1; 2111 } while (i < ex->num_phys); 2112 } 2113 return res; 2114 } 2115 2116 int sas_find_attached_phy_id(struct expander_device *ex_dev, 2117 struct domain_device *dev) 2118 { 2119 struct ex_phy *phy; 2120 int phy_id; 2121 2122 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) { 2123 phy = &ex_dev->ex_phy[phy_id]; 2124 if (sas_phy_match_dev_addr(dev, phy)) 2125 return phy_id; 2126 } 2127 2128 return -ENODEV; 2129 } 2130 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id); 2131 2132 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2133 struct sas_rphy *rphy) 2134 { 2135 struct domain_device *dev; 2136 unsigned int rcvlen = 0; 2137 int ret = -EINVAL; 2138 2139 /* no rphy means no smp target support (ie aic94xx host) */ 2140 if (!rphy) 2141 return sas_smp_host_handler(job, shost); 2142 2143 switch (rphy->identify.device_type) { 2144 case SAS_EDGE_EXPANDER_DEVICE: 2145 case SAS_FANOUT_EXPANDER_DEVICE: 2146 break; 2147 default: 2148 pr_err("%s: can we send a smp request to a device?\n", 2149 __func__); 2150 goto out; 2151 } 2152 2153 dev = sas_find_dev_by_rphy(rphy); 2154 if (!dev) { 2155 pr_err("%s: fail to find a domain_device?\n", __func__); 2156 goto out; 2157 } 2158 2159 /* do we need to support multiple segments? */ 2160 if (job->request_payload.sg_cnt > 1 || 2161 job->reply_payload.sg_cnt > 1) { 2162 pr_info("%s: multiple segments req %u, rsp %u\n", 2163 __func__, job->request_payload.payload_len, 2164 job->reply_payload.payload_len); 2165 goto out; 2166 } 2167 2168 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2169 job->reply_payload.sg_list); 2170 if (ret >= 0) { 2171 /* bsg_job_done() requires the length received */ 2172 rcvlen = job->reply_payload.payload_len - ret; 2173 ret = 0; 2174 } 2175 2176 out: 2177 bsg_job_done(job, ret, rcvlen); 2178 } 2179