1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/scsi_transport.h> 32 #include <scsi/scsi_transport_sas.h> 33 #include "../scsi_sas_internal.h" 34 35 static int sas_discover_expander(struct domain_device *dev); 36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 37 static int sas_configure_phy(struct domain_device *dev, int phy_id, 38 u8 *sas_addr, int include); 39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 40 41 /* ---------- SMP task management ---------- */ 42 43 static void smp_task_timedout(unsigned long _task) 44 { 45 struct sas_task *task = (void *) _task; 46 unsigned long flags; 47 48 spin_lock_irqsave(&task->task_state_lock, flags); 49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 50 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 51 spin_unlock_irqrestore(&task->task_state_lock, flags); 52 53 complete(&task->completion); 54 } 55 56 static void smp_task_done(struct sas_task *task) 57 { 58 if (!del_timer(&task->timer)) 59 return; 60 complete(&task->completion); 61 } 62 63 /* Give it some long enough timeout. In seconds. */ 64 #define SMP_TIMEOUT 10 65 66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 67 void *resp, int resp_size) 68 { 69 int res, retry; 70 struct sas_task *task = NULL; 71 struct sas_internal *i = 72 to_sas_internal(dev->port->ha->core.shost->transportt); 73 74 for (retry = 0; retry < 3; retry++) { 75 task = sas_alloc_task(GFP_KERNEL); 76 if (!task) 77 return -ENOMEM; 78 79 task->dev = dev; 80 task->task_proto = dev->tproto; 81 sg_init_one(&task->smp_task.smp_req, req, req_size); 82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 83 84 task->task_done = smp_task_done; 85 86 task->timer.data = (unsigned long) task; 87 task->timer.function = smp_task_timedout; 88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 89 add_timer(&task->timer); 90 91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 92 93 if (res) { 94 del_timer(&task->timer); 95 SAS_DPRINTK("executing SMP task failed:%d\n", res); 96 goto ex_err; 97 } 98 99 wait_for_completion(&task->completion); 100 res = -ECOMM; 101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 102 SAS_DPRINTK("smp task timed out or aborted\n"); 103 i->dft->lldd_abort_task(task); 104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 105 SAS_DPRINTK("SMP task aborted and not done\n"); 106 goto ex_err; 107 } 108 } 109 if (task->task_status.resp == SAS_TASK_COMPLETE && 110 task->task_status.stat == SAM_STAT_GOOD) { 111 res = 0; 112 break; 113 } if (task->task_status.resp == SAS_TASK_COMPLETE && 114 task->task_status.stat == SAS_DATA_UNDERRUN) { 115 /* no error, but return the number of bytes of 116 * underrun */ 117 res = task->task_status.residual; 118 break; 119 } if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } else { 124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 125 "status 0x%x\n", __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 ex_err: 134 BUG_ON(retry == 3 && task != NULL); 135 if (task != NULL) { 136 sas_free_task(task); 137 } 138 return res; 139 } 140 141 /* ---------- Allocations ---------- */ 142 143 static inline void *alloc_smp_req(int size) 144 { 145 u8 *p = kzalloc(size, GFP_KERNEL); 146 if (p) 147 p[0] = SMP_REQUEST; 148 return p; 149 } 150 151 static inline void *alloc_smp_resp(int size) 152 { 153 return kzalloc(size, GFP_KERNEL); 154 } 155 156 /* ---------- Expander configuration ---------- */ 157 158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 159 void *disc_resp) 160 { 161 struct expander_device *ex = &dev->ex_dev; 162 struct ex_phy *phy = &ex->ex_phy[phy_id]; 163 struct smp_resp *resp = disc_resp; 164 struct discover_resp *dr = &resp->disc; 165 struct sas_rphy *rphy = dev->rphy; 166 int rediscover = (phy->phy != NULL); 167 168 if (!rediscover) { 169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 170 171 /* FIXME: error_handling */ 172 BUG_ON(!phy->phy); 173 } 174 175 switch (resp->result) { 176 case SMP_RESP_PHY_VACANT: 177 phy->phy_state = PHY_VACANT; 178 break; 179 default: 180 phy->phy_state = PHY_NOT_PRESENT; 181 break; 182 case SMP_RESP_FUNC_ACC: 183 phy->phy_state = PHY_EMPTY; /* do not know yet */ 184 break; 185 } 186 187 phy->phy_id = phy_id; 188 phy->attached_dev_type = dr->attached_dev_type; 189 phy->linkrate = dr->linkrate; 190 phy->attached_sata_host = dr->attached_sata_host; 191 phy->attached_sata_dev = dr->attached_sata_dev; 192 phy->attached_sata_ps = dr->attached_sata_ps; 193 phy->attached_iproto = dr->iproto << 1; 194 phy->attached_tproto = dr->tproto << 1; 195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 196 phy->attached_phy_id = dr->attached_phy_id; 197 phy->phy_change_count = dr->change_count; 198 phy->routing_attr = dr->routing_attr; 199 phy->virtual = dr->virtual; 200 phy->last_da_index = -1; 201 202 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 203 phy->phy->identify.device_type = phy->attached_dev_type; 204 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 205 phy->phy->identify.target_port_protocols = phy->attached_tproto; 206 phy->phy->identify.phy_identifier = phy_id; 207 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 208 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 209 phy->phy->minimum_linkrate = dr->pmin_linkrate; 210 phy->phy->maximum_linkrate = dr->pmax_linkrate; 211 phy->phy->negotiated_linkrate = phy->linkrate; 212 213 if (!rediscover) 214 if (sas_phy_add(phy->phy)) { 215 sas_phy_free(phy->phy); 216 return; 217 } 218 219 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 220 SAS_ADDR(dev->sas_addr), phy->phy_id, 221 phy->routing_attr == TABLE_ROUTING ? 'T' : 222 phy->routing_attr == DIRECT_ROUTING ? 'D' : 223 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 224 SAS_ADDR(phy->attached_sas_addr)); 225 226 return; 227 } 228 229 #define DISCOVER_REQ_SIZE 16 230 #define DISCOVER_RESP_SIZE 56 231 232 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 233 u8 *disc_resp, int single) 234 { 235 int i, res; 236 237 disc_req[9] = single; 238 for (i = 1 ; i < 3; i++) { 239 struct discover_resp *dr; 240 241 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 242 disc_resp, DISCOVER_RESP_SIZE); 243 if (res) 244 return res; 245 /* This is detecting a failure to transmit initial 246 * dev to host FIS as described in section G.5 of 247 * sas-2 r 04b */ 248 dr = &((struct smp_resp *)disc_resp)->disc; 249 if (memcmp(dev->sas_addr, dr->attached_sas_addr, 250 SAS_ADDR_SIZE) == 0) { 251 sas_printk("Found loopback topology, just ignore it!\n"); 252 return 0; 253 } 254 if (!(dr->attached_dev_type == 0 && 255 dr->attached_sata_dev)) 256 break; 257 /* In order to generate the dev to host FIS, we 258 * send a link reset to the expander port */ 259 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 260 /* Wait for the reset to trigger the negotiation */ 261 msleep(500); 262 } 263 sas_set_ex_phy(dev, single, disc_resp); 264 return 0; 265 } 266 267 static int sas_ex_phy_discover(struct domain_device *dev, int single) 268 { 269 struct expander_device *ex = &dev->ex_dev; 270 int res = 0; 271 u8 *disc_req; 272 u8 *disc_resp; 273 274 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 275 if (!disc_req) 276 return -ENOMEM; 277 278 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 279 if (!disc_resp) { 280 kfree(disc_req); 281 return -ENOMEM; 282 } 283 284 disc_req[1] = SMP_DISCOVER; 285 286 if (0 <= single && single < ex->num_phys) { 287 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 288 } else { 289 int i; 290 291 for (i = 0; i < ex->num_phys; i++) { 292 res = sas_ex_phy_discover_helper(dev, disc_req, 293 disc_resp, i); 294 if (res) 295 goto out_err; 296 } 297 } 298 out_err: 299 kfree(disc_resp); 300 kfree(disc_req); 301 return res; 302 } 303 304 static int sas_expander_discover(struct domain_device *dev) 305 { 306 struct expander_device *ex = &dev->ex_dev; 307 int res = -ENOMEM; 308 309 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 310 if (!ex->ex_phy) 311 return -ENOMEM; 312 313 res = sas_ex_phy_discover(dev, -1); 314 if (res) 315 goto out_err; 316 317 return 0; 318 out_err: 319 kfree(ex->ex_phy); 320 ex->ex_phy = NULL; 321 return res; 322 } 323 324 #define MAX_EXPANDER_PHYS 128 325 326 static void ex_assign_report_general(struct domain_device *dev, 327 struct smp_resp *resp) 328 { 329 struct report_general_resp *rg = &resp->rg; 330 331 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 332 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 333 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 334 dev->ex_dev.t2t_supp = rg->t2t_supp; 335 dev->ex_dev.conf_route_table = rg->conf_route_table; 336 dev->ex_dev.configuring = rg->configuring; 337 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 338 } 339 340 #define RG_REQ_SIZE 8 341 #define RG_RESP_SIZE 32 342 343 static int sas_ex_general(struct domain_device *dev) 344 { 345 u8 *rg_req; 346 struct smp_resp *rg_resp; 347 int res; 348 int i; 349 350 rg_req = alloc_smp_req(RG_REQ_SIZE); 351 if (!rg_req) 352 return -ENOMEM; 353 354 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 355 if (!rg_resp) { 356 kfree(rg_req); 357 return -ENOMEM; 358 } 359 360 rg_req[1] = SMP_REPORT_GENERAL; 361 362 for (i = 0; i < 5; i++) { 363 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 364 RG_RESP_SIZE); 365 366 if (res) { 367 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 368 SAS_ADDR(dev->sas_addr), res); 369 goto out; 370 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 371 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 372 SAS_ADDR(dev->sas_addr), rg_resp->result); 373 res = rg_resp->result; 374 goto out; 375 } 376 377 ex_assign_report_general(dev, rg_resp); 378 379 if (dev->ex_dev.configuring) { 380 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 381 SAS_ADDR(dev->sas_addr)); 382 schedule_timeout_interruptible(5*HZ); 383 } else 384 break; 385 } 386 out: 387 kfree(rg_req); 388 kfree(rg_resp); 389 return res; 390 } 391 392 static void ex_assign_manuf_info(struct domain_device *dev, void 393 *_mi_resp) 394 { 395 u8 *mi_resp = _mi_resp; 396 struct sas_rphy *rphy = dev->rphy; 397 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 398 399 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 400 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 401 memcpy(edev->product_rev, mi_resp + 36, 402 SAS_EXPANDER_PRODUCT_REV_LEN); 403 404 if (mi_resp[8] & 1) { 405 memcpy(edev->component_vendor_id, mi_resp + 40, 406 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 407 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 408 edev->component_revision_id = mi_resp[50]; 409 } 410 } 411 412 #define MI_REQ_SIZE 8 413 #define MI_RESP_SIZE 64 414 415 static int sas_ex_manuf_info(struct domain_device *dev) 416 { 417 u8 *mi_req; 418 u8 *mi_resp; 419 int res; 420 421 mi_req = alloc_smp_req(MI_REQ_SIZE); 422 if (!mi_req) 423 return -ENOMEM; 424 425 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 426 if (!mi_resp) { 427 kfree(mi_req); 428 return -ENOMEM; 429 } 430 431 mi_req[1] = SMP_REPORT_MANUF_INFO; 432 433 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 434 if (res) { 435 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 436 SAS_ADDR(dev->sas_addr), res); 437 goto out; 438 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 439 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 440 SAS_ADDR(dev->sas_addr), mi_resp[2]); 441 goto out; 442 } 443 444 ex_assign_manuf_info(dev, mi_resp); 445 out: 446 kfree(mi_req); 447 kfree(mi_resp); 448 return res; 449 } 450 451 #define PC_REQ_SIZE 44 452 #define PC_RESP_SIZE 8 453 454 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 455 enum phy_func phy_func, 456 struct sas_phy_linkrates *rates) 457 { 458 u8 *pc_req; 459 u8 *pc_resp; 460 int res; 461 462 pc_req = alloc_smp_req(PC_REQ_SIZE); 463 if (!pc_req) 464 return -ENOMEM; 465 466 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 467 if (!pc_resp) { 468 kfree(pc_req); 469 return -ENOMEM; 470 } 471 472 pc_req[1] = SMP_PHY_CONTROL; 473 pc_req[9] = phy_id; 474 pc_req[10]= phy_func; 475 if (rates) { 476 pc_req[32] = rates->minimum_linkrate << 4; 477 pc_req[33] = rates->maximum_linkrate << 4; 478 } 479 480 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 481 482 kfree(pc_resp); 483 kfree(pc_req); 484 return res; 485 } 486 487 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 488 { 489 struct expander_device *ex = &dev->ex_dev; 490 struct ex_phy *phy = &ex->ex_phy[phy_id]; 491 492 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 493 phy->linkrate = SAS_PHY_DISABLED; 494 } 495 496 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 497 { 498 struct expander_device *ex = &dev->ex_dev; 499 int i; 500 501 for (i = 0; i < ex->num_phys; i++) { 502 struct ex_phy *phy = &ex->ex_phy[i]; 503 504 if (phy->phy_state == PHY_VACANT || 505 phy->phy_state == PHY_NOT_PRESENT) 506 continue; 507 508 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 509 sas_ex_disable_phy(dev, i); 510 } 511 } 512 513 static int sas_dev_present_in_domain(struct asd_sas_port *port, 514 u8 *sas_addr) 515 { 516 struct domain_device *dev; 517 518 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 519 return 1; 520 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 521 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 522 return 1; 523 } 524 return 0; 525 } 526 527 #define RPEL_REQ_SIZE 16 528 #define RPEL_RESP_SIZE 32 529 int sas_smp_get_phy_events(struct sas_phy *phy) 530 { 531 int res; 532 u8 *req; 533 u8 *resp; 534 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 535 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 536 537 req = alloc_smp_req(RPEL_REQ_SIZE); 538 if (!req) 539 return -ENOMEM; 540 541 resp = alloc_smp_resp(RPEL_RESP_SIZE); 542 if (!resp) { 543 kfree(req); 544 return -ENOMEM; 545 } 546 547 req[1] = SMP_REPORT_PHY_ERR_LOG; 548 req[9] = phy->number; 549 550 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 551 resp, RPEL_RESP_SIZE); 552 553 if (!res) 554 goto out; 555 556 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 557 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 558 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 559 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 560 561 out: 562 kfree(resp); 563 return res; 564 565 } 566 567 #ifdef CONFIG_SCSI_SAS_ATA 568 569 #define RPS_REQ_SIZE 16 570 #define RPS_RESP_SIZE 60 571 572 static int sas_get_report_phy_sata(struct domain_device *dev, 573 int phy_id, 574 struct smp_resp *rps_resp) 575 { 576 int res; 577 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 578 u8 *resp = (u8 *)rps_resp; 579 580 if (!rps_req) 581 return -ENOMEM; 582 583 rps_req[1] = SMP_REPORT_PHY_SATA; 584 rps_req[9] = phy_id; 585 586 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 587 rps_resp, RPS_RESP_SIZE); 588 589 /* 0x34 is the FIS type for the D2H fis. There's a potential 590 * standards cockup here. sas-2 explicitly specifies the FIS 591 * should be encoded so that FIS type is in resp[24]. 592 * However, some expanders endian reverse this. Undo the 593 * reversal here */ 594 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 595 int i; 596 597 for (i = 0; i < 5; i++) { 598 int j = 24 + (i*4); 599 u8 a, b; 600 a = resp[j + 0]; 601 b = resp[j + 1]; 602 resp[j + 0] = resp[j + 3]; 603 resp[j + 1] = resp[j + 2]; 604 resp[j + 2] = b; 605 resp[j + 3] = a; 606 } 607 } 608 609 kfree(rps_req); 610 return res; 611 } 612 #endif 613 614 static void sas_ex_get_linkrate(struct domain_device *parent, 615 struct domain_device *child, 616 struct ex_phy *parent_phy) 617 { 618 struct expander_device *parent_ex = &parent->ex_dev; 619 struct sas_port *port; 620 int i; 621 622 child->pathways = 0; 623 624 port = parent_phy->port; 625 626 for (i = 0; i < parent_ex->num_phys; i++) { 627 struct ex_phy *phy = &parent_ex->ex_phy[i]; 628 629 if (phy->phy_state == PHY_VACANT || 630 phy->phy_state == PHY_NOT_PRESENT) 631 continue; 632 633 if (SAS_ADDR(phy->attached_sas_addr) == 634 SAS_ADDR(child->sas_addr)) { 635 636 child->min_linkrate = min(parent->min_linkrate, 637 phy->linkrate); 638 child->max_linkrate = max(parent->max_linkrate, 639 phy->linkrate); 640 child->pathways++; 641 sas_port_add_phy(port, phy->phy); 642 } 643 } 644 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 645 child->pathways = min(child->pathways, parent->pathways); 646 } 647 648 static struct domain_device *sas_ex_discover_end_dev( 649 struct domain_device *parent, int phy_id) 650 { 651 struct expander_device *parent_ex = &parent->ex_dev; 652 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 653 struct domain_device *child = NULL; 654 struct sas_rphy *rphy; 655 int res; 656 657 if (phy->attached_sata_host || phy->attached_sata_ps) 658 return NULL; 659 660 child = kzalloc(sizeof(*child), GFP_KERNEL); 661 if (!child) 662 return NULL; 663 664 child->parent = parent; 665 child->port = parent->port; 666 child->iproto = phy->attached_iproto; 667 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 668 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 669 if (!phy->port) { 670 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 671 if (unlikely(!phy->port)) 672 goto out_err; 673 if (unlikely(sas_port_add(phy->port) != 0)) { 674 sas_port_free(phy->port); 675 goto out_err; 676 } 677 } 678 sas_ex_get_linkrate(parent, child, phy); 679 680 #ifdef CONFIG_SCSI_SAS_ATA 681 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 682 child->dev_type = SATA_DEV; 683 if (phy->attached_tproto & SAS_PROTOCOL_STP) 684 child->tproto = phy->attached_tproto; 685 if (phy->attached_sata_dev) 686 child->tproto |= SATA_DEV; 687 res = sas_get_report_phy_sata(parent, phy_id, 688 &child->sata_dev.rps_resp); 689 if (res) { 690 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 691 "0x%x\n", SAS_ADDR(parent->sas_addr), 692 phy_id, res); 693 goto out_free; 694 } 695 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 696 sizeof(struct dev_to_host_fis)); 697 698 rphy = sas_end_device_alloc(phy->port); 699 if (unlikely(!rphy)) 700 goto out_free; 701 702 sas_init_dev(child); 703 704 child->rphy = rphy; 705 706 spin_lock_irq(&parent->port->dev_list_lock); 707 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 708 spin_unlock_irq(&parent->port->dev_list_lock); 709 710 res = sas_discover_sata(child); 711 if (res) { 712 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 713 "%016llx:0x%x returned 0x%x\n", 714 SAS_ADDR(child->sas_addr), 715 SAS_ADDR(parent->sas_addr), phy_id, res); 716 goto out_list_del; 717 } 718 } else 719 #endif 720 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 721 child->dev_type = SAS_END_DEV; 722 rphy = sas_end_device_alloc(phy->port); 723 /* FIXME: error handling */ 724 if (unlikely(!rphy)) 725 goto out_free; 726 child->tproto = phy->attached_tproto; 727 sas_init_dev(child); 728 729 child->rphy = rphy; 730 sas_fill_in_rphy(child, rphy); 731 732 spin_lock_irq(&parent->port->dev_list_lock); 733 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 734 spin_unlock_irq(&parent->port->dev_list_lock); 735 736 res = sas_discover_end_dev(child); 737 if (res) { 738 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 739 "at %016llx:0x%x returned 0x%x\n", 740 SAS_ADDR(child->sas_addr), 741 SAS_ADDR(parent->sas_addr), phy_id, res); 742 goto out_list_del; 743 } 744 } else { 745 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 746 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 747 phy_id); 748 goto out_free; 749 } 750 751 list_add_tail(&child->siblings, &parent_ex->children); 752 return child; 753 754 out_list_del: 755 sas_rphy_free(child->rphy); 756 child->rphy = NULL; 757 758 spin_lock_irq(&parent->port->dev_list_lock); 759 list_del(&child->dev_list_node); 760 spin_unlock_irq(&parent->port->dev_list_lock); 761 out_free: 762 sas_port_delete(phy->port); 763 out_err: 764 phy->port = NULL; 765 kfree(child); 766 return NULL; 767 } 768 769 /* See if this phy is part of a wide port */ 770 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 771 { 772 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 773 int i; 774 775 for (i = 0; i < parent->ex_dev.num_phys; i++) { 776 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 777 778 if (ephy == phy) 779 continue; 780 781 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 782 SAS_ADDR_SIZE) && ephy->port) { 783 sas_port_add_phy(ephy->port, phy->phy); 784 phy->port = ephy->port; 785 phy->phy_state = PHY_DEVICE_DISCOVERED; 786 return 0; 787 } 788 } 789 790 return -ENODEV; 791 } 792 793 static struct domain_device *sas_ex_discover_expander( 794 struct domain_device *parent, int phy_id) 795 { 796 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 797 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 798 struct domain_device *child = NULL; 799 struct sas_rphy *rphy; 800 struct sas_expander_device *edev; 801 struct asd_sas_port *port; 802 int res; 803 804 if (phy->routing_attr == DIRECT_ROUTING) { 805 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 806 "allowed\n", 807 SAS_ADDR(parent->sas_addr), phy_id, 808 SAS_ADDR(phy->attached_sas_addr), 809 phy->attached_phy_id); 810 return NULL; 811 } 812 child = kzalloc(sizeof(*child), GFP_KERNEL); 813 if (!child) 814 return NULL; 815 816 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 817 /* FIXME: better error handling */ 818 BUG_ON(sas_port_add(phy->port) != 0); 819 820 821 switch (phy->attached_dev_type) { 822 case EDGE_DEV: 823 rphy = sas_expander_alloc(phy->port, 824 SAS_EDGE_EXPANDER_DEVICE); 825 break; 826 case FANOUT_DEV: 827 rphy = sas_expander_alloc(phy->port, 828 SAS_FANOUT_EXPANDER_DEVICE); 829 break; 830 default: 831 rphy = NULL; /* shut gcc up */ 832 BUG(); 833 } 834 port = parent->port; 835 child->rphy = rphy; 836 edev = rphy_to_expander_device(rphy); 837 child->dev_type = phy->attached_dev_type; 838 child->parent = parent; 839 child->port = port; 840 child->iproto = phy->attached_iproto; 841 child->tproto = phy->attached_tproto; 842 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 843 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 844 sas_ex_get_linkrate(parent, child, phy); 845 edev->level = parent_ex->level + 1; 846 parent->port->disc.max_level = max(parent->port->disc.max_level, 847 edev->level); 848 sas_init_dev(child); 849 sas_fill_in_rphy(child, rphy); 850 sas_rphy_add(rphy); 851 852 spin_lock_irq(&parent->port->dev_list_lock); 853 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 854 spin_unlock_irq(&parent->port->dev_list_lock); 855 856 res = sas_discover_expander(child); 857 if (res) { 858 spin_lock_irq(&parent->port->dev_list_lock); 859 list_del(&child->dev_list_node); 860 spin_unlock_irq(&parent->port->dev_list_lock); 861 kfree(child); 862 return NULL; 863 } 864 list_add_tail(&child->siblings, &parent->ex_dev.children); 865 return child; 866 } 867 868 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 869 { 870 struct expander_device *ex = &dev->ex_dev; 871 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 872 struct domain_device *child = NULL; 873 int res = 0; 874 875 /* Phy state */ 876 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 877 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 878 res = sas_ex_phy_discover(dev, phy_id); 879 if (res) 880 return res; 881 } 882 883 /* Parent and domain coherency */ 884 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 885 SAS_ADDR(dev->port->sas_addr))) { 886 sas_add_parent_port(dev, phy_id); 887 return 0; 888 } 889 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 890 SAS_ADDR(dev->parent->sas_addr))) { 891 sas_add_parent_port(dev, phy_id); 892 if (ex_phy->routing_attr == TABLE_ROUTING) 893 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 894 return 0; 895 } 896 897 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 898 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 899 900 if (ex_phy->attached_dev_type == NO_DEVICE) { 901 if (ex_phy->routing_attr == DIRECT_ROUTING) { 902 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 903 sas_configure_routing(dev, ex_phy->attached_sas_addr); 904 } 905 return 0; 906 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 907 return 0; 908 909 if (ex_phy->attached_dev_type != SAS_END_DEV && 910 ex_phy->attached_dev_type != FANOUT_DEV && 911 ex_phy->attached_dev_type != EDGE_DEV) { 912 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 913 "phy 0x%x\n", ex_phy->attached_dev_type, 914 SAS_ADDR(dev->sas_addr), 915 phy_id); 916 return 0; 917 } 918 919 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 920 if (res) { 921 SAS_DPRINTK("configure routing for dev %016llx " 922 "reported 0x%x. Forgotten\n", 923 SAS_ADDR(ex_phy->attached_sas_addr), res); 924 sas_disable_routing(dev, ex_phy->attached_sas_addr); 925 return res; 926 } 927 928 res = sas_ex_join_wide_port(dev, phy_id); 929 if (!res) { 930 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 931 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 932 return res; 933 } 934 935 switch (ex_phy->attached_dev_type) { 936 case SAS_END_DEV: 937 child = sas_ex_discover_end_dev(dev, phy_id); 938 break; 939 case FANOUT_DEV: 940 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 941 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 942 "attached to ex %016llx phy 0x%x\n", 943 SAS_ADDR(ex_phy->attached_sas_addr), 944 ex_phy->attached_phy_id, 945 SAS_ADDR(dev->sas_addr), 946 phy_id); 947 sas_ex_disable_phy(dev, phy_id); 948 break; 949 } else 950 memcpy(dev->port->disc.fanout_sas_addr, 951 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 952 /* fallthrough */ 953 case EDGE_DEV: 954 child = sas_ex_discover_expander(dev, phy_id); 955 break; 956 default: 957 break; 958 } 959 960 if (child) { 961 int i; 962 963 for (i = 0; i < ex->num_phys; i++) { 964 if (ex->ex_phy[i].phy_state == PHY_VACANT || 965 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 966 continue; 967 /* 968 * Due to races, the phy might not get added to the 969 * wide port, so we add the phy to the wide port here. 970 */ 971 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 972 SAS_ADDR(child->sas_addr)) { 973 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 974 res = sas_ex_join_wide_port(dev, i); 975 if (!res) 976 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 977 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 978 979 } 980 } 981 } 982 983 return res; 984 } 985 986 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 987 { 988 struct expander_device *ex = &dev->ex_dev; 989 int i; 990 991 for (i = 0; i < ex->num_phys; i++) { 992 struct ex_phy *phy = &ex->ex_phy[i]; 993 994 if (phy->phy_state == PHY_VACANT || 995 phy->phy_state == PHY_NOT_PRESENT) 996 continue; 997 998 if ((phy->attached_dev_type == EDGE_DEV || 999 phy->attached_dev_type == FANOUT_DEV) && 1000 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1001 1002 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1003 1004 return 1; 1005 } 1006 } 1007 return 0; 1008 } 1009 1010 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1011 { 1012 struct expander_device *ex = &dev->ex_dev; 1013 struct domain_device *child; 1014 u8 sub_addr[8] = {0, }; 1015 1016 list_for_each_entry(child, &ex->children, siblings) { 1017 if (child->dev_type != EDGE_DEV && 1018 child->dev_type != FANOUT_DEV) 1019 continue; 1020 if (sub_addr[0] == 0) { 1021 sas_find_sub_addr(child, sub_addr); 1022 continue; 1023 } else { 1024 u8 s2[8]; 1025 1026 if (sas_find_sub_addr(child, s2) && 1027 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1028 1029 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1030 "diverges from subtractive " 1031 "boundary %016llx\n", 1032 SAS_ADDR(dev->sas_addr), 1033 SAS_ADDR(child->sas_addr), 1034 SAS_ADDR(s2), 1035 SAS_ADDR(sub_addr)); 1036 1037 sas_ex_disable_port(child, s2); 1038 } 1039 } 1040 } 1041 return 0; 1042 } 1043 /** 1044 * sas_ex_discover_devices -- discover devices attached to this expander 1045 * dev: pointer to the expander domain device 1046 * single: if you want to do a single phy, else set to -1; 1047 * 1048 * Configure this expander for use with its devices and register the 1049 * devices of this expander. 1050 */ 1051 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1052 { 1053 struct expander_device *ex = &dev->ex_dev; 1054 int i = 0, end = ex->num_phys; 1055 int res = 0; 1056 1057 if (0 <= single && single < end) { 1058 i = single; 1059 end = i+1; 1060 } 1061 1062 for ( ; i < end; i++) { 1063 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1064 1065 if (ex_phy->phy_state == PHY_VACANT || 1066 ex_phy->phy_state == PHY_NOT_PRESENT || 1067 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1068 continue; 1069 1070 switch (ex_phy->linkrate) { 1071 case SAS_PHY_DISABLED: 1072 case SAS_PHY_RESET_PROBLEM: 1073 case SAS_SATA_PORT_SELECTOR: 1074 continue; 1075 default: 1076 res = sas_ex_discover_dev(dev, i); 1077 if (res) 1078 break; 1079 continue; 1080 } 1081 } 1082 1083 if (!res) 1084 sas_check_level_subtractive_boundary(dev); 1085 1086 return res; 1087 } 1088 1089 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1090 { 1091 struct expander_device *ex = &dev->ex_dev; 1092 int i; 1093 u8 *sub_sas_addr = NULL; 1094 1095 if (dev->dev_type != EDGE_DEV) 1096 return 0; 1097 1098 for (i = 0; i < ex->num_phys; i++) { 1099 struct ex_phy *phy = &ex->ex_phy[i]; 1100 1101 if (phy->phy_state == PHY_VACANT || 1102 phy->phy_state == PHY_NOT_PRESENT) 1103 continue; 1104 1105 if ((phy->attached_dev_type == FANOUT_DEV || 1106 phy->attached_dev_type == EDGE_DEV) && 1107 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1108 1109 if (!sub_sas_addr) 1110 sub_sas_addr = &phy->attached_sas_addr[0]; 1111 else if (SAS_ADDR(sub_sas_addr) != 1112 SAS_ADDR(phy->attached_sas_addr)) { 1113 1114 SAS_DPRINTK("ex %016llx phy 0x%x " 1115 "diverges(%016llx) on subtractive " 1116 "boundary(%016llx). Disabled\n", 1117 SAS_ADDR(dev->sas_addr), i, 1118 SAS_ADDR(phy->attached_sas_addr), 1119 SAS_ADDR(sub_sas_addr)); 1120 sas_ex_disable_phy(dev, i); 1121 } 1122 } 1123 } 1124 return 0; 1125 } 1126 1127 static void sas_print_parent_topology_bug(struct domain_device *child, 1128 struct ex_phy *parent_phy, 1129 struct ex_phy *child_phy) 1130 { 1131 static const char ra_char[] = { 1132 [DIRECT_ROUTING] = 'D', 1133 [SUBTRACTIVE_ROUTING] = 'S', 1134 [TABLE_ROUTING] = 'T', 1135 }; 1136 static const char *ex_type[] = { 1137 [EDGE_DEV] = "edge", 1138 [FANOUT_DEV] = "fanout", 1139 }; 1140 struct domain_device *parent = child->parent; 1141 1142 sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx " 1143 "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n", 1144 1145 ex_type[parent->dev_type], 1146 SAS_ADDR(parent->sas_addr), 1147 parent->ex_dev.t2t_supp, 1148 parent_phy->phy_id, 1149 1150 ex_type[child->dev_type], 1151 SAS_ADDR(child->sas_addr), 1152 child->ex_dev.t2t_supp, 1153 child_phy->phy_id, 1154 1155 ra_char[parent_phy->routing_attr], 1156 ra_char[child_phy->routing_attr]); 1157 } 1158 1159 static int sas_check_eeds(struct domain_device *child, 1160 struct ex_phy *parent_phy, 1161 struct ex_phy *child_phy) 1162 { 1163 int res = 0; 1164 struct domain_device *parent = child->parent; 1165 1166 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1167 res = -ENODEV; 1168 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1169 "phy S:0x%x, while there is a fanout ex %016llx\n", 1170 SAS_ADDR(parent->sas_addr), 1171 parent_phy->phy_id, 1172 SAS_ADDR(child->sas_addr), 1173 child_phy->phy_id, 1174 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1175 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1176 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1177 SAS_ADDR_SIZE); 1178 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1179 SAS_ADDR_SIZE); 1180 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1181 SAS_ADDR(parent->sas_addr)) || 1182 (SAS_ADDR(parent->port->disc.eeds_a) == 1183 SAS_ADDR(child->sas_addr))) 1184 && 1185 ((SAS_ADDR(parent->port->disc.eeds_b) == 1186 SAS_ADDR(parent->sas_addr)) || 1187 (SAS_ADDR(parent->port->disc.eeds_b) == 1188 SAS_ADDR(child->sas_addr)))) 1189 ; 1190 else { 1191 res = -ENODEV; 1192 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1193 "phy 0x%x link forms a third EEDS!\n", 1194 SAS_ADDR(parent->sas_addr), 1195 parent_phy->phy_id, 1196 SAS_ADDR(child->sas_addr), 1197 child_phy->phy_id); 1198 } 1199 1200 return res; 1201 } 1202 1203 /* Here we spill over 80 columns. It is intentional. 1204 */ 1205 static int sas_check_parent_topology(struct domain_device *child) 1206 { 1207 struct expander_device *child_ex = &child->ex_dev; 1208 struct expander_device *parent_ex; 1209 int i; 1210 int res = 0; 1211 1212 if (!child->parent) 1213 return 0; 1214 1215 if (child->parent->dev_type != EDGE_DEV && 1216 child->parent->dev_type != FANOUT_DEV) 1217 return 0; 1218 1219 parent_ex = &child->parent->ex_dev; 1220 1221 for (i = 0; i < parent_ex->num_phys; i++) { 1222 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1223 struct ex_phy *child_phy; 1224 1225 if (parent_phy->phy_state == PHY_VACANT || 1226 parent_phy->phy_state == PHY_NOT_PRESENT) 1227 continue; 1228 1229 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1230 continue; 1231 1232 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1233 1234 switch (child->parent->dev_type) { 1235 case EDGE_DEV: 1236 if (child->dev_type == FANOUT_DEV) { 1237 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1238 child_phy->routing_attr != TABLE_ROUTING) { 1239 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1240 res = -ENODEV; 1241 } 1242 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1243 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1244 res = sas_check_eeds(child, parent_phy, child_phy); 1245 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1246 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1247 res = -ENODEV; 1248 } 1249 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1250 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1251 (child_phy->routing_attr == TABLE_ROUTING && 1252 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1253 /* All good */; 1254 } else { 1255 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1256 res = -ENODEV; 1257 } 1258 } 1259 break; 1260 case FANOUT_DEV: 1261 if (parent_phy->routing_attr != TABLE_ROUTING || 1262 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1263 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1264 res = -ENODEV; 1265 } 1266 break; 1267 default: 1268 break; 1269 } 1270 } 1271 1272 return res; 1273 } 1274 1275 #define RRI_REQ_SIZE 16 1276 #define RRI_RESP_SIZE 44 1277 1278 static int sas_configure_present(struct domain_device *dev, int phy_id, 1279 u8 *sas_addr, int *index, int *present) 1280 { 1281 int i, res = 0; 1282 struct expander_device *ex = &dev->ex_dev; 1283 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1284 u8 *rri_req; 1285 u8 *rri_resp; 1286 1287 *present = 0; 1288 *index = 0; 1289 1290 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1291 if (!rri_req) 1292 return -ENOMEM; 1293 1294 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1295 if (!rri_resp) { 1296 kfree(rri_req); 1297 return -ENOMEM; 1298 } 1299 1300 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1301 rri_req[9] = phy_id; 1302 1303 for (i = 0; i < ex->max_route_indexes ; i++) { 1304 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1305 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1306 RRI_RESP_SIZE); 1307 if (res) 1308 goto out; 1309 res = rri_resp[2]; 1310 if (res == SMP_RESP_NO_INDEX) { 1311 SAS_DPRINTK("overflow of indexes: dev %016llx " 1312 "phy 0x%x index 0x%x\n", 1313 SAS_ADDR(dev->sas_addr), phy_id, i); 1314 goto out; 1315 } else if (res != SMP_RESP_FUNC_ACC) { 1316 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1317 "result 0x%x\n", __func__, 1318 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1319 goto out; 1320 } 1321 if (SAS_ADDR(sas_addr) != 0) { 1322 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1323 *index = i; 1324 if ((rri_resp[12] & 0x80) == 0x80) 1325 *present = 0; 1326 else 1327 *present = 1; 1328 goto out; 1329 } else if (SAS_ADDR(rri_resp+16) == 0) { 1330 *index = i; 1331 *present = 0; 1332 goto out; 1333 } 1334 } else if (SAS_ADDR(rri_resp+16) == 0 && 1335 phy->last_da_index < i) { 1336 phy->last_da_index = i; 1337 *index = i; 1338 *present = 0; 1339 goto out; 1340 } 1341 } 1342 res = -1; 1343 out: 1344 kfree(rri_req); 1345 kfree(rri_resp); 1346 return res; 1347 } 1348 1349 #define CRI_REQ_SIZE 44 1350 #define CRI_RESP_SIZE 8 1351 1352 static int sas_configure_set(struct domain_device *dev, int phy_id, 1353 u8 *sas_addr, int index, int include) 1354 { 1355 int res; 1356 u8 *cri_req; 1357 u8 *cri_resp; 1358 1359 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1360 if (!cri_req) 1361 return -ENOMEM; 1362 1363 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1364 if (!cri_resp) { 1365 kfree(cri_req); 1366 return -ENOMEM; 1367 } 1368 1369 cri_req[1] = SMP_CONF_ROUTE_INFO; 1370 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1371 cri_req[9] = phy_id; 1372 if (SAS_ADDR(sas_addr) == 0 || !include) 1373 cri_req[12] |= 0x80; 1374 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1375 1376 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1377 CRI_RESP_SIZE); 1378 if (res) 1379 goto out; 1380 res = cri_resp[2]; 1381 if (res == SMP_RESP_NO_INDEX) { 1382 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1383 "index 0x%x\n", 1384 SAS_ADDR(dev->sas_addr), phy_id, index); 1385 } 1386 out: 1387 kfree(cri_req); 1388 kfree(cri_resp); 1389 return res; 1390 } 1391 1392 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1393 u8 *sas_addr, int include) 1394 { 1395 int index; 1396 int present; 1397 int res; 1398 1399 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1400 if (res) 1401 return res; 1402 if (include ^ present) 1403 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1404 1405 return res; 1406 } 1407 1408 /** 1409 * sas_configure_parent -- configure routing table of parent 1410 * parent: parent expander 1411 * child: child expander 1412 * sas_addr: SAS port identifier of device directly attached to child 1413 */ 1414 static int sas_configure_parent(struct domain_device *parent, 1415 struct domain_device *child, 1416 u8 *sas_addr, int include) 1417 { 1418 struct expander_device *ex_parent = &parent->ex_dev; 1419 int res = 0; 1420 int i; 1421 1422 if (parent->parent) { 1423 res = sas_configure_parent(parent->parent, parent, sas_addr, 1424 include); 1425 if (res) 1426 return res; 1427 } 1428 1429 if (ex_parent->conf_route_table == 0) { 1430 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1431 SAS_ADDR(parent->sas_addr)); 1432 return 0; 1433 } 1434 1435 for (i = 0; i < ex_parent->num_phys; i++) { 1436 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1437 1438 if ((phy->routing_attr == TABLE_ROUTING) && 1439 (SAS_ADDR(phy->attached_sas_addr) == 1440 SAS_ADDR(child->sas_addr))) { 1441 res = sas_configure_phy(parent, i, sas_addr, include); 1442 if (res) 1443 return res; 1444 } 1445 } 1446 1447 return res; 1448 } 1449 1450 /** 1451 * sas_configure_routing -- configure routing 1452 * dev: expander device 1453 * sas_addr: port identifier of device directly attached to the expander device 1454 */ 1455 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1456 { 1457 if (dev->parent) 1458 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1459 return 0; 1460 } 1461 1462 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1463 { 1464 if (dev->parent) 1465 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1466 return 0; 1467 } 1468 1469 /** 1470 * sas_discover_expander -- expander discovery 1471 * @ex: pointer to expander domain device 1472 * 1473 * See comment in sas_discover_sata(). 1474 */ 1475 static int sas_discover_expander(struct domain_device *dev) 1476 { 1477 int res; 1478 1479 res = sas_notify_lldd_dev_found(dev); 1480 if (res) 1481 return res; 1482 1483 res = sas_ex_general(dev); 1484 if (res) 1485 goto out_err; 1486 res = sas_ex_manuf_info(dev); 1487 if (res) 1488 goto out_err; 1489 1490 res = sas_expander_discover(dev); 1491 if (res) { 1492 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1493 SAS_ADDR(dev->sas_addr), res); 1494 goto out_err; 1495 } 1496 1497 sas_check_ex_subtractive_boundary(dev); 1498 res = sas_check_parent_topology(dev); 1499 if (res) 1500 goto out_err; 1501 return 0; 1502 out_err: 1503 sas_notify_lldd_dev_gone(dev); 1504 return res; 1505 } 1506 1507 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1508 { 1509 int res = 0; 1510 struct domain_device *dev; 1511 1512 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1513 if (dev->dev_type == EDGE_DEV || 1514 dev->dev_type == FANOUT_DEV) { 1515 struct sas_expander_device *ex = 1516 rphy_to_expander_device(dev->rphy); 1517 1518 if (level == ex->level) 1519 res = sas_ex_discover_devices(dev, -1); 1520 else if (level > 0) 1521 res = sas_ex_discover_devices(port->port_dev, -1); 1522 1523 } 1524 } 1525 1526 return res; 1527 } 1528 1529 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1530 { 1531 int res; 1532 int level; 1533 1534 do { 1535 level = port->disc.max_level; 1536 res = sas_ex_level_discovery(port, level); 1537 mb(); 1538 } while (level < port->disc.max_level); 1539 1540 return res; 1541 } 1542 1543 int sas_discover_root_expander(struct domain_device *dev) 1544 { 1545 int res; 1546 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1547 1548 res = sas_rphy_add(dev->rphy); 1549 if (res) 1550 goto out_err; 1551 1552 ex->level = dev->port->disc.max_level; /* 0 */ 1553 res = sas_discover_expander(dev); 1554 if (res) 1555 goto out_err2; 1556 1557 sas_ex_bfs_disc(dev->port); 1558 1559 return res; 1560 1561 out_err2: 1562 sas_rphy_remove(dev->rphy); 1563 out_err: 1564 return res; 1565 } 1566 1567 /* ---------- Domain revalidation ---------- */ 1568 1569 static int sas_get_phy_discover(struct domain_device *dev, 1570 int phy_id, struct smp_resp *disc_resp) 1571 { 1572 int res; 1573 u8 *disc_req; 1574 1575 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1576 if (!disc_req) 1577 return -ENOMEM; 1578 1579 disc_req[1] = SMP_DISCOVER; 1580 disc_req[9] = phy_id; 1581 1582 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1583 disc_resp, DISCOVER_RESP_SIZE); 1584 if (res) 1585 goto out; 1586 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1587 res = disc_resp->result; 1588 goto out; 1589 } 1590 out: 1591 kfree(disc_req); 1592 return res; 1593 } 1594 1595 static int sas_get_phy_change_count(struct domain_device *dev, 1596 int phy_id, int *pcc) 1597 { 1598 int res; 1599 struct smp_resp *disc_resp; 1600 1601 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1602 if (!disc_resp) 1603 return -ENOMEM; 1604 1605 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1606 if (!res) 1607 *pcc = disc_resp->disc.change_count; 1608 1609 kfree(disc_resp); 1610 return res; 1611 } 1612 1613 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1614 int phy_id, u8 *attached_sas_addr) 1615 { 1616 int res; 1617 struct smp_resp *disc_resp; 1618 struct discover_resp *dr; 1619 1620 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1621 if (!disc_resp) 1622 return -ENOMEM; 1623 dr = &disc_resp->disc; 1624 1625 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1626 if (!res) { 1627 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1628 if (dr->attached_dev_type == 0) 1629 memset(attached_sas_addr, 0, 8); 1630 } 1631 kfree(disc_resp); 1632 return res; 1633 } 1634 1635 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1636 int from_phy, bool update) 1637 { 1638 struct expander_device *ex = &dev->ex_dev; 1639 int res = 0; 1640 int i; 1641 1642 for (i = from_phy; i < ex->num_phys; i++) { 1643 int phy_change_count = 0; 1644 1645 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1646 if (res) 1647 goto out; 1648 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1649 if (update) 1650 ex->ex_phy[i].phy_change_count = 1651 phy_change_count; 1652 *phy_id = i; 1653 return 0; 1654 } 1655 } 1656 out: 1657 return res; 1658 } 1659 1660 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1661 { 1662 int res; 1663 u8 *rg_req; 1664 struct smp_resp *rg_resp; 1665 1666 rg_req = alloc_smp_req(RG_REQ_SIZE); 1667 if (!rg_req) 1668 return -ENOMEM; 1669 1670 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1671 if (!rg_resp) { 1672 kfree(rg_req); 1673 return -ENOMEM; 1674 } 1675 1676 rg_req[1] = SMP_REPORT_GENERAL; 1677 1678 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1679 RG_RESP_SIZE); 1680 if (res) 1681 goto out; 1682 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1683 res = rg_resp->result; 1684 goto out; 1685 } 1686 1687 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1688 out: 1689 kfree(rg_resp); 1690 kfree(rg_req); 1691 return res; 1692 } 1693 /** 1694 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1695 * @dev:domain device to be detect. 1696 * @src_dev: the device which originated BROADCAST(CHANGE). 1697 * 1698 * Add self-configuration expander suport. Suppose two expander cascading, 1699 * when the first level expander is self-configuring, hotplug the disks in 1700 * second level expander, BROADCAST(CHANGE) will not only be originated 1701 * in the second level expander, but also be originated in the first level 1702 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1703 * expander changed count in two level expanders will all increment at least 1704 * once, but the phy which chang count has changed is the source device which 1705 * we concerned. 1706 */ 1707 1708 static int sas_find_bcast_dev(struct domain_device *dev, 1709 struct domain_device **src_dev) 1710 { 1711 struct expander_device *ex = &dev->ex_dev; 1712 int ex_change_count = -1; 1713 int phy_id = -1; 1714 int res; 1715 struct domain_device *ch; 1716 1717 res = sas_get_ex_change_count(dev, &ex_change_count); 1718 if (res) 1719 goto out; 1720 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1721 /* Just detect if this expander phys phy change count changed, 1722 * in order to determine if this expander originate BROADCAST, 1723 * and do not update phy change count field in our structure. 1724 */ 1725 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1726 if (phy_id != -1) { 1727 *src_dev = dev; 1728 ex->ex_change_count = ex_change_count; 1729 SAS_DPRINTK("Expander phy change count has changed\n"); 1730 return res; 1731 } else 1732 SAS_DPRINTK("Expander phys DID NOT change\n"); 1733 } 1734 list_for_each_entry(ch, &ex->children, siblings) { 1735 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1736 res = sas_find_bcast_dev(ch, src_dev); 1737 if (*src_dev) 1738 return res; 1739 } 1740 } 1741 out: 1742 return res; 1743 } 1744 1745 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1746 { 1747 struct expander_device *ex = &dev->ex_dev; 1748 struct domain_device *child, *n; 1749 1750 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1751 child->gone = 1; 1752 if (child->dev_type == EDGE_DEV || 1753 child->dev_type == FANOUT_DEV) 1754 sas_unregister_ex_tree(port, child); 1755 else 1756 sas_unregister_dev(port, child); 1757 } 1758 sas_unregister_dev(port, dev); 1759 } 1760 1761 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1762 int phy_id, bool last) 1763 { 1764 struct expander_device *ex_dev = &parent->ex_dev; 1765 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1766 struct domain_device *child, *n; 1767 if (last) { 1768 list_for_each_entry_safe(child, n, 1769 &ex_dev->children, siblings) { 1770 if (SAS_ADDR(child->sas_addr) == 1771 SAS_ADDR(phy->attached_sas_addr)) { 1772 child->gone = 1; 1773 if (child->dev_type == EDGE_DEV || 1774 child->dev_type == FANOUT_DEV) 1775 sas_unregister_ex_tree(parent->port, child); 1776 else 1777 sas_unregister_dev(parent->port, child); 1778 break; 1779 } 1780 } 1781 parent->gone = 1; 1782 sas_disable_routing(parent, phy->attached_sas_addr); 1783 } 1784 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1785 if (phy->port) { 1786 sas_port_delete_phy(phy->port, phy->phy); 1787 if (phy->port->num_phys == 0) 1788 sas_port_delete(phy->port); 1789 phy->port = NULL; 1790 } 1791 } 1792 1793 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1794 const int level) 1795 { 1796 struct expander_device *ex_root = &root->ex_dev; 1797 struct domain_device *child; 1798 int res = 0; 1799 1800 list_for_each_entry(child, &ex_root->children, siblings) { 1801 if (child->dev_type == EDGE_DEV || 1802 child->dev_type == FANOUT_DEV) { 1803 struct sas_expander_device *ex = 1804 rphy_to_expander_device(child->rphy); 1805 1806 if (level > ex->level) 1807 res = sas_discover_bfs_by_root_level(child, 1808 level); 1809 else if (level == ex->level) 1810 res = sas_ex_discover_devices(child, -1); 1811 } 1812 } 1813 return res; 1814 } 1815 1816 static int sas_discover_bfs_by_root(struct domain_device *dev) 1817 { 1818 int res; 1819 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1820 int level = ex->level+1; 1821 1822 res = sas_ex_discover_devices(dev, -1); 1823 if (res) 1824 goto out; 1825 do { 1826 res = sas_discover_bfs_by_root_level(dev, level); 1827 mb(); 1828 level += 1; 1829 } while (level <= dev->port->disc.max_level); 1830 out: 1831 return res; 1832 } 1833 1834 static int sas_discover_new(struct domain_device *dev, int phy_id) 1835 { 1836 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1837 struct domain_device *child; 1838 bool found = false; 1839 int res, i; 1840 1841 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1842 SAS_ADDR(dev->sas_addr), phy_id); 1843 res = sas_ex_phy_discover(dev, phy_id); 1844 if (res) 1845 goto out; 1846 /* to support the wide port inserted */ 1847 for (i = 0; i < dev->ex_dev.num_phys; i++) { 1848 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; 1849 if (i == phy_id) 1850 continue; 1851 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == 1852 SAS_ADDR(ex_phy->attached_sas_addr)) { 1853 found = true; 1854 break; 1855 } 1856 } 1857 if (found) { 1858 sas_ex_join_wide_port(dev, phy_id); 1859 return 0; 1860 } 1861 res = sas_ex_discover_devices(dev, phy_id); 1862 if (!res) 1863 goto out; 1864 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1865 if (SAS_ADDR(child->sas_addr) == 1866 SAS_ADDR(ex_phy->attached_sas_addr)) { 1867 if (child->dev_type == EDGE_DEV || 1868 child->dev_type == FANOUT_DEV) 1869 res = sas_discover_bfs_by_root(child); 1870 break; 1871 } 1872 } 1873 out: 1874 return res; 1875 } 1876 1877 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1878 { 1879 struct expander_device *ex = &dev->ex_dev; 1880 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1881 u8 attached_sas_addr[8]; 1882 int res; 1883 1884 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1885 switch (res) { 1886 case SMP_RESP_NO_PHY: 1887 phy->phy_state = PHY_NOT_PRESENT; 1888 sas_unregister_devs_sas_addr(dev, phy_id, last); 1889 goto out; break; 1890 case SMP_RESP_PHY_VACANT: 1891 phy->phy_state = PHY_VACANT; 1892 sas_unregister_devs_sas_addr(dev, phy_id, last); 1893 goto out; break; 1894 case SMP_RESP_FUNC_ACC: 1895 break; 1896 } 1897 1898 if (SAS_ADDR(attached_sas_addr) == 0) { 1899 phy->phy_state = PHY_EMPTY; 1900 sas_unregister_devs_sas_addr(dev, phy_id, last); 1901 } else if (SAS_ADDR(attached_sas_addr) == 1902 SAS_ADDR(phy->attached_sas_addr)) { 1903 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1904 SAS_ADDR(dev->sas_addr), phy_id); 1905 sas_ex_phy_discover(dev, phy_id); 1906 } else 1907 res = sas_discover_new(dev, phy_id); 1908 out: 1909 return res; 1910 } 1911 1912 /** 1913 * sas_rediscover - revalidate the domain. 1914 * @dev:domain device to be detect. 1915 * @phy_id: the phy id will be detected. 1916 * 1917 * NOTE: this process _must_ quit (return) as soon as any connection 1918 * errors are encountered. Connection recovery is done elsewhere. 1919 * Discover process only interrogates devices in order to discover the 1920 * domain.For plugging out, we un-register the device only when it is 1921 * the last phy in the port, for other phys in this port, we just delete it 1922 * from the port.For inserting, we do discovery when it is the 1923 * first phy,for other phys in this port, we add it to the port to 1924 * forming the wide-port. 1925 */ 1926 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1927 { 1928 struct expander_device *ex = &dev->ex_dev; 1929 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1930 int res = 0; 1931 int i; 1932 bool last = true; /* is this the last phy of the port */ 1933 1934 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1935 SAS_ADDR(dev->sas_addr), phy_id); 1936 1937 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1938 for (i = 0; i < ex->num_phys; i++) { 1939 struct ex_phy *phy = &ex->ex_phy[i]; 1940 1941 if (i == phy_id) 1942 continue; 1943 if (SAS_ADDR(phy->attached_sas_addr) == 1944 SAS_ADDR(changed_phy->attached_sas_addr)) { 1945 SAS_DPRINTK("phy%d part of wide port with " 1946 "phy%d\n", phy_id, i); 1947 last = false; 1948 break; 1949 } 1950 } 1951 res = sas_rediscover_dev(dev, phy_id, last); 1952 } else 1953 res = sas_discover_new(dev, phy_id); 1954 return res; 1955 } 1956 1957 /** 1958 * sas_revalidate_domain -- revalidate the domain 1959 * @port: port to the domain of interest 1960 * 1961 * NOTE: this process _must_ quit (return) as soon as any connection 1962 * errors are encountered. Connection recovery is done elsewhere. 1963 * Discover process only interrogates devices in order to discover the 1964 * domain. 1965 */ 1966 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1967 { 1968 int res; 1969 struct domain_device *dev = NULL; 1970 1971 res = sas_find_bcast_dev(port_dev, &dev); 1972 if (res) 1973 goto out; 1974 if (dev) { 1975 struct expander_device *ex = &dev->ex_dev; 1976 int i = 0, phy_id; 1977 1978 do { 1979 phy_id = -1; 1980 res = sas_find_bcast_phy(dev, &phy_id, i, true); 1981 if (phy_id == -1) 1982 break; 1983 res = sas_rediscover(dev, phy_id); 1984 i = phy_id + 1; 1985 } while (i < ex->num_phys); 1986 } 1987 out: 1988 return res; 1989 } 1990 1991 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1992 struct request *req) 1993 { 1994 struct domain_device *dev; 1995 int ret, type; 1996 struct request *rsp = req->next_rq; 1997 1998 if (!rsp) { 1999 printk("%s: space for a smp response is missing\n", 2000 __func__); 2001 return -EINVAL; 2002 } 2003 2004 /* no rphy means no smp target support (ie aic94xx host) */ 2005 if (!rphy) 2006 return sas_smp_host_handler(shost, req, rsp); 2007 2008 type = rphy->identify.device_type; 2009 2010 if (type != SAS_EDGE_EXPANDER_DEVICE && 2011 type != SAS_FANOUT_EXPANDER_DEVICE) { 2012 printk("%s: can we send a smp request to a device?\n", 2013 __func__); 2014 return -EINVAL; 2015 } 2016 2017 dev = sas_find_dev_by_rphy(rphy); 2018 if (!dev) { 2019 printk("%s: fail to find a domain_device?\n", __func__); 2020 return -EINVAL; 2021 } 2022 2023 /* do we need to support multiple segments? */ 2024 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 2025 printk("%s: multiple segments req %u %u, rsp %u %u\n", 2026 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 2027 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 2028 return -EINVAL; 2029 } 2030 2031 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2032 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2033 if (ret > 0) { 2034 /* positive number is the untransferred residual */ 2035 rsp->resid_len = ret; 2036 req->resid_len = 0; 2037 ret = 0; 2038 } else if (ret == 0) { 2039 rsp->resid_len = 0; 2040 req->resid_len = 0; 2041 } 2042 2043 return ret; 2044 } 2045