xref: /linux/drivers/scsi/libsas/sas_expander.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10 
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <linux/unaligned.h>
15 
16 #include "sas_internal.h"
17 
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22 
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 			     u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28 
29 static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy)
30 {
31 	sas_port_add_phy(port, ex_phy->phy);
32 	ex_phy->port = port;
33 	ex_phy->phy_state = PHY_DEVICE_DISCOVERED;
34 }
35 
36 static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id)
37 {
38 	struct expander_device *ex = &dev->ex_dev;
39 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
40 
41 	if (!ex->parent_port) {
42 		ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id);
43 		/* FIXME: error handling */
44 		BUG_ON(!ex->parent_port);
45 		BUG_ON(sas_port_add(ex->parent_port));
46 		sas_port_mark_backlink(ex->parent_port);
47 	}
48 	sas_port_add_ex_phy(ex->parent_port, ex_phy);
49 }
50 
51 /* ---------- SMP task management ---------- */
52 
53 /* Give it some long enough timeout. In seconds. */
54 #define SMP_TIMEOUT 10
55 
56 static int smp_execute_task_sg(struct domain_device *dev,
57 		struct scatterlist *req, struct scatterlist *resp)
58 {
59 	int res, retry;
60 	struct sas_task *task = NULL;
61 	struct sas_internal *i =
62 		to_sas_internal(dev->port->ha->shost->transportt);
63 	struct sas_ha_struct *ha = dev->port->ha;
64 
65 	pm_runtime_get_sync(ha->dev);
66 	mutex_lock(&dev->ex_dev.cmd_mutex);
67 	for (retry = 0; retry < 3; retry++) {
68 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
69 			res = -ECOMM;
70 			break;
71 		}
72 
73 		task = sas_alloc_slow_task(GFP_KERNEL);
74 		if (!task) {
75 			res = -ENOMEM;
76 			break;
77 		}
78 		task->dev = dev;
79 		task->task_proto = dev->tproto;
80 		task->smp_task.smp_req = *req;
81 		task->smp_task.smp_resp = *resp;
82 
83 		task->task_done = sas_task_internal_done;
84 
85 		task->slow_task->timer.function = sas_task_internal_timedout;
86 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
87 		add_timer(&task->slow_task->timer);
88 
89 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
90 
91 		if (res) {
92 			timer_delete_sync(&task->slow_task->timer);
93 			pr_notice("executing SMP task failed:%d\n", res);
94 			break;
95 		}
96 
97 		wait_for_completion(&task->slow_task->completion);
98 		res = -ECOMM;
99 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
100 			pr_notice("smp task timed out or aborted\n");
101 			i->dft->lldd_abort_task(task);
102 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
103 				pr_notice("SMP task aborted and not done\n");
104 				break;
105 			}
106 		}
107 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
108 		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
109 			res = 0;
110 			break;
111 		}
112 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
113 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
114 			/* no error, but return the number of bytes of
115 			 * underrun */
116 			res = task->task_status.residual;
117 			break;
118 		}
119 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 		    task->task_status.stat == SAS_DATA_OVERRUN) {
121 			res = -EMSGSIZE;
122 			break;
123 		}
124 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
125 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
126 			break;
127 		else {
128 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
129 				  __func__,
130 				  SAS_ADDR(dev->sas_addr),
131 				  task->task_status.resp,
132 				  task->task_status.stat);
133 			sas_free_task(task);
134 			task = NULL;
135 		}
136 	}
137 	mutex_unlock(&dev->ex_dev.cmd_mutex);
138 	pm_runtime_put_sync(ha->dev);
139 
140 	BUG_ON(retry == 3 && task != NULL);
141 	sas_free_task(task);
142 	return res;
143 }
144 
145 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
146 			    void *resp, int resp_size)
147 {
148 	struct scatterlist req_sg;
149 	struct scatterlist resp_sg;
150 
151 	sg_init_one(&req_sg, req, req_size);
152 	sg_init_one(&resp_sg, resp, resp_size);
153 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
154 }
155 
156 /* ---------- Allocations ---------- */
157 
158 static inline void *alloc_smp_req(int size)
159 {
160 	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
161 	if (p)
162 		p[0] = SMP_REQUEST;
163 	return p;
164 }
165 
166 static inline void *alloc_smp_resp(int size)
167 {
168 	return kzalloc(size, GFP_KERNEL);
169 }
170 
171 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
172 {
173 	switch (phy->routing_attr) {
174 	case TABLE_ROUTING:
175 		if (dev->ex_dev.t2t_supp)
176 			return 'U';
177 		else
178 			return 'T';
179 	case DIRECT_ROUTING:
180 		return 'D';
181 	case SUBTRACTIVE_ROUTING:
182 		return 'S';
183 	default:
184 		return '?';
185 	}
186 }
187 
188 static enum sas_device_type to_dev_type(struct discover_resp *dr)
189 {
190 	/* This is detecting a failure to transmit initial dev to host
191 	 * FIS as described in section J.5 of sas-2 r16
192 	 */
193 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
194 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
195 		return SAS_SATA_PENDING;
196 	else
197 		return dr->attached_dev_type;
198 }
199 
200 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
201 			   struct smp_disc_resp *disc_resp)
202 {
203 	enum sas_device_type dev_type;
204 	enum sas_linkrate linkrate;
205 	u8 sas_addr[SAS_ADDR_SIZE];
206 	struct discover_resp *dr = &disc_resp->disc;
207 	struct sas_ha_struct *ha = dev->port->ha;
208 	struct expander_device *ex = &dev->ex_dev;
209 	struct ex_phy *phy = &ex->ex_phy[phy_id];
210 	struct sas_rphy *rphy = dev->rphy;
211 	bool new_phy = !phy->phy;
212 	char *type;
213 
214 	if (new_phy) {
215 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
216 			return;
217 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
218 
219 		/* FIXME: error_handling */
220 		BUG_ON(!phy->phy);
221 	}
222 
223 	switch (disc_resp->result) {
224 	case SMP_RESP_PHY_VACANT:
225 		phy->phy_state = PHY_VACANT;
226 		break;
227 	default:
228 		phy->phy_state = PHY_NOT_PRESENT;
229 		break;
230 	case SMP_RESP_FUNC_ACC:
231 		phy->phy_state = PHY_EMPTY; /* do not know yet */
232 		break;
233 	}
234 
235 	/* check if anything important changed to squelch debug */
236 	dev_type = phy->attached_dev_type;
237 	linkrate  = phy->linkrate;
238 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
239 
240 	/* Handle vacant phy - rest of dr data is not valid so skip it */
241 	if (phy->phy_state == PHY_VACANT) {
242 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
243 		phy->attached_dev_type = SAS_PHY_UNUSED;
244 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
245 			phy->phy_id = phy_id;
246 			goto skip;
247 		} else
248 			goto out;
249 	}
250 
251 	phy->attached_dev_type = to_dev_type(dr);
252 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
253 		goto out;
254 	phy->phy_id = phy_id;
255 	phy->linkrate = dr->linkrate;
256 	phy->attached_sata_host = dr->attached_sata_host;
257 	phy->attached_sata_dev  = dr->attached_sata_dev;
258 	phy->attached_sata_ps   = dr->attached_sata_ps;
259 	phy->attached_iproto = dr->iproto << 1;
260 	phy->attached_tproto = dr->tproto << 1;
261 	/* help some expanders that fail to zero sas_address in the 'no
262 	 * device' case
263 	 */
264 	if (phy->attached_dev_type == SAS_PHY_UNUSED)
265 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
266 	else
267 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
268 	phy->attached_phy_id = dr->attached_phy_id;
269 	phy->phy_change_count = dr->change_count;
270 	phy->routing_attr = dr->routing_attr;
271 	phy->virtual = dr->virtual;
272 	phy->last_da_index = -1;
273 
274 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
275 	phy->phy->identify.device_type = dr->attached_dev_type;
276 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
277 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
278 	if (!phy->attached_tproto && dr->attached_sata_dev)
279 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
280 	phy->phy->identify.phy_identifier = phy_id;
281 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
282 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
283 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
284 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
285 	phy->phy->negotiated_linkrate = phy->linkrate;
286 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
287 
288  skip:
289 	if (new_phy)
290 		if (sas_phy_add(phy->phy)) {
291 			sas_phy_free(phy->phy);
292 			return;
293 		}
294 
295  out:
296 	switch (phy->attached_dev_type) {
297 	case SAS_SATA_PENDING:
298 		type = "stp pending";
299 		break;
300 	case SAS_PHY_UNUSED:
301 		type = "no device";
302 		break;
303 	case SAS_END_DEVICE:
304 		if (phy->attached_iproto) {
305 			if (phy->attached_tproto)
306 				type = "host+target";
307 			else
308 				type = "host";
309 		} else {
310 			if (dr->attached_sata_dev)
311 				type = "stp";
312 			else
313 				type = "ssp";
314 		}
315 		break;
316 	case SAS_EDGE_EXPANDER_DEVICE:
317 	case SAS_FANOUT_EXPANDER_DEVICE:
318 		type = "smp";
319 		break;
320 	default:
321 		type = "unknown";
322 	}
323 
324 	/* this routine is polled by libata error recovery so filter
325 	 * unimportant messages
326 	 */
327 	if (new_phy || phy->attached_dev_type != dev_type ||
328 	    phy->linkrate != linkrate ||
329 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
330 		/* pass */;
331 	else
332 		return;
333 
334 	/* if the attached device type changed and ata_eh is active,
335 	 * make sure we run revalidation when eh completes (see:
336 	 * sas_enable_revalidation)
337 	 */
338 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
339 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
340 
341 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
342 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
343 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
344 		 sas_route_char(dev, phy), phy->linkrate,
345 		 SAS_ADDR(phy->attached_sas_addr), type);
346 }
347 
348 /* check if we have an existing attached ata device on this expander phy */
349 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
350 {
351 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
352 	struct domain_device *dev;
353 	struct sas_rphy *rphy;
354 
355 	if (!ex_phy->port)
356 		return NULL;
357 
358 	rphy = ex_phy->port->rphy;
359 	if (!rphy)
360 		return NULL;
361 
362 	dev = sas_find_dev_by_rphy(rphy);
363 
364 	if (dev && dev_is_sata(dev))
365 		return dev;
366 
367 	return NULL;
368 }
369 
370 #define DISCOVER_REQ_SIZE  16
371 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
372 
373 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
374 				      struct smp_disc_resp *disc_resp,
375 				      int single)
376 {
377 	struct discover_resp *dr = &disc_resp->disc;
378 	int res;
379 
380 	disc_req[9] = single;
381 
382 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
383 			       disc_resp, DISCOVER_RESP_SIZE);
384 	if (res)
385 		return res;
386 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
387 		pr_notice("Found loopback topology, just ignore it!\n");
388 		return 0;
389 	}
390 	sas_set_ex_phy(dev, single, disc_resp);
391 	return 0;
392 }
393 
394 int sas_ex_phy_discover(struct domain_device *dev, int single)
395 {
396 	struct expander_device *ex = &dev->ex_dev;
397 	int  res = 0;
398 	u8   *disc_req;
399 	struct smp_disc_resp *disc_resp;
400 
401 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
402 	if (!disc_req)
403 		return -ENOMEM;
404 
405 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
406 	if (!disc_resp) {
407 		kfree(disc_req);
408 		return -ENOMEM;
409 	}
410 
411 	disc_req[1] = SMP_DISCOVER;
412 
413 	if (0 <= single && single < ex->num_phys) {
414 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
415 	} else {
416 		int i;
417 
418 		for (i = 0; i < ex->num_phys; i++) {
419 			res = sas_ex_phy_discover_helper(dev, disc_req,
420 							 disc_resp, i);
421 			if (res)
422 				goto out_err;
423 		}
424 	}
425 out_err:
426 	kfree(disc_resp);
427 	kfree(disc_req);
428 	return res;
429 }
430 
431 static int sas_expander_discover(struct domain_device *dev)
432 {
433 	struct expander_device *ex = &dev->ex_dev;
434 	int res;
435 
436 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
437 	if (!ex->ex_phy)
438 		return -ENOMEM;
439 
440 	res = sas_ex_phy_discover(dev, -1);
441 	if (res)
442 		goto out_err;
443 
444 	return 0;
445  out_err:
446 	kfree(ex->ex_phy);
447 	ex->ex_phy = NULL;
448 	return res;
449 }
450 
451 #define MAX_EXPANDER_PHYS 128
452 
453 #define RG_REQ_SIZE   8
454 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
455 
456 static int sas_ex_general(struct domain_device *dev)
457 {
458 	u8 *rg_req;
459 	struct smp_rg_resp *rg_resp;
460 	struct report_general_resp *rg;
461 	int res;
462 	int i;
463 
464 	rg_req = alloc_smp_req(RG_REQ_SIZE);
465 	if (!rg_req)
466 		return -ENOMEM;
467 
468 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
469 	if (!rg_resp) {
470 		kfree(rg_req);
471 		return -ENOMEM;
472 	}
473 
474 	rg_req[1] = SMP_REPORT_GENERAL;
475 
476 	for (i = 0; i < 5; i++) {
477 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
478 				       RG_RESP_SIZE);
479 
480 		if (res) {
481 			pr_notice("RG to ex %016llx failed:0x%x\n",
482 				  SAS_ADDR(dev->sas_addr), res);
483 			goto out;
484 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
485 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
486 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
487 			res = rg_resp->result;
488 			goto out;
489 		}
490 
491 		rg = &rg_resp->rg;
492 		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
493 		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
494 		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
495 		dev->ex_dev.t2t_supp = rg->t2t_supp;
496 		dev->ex_dev.conf_route_table = rg->conf_route_table;
497 		dev->ex_dev.configuring = rg->configuring;
498 		memcpy(dev->ex_dev.enclosure_logical_id,
499 		       rg->enclosure_logical_id, 8);
500 
501 		if (dev->ex_dev.configuring) {
502 			pr_debug("RG: ex %016llx self-configuring...\n",
503 				 SAS_ADDR(dev->sas_addr));
504 			schedule_timeout_interruptible(5*HZ);
505 		} else
506 			break;
507 	}
508 out:
509 	kfree(rg_req);
510 	kfree(rg_resp);
511 	return res;
512 }
513 
514 static void ex_assign_manuf_info(struct domain_device *dev, void
515 					*_mi_resp)
516 {
517 	u8 *mi_resp = _mi_resp;
518 	struct sas_rphy *rphy = dev->rphy;
519 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
520 
521 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
522 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
523 	memcpy(edev->product_rev, mi_resp + 36,
524 	       SAS_EXPANDER_PRODUCT_REV_LEN);
525 
526 	if (mi_resp[8] & 1) {
527 		memcpy(edev->component_vendor_id, mi_resp + 40,
528 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
529 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
530 		edev->component_revision_id = mi_resp[50];
531 	}
532 }
533 
534 #define MI_REQ_SIZE   8
535 #define MI_RESP_SIZE 64
536 
537 static int sas_ex_manuf_info(struct domain_device *dev)
538 {
539 	u8 *mi_req;
540 	u8 *mi_resp;
541 	int res;
542 
543 	mi_req = alloc_smp_req(MI_REQ_SIZE);
544 	if (!mi_req)
545 		return -ENOMEM;
546 
547 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
548 	if (!mi_resp) {
549 		kfree(mi_req);
550 		return -ENOMEM;
551 	}
552 
553 	mi_req[1] = SMP_REPORT_MANUF_INFO;
554 
555 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
556 	if (res) {
557 		pr_notice("MI: ex %016llx failed:0x%x\n",
558 			  SAS_ADDR(dev->sas_addr), res);
559 		goto out;
560 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
561 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
562 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
563 		goto out;
564 	}
565 
566 	ex_assign_manuf_info(dev, mi_resp);
567 out:
568 	kfree(mi_req);
569 	kfree(mi_resp);
570 	return res;
571 }
572 
573 #define PC_REQ_SIZE  44
574 #define PC_RESP_SIZE 8
575 
576 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
577 			enum phy_func phy_func,
578 			struct sas_phy_linkrates *rates)
579 {
580 	u8 *pc_req;
581 	u8 *pc_resp;
582 	int res;
583 
584 	pc_req = alloc_smp_req(PC_REQ_SIZE);
585 	if (!pc_req)
586 		return -ENOMEM;
587 
588 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
589 	if (!pc_resp) {
590 		kfree(pc_req);
591 		return -ENOMEM;
592 	}
593 
594 	pc_req[1] = SMP_PHY_CONTROL;
595 	pc_req[9] = phy_id;
596 	pc_req[10] = phy_func;
597 	if (rates) {
598 		pc_req[32] = rates->minimum_linkrate << 4;
599 		pc_req[33] = rates->maximum_linkrate << 4;
600 	}
601 
602 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
603 	if (res) {
604 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
605 		       SAS_ADDR(dev->sas_addr), phy_id, res);
606 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
607 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
608 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
609 		res = pc_resp[2];
610 	}
611 	kfree(pc_resp);
612 	kfree(pc_req);
613 	return res;
614 }
615 
616 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
617 {
618 	struct expander_device *ex = &dev->ex_dev;
619 	struct ex_phy *phy = &ex->ex_phy[phy_id];
620 
621 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
622 	phy->linkrate = SAS_PHY_DISABLED;
623 }
624 
625 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
626 {
627 	struct expander_device *ex = &dev->ex_dev;
628 	int i;
629 
630 	for (i = 0; i < ex->num_phys; i++) {
631 		struct ex_phy *phy = &ex->ex_phy[i];
632 
633 		if (phy->phy_state == PHY_VACANT ||
634 		    phy->phy_state == PHY_NOT_PRESENT)
635 			continue;
636 
637 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
638 			sas_ex_disable_phy(dev, i);
639 	}
640 }
641 
642 static int sas_dev_present_in_domain(struct asd_sas_port *port,
643 					    u8 *sas_addr)
644 {
645 	struct domain_device *dev;
646 
647 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
648 		return 1;
649 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
650 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
651 			return 1;
652 	}
653 	return 0;
654 }
655 
656 #define RPEL_REQ_SIZE	16
657 #define RPEL_RESP_SIZE	32
658 int sas_smp_get_phy_events(struct sas_phy *phy)
659 {
660 	int res;
661 	u8 *req;
662 	u8 *resp;
663 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
664 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
665 
666 	req = alloc_smp_req(RPEL_REQ_SIZE);
667 	if (!req)
668 		return -ENOMEM;
669 
670 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
671 	if (!resp) {
672 		kfree(req);
673 		return -ENOMEM;
674 	}
675 
676 	req[1] = SMP_REPORT_PHY_ERR_LOG;
677 	req[9] = phy->number;
678 
679 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
680 			       resp, RPEL_RESP_SIZE);
681 
682 	if (res)
683 		goto out;
684 
685 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
686 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
687 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
688 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
689 
690  out:
691 	kfree(req);
692 	kfree(resp);
693 	return res;
694 
695 }
696 
697 #ifdef CONFIG_SCSI_SAS_ATA
698 
699 #define RPS_REQ_SIZE  16
700 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
701 
702 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
703 			    struct smp_rps_resp *rps_resp)
704 {
705 	int res;
706 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
707 	u8 *resp = (u8 *)rps_resp;
708 
709 	if (!rps_req)
710 		return -ENOMEM;
711 
712 	rps_req[1] = SMP_REPORT_PHY_SATA;
713 	rps_req[9] = phy_id;
714 
715 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
716 			       rps_resp, RPS_RESP_SIZE);
717 
718 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
719 	 * standards cockup here.  sas-2 explicitly specifies the FIS
720 	 * should be encoded so that FIS type is in resp[24].
721 	 * However, some expanders endian reverse this.  Undo the
722 	 * reversal here */
723 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
724 		int i;
725 
726 		for (i = 0; i < 5; i++) {
727 			int j = 24 + (i*4);
728 			u8 a, b;
729 			a = resp[j + 0];
730 			b = resp[j + 1];
731 			resp[j + 0] = resp[j + 3];
732 			resp[j + 1] = resp[j + 2];
733 			resp[j + 2] = b;
734 			resp[j + 3] = a;
735 		}
736 	}
737 
738 	kfree(rps_req);
739 	return res;
740 }
741 #endif
742 
743 static void sas_ex_get_linkrate(struct domain_device *parent,
744 				       struct domain_device *child,
745 				       struct ex_phy *parent_phy)
746 {
747 	struct expander_device *parent_ex = &parent->ex_dev;
748 	struct sas_port *port;
749 	int i;
750 
751 	child->pathways = 0;
752 
753 	port = parent_phy->port;
754 
755 	for (i = 0; i < parent_ex->num_phys; i++) {
756 		struct ex_phy *phy = &parent_ex->ex_phy[i];
757 
758 		if (phy->phy_state == PHY_VACANT ||
759 		    phy->phy_state == PHY_NOT_PRESENT)
760 			continue;
761 
762 		if (sas_phy_match_dev_addr(child, phy)) {
763 			child->min_linkrate = min(parent->min_linkrate,
764 						  phy->linkrate);
765 			child->max_linkrate = max(parent->max_linkrate,
766 						  phy->linkrate);
767 			child->pathways++;
768 			sas_port_add_phy(port, phy->phy);
769 		}
770 	}
771 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
772 	child->pathways = min(child->pathways, parent->pathways);
773 }
774 
775 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
776 			  struct domain_device *child, int phy_id)
777 {
778 	struct sas_rphy *rphy;
779 	int res;
780 
781 	child->dev_type = SAS_END_DEVICE;
782 	rphy = sas_end_device_alloc(phy->port);
783 	if (!rphy)
784 		return -ENOMEM;
785 
786 	child->tproto = phy->attached_tproto;
787 	sas_init_dev(child);
788 
789 	child->rphy = rphy;
790 	get_device(&rphy->dev);
791 	rphy->identify.phy_identifier = phy_id;
792 	sas_fill_in_rphy(child, rphy);
793 
794 	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
795 
796 	res = sas_notify_lldd_dev_found(child);
797 	if (res) {
798 		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
799 			  SAS_ADDR(child->sas_addr),
800 			  SAS_ADDR(parent->sas_addr), phy_id, res);
801 		sas_rphy_free(child->rphy);
802 		list_del(&child->disco_list_node);
803 		return res;
804 	}
805 
806 	return 0;
807 }
808 
809 static struct domain_device *sas_ex_discover_end_dev(
810 	struct domain_device *parent, int phy_id)
811 {
812 	struct expander_device *parent_ex = &parent->ex_dev;
813 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
814 	struct domain_device *child = NULL;
815 	int res;
816 
817 	if (phy->attached_sata_host || phy->attached_sata_ps)
818 		return NULL;
819 
820 	child = sas_alloc_device();
821 	if (!child)
822 		return NULL;
823 
824 	kref_get(&parent->kref);
825 	child->parent = parent;
826 	child->port   = parent->port;
827 	child->iproto = phy->attached_iproto;
828 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
829 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
830 	if (!phy->port) {
831 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
832 		if (unlikely(!phy->port))
833 			goto out_err;
834 		if (unlikely(sas_port_add(phy->port) != 0)) {
835 			sas_port_free(phy->port);
836 			goto out_err;
837 		}
838 	}
839 	sas_ex_get_linkrate(parent, child, phy);
840 	sas_device_set_phy(child, phy->port);
841 
842 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
843 		res = sas_ata_add_dev(parent, phy, child, phy_id);
844 	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845 		res = sas_ex_add_dev(parent, phy, child, phy_id);
846 	} else {
847 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
848 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 			  phy_id);
850 		res = -ENODEV;
851 	}
852 
853 	if (res)
854 		goto out_free;
855 
856 	list_add_tail(&child->siblings, &parent_ex->children);
857 	return child;
858 
859  out_free:
860 	sas_port_delete(phy->port);
861  out_err:
862 	phy->port = NULL;
863 	sas_put_device(child);
864 	return NULL;
865 }
866 
867 /* See if this phy is part of a wide port */
868 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
869 {
870 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
871 	int i;
872 
873 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
874 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
875 
876 		if (ephy == phy)
877 			continue;
878 
879 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
880 			    SAS_ADDR_SIZE) && ephy->port) {
881 			sas_port_add_ex_phy(ephy->port, phy);
882 			return true;
883 		}
884 	}
885 
886 	return false;
887 }
888 
889 static struct domain_device *sas_ex_discover_expander(
890 	struct domain_device *parent, int phy_id)
891 {
892 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
893 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
894 	struct domain_device *child = NULL;
895 	struct sas_rphy *rphy;
896 	struct sas_expander_device *edev;
897 	struct asd_sas_port *port;
898 	int res;
899 
900 	if (phy->routing_attr == DIRECT_ROUTING) {
901 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
902 			SAS_ADDR(parent->sas_addr), phy_id,
903 			SAS_ADDR(phy->attached_sas_addr),
904 			phy->attached_phy_id);
905 		return NULL;
906 	}
907 	child = sas_alloc_device();
908 	if (!child)
909 		return NULL;
910 
911 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
912 	/* FIXME: better error handling */
913 	BUG_ON(sas_port_add(phy->port) != 0);
914 
915 
916 	switch (phy->attached_dev_type) {
917 	case SAS_EDGE_EXPANDER_DEVICE:
918 		rphy = sas_expander_alloc(phy->port,
919 					  SAS_EDGE_EXPANDER_DEVICE);
920 		break;
921 	case SAS_FANOUT_EXPANDER_DEVICE:
922 		rphy = sas_expander_alloc(phy->port,
923 					  SAS_FANOUT_EXPANDER_DEVICE);
924 		break;
925 	default:
926 		rphy = NULL;	/* shut gcc up */
927 		BUG();
928 	}
929 	port = parent->port;
930 	child->rphy = rphy;
931 	get_device(&rphy->dev);
932 	edev = rphy_to_expander_device(rphy);
933 	child->dev_type = phy->attached_dev_type;
934 	kref_get(&parent->kref);
935 	child->parent = parent;
936 	child->port = port;
937 	child->iproto = phy->attached_iproto;
938 	child->tproto = phy->attached_tproto;
939 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
940 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
941 	sas_ex_get_linkrate(parent, child, phy);
942 	edev->level = parent_ex->level + 1;
943 	parent->port->disc.max_level = max(parent->port->disc.max_level,
944 					   edev->level);
945 	sas_init_dev(child);
946 	sas_fill_in_rphy(child, rphy);
947 	sas_rphy_add(rphy);
948 
949 	spin_lock_irq(&parent->port->dev_list_lock);
950 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
951 	spin_unlock_irq(&parent->port->dev_list_lock);
952 
953 	res = sas_discover_expander(child);
954 	if (res) {
955 		sas_rphy_delete(rphy);
956 		spin_lock_irq(&parent->port->dev_list_lock);
957 		list_del(&child->dev_list_node);
958 		spin_unlock_irq(&parent->port->dev_list_lock);
959 		sas_put_device(child);
960 		sas_port_delete(phy->port);
961 		phy->port = NULL;
962 		return NULL;
963 	}
964 	list_add_tail(&child->siblings, &parent->ex_dev.children);
965 	return child;
966 }
967 
968 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
969 {
970 	struct expander_device *ex = &dev->ex_dev;
971 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
972 	struct domain_device *child = NULL;
973 	int res = 0;
974 
975 	/* Phy state */
976 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
977 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
978 			res = sas_ex_phy_discover(dev, phy_id);
979 		if (res)
980 			return res;
981 	}
982 
983 	/* Parent and domain coherency */
984 	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
985 		sas_ex_add_parent_port(dev, phy_id);
986 		return 0;
987 	}
988 	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
989 		sas_ex_add_parent_port(dev, phy_id);
990 		if (ex_phy->routing_attr == TABLE_ROUTING)
991 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
992 		return 0;
993 	}
994 
995 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
996 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
997 
998 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
999 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1000 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1001 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1002 		}
1003 		return 0;
1004 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1005 		return 0;
1006 
1007 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1008 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1009 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1010 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1011 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012 			ex_phy->attached_dev_type,
1013 			SAS_ADDR(dev->sas_addr),
1014 			phy_id);
1015 		return 0;
1016 	}
1017 
1018 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1019 	if (res) {
1020 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1022 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1023 		return res;
1024 	}
1025 
1026 	if (sas_ex_join_wide_port(dev, phy_id)) {
1027 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1029 		return res;
1030 	}
1031 
1032 	switch (ex_phy->attached_dev_type) {
1033 	case SAS_END_DEVICE:
1034 	case SAS_SATA_PENDING:
1035 		child = sas_ex_discover_end_dev(dev, phy_id);
1036 		break;
1037 	case SAS_FANOUT_EXPANDER_DEVICE:
1038 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1039 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040 				 SAS_ADDR(ex_phy->attached_sas_addr),
1041 				 ex_phy->attached_phy_id,
1042 				 SAS_ADDR(dev->sas_addr),
1043 				 phy_id);
1044 			sas_ex_disable_phy(dev, phy_id);
1045 			return res;
1046 		} else
1047 			memcpy(dev->port->disc.fanout_sas_addr,
1048 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1049 		fallthrough;
1050 	case SAS_EDGE_EXPANDER_DEVICE:
1051 		child = sas_ex_discover_expander(dev, phy_id);
1052 		break;
1053 	default:
1054 		break;
1055 	}
1056 
1057 	if (!child)
1058 		pr_notice("ex %016llx phy%02d failed to discover\n",
1059 			  SAS_ADDR(dev->sas_addr), phy_id);
1060 	return res;
1061 }
1062 
1063 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1064 {
1065 	struct expander_device *ex = &dev->ex_dev;
1066 	int i;
1067 
1068 	for (i = 0; i < ex->num_phys; i++) {
1069 		struct ex_phy *phy = &ex->ex_phy[i];
1070 
1071 		if (phy->phy_state == PHY_VACANT ||
1072 		    phy->phy_state == PHY_NOT_PRESENT)
1073 			continue;
1074 
1075 		if (dev_is_expander(phy->attached_dev_type) &&
1076 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1077 
1078 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1079 
1080 			return 1;
1081 		}
1082 	}
1083 	return 0;
1084 }
1085 
1086 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1087 {
1088 	struct expander_device *ex = &dev->ex_dev;
1089 	struct domain_device *child;
1090 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1091 
1092 	list_for_each_entry(child, &ex->children, siblings) {
1093 		if (!dev_is_expander(child->dev_type))
1094 			continue;
1095 		if (sub_addr[0] == 0) {
1096 			sas_find_sub_addr(child, sub_addr);
1097 			continue;
1098 		} else {
1099 			u8 s2[SAS_ADDR_SIZE];
1100 
1101 			if (sas_find_sub_addr(child, s2) &&
1102 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1103 
1104 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105 					  SAS_ADDR(dev->sas_addr),
1106 					  SAS_ADDR(child->sas_addr),
1107 					  SAS_ADDR(s2),
1108 					  SAS_ADDR(sub_addr));
1109 
1110 				sas_ex_disable_port(child, s2);
1111 			}
1112 		}
1113 	}
1114 	return 0;
1115 }
1116 /**
1117  * sas_ex_discover_devices - discover devices attached to this expander
1118  * @dev: pointer to the expander domain device
1119  * @single: if you want to do a single phy, else set to -1;
1120  *
1121  * Configure this expander for use with its devices and register the
1122  * devices of this expander.
1123  */
1124 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1125 {
1126 	struct expander_device *ex = &dev->ex_dev;
1127 	int i = 0, end = ex->num_phys;
1128 	int res = 0;
1129 
1130 	if (0 <= single && single < end) {
1131 		i = single;
1132 		end = i+1;
1133 	}
1134 
1135 	for ( ; i < end; i++) {
1136 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1137 
1138 		if (ex_phy->phy_state == PHY_VACANT ||
1139 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1140 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1141 			continue;
1142 
1143 		switch (ex_phy->linkrate) {
1144 		case SAS_PHY_DISABLED:
1145 		case SAS_PHY_RESET_PROBLEM:
1146 		case SAS_SATA_PORT_SELECTOR:
1147 			continue;
1148 		default:
1149 			res = sas_ex_discover_dev(dev, i);
1150 			if (res)
1151 				break;
1152 			continue;
1153 		}
1154 	}
1155 
1156 	if (!res)
1157 		sas_check_level_subtractive_boundary(dev);
1158 
1159 	return res;
1160 }
1161 
1162 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1163 {
1164 	struct expander_device *ex = &dev->ex_dev;
1165 	int i;
1166 	u8  *sub_sas_addr = NULL;
1167 
1168 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1169 		return 0;
1170 
1171 	for (i = 0; i < ex->num_phys; i++) {
1172 		struct ex_phy *phy = &ex->ex_phy[i];
1173 
1174 		if (phy->phy_state == PHY_VACANT ||
1175 		    phy->phy_state == PHY_NOT_PRESENT)
1176 			continue;
1177 
1178 		if (dev_is_expander(phy->attached_dev_type) &&
1179 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1180 
1181 			if (!sub_sas_addr)
1182 				sub_sas_addr = &phy->attached_sas_addr[0];
1183 			else if (SAS_ADDR(sub_sas_addr) !=
1184 				 SAS_ADDR(phy->attached_sas_addr)) {
1185 
1186 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187 					  SAS_ADDR(dev->sas_addr), i,
1188 					  SAS_ADDR(phy->attached_sas_addr),
1189 					  SAS_ADDR(sub_sas_addr));
1190 				sas_ex_disable_phy(dev, i);
1191 			}
1192 		}
1193 	}
1194 	return 0;
1195 }
1196 
1197 static void sas_print_parent_topology_bug(struct domain_device *child,
1198 						 struct ex_phy *parent_phy,
1199 						 struct ex_phy *child_phy)
1200 {
1201 	static const char *ex_type[] = {
1202 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1203 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1204 	};
1205 	struct domain_device *parent = child->parent;
1206 
1207 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208 		  ex_type[parent->dev_type],
1209 		  SAS_ADDR(parent->sas_addr),
1210 		  parent_phy->phy_id,
1211 
1212 		  ex_type[child->dev_type],
1213 		  SAS_ADDR(child->sas_addr),
1214 		  child_phy->phy_id,
1215 
1216 		  sas_route_char(parent, parent_phy),
1217 		  sas_route_char(child, child_phy));
1218 }
1219 
1220 static bool sas_eeds_valid(struct domain_device *parent,
1221 			   struct domain_device *child)
1222 {
1223 	struct sas_discovery *disc = &parent->port->disc;
1224 
1225 	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1226 		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1227 	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1228 		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1229 }
1230 
1231 static int sas_check_eeds(struct domain_device *child,
1232 			  struct ex_phy *parent_phy,
1233 			  struct ex_phy *child_phy)
1234 {
1235 	int res = 0;
1236 	struct domain_device *parent = child->parent;
1237 	struct sas_discovery *disc = &parent->port->disc;
1238 
1239 	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1240 		res = -ENODEV;
1241 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242 			SAS_ADDR(parent->sas_addr),
1243 			parent_phy->phy_id,
1244 			SAS_ADDR(child->sas_addr),
1245 			child_phy->phy_id,
1246 			SAS_ADDR(disc->fanout_sas_addr));
1247 	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1248 		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1249 		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1250 	} else if (!sas_eeds_valid(parent, child)) {
1251 		res = -ENODEV;
1252 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253 			SAS_ADDR(parent->sas_addr),
1254 			parent_phy->phy_id,
1255 			SAS_ADDR(child->sas_addr),
1256 			child_phy->phy_id);
1257 	}
1258 
1259 	return res;
1260 }
1261 
1262 static int sas_check_edge_expander_topo(struct domain_device *child,
1263 					struct ex_phy *parent_phy)
1264 {
1265 	struct expander_device *child_ex = &child->ex_dev;
1266 	struct expander_device *parent_ex = &child->parent->ex_dev;
1267 	struct ex_phy *child_phy;
1268 
1269 	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1270 
1271 	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1272 		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273 		    child_phy->routing_attr != TABLE_ROUTING)
1274 			goto error;
1275 	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1276 		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1277 			return sas_check_eeds(child, parent_phy, child_phy);
1278 		else if (child_phy->routing_attr != TABLE_ROUTING)
1279 			goto error;
1280 	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1281 		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1282 		    (child_phy->routing_attr != TABLE_ROUTING ||
1283 		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1284 			goto error;
1285 	}
1286 
1287 	return 0;
1288 error:
1289 	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1290 	return -ENODEV;
1291 }
1292 
1293 static int sas_check_fanout_expander_topo(struct domain_device *child,
1294 					  struct ex_phy *parent_phy)
1295 {
1296 	struct expander_device *child_ex = &child->ex_dev;
1297 	struct ex_phy *child_phy;
1298 
1299 	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1300 
1301 	if (parent_phy->routing_attr == TABLE_ROUTING &&
1302 	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1303 		return 0;
1304 
1305 	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1306 
1307 	return -ENODEV;
1308 }
1309 
1310 static int sas_check_parent_topology(struct domain_device *child)
1311 {
1312 	struct expander_device *parent_ex;
1313 	int i;
1314 	int res = 0;
1315 
1316 	if (!dev_parent_is_expander(child))
1317 		return 0;
1318 
1319 	parent_ex = &child->parent->ex_dev;
1320 
1321 	for (i = 0; i < parent_ex->num_phys; i++) {
1322 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1323 
1324 		if (parent_phy->phy_state == PHY_VACANT ||
1325 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1326 			continue;
1327 
1328 		if (!sas_phy_match_dev_addr(child, parent_phy))
1329 			continue;
1330 
1331 		switch (child->parent->dev_type) {
1332 		case SAS_EDGE_EXPANDER_DEVICE:
1333 			if (sas_check_edge_expander_topo(child, parent_phy))
1334 				res = -ENODEV;
1335 			break;
1336 		case SAS_FANOUT_EXPANDER_DEVICE:
1337 			if (sas_check_fanout_expander_topo(child, parent_phy))
1338 				res = -ENODEV;
1339 			break;
1340 		default:
1341 			break;
1342 		}
1343 	}
1344 
1345 	return res;
1346 }
1347 
1348 #define RRI_REQ_SIZE  16
1349 #define RRI_RESP_SIZE 44
1350 
1351 static int sas_configure_present(struct domain_device *dev, int phy_id,
1352 				 u8 *sas_addr, int *index, int *present)
1353 {
1354 	int i, res = 0;
1355 	struct expander_device *ex = &dev->ex_dev;
1356 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1357 	u8 *rri_req;
1358 	u8 *rri_resp;
1359 
1360 	*present = 0;
1361 	*index = 0;
1362 
1363 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1364 	if (!rri_req)
1365 		return -ENOMEM;
1366 
1367 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1368 	if (!rri_resp) {
1369 		kfree(rri_req);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1374 	rri_req[9] = phy_id;
1375 
1376 	for (i = 0; i < ex->max_route_indexes ; i++) {
1377 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1378 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1379 				       RRI_RESP_SIZE);
1380 		if (res)
1381 			goto out;
1382 		res = rri_resp[2];
1383 		if (res == SMP_RESP_NO_INDEX) {
1384 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1385 				SAS_ADDR(dev->sas_addr), phy_id, i);
1386 			goto out;
1387 		} else if (res != SMP_RESP_FUNC_ACC) {
1388 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1389 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1390 				  i, res);
1391 			goto out;
1392 		}
1393 		if (SAS_ADDR(sas_addr) != 0) {
1394 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1395 				*index = i;
1396 				if ((rri_resp[12] & 0x80) == 0x80)
1397 					*present = 0;
1398 				else
1399 					*present = 1;
1400 				goto out;
1401 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1402 				*index = i;
1403 				*present = 0;
1404 				goto out;
1405 			}
1406 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1407 			   phy->last_da_index < i) {
1408 			phy->last_da_index = i;
1409 			*index = i;
1410 			*present = 0;
1411 			goto out;
1412 		}
1413 	}
1414 	res = -1;
1415 out:
1416 	kfree(rri_req);
1417 	kfree(rri_resp);
1418 	return res;
1419 }
1420 
1421 #define CRI_REQ_SIZE  44
1422 #define CRI_RESP_SIZE  8
1423 
1424 static int sas_configure_set(struct domain_device *dev, int phy_id,
1425 			     u8 *sas_addr, int index, int include)
1426 {
1427 	int res;
1428 	u8 *cri_req;
1429 	u8 *cri_resp;
1430 
1431 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1432 	if (!cri_req)
1433 		return -ENOMEM;
1434 
1435 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1436 	if (!cri_resp) {
1437 		kfree(cri_req);
1438 		return -ENOMEM;
1439 	}
1440 
1441 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1442 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1443 	cri_req[9] = phy_id;
1444 	if (SAS_ADDR(sas_addr) == 0 || !include)
1445 		cri_req[12] |= 0x80;
1446 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1447 
1448 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1449 			       CRI_RESP_SIZE);
1450 	if (res)
1451 		goto out;
1452 	res = cri_resp[2];
1453 	if (res == SMP_RESP_NO_INDEX) {
1454 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1455 			SAS_ADDR(dev->sas_addr), phy_id, index);
1456 	}
1457 out:
1458 	kfree(cri_req);
1459 	kfree(cri_resp);
1460 	return res;
1461 }
1462 
1463 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1464 				    u8 *sas_addr, int include)
1465 {
1466 	int index;
1467 	int present;
1468 	int res;
1469 
1470 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1471 	if (res)
1472 		return res;
1473 	if (include ^ present)
1474 		return sas_configure_set(dev, phy_id, sas_addr, index,
1475 					 include);
1476 
1477 	return res;
1478 }
1479 
1480 /**
1481  * sas_configure_parent - configure routing table of parent
1482  * @parent: parent expander
1483  * @child: child expander
1484  * @sas_addr: SAS port identifier of device directly attached to child
1485  * @include: whether or not to include @child in the expander routing table
1486  */
1487 static int sas_configure_parent(struct domain_device *parent,
1488 				struct domain_device *child,
1489 				u8 *sas_addr, int include)
1490 {
1491 	struct expander_device *ex_parent = &parent->ex_dev;
1492 	int res = 0;
1493 	int i;
1494 
1495 	if (parent->parent) {
1496 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1497 					   include);
1498 		if (res)
1499 			return res;
1500 	}
1501 
1502 	if (ex_parent->conf_route_table == 0) {
1503 		pr_debug("ex %016llx has self-configuring routing table\n",
1504 			 SAS_ADDR(parent->sas_addr));
1505 		return 0;
1506 	}
1507 
1508 	for (i = 0; i < ex_parent->num_phys; i++) {
1509 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1510 
1511 		if ((phy->routing_attr == TABLE_ROUTING) &&
1512 		    sas_phy_match_dev_addr(child, phy)) {
1513 			res = sas_configure_phy(parent, i, sas_addr, include);
1514 			if (res)
1515 				return res;
1516 		}
1517 	}
1518 
1519 	return res;
1520 }
1521 
1522 /**
1523  * sas_configure_routing - configure routing
1524  * @dev: expander device
1525  * @sas_addr: port identifier of device directly attached to the expander device
1526  */
1527 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1528 {
1529 	if (dev->parent)
1530 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1531 	return 0;
1532 }
1533 
1534 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1535 {
1536 	if (dev->parent)
1537 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1538 	return 0;
1539 }
1540 
1541 /**
1542  * sas_discover_expander - expander discovery
1543  * @dev: pointer to expander domain device
1544  *
1545  * See comment in sas_discover_sata().
1546  */
1547 static int sas_discover_expander(struct domain_device *dev)
1548 {
1549 	int res;
1550 
1551 	res = sas_notify_lldd_dev_found(dev);
1552 	if (res)
1553 		return res;
1554 
1555 	res = sas_ex_general(dev);
1556 	if (res)
1557 		goto out_err;
1558 	res = sas_ex_manuf_info(dev);
1559 	if (res)
1560 		goto out_err;
1561 
1562 	res = sas_expander_discover(dev);
1563 	if (res) {
1564 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1565 			SAS_ADDR(dev->sas_addr), res);
1566 		goto out_err;
1567 	}
1568 
1569 	sas_check_ex_subtractive_boundary(dev);
1570 	res = sas_check_parent_topology(dev);
1571 	if (res)
1572 		goto out_err;
1573 	return 0;
1574 out_err:
1575 	sas_notify_lldd_dev_gone(dev);
1576 	return res;
1577 }
1578 
1579 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1580 {
1581 	int res = 0;
1582 	struct domain_device *dev;
1583 
1584 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1585 		if (dev_is_expander(dev->dev_type)) {
1586 			struct sas_expander_device *ex =
1587 				rphy_to_expander_device(dev->rphy);
1588 
1589 			if (level == ex->level)
1590 				res = sas_ex_discover_devices(dev, -1);
1591 			else if (level > 0)
1592 				res = sas_ex_discover_devices(port->port_dev, -1);
1593 
1594 		}
1595 	}
1596 
1597 	return res;
1598 }
1599 
1600 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1601 {
1602 	int res;
1603 	int level;
1604 
1605 	do {
1606 		level = port->disc.max_level;
1607 		res = sas_ex_level_discovery(port, level);
1608 		mb();
1609 	} while (level < port->disc.max_level);
1610 
1611 	return res;
1612 }
1613 
1614 int sas_discover_root_expander(struct domain_device *dev)
1615 {
1616 	int res;
1617 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1618 
1619 	res = sas_rphy_add(dev->rphy);
1620 	if (res)
1621 		goto out_err;
1622 
1623 	ex->level = dev->port->disc.max_level; /* 0 */
1624 	res = sas_discover_expander(dev);
1625 	if (res)
1626 		goto out_err2;
1627 
1628 	sas_ex_bfs_disc(dev->port);
1629 
1630 	return res;
1631 
1632 out_err2:
1633 	sas_rphy_remove(dev->rphy);
1634 out_err:
1635 	return res;
1636 }
1637 
1638 /* ---------- Domain revalidation ---------- */
1639 
1640 static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1641 					  u8 *sas_addr,
1642 					  enum sas_device_type *type)
1643 {
1644 	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1645 	*type = to_dev_type(&disc_resp->disc);
1646 	if (*type == SAS_PHY_UNUSED)
1647 		memset(sas_addr, 0, SAS_ADDR_SIZE);
1648 }
1649 
1650 static int sas_get_phy_discover(struct domain_device *dev,
1651 				int phy_id, struct smp_disc_resp *disc_resp)
1652 {
1653 	int res;
1654 	u8 *disc_req;
1655 
1656 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1657 	if (!disc_req)
1658 		return -ENOMEM;
1659 
1660 	disc_req[1] = SMP_DISCOVER;
1661 	disc_req[9] = phy_id;
1662 
1663 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1664 			       disc_resp, DISCOVER_RESP_SIZE);
1665 	if (res)
1666 		goto out;
1667 	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1668 		res = disc_resp->result;
1669 out:
1670 	kfree(disc_req);
1671 	return res;
1672 }
1673 
1674 static int sas_get_phy_change_count(struct domain_device *dev,
1675 				    int phy_id, int *pcc)
1676 {
1677 	int res;
1678 	struct smp_disc_resp *disc_resp;
1679 
1680 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1681 	if (!disc_resp)
1682 		return -ENOMEM;
1683 
1684 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1685 	if (!res)
1686 		*pcc = disc_resp->disc.change_count;
1687 
1688 	kfree(disc_resp);
1689 	return res;
1690 }
1691 
1692 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1693 			     u8 *sas_addr, enum sas_device_type *type)
1694 {
1695 	int res;
1696 	struct smp_disc_resp *disc_resp;
1697 
1698 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699 	if (!disc_resp)
1700 		return -ENOMEM;
1701 
1702 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703 	if (res == 0)
1704 		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
1705 	kfree(disc_resp);
1706 	return res;
1707 }
1708 
1709 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1710 			      int from_phy, bool update)
1711 {
1712 	struct expander_device *ex = &dev->ex_dev;
1713 	int res = 0;
1714 	int i;
1715 
1716 	for (i = from_phy; i < ex->num_phys; i++) {
1717 		int phy_change_count = 0;
1718 
1719 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1720 		switch (res) {
1721 		case SMP_RESP_PHY_VACANT:
1722 		case SMP_RESP_NO_PHY:
1723 			continue;
1724 		case SMP_RESP_FUNC_ACC:
1725 			break;
1726 		default:
1727 			return res;
1728 		}
1729 
1730 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1731 			if (update)
1732 				ex->ex_phy[i].phy_change_count =
1733 					phy_change_count;
1734 			*phy_id = i;
1735 			return 0;
1736 		}
1737 	}
1738 	return 0;
1739 }
1740 
1741 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1742 {
1743 	int res;
1744 	u8  *rg_req;
1745 	struct smp_rg_resp  *rg_resp;
1746 
1747 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1748 	if (!rg_req)
1749 		return -ENOMEM;
1750 
1751 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1752 	if (!rg_resp) {
1753 		kfree(rg_req);
1754 		return -ENOMEM;
1755 	}
1756 
1757 	rg_req[1] = SMP_REPORT_GENERAL;
1758 
1759 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1760 			       RG_RESP_SIZE);
1761 	if (res)
1762 		goto out;
1763 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1764 		res = rg_resp->result;
1765 		goto out;
1766 	}
1767 
1768 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1769 out:
1770 	kfree(rg_resp);
1771 	kfree(rg_req);
1772 	return res;
1773 }
1774 /**
1775  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1776  * @dev:domain device to be detect.
1777  * @src_dev: the device which originated BROADCAST(CHANGE).
1778  *
1779  * Add self-configuration expander support. Suppose two expander cascading,
1780  * when the first level expander is self-configuring, hotplug the disks in
1781  * second level expander, BROADCAST(CHANGE) will not only be originated
1782  * in the second level expander, but also be originated in the first level
1783  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1784  * expander changed count in two level expanders will all increment at least
1785  * once, but the phy which chang count has changed is the source device which
1786  * we concerned.
1787  */
1788 
1789 static int sas_find_bcast_dev(struct domain_device *dev,
1790 			      struct domain_device **src_dev)
1791 {
1792 	struct expander_device *ex = &dev->ex_dev;
1793 	int ex_change_count = -1;
1794 	int phy_id = -1;
1795 	int res;
1796 	struct domain_device *ch;
1797 
1798 	res = sas_get_ex_change_count(dev, &ex_change_count);
1799 	if (res)
1800 		goto out;
1801 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1802 		/* Just detect if this expander phys phy change count changed,
1803 		* in order to determine if this expander originate BROADCAST,
1804 		* and do not update phy change count field in our structure.
1805 		*/
1806 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1807 		if (phy_id != -1) {
1808 			*src_dev = dev;
1809 			ex->ex_change_count = ex_change_count;
1810 			pr_info("ex %016llx phy%02d change count has changed\n",
1811 				SAS_ADDR(dev->sas_addr), phy_id);
1812 			return res;
1813 		} else
1814 			pr_info("ex %016llx phys DID NOT change\n",
1815 				SAS_ADDR(dev->sas_addr));
1816 	}
1817 	list_for_each_entry(ch, &ex->children, siblings) {
1818 		if (dev_is_expander(ch->dev_type)) {
1819 			res = sas_find_bcast_dev(ch, src_dev);
1820 			if (*src_dev)
1821 				return res;
1822 		}
1823 	}
1824 out:
1825 	return res;
1826 }
1827 
1828 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1829 {
1830 	struct expander_device *ex = &dev->ex_dev;
1831 	struct domain_device *child, *n;
1832 
1833 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1834 		set_bit(SAS_DEV_GONE, &child->state);
1835 		if (dev_is_expander(child->dev_type))
1836 			sas_unregister_ex_tree(port, child);
1837 		else
1838 			sas_unregister_dev(port, child);
1839 	}
1840 	sas_unregister_dev(port, dev);
1841 }
1842 
1843 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1844 					 int phy_id, bool last)
1845 {
1846 	struct expander_device *ex_dev = &parent->ex_dev;
1847 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1848 	struct domain_device *child, *n, *found = NULL;
1849 	if (last) {
1850 		list_for_each_entry_safe(child, n,
1851 			&ex_dev->children, siblings) {
1852 			if (sas_phy_match_dev_addr(child, phy)) {
1853 				set_bit(SAS_DEV_GONE, &child->state);
1854 				if (dev_is_expander(child->dev_type))
1855 					sas_unregister_ex_tree(parent->port, child);
1856 				else
1857 					sas_unregister_dev(parent->port, child);
1858 				found = child;
1859 				break;
1860 			}
1861 		}
1862 		sas_disable_routing(parent, phy->attached_sas_addr);
1863 	}
1864 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1865 	if (phy->port) {
1866 		sas_port_delete_phy(phy->port, phy->phy);
1867 		sas_device_set_phy(found, phy->port);
1868 		if (phy->port->num_phys == 0) {
1869 			list_add_tail(&phy->port->del_list,
1870 				&parent->port->sas_port_del_list);
1871 			if (ex_dev->parent_port == phy->port)
1872 				ex_dev->parent_port = NULL;
1873 		}
1874 		phy->port = NULL;
1875 	}
1876 }
1877 
1878 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1879 					  const int level)
1880 {
1881 	struct expander_device *ex_root = &root->ex_dev;
1882 	struct domain_device *child;
1883 	int res = 0;
1884 
1885 	list_for_each_entry(child, &ex_root->children, siblings) {
1886 		if (dev_is_expander(child->dev_type)) {
1887 			struct sas_expander_device *ex =
1888 				rphy_to_expander_device(child->rphy);
1889 
1890 			if (level > ex->level)
1891 				res = sas_discover_bfs_by_root_level(child,
1892 								     level);
1893 			else if (level == ex->level)
1894 				res = sas_ex_discover_devices(child, -1);
1895 		}
1896 	}
1897 	return res;
1898 }
1899 
1900 static int sas_discover_bfs_by_root(struct domain_device *dev)
1901 {
1902 	int res;
1903 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1904 	int level = ex->level+1;
1905 
1906 	res = sas_ex_discover_devices(dev, -1);
1907 	if (res)
1908 		goto out;
1909 	do {
1910 		res = sas_discover_bfs_by_root_level(dev, level);
1911 		mb();
1912 		level += 1;
1913 	} while (level <= dev->port->disc.max_level);
1914 out:
1915 	return res;
1916 }
1917 
1918 static int sas_discover_new(struct domain_device *dev, int phy_id)
1919 {
1920 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1921 	struct domain_device *child;
1922 	int res;
1923 
1924 	pr_debug("ex %016llx phy%02d new device attached\n",
1925 		 SAS_ADDR(dev->sas_addr), phy_id);
1926 	res = sas_ex_phy_discover(dev, phy_id);
1927 	if (res)
1928 		return res;
1929 
1930 	if (sas_ex_join_wide_port(dev, phy_id))
1931 		return 0;
1932 
1933 	res = sas_ex_discover_devices(dev, phy_id);
1934 	if (res)
1935 		return res;
1936 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1937 		if (sas_phy_match_dev_addr(child, ex_phy)) {
1938 			if (dev_is_expander(child->dev_type))
1939 				res = sas_discover_bfs_by_root(child);
1940 			break;
1941 		}
1942 	}
1943 	return res;
1944 }
1945 
1946 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1947 {
1948 	if (old == new)
1949 		return true;
1950 
1951 	/* treat device directed resets as flutter, if we went
1952 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1953 	 */
1954 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1955 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1956 		return true;
1957 
1958 	return false;
1959 }
1960 
1961 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1962 			      bool last, int sibling)
1963 {
1964 	struct expander_device *ex = &dev->ex_dev;
1965 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1966 	enum sas_device_type type = SAS_PHY_UNUSED;
1967 	struct smp_disc_resp *disc_resp;
1968 	u8 sas_addr[SAS_ADDR_SIZE];
1969 	char msg[80] = "";
1970 	int res;
1971 
1972 	if (!last)
1973 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1974 
1975 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1976 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1977 
1978 	memset(sas_addr, 0, SAS_ADDR_SIZE);
1979 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1980 	if (!disc_resp)
1981 		return -ENOMEM;
1982 
1983 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1984 	switch (res) {
1985 	case SMP_RESP_NO_PHY:
1986 		phy->phy_state = PHY_NOT_PRESENT;
1987 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1988 		goto out_free_resp;
1989 	case SMP_RESP_PHY_VACANT:
1990 		phy->phy_state = PHY_VACANT;
1991 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1992 		goto out_free_resp;
1993 	case SMP_RESP_FUNC_ACC:
1994 		break;
1995 	case -ECOMM:
1996 		break;
1997 	default:
1998 		goto out_free_resp;
1999 	}
2000 
2001 	if (res == 0)
2002 		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
2003 
2004 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005 		phy->phy_state = PHY_EMPTY;
2006 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2007 		/*
2008 		 * Even though the PHY is empty, for convenience we update
2009 		 * the PHY info, like negotiated linkrate.
2010 		 */
2011 		if (res == 0)
2012 			sas_set_ex_phy(dev, phy_id, disc_resp);
2013 		goto out_free_resp;
2014 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2015 		   dev_type_flutter(type, phy->attached_dev_type)) {
2016 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2017 		char *action = "";
2018 
2019 		sas_ex_phy_discover(dev, phy_id);
2020 
2021 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2022 			action = ", needs recovery";
2023 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2024 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2025 		goto out_free_resp;
2026 	}
2027 
2028 	/* we always have to delete the old device when we went here */
2029 	pr_info("ex %016llx phy%02d replace %016llx\n",
2030 		SAS_ADDR(dev->sas_addr), phy_id,
2031 		SAS_ADDR(phy->attached_sas_addr));
2032 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2033 
2034 	res = sas_discover_new(dev, phy_id);
2035 out_free_resp:
2036 	kfree(disc_resp);
2037 	return res;
2038 }
2039 
2040 /**
2041  * sas_rediscover - revalidate the domain.
2042  * @dev:domain device to be detect.
2043  * @phy_id: the phy id will be detected.
2044  *
2045  * NOTE: this process _must_ quit (return) as soon as any connection
2046  * errors are encountered.  Connection recovery is done elsewhere.
2047  * Discover process only interrogates devices in order to discover the
2048  * domain.For plugging out, we un-register the device only when it is
2049  * the last phy in the port, for other phys in this port, we just delete it
2050  * from the port.For inserting, we do discovery when it is the
2051  * first phy,for other phys in this port, we add it to the port to
2052  * forming the wide-port.
2053  */
2054 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2055 {
2056 	struct expander_device *ex = &dev->ex_dev;
2057 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2058 	int res = 0;
2059 	int i;
2060 	bool last = true;	/* is this the last phy of the port */
2061 
2062 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2063 		 SAS_ADDR(dev->sas_addr), phy_id);
2064 
2065 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2066 		for (i = 0; i < ex->num_phys; i++) {
2067 			struct ex_phy *phy = &ex->ex_phy[i];
2068 
2069 			if (i == phy_id)
2070 				continue;
2071 			if (sas_phy_addr_match(phy, changed_phy)) {
2072 				last = false;
2073 				break;
2074 			}
2075 		}
2076 		res = sas_rediscover_dev(dev, phy_id, last, i);
2077 	} else
2078 		res = sas_discover_new(dev, phy_id);
2079 	return res;
2080 }
2081 
2082 /**
2083  * sas_ex_revalidate_domain - revalidate the domain
2084  * @port_dev: port domain device.
2085  *
2086  * NOTE: this process _must_ quit (return) as soon as any connection
2087  * errors are encountered.  Connection recovery is done elsewhere.
2088  * Discover process only interrogates devices in order to discover the
2089  * domain.
2090  */
2091 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092 {
2093 	int res;
2094 	struct domain_device *dev = NULL;
2095 
2096 	res = sas_find_bcast_dev(port_dev, &dev);
2097 	if (res == 0 && dev) {
2098 		struct expander_device *ex = &dev->ex_dev;
2099 		int i = 0, phy_id;
2100 
2101 		do {
2102 			phy_id = -1;
2103 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104 			if (phy_id == -1)
2105 				break;
2106 			res = sas_rediscover(dev, phy_id);
2107 			i = phy_id + 1;
2108 		} while (i < ex->num_phys);
2109 	}
2110 	return res;
2111 }
2112 
2113 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2114 			     struct domain_device *dev)
2115 {
2116 	struct ex_phy *phy;
2117 	int phy_id;
2118 
2119 	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2120 		phy = &ex_dev->ex_phy[phy_id];
2121 		if (sas_phy_match_dev_addr(dev, phy))
2122 			return phy_id;
2123 	}
2124 
2125 	return -ENODEV;
2126 }
2127 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2128 
2129 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2130 		struct sas_rphy *rphy)
2131 {
2132 	struct domain_device *dev;
2133 	unsigned int rcvlen = 0;
2134 	int ret = -EINVAL;
2135 
2136 	/* no rphy means no smp target support (ie aic94xx host) */
2137 	if (!rphy)
2138 		return sas_smp_host_handler(job, shost);
2139 
2140 	switch (rphy->identify.device_type) {
2141 	case SAS_EDGE_EXPANDER_DEVICE:
2142 	case SAS_FANOUT_EXPANDER_DEVICE:
2143 		break;
2144 	default:
2145 		pr_err("%s: can we send a smp request to a device?\n",
2146 		       __func__);
2147 		goto out;
2148 	}
2149 
2150 	dev = sas_find_dev_by_rphy(rphy);
2151 	if (!dev) {
2152 		pr_err("%s: fail to find a domain_device?\n", __func__);
2153 		goto out;
2154 	}
2155 
2156 	/* do we need to support multiple segments? */
2157 	if (job->request_payload.sg_cnt > 1 ||
2158 	    job->reply_payload.sg_cnt > 1) {
2159 		pr_info("%s: multiple segments req %u, rsp %u\n",
2160 			__func__, job->request_payload.payload_len,
2161 			job->reply_payload.payload_len);
2162 		goto out;
2163 	}
2164 
2165 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2166 			job->reply_payload.sg_list);
2167 	if (ret >= 0) {
2168 		/* bsg_job_done() requires the length received  */
2169 		rcvlen = job->reply_payload.payload_len - ret;
2170 		ret = 0;
2171 	}
2172 
2173 out:
2174 	bsg_job_done(job, ret, rcvlen);
2175 }
2176