1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/scsi_transport.h> 32 #include <scsi/scsi_transport_sas.h> 33 #include "../scsi_sas_internal.h" 34 35 static int sas_discover_expander(struct domain_device *dev); 36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 37 static int sas_configure_phy(struct domain_device *dev, int phy_id, 38 u8 *sas_addr, int include); 39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 40 41 /* ---------- SMP task management ---------- */ 42 43 static void smp_task_timedout(unsigned long _task) 44 { 45 struct sas_task *task = (void *) _task; 46 unsigned long flags; 47 48 spin_lock_irqsave(&task->task_state_lock, flags); 49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 50 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 51 spin_unlock_irqrestore(&task->task_state_lock, flags); 52 53 complete(&task->completion); 54 } 55 56 static void smp_task_done(struct sas_task *task) 57 { 58 if (!del_timer(&task->timer)) 59 return; 60 complete(&task->completion); 61 } 62 63 /* Give it some long enough timeout. In seconds. */ 64 #define SMP_TIMEOUT 10 65 66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 67 void *resp, int resp_size) 68 { 69 int res, retry; 70 struct sas_task *task = NULL; 71 struct sas_internal *i = 72 to_sas_internal(dev->port->ha->core.shost->transportt); 73 74 for (retry = 0; retry < 3; retry++) { 75 task = sas_alloc_task(GFP_KERNEL); 76 if (!task) 77 return -ENOMEM; 78 79 task->dev = dev; 80 task->task_proto = dev->tproto; 81 sg_init_one(&task->smp_task.smp_req, req, req_size); 82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 83 84 task->task_done = smp_task_done; 85 86 task->timer.data = (unsigned long) task; 87 task->timer.function = smp_task_timedout; 88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 89 add_timer(&task->timer); 90 91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 92 93 if (res) { 94 del_timer(&task->timer); 95 SAS_DPRINTK("executing SMP task failed:%d\n", res); 96 goto ex_err; 97 } 98 99 wait_for_completion(&task->completion); 100 res = -ECOMM; 101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 102 SAS_DPRINTK("smp task timed out or aborted\n"); 103 i->dft->lldd_abort_task(task); 104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 105 SAS_DPRINTK("SMP task aborted and not done\n"); 106 goto ex_err; 107 } 108 } 109 if (task->task_status.resp == SAS_TASK_COMPLETE && 110 task->task_status.stat == SAM_GOOD) { 111 res = 0; 112 break; 113 } if (task->task_status.resp == SAS_TASK_COMPLETE && 114 task->task_status.stat == SAS_DATA_UNDERRUN) { 115 /* no error, but return the number of bytes of 116 * underrun */ 117 res = task->task_status.residual; 118 break; 119 } if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } else { 124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 125 "status 0x%x\n", __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 ex_err: 134 BUG_ON(retry == 3 && task != NULL); 135 if (task != NULL) { 136 sas_free_task(task); 137 } 138 return res; 139 } 140 141 /* ---------- Allocations ---------- */ 142 143 static inline void *alloc_smp_req(int size) 144 { 145 u8 *p = kzalloc(size, GFP_KERNEL); 146 if (p) 147 p[0] = SMP_REQUEST; 148 return p; 149 } 150 151 static inline void *alloc_smp_resp(int size) 152 { 153 return kzalloc(size, GFP_KERNEL); 154 } 155 156 /* ---------- Expander configuration ---------- */ 157 158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 159 void *disc_resp) 160 { 161 struct expander_device *ex = &dev->ex_dev; 162 struct ex_phy *phy = &ex->ex_phy[phy_id]; 163 struct smp_resp *resp = disc_resp; 164 struct discover_resp *dr = &resp->disc; 165 struct sas_rphy *rphy = dev->rphy; 166 int rediscover = (phy->phy != NULL); 167 168 if (!rediscover) { 169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 170 171 /* FIXME: error_handling */ 172 BUG_ON(!phy->phy); 173 } 174 175 switch (resp->result) { 176 case SMP_RESP_PHY_VACANT: 177 phy->phy_state = PHY_VACANT; 178 return; 179 default: 180 phy->phy_state = PHY_NOT_PRESENT; 181 return; 182 case SMP_RESP_FUNC_ACC: 183 phy->phy_state = PHY_EMPTY; /* do not know yet */ 184 break; 185 } 186 187 phy->phy_id = phy_id; 188 phy->attached_dev_type = dr->attached_dev_type; 189 phy->linkrate = dr->linkrate; 190 phy->attached_sata_host = dr->attached_sata_host; 191 phy->attached_sata_dev = dr->attached_sata_dev; 192 phy->attached_sata_ps = dr->attached_sata_ps; 193 phy->attached_iproto = dr->iproto << 1; 194 phy->attached_tproto = dr->tproto << 1; 195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 196 phy->attached_phy_id = dr->attached_phy_id; 197 phy->phy_change_count = dr->change_count; 198 phy->routing_attr = dr->routing_attr; 199 phy->virtual = dr->virtual; 200 phy->last_da_index = -1; 201 202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 203 phy->phy->identify.target_port_protocols = phy->attached_tproto; 204 phy->phy->identify.phy_identifier = phy_id; 205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 207 phy->phy->minimum_linkrate = dr->pmin_linkrate; 208 phy->phy->maximum_linkrate = dr->pmax_linkrate; 209 phy->phy->negotiated_linkrate = phy->linkrate; 210 211 if (!rediscover) 212 sas_phy_add(phy->phy); 213 214 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 215 SAS_ADDR(dev->sas_addr), phy->phy_id, 216 phy->routing_attr == TABLE_ROUTING ? 'T' : 217 phy->routing_attr == DIRECT_ROUTING ? 'D' : 218 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 219 SAS_ADDR(phy->attached_sas_addr)); 220 221 return; 222 } 223 224 #define DISCOVER_REQ_SIZE 16 225 #define DISCOVER_RESP_SIZE 56 226 227 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 228 u8 *disc_resp, int single) 229 { 230 int i, res; 231 232 disc_req[9] = single; 233 for (i = 1 ; i < 3; i++) { 234 struct discover_resp *dr; 235 236 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 237 disc_resp, DISCOVER_RESP_SIZE); 238 if (res) 239 return res; 240 /* This is detecting a failure to transmit inital 241 * dev to host FIS as described in section G.5 of 242 * sas-2 r 04b */ 243 dr = &((struct smp_resp *)disc_resp)->disc; 244 if (!(dr->attached_dev_type == 0 && 245 dr->attached_sata_dev)) 246 break; 247 /* In order to generate the dev to host FIS, we 248 * send a link reset to the expander port */ 249 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 250 /* Wait for the reset to trigger the negotiation */ 251 msleep(500); 252 } 253 sas_set_ex_phy(dev, single, disc_resp); 254 return 0; 255 } 256 257 static int sas_ex_phy_discover(struct domain_device *dev, int single) 258 { 259 struct expander_device *ex = &dev->ex_dev; 260 int res = 0; 261 u8 *disc_req; 262 u8 *disc_resp; 263 264 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 265 if (!disc_req) 266 return -ENOMEM; 267 268 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 269 if (!disc_resp) { 270 kfree(disc_req); 271 return -ENOMEM; 272 } 273 274 disc_req[1] = SMP_DISCOVER; 275 276 if (0 <= single && single < ex->num_phys) { 277 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 278 } else { 279 int i; 280 281 for (i = 0; i < ex->num_phys; i++) { 282 res = sas_ex_phy_discover_helper(dev, disc_req, 283 disc_resp, i); 284 if (res) 285 goto out_err; 286 } 287 } 288 out_err: 289 kfree(disc_resp); 290 kfree(disc_req); 291 return res; 292 } 293 294 static int sas_expander_discover(struct domain_device *dev) 295 { 296 struct expander_device *ex = &dev->ex_dev; 297 int res = -ENOMEM; 298 299 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 300 if (!ex->ex_phy) 301 return -ENOMEM; 302 303 res = sas_ex_phy_discover(dev, -1); 304 if (res) 305 goto out_err; 306 307 return 0; 308 out_err: 309 kfree(ex->ex_phy); 310 ex->ex_phy = NULL; 311 return res; 312 } 313 314 #define MAX_EXPANDER_PHYS 128 315 316 static void ex_assign_report_general(struct domain_device *dev, 317 struct smp_resp *resp) 318 { 319 struct report_general_resp *rg = &resp->rg; 320 321 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 322 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 323 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 324 dev->ex_dev.conf_route_table = rg->conf_route_table; 325 dev->ex_dev.configuring = rg->configuring; 326 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 327 } 328 329 #define RG_REQ_SIZE 8 330 #define RG_RESP_SIZE 32 331 332 static int sas_ex_general(struct domain_device *dev) 333 { 334 u8 *rg_req; 335 struct smp_resp *rg_resp; 336 int res; 337 int i; 338 339 rg_req = alloc_smp_req(RG_REQ_SIZE); 340 if (!rg_req) 341 return -ENOMEM; 342 343 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 344 if (!rg_resp) { 345 kfree(rg_req); 346 return -ENOMEM; 347 } 348 349 rg_req[1] = SMP_REPORT_GENERAL; 350 351 for (i = 0; i < 5; i++) { 352 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 353 RG_RESP_SIZE); 354 355 if (res) { 356 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 357 SAS_ADDR(dev->sas_addr), res); 358 goto out; 359 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 360 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 361 SAS_ADDR(dev->sas_addr), rg_resp->result); 362 res = rg_resp->result; 363 goto out; 364 } 365 366 ex_assign_report_general(dev, rg_resp); 367 368 if (dev->ex_dev.configuring) { 369 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 370 SAS_ADDR(dev->sas_addr)); 371 schedule_timeout_interruptible(5*HZ); 372 } else 373 break; 374 } 375 out: 376 kfree(rg_req); 377 kfree(rg_resp); 378 return res; 379 } 380 381 static void ex_assign_manuf_info(struct domain_device *dev, void 382 *_mi_resp) 383 { 384 u8 *mi_resp = _mi_resp; 385 struct sas_rphy *rphy = dev->rphy; 386 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 387 388 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 389 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 390 memcpy(edev->product_rev, mi_resp + 36, 391 SAS_EXPANDER_PRODUCT_REV_LEN); 392 393 if (mi_resp[8] & 1) { 394 memcpy(edev->component_vendor_id, mi_resp + 40, 395 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 396 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 397 edev->component_revision_id = mi_resp[50]; 398 } 399 } 400 401 #define MI_REQ_SIZE 8 402 #define MI_RESP_SIZE 64 403 404 static int sas_ex_manuf_info(struct domain_device *dev) 405 { 406 u8 *mi_req; 407 u8 *mi_resp; 408 int res; 409 410 mi_req = alloc_smp_req(MI_REQ_SIZE); 411 if (!mi_req) 412 return -ENOMEM; 413 414 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 415 if (!mi_resp) { 416 kfree(mi_req); 417 return -ENOMEM; 418 } 419 420 mi_req[1] = SMP_REPORT_MANUF_INFO; 421 422 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 423 if (res) { 424 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 425 SAS_ADDR(dev->sas_addr), res); 426 goto out; 427 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 428 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 429 SAS_ADDR(dev->sas_addr), mi_resp[2]); 430 goto out; 431 } 432 433 ex_assign_manuf_info(dev, mi_resp); 434 out: 435 kfree(mi_req); 436 kfree(mi_resp); 437 return res; 438 } 439 440 #define PC_REQ_SIZE 44 441 #define PC_RESP_SIZE 8 442 443 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 444 enum phy_func phy_func, 445 struct sas_phy_linkrates *rates) 446 { 447 u8 *pc_req; 448 u8 *pc_resp; 449 int res; 450 451 pc_req = alloc_smp_req(PC_REQ_SIZE); 452 if (!pc_req) 453 return -ENOMEM; 454 455 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 456 if (!pc_resp) { 457 kfree(pc_req); 458 return -ENOMEM; 459 } 460 461 pc_req[1] = SMP_PHY_CONTROL; 462 pc_req[9] = phy_id; 463 pc_req[10]= phy_func; 464 if (rates) { 465 pc_req[32] = rates->minimum_linkrate << 4; 466 pc_req[33] = rates->maximum_linkrate << 4; 467 } 468 469 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 470 471 kfree(pc_resp); 472 kfree(pc_req); 473 return res; 474 } 475 476 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 477 { 478 struct expander_device *ex = &dev->ex_dev; 479 struct ex_phy *phy = &ex->ex_phy[phy_id]; 480 481 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 482 phy->linkrate = SAS_PHY_DISABLED; 483 } 484 485 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 486 { 487 struct expander_device *ex = &dev->ex_dev; 488 int i; 489 490 for (i = 0; i < ex->num_phys; i++) { 491 struct ex_phy *phy = &ex->ex_phy[i]; 492 493 if (phy->phy_state == PHY_VACANT || 494 phy->phy_state == PHY_NOT_PRESENT) 495 continue; 496 497 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 498 sas_ex_disable_phy(dev, i); 499 } 500 } 501 502 static int sas_dev_present_in_domain(struct asd_sas_port *port, 503 u8 *sas_addr) 504 { 505 struct domain_device *dev; 506 507 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 508 return 1; 509 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 510 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 511 return 1; 512 } 513 return 0; 514 } 515 516 #define RPEL_REQ_SIZE 16 517 #define RPEL_RESP_SIZE 32 518 int sas_smp_get_phy_events(struct sas_phy *phy) 519 { 520 int res; 521 u8 *req; 522 u8 *resp; 523 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 524 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 525 526 req = alloc_smp_req(RPEL_REQ_SIZE); 527 if (!req) 528 return -ENOMEM; 529 530 resp = alloc_smp_resp(RPEL_RESP_SIZE); 531 if (!resp) { 532 kfree(req); 533 return -ENOMEM; 534 } 535 536 req[1] = SMP_REPORT_PHY_ERR_LOG; 537 req[9] = phy->number; 538 539 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 540 resp, RPEL_RESP_SIZE); 541 542 if (!res) 543 goto out; 544 545 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 546 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 547 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 548 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 549 550 out: 551 kfree(resp); 552 return res; 553 554 } 555 556 #ifdef CONFIG_SCSI_SAS_ATA 557 558 #define RPS_REQ_SIZE 16 559 #define RPS_RESP_SIZE 60 560 561 static int sas_get_report_phy_sata(struct domain_device *dev, 562 int phy_id, 563 struct smp_resp *rps_resp) 564 { 565 int res; 566 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 567 u8 *resp = (u8 *)rps_resp; 568 569 if (!rps_req) 570 return -ENOMEM; 571 572 rps_req[1] = SMP_REPORT_PHY_SATA; 573 rps_req[9] = phy_id; 574 575 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 576 rps_resp, RPS_RESP_SIZE); 577 578 /* 0x34 is the FIS type for the D2H fis. There's a potential 579 * standards cockup here. sas-2 explicitly specifies the FIS 580 * should be encoded so that FIS type is in resp[24]. 581 * However, some expanders endian reverse this. Undo the 582 * reversal here */ 583 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 584 int i; 585 586 for (i = 0; i < 5; i++) { 587 int j = 24 + (i*4); 588 u8 a, b; 589 a = resp[j + 0]; 590 b = resp[j + 1]; 591 resp[j + 0] = resp[j + 3]; 592 resp[j + 1] = resp[j + 2]; 593 resp[j + 2] = b; 594 resp[j + 3] = a; 595 } 596 } 597 598 kfree(rps_req); 599 return res; 600 } 601 #endif 602 603 static void sas_ex_get_linkrate(struct domain_device *parent, 604 struct domain_device *child, 605 struct ex_phy *parent_phy) 606 { 607 struct expander_device *parent_ex = &parent->ex_dev; 608 struct sas_port *port; 609 int i; 610 611 child->pathways = 0; 612 613 port = parent_phy->port; 614 615 for (i = 0; i < parent_ex->num_phys; i++) { 616 struct ex_phy *phy = &parent_ex->ex_phy[i]; 617 618 if (phy->phy_state == PHY_VACANT || 619 phy->phy_state == PHY_NOT_PRESENT) 620 continue; 621 622 if (SAS_ADDR(phy->attached_sas_addr) == 623 SAS_ADDR(child->sas_addr)) { 624 625 child->min_linkrate = min(parent->min_linkrate, 626 phy->linkrate); 627 child->max_linkrate = max(parent->max_linkrate, 628 phy->linkrate); 629 child->pathways++; 630 sas_port_add_phy(port, phy->phy); 631 } 632 } 633 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 634 child->pathways = min(child->pathways, parent->pathways); 635 } 636 637 static struct domain_device *sas_ex_discover_end_dev( 638 struct domain_device *parent, int phy_id) 639 { 640 struct expander_device *parent_ex = &parent->ex_dev; 641 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 642 struct domain_device *child = NULL; 643 struct sas_rphy *rphy; 644 int res; 645 646 if (phy->attached_sata_host || phy->attached_sata_ps) 647 return NULL; 648 649 child = kzalloc(sizeof(*child), GFP_KERNEL); 650 if (!child) 651 return NULL; 652 653 child->parent = parent; 654 child->port = parent->port; 655 child->iproto = phy->attached_iproto; 656 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 657 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 658 if (!phy->port) { 659 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 660 if (unlikely(!phy->port)) 661 goto out_err; 662 if (unlikely(sas_port_add(phy->port) != 0)) { 663 sas_port_free(phy->port); 664 goto out_err; 665 } 666 } 667 sas_ex_get_linkrate(parent, child, phy); 668 669 #ifdef CONFIG_SCSI_SAS_ATA 670 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 671 child->dev_type = SATA_DEV; 672 if (phy->attached_tproto & SAS_PROTOCOL_STP) 673 child->tproto = phy->attached_tproto; 674 if (phy->attached_sata_dev) 675 child->tproto |= SATA_DEV; 676 res = sas_get_report_phy_sata(parent, phy_id, 677 &child->sata_dev.rps_resp); 678 if (res) { 679 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 680 "0x%x\n", SAS_ADDR(parent->sas_addr), 681 phy_id, res); 682 goto out_free; 683 } 684 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 685 sizeof(struct dev_to_host_fis)); 686 687 rphy = sas_end_device_alloc(phy->port); 688 if (unlikely(!rphy)) 689 goto out_free; 690 691 sas_init_dev(child); 692 693 child->rphy = rphy; 694 695 spin_lock_irq(&parent->port->dev_list_lock); 696 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 697 spin_unlock_irq(&parent->port->dev_list_lock); 698 699 res = sas_discover_sata(child); 700 if (res) { 701 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 702 "%016llx:0x%x returned 0x%x\n", 703 SAS_ADDR(child->sas_addr), 704 SAS_ADDR(parent->sas_addr), phy_id, res); 705 goto out_list_del; 706 } 707 } else 708 #endif 709 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 710 child->dev_type = SAS_END_DEV; 711 rphy = sas_end_device_alloc(phy->port); 712 /* FIXME: error handling */ 713 if (unlikely(!rphy)) 714 goto out_free; 715 child->tproto = phy->attached_tproto; 716 sas_init_dev(child); 717 718 child->rphy = rphy; 719 sas_fill_in_rphy(child, rphy); 720 721 spin_lock_irq(&parent->port->dev_list_lock); 722 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 723 spin_unlock_irq(&parent->port->dev_list_lock); 724 725 res = sas_discover_end_dev(child); 726 if (res) { 727 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 728 "at %016llx:0x%x returned 0x%x\n", 729 SAS_ADDR(child->sas_addr), 730 SAS_ADDR(parent->sas_addr), phy_id, res); 731 goto out_list_del; 732 } 733 } else { 734 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 735 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 736 phy_id); 737 goto out_free; 738 } 739 740 list_add_tail(&child->siblings, &parent_ex->children); 741 return child; 742 743 out_list_del: 744 sas_rphy_free(child->rphy); 745 child->rphy = NULL; 746 list_del(&child->dev_list_node); 747 out_free: 748 sas_port_delete(phy->port); 749 out_err: 750 phy->port = NULL; 751 kfree(child); 752 return NULL; 753 } 754 755 /* See if this phy is part of a wide port */ 756 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 757 { 758 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 759 int i; 760 761 for (i = 0; i < parent->ex_dev.num_phys; i++) { 762 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 763 764 if (ephy == phy) 765 continue; 766 767 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 768 SAS_ADDR_SIZE) && ephy->port) { 769 sas_port_add_phy(ephy->port, phy->phy); 770 phy->port = ephy->port; 771 phy->phy_state = PHY_DEVICE_DISCOVERED; 772 return 0; 773 } 774 } 775 776 return -ENODEV; 777 } 778 779 static struct domain_device *sas_ex_discover_expander( 780 struct domain_device *parent, int phy_id) 781 { 782 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 783 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 784 struct domain_device *child = NULL; 785 struct sas_rphy *rphy; 786 struct sas_expander_device *edev; 787 struct asd_sas_port *port; 788 int res; 789 790 if (phy->routing_attr == DIRECT_ROUTING) { 791 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 792 "allowed\n", 793 SAS_ADDR(parent->sas_addr), phy_id, 794 SAS_ADDR(phy->attached_sas_addr), 795 phy->attached_phy_id); 796 return NULL; 797 } 798 child = kzalloc(sizeof(*child), GFP_KERNEL); 799 if (!child) 800 return NULL; 801 802 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 803 /* FIXME: better error handling */ 804 BUG_ON(sas_port_add(phy->port) != 0); 805 806 807 switch (phy->attached_dev_type) { 808 case EDGE_DEV: 809 rphy = sas_expander_alloc(phy->port, 810 SAS_EDGE_EXPANDER_DEVICE); 811 break; 812 case FANOUT_DEV: 813 rphy = sas_expander_alloc(phy->port, 814 SAS_FANOUT_EXPANDER_DEVICE); 815 break; 816 default: 817 rphy = NULL; /* shut gcc up */ 818 BUG(); 819 } 820 port = parent->port; 821 child->rphy = rphy; 822 edev = rphy_to_expander_device(rphy); 823 child->dev_type = phy->attached_dev_type; 824 child->parent = parent; 825 child->port = port; 826 child->iproto = phy->attached_iproto; 827 child->tproto = phy->attached_tproto; 828 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 829 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 830 sas_ex_get_linkrate(parent, child, phy); 831 edev->level = parent_ex->level + 1; 832 parent->port->disc.max_level = max(parent->port->disc.max_level, 833 edev->level); 834 sas_init_dev(child); 835 sas_fill_in_rphy(child, rphy); 836 sas_rphy_add(rphy); 837 838 spin_lock_irq(&parent->port->dev_list_lock); 839 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 840 spin_unlock_irq(&parent->port->dev_list_lock); 841 842 res = sas_discover_expander(child); 843 if (res) { 844 kfree(child); 845 return NULL; 846 } 847 list_add_tail(&child->siblings, &parent->ex_dev.children); 848 return child; 849 } 850 851 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 852 { 853 struct expander_device *ex = &dev->ex_dev; 854 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 855 struct domain_device *child = NULL; 856 int res = 0; 857 858 /* Phy state */ 859 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 860 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 861 res = sas_ex_phy_discover(dev, phy_id); 862 if (res) 863 return res; 864 } 865 866 /* Parent and domain coherency */ 867 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 868 SAS_ADDR(dev->port->sas_addr))) { 869 sas_add_parent_port(dev, phy_id); 870 return 0; 871 } 872 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 873 SAS_ADDR(dev->parent->sas_addr))) { 874 sas_add_parent_port(dev, phy_id); 875 if (ex_phy->routing_attr == TABLE_ROUTING) 876 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 877 return 0; 878 } 879 880 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 881 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 882 883 if (ex_phy->attached_dev_type == NO_DEVICE) { 884 if (ex_phy->routing_attr == DIRECT_ROUTING) { 885 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 886 sas_configure_routing(dev, ex_phy->attached_sas_addr); 887 } 888 return 0; 889 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 890 return 0; 891 892 if (ex_phy->attached_dev_type != SAS_END_DEV && 893 ex_phy->attached_dev_type != FANOUT_DEV && 894 ex_phy->attached_dev_type != EDGE_DEV) { 895 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 896 "phy 0x%x\n", ex_phy->attached_dev_type, 897 SAS_ADDR(dev->sas_addr), 898 phy_id); 899 return 0; 900 } 901 902 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 903 if (res) { 904 SAS_DPRINTK("configure routing for dev %016llx " 905 "reported 0x%x. Forgotten\n", 906 SAS_ADDR(ex_phy->attached_sas_addr), res); 907 sas_disable_routing(dev, ex_phy->attached_sas_addr); 908 return res; 909 } 910 911 res = sas_ex_join_wide_port(dev, phy_id); 912 if (!res) { 913 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 914 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 915 return res; 916 } 917 918 switch (ex_phy->attached_dev_type) { 919 case SAS_END_DEV: 920 child = sas_ex_discover_end_dev(dev, phy_id); 921 break; 922 case FANOUT_DEV: 923 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 924 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 925 "attached to ex %016llx phy 0x%x\n", 926 SAS_ADDR(ex_phy->attached_sas_addr), 927 ex_phy->attached_phy_id, 928 SAS_ADDR(dev->sas_addr), 929 phy_id); 930 sas_ex_disable_phy(dev, phy_id); 931 break; 932 } else 933 memcpy(dev->port->disc.fanout_sas_addr, 934 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 935 /* fallthrough */ 936 case EDGE_DEV: 937 child = sas_ex_discover_expander(dev, phy_id); 938 break; 939 default: 940 break; 941 } 942 943 if (child) { 944 int i; 945 946 for (i = 0; i < ex->num_phys; i++) { 947 if (ex->ex_phy[i].phy_state == PHY_VACANT || 948 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 949 continue; 950 /* 951 * Due to races, the phy might not get added to the 952 * wide port, so we add the phy to the wide port here. 953 */ 954 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 955 SAS_ADDR(child->sas_addr)) { 956 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 957 res = sas_ex_join_wide_port(dev, i); 958 if (!res) 959 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 960 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 961 962 } 963 } 964 } 965 966 return res; 967 } 968 969 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 970 { 971 struct expander_device *ex = &dev->ex_dev; 972 int i; 973 974 for (i = 0; i < ex->num_phys; i++) { 975 struct ex_phy *phy = &ex->ex_phy[i]; 976 977 if (phy->phy_state == PHY_VACANT || 978 phy->phy_state == PHY_NOT_PRESENT) 979 continue; 980 981 if ((phy->attached_dev_type == EDGE_DEV || 982 phy->attached_dev_type == FANOUT_DEV) && 983 phy->routing_attr == SUBTRACTIVE_ROUTING) { 984 985 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 986 987 return 1; 988 } 989 } 990 return 0; 991 } 992 993 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 994 { 995 struct expander_device *ex = &dev->ex_dev; 996 struct domain_device *child; 997 u8 sub_addr[8] = {0, }; 998 999 list_for_each_entry(child, &ex->children, siblings) { 1000 if (child->dev_type != EDGE_DEV && 1001 child->dev_type != FANOUT_DEV) 1002 continue; 1003 if (sub_addr[0] == 0) { 1004 sas_find_sub_addr(child, sub_addr); 1005 continue; 1006 } else { 1007 u8 s2[8]; 1008 1009 if (sas_find_sub_addr(child, s2) && 1010 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1011 1012 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1013 "diverges from subtractive " 1014 "boundary %016llx\n", 1015 SAS_ADDR(dev->sas_addr), 1016 SAS_ADDR(child->sas_addr), 1017 SAS_ADDR(s2), 1018 SAS_ADDR(sub_addr)); 1019 1020 sas_ex_disable_port(child, s2); 1021 } 1022 } 1023 } 1024 return 0; 1025 } 1026 /** 1027 * sas_ex_discover_devices -- discover devices attached to this expander 1028 * dev: pointer to the expander domain device 1029 * single: if you want to do a single phy, else set to -1; 1030 * 1031 * Configure this expander for use with its devices and register the 1032 * devices of this expander. 1033 */ 1034 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1035 { 1036 struct expander_device *ex = &dev->ex_dev; 1037 int i = 0, end = ex->num_phys; 1038 int res = 0; 1039 1040 if (0 <= single && single < end) { 1041 i = single; 1042 end = i+1; 1043 } 1044 1045 for ( ; i < end; i++) { 1046 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1047 1048 if (ex_phy->phy_state == PHY_VACANT || 1049 ex_phy->phy_state == PHY_NOT_PRESENT || 1050 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1051 continue; 1052 1053 switch (ex_phy->linkrate) { 1054 case SAS_PHY_DISABLED: 1055 case SAS_PHY_RESET_PROBLEM: 1056 case SAS_SATA_PORT_SELECTOR: 1057 continue; 1058 default: 1059 res = sas_ex_discover_dev(dev, i); 1060 if (res) 1061 break; 1062 continue; 1063 } 1064 } 1065 1066 if (!res) 1067 sas_check_level_subtractive_boundary(dev); 1068 1069 return res; 1070 } 1071 1072 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1073 { 1074 struct expander_device *ex = &dev->ex_dev; 1075 int i; 1076 u8 *sub_sas_addr = NULL; 1077 1078 if (dev->dev_type != EDGE_DEV) 1079 return 0; 1080 1081 for (i = 0; i < ex->num_phys; i++) { 1082 struct ex_phy *phy = &ex->ex_phy[i]; 1083 1084 if (phy->phy_state == PHY_VACANT || 1085 phy->phy_state == PHY_NOT_PRESENT) 1086 continue; 1087 1088 if ((phy->attached_dev_type == FANOUT_DEV || 1089 phy->attached_dev_type == EDGE_DEV) && 1090 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1091 1092 if (!sub_sas_addr) 1093 sub_sas_addr = &phy->attached_sas_addr[0]; 1094 else if (SAS_ADDR(sub_sas_addr) != 1095 SAS_ADDR(phy->attached_sas_addr)) { 1096 1097 SAS_DPRINTK("ex %016llx phy 0x%x " 1098 "diverges(%016llx) on subtractive " 1099 "boundary(%016llx). Disabled\n", 1100 SAS_ADDR(dev->sas_addr), i, 1101 SAS_ADDR(phy->attached_sas_addr), 1102 SAS_ADDR(sub_sas_addr)); 1103 sas_ex_disable_phy(dev, i); 1104 } 1105 } 1106 } 1107 return 0; 1108 } 1109 1110 static void sas_print_parent_topology_bug(struct domain_device *child, 1111 struct ex_phy *parent_phy, 1112 struct ex_phy *child_phy) 1113 { 1114 static const char ra_char[] = { 1115 [DIRECT_ROUTING] = 'D', 1116 [SUBTRACTIVE_ROUTING] = 'S', 1117 [TABLE_ROUTING] = 'T', 1118 }; 1119 static const char *ex_type[] = { 1120 [EDGE_DEV] = "edge", 1121 [FANOUT_DEV] = "fanout", 1122 }; 1123 struct domain_device *parent = child->parent; 1124 1125 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1126 "has %c:%c routing link!\n", 1127 1128 ex_type[parent->dev_type], 1129 SAS_ADDR(parent->sas_addr), 1130 parent_phy->phy_id, 1131 1132 ex_type[child->dev_type], 1133 SAS_ADDR(child->sas_addr), 1134 child_phy->phy_id, 1135 1136 ra_char[parent_phy->routing_attr], 1137 ra_char[child_phy->routing_attr]); 1138 } 1139 1140 static int sas_check_eeds(struct domain_device *child, 1141 struct ex_phy *parent_phy, 1142 struct ex_phy *child_phy) 1143 { 1144 int res = 0; 1145 struct domain_device *parent = child->parent; 1146 1147 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1148 res = -ENODEV; 1149 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1150 "phy S:0x%x, while there is a fanout ex %016llx\n", 1151 SAS_ADDR(parent->sas_addr), 1152 parent_phy->phy_id, 1153 SAS_ADDR(child->sas_addr), 1154 child_phy->phy_id, 1155 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1156 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1157 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1158 SAS_ADDR_SIZE); 1159 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1160 SAS_ADDR_SIZE); 1161 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1162 SAS_ADDR(parent->sas_addr)) || 1163 (SAS_ADDR(parent->port->disc.eeds_a) == 1164 SAS_ADDR(child->sas_addr))) 1165 && 1166 ((SAS_ADDR(parent->port->disc.eeds_b) == 1167 SAS_ADDR(parent->sas_addr)) || 1168 (SAS_ADDR(parent->port->disc.eeds_b) == 1169 SAS_ADDR(child->sas_addr)))) 1170 ; 1171 else { 1172 res = -ENODEV; 1173 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1174 "phy 0x%x link forms a third EEDS!\n", 1175 SAS_ADDR(parent->sas_addr), 1176 parent_phy->phy_id, 1177 SAS_ADDR(child->sas_addr), 1178 child_phy->phy_id); 1179 } 1180 1181 return res; 1182 } 1183 1184 /* Here we spill over 80 columns. It is intentional. 1185 */ 1186 static int sas_check_parent_topology(struct domain_device *child) 1187 { 1188 struct expander_device *child_ex = &child->ex_dev; 1189 struct expander_device *parent_ex; 1190 int i; 1191 int res = 0; 1192 1193 if (!child->parent) 1194 return 0; 1195 1196 if (child->parent->dev_type != EDGE_DEV && 1197 child->parent->dev_type != FANOUT_DEV) 1198 return 0; 1199 1200 parent_ex = &child->parent->ex_dev; 1201 1202 for (i = 0; i < parent_ex->num_phys; i++) { 1203 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1204 struct ex_phy *child_phy; 1205 1206 if (parent_phy->phy_state == PHY_VACANT || 1207 parent_phy->phy_state == PHY_NOT_PRESENT) 1208 continue; 1209 1210 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1211 continue; 1212 1213 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1214 1215 switch (child->parent->dev_type) { 1216 case EDGE_DEV: 1217 if (child->dev_type == FANOUT_DEV) { 1218 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1219 child_phy->routing_attr != TABLE_ROUTING) { 1220 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1221 res = -ENODEV; 1222 } 1223 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1224 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1225 res = sas_check_eeds(child, parent_phy, child_phy); 1226 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1227 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1228 res = -ENODEV; 1229 } 1230 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1231 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1232 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1233 res = -ENODEV; 1234 } 1235 break; 1236 case FANOUT_DEV: 1237 if (parent_phy->routing_attr != TABLE_ROUTING || 1238 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1239 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1240 res = -ENODEV; 1241 } 1242 break; 1243 default: 1244 break; 1245 } 1246 } 1247 1248 return res; 1249 } 1250 1251 #define RRI_REQ_SIZE 16 1252 #define RRI_RESP_SIZE 44 1253 1254 static int sas_configure_present(struct domain_device *dev, int phy_id, 1255 u8 *sas_addr, int *index, int *present) 1256 { 1257 int i, res = 0; 1258 struct expander_device *ex = &dev->ex_dev; 1259 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1260 u8 *rri_req; 1261 u8 *rri_resp; 1262 1263 *present = 0; 1264 *index = 0; 1265 1266 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1267 if (!rri_req) 1268 return -ENOMEM; 1269 1270 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1271 if (!rri_resp) { 1272 kfree(rri_req); 1273 return -ENOMEM; 1274 } 1275 1276 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1277 rri_req[9] = phy_id; 1278 1279 for (i = 0; i < ex->max_route_indexes ; i++) { 1280 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1281 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1282 RRI_RESP_SIZE); 1283 if (res) 1284 goto out; 1285 res = rri_resp[2]; 1286 if (res == SMP_RESP_NO_INDEX) { 1287 SAS_DPRINTK("overflow of indexes: dev %016llx " 1288 "phy 0x%x index 0x%x\n", 1289 SAS_ADDR(dev->sas_addr), phy_id, i); 1290 goto out; 1291 } else if (res != SMP_RESP_FUNC_ACC) { 1292 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1293 "result 0x%x\n", __func__, 1294 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1295 goto out; 1296 } 1297 if (SAS_ADDR(sas_addr) != 0) { 1298 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1299 *index = i; 1300 if ((rri_resp[12] & 0x80) == 0x80) 1301 *present = 0; 1302 else 1303 *present = 1; 1304 goto out; 1305 } else if (SAS_ADDR(rri_resp+16) == 0) { 1306 *index = i; 1307 *present = 0; 1308 goto out; 1309 } 1310 } else if (SAS_ADDR(rri_resp+16) == 0 && 1311 phy->last_da_index < i) { 1312 phy->last_da_index = i; 1313 *index = i; 1314 *present = 0; 1315 goto out; 1316 } 1317 } 1318 res = -1; 1319 out: 1320 kfree(rri_req); 1321 kfree(rri_resp); 1322 return res; 1323 } 1324 1325 #define CRI_REQ_SIZE 44 1326 #define CRI_RESP_SIZE 8 1327 1328 static int sas_configure_set(struct domain_device *dev, int phy_id, 1329 u8 *sas_addr, int index, int include) 1330 { 1331 int res; 1332 u8 *cri_req; 1333 u8 *cri_resp; 1334 1335 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1336 if (!cri_req) 1337 return -ENOMEM; 1338 1339 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1340 if (!cri_resp) { 1341 kfree(cri_req); 1342 return -ENOMEM; 1343 } 1344 1345 cri_req[1] = SMP_CONF_ROUTE_INFO; 1346 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1347 cri_req[9] = phy_id; 1348 if (SAS_ADDR(sas_addr) == 0 || !include) 1349 cri_req[12] |= 0x80; 1350 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1351 1352 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1353 CRI_RESP_SIZE); 1354 if (res) 1355 goto out; 1356 res = cri_resp[2]; 1357 if (res == SMP_RESP_NO_INDEX) { 1358 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1359 "index 0x%x\n", 1360 SAS_ADDR(dev->sas_addr), phy_id, index); 1361 } 1362 out: 1363 kfree(cri_req); 1364 kfree(cri_resp); 1365 return res; 1366 } 1367 1368 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1369 u8 *sas_addr, int include) 1370 { 1371 int index; 1372 int present; 1373 int res; 1374 1375 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1376 if (res) 1377 return res; 1378 if (include ^ present) 1379 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1380 1381 return res; 1382 } 1383 1384 /** 1385 * sas_configure_parent -- configure routing table of parent 1386 * parent: parent expander 1387 * child: child expander 1388 * sas_addr: SAS port identifier of device directly attached to child 1389 */ 1390 static int sas_configure_parent(struct domain_device *parent, 1391 struct domain_device *child, 1392 u8 *sas_addr, int include) 1393 { 1394 struct expander_device *ex_parent = &parent->ex_dev; 1395 int res = 0; 1396 int i; 1397 1398 if (parent->parent) { 1399 res = sas_configure_parent(parent->parent, parent, sas_addr, 1400 include); 1401 if (res) 1402 return res; 1403 } 1404 1405 if (ex_parent->conf_route_table == 0) { 1406 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1407 SAS_ADDR(parent->sas_addr)); 1408 return 0; 1409 } 1410 1411 for (i = 0; i < ex_parent->num_phys; i++) { 1412 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1413 1414 if ((phy->routing_attr == TABLE_ROUTING) && 1415 (SAS_ADDR(phy->attached_sas_addr) == 1416 SAS_ADDR(child->sas_addr))) { 1417 res = sas_configure_phy(parent, i, sas_addr, include); 1418 if (res) 1419 return res; 1420 } 1421 } 1422 1423 return res; 1424 } 1425 1426 /** 1427 * sas_configure_routing -- configure routing 1428 * dev: expander device 1429 * sas_addr: port identifier of device directly attached to the expander device 1430 */ 1431 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1432 { 1433 if (dev->parent) 1434 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1435 return 0; 1436 } 1437 1438 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1439 { 1440 if (dev->parent) 1441 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1442 return 0; 1443 } 1444 1445 /** 1446 * sas_discover_expander -- expander discovery 1447 * @ex: pointer to expander domain device 1448 * 1449 * See comment in sas_discover_sata(). 1450 */ 1451 static int sas_discover_expander(struct domain_device *dev) 1452 { 1453 int res; 1454 1455 res = sas_notify_lldd_dev_found(dev); 1456 if (res) 1457 return res; 1458 1459 res = sas_ex_general(dev); 1460 if (res) 1461 goto out_err; 1462 res = sas_ex_manuf_info(dev); 1463 if (res) 1464 goto out_err; 1465 1466 res = sas_expander_discover(dev); 1467 if (res) { 1468 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1469 SAS_ADDR(dev->sas_addr), res); 1470 goto out_err; 1471 } 1472 1473 sas_check_ex_subtractive_boundary(dev); 1474 res = sas_check_parent_topology(dev); 1475 if (res) 1476 goto out_err; 1477 return 0; 1478 out_err: 1479 sas_notify_lldd_dev_gone(dev); 1480 return res; 1481 } 1482 1483 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1484 { 1485 int res = 0; 1486 struct domain_device *dev; 1487 1488 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1489 if (dev->dev_type == EDGE_DEV || 1490 dev->dev_type == FANOUT_DEV) { 1491 struct sas_expander_device *ex = 1492 rphy_to_expander_device(dev->rphy); 1493 1494 if (level == ex->level) 1495 res = sas_ex_discover_devices(dev, -1); 1496 else if (level > 0) 1497 res = sas_ex_discover_devices(port->port_dev, -1); 1498 1499 } 1500 } 1501 1502 return res; 1503 } 1504 1505 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1506 { 1507 int res; 1508 int level; 1509 1510 do { 1511 level = port->disc.max_level; 1512 res = sas_ex_level_discovery(port, level); 1513 mb(); 1514 } while (level < port->disc.max_level); 1515 1516 return res; 1517 } 1518 1519 int sas_discover_root_expander(struct domain_device *dev) 1520 { 1521 int res; 1522 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1523 1524 res = sas_rphy_add(dev->rphy); 1525 if (res) 1526 goto out_err; 1527 1528 ex->level = dev->port->disc.max_level; /* 0 */ 1529 res = sas_discover_expander(dev); 1530 if (res) 1531 goto out_err2; 1532 1533 sas_ex_bfs_disc(dev->port); 1534 1535 return res; 1536 1537 out_err2: 1538 sas_rphy_remove(dev->rphy); 1539 out_err: 1540 return res; 1541 } 1542 1543 /* ---------- Domain revalidation ---------- */ 1544 1545 static int sas_get_phy_discover(struct domain_device *dev, 1546 int phy_id, struct smp_resp *disc_resp) 1547 { 1548 int res; 1549 u8 *disc_req; 1550 1551 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1552 if (!disc_req) 1553 return -ENOMEM; 1554 1555 disc_req[1] = SMP_DISCOVER; 1556 disc_req[9] = phy_id; 1557 1558 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1559 disc_resp, DISCOVER_RESP_SIZE); 1560 if (res) 1561 goto out; 1562 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1563 res = disc_resp->result; 1564 goto out; 1565 } 1566 out: 1567 kfree(disc_req); 1568 return res; 1569 } 1570 1571 static int sas_get_phy_change_count(struct domain_device *dev, 1572 int phy_id, int *pcc) 1573 { 1574 int res; 1575 struct smp_resp *disc_resp; 1576 1577 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1578 if (!disc_resp) 1579 return -ENOMEM; 1580 1581 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1582 if (!res) 1583 *pcc = disc_resp->disc.change_count; 1584 1585 kfree(disc_resp); 1586 return res; 1587 } 1588 1589 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1590 int phy_id, u8 *attached_sas_addr) 1591 { 1592 int res; 1593 struct smp_resp *disc_resp; 1594 struct discover_resp *dr; 1595 1596 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1597 if (!disc_resp) 1598 return -ENOMEM; 1599 dr = &disc_resp->disc; 1600 1601 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1602 if (!res) { 1603 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1604 if (dr->attached_dev_type == 0) 1605 memset(attached_sas_addr, 0, 8); 1606 } 1607 kfree(disc_resp); 1608 return res; 1609 } 1610 1611 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1612 int from_phy, bool update) 1613 { 1614 struct expander_device *ex = &dev->ex_dev; 1615 int res = 0; 1616 int i; 1617 1618 for (i = from_phy; i < ex->num_phys; i++) { 1619 int phy_change_count = 0; 1620 1621 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1622 if (res) 1623 goto out; 1624 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1625 if (update) 1626 ex->ex_phy[i].phy_change_count = 1627 phy_change_count; 1628 *phy_id = i; 1629 return 0; 1630 } 1631 } 1632 out: 1633 return res; 1634 } 1635 1636 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1637 { 1638 int res; 1639 u8 *rg_req; 1640 struct smp_resp *rg_resp; 1641 1642 rg_req = alloc_smp_req(RG_REQ_SIZE); 1643 if (!rg_req) 1644 return -ENOMEM; 1645 1646 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1647 if (!rg_resp) { 1648 kfree(rg_req); 1649 return -ENOMEM; 1650 } 1651 1652 rg_req[1] = SMP_REPORT_GENERAL; 1653 1654 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1655 RG_RESP_SIZE); 1656 if (res) 1657 goto out; 1658 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1659 res = rg_resp->result; 1660 goto out; 1661 } 1662 1663 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1664 out: 1665 kfree(rg_resp); 1666 kfree(rg_req); 1667 return res; 1668 } 1669 /** 1670 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1671 * @dev:domain device to be detect. 1672 * @src_dev: the device which originated BROADCAST(CHANGE). 1673 * 1674 * Add self-configuration expander suport. Suppose two expander cascading, 1675 * when the first level expander is self-configuring, hotplug the disks in 1676 * second level expander, BROADCAST(CHANGE) will not only be originated 1677 * in the second level expander, but also be originated in the first level 1678 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1679 * expander changed count in two level expanders will all increment at least 1680 * once, but the phy which chang count has changed is the source device which 1681 * we concerned. 1682 */ 1683 1684 static int sas_find_bcast_dev(struct domain_device *dev, 1685 struct domain_device **src_dev) 1686 { 1687 struct expander_device *ex = &dev->ex_dev; 1688 int ex_change_count = -1; 1689 int phy_id = -1; 1690 int res; 1691 struct domain_device *ch; 1692 1693 res = sas_get_ex_change_count(dev, &ex_change_count); 1694 if (res) 1695 goto out; 1696 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1697 /* Just detect if this expander phys phy change count changed, 1698 * in order to determine if this expander originate BROADCAST, 1699 * and do not update phy change count field in our structure. 1700 */ 1701 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1702 if (phy_id != -1) { 1703 *src_dev = dev; 1704 ex->ex_change_count = ex_change_count; 1705 SAS_DPRINTK("Expander phy change count has changed\n"); 1706 return res; 1707 } else 1708 SAS_DPRINTK("Expander phys DID NOT change\n"); 1709 } 1710 list_for_each_entry(ch, &ex->children, siblings) { 1711 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1712 res = sas_find_bcast_dev(ch, src_dev); 1713 if (src_dev) 1714 return res; 1715 } 1716 } 1717 out: 1718 return res; 1719 } 1720 1721 static void sas_unregister_ex_tree(struct domain_device *dev) 1722 { 1723 struct expander_device *ex = &dev->ex_dev; 1724 struct domain_device *child, *n; 1725 1726 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1727 if (child->dev_type == EDGE_DEV || 1728 child->dev_type == FANOUT_DEV) 1729 sas_unregister_ex_tree(child); 1730 else 1731 sas_unregister_dev(child); 1732 } 1733 sas_unregister_dev(dev); 1734 } 1735 1736 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1737 int phy_id, bool last) 1738 { 1739 struct expander_device *ex_dev = &parent->ex_dev; 1740 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1741 struct domain_device *child, *n; 1742 if (last) { 1743 list_for_each_entry_safe(child, n, 1744 &ex_dev->children, siblings) { 1745 if (SAS_ADDR(child->sas_addr) == 1746 SAS_ADDR(phy->attached_sas_addr)) { 1747 if (child->dev_type == EDGE_DEV || 1748 child->dev_type == FANOUT_DEV) 1749 sas_unregister_ex_tree(child); 1750 else 1751 sas_unregister_dev(child); 1752 break; 1753 } 1754 } 1755 sas_disable_routing(parent, phy->attached_sas_addr); 1756 } 1757 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1758 sas_port_delete_phy(phy->port, phy->phy); 1759 if (phy->port->num_phys == 0) 1760 sas_port_delete(phy->port); 1761 phy->port = NULL; 1762 } 1763 1764 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1765 const int level) 1766 { 1767 struct expander_device *ex_root = &root->ex_dev; 1768 struct domain_device *child; 1769 int res = 0; 1770 1771 list_for_each_entry(child, &ex_root->children, siblings) { 1772 if (child->dev_type == EDGE_DEV || 1773 child->dev_type == FANOUT_DEV) { 1774 struct sas_expander_device *ex = 1775 rphy_to_expander_device(child->rphy); 1776 1777 if (level > ex->level) 1778 res = sas_discover_bfs_by_root_level(child, 1779 level); 1780 else if (level == ex->level) 1781 res = sas_ex_discover_devices(child, -1); 1782 } 1783 } 1784 return res; 1785 } 1786 1787 static int sas_discover_bfs_by_root(struct domain_device *dev) 1788 { 1789 int res; 1790 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1791 int level = ex->level+1; 1792 1793 res = sas_ex_discover_devices(dev, -1); 1794 if (res) 1795 goto out; 1796 do { 1797 res = sas_discover_bfs_by_root_level(dev, level); 1798 mb(); 1799 level += 1; 1800 } while (level <= dev->port->disc.max_level); 1801 out: 1802 return res; 1803 } 1804 1805 static int sas_discover_new(struct domain_device *dev, int phy_id) 1806 { 1807 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1808 struct domain_device *child; 1809 bool found = false; 1810 int res, i; 1811 1812 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1813 SAS_ADDR(dev->sas_addr), phy_id); 1814 res = sas_ex_phy_discover(dev, phy_id); 1815 if (res) 1816 goto out; 1817 /* to support the wide port inserted */ 1818 for (i = 0; i < dev->ex_dev.num_phys; i++) { 1819 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; 1820 if (i == phy_id) 1821 continue; 1822 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == 1823 SAS_ADDR(ex_phy->attached_sas_addr)) { 1824 found = true; 1825 break; 1826 } 1827 } 1828 if (found) { 1829 sas_ex_join_wide_port(dev, phy_id); 1830 return 0; 1831 } 1832 res = sas_ex_discover_devices(dev, phy_id); 1833 if (!res) 1834 goto out; 1835 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1836 if (SAS_ADDR(child->sas_addr) == 1837 SAS_ADDR(ex_phy->attached_sas_addr)) { 1838 if (child->dev_type == EDGE_DEV || 1839 child->dev_type == FANOUT_DEV) 1840 res = sas_discover_bfs_by_root(child); 1841 break; 1842 } 1843 } 1844 out: 1845 return res; 1846 } 1847 1848 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1849 { 1850 struct expander_device *ex = &dev->ex_dev; 1851 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1852 u8 attached_sas_addr[8]; 1853 int res; 1854 1855 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1856 switch (res) { 1857 case SMP_RESP_NO_PHY: 1858 phy->phy_state = PHY_NOT_PRESENT; 1859 sas_unregister_devs_sas_addr(dev, phy_id, last); 1860 goto out; break; 1861 case SMP_RESP_PHY_VACANT: 1862 phy->phy_state = PHY_VACANT; 1863 sas_unregister_devs_sas_addr(dev, phy_id, last); 1864 goto out; break; 1865 case SMP_RESP_FUNC_ACC: 1866 break; 1867 } 1868 1869 if (SAS_ADDR(attached_sas_addr) == 0) { 1870 phy->phy_state = PHY_EMPTY; 1871 sas_unregister_devs_sas_addr(dev, phy_id, last); 1872 } else if (SAS_ADDR(attached_sas_addr) == 1873 SAS_ADDR(phy->attached_sas_addr)) { 1874 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1875 SAS_ADDR(dev->sas_addr), phy_id); 1876 sas_ex_phy_discover(dev, phy_id); 1877 } else 1878 res = sas_discover_new(dev, phy_id); 1879 out: 1880 return res; 1881 } 1882 1883 /** 1884 * sas_rediscover - revalidate the domain. 1885 * @dev:domain device to be detect. 1886 * @phy_id: the phy id will be detected. 1887 * 1888 * NOTE: this process _must_ quit (return) as soon as any connection 1889 * errors are encountered. Connection recovery is done elsewhere. 1890 * Discover process only interrogates devices in order to discover the 1891 * domain.For plugging out, we un-register the device only when it is 1892 * the last phy in the port, for other phys in this port, we just delete it 1893 * from the port.For inserting, we do discovery when it is the 1894 * first phy,for other phys in this port, we add it to the port to 1895 * forming the wide-port. 1896 */ 1897 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1898 { 1899 struct expander_device *ex = &dev->ex_dev; 1900 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1901 int res = 0; 1902 int i; 1903 bool last = true; /* is this the last phy of the port */ 1904 1905 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1906 SAS_ADDR(dev->sas_addr), phy_id); 1907 1908 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1909 for (i = 0; i < ex->num_phys; i++) { 1910 struct ex_phy *phy = &ex->ex_phy[i]; 1911 1912 if (i == phy_id) 1913 continue; 1914 if (SAS_ADDR(phy->attached_sas_addr) == 1915 SAS_ADDR(changed_phy->attached_sas_addr)) { 1916 SAS_DPRINTK("phy%d part of wide port with " 1917 "phy%d\n", phy_id, i); 1918 last = false; 1919 break; 1920 } 1921 } 1922 res = sas_rediscover_dev(dev, phy_id, last); 1923 } else 1924 res = sas_discover_new(dev, phy_id); 1925 return res; 1926 } 1927 1928 /** 1929 * sas_revalidate_domain -- revalidate the domain 1930 * @port: port to the domain of interest 1931 * 1932 * NOTE: this process _must_ quit (return) as soon as any connection 1933 * errors are encountered. Connection recovery is done elsewhere. 1934 * Discover process only interrogates devices in order to discover the 1935 * domain. 1936 */ 1937 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1938 { 1939 int res; 1940 struct domain_device *dev = NULL; 1941 1942 res = sas_find_bcast_dev(port_dev, &dev); 1943 if (res) 1944 goto out; 1945 if (dev) { 1946 struct expander_device *ex = &dev->ex_dev; 1947 int i = 0, phy_id; 1948 1949 do { 1950 phy_id = -1; 1951 res = sas_find_bcast_phy(dev, &phy_id, i, true); 1952 if (phy_id == -1) 1953 break; 1954 res = sas_rediscover(dev, phy_id); 1955 i = phy_id + 1; 1956 } while (i < ex->num_phys); 1957 } 1958 out: 1959 return res; 1960 } 1961 1962 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1963 struct request *req) 1964 { 1965 struct domain_device *dev; 1966 int ret, type; 1967 struct request *rsp = req->next_rq; 1968 1969 if (!rsp) { 1970 printk("%s: space for a smp response is missing\n", 1971 __func__); 1972 return -EINVAL; 1973 } 1974 1975 /* no rphy means no smp target support (ie aic94xx host) */ 1976 if (!rphy) 1977 return sas_smp_host_handler(shost, req, rsp); 1978 1979 type = rphy->identify.device_type; 1980 1981 if (type != SAS_EDGE_EXPANDER_DEVICE && 1982 type != SAS_FANOUT_EXPANDER_DEVICE) { 1983 printk("%s: can we send a smp request to a device?\n", 1984 __func__); 1985 return -EINVAL; 1986 } 1987 1988 dev = sas_find_dev_by_rphy(rphy); 1989 if (!dev) { 1990 printk("%s: fail to find a domain_device?\n", __func__); 1991 return -EINVAL; 1992 } 1993 1994 /* do we need to support multiple segments? */ 1995 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 1996 printk("%s: multiple segments req %u %u, rsp %u %u\n", 1997 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 1998 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 1999 return -EINVAL; 2000 } 2001 2002 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2003 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2004 if (ret > 0) { 2005 /* positive number is the untransferred residual */ 2006 rsp->resid_len = ret; 2007 req->resid_len = 0; 2008 ret = 0; 2009 } else if (ret == 0) { 2010 rsp->resid_len = 0; 2011 req->resid_len = 0; 2012 } 2013 2014 return ret; 2015 } 2016