xref: /linux/drivers/scsi/libsas/sas_expander.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10 
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15 
16 #include "sas_internal.h"
17 
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22 
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 			     u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28 
29 /* ---------- SMP task management ---------- */
30 
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33 
34 static int smp_execute_task_sg(struct domain_device *dev,
35 		struct scatterlist *req, struct scatterlist *resp)
36 {
37 	int res, retry;
38 	struct sas_task *task = NULL;
39 	struct sas_internal *i =
40 		to_sas_internal(dev->port->ha->core.shost->transportt);
41 	struct sas_ha_struct *ha = dev->port->ha;
42 
43 	pm_runtime_get_sync(ha->dev);
44 	mutex_lock(&dev->ex_dev.cmd_mutex);
45 	for (retry = 0; retry < 3; retry++) {
46 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 			res = -ECOMM;
48 			break;
49 		}
50 
51 		task = sas_alloc_slow_task(GFP_KERNEL);
52 		if (!task) {
53 			res = -ENOMEM;
54 			break;
55 		}
56 		task->dev = dev;
57 		task->task_proto = dev->tproto;
58 		task->smp_task.smp_req = *req;
59 		task->smp_task.smp_resp = *resp;
60 
61 		task->task_done = sas_task_internal_done;
62 
63 		task->slow_task->timer.function = sas_task_internal_timedout;
64 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 		add_timer(&task->slow_task->timer);
66 
67 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68 
69 		if (res) {
70 			del_timer(&task->slow_task->timer);
71 			pr_notice("executing SMP task failed:%d\n", res);
72 			break;
73 		}
74 
75 		wait_for_completion(&task->slow_task->completion);
76 		res = -ECOMM;
77 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 			pr_notice("smp task timed out or aborted\n");
79 			i->dft->lldd_abort_task(task);
80 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 				pr_notice("SMP task aborted and not done\n");
82 				break;
83 			}
84 		}
85 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 			res = 0;
88 			break;
89 		}
90 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
92 			/* no error, but return the number of bytes of
93 			 * underrun */
94 			res = task->task_status.residual;
95 			break;
96 		}
97 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 		    task->task_status.stat == SAS_DATA_OVERRUN) {
99 			res = -EMSGSIZE;
100 			break;
101 		}
102 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 			break;
105 		else {
106 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 				  __func__,
108 				  SAS_ADDR(dev->sas_addr),
109 				  task->task_status.resp,
110 				  task->task_status.stat);
111 			sas_free_task(task);
112 			task = NULL;
113 		}
114 	}
115 	mutex_unlock(&dev->ex_dev.cmd_mutex);
116 	pm_runtime_put_sync(ha->dev);
117 
118 	BUG_ON(retry == 3 && task != NULL);
119 	sas_free_task(task);
120 	return res;
121 }
122 
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 			    void *resp, int resp_size)
125 {
126 	struct scatterlist req_sg;
127 	struct scatterlist resp_sg;
128 
129 	sg_init_one(&req_sg, req, req_size);
130 	sg_init_one(&resp_sg, resp, resp_size);
131 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133 
134 /* ---------- Allocations ---------- */
135 
136 static inline void *alloc_smp_req(int size)
137 {
138 	u8 *p = kzalloc(size, GFP_KERNEL);
139 	if (p)
140 		p[0] = SMP_REQUEST;
141 	return p;
142 }
143 
144 static inline void *alloc_smp_resp(int size)
145 {
146 	return kzalloc(size, GFP_KERNEL);
147 }
148 
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 	switch (phy->routing_attr) {
152 	case TABLE_ROUTING:
153 		if (dev->ex_dev.t2t_supp)
154 			return 'U';
155 		else
156 			return 'T';
157 	case DIRECT_ROUTING:
158 		return 'D';
159 	case SUBTRACTIVE_ROUTING:
160 		return 'S';
161 	default:
162 		return '?';
163 	}
164 }
165 
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 	/* This is detecting a failure to transmit initial dev to host
169 	 * FIS as described in section J.5 of sas-2 r16
170 	 */
171 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 		return SAS_SATA_PENDING;
174 	else
175 		return dr->attached_dev_type;
176 }
177 
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 			   struct smp_disc_resp *disc_resp)
180 {
181 	enum sas_device_type dev_type;
182 	enum sas_linkrate linkrate;
183 	u8 sas_addr[SAS_ADDR_SIZE];
184 	struct discover_resp *dr = &disc_resp->disc;
185 	struct sas_ha_struct *ha = dev->port->ha;
186 	struct expander_device *ex = &dev->ex_dev;
187 	struct ex_phy *phy = &ex->ex_phy[phy_id];
188 	struct sas_rphy *rphy = dev->rphy;
189 	bool new_phy = !phy->phy;
190 	char *type;
191 
192 	if (new_phy) {
193 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 			return;
195 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196 
197 		/* FIXME: error_handling */
198 		BUG_ON(!phy->phy);
199 	}
200 
201 	switch (disc_resp->result) {
202 	case SMP_RESP_PHY_VACANT:
203 		phy->phy_state = PHY_VACANT;
204 		break;
205 	default:
206 		phy->phy_state = PHY_NOT_PRESENT;
207 		break;
208 	case SMP_RESP_FUNC_ACC:
209 		phy->phy_state = PHY_EMPTY; /* do not know yet */
210 		break;
211 	}
212 
213 	/* check if anything important changed to squelch debug */
214 	dev_type = phy->attached_dev_type;
215 	linkrate  = phy->linkrate;
216 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217 
218 	/* Handle vacant phy - rest of dr data is not valid so skip it */
219 	if (phy->phy_state == PHY_VACANT) {
220 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 		phy->attached_dev_type = SAS_PHY_UNUSED;
222 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 			phy->phy_id = phy_id;
224 			goto skip;
225 		} else
226 			goto out;
227 	}
228 
229 	phy->attached_dev_type = to_dev_type(dr);
230 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 		goto out;
232 	phy->phy_id = phy_id;
233 	phy->linkrate = dr->linkrate;
234 	phy->attached_sata_host = dr->attached_sata_host;
235 	phy->attached_sata_dev  = dr->attached_sata_dev;
236 	phy->attached_sata_ps   = dr->attached_sata_ps;
237 	phy->attached_iproto = dr->iproto << 1;
238 	phy->attached_tproto = dr->tproto << 1;
239 	/* help some expanders that fail to zero sas_address in the 'no
240 	 * device' case
241 	 */
242 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 	else
246 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 	phy->attached_phy_id = dr->attached_phy_id;
248 	phy->phy_change_count = dr->change_count;
249 	phy->routing_attr = dr->routing_attr;
250 	phy->virtual = dr->virtual;
251 	phy->last_da_index = -1;
252 
253 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 	phy->phy->identify.device_type = dr->attached_dev_type;
255 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 	if (!phy->attached_tproto && dr->attached_sata_dev)
258 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 	phy->phy->identify.phy_identifier = phy_id;
260 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 	phy->phy->negotiated_linkrate = phy->linkrate;
265 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266 
267  skip:
268 	if (new_phy)
269 		if (sas_phy_add(phy->phy)) {
270 			sas_phy_free(phy->phy);
271 			return;
272 		}
273 
274  out:
275 	switch (phy->attached_dev_type) {
276 	case SAS_SATA_PENDING:
277 		type = "stp pending";
278 		break;
279 	case SAS_PHY_UNUSED:
280 		type = "no device";
281 		break;
282 	case SAS_END_DEVICE:
283 		if (phy->attached_iproto) {
284 			if (phy->attached_tproto)
285 				type = "host+target";
286 			else
287 				type = "host";
288 		} else {
289 			if (dr->attached_sata_dev)
290 				type = "stp";
291 			else
292 				type = "ssp";
293 		}
294 		break;
295 	case SAS_EDGE_EXPANDER_DEVICE:
296 	case SAS_FANOUT_EXPANDER_DEVICE:
297 		type = "smp";
298 		break;
299 	default:
300 		type = "unknown";
301 	}
302 
303 	/* this routine is polled by libata error recovery so filter
304 	 * unimportant messages
305 	 */
306 	if (new_phy || phy->attached_dev_type != dev_type ||
307 	    phy->linkrate != linkrate ||
308 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 		/* pass */;
310 	else
311 		return;
312 
313 	/* if the attached device type changed and ata_eh is active,
314 	 * make sure we run revalidation when eh completes (see:
315 	 * sas_enable_revalidation)
316 	 */
317 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319 
320 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 		 sas_route_char(dev, phy), phy->linkrate,
324 		 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326 
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 	struct domain_device *dev;
332 	struct sas_rphy *rphy;
333 
334 	if (!ex_phy->port)
335 		return NULL;
336 
337 	rphy = ex_phy->port->rphy;
338 	if (!rphy)
339 		return NULL;
340 
341 	dev = sas_find_dev_by_rphy(rphy);
342 
343 	if (dev && dev_is_sata(dev))
344 		return dev;
345 
346 	return NULL;
347 }
348 
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351 
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 				      struct smp_disc_resp *disc_resp,
354 				      int single)
355 {
356 	struct discover_resp *dr = &disc_resp->disc;
357 	int res;
358 
359 	disc_req[9] = single;
360 
361 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 			       disc_resp, DISCOVER_RESP_SIZE);
363 	if (res)
364 		return res;
365 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 		pr_notice("Found loopback topology, just ignore it!\n");
367 		return 0;
368 	}
369 	sas_set_ex_phy(dev, single, disc_resp);
370 	return 0;
371 }
372 
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 	struct expander_device *ex = &dev->ex_dev;
376 	int  res = 0;
377 	u8   *disc_req;
378 	struct smp_disc_resp *disc_resp;
379 
380 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 	if (!disc_req)
382 		return -ENOMEM;
383 
384 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 	if (!disc_resp) {
386 		kfree(disc_req);
387 		return -ENOMEM;
388 	}
389 
390 	disc_req[1] = SMP_DISCOVER;
391 
392 	if (0 <= single && single < ex->num_phys) {
393 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 	} else {
395 		int i;
396 
397 		for (i = 0; i < ex->num_phys; i++) {
398 			res = sas_ex_phy_discover_helper(dev, disc_req,
399 							 disc_resp, i);
400 			if (res)
401 				goto out_err;
402 		}
403 	}
404 out_err:
405 	kfree(disc_resp);
406 	kfree(disc_req);
407 	return res;
408 }
409 
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 	struct expander_device *ex = &dev->ex_dev;
413 	int res;
414 
415 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 	if (!ex->ex_phy)
417 		return -ENOMEM;
418 
419 	res = sas_ex_phy_discover(dev, -1);
420 	if (res)
421 		goto out_err;
422 
423 	return 0;
424  out_err:
425 	kfree(ex->ex_phy);
426 	ex->ex_phy = NULL;
427 	return res;
428 }
429 
430 #define MAX_EXPANDER_PHYS 128
431 
432 #define RG_REQ_SIZE   8
433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
434 
435 static int sas_ex_general(struct domain_device *dev)
436 {
437 	u8 *rg_req;
438 	struct smp_rg_resp *rg_resp;
439 	struct report_general_resp *rg;
440 	int res;
441 	int i;
442 
443 	rg_req = alloc_smp_req(RG_REQ_SIZE);
444 	if (!rg_req)
445 		return -ENOMEM;
446 
447 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 	if (!rg_resp) {
449 		kfree(rg_req);
450 		return -ENOMEM;
451 	}
452 
453 	rg_req[1] = SMP_REPORT_GENERAL;
454 
455 	for (i = 0; i < 5; i++) {
456 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 				       RG_RESP_SIZE);
458 
459 		if (res) {
460 			pr_notice("RG to ex %016llx failed:0x%x\n",
461 				  SAS_ADDR(dev->sas_addr), res);
462 			goto out;
463 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 			res = rg_resp->result;
467 			goto out;
468 		}
469 
470 		rg = &rg_resp->rg;
471 		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 		dev->ex_dev.t2t_supp = rg->t2t_supp;
475 		dev->ex_dev.conf_route_table = rg->conf_route_table;
476 		dev->ex_dev.configuring = rg->configuring;
477 		memcpy(dev->ex_dev.enclosure_logical_id,
478 		       rg->enclosure_logical_id, 8);
479 
480 		if (dev->ex_dev.configuring) {
481 			pr_debug("RG: ex %016llx self-configuring...\n",
482 				 SAS_ADDR(dev->sas_addr));
483 			schedule_timeout_interruptible(5*HZ);
484 		} else
485 			break;
486 	}
487 out:
488 	kfree(rg_req);
489 	kfree(rg_resp);
490 	return res;
491 }
492 
493 static void ex_assign_manuf_info(struct domain_device *dev, void
494 					*_mi_resp)
495 {
496 	u8 *mi_resp = _mi_resp;
497 	struct sas_rphy *rphy = dev->rphy;
498 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499 
500 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 	memcpy(edev->product_rev, mi_resp + 36,
503 	       SAS_EXPANDER_PRODUCT_REV_LEN);
504 
505 	if (mi_resp[8] & 1) {
506 		memcpy(edev->component_vendor_id, mi_resp + 40,
507 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 		edev->component_revision_id = mi_resp[50];
510 	}
511 }
512 
513 #define MI_REQ_SIZE   8
514 #define MI_RESP_SIZE 64
515 
516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518 	u8 *mi_req;
519 	u8 *mi_resp;
520 	int res;
521 
522 	mi_req = alloc_smp_req(MI_REQ_SIZE);
523 	if (!mi_req)
524 		return -ENOMEM;
525 
526 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 	if (!mi_resp) {
528 		kfree(mi_req);
529 		return -ENOMEM;
530 	}
531 
532 	mi_req[1] = SMP_REPORT_MANUF_INFO;
533 
534 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 	if (res) {
536 		pr_notice("MI: ex %016llx failed:0x%x\n",
537 			  SAS_ADDR(dev->sas_addr), res);
538 		goto out;
539 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 		goto out;
543 	}
544 
545 	ex_assign_manuf_info(dev, mi_resp);
546 out:
547 	kfree(mi_req);
548 	kfree(mi_resp);
549 	return res;
550 }
551 
552 #define PC_REQ_SIZE  44
553 #define PC_RESP_SIZE 8
554 
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 			enum phy_func phy_func,
557 			struct sas_phy_linkrates *rates)
558 {
559 	u8 *pc_req;
560 	u8 *pc_resp;
561 	int res;
562 
563 	pc_req = alloc_smp_req(PC_REQ_SIZE);
564 	if (!pc_req)
565 		return -ENOMEM;
566 
567 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 	if (!pc_resp) {
569 		kfree(pc_req);
570 		return -ENOMEM;
571 	}
572 
573 	pc_req[1] = SMP_PHY_CONTROL;
574 	pc_req[9] = phy_id;
575 	pc_req[10] = phy_func;
576 	if (rates) {
577 		pc_req[32] = rates->minimum_linkrate << 4;
578 		pc_req[33] = rates->maximum_linkrate << 4;
579 	}
580 
581 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 	if (res) {
583 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 		       SAS_ADDR(dev->sas_addr), phy_id, res);
585 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 		res = pc_resp[2];
589 	}
590 	kfree(pc_resp);
591 	kfree(pc_req);
592 	return res;
593 }
594 
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597 	struct expander_device *ex = &dev->ex_dev;
598 	struct ex_phy *phy = &ex->ex_phy[phy_id];
599 
600 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 	phy->linkrate = SAS_PHY_DISABLED;
602 }
603 
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606 	struct expander_device *ex = &dev->ex_dev;
607 	int i;
608 
609 	for (i = 0; i < ex->num_phys; i++) {
610 		struct ex_phy *phy = &ex->ex_phy[i];
611 
612 		if (phy->phy_state == PHY_VACANT ||
613 		    phy->phy_state == PHY_NOT_PRESENT)
614 			continue;
615 
616 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 			sas_ex_disable_phy(dev, i);
618 	}
619 }
620 
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 					    u8 *sas_addr)
623 {
624 	struct domain_device *dev;
625 
626 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 		return 1;
628 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 			return 1;
631 	}
632 	return 0;
633 }
634 
635 #define RPEL_REQ_SIZE	16
636 #define RPEL_RESP_SIZE	32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639 	int res;
640 	u8 *req;
641 	u8 *resp;
642 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644 
645 	req = alloc_smp_req(RPEL_REQ_SIZE);
646 	if (!req)
647 		return -ENOMEM;
648 
649 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 	if (!resp) {
651 		kfree(req);
652 		return -ENOMEM;
653 	}
654 
655 	req[1] = SMP_REPORT_PHY_ERR_LOG;
656 	req[9] = phy->number;
657 
658 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 			       resp, RPEL_RESP_SIZE);
660 
661 	if (res)
662 		goto out;
663 
664 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668 
669  out:
670 	kfree(req);
671 	kfree(resp);
672 	return res;
673 
674 }
675 
676 #ifdef CONFIG_SCSI_SAS_ATA
677 
678 #define RPS_REQ_SIZE  16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680 
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 			    struct smp_rps_resp *rps_resp)
683 {
684 	int res;
685 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 	u8 *resp = (u8 *)rps_resp;
687 
688 	if (!rps_req)
689 		return -ENOMEM;
690 
691 	rps_req[1] = SMP_REPORT_PHY_SATA;
692 	rps_req[9] = phy_id;
693 
694 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 			       rps_resp, RPS_RESP_SIZE);
696 
697 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
698 	 * standards cockup here.  sas-2 explicitly specifies the FIS
699 	 * should be encoded so that FIS type is in resp[24].
700 	 * However, some expanders endian reverse this.  Undo the
701 	 * reversal here */
702 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 		int i;
704 
705 		for (i = 0; i < 5; i++) {
706 			int j = 24 + (i*4);
707 			u8 a, b;
708 			a = resp[j + 0];
709 			b = resp[j + 1];
710 			resp[j + 0] = resp[j + 3];
711 			resp[j + 1] = resp[j + 2];
712 			resp[j + 2] = b;
713 			resp[j + 3] = a;
714 		}
715 	}
716 
717 	kfree(rps_req);
718 	return res;
719 }
720 #endif
721 
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723 				       struct domain_device *child,
724 				       struct ex_phy *parent_phy)
725 {
726 	struct expander_device *parent_ex = &parent->ex_dev;
727 	struct sas_port *port;
728 	int i;
729 
730 	child->pathways = 0;
731 
732 	port = parent_phy->port;
733 
734 	for (i = 0; i < parent_ex->num_phys; i++) {
735 		struct ex_phy *phy = &parent_ex->ex_phy[i];
736 
737 		if (phy->phy_state == PHY_VACANT ||
738 		    phy->phy_state == PHY_NOT_PRESENT)
739 			continue;
740 
741 		if (SAS_ADDR(phy->attached_sas_addr) ==
742 		    SAS_ADDR(child->sas_addr)) {
743 
744 			child->min_linkrate = min(parent->min_linkrate,
745 						  phy->linkrate);
746 			child->max_linkrate = max(parent->max_linkrate,
747 						  phy->linkrate);
748 			child->pathways++;
749 			sas_port_add_phy(port, phy->phy);
750 		}
751 	}
752 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
753 	child->pathways = min(child->pathways, parent->pathways);
754 }
755 
756 static struct domain_device *sas_ex_discover_end_dev(
757 	struct domain_device *parent, int phy_id)
758 {
759 	struct expander_device *parent_ex = &parent->ex_dev;
760 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
761 	struct domain_device *child = NULL;
762 	struct sas_rphy *rphy;
763 	int res;
764 
765 	if (phy->attached_sata_host || phy->attached_sata_ps)
766 		return NULL;
767 
768 	child = sas_alloc_device();
769 	if (!child)
770 		return NULL;
771 
772 	kref_get(&parent->kref);
773 	child->parent = parent;
774 	child->port   = parent->port;
775 	child->iproto = phy->attached_iproto;
776 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
777 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
778 	if (!phy->port) {
779 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
780 		if (unlikely(!phy->port))
781 			goto out_err;
782 		if (unlikely(sas_port_add(phy->port) != 0)) {
783 			sas_port_free(phy->port);
784 			goto out_err;
785 		}
786 	}
787 	sas_ex_get_linkrate(parent, child, phy);
788 	sas_device_set_phy(child, phy->port);
789 
790 #ifdef CONFIG_SCSI_SAS_ATA
791 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
792 		if (child->linkrate > parent->min_linkrate) {
793 			struct sas_phy *cphy = child->phy;
794 			enum sas_linkrate min_prate = cphy->minimum_linkrate,
795 				parent_min_lrate = parent->min_linkrate,
796 				min_linkrate = (min_prate > parent_min_lrate) ?
797 					       parent_min_lrate : 0;
798 			struct sas_phy_linkrates rates = {
799 				.maximum_linkrate = parent->min_linkrate,
800 				.minimum_linkrate = min_linkrate,
801 			};
802 			int ret;
803 
804 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
805 				   SAS_ADDR(child->sas_addr), phy_id);
806 			ret = sas_smp_phy_control(parent, phy_id,
807 						  PHY_FUNC_LINK_RESET, &rates);
808 			if (ret) {
809 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
810 				       SAS_ADDR(child->sas_addr), phy_id, ret);
811 				goto out_free;
812 			}
813 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
814 				  SAS_ADDR(child->sas_addr), phy_id);
815 			child->linkrate = child->min_linkrate;
816 		}
817 		res = sas_get_ata_info(child, phy);
818 		if (res)
819 			goto out_free;
820 
821 		sas_init_dev(child);
822 		res = sas_ata_init(child);
823 		if (res)
824 			goto out_free;
825 		rphy = sas_end_device_alloc(phy->port);
826 		if (!rphy)
827 			goto out_free;
828 		rphy->identify.phy_identifier = phy_id;
829 
830 		child->rphy = rphy;
831 		get_device(&rphy->dev);
832 
833 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
834 
835 		res = sas_discover_sata(child);
836 		if (res) {
837 			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
838 				  SAS_ADDR(child->sas_addr),
839 				  SAS_ADDR(parent->sas_addr), phy_id, res);
840 			goto out_list_del;
841 		}
842 	} else
843 #endif
844 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845 		child->dev_type = SAS_END_DEVICE;
846 		rphy = sas_end_device_alloc(phy->port);
847 		/* FIXME: error handling */
848 		if (unlikely(!rphy))
849 			goto out_free;
850 		child->tproto = phy->attached_tproto;
851 		sas_init_dev(child);
852 
853 		child->rphy = rphy;
854 		get_device(&rphy->dev);
855 		rphy->identify.phy_identifier = phy_id;
856 		sas_fill_in_rphy(child, rphy);
857 
858 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
859 
860 		res = sas_discover_end_dev(child);
861 		if (res) {
862 			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
863 				  SAS_ADDR(child->sas_addr),
864 				  SAS_ADDR(parent->sas_addr), phy_id, res);
865 			goto out_list_del;
866 		}
867 	} else {
868 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
869 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
870 			  phy_id);
871 		goto out_free;
872 	}
873 
874 	list_add_tail(&child->siblings, &parent_ex->children);
875 	return child;
876 
877  out_list_del:
878 	sas_rphy_free(child->rphy);
879 	list_del(&child->disco_list_node);
880 	spin_lock_irq(&parent->port->dev_list_lock);
881 	list_del(&child->dev_list_node);
882 	spin_unlock_irq(&parent->port->dev_list_lock);
883  out_free:
884 	sas_port_delete(phy->port);
885  out_err:
886 	phy->port = NULL;
887 	sas_put_device(child);
888 	return NULL;
889 }
890 
891 /* See if this phy is part of a wide port */
892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
893 {
894 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
895 	int i;
896 
897 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
898 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
899 
900 		if (ephy == phy)
901 			continue;
902 
903 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
904 			    SAS_ADDR_SIZE) && ephy->port) {
905 			sas_port_add_phy(ephy->port, phy->phy);
906 			phy->port = ephy->port;
907 			phy->phy_state = PHY_DEVICE_DISCOVERED;
908 			return true;
909 		}
910 	}
911 
912 	return false;
913 }
914 
915 static struct domain_device *sas_ex_discover_expander(
916 	struct domain_device *parent, int phy_id)
917 {
918 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
919 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920 	struct domain_device *child = NULL;
921 	struct sas_rphy *rphy;
922 	struct sas_expander_device *edev;
923 	struct asd_sas_port *port;
924 	int res;
925 
926 	if (phy->routing_attr == DIRECT_ROUTING) {
927 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
928 			SAS_ADDR(parent->sas_addr), phy_id,
929 			SAS_ADDR(phy->attached_sas_addr),
930 			phy->attached_phy_id);
931 		return NULL;
932 	}
933 	child = sas_alloc_device();
934 	if (!child)
935 		return NULL;
936 
937 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
938 	/* FIXME: better error handling */
939 	BUG_ON(sas_port_add(phy->port) != 0);
940 
941 
942 	switch (phy->attached_dev_type) {
943 	case SAS_EDGE_EXPANDER_DEVICE:
944 		rphy = sas_expander_alloc(phy->port,
945 					  SAS_EDGE_EXPANDER_DEVICE);
946 		break;
947 	case SAS_FANOUT_EXPANDER_DEVICE:
948 		rphy = sas_expander_alloc(phy->port,
949 					  SAS_FANOUT_EXPANDER_DEVICE);
950 		break;
951 	default:
952 		rphy = NULL;	/* shut gcc up */
953 		BUG();
954 	}
955 	port = parent->port;
956 	child->rphy = rphy;
957 	get_device(&rphy->dev);
958 	edev = rphy_to_expander_device(rphy);
959 	child->dev_type = phy->attached_dev_type;
960 	kref_get(&parent->kref);
961 	child->parent = parent;
962 	child->port = port;
963 	child->iproto = phy->attached_iproto;
964 	child->tproto = phy->attached_tproto;
965 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
966 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
967 	sas_ex_get_linkrate(parent, child, phy);
968 	edev->level = parent_ex->level + 1;
969 	parent->port->disc.max_level = max(parent->port->disc.max_level,
970 					   edev->level);
971 	sas_init_dev(child);
972 	sas_fill_in_rphy(child, rphy);
973 	sas_rphy_add(rphy);
974 
975 	spin_lock_irq(&parent->port->dev_list_lock);
976 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
977 	spin_unlock_irq(&parent->port->dev_list_lock);
978 
979 	res = sas_discover_expander(child);
980 	if (res) {
981 		sas_rphy_delete(rphy);
982 		spin_lock_irq(&parent->port->dev_list_lock);
983 		list_del(&child->dev_list_node);
984 		spin_unlock_irq(&parent->port->dev_list_lock);
985 		sas_put_device(child);
986 		sas_port_delete(phy->port);
987 		phy->port = NULL;
988 		return NULL;
989 	}
990 	list_add_tail(&child->siblings, &parent->ex_dev.children);
991 	return child;
992 }
993 
994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
995 {
996 	struct expander_device *ex = &dev->ex_dev;
997 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
998 	struct domain_device *child = NULL;
999 	int res = 0;
1000 
1001 	/* Phy state */
1002 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1003 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1004 			res = sas_ex_phy_discover(dev, phy_id);
1005 		if (res)
1006 			return res;
1007 	}
1008 
1009 	/* Parent and domain coherency */
1010 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1011 			     SAS_ADDR(dev->port->sas_addr))) {
1012 		sas_add_parent_port(dev, phy_id);
1013 		return 0;
1014 	}
1015 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016 			    SAS_ADDR(dev->parent->sas_addr))) {
1017 		sas_add_parent_port(dev, phy_id);
1018 		if (ex_phy->routing_attr == TABLE_ROUTING)
1019 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1020 		return 0;
1021 	}
1022 
1023 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1024 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1025 
1026 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1027 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1028 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1029 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1030 		}
1031 		return 0;
1032 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1033 		return 0;
1034 
1035 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1036 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1037 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1038 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1039 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1040 			ex_phy->attached_dev_type,
1041 			SAS_ADDR(dev->sas_addr),
1042 			phy_id);
1043 		return 0;
1044 	}
1045 
1046 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1047 	if (res) {
1048 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1049 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1050 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1051 		return res;
1052 	}
1053 
1054 	if (sas_ex_join_wide_port(dev, phy_id)) {
1055 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1056 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1057 		return res;
1058 	}
1059 
1060 	switch (ex_phy->attached_dev_type) {
1061 	case SAS_END_DEVICE:
1062 	case SAS_SATA_PENDING:
1063 		child = sas_ex_discover_end_dev(dev, phy_id);
1064 		break;
1065 	case SAS_FANOUT_EXPANDER_DEVICE:
1066 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1067 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1068 				 SAS_ADDR(ex_phy->attached_sas_addr),
1069 				 ex_phy->attached_phy_id,
1070 				 SAS_ADDR(dev->sas_addr),
1071 				 phy_id);
1072 			sas_ex_disable_phy(dev, phy_id);
1073 			return res;
1074 		} else
1075 			memcpy(dev->port->disc.fanout_sas_addr,
1076 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1077 		fallthrough;
1078 	case SAS_EDGE_EXPANDER_DEVICE:
1079 		child = sas_ex_discover_expander(dev, phy_id);
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 
1085 	if (!child)
1086 		pr_notice("ex %016llx phy%02d failed to discover\n",
1087 			  SAS_ADDR(dev->sas_addr), phy_id);
1088 	return res;
1089 }
1090 
1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1092 {
1093 	struct expander_device *ex = &dev->ex_dev;
1094 	int i;
1095 
1096 	for (i = 0; i < ex->num_phys; i++) {
1097 		struct ex_phy *phy = &ex->ex_phy[i];
1098 
1099 		if (phy->phy_state == PHY_VACANT ||
1100 		    phy->phy_state == PHY_NOT_PRESENT)
1101 			continue;
1102 
1103 		if (dev_is_expander(phy->attached_dev_type) &&
1104 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105 
1106 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1107 
1108 			return 1;
1109 		}
1110 	}
1111 	return 0;
1112 }
1113 
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116 	struct expander_device *ex = &dev->ex_dev;
1117 	struct domain_device *child;
1118 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1119 
1120 	list_for_each_entry(child, &ex->children, siblings) {
1121 		if (!dev_is_expander(child->dev_type))
1122 			continue;
1123 		if (sub_addr[0] == 0) {
1124 			sas_find_sub_addr(child, sub_addr);
1125 			continue;
1126 		} else {
1127 			u8 s2[SAS_ADDR_SIZE];
1128 
1129 			if (sas_find_sub_addr(child, s2) &&
1130 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1131 
1132 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1133 					  SAS_ADDR(dev->sas_addr),
1134 					  SAS_ADDR(child->sas_addr),
1135 					  SAS_ADDR(s2),
1136 					  SAS_ADDR(sub_addr));
1137 
1138 				sas_ex_disable_port(child, s2);
1139 			}
1140 		}
1141 	}
1142 	return 0;
1143 }
1144 /**
1145  * sas_ex_discover_devices - discover devices attached to this expander
1146  * @dev: pointer to the expander domain device
1147  * @single: if you want to do a single phy, else set to -1;
1148  *
1149  * Configure this expander for use with its devices and register the
1150  * devices of this expander.
1151  */
1152 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1153 {
1154 	struct expander_device *ex = &dev->ex_dev;
1155 	int i = 0, end = ex->num_phys;
1156 	int res = 0;
1157 
1158 	if (0 <= single && single < end) {
1159 		i = single;
1160 		end = i+1;
1161 	}
1162 
1163 	for ( ; i < end; i++) {
1164 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1165 
1166 		if (ex_phy->phy_state == PHY_VACANT ||
1167 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1168 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1169 			continue;
1170 
1171 		switch (ex_phy->linkrate) {
1172 		case SAS_PHY_DISABLED:
1173 		case SAS_PHY_RESET_PROBLEM:
1174 		case SAS_SATA_PORT_SELECTOR:
1175 			continue;
1176 		default:
1177 			res = sas_ex_discover_dev(dev, i);
1178 			if (res)
1179 				break;
1180 			continue;
1181 		}
1182 	}
1183 
1184 	if (!res)
1185 		sas_check_level_subtractive_boundary(dev);
1186 
1187 	return res;
1188 }
1189 
1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1191 {
1192 	struct expander_device *ex = &dev->ex_dev;
1193 	int i;
1194 	u8  *sub_sas_addr = NULL;
1195 
1196 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1197 		return 0;
1198 
1199 	for (i = 0; i < ex->num_phys; i++) {
1200 		struct ex_phy *phy = &ex->ex_phy[i];
1201 
1202 		if (phy->phy_state == PHY_VACANT ||
1203 		    phy->phy_state == PHY_NOT_PRESENT)
1204 			continue;
1205 
1206 		if (dev_is_expander(phy->attached_dev_type) &&
1207 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1208 
1209 			if (!sub_sas_addr)
1210 				sub_sas_addr = &phy->attached_sas_addr[0];
1211 			else if (SAS_ADDR(sub_sas_addr) !=
1212 				 SAS_ADDR(phy->attached_sas_addr)) {
1213 
1214 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1215 					  SAS_ADDR(dev->sas_addr), i,
1216 					  SAS_ADDR(phy->attached_sas_addr),
1217 					  SAS_ADDR(sub_sas_addr));
1218 				sas_ex_disable_phy(dev, i);
1219 			}
1220 		}
1221 	}
1222 	return 0;
1223 }
1224 
1225 static void sas_print_parent_topology_bug(struct domain_device *child,
1226 						 struct ex_phy *parent_phy,
1227 						 struct ex_phy *child_phy)
1228 {
1229 	static const char *ex_type[] = {
1230 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1231 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1232 	};
1233 	struct domain_device *parent = child->parent;
1234 
1235 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1236 		  ex_type[parent->dev_type],
1237 		  SAS_ADDR(parent->sas_addr),
1238 		  parent_phy->phy_id,
1239 
1240 		  ex_type[child->dev_type],
1241 		  SAS_ADDR(child->sas_addr),
1242 		  child_phy->phy_id,
1243 
1244 		  sas_route_char(parent, parent_phy),
1245 		  sas_route_char(child, child_phy));
1246 }
1247 
1248 static int sas_check_eeds(struct domain_device *child,
1249 				 struct ex_phy *parent_phy,
1250 				 struct ex_phy *child_phy)
1251 {
1252 	int res = 0;
1253 	struct domain_device *parent = child->parent;
1254 
1255 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1256 		res = -ENODEV;
1257 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1258 			SAS_ADDR(parent->sas_addr),
1259 			parent_phy->phy_id,
1260 			SAS_ADDR(child->sas_addr),
1261 			child_phy->phy_id,
1262 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1263 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1264 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1265 		       SAS_ADDR_SIZE);
1266 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1267 		       SAS_ADDR_SIZE);
1268 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1269 		    SAS_ADDR(parent->sas_addr)) ||
1270 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1271 		    SAS_ADDR(child->sas_addr)))
1272 		   &&
1273 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1274 		     SAS_ADDR(parent->sas_addr)) ||
1275 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1276 		     SAS_ADDR(child->sas_addr))))
1277 		;
1278 	else {
1279 		res = -ENODEV;
1280 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1281 			SAS_ADDR(parent->sas_addr),
1282 			parent_phy->phy_id,
1283 			SAS_ADDR(child->sas_addr),
1284 			child_phy->phy_id);
1285 	}
1286 
1287 	return res;
1288 }
1289 
1290 /* Here we spill over 80 columns.  It is intentional.
1291  */
1292 static int sas_check_parent_topology(struct domain_device *child)
1293 {
1294 	struct expander_device *child_ex = &child->ex_dev;
1295 	struct expander_device *parent_ex;
1296 	int i;
1297 	int res = 0;
1298 
1299 	if (!child->parent)
1300 		return 0;
1301 
1302 	if (!dev_is_expander(child->parent->dev_type))
1303 		return 0;
1304 
1305 	parent_ex = &child->parent->ex_dev;
1306 
1307 	for (i = 0; i < parent_ex->num_phys; i++) {
1308 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1309 		struct ex_phy *child_phy;
1310 
1311 		if (parent_phy->phy_state == PHY_VACANT ||
1312 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1313 			continue;
1314 
1315 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1316 			continue;
1317 
1318 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1319 
1320 		switch (child->parent->dev_type) {
1321 		case SAS_EDGE_EXPANDER_DEVICE:
1322 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1323 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1324 				    child_phy->routing_attr != TABLE_ROUTING) {
1325 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1326 					res = -ENODEV;
1327 				}
1328 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1329 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1330 					res = sas_check_eeds(child, parent_phy, child_phy);
1331 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1332 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1333 					res = -ENODEV;
1334 				}
1335 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1336 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1337 				    (child_phy->routing_attr == TABLE_ROUTING &&
1338 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1339 					/* All good */;
1340 				} else {
1341 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1342 					res = -ENODEV;
1343 				}
1344 			}
1345 			break;
1346 		case SAS_FANOUT_EXPANDER_DEVICE:
1347 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1348 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1349 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1350 				res = -ENODEV;
1351 			}
1352 			break;
1353 		default:
1354 			break;
1355 		}
1356 	}
1357 
1358 	return res;
1359 }
1360 
1361 #define RRI_REQ_SIZE  16
1362 #define RRI_RESP_SIZE 44
1363 
1364 static int sas_configure_present(struct domain_device *dev, int phy_id,
1365 				 u8 *sas_addr, int *index, int *present)
1366 {
1367 	int i, res = 0;
1368 	struct expander_device *ex = &dev->ex_dev;
1369 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1370 	u8 *rri_req;
1371 	u8 *rri_resp;
1372 
1373 	*present = 0;
1374 	*index = 0;
1375 
1376 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1377 	if (!rri_req)
1378 		return -ENOMEM;
1379 
1380 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1381 	if (!rri_resp) {
1382 		kfree(rri_req);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1387 	rri_req[9] = phy_id;
1388 
1389 	for (i = 0; i < ex->max_route_indexes ; i++) {
1390 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1391 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1392 				       RRI_RESP_SIZE);
1393 		if (res)
1394 			goto out;
1395 		res = rri_resp[2];
1396 		if (res == SMP_RESP_NO_INDEX) {
1397 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1398 				SAS_ADDR(dev->sas_addr), phy_id, i);
1399 			goto out;
1400 		} else if (res != SMP_RESP_FUNC_ACC) {
1401 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1402 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1403 				  i, res);
1404 			goto out;
1405 		}
1406 		if (SAS_ADDR(sas_addr) != 0) {
1407 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1408 				*index = i;
1409 				if ((rri_resp[12] & 0x80) == 0x80)
1410 					*present = 0;
1411 				else
1412 					*present = 1;
1413 				goto out;
1414 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1415 				*index = i;
1416 				*present = 0;
1417 				goto out;
1418 			}
1419 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1420 			   phy->last_da_index < i) {
1421 			phy->last_da_index = i;
1422 			*index = i;
1423 			*present = 0;
1424 			goto out;
1425 		}
1426 	}
1427 	res = -1;
1428 out:
1429 	kfree(rri_req);
1430 	kfree(rri_resp);
1431 	return res;
1432 }
1433 
1434 #define CRI_REQ_SIZE  44
1435 #define CRI_RESP_SIZE  8
1436 
1437 static int sas_configure_set(struct domain_device *dev, int phy_id,
1438 			     u8 *sas_addr, int index, int include)
1439 {
1440 	int res;
1441 	u8 *cri_req;
1442 	u8 *cri_resp;
1443 
1444 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1445 	if (!cri_req)
1446 		return -ENOMEM;
1447 
1448 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1449 	if (!cri_resp) {
1450 		kfree(cri_req);
1451 		return -ENOMEM;
1452 	}
1453 
1454 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1455 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1456 	cri_req[9] = phy_id;
1457 	if (SAS_ADDR(sas_addr) == 0 || !include)
1458 		cri_req[12] |= 0x80;
1459 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1460 
1461 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1462 			       CRI_RESP_SIZE);
1463 	if (res)
1464 		goto out;
1465 	res = cri_resp[2];
1466 	if (res == SMP_RESP_NO_INDEX) {
1467 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1468 			SAS_ADDR(dev->sas_addr), phy_id, index);
1469 	}
1470 out:
1471 	kfree(cri_req);
1472 	kfree(cri_resp);
1473 	return res;
1474 }
1475 
1476 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1477 				    u8 *sas_addr, int include)
1478 {
1479 	int index;
1480 	int present;
1481 	int res;
1482 
1483 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1484 	if (res)
1485 		return res;
1486 	if (include ^ present)
1487 		return sas_configure_set(dev, phy_id, sas_addr, index,
1488 					 include);
1489 
1490 	return res;
1491 }
1492 
1493 /**
1494  * sas_configure_parent - configure routing table of parent
1495  * @parent: parent expander
1496  * @child: child expander
1497  * @sas_addr: SAS port identifier of device directly attached to child
1498  * @include: whether or not to include @child in the expander routing table
1499  */
1500 static int sas_configure_parent(struct domain_device *parent,
1501 				struct domain_device *child,
1502 				u8 *sas_addr, int include)
1503 {
1504 	struct expander_device *ex_parent = &parent->ex_dev;
1505 	int res = 0;
1506 	int i;
1507 
1508 	if (parent->parent) {
1509 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1510 					   include);
1511 		if (res)
1512 			return res;
1513 	}
1514 
1515 	if (ex_parent->conf_route_table == 0) {
1516 		pr_debug("ex %016llx has self-configuring routing table\n",
1517 			 SAS_ADDR(parent->sas_addr));
1518 		return 0;
1519 	}
1520 
1521 	for (i = 0; i < ex_parent->num_phys; i++) {
1522 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1523 
1524 		if ((phy->routing_attr == TABLE_ROUTING) &&
1525 		    (SAS_ADDR(phy->attached_sas_addr) ==
1526 		     SAS_ADDR(child->sas_addr))) {
1527 			res = sas_configure_phy(parent, i, sas_addr, include);
1528 			if (res)
1529 				return res;
1530 		}
1531 	}
1532 
1533 	return res;
1534 }
1535 
1536 /**
1537  * sas_configure_routing - configure routing
1538  * @dev: expander device
1539  * @sas_addr: port identifier of device directly attached to the expander device
1540  */
1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1542 {
1543 	if (dev->parent)
1544 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1545 	return 0;
1546 }
1547 
1548 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1549 {
1550 	if (dev->parent)
1551 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1552 	return 0;
1553 }
1554 
1555 /**
1556  * sas_discover_expander - expander discovery
1557  * @dev: pointer to expander domain device
1558  *
1559  * See comment in sas_discover_sata().
1560  */
1561 static int sas_discover_expander(struct domain_device *dev)
1562 {
1563 	int res;
1564 
1565 	res = sas_notify_lldd_dev_found(dev);
1566 	if (res)
1567 		return res;
1568 
1569 	res = sas_ex_general(dev);
1570 	if (res)
1571 		goto out_err;
1572 	res = sas_ex_manuf_info(dev);
1573 	if (res)
1574 		goto out_err;
1575 
1576 	res = sas_expander_discover(dev);
1577 	if (res) {
1578 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1579 			SAS_ADDR(dev->sas_addr), res);
1580 		goto out_err;
1581 	}
1582 
1583 	sas_check_ex_subtractive_boundary(dev);
1584 	res = sas_check_parent_topology(dev);
1585 	if (res)
1586 		goto out_err;
1587 	return 0;
1588 out_err:
1589 	sas_notify_lldd_dev_gone(dev);
1590 	return res;
1591 }
1592 
1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1594 {
1595 	int res = 0;
1596 	struct domain_device *dev;
1597 
1598 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1599 		if (dev_is_expander(dev->dev_type)) {
1600 			struct sas_expander_device *ex =
1601 				rphy_to_expander_device(dev->rphy);
1602 
1603 			if (level == ex->level)
1604 				res = sas_ex_discover_devices(dev, -1);
1605 			else if (level > 0)
1606 				res = sas_ex_discover_devices(port->port_dev, -1);
1607 
1608 		}
1609 	}
1610 
1611 	return res;
1612 }
1613 
1614 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1615 {
1616 	int res;
1617 	int level;
1618 
1619 	do {
1620 		level = port->disc.max_level;
1621 		res = sas_ex_level_discovery(port, level);
1622 		mb();
1623 	} while (level < port->disc.max_level);
1624 
1625 	return res;
1626 }
1627 
1628 int sas_discover_root_expander(struct domain_device *dev)
1629 {
1630 	int res;
1631 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1632 
1633 	res = sas_rphy_add(dev->rphy);
1634 	if (res)
1635 		goto out_err;
1636 
1637 	ex->level = dev->port->disc.max_level; /* 0 */
1638 	res = sas_discover_expander(dev);
1639 	if (res)
1640 		goto out_err2;
1641 
1642 	sas_ex_bfs_disc(dev->port);
1643 
1644 	return res;
1645 
1646 out_err2:
1647 	sas_rphy_remove(dev->rphy);
1648 out_err:
1649 	return res;
1650 }
1651 
1652 /* ---------- Domain revalidation ---------- */
1653 
1654 static int sas_get_phy_discover(struct domain_device *dev,
1655 				int phy_id, struct smp_disc_resp *disc_resp)
1656 {
1657 	int res;
1658 	u8 *disc_req;
1659 
1660 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1661 	if (!disc_req)
1662 		return -ENOMEM;
1663 
1664 	disc_req[1] = SMP_DISCOVER;
1665 	disc_req[9] = phy_id;
1666 
1667 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1668 			       disc_resp, DISCOVER_RESP_SIZE);
1669 	if (res)
1670 		goto out;
1671 	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1672 		res = disc_resp->result;
1673 out:
1674 	kfree(disc_req);
1675 	return res;
1676 }
1677 
1678 static int sas_get_phy_change_count(struct domain_device *dev,
1679 				    int phy_id, int *pcc)
1680 {
1681 	int res;
1682 	struct smp_disc_resp *disc_resp;
1683 
1684 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1685 	if (!disc_resp)
1686 		return -ENOMEM;
1687 
1688 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1689 	if (!res)
1690 		*pcc = disc_resp->disc.change_count;
1691 
1692 	kfree(disc_resp);
1693 	return res;
1694 }
1695 
1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1697 				    u8 *sas_addr, enum sas_device_type *type)
1698 {
1699 	int res;
1700 	struct smp_disc_resp *disc_resp;
1701 
1702 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1703 	if (!disc_resp)
1704 		return -ENOMEM;
1705 
1706 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1707 	if (res == 0) {
1708 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1709 		       SAS_ADDR_SIZE);
1710 		*type = to_dev_type(&disc_resp->disc);
1711 		if (*type == 0)
1712 			memset(sas_addr, 0, SAS_ADDR_SIZE);
1713 	}
1714 	kfree(disc_resp);
1715 	return res;
1716 }
1717 
1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1719 			      int from_phy, bool update)
1720 {
1721 	struct expander_device *ex = &dev->ex_dev;
1722 	int res = 0;
1723 	int i;
1724 
1725 	for (i = from_phy; i < ex->num_phys; i++) {
1726 		int phy_change_count = 0;
1727 
1728 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1729 		switch (res) {
1730 		case SMP_RESP_PHY_VACANT:
1731 		case SMP_RESP_NO_PHY:
1732 			continue;
1733 		case SMP_RESP_FUNC_ACC:
1734 			break;
1735 		default:
1736 			return res;
1737 		}
1738 
1739 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1740 			if (update)
1741 				ex->ex_phy[i].phy_change_count =
1742 					phy_change_count;
1743 			*phy_id = i;
1744 			return 0;
1745 		}
1746 	}
1747 	return 0;
1748 }
1749 
1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1751 {
1752 	int res;
1753 	u8  *rg_req;
1754 	struct smp_rg_resp  *rg_resp;
1755 
1756 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1757 	if (!rg_req)
1758 		return -ENOMEM;
1759 
1760 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1761 	if (!rg_resp) {
1762 		kfree(rg_req);
1763 		return -ENOMEM;
1764 	}
1765 
1766 	rg_req[1] = SMP_REPORT_GENERAL;
1767 
1768 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1769 			       RG_RESP_SIZE);
1770 	if (res)
1771 		goto out;
1772 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1773 		res = rg_resp->result;
1774 		goto out;
1775 	}
1776 
1777 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1778 out:
1779 	kfree(rg_resp);
1780 	kfree(rg_req);
1781 	return res;
1782 }
1783 /**
1784  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1785  * @dev:domain device to be detect.
1786  * @src_dev: the device which originated BROADCAST(CHANGE).
1787  *
1788  * Add self-configuration expander support. Suppose two expander cascading,
1789  * when the first level expander is self-configuring, hotplug the disks in
1790  * second level expander, BROADCAST(CHANGE) will not only be originated
1791  * in the second level expander, but also be originated in the first level
1792  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1793  * expander changed count in two level expanders will all increment at least
1794  * once, but the phy which chang count has changed is the source device which
1795  * we concerned.
1796  */
1797 
1798 static int sas_find_bcast_dev(struct domain_device *dev,
1799 			      struct domain_device **src_dev)
1800 {
1801 	struct expander_device *ex = &dev->ex_dev;
1802 	int ex_change_count = -1;
1803 	int phy_id = -1;
1804 	int res;
1805 	struct domain_device *ch;
1806 
1807 	res = sas_get_ex_change_count(dev, &ex_change_count);
1808 	if (res)
1809 		goto out;
1810 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1811 		/* Just detect if this expander phys phy change count changed,
1812 		* in order to determine if this expander originate BROADCAST,
1813 		* and do not update phy change count field in our structure.
1814 		*/
1815 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1816 		if (phy_id != -1) {
1817 			*src_dev = dev;
1818 			ex->ex_change_count = ex_change_count;
1819 			pr_info("ex %016llx phy%02d change count has changed\n",
1820 				SAS_ADDR(dev->sas_addr), phy_id);
1821 			return res;
1822 		} else
1823 			pr_info("ex %016llx phys DID NOT change\n",
1824 				SAS_ADDR(dev->sas_addr));
1825 	}
1826 	list_for_each_entry(ch, &ex->children, siblings) {
1827 		if (dev_is_expander(ch->dev_type)) {
1828 			res = sas_find_bcast_dev(ch, src_dev);
1829 			if (*src_dev)
1830 				return res;
1831 		}
1832 	}
1833 out:
1834 	return res;
1835 }
1836 
1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1838 {
1839 	struct expander_device *ex = &dev->ex_dev;
1840 	struct domain_device *child, *n;
1841 
1842 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1843 		set_bit(SAS_DEV_GONE, &child->state);
1844 		if (dev_is_expander(child->dev_type))
1845 			sas_unregister_ex_tree(port, child);
1846 		else
1847 			sas_unregister_dev(port, child);
1848 	}
1849 	sas_unregister_dev(port, dev);
1850 }
1851 
1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1853 					 int phy_id, bool last)
1854 {
1855 	struct expander_device *ex_dev = &parent->ex_dev;
1856 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1857 	struct domain_device *child, *n, *found = NULL;
1858 	if (last) {
1859 		list_for_each_entry_safe(child, n,
1860 			&ex_dev->children, siblings) {
1861 			if (SAS_ADDR(child->sas_addr) ==
1862 			    SAS_ADDR(phy->attached_sas_addr)) {
1863 				set_bit(SAS_DEV_GONE, &child->state);
1864 				if (dev_is_expander(child->dev_type))
1865 					sas_unregister_ex_tree(parent->port, child);
1866 				else
1867 					sas_unregister_dev(parent->port, child);
1868 				found = child;
1869 				break;
1870 			}
1871 		}
1872 		sas_disable_routing(parent, phy->attached_sas_addr);
1873 	}
1874 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1875 	if (phy->port) {
1876 		sas_port_delete_phy(phy->port, phy->phy);
1877 		sas_device_set_phy(found, phy->port);
1878 		if (phy->port->num_phys == 0)
1879 			list_add_tail(&phy->port->del_list,
1880 				&parent->port->sas_port_del_list);
1881 		phy->port = NULL;
1882 	}
1883 }
1884 
1885 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1886 					  const int level)
1887 {
1888 	struct expander_device *ex_root = &root->ex_dev;
1889 	struct domain_device *child;
1890 	int res = 0;
1891 
1892 	list_for_each_entry(child, &ex_root->children, siblings) {
1893 		if (dev_is_expander(child->dev_type)) {
1894 			struct sas_expander_device *ex =
1895 				rphy_to_expander_device(child->rphy);
1896 
1897 			if (level > ex->level)
1898 				res = sas_discover_bfs_by_root_level(child,
1899 								     level);
1900 			else if (level == ex->level)
1901 				res = sas_ex_discover_devices(child, -1);
1902 		}
1903 	}
1904 	return res;
1905 }
1906 
1907 static int sas_discover_bfs_by_root(struct domain_device *dev)
1908 {
1909 	int res;
1910 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1911 	int level = ex->level+1;
1912 
1913 	res = sas_ex_discover_devices(dev, -1);
1914 	if (res)
1915 		goto out;
1916 	do {
1917 		res = sas_discover_bfs_by_root_level(dev, level);
1918 		mb();
1919 		level += 1;
1920 	} while (level <= dev->port->disc.max_level);
1921 out:
1922 	return res;
1923 }
1924 
1925 static int sas_discover_new(struct domain_device *dev, int phy_id)
1926 {
1927 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1928 	struct domain_device *child;
1929 	int res;
1930 
1931 	pr_debug("ex %016llx phy%02d new device attached\n",
1932 		 SAS_ADDR(dev->sas_addr), phy_id);
1933 	res = sas_ex_phy_discover(dev, phy_id);
1934 	if (res)
1935 		return res;
1936 
1937 	if (sas_ex_join_wide_port(dev, phy_id))
1938 		return 0;
1939 
1940 	res = sas_ex_discover_devices(dev, phy_id);
1941 	if (res)
1942 		return res;
1943 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1944 		if (SAS_ADDR(child->sas_addr) ==
1945 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1946 			if (dev_is_expander(child->dev_type))
1947 				res = sas_discover_bfs_by_root(child);
1948 			break;
1949 		}
1950 	}
1951 	return res;
1952 }
1953 
1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1955 {
1956 	if (old == new)
1957 		return true;
1958 
1959 	/* treat device directed resets as flutter, if we went
1960 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1961 	 */
1962 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1963 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1964 		return true;
1965 
1966 	return false;
1967 }
1968 
1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1970 			      bool last, int sibling)
1971 {
1972 	struct expander_device *ex = &dev->ex_dev;
1973 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1974 	enum sas_device_type type = SAS_PHY_UNUSED;
1975 	u8 sas_addr[SAS_ADDR_SIZE];
1976 	char msg[80] = "";
1977 	int res;
1978 
1979 	if (!last)
1980 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1981 
1982 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1983 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1984 
1985 	memset(sas_addr, 0, SAS_ADDR_SIZE);
1986 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1987 	switch (res) {
1988 	case SMP_RESP_NO_PHY:
1989 		phy->phy_state = PHY_NOT_PRESENT;
1990 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1991 		return res;
1992 	case SMP_RESP_PHY_VACANT:
1993 		phy->phy_state = PHY_VACANT;
1994 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1995 		return res;
1996 	case SMP_RESP_FUNC_ACC:
1997 		break;
1998 	case -ECOMM:
1999 		break;
2000 	default:
2001 		return res;
2002 	}
2003 
2004 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005 		phy->phy_state = PHY_EMPTY;
2006 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2007 		/*
2008 		 * Even though the PHY is empty, for convenience we discover
2009 		 * the PHY to update the PHY info, like negotiated linkrate.
2010 		 */
2011 		sas_ex_phy_discover(dev, phy_id);
2012 		return res;
2013 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2014 		   dev_type_flutter(type, phy->attached_dev_type)) {
2015 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2016 		char *action = "";
2017 
2018 		sas_ex_phy_discover(dev, phy_id);
2019 
2020 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2021 			action = ", needs recovery";
2022 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2023 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2024 		return res;
2025 	}
2026 
2027 	/* we always have to delete the old device when we went here */
2028 	pr_info("ex %016llx phy%02d replace %016llx\n",
2029 		SAS_ADDR(dev->sas_addr), phy_id,
2030 		SAS_ADDR(phy->attached_sas_addr));
2031 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 
2033 	return sas_discover_new(dev, phy_id);
2034 }
2035 
2036 /**
2037  * sas_rediscover - revalidate the domain.
2038  * @dev:domain device to be detect.
2039  * @phy_id: the phy id will be detected.
2040  *
2041  * NOTE: this process _must_ quit (return) as soon as any connection
2042  * errors are encountered.  Connection recovery is done elsewhere.
2043  * Discover process only interrogates devices in order to discover the
2044  * domain.For plugging out, we un-register the device only when it is
2045  * the last phy in the port, for other phys in this port, we just delete it
2046  * from the port.For inserting, we do discovery when it is the
2047  * first phy,for other phys in this port, we add it to the port to
2048  * forming the wide-port.
2049  */
2050 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2051 {
2052 	struct expander_device *ex = &dev->ex_dev;
2053 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2054 	int res = 0;
2055 	int i;
2056 	bool last = true;	/* is this the last phy of the port */
2057 
2058 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2059 		 SAS_ADDR(dev->sas_addr), phy_id);
2060 
2061 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2062 		for (i = 0; i < ex->num_phys; i++) {
2063 			struct ex_phy *phy = &ex->ex_phy[i];
2064 
2065 			if (i == phy_id)
2066 				continue;
2067 			if (SAS_ADDR(phy->attached_sas_addr) ==
2068 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2069 				last = false;
2070 				break;
2071 			}
2072 		}
2073 		res = sas_rediscover_dev(dev, phy_id, last, i);
2074 	} else
2075 		res = sas_discover_new(dev, phy_id);
2076 	return res;
2077 }
2078 
2079 /**
2080  * sas_ex_revalidate_domain - revalidate the domain
2081  * @port_dev: port domain device.
2082  *
2083  * NOTE: this process _must_ quit (return) as soon as any connection
2084  * errors are encountered.  Connection recovery is done elsewhere.
2085  * Discover process only interrogates devices in order to discover the
2086  * domain.
2087  */
2088 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2089 {
2090 	int res;
2091 	struct domain_device *dev = NULL;
2092 
2093 	res = sas_find_bcast_dev(port_dev, &dev);
2094 	if (res == 0 && dev) {
2095 		struct expander_device *ex = &dev->ex_dev;
2096 		int i = 0, phy_id;
2097 
2098 		do {
2099 			phy_id = -1;
2100 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2101 			if (phy_id == -1)
2102 				break;
2103 			res = sas_rediscover(dev, phy_id);
2104 			i = phy_id + 1;
2105 		} while (i < ex->num_phys);
2106 	}
2107 	return res;
2108 }
2109 
2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2111 		struct sas_rphy *rphy)
2112 {
2113 	struct domain_device *dev;
2114 	unsigned int rcvlen = 0;
2115 	int ret = -EINVAL;
2116 
2117 	/* no rphy means no smp target support (ie aic94xx host) */
2118 	if (!rphy)
2119 		return sas_smp_host_handler(job, shost);
2120 
2121 	switch (rphy->identify.device_type) {
2122 	case SAS_EDGE_EXPANDER_DEVICE:
2123 	case SAS_FANOUT_EXPANDER_DEVICE:
2124 		break;
2125 	default:
2126 		pr_err("%s: can we send a smp request to a device?\n",
2127 		       __func__);
2128 		goto out;
2129 	}
2130 
2131 	dev = sas_find_dev_by_rphy(rphy);
2132 	if (!dev) {
2133 		pr_err("%s: fail to find a domain_device?\n", __func__);
2134 		goto out;
2135 	}
2136 
2137 	/* do we need to support multiple segments? */
2138 	if (job->request_payload.sg_cnt > 1 ||
2139 	    job->reply_payload.sg_cnt > 1) {
2140 		pr_info("%s: multiple segments req %u, rsp %u\n",
2141 			__func__, job->request_payload.payload_len,
2142 			job->reply_payload.payload_len);
2143 		goto out;
2144 	}
2145 
2146 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2147 			job->reply_payload.sg_list);
2148 	if (ret >= 0) {
2149 		/* bsg_job_done() requires the length received  */
2150 		rcvlen = job->reply_payload.payload_len - ret;
2151 		ret = 0;
2152 	}
2153 
2154 out:
2155 	bsg_job_done(job, ret, rcvlen);
2156 }
2157