1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 #include <asm/unaligned.h> 29 30 #include "sas_internal.h" 31 32 #include <scsi/sas_ata.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_transport_sas.h> 35 #include "../scsi_sas_internal.h" 36 37 static int sas_discover_expander(struct domain_device *dev); 38 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 39 static int sas_configure_phy(struct domain_device *dev, int phy_id, 40 u8 *sas_addr, int include); 41 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 42 43 /* ---------- SMP task management ---------- */ 44 45 static void smp_task_timedout(struct timer_list *t) 46 { 47 struct sas_task_slow *slow = from_timer(slow, t, timer); 48 struct sas_task *task = slow->task; 49 unsigned long flags; 50 51 spin_lock_irqsave(&task->task_state_lock, flags); 52 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 53 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 54 complete(&task->slow_task->completion); 55 } 56 spin_unlock_irqrestore(&task->task_state_lock, flags); 57 } 58 59 static void smp_task_done(struct sas_task *task) 60 { 61 del_timer(&task->slow_task->timer); 62 complete(&task->slow_task->completion); 63 } 64 65 /* Give it some long enough timeout. In seconds. */ 66 #define SMP_TIMEOUT 10 67 68 static int smp_execute_task_sg(struct domain_device *dev, 69 struct scatterlist *req, struct scatterlist *resp) 70 { 71 int res, retry; 72 struct sas_task *task = NULL; 73 struct sas_internal *i = 74 to_sas_internal(dev->port->ha->core.shost->transportt); 75 76 mutex_lock(&dev->ex_dev.cmd_mutex); 77 for (retry = 0; retry < 3; retry++) { 78 if (test_bit(SAS_DEV_GONE, &dev->state)) { 79 res = -ECOMM; 80 break; 81 } 82 83 task = sas_alloc_slow_task(GFP_KERNEL); 84 if (!task) { 85 res = -ENOMEM; 86 break; 87 } 88 task->dev = dev; 89 task->task_proto = dev->tproto; 90 task->smp_task.smp_req = *req; 91 task->smp_task.smp_resp = *resp; 92 93 task->task_done = smp_task_done; 94 95 task->slow_task->timer.function = smp_task_timedout; 96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 97 add_timer(&task->slow_task->timer); 98 99 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 100 101 if (res) { 102 del_timer(&task->slow_task->timer); 103 pr_notice("executing SMP task failed:%d\n", res); 104 break; 105 } 106 107 wait_for_completion(&task->slow_task->completion); 108 res = -ECOMM; 109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 110 pr_notice("smp task timed out or aborted\n"); 111 i->dft->lldd_abort_task(task); 112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 113 pr_notice("SMP task aborted and not done\n"); 114 break; 115 } 116 } 117 if (task->task_status.resp == SAS_TASK_COMPLETE && 118 task->task_status.stat == SAM_STAT_GOOD) { 119 res = 0; 120 break; 121 } 122 if (task->task_status.resp == SAS_TASK_COMPLETE && 123 task->task_status.stat == SAS_DATA_UNDERRUN) { 124 /* no error, but return the number of bytes of 125 * underrun */ 126 res = task->task_status.residual; 127 break; 128 } 129 if (task->task_status.resp == SAS_TASK_COMPLETE && 130 task->task_status.stat == SAS_DATA_OVERRUN) { 131 res = -EMSGSIZE; 132 break; 133 } 134 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 135 task->task_status.stat == SAS_DEVICE_UNKNOWN) 136 break; 137 else { 138 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 139 __func__, 140 SAS_ADDR(dev->sas_addr), 141 task->task_status.resp, 142 task->task_status.stat); 143 sas_free_task(task); 144 task = NULL; 145 } 146 } 147 mutex_unlock(&dev->ex_dev.cmd_mutex); 148 149 BUG_ON(retry == 3 && task != NULL); 150 sas_free_task(task); 151 return res; 152 } 153 154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 155 void *resp, int resp_size) 156 { 157 struct scatterlist req_sg; 158 struct scatterlist resp_sg; 159 160 sg_init_one(&req_sg, req, req_size); 161 sg_init_one(&resp_sg, resp, resp_size); 162 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 163 } 164 165 /* ---------- Allocations ---------- */ 166 167 static inline void *alloc_smp_req(int size) 168 { 169 u8 *p = kzalloc(size, GFP_KERNEL); 170 if (p) 171 p[0] = SMP_REQUEST; 172 return p; 173 } 174 175 static inline void *alloc_smp_resp(int size) 176 { 177 return kzalloc(size, GFP_KERNEL); 178 } 179 180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 181 { 182 switch (phy->routing_attr) { 183 case TABLE_ROUTING: 184 if (dev->ex_dev.t2t_supp) 185 return 'U'; 186 else 187 return 'T'; 188 case DIRECT_ROUTING: 189 return 'D'; 190 case SUBTRACTIVE_ROUTING: 191 return 'S'; 192 default: 193 return '?'; 194 } 195 } 196 197 static enum sas_device_type to_dev_type(struct discover_resp *dr) 198 { 199 /* This is detecting a failure to transmit initial dev to host 200 * FIS as described in section J.5 of sas-2 r16 201 */ 202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 204 return SAS_SATA_PENDING; 205 else 206 return dr->attached_dev_type; 207 } 208 209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 210 { 211 enum sas_device_type dev_type; 212 enum sas_linkrate linkrate; 213 u8 sas_addr[SAS_ADDR_SIZE]; 214 struct smp_resp *resp = rsp; 215 struct discover_resp *dr = &resp->disc; 216 struct sas_ha_struct *ha = dev->port->ha; 217 struct expander_device *ex = &dev->ex_dev; 218 struct ex_phy *phy = &ex->ex_phy[phy_id]; 219 struct sas_rphy *rphy = dev->rphy; 220 bool new_phy = !phy->phy; 221 char *type; 222 223 if (new_phy) { 224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 225 return; 226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 227 228 /* FIXME: error_handling */ 229 BUG_ON(!phy->phy); 230 } 231 232 switch (resp->result) { 233 case SMP_RESP_PHY_VACANT: 234 phy->phy_state = PHY_VACANT; 235 break; 236 default: 237 phy->phy_state = PHY_NOT_PRESENT; 238 break; 239 case SMP_RESP_FUNC_ACC: 240 phy->phy_state = PHY_EMPTY; /* do not know yet */ 241 break; 242 } 243 244 /* check if anything important changed to squelch debug */ 245 dev_type = phy->attached_dev_type; 246 linkrate = phy->linkrate; 247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 248 249 /* Handle vacant phy - rest of dr data is not valid so skip it */ 250 if (phy->phy_state == PHY_VACANT) { 251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 252 phy->attached_dev_type = SAS_PHY_UNUSED; 253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 254 phy->phy_id = phy_id; 255 goto skip; 256 } else 257 goto out; 258 } 259 260 phy->attached_dev_type = to_dev_type(dr); 261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 262 goto out; 263 phy->phy_id = phy_id; 264 phy->linkrate = dr->linkrate; 265 phy->attached_sata_host = dr->attached_sata_host; 266 phy->attached_sata_dev = dr->attached_sata_dev; 267 phy->attached_sata_ps = dr->attached_sata_ps; 268 phy->attached_iproto = dr->iproto << 1; 269 phy->attached_tproto = dr->tproto << 1; 270 /* help some expanders that fail to zero sas_address in the 'no 271 * device' case 272 */ 273 if (phy->attached_dev_type == SAS_PHY_UNUSED || 274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 276 else 277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 278 phy->attached_phy_id = dr->attached_phy_id; 279 phy->phy_change_count = dr->change_count; 280 phy->routing_attr = dr->routing_attr; 281 phy->virtual = dr->virtual; 282 phy->last_da_index = -1; 283 284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 285 phy->phy->identify.device_type = dr->attached_dev_type; 286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 287 phy->phy->identify.target_port_protocols = phy->attached_tproto; 288 if (!phy->attached_tproto && dr->attached_sata_dev) 289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 290 phy->phy->identify.phy_identifier = phy_id; 291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 293 phy->phy->minimum_linkrate = dr->pmin_linkrate; 294 phy->phy->maximum_linkrate = dr->pmax_linkrate; 295 phy->phy->negotiated_linkrate = phy->linkrate; 296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 297 298 skip: 299 if (new_phy) 300 if (sas_phy_add(phy->phy)) { 301 sas_phy_free(phy->phy); 302 return; 303 } 304 305 out: 306 switch (phy->attached_dev_type) { 307 case SAS_SATA_PENDING: 308 type = "stp pending"; 309 break; 310 case SAS_PHY_UNUSED: 311 type = "no device"; 312 break; 313 case SAS_END_DEVICE: 314 if (phy->attached_iproto) { 315 if (phy->attached_tproto) 316 type = "host+target"; 317 else 318 type = "host"; 319 } else { 320 if (dr->attached_sata_dev) 321 type = "stp"; 322 else 323 type = "ssp"; 324 } 325 break; 326 case SAS_EDGE_EXPANDER_DEVICE: 327 case SAS_FANOUT_EXPANDER_DEVICE: 328 type = "smp"; 329 break; 330 default: 331 type = "unknown"; 332 } 333 334 /* this routine is polled by libata error recovery so filter 335 * unimportant messages 336 */ 337 if (new_phy || phy->attached_dev_type != dev_type || 338 phy->linkrate != linkrate || 339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 340 /* pass */; 341 else 342 return; 343 344 /* if the attached device type changed and ata_eh is active, 345 * make sure we run revalidation when eh completes (see: 346 * sas_enable_revalidation) 347 */ 348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 350 351 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 353 SAS_ADDR(dev->sas_addr), phy->phy_id, 354 sas_route_char(dev, phy), phy->linkrate, 355 SAS_ADDR(phy->attached_sas_addr), type); 356 } 357 358 /* check if we have an existing attached ata device on this expander phy */ 359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 360 { 361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 362 struct domain_device *dev; 363 struct sas_rphy *rphy; 364 365 if (!ex_phy->port) 366 return NULL; 367 368 rphy = ex_phy->port->rphy; 369 if (!rphy) 370 return NULL; 371 372 dev = sas_find_dev_by_rphy(rphy); 373 374 if (dev && dev_is_sata(dev)) 375 return dev; 376 377 return NULL; 378 } 379 380 #define DISCOVER_REQ_SIZE 16 381 #define DISCOVER_RESP_SIZE 56 382 383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 384 u8 *disc_resp, int single) 385 { 386 struct discover_resp *dr; 387 int res; 388 389 disc_req[9] = single; 390 391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 392 disc_resp, DISCOVER_RESP_SIZE); 393 if (res) 394 return res; 395 dr = &((struct smp_resp *)disc_resp)->disc; 396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 397 pr_notice("Found loopback topology, just ignore it!\n"); 398 return 0; 399 } 400 sas_set_ex_phy(dev, single, disc_resp); 401 return 0; 402 } 403 404 int sas_ex_phy_discover(struct domain_device *dev, int single) 405 { 406 struct expander_device *ex = &dev->ex_dev; 407 int res = 0; 408 u8 *disc_req; 409 u8 *disc_resp; 410 411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 412 if (!disc_req) 413 return -ENOMEM; 414 415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 416 if (!disc_resp) { 417 kfree(disc_req); 418 return -ENOMEM; 419 } 420 421 disc_req[1] = SMP_DISCOVER; 422 423 if (0 <= single && single < ex->num_phys) { 424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 425 } else { 426 int i; 427 428 for (i = 0; i < ex->num_phys; i++) { 429 res = sas_ex_phy_discover_helper(dev, disc_req, 430 disc_resp, i); 431 if (res) 432 goto out_err; 433 } 434 } 435 out_err: 436 kfree(disc_resp); 437 kfree(disc_req); 438 return res; 439 } 440 441 static int sas_expander_discover(struct domain_device *dev) 442 { 443 struct expander_device *ex = &dev->ex_dev; 444 int res = -ENOMEM; 445 446 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 447 if (!ex->ex_phy) 448 return -ENOMEM; 449 450 res = sas_ex_phy_discover(dev, -1); 451 if (res) 452 goto out_err; 453 454 return 0; 455 out_err: 456 kfree(ex->ex_phy); 457 ex->ex_phy = NULL; 458 return res; 459 } 460 461 #define MAX_EXPANDER_PHYS 128 462 463 static void ex_assign_report_general(struct domain_device *dev, 464 struct smp_resp *resp) 465 { 466 struct report_general_resp *rg = &resp->rg; 467 468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 471 dev->ex_dev.t2t_supp = rg->t2t_supp; 472 dev->ex_dev.conf_route_table = rg->conf_route_table; 473 dev->ex_dev.configuring = rg->configuring; 474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 475 } 476 477 #define RG_REQ_SIZE 8 478 #define RG_RESP_SIZE 32 479 480 static int sas_ex_general(struct domain_device *dev) 481 { 482 u8 *rg_req; 483 struct smp_resp *rg_resp; 484 int res; 485 int i; 486 487 rg_req = alloc_smp_req(RG_REQ_SIZE); 488 if (!rg_req) 489 return -ENOMEM; 490 491 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 492 if (!rg_resp) { 493 kfree(rg_req); 494 return -ENOMEM; 495 } 496 497 rg_req[1] = SMP_REPORT_GENERAL; 498 499 for (i = 0; i < 5; i++) { 500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 501 RG_RESP_SIZE); 502 503 if (res) { 504 pr_notice("RG to ex %016llx failed:0x%x\n", 505 SAS_ADDR(dev->sas_addr), res); 506 goto out; 507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 508 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 509 SAS_ADDR(dev->sas_addr), rg_resp->result); 510 res = rg_resp->result; 511 goto out; 512 } 513 514 ex_assign_report_general(dev, rg_resp); 515 516 if (dev->ex_dev.configuring) { 517 pr_debug("RG: ex %llx self-configuring...\n", 518 SAS_ADDR(dev->sas_addr)); 519 schedule_timeout_interruptible(5*HZ); 520 } else 521 break; 522 } 523 out: 524 kfree(rg_req); 525 kfree(rg_resp); 526 return res; 527 } 528 529 static void ex_assign_manuf_info(struct domain_device *dev, void 530 *_mi_resp) 531 { 532 u8 *mi_resp = _mi_resp; 533 struct sas_rphy *rphy = dev->rphy; 534 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 535 536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 538 memcpy(edev->product_rev, mi_resp + 36, 539 SAS_EXPANDER_PRODUCT_REV_LEN); 540 541 if (mi_resp[8] & 1) { 542 memcpy(edev->component_vendor_id, mi_resp + 40, 543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 544 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 545 edev->component_revision_id = mi_resp[50]; 546 } 547 } 548 549 #define MI_REQ_SIZE 8 550 #define MI_RESP_SIZE 64 551 552 static int sas_ex_manuf_info(struct domain_device *dev) 553 { 554 u8 *mi_req; 555 u8 *mi_resp; 556 int res; 557 558 mi_req = alloc_smp_req(MI_REQ_SIZE); 559 if (!mi_req) 560 return -ENOMEM; 561 562 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 563 if (!mi_resp) { 564 kfree(mi_req); 565 return -ENOMEM; 566 } 567 568 mi_req[1] = SMP_REPORT_MANUF_INFO; 569 570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 571 if (res) { 572 pr_notice("MI: ex %016llx failed:0x%x\n", 573 SAS_ADDR(dev->sas_addr), res); 574 goto out; 575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 576 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 577 SAS_ADDR(dev->sas_addr), mi_resp[2]); 578 goto out; 579 } 580 581 ex_assign_manuf_info(dev, mi_resp); 582 out: 583 kfree(mi_req); 584 kfree(mi_resp); 585 return res; 586 } 587 588 #define PC_REQ_SIZE 44 589 #define PC_RESP_SIZE 8 590 591 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 592 enum phy_func phy_func, 593 struct sas_phy_linkrates *rates) 594 { 595 u8 *pc_req; 596 u8 *pc_resp; 597 int res; 598 599 pc_req = alloc_smp_req(PC_REQ_SIZE); 600 if (!pc_req) 601 return -ENOMEM; 602 603 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 604 if (!pc_resp) { 605 kfree(pc_req); 606 return -ENOMEM; 607 } 608 609 pc_req[1] = SMP_PHY_CONTROL; 610 pc_req[9] = phy_id; 611 pc_req[10]= phy_func; 612 if (rates) { 613 pc_req[32] = rates->minimum_linkrate << 4; 614 pc_req[33] = rates->maximum_linkrate << 4; 615 } 616 617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 618 if (res) { 619 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 620 SAS_ADDR(dev->sas_addr), phy_id, res); 621 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 622 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 623 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 624 res = pc_resp[2]; 625 } 626 kfree(pc_resp); 627 kfree(pc_req); 628 return res; 629 } 630 631 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 632 { 633 struct expander_device *ex = &dev->ex_dev; 634 struct ex_phy *phy = &ex->ex_phy[phy_id]; 635 636 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 637 phy->linkrate = SAS_PHY_DISABLED; 638 } 639 640 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 641 { 642 struct expander_device *ex = &dev->ex_dev; 643 int i; 644 645 for (i = 0; i < ex->num_phys; i++) { 646 struct ex_phy *phy = &ex->ex_phy[i]; 647 648 if (phy->phy_state == PHY_VACANT || 649 phy->phy_state == PHY_NOT_PRESENT) 650 continue; 651 652 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 653 sas_ex_disable_phy(dev, i); 654 } 655 } 656 657 static int sas_dev_present_in_domain(struct asd_sas_port *port, 658 u8 *sas_addr) 659 { 660 struct domain_device *dev; 661 662 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 663 return 1; 664 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 665 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 666 return 1; 667 } 668 return 0; 669 } 670 671 #define RPEL_REQ_SIZE 16 672 #define RPEL_RESP_SIZE 32 673 int sas_smp_get_phy_events(struct sas_phy *phy) 674 { 675 int res; 676 u8 *req; 677 u8 *resp; 678 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 679 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 680 681 req = alloc_smp_req(RPEL_REQ_SIZE); 682 if (!req) 683 return -ENOMEM; 684 685 resp = alloc_smp_resp(RPEL_RESP_SIZE); 686 if (!resp) { 687 kfree(req); 688 return -ENOMEM; 689 } 690 691 req[1] = SMP_REPORT_PHY_ERR_LOG; 692 req[9] = phy->number; 693 694 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 695 resp, RPEL_RESP_SIZE); 696 697 if (res) 698 goto out; 699 700 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 701 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 702 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 703 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 704 705 out: 706 kfree(req); 707 kfree(resp); 708 return res; 709 710 } 711 712 #ifdef CONFIG_SCSI_SAS_ATA 713 714 #define RPS_REQ_SIZE 16 715 #define RPS_RESP_SIZE 60 716 717 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 718 struct smp_resp *rps_resp) 719 { 720 int res; 721 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 722 u8 *resp = (u8 *)rps_resp; 723 724 if (!rps_req) 725 return -ENOMEM; 726 727 rps_req[1] = SMP_REPORT_PHY_SATA; 728 rps_req[9] = phy_id; 729 730 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 731 rps_resp, RPS_RESP_SIZE); 732 733 /* 0x34 is the FIS type for the D2H fis. There's a potential 734 * standards cockup here. sas-2 explicitly specifies the FIS 735 * should be encoded so that FIS type is in resp[24]. 736 * However, some expanders endian reverse this. Undo the 737 * reversal here */ 738 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 739 int i; 740 741 for (i = 0; i < 5; i++) { 742 int j = 24 + (i*4); 743 u8 a, b; 744 a = resp[j + 0]; 745 b = resp[j + 1]; 746 resp[j + 0] = resp[j + 3]; 747 resp[j + 1] = resp[j + 2]; 748 resp[j + 2] = b; 749 resp[j + 3] = a; 750 } 751 } 752 753 kfree(rps_req); 754 return res; 755 } 756 #endif 757 758 static void sas_ex_get_linkrate(struct domain_device *parent, 759 struct domain_device *child, 760 struct ex_phy *parent_phy) 761 { 762 struct expander_device *parent_ex = &parent->ex_dev; 763 struct sas_port *port; 764 int i; 765 766 child->pathways = 0; 767 768 port = parent_phy->port; 769 770 for (i = 0; i < parent_ex->num_phys; i++) { 771 struct ex_phy *phy = &parent_ex->ex_phy[i]; 772 773 if (phy->phy_state == PHY_VACANT || 774 phy->phy_state == PHY_NOT_PRESENT) 775 continue; 776 777 if (SAS_ADDR(phy->attached_sas_addr) == 778 SAS_ADDR(child->sas_addr)) { 779 780 child->min_linkrate = min(parent->min_linkrate, 781 phy->linkrate); 782 child->max_linkrate = max(parent->max_linkrate, 783 phy->linkrate); 784 child->pathways++; 785 sas_port_add_phy(port, phy->phy); 786 } 787 } 788 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 789 child->pathways = min(child->pathways, parent->pathways); 790 } 791 792 static struct domain_device *sas_ex_discover_end_dev( 793 struct domain_device *parent, int phy_id) 794 { 795 struct expander_device *parent_ex = &parent->ex_dev; 796 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 797 struct domain_device *child = NULL; 798 struct sas_rphy *rphy; 799 int res; 800 801 if (phy->attached_sata_host || phy->attached_sata_ps) 802 return NULL; 803 804 child = sas_alloc_device(); 805 if (!child) 806 return NULL; 807 808 kref_get(&parent->kref); 809 child->parent = parent; 810 child->port = parent->port; 811 child->iproto = phy->attached_iproto; 812 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 813 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 814 if (!phy->port) { 815 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 816 if (unlikely(!phy->port)) 817 goto out_err; 818 if (unlikely(sas_port_add(phy->port) != 0)) { 819 sas_port_free(phy->port); 820 goto out_err; 821 } 822 } 823 sas_ex_get_linkrate(parent, child, phy); 824 sas_device_set_phy(child, phy->port); 825 826 #ifdef CONFIG_SCSI_SAS_ATA 827 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 828 if (child->linkrate > parent->min_linkrate) { 829 struct sas_phy_linkrates rates = { 830 .maximum_linkrate = parent->min_linkrate, 831 .minimum_linkrate = parent->min_linkrate, 832 }; 833 int ret; 834 835 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n", 836 SAS_ADDR(child->sas_addr), phy_id); 837 ret = sas_smp_phy_control(parent, phy_id, 838 PHY_FUNC_LINK_RESET, &rates); 839 if (ret) { 840 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n", 841 SAS_ADDR(child->sas_addr), phy_id, ret); 842 goto out_free; 843 } 844 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n", 845 SAS_ADDR(child->sas_addr), phy_id); 846 child->linkrate = child->min_linkrate; 847 } 848 res = sas_get_ata_info(child, phy); 849 if (res) 850 goto out_free; 851 852 sas_init_dev(child); 853 res = sas_ata_init(child); 854 if (res) 855 goto out_free; 856 rphy = sas_end_device_alloc(phy->port); 857 if (!rphy) 858 goto out_free; 859 rphy->identify.phy_identifier = phy_id; 860 861 child->rphy = rphy; 862 get_device(&rphy->dev); 863 864 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 865 866 res = sas_discover_sata(child); 867 if (res) { 868 pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n", 869 SAS_ADDR(child->sas_addr), 870 SAS_ADDR(parent->sas_addr), phy_id, res); 871 goto out_list_del; 872 } 873 } else 874 #endif 875 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 876 child->dev_type = SAS_END_DEVICE; 877 rphy = sas_end_device_alloc(phy->port); 878 /* FIXME: error handling */ 879 if (unlikely(!rphy)) 880 goto out_free; 881 child->tproto = phy->attached_tproto; 882 sas_init_dev(child); 883 884 child->rphy = rphy; 885 get_device(&rphy->dev); 886 rphy->identify.phy_identifier = phy_id; 887 sas_fill_in_rphy(child, rphy); 888 889 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 890 891 res = sas_discover_end_dev(child); 892 if (res) { 893 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n", 894 SAS_ADDR(child->sas_addr), 895 SAS_ADDR(parent->sas_addr), phy_id, res); 896 goto out_list_del; 897 } 898 } else { 899 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 900 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 901 phy_id); 902 goto out_free; 903 } 904 905 list_add_tail(&child->siblings, &parent_ex->children); 906 return child; 907 908 out_list_del: 909 sas_rphy_free(child->rphy); 910 list_del(&child->disco_list_node); 911 spin_lock_irq(&parent->port->dev_list_lock); 912 list_del(&child->dev_list_node); 913 spin_unlock_irq(&parent->port->dev_list_lock); 914 out_free: 915 sas_port_delete(phy->port); 916 out_err: 917 phy->port = NULL; 918 sas_put_device(child); 919 return NULL; 920 } 921 922 /* See if this phy is part of a wide port */ 923 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 924 { 925 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 926 int i; 927 928 for (i = 0; i < parent->ex_dev.num_phys; i++) { 929 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 930 931 if (ephy == phy) 932 continue; 933 934 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 935 SAS_ADDR_SIZE) && ephy->port) { 936 sas_port_add_phy(ephy->port, phy->phy); 937 phy->port = ephy->port; 938 phy->phy_state = PHY_DEVICE_DISCOVERED; 939 return true; 940 } 941 } 942 943 return false; 944 } 945 946 static struct domain_device *sas_ex_discover_expander( 947 struct domain_device *parent, int phy_id) 948 { 949 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 950 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 951 struct domain_device *child = NULL; 952 struct sas_rphy *rphy; 953 struct sas_expander_device *edev; 954 struct asd_sas_port *port; 955 int res; 956 957 if (phy->routing_attr == DIRECT_ROUTING) { 958 pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n", 959 SAS_ADDR(parent->sas_addr), phy_id, 960 SAS_ADDR(phy->attached_sas_addr), 961 phy->attached_phy_id); 962 return NULL; 963 } 964 child = sas_alloc_device(); 965 if (!child) 966 return NULL; 967 968 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 969 /* FIXME: better error handling */ 970 BUG_ON(sas_port_add(phy->port) != 0); 971 972 973 switch (phy->attached_dev_type) { 974 case SAS_EDGE_EXPANDER_DEVICE: 975 rphy = sas_expander_alloc(phy->port, 976 SAS_EDGE_EXPANDER_DEVICE); 977 break; 978 case SAS_FANOUT_EXPANDER_DEVICE: 979 rphy = sas_expander_alloc(phy->port, 980 SAS_FANOUT_EXPANDER_DEVICE); 981 break; 982 default: 983 rphy = NULL; /* shut gcc up */ 984 BUG(); 985 } 986 port = parent->port; 987 child->rphy = rphy; 988 get_device(&rphy->dev); 989 edev = rphy_to_expander_device(rphy); 990 child->dev_type = phy->attached_dev_type; 991 kref_get(&parent->kref); 992 child->parent = parent; 993 child->port = port; 994 child->iproto = phy->attached_iproto; 995 child->tproto = phy->attached_tproto; 996 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 997 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 998 sas_ex_get_linkrate(parent, child, phy); 999 edev->level = parent_ex->level + 1; 1000 parent->port->disc.max_level = max(parent->port->disc.max_level, 1001 edev->level); 1002 sas_init_dev(child); 1003 sas_fill_in_rphy(child, rphy); 1004 sas_rphy_add(rphy); 1005 1006 spin_lock_irq(&parent->port->dev_list_lock); 1007 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 1008 spin_unlock_irq(&parent->port->dev_list_lock); 1009 1010 res = sas_discover_expander(child); 1011 if (res) { 1012 sas_rphy_delete(rphy); 1013 spin_lock_irq(&parent->port->dev_list_lock); 1014 list_del(&child->dev_list_node); 1015 spin_unlock_irq(&parent->port->dev_list_lock); 1016 sas_put_device(child); 1017 return NULL; 1018 } 1019 list_add_tail(&child->siblings, &parent->ex_dev.children); 1020 return child; 1021 } 1022 1023 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 1024 { 1025 struct expander_device *ex = &dev->ex_dev; 1026 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 1027 struct domain_device *child = NULL; 1028 int res = 0; 1029 1030 /* Phy state */ 1031 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1032 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1033 res = sas_ex_phy_discover(dev, phy_id); 1034 if (res) 1035 return res; 1036 } 1037 1038 /* Parent and domain coherency */ 1039 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1040 SAS_ADDR(dev->port->sas_addr))) { 1041 sas_add_parent_port(dev, phy_id); 1042 return 0; 1043 } 1044 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1045 SAS_ADDR(dev->parent->sas_addr))) { 1046 sas_add_parent_port(dev, phy_id); 1047 if (ex_phy->routing_attr == TABLE_ROUTING) 1048 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1049 return 0; 1050 } 1051 1052 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1053 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1054 1055 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1056 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1057 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1058 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1059 } 1060 return 0; 1061 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1062 return 0; 1063 1064 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1065 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1066 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1067 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1068 pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n", 1069 ex_phy->attached_dev_type, 1070 SAS_ADDR(dev->sas_addr), 1071 phy_id); 1072 return 0; 1073 } 1074 1075 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1076 if (res) { 1077 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1078 SAS_ADDR(ex_phy->attached_sas_addr), res); 1079 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1080 return res; 1081 } 1082 1083 if (sas_ex_join_wide_port(dev, phy_id)) { 1084 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1085 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1086 return res; 1087 } 1088 1089 switch (ex_phy->attached_dev_type) { 1090 case SAS_END_DEVICE: 1091 case SAS_SATA_PENDING: 1092 child = sas_ex_discover_end_dev(dev, phy_id); 1093 break; 1094 case SAS_FANOUT_EXPANDER_DEVICE: 1095 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1096 pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n", 1097 SAS_ADDR(ex_phy->attached_sas_addr), 1098 ex_phy->attached_phy_id, 1099 SAS_ADDR(dev->sas_addr), 1100 phy_id); 1101 sas_ex_disable_phy(dev, phy_id); 1102 break; 1103 } else 1104 memcpy(dev->port->disc.fanout_sas_addr, 1105 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1106 /* fallthrough */ 1107 case SAS_EDGE_EXPANDER_DEVICE: 1108 child = sas_ex_discover_expander(dev, phy_id); 1109 break; 1110 default: 1111 break; 1112 } 1113 1114 if (child) { 1115 int i; 1116 1117 for (i = 0; i < ex->num_phys; i++) { 1118 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1119 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1120 continue; 1121 /* 1122 * Due to races, the phy might not get added to the 1123 * wide port, so we add the phy to the wide port here. 1124 */ 1125 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1126 SAS_ADDR(child->sas_addr)) { 1127 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1128 if (sas_ex_join_wide_port(dev, i)) 1129 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1130 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1131 } 1132 } 1133 } 1134 1135 return res; 1136 } 1137 1138 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1139 { 1140 struct expander_device *ex = &dev->ex_dev; 1141 int i; 1142 1143 for (i = 0; i < ex->num_phys; i++) { 1144 struct ex_phy *phy = &ex->ex_phy[i]; 1145 1146 if (phy->phy_state == PHY_VACANT || 1147 phy->phy_state == PHY_NOT_PRESENT) 1148 continue; 1149 1150 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1151 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1152 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1153 1154 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1155 1156 return 1; 1157 } 1158 } 1159 return 0; 1160 } 1161 1162 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1163 { 1164 struct expander_device *ex = &dev->ex_dev; 1165 struct domain_device *child; 1166 u8 sub_addr[8] = {0, }; 1167 1168 list_for_each_entry(child, &ex->children, siblings) { 1169 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1170 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1171 continue; 1172 if (sub_addr[0] == 0) { 1173 sas_find_sub_addr(child, sub_addr); 1174 continue; 1175 } else { 1176 u8 s2[8]; 1177 1178 if (sas_find_sub_addr(child, s2) && 1179 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1180 1181 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1182 SAS_ADDR(dev->sas_addr), 1183 SAS_ADDR(child->sas_addr), 1184 SAS_ADDR(s2), 1185 SAS_ADDR(sub_addr)); 1186 1187 sas_ex_disable_port(child, s2); 1188 } 1189 } 1190 } 1191 return 0; 1192 } 1193 /** 1194 * sas_ex_discover_devices - discover devices attached to this expander 1195 * @dev: pointer to the expander domain device 1196 * @single: if you want to do a single phy, else set to -1; 1197 * 1198 * Configure this expander for use with its devices and register the 1199 * devices of this expander. 1200 */ 1201 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1202 { 1203 struct expander_device *ex = &dev->ex_dev; 1204 int i = 0, end = ex->num_phys; 1205 int res = 0; 1206 1207 if (0 <= single && single < end) { 1208 i = single; 1209 end = i+1; 1210 } 1211 1212 for ( ; i < end; i++) { 1213 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1214 1215 if (ex_phy->phy_state == PHY_VACANT || 1216 ex_phy->phy_state == PHY_NOT_PRESENT || 1217 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1218 continue; 1219 1220 switch (ex_phy->linkrate) { 1221 case SAS_PHY_DISABLED: 1222 case SAS_PHY_RESET_PROBLEM: 1223 case SAS_SATA_PORT_SELECTOR: 1224 continue; 1225 default: 1226 res = sas_ex_discover_dev(dev, i); 1227 if (res) 1228 break; 1229 continue; 1230 } 1231 } 1232 1233 if (!res) 1234 sas_check_level_subtractive_boundary(dev); 1235 1236 return res; 1237 } 1238 1239 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1240 { 1241 struct expander_device *ex = &dev->ex_dev; 1242 int i; 1243 u8 *sub_sas_addr = NULL; 1244 1245 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1246 return 0; 1247 1248 for (i = 0; i < ex->num_phys; i++) { 1249 struct ex_phy *phy = &ex->ex_phy[i]; 1250 1251 if (phy->phy_state == PHY_VACANT || 1252 phy->phy_state == PHY_NOT_PRESENT) 1253 continue; 1254 1255 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1256 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1257 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1258 1259 if (!sub_sas_addr) 1260 sub_sas_addr = &phy->attached_sas_addr[0]; 1261 else if (SAS_ADDR(sub_sas_addr) != 1262 SAS_ADDR(phy->attached_sas_addr)) { 1263 1264 pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1265 SAS_ADDR(dev->sas_addr), i, 1266 SAS_ADDR(phy->attached_sas_addr), 1267 SAS_ADDR(sub_sas_addr)); 1268 sas_ex_disable_phy(dev, i); 1269 } 1270 } 1271 } 1272 return 0; 1273 } 1274 1275 static void sas_print_parent_topology_bug(struct domain_device *child, 1276 struct ex_phy *parent_phy, 1277 struct ex_phy *child_phy) 1278 { 1279 static const char *ex_type[] = { 1280 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1281 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1282 }; 1283 struct domain_device *parent = child->parent; 1284 1285 pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n", 1286 ex_type[parent->dev_type], 1287 SAS_ADDR(parent->sas_addr), 1288 parent_phy->phy_id, 1289 1290 ex_type[child->dev_type], 1291 SAS_ADDR(child->sas_addr), 1292 child_phy->phy_id, 1293 1294 sas_route_char(parent, parent_phy), 1295 sas_route_char(child, child_phy)); 1296 } 1297 1298 static int sas_check_eeds(struct domain_device *child, 1299 struct ex_phy *parent_phy, 1300 struct ex_phy *child_phy) 1301 { 1302 int res = 0; 1303 struct domain_device *parent = child->parent; 1304 1305 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1306 res = -ENODEV; 1307 pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n", 1308 SAS_ADDR(parent->sas_addr), 1309 parent_phy->phy_id, 1310 SAS_ADDR(child->sas_addr), 1311 child_phy->phy_id, 1312 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1313 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1314 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1315 SAS_ADDR_SIZE); 1316 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1317 SAS_ADDR_SIZE); 1318 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1319 SAS_ADDR(parent->sas_addr)) || 1320 (SAS_ADDR(parent->port->disc.eeds_a) == 1321 SAS_ADDR(child->sas_addr))) 1322 && 1323 ((SAS_ADDR(parent->port->disc.eeds_b) == 1324 SAS_ADDR(parent->sas_addr)) || 1325 (SAS_ADDR(parent->port->disc.eeds_b) == 1326 SAS_ADDR(child->sas_addr)))) 1327 ; 1328 else { 1329 res = -ENODEV; 1330 pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n", 1331 SAS_ADDR(parent->sas_addr), 1332 parent_phy->phy_id, 1333 SAS_ADDR(child->sas_addr), 1334 child_phy->phy_id); 1335 } 1336 1337 return res; 1338 } 1339 1340 /* Here we spill over 80 columns. It is intentional. 1341 */ 1342 static int sas_check_parent_topology(struct domain_device *child) 1343 { 1344 struct expander_device *child_ex = &child->ex_dev; 1345 struct expander_device *parent_ex; 1346 int i; 1347 int res = 0; 1348 1349 if (!child->parent) 1350 return 0; 1351 1352 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1353 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1354 return 0; 1355 1356 parent_ex = &child->parent->ex_dev; 1357 1358 for (i = 0; i < parent_ex->num_phys; i++) { 1359 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1360 struct ex_phy *child_phy; 1361 1362 if (parent_phy->phy_state == PHY_VACANT || 1363 parent_phy->phy_state == PHY_NOT_PRESENT) 1364 continue; 1365 1366 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1367 continue; 1368 1369 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1370 1371 switch (child->parent->dev_type) { 1372 case SAS_EDGE_EXPANDER_DEVICE: 1373 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1374 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1375 child_phy->routing_attr != TABLE_ROUTING) { 1376 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1377 res = -ENODEV; 1378 } 1379 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1380 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1381 res = sas_check_eeds(child, parent_phy, child_phy); 1382 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1383 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1384 res = -ENODEV; 1385 } 1386 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1387 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1388 (child_phy->routing_attr == TABLE_ROUTING && 1389 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1390 /* All good */; 1391 } else { 1392 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1393 res = -ENODEV; 1394 } 1395 } 1396 break; 1397 case SAS_FANOUT_EXPANDER_DEVICE: 1398 if (parent_phy->routing_attr != TABLE_ROUTING || 1399 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1400 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1401 res = -ENODEV; 1402 } 1403 break; 1404 default: 1405 break; 1406 } 1407 } 1408 1409 return res; 1410 } 1411 1412 #define RRI_REQ_SIZE 16 1413 #define RRI_RESP_SIZE 44 1414 1415 static int sas_configure_present(struct domain_device *dev, int phy_id, 1416 u8 *sas_addr, int *index, int *present) 1417 { 1418 int i, res = 0; 1419 struct expander_device *ex = &dev->ex_dev; 1420 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1421 u8 *rri_req; 1422 u8 *rri_resp; 1423 1424 *present = 0; 1425 *index = 0; 1426 1427 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1428 if (!rri_req) 1429 return -ENOMEM; 1430 1431 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1432 if (!rri_resp) { 1433 kfree(rri_req); 1434 return -ENOMEM; 1435 } 1436 1437 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1438 rri_req[9] = phy_id; 1439 1440 for (i = 0; i < ex->max_route_indexes ; i++) { 1441 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1442 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1443 RRI_RESP_SIZE); 1444 if (res) 1445 goto out; 1446 res = rri_resp[2]; 1447 if (res == SMP_RESP_NO_INDEX) { 1448 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1449 SAS_ADDR(dev->sas_addr), phy_id, i); 1450 goto out; 1451 } else if (res != SMP_RESP_FUNC_ACC) { 1452 pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n", 1453 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1454 i, res); 1455 goto out; 1456 } 1457 if (SAS_ADDR(sas_addr) != 0) { 1458 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1459 *index = i; 1460 if ((rri_resp[12] & 0x80) == 0x80) 1461 *present = 0; 1462 else 1463 *present = 1; 1464 goto out; 1465 } else if (SAS_ADDR(rri_resp+16) == 0) { 1466 *index = i; 1467 *present = 0; 1468 goto out; 1469 } 1470 } else if (SAS_ADDR(rri_resp+16) == 0 && 1471 phy->last_da_index < i) { 1472 phy->last_da_index = i; 1473 *index = i; 1474 *present = 0; 1475 goto out; 1476 } 1477 } 1478 res = -1; 1479 out: 1480 kfree(rri_req); 1481 kfree(rri_resp); 1482 return res; 1483 } 1484 1485 #define CRI_REQ_SIZE 44 1486 #define CRI_RESP_SIZE 8 1487 1488 static int sas_configure_set(struct domain_device *dev, int phy_id, 1489 u8 *sas_addr, int index, int include) 1490 { 1491 int res; 1492 u8 *cri_req; 1493 u8 *cri_resp; 1494 1495 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1496 if (!cri_req) 1497 return -ENOMEM; 1498 1499 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1500 if (!cri_resp) { 1501 kfree(cri_req); 1502 return -ENOMEM; 1503 } 1504 1505 cri_req[1] = SMP_CONF_ROUTE_INFO; 1506 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1507 cri_req[9] = phy_id; 1508 if (SAS_ADDR(sas_addr) == 0 || !include) 1509 cri_req[12] |= 0x80; 1510 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1511 1512 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1513 CRI_RESP_SIZE); 1514 if (res) 1515 goto out; 1516 res = cri_resp[2]; 1517 if (res == SMP_RESP_NO_INDEX) { 1518 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1519 SAS_ADDR(dev->sas_addr), phy_id, index); 1520 } 1521 out: 1522 kfree(cri_req); 1523 kfree(cri_resp); 1524 return res; 1525 } 1526 1527 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1528 u8 *sas_addr, int include) 1529 { 1530 int index; 1531 int present; 1532 int res; 1533 1534 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1535 if (res) 1536 return res; 1537 if (include ^ present) 1538 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1539 1540 return res; 1541 } 1542 1543 /** 1544 * sas_configure_parent - configure routing table of parent 1545 * @parent: parent expander 1546 * @child: child expander 1547 * @sas_addr: SAS port identifier of device directly attached to child 1548 * @include: whether or not to include @child in the expander routing table 1549 */ 1550 static int sas_configure_parent(struct domain_device *parent, 1551 struct domain_device *child, 1552 u8 *sas_addr, int include) 1553 { 1554 struct expander_device *ex_parent = &parent->ex_dev; 1555 int res = 0; 1556 int i; 1557 1558 if (parent->parent) { 1559 res = sas_configure_parent(parent->parent, parent, sas_addr, 1560 include); 1561 if (res) 1562 return res; 1563 } 1564 1565 if (ex_parent->conf_route_table == 0) { 1566 pr_debug("ex %016llx has self-configuring routing table\n", 1567 SAS_ADDR(parent->sas_addr)); 1568 return 0; 1569 } 1570 1571 for (i = 0; i < ex_parent->num_phys; i++) { 1572 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1573 1574 if ((phy->routing_attr == TABLE_ROUTING) && 1575 (SAS_ADDR(phy->attached_sas_addr) == 1576 SAS_ADDR(child->sas_addr))) { 1577 res = sas_configure_phy(parent, i, sas_addr, include); 1578 if (res) 1579 return res; 1580 } 1581 } 1582 1583 return res; 1584 } 1585 1586 /** 1587 * sas_configure_routing - configure routing 1588 * @dev: expander device 1589 * @sas_addr: port identifier of device directly attached to the expander device 1590 */ 1591 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1592 { 1593 if (dev->parent) 1594 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1595 return 0; 1596 } 1597 1598 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1599 { 1600 if (dev->parent) 1601 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1602 return 0; 1603 } 1604 1605 /** 1606 * sas_discover_expander - expander discovery 1607 * @dev: pointer to expander domain device 1608 * 1609 * See comment in sas_discover_sata(). 1610 */ 1611 static int sas_discover_expander(struct domain_device *dev) 1612 { 1613 int res; 1614 1615 res = sas_notify_lldd_dev_found(dev); 1616 if (res) 1617 return res; 1618 1619 res = sas_ex_general(dev); 1620 if (res) 1621 goto out_err; 1622 res = sas_ex_manuf_info(dev); 1623 if (res) 1624 goto out_err; 1625 1626 res = sas_expander_discover(dev); 1627 if (res) { 1628 pr_warn("expander %016llx discovery failed(0x%x)\n", 1629 SAS_ADDR(dev->sas_addr), res); 1630 goto out_err; 1631 } 1632 1633 sas_check_ex_subtractive_boundary(dev); 1634 res = sas_check_parent_topology(dev); 1635 if (res) 1636 goto out_err; 1637 return 0; 1638 out_err: 1639 sas_notify_lldd_dev_gone(dev); 1640 return res; 1641 } 1642 1643 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1644 { 1645 int res = 0; 1646 struct domain_device *dev; 1647 1648 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1649 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1650 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1651 struct sas_expander_device *ex = 1652 rphy_to_expander_device(dev->rphy); 1653 1654 if (level == ex->level) 1655 res = sas_ex_discover_devices(dev, -1); 1656 else if (level > 0) 1657 res = sas_ex_discover_devices(port->port_dev, -1); 1658 1659 } 1660 } 1661 1662 return res; 1663 } 1664 1665 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1666 { 1667 int res; 1668 int level; 1669 1670 do { 1671 level = port->disc.max_level; 1672 res = sas_ex_level_discovery(port, level); 1673 mb(); 1674 } while (level < port->disc.max_level); 1675 1676 return res; 1677 } 1678 1679 int sas_discover_root_expander(struct domain_device *dev) 1680 { 1681 int res; 1682 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1683 1684 res = sas_rphy_add(dev->rphy); 1685 if (res) 1686 goto out_err; 1687 1688 ex->level = dev->port->disc.max_level; /* 0 */ 1689 res = sas_discover_expander(dev); 1690 if (res) 1691 goto out_err2; 1692 1693 sas_ex_bfs_disc(dev->port); 1694 1695 return res; 1696 1697 out_err2: 1698 sas_rphy_remove(dev->rphy); 1699 out_err: 1700 return res; 1701 } 1702 1703 /* ---------- Domain revalidation ---------- */ 1704 1705 static int sas_get_phy_discover(struct domain_device *dev, 1706 int phy_id, struct smp_resp *disc_resp) 1707 { 1708 int res; 1709 u8 *disc_req; 1710 1711 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1712 if (!disc_req) 1713 return -ENOMEM; 1714 1715 disc_req[1] = SMP_DISCOVER; 1716 disc_req[9] = phy_id; 1717 1718 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1719 disc_resp, DISCOVER_RESP_SIZE); 1720 if (res) 1721 goto out; 1722 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1723 res = disc_resp->result; 1724 goto out; 1725 } 1726 out: 1727 kfree(disc_req); 1728 return res; 1729 } 1730 1731 static int sas_get_phy_change_count(struct domain_device *dev, 1732 int phy_id, int *pcc) 1733 { 1734 int res; 1735 struct smp_resp *disc_resp; 1736 1737 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1738 if (!disc_resp) 1739 return -ENOMEM; 1740 1741 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1742 if (!res) 1743 *pcc = disc_resp->disc.change_count; 1744 1745 kfree(disc_resp); 1746 return res; 1747 } 1748 1749 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1750 u8 *sas_addr, enum sas_device_type *type) 1751 { 1752 int res; 1753 struct smp_resp *disc_resp; 1754 struct discover_resp *dr; 1755 1756 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1757 if (!disc_resp) 1758 return -ENOMEM; 1759 dr = &disc_resp->disc; 1760 1761 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1762 if (res == 0) { 1763 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1764 *type = to_dev_type(dr); 1765 if (*type == 0) 1766 memset(sas_addr, 0, 8); 1767 } 1768 kfree(disc_resp); 1769 return res; 1770 } 1771 1772 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1773 int from_phy, bool update) 1774 { 1775 struct expander_device *ex = &dev->ex_dev; 1776 int res = 0; 1777 int i; 1778 1779 for (i = from_phy; i < ex->num_phys; i++) { 1780 int phy_change_count = 0; 1781 1782 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1783 switch (res) { 1784 case SMP_RESP_PHY_VACANT: 1785 case SMP_RESP_NO_PHY: 1786 continue; 1787 case SMP_RESP_FUNC_ACC: 1788 break; 1789 default: 1790 return res; 1791 } 1792 1793 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1794 if (update) 1795 ex->ex_phy[i].phy_change_count = 1796 phy_change_count; 1797 *phy_id = i; 1798 return 0; 1799 } 1800 } 1801 return 0; 1802 } 1803 1804 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1805 { 1806 int res; 1807 u8 *rg_req; 1808 struct smp_resp *rg_resp; 1809 1810 rg_req = alloc_smp_req(RG_REQ_SIZE); 1811 if (!rg_req) 1812 return -ENOMEM; 1813 1814 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1815 if (!rg_resp) { 1816 kfree(rg_req); 1817 return -ENOMEM; 1818 } 1819 1820 rg_req[1] = SMP_REPORT_GENERAL; 1821 1822 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1823 RG_RESP_SIZE); 1824 if (res) 1825 goto out; 1826 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1827 res = rg_resp->result; 1828 goto out; 1829 } 1830 1831 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1832 out: 1833 kfree(rg_resp); 1834 kfree(rg_req); 1835 return res; 1836 } 1837 /** 1838 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1839 * @dev:domain device to be detect. 1840 * @src_dev: the device which originated BROADCAST(CHANGE). 1841 * 1842 * Add self-configuration expander support. Suppose two expander cascading, 1843 * when the first level expander is self-configuring, hotplug the disks in 1844 * second level expander, BROADCAST(CHANGE) will not only be originated 1845 * in the second level expander, but also be originated in the first level 1846 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1847 * expander changed count in two level expanders will all increment at least 1848 * once, but the phy which chang count has changed is the source device which 1849 * we concerned. 1850 */ 1851 1852 static int sas_find_bcast_dev(struct domain_device *dev, 1853 struct domain_device **src_dev) 1854 { 1855 struct expander_device *ex = &dev->ex_dev; 1856 int ex_change_count = -1; 1857 int phy_id = -1; 1858 int res; 1859 struct domain_device *ch; 1860 1861 res = sas_get_ex_change_count(dev, &ex_change_count); 1862 if (res) 1863 goto out; 1864 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1865 /* Just detect if this expander phys phy change count changed, 1866 * in order to determine if this expander originate BROADCAST, 1867 * and do not update phy change count field in our structure. 1868 */ 1869 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1870 if (phy_id != -1) { 1871 *src_dev = dev; 1872 ex->ex_change_count = ex_change_count; 1873 pr_info("Expander phy change count has changed\n"); 1874 return res; 1875 } else 1876 pr_info("Expander phys DID NOT change\n"); 1877 } 1878 list_for_each_entry(ch, &ex->children, siblings) { 1879 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1880 res = sas_find_bcast_dev(ch, src_dev); 1881 if (*src_dev) 1882 return res; 1883 } 1884 } 1885 out: 1886 return res; 1887 } 1888 1889 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1890 { 1891 struct expander_device *ex = &dev->ex_dev; 1892 struct domain_device *child, *n; 1893 1894 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1895 set_bit(SAS_DEV_GONE, &child->state); 1896 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1897 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1898 sas_unregister_ex_tree(port, child); 1899 else 1900 sas_unregister_dev(port, child); 1901 } 1902 sas_unregister_dev(port, dev); 1903 } 1904 1905 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1906 int phy_id, bool last) 1907 { 1908 struct expander_device *ex_dev = &parent->ex_dev; 1909 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1910 struct domain_device *child, *n, *found = NULL; 1911 if (last) { 1912 list_for_each_entry_safe(child, n, 1913 &ex_dev->children, siblings) { 1914 if (SAS_ADDR(child->sas_addr) == 1915 SAS_ADDR(phy->attached_sas_addr)) { 1916 set_bit(SAS_DEV_GONE, &child->state); 1917 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1918 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1919 sas_unregister_ex_tree(parent->port, child); 1920 else 1921 sas_unregister_dev(parent->port, child); 1922 found = child; 1923 break; 1924 } 1925 } 1926 sas_disable_routing(parent, phy->attached_sas_addr); 1927 } 1928 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1929 if (phy->port) { 1930 sas_port_delete_phy(phy->port, phy->phy); 1931 sas_device_set_phy(found, phy->port); 1932 if (phy->port->num_phys == 0) 1933 list_add_tail(&phy->port->del_list, 1934 &parent->port->sas_port_del_list); 1935 phy->port = NULL; 1936 } 1937 } 1938 1939 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1940 const int level) 1941 { 1942 struct expander_device *ex_root = &root->ex_dev; 1943 struct domain_device *child; 1944 int res = 0; 1945 1946 list_for_each_entry(child, &ex_root->children, siblings) { 1947 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1948 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1949 struct sas_expander_device *ex = 1950 rphy_to_expander_device(child->rphy); 1951 1952 if (level > ex->level) 1953 res = sas_discover_bfs_by_root_level(child, 1954 level); 1955 else if (level == ex->level) 1956 res = sas_ex_discover_devices(child, -1); 1957 } 1958 } 1959 return res; 1960 } 1961 1962 static int sas_discover_bfs_by_root(struct domain_device *dev) 1963 { 1964 int res; 1965 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1966 int level = ex->level+1; 1967 1968 res = sas_ex_discover_devices(dev, -1); 1969 if (res) 1970 goto out; 1971 do { 1972 res = sas_discover_bfs_by_root_level(dev, level); 1973 mb(); 1974 level += 1; 1975 } while (level <= dev->port->disc.max_level); 1976 out: 1977 return res; 1978 } 1979 1980 static int sas_discover_new(struct domain_device *dev, int phy_id) 1981 { 1982 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1983 struct domain_device *child; 1984 int res; 1985 1986 pr_debug("ex %016llx phy%d new device attached\n", 1987 SAS_ADDR(dev->sas_addr), phy_id); 1988 res = sas_ex_phy_discover(dev, phy_id); 1989 if (res) 1990 return res; 1991 1992 if (sas_ex_join_wide_port(dev, phy_id)) 1993 return 0; 1994 1995 res = sas_ex_discover_devices(dev, phy_id); 1996 if (res) 1997 return res; 1998 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1999 if (SAS_ADDR(child->sas_addr) == 2000 SAS_ADDR(ex_phy->attached_sas_addr)) { 2001 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 2002 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 2003 res = sas_discover_bfs_by_root(child); 2004 break; 2005 } 2006 } 2007 return res; 2008 } 2009 2010 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 2011 { 2012 if (old == new) 2013 return true; 2014 2015 /* treat device directed resets as flutter, if we went 2016 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 2017 */ 2018 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 2019 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 2020 return true; 2021 2022 return false; 2023 } 2024 2025 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 2026 { 2027 struct expander_device *ex = &dev->ex_dev; 2028 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2029 enum sas_device_type type = SAS_PHY_UNUSED; 2030 u8 sas_addr[8]; 2031 int res; 2032 2033 memset(sas_addr, 0, 8); 2034 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2035 switch (res) { 2036 case SMP_RESP_NO_PHY: 2037 phy->phy_state = PHY_NOT_PRESENT; 2038 sas_unregister_devs_sas_addr(dev, phy_id, last); 2039 return res; 2040 case SMP_RESP_PHY_VACANT: 2041 phy->phy_state = PHY_VACANT; 2042 sas_unregister_devs_sas_addr(dev, phy_id, last); 2043 return res; 2044 case SMP_RESP_FUNC_ACC: 2045 break; 2046 case -ECOMM: 2047 break; 2048 default: 2049 return res; 2050 } 2051 2052 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2053 phy->phy_state = PHY_EMPTY; 2054 sas_unregister_devs_sas_addr(dev, phy_id, last); 2055 return res; 2056 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2057 dev_type_flutter(type, phy->attached_dev_type)) { 2058 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2059 char *action = ""; 2060 2061 sas_ex_phy_discover(dev, phy_id); 2062 2063 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2064 action = ", needs recovery"; 2065 pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n", 2066 SAS_ADDR(dev->sas_addr), phy_id, action); 2067 return res; 2068 } 2069 2070 /* we always have to delete the old device when we went here */ 2071 pr_info("ex %016llx phy 0x%x replace %016llx\n", 2072 SAS_ADDR(dev->sas_addr), phy_id, 2073 SAS_ADDR(phy->attached_sas_addr)); 2074 sas_unregister_devs_sas_addr(dev, phy_id, last); 2075 2076 return sas_discover_new(dev, phy_id); 2077 } 2078 2079 /** 2080 * sas_rediscover - revalidate the domain. 2081 * @dev:domain device to be detect. 2082 * @phy_id: the phy id will be detected. 2083 * 2084 * NOTE: this process _must_ quit (return) as soon as any connection 2085 * errors are encountered. Connection recovery is done elsewhere. 2086 * Discover process only interrogates devices in order to discover the 2087 * domain.For plugging out, we un-register the device only when it is 2088 * the last phy in the port, for other phys in this port, we just delete it 2089 * from the port.For inserting, we do discovery when it is the 2090 * first phy,for other phys in this port, we add it to the port to 2091 * forming the wide-port. 2092 */ 2093 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2094 { 2095 struct expander_device *ex = &dev->ex_dev; 2096 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2097 int res = 0; 2098 int i; 2099 bool last = true; /* is this the last phy of the port */ 2100 2101 pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2102 SAS_ADDR(dev->sas_addr), phy_id); 2103 2104 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2105 for (i = 0; i < ex->num_phys; i++) { 2106 struct ex_phy *phy = &ex->ex_phy[i]; 2107 2108 if (i == phy_id) 2109 continue; 2110 if (SAS_ADDR(phy->attached_sas_addr) == 2111 SAS_ADDR(changed_phy->attached_sas_addr)) { 2112 pr_debug("phy%d part of wide port with phy%d\n", 2113 phy_id, i); 2114 last = false; 2115 break; 2116 } 2117 } 2118 res = sas_rediscover_dev(dev, phy_id, last); 2119 } else 2120 res = sas_discover_new(dev, phy_id); 2121 return res; 2122 } 2123 2124 /** 2125 * sas_ex_revalidate_domain - revalidate the domain 2126 * @port_dev: port domain device. 2127 * 2128 * NOTE: this process _must_ quit (return) as soon as any connection 2129 * errors are encountered. Connection recovery is done elsewhere. 2130 * Discover process only interrogates devices in order to discover the 2131 * domain. 2132 */ 2133 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2134 { 2135 int res; 2136 struct domain_device *dev = NULL; 2137 2138 res = sas_find_bcast_dev(port_dev, &dev); 2139 if (res == 0 && dev) { 2140 struct expander_device *ex = &dev->ex_dev; 2141 int i = 0, phy_id; 2142 2143 do { 2144 phy_id = -1; 2145 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2146 if (phy_id == -1) 2147 break; 2148 res = sas_rediscover(dev, phy_id); 2149 i = phy_id + 1; 2150 } while (i < ex->num_phys); 2151 } 2152 return res; 2153 } 2154 2155 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2156 struct sas_rphy *rphy) 2157 { 2158 struct domain_device *dev; 2159 unsigned int rcvlen = 0; 2160 int ret = -EINVAL; 2161 2162 /* no rphy means no smp target support (ie aic94xx host) */ 2163 if (!rphy) 2164 return sas_smp_host_handler(job, shost); 2165 2166 switch (rphy->identify.device_type) { 2167 case SAS_EDGE_EXPANDER_DEVICE: 2168 case SAS_FANOUT_EXPANDER_DEVICE: 2169 break; 2170 default: 2171 pr_err("%s: can we send a smp request to a device?\n", 2172 __func__); 2173 goto out; 2174 } 2175 2176 dev = sas_find_dev_by_rphy(rphy); 2177 if (!dev) { 2178 pr_err("%s: fail to find a domain_device?\n", __func__); 2179 goto out; 2180 } 2181 2182 /* do we need to support multiple segments? */ 2183 if (job->request_payload.sg_cnt > 1 || 2184 job->reply_payload.sg_cnt > 1) { 2185 pr_info("%s: multiple segments req %u, rsp %u\n", 2186 __func__, job->request_payload.payload_len, 2187 job->reply_payload.payload_len); 2188 goto out; 2189 } 2190 2191 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2192 job->reply_payload.sg_list); 2193 if (ret >= 0) { 2194 /* bsg_job_done() requires the length received */ 2195 rcvlen = job->reply_payload.payload_len - ret; 2196 ret = 0; 2197 } 2198 2199 out: 2200 bsg_job_done(job, ret, rcvlen); 2201 } 2202