1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 30 #include <scsi/fc/fc_fc2.h> 31 32 #include <scsi/libfc.h> 33 #include <scsi/fc_encode.h> 34 35 #include "fc_libfc.h" 36 37 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 38 EXPORT_SYMBOL(fc_cpu_mask); 39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 41 static struct workqueue_struct *fc_exch_workqueue; 42 43 /* 44 * Structure and function definitions for managing Fibre Channel Exchanges 45 * and Sequences. 46 * 47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 48 * 49 * fc_exch_mgr holds the exchange state for an N port 50 * 51 * fc_exch holds state for one exchange and links to its active sequence. 52 * 53 * fc_seq holds the state for an individual sequence. 54 */ 55 56 /** 57 * struct fc_exch_pool - Per cpu exchange pool 58 * @next_index: Next possible free exchange index 59 * @total_exches: Total allocated exchanges 60 * @lock: Exch pool lock 61 * @ex_list: List of exchanges 62 * 63 * This structure manages per cpu exchanges in array of exchange pointers. 64 * This array is allocated followed by struct fc_exch_pool memory for 65 * assigned range of exchanges to per cpu pool. 66 */ 67 struct fc_exch_pool { 68 spinlock_t lock; 69 struct list_head ex_list; 70 u16 next_index; 71 u16 total_exches; 72 73 /* two cache of free slot in exch array */ 74 u16 left; 75 u16 right; 76 } ____cacheline_aligned_in_smp; 77 78 /** 79 * struct fc_exch_mgr - The Exchange Manager (EM). 80 * @class: Default class for new sequences 81 * @kref: Reference counter 82 * @min_xid: Minimum exchange ID 83 * @max_xid: Maximum exchange ID 84 * @ep_pool: Reserved exchange pointers 85 * @pool_max_index: Max exch array index in exch pool 86 * @pool: Per cpu exch pool 87 * @stats: Statistics structure 88 * 89 * This structure is the center for creating exchanges and sequences. 90 * It manages the allocation of exchange IDs. 91 */ 92 struct fc_exch_mgr { 93 struct fc_exch_pool *pool; 94 mempool_t *ep_pool; 95 enum fc_class class; 96 struct kref kref; 97 u16 min_xid; 98 u16 max_xid; 99 u16 pool_max_index; 100 101 /* 102 * currently exchange mgr stats are updated but not used. 103 * either stats can be expose via sysfs or remove them 104 * all together if not used XXX 105 */ 106 struct { 107 atomic_t no_free_exch; 108 atomic_t no_free_exch_xid; 109 atomic_t xid_not_found; 110 atomic_t xid_busy; 111 atomic_t seq_not_found; 112 atomic_t non_bls_resp; 113 } stats; 114 }; 115 116 /** 117 * struct fc_exch_mgr_anchor - primary structure for list of EMs 118 * @ema_list: Exchange Manager Anchor list 119 * @mp: Exchange Manager associated with this anchor 120 * @match: Routine to determine if this anchor's EM should be used 121 * 122 * When walking the list of anchors the match routine will be called 123 * for each anchor to determine if that EM should be used. The last 124 * anchor in the list will always match to handle any exchanges not 125 * handled by other EMs. The non-default EMs would be added to the 126 * anchor list by HW that provides FCoE offloads. 127 */ 128 struct fc_exch_mgr_anchor { 129 struct list_head ema_list; 130 struct fc_exch_mgr *mp; 131 bool (*match)(struct fc_frame *); 132 }; 133 134 static void fc_exch_rrq(struct fc_exch *); 135 static void fc_seq_ls_acc(struct fc_frame *); 136 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 137 enum fc_els_rjt_explan); 138 static void fc_exch_els_rec(struct fc_frame *); 139 static void fc_exch_els_rrq(struct fc_frame *); 140 141 /* 142 * Internal implementation notes. 143 * 144 * The exchange manager is one by default in libfc but LLD may choose 145 * to have one per CPU. The sequence manager is one per exchange manager 146 * and currently never separated. 147 * 148 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 149 * assigned by the Sequence Initiator that shall be unique for a specific 150 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 151 * qualified by exchange ID, which one might think it would be. 152 * In practice this limits the number of open sequences and exchanges to 256 153 * per session. For most targets we could treat this limit as per exchange. 154 * 155 * The exchange and its sequence are freed when the last sequence is received. 156 * It's possible for the remote port to leave an exchange open without 157 * sending any sequences. 158 * 159 * Notes on reference counts: 160 * 161 * Exchanges are reference counted and exchange gets freed when the reference 162 * count becomes zero. 163 * 164 * Timeouts: 165 * Sequences are timed out for E_D_TOV and R_A_TOV. 166 * 167 * Sequence event handling: 168 * 169 * The following events may occur on initiator sequences: 170 * 171 * Send. 172 * For now, the whole thing is sent. 173 * Receive ACK 174 * This applies only to class F. 175 * The sequence is marked complete. 176 * ULP completion. 177 * The upper layer calls fc_exch_done() when done 178 * with exchange and sequence tuple. 179 * RX-inferred completion. 180 * When we receive the next sequence on the same exchange, we can 181 * retire the previous sequence ID. (XXX not implemented). 182 * Timeout. 183 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 184 * E_D_TOV causes abort and calls upper layer response handler 185 * with FC_EX_TIMEOUT error. 186 * Receive RJT 187 * XXX defer. 188 * Send ABTS 189 * On timeout. 190 * 191 * The following events may occur on recipient sequences: 192 * 193 * Receive 194 * Allocate sequence for first frame received. 195 * Hold during receive handler. 196 * Release when final frame received. 197 * Keep status of last N of these for the ELS RES command. XXX TBD. 198 * Receive ABTS 199 * Deallocate sequence 200 * Send RJT 201 * Deallocate 202 * 203 * For now, we neglect conditions where only part of a sequence was 204 * received or transmitted, or where out-of-order receipt is detected. 205 */ 206 207 /* 208 * Locking notes: 209 * 210 * The EM code run in a per-CPU worker thread. 211 * 212 * To protect against concurrency between a worker thread code and timers, 213 * sequence allocation and deallocation must be locked. 214 * - exchange refcnt can be done atomicly without locks. 215 * - sequence allocation must be locked by exch lock. 216 * - If the EM pool lock and ex_lock must be taken at the same time, then the 217 * EM pool lock must be taken before the ex_lock. 218 */ 219 220 /* 221 * opcode names for debugging. 222 */ 223 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 224 225 /** 226 * fc_exch_name_lookup() - Lookup name by opcode 227 * @op: Opcode to be looked up 228 * @table: Opcode/name table 229 * @max_index: Index not to be exceeded 230 * 231 * This routine is used to determine a human-readable string identifying 232 * a R_CTL opcode. 233 */ 234 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 235 unsigned int max_index) 236 { 237 const char *name = NULL; 238 239 if (op < max_index) 240 name = table[op]; 241 if (!name) 242 name = "unknown"; 243 return name; 244 } 245 246 /** 247 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 248 * @op: The opcode to be looked up 249 */ 250 static const char *fc_exch_rctl_name(unsigned int op) 251 { 252 return fc_exch_name_lookup(op, fc_exch_rctl_names, 253 ARRAY_SIZE(fc_exch_rctl_names)); 254 } 255 256 /** 257 * fc_exch_hold() - Increment an exchange's reference count 258 * @ep: Echange to be held 259 */ 260 static inline void fc_exch_hold(struct fc_exch *ep) 261 { 262 atomic_inc(&ep->ex_refcnt); 263 } 264 265 /** 266 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 267 * and determine SOF and EOF. 268 * @ep: The exchange to that will use the header 269 * @fp: The frame whose header is to be modified 270 * @f_ctl: F_CTL bits that will be used for the frame header 271 * 272 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 273 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 274 */ 275 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 276 u32 f_ctl) 277 { 278 struct fc_frame_header *fh = fc_frame_header_get(fp); 279 u16 fill; 280 281 fr_sof(fp) = ep->class; 282 if (ep->seq.cnt) 283 fr_sof(fp) = fc_sof_normal(ep->class); 284 285 if (f_ctl & FC_FC_END_SEQ) { 286 fr_eof(fp) = FC_EOF_T; 287 if (fc_sof_needs_ack(ep->class)) 288 fr_eof(fp) = FC_EOF_N; 289 /* 290 * From F_CTL. 291 * The number of fill bytes to make the length a 4-byte 292 * multiple is the low order 2-bits of the f_ctl. 293 * The fill itself will have been cleared by the frame 294 * allocation. 295 * After this, the length will be even, as expected by 296 * the transport. 297 */ 298 fill = fr_len(fp) & 3; 299 if (fill) { 300 fill = 4 - fill; 301 /* TODO, this may be a problem with fragmented skb */ 302 skb_put(fp_skb(fp), fill); 303 hton24(fh->fh_f_ctl, f_ctl | fill); 304 } 305 } else { 306 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 307 fr_eof(fp) = FC_EOF_N; 308 } 309 310 /* 311 * Initialize remainig fh fields 312 * from fc_fill_fc_hdr 313 */ 314 fh->fh_ox_id = htons(ep->oxid); 315 fh->fh_rx_id = htons(ep->rxid); 316 fh->fh_seq_id = ep->seq.id; 317 fh->fh_seq_cnt = htons(ep->seq.cnt); 318 } 319 320 /** 321 * fc_exch_release() - Decrement an exchange's reference count 322 * @ep: Exchange to be released 323 * 324 * If the reference count reaches zero and the exchange is complete, 325 * it is freed. 326 */ 327 static void fc_exch_release(struct fc_exch *ep) 328 { 329 struct fc_exch_mgr *mp; 330 331 if (atomic_dec_and_test(&ep->ex_refcnt)) { 332 mp = ep->em; 333 if (ep->destructor) 334 ep->destructor(&ep->seq, ep->arg); 335 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 336 mempool_free(ep, mp->ep_pool); 337 } 338 } 339 340 /** 341 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 342 * @ep: The exchange that is complete 343 */ 344 static int fc_exch_done_locked(struct fc_exch *ep) 345 { 346 int rc = 1; 347 348 /* 349 * We must check for completion in case there are two threads 350 * tyring to complete this. But the rrq code will reuse the 351 * ep, and in that case we only clear the resp and set it as 352 * complete, so it can be reused by the timer to send the rrq. 353 */ 354 ep->resp = NULL; 355 if (ep->state & FC_EX_DONE) 356 return rc; 357 ep->esb_stat |= ESB_ST_COMPLETE; 358 359 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 360 ep->state |= FC_EX_DONE; 361 if (cancel_delayed_work(&ep->timeout_work)) 362 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 363 rc = 0; 364 } 365 return rc; 366 } 367 368 /** 369 * fc_exch_ptr_get() - Return an exchange from an exchange pool 370 * @pool: Exchange Pool to get an exchange from 371 * @index: Index of the exchange within the pool 372 * 373 * Use the index to get an exchange from within an exchange pool. exches 374 * will point to an array of exchange pointers. The index will select 375 * the exchange within the array. 376 */ 377 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 378 u16 index) 379 { 380 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 381 return exches[index]; 382 } 383 384 /** 385 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 386 * @pool: The pool to assign the exchange to 387 * @index: The index in the pool where the exchange will be assigned 388 * @ep: The exchange to assign to the pool 389 */ 390 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 391 struct fc_exch *ep) 392 { 393 ((struct fc_exch **)(pool + 1))[index] = ep; 394 } 395 396 /** 397 * fc_exch_delete() - Delete an exchange 398 * @ep: The exchange to be deleted 399 */ 400 static void fc_exch_delete(struct fc_exch *ep) 401 { 402 struct fc_exch_pool *pool; 403 u16 index; 404 405 pool = ep->pool; 406 spin_lock_bh(&pool->lock); 407 WARN_ON(pool->total_exches <= 0); 408 pool->total_exches--; 409 410 /* update cache of free slot */ 411 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 412 if (pool->left == FC_XID_UNKNOWN) 413 pool->left = index; 414 else if (pool->right == FC_XID_UNKNOWN) 415 pool->right = index; 416 else 417 pool->next_index = index; 418 419 fc_exch_ptr_set(pool, index, NULL); 420 list_del(&ep->ex_list); 421 spin_unlock_bh(&pool->lock); 422 fc_exch_release(ep); /* drop hold for exch in mp */ 423 } 424 425 /** 426 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 427 * the exchange lock held 428 * @ep: The exchange whose timer will start 429 * @timer_msec: The timeout period 430 * 431 * Used for upper level protocols to time out the exchange. 432 * The timer is cancelled when it fires or when the exchange completes. 433 */ 434 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 435 unsigned int timer_msec) 436 { 437 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 438 return; 439 440 FC_EXCH_DBG(ep, "Exchange timer armed\n"); 441 442 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 443 msecs_to_jiffies(timer_msec))) 444 fc_exch_hold(ep); /* hold for timer */ 445 } 446 447 /** 448 * fc_exch_timer_set() - Lock the exchange and set the timer 449 * @ep: The exchange whose timer will start 450 * @timer_msec: The timeout period 451 */ 452 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 453 { 454 spin_lock_bh(&ep->ex_lock); 455 fc_exch_timer_set_locked(ep, timer_msec); 456 spin_unlock_bh(&ep->ex_lock); 457 } 458 459 /** 460 * fc_seq_send() - Send a frame using existing sequence/exchange pair 461 * @lport: The local port that the exchange will be sent on 462 * @sp: The sequence to be sent 463 * @fp: The frame to be sent on the exchange 464 */ 465 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, 466 struct fc_frame *fp) 467 { 468 struct fc_exch *ep; 469 struct fc_frame_header *fh = fc_frame_header_get(fp); 470 int error; 471 u32 f_ctl; 472 473 ep = fc_seq_exch(sp); 474 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT); 475 476 f_ctl = ntoh24(fh->fh_f_ctl); 477 fc_exch_setup_hdr(ep, fp, f_ctl); 478 fr_encaps(fp) = ep->encaps; 479 480 /* 481 * update sequence count if this frame is carrying 482 * multiple FC frames when sequence offload is enabled 483 * by LLD. 484 */ 485 if (fr_max_payload(fp)) 486 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 487 fr_max_payload(fp)); 488 else 489 sp->cnt++; 490 491 /* 492 * Send the frame. 493 */ 494 error = lport->tt.frame_send(lport, fp); 495 496 if (fh->fh_type == FC_TYPE_BLS) 497 return error; 498 499 /* 500 * Update the exchange and sequence flags, 501 * assuming all frames for the sequence have been sent. 502 * We can only be called to send once for each sequence. 503 */ 504 spin_lock_bh(&ep->ex_lock); 505 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 506 if (f_ctl & FC_FC_SEQ_INIT) 507 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 508 spin_unlock_bh(&ep->ex_lock); 509 return error; 510 } 511 512 /** 513 * fc_seq_alloc() - Allocate a sequence for a given exchange 514 * @ep: The exchange to allocate a new sequence for 515 * @seq_id: The sequence ID to be used 516 * 517 * We don't support multiple originated sequences on the same exchange. 518 * By implication, any previously originated sequence on this exchange 519 * is complete, and we reallocate the same sequence. 520 */ 521 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 522 { 523 struct fc_seq *sp; 524 525 sp = &ep->seq; 526 sp->ssb_stat = 0; 527 sp->cnt = 0; 528 sp->id = seq_id; 529 return sp; 530 } 531 532 /** 533 * fc_seq_start_next_locked() - Allocate a new sequence on the same 534 * exchange as the supplied sequence 535 * @sp: The sequence/exchange to get a new sequence for 536 */ 537 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 538 { 539 struct fc_exch *ep = fc_seq_exch(sp); 540 541 sp = fc_seq_alloc(ep, ep->seq_id++); 542 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 543 ep->f_ctl, sp->id); 544 return sp; 545 } 546 547 /** 548 * fc_seq_start_next() - Lock the exchange and get a new sequence 549 * for a given sequence/exchange pair 550 * @sp: The sequence/exchange to get a new exchange for 551 */ 552 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 553 { 554 struct fc_exch *ep = fc_seq_exch(sp); 555 556 spin_lock_bh(&ep->ex_lock); 557 sp = fc_seq_start_next_locked(sp); 558 spin_unlock_bh(&ep->ex_lock); 559 560 return sp; 561 } 562 563 /* 564 * Set the response handler for the exchange associated with a sequence. 565 */ 566 static void fc_seq_set_resp(struct fc_seq *sp, 567 void (*resp)(struct fc_seq *, struct fc_frame *, 568 void *), 569 void *arg) 570 { 571 struct fc_exch *ep = fc_seq_exch(sp); 572 573 spin_lock_bh(&ep->ex_lock); 574 ep->resp = resp; 575 ep->arg = arg; 576 spin_unlock_bh(&ep->ex_lock); 577 } 578 579 /** 580 * fc_exch_abort_locked() - Abort an exchange 581 * @ep: The exchange to be aborted 582 * @timer_msec: The period of time to wait before aborting 583 * 584 * Locking notes: Called with exch lock held 585 * 586 * Return value: 0 on success else error code 587 */ 588 static int fc_exch_abort_locked(struct fc_exch *ep, 589 unsigned int timer_msec) 590 { 591 struct fc_seq *sp; 592 struct fc_frame *fp; 593 int error; 594 595 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 596 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) 597 return -ENXIO; 598 599 /* 600 * Send the abort on a new sequence if possible. 601 */ 602 sp = fc_seq_start_next_locked(&ep->seq); 603 if (!sp) 604 return -ENOMEM; 605 606 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL; 607 if (timer_msec) 608 fc_exch_timer_set_locked(ep, timer_msec); 609 610 /* 611 * If not logged into the fabric, don't send ABTS but leave 612 * sequence active until next timeout. 613 */ 614 if (!ep->sid) 615 return 0; 616 617 /* 618 * Send an abort for the sequence that timed out. 619 */ 620 fp = fc_frame_alloc(ep->lp, 0); 621 if (fp) { 622 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 623 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 624 error = fc_seq_send(ep->lp, sp, fp); 625 } else 626 error = -ENOBUFS; 627 return error; 628 } 629 630 /** 631 * fc_seq_exch_abort() - Abort an exchange and sequence 632 * @req_sp: The sequence to be aborted 633 * @timer_msec: The period of time to wait before aborting 634 * 635 * Generally called because of a timeout or an abort from the upper layer. 636 * 637 * Return value: 0 on success else error code 638 */ 639 static int fc_seq_exch_abort(const struct fc_seq *req_sp, 640 unsigned int timer_msec) 641 { 642 struct fc_exch *ep; 643 int error; 644 645 ep = fc_seq_exch(req_sp); 646 spin_lock_bh(&ep->ex_lock); 647 error = fc_exch_abort_locked(ep, timer_msec); 648 spin_unlock_bh(&ep->ex_lock); 649 return error; 650 } 651 652 /** 653 * fc_exch_timeout() - Handle exchange timer expiration 654 * @work: The work_struct identifying the exchange that timed out 655 */ 656 static void fc_exch_timeout(struct work_struct *work) 657 { 658 struct fc_exch *ep = container_of(work, struct fc_exch, 659 timeout_work.work); 660 struct fc_seq *sp = &ep->seq; 661 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 662 void *arg; 663 u32 e_stat; 664 int rc = 1; 665 666 FC_EXCH_DBG(ep, "Exchange timed out\n"); 667 668 spin_lock_bh(&ep->ex_lock); 669 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 670 goto unlock; 671 672 e_stat = ep->esb_stat; 673 if (e_stat & ESB_ST_COMPLETE) { 674 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 675 spin_unlock_bh(&ep->ex_lock); 676 if (e_stat & ESB_ST_REC_QUAL) 677 fc_exch_rrq(ep); 678 goto done; 679 } else { 680 resp = ep->resp; 681 arg = ep->arg; 682 ep->resp = NULL; 683 if (e_stat & ESB_ST_ABNORMAL) 684 rc = fc_exch_done_locked(ep); 685 spin_unlock_bh(&ep->ex_lock); 686 if (!rc) 687 fc_exch_delete(ep); 688 if (resp) 689 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg); 690 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 691 goto done; 692 } 693 unlock: 694 spin_unlock_bh(&ep->ex_lock); 695 done: 696 /* 697 * This release matches the hold taken when the timer was set. 698 */ 699 fc_exch_release(ep); 700 } 701 702 /** 703 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 704 * @lport: The local port that the exchange is for 705 * @mp: The exchange manager that will allocate the exchange 706 * 707 * Returns pointer to allocated fc_exch with exch lock held. 708 */ 709 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 710 struct fc_exch_mgr *mp) 711 { 712 struct fc_exch *ep; 713 unsigned int cpu; 714 u16 index; 715 struct fc_exch_pool *pool; 716 717 /* allocate memory for exchange */ 718 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 719 if (!ep) { 720 atomic_inc(&mp->stats.no_free_exch); 721 goto out; 722 } 723 memset(ep, 0, sizeof(*ep)); 724 725 cpu = get_cpu(); 726 pool = per_cpu_ptr(mp->pool, cpu); 727 spin_lock_bh(&pool->lock); 728 put_cpu(); 729 730 /* peek cache of free slot */ 731 if (pool->left != FC_XID_UNKNOWN) { 732 index = pool->left; 733 pool->left = FC_XID_UNKNOWN; 734 goto hit; 735 } 736 if (pool->right != FC_XID_UNKNOWN) { 737 index = pool->right; 738 pool->right = FC_XID_UNKNOWN; 739 goto hit; 740 } 741 742 index = pool->next_index; 743 /* allocate new exch from pool */ 744 while (fc_exch_ptr_get(pool, index)) { 745 index = index == mp->pool_max_index ? 0 : index + 1; 746 if (index == pool->next_index) 747 goto err; 748 } 749 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 750 hit: 751 fc_exch_hold(ep); /* hold for exch in mp */ 752 spin_lock_init(&ep->ex_lock); 753 /* 754 * Hold exch lock for caller to prevent fc_exch_reset() 755 * from releasing exch while fc_exch_alloc() caller is 756 * still working on exch. 757 */ 758 spin_lock_bh(&ep->ex_lock); 759 760 fc_exch_ptr_set(pool, index, ep); 761 list_add_tail(&ep->ex_list, &pool->ex_list); 762 fc_seq_alloc(ep, ep->seq_id++); 763 pool->total_exches++; 764 spin_unlock_bh(&pool->lock); 765 766 /* 767 * update exchange 768 */ 769 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 770 ep->em = mp; 771 ep->pool = pool; 772 ep->lp = lport; 773 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 774 ep->rxid = FC_XID_UNKNOWN; 775 ep->class = mp->class; 776 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 777 out: 778 return ep; 779 err: 780 spin_unlock_bh(&pool->lock); 781 atomic_inc(&mp->stats.no_free_exch_xid); 782 mempool_free(ep, mp->ep_pool); 783 return NULL; 784 } 785 786 /** 787 * fc_exch_alloc() - Allocate an exchange from an EM on a 788 * local port's list of EMs. 789 * @lport: The local port that will own the exchange 790 * @fp: The FC frame that the exchange will be for 791 * 792 * This function walks the list of exchange manager(EM) 793 * anchors to select an EM for a new exchange allocation. The 794 * EM is selected when a NULL match function pointer is encountered 795 * or when a call to a match function returns true. 796 */ 797 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 798 struct fc_frame *fp) 799 { 800 struct fc_exch_mgr_anchor *ema; 801 802 list_for_each_entry(ema, &lport->ema_list, ema_list) 803 if (!ema->match || ema->match(fp)) 804 return fc_exch_em_alloc(lport, ema->mp); 805 return NULL; 806 } 807 808 /** 809 * fc_exch_find() - Lookup and hold an exchange 810 * @mp: The exchange manager to lookup the exchange from 811 * @xid: The XID of the exchange to look up 812 */ 813 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 814 { 815 struct fc_exch_pool *pool; 816 struct fc_exch *ep = NULL; 817 818 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 819 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask); 820 spin_lock_bh(&pool->lock); 821 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 822 if (ep && ep->xid == xid) 823 fc_exch_hold(ep); 824 spin_unlock_bh(&pool->lock); 825 } 826 return ep; 827 } 828 829 830 /** 831 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 832 * the memory allocated for the related objects may be freed. 833 * @sp: The sequence that has completed 834 */ 835 static void fc_exch_done(struct fc_seq *sp) 836 { 837 struct fc_exch *ep = fc_seq_exch(sp); 838 int rc; 839 840 spin_lock_bh(&ep->ex_lock); 841 rc = fc_exch_done_locked(ep); 842 spin_unlock_bh(&ep->ex_lock); 843 if (!rc) 844 fc_exch_delete(ep); 845 } 846 847 /** 848 * fc_exch_resp() - Allocate a new exchange for a response frame 849 * @lport: The local port that the exchange was for 850 * @mp: The exchange manager to allocate the exchange from 851 * @fp: The response frame 852 * 853 * Sets the responder ID in the frame header. 854 */ 855 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 856 struct fc_exch_mgr *mp, 857 struct fc_frame *fp) 858 { 859 struct fc_exch *ep; 860 struct fc_frame_header *fh; 861 862 ep = fc_exch_alloc(lport, fp); 863 if (ep) { 864 ep->class = fc_frame_class(fp); 865 866 /* 867 * Set EX_CTX indicating we're responding on this exchange. 868 */ 869 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 870 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 871 fh = fc_frame_header_get(fp); 872 ep->sid = ntoh24(fh->fh_d_id); 873 ep->did = ntoh24(fh->fh_s_id); 874 ep->oid = ep->did; 875 876 /* 877 * Allocated exchange has placed the XID in the 878 * originator field. Move it to the responder field, 879 * and set the originator XID from the frame. 880 */ 881 ep->rxid = ep->xid; 882 ep->oxid = ntohs(fh->fh_ox_id); 883 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 884 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 885 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 886 887 fc_exch_hold(ep); /* hold for caller */ 888 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 889 } 890 return ep; 891 } 892 893 /** 894 * fc_seq_lookup_recip() - Find a sequence where the other end 895 * originated the sequence 896 * @lport: The local port that the frame was sent to 897 * @mp: The Exchange Manager to lookup the exchange from 898 * @fp: The frame associated with the sequence we're looking for 899 * 900 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 901 * on the ep that should be released by the caller. 902 */ 903 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 904 struct fc_exch_mgr *mp, 905 struct fc_frame *fp) 906 { 907 struct fc_frame_header *fh = fc_frame_header_get(fp); 908 struct fc_exch *ep = NULL; 909 struct fc_seq *sp = NULL; 910 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 911 u32 f_ctl; 912 u16 xid; 913 914 f_ctl = ntoh24(fh->fh_f_ctl); 915 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 916 917 /* 918 * Lookup or create the exchange if we will be creating the sequence. 919 */ 920 if (f_ctl & FC_FC_EX_CTX) { 921 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 922 ep = fc_exch_find(mp, xid); 923 if (!ep) { 924 atomic_inc(&mp->stats.xid_not_found); 925 reject = FC_RJT_OX_ID; 926 goto out; 927 } 928 if (ep->rxid == FC_XID_UNKNOWN) 929 ep->rxid = ntohs(fh->fh_rx_id); 930 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 931 reject = FC_RJT_OX_ID; 932 goto rel; 933 } 934 } else { 935 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 936 937 /* 938 * Special case for MDS issuing an ELS TEST with a 939 * bad rxid of 0. 940 * XXX take this out once we do the proper reject. 941 */ 942 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 943 fc_frame_payload_op(fp) == ELS_TEST) { 944 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 945 xid = FC_XID_UNKNOWN; 946 } 947 948 /* 949 * new sequence - find the exchange 950 */ 951 ep = fc_exch_find(mp, xid); 952 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 953 if (ep) { 954 atomic_inc(&mp->stats.xid_busy); 955 reject = FC_RJT_RX_ID; 956 goto rel; 957 } 958 ep = fc_exch_resp(lport, mp, fp); 959 if (!ep) { 960 reject = FC_RJT_EXCH_EST; /* XXX */ 961 goto out; 962 } 963 xid = ep->xid; /* get our XID */ 964 } else if (!ep) { 965 atomic_inc(&mp->stats.xid_not_found); 966 reject = FC_RJT_RX_ID; /* XID not found */ 967 goto out; 968 } 969 } 970 971 /* 972 * At this point, we have the exchange held. 973 * Find or create the sequence. 974 */ 975 if (fc_sof_is_init(fr_sof(fp))) { 976 sp = &ep->seq; 977 sp->ssb_stat |= SSB_ST_RESP; 978 sp->id = fh->fh_seq_id; 979 } else { 980 sp = &ep->seq; 981 if (sp->id != fh->fh_seq_id) { 982 atomic_inc(&mp->stats.seq_not_found); 983 if (f_ctl & FC_FC_END_SEQ) { 984 /* 985 * Update sequence_id based on incoming last 986 * frame of sequence exchange. This is needed 987 * for FCoE target where DDP has been used 988 * on target where, stack is indicated only 989 * about last frame's (payload _header) header. 990 * Whereas "seq_id" which is part of 991 * frame_header is allocated by initiator 992 * which is totally different from "seq_id" 993 * allocated when XFER_RDY was sent by target. 994 * To avoid false -ve which results into not 995 * sending RSP, hence write request on other 996 * end never finishes. 997 */ 998 spin_lock_bh(&ep->ex_lock); 999 sp->ssb_stat |= SSB_ST_RESP; 1000 sp->id = fh->fh_seq_id; 1001 spin_unlock_bh(&ep->ex_lock); 1002 } else { 1003 /* sequence/exch should exist */ 1004 reject = FC_RJT_SEQ_ID; 1005 goto rel; 1006 } 1007 } 1008 } 1009 WARN_ON(ep != fc_seq_exch(sp)); 1010 1011 if (f_ctl & FC_FC_SEQ_INIT) 1012 ep->esb_stat |= ESB_ST_SEQ_INIT; 1013 1014 fr_seq(fp) = sp; 1015 out: 1016 return reject; 1017 rel: 1018 fc_exch_done(&ep->seq); 1019 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1020 return reject; 1021 } 1022 1023 /** 1024 * fc_seq_lookup_orig() - Find a sequence where this end 1025 * originated the sequence 1026 * @mp: The Exchange Manager to lookup the exchange from 1027 * @fp: The frame associated with the sequence we're looking for 1028 * 1029 * Does not hold the sequence for the caller. 1030 */ 1031 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1032 struct fc_frame *fp) 1033 { 1034 struct fc_frame_header *fh = fc_frame_header_get(fp); 1035 struct fc_exch *ep; 1036 struct fc_seq *sp = NULL; 1037 u32 f_ctl; 1038 u16 xid; 1039 1040 f_ctl = ntoh24(fh->fh_f_ctl); 1041 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1042 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1043 ep = fc_exch_find(mp, xid); 1044 if (!ep) 1045 return NULL; 1046 if (ep->seq.id == fh->fh_seq_id) { 1047 /* 1048 * Save the RX_ID if we didn't previously know it. 1049 */ 1050 sp = &ep->seq; 1051 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1052 ep->rxid == FC_XID_UNKNOWN) { 1053 ep->rxid = ntohs(fh->fh_rx_id); 1054 } 1055 } 1056 fc_exch_release(ep); 1057 return sp; 1058 } 1059 1060 /** 1061 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1062 * @ep: The exchange to set the addresses for 1063 * @orig_id: The originator's ID 1064 * @resp_id: The responder's ID 1065 * 1066 * Note this must be done before the first sequence of the exchange is sent. 1067 */ 1068 static void fc_exch_set_addr(struct fc_exch *ep, 1069 u32 orig_id, u32 resp_id) 1070 { 1071 ep->oid = orig_id; 1072 if (ep->esb_stat & ESB_ST_RESP) { 1073 ep->sid = resp_id; 1074 ep->did = orig_id; 1075 } else { 1076 ep->sid = orig_id; 1077 ep->did = resp_id; 1078 } 1079 } 1080 1081 /** 1082 * fc_seq_els_rsp_send() - Send an ELS response using information from 1083 * the existing sequence/exchange. 1084 * @fp: The received frame 1085 * @els_cmd: The ELS command to be sent 1086 * @els_data: The ELS data to be sent 1087 * 1088 * The received frame is not freed. 1089 */ 1090 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1091 struct fc_seq_els_data *els_data) 1092 { 1093 switch (els_cmd) { 1094 case ELS_LS_RJT: 1095 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1096 break; 1097 case ELS_LS_ACC: 1098 fc_seq_ls_acc(fp); 1099 break; 1100 case ELS_RRQ: 1101 fc_exch_els_rrq(fp); 1102 break; 1103 case ELS_REC: 1104 fc_exch_els_rec(fp); 1105 break; 1106 default: 1107 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1108 } 1109 } 1110 1111 /** 1112 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1113 * @sp: The sequence that is to be sent 1114 * @fp: The frame that will be sent on the sequence 1115 * @rctl: The R_CTL information to be sent 1116 * @fh_type: The frame header type 1117 */ 1118 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1119 enum fc_rctl rctl, enum fc_fh_type fh_type) 1120 { 1121 u32 f_ctl; 1122 struct fc_exch *ep = fc_seq_exch(sp); 1123 1124 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1125 f_ctl |= ep->f_ctl; 1126 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1127 fc_seq_send(ep->lp, sp, fp); 1128 } 1129 1130 /** 1131 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1132 * @sp: The sequence to send the ACK on 1133 * @rx_fp: The received frame that is being acknoledged 1134 * 1135 * Send ACK_1 (or equiv.) indicating we received something. 1136 */ 1137 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1138 { 1139 struct fc_frame *fp; 1140 struct fc_frame_header *rx_fh; 1141 struct fc_frame_header *fh; 1142 struct fc_exch *ep = fc_seq_exch(sp); 1143 struct fc_lport *lport = ep->lp; 1144 unsigned int f_ctl; 1145 1146 /* 1147 * Don't send ACKs for class 3. 1148 */ 1149 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1150 fp = fc_frame_alloc(lport, 0); 1151 if (!fp) 1152 return; 1153 1154 fh = fc_frame_header_get(fp); 1155 fh->fh_r_ctl = FC_RCTL_ACK_1; 1156 fh->fh_type = FC_TYPE_BLS; 1157 1158 /* 1159 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1160 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1161 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1162 * Last ACK uses bits 7-6 (continue sequence), 1163 * bits 5-4 are meaningful (what kind of ACK to use). 1164 */ 1165 rx_fh = fc_frame_header_get(rx_fp); 1166 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1167 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1168 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1169 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1170 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1171 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1172 hton24(fh->fh_f_ctl, f_ctl); 1173 1174 fc_exch_setup_hdr(ep, fp, f_ctl); 1175 fh->fh_seq_id = rx_fh->fh_seq_id; 1176 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1177 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1178 1179 fr_sof(fp) = fr_sof(rx_fp); 1180 if (f_ctl & FC_FC_END_SEQ) 1181 fr_eof(fp) = FC_EOF_T; 1182 else 1183 fr_eof(fp) = FC_EOF_N; 1184 1185 lport->tt.frame_send(lport, fp); 1186 } 1187 } 1188 1189 /** 1190 * fc_exch_send_ba_rjt() - Send BLS Reject 1191 * @rx_fp: The frame being rejected 1192 * @reason: The reason the frame is being rejected 1193 * @explan: The explanation for the rejection 1194 * 1195 * This is for rejecting BA_ABTS only. 1196 */ 1197 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1198 enum fc_ba_rjt_reason reason, 1199 enum fc_ba_rjt_explan explan) 1200 { 1201 struct fc_frame *fp; 1202 struct fc_frame_header *rx_fh; 1203 struct fc_frame_header *fh; 1204 struct fc_ba_rjt *rp; 1205 struct fc_lport *lport; 1206 unsigned int f_ctl; 1207 1208 lport = fr_dev(rx_fp); 1209 fp = fc_frame_alloc(lport, sizeof(*rp)); 1210 if (!fp) 1211 return; 1212 fh = fc_frame_header_get(fp); 1213 rx_fh = fc_frame_header_get(rx_fp); 1214 1215 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1216 1217 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1218 rp->br_reason = reason; 1219 rp->br_explan = explan; 1220 1221 /* 1222 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1223 */ 1224 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1225 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1226 fh->fh_ox_id = rx_fh->fh_ox_id; 1227 fh->fh_rx_id = rx_fh->fh_rx_id; 1228 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1229 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1230 fh->fh_type = FC_TYPE_BLS; 1231 1232 /* 1233 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1234 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1235 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1236 * Last ACK uses bits 7-6 (continue sequence), 1237 * bits 5-4 are meaningful (what kind of ACK to use). 1238 * Always set LAST_SEQ, END_SEQ. 1239 */ 1240 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1241 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1242 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1243 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1244 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1245 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1246 f_ctl &= ~FC_FC_FIRST_SEQ; 1247 hton24(fh->fh_f_ctl, f_ctl); 1248 1249 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1250 fr_eof(fp) = FC_EOF_T; 1251 if (fc_sof_needs_ack(fr_sof(fp))) 1252 fr_eof(fp) = FC_EOF_N; 1253 1254 lport->tt.frame_send(lport, fp); 1255 } 1256 1257 /** 1258 * fc_exch_recv_abts() - Handle an incoming ABTS 1259 * @ep: The exchange the abort was on 1260 * @rx_fp: The ABTS frame 1261 * 1262 * This would be for target mode usually, but could be due to lost 1263 * FCP transfer ready, confirm or RRQ. We always handle this as an 1264 * exchange abort, ignoring the parameter. 1265 */ 1266 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1267 { 1268 struct fc_frame *fp; 1269 struct fc_ba_acc *ap; 1270 struct fc_frame_header *fh; 1271 struct fc_seq *sp; 1272 1273 if (!ep) 1274 goto reject; 1275 spin_lock_bh(&ep->ex_lock); 1276 if (ep->esb_stat & ESB_ST_COMPLETE) { 1277 spin_unlock_bh(&ep->ex_lock); 1278 goto reject; 1279 } 1280 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) 1281 fc_exch_hold(ep); /* hold for REC_QUAL */ 1282 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL; 1283 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1284 1285 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1286 if (!fp) { 1287 spin_unlock_bh(&ep->ex_lock); 1288 goto free; 1289 } 1290 fh = fc_frame_header_get(fp); 1291 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1292 memset(ap, 0, sizeof(*ap)); 1293 sp = &ep->seq; 1294 ap->ba_high_seq_cnt = htons(0xffff); 1295 if (sp->ssb_stat & SSB_ST_RESP) { 1296 ap->ba_seq_id = sp->id; 1297 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1298 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1299 ap->ba_low_seq_cnt = htons(sp->cnt); 1300 } 1301 sp = fc_seq_start_next_locked(sp); 1302 spin_unlock_bh(&ep->ex_lock); 1303 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1304 fc_frame_free(rx_fp); 1305 return; 1306 1307 reject: 1308 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1309 free: 1310 fc_frame_free(rx_fp); 1311 } 1312 1313 /** 1314 * fc_seq_assign() - Assign exchange and sequence for incoming request 1315 * @lport: The local port that received the request 1316 * @fp: The request frame 1317 * 1318 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1319 * A reference will be held on the exchange/sequence for the caller, which 1320 * must call fc_seq_release(). 1321 */ 1322 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1323 { 1324 struct fc_exch_mgr_anchor *ema; 1325 1326 WARN_ON(lport != fr_dev(fp)); 1327 WARN_ON(fr_seq(fp)); 1328 fr_seq(fp) = NULL; 1329 1330 list_for_each_entry(ema, &lport->ema_list, ema_list) 1331 if ((!ema->match || ema->match(fp)) && 1332 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1333 break; 1334 return fr_seq(fp); 1335 } 1336 1337 /** 1338 * fc_seq_release() - Release the hold 1339 * @sp: The sequence. 1340 */ 1341 static void fc_seq_release(struct fc_seq *sp) 1342 { 1343 fc_exch_release(fc_seq_exch(sp)); 1344 } 1345 1346 /** 1347 * fc_exch_recv_req() - Handler for an incoming request 1348 * @lport: The local port that received the request 1349 * @mp: The EM that the exchange is on 1350 * @fp: The request frame 1351 * 1352 * This is used when the other end is originating the exchange 1353 * and the sequence. 1354 */ 1355 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1356 struct fc_frame *fp) 1357 { 1358 struct fc_frame_header *fh = fc_frame_header_get(fp); 1359 struct fc_seq *sp = NULL; 1360 struct fc_exch *ep = NULL; 1361 enum fc_pf_rjt_reason reject; 1362 1363 /* We can have the wrong fc_lport at this point with NPIV, which is a 1364 * problem now that we know a new exchange needs to be allocated 1365 */ 1366 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1367 if (!lport) { 1368 fc_frame_free(fp); 1369 return; 1370 } 1371 fr_dev(fp) = lport; 1372 1373 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1374 1375 /* 1376 * If the RX_ID is 0xffff, don't allocate an exchange. 1377 * The upper-level protocol may request one later, if needed. 1378 */ 1379 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1380 return lport->tt.lport_recv(lport, fp); 1381 1382 reject = fc_seq_lookup_recip(lport, mp, fp); 1383 if (reject == FC_RJT_NONE) { 1384 sp = fr_seq(fp); /* sequence will be held */ 1385 ep = fc_seq_exch(sp); 1386 fc_seq_send_ack(sp, fp); 1387 ep->encaps = fr_encaps(fp); 1388 1389 /* 1390 * Call the receive function. 1391 * 1392 * The receive function may allocate a new sequence 1393 * over the old one, so we shouldn't change the 1394 * sequence after this. 1395 * 1396 * The frame will be freed by the receive function. 1397 * If new exch resp handler is valid then call that 1398 * first. 1399 */ 1400 if (ep->resp) 1401 ep->resp(sp, fp, ep->arg); 1402 else 1403 lport->tt.lport_recv(lport, fp); 1404 fc_exch_release(ep); /* release from lookup */ 1405 } else { 1406 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1407 reject); 1408 fc_frame_free(fp); 1409 } 1410 } 1411 1412 /** 1413 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1414 * end is the originator of the sequence that is a 1415 * response to our initial exchange 1416 * @mp: The EM that the exchange is on 1417 * @fp: The response frame 1418 */ 1419 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1420 { 1421 struct fc_frame_header *fh = fc_frame_header_get(fp); 1422 struct fc_seq *sp; 1423 struct fc_exch *ep; 1424 enum fc_sof sof; 1425 u32 f_ctl; 1426 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1427 void *ex_resp_arg; 1428 int rc; 1429 1430 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1431 if (!ep) { 1432 atomic_inc(&mp->stats.xid_not_found); 1433 goto out; 1434 } 1435 if (ep->esb_stat & ESB_ST_COMPLETE) { 1436 atomic_inc(&mp->stats.xid_not_found); 1437 goto rel; 1438 } 1439 if (ep->rxid == FC_XID_UNKNOWN) 1440 ep->rxid = ntohs(fh->fh_rx_id); 1441 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1442 atomic_inc(&mp->stats.xid_not_found); 1443 goto rel; 1444 } 1445 if (ep->did != ntoh24(fh->fh_s_id) && 1446 ep->did != FC_FID_FLOGI) { 1447 atomic_inc(&mp->stats.xid_not_found); 1448 goto rel; 1449 } 1450 sof = fr_sof(fp); 1451 sp = &ep->seq; 1452 if (fc_sof_is_init(sof)) { 1453 sp->ssb_stat |= SSB_ST_RESP; 1454 sp->id = fh->fh_seq_id; 1455 } else if (sp->id != fh->fh_seq_id) { 1456 atomic_inc(&mp->stats.seq_not_found); 1457 goto rel; 1458 } 1459 1460 f_ctl = ntoh24(fh->fh_f_ctl); 1461 fr_seq(fp) = sp; 1462 if (f_ctl & FC_FC_SEQ_INIT) 1463 ep->esb_stat |= ESB_ST_SEQ_INIT; 1464 1465 if (fc_sof_needs_ack(sof)) 1466 fc_seq_send_ack(sp, fp); 1467 resp = ep->resp; 1468 ex_resp_arg = ep->arg; 1469 1470 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1471 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1472 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1473 spin_lock_bh(&ep->ex_lock); 1474 resp = ep->resp; 1475 rc = fc_exch_done_locked(ep); 1476 WARN_ON(fc_seq_exch(sp) != ep); 1477 spin_unlock_bh(&ep->ex_lock); 1478 if (!rc) 1479 fc_exch_delete(ep); 1480 } 1481 1482 /* 1483 * Call the receive function. 1484 * The sequence is held (has a refcnt) for us, 1485 * but not for the receive function. 1486 * 1487 * The receive function may allocate a new sequence 1488 * over the old one, so we shouldn't change the 1489 * sequence after this. 1490 * 1491 * The frame will be freed by the receive function. 1492 * If new exch resp handler is valid then call that 1493 * first. 1494 */ 1495 if (resp) 1496 resp(sp, fp, ex_resp_arg); 1497 else 1498 fc_frame_free(fp); 1499 fc_exch_release(ep); 1500 return; 1501 rel: 1502 fc_exch_release(ep); 1503 out: 1504 fc_frame_free(fp); 1505 } 1506 1507 /** 1508 * fc_exch_recv_resp() - Handler for a sequence where other end is 1509 * responding to our sequence 1510 * @mp: The EM that the exchange is on 1511 * @fp: The response frame 1512 */ 1513 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1514 { 1515 struct fc_seq *sp; 1516 1517 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1518 1519 if (!sp) 1520 atomic_inc(&mp->stats.xid_not_found); 1521 else 1522 atomic_inc(&mp->stats.non_bls_resp); 1523 1524 fc_frame_free(fp); 1525 } 1526 1527 /** 1528 * fc_exch_abts_resp() - Handler for a response to an ABT 1529 * @ep: The exchange that the frame is on 1530 * @fp: The response frame 1531 * 1532 * This response would be to an ABTS cancelling an exchange or sequence. 1533 * The response can be either BA_ACC or BA_RJT 1534 */ 1535 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1536 { 1537 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1538 void *ex_resp_arg; 1539 struct fc_frame_header *fh; 1540 struct fc_ba_acc *ap; 1541 struct fc_seq *sp; 1542 u16 low; 1543 u16 high; 1544 int rc = 1, has_rec = 0; 1545 1546 fh = fc_frame_header_get(fp); 1547 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1548 fc_exch_rctl_name(fh->fh_r_ctl)); 1549 1550 if (cancel_delayed_work_sync(&ep->timeout_work)) 1551 fc_exch_release(ep); /* release from pending timer hold */ 1552 1553 spin_lock_bh(&ep->ex_lock); 1554 switch (fh->fh_r_ctl) { 1555 case FC_RCTL_BA_ACC: 1556 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1557 if (!ap) 1558 break; 1559 1560 /* 1561 * Decide whether to establish a Recovery Qualifier. 1562 * We do this if there is a non-empty SEQ_CNT range and 1563 * SEQ_ID is the same as the one we aborted. 1564 */ 1565 low = ntohs(ap->ba_low_seq_cnt); 1566 high = ntohs(ap->ba_high_seq_cnt); 1567 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1568 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1569 ap->ba_seq_id == ep->seq_id) && low != high) { 1570 ep->esb_stat |= ESB_ST_REC_QUAL; 1571 fc_exch_hold(ep); /* hold for recovery qualifier */ 1572 has_rec = 1; 1573 } 1574 break; 1575 case FC_RCTL_BA_RJT: 1576 break; 1577 default: 1578 break; 1579 } 1580 1581 resp = ep->resp; 1582 ex_resp_arg = ep->arg; 1583 1584 /* do we need to do some other checks here. Can we reuse more of 1585 * fc_exch_recv_seq_resp 1586 */ 1587 sp = &ep->seq; 1588 /* 1589 * do we want to check END_SEQ as well as LAST_SEQ here? 1590 */ 1591 if (ep->fh_type != FC_TYPE_FCP && 1592 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1593 rc = fc_exch_done_locked(ep); 1594 spin_unlock_bh(&ep->ex_lock); 1595 if (!rc) 1596 fc_exch_delete(ep); 1597 1598 if (resp) 1599 resp(sp, fp, ex_resp_arg); 1600 else 1601 fc_frame_free(fp); 1602 1603 if (has_rec) 1604 fc_exch_timer_set(ep, ep->r_a_tov); 1605 1606 } 1607 1608 /** 1609 * fc_exch_recv_bls() - Handler for a BLS sequence 1610 * @mp: The EM that the exchange is on 1611 * @fp: The request frame 1612 * 1613 * The BLS frame is always a sequence initiated by the remote side. 1614 * We may be either the originator or recipient of the exchange. 1615 */ 1616 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1617 { 1618 struct fc_frame_header *fh; 1619 struct fc_exch *ep; 1620 u32 f_ctl; 1621 1622 fh = fc_frame_header_get(fp); 1623 f_ctl = ntoh24(fh->fh_f_ctl); 1624 fr_seq(fp) = NULL; 1625 1626 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1627 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1628 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1629 spin_lock_bh(&ep->ex_lock); 1630 ep->esb_stat |= ESB_ST_SEQ_INIT; 1631 spin_unlock_bh(&ep->ex_lock); 1632 } 1633 if (f_ctl & FC_FC_SEQ_CTX) { 1634 /* 1635 * A response to a sequence we initiated. 1636 * This should only be ACKs for class 2 or F. 1637 */ 1638 switch (fh->fh_r_ctl) { 1639 case FC_RCTL_ACK_1: 1640 case FC_RCTL_ACK_0: 1641 break; 1642 default: 1643 FC_EXCH_DBG(ep, "BLS rctl %x - %s received", 1644 fh->fh_r_ctl, 1645 fc_exch_rctl_name(fh->fh_r_ctl)); 1646 break; 1647 } 1648 fc_frame_free(fp); 1649 } else { 1650 switch (fh->fh_r_ctl) { 1651 case FC_RCTL_BA_RJT: 1652 case FC_RCTL_BA_ACC: 1653 if (ep) 1654 fc_exch_abts_resp(ep, fp); 1655 else 1656 fc_frame_free(fp); 1657 break; 1658 case FC_RCTL_BA_ABTS: 1659 fc_exch_recv_abts(ep, fp); 1660 break; 1661 default: /* ignore junk */ 1662 fc_frame_free(fp); 1663 break; 1664 } 1665 } 1666 if (ep) 1667 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1668 } 1669 1670 /** 1671 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1672 * @rx_fp: The received frame, not freed here. 1673 * 1674 * If this fails due to allocation or transmit congestion, assume the 1675 * originator will repeat the sequence. 1676 */ 1677 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1678 { 1679 struct fc_lport *lport; 1680 struct fc_els_ls_acc *acc; 1681 struct fc_frame *fp; 1682 1683 lport = fr_dev(rx_fp); 1684 fp = fc_frame_alloc(lport, sizeof(*acc)); 1685 if (!fp) 1686 return; 1687 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1688 memset(acc, 0, sizeof(*acc)); 1689 acc->la_cmd = ELS_LS_ACC; 1690 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1691 lport->tt.frame_send(lport, fp); 1692 } 1693 1694 /** 1695 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1696 * @rx_fp: The received frame, not freed here. 1697 * @reason: The reason the sequence is being rejected 1698 * @explan: The explanation for the rejection 1699 * 1700 * If this fails due to allocation or transmit congestion, assume the 1701 * originator will repeat the sequence. 1702 */ 1703 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1704 enum fc_els_rjt_explan explan) 1705 { 1706 struct fc_lport *lport; 1707 struct fc_els_ls_rjt *rjt; 1708 struct fc_frame *fp; 1709 1710 lport = fr_dev(rx_fp); 1711 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1712 if (!fp) 1713 return; 1714 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1715 memset(rjt, 0, sizeof(*rjt)); 1716 rjt->er_cmd = ELS_LS_RJT; 1717 rjt->er_reason = reason; 1718 rjt->er_explan = explan; 1719 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1720 lport->tt.frame_send(lport, fp); 1721 } 1722 1723 /** 1724 * fc_exch_reset() - Reset an exchange 1725 * @ep: The exchange to be reset 1726 */ 1727 static void fc_exch_reset(struct fc_exch *ep) 1728 { 1729 struct fc_seq *sp; 1730 void (*resp)(struct fc_seq *, struct fc_frame *, void *); 1731 void *arg; 1732 int rc = 1; 1733 1734 spin_lock_bh(&ep->ex_lock); 1735 fc_exch_abort_locked(ep, 0); 1736 ep->state |= FC_EX_RST_CLEANUP; 1737 if (cancel_delayed_work(&ep->timeout_work)) 1738 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 1739 resp = ep->resp; 1740 ep->resp = NULL; 1741 if (ep->esb_stat & ESB_ST_REC_QUAL) 1742 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1743 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1744 arg = ep->arg; 1745 sp = &ep->seq; 1746 rc = fc_exch_done_locked(ep); 1747 spin_unlock_bh(&ep->ex_lock); 1748 if (!rc) 1749 fc_exch_delete(ep); 1750 1751 if (resp) 1752 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg); 1753 } 1754 1755 /** 1756 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1757 * @lport: The local port that the exchange pool is on 1758 * @pool: The exchange pool to be reset 1759 * @sid: The source ID 1760 * @did: The destination ID 1761 * 1762 * Resets a per cpu exches pool, releasing all of its sequences 1763 * and exchanges. If sid is non-zero then reset only exchanges 1764 * we sourced from the local port's FID. If did is non-zero then 1765 * only reset exchanges destined for the local port's FID. 1766 */ 1767 static void fc_exch_pool_reset(struct fc_lport *lport, 1768 struct fc_exch_pool *pool, 1769 u32 sid, u32 did) 1770 { 1771 struct fc_exch *ep; 1772 struct fc_exch *next; 1773 1774 spin_lock_bh(&pool->lock); 1775 restart: 1776 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1777 if ((lport == ep->lp) && 1778 (sid == 0 || sid == ep->sid) && 1779 (did == 0 || did == ep->did)) { 1780 fc_exch_hold(ep); 1781 spin_unlock_bh(&pool->lock); 1782 1783 fc_exch_reset(ep); 1784 1785 fc_exch_release(ep); 1786 spin_lock_bh(&pool->lock); 1787 1788 /* 1789 * must restart loop incase while lock 1790 * was down multiple eps were released. 1791 */ 1792 goto restart; 1793 } 1794 } 1795 spin_unlock_bh(&pool->lock); 1796 } 1797 1798 /** 1799 * fc_exch_mgr_reset() - Reset all EMs of a local port 1800 * @lport: The local port whose EMs are to be reset 1801 * @sid: The source ID 1802 * @did: The destination ID 1803 * 1804 * Reset all EMs associated with a given local port. Release all 1805 * sequences and exchanges. If sid is non-zero then reset only the 1806 * exchanges sent from the local port's FID. If did is non-zero then 1807 * reset only exchanges destined for the local port's FID. 1808 */ 1809 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1810 { 1811 struct fc_exch_mgr_anchor *ema; 1812 unsigned int cpu; 1813 1814 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1815 for_each_possible_cpu(cpu) 1816 fc_exch_pool_reset(lport, 1817 per_cpu_ptr(ema->mp->pool, cpu), 1818 sid, did); 1819 } 1820 } 1821 EXPORT_SYMBOL(fc_exch_mgr_reset); 1822 1823 /** 1824 * fc_exch_lookup() - find an exchange 1825 * @lport: The local port 1826 * @xid: The exchange ID 1827 * 1828 * Returns exchange pointer with hold for caller, or NULL if not found. 1829 */ 1830 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 1831 { 1832 struct fc_exch_mgr_anchor *ema; 1833 1834 list_for_each_entry(ema, &lport->ema_list, ema_list) 1835 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 1836 return fc_exch_find(ema->mp, xid); 1837 return NULL; 1838 } 1839 1840 /** 1841 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 1842 * @rfp: The REC frame, not freed here. 1843 * 1844 * Note that the requesting port may be different than the S_ID in the request. 1845 */ 1846 static void fc_exch_els_rec(struct fc_frame *rfp) 1847 { 1848 struct fc_lport *lport; 1849 struct fc_frame *fp; 1850 struct fc_exch *ep; 1851 struct fc_els_rec *rp; 1852 struct fc_els_rec_acc *acc; 1853 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 1854 enum fc_els_rjt_explan explan; 1855 u32 sid; 1856 u16 rxid; 1857 u16 oxid; 1858 1859 lport = fr_dev(rfp); 1860 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 1861 explan = ELS_EXPL_INV_LEN; 1862 if (!rp) 1863 goto reject; 1864 sid = ntoh24(rp->rec_s_id); 1865 rxid = ntohs(rp->rec_rx_id); 1866 oxid = ntohs(rp->rec_ox_id); 1867 1868 ep = fc_exch_lookup(lport, 1869 sid == fc_host_port_id(lport->host) ? oxid : rxid); 1870 explan = ELS_EXPL_OXID_RXID; 1871 if (!ep) 1872 goto reject; 1873 if (ep->oid != sid || oxid != ep->oxid) 1874 goto rel; 1875 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 1876 goto rel; 1877 fp = fc_frame_alloc(lport, sizeof(*acc)); 1878 if (!fp) 1879 goto out; 1880 1881 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1882 memset(acc, 0, sizeof(*acc)); 1883 acc->reca_cmd = ELS_LS_ACC; 1884 acc->reca_ox_id = rp->rec_ox_id; 1885 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 1886 acc->reca_rx_id = htons(ep->rxid); 1887 if (ep->sid == ep->oid) 1888 hton24(acc->reca_rfid, ep->did); 1889 else 1890 hton24(acc->reca_rfid, ep->sid); 1891 acc->reca_fc4value = htonl(ep->seq.rec_data); 1892 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 1893 ESB_ST_SEQ_INIT | 1894 ESB_ST_COMPLETE)); 1895 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 1896 lport->tt.frame_send(lport, fp); 1897 out: 1898 fc_exch_release(ep); 1899 return; 1900 1901 rel: 1902 fc_exch_release(ep); 1903 reject: 1904 fc_seq_ls_rjt(rfp, reason, explan); 1905 } 1906 1907 /** 1908 * fc_exch_rrq_resp() - Handler for RRQ responses 1909 * @sp: The sequence that the RRQ is on 1910 * @fp: The RRQ frame 1911 * @arg: The exchange that the RRQ is on 1912 * 1913 * TODO: fix error handler. 1914 */ 1915 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 1916 { 1917 struct fc_exch *aborted_ep = arg; 1918 unsigned int op; 1919 1920 if (IS_ERR(fp)) { 1921 int err = PTR_ERR(fp); 1922 1923 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 1924 goto cleanup; 1925 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 1926 "frame error %d\n", err); 1927 return; 1928 } 1929 1930 op = fc_frame_payload_op(fp); 1931 fc_frame_free(fp); 1932 1933 switch (op) { 1934 case ELS_LS_RJT: 1935 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ"); 1936 /* fall through */ 1937 case ELS_LS_ACC: 1938 goto cleanup; 1939 default: 1940 FC_EXCH_DBG(aborted_ep, "unexpected response op %x " 1941 "for RRQ", op); 1942 return; 1943 } 1944 1945 cleanup: 1946 fc_exch_done(&aborted_ep->seq); 1947 /* drop hold for rec qual */ 1948 fc_exch_release(aborted_ep); 1949 } 1950 1951 1952 /** 1953 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 1954 * @lport: The local port to send the frame on 1955 * @fp: The frame to be sent 1956 * @resp: The response handler for this request 1957 * @destructor: The destructor for the exchange 1958 * @arg: The argument to be passed to the response handler 1959 * @timer_msec: The timeout period for the exchange 1960 * 1961 * The frame pointer with some of the header's fields must be 1962 * filled before calling this routine, those fields are: 1963 * 1964 * - routing control 1965 * - FC port did 1966 * - FC port sid 1967 * - FC header type 1968 * - frame control 1969 * - parameter or relative offset 1970 */ 1971 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 1972 struct fc_frame *fp, 1973 void (*resp)(struct fc_seq *, 1974 struct fc_frame *fp, 1975 void *arg), 1976 void (*destructor)(struct fc_seq *, 1977 void *), 1978 void *arg, u32 timer_msec) 1979 { 1980 struct fc_exch *ep; 1981 struct fc_seq *sp = NULL; 1982 struct fc_frame_header *fh; 1983 struct fc_fcp_pkt *fsp = NULL; 1984 int rc = 1; 1985 1986 ep = fc_exch_alloc(lport, fp); 1987 if (!ep) { 1988 fc_frame_free(fp); 1989 return NULL; 1990 } 1991 ep->esb_stat |= ESB_ST_SEQ_INIT; 1992 fh = fc_frame_header_get(fp); 1993 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 1994 ep->resp = resp; 1995 ep->destructor = destructor; 1996 ep->arg = arg; 1997 ep->r_a_tov = FC_DEF_R_A_TOV; 1998 ep->lp = lport; 1999 sp = &ep->seq; 2000 2001 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2002 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2003 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2004 sp->cnt++; 2005 2006 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2007 fsp = fr_fsp(fp); 2008 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2009 } 2010 2011 if (unlikely(lport->tt.frame_send(lport, fp))) 2012 goto err; 2013 2014 if (timer_msec) 2015 fc_exch_timer_set_locked(ep, timer_msec); 2016 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2017 2018 if (ep->f_ctl & FC_FC_SEQ_INIT) 2019 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2020 spin_unlock_bh(&ep->ex_lock); 2021 return sp; 2022 err: 2023 if (fsp) 2024 fc_fcp_ddp_done(fsp); 2025 rc = fc_exch_done_locked(ep); 2026 spin_unlock_bh(&ep->ex_lock); 2027 if (!rc) 2028 fc_exch_delete(ep); 2029 return NULL; 2030 } 2031 2032 /** 2033 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2034 * @ep: The exchange to send the RRQ on 2035 * 2036 * This tells the remote port to stop blocking the use of 2037 * the exchange and the seq_cnt range. 2038 */ 2039 static void fc_exch_rrq(struct fc_exch *ep) 2040 { 2041 struct fc_lport *lport; 2042 struct fc_els_rrq *rrq; 2043 struct fc_frame *fp; 2044 u32 did; 2045 2046 lport = ep->lp; 2047 2048 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2049 if (!fp) 2050 goto retry; 2051 2052 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2053 memset(rrq, 0, sizeof(*rrq)); 2054 rrq->rrq_cmd = ELS_RRQ; 2055 hton24(rrq->rrq_s_id, ep->sid); 2056 rrq->rrq_ox_id = htons(ep->oxid); 2057 rrq->rrq_rx_id = htons(ep->rxid); 2058 2059 did = ep->did; 2060 if (ep->esb_stat & ESB_ST_RESP) 2061 did = ep->sid; 2062 2063 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2064 lport->port_id, FC_TYPE_ELS, 2065 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2066 2067 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2068 lport->e_d_tov)) 2069 return; 2070 2071 retry: 2072 spin_lock_bh(&ep->ex_lock); 2073 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2074 spin_unlock_bh(&ep->ex_lock); 2075 /* drop hold for rec qual */ 2076 fc_exch_release(ep); 2077 return; 2078 } 2079 ep->esb_stat |= ESB_ST_REC_QUAL; 2080 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2081 spin_unlock_bh(&ep->ex_lock); 2082 } 2083 2084 /** 2085 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2086 * @fp: The RRQ frame, not freed here. 2087 */ 2088 static void fc_exch_els_rrq(struct fc_frame *fp) 2089 { 2090 struct fc_lport *lport; 2091 struct fc_exch *ep = NULL; /* request or subject exchange */ 2092 struct fc_els_rrq *rp; 2093 u32 sid; 2094 u16 xid; 2095 enum fc_els_rjt_explan explan; 2096 2097 lport = fr_dev(fp); 2098 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2099 explan = ELS_EXPL_INV_LEN; 2100 if (!rp) 2101 goto reject; 2102 2103 /* 2104 * lookup subject exchange. 2105 */ 2106 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2107 xid = fc_host_port_id(lport->host) == sid ? 2108 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2109 ep = fc_exch_lookup(lport, xid); 2110 explan = ELS_EXPL_OXID_RXID; 2111 if (!ep) 2112 goto reject; 2113 spin_lock_bh(&ep->ex_lock); 2114 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2115 goto unlock_reject; 2116 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2117 ep->rxid != FC_XID_UNKNOWN) 2118 goto unlock_reject; 2119 explan = ELS_EXPL_SID; 2120 if (ep->sid != sid) 2121 goto unlock_reject; 2122 2123 /* 2124 * Clear Recovery Qualifier state, and cancel timer if complete. 2125 */ 2126 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2127 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2128 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2129 } 2130 if (ep->esb_stat & ESB_ST_COMPLETE) { 2131 if (cancel_delayed_work(&ep->timeout_work)) 2132 atomic_dec(&ep->ex_refcnt); /* drop timer hold */ 2133 } 2134 2135 spin_unlock_bh(&ep->ex_lock); 2136 2137 /* 2138 * Send LS_ACC. 2139 */ 2140 fc_seq_ls_acc(fp); 2141 goto out; 2142 2143 unlock_reject: 2144 spin_unlock_bh(&ep->ex_lock); 2145 reject: 2146 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2147 out: 2148 if (ep) 2149 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2150 } 2151 2152 /** 2153 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2154 * @lport: The local port to add the exchange manager to 2155 * @mp: The exchange manager to be added to the local port 2156 * @match: The match routine that indicates when this EM should be used 2157 */ 2158 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2159 struct fc_exch_mgr *mp, 2160 bool (*match)(struct fc_frame *)) 2161 { 2162 struct fc_exch_mgr_anchor *ema; 2163 2164 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2165 if (!ema) 2166 return ema; 2167 2168 ema->mp = mp; 2169 ema->match = match; 2170 /* add EM anchor to EM anchors list */ 2171 list_add_tail(&ema->ema_list, &lport->ema_list); 2172 kref_get(&mp->kref); 2173 return ema; 2174 } 2175 EXPORT_SYMBOL(fc_exch_mgr_add); 2176 2177 /** 2178 * fc_exch_mgr_destroy() - Destroy an exchange manager 2179 * @kref: The reference to the EM to be destroyed 2180 */ 2181 static void fc_exch_mgr_destroy(struct kref *kref) 2182 { 2183 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2184 2185 mempool_destroy(mp->ep_pool); 2186 free_percpu(mp->pool); 2187 kfree(mp); 2188 } 2189 2190 /** 2191 * fc_exch_mgr_del() - Delete an EM from a local port's list 2192 * @ema: The exchange manager anchor identifying the EM to be deleted 2193 */ 2194 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2195 { 2196 /* remove EM anchor from EM anchors list */ 2197 list_del(&ema->ema_list); 2198 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2199 kfree(ema); 2200 } 2201 EXPORT_SYMBOL(fc_exch_mgr_del); 2202 2203 /** 2204 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2205 * @src: Source lport to clone exchange managers from 2206 * @dst: New lport that takes references to all the exchange managers 2207 */ 2208 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2209 { 2210 struct fc_exch_mgr_anchor *ema, *tmp; 2211 2212 list_for_each_entry(ema, &src->ema_list, ema_list) { 2213 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2214 goto err; 2215 } 2216 return 0; 2217 err: 2218 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2219 fc_exch_mgr_del(ema); 2220 return -ENOMEM; 2221 } 2222 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2223 2224 /** 2225 * fc_exch_mgr_alloc() - Allocate an exchange manager 2226 * @lport: The local port that the new EM will be associated with 2227 * @class: The default FC class for new exchanges 2228 * @min_xid: The minimum XID for exchanges from the new EM 2229 * @max_xid: The maximum XID for exchanges from the new EM 2230 * @match: The match routine for the new EM 2231 */ 2232 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2233 enum fc_class class, 2234 u16 min_xid, u16 max_xid, 2235 bool (*match)(struct fc_frame *)) 2236 { 2237 struct fc_exch_mgr *mp; 2238 u16 pool_exch_range; 2239 size_t pool_size; 2240 unsigned int cpu; 2241 struct fc_exch_pool *pool; 2242 2243 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2244 (min_xid & fc_cpu_mask) != 0) { 2245 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2246 min_xid, max_xid); 2247 return NULL; 2248 } 2249 2250 /* 2251 * allocate memory for EM 2252 */ 2253 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2254 if (!mp) 2255 return NULL; 2256 2257 mp->class = class; 2258 /* adjust em exch xid range for offload */ 2259 mp->min_xid = min_xid; 2260 mp->max_xid = max_xid; 2261 2262 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2263 if (!mp->ep_pool) 2264 goto free_mp; 2265 2266 /* 2267 * Setup per cpu exch pool with entire exchange id range equally 2268 * divided across all cpus. The exch pointers array memory is 2269 * allocated for exch range per pool. 2270 */ 2271 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1); 2272 mp->pool_max_index = pool_exch_range - 1; 2273 2274 /* 2275 * Allocate and initialize per cpu exch pool 2276 */ 2277 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2278 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2279 if (!mp->pool) 2280 goto free_mempool; 2281 for_each_possible_cpu(cpu) { 2282 pool = per_cpu_ptr(mp->pool, cpu); 2283 pool->left = FC_XID_UNKNOWN; 2284 pool->right = FC_XID_UNKNOWN; 2285 spin_lock_init(&pool->lock); 2286 INIT_LIST_HEAD(&pool->ex_list); 2287 } 2288 2289 kref_init(&mp->kref); 2290 if (!fc_exch_mgr_add(lport, mp, match)) { 2291 free_percpu(mp->pool); 2292 goto free_mempool; 2293 } 2294 2295 /* 2296 * Above kref_init() sets mp->kref to 1 and then 2297 * call to fc_exch_mgr_add incremented mp->kref again, 2298 * so adjust that extra increment. 2299 */ 2300 kref_put(&mp->kref, fc_exch_mgr_destroy); 2301 return mp; 2302 2303 free_mempool: 2304 mempool_destroy(mp->ep_pool); 2305 free_mp: 2306 kfree(mp); 2307 return NULL; 2308 } 2309 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2310 2311 /** 2312 * fc_exch_mgr_free() - Free all exchange managers on a local port 2313 * @lport: The local port whose EMs are to be freed 2314 */ 2315 void fc_exch_mgr_free(struct fc_lport *lport) 2316 { 2317 struct fc_exch_mgr_anchor *ema, *next; 2318 2319 flush_workqueue(fc_exch_workqueue); 2320 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2321 fc_exch_mgr_del(ema); 2322 } 2323 EXPORT_SYMBOL(fc_exch_mgr_free); 2324 2325 /** 2326 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2327 * upon 'xid'. 2328 * @f_ctl: f_ctl 2329 * @lport: The local port the frame was received on 2330 * @fh: The received frame header 2331 */ 2332 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2333 struct fc_lport *lport, 2334 struct fc_frame_header *fh) 2335 { 2336 struct fc_exch_mgr_anchor *ema; 2337 u16 xid; 2338 2339 if (f_ctl & FC_FC_EX_CTX) 2340 xid = ntohs(fh->fh_ox_id); 2341 else { 2342 xid = ntohs(fh->fh_rx_id); 2343 if (xid == FC_XID_UNKNOWN) 2344 return list_entry(lport->ema_list.prev, 2345 typeof(*ema), ema_list); 2346 } 2347 2348 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2349 if ((xid >= ema->mp->min_xid) && 2350 (xid <= ema->mp->max_xid)) 2351 return ema; 2352 } 2353 return NULL; 2354 } 2355 /** 2356 * fc_exch_recv() - Handler for received frames 2357 * @lport: The local port the frame was received on 2358 * @fp: The received frame 2359 */ 2360 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2361 { 2362 struct fc_frame_header *fh = fc_frame_header_get(fp); 2363 struct fc_exch_mgr_anchor *ema; 2364 u32 f_ctl; 2365 2366 /* lport lock ? */ 2367 if (!lport || lport->state == LPORT_ST_DISABLED) { 2368 FC_LPORT_DBG(lport, "Receiving frames for an lport that " 2369 "has not been initialized correctly\n"); 2370 fc_frame_free(fp); 2371 return; 2372 } 2373 2374 f_ctl = ntoh24(fh->fh_f_ctl); 2375 ema = fc_find_ema(f_ctl, lport, fh); 2376 if (!ema) { 2377 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2378 "fc_ctl <0x%x>, xid <0x%x>\n", 2379 f_ctl, 2380 (f_ctl & FC_FC_EX_CTX) ? 2381 ntohs(fh->fh_ox_id) : 2382 ntohs(fh->fh_rx_id)); 2383 fc_frame_free(fp); 2384 return; 2385 } 2386 2387 /* 2388 * If frame is marked invalid, just drop it. 2389 */ 2390 switch (fr_eof(fp)) { 2391 case FC_EOF_T: 2392 if (f_ctl & FC_FC_END_SEQ) 2393 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2394 /* fall through */ 2395 case FC_EOF_N: 2396 if (fh->fh_type == FC_TYPE_BLS) 2397 fc_exch_recv_bls(ema->mp, fp); 2398 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2399 FC_FC_EX_CTX) 2400 fc_exch_recv_seq_resp(ema->mp, fp); 2401 else if (f_ctl & FC_FC_SEQ_CTX) 2402 fc_exch_recv_resp(ema->mp, fp); 2403 else /* no EX_CTX and no SEQ_CTX */ 2404 fc_exch_recv_req(lport, ema->mp, fp); 2405 break; 2406 default: 2407 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2408 fr_eof(fp)); 2409 fc_frame_free(fp); 2410 } 2411 } 2412 EXPORT_SYMBOL(fc_exch_recv); 2413 2414 /** 2415 * fc_exch_init() - Initialize the exchange layer for a local port 2416 * @lport: The local port to initialize the exchange layer for 2417 */ 2418 int fc_exch_init(struct fc_lport *lport) 2419 { 2420 if (!lport->tt.seq_start_next) 2421 lport->tt.seq_start_next = fc_seq_start_next; 2422 2423 if (!lport->tt.seq_set_resp) 2424 lport->tt.seq_set_resp = fc_seq_set_resp; 2425 2426 if (!lport->tt.exch_seq_send) 2427 lport->tt.exch_seq_send = fc_exch_seq_send; 2428 2429 if (!lport->tt.seq_send) 2430 lport->tt.seq_send = fc_seq_send; 2431 2432 if (!lport->tt.seq_els_rsp_send) 2433 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send; 2434 2435 if (!lport->tt.exch_done) 2436 lport->tt.exch_done = fc_exch_done; 2437 2438 if (!lport->tt.exch_mgr_reset) 2439 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2440 2441 if (!lport->tt.seq_exch_abort) 2442 lport->tt.seq_exch_abort = fc_seq_exch_abort; 2443 2444 if (!lport->tt.seq_assign) 2445 lport->tt.seq_assign = fc_seq_assign; 2446 2447 if (!lport->tt.seq_release) 2448 lport->tt.seq_release = fc_seq_release; 2449 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(fc_exch_init); 2453 2454 /** 2455 * fc_setup_exch_mgr() - Setup an exchange manager 2456 */ 2457 int fc_setup_exch_mgr(void) 2458 { 2459 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2460 0, SLAB_HWCACHE_ALIGN, NULL); 2461 if (!fc_em_cachep) 2462 return -ENOMEM; 2463 2464 /* 2465 * Initialize fc_cpu_mask and fc_cpu_order. The 2466 * fc_cpu_mask is set for nr_cpu_ids rounded up 2467 * to order of 2's * power and order is stored 2468 * in fc_cpu_order as this is later required in 2469 * mapping between an exch id and exch array index 2470 * in per cpu exch pool. 2471 * 2472 * This round up is required to align fc_cpu_mask 2473 * to exchange id's lower bits such that all incoming 2474 * frames of an exchange gets delivered to the same 2475 * cpu on which exchange originated by simple bitwise 2476 * AND operation between fc_cpu_mask and exchange id. 2477 */ 2478 fc_cpu_mask = 1; 2479 fc_cpu_order = 0; 2480 while (fc_cpu_mask < nr_cpu_ids) { 2481 fc_cpu_mask <<= 1; 2482 fc_cpu_order++; 2483 } 2484 fc_cpu_mask--; 2485 2486 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2487 if (!fc_exch_workqueue) 2488 goto err; 2489 return 0; 2490 err: 2491 kmem_cache_destroy(fc_em_cachep); 2492 return -ENOMEM; 2493 } 2494 2495 /** 2496 * fc_destroy_exch_mgr() - Destroy an exchange manager 2497 */ 2498 void fc_destroy_exch_mgr(void) 2499 { 2500 destroy_workqueue(fc_exch_workqueue); 2501 kmem_cache_destroy(fc_em_cachep); 2502 } 2503